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Abstract

We study three aspects of quantum nonequilibrium dynamics; (1) transport of con-

served quantities, (2) entanglement spreading, and (3) construction of local operators

which slowly relax to thermal equilibrium. Motivated by recent progresses in ultracold

atom experiments, we first analyze transport phenomena of a population imbalanced

two-component fermi gas with arbitrary strength of inter-species interaction in three

dimension. Using the Boltzmann kinetic equation at dilute regime, we obtain the

transport coefficients of linear responses to gradients of temperature and chemical po-

tential imbalance. We identify the magneto-caloric effects, and determine how these

effects depend on interaction strength and population imbalance. Then, we propose

an experimental protocol to observe these effects in an experiment with ultracold

atoms. Next, we study entanglement spreading in a one-dimensional quantum Ising

chain with longitudinal and transverse fields, which is diffusive and nonintegrable.

Fully diagonalizing the Hamiltonian matrix, we explicitly show that the entanglement

spreading is ballistic, thus faster than diffusive transport of conserved quantities. We

provide a local spreading picture of entanglement entropy in terms of logarithmic

negativity. Then, we discuss a role of energy conservation in entanglement spread-

ing through analyzing a Floquet system. Lastly, we construct local operators that

relax slowly to equilibrium with the same one-dimensional Hamiltonian. By show-

ing that the Hamiltonian satisfies the eigenstate thermalization hypothesis, we first

conclude that this model relaxes local operators to thermal equilibrium. Then, we

systematically construct local operators that relax slower than conventional diffusive

modes.
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Chapter 1

Introduction

The Universe has never been static but has kept expanding to the best of our knowl-

edge at the time. Arguably four most important equations in physics are Newton

equation, Maxwell equations, Einstein field equation, and Scrödinger equation. All

of these equations include the time variable and describe dynamics. Therefore, un-

derstanding dynamics is one of the most fundamental problems in physics.

On the other hand, the equilibrium statistical mechanics has achieved enormous

success in explaining various phenomena in the physical world although the absolutely

perfect equilibrium has never happened in anywhere. Therefore, it is important to un-

derstand to what extent and under what circumstances we may rely on the machinery

of equilibrium statistical mechanics.

We believe that all underlying mechanisms of physical processes are quantum

mechanical. For a closed system, the quantum dynamics is unitary and the unitary

dynamics in principle preserves all information about the initial condition. However,

the equilibrium statistical mechanics is very insensitive to details of the initial state.

Therefore, we have another problem to resolve: does an isolated quantum system

equilibrate?
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In this thesis, we attempt to provide a partial answer to above questions, although

we only cover a very tiny portion of the enormous object. We pick two popular

physical systems, three-dimensional ultracold gases and one-dimensional quantum

spin chains. Using analytical and numerical techniques, we study the process of

equilibration in detail.

1.1 Physical Systems

We study two physical systems; three-dimensional ultracold atomic gases and one-

dimensional quantum spin chain. Three-dimensional ultracold atoms have already

been realized in various experiments and are ideal tools to study macroscopic quantum

nonequilibrium dynamics as we explain below. Most of their nonequilibrium dynam-

ics can be well-understood by the standard Boltzmann equation. One-dimensional

quantum spin chains are widely-used model systems to study quantum dynamics. In

spite of their simple real-space structure, their quantum dynamics can show complex

behaviors. Although not as perfect as three-dimensional cold gases in continuum

space, one-dimensional quantum spin chains are also realized in experiments [63, 64].

We emphasize that we consider isolated quantum systems throughout this thesis.

Once we prepare the system in a certain initial condition, all dynamics is governed by

Hamiltonian of the system itself without any influence from external heat bath that

we may have used when initializing the system. To a very good approximation, the

ultracold atoms have realized this isolated quantum dynamics.

1.1.1 Ultracold Atoms

A typical temperature of ultracold atoms is T ≤ 1µK and therefore, a typical time

scale of dynamics of strongly interacting atoms is τ ≥ 10µs. This is substantially

longer than a usual time scale in condensed matter physics. Slow process makes
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it easier to directly observe dynamics and out-of-equilibrium physics (while it is a

drawback to equilibrium phenomena). Cold atom systems are usually dilute, with

a typical density of order 1011 ∼ 1014 cm−3, which implies its length scale is about

a few hundred nanometers. This is also larger than a typical length scale in many

condensed matter systems. Longer length scale means its behavior is more easily

detected in the lab. As a result, dimensional analyses already make ultracold atomic

gases be favorable candidates for direct investigation of quantum dynamics.

One of beautiful features of cold atom systems is the universality. Since cold

atoms are dilute and electrically neutral, their inter-particle interactions are mostly

captured by a single s-wave scattering length, a. Therefore, a cold atom system

can be successfully described by a small set of parameters; s-wave scattering length,

their masses, densities, and temperature, without a notion of microscopic details of

interaction. Consequently, it is possible to use a simple pseudopotential that still

captures all important physics. One of the standard pseudopotentials to explain the

physics dominated by s-wave scattering is the regularized (momentum independent)

contact interaction. The first application of this pseudopotential was made to ex-

plain the interactions between neutrons at relatively low densities in which s-wave

scattering gives dominant contribution to the interaction [41, 14]. The Fermi gas with

only contact interactions is indeed realized to a very good approximation in recent

experiments [57, 87].

Another nice property of cold atoms is the controllability of individual popula-

tions and ability to create distinguishable particles from indistinguishable ones. For

example, it is possible to separate the two lowest hyperfine state of 6Li by apply-

ing the method of RF spectroscopy. Then, one can treat the hyperfine state as an

internal degree of freedom of a particle so Li atoms belong to different hyperfine

states are distinguishable from one other. Polarization is the standard measure to

quantify the relative population. As is conventional, we call the majority species

3



Figure 1.1: s-wave scattering length of unpolarized 6Li at T = 5µK and n = 3 × 1013

cm−3 measured by O’hara et al . [90]. It shows both a narrow Feshbach resonance
near B = 550 G and a broad Feshbach resonance near B = 860G (At the moment,
the precise location of the broad Feshbach resonance of 6Li is known to be around
834G).

“up” ↑ and the minority (impurity) species “down” ↓. Then, the polarization p is

p = (n↑ − n↓)/(n↑ + n↓).

Perhaps the most important advantage of cold atoms is the tunability of interac-

tion strength through a Feshbach resonance. A Feshbach resonance is defined as a

value of magnetic field when the s-wave scattering length between two different hy-

perfine states diverges [38]. Empirically the s-wave scattering length can be written

as

a(B) = abg

(
1− ∆B

B −B0

)
, (1.1)

where abg is the background scattering length which is far from the resonance. ∆B

is the width of a Feshbach resonance. For a large ∆B, we call it a broad Feshbach

resonance and for a small ∆B, we call it a narrow Feshbach resonance (6Li is known
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to have a narrow Feshbach resonance near B0 = 550 G and 680 G [36, 90]). Most

times, it is more convenient to use a wide Feshbach resonance when one explores ther-

modynamics or nonequilibrium phenomena at resonance. For instance, 6 Li indeed

has a wide Feshbach resonance around B0 = 834 G [11, 130]. Figure 1.1 shows a

typical shape of s-wave scattering length a as a function of magnetic field. Indeed

the scattering length can be tuned to any value by varying applied magnetic field,

sweeping the Feshbach resonance from one side (a < 0) to another side (a > 0).

Note that the bare interaction is always attractive since inter-atomic van der

Waals force is in general attractive unless two atoms get too close to each other

where hard-core repulsion takes place. Only attractive interaction can possess both

negative and positive scattering length (Figure 1.1). A positive scattering length is

a signature of a molecular bound state and this state corresponds to Bose-Einstein

Condensation (BEC) of pairs of Fermionic atoms [130]. For a = 0 this is the standard

textbook noninteracting Fermi gas, while for weakly attractive a it is very close to the

model used by Bardeen, Cooper and Schrieffer (BCS) to explain superconductivity.

The limit of infinite a is the strongly-interacting unitary Fermi gas (unitarity limit).

These regimes are illustrated in figure 1.2 [56].

One of the essential ingredients that come into the Boltzmann equation is the

scattering cross section as we will see shortly. The universal scattering cross section

in vacuum can be computed easily as a function of s-wave scattering length a:

dσ

dΩ
=

a2

1 +
(
kra
2

)2 , (1.2)

where dσ/dΩ is the standard differential cross section and kr is the relative momentum

of two scattering particles.

A mass imbalanced system (m↑ 6= m↓) also has a lot of interesting physics, and in

actuality, a 6Li - 40K mixture is known to have a Feshbach resonance in an accessible
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Figure 1.2: BCS-BEC Crossover. In BEC regime (a > 0), two atoms form a BEC
molecule in real space. In BCS regime (a < 0), two atoms form a BCS pair in
momentum space. These two regimes are smoothly connected by a single parameter,
interaction strength a, via the Feshbach resonance. Figure from [56]

range of magnetic field in the lab [127]. However, in this thesis, we are mostly

concerned with (bare) mass balanced case.

The total number density n = n↑+n↓, together with m and ~ set the characteristic

length, time and energy scales. The scaled dimensionless properties of this universal

Fermi gas then depend on only three dimensionless parameters, which can be chosen

to be 1/(kFa), T/TF and the polarization p = (n↑ − n↓)/n. We use a convention

that the Fermi wavenumber and temperature kF and TF are defined by the total

density, so that at high polarization TF↓ � TF ≈ TF↑ and kF↓ � kF ≈ kF↑. This

universal Fermi gas has a variety of regimes of behavior : The polarization p can be

low or zero so n↓ ∼= n↑ or it can be near one so n↓ � n↑. The temperature can be

higher, T > TF↑, or lower, T < TF↓, than both Fermi temperatures or, for p > 0

it can be in between them, TF↓ < T < TF↑. The scattering can be near unitarity

6



Figure 1.3: Phase diagram of two-component (two hyperfine state) 6Li at unitarity as
a function of temperature and polarization obtained by MIT group [112]. Superfluid
pairing exists up to Chandrasekhar-Clogston limit [27, 32] of polarization. Phase
separation and phase boundary are in a good agreement with theory and experiment
(for detail of the diagram, see Ref[112]).
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so |kFa| is of order one or more, or it can be far from unitarity so |kFa| � 1. At

high T it also matters whether |a| is larger or smaller than the thermal de Broglie

wavelength λ ≡
√

2π~2/mT ∼ T−1/2. Lastly, in the unitarity limit, we eliminate one

parameter, 1/(kFa), so that we only have two parameters, T/TF and p. The phase

diagram of two-component Fermi gases with only two parameters are extensively

investigated both experimentally [94, 129, 113, 95, 112, 111, 86] and theoretically

[29, 74, 18, 21, 33, 51, 101, 81]. Fig.1.3 shows a phase diagram of two-component

6Li gas at unitarity obtained by MIT group [112] as a function of polarization and

temperature.

Although the universal Fermi gas can be described by a small number of param-

eters, it is in general very challenging to study transport properties analytically. It

is mainly due to the fact that there are intrinsically no small parameters. 1 How-

ever, there are a two regimes we can find small parameters: (1) low temperature and

high polarization, where T/TF and TF↓/TF↑ are small and (2) low densities (classical

regime), where n↑λ
3 and n↓λ

3 are small. In the following section, we will closely study

the regime (2). Details of analysis of regime (1) can be found in Ref. [60].

1.1.2 One-dimensional Quantum Spin Chain

Theoretical investigation of dynamics in a three-dimensional system is very limited

to certain classes of problems which require many steps of approximations. One-

dimensional systems can be complimentary, since there are a few models that allow

exact analytical solutions or efficient numerical analysis without too many premises.

1Conventional treatment of interacting gases relies on the smallness of inter-particle scattering
length (na3 � 1), which serves as a small expansion parameter. However, in ultracold atoms, this
is no longer holds since the scattering length is another tuning parameter.
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We will focus on the one-dimensional quantum spin chain of spin-1/2. The model

is quantum Ising chain with transverse (g) and longitudinal (h) fields:

H =
∑
i

(
gσxi + hσzi + Jσzi σ

z
i+1

)
, (1.3)

where σ’s are Pauli operators. Since we have a freedom to scale all parameters by a

constant factor, we always set J = 1 2. When either of fields g or h is zero, this model

is integrable. When g = 0, this model reduces to just a trivial one-dimensional Ising

chain and when h = 0, we can map this model to free Fermions via Jordan-Wigner

transformation [107] and thus integrable. In the presence of both nonzero g and h,

this model is nonintegrable and the exact solution is unknown so that we need to

apply numerical methods.

Since we will study fast growth of entanglement entropy, we will use the exact

diagonalization method. This method is greatly restricted by the dimension of Hilbert

space, which grows exponentially with the system size. Therefore, the parameters

should carefully be chosen to see “generic” properties. Otherwise specified, we use

h = (
√

5 + 1)/4 = 0.8090... and g = (
√

5 + 5)/8 = 0.9045... 3. We avoid using simple

a few digit numbers to minimize chances of accidental degeneracies that may arise

from finite-size effects. At this set of parameters, the system is gapped 4, although

we do not use this property in this thesis. Appendix B gives more rationales of this

parameter choice. The boundary condition will depend on the problem: we use open

boundary condition for entanglement spreading and energy transport and periodic

boundary condition for testing the eigenstate thermalization hypothesis.

2When J = 0, each spin is independent so there is no nontrivial dynamics
3These golden-ratio “descendent” parameters turn out to be “golden-parameters”.
4Gappedness can be inferred from the facts that (1) ground state energy can be easily com-

puted using the method of iMPS (infinite Matrix Product State), and (2) there is no divergence in
entanglement entropy of ground state.
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Lastly, we emphasize that this model is not just a nice theoretical tool. To a

good approximation, this quantum spin chain is found in real materials [121] and also

realized in ultracold atomic system.

1.2 Methods

There are a number of theoretical methods to address nonequilibrium problems;

Boltzmann kinetic equation, Linblad master equation, time-dependent Density Ma-

trix Renormalization Group (t-DMRG), and exact diagonalization to name a few.

Each method has its own applicable realms so that we should choose appropriate

method(s) in accordance with the nature of problem. The Linblad master equation

formalism is suitable to study dissipative and driven open systems. t-DMRG is widely

used to study dynamics of one-dimensional system, where entanglement growth rate

is slower than exponential. In this thesis, we extensively use the Boltzmann equation

and the exact diagonalization method. The Boltzmann equation is a top-down ap-

proach that we assume the existence of a coarse-grained distribution function which

is a smooth function of time and phase space and the equation governs the time evo-

lution of the distribution function. The exact diagonalization method is a bottom-up

approach that we only use the first principle of quantum mechanics and numerically

study exact quantum dynamics.

In Chapter 4, we develop a new numerical approach, which is very close to the

exact diagonalization. Since it is not (yet) a standard method, we postpone its

introduction to Chapter 4.

1.2.1 Boltzmann Equation

One of the standard methods to address nonequilibrium phenomena is kinetic theory

founded by Clausius, Maxwell, Boltzmann and others in the late nineteenth century.
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Especially, Ludwig Boltzmann developed an important tool to study the dynamics of

a gas, namely the Boltzmann transport equation [10], and his method is widely used

to this day.

The Boltzmann equation was originally designed to describe nonequilibrium phe-

nomena of dilute gases in a sense that the typical distance between two molecules

or atoms is much longer than the range of interaction. Therefore, when we work

in the regime where Boltzmann equation is valid, we may consider the interaction

between particles are essentially instantaneous and the paths of particles can only be

(discontinuously) altered by instantaneous scattering process, which is captured in

the collision integral of the Botlzmann equation. In the presence of external field, the

“free-motion” (without scattering) of particles is modified from a straight line to a

curved one but the influence of external field is still continuous in phase space so it is

distinguishable from that of scattering process. In a dense liquid, however, the effects

of external field and inter-particle collision may not be clearly distinguished since

inter-particle separation is comparable to the range of interaction. This is the regime

where the Boltzmann approach breaks down. Another reason why Boltzmann equa-

tion breaks down is that it only considers the conservation of kinetic energy whereas

what is really conserved is the total energy. Thus, the Boltzmann equation is applica-

ble only when the potential energy, or the interaction energy is very small compared

to the kinetic energy [55]. There are, of course, many interesting physical systems in

dense (or degenerate) regimes where we want to understand nonequilibrium transport

properties. This is when the concept of quasiparticles developed by Landau becomes

useful. Quasiparticle picture enables us to transform strongly interacting particles

to weakly interacting quasiparticles for which the Boltzmann approach is applicable

[115] (e.g. Landau Fermi Liquid theory)).

The central entity in the Boltzmann’s formalism is the particle density f(r,k, t) (r

is real-space coordinate and k is wave vector), which represents the number density of
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particles in the 2d-dimensional phase space (r,k) at time t. When there is no particle

sink, the total number of particles, N ,

N =
1

(2π)d

∫
ddrddkf(r,k, t) (1.4)

is time independent.

The Boltzmann equation is essentially the time-differential of the particle density:

(
∂

∂t
+
∂r

∂t

∂

∂r
+
∂k

∂t

∂

∂k

)
f(r,k, t) =

∂f(r,k, t)

∂t

∣∣∣∣
coll

. (1.5)

The left hand side is the streaming term, where changes in f is continuous at all

times while the right hand side is the collision integral, where changes are altered

by instantaneous collision events. Therefore, the Boltzmann equation is an effective

equation which governs the time-dependence of coarse-grained particle density. Once

we identify ∂r/∂t == v (particle velocity) and ∂k/∂t = Fext (external force in

appropriate unit), then the Boltzmann equation is

(
∂

∂t
+ v · ∂

∂r
+ Fext ·

∂

∂k

)
f(r,k, t) =

∂f(r,k, t)

∂t

∣∣∣∣
coll

. (1.6)

It is notoriously difficult to find a solution of the Boltzmann equation because of

the collition integral. If the interaction is short-ranged and dominated by two-particle

scattering, the collision integral is formally the following:

∂f(r,k, t)

∂t

∣∣∣∣
coll

=∫
ddk′ddq′ddq

(2π)3d

[
W (k′,q′ → k,q)(f(r,k′, t)f(r,q′, t)(1± f(r,k, t))(1± f(r,q, t)))

−W (k,q→ k′,q′)(f(r,k, t)f(r,q, t)(1± f(r,k′, t))(1± f(r,q′, t)))

]
. (1.7)
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Here, W (k,q → k′,q′) is the scattering amplitude that connects the scattering pro-

cess of two incoming particles of momenta k,q with two outgoing particles of momenta

k′,q′. In (1 ± f(r,k, t)), + (−) corresponds to Bose enhancement (Pauli blocking)

factor. We can just ignore this factor in the classical regime. If the Hamiltonian is

time-reversal invariant, the scattering amplitude should be invariant under exchange

of incoming and outgoing momenta. Therefore, W (k′,q′ → k,q) = W (k,q→ k′,q′).

Once we recall the definition of the differential scattering cross section 5, we can

express the scattering amplitude in terms of scattering cross section:

ddq′ddk′

(2π)2d
W (k′,q′ → k,q) = v

dσ

dΩ
dΩ , (1.8)

where v = ~
m
|k − q| is the relative speed of two incoming particles and dσ

dΩ
is the

differential scattering cross section.

Imposing the energy-momentum conservation in the right hand side, we obtain

the final form of the collision integral:

∫
ddq

(2π)d
dΩ

dσ

dΩ
v

[
(f(r,k′, t)f(r,q′, t)(1± f(r,k, t))(1± f(r,q, t)))

− f(r,k, t)f(r,q, t)(1± f(r,k′, t))(1± f(r,q′, t))

]
. (1.9)

Note that the equilibrium distribution (Fermi-Dirac, Bose-Einstein, or Maxwell-

Boltzmann) makes the terms in the square bracket vanish. Therefore, the collision

term does not affect the time evolution of the particle density at equilibrium, as

expected.

A typical strategy to solve the Boltzmann equation is the following: (1) First, find

a time-independent solution of the Boltzmann equation. In the presence of a driving

force (nonequilibrium steady-state), an exact solution to the Boltzmann equation is

5Given the flux of incoming particles, the number density of outgoing particles at a differential
solid angle dΩ.
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unknown for almost all forms of the scattering cross section. Thus, we need to find an

approximate solution or solve it numerically. (2) Using the time-independent solution

and the continuity equation, we can write a diffusion equation in terms of the particle

density. (3) Solve the diffusion equation in accordance with the boundary conditions.

In chapter 2, we will solve the Boltzmann equation in the absence of external

force.

1.2.2 Exact Diagonalization

Undoubtedly, the Boltzmann equation is one of the most widely accepted approaches

to study transport phenomena. However, its applicability is limited to cases where

lifetime of excited states is long enough and its solution is intrinsically not exact.

Sometimes we want to compute properties of a quantum system exactly or almost ex-

act. When exact analytic solution is unknown, we should resort to numerical method

such as quantum Monte Carlo, Density Matrix Renormalization Group (DMRG),

Tensor Network, or Krlyov Expansion. In this thesis, we extensively use probably the

most primitive yet very powerful method, the exact diagonalization.

The method of exact diagonalization is simply to write the Hamiltonian in a matrix

form and numerically diagonalize the Hamiltonian matrix. Once we know the exact

eigenvalues and eigenstates, we can compute any quantity of interest exactly up to

machine precision. Since the size of matrix grows exponentially with the system size,

this method can only explore relatively small system size. There are two major factors

that limit the accessible system size; memory and computation time. The memory

grows as the square of the dimension of Hilbert space and the time to diagonalize

scales with cubic power of the dimension. Therefore, whenever available, we need to

maximally utilize the discrete symmetry of the Hamiltonian to make the Hamiltonian

in block-diagonal form. For example, our spin Hamiltonian 1.3 with open boundary

condition has a inversion symmetry with respect to the center so that we can write
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the Hamiltonian in a parity basis (even and odd under inversion) and diagonalize

each parity sector separately. In case of translation invariance, a lattice momentum

is a good quantum number and thus we can diagonalize individual momentum sector.

This procedure saves the required computational resource by a few factors, which can

be significant in exact diagonalization. At current computation power, the maximum

system size that we can diagonalize in a reasonable time 6 is 16 spins in open boundary

condition and 19 spins in periodic boundary condition.

1.3 Physical Objects of Study

Dynamics itself is not a physical quantity that we can measure or calculate. We

need “physical” objects to compute. Here we explain two widely studied objects in

quantum dynamics: local conserved quantity and entanglement entropy.

