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Abstract

The interplay of disorder and interactions can have remarkable effects on the physics

of quantum systems. A striking example is provided by the long conjectured—and

recently confirmed—phenomenon of many-body localization. Many-body localized

(MBL) phases violate foundational assumptions about ergodicity and thermalization

in interacting systems, and represent a new frontier for non-equilibrium quantum

statistical mechanics.

We start with a study of the dynamical response of MBL phases to time-dependent

perturbations. We find that that an asymptotically slow, local perturbation induces a

highly non-local response, a surprising result for a localized insulator. A complemen-

tary calculation in the linear-response regime elucidates the structure of many-body

resonances contributing to the dynamics of this phase

We then turn to a study of quantum order in MBL systems. It was shown that

localization can allow novel high-temperature phases and phase transitions that are

disallowed in equilibrium. We extend this idea of “localization protected order” to

the case of symmetry-protected topological phases and to the elucidation of phase

structure in periodically driven Floquet systems. We show that Floquet systems can

display nontrivial phases, some of which show a novel form of correlated spatiotem-

poral order and are absolutely stable to all generic perturbations.

The next part of the thesis addresses the role of quantum entanglement, broadly

speaking. Remarkably, it was shown that even highly-excited MBL eigenstates have

low area-law entanglement. We exploit this feature to develop tensor-network based

algorithms for efficiently computing and representing highly-excited MBL eigenstates.

We then switch gears from disordered, localized systems and examine the entangle-

ment Hamiltonian and its low energy spectrum from a statistical mechanical lens,

particularly focusing on issues of universality and thermalization.
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We close with two miscellaneous results on topologically ordered phases. The first

studies the nonequilibrium “Kibble-Zurek” dynamics resulting from driving a system

through a phase transition from a topologically ordered phase to a trivial one at a

finite rate. The second shows that the four-state Potts model on the pyrochlore lattice

exhibits a “Coulomb Phase” characterized by three emergent gauge fields.
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Chapter 1

Ergodicity and Localization

1.1 Anderson Localization

In 1958, P. W. Anderson published his seminal paper with the ambitious aim to “lay

the foundation for a quantum mechanical theory of transport” [15]. At the time,

experiments by Fletcher and Feher at Bell Laboratories had observed anomalously

long relaxation times for electron spins in Si semiconductors doped with impuri-

ties [104, 103, 105]. In the course of understanding these experiments, Anderson dis-

covered that the eigenfunctions of non-interacting electrons in a disordered landscape

are exponentially localized for strong enough disorder—a phenomenon now termed

Anderson Localization [15]. Such exponentially localized electrons cannot conduct

heat or electricity, which has dramatic consequences for the transport properties of

disordered materials. Anderson’s paper thus went to the heart of two fundamental

streams of research in condensed matter physics: (i) the study of transport and con-

ductance in solids and (ii) the role of disorder and impurities which are ubiquitously

present.

Anderson’s results explained Feher’s experimental observations, but broke with

the prevailing orthodoxy at the time which was rooted in band theory and a picture

2



of extended Bloch electrons diffusively scattering off impurities. Although his work

went on to win the Nobel Prize two decades later and now has over 5500 citations,

it was initially only appreciated by a few notables including Sir Neville Mott, Elihu

Abrahams and David Thouless. As Anderson said in his Nobel acceptance speech in

1979, “Very few believed [localization] at the time and even fewer saw its importance;

among those who failed to fully understand it at first was certainly its author. It has

yet to receive adequate mathematical treatment, and one has to resort to the indignity

of numerical simulations to settle even the simplest questions about it.”

We now discuss Anderson’s calculation more concretely. Anderson simplified Fe-

her’s experimental setup by neglecting electron-electron interactions and used a con-

ceptually tractable non-interacting tight-binding model of electrons hopping on a

lattice with disordered onsite potentials

H =
∑

i

Eic
†
ici +

∑

i 6=j
Vi,jc

†
icj + h.c, (1.1)

where c†i is the creation operator for an electron on site i, the onsite potentials Ei

are independent and identical random variables drawn from a distribution of width

W , and the hopping terms Vi,j are translationally invariant and short-ranged. For

concreteness, we can specialize to the case with only nearest-neighbor hopping with

Vi,i+1 = V . This problem can be analyzed in the “locator limit” where V � W and

the hopping is treated perturbatively. In this limit, the unperturbed eigenstates live

on individual sites |i〉 = c†i |0〉 and the hopping is highly detuned from the typical

nearest-neighbor potential difference |Ei − Ei+1| ∼ W � V . Intuitively, this weak

off-resonant hopping is ineffectual at hybridizing nearby sites, and two sites a distance

r apart typically only “mix” at rth order in perturbation theory with a strength ∼

V
(
V
W

)r ∼ V e−r/ξ. This leads to exponentially localized eigenstates, |ψ(r)|2 ∼ e−r/ξ.
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The actual calculation is, of course, more nuanced and requires a careful prob-

abilistic treatment of the disorder. The heuristic perturbative picture above can

break down in individual samples at some high order n in perturbation theory due

to “resonances” wherein two sites a distance n apart could, by chance, have almost

degenerate on-site potentials, |Ei − Ei+n| . V e−r/ξ, leading to a vanishing energy

denominator and a large tunneling. Once needs to carefully estimate the probability

of such resonances and show that they are exponentially rare for localization to be

stable. Anderson’s calculation sums the perturbative series to all orders and renor-

malizes the bare on-site energies to account for resonances before arriving at the

conclusion of localization.

