
Durham E-Theses

Rank Lower Bounds in Propositional Proof Systems

Based on Integer Linear Programming Methods

RHODES, MARK,NICHOLASCHARLES

How to cite:

RHODES, MARK,NICHOLASCHARLES (2009) Rank Lower Bounds in Propositional Proof Systems

Based on Integer Linear Programming Methods, Durham theses, Durham University. Available at Durham
E-Theses Online: http://etheses.dur.ac.uk/191/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/191/
 http://etheses.dur.ac.uk/191/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

Rank Lower Bounds in
Propositional Proof Systems based
on Integer Linear Programming

Methods

Mark Nicholas Charles Rhodes

A Thesis presented for the degree of

Doctor of Philosophy

Algorithms and Complexity Group (ACiD)
Department of Computer Science

University of Durham
England

March 2009

Dedicated to the lovely Laura.

Rank Lower Bounds in Propositional Proof
Systems based on Integer Linear Programming

Methods

Mark Nicholas Charles Rhodes

Submitted for the degree of Doctor of Philosophy

February 2009

Abstract

The work of this thesis is in the area of proof complexity, an area which looks to

uncover the limitations of proof systems. In this thesis we investigate the rank

complexity of tautologies for several of the most important proof systems based on

integer linear programming methods. The three main contributions of this thesis

are as follows:

Firstly we develop the first rank lower bounds for the proof system based on

the Sherali-Adams operator and show that both the Pigeonhole and Least Number

Principles require linear rank in this system. We also demonstrate a link between

the complexity measures of Sherali-Adams rank and Resolution width.

Secondly we present a novel method for deriving rank lower bounds in the well-

studied Cutting Planes proof system. We use this technique to show that the Cutting

Plane rank of the Pigeonhole Principle is logarithmic.

Finally we separate the complexity measures of Resolution width and Sherali-

Adams rank from the complexity measures of Lovász and Schrijver rank and Cutting

Planes rank.

Declaration

The work in this thesis is based on research carried out in the Algorithms and Com-

plexity Group (ACiD) at the Department of Computer Science, Durham University,

England. No part of this thesis has been submitted elsewhere for any other degree

or qualification and it is all my own work unless referenced to the contrary in the

text.

Copyright c© 2009 by Mark Nicholas Charles Rhodes.

The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged.

iv

Acknowledgements

Firstly thanks to all those people who helped me through my studies over the past

three or so years and who I will forget to mention in the following paragraphs.

It has been an interesting few years of my life during which I have learnt a lot,

met some great people, lived in at least eight different places, got married, played

a lot of sport and watched at least one too many DVDs. On the work front the

first year or so wasn’t too productive and neither was the year I spent trying to

solve an annoying problem - the answer to which is ‘trivial’ but does not appear in

this thesis! However the rest of the time was productive enough and for this I must

say many thanks to my supervisor Stefan Dantchev who has always been there to

answer my questions, however ‘trivial’ they may have been and who has taught me

at least half of all I know and at most one tenth of all he knows about the intriguing

field of proof complexity.

Thanks to all the great house-mates I’ve had during my study period, especially

to Paddy and Luke whom I’m sure will go on to lead fun filled lives and who taught

me the comedy value of simply repeating the subjective noun of the previous sentence

preceded by “You’re a”; which sounds a lot more complex and clever than it is.

Thanks also to all my lovely family and my fantastic friends who came to visit

us in Durham and Barnard Castle and made our weekends more enjoyable and

invariably more drunken.

Thanks also to my good friend Pim van ’t Hof, for all the pool and table tennis

practice, advice and company, and for teaming up with Laura to cook me enough

meals and for lending me enough money to ensure that I didn’t waste away.

I would say an extra special thank you to my lovely wife Laura, but she got the

dedication instead.

v

Contents

Abstract iii

Declaration iv

Acknowledgements v

1 Introduction 1

1.1 Proof Systems and Proofs . 3

1.2 Thesis Outline . 5

2 Preliminaries 7

2.1 Background . 7

2.1.1 Computation and Complexity 7

2.1.2 Graphs . 8

2.1.3 Propositional logic and the Satisfiability Problem 9

2.1.4 Polyhedra, Linear Inequalities, Linear Programming and In-

teger Linear Programming . 12

2.2 Resolution . 13

2.3 Proof Systems Operating on Linear Inequalities 17

2.3.1 Cutting Planes . 18

2.3.2 Lovász Schrijver . 19

2.3.3 Sherali-Adams . 22

2.4 Families of Tautologies/Contradictions 24

2.4.1 The Pigeonhole Principle . 25

2.4.2 The Least Number Principle 26

vi

2.4.3 The Tseitin Tautologies . 26

2.4.4 The House Sitting Principle 27

2.4.5 Random kCNF formulae . 28

2.4.6 Ramsey’s Theorem . 29

2.4.7 HornSAT and 2SAT . 30

2.5 Size and Rank Maps of Various Proof Systems 31

3 Rank Bounds for the SA Proof System 34

3.1 Introduction . 34

3.1.1 Related Work . 34

3.2 Soundness and Completeness . 35

3.3 The SA rank of Horn and 2CNF formulae 39

3.4 Rank Lower Bounds . 40

3.5 SA Proof Size . 51

3.6 Open Problems . 52

4 The Chvátal Rank of the Pigeonhole Principle 54

4.1 Introduction . 54

4.1.1 Related Work . 54

4.2 Preliminaries . 55

4.3 Results . 57

4.4 Further Work . 62

5 Comparing the Rank Complexity of LS+ and Cutting Planes to

Resolution Width 63

5.1 Introduction . 63

5.2 Related Work . 63

5.3 Preliminaries . 64

5.3.1 Relativized House Sitting Principle 64

5.4 Results . 66

5.5 Further Work . 78

Bibliography 79

vii

List of Figures

2.1 A simple refutation graph. 14

2.2 A simple CP proof. 19

2.3 Known relationships between the sizes of proofs in various systems. . 31

2.4 Known relationships between the rank complexity of various proof

systems. 32

5.1 The set Vstart, and associated 0/1 values. 72

5.2 The set Vend, and associated 0/1 values. 72

5.3 The template Tleft, and associated 0/1 values. 73

5.4 The template Tright, and associated 0/1 values. 73

5.5 The template Tmid, and associated 0/1 values. 73

5.6 The template Tother, and associated 0/1 values. 73

5.7 The board on which the game is played. 74

5.8 Delayer’s deal in the first round, where each box is labeled above its

top left hand corner. 76

viii

Chapter 1

Introduction

Some things seem to be easier to prove than others. Indeed some statements appear

to have the property that, if true, they have simply defined and “small” proofs,

however if the statement turns out to be false, it is much more difficult to consider

what constitutes a proof of its invalidity and to see how a “small” proof of this

could be produced. For instance consider the statement “there is a book with

exactly 100,000 words in it”. If this statement is true, then its proof could consist

of a book containing exactly 100,000 words and it wouldn’t be difficult (although

rather time-consuming) to check that the book proves the statement. However, if

the statement is not true, then it seems that the only way to prove this would be to

count the number of words in every single book that has ever been written.

In fact, some statements may even be more difficult to prove the invalidity of

such as, “there is a collection of books whose combined number of words is exactly

10,000,000”. It is these kinds of statements which appear to be hard to disprove,

no matter which method of attack used or the amount of resources available. The

research area in which this thesis is based is Proof Complexity, an area investigating

the complexity of proving and disproving such statements. The questions arising

from this investigation are related to a number of problems which are fundamental

to all areas of mathematics. Given a mathematical theorem, what is the size of the

shortest proof of this theorem in some appropriate formal system? Given a formal

system, can we say that one tautology is more difficult to prove than another in

it? Is it always possible to find a proof which is not much larger than the smallest

1

possible proof within a reasonable time frame?

The field of modern Proof Complexity was born out of Cook and Reckhow’s paper

in 1979 [16] which considers the problem of whether or not a given propositional

formula is a tautology. One observation in this paper is the realisation that if there

exists a proof system which can show every tautology is in fact a tautology in a proof

whose size is polynomial in the size of the number of variables in the tautology, then

NP = coNP. The reverse statement is also true, namely that if no such proof system

exists, then NP != coNP, a result which would imply the famous P != NP conjecture.

The prevailing conjecture is that NP != coNP and much work in this area has been

dedicated to proving the non-existence of such a proof system, through proving

super-polynomial lower bounds for progressively stronger proof systems. Kraj́ıc̆ek

observes in [47] that although the conjecture NP != coNP is unlikely to be settled

in this incremental fashion, as a proof of a universal statement is rarely obtained by

proving all its instances, it is the hope that such a program will uncover some hidden

“computational hardness assumptions” in these lower bounds and thus reduce the

conjecture to a more rudimentary one.

The practical application of such lower bounds lies in the fact that if the lower

bounds are sufficiently strong, they allow us to show that the tautologies are in-

tractable for any automated theorem proving method (or SAT solver, see [68]) based

upon the associated proof system. So far some specific exponential lower bounds are

known for a number of systems including general Resolution, and Cutting Planes

(see [36] and [52] respectively). Indeed, since most theorem provers are based on

“natural” proof systems such as these, another important stream of research in Proof

Complexity is devoted to proving the precise limitations of such systems. The work

of this thesis is related to this area.

The other main stream of research within proof complexity involves the automa-

tisability of proofs for certain proof systems. Work in this area looks to answer the

question of whether one can find an algorithm which can always find a proof of size

polynomially bounded by the size of the smallest possible proof for a particular proof

system. On the positive side little is known; even relatively weak proof systems ap-

pear to be non-automatisable (i.e. there is no algorithm which can effectively find

2

small proofs for those systems). Insights into the automatisability of Resolution

and an introduction to the field can be found in [3]. Another question related to

the automatisability of proof systems, which we touch on in this thesis, is whether

or not a given proof system is automatisable with respect to the smallest possible

depth (also known as rank) of a proof in that system. We say a proof system is

automatisable with respect to the rank if there exists an algorithm which can always

find a proof of size O(nr), where r is the smallest possible rank of a proof of the

instance in question.

1.1 Proof Systems and Proofs

Due to the theory of NP-completeness, if one were able to prove a super-polynomial

lower bound on the size of proofs of the unsatisfiability of SAT instances, then it

would settle the conjecture that NP != coNP. It is for this reason, together with the

fact that the SAT problem is the most well-studied and understood NP-complete

problem, that the field of Proof Complexity deals only at looking at unsatisfiable

SAT instances, to find lower bounds on the size of proofs of their unsatisfiability.

Perhaps the most intuitive way of checking whether a given propositional for-

mula is satisfiable or not is to simply enumerate over all the 2n possible values the

variables can take and see whether one of them satisfies the formula. This brute-

force approach can be represented as a truth table such as in [68], which in turn can

be interpreted as a proof generated by a simple proof system. However, this proof

system is not particularly interesting to study since trivially all proofs it produces

will be of size Ω(2n).

A proof system can be considered to be a set of rules for proving that a statement

is a tautology (i.e. it is always true). These rules can be considered to be written

in the form:

K1, . . . , Kq

D

where the line can read as “from which we can deduce” and q is the number of

pieces of information or constraints we already know or have and D is the newly

3

derived piece of information or constraint. If q = 0, D is an axiom of the system

(i.e. it is something we need no information to derive). The statements upon

which a proof system operates are typically propositional formulae; if this is the

case the system is called a propositional proof system (pps). It is well known that

given a propositional formula F we can create a CNF formula C from F that is a

contradiction (i.e. C is unsatisfiable) if and only if F is a tautology, such that C is

only linearly larger than F in linear time (see [67]). Many proof systems, including

all those reviewed in this work, operate solely on CNF formulae; such propositional

proof systems are also called refutation systems. This name comes from the fact

that given an unsatisfiable CNF formula C, one can use the rules of the system to

refute the statement “there exists an assignment of true/false values to the variables

of C which satisfies C”. It should be noted that since the negation of a tautology

is a contradiction, the terms tautology and contradiction are used interchangeably

throughout the literature.

When discussing a refutation pss, a proof of a CNF formula C can be considered

to be an ordered list of statements L = {l1, . . . , ls}, where each statement li is either

one of the clauses of C, an axiom of the pps, or is derived from applying one of the

system’s rules to a collection of statements li1 , . . . liq , where ij < i for j = 1, . . . q.

Here s is usually considered to be the size of the proof (although other definitions

of size are more appropriate in certain contexts) and ls is usually some trivially

contradictory statement such as 0 = 1.

There are two key properties that every useful proof system should have: sound-

ness and completeness. A proof system is said to be sound if its rules are logically

valid (e.g. in a refutation pps operating on a CNF formula, it should be impossible

to derive a contradiction if the original set of clauses are not contradictory). A

proof system is said to be complete if one can always derive a contradiction when

the original set of statements are contradictory by applying its rules. Since we only

deal with proof systems with these properties, some obvious questions are therefore:

given a proof system P and a tautology T , what is the size of the smallest proof

of T in P and how many rounds of applications of the rules of P will suffice to

prove T? Propositional proof complexity looks to answer these questions for various

4

propositional proof systems. For a formal definition of a proof system and further

explanation as to the relationship between propositional proof systems and the NP

vs coNP problem see [16].

One of the most useful tools for comparing proof systems is the idea of polynomial-

simulation (p-simulation). A proof system P is said to p-simulate a proof system

P ′ if for every tautology T , T has a proof of size O(tc) in P where c is a constant

and t is the size of the smallest possible proof of T in P ′. If two systems p-simulate

each other, they are said to be polynomially equivalent (p-equivalent). A similar

tool exists to compare proof systems with respect to proof rank. Since the rank

complexity of any formula (i.e. the minimum possible proof rank for any proof of

the formula) in a given system generally ranges from 0-n (the number of variables in

the formula), we are not interested in comparing the ranks of systems with respect

to a polynomial simulation but rather in whether proofs in one system require rank

arbitrarily larger than proofs in another system. We say a system P rank simulates

a system P ′ if any given tautology has a proof of rank O(f(n)) in P , where f(n) is

the smallest possible rank of a proof of that tautology in P ′. If two systems rank sim-

ulate each other they are said to be rank equivalent. If however there are examples

which require arbitrarily larger rank in one system than in another and vice-versa,

the complexity measures of rank in the two systems are said to be incomparable.

1.2 Thesis Outline

Chapter 2 begins with basic definitions used throughout the thesis and aims to

provide sufficient background knowledge to enable a non-expert to read the thesis.

Chapter 2 also provides definitions of the various proof systems of relevance to

this thesis together with an overview of results about them. The chapter ends

with a figure depicting the current known separations and relationships between the

rank complexities of the proof systems discussed together with another complexity

measure - Resolution width.

Chapter 3 provides linear rank lower bounds for the Sherali-Adams proof system

and also demonstrates that there is a unique connection between the complexity

5

measures of Sherali-Adams rank and Resolution width. The results presented in

this chapter are also presented in the articles [57] and [23].

Chapter 4 presents a novel method to proving rank lower bounds for the Cutting

Planes proof system. This method is used to show that the rank of the well-known

Pigeonhole Principle polytope is Θ(log n), where n is the number of “holes”. The

chapter also provides a short proof of the fact that the principle has polynomially

sized proofs, showing that Rank lower bounds do not necessarily imply size lower

bounds in the Cutting Planes proof system. The results from Chapter 4 are con-

tained in the manuscript [58].

In Chapter 5 we demonstrate that the complexity measures of Cutting Plane rank

and the rank of the proof systems proposed by Lovász and Schrijver are incomparable

to the complexity measure of Resolution width. This result together with a result

from Chapter 3 provides a number of separations between the various proof systems

discussed in this thesis. Chapter 5 draws from results appearing in [59] and [60].

6

Chapter 2

Preliminaries

2.1 Background

2.1.1 Computation and Complexity

We assume the reader is familiar with the basic concepts of the theories of compu-

tation and complexity such as problems, algorithms and asymptotic bounds. For

excellent introductions to computation and complexity theory see [64] and [20] re-

spectively. We begin by defining the complexity classes discussed in this thesis.

P is the set of problems solvable by a deterministic Turing machine in polynomial

time in the size of the input.

NP is the set of problems that have short certificates, i.e. a given solution to

a problem in this set can be verified as a solution in polynomial time in the size

of the input. Equivalently NP is the set of problems that can be solved by a non-

deterministic Turing machine in polynomial time.

coNP is the set of problems that have short disqualifications, i.e. given a potential

proof that an instance of a problem in coNP can not be solved, it can be verified in

polynomial time that this is indeed a proof.

A problem is NP-complete (coNP-complete) if it is in NP (coNP) and is at least

as hard as any other problem in NP (coNP). By the term “at least as hard” we

mean that every other problem in NP (coNP) can be reduced to that problem in

polynomial time. This definition leads to an interesting fact; if any problem known

7

to be NP-complete (coNP-complete), were shown to be solveable in polynomial time,

it would mean that every problem in NP (coNP) could also be solved in polynomial

time. It is widely believed that no polynomial time algorithm exists for any NP-

complete or coNP-complete problem. The problem of whether or not there exists

a polynomial time algorithm for any NP-complete problem is famously known as

the P vs NP problem and its solution is worth a million dollars [17]. Since many

real-world problems are known to belong to these classes, the development of a such

an algorithm would be an unrivalled breakthrough. For a thorough treatment of the

theory of NP-completeness see [32].

2.1.2 Graphs

Throughout this thesis we use some basic concepts from the theory of graphs, which

we will define here. For a more thorough introduction to the theory of graphs see

[10].

An undirected graph G = (V (G), E(G)) is a set of vertices (also known as nodes)

V (G) and a set of edges (also known as arcs) E(G). For simplicity, whenever it is

unambiguous we refer to V (G) as simply V and E(G) as E. Each edge e ∈ E is

an unordered pair uv where u, v ∈ V . We say that e connects u and v. We only

deal with simple graphs which have no loops (edges of the form vv for some vertex

v ∈ V) and no multiple edges (i.e. all edges in E are distinct). Graphs are often

represented as a diagram, where the vertices are indicated by points and edges by

lines joining the points representing the vertices it connects. We say two vertices

are adjacent if and only if they are connected by an edge, and we say e is incident

to v if it connects v to some other vertex. The neighborhood of a vertex v, denoted

as Γ(v), is the set of all vertices that v is adjacent to. In a simple graph, the size

of Γ(v) is equal to the number of edges that are incident to v; this number is called

the degree of v.

A connected graph is a graph in which each vertex can be reached from every

other vertex by traversing edges of the graph. A clique refers to a set of vertices

where each pair of vertices are connected by an edge. In contrast, an independent

set is a set of vertices that have no edges between them. A subgraph H of G is a

8

graph consisting of a subset of the edges and a subset of the vertices of G (i.e. a

graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G)). A cycle in a graph is a

sequence of unique vertices and edges (also known as a path) that can be traversed

starting from a vertex v so that you end up back at v. An interesting class of graphs,

relevant to Proof Complexity, are those which are connected and contain no cycles;

such graphs are called trees.

Directed graphs are defined similarly to undirected graphs with the exception

that the edges in a directed graph are ordered pairs of vertices (i.e. the edge uv

is different from the edge vu); we say that the edge uv leaves u and goes to v and

is typically represented as an arrow from u to v in a drawing of the graph. For

such graphs the out-degree of a vertex is thenumber of edges leaving it, whereas the

in-degree is the number of edges going to it. One type of directed graph commonly

used in Proof Complexity to represent proofs are Directed Acyclic Graphs (or DAGs

for short). As the name suggests a DAG is simply a directed graph with no cycles.

A directed tree is a DAG with the additional condition that the in-degree of any

vertex is at most one. A root in a DAG is any vertex with in-degree zero, whereas

a sink is a vertex with out-degree zero. In a DAG, a vertex u is called a parent of a

vertex v if the edge uv appears in the DAG; likewise v is a child of u in this instance.