1.3.1 Transport of Conserved Quantities

When a hermitian operator commutes with the Hamiltonian, the corresponding object

is conserved. If such an operator is a sum of local operators, then this local density can

be transported from one side to another and measured 7. The local conservation laws

define conserved currents via the continuity equations. A typical system has three

conservation laws; particle number, total energy, and total momentum. Therefore,

in d-dimensional system with N species, there are d+N+1 continuity equations for

6within 24 hours of computation time using a 3.2GHz CPU and 20 GB of RAM
7When an operator cannot be written as a sum of local terms (global or discrete symmetry), there

is no transport. For example, a Hamiltonian can commute with a parity operator but transport of
parity is meaningless.
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particle current Js, energy current Je, and momentum current tensor Πij:

∂ns
∂t

+∇ · Js = 0 (1.10)

∂ε

∂t
+∇ · Je = 0 (1.11)

∂gi
∂t

+∇jΠij = 0 , (1.12)

where ns is particle density of species s, ε is energy density, and gi is i’th component

of momentum density.

In the absence of external applied force, these currents are driven by generalized

forces leading to entropy production. Inhomogeneous chemical potential (non-uniform

particle density) induces particle current, inhomogeneous temperature (non-uniform

energy density) generates heat current (energy current), and inhomogeneous velocity

profile (non-uniform momentum density) drives momentum current. These dissipative

currents increase entropy and bring the system back to thermal equilibrium. When

inhomogeneity of a potential (chemical potential, temperature, etc) is not strong

so that the system is close to equilibrium, there is a linear relation between the

current and the gradient of potential, which is called the generalized Fick’s law (linear

response). The proportionality constant is the transport coefficient (diffusivities, in

case of dissipative transport). The transport coefficient is what experiments often

measure and most theories compute.

Using Boltzamnn equation, we will compute the transport coefficients of a ul-

tracold atomic gas. Also, using the exact diagonalization method, we will explicitly

demonstrate the diffusive transport of energy density in a nonintegrable quantum

system, Eq. 1.3.
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1.3.2 Entanglement

Entanglement is one of the unique features of quantum mechanics that does not exist

in classical physics. Originally quantum entanglement was viewed with some scepti-

cism about local realism of quantum mechanics [39, 109], but recently the study of

entanglement has become a central part of many-body quantum physics and quantum

information science.

One way to quantify entanglement is the entanglement “entropy”. In case of a

pure state |ψ〉, the bi-partite entanglement entropy is defined by the following: Divide

the entire space into two regions 8, A and B, then trace out one region A (or B). The

remaining part can be written as a probability operator (a.k.a. density matrix) ρB

(or ρA), and the entanglement entropy is the von Neumann entropy of the remaining

probability operator.

ρB = TrA|ψ〉〈ψ| (1.13)

SB = −ρB log ρB = SA . (1.14)

Note that the entanglement entropy does not depend on whether we trace out the

region A or B. For a spin-1/2 spin chain, usually we measure the entanglement

entropy in bits (logarithm of base 2) so that maximum entanglement entropy between

two spins is one.

Apparently, entanglement entropy is neither a conserved quantity nor a local

obeservable 9. Thus, it cannot be “transported” like energy or particle densities.

This implies that the dynamics of entanglement can fundamentally be different from

diffusive transport of local conserved observables. Previous works [70, 13] have demon-

strated the existence of an upper bound to the rate of production of quantum “in-

formation”. Thus, entanglement can only “spread”, possibly faster than transport

8Division need not be in real space.
9There are two non-local operations: tracing out and computing entropy
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of conserved quantities. As we will see later, entanglement spreading is faster than

local energy transport while there still exists a notion of “locality” in entanglement

spreading.

1.4 Thesis Outline

In this thesis, we study three aspects of nonequilibrium quantum dynamics. In chapter

2, we study the diffusive transport of ultracold cold atomic fermi gases. Especially,

we consider a two-component fermi gas with population imbalance and a tunable

inter-species interaction strength. Using Boltzmann equation, we first estimate the

heat and spin conductivities and show that there is nontrivial transport, magneto-

caloric effects, due to population imbalance and variable interaction strength. These

nontrivial phenomena are the spin Seebeck effect, which is the spin current induced by

an inhomogeneous temperature profile, and the spin Peltier effect, which is the heat

current generated by spin voltage. We propose an experimental protocol to observe

such phenomena.

In chapter 3, we study entanglement spreading in a diffusive nonintegrable quan-

tum spin chain in one spatial dimension. Obtaining entire spectrum of eigenvalues

and their eigenstates from full diagonalization of the Hamiltonian matrix, we show

that entanglement spreading is ballistic while energy transport is diffusive. Although

entanglement entropy is not a local quantity, we give a numerical evidence that local

picture of entanglement spreading is indeed possible. In addition, we study the role

of energy conservation in entanglement spreading and show that the later stage of

entanglement spreading is indeed slowed down by the conservation law, even though

entanglement is not a conserved quantity.

Finally, chapter 4 deals with more fundamental questions: how an isolated

nonequilibrium quantum system approaches thermal equilibrium. First we review
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and test one of the most widely accepted mechanisms of thermalization of isolated

quantum system, the eigenstate thermalization hypothesis (ETH). Validating ETH,

we next consider the time scale of thermalization. We explicitly construct a local

operator which relaxes slowly, even slower than conventional diffusion suggests. We

then discuss remaining open questions.

19



Chapter 2

Transport in Ultracold Atomic

Gases: Boltzmann Equation

Kinetic theory of gases are mostly developed by three historic giants; Rudolf Clausius,

James Clark Maxwell, and Lugwig Eduard Boltzmann. Since more than a century

ago, namely the “Boltzmann Equation” has been one of the standard methods to

analyze transport properties of interacting many particle systems. Relatively recently,

around two decades ago, a new type of quantum system - ultracold atoms - is realized.

Remarkable progresses in the field of ultracold atoms have opened a new window to

study dynamics of strongly interacting quantum systems.

In this chapter, we investigate what we can learn from combining these two tools.

The results of this chapter are published in the paper[59].

We set Boltzmann’s constant kB = 1 but explicitly keep Planck’s constant ~.

2.1 Introduction

The transport properties of condensed matter systems are often measured by driving

currents externally and measuring the resulting voltages or temperature differences.

In cold atomic gas clouds, on the other hand, transport is more often measured by set-

20



ting up transient out-of-equilibrium initial conditions and measuring the subsequent

relaxation towards equilibrium [116, 117, 96, 120, 122, 69]. In the approximation that

the cloud is isolated and has an infinite lifetime (no loss of atoms or exchange of en-

ergy with any degrees of freedom outside of the gas cloud), the conserved currents of

interest include the energy current and currents of each of the atomic species present.

In the absence of optical lattices or random potentials that violate momentum con-

servation, one can also ask about the transport of momentum (viscosity).

In this chapter we consider the diffusive transport of heat and of atoms. We

mostly focus on the case of a two-species Fermi gas with only inter-species contact

interactions, but start with a somewhat more general discussion here. The system

may, in addition to diffusive transport, also have underdamped or propagating sound

or other “collective” modes. A gas cloud in a smooth trap will have such sound modes,

with the longest-wavelength sound modes being the often-discussed collective modes

of the cloud’s oscillations within the trap. Here we consider a gas cloud in a smooth

trap, with the cloud at global mechanical equilibrium, so that any pressure gradients

in the cloud are sufficiently balanced by trapping forces that no underdamped sound

or collective modes are excited. We also assume that the cloud is everywhere near

local thermodynamic equilibrium, so the local temperature T (r) and local chemical

potentials µi(r) can be defined. However, the cloud may still have gradients in the

local temperature and in the local chemical potentials of the various species of atoms.

If the equilibrium equation of state of the system is known (for the unitary Fermi

gas, see [66, 86]) then measurements of the local densities of each species allows these

gradients of T and the µi’s to be measured. Thus, for example, the local densities

can be used as local thermometers to allow a measurement of the thermal diffusivity

by an approach similar to that used in [116, 117] to measure the spin diffusivity (but

with an initial temperature gradient instead of a composition gradient).
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The transport currents that we examine in this chapter are those that arise in

linear response to these gradients. In a trap, convection currents may also appear in

linear response, as temperature and/or composition gradients may produce density

inhomogeneities, and the “heavier” regions of the gas cloud will sink towards the

bottom of the trap while the “lighter” regions rise. These convection currents are

damped by the viscosity. Convection will be strongest in wide clouds and should be

much weaker in high-aspect-ratio clouds with the gradients in T and the µi’s oriented

along the long axis of the cloud. For simplicity we restrict ourselves in a gas trapped

in a spatially uniform potential, so such convection currents do not appear in linear

response. Then mechanical equilibrium is indeed a sufficient condition to have a

convectionless gas [115].

The structure of this chapter is the following: We first summarize the transport

properties of a two-component ultracold Fermi gas. Using heuristic arguments, we

qualitatively estimates the scaling of transport coefficients. Then, we thoroughly

study the transport of this ultracold Fermi gas in dilute regime by finding quanti-

tative solution of the Boltzmann equation. Our analysis reveals various transport

coefficients in terms of interaction strength, densities, and temperature. By the end

of the chapter, we have both qualitative and quantitative understandings of transport

of spin and heat.

2.2 Transport Matrix and Qualitative Estimates

of Transport Coefficients

Although finding quantitative solutions of dynamical problem of an interacting system

is very challenging, we can find a fair amount of information by simply applying

qualitative physical arguments.
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2.2.1 Transport

The conservation laws of this Fermi gas are: total energy (E), total momentum (Π),

and the total number of each of the species (N↑ and N↓). The viscosity measures

the transport of momentum, which we mostly do not consider here. Thus we con-

sider primarily the transport of atoms and of heat. If there is a nonuniform pressure

in the system that is not balanced by a trapping potential, the gas will accelerate

and this will produce free motion or propagating sound waves. Here we consider the

diffusive spin and heat transport in a gas with no trapping potential and spatially

uniform pressure P , so it is at mechanical equilibrium. The gas is near local ther-

modynamic equilibrium, but with possible weak gradients in the local temperature

and/or the spin polarization. A smooth trap potential may be added via the local

density approximation (LDA).

In general, an inhomogeneity of the Fermi gas consists of gradients in the local

temperature and of the local densities of the two atomic species. Mechanical equilib-

rium imposes a constraint on these gradients and thus there are only two independent

linear combinations of the three gradients. One way of describing the diffusive dy-

namics is in terms of the atomic densities ni and the currents ji of each species i =↑,↓,

leaving the temperature and the heat current implicit, since they are dictated by the

equilibrium equation of state, e.g., T (P, n↑, n↓) (temperature as a function of pressure

P and densities n↑, n↓). This description of the transport has the virtue that it is

in terms of what appears to be the most accessible local observables in experiment,

namely the local densities of each species. Since the system in the absence of a trap-

ping potential is Galilean-invariant, we have a certain amount of flexibility in what

inertial frame we use to specify the currents. For most of this work, we consider the

frame where the center of mass of the whole cloud is at rest and let the gas have

long-wavelength temperature, density and/or composition modulations, but always

with a spatially uniform pressure. The diffusive currents are related to the density
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gradients as j↑

j↓

 = −

D↑↑ D↑↓

D↓↑ D↓↓


∇n↑
∇n↓

 . (2.1)

The diffusion matrix in (1) has two eigenmodes. At zero polarization, the sym-

metry between ↑ and ↓ implies D↑↑ = D↓↓ and D↑↓ = D↓↑. Therefore one eigenmode

is odd under exchanging species, 1√
2
(1,−1); the current in this odd mode carries only

spin and no net density or energy. The other eigenmode is the even mode, 1√
2
(1, 1);

the current in this even mode carries both net density and energy, but no spin. Away

from zero polarization, when n↑ 6= n↓, we no longer have this symmetry between

species. The diffusive eigenmodes are then no longer purely spin or purely not spin,

instead they are mixtures, thus producing the spin Seebeck and Peltier effects. The

eigenmode where the currents of the two species are in opposite directions we will call

the “spin” mode with diffusivity Ds, while the other mode where they are parallel we

will call the “thermal” (or heat) mode with diffusivity DT .

Another standard representation of the transport matrix in terms of the heat

current jheat and spin current jspin is the following:

jheat

jspin

 = −

 κ Ps

Ss σs


 ∇T

∇(µ↑ − µ↓)

 , (2.2)

where κ is the thermal conductivity and σs is the spin conductivity. Ss and Ps

are the spin Seebeck and Peltier coefficients, respectively, and they are related by

the Onsager relation, Ps = TSs. This matrix explicitly shows the direct responses

(diagonal elements) and magnetocaloric effects (off-diagonal elements), and the Kubo

formula is explicit, as we discuss below.

The currents in (2) must be defined properly so that they are the transport cur-

rents, namely the currents of heat and spin relative to the average local motion of the

gas. Let the local current density of atoms be jn = j↑ + j↓. These atoms carry the
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average heat, sT , where s is the average entropy per particle, and the average spin

polarization p. Therefore the local heat and spin transport currents are

jheat = jε − µ↑j↑ − µ↓j↓ − sT jn (2.3)

jspin =
1

2

(
j↑ − j↓ −

(n↑ − n↓)
n

jn

)
=
n↓
n

j↑ −
n↑
n

j↓ , (2.4)

where jε is the local energy current. Since the above currents measure only the trans-

port relative to the average motion of the gas, they are reference frame independent.

For more details of definitions of currents, see e.g. Ref [26].

If the full equation of state of the system is known, then measurements of the

pressure and the local densities can be converted to local temperatures and chemical

potentials. But the local density n and polarization p are directly observable without

requiring knowledge of the equation of state, so yet another convenient form of the

transport equations is

jheat

jspin

 = −

κ′ P ′s

S ′s Ds


∇T
n∇p

 . (2.5)

At p = 0, we have κ′ = κ and Ds = Ds, but when p 6= 0 these quantities in general

differ due to the mixing between spin and heat transport. It is possible that S ′s is the

most directly accessible version of the spin Seebeck coefficient: if one can set up an

initial condition at mechanical equilibrium and local thermodynamic equilibrium with

a temperature gradient but no polarization gradient and then measure the resulting

spin current, this is a measurement of S ′s and does not require knowledge of the

equation of state.

Note that the three representations, Eq. (2.1), Eq. (2.2) and Eq. (2.5) are related

by the equation of state, the mechanical equilibrium condition, and definitions of spin

and heat currents. Hence, they are equivalent.
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2.2.2 Qualitative Estimates of Transport Coefficients

Before embarking detailed calculation, we first present rough “power-counting” es-

timates of four transport coefficients; thermal diffusivity, spin diffusivity, and two

magnetocaloric effects. Most of past work in the context of ultracold atoms have

focused on the spin diffusivity.

Let’s first estimate spin and thermal diffusivities, Ds and DT . At the level of

power-counting the differences between the various possible definitions of these dif-

fusivities are small and are ignored here. Previous work [116, 15] on the unpolarized

gas (p = 0) shows that Ds for T > TF is the larger of ~
m

( T
TF

)3/2 and ~
mk2F a

2

√
T
TF

. In

the recent experiment, which was performed at unitarity [116], this high-T behavior

is observed, with significant deviations apparently beginning between T = 2TF and

TF as TF is approached from above. Staying in this high-T regime, as we move to

high polarization (p near 1) at a given n and T , the scattering time of species i is

roughly τi ∼ 1
njσvr

where i 6= j and vr = |v↑ − v↓| and σ is the s−wave scattering

cross section (see Eq. (2.12)) evaluated at a typical value of momentum. Thus, the

scattering time of the down atoms τ↓ decreases by only a factor of two due to the

increase of the density n↑ of the up atoms that they scatter from. The up atom

scattering time τ↑, on the other hand, increases by a factor of n↑/n↓ as the down

atoms that they scatter from become dilute. At high polarization, the spin current

consists of the down atoms moving with respect to the up atoms at typical speed

v↓ ∼
√
T/m, so Ds ∼ v2

↓τ↓ is not strongly polarization dependent for T > TF↓; the

experimental results [116, 117] are consistent with this. The heat, on the other hand,

is mostly carried by the up atoms at high polarization, resulting in DT ∼ Dsn↑/n↓, a

relation between the two diffusivities that appears to remain true at high polarization

for all T away from the superfluid phases. At p = 0 and high T the two diffusivities

are comparable, but DT remains larger than Ds because a single s-wave scattering

event completely randomizes the total spin current carried by the two atoms, while
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the component of the heat current carried by their center of mass is preserved. Thus

it appears that the heat mode always diffuses faster than the spin mode.

Moving towards lower T , let’s next pause at T = TF↑, noting that here v↑ ∼ v↓ ∼√
T/m, and τ↓ is the larger of ~

T
and ~

Tk2F a
2 . For the polarized gas τ↑ ∼ τ↓n↑/n↓.

We next (still just power-counting) look at the polarized gas in the intermediate

temperature regime TF↓ < T < TF↑ where the majority atoms are degenerate (v↑ ∼√
TF↑/m), while the minority atoms are not (v↓ ∼

√
T/m). Some changes from the

high-T regime are: only up atoms with energy within ∼ T of TF↑ are involved in

the scattering and all but a fraction T/TF↑ of the final states of the scattering are

Pauli-blocked due to the degeneracy of the up atoms. This increases τ↓ by a factor of

(TF↑/T )2, and τ↑ by a factor of TF↑/T , compared to their values at T = TF↑. Thus, τ↓

is the larger of ~
TF↑

(
TF↑
T

)2

and ~
TF↑k

2
F↑a

2

(
TF↑
T

)2

. As a result, Ds ∼ v2
↓τ↓ is the larger of

~TF↑
mT

and
~TF↑

mTk2F↑a
2 , while DT is again larger than Ds by a factor n↑/n↓. This estimate

of Ds is consistent with a previous quantitative calculation [17, 60]. Note that the

temperature dependence of Ds crosses over from a decreasing function of T at low T

to an increasing function at high T . The recent measurements [117] of the spin drag in

a polarized unitary gas show this crossover occurring at roughly T = 0.4TF↑. On the

BEC side of the Feshbach resonance, the minority atoms bind in to bosonic Feshbach

molecules at low enough T . But as long as these molecules remain nondegenerate

and thus not superfluid, the above estimates of the diffusivities should hold.

For T < TF↓, the minority atoms become degenerate. This leads to superfluidity

on the BEC side of the Feshbach resonance as well as at low polarization near unitarity.

But there are regimes on the BCS side of the resonance as well as near unitarity at high

polarization where the minority atoms (near unitarity strongly “dressed” as polarons)

form a degenerate Fermi gas. Here the important change from the intermediate

temperature regime at the level of “power-counting” is that only minority atoms with

energy within ∼ T of TF↓ are involved in the scattering and they have momentum
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kF↓ instead of a thermal momentum. This increases the diffusivities by a factor of

TF↓/T , so the spin diffusivity in these degenerate Fermi liquid regimes is the larger of

~TF↑TF↓
mT 2 and

~TF↑TF↓
mT 2k2F↑a

2 . We expect that DT is still greater than Ds by a factor of n↑/n↓

but this question should be examined more carefully within Fermi liquid theory.

At low temperature, the polarized Fermi liquid may become a p-wave superfluid,

with pairing within one species mediated by the attraction to the other species [20].

Or it may have a Fulde-Ferrell-Larkin-Ovchinnikov ( FFLO) phase with Cooper pairs

of nonzero total momentum [110, 19, 68]. In the superfluid phases, the thermal dif-

fusivity should diverge to infinity, as heat is carried ballistically by second sound

modes. The spin diffusivity presumably remains finite in the superfluid phases, al-

though, as we discuss below, the spin Seebeck effect appears to generally be divergent

in a polarized superfluid.

More challenging to estimate than these spin and thermal diffusivities are the

effects that mix spin and heat transport, namely the spin Seebeck and the spin Peltier

effects. Here we present “simple” arguments for the signs of these effects in two

regimes: (1) far away from unitarity for all temperature ranges, and (2) at unitarity

in the classical regime. Here we always consider a spin-polarized gas, since these

“magnetocaloric” effects vanish by symmetry in the case of an unpolarized gas where

the two species also have equal mass.

(1) Well away from unitarity (|kFa| � min{1,
√
TF/T}), the scattering cross

section is essentially a2 and independent of momentum for all temperatures, since the

interaction is weak and the atoms are not thermally excited to λ < |a|. Generally,

the scattering rate is proportional to the cross section × relative speed. Thus, in this

(low energy) regime, the scattering rate is ∼ a2|v↑−v↓|. This implies minority atoms

will scatter more frequently with the majority atoms of higher energy than majority

atoms of lower energy since higher-energy majority atoms have higher relative speed.

Consequently, the direction of the minority current is along the flow of higher-energy
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(“hot”) majority atoms and thus parallel to the heat current. For a uniformly spin-

polarized gas with a temperature gradient, where the spin Seebeck effect occurs, the

primary current is the heat current transporting “hot” majority atoms from the hot

region to the cold region and transporting “cold” majority atoms from the cold region

to the hot region. The fact that the minority current is aligned with that of the “hot”

majority atoms means the direction of the net spin current (spin Seebeck current) is

opposite from that of the heat current. Thus, the initially cold region becomes less

polarized due to minority atoms transported by the spin Seebeck current.

For a polarized gas with a polarization gradient but zero temperature gradient,

where the spin Peltier effect occurs, the primary current is the spin current which

transports minority atoms from the less-polarized region to the more-polarized region.

Since again these minority atoms scatter more often with “hot” majority atoms, the

resulting heat current is towards the more-polarized region, resulting in a spin Peltier

(heat) current whose direction is opposite to the primary spin current. In summary,

for a gas far from unitarity, the primary currents and the magnetocaloric currents

are in opposite directions. In other words, the off-diagonal elements in Eq. (2.5) are

negative while the diagonal elements are positive.

(2) At high temperatures (T � TF↑) and near unitarity (|kFa| � kFλ > 1),

the s-wave scattering cross section is 1/(kr/2)2 and thus is momentum-dependent,

where kr = |k↑ − k↓| is the relative momentum. Therefore, the scattering rate is

roughly ∼ 1
k2r
× vr ∼ 1

kr
. As a result, now minority atoms scatter more often with

“cold” majority atoms. Since this is exactly the opposite from the case of far away

from unitarity, the spin Seebeck and spin Peltier currents are reversed relative to the

above discussion in (1). Therefore, at high temperature and unitarity, the primary

currents and the magnetocaloric currents are in the same directions, giving S ′s in Eq.

(2.5) positive sign. As we will see in the next section, the spin Peltier coefficient P ′s in

Eq. (2.5) is negative for low polarization and becomes positive for high polarization.
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Figure 2.1: Illustration of the spin Seebeck effect. (a) Far away from unitarity, the
scattering rate is proportional to the relative speed. Thus, “hot” majority (↑) atoms
(top) collide more often with minority (↓) atoms than do “cold” majority atoms
(bottom), giving the spin Seebeck current and the heat current opposite directions.
(b) At unitarity, the scattering rate is inversely proportional to the relative speed.
Therefore, the direction of the spin Seebeck current is reversed relative to (a).
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This sign change in P ′s comes from the definition of currents and choice of driving

forces and this will be clarified in the section 2.3 where we discuss the Kubo approach.

Directions of the spin Seebeck effect in both limiting regimes are illustrated in figure

2.1.

At low temperatures and unitarity, it is not straightforward to apply the above

argument to predict the direction of spin Seebeck and/or spin Peltier currents since the

many body effects may significantly modify the scattering cross section [16, 30], which

begins to depend on the center of mass momentum as well as the relative momentum.