Anderson’s model marked the beginning of a long and sustained investigation into

the quantum mechanical properties of localization-delocalization transitions1, a topic

which continues to be intensely studied to this date. It was eventually shown that in

one and two dimensions, all electronic wavefunctions at all energies are exponentially

localized even for arbitrarily weak disorder, thereby implying a vanishing conductivity

σ(T ) = 0 at all temperatures T . In three and higher dimensions, Mott introduced

the idea of a sharp mobility edge in energy which separates localized and extended

states [221]. Thus, for d ≥ 3, the conductivity is only zero at T = 0 and obeys

σ(T ) ∼ e−Ec/T at finite temperatures where Ec is the distance from the Fermi level

(located inside the localized band) to the mobility edge. A universal scaling theory

of the localization transition was eventually developed [5] by the “gang of four”—

Abrahams, Anderson, Licciardello and Ramakrishnan—building on earlier work by

Edwards and Thouless who identified the Thouless energy, ET , as the inverse diffusion

time across a system with open boundaries [97]. The Thouless conductance, defined

1There are a subset of more general metal-insulator transitions which can include, for example,
the transition from a Mott insulator to a metal.
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as the ratio of ET to the mean electronic level spacing δ,

g =
ET
δ

=
G

e2/h

was identified as the universal variable in the scaling theory of the transition (G is a

dimensionless conductance).

For completeness, we note that the properties of localization transitions is a vast

and extensively studied topic (for a review, see [102] and references therein). The

phenomenological “gang-of-four” scaling theory of localization was buttressed by the

discovery of an effective field-theoretic description of Anderson localization in terms

of a non-linear σ model [322]. The RG treatment of the σ model gave the same

flow equations as the scaling theory, and an ε expansion in 2 + ε dimensions was

used to compute the critical exponents. More generally, universal aspects of An-

derson transitions (which include quantum Hall transitions) have been extensively

analyzed, emphasizing the role of dimensionality and symmetry classes. A com-

plete set of all symmetry classes of disordered systems was found—characterized by

time-reversal, spin-rotation, chiral or particle-hole symmetries—and a classification of

disordered systems based on these symmetry classes was established by Altland and

Zirnbauer [11]. Finally, it has now been realized that, in many cases, the symmetry

class does not uniquely determine the universality class of the transition; a notable

example of this is the quantum Hall transition which is described by a σ model with

an additional topological term [257].

1.2 Many-Body Localization (MBL)

We now turn to the many-body Anderson problem with interactions. As mentioned

earlier, the original experiment which motivated Anderson’s calculations comprised a

system of interacting spins in a doped semiconductor. The fate of Anderson localiza-
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tion in the presence of weak, short-ranged many-body interactions was a long-standing

problem for decades. Notable progress on this question was first made by the work of

Fleishman and Anderson in 1980 [111], which was followed by many other attempts

at a definitive solution [13, 123]. Nevertheless, the issue remained largely unresolved

till the work of Basko, Aleiner and Altshuler in 2006 [27].

Consider a non-interacting system (say in d < 3) in which all single-particle eigen-

states are localized. If we only consider elastic scattering processes between localized

states, it is clear that the conductivity will always be strictly zero. On the other

hand, it was shown early on by Mott [220] that the presence of a heat bath allows

electrons to hop between localized states by exchanging phonons with the bath which

leads to a variable-range hopping conductivity

σ(T ) = σ0e
−(T0/T )1/d+1

(1.2)

which is finite for arbitrarily low T , even though all single-particle (SP) states are

localized. The existence of MBL turns on whether electron-electron interactions in

an isolated many-body system (not coupled to any external bath) can play the role

of an “internal bath” and lead to a finite conductivity through a similar hopping

mechanism.

1.2.1 Basko, Aleiner, Altshuler (BAA)

The first compelling evidence in favor of MBL was presented in BAA’s work [27] where

they undertook a rigorous perturbative treatment of the many-body interactions to all

orders in perturbation theory and showed that the localization persists upto a finite

energy density which is extensive in the system size L. In other words, they predicted

a many-body mobility-edge separating the extended and localized eigenstates of the

interacting problem, and a finite Tc such that the system has strictly zero conduc-
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tivity σ(T ) = 0 for T < Tc. (Henceforth we will refer to energy densities as far

as possible since the notion of temperature is ill-defined for an isolated many-body

insulator). There is a metal-insulator transition separating the insulating (localized)

and conducting phases.

Note that the presence of a delocalized thermal bath with a continuous energy

spectrum will always give a conductivity of the form (1.2) since a phonon of the

requisite frequency can always be found to match the energy difference between any

pair of localized states. On the other hand, BAA showed that local electron-electron

interactions can only couple SP states localized within a small localization volume

which effectively leads to a discrete electronic spectrum. We now briefly review some

salient features of BAA’s arguments which have important similarities with Ander-

son’s original treatment.