2.1.3 Propositional logic and the Satisfiability Problem

A propositional formula is a sentence constructed from propositional variables, a set

of connectives and parentheses (brackets). A propositional variable can take only one

of two possible values, true or false, which are often denoted as the numbers 1 and

0 respectively. Each variable can be considered to represent a particular statement;

for example, the propositional variable x might represent the statement “Tom is

a cat” and the variable y the statement “Tom likes milk”. The basic connectives

are conjunction, disjunction and negation. Conjunction also known as “and”, is

represented with the symbol ∧; disjunction also known as “or” is represented by the

symbol ∨; and negation also called “not” is denoted by ¬. Often other connectives

such as implication (→) and exclusive-or (⊕) are also used; although these do not

add to the expressive power of the language, they can be used to simplify some

9

formulae. The semantics of the basic connectives is as follows:

• ¬p means that p is false. Also ¬¬p is the same as p.

• p ∨ q denotes that at least one of p and q must be true.

• p ∧ q says that both p and q must be true.

Note that in the above, p and q can be propositional variables or entire sub-

formulas and that negation has a higher precedence than the other two connectives.

An example of a propositional formula, using the variables x and y introduced

earlier, is F = (¬x ∧ ¬y) ∨ (x ∧ y), which states that “Tom isn’t a cat and doesn’t

like milk or Tom is a cat who likes milk”. The literals of a formula are its variables

or their negations (i.e. the literals of F are x, ¬x, y and ¬y).

Any given assignment of true/false values to the variables of a propositional

formula gives a true/false value for that formula. This is obtained simply by filling in

the values into the formula and applying the rules of the connectives. An assignment

of values to the variables of a formula which makes the formula evaluate to true is

known as a satisfying assignment. For a formula with l literals and c connectives,

given an assignment of values to variables, we can find the 0/1 value of the formula in

time O(l + c). A formula with at least one satisfying assignment is called satisfiable,

one which is satisfied by every assignment is known as a tautology, whilst a formula

which has no satisfying assignments is called contradictory. There are 2n possible

0/1 values the variables can take for any formula containing n variables. A table

which gives the 0/1 value of a formula for each possible assignment of values to its

variables is called a truth table. The truth table for the basic connectives and F is

is given in Table 2.1.

The question of whether there exists an assignment of values to the propositional

variables of a formula so that the formula evaluates to true is known as the satis-

fiability problem or SAT for short. For instance F has two satisfying assignments,

and is therefore neither a tautology nor a contradiction.

10

x y ¬x x ∧ y x ∨ y F

0 0 1 0 0 1

0 1 1 0 1 0

1 0 0 0 1 0

1 1 0 1 1 1

Table 2.1: Truth table for the basic connectives and the formula F .

SAT is typically studied for formulae in conjunctive normal form (CNF). A

formula is in CNF if it consists of a conjunction of disjunctions of literals. Each set

of disjunctions is called a clause, and we write:

F := C1 ∧ . . . ∧ Cm =
m∧

k=1

Ck,

and each clause Ck is of the form:

∨

i∈Pk∪Nk

li ≡
∨

i∈Pk

pi ∨
∨

i∈Nk

¬pi,

where li is a literal and pi are the propositional variables. Here Nk (Pk) are the

indices of the negative (positive) literals of the clause Ck. The length of a clause Ck

is the number of distinct literals in it. We consider tautological clauses (i.e. those

with Pk ∩Nk != ∅) to have length zero since they evaluate to true. We call a clause

a k-clause if it has length k, and a formula is said to be a kCNF if it contains only

clauses of length ≤ k. The satisfiability problem restricted to kCNF formulae is

known as kSAT. The rational behind restricting the study of SAT to CNF formulas

comes from the fact that for any propositional formula we can generate a CNF

formula which is satisfiable if and only if the original formula is satisfiable in linear

time, (with only linearly more variables). For details on how this can be achieved

we refer the reader to [67].

SAT is known to be NP-complete and in fact was the first problem to be shown

to be so by Cook in his ground breaking paper [15]. In fact, even when restricted

to 3CNF formulae the problem remains NP-complete, (see Theorem 34.10 of [20]).

The SAT problem is also very important from a practical standpoint. It has a

large number of applications and its simplicity makes it easy to convert instances of

11

many other NP-complete problems into SAT instances. Advances in algorithms to

solve SAT, so-called SAT solvers, over the past two decades has lead to real-world

instances consisting of several thousands of variables being solved (see [68]). Cur-

rently SAT solvers are used to solve problems in planning, machine learning, digital

integrated circuit design, frequency assignment, test pattern generation, haplotyp-

ing in bioinformatics and model checking amongst others; for further information,

see [50].

2.1.4 Polyhedra, Linear Inequalities, Linear Programming

and Integer Linear Programming

A set P ⊆ Rn is a polyhedron if P = {x ∈ R : Ax ≥ b} for some matrix A and some

vector b, and a rational polyhedron if A and b can be taken to be rational. We say

that P is described or defined by the system Ax ≥ b. A polytope is the name given

to a bounded polyhedron (i.e. all its variables have finite maximum and minimum

values). Every polyhedron P has an integer hull (i.e. the convex hull of the integer

points within P), which we denote as PI and which may or may not be empty.

The Linear Programming problem (LP) is the problem of optimizing a linear

objective function, subject to a set of (also called a system of) linear equality and

inequality constraints. LP can be stated as

maximize cT x

subject to aT
i x ≥ bi, i = 1, . . . ,m

where a1, . . . , am and c are rational vectors of n elements and b1, . . . , bm are rational

numbers. This problem has numerous real-world applications and has been the

subject of much research over the last sixty years. The first and probably the best

known algorithm to solve the linear programming problem is the Simplex method.

This method was developed by Dantzig, who began the modern study of the problem

when developing a method to rapidly compute a time-staged deployment, training

and logistical supply program for the Pentagon. For a brief history of history of LP

see [24]. However, whilst it was observed that LP could be solved quickly in practice,

the complexity of LP was not known until Khachiyan [44] demonstrated in 1979 that

12

the ellipsoid method could be used to solve LP in polynomial time for all bounded

polyhedra. In this work we are only concerned with bounded polyhedra in the 0-1

hypercube (i.e. those of the form P ⊆ [0, 1]n) and with the decision version of the

problem, which asks whether there exists any point which satisfies the constraints

aT
i x ≥ bi, i = 1, . . . ,m. Obviously, since the optimization version of the problem is

known to be in P , so too is the decision version.

One important related problem is Integer Linear Programming (ILP). This is

essentially the same problem, but, as its name suggests, has the additional restriction

that each variable must take an integer value. ILP is well known to be NP-hard.

In fact the decision problem version (i.e. deciding whether the given constraints

can be satisfied at all or not) in which all the variables must be either 0 or 1, (the

0/1 Integer Programming Problem) was one of the first problems to be shown to be

NP-complete, by Karp [43]. Both ILP and its continuous counter-part have been

thoroughly studied, for an excellent overview of this study see [62].

2.2 Resolution

Resolution is by far the most studied and understood proof system which doesn’t

simply enumerate over all possible inputs. It was first introduced as a proof system

by Blake in [9] and revisited some thirty years later by Davis and Putnam in [27] and

[28] when it began to be used as a method for solving the SAT problem. Resolution

has only one rule, known as the Resolution rule:

A ∨ xi B ∨ ¬xi

A ∨B

where A and B are disjunctions of literals.

In the case that the length of A or B is 0, this rule is sometimes referred to as

unit propagation. In addition to the Resolution rule, the Weakening rule is some-

times added as a means of simplifying arguing about Resolution proofs, however its

inclusion adds no additional power to the system. The Weakening rule is defined as:

A

A ∨ l
.

13

Here l is a literal, which is either a positive or negative occurrence of a variable not

already in A.

The clause resulting from an application of the Resolution rule is sometimes re-

ferred to as the resolvent of the two given clauses and the variable which is removed

when creating the resolvent is said to be resolved upon. A proof of the unsatisfiabil-

ity of a CNF formula F in Resolution (also called a Resolution proof or refutation),

is simply a list of clauses C1, . . . , Cs where each Ci is either a clause of F or is the

resolvent of Ci′ and Ci′′ where i > {i′, i′′} and Cs is the empty clause (∅). The

size of a Resolution proof is defined to be the the number of clauses in it. As with

other proof systems, Resolution refutations can be represented as a DAG, where the

vertices of the graph are the clauses appearing in the proof and there is an edge in

the graph if and only if the target was derived using the source as a premise. Each

edge can be labeled with the variable which was resolved upon to create the target.

The clauses of the formula are the only sources of the graph (vertices with in-degree

0) and the empty clause (∅) the only sink. Figure 2.1 shows a simple example of a

Resolution refutation of the formula (x ∨ y) ∧ (¬y ∨ z) ∧ (¬x ∨ y) ∧ ¬z represented

in this manner; such graphs are sometimes called refutation graphs.

(x ∨ y)
y

!!!!!!!!!!!
(¬y ∨ z)

y

""""""""""""

y

##

(¬x ∨ y)
x

$$###################
(x ∨ z)

x
##

¬z
z

!!$$$$$$$$$$$$ (y ∨ z)
y %% z

z

&&%%%%%%%%%%%%%%

∅

Figure 2.1: A simple refutation graph.

It is well known that Resolution is both sound (since the resolvent of any Ci

and Ci′ can only be satisfied if both Ci and Ci′ can be satisfied), and complete by

Theorem 2.2.1, the proof of which we include for completeness and because it is

hopefully illuminating.

14

Theorem 2.2.1 (Adapted from Theorem 2.1.1 of [47]) If a CNF formula F is con-

tradictory, then there is a Resolution proof of F .

Proof : We use induction on the number of variables n in F . In the case that n = 1

it must be that we have the two clauses x1 and ¬x1, which resolve to give the empty

clause.

Assume there is a Resolution proof for any contradictory CNF formula with n−1

variables. We can partition the clauses of F = {C1, . . . , Cm} into four disjoint sets;

C00, C01, C10, C11; these sets contain all the clauses of F without the literals xn or

¬xn, those with the literal xn but without ¬xn, those without xn but with ¬xn and

those with both xn and ¬xn respectively.

We now create a new set of clauses F ′ from F as follows:

1) Delete all clauses from C11, since they are trivially satisfied.

2) Replace C01∪C10 by the set of clauses that are obtained by resolving all pairs

of clauses Ci ∨ xn ∈ C01 and Cj ∨ ¬xn from C10.

Note that F ′ contains no occurrence of the literals xn or ¬xn. Moreover F ′ can

also be shown to be unsatisfiable. This is because any satisfying assignment a′ of

zero-one values to the variables of F ′ satisfies at least all the clauses Ci, such that

Ci ∨ xn ∈ C01, or all the clauses Cj, such that Cj ∨ ¬xn ∈ C10, (otherwise we could

find some resolvent in F ′ not satisfied by a′). However if this were the case a′ could

be extended, by giving a suitable value for xn to a truth assignment a satisfying F ,

which is a contradiction. !

There are two well studied restrictions of Resolution: Regular Resolution and Tree-

Like Resolution. In the former each variable is resolved at most once along any path

in the refutation graph; in the latter restriction, the refutation graph is a tree. Both

are known to be exponentially weaker than general (unrestricted) Resolution (i.e.

there exist examples of families of contradictions that are known to have polynomi-

ally sized general Resolution proofs and require at least exponentially sized Regular

Resolution and Tree-Like Resolution proofs).

15

An interesting complexity measure unique to Resolution is the width of a Reso-

lution proof. The measure of the width of a Resolution refutation was introduced

in [7] and is defined to be the size of the largest clause in the refutation. The Reso-

lution width of a CNF formula F is the minimum possible width of any Resolution

refutation of F . It is known that the width and the size of Resolution and in par-

ticular Tree-like Resolution proofs are directly correlated under certain conditions

(see [7]).

An alternative definition of the Resolution width of a CNF formula F , known

as the narrow Resolution width, comes from [31]. This refined definition of width

overcomes the problem that instances with large clauses must have high width, even

though it may be possible to reduce the width simply by rewriting the clauses as a

3CNF formula. Details on how this can be accomplished, using auxiliary variables,

are given in Theorem 34.10 of [20]. The narrow Resolution width of a CNF formula

F is the minimum value k, such that F has a width k narrow Resolution refutation.

A width k narrow Resolution refutation is a sequence of clauses C1, . . . , Cs where

Cs is the empty clause and each Ci is either a clause in F or is derived using either

the Resolution rule, the Weakening rule or the following rule, which is referred to

as Resolution by cases

x1 ∨ · · · ∨ xm, B ∨ ¬x1, . . . , B ∨ ¬xm

B
.

Crucially all clauses derived from any of the three rules must have at most k literals.

In [31], it is shown how the narrow Resolution proof system is related to normal

Resolution.

Tree-like Resolution, a relatively weak proof system, is a particularly interesting

system to study from a practical point of view, because many of the most effective

SAT solvers, including the famous DPLL (Davis, Putnam, Loveland and Longmann

[27, 28]) algorithm, are based upon it. It may seem counter-intuitive that practical

algorithms are based on one of the weakest proof systems, but this can be explained

by the trade-off between strength and automatisability, i.e that the weaker the proof

system, the more likely it is to be automatisable.

16

2.3 Proof Systems Operating on Linear Inequali-

ties

In general there are two types of propositional proof system (pps), those such as

Resolution which are based upon solving the SAT problem directly and those based

upon solving instances of ILP derived from given SAT instances. A SAT instance

can be converted into an ILP instance by taking each clause of the instance and

replacing it with an inequality as follows:

the clause

xi1 ∨ · · · ∨ xit ∨ ¬xj1 ∨ · · · ∨ ¬xjf

becomes the inequality

xi1 + · · · + xit + (1− xj1) + · · · + (1− xjf
) ≥ 1.

We then add the restriction that all the variables must take either the value

zero or one, this can be expressed as the set of quadratic equalities xi
2 − 1 = 0

for all variables xi. Notice that the solutions to this ILP are exactly the satisfying

assignments of the original CNF formula.

The ILP methods we consider all operate in a similar manner. They firstly re-

move the restriction that each variable must take an integer value. In its place, the

bounding inequalities 0 ≤ xi ≤ 1 are added to the initial set of inequalities for each

variable xi. The result is a system of linear inequalities which may have many frac-

tional solutions, but, not necessarily any integer solutions. However, since all the

constraints are linear, if a fractional solution exists it can be found in polynomial

time. Notice that if the orignal ILP instance is derived from a set of CNF clauses

as above, then setting all the variables to exactly 1
2 in the resulting system of linear

inequalities will satisfy every inequality derived from clauses with at least two vari-

ables. Polytopes defined with these bounding inequalities are sometimes referred to

as being in the 0-1 cube, or equivalently, the 0-1 n-dimensional hypercube. The ILP

methods then derive more new inequalities, which are sometimes referred to as cuts,

and add them to this system until eventually they reach its integer hull; the ILP

instance is solvable if and only this is non-empty.

17

The idea of using ILP methods as propositional proof systems through this con-

version was first proposed in [18].

2.3.1 Cutting Planes

The Cutting Planes (CP) method was first introduced as a means of solving ILP in

[34] and was first considered as a proof system in [18]. This method is sometimes

referred to as the Gomory-Chvátal cutting planes method in the literature. The

CP proof system, can be considered as a refutation proof system (i.e. it derives

the contradiction 1 ≤ 0) operating on a system of linear inequalities, generated by

converting a CNF as described above, which has just one inference rule, namely the

cut rule:

a11x1 + · · · + a1nxn ≥ b1

. . .

am1x1 + · · · + amnxn ≥ bn

(
∑m

i=1 λiai1)x1 + · · · + (
∑m

i=1 λiain)xn ≥ /
∑m

i=1 λibi0

where m ≤ n and the λi’s are non-negative real coefficients satisfying
∑m

i=1 λiaij ∈ Z

for all 1 ≤ j ≤ n.

CP proofs can be represeted as DAGs in which the inequalites are shown as vertices

and all non-root vertices are derived by applying the cut rule to the inequalities

that have an edge to them. The edges can be labelled by the coefficient by which

the source was multipled when deriving the target. Figure 2.2 shows the DAG

representing a simple CP proof of the unsatisfiability of the system of inequalities

derived from the CNF formula (x ∨ y) ∧ (¬y ∨ z) ∧ (¬x ∨ y) ∧ ¬z as in Section 2.3.

In this figure,

The rank of a CP proof is the number of edges in the largest path in the DAG

representing it. The size of the proof is the number of vertices in the DAG. For

example, the rank of the proof in Figure 2.2 is two and the size of the proof is six.

The CP rank of an inconsistant system of inequalities is defined to be 0; the CP

18

(1− x) + y ≥ 1
0.5

''&&&&&&&&&&&&&&&&&&&&&&&&&&&
x + y ≥ 1

0.5

(('''''''''''''
(1− y) + z ≥ 1

1

##
(1− z) ≥ 1

1

(('''''''''''''
z ≥ 1

1

))((((((((((((((

1 ≥ 2

Figure 2.2: A simple CP proof.

rank of a consistant system of inequalities is defined as the minimum possible rank

of a CP proof for them. This measure is sometimes referred to as the Chvátal Rank

of the inequalities and has been well studied (see [37]). When studying the CP rank

it is often useful to consider the following definition of the polytope that can not be

removed by applying the cut rule to a given polytope, as presented in [12]. In the

definition P refers to the current polytope, 〈〉 to the standard dot or inner product

and P ′ to the polytope remaining after a round of applications of the cut rule:

P ′ = {x ∈ P : 〈ax〉 ≥ /b0 whenever a ∈ Z, b ∈ R, and 〈ay〉 ≥ b for all y ∈ P}.

It follows from the fact that CP can simulate Resolution, such that the simulation

is rank preserving (i.e. one can convert a Resolution proof of size s and rank r into

a CP proof of rank r and size O(sc) where c is a constant, as shown in [18]) that the

rank of any polytope corresponding to a set of unsatisfiable clauses is at most n.

2.3.2 Lovász Schrijver

There are three distinct proof systems studied in proof complexity which were de-

vised by Lovász and Schrijver in [49]; from the weakest to the strongest they are

LS0, LS, LS+. These systems can be defined with respect to the rules with which

they can derive new inequalities.

Of relevance to LS+ is the concept of a positive semidefinite (PSD) matrix. A

matrix A is said to be PSD if xT Ax ≥ 0 for all vectors x. Equivalently, if A is a

square symmetric matrix (i.e. A is an n× n matrix for some natural number n ≥ 1

and A(i,j) = A(j,i) for all i and j) and A = UT U for some other matrix U , then

19

A is positive semidefinite [39]. Another fact about these matrices we use is that if

A = B + C and B and C are both PSD, then so is A.

Given a polytope P ⊆ [0, 1]n defined by the set of inequalities 〈aix〉 ≥ bi, where

1 ≤ i ≤ m, the inequality 〈cx〉 ≥ d is called an N -cut for P if

〈cx〉 − d =
∑

i,j

αi,j(〈aix〉 − b)xj +
∑

i,j

βi,j(〈aix〉 − b)(1− xj) +
∑

j

λj(x
2
j − xj),

where αi,j, βi,j ≥ 0, λj ∈ R for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Note that this is a linear

combination of the inequalities multiplied by positive and negative literals and that

the role of the term involving the λj is to remove any occurrences x2
j and replace

them with xj.

An N0-cut is defined similarly as an N -cut except that when projecting back the

linear term, xixj is viewed as distinct from xjxi.

The inequality 〈cx〉 ≥ d is an N+-cut if

〈cx〉 − d =
∑

i,j

αi,j(〈aix〉 − b)xj +
∑

i,j

βi,j(〈aix〉 − b)(1− xj)

+
∑

j

λj(x
2
j − xj) +

∑

k

(〈hkx〉+ gk)
2,

where αi,j, βi,j and λj are defined as in an N -cut and 〈hkx〉 + gk is simply any

linear expression for k = 1, . . . , n + 1, not necessarily related to the set of defining

inequalities.