There is, however, a different line of argument that indicates that the sign of the

spin Seebeck effect near unitarity remains the same as the temperature is lowered.

Consider low enough temperatures and polarization less than the Chandrasekhar-

Clogston limit [32, 27], in the superfluid phase [129, 113]. When there is a temperature

gradient in the system, heat flows “ballistically” from the hot region to the cold region

by flow of the normal fluid with respect to the superfluid (in the usual two-fluid

description of the superfluid phase). In the reference frame where the total particle

density current vanishes (center of mass frame), the superfluid flows in the opposite

direction to counterbalance the mass current of the normal fluid. Since the s-wave

superfluid consists of equal numbers of majority and minority atoms, both the spin

current and the heat current are carried only by the normal fluid. As a result, the spin

Seebeck current and the heat current are in the same directions at low temperature

in and, presumably, near the superfluid phase. Therefore, we expect the sign of the

spin Seebeck effect to remain the same for all temperatures at unitarity. Both the

thermal conductivity and the spin Seebeck coefficient will diverge at the transition to

the superfluid phase.

As another approach to these questions, there is an interesting artificial interac-

tion, namely the Maxwellian interaction where the scattering cross section is pro-

portional to 1/vr and the Boltzmann equation can be solved exactly in the high
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temperature limit. Since the scattering rate does not depend on relative velocity

((1/vr) × vr = constant), there are no spin Seebeck or spin Peltier currents in this

case. Then, if we perturb the scattering cross section around the Maxwellian case,

putting in an additional relative-velocity dependence to the scattering rate “by hand”,

we can perturbatively calculate the spin Seebeck and spin Peltier currents and ma-

nipulate the direction of these currents by changing the sign of the perturbation.

This allows us to explicitly show how the magnetocaloric currents are generated from

a relative-velocity-dependent cross section. This will be discussed in the following

section in detail.

2.3 Spin and Heat Transport of a Two Component

Fermi Gas - Quantitative Results

Quite generally, a temperature gradient drives a heat current and a gradient of chem-

ical potential difference drives a composition (“spin”) current, consisting of opposing

currents of the two (or more) atomic species. We call these “direct” responses to a

temperature gradient and a gradient of chemical potential difference “primary cur-

rents”. In addition to these “primary currents”, there are the magnetocaloric currents,

namely spin Seebeck currents (spin currents induced by a temperature gradient) and

spin Peltier currents (heat currents induced by gradients of chemical potential differ-

ence). These magnetocaloric effects have been one of the central research topics in

the field of spintronics [128]. The spin Seebeck effect [62, 123] and the spin Peltier

effect [42] have already been observed in condensed matter systems, while they are

yet to be detected in cold atomic clouds. In this section we discuss the origin and

the physics of these effects in a cold atomic Fermi gas, and estimate how large these

effects can be in realistic experiments.
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Note that Ref. [23] discusses a rather different situation that they are also calling

the “spin Seebeck effect”: they consider an unpolarized gas with the two species at

different temperatures (thus not in local equilibrium) and a gradient in this tempera-

ture difference. Also, Ref. [49] studies a different system, a “two terminal geometry”,

considering transport through a narrow constriction between two reservoirs held at

different temperatures and chemical potentials. For this constriction, they discuss

“off-diagonal” elements in the transport matrix which they call effective Seebeck and

Peltier effects.

In the following subsection, these qualitative descriptions are justified by approxi-

mate solutions of the Boltzmann transport equation in the classical regime. We then

compute experimentally verifiable signals of the spin Seebeck effect. These results

are tested against an exactly solvable model, namely atoms with a “Maxwellian”

scattering cross section.

The various effects discussed in this section are probably most accessible experi-

mentally for the unitary Fermi gas at temperatures of order the Fermi temperature,

where the diffusivities are at their smallest, so the diffusive relaxation towards equi-

librium is slowest and most easily studied.

2.3.1 Linearized Boltzmann equation and its scaling

Now we are ready to quantitatively confirm the previous qualitative argument by

extensive usage of the Boltzmann equation.

In the limit of high temperature T � TF , the gas is effectively classical, and

its dynamics obey the Boltzmann equation. In the absence of external forces but

with gradients in local temperature and local densities, the steady-state Boltzmann
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equation for species i (i =↑ or ↓) is the following (i 6= j):

~
m

ki · ∇fi =

∫
d3kj
(2π)3

dσ
~|k↑ − k↓|

m
(f(k′↑)f(k′↓)− f(k↑)f(k↓)),

(2.6)

where f(ki) is the momentum distribution of species i, and the velocity is vi = ~ki/m.

k′↑ and k′↓ are momenta after collision and satisfy the energy momentum conservation.

Working near equilibrium, we linearize the Boltzmann equation by introducing a small

deviation ψi:

fi = f 0
i (1 + ψi), (2.7)

where f 0
i is the equilibrium distribution. In this high temperature regime, the equi-

librium distribution is the Boltzmann distribution, f 0
i (k) = niλ

3 exp(−E(k)/T ) and

E(k) = ~2k2
2m

where λ =
√

2π~2/(mT ) is the thermal de Broglie wavelength. Since the

most relevant length scale in the classical regime is the thermal de Broglie wavelength

λ, it is convenient to scale the wave vector k with λ; k = q/λ. Then, E(q)/T = q2

4π
.

Let’s impose the mechanical equilibrium condition. In this classical limit, it is

enough to use the ideal gas pressure at equilibrium; P = nT = (n↑ + n↓)T . From

the spatially uniform pressure condition we can relate the density gradients and the

temperature gradient via

∇n
n

= −∇T
T
, (2.8)

to linear order in the gradients. This relation enables us to express the currents

in terms of any two linearly-independent “driving” terms such as (∇n↑,∇n↓),

(∇T, n∇p), (∇T,∇(µ↑− µ↓)) or any other convenient combinations. It is convenient

to work with (∇n↑, ∇n↓) in intermediate stages of the calculation and then transform

it to the desired combination of driving forces using the equilibrium equation of
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state. Then the λ scaled linearized Boltzmann equations we need to solve become

1

ni
∇ni · qi −

1

n

(
q2
i

4π
− 3

2

)
∇n · qi = nj

∫
d3qj
(2π)3

dσe−q
2
j /4π(ψ′↑ + ψ′↓ − ψ↑ − ψ↓)|q↑ − q↓| ,

(2.9)

with i 6= j. ψ′i takes q′i as an argument.

We follow the standard definitions of the particle and energy currents of each

species 1,

ji =

∫
d3ki
(2π)3

fivi = ni

∫
d3qi
(2π)3

e−q
2
i /4πψi

~
m

qi
λ

(2.10)

jεi =

∫
d3ki
(2π)3

fiviEi = ni
T

4π

∫
d3qi
(2π)3

e−q
2
i /4πψi

~
m

q2
i qi
λ

. (2.11)

Because of Galilean invariance, we need to specify an inertial frame. Except when

specified otherwise, we work in the frame where the local particle current is zero:

jn = j↑ + j↓ = 0.

2.3.2 Approximate Solution

The s-wave scattering cross section that captures most physics of a short-range in-

teraction is

dσ

dΩ
=

a2

1 +
(
kra
2

)2 = λ2 (a/λ)2

1 +
(
qra
2λ

)2 , (2.12)

where we scaled the scattering length a with λ. An exact solution of the Boltzmann

equation for such a cross section is not known and thus we need to resort to approx-

imation methods. One of the standard ways to find an approximate solution of a

linearized Boltzmann equation is the moment expansion method (for example, see

[31]). Considering all symmetries and assuming the true solution is analytic near

1In the limit of high temperature, a gas is still dilute enough so that kinetic energy gives the
dominant contribution to the total energy. This is a necessary condition to use the Boltzmann
approach.
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small q, we take the following ansatz for ψi (i =↑, ↓):

ψi = −λ
∑
j=↑,↓

L∑
`=0

C`ijq
2`
i

∇nj · qi
nj

. (2.13)

We only consider the case where ∇n↑ and ∇n↓ are both parallel to the z axis. We

need to determine the dimensionless coefficients {C`ij}.

The procedure to obtain an approximate solution of the Boltzmann equation is

the following: First, insert the above ansatz into the right hand side of Eq. (2.9).

Then multiply both sides of Eq. (2.9) by q2`
i qiz

1
(2π)3

exp[−q2
i /4π] (` = 0, 1, 2, ...L) and

integrate out all momenta. Matching coefficients of density gradients gives 4(L + 1)

linear equations for the {C`ij}, all of which, however, are not linearly independent

due to Galilean invariance. We need to fix the reference frame to uniquely determine

a solution. Once we choose an appropriate reference frame (usually j↑ + j↓ = 0), we

have 4(L+ 1) linearly independent equations for the {C`ij}. Determining the {C`ij},

we have an approximate solution to the Boltzmann equation, i.e. an approximate

momentum distribution from which we can calculate all currents of interest. Here

we present results of two limiting cases, far away from unitarity ( dσ
dΩ

= a2) and at

unitarity ( dσ
dΩ

= 4
k2r

), which allow an analytic solution (of this approximation) without

special functions. These correspond to the two limits λ/|a| � 1 and λ/|a| � 1,

respectively. For a general scattering length a, it is still possible to find a closed form

expression in terms of exponential integrals and incomplete Gamma functions whose

arguments depend on λ/|a|.

Obtaining C`ij from a straightforward calculation in the j↑+ j↓ = 0 frame, we can

express the heat current and spin current in terms of∇n↑ and∇n↓. Here we choose to

express final results in the format of Eq. (2.5) since we want to study the spin Seebeck

coefficient S ′s in detail, which could be the most directly accessible signature of the

spin Seebeck effect in experiments. Therefore, we transform these two gradients to
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∇T and n∇p, using the equilibrium equation of state and the mechanical equilibrium

condition. The transformation matrix is

∇n↑
∇n↓

 =

−T
n

−T
n

2n↓
n

−2n↑
n


−1∇T

n∇p

 . (2.14)

Since the left hand side of Eq. (2.9) is a third-order polynomial in q, the simplest

ansatz is with L = 1. In principle, we can go up to any order in L we want, but an

L ≥ 2 ansatz complicates the computation, while the simplest ansatz already exhibits

nontrivial results. Furthermore, we find that the change in S ′s on moving from the

L = 1 to the L = 2 approximation is quite small: about a 1% change near unitarity

and in the value of λ/|a| at the zero crossing, growing to near 7% far from unitarity.

Therefore, here we only present results of L = 1.

We present our results in the conventional format (without λ scaling): Near uni-

tarity (|a| � λ),

jheat

jspin

 = − 45π3/2

608
√

2

(
~
m

(
T

TF

)3/2
) κ′u

1
2

(n↑−n↓)Tn

n↑n↓
− 39

10
T ln

(
n↑
n↓

)
(n↑−n↓)

T
39
10


∇T
n∇p

 ,

(2.15)

where κ′u (proportional to the thermal conductivity at unitarity) is

κ′u =
5

16
n

(
(73n2

↑ + 82n↑n↓ + 73n2
↓)

n↑n↓

)
− (n↑ − n↓) ln

(
n↑
n↓

)
. (2.16)
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Far away from unitarity (|a| � λ),

jheat

jspin

 = − 15π3/2

224
√

2

(
~

m(kFa)2

√
T

TF

)

×

 κ′a −1
2

(n↑−n↓)Tn

n↑n↓
− 43

10
T ln

(
n↑
n↓

)
− (n↑−n↓)

T
43
10


∇T
n∇p

 , (2.17)

where κ′a (proportional to the thermal conductivity far away from unitarity) is

κ′a =
5

8
n

(
(29n2

↑ + 26n↑n↓ + 29n2
↓)

n↑n↓

)
+ (n↑ − n↓) ln

(
n↑
n↓

)
. (2.18)

The above matrices clearly exhibit the existence of the spin Seebeck and spin

Peltier effects (non-vanishing off diagonal terms) only for nonzero polarization. We

will mostly focus now on the spin Seebeck coefficient S ′s, which gives the spin current

due to a temperature gradient in the absence of a spin polarization gradient.

As argued in the previous section, the spin Seebeck coefficient changes sign as

a function of interaction strength. Near unitarity (Eq. 2.15), it is positive so the

spin Seebeck current and the heat current are in the same direction. Far away from

unitarity (Eq. 2.17), it is negative so the spin Seebeck current and the heat current

are in the opposite direction.

Next let’s consider the polarization dependence of the transport coefficients. The

heat current and the temperature gradient are even under spin index exchange while

the spin current and the polarization gradient are odd. Therefore, thermal conductiv-

ity and spin diffusivity are even functions of polarization while magnetocaloric effects

are odd functions of polarization. The above matrices satisfy these polarization parity

constraints and the form of the polarization dependence of the transport coefficients

is the same in both limits of large and small λ/|a|. In fact, we can show that the

polarization dependence (thus n↑ and n↓ dependence) of the transport coefficients
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Figure 2.2: Normalized Seebeck coefficient S ′s as a function of λ/|a| in the classical

regime. The normalization is by a factor of 15
608
√

2

(
~
m

1
Tλ3

1+4π(a/λ)2

(a/λ)2

)
(n↑−n↓)

n
. This

choice of normalization, which is inversely proportional to a typical value of scattering
cross section with scaled scattering length a/λ, gives finite values at both limits
and gives the Seebeck coefficient 1 at unitarity (Eq. (2.15)). We can see that S ′s
changes sign near λ/|a| ' 3.62. Since we factored out all explicit temperature and
polarization dependence in the normalization choice and scaled the scattering length,
this plot remains the same for all temperature and polarization ranges at this order
of approximation (L = 1).

maintains this form for all values of λ/|a| and to all orders of approximation. The

proof is given in Appendix A. Here we study the Seebeck coefficient S ′s in detail,

which is our prime interest.

Although it is conventional to scale the scattering length a with kF (as we did

in the above matrices), it is easier to see the structure of the Seebeck coefficient in

terms of λ/|a| in classical regime. Once we obtain an approximate solution of the

Boltzmann equation with a general λ/|a| and L = 1, we can explicitly show that

S ′s =
~
m

n↑ − n↓
nλ3

1

T
h1(λ/|a|) , (2.19)
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where h1(x) is a dimensionless function that contains Ei(x), the exponential integral,

and diverges as λ/|a| → ∞ (see Eq. (2.17)). Since it contains no explicit temperature

or polarization dependence, h1(x) is independent of polarization and temperature at

this order of approximation (L = 1). Therefore, once we scale the scattering length

by λ and factor out dimensionful parameters and polarization, the dependence of S ′s

on the scattering length is determined by h1(x) and the value of λ/|a| at which S ′s

crosses zero is solely determined by the equation h1(x) = 0, which is independent of

temperature and polarization. In the L = 1 approximation, the zero-crossing value

is λ/|a| ' 3.62. Figure 2.2 is a plot of the normalized S ′s as a function of λ/|a|. In

the L = 2 approximation, we find that the scaling function h1(x) slightly changes

to h2(x) and the zero-crossing point remains at λ/|a| ' 3.62. In Appendix A, we

show that the structure of Eq. (2.19) (and other transport coefficients in a similar

manner) remains to all orders of approximation. Therefore, we may conclude that in

this classical regime the Seebeck coefficient is linearly proportional to the polarization

p and inversely proportional to Tλ3, once we scale the scattering length by λ.

Note that Eqs. (2.15) and (2.17) do not explicitly satisfy the Onsager relation and

the spin Peltier coefficient P ′s is still negative for low polarization even near unitarity.

These come from the definition of diffusive currents and choice of representation and

will be discussed in detail in the next section in terms of the Kubo formula. For

now, we will focus on the spin Seebeck coefficient S ′s which appears to be the most

promising candidate of the magnetocaloric effects to be detected in experiments.

From the Einstein relation, we obtain the thermal diffusivity DT after dividing κ′u

and κ′a by CP = 5n/2, the heat capacity per volume at fixed pressure and polarization.

These results confirm the “power-counting” estimates of diffusivities: In case of an

unpolarized gas (n↑ = n↓), Ds at unitarity is ∼= 1.1 ~
m

(
T
TF

)3/2

, which is consistent

with previous work [116, 15]. Also, the thermal diffusivity does satisfy the inequality,
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DT > Ds at zero polarization. Furthermore, for a highly polarized gas (n↑ � n↓),

DT ∼ n2

n↑n↓
Ds ∼ n↑

n↓
Ds, which is also as expected from the “power-counting” estimates.

2.3.3 Estimate of the Spin Seebeck Effect

The spin Seebeck effect seems to be more accessible to experiment than the spin

Peltier effect, since the measurement of spin currents has already been done [116, 117]

and seems more straightforward than measuring heat currents. Also, the spin mode

diffuses slower than the heat mode, so the change in spin polarization produced by

the spin Seebeck effect will relax slowly, enhancing its detectability. An initially fully

equilibrated spin-polarized gas could be heated at one end, producing a temperature

gradient, and then the resulting spin current could be measured if it is large enough.

Let’s make quantitative estimates of signatures of the spin Seebeck effect that are

relevant to such a proposed experiment. We will make our estimates for a gas in a

uniform potential, but the results should be roughly correct for a gas cloud in a trap

if one compares points at opposite ends of the cloud that are at the same potential

so will have the same local densities and polarization at equilibrium. First, apply a

small, long wavelength temperature inhomogeneity along the z axis. In mechanical

equilibrium, nonuniform temperature implies nonuniform total density (by Eq. (2.8)),

thus temperature modulation implies density modulation. This enables us to write

the initial total density as

n(t = 0, z) = n0 + δn0 coswz, (2.20)

where w (= π/M) is the wavenumber of the modulation, M is the length of the system

over which the full temperature difference is applied, and δn0 is the small deviation of

total density from the mean value n0 due to this temperature difference (at uniform

pressure). Eq. (2.8) implies that if we initially locally heat z = M relative to z = 0,
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then this location initially has lower density because of thermal expansion. From the

initial condition of uniform polarization, the density of each spin component at t = 0

is

ni(t = 0, z) = ni0 + δni0 coswz (2.21)

δni0 =
ni0
n0

δn0. (2.22)

where δn0 is the maximum value of total density deviation from the average density.

In order to calculate the change of densities of each species, which is directly

measurable in experiment and contains the signature of the spin Seebeck effect, we

need the space-time dependence of the density of each species. We will use the

diffusion matrix and the continuity equation to derive the space-time dependence of

densities. Since the continuity equation for the particle number density is ∂tni+∇·ji =

0, it is practical to write diffusion equation in the format of Eq. (2.1). With this

initial condition, a nonuniform particle current flows, but in this classical limit, there

is no net energy current. Thus we work in the reference frame where the local energy

current vanishes (jε↑ + jε↓ = 0). Thanks to Galilean invariance, this choice of a

reference frame does not affect the physics.

Following a similar procedure as described before, but in this zero energy current

frame, we can determine all coefficients C`ij (` = 0, 1) and express the particle current

of each species in terms of ∇n↑ and ∇n↓. Then, we can write currents in the diffusion

matrix format as in Eq. (2.1):

Near unitarity,

j↑

j↓

 = − 9π3/2

9728
√

2

(
~
m

(
T

TF

)3/2
)365n2

↑+354n↑n↓+733n2
↓

nn↓

381n2
↑+42n↑n↓+405n2

↓
nn↓

405n2
↑+42n↑n↓+381n2

↓
nn↑

733n2
↑+354n↑n↓+365n2

↓
nn↑


∇n↑
∇n↓

 .

(2.23)
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Far from unitarity,

j↑

j↓

 = − 3π3/2

896
√

2

(
~

m(kFa)2

√
T

TF

)145n2
↑+158n↑n↓+289n2

↓
nn↓

137n2
↑−14n↑n↓+125n2

↓
nn↓

125n2
↑−14n↑n↓+137n2

↓
nn↑

289n2
↑+158n↑n↓+145n2

↓
nn↑


∇n↑
∇n↓

 .

(2.24)

These matrix equations contain two eigenmodes, one is the thermal mode with eigen-

value DT (j↑ and j↓ are in the same directions) and the other is the spin mode with

eigenvalue Ds (j↑ and j↓ are in opposite directions). As expected, DT > Ds for all

polarizations in both of these limits. Applying continuity equations to the above

diffusion matrix equations while keeping all differential operators linear (we restrict

ourselves in a linear response theory), we obtain two-component heat equations in

terms of densities and thus we can immediately write the time evolution of each

species in terms of the eigenmodes:

n↑(t, z)
n↓(t, z)

 =

n↑0
n↓0

+ αe−Dsw
2tδn↓0

γ
1

 coswz + βe−DTw
2tδn↓0

ζ
1

 coswz.

(2.25)

(γ, 1) and (ζ, 1) are the eigenvectors of the spin mode and the thermal mode,

respectively. γ is negative while ζ is positive. α and β are determined by the initial

condition, δn↑0
δn↓0

 = αδn↓0

γ

1

+ βδn↓0

ζ
1

 . (2.26)

It is straightforward to derive γ, ζ, α, β, Ds and DT . For example,

α =
1

γ − ζ

(
n0↑

n0↓
− ζ
)

(2.27)

β = 1− α . (2.28)

Explicit expressions for γ, ζ, Ds and DT are fairly lengthy so they are omitted here.
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Figure 2.3: δni(t, 0) normalized by initial deviation δni0 as a function of time near
unitarity. (a) Majority density deviation relaxes monotonically for any polarization.
(b) Minority density deviation shows nonmonotonic relaxation for p > 0 due to the
spin Seebeck effect. Here we assume 6Li atoms with T/TF = 4 and the longitudinal
length of the trap L = 200µm to set the time scale.
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Figure 2.4: δni(t, 0) normalized by initial deviation δni0 as a function of time far away
from unitarity. (a) Majority density deviation relaxes nonmonotonically for p > 0 due
to the spin Seebeck effect. Inset figure magnifies the nonmonotonic part of majority
density deviations which are very weak compared to the minority density deviations
at unitarity shown in Fig. 3. (b) Minority density deviation relaxes monotonically
for any polarization. Here we assume 6Li atoms with T/TF = 4 and λ/|a| = 4 and
the longitudinal length of the trap L = 200µm to set the time scale.
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The spin Seebeck effect is most apparent when observing the densities at the edges

of the system (wz = 0 or wz = π) so we choose to focus on the cold edge, z = 0.

The uniform pressure condition implies that both majority and minority densities are

initially higher than average at the cold side. Thus, initially δn↓(t = 0, z = 0) > 0.

Even though the initial condition can be chosen to be the same for both unitarity and

far away from unitarity, the time evolution of density of each species is qualitatively

different for these two limiting cases.