The electron-electron interaction is assumed to be short-ranged and is treated as

a perturbation to an Anderson insulator in which all SP states are localized. In the

basis of localized SP states, the Hamiltonian takes the form

H =
∑

α

ξαc
†
αcα +

∑

αβγδ

Vαβγδc
†
αc
†
βcγcδ, (1.3)

where c†α creates a localized SP state with energy ξα, localization center ~rα, and

localization length ζloc. The unperturbed eigenstates are localized in Fock space and

labeled by the occupation numbers nα = 0, 1 of SP orbitals |n〉 = |nα1nα2 · · ·nαN 〉

and N = Ld.

We define [27] the local spectral gap δζ as the typical energy spacing between SP

states whose spatial separation does not exceed ζloc

δζ =
1

νζdloc

∼ O(1) (1.4)
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where ν is the SP density of states per unit volume. Since V is a short-range operator,

the matrix elements Vαβγδ are constrained in both energy and space and decrease

exponentially with scale ζloc as the spatial separation between SP states is increased.

For simplicity, the matrix elements are chosen to be finite Vαβγδ ∼ λδζ only when

|~rα − ~rβ| . ζloc, |~rα − ~rγ| . ζloc, |~rβ − ~rγ| . ζloc, etc.,

|ξα − ξδ|, |ξβ − ξγ| . δζ or |ξα − ξγ|, |ξβ − ξδ| . δζ .

(We note that the case of longer-ranged interactions has been considered in Refs. [111,

333] which derive bounds on how long-ranged the interaction can be for localization

to still be stable.) A single application of the interaction leads to the decay of an elec-

tronic excitation in state α into three excitations: a hole in state β and two electrons

in γ, δ. Further applications produce five-particle, seven-particle excitations etc. If

the matrix element for the decay at each step is comparable to the energy mismatch,

the exact many-body eigenstates become delocalized in Fock space. The inelastic

quasiparticle relaxation rate Γ quantifies the rate of transition between different lo-

calized states and is, heuristically, proportional to the conductivity.

Anderson [15] considered a tight-binding model on d dimensional lattice with

nearest neighbor coupling V and typical nearest-neighbor energy mismatch∼ W . The

full many-body problem across all particle number sectors looks like the Anderson

problem on an N -dimensional hypercubic lattice where each “site” is a basis state in

Fock space and Vαβγδ generates “hops” in Fock space. For a fixed particle number

sector, the shape of the graph depends on the filling and the local structure looks

tree-like. If make the following identifications [27]:

1. V → λδζ − typical value of the coupling matrix element

2. W → δζ − typical energy mismatch for transitions, |ξα + ξβ − ξγ − ξδ| ∼ δζ
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3. coordination number 2d → T/δζ which represents the number of electrons

within a localization volume available for collision with α,

and use Anderson’s estimate [15] for the localization-delocalization transition (which

is a good approximation in high dimensions d > 2 and is exact on the Cayley tree [4]),

V d

W
ln
W

V
→ λT

δζ
ln

1

λ
∼ 1

we would predict a finite temperature localization-delocalization transition for the

many-body problem.

Once again, the actual calculation is much more nuanced. Anderson’s estimate of

the transition depends on the details of the lattice and the analogy between real and

Fock space is not exact. Further, one now needs to estimate the probability of many-

body resonances in Fock space which could destabilize localization. BAA’s formidable

calculation used the self-consistent Born approximation to obtain the imaginary part

of the single-particle self-energy Im Σ—equal to the relaxation rate Γ—and found a

strictly zero conductivity below a finite transition temperature Tc, even in the many-

body setting.

1.2.2 MBL in a Spin Model

Basko, Aleiner and Altshuler’s calculation [27] was a perturbative tour de force which

put the theory of many-body localization on a solid theoretical footing. Nevertheless,

the combination of disorder and interactions makes MBL an extremely challenging

problem with few theoretical tools at its disposal. It is fair to say that progress on

this topic would have been slow and scant had the community not resorted to the

“indignity of numerical simulations” [227, 234, 152, 182, 208] to better understand

this problem. In fact, even simulations are restricted to small systems of ∼ 20 sites
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in one dimension due to the exponential growth of the many-body Hilbert space2.

Even so, guided by these small-size numerics, an intense period of focused effort over

the last five years has led to great strides in our understanding and has uncovered

several remarkable properties of the MBL phase which we will discuss in the following

sections and chapters.

A now canonical model for studying MBL was introduced by Pal and Huse [234] in

an exact diagonalization study of a Heisenberg spin-1/2 chain with random z-directed

fields

H =
L−1∑

i=1

J(Sxi S
x
i+1 + Syi S

y
i+1 + Szi S

z
i+1) + hiS

z
i (1.5)

where Sαi = σαi for α = x, y, z and the σαi are Pauli spin 1/2 degrees of freedom

on site i. The fields hi are drawn randomly and independently from a distribution

that is uniform in [−W,W ] and J = 1. Under a Jordan-Wigner transformation,

this model maps to the fermionic Anderson model (1.1) with an additional nearest-

neighbor density-density interaction of strength Jz = 1. This model conserves energy

and total Sz (particle number in fermion language).