This is a valid inference since the square of any linear expression is clearly posi-

tive. An N+-cut is often called a semidefinite cut which is due to the fact that the

factor
∑

k(〈hkx〉+ gk)2 can be described as a PSD matrix.

As with other proof systems we can view proofs in the Lovász and Schrijver

systems as an ordered set of inequalities c1, . . . cs, where cs is a trivially inconsistant

inequality such as 0 ≥ 1, and each ci is either one of the initial inequalities or is some

type of cut created from a set of inequalities, each of which appears before ci in the

list. In the system LS0, only N0-cuts are allowed, LS allows N -cuts and N+-cuts

are allowed in LS+. In this definition s is considered to be the size of the proof; the

rank of the proof is the length of the longest path in the DAG representing the proof

20

(i.e. the DAG in which the inequalities of the proof are the vertices and there is an

edge if and only if the target was derived from the source). As with CP, the size of

system of inequalities is the minimum possible size of a proof of them in the given

system. In all the LS systems the rank of an inconsistant system of inequalities is

zero, whilst the rank of a consistant system of inequalities is the minimum possible

rank of any proof of them. It is known that any polytope derived from a set of

unsatisfiable clauses has LS0 rank of at most n, which in turn implies that the same

holds for the two stronger systems.

When working with the Lovász-Schrijver systems it is often useful to consider

alternative definitions of them, first presented in [25], allowing one to clearly iden-

tify points within the polytope which survive a round of cuts. These alternative

definitions are most easily stated for the projective cone P̄ ∈ Rn+1 of a polytope

P ⊆ [0, 1]n, where we have that

P̄ ≡ {(a, aw1, . . . , awn) : a ≥ 0 and (w1, . . . wn) ∈ P}.

Since a point in P is given by a set of values for x1, . . . , xn, we refer to the extra

coordinate as x0. It should be noted that P is exactly the intersection of P̄ with

the hyperplane x0 = 1, if the point w = (w0, w1, . . . , wn) is in P̄ , it means that the

point (w1/w0, . . . , wn/w0) ∈ P . The exception is when w0 = 0; all points having

x0 = 0 are defined as being in P , so long as P != ∅. Let Y be an (n + 1)× (n + 1)

matrix and let ei be the vector of length n + 1 with all elements set to zero except

element i which is one. In the following definition P̄ ′ is the polytope defined by all

inequalities that can be derived from the set of inequalities defining P̄ and a single

application of the respective cut rule.

(i) A point w ∈ Rn+1 is in P̄ ′ for LS0 if there is an (n + 1)× (n + 1) matrix Y such

that Y e0 = (eT
0 Y)T = diag(Y) = w and for all i, Y ei ∈ P̄ and Y e0 − Y ei ∈ P̄ .

(ii) A point w ∈ Rn+1 is in P̄ ′ for LS if (i) holds and the matrix Y is symmetric.

(iii) A point w ∈ Rn+1 is in P̄ ′ for LS+ if (ii) holds and the matrix Y is also positive

semidefinite.

21

To see that this definition is equivalent to the initial definition, in the sense that

we have that P ′ = P̄ ′∩ [x0 = 1] being the polytope remaining after applying a single

round of applications of the respective cut rule, we refer the reader to [25].

2.3.3 Sherali-Adams

The Sherali-Adams (SA) operator was introduced in [63] as a method for generating

a hierarchy of relaxations for linear and polynomial 0-1 programming problems. In

this review we discuss the operator as a proof system. The SA operator is sometimes

referred to as a static proof system. This means that it simply generates a set

of linear inequalities which can either be proven to have integer solutions or not,

with the use of a polynomial time LP algorithm. There is no need to consider the

computational path taken to obtain the contradiction or solution.

When using the SA proof system we label the variables with sets P and N

and write χ[P |N] to mean the variable labelled with P and N . We also say that the

variable χ[P |N] has positive side P and negative side N . To improve the clarity of the

presentation we drop the brackets around sets containing a single element (i.e. we

would denote χ[P∪{i}|N] as χ[P∪i|N]). Intuitively, the variables used by the SA proof

system represent partial assignments to the propositional variables of the original

CNF formula. The “positive” (“negative”) side of an SA variable contains the

propositional variables that are set positively (negatively) in the partial assignment

the SA variable represents.

To use the SA operator on a given ILP instance Φ, we initially rewrite Φ by re-

placing each occurrence of the variable xi in each inequality ϕ ∈ Φ with the variable

χ[xi|∅]. Let k ≥ 0 be an integer. The Sherali-Adams formulation of rank k (also

referred to as the k-th lift or the level-k formulation) derived from a set of converted

inequalities Φ is the following:

It has a variable χ[P |N] for every pair of disjoint subsets P and N of all variables

appearing in Φ, where |P ∪N | ≤ min{k + 1, n}. We add the inequalities χ[P |N] ≤ 1

and χ[P |N] ≥ 0 for each variable χ[P |N] in the system, since these bound the range of

22

each variable, they are sometimes referred to as the bounding inequalities. We also

add the following constraint:

χ[∅|∅] = 1.

For all variables χ[P |N] ∈ Φ and all variables i in the original instance, where

|P ∪N | ≤ k and i /∈ P ∪N , we add:

χ[P∪i|N] + χ[P |N∪i] = χ[P |N].

These equalities are sometimes referred to as the equalities of negation. They

also ensure that χ[P∪i|N], χ[P |N∪i] ≤ χ[P |N]; this property is sometimes referred to as

monotonicity .

Each inequality ϕi ∈ Φ multiplied by each variable χ[P |N], where |P∪N | ≤ k. The

variable χ[A|B] ∈ ϕi, multiplied by χ[P |N], becomes χ[A∪P |B∪N]. If (A∪P)∩(B∪N) !=

∅ the variable is assigned the value 0. We refer to the deriving of a new inequality

by multiplying by a variable χ[P |N] where |P ∪N | = 1 in this way as an SA multi-

plication.

As an example, suppose we begin with the system of inequalities derived from

the CNF formula (x∨ y)∧ (x∨¬y), i.e. x + y ≥ 1, x ≥ y, 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

The rank one SA formulation of this is the combination of the following:

• The initial set of inequalities rewritten:

χ[x|∅] + χ[y|∅] ≥ 1, χ[x|∅] ≥ χ[y|∅], 0 ≤ χ[x|∅] ≤ 1 and 0 ≤ χ[y|∅] ≤ 1.

• Further bounding inequalities:

0 ≤ χ[∅|x] ≤ 1, 0 ≤ χ[∅|y] ≤ 1, 0 ≤ χ[{x,y}|∅] ≤ 1, 0 ≤ χ[x|y] ≤ 1, 0 ≤ χ[y|x] ≤ 1

and 0 ≤ χ[∅|{x,y}] ≤ 1.

• The equalties of negation:

χ[x|∅] + χ[∅|x] = χ[∅|∅], χ[y|∅] + χ[∅|y] = χ[∅|∅], χ[x|y] + χ[{x,y}|∅] = χ[x|∅], χ[y|x] +

χ[∅|{x,y}] = χ[∅|x], χ[y|x] +χ[{x,y}|∅] = χ[y|∅], χ[x|y] +χ[∅|{x,y}] = χ[∅|y] and χ[∅|∅] = 1.

• The inital set of inequalities multipied by all variables χ[P |N] of size one:

(χ[x|∅] + χ[y|∅] ≥ 1)χ[x|∅] = χ[x|∅] + χ[{x,y}|∅] ≥ χ[x|∅],

23

(χ[x|∅] + χ[y|∅] ≥ 1)χ[∅|x] = χ[y|x] ≥ χ[∅|x],

(χ[x|∅] + χ[y|∅] ≥ 1)χ[y|∅] = χ[{x,y}|∅] + χ[y|∅] ≥ χ[y|∅],

(χ[x|∅] + χ[y|∅] ≥ 1)χ[∅|y] = χ[x|y] ≥ χ[∅|y],

(χ[x|∅] ≥ χ[y|∅])χ[x|∅] = χ[x|∅] ≥ χ[{x,y}|∅],

(χ[x|∅] ≥ χ[y|∅])χ[∅|x] = 0 ≥ χ[y|x],

(χ[x|∅] ≥ χ[y|∅])χ[y|∅] = χ[{x,y}|∅] ≥ χ[y|∅] and

(χ[x|∅] ≥ χ[y|∅])χ[∅|y] = χ[x|y] ≥ 0.

When the SA rank is k there are 1+
∑k

i=0

(
n

i+1

)
2i+1, different variables in total and at

most polynomially times as many inequalities. Since we know linear programming

over a polytope is in P, if a given set of inconsistent inequalities requires at most

constant SA rank, we can be sure that there exists an algorithm based on the SA

operator that can prove them to be inconsistent in polynomial time.

Suppose that the SA rank k formulation of some unsatisfiable ILP instance spec-

ifies the empty polytope, i.e. it is an inconsistant linear program. Although this

may contain an exponential number of inequalities, not all these may be required

to specify the empty polytope. We therefore consider an SA proof to be a subset

of these inequalities that specify the empty polytope. The rank of an SA proof is

defined to be the size of the largest SA variable in it; the size of an SA proof is

simply the number of inequalities in it. The SA rank (size) of an unsatisfiable ILP

instance is the smallest possible rank (size) of an SA proof of it.

It can be observed that the SA rank of Horn formulae (see section 2.4.7) and

2CNF formulae is 0 and 1 respectively, as demonstrated in Chapter 3, whilst the

SA rank of any polytope arising from an unsatisfiable set of clauses is at most n− 1

[63].

2.4 Families of Tautologies/Contradictions

In this section we describe some of the most well studied families of tautologies

(which we will convert to contradictions) and review some of the bounds known for

proofs of them. We are only interested in infinite families (collections) of tautologies,

which are defined by some parameters. This is because they allow us to study the

24

rate of growth in size or rank of potential proofs of the tautologies in various systems

against the parameters which define them.

2.4.1 The Pigeonhole Principle

The Pigeonhole Principle (PHP) is the most well studied combinatorial principle in

proof complexity. Its popularity is due to the fact that it can easily be formulated

and understood, but is generally difficult for proof systems to prove. PHP states

that for any two natural numbers n and m where m > n, if you tried to put

m pigeons into n holes, you would have a hole with more than one pigeon in it.

Generally the closer m is to n the harder it is for a system to prove, intuitivly this

makes sense because as m gets larger the “more true” it becomes. The worst case

where m = n + 1 was the first known example of a family of tautologies requiring

a Resolution refutation of size 2Ω(n) [36]. However, the so called weak pigeonhole

principle, where m is larger than n by more than a constant is more difficult to prove

lower and upper bounds on. For recent developments and further information on

the Resolution complexity of the weak pigeonhole principle, the reader is referred

to [54]. It has been shown that there are polynomially sized proofs of PHP in LS

[35] and hence the same holds for SA [48] and LS+ and also for CP [58], however all

these systems, bar LS+ [35] require at least logarithmic rank to prove it [57, 58].

PHP can be stated as a collection of two sets of clauses, which we will call

the holeset and the pigeonset. Note that in the following definition we can think

of the variable P(i,j) as the answer to the question “does pigeon i go to hole j?”.

The holeset states that any two pigeons can not be assigned to the same hole, and

consists of all the inequalities of the form ¬P(i,j)∨¬P(i′,j), where i != i′, 1 ≤ i, i′ ≤ m

and 1 ≤ j ≤ n. The pigeonset states that each pigeon must go to a hole, and is

written as the set of clauses
∨n

j=1 P(i,j) for every i, where 1 ≤ i ≤ m. A well studied

variant of this principle, the so-called Functional Pigeonhole Principle (FPHP), is

formulated as the PHP with the additional constraints
∑n

j=1 P(i,j) ≤ 1 for each

pigeon 1 ≤ i ≤ m. This version is clearly more restrictive than the original version

and therefore should typically be easier to prove, however it remains hard (i.e. super-

polynomial regardless of the value of m) for general Resolution [55]. For a survey

25

of proof complexity results on the various versions of the Pigeonhole Principle see

[56].

2.4.2 The Least Number Principle

The Least Number Principle (LNP), also known as the Minimum Element Princi-

ple or the Well-ording Principle, is another well studied combinatoric principle and

states that every set of n ≥ 1 natural numbers has a smallest element. This principle

is one of the interesting examples having only exponentially sized Tree-like Resolu-

tion proofs but polynomially sized general Resolution proofs as shown in [11]. It is

known to require linear rank Resolution, CP and LS0 proofs, as shown in [12]. When

discussing this principle we can consider the variable χ(i,j) to reflect the answer to

the question “is the ith element of the set smaller than the jth element?”. The

principle can be written as a conjunction of three sets of clauses which we will refer

to as trans, lower and self. The set trans is so called because it ensures that the

transitive property of the set elements is adhered to, namely that if i ≺ j and j ≺ k

then i ≺ k must be true; this translates into the set of clauses ¬χ(i,j)∨¬χ(j,k)∨χ(i,k)

for all i,j and k, where 1 ≤ i, j, k ≤ n. The set of clauses lower take the form
∨n

i=1 χ(i,j) for all j, where 1 ≤ j ≤ n, and state that there must be at least one

element of the set smaller than the jth one. The final set self states that an element

is not smaller than itself, this translates to the set of single literal clauses ¬χ(i,i) for

all i, where 1 ≤ i ≤ n. The LNP is known to require SA and LS rank precisely n−2

[23].

2.4.3 The Tseitin Tautologies

The Tseitin Tautologies, also known as the Tseitin Graph Tautologies in the liter-

ature, are the first examples of tautologies proven hard for Regular Resolution by

Tseitin in 1968 [65]. The idea behind these tautologies is the fact that not every

vertex of an odd-sized graph (i.e. a graph with an odd number of vertices), can

have an odd degree. This is trivially true since each edge in a graph adds two to the

sum of the degrees in the graph, and hence the sum of the degrees must be even.

26

The Tseitin tautology of a given odd-sized graph G = (V, E) is defined as follows:

it has a boolean variable xuv for each edge (u, v) ∈ E, and has a number of clauses

representing the mod 2 equalities

∑

v∈Γ(u)

xuv ≡ 1 (mod 2),

for each u ∈ V , where Γ(u) refers to the neighborhood of u. To represent the above

mod 2 equalities we need an exponential number of clauses in the size of the neigh-

borhood of u, and as a result typically only families of Tseitin tautologies generated

from set of d-regular graphs are studied, where d is a constant. In particular, usually

only sets of d-regular expander graphs (sets of graphs with high edge-expansion, see

[38]) are considered, since it is the expansion property that is used to derive the

lower bounds. For examples of proofs of lower bounds on Tseitin formulae of these

graph types, see [12] for linear lower bounds on the CP and LS+ rank, and [66] for

size lower bounds for general Resolution for these formulae.

2.4.4 The House Sitting Principle

Imagine a street on which the houses are numbered 1 to n. The houses get better

as you go up the street, with house 1 being the worst shack and house n being

the best mansion. Just for fun, the tenants decide they want to swap houses for

a week, but, as they all want a good deal, they are unwilling to swap to a house

worse than their own, except the greedy lot in house 1 who are unwilling to stay

even in their own house. Each house is big enough to accommodate all the tenants

of the street, but no-one wants to stay in any house that the owners are staying.

The House-Sitting Principle (HSP) states that in such a situation, one can never

satisfy all the tenants of the street. Its negation is formulated using variables p(i,j)

which can be taken to be the answer to the question, “do the tenants from house

i go to house j?”. In propositional form it is stated as the following set of clauses:
∨n

j=i p(i,j) for all 1 ≤ i ≤ n (all tenants go to a house at least as good as their own),

¬p(i,j) ∨ ¬p(j,j) for all 1 ≤ i, j ≤ n where j > i (if the owners are in the house other

people can’t stay there) and ¬p(1,1) (the owners of house 1 do not stay in their own

house. This principle is an example of a family of tautologies with large clauses (up

27

to n variables), but is very easy to prove for all studied proof systems, since it can

be refuted using unit propagation and is inconsistent when expressed as a linear

program.

2.4.5 Random kCNF formulae

As well as the complexity of SAT instances arising from combinatorial principles,

the complexity of randomly generated kCNF formulae (particularly for k = 3) have

also been studied in proof complexity. These formulae were introduced in [14] and

are created by taking a subset of m clauses uniformly at random from the set of

all 2k
(

n
k

)
possible clauses of length at most k. In this work it is shown that there

exists a value ∆k, depending only on k, where random instances of kSAT with

more than ∆kn clauses become almost certainly unsatisfiable. It is an important

open question, known as the sharp-threshold conjecture, whether there exists for

each k a constant ck such that the following holds: for each positive constant ε,

if m ≥ ckn + ε (resp. m ≤ ckn − ε) then a randomly chosen instance of kSAT

with m clauses is unsatisfiable (resp. satisfiable) with high probability. It is known

that c2 = 1 [33] and c3, if it exists, is between 3.003 and 4.758 (see [30] and [42]

respectively). It is also known that ck must be at most 2kn ln 2, as shown in [14].

It is also shown in [14] that any Resolution proof of the unsatisfiability of randomly

generated (unsatisfiable) instances with O(n) clauses requires exponential size with

high probability. It was later shown in [5] that unsatisfiable 3SAT instances with

at most O(n
6
5−ε) clauses also require exponential size Resolution proofs with high

probability. One motivation for studying such instances is that it is likely that

these instances will be difficult for any proof system to solve, when m is set to a

suitable value (i.e. near the threshold between where instances go from being almost

certainly satisfiable to almost certainly unsatisfiable).

The downside of studying these formula is that they are relatively difficult to

prove bounds on, since there is little structure to work with. Riis in [61] notes that

it is no accident that the best known lower bounds in proof complexity come from

highly structured instances, rather than random ones. Currently proofs about the

complexity of random kCNF formulae are based on the fact that with high prob-

28

ability, the instances have high expansion. There are several notions of expansion;

the expansion of a set of clauses X is ε(X) = N(X)/|X|, where N(X) is the number

of variables which appear in these clauses X. If this value is high for all subsets of

a given size, the instance is said to have high expansion. Further information on

expansion is available in [12, 38].

The rank complexity of random kCNF formulae for k ≥ 5 has recently been

studied for Cutting Planes and the LS systems in [12], whereas the authors prove

that the rank complexity of such instances is linear with high probability if one

chooses an appropriate number of clauses (some constant, dependant on k, times

the number of variables). One of the tools used to prove these results is the fact that

one can consider random kCNF formulae to be subformulae of randomly selected

mod 2 inequalities on k variables. A mod 2 formula on k variables is one of the form
∑

i∈S xi ≡ a (mod 2) where S ⊆ [n], |S| = k, and a ∈ {0, 1}; each such formula

can be represented as a conjunction of 2k−1 clauses. By considering CNF formulae

generated using randomly selected mod 2 formulae, as opposed to random kCNF

formulae, one has more structure to work with, simplifying proofs of complexity.

2.4.6 Ramsey’s Theorem

Ramsey’s theorem is an interesting result about graphs. In its simplest form it states

that any undirected simple graph (i.e. one with no multiple edges or self-loops) on

n vertices has either a clique or an independent set of size 5 log n
2 6. A proof of this

theorem can be found in [41]. The propositional version, RAMn, has variables xe

for all possible edges e ∈ [n]2, and can be stated as the set of clauses:

∨

e∈[X]2

xe and
∨

e∈[X]2

¬xe

for all sets X of size 5 log n
2 6 on the elements 1, . . . , n.