Since DT > Ds > 0 and |γ|, |ζ| 6= 1, the density deviations of each species have

different time evolution from one another. The density deviation of one species relaxes

nonmonotonically while the density of the other species relaxes monotonically. This

nonmonotonic relaxation of density deviation is a qualitative signature of the spin

Seebeck effect. Near unitarity, we already know that the heat current and the spin

current due to a temperature gradient are in the same direction. Therefore, the

initially colder region (z < π/2w) becomes more polarized due to the spin Seebeck

current. It turns out that the minority density deviation changes sign as it relaxes

towards equilibrium. Far from unitarity, on the other hand, the initially cold region

becomes less polarized, since the direction of the spin current is reversed, resulting in

nonmonotonic relaxation of the majority density deviation. Figures 2.3 and 2.4 are

plots of relaxation of the (normalized) density deviations of each species as a function

of time for the two cases of near unitarity and of far away from unitarity.

Another consequence of the spin Seebeck effect is the change in polarization. From

Eqs. (2.22) and (2.25), we can express the polarization as a function of time. Keeping
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only linear term of δn0, we obtain

δp(t, 0) = p(t, 0)− p0

=
δn0

n0

[
n↓0
n0

(
α(γ − 1)e−Dsw

2t + β(ζ − 1)e−DTw
2t
)

− p0
n↓0
n0

(
α(γ + 1)e−Dsw

2t + β(ζ + 1)e−DTw
2t
)]

, (2.29)

As argued, the sign of the local polarization change depends on the direction of the

spin Seebeck current. Figure 2.5 shows the (normalized) deviation of polarization

from the average value as a function of time at z = 0. As expected, deviation is

positive near unitarity and is negative far away from unitarity.

Perhaps one of the most easily accessible quantities in experiment is the density

deviation of the species that shows nonmonotonic relaxation vs. time. A dimension-

less measure of the extremum deviation is
∣∣∣ δni(ti,ext,0)

δni0

∣∣∣, where i =↑ away from unitarity

and i =↓ near unitarity and ti,ext is the time when density deviation of species i is

its extremum of opposite sign from the initial condition. It is easy to derive formal

expressions of ti,ext and a dimensionless measure,
∣∣∣ δni(ti,ext,0)

δni0

∣∣∣.
Near unitarity,

t↓,ext =
1

(DT −Ds)w2
ln

∣∣∣∣DTβ

Dsα

∣∣∣∣ (2.30)∣∣∣∣δn↓(t↓,ext, 0)

δn↓0

∣∣∣∣ = α exp

[
− Ds

DT −Ds

ln

∣∣∣∣DTβ

Dsα

∣∣∣∣]+ β exp

[
− DT

DT −Ds

ln

∣∣∣∣DTβ

Dsα

∣∣∣∣] .

(2.31)
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Away from unitarity,

t↑,ext =
1

(DT −Ds)w2
ln

∣∣∣∣DTβζ

Dsαγ

∣∣∣∣ (2.32)∣∣∣∣δn↑(t↑,ext, 0)

δn↑0

∣∣∣∣ =
αγ

αγ + βζ
exp

[
− Ds

DT −Ds

ln

∣∣∣∣DTβζ

Dsαγ

∣∣∣∣]
+

βζ

αγ + βζ
exp

[
− DT

DT −Ds

ln

∣∣∣∣DTβζ

Dsαγ

∣∣∣∣] . (2.33)

Figure 2.6 shows the dimensionless measure of the extremum density deviation as

a function of polarization. Near unitarity (solid line), it is a monotonically increasing

function of polarization for p < 1 (at p = 1, n↓ is zero so the deviation of n↓ is

undefined). Around p ≈ 0.8, the strength of the spin Seebeck effect by this measure

is about 5 %. Far from unitarity (dashed line), this signal is much weaker. This is

expected since the spin Seebeck effect is a consequence of interaction and does not

exist in the non-interacting gas. Thus, the spin Seebeck effect should be strongest

near unitarity. Note that in both limits, the spin Seebeck effect disappears when the

gas is unpolarized, p = 0.

The spin Seebeck effect is a small effect. In the regimes where we have been able

to estimate it and using the measures we have been able to devise, it is less than a

10% effect. However, it is worth emphasizing that these computations are done in the

classical regime, so the spin Seebeck effect does not demand extremely low tempera-

tures to detect it. We expect it to be most readily detected at temperatures of order

TF , where the diffusivities are minimized so the resulting time scales are longest. In

addition, the procedure to detect it discussed in this section does not require knowl-

edge of the system’s equation of state. Importantly, we propose a type of experiment

where the the spin Seebeck effect is a qualitative effect, namely a nonmonotonicity of

the system’s relaxation to global equilibrium.
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Figure 2.5: Normalized polarization deviation as a function of time for three global
polarization values, p = 0.9 (lower curve), 0.6 (red), and 0.3 (blue). Near unitarity
(green) the polarization deviation is positive while far away from unitarity (dashed
lines) it is negative. We found that the polarization deviation is the largest near
p = 0.6 in both limits. Same physical parameters as Figures 2.3 and 2.4 were used to
fix the time scale. The polarization deviation δp(t, 0) at the initially cold end of the
cloud is normalized by the initial total density deviation, δn0/n0.

2.3.4 Perturbation of Exactly Solvable Model of the Boltz-

mann Equation

So far, our approach was based on an (uncontrolled) approximation method. There-

fore, it is worthwhile to compare the main findings to a different approach, namely

perturbing around the Maxwellian model, where the scattering cross section is in-

versely proportional of the relative speed [115]. The Maxwellian model corresponds

to the central potential of the form ∼ 1/r4, where r is the inter particle distance. 2

Since this model has momentum independent scattering rate (product of scattering

cross section and relative speed), we can solve the linearized Boltzmann equation

exactly.

2Although Maxwell argued the existence of this potential in Nature, such a potential has not
been found yet
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Figure 2.6: Extremum density deviation normalized by initial deviation,
∣∣∣ δni(ti,ext,0)

δni0

∣∣∣
as a function of polarization. Near unitarity (solid line), i =↓; far from unitarity
(dashed line), i =↑. ti,ext is the time when the density deviation of species i reaches
its extremum. Far from unitarity (dashed line), the normalized extremum density
deviation vanishes in the high polarization limit since there are no minority atoms to
scatter from.

Let’s recall the argument from which we determined directions of the magne-

tocaloric effects. Since the scattering rate is proportional to the product of the cross

section and relative speed, the scattering rate is independent of momentum for the

Maxwellian interaction. Therefore, we expect that S ′s = 0 for any polarization. It is

straightforward to exactly solve the Boltzmann equation using the ansatz Eq. (2.13)

with L = 1 to confirm this.

The next step is to perturb the Maxwellian scattering cross section to generate

magnetocaloric currents. One simple way to perturb the cross section is to add a small

term which depends linearly on relative momentum to the original cross section:

dσ

dΩ
= S0

(
1

kr
+ εkr

)
, (2.34)
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where S0 is a constant of the dimension of length and ε is a small expansion parameter.

For a positive ε, the momentum dependence of the scattering rate is similar to the

case away from unitarity, higher scattering rate for higher relative momentum. Thus

we expect the resulting spin Seebeck current is in the opposite direction from the

primary heat current. For a negative ε, the momentum dependence resembles the

case near unitarity and therefore we expect the resulting spin Seebeck current is in

the same direction as the primary heat current.

To find the solution of the Boltzmann equation up to linear order in ε, we need

at least L = 2 in the ansatz of Eq. (2.13). After a straightforward calculation, we

obtain the following results:

jheat

jspin

 = −D0

 κ′M −πε(n↑−n↓)Tn

2n↑n↓λ2
− T

10

(
1− 20πε

λ2

)
ln
(
n↑
n↓

)
−πε(n↑−n↓)

λ2T
1
10

(
1− 20πε

λ2

)

∇T
n∇p

 ,

(2.35)

where κ′M (proportional to the thermal conductivity of the Maxwellian Model) is

κ′M =
1

2
n

(
(n2
↑ + n↑n↓ + n2

↓)

n↑n↓
− 3πε

λ2

(9n2
↑ + 10n↑n↓ + 9n2

↓)

n↑n↓

)
+
πε(n↑ − n↓)

λ2
ln

(
n↑
n↓

)
,

(2.36)

and D0 is 5~
mS0nλ2

, with units of a diffusivity.

We immediately see that all off-diagonal elements vanish for zero polarization.

When ε = 0, we see that S ′s = 0 and thus we conclude that the spin Seebeck effect is

a consequence of momentum dependence of the scattering rate. The sign of the spin

Seebeck current at nonzero ε is as expected. For P ′s, we again see the logarithmic

term which will be discussed in the following section. Perturbing the Maxwellian
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scattering cross section re-confirms the sign argument for the spin Seebeck effect that

we presented in the previous Section.

2.4 Structure of Transport Coefficients

Transport coefficients we have so far calculated are not completely independent. In

fact, they possess inter-connected structures. In this section, we will examine the

structure of transport matrix in detail.

2.4.1 Kubo Formula

The Kubo formula gives a formally exact expression for the transport coefficients in

the linear response regime (see e.g. [82, 76]). For irreversible processes in the linear

response regime, what the the Kubo formula gives are the transport coefficients for the

dissipative forces and currents associated with the entropy production. At mechanical

equilibrium for our two-species gas, the dissipative forces are ∇T and ∇(µ↑−µ↓) [26],

thus what we obtain from the Kubo formula is the diffusion matrix in the form of

Eq. (2.2), whose off-diagonal terms always satisfy the Onsager relation. Thus, the

diffusion matrix in the form of Eq. (2.5), in which we summarized the results in

the previous section, does not generally satisfy the Onsager relation, although it

is possibly easier to observe experimentally. Shortly, we summarize the results in

the form of Eq. (2.2) and explicitly show both our approximate solutions and the

perturbative solution from the exactly solvable Maxwellian model indeed satisfy the

Onsager relation.
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Following Ref. [82] and from Eq. (2.2), the spin Seebeck coefficient Ss and Peltier

coefficient Ps can be expressed via the Kubo formula as

TSs =
1

3V T

∫ ∞
0

dt〈Jheat(0) · Jspin(t)〉 (2.37)

=
1

3V T

∫ ∞
0

dt〈Jheat(t) · Jspin(0)〉 = Ps, (2.38)

where V is the total volume of the system and the current J is the volume integral

of local current density,

J(t) =

∫
d3x j(x, t). (2.39)

The average is taken over the equilibrium distribution, which is just the Boltzmann

distribution of each species in the high-temperature classical regime.

Since we assume Galilean invariance, the total momentum of the entire gas is con-

served. Therefore, any physical quantity which is transported with the total particle

current Jn remains finite for all time t and gives a divergent contribution in the Kubo

formula, meaning that quantity moves “ballistically” rather than diffusively. There-

fore, it is crucial to use the frame-independent definition of the local diffusive currents

from Eq. (2.3) and Eq. (2.4). Let’s write them again and slightly manipulate the

heat current:

jspin =
n↓
n

j↑ −
n↑
n

j↓ (2.40)

jheat = jε − µ↑j↑ − µ↓j↓ − sT jn = jε −
5

2
T jn − (µ↑ − µ↓)jspin, (2.41)
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where sT = 5
2
T − n↑

n
µ↑ − n↓

n
µ↓ and jε = jε↑ + jε↓. Defining j̃heat ≡ jε − (5T/2)jn

3, the

Kubo formula gives us the following spin Seebeck coefficient:

TSs = Ps =
1

3V T

∫ ∞
0

dt[〈J̃heat(0) · Jspin(t)〉 − (µ↑ − µ↓)〈Jspin(0) · Jspin(t)〉] (2.42)

=
1

3V T

∫ ∞
0

dt
(
〈J̃heat(0) · Jspin(t)〉

)
− T ln

(
n↑
n↓

)
σs, (2.43)

where σs is the spin conductivity given in Eq. (2.2) and µ↑ − µ↓ = T ln(n↑/n↓).

Therefore, in this representation, the spin Seebeck coefficient (and thus also the spin

Peltier coefficient) always carries an additional term of the spin conductivity σs mul-

tiplied by − ln(n↑/n↓). This is the origin of that term in P ′s in Eqs. (2.15), (2.17),

and (2.35). We can understand the reason why the spin Seebeck coefficient S ′s does

not include such a term from the following observation: At mechanical equilibrium

and high temperature, we have

∇(µ↑ − µ↓) = ln

(
n↑
n↓

)
∇T + T

n2

2n↑n↓
∇p . (2.44)

Therefore, that ∇p = 0 implies ∇(µ↑ − µ↓) = ln(n↑/n↓)∇T . The spin current now

becomes

jspin = −σs∇(µ↑ − µ↓)− Ss∇T (2.45)

= −Dsn∇p− (σs ln(n↑/n↓) + Ss)∇T = −Dsn∇p− S ′s∇T . (2.46)

Thus the additional ∼ ln(n↑/n↓) term from Eq. (2.44) exactly cancels the similar

term from Eq. (2.43). Consequently, what we have computed for S ′s in the previous

section is the first term in Eq. (2.43) to which the sign argument in section 2.2 should

be applied.

3Since 5T/2 is the thermal average enthalpy per particle in classical regime, j̃heat is the local
energy current relative to the local average motion of the gas.
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We can extract more information from Eq. (2.41). In jn = 0 frame, the heat

current is jheat = jε − T ln(n↑/n↓)jspin. Thus, heat conductivity and spin Peltier

coefficient always have contributions coming from spin current. Therefore, in the

format of Eq. (2.5) we can write

κ′ = κ′1 − T ln(n↑/n↓)S
′
s (2.47)

P ′s = P ′s1 − T ln(n↑/n↓)Ds , (2.48)

where κ′1 and P ′s1 are first terms which do not originate from spin current. Results in

the previous section clearly show this.

Lastly, we study the thermal conductivity, κ, in Eq. (2.2).

κ =
1

3V T 2

∫ ∞
0

dt < Jheat(t) · Jheat(0) > (2.49)

=
1

3V T 2

∫ ∞
0

dt < J̃heat(t) · J̃heat(0) > −2T ln

(
n↑
n↓

)
S ′s + T

(
ln

(
n↑
n↓

))2

σs .

(2.50)

2.4.2 Manifestation of the Onsager Relation

For completeness, we present diffusion matrices of approximate solutions and the

solution of the first order perturbation of the Maxwellian model in the form of Eq.

(2.2) where the Onsager relation should be explicit. We simply transform the set of

driving forces (∇T, n∇p) to another set of driving forces (∇T,∇(µ↑−µ↓)) associated

with the entropy production. Once we know the equation of state, this transformation

is straightforward.

For approximate solutions we have the following:
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At unitarity (|a| � λ),

jheat

jspin

 =

−Du

 κu (n↑ − n↓)− 39n↑n↓
5n

ln
(
n↑
n↓

)
(n↑−n↓)

T
− 39n↑n↓

5nT
ln
(
n↑
n↓

)
39n↑n↓

5nT


 ∇T

∇(µ↑ − µ↓)

 ,

(2.51)

where Du and κu is

Du =
45π3/2

608
√

2

(
~
m

(
T

TF

)3/2
)

(2.52)

κu =
5

16
n

(
(73n2

↑ + 82n↑n↓ + 73n2
↓)

n↑n↓

)
− ln

(
n↑
n↓

)(
10(n2

↑ − n2
↓)− 39n↑n↓ ln(n↑/n↓)

5n

)
.

(2.53)

Far away from unitarity (|a| � λ),

jheat

jspin

 =

−Da

 κa −(n↑ − n↓)− 43n↑n↓
5n

ln
(
n↑
n↓

)
− (n↑−n↓)

T
− 43n↑n↓

5nT
ln
(
n↑
n↓

)
43n↑n↓

5nT


 ∇T

∇(µ↑ − µ↓)

 ,

(2.54)

where Da and κa is

Da =
15π3/2

224
√

2

(
~

m(kFa)2

√
T

TF

)
(2.55)

κa =
5

8
n

(
(29n2

↑ + 26n↑n↓ + 29n2
↓)

n↑n↓

)
+ ln

(
n↑
n↓

)(
10(n2

↑ − n2
↓) + 43n↑n↓ ln(n↑/n↓)

5n

)
.

(2.56)
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For the first order perturbation of the Maxwellian model, we have the following:

jheat

jspin

 =

−D0

 κM −πε(n↑−n↓)

λ2
− n↑n↓

5n

(
1− 20πε

λ2

)
ln
(
n↑
n↓

)
−πε(n↑−n↓)

λ2T
− n↑n↓

5nT

(
1− 20πε

λ2

)
ln
(
n↑
n↓

)
n↑n↓
5nT

(
1− 20πε

λ2

)


×

 ∇T

∇(µ↑ − µ↓)

 , (2.57)

where κM is

κM =
1

2
n

(
(n2
↑ + n↑n↓ + n2

↓)

n↑n↓
− 3πε

λ2

(9n2
↑ + 10n↑n↓ + 9n2

↓)

n↑n↓

)

+
2πε ln

(
n↑
n↓

)
nλ2

(
(n2
↑ − n2

↓) + n↑n↓

(
λ2

10πε
− 2

)
ln

(
n↑
n↓

))
(2.58)

The above matrices clearly exhibit the Onsager relation. Also each off-diagonal

element carries a term proportional to −σs ln(n↑/n↓) as mentioned in Eq. (2.43).

Lastly, the structure of thermal conductivity (Eq. (2.50)) is evident.

2.5 Conclusion

We have studied diffusive spin and heat transport in a two-species atomic Fermi

gas with short-range interaction at general polarization, temperature and scatter-

ing length in dilute regime, where classical Boltzmann treatment is justified. Using

“power-counting”, we first estimated the spin and thermal diffusivities in all regimes.

We suggested a method to measure the thermal diffusivity, which has not yet been

experimentally measured.
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Our main focus was on the magnetocaloric effects, namely the spin Seebeck and

spin Peltier effects. Observing the connection between the interaction strength and

the dependence of the scattering rate on the relative momentum of two atoms, we

were able to develop a qualitative argument for the signs of magnetocaloric effects.

Near unitarity, magnetocaloric currents are in the same direction as the “primary”

spin and heat currents, while their directions are reversed as we move to far away

from unitarity. We then quantitatively estimated diffusivities and magnetocaloric

effects in the classical regime using approximate solutions of the Boltzmann kinetic

equation, thereby confirming the “power-counting” estimates of diffusivities and the

sign argument for the magnetocaloric effects. In Appendix A, we also prove the

scaling of the transport coefficients is robust to all orders of approximation.

Remaining in the classical regime, we proposed an experimental procedure to

detect the spin Seebeck effect as a qualitative effect: a nonmonotonic relaxation

towards equilibrium. This method is nice in that it does not require knowledge of

the equation of state of the gas. In order to confirm these results and obtain a

better understanding of the origin of these magnetocaloric effects, we also performed

a controlled perturbation to the exactly solvable Maxwellian model. This approach

agrees well with the approximate solutions of the Boltzmann equation.
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Chapter 3

Entanglement Dynamics of 1D

Nonintegrable Quantum Spin

Chain: Exact Diagonalization

As Einstein, Podolosky, and Rosen originally suggested as a skepticism to local real-

ism of quantum mechanics (EPR paradox)[39], entanglement has been one of central

concepts in quantum physics. It can be non-local in any space, which is impossible

in classical physics, and is not a conserved quantity. Consequently, entanglement has

very different dynamical aspects compared to conventional transport of local con-

served quantities. Applying the method of exact diagonalization to a non-integrable

model quantum system, we study how entanglement dynamics is different from dif-

fusive transport of conserved energy. Most results of this chapter (ballistic spreading

of entanglement and diffusive transport of energy) are published in the paper[61].

We set the Planck constant ~ and the Boltzmann constant kB to unity.
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3.1 Introduction

One natural question about entanglement is its quantum dynamics under unitary

time evolution. If one starts an isolated quantum system in a nonentangled initial

product pure state, how does the entanglement grow with time? Entanglement is

not a conserved quantity like energy, that is transported. Instead it is more like

an infection or epidemic [91] that multiplies and spreads. An initial state that is

a product state has the information about the initial state of each local degree of

freedom (spins in our model) initially localized on that degree of freedom. Under the

system’s unitary time evolution, quantum information about each spin’s initial state

can spread with time to other spins, due to the spin-spin interactions. This can make

those spins that share this information entangled.

In real physical systems, information and entanglement can spread as fast as the

speed of light (or sound). For a lattice spin model, which lacks propagating light or

sound, an upper limit on the speed of any information spread is given by the Lieb-

Robinson bound, which is set by the spin-spin interactions [70] (for recent reviews, see

Refs. [83, 65]). For integrable one-dimensional models the entanglement does indeed

spread ballistically [24, 43, 50], which is to be expected since such systems have

ballistically propagating quasiparticles that can serve as carriers of the information.

For various localized models, on the other hand, the entanglement has been shown to

spread much more slowly, only logarithmically with time [43, 28, 40, 4, 126, 78, 52,

22, 85]. In the present chapter, we consider an intermediate case, a quantum Ising

spin chain that is neither integrable nor localized, whose energy transport is diffusive.

Here we investigate the spread of entanglement in a diffusive nonintegrable sys-

tem, at high temperature where there are no ballistically propagating quasiparticles

and the only conserved quantity is the energy which moves diffusively (In integrable

models, on the other hand, correlations of local observables can spread both diffu-

sively and ballistically [114, 67]). Diagonalizing the entire Hamiltonian matrix, we
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numerically study the time evolution of the entanglement and the diffusive dynam-

ics of energy transport for highly-excited thermal states of the system 1. We show

that the entanglement spreads ballistically, while the energy moves only diffusively,

and thus slowly. We also investigate the role of energy conservation in entanglement

spreading by deliberately removing the conservation law and show that the energy

conservation is indeed important in the late stage of entanglement spreading. Finally,

we provide an insight about local and real space picture of entanglement spreading.

Although we choose a specific model Hamiltonian to study the quantum dynamics,

this result should be valid generally for nonlocalized and nonintegrable systems that

do not have ballistically propagating quasiparticles or long-wavelength propagating

modes such as light or acoustic sound.

3.2 The Model

As a simple nonintegrable model Hamiltonian, we choose a spin-1/2 Ising chain with

both transverse and longitudinal fields. The model is translationally invariant, except

at the ends of the chain, which we leave open. Leaving the ends open allows the longest

distance within the chain to be its full length, so we can study energy transport over

that distance, and the spread of bipartite entanglement from the center of the chain to

its ends. If we had used periodic boundary conditions instead, the longest distances

that we could study would be cut in half. Given the limited lengths that one can study

with exact diagonalization, this factor of two is quite important 2. Our Hamiltonian

is

H =
L∑
i=1

gσxi +
L−1∑
i=2

hσzi + (h− J)(σz1 + σzL) +
L−1∑
i=1

Jσzi σ
z
i+1 . (3.1)

1Although conventional, here “thermal” should not be taken literally. Rather, it means high
energy density

2Periodic boundary condition is useful for studying other problems, such as testing the eigenstate
thermalization hypothesis (ETH).
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σxi and σzi are the Pauli matrices of the spin at site i. As mentioned in the Intro-

duction Chapter, we chose the longitudinal field h = (
√

5 + 1)/4 = 0.8090 . . . and

the transverse field g = (
√

5 + 5)/8 = 0.9045 . . . and set the interaction J = 1 to see

both fast entanglement spread and slow energy diffusion and none of the terms singly

dominates the energy spectrum; all results reported here are for these values. Our

qualitative results and conclusions do not depend on these parameter choices as long

as g, h and J are all of similar magnitude to each other to keep the system robustly

nonintegrable. Note that the magnitude of the energy “cost” to flip a spin in the

bulk, from the applied longitudinal field and its interactions with its neighbors, is

2h or 4J ± 2h. To keep the end sites similar in this respect to the bulk, we reduce

the strength of the longitudinal field on the end spins by J . This is to avoid having

some slow low-energy modes near the ends that introduced small additional finite-size

effects when we applied the same magnitude of longitudinal field also to the end spins.