When J = 0, the many-body eigenstates of (1.5) are simply product states of σzi of

the form |n〉 = | ↑↓↓ · · · ↑〉. The full set of 2L basis states which are the simultaneous

eigenstates of all the {σzi } form the corners of an L-dimensional hypercube, with

nearest neighbors on the hypercube differing by one spin flip. As discussed in the

previous sections, perturbing with J � W is ineffectual at hybridizing the basis

states and the system looks many-body localized on the hypercube. It is striking to

note that for large enough disorder W , the system is many-body localized even at

infinite temperature [227, 234] by which we mean that every many-body eigenstate

of (1.5) at every energy is localized. This model has a delocalization transition at

Wc ' 3.5 [234, 208] although there is some evidence that the actual transition might

2See Chapters 7 and 8 for alternate numerical techniques based on tensor networks which are in
incipient stages of development but are promising in their potential to probe much larger system
sizes.
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Figure 1.1: Phase diagram of the disordered Heisenberg chain (1.5) as a function of
energy density ε and disorder strength W showing the many-body localized and ex-
tended (ergodic) phases separated by the many-body mobility edge. Figure from [208].

be at a larger disorder strength [90]. The delocalization transition is a quantum

mechanical phase transition (even though it occurs at finite temperatures) across

which the nature of the system’s eigenstates changes in a singular fashion. This is

a dynamical phase transition and not a thermodynamic one in that there are no

singularities in equilibrium thermodynamic observables as the transition is crossed.

Fig. 1.1, taken from Ref. [208], shows the phase diagram of the disordered Heisenberg

chain (1.5) as a function of energy density ε and disorder strength W showing the

many-body localized and delocalized phases and the many-body mobility edge. For

W & 3.5, all MB eigenstates are localized.

While the eigenstates of the model (1.5) are localized on the hypercube of basis

states for large W , it is important to note that, in the spin language, localization

refers to locality in real space which may or may not imply localization on the hyper-

cube [223]. Each spin on each site has a local Hilbert space and, in general, localized
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eigenstates look like product states of spins pointing in different directions on the

Bloch sphere at each site. Such a state can look quite extended on the hypercube

depending on the choice of local bases. As an example, a product state which is a si-

multaneous eigenstate of all {σxi } operators is local in real space but looks completely

extended on the hypercube defined by the {σzi } basis states.

There are many diagnostics which can be used to distinguish the MBL and delo-

calized phases and to detect the transition between them [234, 182, 208] (such as the

ones used to obtain the phase boundary in Fig 1.1). A particularly useful numeri-

cal diagnostic probes the transition through the properties of the spectral statistics

of adjacent energy levels of the many-body Hamiltonian [227]. In the MBL phase,

the eigenstates are localized and states that are close in energy look very different

spatially. To see why this is, consider the model (1.5) with J = 0: H =
∑

i hiS
z
i .

The average many-body level spacing is exponentially small in L—because while the

many-body bandwidth is extensive and scales as L, the many-body Hilbert space for

this spin 1/2 system has dimension 2L. A particular eigenstate |n〉 = | ↑↓↓ · · · ↑〉 has

eigenenergy En =
∑

i sihi where si is the σzi quantum number on site i. Flipping a

single spin (or a few) gives a new eigenstate which is close to |n〉 on the hypercube,

but one with an O(1) energy separation ∼ W which is much larger than the MB level

spacing. To get an exponentially small energy separation, one typically has to flip

extensively many ∼ O(L) spins. More generally, nearby energy levels in the localized

phase look very different spatially; as a result, they do not interact or show level re-

pulsion and the energy spacings follow a Poisson distribution. On the other hand, in

the delocalized phase, the level statistics are those of random matrix theory, specifi-

cally the Gaussian Orthogonal Ensemble (GOE). The mean value of the level spacing

crosses over from the Poisson limit to the GOE limit as the transition is crossed by

varying W , and the crossover becomes sharper as the system size is increased.
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1.3 Quantum Ergodicity/Thermalization

In Section 1.2 we, following BAA, predicated the existence of MBL on whether

electron-electron interactions in an isolated many-body system could act as an “in-

ternal bath” for the system. In fact, this question gets to the heart of quantum

statistical mechanics (QSM) —a topic which, while developed nearly a century ago,

is still surprisingly incomplete in its formulation. In this section, we consider some

basic notions about quantum thermalization and discuss how “ergodicity” and “local-

ization” emerge as two distinct classes of many-body systems that are distinguished

by their late-time dynamical properties3.

The theory of classical statistical mechanics (CSM) allows us to tractably treat

systems with macroscopically many particles, N ∼ 1023. A microstate of the system

labels the properties (like position, momentum etc.) of every particle in the system.