This infinite family of contradictions is interesting to study in Proof Complexity

due to the fact that they are particularly difficult to argue about. In particular,

the Resolution complexity of RAMn is currently unknown, despite the fact that we

know the Resolution width of an RAMn is at least 1
2n

1
4 , as shown in [46]. RAMn

29

represents a case for which known techniques for proving lower bounds on the size of

Resolution proofs seem to fail. However as a result of [46], the Resolution complexity

of RAMn is known to be linked to the complexity of the weak pigeonhole principle

where you have n4 pigeons to n holes, namely that if the latter requires exponential

size Resolution proofs then so must the former. Little is known about the complexity

of RAMn for methods based on ILP.

One motivation behind researching the complexity of RAMn is that it could

potentially further our understanding of random graphs and lead to improved bounds

on the Ramsey numbers Rn,n. These numbers, which have been extensively studied

in graph theory, are defined as the minimum number of vertices required in a graph

to guarantee the existence of a clique or independent set of size n. For instance

R3,3 = 6. However, despite much research, we do not even know the exact value of

Rn,n for n ≥ 5 [53].

2.4.7 HornSAT and 2SAT

HornSAT and 2SAT are two well understood restrictions of the SAT problem stud-

ied in proof complexity. HornSAT is the problem of finding out whether a set of

Horn clauses are satisfiable, where a Horn clause is one with at most one positive

literal and any number of negative ones. 2SAT asks whether there is a satisfying

assignment for a set of clauses, where each clause has at most 2 literals. Both

these problems are known to be solveable in polynomial time. This is because any

unsatisfiable HornSAT instance can be refuted using unit propagation and any un-

satisfiable 2SAT instance can be refuted by considering each pair of variables and

seeing whether all four possible assignments of 0/1 values to them contradict at least

one of the clauses. The reason for studying instances of these two problems in proof

complexity is to demonstrate that a particular proof system can solve them easily.

As a general rule, any proof system which can not easily refute such instances, or any

complexity measure which is not constant for all such instances, is of little interest.

In particular both Horn and 2CNF formulae require constant narrow Resolution

width, and constant rank proofs in all the systems mentioned in this thesis.

30

2.5 Size and Rank Maps of Various Proof Systems

The current known size separations between the proof systems mentioned in this

review are given in Figure 2.3. In this figure, systems on the right of the central line

are those which are known to have exponential size lower bounds. The references

given in the diagram indicate the work in which the separation is proven, references

next to proof systems indicate the works in which exponential size lower bounds are

shown for that system. Note that “TLResolution” refers to Tree-like Resolution. In

this figure there are several types of edges, the meaning of which is as follows:

%% the source is provably stronger than the target (i.e. the source p-simulates

the target and there are examples which require only polynomial sized proofs in the

source but exponential sized proof in the target).

%% the source p-simulates the target but there are no examples known that

separate them.

)

)

LS %%

[12]

******************** LS0[25]

[12]
##

LS+

++

[12]
%% Resolution[36]

N
##

SA

[57]
,,++++++++++++++++++

[48]

--

TLResolution[36] CP [52]
[12]

..''''''''''''

Figure 2.3: Known relationships between the sizes of proofs in various systems.

One might expect that all these proof systems have examples for which they

require exponentially sized proofs and that examples can be found that separate the

size of proofs in SA, LS, LS0 and LS+. The definition of the systems and known

rank bounds suggest that the most likely separation between the other systems is

that SA is incomparable to LS+ and that CP is incomparible to any of the other

31

systems.

The current known separations between the rank complexity of the systems men-

tioned in this paper, updated with the results of this thesis, are presented in Figure

2.4. In this figure we also include the complexity measure of narrow Resolution

width (NResWidth). Although this is not strictly a measure of proof rank, it is an

interesting and a relevant complexity measure in the context of the other systems.

The meaning of the arrows used in Figure 2.4 is defined as follows:

%% the source is provably stronger than the target (i.e. there are examples

in which the rank complexity of the source can be arbitrarily smaller than the rank

complexity of the target, and the source rank-simulates the target).

%% the source rank-simulates the target but there are no examples known

that separate them.

%%!"!"!" there are examples in which the rank complexity of the target is arbi-

trarily smaller than the source, but no examples are known the other way, nor is it

known if the source rank-simulates the target.

// %%!"!"!" the two systems at either end of the edge are known to be incompara-

ble with respect to rank complexity (i.e. there are families of tautologies requiring

proofs of asymptotically larger rank in one system than in the other and vice versa).

LS 00
[12]

#$#$#$#$#$#$#$#$++

[35]

%% LS0

LS+
[12,35]

%%!"!"!"!"!"!"!"

++

[35,59]

##
%&
%&
%&

[35,36]

'''()*)*)* +, +, +, -. -. /0 /0 /0 !" !" !" 12 12 12 34 34 34 56 56 78 78 78

CP //
[60]

%%!"!"!"!"!"!"!"!"!"!" NResWidth

SA
11

[60]
229:9:9:9:9:9:9:9:

[23]
33

[48,59]

44

Figure 2.4: Known relationships between the rank complexity of various proof sys-

tems.

32

It should be noted that further separations are known, such as the fact that

LS+ and Cutting Plane rank are incomparable, as shown in [19], however these

separations come from instances not derived from unsatisfiable CNF formulae.

33

Chapter 3

Rank Bounds for the SA Proof

System

3.1 Introduction

In this chapter we consider the Sherali-Adams (SA) operator as a proof system and

prove linear lower bounds on the SA rank required to prove both the Pigeonhole

Principle (PHP) and the Least Number Principle (LNP). We also present short

proofs that the SA rank of any unsatisifiable Horn formula is zero, whilst the rank

of any unsatisfiable 2CNF formula is one. In addition we demonstrate the system is

both sound and complete, the latter holding as a result of a simulation of (general)

Resolution. We also define the size of an SA proof and show that while the two

principles require linear rank, they only require at most polynomially sized proofs,

thereby showing that proofs in the system can not be balanced (i.e. if there is a

proof of size s, there does not necessarily exist a proof of rank log s), unlike Frege

proofs (see [45]).

3.1.1 Related Work

Although the SA operator has been around since 1990, and has been studied a

number of times as a method for solving ILP (e.g. see [8, 48]), little is known about

its power as a proof system. The rank lower bounds presented in this chapter are

34

the first linear rank lower bounds proven for the SA proof system and were initially

presented in [57]; the other results presented in this chapter come from a follow-up

work, [23]. The only other work presenting rank bounds for the SA operator is

[22], in fact it is a consequence of the dichotomy theorem of that work that the SA

ranks of both PHP and LNP are non-constant; in fact Ω((log n)c), for some constant

c ≥ 0. It also follows from [63, 48] that the SA ranks of PHP and LNP are at most

n2 + n − 1 and n2 − 1 respectively (one less than the number of variables in the

inequalities). In this chapter we establish that the SA ranks of PHP and LNP are

at least n−2
2 and at least n − 2 respectively; the latter is known to be an exact

bound due to the matching upper bound presented in [23]. This work also includes

an improved and perfected bound for PHP, which is accomplished through a model

counting argument, in a similar fashion to the dichotomy theorem of [22]. In this

chapter however, we present the original proof that PHP requires linear SA rank,

since it is intuitive and the author can lay claim to having produced it.

Although as a corollary of our demonstration that SA simulates Resolution we

have that SA is complete as a proof system, this was already known as it is a

consequence of the results presented in the paper by Sherali and Adams [63], in which

the system was defined. What is interesting about the proof presented here however

is that it shows that the SA rank of any polytope derived from an unsatisfiable CNF

formula F is less that or equal to the Resolution width of F . This property was

subsequently proved in [59] not to hold for the well known LS+ and CP systems;

these results are presented in Chapter 5.

3.2 Soundness and Completeness

We consider the SA operator to be defined as in Section 2.3.3. As an introduction

to the SA operator, we will begin by proving that as a proof system it is both sound

and complete (see page 4).

Let SF
0 be a polytope defined by converting a CNF F on n variables as in Section

2.3, and let SF
k be the rank k SA formulation of F (as in section 2.3.3). To see that

the SA proof system is sound, we will demonstrate that it is not possible to derive

35

the empty polytope using the SA operator if the initial CNF formula is satisfiable.

More specifically, we will show that if F is satisfiable then SF
k is non-empty, for all

0 ≤ k ≤ n− 1 (n− 1 being the maximum possible SA rank [63]).

Proposition 3.2.1 If F is a satisfiable CNF formula on the variables x1, . . . , xn,

then the rank k SA formulation of F (SF
k) is non-empty, for all 0 ≤ k ≤ n− 1.

Proof : It suffices to show that SF
n−1 is non-empty since this is defined by a super-

set of the equalities and inequalities defining SF
j for all 0 ≤ j ≤ n − 2. Let

y0 = (χ[x1|∅], . . . ,χ[xn|∅], χ[∅|x1], . . . ,χ[∅|xn], χ[∅|∅]) be a 0-1 point vector in SF
0 . We

can guarantee that at least one such point exists since the satisfying assignments of

F correspond directly to the integer solutions of SF
0 and F has at least one satisfying

assignment. Now consider the point vector yn−1 whose entries are given by

χ[xi1∪...∪xit |xj1∪...∪xjf
] := χ[xi1 |∅] · . . . · χ[xit |∅] · χ[∅|xj1] · . . . · χ[∅|xjf

],

where t + f ≤ n − 1. To see that SF
n−1 is non-empty we will argue that it contains

yn−1.

Recall from Section 2.3.3 that SF
n−1 is defined by (1) the inequality χ[∅|∅] = 1, (2)

the bounding inequalities, (3) the equalities of negation and (4) the set of inequalities

derived from the clauses of F , multipied by all possible SA variables of size n − 1.

The point yn−1 trivially satisifes (1) and since it is a 0-1 vector, must also satisfy

(2).

It is also not difficult to see that yn−1 must also satisfy the equalities of negation.

Consider one such equality: χ[P∪i|N] + χ[P |N∪i] = χ[P |N]. From the definition of the

point SF
n−1 this is equivilent to χ[P |N].χ[i|∅] +χ[P |N].χ[∅|i] = χ[P |N]. Since the values of

χ[i|∅] and χ[∅|i] are the same in both y0 and yn−1, and their values in y0 correspond

to a valid assigment to the literals xi and ¬xi respectively in F , we can be sure that

exactly one of χ[∅|i] and χ[i|∅] is 0 whilst the other is 1 in yn−1. Hence, the equalities

of negation defining SF
n−1 are satisfied by yn−1.

The equalities of (4) are also satisfied by yn−1, to see this, consider one such

inequality: χ[P∪i1|N] + . . . + χ[P∪it|N] + χ[P |N∪j1] + . . . + χ[P |N∪jf] ≥ χ[P |N]. If the

variable χ[P |N] = 0 in yn−1 then the inequality is trivially satisfied. If on the other

hand χ[P |N] = 1, then it must be that at least one of the variables on the left hand

36

side of the inequality equals 1 in yn−1 too; hence satisfying it. From the definition

of the point yn−1, the inequality is equivilent to χ[i1|∅].χ[P |N] + . . . + χ[it|∅].χ[P |N] +

χ[∅|j1].χ[P |N] + . . .+χ[∅|jf].χ[P |N] ≥ χ[P |N], which, since χ[P |N] = 1 simplifies to χ[i1|∅] +

. . . + χ[it|∅] + χ[∅|j1] + . . . + χ[∅|jf] ≥ 1. This is precisely one of the defining inequality

of SF
0 , which we know to contain y0. Since yn−1 has the same values for all the

variables which appear in this inequality as y0, it must be that it is also satisfied by

yn−1.

!

Completeness with respect to the SA proof system means that if F is contradi-

tory, then there exists a value 0 ≤ k ≤ n− 1, such that SF
k is the empty polytope.

We will argue completeness by simulation of Resolution, although the result follows

from [63, 48]. As mentioned in Section 2.2, a Resolution refutation may be seen

as a directed acyclic graph (DAG) from the initial clauses to the empty clause. In

this DAG each non-source node has two parents from which it was deduced via the

Resolution rule (as described in Section 2.2). Note that to simplify the notation, in

the following proposition we write the SA variable χ[P |N] as χP1∪...∪P|P |∪N1∪...∪N|N| .

Proposition 3.2.2 If F is a contradictory CNF whose Resolution width is k, then

SF
0 has SA rank ≤ k.

Proof : It suffices to prove that SF
k is empty. Consider a Resolution DAG GF

for F of width k. Each node in GF is labeled by either an initial clause or by

(l1∨ . . .∨li∨l′1∨ . . .∨l′i′) with two parent nodes (l1∨ . . .∨li∨v) and (l′1∨ . . .∨l′i′∨¬v),

where v is a variable and l1, . . . , li, l′1, . . . , l
′
i′ are literals of F , and i+1 ≤ k, i′+1 ≤ k

and i + i′ ≤ k. Consider the related DAG G′
F in which these labels are substituted

37

by χ¬l1∪...∪¬li∪¬l′1∪...∪¬l′
i′

and χ¬l1∪...∪¬li∪¬v and χ¬l′1∪...∪¬l′
i′∪v.

l1 ∨ . . . ∨ li ∨ v Subgraph of GF l′1 ∨ . . . ∨ l′i′ ∨ ¬v

l1 ∨ . . . ∨ li ∨ l′1 ∨ . . . ∨ l′i′
$$

v

################# 55

v
,,,,,,,,,,,,,,,,,

χ¬l1∪...∪¬li∪¬v Subgraph of G′
F

χ¬l′1∪...∪¬l′
i′∪v

χ¬l1∪...∪¬li∪¬l′1∪...∪¬l′
i′

$$
v

################## 55

v
,,,,,,,,,,,,,,,,,

Each source in G′
F corresponds to an initial clause, and has the label χ¬l1∪¬l2...∪¬lr if

(l1∨ l2 . . .∨ lr) is the corresponding clause of F . The unique sink of G′
F is labeled χ∅.

If we begin with the inequality from the converted clause χl1 + χl2 + . . . + χlr ≥ 1,

then multiply this by χ¬l1∪...∪¬lr , using the equalities of negation we obtain

0 ≥ χ¬l1∪¬l2∪...∪¬lr

as a consequence of SF
k (since r ≤ k). We now proceed by induction on the distance

from a sink in G′
F , to prove that every node χD must take a value at most 0.

Since the unique sink is labeled by χ∅, this will contradict the SA axiom χ∅ = 1.

The base case, distance 0 from a source, has been proved. Suppose it is true for

distance ≤ m. Consider a node labeled χ¬l1∪...∪¬li∪¬l′1∪...∪¬l′
i′

at distance m + 1. Its

parents are labeled χ¬l1∪...∪¬li∪¬v and χ¬l′1∪...∪¬l′
i′∪v, and both must be evaluated to

at most 0 by the inductive hypothesis. It follows from monotonicity (see page 23)

that χ¬l1∪...∪¬li∪¬l′1∪...∪¬l′
i′∪¬v and χ¬l1∪...∪¬li∪¬l′1∪...∪¬l′

i′∪v must both be at most 0 (and

since i+ i′ ≤ k the inequalities with these variables are both present in the kth lift),

whereupon χ¬l1∪...∪¬li∪¬l′1∪...∪¬l′
i′
≤ 0 follows from the equalities of negation. !

Corollary 3.2.1 If F is a contradictory CNF whose Resolution width and size are

k and s respectively, then SF
0 has SA size at most (k + 1)s + 1.

Proof : In order to derive each of the source inequalities of the form 0 ≥ χ¬l1∪¬l2∪...∪¬lr ,

we require r + 1 ≤ k + 1 inequalities: the inequality formed by multiplying (χl1 +

. . .+χlr ≥ 1) by χ¬l1∪...∪¬lr together with r equalities of negation. During each sim-

ulation of a Resolution step, we require i + i′ + 1 ≤ k + 1 inequalities: one equality

38

of negation and i + i′ inequalities to derive monotonicity. Finally, at the sink, we

require the extra equality χ∅ = 1. !

3.3 The SA rank of Horn and 2CNF formulae

As mentioned in Section 2.4.7, HornSAT and and 2SAT are restricted forms of the

SAT problem in which the input formulae are restricted to a conjunction of Horn

clauses and a conjunction of 2-clauses respectively. In this section we show that

a polytope derived from an unsatisfiable Horn formula requires SA rank 0 whilst

a polytope derived from an unsatisfiable 2CNF formula requires SA rank 1. This

demonstrates that even with constant rank, there are still entire families of instances

which can be proven using the SA proof system.

Proposition 3.3.1 The SA rank of an unsatisfiable Horn formula F is 0.

Proof : The SA rank 0 formulation of F is simply the linear program produced

by converting F as described in Section 2.3. Hence it suffices to show this linear

program is contradictory. To see this, note that F must contain at least one single

literal clause, otherwise F could be satisfied by setting all variables negatively. If

one applies unit propagation to F (i.e. the rule A∨ l and ¬l gives A, for any literal

l and any disjunction A), then the resulting formula must also have single literal

clauses, for the same reason. One can see that eventually, using the same logic,

applying unit propagation will result in deducing the empty clause. In the linear

programming setting, applying unit propagation is equivalent to simply adding the

inequalities defining the clauses ¬l and A∨ l together. Eventually by adding enough

times, one will be able to deduce the contradiction 0 ≥ 1. !

Proposition 3.3.2 The SA rank of an unsatisfiable 2CNF formula F is 1.

Proof : For convenience we use the notation χ[P |N] := χP1∪...∪P|P |∪N1∪N|N| . Let

GF be the directed graph whose vertex set V (GF) contains exactly one vertex for

each literal of F and whose edge set E(GF) contains the edges ¬xy and ¬yx for each

clause x ∨ y of F . One can consider an edge to mean that if the source is true, the

sink must be true in order for the formula to be satisfied. It is well known (and easy

39

to see) that F is unsatisfiable if and only if GF has a path between x and ¬x and

¬x and x for some variable x. For each path p1p2 . . . pi in this graph, where p1 = x

and pi = ¬x for some variable x, one can see that multiplying the inequalities that

define this path by the literal x, adding them together and substituting using the

equalities of negation, enables us to derive the inequality (i − 2)χ¬x ≥ (i − 1)χ¬x.

For instance, for the path xyz¬x, we may have:

(χ¬x + χy ≥ 1)× χx

+(χ¬y + χz ≥ 1)× χx

+(χ¬z + χ¬x ≥ 1)× χx

= 2χ¬x∨x + χy∨x + χ¬y∨x + χ¬z∨x + χz∨x ≥ 3χx.

2χx ≥ 3χx.

Since we know there must be a path between some x and ¬x and vice versa

in GF , we know we will be able to derive the inequalities iχx ≥ (i + 1)χx and

jχ¬x ≥ (j + 1)χ¬x for some i and j, since we also have that χx ≥ 0 and χ¬x ≥ 0,

we can derive that χl = 0 and χ¬l = 0. However, this contradicts the inequality

of negation χl + χ¬l = χ∅ = 1. Since we only required variables and inequalities

present in the level 1 SA formulation to generate a contradiction, the SA rank of a

polytope derived from a given unsatisfisable 2CNF is always 1. !

3.4 Rank Lower Bounds

In this section we prove rank lower bounds for the SA operator on the inequalities

defining the well known Pigeonhole and Least Number Principles, which we defined

in propositional form in Sections 2.4.1 and 2.4.2 respectively.

Theorem 3.4.1 The Pigeonhole Principle requires at least SA level /n+1
2 0 − 2 to

prove.

Proof : To show this statement is true we will argue that the set of inequalities

produced by SA level 5n
2 6 − 2 can be satisfied by assigning suitable values to the

variables.

40

The value we assign to the variable χ[P |N] is roughly related to the probability

of picking a random assignment of n
2 pigeons to n

2 holes, including all those holes

mentioned in the pairs in the variable, and finding that the information declared

within the variable fits the assignment. It is calculated as follows:

1. If P contains two pairs (i, j) and (i′, j), then we can see straight away there is

a contradiction and so assign the value 0.

2. Otherwise for every 1 ≤ j ≤ n, where j is not the second element of any pair

in P , we take all pairs in N which have j as the second element, and put them

in a new set, which we denote by Sj.