This Hamiltonian has one symmetry, namely inverting the chain about its center.

We always work with even L, so the center of the chain is on the bond between sites

L/2 and (L/2)+1. This symmetry allows us to separate the system’s state space into

sectors that are even and odd under this parity symmetry, and diagonalize within each

sector separately. Any mixed parity state can be obtained from a linear combination

of even and odd parity states.

3.2.1 Nonintegrability - Level Spacing Statistics

Unlike classical systems, there is no simple critera to determine whether a quantum

model is integrable or not. In fact, even the definition of quantum integrability is

somewhat ambiguous3. Nonetheless, one of the widely adapted criterion to test in-

tegrability is the statistics of the energy level spacings. For a quantum Hamiltonian

whose classical counterpart is integrable, Berry-Tabor conjecture says that the en-

3Private communication with Natan Andrei at New York City nonequilibrium conference in
March 2013.
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ergy level spacing follows Poissonian statistics [6]. For a quantum Hamiltonian whose

classical counterpart is chaotic (nonintegrable), Bohigas, Giannoni, and Schmit con-

jectured that the energy level spacing follows one of the three classes of ensembles

from random matrix theory (RMT)- Gaussian Orthogonal Ensemble (GOE), Gaus-

sian Unitary Ensemble (GUE), and Gaussian Symplectic Ensemble (GSE) [9] 4. We

will show that the energy level spacing statistics of our time-reversal invariant Hamil-

tonian follows GOE statistics and conclude this model is nonintegrable.

The universality of RMT statistics of energy level spacing is only valid when the

local density of states is set to unity [2]. Since each model do have different density

of states, we have to bring the model to equal footing before comparing the energy

level spacing with RMT statistics. There are two ways to achieve this goal; unfolding

[99, 79] and looking at ratio of level spacings [89]. The heart of unfolding method

is transforming true energy levels so that transformed levels have mean density of

states equal to one. However, this unfolding method is not always possible especially

large number of statistics is not easy to obtain [2]. Oganesyan and Huse introduced an

alternative way to compare statistics of energy levels to that of RMT [89]: compare the

statistics of ratio of energy level spacings instead of looking at energy level spacings.

By taking ratio, the level statistics becomes independent of density of states. We

will look at this ratio distribution to confirm our model follows GOE statistics thus

nonintegrable.

Suppose we obtained energy levels of the many-body Hamiltonian in ascending

order; {en} (en−1 ≤ en ≤ en+1). Then, the level spacing sn and the ratio of level

spacing rn are,

sn = en+1 − en (3.2)

rn =
sn+1

sn
. (3.3)

4One problem is that our spin system has no classical counterpart. We ignore this subtle issue.
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Now we need a function to compare the distribution of rn. The distribution of ratio

z = x/y of random variables x, y can be obtained by

P (z) =

∫
PJ(x, y)δ

(
z − x

y

)
dxdy =

∫ ∞
−∞
|y|PJ(zy, y)dy , (3.4)

where PJ(x, y) is the joint distribution of x and y. For Poissonian random variables,

this is straightforward:

P (r) =

∫ ∞
0

|y|e−ry−ydy =
1

(1 + r)2
. (3.5)

Note that a Poissonian variable is always nonnegative.

For RMT variables, however, the exact form of distribution is fairly complicated.

Therefore, Oganesyan and Huse originally generated many realizations of GOE to

make a smooth curve of level ratio distribution that they compared with the data

[89]. It was Atas et. al. that derived a closed form of approximate formula for the

ratio distribution of RMT variables. Their derivation shares the same philosophy with

the derivation of an approximate formula for the level spacing distribution of RMT

variables originally suggested by Eugene Wigner, now called “Wigner’s surmise”[79].

The Wigner’s surmise is that the level spacing distribution of RMT variables can be

approximated by the distribution of eigenvalue difference of 2×2 random matrix in

the same symmetry class. The distribution of level spacing s is

PW (s) = aβs
βe−bβs

2

, (3.6)

with exactly known constants aβ and bβ (β = 1, 2, 4 correspond to GOE, GUE,

and GSE, repectively). This formula is in excellent agreement with exact large-N

expressions [37]. Applying the same principle, we can obtain an approximate formula

of ratio distribution by studying eigenvalues of a 3×3 random matrix. The joint
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probability distribution of eigenvalues of N ×N random matrix is [79]

Pβ,N(e1, e2, . . . eN) = Cβ,N
∏

1≤i≤j≤N

|ei − ej|β
N∏
i=1

e−β(e2i /2) . (3.7)

For a given N , we can determine the constant Cβ,N from normalization. Now we can

derive an approximate form of ratio distribution by taking N = 3.

Pβ(r) =

∫ ∞
−∞

de2

∫ e2

−∞
de1

∫ ∞
e2

de3Pβ,3(e1, e2, e3)δ

(
r − e3 − e2

e2 − e1

)
. (3.8)

Performing the integration, we obtain the following formula for GOE statistics (β =

1):

PGOE(r) =
8

27

(r + r2)

(1 + r + r2)5/2
. (3.9)

This functional form is first derived and tested against numerical analysis in Ref. [2].

We will compare our level ratio statistics in each parity sector to this formula.

There are 32896 energy levels in the even sector for L = 16, the largest system

we have diagonalized. Figure 3.1 is the plot of ratio distributions of level spacing for

parameter choices (g, h) = ((
√

5 + 5)/8, (
√

5 + 1)/4) and (g, h) = ((
√

5 + 5)/8, 0).

It is clear that the nonzero value of h makes the model drastically different from

the integrable case (h = 0). The nonintegrable (integrable) case shows an excellent

agreement with GOE statistics (Poissonian statistics). This is an evidence that our

model with nonzero h is nonintegrable. Later, we will show that the energy transport

in the system is diffusive, which is an explicit demonstration of nonintegrability of

the model.
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Figure 3.1: Ratio distribution of level spacing for two sets of parameter
choices;(g, h) = ((

√
5 + 5)/8, (

√
5 + 1)/4) and (g, h) = ((

√
5 + 5)/8, 0). Nonzero

h makes the model nonintegrable. r is the ratio of level spacings between two adja-
cent energy gaps. For L = 16, there are 32896 eigenvalues in even parity eigenstates,
from which we obtain 32894 ratios. We clearly see that nonintegrable model closely
follows Gaussian Orthogonal Ensemble (GOE) statistics by showing characteristic
level repulsion (vanishing probability at r = 0), which is absent in the integrable
case.

3.3 Entanglement Spreading

Given this model is nonintegrable, we compute the entanglement spreading. Spread-

ing can be (1) ballistic as in the case of integrable system, (2) diffusive as transport

of most local observables in a nonintegrable system, or (3) something else. We find

the answer is (1).

3.3.1 Ballistic Spreading of Entanglement

We consider the time evolution of the bipartite entanglement across the central bond

between the two halves of the chain. We quantify the entanglement entropy in bits

using the von Neumann entropy S(t) = −tr [ρA(t) log2 ρA(t)] = −tr [ρB(t) log2 ρB(t)]

of the probability operators (as known as reduced density matrices) at time t of either
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the left half (A) or the right half (B) of the chain. As initial states, we consider random

product states (with thus zero initial entanglement), |ψ(0)〉 = |s1〉|s2〉...|sL〉, where

each spin at site i initially points in a random direction on its Bloch sphere,

|si〉 = cos

(
θi
2

)
| ↑i〉+ eiφi sin

(
θi
2

)
| ↓i〉 , (3.10)

where θi ∈ [0, π) and φi ∈ [0, 2π). Such an initial state is in general neither even nor

odd, and thus explores the entire Hilbert space of the pure states as it evolves with

unitary Hamiltonian dynamics. This ensemble of initial states maximizes the thermo-

dynamic entropy and thus corresponds to infinite temperature. For each time t, we

generate 200 random initial product states, let them evolve to time t, compute S(t)

for each initial state, and then average. By doing so, the standard error at each time

is uncorrelated. The results are shown in Figure 3.2. Ballistic linear growth of S(t)

at early time is clearly seen, and the growth rate before the saturation is independent

of L. There is an even earlier time regime at t� 1 where the entanglement initially

grows as ∼ t2| log t|; this regime is just the initial development of some entanglement

between the two spins immediately adjacent to the central bond for such behavior

does not depend on the system size.

In the long time limit, the time evolved state, on average, should behave like a

random pure state (a random linear combination of product states) 5. In Ref. [93],

it is shown that the average of the entanglement entropy of random pure states is

SR = log2m−
m

2n ln 2
−O

(
1

mn

)
. (3.11)

where m and n are the dimension of the Hilbert space in each subsystem, with m ≤ n.

Since m = n = 2L/2 in our case, SR ' L
2

in the large L limit. This limiting value

5In fact, one can rigorously prove that the energy fluctuation in random product states are
comparable to that in random pure states even though product states are a set of measure zero in
the space of pure states.
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Figure 3.2: Spreading of entanglement entropy S(t) for chains of length L. Initially
the entanglement grows linearly with time for all cases, with the same speed v ∼= 0.70.
Then the entanglement saturates at long time. This saturation begins earlier for
smaller L, as expected. The linear fit function is f(t) = 0.70t. Standard error is less
than 0.04 for all points and thus the error bars are only visible at early times.

Figure 3.3: Entanglement entropy scaled by the infinite-time entropy for each L.
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indicates that the entanglement spreads over the entire subsystem of length L/2.

Therefore, before saturation begins, we can interpret S(t) (in bits) as a measure

of the distance over which entanglement has spread, and its growth rate thus as the

speed of the ballistic entanglement spreading. This real-space picture of entanglement

spreading is discussed later. It is clear from figure 3.2 that at long time (t > 20 ∼ 100

depending on the system size) S(t) saturates close to SR. We found that the deviation

of the saturation value from L/2 − 1/(2 ln 2) (Eq. 3.11) is small (∼ 0.19 for L = 8

and ∼ 0.11 for L = 16) and expect this would be negligible in the thermodynamic

limit.

This behavior suggests the finite-size and finite-time scaling form for the entan-

glement entropy:

S(t) ≈ SL(∞)F (t/SL(∞)) , (3.12)

where SL(∞) is the infinite-time average value of the entanglement entropy 6 for chain

length L, the scaling function F (x) ∼ vx for x → 0 (v is the spreading rate), and

F (x)→ 1 for x→∞. Figure 3.3 confirms that this scaling works well.

3.3.2 Real Space Picture of Entanglement Spreading

Entanglement entropy is by no means a local quantity and thus it is not easy to

assign a local picture to spreading of entanglement 7. On the other hand, the Lieb-

Robinson bound states that the quantum information cannot spread arbitrarily fast

by a short-range Hamiltonian [70] and Bravyi et. al has shown that the growth rate

6We used two methods to estimate SL(∞): One is computing S(t) at large t such as 500, 1000,
10000 and seeing that S(t) remains constant within the standard error at these long times. The other
is expanding the initial product state in terms of the eigenstates of H and giving each eigenstate
a random phase (thus approximating infinite time) and computing the entanglement entropy from
the state with random phases. We found these two methods give the same value within the error
bar (fractional difference was less than 1.5%).

7The word “spreading” is already biased.
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Figure 3.4: We consider a tripartite spin chain, ACB. A and B have the same length.
We trace out the middle part C and compute entanglement between A and B using
logarithmic negativity as a function of time. The initial condition is the same as we
consider the bipartite entanglement entropy - random product states.

of entanglement entropy is proportional to the surface area of the cut [13]. These

theorems support the idea of local spreading of entanglement entropy in a real space.

Therefore, it would be nice if we have a direct measurement (at least theoretically)

of local “wavefront-like” picture of entanglement entropy.

We consider a tripartite system, ABC as in Figure 3.4. Starting from the same

initial condition, random product states, we first trace out the middle chain C and

compute the entanglement entropy between the remaining parts A and B at time t.

Since each spin is independent in an initial random product state, entanglement is

zero everywhere in the beginning. If entanglement spreads over the space among each

spin with finite rate, it would take finite time for A and B to become entangled and

such entangling time (onset time when A and B begins to be entangled) would be a

monotonic increasing function of the length of C. If entanglement entropy is truly

a global quantity and does not allow any concept of local spreading, entanglement

entropy between A and B would become nonzero instantaneously regardless of the

length of C. Intuitively, the former should be true and we want to have a calculation

that supports our intuition.
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Negativity as a Computable Measure of Entanglement Entropy of a Mixed

State

One problem with the above scenario is not that our physical intuition is wrong but

the fact that we do not have a good computable measure of quantum entanglement

entropy of a mixed state. The entire system ABC is a pure state but once we trace

out C, the remaining state is in general mixed, not pure. What makes the quantum

entanglement in a mixed state difficult is that the usual method (tracing out a part

of the system and compute von Neumann entropy of the rest) cannot distinguish the

quantum entanglement from classical correlation. If a state ρ can be represented by

the following form (A and B are disjoint regions in the state space),

ρ =
∑
i

ciρi,A ⊗ ρi,B (3.13)

then the two regions A and B are classically correlated. This implies that direct gen-

eralization of Schmidt decomposition will lead to classical correlation, not quantum

entanglement. Therefore, von Neumann mutual information S between A and B,

S =
1

2
(SA + SB − SAB) , (3.14)

where SA (SB) is the von Neumann entropy of ρA = TrBρ (ρB = TrAρ) and SAB

is the von Neumann entropy of the entire system, cannot separate the quantum

entanglement from classical correlation.

Trivially, most states are mixed states, not pure states. A number of measures

have been invented to quantify quantum entanglement of a mixed state, which can

be found in Refs. [97, 12] and references therein. Each measure has its own physical

meaning but most of them are involved with minimization over quantum states, which

make them practically infeasible to compute. Therefore, we employ an incomplete
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but computable measure of quantum entanglement of a mixed state, the negativity

[25, 124]. The negativity is defined by the sum of negative eigenvalues of partial

transposition of probability operator. Suppose we write the probability operator in

the following form:

ρ =
∑

{i,k},{j,`}

ρij,k`|i〉〈k| ⊗ |j〉〈`| , (3.15)

where |i〉〈k| specifies region A and |j〉〈`| specifies region B. Then, partial transposi-

tion of A is

ρTA =
∑

{i,k},{j,`}

ρij,k`|k〉〈i| ⊗ |j〉〈`| . (3.16)

Note that ρTA is still hermitian and has unit trace TrρTA = 1. However, ρTA may

have negative eigenvalues µ and thus its trace norm can be greater than one:

|ρTA|T = Tr
√
ρTA(ρTA)† = 1 + 2

∑
|µ| = 1 + 2N (ρ) , (3.17)

where N (ρ) (the negativity) is the sum of absolute values of negative eigenvalues.

Therefore, the negativity quantifies how much ρTA fails to be positive semi-definite.

It is proven that the existence of negativity is only a sufficient condition of quantum

entanglement. There exist quantum entangled states without negativity. Thus, the

negativity is an incomplete measure of quantum entanglement. However, it has a

huge advantage over other more accurate measures of quantum entanglement: We

can easily compute the negativity. This is the main reason why it is widely accepted

measure to quantify quantum entanglement of a mixed state. To make the negativity

similar to entanglement entropy, one can define the logarithmic negativity SN :

SN = log |ρTA|T . (3.18)
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Note that when a state has no negativity, all eigenvalues of ρTA is nonnegative and

thus SN is zero. In case of a pure state, SN corresponds to Rényi entropy of index

1/2 [124]8. This can be easily seen by the fact that for a given Schmidt spectrum λa

of a given pure state,

|ρTA|T = 1 + 2N (ρ) =

(∑
a

λa

)2

. (3.19)

We see that the Rényi entropy of index 1/2 is 2 log(
∑

a λa), which is precisely the

logarithmic negativity.

Using Logarithmic negativity, we will provide an evidence of local real space pic-

ture of entanglement spreading. Starting from a random entangled product state, at

time t we first trace out the middle chain C in Figure 3.4 and compute the logarith-

mic negativity of the remaining probability operator. Figure 3.5 is the logarithmic

negativity as a function time and length of middle chain C while keeping the entire

length of the system to be 16. As expected, the logarithmic negativity starts to build

up at later time as the subsystems A and B become more separated (longer C). Note

that the final saturation value of logarithmic negativity decreases as we increase the

length of C, since the total length of the system L is fixed. Figure 3.6 is the plot of

the onset time (time when the logarithmic negativity becomes nonzero 9) vs. length

of C. It clearly shows that the onset time gets delayed as the length of C becomes

larger.

Since the negativity is a sufficient condition of entanglement entropy, these results

may not be significant in a quantitative level. However, they provide a partial evidence

of local “wave-front” like spreading of entanglement entropy.

8Rényi entropy of index q of a state ρ is defined by Sq(ρ) = 1
1−q log(Trρq). It converges to von

Neumann entropy in the limit of q → 1+.
9numerically we choose 10−5
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Figure 3.5: Logarithmic negativity as a function of time. While keeping the total
length of the system L = 16, regions A and B begins to get entangled at a later time
as we increase the length C.

Figure 3.6: Onset time of logarithmic negativity as a function of the length of C
(separation length between A and B). The onset time is delayed when separation
becomes larger.
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3.3.3 Roles of Energy Conservation in Entanglement Spread-

ing

Figure 3.2 shows that entanglement spreading slows down in later stage before it

approaches the saturation value and the saturation value is slightly smaller than the

Page limit, L
2
− 1

2 ln 2
. We attribute these to energy conservation, which is the only

conservation law except for the global discrete symmetries. Stationary entanglement

entropy means that initially out-of-equilibrium state completely equilibrated. This

equilibration must be involved with reallocation of energy density, which is governed

by slow diffusive energy current (see next section). Therefore, at later stage, we

expect reduced spreading rate of entanglement entropy due to energy transport. The

Page limit is the average entanglement entropy sampled from infinite temperature

ensemble. On the other hand, our initial condition, random product state, may not

sample all eigenstates with equal weight. Since the infinite temperature ensemble has

the maximum entropy, any deviation from that ensemble will necessarily decrease the

entanglement entropy and consequently we may have saturation value of entanglement

smaller than Page limit. One way to check this hypothesis is to intentionally break

the energy conservation of the system by making the Hamiltonian time-dependent.

Using the Hamiltonian H, let’s first construct the Floquet unitary operator that

unitarily evolves a quantum state. We decompose the Hamiltonian H into two parts:

one consists of only σz operator (Hz) and the other one contains only σx operator

(Hx).

Hz =
∑
i

hσzi + σzi σ
z
i+1 (3.20)

Hx =
∑
i

gσxi . (3.21)
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Then, we drive the system with Hz for a period τ and apply Hx for τ and then repeat.

This periodically driven Floquet system can be characterized by a unitary operator

UF (τ):

UF (τ) = exp(−iHxτ) exp(−iHzτ) (3.22)

. Note that a conventional Floquet unitary operator should have time step 2τ

(UF (2τ)) since our driving has a period of 2τ . However, we want to make a direct

comparison with the ordinary propagator, U(t) = exp(−iHt), at each time point; any

time t for a system evolving with U(t) and a multiple of τ for a system evolving with

UF (τ). Therefore, we scale the period by half on purpose 10. We choose τ to be 0.8.

The Floquet theorem states that we can characterize each eigenvalues of the Flo-

quet operator by a real number λ, where the eigenvalue is eiλ. This λ can be de-

termined up to modulo 2π and the statistics of λ is expected to follow a Circular

Ensemble (CE) statistics, which is similar to GOE statistics with modulo 2π 11 [34].

Furthermore, at long time limit, the Floquet operator “thermalizes” a system at in-

finite temperature ensemble [34, 98]. From this property, we expect that a state,

initially prepared in a random product state, driven by the Floquet operator will

have the saturation value of entanglement entropy equal to the Page limit. Also,

the Floquet system does not conserve energy. UF (τ) does not even have a “ground

state” since everything is determined by phases 12. Therefore, equilibration is possible

without slow energy transport, which implies that the slowing down of entanglement

spreading in the Hamiltonian system could be absent in the Floquet system.

Preparing two random product states, we evolve one state with UF (τ) and the

other state with U(t) and then compare their entanglement entropy S(t)’s. For a

10 Another way of looking at UF (τ) is the first order Trotter decomposition of the propagator:
U(t) = exp(−i(Hx + Hz)t) = exp(−iHxt) exp(−iHzt) + O(t2). Note that τ → 0 limit makes

UF (Nτ) = (UF (τ))
N

identical to U(t), where t = Nτ .
11Similar to level repulsion in a RMT statistics, there is phase repulsion in CE statistics.
12There is no area law of entanglement in eigenstates of UF (τ).
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Figure 3.7: Comparison of Entanglement spreading of Floquet unitary operator (pre-
cisely defined in the main text) and that of Hamiltonian unitary operator. Both
started from the same initial condition, random product state. Floquet system does
not have strong signal of slow down of spreading near the saturation value. Also, the
final saturation value is closer to Page limit, L/2 − 1/(2 ln 2). The system size L is
14. We averaged over 50 realization of random states.

Floquet system, we only measure at a multiple of τ . Figure 3.7 is the plot of en-

tanglement spreading under these two unitary operators. We clearly see that the

Floquet system does not show significant slow down approaching the saturation of

entanglement entropy compared to the Hamiltonian system and the final value of

entanglement entropy is indeed same as the Page limit. This demonstrates that the

energy conservation is responsible for two features of entanglement entropy at later

time.

3.4 Diffusive Energy Transport

Now let’s consider the diffusive dynamics of this system. As an example, we study

the diffusive spreading of an initially localized energy inhomogeneity. First we pre-

pare the system in the maximal thermodynamic entropy mixed state (equilibrium at
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Figure 3.8: The average energy spreading, R(t) (defined in the main text) vs. time.
Before saturation, its behavior does not depend on the system size. As we increase
the system size, diffusive

√
t behavior becomes more apparent.

infinite temperature) and put a small energy perturbation on the center bond. Then

we observe how this extra local energy spreads over the system under unitary time

evolution. Specifically, the initial probability operator (density matrix) is

ρ(0) =
1

2L
(
I + εσzL/2σ

z
L/2+1

)
, (3.23)

where I is the identity operator and ε is a small number. Note that I commutes with

H, so we only need to time evolve the perturbation. Then, we compute the local

energy, 〈Hr〉(t), at each site and bond r at time t. The position index r is an integer

(1 to L) for each site and a half-integer (3/2 to L - 1/2) for each bond. Explicitly,

Hr =


gσxr + hσzr sites 2 ≤ r ≤ L− 1

gσxr + (h− J)σzr r = 1 or L

Jσzr−1/2σ
z
r+1/2 bonds 3/2 ≤ r ≤ L− 1/2 .