A fundamental assumption of CSM is that all microstates are equally likely, and that

a system prepared in an initial state dynamically explores all its microstates—the

classic textbook example being a collection of atoms prepared in one corner of a

room which eventually explores both the entire room spatially and the full Maxwell-

Boltzmann distribution of velocities. As a result of this exploration, the system

reaches an equilibrium state at late times in which it forgets most details about

its initial condition and can be characterized by a few macroscopic variables like

temperature, pressure etc. This allows us to replace detailed equations tracking the

time evolution of many individual particles with much simpler statistical averages over

possible macroscopic states. Since classical dynamics is deterministic, the averaging

can be thought of as either a time-average or as an average over ensembles of initial

states. Quantum dynamics, on the other hand, is inherantly probabilistic so averaging

is natural. Additionally, we note that almost all microstates correspond to the same

3For an excellent recent review of this topic, see [223]. Parts of this section are based on the
discussion in this review.
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Figure 1.2: (a) Textbook formulations of statistical mechanics assume that a system
reaches equilibrium as a result of exchanging energy and particles with a bath. (b)
Isolated quantum systems are not coupled to any bath and unitary evolve under their
own dynamics. (c) The system quantum thermalizes if the bulk of the system (B) is
able to act as a reservoir for a small subsystem (A).

macrostate (the probability of finding atoms equally divided between the two halves of

a room is exponentially more likely than the alternatives). An alternate, but related,

view of classical thermalization posits that atypical starting configurations quickly

evolve to typical states with typical macroscopic observables. This view gets around

the experimentally inaccessible, exponentially large in N time needed to explore

phase-space that the first approach implicitly demands.

Most textbook formulations of classical and quantum statistical mechanics imagine

a system coupled to an external bath. The system eventually equilibrates at late times

as a result of exchanging energy, particles etc. with the bath (Fig. 1.2a). However,

there is no bath when considering isolated quantum systems which are not coupled

to any external reservoirs (Fig. 1.2b). Indeed, the phenomenon of MBL is formulated

in exactly such an isolated setting. Additionally, the concept of thermal equilibration

implies that the system at late times can be characterized by a few parameters like

temperature, pressure etc. and has little memory of its initial state. However, the

late time state of an isolated quantum system is obtained by unitarily evolving the

initial state with the system’s own Hamiltonian, and unitary evolution preserves all

quantum information for all times. What, then, does thermalization mean for an

isolated quantum system?
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The key insight is that while unitary evolution preserves quantum information,

this information can be scrambled among thermodynamically many variables. How-

ever, a physical measurement on the system can only involve a few local degrees of

freedom and memory of local properties can be “hidden” in highly non-local inacces-

sible observables. We say that an isolated system thermalizes if it is able to act as

its own reservoir from the perspective of local observables. More concretely, let us

consider a small subregion A in the system which contains a vanishing fraction of the

total number of degrees of freedom in the system in the thermodynamic limit. The

region B labels the rest of the system not in A (Fig. 1.2c). In an ergodic, thermalizing

system B is able to act as a bath for A. To be precise, say we prepare the state in

some initial density matrix ρ(0) which could be a pure state. The state at time t is

obtained via

ρ(t) = e−iHtρ(0)eiHt; i
dρ

dt
= [H, ρ]; Trρ = 1,

and the reduced density matrix for the subsystem A is obtained by tracing out the

degrees of freedom in B,

ρA(t) = TrB{ρ(t)}.

The equibrium Gibbs ensemble for this system is defined by

ρeq(T ) =
1

Z
e−H/kBT , ρeq

A (T ) = TrB{ρeq(T)}

where the temperature T is fixed by the energy density of the initial state. The

system thermalizes if ρA(t) approaches ρeq
A (T ) as the limits t→∞ and L→∞ are

taken together. That is, in the long-time and large system limit, local measurements

on the system agree with thermodynamic ensemble averages with an appropriately

defined temperature.
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1.3.1 The Eigenstate Thermalization Hypothesis (ETH)

Having discussed what it means for a system to thermalize, we can discuss how the

system approaches equilibrium in time. Examining this question leads one to the

remarkable conclusion of the eigenstate thermalization hypothesis wherein individual

many-body eigenstates of a thermalizing system look thermal [89, 291, 267]. Thus,

observables computed in the extreme limit of the microcanonical ensemble defined

by just a single eigenstate are indistinguishable from their canonical average. Let us

briefly describe some of the steps in this result.

Denote the eigenstates of the thermalizing quantum system by |Eα〉 with eigenen-

ergy Eα. The system is prepared in an intial pure state |ψ0〉 =
∑

α cα|Eα〉 with

a well-defined average energy E =
∑

α |cα|2Eα and a small quantum uncertainty

∆ =

√
〈ψ0|H2|ψ0〉 − E2 � E. The expectation value of a local observable A at time

t is given by

A(t) ≡ 〈ψ(t)|A|ψ(t)〉 =
∑

α

|cα|2Aαα +
∑

α 6=β
c∗αcβe

−i(Eβ−Eα)t/~Aαβ (1.6)

where Aαβ = 〈Eα|A|Eβ〉. We can define the time-average of A(t) as

A ≡ lim
τ→∞

1

τ

∫ τ

0

dt 〈ψ(t)|A|ψ(t)〉 =
∑

α

|cα|2Aαα. (1.7)

The off-diagonal terms in (1.6) dephase on taking the time average in a thermody-

namically large system4 such that A is determined solely by the diagonal contribution.