3. We assign any variable not already assigned 0 the value (2
n)|P |×

∏n
j=1(1−

2|Sj |
n).

We can see straight away that when the SA level is at most 5n
2 6 − 1 and n ≥ 2

all inequalities of the form χ[P |N] ≥ 0 and χ[P |N] ≤ 1 are trivially satisfied by the

method, as is the constraint that χ[∅|∅] = 1 and that if χ[P |N] = 0, then χ[Q|W] = 0,

where P ⊆ Q and N ⊆ W .

Lemma 3.4.2 The method provides values which satisfy the equations of negation

where |P ∪N | ≤ n
2 − 1 and n > 2 .

Proof : Recall that the equations of negation are χ[P∪(i,j)|N] +χ[P |N∪(i,j)] = χ[P |N]

for all pigeons i, all holes j and all possible sets P and N , where (i, j)P ∪ N . To

prove this lemma, we have to consider three cases, depending on whether or not the

hole j already appears in N or P . In case (1), j does not appear in either N or

P , in case (2), j appears in P and finally in case (3), j does not appear in P but

does appear at least once in N . Throughout we will denote the value assigned to

the variable χ[P |N] as ξ.

Case (1): In this instance χ[P∪(i,j)|N] = ξ × 2
n , since the extra pair does not

affect the set Sj and therefore the only difference is that the set P is one larger.

We can also see that χ[P |N∪(i,j)] = ξ × n−2
n . Given this, it is easy to show that such

41

equations are satisfied for any value of ξ since substituting these values gives us the

following:

χ[P∪(i,j)|N] + χ[P |N∪(i,j)] = χ[P |N]

(ξ × 2

n
) + (ξ × n− 2

n
) = ξ.

Case (2): In this instance χ[P∪(i,j)|N] = 0 since we have at least two pairs in P

with hole j, however we can be sure that χ[P |N∪(i,j)] = ξ as Sj = ∅, since the hole j

appears in P . Using these values, the equation is trivially satisfied.

Case (3): In this situation, χ[P |N∪(i,j)] = κ × (f − 2
n) where ξ = κ × f and

f = n−(2|Sj |)
n , since the additional pair in N makes Sj one larger. We can also see

that χ[P∪(i,j)|N] = κ× 2
n , since the factor f is removed by the addition of the positive

assignment of a pigeon to hole j, and the addition makes |P | one larger, hence the

inclusion of the factor 2
n . We can see that this gives us the required result as follows:

χ[P∪(i,j)|N] + χ[P |N∪(i,j)] = χ[P |N]

κ× 2

n
+ κ× (f − 2

n
) = κ× f

f − 2

n
+

2

n
= f

!

Lemma 3.4.3 The method satisfies the holeset inequalities when SA level 5n
2 6 − 2

is used and n ≥ 4.

Proof : To prove this lemma, we will split the set of all possible variables by

which the holeset inequalities maybe multiplied, when using SA level 5n
2 6 − 2, into

5 distinct cases and discuss each in turn. Throughout this section we will use δ to

refer to the variable by which the inequalities are multiplied. The positive side of

this variable will be denoted δP and the negative side δN . We will denote the value

assigned by the method to the variable δ as ξ.

42

Case 1: (k, j) /∈ δP and (k, j) /∈ δN for all 1 ≤ k ≤ n + 1.

Both χ[(i,j)|∅]× δ = ξ× 2
n and χ[(i′,j)|∅]× δ = ξ× 2

n must be true as the addition of

these pairs only affects the size of P , as Sj = ∅. It is easy to see that the inequalities

are satisfied when n ≥ 4, for any possible value of ξ:

ξ × 2

n
+ ξ × 2

n
≤ ξ

ξ × 4

n
≤ ξ

4

n
≤ 1

Case 2: At least one pair (i′′, j) ∈ δP , where i′′ /∈ {i, i′}.

This case is trivial since both χ[(i,j)|∅] × δ and χ[(i′,j)|∅] × δ, contain at least two

pairs with the same hole j in their positive parts P and therefore will be set to 0,

giving us 0 + 0 ≤ ξ, which is true for all values of ξ ≥ 0.

Case 3: At least one pair (i′′, j) ∈ δN , where i′′ /∈ {i, i′} and (k, j) /∈ δP for all

k where 1 ≤ k ≤ n + 1.

The addition of the pairs (i, j) and (i′, j) to δP ensures Sj = ∅, making the

inclusion of any pair (i′′, j) in δN irrelevant. However the addition of these pairs

does make P one larger since no other pair in P contains hole j. We define ξ = κ×f

where f is the factor n−(2|Sj |)
n , giving us χ[(i,j)|∅] × δ = χ[(i′,j)|∅] × δ = κ × 2

n . Using

this, together with the fact that the limit on the SA level means |Sj| ≤ 5n
2 6 − 2 we

can show the inequality holds for every possible value of ξ:

κ× 2

n
+ κ× 2

n
≤ κ× n− (2|Sj|)

n

κ× 4

n
≤ κ× n− (2|Sj|)

n
4

n
≤ n− (n− 4)

n

Case 4: At least one of (i, j) ∈ ξP and (i′, j) ∈ ξP is true.

43

If both pairs were in ξP then all the variables would be 0, so the inequality would

be trivially satisfied. If only one of the pairs is in ξP then the variable which adds

the pair not in ξP will contain two pigeons going to the hole j and hence be assigned

0. Since from Lemma 3.4.2 we know adding a pair to a set can never increase the

value assigned to the variable, the inequality must be satisfied.

Case 5: At least one of (i, j) ∈ ξN and (i′, j) ∈ ξN is true where (i, j) /∈ ξP and

(i′, j) /∈ ξP .

From the definition of the SA operator we know that any variable containing the

same pair in both positive and negative sides must have the value of 0 (the method

does not account for such variables as their value is trivial). In the case where both

statements are true, our inequalities are trivially satisfied since we have 0+0 ≤ ξ. In

the case that one of the statements is true, we know that one of the variables must

be 0, and again from Lemma 3.4.2 we know the other variable can not be assigned

a value greater than ξ and hence the inequality is satisfied. !

Lemma 3.4.4 The method satisfies the set of pigeonset inequalities, when the max-

imum SA level is 5n
2 6 − 2.

Proof : Throughout this proof we denote the variable by which the inequalities

can be multiplied by δ. The positive side of δ is denoted δP , its negative side δN

and the value assigned to it by the method is denoted as ξ.

The maximum number of pairs in δ is limited to the the maximum SA level and

since each pair contains only one hole, this is also the maximum number of holes

that can appear in δ. Each inequality in pigeonset contains n different ‘j’ values or

holes. This means that we can be sure that at least n− (5n
2 6 − 2) variables in any

inequality in pigeonset contain a hole j where j /∈ δ. Each of these will be assigned

the value ξ × 2
n . Therefore, even in the worst case, where all the variables of the

form χ[(i,j)|∅]× δ where j ∈ δ are assigned the value of 0, any inequality in pigeonset

is satisfied:

44

(n− (5n
2
6 − 2))× (ξ × 2

n
) ≥ ξ

(
n

2
+ 2)× 2ξ

n
≥ ξ

ξ +
4ξ

n
≥ ξ

!

Lemmas 3.4.2, 3.4.3, 3.4.4 together show that all the inequalities and equations

produced by the SA proof system operating on the Pigeonhole Principle will be

satisfied by the values given by the method. Hence we have completed the proof of

Theorem 3.4.1.

!

Theorem 3.4.5 The SA rank of LNP is at least n− 2.

Proof : We will argue that the set of equations produced by SA level n− 3 can

be satisfied by assigning suitable values to the variables.

The intuition behind the value we assign a variable is that it is a rough estimate

of the probability that, given a random set of n natural numbers, the set’s elements

match the information contained within the variable. We calculate the value of the

variable χ[P |N] as follows:

1. Consider a DAG which has a vertex for each element of a set of n natural

numbers. We add an edge between the ith and jth nodes in this graph if and

only if (i, j) appear in P , or if (j, i) appears in N and i != j.

2. If this graph contains a cycle, possibly consisting of a single edge, there is

inconsistent information so we assign the value 0.

3. Remove all edges ij in the graph where there is a longer path between the nodes

i and j via some other nodes. This ensures we remove irrelevant information.

4. If the variable has not been assigned the value 0, we assign it the value of (1
2)

E

where E is the number of edges left in the graph.

45

For example, the variable χ[(1,2),(2,3),(1,4)|(4,3),(4,4)] is assigned the same value as the

variable χ[(1,2),(2,3)|(4,3)], namely 1
8 .

It is trivial to show that the method satisfies the constraint χ[∅|∅] = 1, as such a

variable will generate a graph with no edges and therefore be assigned (1
2)

0 = 1. It

is also trivial to see that all inequalities χ[P |N] ≤ 1 and χ[P |N] ≥ 0 for all sets P and

N , will be adhered to. It is also easy to see that the inequalities derived from the

members of self (i.e. ¬χ(i,i) for all 1 ≤ i ≤ n) are also satisfied using this method.

In the translation the clause ¬χ(i,i) becomes the inequality (−χ[(i,i)|∅] ≥ 1 and since

we assign 0 to any variable containing the pair (i, i) in its positive side we get:

(1− χ[(i,i)|∅] ≥ 1)× χ[P |N]

χ[P |N] − 0 ≥ χ[P |N]

Throughout the rest of this proof we will refer to the variable by which we

multiply the inequalities when using the SA operator as χ[P |N].

Lemma 3.4.6 The inequalities in lower are satisfied using this method when the

SA level is set to n− 3 or less.

Proof : Recall that in CNF form the elements of lower are
∨n

i=1 χ(i,j) for all

1 ≤ j ≤ n. These are translated, as in Sections 2.3 and 2.3.3, into the inequalites
∑n

i=1 χ[(i,j)|∅] ≥ 1 for all 1 ≤ j ≤ n. As the right hand side of each such inequality is

simply 1, we know that this side will take the value of whichever variable we multiply

the inequality by. Therefore, when we multiply by the variable χ[P |N], we get the

inequality
∑n

i=1 χ[(i,j)∪P |N] ≥ χ[P |N]. If the graph for the variable χ[P |N] contains a

cycle, then so too must each of the variables χ[(i,j)∪P |N]. This is because these will

be represented by the same graph with perhaps one more edge between the ith and

jth nodes (if the fact that i 7 j can not be derived from the other edges). In this

case the inequality is trivially satisfied as it reads as follows:
n∑

i=1

0 ≥ 0

If however the graph for the variable χ[P |N] does not contain a cycle, then adding

the pair (i, j) will in the worst case create a cycle, and therefore a variable with the

46

value 0. Apart from the case where i = j, which will trivially yeild a loop, the only

way this loop can be created by adding the pair (i, j) is if there is a path from j to

i; this in turn means that at least one edge must finish at i. For such an edge to

exist, at least one of the following must be true: (k, i) ∈ P or (i, k) ∈ N , for some

k, where 1 ≤ k ≤ n and k != i as otherwise the variable χ[P |N] would contain a loop.

Since all the variables on the left side of any inequality in lower contain different

values for i, we can see that even in the worst case we still need at least one pair in

the variable χ[P |N] to render a single variable inconsistent. As SA level n− 3 allows

us at most n−3 pairs in P ∪N and each inequality in lower contains n−1 variables

on the left hand side which do not trivially contain a cycle (i.e. all those except the

one with the pair (i, i)), we can be sure that at least 2 variables will not contain a

cycle. The minimum value these variables can be assigned is half the value of χ[P |N],

in which case the inequality can be shown to be satisfied as follows:

χ[(k,j)∪P |N] + χ[(k′,j)∪P |N] ≥ χ[P |N]

χ[P |N]

2
+

χ[P |N]

2
≥ χ[P |N]

Clearly, since this is the worst case, in all other cases where
∑n

i=1 χ[(i,j)∪P |N] has

a greater value, the inequalities are also satisfied. !

Lemma 3.4.7 The inequalities in trans are satisfied using this method whenever

the SA level is ≤ n.

Proof : In CNF form the elements of trans are ¬χ(i,j) ∨ ¬χ(j,k) ∨ χ(i,k) for all

i,j and k, where 1 ≤ i, j, k ≤ n; these can be written as the set of inequalities

χ[(i,j)|∅] + χ[(j,k)|∅] − 1 ≤ χ[(i,k)|∅] for the same values of i, j and k. To prove this

lemma, we consider a number of cases. In all but the first case we assume i != j,

i != k and j != k.

Case 1: At least two of i, j or k have the same value. We can see straight away

that adding an additional pair to the positive side of a variable can never increase

the value assigned to the variable and that any variable which contains a pair (g, g)

in its positive side, for any value 1 ≤ g ≤ n, is assigned the value 0. Using these

47

statements and the fact that the left hand side of each inequality in trans has just

two positive variables we can see that if any of i, j or k have the same value, except

when i = k and i != j, then the inequality is satisfied as one of these positive parts

will contain a single edge cycle, take the value 0, and leave us with an inequality in

which the single positive part remaining on the left can not be larger than the right

side as it is the same variable except it has an additional pair in its positive side.

When i = k and i != j, the inequality multiplied by a variable becomes χ[(i,j)∪P |N]+

χ[(j,i)∪P |N] ≤ χ[P |N], we can remove the negative part of the left side as it will be

given the value 0. This is satisfied by the method as if no path exists between nodes

i and j or vice versa in the graph for χ[P |N] then we get:

χ[P |N]

2
+

χ[P |N]

2
≤ χ[P |N]

If however it contains one or more of these paths then at least one variable on

the left side of the inequality must contain a cycle going from i to j and back again

and will therefore be assigned the value 0, in which case the inequality must be

satisfied as the remainder of the left is the same as the right with one extra pair in

its positive side.

Case 2: The graph for the variable χ[P |N] contains a cycle. This case is trivial

as all the variables on the left must also generate a graph which contains the graph

for χ[P |N] as a subgraph and therefore will also contain a cycle. As all cyclic graphs

are assigned the value of 0, the inequality becomes 0 + 0− 0 ≤ 0, which is trivially

true.

Case 3: The graph derived from χ[P |N] contains a path between nodes i and

k. In this case χ[P∪(i,k)|N] will generate the same graph, and hence be assigned the

same value as the variable χ[P |N], as the extra pair will be removed as irrelevant.

Since adding extra pairs can not increase the value of a variable, even if the other

variables are assigned the maximum possible value, the inequality is still satisfied as

follows:

48

χ[P∪(i,j)|N] + χ[P∪(j,k)|N] − χ[P |N] ≤ χ[P |N]

χ[P |N] + χ[P |N] − χ[P |N] ≤ χ[P |N]

1 + 1− 1 ≤ 1.

Case 4: The variable χ[P |N] generates a graph containing neither a path between

nodes i and k nor vice versa. In this instance, the variable χ[P∪(i,k)|N] will always

generate a graph with one more edge than the graph for χ[P |N] and therefore be

assigned half the value of χ[P |N] or 0 if χ[P |N] contains contradictory information.

The latter instance is already covered by case 2, and the former is also covered as at

least one of χ[P∪(i,j)|N] and χ[P∪(j,k)|N] must be assigned no more than half the value

of χ[P |N] otherwise we would have a path from i to k. Even if the other takes the

maximum possible value the inequality is still satisfied:

χ[P∪(i,j)|N] + χ[P∪(j,k)|N] −
χ[P |N]

2
≤ χ[P |N]

χ[P |N] +
χ[P |N]

2
−

χ[P |N]

2
≤ χ[P |N]

χ[P |N] ≤ χ[P |N].

Case 5: The graph for χ[P |N] contains a path between nodes k and i and does

not contain a cycle. When this happens, the variable χ[P∪(i,k)|N] will take the value

0. If the graph for the variable χ[P |N] contains neither a path between nodes i and j

nor between nodes j and k then both χ[P∪(i,j)|N] and χ[P∪(j,k)|N] will take the value

of half that of χ[P |N], thus giving:

χ[P |N]

2
+

χ[P |N]

2
− 0 ≤ χ[P |N]

1

2
+

1

2
≤ 1

If however χ[P |N] does contain one of the aforementioned paths, then the variable

whose graph contains the path not included in χ[P |N] will always contain a cycle and

49

therefore be assigned the value of 0. Even though the other variable left will be set

to the same value as χ[P |N] the inequality is clearly satisfied. !

Lemma 3.4.8 : The method satisfies the equations of negation.

Proof : Recall that the equations of negation are χ[P∪(i,j)|N] +χ[P |N∪(i,j)] = χ[P |N]

for all sets P and N and all i and j where 1 ≤ i, j ≤ n and (i, j) !∈ P ∪ N . We

can show that all these equations are satisfied by considering the following four cases:

Case 1: When the graph associated with χ[P |N] contains a cycle. This case is

trivial since the cycle will also be contained within the graphs of the other variable

giving us 0 + 0 = 0.

Case 2: When i = j. In this case we ignore such a pair when it is added to the

set N and we set any variable to be 0 when it is added to the set P giving us an

equation equivalent to 0 + χ[P |N] = χ[P |N].

Case 3: When i != j, the graph for χ[P |N] is acyclic and does not contain a path

between nodes i and j or vice versa. In this case both variables on the left side of

the equation will take the value of
χ[P |N]

2 because the graph they produce will always

contain the extra edge giving us
χ[P |N]

2 +
χ[P |N]

2 = χ[P |N].

Case 4: When i != j and the graph for χ[P |N] is acyclic and contains a path

between nodes i and j or vice versa. The graph containing the same path as χ[P |N]

will clearly be assigned the same value as it since the extra edge will be removed.

The other variable will add an edge which completes a cycle and hence be assigned

0. The equation is then clearly satisfied. !

Since we have proven all the sets of inequalities produced by the SA operator

will be satisfied, our proof of Theorem 3.4.5 is concluded. !

50

3.5 SA Proof Size

Another measure by which we can judge the complexity of SA proofs, rather than

the required rank, is the combined number of SA multiplications required to reach

a contradiction. This measure we shall refer to as the size of the proof. We will

now show that for the SA operator, the required rank does not reflect the required

proof size; more specifically that the proof required for PHP and LNP is at most

polynomial in size, whilst we have already shown the required rank to be linear.

Theorem 3.5.1 There is an SA proof of PHP of polynomial size.

Proof : We will derive the contradiction by deducing both
∑n

j=1

∑n+1
i=1 χ[(i,j)|∅] ≥

n+1 and
∑n

j=1

∑n+1
i=1 χ[(i,j)|∅] ≤ n. The first inequality can be derived straight away

by adding up all the pigeonset inequalities, we will prove the other can be derived

by induction.

Lemma 3.5.2 From χ[(i,j)|∅] + χ[(i′,j)|∅] ≤ 1, we can derive that χ[(i,j)|(i′,j)] = χ[(i,j)|∅]

with a single SA multiplication.

Proof : We accomplish this by multiplying the inequality by the variable χ[(i′,j)|∅]

then proceeding as follows:

χ[(i,j),(i′j)|∅] + χ[(i′,j)|∅] ≤ χ[(i′,j)|∅]

χ[(i,j),(i′j)|∅] ≤ 0

χ[(i,j),(i′j)|∅] = 0

χ[(i,j),(i′j)|∅] + χ[(i,j)|(i′j)] = χ[(i,j)|∅]

χ[(i,j)|(i′j)] = χ[(i,j)|∅].

!

Lemma 3.5.3 We can derive
∑q+1

i=1 χ[(i,j)|∅] ≤ 1 from
∑q

i=1 χ[(i,j)|∅] ≤ 1 with q + 2

SA multiplications.