(3.24)
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This is just a decomposition of the hamiltonian H =
∑

rHr. Trivially, 〈Hr〉 = εδr,L+1
2

at time t = 0. To quantify the energy spreading at time t, we compute an average

“distance” R(t) that the energy has moved away from the center bond:

R(t) =
2

〈H〉
∑
r

∣∣∣∣r − L+ 1

2

∣∣∣∣ 〈Hr〉(t) , (3.25)

where 〈H〉 = ε is the conserved total energy. Figure 3.8 is the plot of R(t) for L

= 8, 10, 12, 14, and 16. If the extra energy at long time is distributed equally to

all sites and bonds, R(∞) → L
2

2L−2
2L−1

' L
2

and thus close to the maximum value of

entanglement spreading (the factor of 2 in Eq. 3.25 is to make the long time value of

R(t) comparable to that of S(t)). We find that the saturation value, R(∞) 13, grows

linearly with the system size but is always slightly smaller than L/2 due to the final

local energy distribution not being homogeneous near the ends of the chain.

If this dynamics is diffusive, the energy spread is R(t) ≈ 4√
π

√
Dt ∼

√
t (one-

dimensional random walk) for sufficiently large t (t ≥ 1 in our case) before finite-size

saturation begins. D is the energy diffusivity, which only depends on the interaction

parameters, not the system size. Figure 3.8 clearly shows that R(t) is independent

of system size at early stages, and it grows as ∼
√
t before saturation begins. For L

= 8, the frequency scale of the many-body level-spacing is of order 0.1 and thus R(t)

begins oscillating around t ∼ 10. Although the system sizes that we can diagonalize

are not large enough to show a wide range of time scales, they do show that the

speed of entanglement spreading becomes faster than the rate of diffusive energy

spreading by direct comparison of S(t) and R(t). Figure 3.9 is the plot of S(t) and

R(t) for L = 16. In the very beginning (t ≤ 1), R(t) grows faster than S(t) due to

microscopic details of the dynamics, but soon the linearly-growing S(t) overtakes R(t)

13We estimated R(∞) as the average of a few values of well-spaced R(t) near and beyond the time
scale set by the inverse many-body energy-level spacing. For example, the inverse many-body level
spacing for L = 14 is ≈ 533. Then, R(∞) is estimated by averaging R(450), R(600), R(750), R(900),
and R(1050). Fractional fluctuation within that time range was as small as 0.12% (this fractional
fluctuation becomes smaller as we increase the system size).
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Figure 3.9: Direct comparison of S(t) and R(t) for L = 16. It is clear that the entan-
glement spreads faster than energy diffuses in the scaling regime before saturation.

and approaches its saturation while R(t) is growing only as ∼
√
t. Therefore, this is

a direct demonstration of the contrast between ballistic entanglement spreading and

diffusive energy transport.

3.5 Conclusion

In conclusion, we have demonstrated that quantum entanglement spreads ballistically

in a nonintegrable diffusive system. Since there are no ballistically traveling quasi-

particles, the mechanism of entanglement spreading is different from what happens

in integrable systems, where these quasiparticles can carry both energy and informa-

tion. At high enough temperature, almost all states are relevant to the dynamics,

and the dynamics is constrained by only few conservation laws (in our case, only the

total energy). In this regime, the concept of quasiparticles is not well-defined for the

system we have studied. Even so, if we do heuristically describe the dynamics of our
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diffusive model in terms of quasiparticles, these quasiparticles scatter strongly and

frequently and thus have a short mean free path. This limits the energy transport to

be diffusive. But apparently the quantum information needed to spread entanglement

is passed along in each collision, presumably to all outgoing quasiparticles from each

collision. Thus this information spreads in a cascade or shower of collisions and the

edges of this shower spread ballistically.

We conjecture that for highly-excited nonintegrable systems such as we study

here, there are no local observables whose correlations spread more rapidly than

diffusively, even though the entanglement spreads ballistically. Note that this is a

strong conjecture that goes well beyond what we can test numerically.

We have used the analogy from Ref. [91] between the spreading of entanglement

and the spreading of an epidemic. But it is an unusual sort of nonlocal epidemic, where

the symptoms of the “disease” can not be detected by any local observables. In Refs.

[73, 72] they make an analogy instead to a tsunami; again this appears to be a very

gentle nonlocal tsunami, whose effects can only be detected by nonlocal observables.

An interesting question that we leave for future work is: What is the simplest and most

local operator that can detect this ballistically spreading entanglement? We detected

it using the state of the full system, but if the entanglement has only traveled a

distance ` in each direction from the central bond as partially demonstrated by using

negativity measure of entanglement in real space, it should be detectable by some

operators that only involve the spins within that distance.
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Chapter 4

Thermalization and Construction

of Slowly Relaxing Operators in a

Nonintegrable Quantum System

From everyday experience, we know that an out-of-equilibrium system will eventu-

ally equilibrate with the environments. Then, what if we include everything, even the

environments, and ask questions about equilibration? Does the whole system eventu-

ally equilibrates to thermal equilibrium? If so, then what would be the time scale of

such phenomenon? In this chapter, we give partial answers to above questions using

the exact diagonalization method and a new algorithm to search for slowly relaxing

operators.

The results of section 2 in this chapter are the results of collaboration with Tat-

suhiko N. Ikeda and David A. Huse (in preparation).The results of section 3 and 4

in this chapter are obtained through collaborations with Mari Carmen Bañuls, J.

Ignacio Cirac, Matthew B. Hastings, and David A. Huse (in preparation).

We set the Planck constant ~ and the Boltzmann constant kB to unity.
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4.1 Introduction

Every child knows that a cup of hot coffee and a glass of cold beer will eventually reach

the same temperature if they are put outside. This phenomenon is thermalization.

The conventional explanation for the mechanism of thermalization uses an infinitely

large heat bath with which an out of equilibrium system can exchange energy (and

particles if allowed) to achieve thermal equilibrium. However, this mechanism is not

applicable to thermalization of an isolated system. Classical mechanics can thermalize

an isolated system by chaotic dynamics, which makes the system ergodic in the long

time limit. For a quantum system, on the other hand, it is not yet completely settled

(at least theoretically) whether a unitary quantum dynamics can bring an isolated

nonequilibrium state to an ergodic phase [88, 6, 75] (known as Berry’s conjecture).

To obtain a “quick” answer, we borrow results from experimental work. Various

experiments with ultracold atoms, which we believe one of the most isolated quantum

many-body systems on Earth, suggest that the answer is “yes”, reporting that mo-

mentum distribution of ultracold atoms indeed in a good agreement with equilibrium

statistical mechanics (see reviews [8, 44] and references therein). Therefore, we first

admit that a generic isolated quantum system does thermalize and move on to the

next question, how.

Quantum dynamics is unitary. A unitary dynamics keeps all information of the

initial condition, and thus the entire system is apparently different from thermal state

at all times. Consequently, quantum mechanics does not allow thermalization of a

whole system unless the initial state is thermal. This does not contradict with our

experience of thermalization as long as detailed information of initial condition is

only accessible by global “observables” (hermitian operators), which no experimental

apparatus can measure at a later time. Therefore, being thermalized means ther-

malization of few-body observables, which can be measured in experiment. Note that

locality need not be restricted to real space: the momentum distribution is not local in
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real space but local in momentum space and it can be written as a linear combination

of one body operators in real space.

Many theoretical works have addressed the question of quantum thermalization

(e.g. Refs. [125, 48, 102, 73, 72] and references therein), and one of the leading

explanations for the thermalization of few-body observables in an isolated quantum

system is the eigenstate thermalization hypothesis (ETH) [35, 119, 104]. ETH states

that an eigenstate of a nonintegrable (quantum chaotic) Hamiltonian is thermal when

only aspects of few-body observables are concerned, i.e. it gives the same expectation

value as the Gibbs ensemble of the same fixed energy density (temperature). Many

consequences of ETH have been numerically tested in many works [104, 108, 7, 58, 118]

and appeared to be valid for almost all cases (see also Ref. [106] for the comparison

of ETH with von Neumann’s quantum ergodic theorem). Here we perform another

stringent accuracy test of ETH. Numerically diagonalizing our model Hamiltonian

(Eq. 1.3) we find the outlier states, which deviate the most from the predictions of

ETH, and then check whether deviation decreases as the system size increases. We

numerically show that even these outlier states obey ETH as the system approaches

thermodynamic limit. Therefore, we provide numerical evidence that ETH is true for

all states, not just almost all.

Given that ETH explains how quantum thermalization is possible, our next ques-

tion is how quickly an out-of-equilibrium state thermalizes. Conventional theories of

diffusive transport tell us that thermalization requires transport of local conserved

quantities, energy and particles. Within a linear response theory, the time scale τ of

transport is determined by the product of diffusivity D and the square of the longest

wavelength of inhomogeneous profile of the conserved quantity, k2; τ = 1/(Dk2).

However, the quantum theory only has a lower bound of thermalization time scale

given by the Lieb-Robinson bound [70] and therefore possibilities of exponentially

long time to thermalize are not excluded.
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We will construct a local operator that takes the longest to relax to the equilib-

rium value. Using an efficient algorithm, we exhaustively consider all possible local

operators of certain range M and find the slowest relaxing operator. We show that

relaxation time scale of such operators is indeed longer than the diffusive transport.

This is a new phenomenon that quantum mechanics with a diffusive Hamiltonian

allows local operators to equilibrate slower than simple diffusion allows.

One remark is in order. There are two notable exceptions to canonical thermal-

ization (thermalizing to the Gibbs state); integrable system and many-body localized

system (MBL). An integrable system has an extensive number of local conservation

laws. Therefore, the conventional Gibbs ensemble is not enough to fix the value of a

few-body operator. It is conjectured that an expectation value of a few-body opera-

tor of an integrable system can be characterized by the Generalized Gibbs Ensemble

(GGE) [105, 103, 92, 45, 77], while some recent literatures report insufficiencies of

GGE in certain cases[46, 100, 80, 47]. Many-body localization happens when disorder

is strong enough in an interacting system ( see Refs. [1, 5, 84] and references therein).

In an MBL phase, individual many-body eigenstate is localized and MBL truly dis-

obeys ETH in every sense since all information is locked in localized many-body

eigenstates. Although integrable systems and MBL systems are exciting and very

active fields of research, we restrict ourselves to disorder-free, robustly nonintegrable

Hamiltonian (Eq. 1.3) throughout this chapter.

4.2 Eigenstate Thermalization Hypothesis

Quantum dynamics is unitary. Since a unitary operator is mathematically just a basis

transformation, the entire system contains all information about the initial condition,

which is apparently different from thermal distribution if initially out of equilibrium.

Instead, what thermalizes is local, few-body observables.
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Formally, with a time-independent HamiltonianH and an out of equilibrium initial

state ρ, we write the expectation value of a few-body operator Ô at time t:

〈Ô(t)〉 = Tr
(
e−iHtρeiHtÔ

)
=
∑
n,m

ρn,mOm,ne
−i(En−Em)t , (4.1)

where ρn,m and Om,n are matrix elements of the initial state ρ and the operator Ô in

energy eigenbasis and En is the n’th eigenenergy of the Hamiltonian H. Assuming

no degeneracies1, off-diagonal terms will dephase in the long time limit and Eq. 4.1

will approach a stationary value in thermodynamic limit [71]. Note that Poincaré

recurrence, in principle, happens for any finite system. The stationary value 〈Ô〉eq

should be the sum of diagonal elements and thus, time independent:

〈Ô〉eq =
∑
n

ρn,nOn,n . (4.2)

When this becomes valid, the system has equilibrated and not necessarily thermal-

ized. Thermalization is a stronger statement and means that the equilibrium value

is equal to thermal ensemble average at fixed conservation law. Assuming the energy

is the only conserved quantity, which is determined by the inverse temperature β,

thermalization is the following:

〈Ô〉eq = 〈Ô〉th =
1

Zβ
Tr
(
e−βHÔ

)
=

1

NE

∑
|E−En|≤∆E

On,n (4.3)

Tr(Hρ) =
1

Zβ
Tr
(
e−βHH

)
. (4.4)

In first line, we used the equality between canonical average and microcanonical

average at thermodynamic limit (∆E is a microcanonical window near the average

energy E). The second line is how we define the inverse temperature β and Zβ is the

1Due to the level repulsion, this assumption is natural.
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partition function. Eq. 4.3 implies that all initial conditions with the same energy

density should thermalize the operator Ô to the same value. If this statement is

true, we may consider an extreme situation: the initial state is an energy eigenstate

(ρ = |n〉〈n|). The fact that we can find a unique βn that corresponds to the energy

density of the eigenstate |n〉 implies that the expectation value of a few-body operator

of an energy eigenstate is thermal. This highly nontrivial statement is the Eigenstate

Thermalization Hypothesis (ETH) [35, 119, 104] 2.

Here we perform one stringent accuracy test of ETH. Numerically diagonalizing

a finite size nonintegrable Hamiltonian H we used for entanglement spreading, we

search for the outlier state, which numerically agrees the least with ETH. Then, we

do a finite-size scaling of these outlier states as a function of system size. If ETH is

true for all (not almost all) states in thermodynamic limit, even these outlier states

(perhaps from a measure zero set in the space of eigenstates) should follow ETH.

The Hamiltonian is Eq. 1.3:

H =
∑
i

(
gσxi + hσzi + Jσzi σ

z
i+1

)
. (4.5)

As before, the parameter choice is (g, h, J) = ((
√

5+5)/8, (
√

5+1)/4, 1). This time we

use the periodic boundary condition so that every site is equivalent and momentum

is a good quantum number. The Hamiltonian can be written in a block diagonal

form of each momentum sector, where the size of each block is of order (2L)/L. This

enables us to diagonalize slightly larger system size than open boundary condition;

L = 19. We consider both even and odd length chains. Note that level repulsion of

RMT statistics only holds within each momentum sector but ETH should be valid

regardless of momentum [108].

2Sometimes this is referred as strong ETH in contrast to weak ETH, where average over a narrow
energy window is allowed
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Figure 4.1: Histogram of density of state. The ratio of maximum to minimum is ∼
1.20

4.2.1 ETH parameter

We want to quantify the accuracy of ETH. We consider the following parameter:

rn = 〈n+ 1|Ô|n+ 1〉 − 〈n|Ô|n〉 , (4.6)

where Ô is a local few-body operator and |n〉 is n’s energy eigenstate. We assume no

degeneracies and sort the eigenstate in an ascending order of energy (En+1 > En). If

ETH is true in a strong sense, each eigenstate |n〉 is thermal and expectation value

of every local operator should be equal to the thermal expectation value. For each

eigenstate, we can define an inverse temperature βn by the following implicit equation:

En =
tr(H exp(−βnH))

tr(exp(−βnH))
(4.7)

In thermodynamic limit, we know that En+1 − En → 0 and consequently βn+1 − βn

(exception exists near ground state for a gapped system). Therefore, if ETH is true,

rn should vanish in thermodynamic limit. However, since everything is discrete in

numerical study, a little caution is necessary. More precisely, suppose we have a
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sequence of inverse temperatures {. . . , βn, βn+1, . . .} (βn > βn+1), which corresponds

to the sequence of eigenstates. Let’s define δβn = βn − βn+1 � 1. Then, ETH says

(up to first order in δβn)

rn =
tr
(
Ô exp(−(βn − δβn)H)

)
tr (exp(−(βn − δβn)H))

−
tr
(
Ô exp(−βnH)

)
tr (exp(−βnH))

(4.8)

= δβn

tr
(
Ô(H − En) exp(−βnH)

)
tr(exp(−βnH))

 (4.9)

' −δβn
∂〈Ô〉β
∂β

∣∣∣∣
β=βn

. (4.10)

The last line is in the thermodynamic limit and 〈Ô〉β = tr(Ô exp(−βH))/tr(exp(−βH)).

From this equation, we can see that what makes rn vanishing is δβn, which is the

spacing between two adjacent temperatures. Roughly, this quantity is inversely

proportional to the density of state and thus approaches zero only in thermodynamic

limit. Since the density of state and ∂〈Ô〉β/∂β do vary over the range we study,

direct comparison among bare values of rn could be dangerous, especially those

near the edge of the spectrum where the variation in density of state is the largest.

Therefore, we first look at how the density of state varies in the middle half of the

spectrum (we keep only the middle half of the entire states sorted by energy). If the

density of state is Gaussian, as shown by Refs. [54, 53], then the fractional difference

between the density of state at the edge of the spectrum we keep and the density of

state in the middle is just 20%. Figure 4.1 is the histogram of density of state in the

middle half of the spectrum for L = 18 and it shows that the fractional difference

between the largest and the smallest is indeed about 20%. Since the largest value

of rn is larger than the typical value of rn by an order of magnitude (see Figure

4.4), we may neglect the effects of density of states, which should be at most of an

order of 20%. Furthermore, as we can see from Figure 4.2, the first derivative of

expectation value of a few-body operator with respect to energy is roughly constant.
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Thus, we may neglect the other contribution, ∂〈Ô〉β/∂β as well. Consequently, we

will compare face values of rn in the middle half of the energy spectrum and find out

which state is responsible for the extreme value of rn.

4.2.2 Results

For few-body operators, we consider all single-site operators, σx and σz (expectation

value of σy is zero by time-reversal symmetry), and two-sites operators, σxσx and σyσy

(expectation value of σzσz is fixed by two single-site operators from Hamiltonian).

All of the results of these operators are qualitatively the same. Since the Hamiltonian

is time-reversal invariant, momentum k and −k have exactly the same spectrum, thus

degenerate except k = 0 and π. We consider only nonnegative k’s: for even L, we

take k from 0 to π and for odd L, we take k from 0 to (L − 1)π/L. Therefore,

even chains have (L + 2)/2 momentum sectors considered while odd chains have

(L+1)/2 momentum sectors taken into account. This difference may affect the finite-

size scaling of outliers (strong parity effect) but has no impact on other properties.

Figure 4.2 is the plot of 〈n|Ô|n〉 as a function of energy density En/L. It is

clear that as we increase the system size (approaching thermodynamic limit), the

fluctuation becomes smaller and thus they agree better with ETH. Note that the

fluctuations are not particularly wider near the edge compared to the center of the

spectrum. This supports that our choice of ETH parameter, Eq. 4.6, is appropriate

over the range we consider.

Figure 4.3 is the plot of normalized distribution of |rn|. As we increase the system

size, the distribution becomes more narrow and sharply peaked at zero. In thermody-

namic limit, ETH predicts that P (r) becomes a delta function, δ(r). The distribution

can be well-fitted by Gaussian distribution and the fluctuation σ =
√
〈r2〉 − (〈r〉)2

decreases exponentially with the system size L, which qualitatively agrees well with

the results reported in Ref. [7].
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Figure 4.2: Expectation values of few-body operators vs. energy density: (a) σxi (b)
σzi (c) σxi σ

x
i+1 (d) σyi σ

y
i+1. Due to translation invariance, the position i can be any

site. The range of system size is L = 12 to 19. As we increase the system size, the
fluctuation becomes small as ETH suggests.
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Figure 4.3: Normalized distribution of expectation values of few-body operators: (a)
σxi (b) σzi (c) σxi σ

x
i+1 (d) σyi σ

y
i+1. Due to translation invariance, the position i can

be any site. The range of system size is L = 12 to 19. As we increase the system
size, the distribution becomes more sharply peaked near zero and its widths decreases
exponentially with the system size.
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Figure 4.4: 1st, 2nd, 4th, 8th largest values of |r| and the mean of all values of
|rn|: (a) σxi (b) σzi (c) σxi σ

x
i+1 (d) σyi σ

y
i+1. Even the largest outlier values decrease as

approaching thermodynamic limit.
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As long as the distribution P (r) becomes sharply peaked near r = 0, the conven-

tional microcanonical formulation of equilibrium statistical mechanics is valid, since

the averaging over a microcanonical ensemble of a few-body observable is involved

with exponentially many states in a narrow energy window at thermodynamic limit.

There could be a measure-zero set of r′ns which does not peaked at zero but these

states does not contribute to the ensemble average. Therefore, Figure 4.3 provides

numerical evidence that equilibrium statistical mechanics is still applicable to an

isolated quantum system. This feature is also confirmed by several previous works

[104, 108, 7]. This means almost all out-of-equilibrium initial state will eventually

equilibrate and thermalize in terms of the expectation value of a few-body observable.

This is enough for every practical purpose, since it is impossible to prepare an initial

state with nontrivial weight on many-body eigenstates in such a measure zero set

(the ground state, which is not thermal, should not be considered). However, the

Eigenstate Thermalization Hypothesis is stronger: every single eigenstate is thermal

3. The strong ETH does not allow the existence of measure zero set disobeying the

hypothesis.

We introduce one way to numerically test the strong ETH; the finite size scaling

of outliers. We define the outliers by the states that give large values of |rn| of Eq.

4.6. Since each rn involves with two states, a large |rn| means either one state is an

outlier and the other one is “normal” or both states are outliers of opposite signs.

This also means that if two outliers are consecutive in energy spectrum, corresponding

|rn| can be small. But in that case |rn+1| should be large again so we can spot the

outlier state easily 4. In any case, when ETH is correct in strong sense, even the

largest value of |rn| should decrease to zero in thermodynamic limit. Figure 4.4 are

the plots of 1st, 2nd, 4th, and 8th largest values of |rn| and the mean value of |rn|.
3Some people say that ETH is overkill.
4there could be a consecutive sequence of outliers but such probabilities are so small that we do

not see in our numerical data.
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It is clear that the mean value 〈|r|〉 (averaged over the middle half of the spectrum)

decreases exponentially with the system size. The exponential decrease of 〈|r|〉 shows

that our quantum model is in a good agreement with microcanonical formulation

of equilibrium statistical mechanics, although leaving the possibilities of existence of

measure zero sets whose contribution to the mean is negligible. The central feature

of Figure 4.4 is that even the largest value of |r| decreases with the system size.

Extrapolating this tendency, we provide a supporting evidence of the strong ETH,

that every eigenstate far away from edge is thermal as far as the expectation value of

a few-body operator is concerned.

Consequently, we conclude that our model does thermalize under its unitary quan-

tum dynamics. Next section, we turn to the second question: can we construct a local

operator which takes exponentially long to relax to equilibrium value?.