On the other hand, in a thermalizing system, the time-averaged observable should

4While we consider the time-average of A(t) for simplicity of illustration, similar results can
be obtained for the long-time limit of A(t) as long as the off-diagonal matrix elements Aαβ decay
strongly enough to allow us to neglect temporal fluctuations.
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agree with the microcanonical average

A = Amc =
1

N
N∑

β=1

Aββ (1.8)

where the sum is over all states in the micronanonical window defined by E − ∆ <

Eβ < E + ∆. Equating (1.7) and (1.8) gives

A =
1

N
N∑

β=1

Aββ =
∑

α

|cα|2Aαα. (1.9)

Note that the RHS of (1.9) explicitly depends on the initial state through the co-

efficients cα while the microcanonical average on the LHS makes no reference to the

initial state. It is hard to see how (1.9) holds in general for all generic initial states

with a fixed energy unless one posits that the matrix elements Aαα are effectively

constant over the relevant energy window with sufficiently small fluctuations. In that

case, Aαα ∼ A(E) can be pulled out of the sum from both expressions in (1.9) giving

the desired equality. Thus, stated differently, ETH says that the expectation value

of A in a single energy eigenstate is equal to the value predicted by a microcanonical

ensemble constructed at that energy scale.

Note that the ETH is a hypothesis and need not hold for all classes of quantum

systems. We have already discussed in Section 1.2.2 that MBL eigenstates that are

nearby in energy have very different spatial properties. Thus, local observables mea-

sured in MBL eigenstates do not vary smoothly with energy and ETH does not hold

for localized systems. Connecting back to the discussion in Section 1.3, we can say

that closed MBL systems do not act as their own baths and do not quantum thermal-

ize. Thus, some memory of local initial conditions is preserved in local observables for

arbitrarily long times. This in turn implies a vanishing DC conductivity for conserved

charge/energy densities in consonance with BAA’s results.
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1.4 Local Integrals of Motion

Localized systems are not the only examples of many-body systems that fail to ther-

malize. Translationally invariant integrable systems have been studied for decades

and have infinitely many conserved quantities which can be written as sums of local

or quasi-local operators. These conserved quantities highly constrain the dynamics of

integrable systems and prevent thermalization in the sense described in the previous

section (although these systems can be described by what is known as a generalized

Gibbs ensemble [268, 54, 58]). A crucial difference between localization and integra-

bility is that the latter only exists in highly fine-tuned models and is not robust to

small changes in the Hamiltonian. On the other hand, MBL exists for generically

interacting Hamiltonians with strong enough disorder and is highly robust to per-

turbations5. Nevertheless, a key similarity between the two phenomena is that, in

both cases, the lack of thermalization can be explained by the existence of extensively

many local conserved quantities.

It was argued in [283, 148] that in fully MBL (fMBL) systems in which all eigen-

states are localized, one can define an extensive set of Pauli operators τ zi termed

l-bits (l = local) which all commute with each other and with the Hamiltonian H.

For specificity, we consider a system of length L in one dimension. The operator

expansion of τ z in the 4L dimensional basis of the physical σαi spins which we call

p-bits (p = physical) takes the general form

τ zi =
∑

j

Kα
ijσ

α
j +Kαβ

ijkσ
α
j σ

β
k + · · · , (1.10)

where α = 1, x, y, z. The locality of τ zi means that the coefficients Kα1α2···αm
ij1j2···jm in the

expansion (1.10) decay exponentially with the maximum separation between any two

5This robustness of many-body localization is an example of a phenomenon coined absolute
stability as we discuss in Chapter 6.
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spins in the cluster {i, ji, j2, · · · jm}, although there is no additional decay with m

in one dimension [168]. These l-bits are often referred to as emergent integrals of

motion.

The Hamiltonian written in terms of l-bits is itself local and diagonal in the τ zi s:

H =
∑

i

hiτ
z
i +

∑

ij

Jijτ
z
i τ

z
j +

∞∑

m=3

∑

{i}
Jiii2···imτ

z
i1
τ zi2 · · · τ zim (1.11)

and the co-efficients Jiii2···im again decay with distance in a manner analogous to the

decay of the K coefficients. The MB eigenstates are product states of all the τ zi .

Note that in a non-interacting system, the τ zi are simply the number operators for

the localized single-particle eigenorbitals written in spin-language, and all interaction

terms Jij are zero.

It is intuitively appealing to think of the τ zi s as weakly dressed versions of the

σzi operators; certainly τ zi = σzi in the extreme localized limit of J = 0 in (1.5). By

now, there are a few different proposals for constructing l-bits [66, 271, 238, 260] and

a mathematical proof of their existence for strongly localized systems in d = 1 was

provided in [153]. Nevertheless, the best technique for constructing the most local

l-bits remains a challenging open question. To gain some intuition for why this is such

a hard problem, note that the ταi operators are constructed via a unitary rotation of

the p-bits σαi

ταi = Uσαi U
† (1.12)

where U is a unitary which diagonalizes the Hamiltonian and relates basis states,

which are product states of {σzi }, to the MB eigenstates which are product states of