Proof : To accomplish this we first multiply by the variable χ[∅|(q+1,j)] and pro-

ceed as follows:

51

q∑

i=1

χ[(i,j)|(q+1,j)] ≤ χ[∅|(q+1,j)]

q∑

i=1

χ[(i,j)|(q+1,j)] ≤ 1− χ[(q+1,j)|∅]

χ[(q+1,j)|∅] +
q∑

i=1

χ[(i,j)|(q+1,j)] ≤ 1

q+1∑

i=1

χ[(i,j)|∅] ≤ 1

Note that to accomplish the final step we derive χ[(i,j)|(q+1,j)] = χ[(i,j)|∅] through

applying the method presented in Lemma 3.5.2 to the holeset inequality χ[(i,j)|∅] +

χ[(i′,j)|∅] ≤ 1 for each 1 ≤ i ≤ q + 1. By Lemma 3.5.2 the final step requires at most

q + 1 SA multiplications. !

By continually applying the method described in Lemma 3.5.3 to each of the

inequalities of the form χ[(1,j)|∅] + χ[(2,j)|∅] ≤ 1 in holeset we will be able to derive
∑n+1

j=1 χ[(i,j)|∅] ≤ 1 for each value 1 ≤ i ≤ n + 1. By adding all such inequalities we

are able to derive
∑n

j=1

∑n+1
i=1 χ[(i,j)|∅] ≤ n. The number of multiplications required

to accomplish this was clearly polynomial in n. !

Corollary 3.5.4 There is an SA proof of LNP of polynomial size.

Proof : This follows directly from Corollary 3.2.1 and a result of [31] stating that

there is a Resolution refutation of LNP of polynomial size. !

3.6 Open Problems

In this chapter we have shown the SA operator to require linear rank for both PHP

and LNP and that both principles only require at most a polynomially sized SA

proof. Ultimately, the goal is to prove exponential lower bounds on the size of SA

proofs, however this is likely to be difficult, especially since we still know relatively

little about the rank complexity of formulas in the SA system. One open question

on this front is to find a method to enable us to argue about the SA rank complexity

of randomly generated formulae. Whilst similar results are known for Resolution,

52

Cutting planes and the Lovász and Schrijver systems, as shown in [12], it appears

to be more complex to accomplish this for SA.

53

Chapter 4

The Chvátal Rank of the

Pigeonhole Principle

4.1 Introduction

This chapter is concerned with the Cutting Planes proof system (CP), as defined in

Section 2.3.1. We demonstrate that the CP rank, also known as the Chvátal rank,

of the Pigeonhole Principle (PHP) is Θ(log n). In order to prove this we introduce a

novel technique which allows us to demonstrate CP rank lower bounds for fractional

points with fewer restrictions than previous methods. We also demonstrate that

PHP has a polynomially sized CP proof.

4.1.1 Related Work

It is already known that the CP rank of PHP is O(log n), as shown in [12] and which

also follows from an earlier result; Theorem 3.1.1 of [37]. The proofs these papers

present were of size Ω(nlog n). We show that there exists a polynomially sized CP

proof of PHP. Prior to this work, no non-trivial lower bound on the CP rank of PHP

was known. Although Theorem 3.1.1 of [37] proves a logarithmic lower bound on

a polytope similar to PHP, its proof relies on the fact that the integer hull of the

polytope is non-empty, something which does not hold for PHP. The rank of PHP

for other systems based on manipulating linear inequalities is well studied; in [35]

54

it is shown that the rank of PHP in the standard lift and project system, devised

by Lovász and Schrijver in [49], is n − 2, whilst the same system enhanced with

semi-definite cuts can refute PHP in rank 1. A linear lower bound on the PHP rank

for the system devised by Sherali and Adams in [63], is given in [57].

Prior to this result the only known CP rank lower bounds for polytopes derived

from unsatisfiable CNF formulas, were derived using the technique presented in [12].

This method is somewhat restrictive since it can only be used to show that points

whose coordinates are in {0, 1/2, 1} can survive a number of rounds of cuts. The

work in this chapter demonstrates how one can argue that points consisting of a

wide range of fractions can survive a number of rounds.

4.2 Preliminaries

The CP proof system can be considered as a refutation proof system operating on

linear inequalities (i.e. it derives the contradiction 1 ≤ 0) which has the axioms

xi ≤ 1 and xi ≥ 0 for any variable xi and the following inference rule, which we will

call the cut rule:

a11x1 + · · · + a1nxn ≥ b1

. . .

am1x1 + · · · + amnxn ≥ bm

(
∑m

i=1 λiai1)x1 + · · · + (
∑m

i=1 λiain)xn ≥ /
∑m

i=1 λibi0

where m ≤ n, the λi’s are non-negative rational coefficients satisfying
∑m

i=1 λiaij ∈ Z

for all 1 ≤ j ≤ n, every aij ∈ Z and every bi ∈ R.

We translate the clauses of the original CNF formula into inequalities as follows:

the clause

xi1 ∨ · · · ∨ xit ∨ ¬xj1 ∨ · · · ∨ ¬xjf

becomes the inequality

xi1 + · · · + xit + (1− xj1) + · · · + (1− xjf
) ≥ 1.

55

The rank of a polytope is the minimum number of rounds of applications of the

cut rule required to reach its integer hull. If the converted CNF is contradictory as a

linear program, then its CP rank is 0; if one round of the cut rule is enough to reach

the integer hull of the polytope then its CP rank is 1. In general if i rounds of cuts

are sufficient to reach a contradiction but i− 1 rounds is not, then the rank of the

polytope is i. We refer to the polytope defined by the converted CNF as P 0 and the

polytope containing only points that can not be removed from P 0 in using i rounds

of cuts as P i. The integer hull of P 0 we call PI . As a proof system, CP is both

sound, since integral points can not be removed using the cut rule, and complete.

The completeness of CP follows from a result of [13], which states that for bounded

polyhedra there exists a j, such that P j = PI , here j is the rank of the polytope

P . It also follows from the fact that it can easily be shown that CP can simulate

Resolution ([18]).

Note that, as in [12], we can view the polytope resulting from a single round of

applications of the cut rule, as follows:

P ′ = {x ∈ P : 〈a, x〉 ≥ /b0 whenever a ∈ Z, b ∈ R, and 〈a, y〉 ≥ b for all y ∈ P}.

Here we take 〈〉 to mean the standard inner-product. With this definition we have

that P 1 = (P 0)′ and in general P i+1 = (P i)′.

We define PHP by a collection of two sets of linear inequalities, which we will

call the holeset and the pigeonset. For convenience we use variables numbered with

ordered pairs; the variable P(i,j) represents the proposition “pigeon i goes into hole

j”. The holeset ensures that no two pigeons are assigned to the same hole and

consists of all inequalities of the form P(i,j) + P(i′,j) ≤ 1, where i != i′, 1 ≤ i ≤ m,

1 ≤ i′ ≤ m and 1 ≤ j ≤ n for some given number of holes n and some number of

pigeons m where m > n. The pigeonset states that each pigeon must go to at least

one hole; this set consists of all inequalities of the form
∑n

j=1 P(i,j) ≥ 1, for every

1 ≤ i ≤ m. Throughout this chapter we refer to the polytope defined by the holeset

and pigeonset inequalities as PHP0 or simply PHP and the polytope remaining after

i rounds of applications of the cut rule as PHPi. From now on the values of m and

n are implicit.

56

4.3 Results

We first present a short proof that PHP0 has a CP proof of rank O(log n) and

of polynomial size (i.e. in the number of inequalities in the proof). Although, as

previously mentioned, this rank upper bound has already been shown in previous

proofs, these proofs were all of size Ω(nlog n).

Theorem 4.3.1 PHP0 has a CP proof of rank O(log(n)) and of polynomial size.

Proof : Suppose there are three disjoint sets of indices P ,Q and R and that we have

the inequalities
∑

p∈P ap +
∑

q∈Q aq ≤ 1,
∑

p∈P ap +
∑

r∈R ar ≤ 1 and
∑

q∈Q aq +
∑

r∈R ar ≤ 1. We can generate the inequality
∑

p∈P ap +
∑

q∈Q aq +
∑

r∈R ar ≤ 1

in a single cut; by adding the three inequalities together, dividing the result by two

and rounding down. Note that if the resulting inequality has k variables then it can

be that we have P , Q and R such that |P + Q|, |P + R|, |Q + R| ≤/ 2k/30.

Since for a given hole j we are given all inequalities of the form Pi,j + Pi′,j ≤ 1,

where 1 ≤ i, i′ ≤ m and i != i′, we know that, by the above argument, we are

able to generate the inequality
∑n+1

i=1 Pi,j ≤ 1. The rank of this inequality can be

described by the recurrence Γ(n) ≤ 1 + Γ(/2n/30), which yields a rank bound of

O(log3/2 n). The number of cuts required to create it is described by the recurrence

∆(n) ≤ 1 + 3∆(/2n/30). This recurrence yields an upper bound of O(3log3/2(n)),

which in turn can be rewritten as O(n1/(1−log3(2))).

To reach a contradiction, we generate the inequality
∑m

i=1 Pi,j ≤ 1 for all 1 ≤

j ≤ n then sum these inequalities together with all the pigeonset inequalities which

yields the contradiction m ≤ n. It is clear that this proof is of rank O(log n) and

that the size of the proof is polynomial in n. !

In order to produce our rank lower bound, we first introduce a lemma which

allows us to ensure certain points within the polytope survive a single round of cuts,

under the condition that other points are also present in the polytope. Such lemmas

are known as protection lemmas, since they demonstrate that a point is protected

from being cut.

57

We begin with some notation. Let P be a polytope in the n dimensional 0-1

hypercube (i.e. P ⊆ [0, 1]n). We call a point x a good point for P if it has the

following properties:

1. x ∈ P .

2. Each non-integral coordinate xi of x has the value zi/k where zi ∈ Z for some

fixed k ∈ R.

3. Each coordinate xi of x is less than or equal to 1/2 unless xi = 1.

Let a be a vector of integers of length n (i.e. a ∈ Zn) and b be a real value such

that 〈a, y〉 ≥ b for all points y ∈ P . We call such a pair (a, b) a satisfying pair for

P . Let x be a good point of P , with each such a and x we associate a set of indices

J = {j : aj != 0 and xj !∈ Z}.

Note that if
∑

j∈J |ajxj| ≥ 1, then there exists a J∗ ⊆ J , such that
∑

j∈J∗ |ajxj| ≥

1 and |J∗| ≤ k. This is significant because the existence or non-existence of such

a set J∗ determines how we generate the point which we use to show x survives a

given cut.

If such a set J∗ exists, which happens when
∑

j∈J |ajxj| ≥ 1, then we can

associate with it a point t which is constructed by setting its coordinates as follows:

• ti = xi for every 1 ≤ i ≤ n where i /∈ J∗.

• ti = 0 for every 1 ≤ i ≤ n where i ∈ J∗ where ai > 0.

• ti = 2xi for every 1 ≤ i ≤ n where i ∈ J∗ where ai < 0

We call such a point a t-point of x and a. We also say that the t-point was

created using the set J∗.

Proposition 4.3.1 Suppose there exists a set J∗ for a given good point x and a

satisfying pair (a, b) for some polytope P ⊆ [0, 1]n. If the t-point, t, created using

J∗ is in P , then 〈a, x〉 ≥ /b0.

58

Proof : From the way in which t is constructed it must be that ajtj + |ajxj| =

ajxj for each j ∈ J∗. Summing over all such equalities allows us to derive that

〈a, t〉 + 1 ≤ 〈a, x〉. Since we also know 〈a, t〉 ≥ b, as t ∈ P , we can be sure that

〈a, x〉 ≥ 〈a, t〉+ 1 ≥ b + 1 ≥ /b0. !

If no J∗ exists for a particular good point x and satisfying pair (a, b) for a

polytope P , we construct another point s by setting its coordinates as follows:

• si = xi whenever xi ∈ Z.

• si ∈ {0, xi} for every 1 ≤ i ≤ n where ai = 0 and xi /∈ Z.

• si = 0 for every 1 ≤ i ≤ n where ai > 0 and xi /∈ Z.

• Let G ⊆ J such that g ∈ G if and only if ag < 0. If |G| ≥ 1, then s has a

single coordinate sf = 1 where f ∈ G and has sf ′ = 0 for all f ′ ∈ G where

f ′ != f .

We call a point created in such a fashion an s-point of x and a.

Proposition 4.3.2 Suppose no such set J∗ exists for a given good point x and a

satisfying pair (a, b) for some polytope P ⊆ [0, 1]n. If there exists an s-point, s, of

x and a such that s ∈ P , then 〈a, x〉 ≥ /b0

Proof : Since si is integral for each non-zero ai ∈ a, we know that 〈a, s〉 ∈ Z.

As s ∈ P , it must be that 〈a, s〉 ≥ b, and hence it must also be that 〈a, s〉 ≥ /b0.

To see that 〈a, s〉 ≤ 〈a, x〉, from which the result follows, note that aixi > aisi for

each j ∈ J where aj > 0 and that if |G| ≥ 1, then
∑

g∈G agsg ≤ −1 ≤
∑

g∈G agxg.

The first part of this inequality (i.e.
∑

g∈G agsg ≤ −1) holds because for a single

g ∈ G, sg = 1 and ag is a negative integer smaller than 0, whilst for all other g′ ∈ G

, where g′ != g have sg′ = 0. The second part of the inequality (−1 ≤
∑

g∈G agxg)

holds because no J∗ exists. !

Lemma 4.3.2 (Protection) Let x be a good point of a polytope P ⊆ [0, 1]n. If

for all possible satisfying pairs (a, b) of P , a t-point or an s-point of x and a is in P ,

then x ∈ P ′.

59

Proof : It is clear that under these conditions, by Propositions 4.3.1 and 4.3.2, x

must satisfy all the defining inequalities of P ′. !

To help us describe how we use Lemma 4.3.2 to produce the rank lower bound

for PHP, it is convenient to introduce some notation. For the rest of this chapter,

we consider Ej to be the set of variables P(i,j) for all 1 ≤ i ≤ m and we say Ej is

fixed on P(i,j) if every variable in Ej is set to 0, except P(i,j) which is set to 1; if this

is not the case we say that Ej is unfixed. We define Wq to be the set of all points w

on the variables of PHP that satisfy the following conditions:

1. Every coordinate of w is a non-negative multiple of 1/
√

n.

2. At most q
√

n sets Ej where 1 ≤ j ≤ n contain a variable with the value 0.

3. No coordinate of w is greater than 2q/
√

n in any unfixed Ej.

Lemma 4.3.3 Every point w ∈ Wq, where 1 ≤ q ≤ log(n)/4, is a good point of

PHP0.

Proof : Each w clearly satisfies conditions 2 and 3 of the definition of a good point

of a polytope (where k =
√

n), so we will focus on showing that w ∈ PHP0, from

which the result follows.

Each w ∈ Wq satisfies the pigeonset inequalities (
∑n

j=1 P(i,j) ≥ 1 for all 1 ≤ i ≤

m) since each such inequality must have at least n − q
√

n variables set to at least

1/
√

n, therefore when even when q is as large as possible we have:

(n− q
√

n)
1√
n
≥ 1

(n− log(n)

4

√
n)

1√
n
≥ 1

√
n− log(n)

4
≥ 1.

Each w can also be shown to satisfy the holeset inequalities. It trivially satisfies

any such inequality P(i,j) + P(i′,j) ≤ 1 for any j where Ej is fixed. If Ej is unfixed,

then as q ≤ log(n)/4, we have that P(i,j), P(i′j) ≤ 1/2 in w for sufficiently large n.

This can be shown as follows:

P(i,j), P(i′,j) ≤ 2log(n)/4/
√

n = (2log(n))1/4/
√

n = n1/4/n1/2 = 1/n1/4 ≤ 1/2. !

60

Lemma 4.3.4 Let w ∈ Wq, where q ≤ log(n)/4−1. We can find a set Q of s-points

and t-points of w, satisfying Lemma 4.3.2 (where x is w), with each such point being

in Wq+1.

Proof : Consider a satisfying pair (a, b) for PHP. If there exists a set J∗ for this

particular w and a, then the t-point, t, created using this J∗ has no value greater

than 2q+1/
√

n, and no more than (q + 1)
√

n sets Ej contain a variable set to zero;

therefore, t ∈ Wq+1.

If no such J∗ exists for w and a, then there can only be at most
√

n elements in

the set J . We create a point s from w as follows: if J contains at least one element

(i, j) where a(i,j) < 0, then we fix Ej on P(i,j) in s, for all remaining (i′, j′) ∈ J where

1 ≤ i′ ≤ m, 1 ≤ j′ ≤ n and j′ != j, s(i′,j′) = 0. All remaining coordinates of s (i.e.

those not in J) are set to the same value as in w. Note that s is a s-point of w and

a and that s has at most (q + 1)
√

n sets Ej that contains a variable set to zero.

Furthermore s does not contain any value greater than 2q+1/
√

n in any unfixed Ej

and hence s ∈ Wq+1.

For each satisfying pair valid for PHP we have that either s or t is in Q. Since

each such point in is Wq+1, by Lemma 4.3.3, they must also satisfy PHP, hence the

conditions of Lemma 4.3.2 are met for w by Q. !

From now on we will refer to such a set Q, as in Lemma 4.3.4, as a protective set

of w.

Theorem 4.3.5 The Chvátal rank of PHP is Ω(log n).

Proof : It is enough to show that PHPlog(n)/4 is non-empty. We demonstrate that

this is the case by showing it must contain the point x = [1/
√

n]m×n (i.e. x is the

m × n dimensional point with each coordinate being 1/
√

n). It is easy to see that

x ∈ W0 and by Lemma 4.3.4, we know x has a protective set of points Q1, where

every q ∈ Q1, is in W1 and hence by Lemma 4.3.3, q ∈ PHP0. By Lemma 4.3.2,

the existence of Q1 demonstrates that x ∈ PHP1. Now let q be a point in Q1, we

know by Lemma 4.3.4 that there is a protective set for q, consisting only of points

in W2; again by Lemmas 4.3.3 and 4.3.2 this demonstrates that q ∈ PHP1. Such a

protective set exists for all q ∈ Q1; let Q2 denote the union of all such sets. The

61

existence of Q2, means that, again by Lemma 4.3.2, x ∈ PHP2. Similarly we can

define the set Qp to be the union of the protective sets for every q ∈ Qp−1. For

convenience we define Q0 to be the point x.

We can now complete the proof by induction. Assume that for some p ≤

log(n)/4 − 1 we have that every point in Qr is also in Wr for all 0 ≤ r ≤ p. We

have already shown that this assumption holds for p = 2. Let q be a point in Qp,

we know from Lemma 4.3.4 there exists a protective set for q, consisting of points

in Wq+1 and hence by Lemma 4.3.3, also in PHP0. Since such a protective set can

be found for all such q ∈ Qp, we know that all points in Qp are in PHP1. In general

if all points in Qd are in PHPp−(d−1) for some 1 ≤ d ≤ p then by Lemma 4.3.2 every

point in Qd−1 is in PHPp−(d−2). Therefore it must be that x ∈ PHPlog(n)/4. !

Theorems 4.3.1 and 4.3.5 allow us to conclude the following corollary:

Corollary 4.3.6 The Chvátal rank of PHP is Θ(log n).

4.4 Further Work

An interesting problem, following directly from this work, is to see whether the

technique presented here can be used to prove a rank complexity gap, similar to

those given in [22], for CP. We conjecture that all polytopes derived from sentences

of first-order logic (as in [61]) possessing an infinite, but no finite model, require

strictly non-constant CP rank, whilst all polytopes derived from sentences with no

finite nor infinite model require just constant CP rank.

62

Chapter 5

Comparing the Rank Complexity

of LS+ and Cutting Planes to

Resolution Width

5.1 Introduction

It is not difficult to show that all the proof systems defined by Lovász and Schrijver

(LS0, LS and LS+), the Sherali Adams proof system (SA) and the Cutting Planes

proof system (CP) can all p-simulate Resolution. However, whilst it is known that

SA has the property that the rank of any polytope derived from a set of unsatisifiable

clauses is at most the Resolution width of the clauses (Corollary 3.2.1), it is not clear

whether this holds for any of the other abovementioned systems.