4.3 Slowest Relaxing Local Operators - Construc-

tion

In the previous section, we have learned that our nonintegrable Ising Hamiltonian

Eq. 1.3 indeed follows the eigenstate thermalization hypothesis and thus an out-of-

equilibrium initial state will eventually thermalize any few-body observables. How-

ever, ETH does not tell us about the thermalization time scale. Some operator can

relax to its thermal value quickly while others may take very long. Now our task

is to find a local operator that relaxes the slowest. Here, locality is very important

since the individual population of eigenstates is conserved (does not relax) but an

eigenstate of a generic Hamiltonian is generally non-local. In this section, we will

systematically find a local operator that relaxes as slow as possible.
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4.3.1 Objective

Quantum dynamics comes from the commutator with the Hamiltonian. Any operator

which commutes with Hamiltonian is conserved and does not relax to thermal value

if not initially. Therefore, it is a reasonable guess that a slowly relaxing operator

would have a small magnitude of the commutator with Hamiltonian, whose meaning

is defined shortly.

In order to quantify “how large” the commutator with Hamiltonian is, we need to

understand operator norms. 5 There are three widely accepted ways to quantify an

operator Â; “the” operator norm ||Â||, the trace norm |Â|T , and the Frobenius norm

|Â|F .

||Â|| = Largest singular value of Â (4.11)

|Â|T = Tr(
√
ÂÂ†) (4.12)

|Â|F =

√
Tr(ÂÂ†) (4.13)

Each norm has its own merit. For a state ρ and an operator Â, the expectation value

is tr(Aρ). Suppose we cannot compute Tr(Âρ) directly but can compute Tr(Âρ′) for

some other state ρ′. Then, the question is how close these values are. Generally, the

following holds:

|Tr(Âρ)− Tr(Âρ′)| = |Tr(Â(ρ− ρ′))| ≤ ||Â|||ρ− ρ′|T = |Â|T ||ρ− ρ′|| (4.14)

|Tr(Âρ)− Tr(Âρ′)| = |Tr(Â(ρ− ρ′))| ≤ |Â|F |ρ− ρ′|F . (4.15)

Therefore, mathematicians say that the operator norm and the trace norm are dual

norms and the Frobenius norm is self dual. Usually, the operator norm is used to

bound an operator and the trace norm is used to bound a state. For example, let’s

5Special thanks to Matthew Hastings for kindly explaining the meanings of operator norms.
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consider a spin-1/2 chain of length L with σz1 on site 1 and identities elsewhere. The

operator norm of this quantity is one, which is sensible as an operator, while the trace

norm gives 2L, which is sensible as a state. The Frobenius norm has, on the other

hand, no particular physical meaning since it gives 2L/2. However, the Frobenius

norm is the easiest to compute among them since the others require the knowledge

of eigenvalues. Therefore, we will mostly rely on the Frobenius norm to search for

slowest relaxing operators.

As a locality of an operator, we consider an operator of range M , ÂM . Here the

“range” means the largest distance between two non-identity operators including the

operators itself. For instance, an operator Ô acting on a spin chain, Ô = σx1 ⊗ σ0
2 ⊗

σz3 ⊗ σ
y
4 (σ0 is an identity), has range 4. ÂM consists of local operators of range at

most M . Note that our Hamiltonian belongs to the set of {ÂM |M = 2}. Then, we

may ask two aspects of “slowness” of ÂM (1) how slow ÂM itself relaxes to thermal

value? (2) how slow the expectation value of ÂM approaches to thermal value for a

given particular initial state?

(1) Suppose we prepare the initial state ρ as

ρ =
1

Z
I + ÂM . (4.16)

We can always make the operator ÂM traceless by trivial operation. Then, we com-

pute the expectation value of ÂM at time t:

〈ÂM(t)〉 = Tr
(
ÂMe−iHtÂMeiHt

)
. (4.17)

If this operator is simply an energy modulation of longest wavelength, the diffusion

predicts that this quantity would decay exponentially, where the decay rate is deter-

mined by the diffusivity and the wave number. Simple diffusion states that the the

mode associated with the longest wave number is the slowest mode. One question is
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whether quantum mechanics of a nonintegrable Hamiltonian can beat this simple dif-

fusion picture by having an operator that relaxes slower than diffusion of the longest

wave number. We will later provide explicit numerical evidence that it is indeed

possible to generate a local operator whose relaxation time scale is longer than the

diffusive mode.

The way we construct such an operator is to minimize the Frobenius norm of a

commutator with Hamiltonian: given M , we find ÂM which gives the smallest value

of Tr([ÂM , H][ÂM , H]†). The physical meaning of such ÂM is that it has the smallest

relaxing “acceleration” at t = 0. This follows from the observation:

d

dt
〈ÂM(t)〉

∣∣
t=0

= iT r([ÂM , H]ÂM) = 0 (4.18)

d2

dt2
〈ÂM(t)〉

∣∣
t=0

= Tr([ÂM , H][ÂM , H]†) . (4.19)

Although this search only finds a slowly relaxing operator at t = 0, we will later see

that this already beats the slowest diffusion mode.

(2) Now we study relaxation of expectation value of ÂM for a specified initial state.

We first consider the operator norm of a commutator, which is the most relevant norm

in this case. Let us write ||[ÂM , H]|| ≤ χ(M) for some function χ(x). Then,

d

dt
ÂM(t) = −i[ÂM(t), H] (4.20)∣∣∣∣∣∣∣∣ ddtÂM(t)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣e−iHt( d

dt
ÂM(t)

)
eiHt

∣∣∣∣∣∣∣∣ = ||[ÂM(t = 0), H]|| ≤ χ(M) (4.21)

||ÂM(t)− ÂM(0)|| =
∣∣∣∣∣∣∣∣ ∫ t

0

(
d

dτ
ÂM(τ)

)
dτ

∣∣∣∣∣∣∣∣ ≤ ∫ t

0

∣∣∣∣ d
dτ
ÂM(τ)

∣∣∣∣dτ ≤ χ(M)t ,

(4.22)

where we take Heisenberg picture in operator and used the fact that eiHt is a norm-

preserving unitary operator. This inequality bounds the distance of an operator

evolving under Hamiltonian dynamics from its initial configuration. Now for an initial
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state ρ, which is different from Eq. 4.16, we define γ(M):

|〈ÂM〉0 − 〈ÂM〉β| = γ(M), (4.23)

where 〈Ô〉0 = Tr(Ôρ) and 〈Ô〉β is thermal average of β fixed by energy density of the

initial state ρ. We want to compute the distance between expectation value of ÂM

at time t and thermal expectation value of ÂM . For time t ≤ γ(M)/χ(M), using the

triangular inequality, we have show the following:

|〈ÂM〉t − 〈ÂM〉β| = |〈ÂM〉t − 〈ÂM〉0 + 〈ÂM〉0 − 〈ÂM〉β|

≥ ||〈ÂM〉0 − 〈ÂM〉β| − |〈ÂM〉t − 〈ÂM〉0|| ≥ γ(M)− tχ(M) (4.24)

where 〈Ô〉t = Tr(Ôe−iHtρeiHt). In the last inequality, we used the duality relation of

the operator norm (Eq. 4.14) and the fact that |ρ|T = 1. Therefore, if the operator

norm of the commutator, χ(M) decreases exponentially with M (χ(M) ∼ e−αM) and

γ(M) does not decrease as fast as exponential, we have the thermalization time scale

τM of ÂM for the initial state ρ is

τM ∼
γ(M)

χ(M)
∼ eαM . (4.25)

Consequently, this state takes exponentially long to thermalize the local operator ÂM .

Later, we will show that this scenario is indeed possible.

4.3.2 Method

We construct an operator AM whose range is limited by M -body.

ÂM =
L∑
i=1

ÂMi , (4.26)
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where ÂMi contains n-body operators (n ≤M) acting nontrivially on site from i up to

i+M − 1. For a given M , we want to find an operator that minimizes the following:

tr([ÂM , H][ÂM , H]†)

tr(ÂM ÂM†)
(4.27)

Since ÂM is an hermitian, [ÂM , H]† = −[ÂM , H]. Using translation invariance, we

can write

tr(−[ÂM , H][ÂM , H]) = −
L∑

i,j=1

tr([ÂMi , H][ÂMj , H]) = −L
L∑
j=1

tr([ÂM1 , H][ÂMj , H]) .

(4.28)

For a given block operator ÂM` , only terms in H ranging from ` − 1 to ` + M gives

nonzero contribution in the commutator. We call this HM
` . Specifically,

HM
` = σz`−1σ

z
` +

`+M−1∑
k=`

(
gσxk + hσzk + σzkσ

z
k+1

)
. (4.29)

In addition, when |i− j| > M , the two commutators in the trace do not overlap thus

gives zero. In the end,

tr(−[ÂM , H][ÂM , H]) = −Ltr([ÂM1 , HM
1 ]2)− 2L

M+1∑
j=2

tr([ÂM1 , H
M
1 ][ÂMj , H

M
j ]) .

(4.30)

The factor of 2 comes from the translation invariance and the periodic boundary

condition. The first term comes from the exact overlap of two commutators and

the second term comes from the partial overlap of commutators that give nonzero

contribution.
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All non-identity operators of range at most M can be expressed in terms of the

following operator basis.

ÂM1 =
22M−1∑
i=1

ciÔ1,i , (4.31)

where Ô1,i is a string of operators;

Ô1,i =
M∏
j=1

⊗σαi,jj . (4.32)

There is a string of L − M identities next to the operator. The first subscript 1

represent the string operator begins at site 1. αi,j determines an operator acting on

site j, given the order of basis i. i can be interpreted as a number in the base 4. We

assign 0 to identity, 1 to σx, 2 to σy, and 3 to σz. For example, if i = 30 and M = 5,

then αi,j is 00132. Therefore, Ô1,30 is

Ô1,30 = σ0
1 ⊗ σ0

2 ⊗ σx3 ⊗ σz4 ⊗ σ
y
5 . (4.33)

To make the operator Hermitian, all coefficients ci should be real.

Then, the commutator becomes

Tr(−[ÂM , H][ÂM , H])

= −L2L−(M+2)
∑
i,j

cicjTr([Ô1,i, H
M
1 ][Ô1,j, H

M
1 ])

− 2L
∑
i,j

cicj

M+1∑
s=2

2L−(M+s+1)Tr([Ô1,i, H
M
1 ][Ôs,j, H

M
s ]) . (4.34)
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Here we explicitly put factors coming from the trace of a string of identities. It is

natural to define a matrix Bi,j as

Bi,j =− 2L−(M+2)Tr([Ô1,i, H
M
1 ][Ô1,j, H

M
1 ])

−
M+1∑
s=2

2L−(M+s+1)Tr([Ô1,i, H
M
1 ][Ôs,j, H

M
s ])

−
0∑

s=−M+1

2L−(|s|+M+3)Tr([Ôs,i, H
M
s ][Ô1,j, H

M
1 ]) (4.35)

Here we make it look more symmetric. Then, calling c = (c1, c2, . . . , c4M−1), we have

Tr(−[ÂM , H][ÂM , H]) = LcBcT . (4.36)

The normalization part can also be written as

Tr(ÂM ÂM) = L2L−MTr((ÂM1 )2) + 2L
M∑
s=2

2L−(M+s−1)Tr(ÂM1 Â
M
j ) = LcDcT ;

(4.37)

Di≤j =
M∑
s=1

2L−(M+s−1)Tr(Ô1,iÔs,j) (4.38)

Clearly, D = DT .

Matrices B and D both include a common factor of 2L. Therefore, this factor can-

cels out and we need not consider it when we compute the matrices and we essentially

study an infinite system with translation invariance.

Now, we need minimize λ in the following problem:

cBcT

cDcT
= λ . (4.39)
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Differentiating with respect to ci,

(cDcT )(B +BT )cT − (cBcT )(D +DT )cT

(cDcT )2
= 0 (4.40)

⇒ BcT =

(
cBcT

cDcT

)
DcT = λDcT , (4.41)

which is a generalized eigenvalue problem. Our task is finding the smallest value

of λ as a function M , which can be efficiently found using the Lanczos algorithm.

However, this is still an exponential problem (in fact worse than diagonalizing the

Hamiltonian) so the range of M is very limited. Naive brute force method can only

access M up to 7 in a reasonable time 6. See Appendix C for an efficient algorithm

that enables us to find λ up to 11 7.

In above, we only considered the translation invariant case. Computation in trans-

lationally non-invariant system (such as open edges) is straightforward: simply replace

the matrix D with identity and adjust the boundary condition in the matrix B.

One remark is in order. Any local conserved quantity of range M should be

detected in this approach. Therefore, if our system has an accidental local constant

of motion, we should be able to know what it is. It turns out that up to M = 11,

we have not found any local conserved quantity other than the Hamiltonian itself.

When we take h = 0 in the model, the Hamiltonian becomes integrable and we can

reconstruct all known local constants of motion up to range M .
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Figure 4.5: The minimum value of the Frobenius norm of the commutator, Eq. 4.27
in a translation invariant system.

4.4 Slowest Relaxing Local Operators - Results

4.4.1 Smallest Value of Commutator in the Frobenius Norm

Figure 4.5 is the minimum value of the commutator with Hamiltonian in Frobenius

norm, Eq. 4.27 in a translation invariant system. Whether it decreases as a power-

law or a logarithmic correction to M−2 is not clear to determine from the range we

could access. Nevertheless, it is clear that the magnitude of commutator decreases

reasonably fast, at least surely faster than M−2, which we would derive from diffusive

mode of energy modulation as we explain below.

Although translation invariance is convenient for many theoretical works and some

numerical implementations such as infinite-Matrix Product State (iMPS), it is not the

most convenient to visualize the shape of operators in real space. Therefore, we break

the translation invariance (and also periodic boundary condition) and leave edge(s)

open. This means removing the summation in Eq. 4.26. We consider two cases: (1)

6280 hours using one 3.2GHz cpu with 64 GB of RAM
740 hours using the same resource
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place our operator ÂM at the edge of the chain and leave only one edge open and (2)

place ÂM in the middle of the chain so it could spread in both directions.

Before we look at the results, we first consider what scaling a diffusive mode in

open boundary condition can give. The simplest diffusive operator we can construct

is the modulation of energy density 8:

ρ(t = 0) =
1

Z
I +

∑
r

eikrhr =
1

Z
I +H(k) (4.42)

hr = gσxr + hσzr +
1

2
(σzr−1σ

z
r + σzrσ

z
r+1) , (4.43)

where k is the wave vector of the modulation. H(k) is the Fourier transform of

Hamiltonian.

When the maximum range of operator is M , k = 2π/(4M) is the smallest wave

vector (thus longest wavelength) the system can have. This will correspond to the

smallest diffusive mode. This initial condition will generate an energy current and

this energy current will relax the energy inhomogeneity diffusively.

From the continuity equation, we can derive the energy current,

jr+1/2 = g(σyrσ
z
r+1 − σzrσ

y
r+1) (4.44)

and we can write the commutator explicitly:

[ρ(t = 0), H] = [H(k), H] = i (2 sin(k/2)) j(k) ' ikj(k) , (4.45)

where j(k) is the Fourier transform of current operator and we assumed k is small.

Since this is the slowest diffusive mode for given k, if the diffusion is the only way to

make the slowly relaxing operator, this mode should be our optimal result (Eq.4.27).

8In translation invariant system, only k = 0 is allowed.
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Figure 4.6: (a)The minimum value of the Frobenius norm of the commutator, Eq.
4.27 in a system with open boundary condition with only terms in the Hamiltonian are
allowed. The scaling is very close to the prediction of simple diffusion, M−2. We place
the operator at one edge of the chain. (b) Weight of individual terms constituting
ÂM=12. As expected, the operator has a nice modulation with wave length 4M and
their relative magnitude is consistent with that of parameters in Hamiltonian (g, h,
J).
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Figure 4.7: The minimum value of the Frobenius norm of the commutator, Eq. 4.27in
a system with the open boundary condition. We place the operator ÂM at one edge.

Then, we will get the commutator

Tr(−([H(k), H])2) = −k2Tr((j(k))2) ∼ 1

M2
. (4.46)

Thus, the simplest diffusion will give the M−2 scaling. Note that this operator can be

constructed using only σx, σz, and σz ⊗ σz operators. Figure 4.6 (a) is the minimum

of Eq. 4.27 when only above three operators are used and the operator is placed at

the edge of the chain. The scaling is very close to the expectation of simple diffusion.

From figure 4.6 (b), we can see the weights of individual operators (magnitude of

coefficient in expansion Eq. 4.31) give a modulating pattern in accordance with wave

length 4M . Also, the relative magnitude of three kinds of operator is precisely the

same as the relative magnitude of parameters in Hamiltonian.

Now we turn to the fully optimal case with open boundary condition, where

all operators up to range M are allowed and see how smaller they can make the

commutator with Hamiltonian.
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Figure 4.7 is the minimum values of Eq. 4.27 when the operator begins from one

edge of the system so it can only spread to one direction. Although we cannot, again,

conclusively determine whether its decay is a power-law fashion or a logarithmic

correction to M−2, we can clearly see that this gives much faster decease than simple

energy modulation, Figure 4.6.

Therefore, we have numerically constructed operators that relaxes slower (at least

at early times) than simple diffusive mode. As mentioned earlier, however, mini-

mizing the Frobenius norm of the commutator with the Hamiltonian has a concrete

physical meaning only at t = 0. What enables us to make a stronger statement is

the magnitude of the operator norm of the commutator. Since it is numerically very

challenging to optimize the operator norm, we will take an alternative route. We use

the optimal operator ÂM found with the Frobenius norm (Eq. 4.27), and compute

its operator norm.

4.4.2 The Operator Norm and the Distance from Thermal

State

This time let us place our operator in the middle of the chain with open boundary

condition9 Figure 4.8 is the plot of the operator norm and the Frobenius norm of

the commutator of ÂM and Hamiltonian. Note that here we take the square root of

Eq. 4.27 for a fair comparison. For the range we could obtain exact operators, it

appears that the operator norm decreases exponentially with M unlike the Frobenius

norm (χ(M) ∼ e−αM). Therefore, once we find an initial condition satisfying that

γ(M) = |〈ÂM〉0 − 〈ÂM〉β| does not decrease exponentially (or decrease slower than

simple exponential), we have found a sequence of operators whose relaxation time

9It turns out that this gives the worst scaling in the Frobenius norm. Therefore, the other two
cases should have better results than this condition.
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Figure 4.8: The operator norm and the Frobenius norm of the commutator, [ÂM , H].
ÂM is found by minimizing the Frobenius norm of the commutator with H. The
operator norm decreases exponentially with M .

scales increase exponentially with the range of operators unlike diffusion, which is

quadratic in M .

Ref. [3] have studied the relaxation of fully polarized initial states using the same

Hamiltonian with different parameter choices (they chose (g, h, J) = (1.05,−0.5,−1)).

Up to the time scale they were able to reliably simulate (they used iMPS with trans-

verse folding method), they found different results for three different polarizations;

fast thermalization for the fully polarized state along y-direction, weak thermalization

(thermalized after time average) for the fully polarized state along −z-direction 10,

and nonthermalization (no signature of thermalization up to the time scale they can

simulate) for the fully polarized state along x-direction. Therefore, we also consider

the same initial conditions and see the distance between the thermal expectation value

and initial expectation value of ÂM . Figure 4.9 is the plot of the distance for three

fully polarized states. We can clearly see that the distance decreases exponentially

10Their definition of Hamiltonian is differ by a global sign from ours. We translate everything in
our sign convention.
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fast for y-polarized state while that of −z-polarized state has much more moderate

decay. The most striking result is the x-polarized state for its distance from thermal

state does not decrease with M but seems to saturate to finite value. Therefore, this

is a numerical evidence that x-polarized state may have exponentially slow relaxing

operators.

We have a visible tendency - exponential decrease of the operator norm and sat-

uration of the distance from thermal state. It is encouraging that two independent

methods (iMPS and our method) converge to the same answer: a fully polarized

state along x-axis have an operator that takes fairly long to thermalize. However,

one caveat in interpretation of the data is in order. The ratio of distance between

initial expectation value and thermal expectation value to operator norm of the com-

mutator is in fact smaller than one for the range we can compute. Thus, we expect

to have exponentially increasing time scale as a function of M , but do not exactly

have such time scale yet.

So far, we have focused on construction of slowly relaxing operators. In the

following subsection, we will see their relaxation in real time to confirm our results.

4.4.3 Real Time Relaxation

In this section, we explicitly construct an operator and see how it relaxes in real time

under exact quantum dynamics.

Using the optimal ÂM that we constructed in the open boundary condition where

only one edge is open (results of Figure 4.7), we construct an operator ÂM of length

2M .

ÂM = ÂM ⊗ IM − IM ⊗ (R̂M ÂM(R̂M)−1), (4.47)
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Figure 4.9: Distance between the thermal expectation value and the initial expec-
tation value of ÂM . We consider fully polarized states. The distance appears to
saturate with M for the x-polarized state while the distance decreases with M for
other two polarizations.

where IM is the identity operator acting on consecutive M spins and R̂M is the

reflection operator that reverses the order of an operator of range M . The new

operator ÂM has an odd parity under inversion and is orthogonal to the Hamiltonian

and thus its thermal expectation value at any temperature is zero. This implies that

for a finite system, this operator will relax to very small number and begin oscillating

around zero. For example, if ÂM is made of only operators in Hamiltonian (σx,

σz, and σzσz), ÂM is just a cosine energy modulation with wave length 4M as we

have seen in Figure 4.6. Such a diffusive mode will relax exponentially with rate

proportional to 1/M2. We want to see how slower the full optimal ÂM constructed

by using all possible operators up to range M relaxes to zero compared to the energy

modulation.

111



Figure 4.10: Comparison of real time relaxation of ÂM made by two methods: only
used operators in Hamiltonian (blue curve) and used all operators up to range M
(black curve). Full optimal case is always slower than energy modulation even though
it is optimized for t = 0.

As usual, we set up the initial condition as following (L = 2M):

ρ =
1

2L
IL + ÂM . (4.48)

Then, see expectation value of ÂM at time t:

〈ÂM(t)〉 = tr
(
ÂMe−iHtÂMeiHt

)
. (4.49)

Figure 4.10 is the real time relaxation of two operators, one constructed by using only

terms in Hamiltonian and the full optimal operator of range M = 7 (thus L = 14) 11.

We have normalized ÂM to have the Frobenius norm one, tr(ÂMÂ†M) = 1. It is clear

that the full optimal operator has always higher expectation value than the energy

modulation has. This shows that an operator that is optimized to have the slowest

11Since this computation requires the full diagonalization of the Hatmiltonian of length L, the
maximum range we can study is limited by M = 8.
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relaxation at t = 0 actually remains slower than energy diffusion for all times. This

is an explicit demonstration of slow relaxation of the operator we have constructed.

4.5 Outlook

In this chapter, we have seen that our nonintegrable quantum Ising model satisfies the

eigenstate thermalization hypothesis at least for four few-body observables we have

checked. Since ETH is a sufficient condition for thermalization of an isolated quantum

system, we may safely conclude that our model does equilibrate and thermalize.