{τ zi }. By construction, τ zi commutes with H. However, note that the diagonalizing

unitary is not unique since there is a massive set — of size (2L)! — of possible pairings

between eigenstates and basis states [238] which corresponds to different permutations

of the columns of U . These permutations lead to very different locality properties
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for the τ z operators and a brute-force search through all possible permutations is

super-exponentially hard in L. Of course, from (1.12), it is clear that making U

as “diagonal” as possible gives the most local l-bit. In strongly disordered cases

where each MB eigenstate can be identified as a weakly dressed version of a single

basis state, the matching problem is easy. However, away from the strongly localized

limit, MB eigenstates can have nearly equal weight on few to several basis states—we

term these many-body resonances—and finding the best U is highly non-trivial. The

transition from the localized to the delocalized phase is driven by the proliferation of

such many-body resonances [320, 254, 121] which make the “best” l-bits both more

delocalized and harder to uniquely define. We also note that recent work [69] posits

that MBL systems might be characterized by only approximately conserved l*-bits—

in such systems, eigenstates can look thermalizing while dynamical properties still

predict localization.

Nevertheless, the l-bit formalism provides a very useful phenomenological descrip-

tion of the properties of the MBL phase and transparently highlights the dephasing

dynamics in this phase. Note that the equation of motion for each ταi operator sim-

ply predicts a precession for the l-bit about its z axis at a rate set by the effective

field experienced at site i (which depends on its interactions with the other l-bits

and the state of the other l-bits). The dephasing dynamics leads to a logarithmic

in time growth of quantum entanglement in MBL systems as we will explain in the

next section. For now, we simply note that (i) the dephasing dynamics are extremely

slow due to the exponentially weak interactions between τ zi spins and (ii) there is no

dissipation since there are no spin-flip terms in (1.11). Strikingly, it was shown in

Refs. [24, 282] that even the effects of dephasing can be reversed by using spin-echo

procedures.

The infinitely persistent memory of local initial conditions in MBL phases com-

bined with only slow, reversible dephasing dynamics has raised the tantalizing possi-

20



bility of using localized systems as novel platforms for a new generation of quantum

memories and computing devices. We expound on some of these ideas and their

limitations in Chapter 2.

1.5 Quantum Entanglement in Localized Systems

An important development in modern condensed matter physics has been the porting

of ideas from quantum information theory to condensed matter, especially the notion

of entanglement. Quantum entanglement allows distant parts of the system to be

much more correlated than is classically allowed, and is the key ingredient in the

operation of a quantum computer. For specificity, consider a pure state of a system

|ψ〉 defined on a Hilbert space H in one dimension. Consider a bipartition of the

Hilbert space into two subregions H = HL ⊗ HR, where HL (HR) is the Hilbert

space of all states living on the left (right) half of some bond. The state |ψ〉 can be

decomposed as

|ψ〉 =

NL∑

i=1

NR∑

j=1

cij|i〉L ⊗ |j〉R (1.13)

where |i〉L/R are basis states for the left and right halves and NL, NR denote the size

of the Hilbert spaces HL, HR. By performing a singular value decomposition on the

matrix of coefficients cij, the state |ψ〉 can be written in its Schmidt form

|ψ〉 =

Nmin∑

α=1

Λα|α〉L ⊗ |α〉L (1.14)

where the states |α〉L/R form an orthonormal basis for HL/R, Nmin = min(NL, NR),

and the Schmidt values Λα ≥ 0. For a normalized state,
∑

α Λ2
α = 1. A state with

no entanglement between the left and right halves can be written as a product state

in the Schmidt basis and only one Schmidt value is non-zero. In an entangled state,

more than one Schmidt value contributes. The relation between entanglement and
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the Schmidt decomposition can be made more precise by considering the reduced

density matrix on the left half of the system

ρL = TrR|ψ〉〈ψ| =
∑

α

Λ2
α|α〉L〈α|L.

The entanglement entropy is the von Neumann entropy of the reduced density matrix

S = −
Nmin∑

α=1

Λ2
α log Λ2

α. (1.15)

The entanglement entropy varies from 0 for a product state with a single Λα = 1 to

logNmin for a maximally entangled state in which all Schmidt values are equal. If

we consider an equal bipartition of the a system of length L with spin 1/2 degrees of

freedom at each site, Nmin = 2L/2 in which case the maximal entanglement entropy

S = L log(2)/2 scales extensively with the volume of the subregion.

We discussed in Section 1.3.1 that in thermalizing systems which obey the ETH,

local observables computed in individual eigenstates agree with thermodynamic en-

semble averages. This means that the entanglement entropy of any subregion A with

length LA � L must agree with the thermodynamic entropy of A which scales exten-

sively with the LA. This is the famous “volume-law” scaling for generic, highly excited

eigenstates of thermalizing systems. Quantum information is “maximally scrambled”

in such states and representing them requires exponentially many expansion coeffi-

cients of the wave function in terms of local basis states.

On the other hand, it has been rigorously proven that ground states of gapped,

local Hamiltonians instead follow an “area law” [135], i.e., the entanglement entropy

is proportional to the length of the boundary of the subregion instead of its volume. In

a one-dimensional system, this implies that S(L) scales as a constant independent of

L. This can be intuitively understood from the fact that a gapped ground state only

fluctuates within some correlation length ξ and thus only degrees of freedom near the
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bipartition cut are entangled. Since only O(1) Schmidt values contribute substantially

to the entanglement, it is clear that specifying ground states in the full exponentially

large Hilbert space is unnecessary and inefficient. Instead, it has been shown that

states obeying the area law can be efficiently specified using matrix-product state

(MPS) / tensor network representations of many-body states [124, 281, 115].