In this chapter we show that this is not the case; the measures of CP and LS+ (the

most powerful of the systems defined by Lovász and Schrijver) rank are incomparable

to Resolution width. This result allows us to obtain a number of corollaries, which

describe how the measures of rank in the various systems are related to each other.

5.2 Related Work

The Pigeonhole Principle provides an example of an infinite family of unsatisfiable

CNF formuale which requires linear Resolution width ([36]) but only logarithmic

63

CP rank ([12]) and rank of just one in LS+ ([35]). However it is unknown whether

an upper bound for the Resolution width of an unsatisfiable CNF formulae implies

an upper bound on the CP or LS+ rank of its corresponding polytope. We show

that this is not true by demonstrating that there is an infinite family of tautologies

which require constant Resolution width, yet at least logarithmic CP and LS+ rank.

It is shown in [48] that the SA rank of a polytope is no greater than its rank

in the standard system devised by Lovász and Schrijver (LS), however there are no

known examples which separate the two complexity measures. In this chapter we

provide such an example, demonstrating the SA rank of a polytope can be arbitrarily

smaller than its LS rank.

5.3 Preliminaries

In this chapter we describe upper and lower bounds on the complexity of proofs in

terms of Resolution width and CP and LS rank; these are defined in Sections 2.2

and 2.3 respectively.

5.3.1 Relativized House Sitting Principle

The infinite family of unsatisfiable CNF formulae that we consider in this chapter

we will call RHSP2 n, which stands for the Relativized House Sitting Principle with

2 sets. This is the family of CNF formulae generated by taking the normal House

Sitting Principle (HSP) as defined in Section 2.4.4, and which can be defined in

first-order logic as the constraints: ∀x∃y((y ≥ x) ∧W (x, y)), ¬W (0, 0), ∀x, y((x <

y)∧W (y, y) → ¬W (x, y)), relativizing it twice (see [21]) and converting it to a purely

propositional sentence over n possible witnesses ([61]). The reason we consider the

relativized version of the HSP is that the original version has CP and LS rank 0, so

would not be appropriate. The reason we consider the version with two sets instead

of one is simply that the method we employ to obtain our rank lower bounds fails

on the later version.

The formula RHSP2 n can informally be considered to represent the contradic-

tory scenario where there is a street with n houses on it, and the higher the house

64

number, the better it is. House one is a run-down shack and house n is a luxurious

mansion. The residents living on the street decide to play a game in which they

can go to each others houses, under a number of conditions. Since no-one wants

a bad deal there agree only to go into a house at least as good as their own. The

residents of house one obviously don’t like their own house and so don’t want to

stay there. They also belong to two groups, the neighborhood watch (q) and a risky

pyramid scheme (r). The residents of the street decide that if people who are in

both these groups go into their house, they should join these groups as well. They

also decide that if the owners of a house are in both these groups and stay their own

homes, then no-one belonging to both the groups is allowed to visit their house. We

represent the proposition “some of the owners of house i go to house j” with the

variable Wi,j and the proposition “the owners of house i belong to q (r)” using the

variable Sq
i (Sr

i). We consider the formula RHSP2 n, where n ≥ 2, as being defined

by the following inequalities (clauses):

∑n
j=i Wi,j ≥ 1 (

∨n
j=i Wi,j), for all 1 ≤ i ≤ n, which we shall call the witnessing

inequalities and can be considered to state that the residents of house i must go to

a house at least as good as there own.

2 + St
j ≥ Wi,j + Sq

i + Sr
i (St

j ∨ ¬Wi,j ∨ ¬Sq
i ∨ ¬Sr

i) for all t ∈ {q, r}, i ≤ n − 1

and all j ≥ i + 1, j ≤ n. We refer to this set of inequalities as the inductive ones.

These state that if residents of house i are in both groups and they go to house j,

then the residents of house j must be in the set t.

Wi,j + Wj,j + Sq
i + Sr

i + Sq
j + Sr

j ≤ 5 (¬Wi,j ∨ ¬Wj,j ∨ ¬Sq
i ∨ ¬Sr

i ∨ ¬Sq
j ∨ ¬Sr

j),

for all 1 ≤ i ≤ n− 1, 2 ≤ j ≤ n which we will refer to as the fullhouse inequalities.

These state that if the residents of houses i and j are in both groups, and j goes

into their own house then i can’t go to j’s house.

A set of single clause inequalities, W1,1 ≤ 0 (¬W1,1) which states that the res-

idents of house one don’t stay in their own house, Sq
1 ≥ 1 (Sq

1) and Sr
1 ≥ 1 (Sr

1),

65

which state that residents of house one are in both sets.

5.4 Results

To get our constant upper bound on the narrow Resolution width of RHSP2 n we

use the following witnessing pebbling game, introduced in [31].

Let F be a CNF formula. The witnessing pebble game on F is played between

two players Prover and Delayer on the set of literals arising from the variables in F .

A pebble can never appear on both the positive and negative literals of any variable.

In each round, one of three things can happen.

1. Prover lifts a pebble from the board; Delayer makes no response.

2. (Querying a Variable.) Prover gives a pebble to Delayer and names an empty

variable x (i.e. neither x nor ¬x is pebbled already). Delayer then places the pebble

on x or ¬x.

3. (Querying a Clause.) Prover gives Delayer a pebble and names a clause C

from F . Delayer must then place the pebble on one of the literals of C if none are

already pebbled, without contradicting a pebble already on the board, if at least

one literal of C is already pebbled they can hand the pebble back to Prover. If this

is impossible to do Prover wins the game.

When the game is limited to a given number of pebbles k, we call this the k-

pebble witnessing game. Notice that Prover can only win if the pebbles on the

board falsify a clause of F and Prover has at least one pebble left. From [31], we

also get the following lemma, linking the witnessing pebble game with the narrow

Resolution width of a proof.

Lemma 5.4.1 (Proposition 4, [31]) Let F be a CNF formula. If there is a winning

66

strategy for Prover in the k-pebble witnessing game on F , then there is a narrow

Resolution proof of width k of the unsatisfiability of F .

We can now prove our constant upper bound on the Resolution width of RHSP2 n,

by demonstrating that the value of n does not affect the number of pebbles required

for Prover to win the witnessing pebble game on the clauses of RHSP2 n.

Theorem 5.4.2 For every n ≥ 3, RHSP2 n has a narrow Resolution proof of width

≤ 6.

Proof : At the start of the game Prover queries the single literal clauses Sq
1 , Sr

1 and

¬W1,1.

We will now show that if there are pebbles on Sq
i , Sr

i , ¬Wi,i for some value i, then

Prover can force Delayer to placed pebbles on Sq
j , Sr

j , ¬Wj,j for some j > i using

just 3 more pebbles. To do this Prover first queries the witnessing clause
∨n

q=i Wi,q,

Delayer must put a pebble on some literal Wi,j. Prover then queries the variables

Sq
j and Sr

j , Delayer must play on the positive literals of both of these variables or

Prover could then query the one of the inductive clauses St
j ∨ ¬Wi,j ∨ ¬Sq

i ∨ ¬Sr
i

for each t ∈ {q, r} and win straight away. Prover then queries the fullhouse clause

¬Wj,j ∨¬Sq
i ∨¬Sr

i ∨¬Sq
j ∨¬Sr

j ; in response, Delayer must place a pebble on ¬Wj,j.

Note that if Prover plays in this manner, having secured pebbles on Sq
j , Sr

j and

¬Wj,j, they can then pick up the pebbles on Sq
i , Sr

i and Wi,j and repeat the same

strategy. If Prover continually plays in this manner, then eventually they can force

Prover to pebble Sq
n, Sr

n and ¬Wn,n; they can then win by querying the single literal

clause Wn,n. By following this strategy, Prover is able to win using just six pebbles.

!

To prove our logarithmic rank lower bound for LS+ and CP on RHSPn
2 , we need

some lemmas, which we refer to as protection lemmas, which ensure some specific

point can not be cut from the current polytope in the next round of applications of

the respective cut rule, under the condition that other points are also present in the

current polytope.

For CP we use the following protection lemma, as presented in [12].

67

Lemma 5.4.3 (Lemma 3.1, [12]) Let P be a bounded polytope in Rn and let P ′

be the polytope defined by applying a round of applications of the cut-rule to P .

Let y ∈ P be a point which has each of its coordinates in the set {0, 1
2 , 1} and let

V = V (y) be the set of coordinates for which y is 1
2 . Let V be partitioned into

distinct sets V1, V2, . . . , Vt. Suppose that for every j ∈ {1, 2, . . . , t} we can represent

y as an average of two vectors both in P that are 0/1 on Vj and agree with y

elsewhere. Then y ∈ P ′.

We now show that Lemma 5.4.3 also holds where P ′ refers to the polytope defined

similarly except that instead of applying the cut-rule we apply N+-cuts. In order to

do this we first need the following lemma from [25]; note that we use the notation

presented previously in Section 2.3.2.

Lemma 5.4.4 (Lemma 3.2, [25]) Let P ′ be the polytope remaining after applying

a round of N+-cuts to a given polytope P . A point x is in P ′ if there exists an

(n + 1) × (n + 1) PSD matrix Y , such that Y (e0) = x, diag(Y) = x, for each

0 ≤ i ≤ n, Y (ei) ∈ P and Y (e0)− Y (ei) ∈ P .

Using Lemma 5.4.4, we can show that under the conditions of Lemma 5.4.3, the

given point would also survive a round of N+-cuts.

Lemma 5.4.5 Let P be a bounded polytope in Rn and let P ′ be the polytope

remaining after applying a round of N+-cuts to P . Let y ∈ P be a point which has

each of its coordinates in the set {0, 1
2 , 1} and let V = V (y) be the set of coordinates

for which y is 1
2 . Let V be partitioned into distinct sets V1, V2, . . . , Vt. Suppose that

for every j ∈ {1, 2, . . . , t} we can represent y as an average of two vectors both in P

that are 0/1 on Vj and agree with y elsewhere. Then y ∈ P ′.

Proof : We demonstrate this by showing that under the conditions of this lemma,

one can build a PSD matrix, satisfying the conditions of Lemma 5.4.4 for the point y.

Consider the matrix E constructed as having E0,0 = 1, diag(E)= y, E0 = y and

the zero-th row of E is also y (i.e. E0,i = yi for each i ∈ {1, . . . n}). For every i

where yi = 0 we have that Ei is the all zero vector and the i-th row of E is the all

68

zero row vector. If yi = 1 then we have that Ei = y and the i-th row of E is also y.

If yi = 1
2 , and i ∈ Vc then if yj = 1

2 and j /∈ Vc then Ei,j, Ej,i = 1
4 . In the case that

i, j ∈ Vc and yi = yj in the two points that are 0/1 on Vc and average to y, then

Ei,j, Ej,i = 1
2 and if yj != yi in these two points then Ei,j, Ej,i = 0.

For example if y = [12 ,
1
2 , 1, 0,

1
2 ,

1
2] and we have V1 = {1, 2}, V2 = {5, 6}, y1 and

y2 are set to the same value as each other in the points that are 0/1 on V1, and that

y5 and y6 are set to the opposite value to each other in the points that are 0/1 on

V2, then

E =





1 1
2

1
2 1 0 1

2
1
2

1
2

1
2

1
2

1
2 0 1

4
1
4

1
2

1
2

1
2

1
2 0 1

4
1
4

1 1
2

1
2 1 0 1

2
1
2

0 0 0 0 0 0 0

1
2

1
4

1
4

1
2 0 1

2 0

1
2

1
4

1
4

1
2 0 0 1

2





.

If yi is integral, then we have that one of Ei, E0 − Ei is the all zero vector of

length n + 1 and the other is the vector defines the point y, therefore both these

points must be in P . Note that if yi = 1
2 and i ∈ Vc, then Ei and E0 − Ei define

points which are 0/1 on Vc and exactly the same as y on each coordinate not in Vc.

From the way in which we constructed E, these two points are precisely those which

we know to be in P and average to y.

Since E is clearly always symmetric, if we were showing that Lemma 5.4.4 holds

for LS we would be finished. To finish the proof for LS+ we need only check that

the matrix E is always PSD. Consider the matrix A = y× yT , this matrix is clearly

PSD and is very similar to E. A differs from E only on diagonal entries Ei,i where

yi = 1
2 , in which case we have that Ai,i + 1

4 = Ei,i and also on entries Ei,j (and by

symmetry Ej,i) where yi, yj = 1
2 and {i, j} ⊆ Vc, where it differs by either plus or

69

minus 1
4 . For instance, in the example given before, we have that

A =





1 1
2

1
2 1 0 1

2
1
2

1
2

1
4

1
4

1
2 0 1

4
1
4

1
2

1
4

1
4

1
2 0 1

4
1
4

1 1
2

1
2 1 0 1

2
1
2

0 0 0 0 0 0 0

1
2

1
4

1
4

1
2 0 1

4
1
4

1
2

1
4

1
4

1
2 0 1

4
1
4





.

Let q be the smallest index in Vi and let Bi be an (n + 1) × (n + 1) matrix

containing all zeros except that Ej,1 = 1
2 if and only if j ∈ Vi and vq = vj in the two

points that are 0/1 on Vi and the same as y elsewhere and Ej,1 = −1
2 if and only if

j ∈ Vi and vq != vj in these points. For instance in the example presented before:

B1 =





0 0 0 0 0 0 0

0 1
2 0 0 0 0 0

0 1
2 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





B2 =





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1
2 0 0 0 0 0

0 −1
2 0 0 0 0 0





.

Now consider the matrix Bi × BT
i . This is clearly a PSD matrix of dimension

(n + 1) × (n + 1) and has entries Ej,j = 1
4 for every j ∈ Vi. It also has the value

1
4 for every entry Ej,t (Et,j) where {j, t} ⊆ Vi and yj = yt in the two points that

are 0/1 on Vi and the value of y elsewhere. However, if yj != yt in these points then

Ej,t, Et,j = −1
4 . All other entries in Bi ×BT

i are zeros. Given this, one can see that

A +
∑t

i=1 Bi ×BT
i = E. Since each Bi ×BT

i is PSD and A is PSD, it must be that

E is PSD too. !

70

For the rest of this chapter, we consider P ′ to represent the polytope remaining

after applying a round of applications of both the cut-rule and N+-cuts to a given

polytope P , that P 0 is the polytope defined by the inequalities of RHSP2 n, and that

for each i, P i+1 = (P i)′. The proof of our lower bound on the CP and LS+ rank

of RHSP2 n involves showing that a specific point x, defined as having the variables

set to the following values, must be present in P)log2(n)*−2.

Wn,n, Sq
1 , Sr

1 = 1.

Wi,i+1, Wi,i+2 = 1
2 for all odd i, where 1 ≤ i ≤ n− 3.

Wi,i+2, Wi,i+3 = 1
2 for all even i where 2 ≤ i ≤ n− 4.

Sq
i , Sr

i = 1
2 for all 2 ≤ i ≤ n.

Wn−2,n−2, Wn−2,n−1, Wn−1,n−1, Wn−1,n = 1
2 .

All other variables are set to 0.

Note that by substituting the values given in x, if n is large enough, each in-

equality of RHSP2 n is satisfied and hence x ∈ P 0.

Theorem 5.4.6 The CP and LS+ rank of RHSP2 n > 5log2(n)6 − 2, where n is

even and n ≥ 8.

Proof : We demonstrate that P)log2(n)*−2 is non-empty by demonstrating that it

contains x. For the rest of this proof we consider V = V (y) to be the set of all

coordinates for which the point y is non-integer.

We consider a game played between two players, Delayer and Prover, which runs

over a number of rounds. In each round Prover is at some point y in the space (i.e.

in the polytope P 0) and in the first round y = x. It is Prover’s job to try and find

a point y /∈ P 0, it is Delayer’s job to make the game last for as many rounds as

possible. At the beginning of each round Delayer partitions the variables of V into

distinct sets V1, . . . , Vt. For each set Vi of the partition of V Delayer decides on two

possible assignments of 0/1 values to the variables in the set, where each variable is

assigned 0 in one assignment and 1 in the other (i.e. as in lemmas 5.4.3 and 5.4.5).

Prover then picks one of these sets and chooses one of the two possible assignments.

71

1 2 3

q r q r

Figure 5.1: The set Vstart, and associated 0/1 values.

n−2 n−1 n

q r q r q r

Figure 5.2: The set Vend, and associated 0/1 values.

They then update their position y by setting these variables to their chosen values.

We call a position reached from a given position g in this manner a child of g.

Since the inequalities of RHSP2 n are unsatisfiable, it is clear that Prover will

eventually win the game (i.e. if he sets all the variables to 0/1 values he must have

reached a point y /∈ P 0). The clear link between the game and the CP and LS+

rank is that if Delayer can play so that the game lasts until the end of round i, by

Lemmas 5.4.3 and 5.4.5, the CP and LS+ rank of the polytope P0 is at least i + 1.

We therefore demonstrate a strategy for Delayer that allows him to ensure the game

lasts until the end of round 5log2(n)6 − 2.

Figures 5.1 to 5.6, define the possible sets into which Delayer will partition

V = V (y) together with their associated 0/1 values which define the child points of

a given current point. An edge uv in these figures represents the variable Wu,v if v

is not labeled q or r, otherwise it represents the variable Sv
u. The two possible child

positions, having 0/1 values associated with a given set Vi of the partition of V , are

defined as having all the dashed edges set to 0, and the solid edges 1 and vice-versa

in the respective figure (and the same values as y for all variables not appearing in

Vi).

Figures 5.1 and 5.2 show how specific elements of V are partitioned into subsets,

however Figures 5.3 to 5.6 give a template defining how elements of V can be parti-

tioned according to some parameter i. We call the set matching template Ta having

i = p, Va,p and we say Va,p has ‘i’ value p.

Note that Vstart and Tleft are constructed so that if someone goes into some house

72

i i+1 i+2 i+3

q r q r

Figure 5.3: The template Tleft, and associated 0/1 values.

i i+1 i+2 i+3

q r q r

Figure 5.4: The template Tright, and associated 0/1 values.

i i+1 i+2 i+3

Figure 5.5: The template Tmid, and associated 0/1 values.

i i+1

q r q r

Figure 5.6: The template Tother, and associated 0/1 values.

73

1 2 . . . n

Figure 5.7: The board on which the game is played.

h, the residents of h are always in both q and r. By comparison, the other sets are

constructed so as to prevent the residents of a particular house belonging to both q

and r.

Intuition. There are distinct numbers, (i) the biggest number h so that the res-

idents of house h are in both q and r and (i.e. Sq
h = Sr

h = 1) and (ii) the lowest

number g so that the residents of house g are not definitely in both r and s (i.e.

Sq
g + Sr

g != 2) and have some people staying in their house (i.e. Wk,g = 1 for at

least one k in {1, . . . g}) or simply are not in one of q or r (i.e. Sq
g = 0 or Sr

g = 0).

Only the segment between (i) and (ii) is inconsistent so Prover tries to narrow the

size of this segment, whilst Delayer makes sure it can only be halved in each round,

hence the Ω(log2 n) lower bound. A valid, although ineffective move for Prover

is to play in the consistent region to the left of (i), or in the consistent region to

the right of (ii). Initially, at the start of the game, we have that (i) = 1 and (ii) = n.

Whilst the link between the game we introduced and the CP and LS+ rank is

clear, to simplify the explanation of the Delayer’s strategy we will introduce a few

slight changes to the way in which it is presented. In this alternative presentation,

the game is played on a board consisting of boxes laid over vertices labeled from 1

up to n. The first box is over the vertices 1 to 3, the last box covers the vertices

n− 2 to n and there is a box for each even number between 2 and n− 4 inclusive,

each one covering the vertex with that number together with the next three. We

consider each box to be numbered with the smallest vertex that it covers, (e.g. the

box covering vertices 4,5,6 and 7 is box 4). This board is presented pictorially in

Figure 5.7.