Still, there are many open questions about ETH. First of all, we have only consid-

ered one site and two sites operators. There are numerous few-body operators that

are nonlocal in space, e.g. expectation value of momentum distribution. We have

not tested such operators and have not excluded possibilities that there could exist

few-body operators in which the values of outliers do not decrease. Second, it is not

clear whether these outlier states do form a “measure zero set” or constitute a set of

finite, although small, measure. Another related issue is how these outlier states are

robust against small changes in parameters in Hamiltonian. Third, there could be

other nonintegrable models that would violate the strong ETH. It is also not settled

whether there is a quantum analog of Kolmogorov-Arnold-Moser (KAM) theorem,

which states that ergodicity requires a finite amount of integrability breaking per-

turbation: we know that over the parameter space, ETH breaks down at integrable

point and ETH appears to be valid far away from it. But it is not clear until when

ETH holds as we approach the integrable point if starting from a point in parameter

space far away from integrability [103, 88]. We leave these interesting questions to

future investigation.

Given our model relaxes to thermal equilibrium, we have constructed a sequence

of local operators indexed by its maximum range M , which evolves the slowest under
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unitary quantum dynamics. In contrast to a naive expectation that an energy modu-

lation with the longest wavelength would be the slowest mode by energy diffusion, we

have shown that there exist operators that relax slower than trivial diffusion. This

seemingly striking result certainly needs further investigation. First of all, we do not

know the nature of these operators constructed from the algorithm. We know that

these do not resemble an energy modulation and these contain every single allowed

operator in the basis. Also, we know that the overlap between ÂM and ÂM+1 is

actually very small. Once we have a better understanding of what these operators

are, we may be able to construct ÂM for much larger M and see cleaner scaling to

determine whether the decay of the Frobenius norm of the commutator is actually a

power-law with some exponent greater than 2 or just a logarithmic correction.

There are only two known slow (or static) modes; transport of conserved quanti-

ties or projection onto eigenstates (static). Since these operators are different from

energy modulation, it should be either projection onto an eigenstate or something

new. Whichever it turns out to be, it would be interesting in its own way.

Finally, our new algorithm allows to find any existing local conservation laws.

Therefore, we can apply this method to find local constant of motion in an integrable

system or even a many-body localized system.
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Appendix A

Scaling Form of Transport

Coefficients of Ultracold Atoms

In chapter 2, we found a certain scaling form of transport coefficient in the lowest

nontrivial order in momentum expansion. In this appendix, we prove that the same

scaling form remains true in all orders of expansion.

A.1 κ′ and S ′s

First let’s consider κ′ and S ′s when ∇p = 0.

Observe that ∇p = 0 and mechanical equilibrium condition imply

∇n↑
n↑

=
∇n↓
n↓

=
∇n
n

= −∇T
T

. (A.1)

Therefore, Eq. (2.13) simplifies to

ψi = λ

L∑
`=0

C`iq
2`
i

qi · ∇T
T

, (A.2)
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where we abbreviated C`ii + C`ij ≡ C`i. Following the procedure explained in the

main text, we can obtain the following set of linearly independent equations (m =

1, 2, · · · , L).

n↑λ
3 [β0C0↑ + β1C1↑ + · · · βLCL↑] + n↓λ

3 [β0C0↓ + β1C1↓ + · · · βLCL↓] = 0

(A.3)

α00 (C0↑ − C0↓) + α01 (C1↑ − C1↓) + · · ·+ α0L (CL↑ − CL↓) = A0

(A.4)

n↓λ
3 [αm0 (C0↑ − C0↓) + (αm1↑C1↑ + αm1↓C1↓) + · · ·+ (αmL↑CL↑ + αmL↓CL↓)] = Am

(A.5)

n↑λ
3 [−αm0 (C0↑ − C0↓) + (αm1↓C1↑ + αm1↑C1↓) + · · ·+ (αmL↓CL↑ + αmL↑CL↓)] = Am .

(A.6)

Here, {α00, α0n, αm0, αmnσ} (m,n = 1, 2, . . . , L and σ =↑, ↓) are dimensionless

numbers which may depend on (λ/a)2 through the exponential integral and incom-

plete Gamma functions and implicitly depend on the order of approximation L but

do not explicitly depend on temperature and densities. {A`, β`} are determined by

Gaussian integrals as following:

A` =

∫
d3q

(2π)3

(
q2

4π
− 5

2

)
q2`q2

ze
−q2/4π =

1

3
23+2`π

1
2

+``Γ

[
5

2
+ `

]
(A.7)

β` =

∫
d3q

(2π)3
q2`q2

ze
−q2/4π =

1

3
23+2`π

1
2

+`Γ

[
5

2
+ `

]
, (A.8)

where Γ[x] is the Gamma function and A` and β` are purely numerical numbers

independent of physical parameters. Note that the first equation, Eq. (A.3) fixes

the frame to be j↑ + j↓ = 0. From dimensional analysis and the symmetry under

↑↔↓, we may write an ansatz solution of the above equations in the following form
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(m = 1, 2, . . . , L):

C0↑ = − 1

λ3

(
a0

n↑
+
b0

n↓
+
c0

n

)
(A.9)

C0↓ = − 1

λ3

(
b0

n↑
+
a0

n↓
+
c0

n

)
(A.10)

Cm↑ = − 1

λ3

(
am
n↑

+
bm
n↓

)
(A.11)

Cm↓ = − 1

λ3

(
bm
n↑

+
am
n↓

)
, (A.12)

where {a`, b`, c0} (` = 0, 1, 2, . . . , L) are 2L+3 unknown dimensionless numbers which

may depend only on (λ/a)2. Since the above set of equations should hold for any

values of n↑ and n↓, once we insert the ansatz to the above equations, we obtain

2L + 3 linear equations in terms of {a`, b`, c0}. Since we are still using the same set

of coefficients {α00, α0n, αm0, αmnσ} and {β`}, it is easy to see that once the original

set of equations is linearly independent (which is a necessary condition to have an

approximate solution of the Boltzmann equation), the set of descendent equations

is also linearly independent. Therefore, once we determine all {a`, b`, c0}, the above

ansatz is the (L’th order) approximate solution of the Boltzmann equation.

When ∇p = 0, we know that jspin = −S ′s∇T . It is straightforward to show that

S ′s = − ~
m

n↑
T

(
L∑
`=0

β`C`↑

)
(A.13)

=
~
m

1

T

1

λ3

(
L∑
`=0

β`a` +
n↑
n↓

L∑
`=0

β`b` +
n↑
n
β0c0

)
. (A.14)

Since {a`, b`, c0} satisfies Eq. (A.3), we have two identities:

L∑
`=0

β`a` = −1

2
β0c0 (A.15)

L∑
`=0

β`b` = 0 . (A.16)
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Inserting these identities to Eq. (A.14), we finally obtain the full polarization and

temperature dependence of the Seebeck coefficient (β0 = 2π).

S ′s =
~
m

n↑ − n↓
nλ3

π

T
c0 . (A.17)

This proves that the scaling of Eq. (2.19) is indeed true at all orders of approximation.

Furthermore, we see that the dimensionless scaled function hL(x) (L is the order of

approximation) is

hL((λ/a)2) = πc0 . (A.18)

It should be noted that c0 implicitly depends on the order of approximation.

For the thermal conductivity κ′, we are only interested in the first term, κ′1, which

directly comes from the energy current jε.

κ′1 = − 1

4π

~
m

L∑
`=0

B`(n↑C`↑ + n↓C`↓) , (A.19)

where B` = 4π(5/2+`)β`. Plugging in ansatz solution and using Eq. (A.3), we obtain

κ′1.

κ′1 =
~
m

1

λ3

L∑
`=1

(
n2
↑b` + 2n↑n↓a` + n2

↓b`

n↑n↓

)
`β` (A.20)

Again, we emphasize that a` and b` are function of (λ/a)2 and implicitly depend on

the order of approximation. This proves that the algebraic form of the polarization

dependence of the thermal conductivity obtained in the main text remains to all

orders of approximation.
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A.2 Ds and P ′s

Now we study Ds and P ′s when ∇T = 0 (thus ∇n = 0). As we did in the previous

subsection, we want to express ∇n↑ and ∇n↓ in terms of n∇p.

∇ni
ni

= εi
n∇p
2ni

, (A.21)

where ε↑ = 1 and ε↓ = −1. Then, the ansatz, Eq. (2.13), takes the following form

(i 6= j):

ψi = −εiλn
2

L∑
`=0

(
C`ii
ni
− C`ij

nj

)
q2`
i qi · ∇p (A.22)

Once we define

C̃`i ≡ −
n

2

(
C`ii
ni
− C`ij

nj

)
, (A.23)

we reduce the system similar to the previous case. The 2(L+ 1) linearly independent

equations are (m = 1, 2, · · ·L)

n↑λ
3
[
β0C̃0↑ + β1C̃1↑ + . . . βLC̃L↑

]
− n↓λ3

[
β0C̃0↓ + β1C̃1↓ + . . . βLC̃L↓

]
= 0

(A.24)

α00

(
C̃0↑ + C̃0↓

)
+ α01

(
C̃1↑ + C̃1↓

)
+ · · ·+ α0L

(
C̃L↑ + C̃L↓

)
= Ã0

(A.25)

n↑n↓λ
3

n

[
αm0

(
C̃0↑ + C̃0↓

)
+
(
αm1↑C̃1↑ − αm1↓C̃1↓

)
+ · · ·+

(
αmL↑C̃L↑ − αmL↓C̃L↓

)]
= Ãm

(A.26)

n↑n↓λ
3

n

[
−αm0

(
C̃0↑ + C̃0↓

)
+
(
αm1↓C̃1↑ − αm1↑C̃1↓

)
+ · · ·+

(
αmL↓C̃L↑ − αmL↑C̃L↓

)]
= −Ãm .

(A.27)
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α′s and β` are same as in the previous subsection and Ã` = β`.

Although coefficients of Eqs. (A.26) and (A.27) are linearly dependent, once we

combine them, we obtain another L linearly independent equations.

L∑
n=1

(αmn↑ − αmn↓)(C̃n↑ − C̃n↓) = 0 . (A.28)

Together with Eq. (A.28), we have 2(L + 1) linearly independent equations that

uniquely determine all C̃`i.

First observe that the solution of Eq. (A.28) is trivial; C̃m↑ = C̃m↓. Then, we use

the following ansatz 1:

C̃0↑ = − 1

λ3

(
ã0

n↑
+
b̃0

n↓

)
(A.29)

C̃0↑ = − 1

λ3

(
b̃0

n↑
+
ã0

n↓

)
(A.30)

C̃m↑ = − 1

λ3

nc̃m
n↑n↓

= C̃m↓ . (A.31)

{ã0, b̃0, c̃m} are dimensionless numbers that may only depend on (λ/a)2. Substituting

the above into original linear equations, we obtain the same linearly independent

equations in terms of {ã0, b̃0, c̃m}. Therefore, once we determine them, we have the

approximate solution of the Boltzmann equation.

Following the same procedure when we obtained S ′s and κ′1, we can show that

Ds =
~
m

2π

λ3
(ã0 − b̃0) (A.32)

P ′s1 =
~
m

T

nλ3

L∑
`=1

(
n2
↑ − n2

↓

n↑n↓

)
c̃``β` , (A.33)

1Motivation of this choice came from the observation that the right hand side of the linear
equation does not depend on densities. Therefore, a quantity in the big parenthesis in the left hand
side must be proportional to n/(n↑n↓).

120



where P ′s1 is the first term in the Peltier coefficient. Once we scale the scattering

length with λ, the polarization and temperature dependence of Ds and P ′s1 at an

arbitrary L remains the same as for L = 1. This proves that the scaling structure of

the transport coefficients remains the same to all orders of approximation.
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Appendix B

Hamiltonian Parameter Choice

The model we consider is the one dimensional Ising chain with transverse and longi-

tudinal field with open boundary condition.

H =
L∑
i=1

(gσxi + hσzi ) +
L−1∑
i=1

Jσzi σ
z
i+1 . (B.1)

Strictly speaking, this model is nonintegrable as long as all parameters, g, h, and J ,

are nonzero. However, since the accessible size of exact diagonalization method is

limited, some choices of parameters can be superior than other choices to do finite

size scaling. One characteristic feature of a nonintegrable system is that its eigenval-

ues show level repulsion [79]. One convenient quantity to look at its level statistics

is the ratio distribution of adjacent eigenvalues [89, 2]. First, order the eigenvalues

in ascending order, then compute the distribution of ri = (λi+2 − λi+1)/(λi+1 − λi),

where λi is the i’th eigenvalue. For a nonintegrable system, this distribution should

follow the Wigner-like surmise while an integrable system should exhibit Poissonian

distribution [2]. Figure B.1 is the ratio distributions for two different set of parame-

ters, (g, h, J) = (0.6, 1.0, 1.0) and (g, h, J) = ((
√

5+5)/8, (
√

5+1)/4, 1.0), within even

sector of L = 16. Although both of them are far from Poissonian and look similar to

Wigner’s surmise, (g, h, J) = ((
√

5+5)/8, (
√

5+1)/4, 1.0) case shows stronger level re-
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Figure B.1: Ratio distribution of level spacing for two sets of parameter choices. r is
the ratio of level spacings between two adjacent energy gaps. For L = 16, there are
32896 eigenvalues in even parity eigenstates, from which we obtain 32894 ratios. This
ratio distribution is computed from the histogram of the lowest 32000 ratios with 250
equally spaced bins. (g, h, J) = ((

√
5 + 5)/8, (

√
5 + 1)/4, 1.0) case shows better level

repulsion near r = 0.

pulsion and agrees with the Wigner’s surmise better. To minimize finite size effect, the

latter choice of parameter should be more appropriate. Another aspect to consider is

the structure of eigenvalues. For a generic nonintegrable model, we expect the distri-

bution of eigenvalues to be featureless with Gaussian density of state [54, 53]. Figure

B.2 is the histogram of 32896 even state eigenvalues for the same two sets of parame-

ters with L = 16. Clearly, (g, h, J) = (0.6, 1.0, 1.0) case shows the reminiscent feature

of g = 0, quasi-periodic eigenvalues with small perturbation coming from nonzero

g, which could make the finite size scaling very difficult under the limited accessible

system size. Therefore, (g, h, J) = ((
√

5 + 5)/8, (
√

5 + 1)/4, 1.0) is a better choice

of parameters. Note that checking only one of the criteria used here might not be

sufficient to accept the parameters, as Figure B.1 shows that (g, h, J) = (0.6, 1.0, 1.0)
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Figure B.2: Histogram of 32896 even state eigenvalues for two sets of parameters.
(g, h, J) = (0.6, 1.0, 1.0) case has quasi-periodic structure whereas the other case is
featureless Gaussian. In order to study generic properties of nonintegrable systems
with limited accessible system size, we should use parameters with which the distri-
bution of eigenvalues does not have distinct structure.

124



Figure B.3: Direct comparison of the entanglement spreading S(t) and the energy
diffusion R(t) for L = 16 and (g, h, J) = (−1.45, π/2, 1.0). Entanglement spreading
is faster than energy diffusion but direct comparison is more difficult than Figure 3.9
in the main text.

option may not appear too bad and the density of states of the integrable case (h = 0)

seems to be very similar to that of (g, h, J) = ((
√

5 + 5)/8, (
√

5 + 1)/4, 1.0).

As long as the magnitude of g and h are comparable, most, if not all, choices of

parameters satisfy the above two criteria. Here we present the result obtained from

another choice; (g, h, J) = (−1.45, π/2, 1.0). Figure B.3 is the central plot of the

main text using this set of parameters. It shows the same qualitative features; ballis-

tically spreading entanglement, initial wiggle of energy diffusion, diffusive transport

of energy, and the same final saturation value of entanglement. However, compared

to the choice given in the main text, this option yields earlier deviation from ballistic

spreading of entanglement and especially extended initial transient in energy diffu-

sion. What mostly limits the choice of parameters is the irregular initial behavior of

energy diffusion while spreading of entanglement has appeared relatively insensitive

to the choice of parameters. Figure B.4 shows that the initial non-diffusive behavior
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Figure B.4: Energy diffusion measure R(t) (defined in the main text) for (g, h, J) =
(−1.45, π/2, 1.0). The initial transient does not scale with the system size and thus
it is irrelevant in thermodynamic limit. Before finite size effect begins to matter, it
shows diffusive behavior which extends as the system size increases. The red line is
a
√
t guide line.

does not scale with the system size and thus does not affect any asymptotic proper-

ties. Although it is still apparent that the entanglement spreading is faster than the

energy diffusion, the directly comparable range is smaller than that in the main text.

This is the main reason of the parameter choice in the main text.

We emphasize that the reason for the careful choice of parameters is mainly due

to the restricted accessible system size of exact diagonalization method. We can still

see the ballistic spreading of entanglement and diffusive behavior of energy transport

even with the parameter choice of (g, h, J) = (0.6, 1.0, 1.0). This set of parameters

just gives small scaling range and very strong initial transient in energy diffusion that

makes direct comparison difficult.
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Appendix C

Efficient algorithm to find slowest

relaxing operators

In chapter 4, we find slowest relaxing operators by searching for local operators that

give the smallest value of the commutator with Hamiltonian in Frobenius norm. This

searching process is an exponential problem, since there are total 4M − 1 basis oper-

ators for a given M . Even if we take into account that the slowest operator can be

written with only real operators in σz basis (even number of σy operators), we still

need to consider 22M−1 commutators. Then, we have to find the smallest eigenvalue

of the matrix equation. Clearly, this is a much worse problem than diagonalizing

spin-1/2 Hamiltonian, which has 2L scaling. Therefore, this may seem impossible to

go beyond M = 8. However, once we fully manipulate the sparseness of the matrix

and structure of commutators among Pauli operators, we can in fact proceed up to M

= 11 using reasonable resources 1. Beyond M = 12, finding the smallest eigenvalue

(using Lanczos algorithm) limits the feasibility of computation.

Since we cannot improve the speed of finding the smallest eigenvalue from the

Lanczos methods, speed up should be gained from construction of the B matrix, Eq.

1Using a 3.2 GHz cpu with 64 GB of RAM, it takes about 40 hours
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4.35. There are three key observations to make the algorithm efficient: (1) In the set

of basis operators, most commutators among them vanish so the matrix B is sparse.

(2) Trace of a product of two Pauli operators are zero unless the operators are the

same. (3) Matrix multiplication is much faster than running “for” loops. The speed

up is dramatic especially when the matrices are sparse.

Another observation is that Hamiltonian can also be written in terms of basis

operators:

H =
′∑
`

h`Ô` , (C.1)

where Σ́ contains only the indexes of basis operator in Hamiltonian. Then, writing

ÂM =
4M−1∑
i=1

ciÔi, (C.2)

we want to compute the following:

Tr(−[ÂM , H][ÂM , H]) = −
∑
i,j

′∑
`,k

cicjh`hkTr([Ôi, Ô`][Ôj, Ôk]) (C.3)

= −
∑
i,j

cicjBi,j . (C.4)

Notice that a product of two Pauli operators is just another Pauli operator with

coefficient, ±i. For each pair of strings of Pauli operators, we define a matrix βi,j and

γi,j and a function f(i, j):

[Ôi, Ôj] = βi,jÔiÔj = βi,jγi,jÔf(i,j) . (C.5)
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Determining βi,j, γi,j, and f(i, j) for given i and j is straightforward. In fact, most

of βi,j are zero so we rarely need to compute γi,j and f(i, j). Then, Eq. C.3 becomes,

tr(−[ÂM , H][ÂM , H]) = −
∑
i,j

cicj

′∑
`,k

βi,`γi,`h`βj,kγj,khktr(Ôf(i,`)Ôf(j,k)) (C.6)

= −
∑
i,j

cicj

′∑
`,k

β̃i,` ˜βj,kδf(i,`),f(j,k) (C.7)

= −
∑
i,j

cicjBi,j , (C.8)

where β̃i,j is

β̃i,j = βi,jγi,jhj . (C.9)

Also we used the observation (2).

For translation invariant system, we need to consider overlapping contribution 2.

Using the observation (2), we immediately know that the overlapping term is nonzero

only if the indexes f(i, `) and f(j, k) differ by a power of 4. Eventually, the B matrix

becomes:

Bi,j =
M∑
s=0

′∑
`,k

β̃i,`β̃j,kδf(i,`)×4s,f(j,k) . (C.10)

We can go further. Use the fact that δi,j = δi,αδα,βδβ,j, we can write

Bi,j =
M∑
s=0

′∑
`,k

∑
α,γ

β̃i,`δf(i,`),αδ4sα,γδγ,f(j,k)β̃j,k . (C.11)

2For an open boundary condition, this step can be skipped.
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Now we define ηα,γ(s) and θi,α as

ηα,γ(s) = δ4sα,γ (C.12)

Θi,α =
′∑
`

β̃i,`δf(i,`),α . (C.13)

Finally, the B matrix is

Bi,j =
M∑
s=0

∑
α,γ

Θi,αηα,γ(s)Θγ,j . (C.14)

Therefore,

B =
M∑
s=0

Θη(s)ΘT (C.15)

which is just a sum of product of three sparse matrices. Now the task is to find two

matrices, Θ and η(s). Running MatLab in a machine with 3.2GHz CPU and 64 GB

of RAM, brute force calculation (running many “for” loops to construct B matrix)

takes about 280 hours for M = 7 while the efficient algorithm takes about 24 seconds

and uses RAM less than 1GB.
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[3] M. C. Bañuls, J. I. Cirac, and M. B. Hastings. Strong andweak thermalization
of infinite nonintegrable quantum systems. Phys. Rev. Lett., 106:050405, 2011.

[4] J. H. Bardarson, F. Pollmann, and J. E. Moore. Unbounded growth of en-
tanglement in models of many-body localization. Phys. Rev. Lett., 109:017202,
2012.

[5] D. Basko, I. Aleiner, and B. Altshuler. Metal-insulator transition in a weakly
interacting many-electron system with localized single-particle states. Ann.
Phys., 321:1126, 2006.

[6] M. Berry and M. Tabor. Level clustering in the regular spectrum. Proc. R. Soc.
A, 356:375, 1977.

[7] W. Beugeling, R. Moessner, and M. Haque. Finite-size scaling of eigenstate
thermalization. Phys. Rev. E, 89:042112, 2014.

[8] I. Bloch, J. Dalibard, and W Zwerger. Many-body physics with ultracold gases.
Rev. Mod. Phys., 80:885, 2008.

[9] O. Bohigas, M. J. Giannoni, and C. Schmit. Characterization of chaotic quan-
tum spectra and universality of level fluctuation laws. Phys. Rev. Lett., 52:1,
1984.

[10] L. W. Boltzmann. Vorlesungen über Gastheorie (Translated as Lectures on Gas
Theory. Cambridge University Press, 1964). Barth, Leipzig, 1896.

[11] T. Bourdel, J. Cubizolles, L. Khaykovich, K. M. F. Magalhaẽs, S. J. J. M. F.
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