In this version of the game, each set Vi of the partition of V is represented by

a box, at the start of each round Delayer labels each box with a letter, the letter

74

represents the template or set type represented by the box. Box 1, must always be

labeled with an ‘S’ for ‘Vstart’, the final box (n− 2) is always labeled ‘E’ for ‘Vend’;

the other boxes are labeled with one of ‘L’ for Tleft, ‘R’ for Tright or ‘M ’ for Tmid.

The number of the box is also the ‘i’ value of the set it represents, for example if

box 2 is labeled with an ‘L’, this is representative of the Delayer having dealt the

set Vleft,2 in the original game; for simplicity we consider the sets Vstart and Vend to

have ‘i’ values 1 and n− 2 respectively.

After Delayer has labeled the boxes, Prover picks a box, which is representative

of the them removing the corresponding set in the original game, they then update

their position y in the same way as before, by setting the variables in the set they

selected to 0/1 values, according to the restrictions set by the set type they pick.

The box Prover selected is then shaded out and can no longer be picked by Prover,

nor can the label be changed by Delayer in subsequent rounds. The game ends as

before when the position y violates at least one of the clauses of RHSP2n.

In each round Delayer’s strategy is to ensure that the box labeled ‘M ’ remains

in the middle of the inconsistent region, to do this he labels the box with the nearest

even value to (i) + ((ii) − (i))/2, ‘M ’, if there are two such values, we assume he

picks the smaller of the two, we call this value m. He then labels all unshaded boxes

numbered less than the m with ‘L’, except for box one, which is always labeled with

‘S’. All unshaded boxes numbered higher than m he labels ‘R’ with the exception of

box n− 2, which again is always labeled ‘E’. The labeling he makes at the start of

the game is graphically represented in Figure 5.8. It can easily be checked that this

represents a valid partitioning of the variables of V (x). Note that if Player selects

a box marked ‘L’ or ‘S’ with a higher number that any shaded box labeled ‘L’ or

‘S’, they will increase the value of (i), whilst picking a set labeled ‘M ’, ‘R’ or ‘E’

numbered lower than any shaded such box will decrease the value of (ii). Also note

that if Prover picks any other box, it is equivalent to them playing in the consistent

region, and hence is a poor move for them.

The only complication arises when Prover picks the set labeled ‘M ’. In this case,

the value of (ii) decreases to the previous ‘mid point’ of the inconsistent region, m,

but Delayer can not simply use their strategy in the next round as this would not

75

1 2 . . . n

S EL M R
L L R R

Figure 5.8: Delayer’s deal in the first round, where each box is labeled above its top

left hand corner.

constitute a valid partitioning of the variables of V . This is because the variables

Sq
m, Sr

m, Sq
m+1 and Sr

m+1 would not be assigned to a set in the subsequent round.

To cope with this, Delayer could simply deal these variables into the set Tother,m

in all subsequent rounds, but to simplify the strategy of Delayer, we assume that

when Prover picks the box labeled ‘M ’, they assign the variables associated with

that box (i.e. Wm,m+2, Wm,m+3, Wm+1,m+2 and Wm+1,m+3) and then have a “free

bonus round” in which they assign the variables of Tother,m as if they had picked

that set in the next round, although we don’t count this as a round. This makes it

equivalent to Prover having picked the box numbered m labeled with ‘R’.

To prove that this strategy allows Delayer to play up until the end of round

5log2(n)6 − 2, we will show that it satisfies two properties, namely that firstly it

always provides a valid partitioning of the set V into sets matching the templates

or being Vstart or Vend and secondly that y remains in P 0.

The first of these properties is easy to see. The strategy certainly is valid in

round 1 (i.e. as in Figure 5.8), to see that it is valid in subsequent rounds note that

Prover can only decrease the size of the inconsistent region (defined by (ii) − (i))

by at most half each time. Therefore so as long as the game only runs over at

most 5log2(n)6 − 2 rounds, the inconsistent region will remain ≥ 8 on Delayer’s

last go. In terms of boxes, this means that Delayer always has at least 4 unshaded

boxes numbered between (i) and (ii) and hence can ensure that there is at least

one unshaded box to the left of the middle (i.e. the box labeled ‘M ’) and one to

the right. One can see that, taking into account the special rule about when Prover

picks the unshaded set labeled ‘M ’, such a labeling constitutes a valid partitioning

of the set V .

To see that the strategy ensures the point y remains in P 0 we note that the

only inconsistent situations are (1) when the residents of a house don’t go anyway

76

(i.e. violating a witnessing inequality), (2) the residents of a house are in both sets

and go to another house in which the residents are not in both sets (i.e. violating

an inductive inequality) (3) the residents of a house in both sets occupy their own

house and other people also in both sets go into that house (i.e. violating a fullhouse

inequality).

It is clear that (1) does not occur since each time Prover sets a variable Wi,j

to zero, they are forced to set another variable Wi,j′ to one. Situation (2) can

only arise when the residents of a house are in both sets and go to another house

(Sq
i = Sr

i = Wi,j = 1 for some i and j). This can only occur in y if Prover selects

a set labeled either ‘S’ or ‘L’. However, in this case no matter which of the two

possible sets of values they assign to the variables in such a set, they are forced

to make Sq
j = Sr

j = 1, thus preventing (2) from occurring. Situation (3) can only

occur if the residents of a particular house stay in their own house, it is clear that

this is only possible in y for the residents of houses n − 2, n − 1 and n. However,

due to the limited number of rounds Delayer ensures that no matter how Prover

plays the game they can not make (i) large enough for situation (3) to occur. Since

none of (1), (2) or (3) can occur, we can be sure that y ∈ P 0 at the end of round

5log2(n)6 − 2 and hence our proof of Theorem 5.4.6 is complete. !

From Theorems 5.4.2 and 5.4.6 together with the logarithmic and constant Pi-

geonhole Principle rank bounds given in [12] and [35] for Cutting Planes and LS+

respectively, and the size lower bound given in [36], we can conclude the following

corollary.

Corollary 5.4.7 Narrow Resolution width is incomparable to CP and LS+ rank.

As in the proof of Theorem 5.4.6 all variables Wi,j = 0 for all j > i + 3 in x, it

is clear that we could get precisely the same CP and LS+ rank lower bound for the

polytope defined by all the inequalities in RHSP2 n, except having all these variables

removed. This would give us an instance which had a maximum clause length of

six, (i.e. a 6-CNF). In [31], they prove the following Lemma.

77

Lemma 5.4.8 (Proposition 2, [31]) If a r-CNF, F , has a width k narrow Resolution

refutation, then F has a width r + k − 2 “normal” Resolution refutation.

Since the narrow Resolution width of a set of clauses can not increase if variables

are removed, this lemma allows us to see that our altered version of RHSP2 n has a

“normal” Resolution refutation of width ten. This implies the following corollary.

Corollary 5.4.9 Resolution width, defined in terms of the maximum size of any

clause in the proof, is incomparable to CP and LS+ rank.

As the SA rank of the Pigeonhole Principle is known to linear in the number of

pigeons [57], and the SA rank of any polytope derived from a set of unsatisfiable

clauses is at most the normal Resolution width of the clauses (Corollary 3.2.1), we

find that Theorems 5.4.6 and 5.4.2 also imply the following Corollary.

Corollary 5.4.10 SA rank is incomparable to CP and LS+ rank.

Theorems 5.4.6 and 5.4.2 together with a result of [48], showing that SA can

p-simulate LS such that the simulation is rank preserving, allow us to conclude the

following corollary.

Corollary 5.4.11 The SA rank of a polytope can be arbitrarily smaller than its

LS rank, but never larger.

5.5 Further Work

The results in the chapter fill in a gap in our knowledge about how CP, LS, LS+ and

SA rank and Resolution width are related. There are similar other gaps; for instance

it is unknown whether CP and LS rank are incomparable or whether Resolution

width and SA rank are equivalent.

One direct open question is whether Ω(log n) is a tight lower bound on the CP

or LS+ rank of RHSP2 n, since it is possible that it could require linear rank.

78

Bibliography

[1] M. Ajtai. 1994. The complexity of the pigeonhole principle. Combinatorica,

14(4), 417-433.

[2] M. Alekhnovich, S. Arora and I. Tourlakis. 2005. Towards strong nonapprox-

imability results in the Lovasz-Schrijver hierarchy. In Proceedings of the thirty-

seventh annual ACM Symposium on Theory of Computing, STOC ’05, 294-

303.

[3] A. Atserias and M. Bonet. 2004. On the automatisability of resolution and

related propositional proof systems. Information and Computation archive,

198(2), 182-201.

[4] P. Beam, R. Impagliazzo, J. Kraj́ıc̆ek, T. Pitassi, P. Pudlak, A. Woods. Expo-

nential lower bound to the size of bounded depth Frege proofs of the Pigeonhole

Principle. In Proceedings of the 24th annual ACM symposium on the Theory

of Computing, STOC ’92, 200-220.

[5] P. Beame and T. Pitassi. 1996. Simplified and Improved Resolution Lower

Bounds. In Proceedings of the 37th IEEE Symposium on Foundations of Com-

puter Science, FOCS ’96, 274-282.

[6] P. Beame and T. Pitassi. 2001. Propositional Proof Complexity: Past, Present,

and Future. In Current Trends in Theoretical Computer Science: Entering the

21st Century, World Scientific Publishing, 42-70.

[7] E. Ben-Sasson, A. Wigderson. 2001. Short proofs are narrow - resolution made

simple. Journal of the ACM, 48(2), 149-168.

79

[8] D. Bienstock and N. Ozbay. 2003. Tree-width and the SheraliAdams operator.

CORC REPORT 2003-09.

[9] A. Blake. 1937. Canonical expressions in boolean algebra, PhD. Thesis, Uni-

versity of Chicago.

[10] J.A. Bondy and U.S.R. Murty. 1976. Graph Theory with Applications. North

Holland, New York.

[11] M.L. Bonet and M. Galesi. 1999. A Study of Proof Search Algorithms for

Resolution and Polynomial Calculus. In Proceedings of the 40th Annual IEEE

Symposium on Foundations of Computer Science, FOCS’99, 422-432.

[12] J. Buresh-Oppenheim, N. Galesi, S. Hoory, A. Magen and T. Pitassi. 2006.

Rank bounds and integrality gaps for cutting planes procedures. Theory of

Computing, 2(2006), 65-90.

[13] V. Chvátal. 1973. Edmonds polytopes and a hierarchy of combinatorial prob-

lems. Discrete Mathematics, 4, 205-337.

[14] V. Chvátal and E. Szemereédi. 1988. Many hard examples for resolution. Jour-

nal of the ACM, 35(4), 759-768.

[15] S.A. Cook. 1971. The complexity of theorem proving methods. In Proceedings

of the 3rd annual ACM symposium on the Theory of Computing, STOC ’71,

151-158.

[16] S.A. Cook and R. Reckhow. March 1979. The relative complexity of proposi-

tional proof systems. Journal of Symbolic Logic, 44(1) 36-50.

[17] S.A. Cook. 2000. The P vs NP problem.

http://www.claymath.org/millennium/P vs NP/pvsnp.pdf.

[18] W. Cook, R. Coullard and G. Turan. 1987. On the complexity of cutting planes

proofs. Discrete Applied Mathematics, 18, 25-38.

[19] W. Cook and S. Dash. 1999. On the matrix-cut rank of polyhedra. Mathematics

of Operations Research, 26(1), 19-30.

80

[20] T.H. Corman, C.E. Leiserson, R.L Rivest and C. Stein. 2001. Inrtoduction to

Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company.

[21] S. Dantchev. 2006. Relativisation Provides Natural Separations for Resolution-

Based Proof Systems. In Proceeding of Computer Science - Theory and Ap-

plications, First International Computer Science Symposium in Russia, CSR

’06, 147-158.

[22] S. Dantchev. 2007. Rank complexity gap for Lovász-Schrijver and Sherali-

Adams proof systems. In Proceedings of the thirty-ninth annual ACM sympo-

sium on Theory of computing, STOC ’07, 311-317.

[23] S. Dantchev, B. Martin and M. Rhodes. 2008. Tight rank bounds for the

Sherali-Adams proof system. Accepted to Theoretical Computer Science.

[24] G.B. Dantzig. 1991. Linear Programming. History of Mathematical Program-

ming: A Collection of Personal Reminiscences, J. K. Lenstra, A. H. G. Rin-

nooy Kan, and A. Schrijver (eds.), Elsevier Science Publishers B.V., Amster-

dam, The Netherlands.

[25] S. Dash. 2001. On the Matrix Cuts of Lovász and Schrijver and their use in

Interger Programming. PhD. thesis. Computational and Applied Mathematics,

Rice University, Houston, Texas.

[26] S. Dash. 2005. An exponential lower bound of the length of some classes of

branch-and-cut proofs. Mathematics of Operations Research, 30(3), 678-700.

[27] M. Davis and H. Putnam. 1960. A computing procedure for quantification

theory. Communications of the ACM, 7, 201-215.

[28] M. Davis, G. Logemann and D. Loveland. 1962. A machie program for theorem

proving. Communications of the ACM, 5, 394-397.

[29] F. Eisenbrand and A.S. Schulz. 1999. Bounds on the Chvátal rank of polytopes

in the 0/1-cube. In IPCO’99, Lecture Notes in Computer Science, 1610, 137-

150.

81

[30] A. Frieze and S. Suan. 1996. Analysis of two simple heuristics on a random

instance of k-SAT. Journal of Algorithms, 20(2), 312-355.

[31] N. Galesi and N. Thapen. 2005. Resolution and Pebbling Games. In Proceeding

of SAT 2005, Lecture Notes in Computer Science, 3569(2005), 76-90.

[32] M. R. Garey and D. S. Johnson. 1979. Computers and Intractability: A Guide

to the Theory of NP-Completeness (Series of Books in the Mathematical Sci-

ences). W. H. Freeman.

[33] A. Goerdt. 1996. A threshold for unsatisfiablity. Journal of Computer and

System Sciences, 53, 469-486.

[34] R. Gomory. 1958. Outline of an algorithm for integer solutions to linear pro-

grams. Bulletin of the AMS, 64, 275-278.

[35] D. Grigoriev, E.A. Hirsch, and D. V. Pasechnik. 2002. Complexity of semi-

algebraic proofs. Moscow Mathematical Journal, 4(2), 647-679.

[36] A. Haken. 1985. The intratability of resolution. Theoretical Computer Science,

39, 297-308.

[37] M. Hartmann. 1988. Cutting Planes and the Complexity of the Integer Hull.

PhD. Thesis. School of Operations Research and Industrial Engineering, Col-

lege of Engineering, Cornell University.

[38] S. Hoory, N. Linial and A. Wigderson. Expander graphs and their applications.

Bulletin of the American Mathematical Society, 43(4), 439-561.

[39] R. A. Horn and C. R. Johnson. 1985. Matrix Analysis. Cambridge University

Press.

[40] R. Impagliazzo, T. Pitassi and A. Urquhart. 1994. Upper and lower bounds

on tree-like cutting plane proofs. In Proceedings of the 9th IEEE Symposium

on Logic in Computer Science, LICS ’94, 220-228.

82

[41] S. Jukna. 2001. Extremal Combinatorics with Applications in Computer Sci-

ence. Texts in Theoretical Computer Science, Springer-Verlag, Berlin Heidel-

berg.

[42] A. Kamath, R. Motwani, K. Palem and P. Spirakis. 1995. Tail Bounds for

Occupancy and the Satisfiability Threshold Conjecture. Random Structures

and Algorithms, 7, 59-80.

[43] R. M. Karp. 1972. Reducibility among combinatorial problems. Complexity of

Computer Computations, New York: Plenum Press, New York, 85-103.

[44] L.G. Khachiyan. 1979. A polynomial time algorithm for linear programming.

Doklady Akademii Nauk SSSR, n.s., 244(5), 1063-1096. English translation

in Soviet Math. Dokl. 20, 191-194.

[45] J. Kraj́ıc̆ek. 1994. Lower bounds to the size of constant-depth propositional

proofs. Journal of Symbolic Logic, 39(1), 7386.

[46] J. Kraj́ıc̆ek. 2001. On the weak pigeonhole principle. Fundamenta Mathemat-

icae, 170, 123-140.

[47] J. Kraj́ıc̆ek. 2003. Lecture notes for Proof Complexity, TIN068, Spring 2005,

Charles University.

[48] M. Laurent. 2003. A comparison of the Sherali-Adams, Lovász-Schrijver and

Lasserre relaxations for 0-1 programming. Mathematics of Operations Re-

search, 28(3), 470-496.

[49] L. Lovász and A. Schrijver. 1991. Cones of matrices and set functions and 0-1

optimization. SIAM J. Optimization, 7(1), 166-190.

[50] J. Marques-Silva. 2008. Practical applications of Boolean Satisfiability. In

Proceedings of the 9th International Workshop of Discrete Event Systems,

WODES 2008, 74-80.

83

[51] T. Pitassi, N. Segerlind. 2007. Exponential lower bounds and integrality gaps

for tree-like Lovasz-Schrijver procedures. Electronic Colloquium on Computa-

tional Complexity (ECCC), Tech. Rep. TR07–107.

[52] P. Pudlak. 1997. On the complexity of propostional calculas. In Sets and

Proofs, Cambridge Press. Invited papers from Logic Colloquium.

[53] S.P. Radziszowski. 2006. Small Ramsey Numbers. Electronic Journal of Com-

binatorics, Dynamic Survey 1, revision 11.

[54] R. Raz. 2004. Resolution lower bounds for the weak pigeonhole principle. Jour-

nal of the ACM, 51(2), 115-138.

[55] A.A. Razborov. 2002. Resolution Lower Bounds for the Weak Functional

Pigeonhole Principle. Electronic Colloquium on Computational Complexity

(ECCC), Tech. Rep. TR01-021.

[56] A.A. Razborov. 2002. Proof Complexity of Pigeonhole Principles. Develop-

ments in Language Theory. Lecture Notes in Computer Science, 2295, 203-

206.

[57] M. Rhodes. 2007. Rank lower bounds for the Sherali-Adams operator. In Pro-

ceedings of CiE 2007, Lecture Notes in Computer Science, 4497, 648-659.

[58] M. Rhodes. 2008. On the Chvátal Rank of the Pigeonhole Principle. Accepted

to Theoretical Computer Science.

[59] M. Rhodes. 2008. On the Rank of Proof Systems based on Integer Linear

Programming. Submitted.

[60] M. Rhodes. 2008. Resolution Width and Cutting Plane Rank are Incompara-

ble. In Proceeding of MFCS 2008, Lecture Notes in Computer Science, 5162,

575-587.

[61] S. Riis. 2001. A complexity gap for tree-resolution. Computational Complexity,

10(3), 179-209.

84

[62] A. Schrijver. 1998. Theory of Linear and Integer Programming. Wiley.

[63] H.D. Sherali and W.P. Adams. 1990. A hierarchy of relaxations between the

continuous and convex hull representations for zero-one programming prob-

lems. SIAM Journal of Discrete Mathematics, 3, 411-430.

[64] M. Sipser. 2005. Introduction to the Theory of Computation, second edition.

Course Technology.

[65] G. Tseitin. 1968. On the complexity of derivation in the propositional calculas.

Studies in Constructive Mathematics and Mathematical Logic, Part II.

[66] A. Urquhart. 1987. Hard Examples for Resolution. Journal of the ACM, 34(1),

209-219.

[67] J.P. Warners. 1998. A linear-time transformation of linear inequalities into

conjunctive normal form. Information Processing Letters, 68, 63-69.

[68] J.P. Warners. 1999. Nonlinear approaches to satisfiability problems. PhD the-

sis, Eindhoven University of Technology, The Netherlands.

85