Strikingly, it was noted early on [234] that even highly excited eigenstates of MBL

systems have only local entanglement and show only an area law. The l-bit formalism

provides an intuitive explanation for the area law since only the l-bits localized near

the entanglement cut give a sizeable contribution to the entropy. By now, several

numerical studies have examined the behavior of the entanglement entropy in detail

and demonstrated the area law as well as deviations due to rare regions and states [29,

208, 182]. This area law is a sharp signature of the violation of ETH in MBL systems,

and is the basis for Chapters 7 and 8 which exploit the area law to find more efficient

tensor-network based representations and algorithms for MBL eigenstates.

Finally, we note that while Anderson and many-body localized systems both show

area-law entanglement in their many-body eigenstates, the two can be distinguished

by considering the dynamics of entanglement growth starting from an initial prod-

uct state. In thermalizing systems, entanglement spreads ballistically [175] with an

energy-density dependent speed akin to the Lieb-Robinson velocity. This can be

understood by realizing that two distant regions A and B get entangled only as en-

tanglement locally spreads sequentially through the subsystems between them. On

the other hand, in single-particle localized systems, the l-bits are localized and they

do not interact so there is no growth of entanglement at long times.

Interestingly, it was found [25, 284] that entanglement grows logarithmically in

time in MBL systems. This is again most easily understood in the l-bits formalism.

Since the l-bit Hamiltonian (1.11) is purely diagonal in τ z, two l-bits a distance

r apart can only get entangled through their direct interaction (the τ zi quantum
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Thermal phase Single-particle localized Many-body localized
Memory of initial Some memory of local Some memory of local

conditions ‘hidden’ in initial conditions initial conditions
global operators preserved in local preserved in local

at long times observables at long times observables at long times
ETH true ETH false ETH false

May have non-zero Zero Zero
DC conductivity DC conductivity DC conductivity

Continuous local spectrum Discrete local spectrum Discrete local spectrum
Eigenstates with Eigenstates with Eigenstates with

volume-law entanglement area-law entanglement area-law entanglement
Power-law spreading No spreading Logarithmic spreading

of entanglement of entanglement of entanglement
Dephasing No dephasing, Dephasing,

and dissipation no dissipation no dissipation

Table 1.1: A list of some properties of the many-body-localized phase, contrasted
with properties of the thermal and the single-particle-localized phases. Taken from
Ref. [223].

numbers of all l-bits between them are constants of motion). The effective interaction

between two l-bitsis a sum of many terms which depends on the state of all other

l-bits [148] . Nevertheless, this interaction decays exponentially with r in the MBL

phase, J ∼ e−r/ξ. Thus, two initially unentangled l-bits get entangled after a time t

such that Jt ∼ 1 implying that for any fixed time t, all l-bits within a radius ∼ ξ ln(Jt)

get entangled. Table 1.1, taken from Ref. [223] summarizes several properties of the

MBL phase and contrasts them with those of Anderson localized and thermalizing

phases.

1.6 Eigenstate Order and Eigenstate Phase Tran-

sitions

Thus far, we have characterized the MBL phase solely by its inability to thermal-

ize. We have described how individual eigenstates of MBL/ thermalizing systems

obey area/volume law scaling for the entanglement entropy respectively. The transi-
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tion between the MBL and ergodic phases is an eigenstate phase transition in which

the entanglement properties of the eigenstates and eigenvalues changes in a singu-

lar manner to restore statistical mechanics on the ETH side of the transition. We

emphasize that this is a dynamical phase transition which shows no singularities in

usual thermodynamic observables which average over several eigenstates.

Of course, in a conventional setting, phases are described according to whether

they spontaneously break or preserve global symmetries and by whether or not they

display some form of topological order. This raises the question of whether MBL

eigenstates can also exhibit forms of symmetry breaking or topological order. Re-

markably, it was shown in Refs. [149, 239] that highly excited MBL eigenstates can

indeed come in various flavors classified by the usual notions of phase ordering. Fur-

ther, the nature of ordering can change as some parameter is varied within the local-

ized phase thereby leading to eigenstate phase transitions between different classes of

localized states.

What is especially remarkable is that these MBL eigenstates can display patterns

of order which might even be disallowed in equilibrium due to general constraints of

statistical mechanics. For example, the well known Landau-Peierls-Mermin-Wagner

theorems prohibit symmetry breaking order in one dimension at any finite temper-

ature. The basic idea is that entropic considerations always beat energetic ones at

finite temperatures in 1d, and the fluctuations destroy ordering. However, in the

presence of disorder, these fluctuations can get pinned by localization in a manner

which might allow individual eigenstates to display nontrivial correlations, even at

finite energy densities. Likewise, in equilibrium, topological order (TO) is only de-

fined in the presence of a bulk gap; without a gap, thermal fluctuations destroy TO.

Again, the presence of disorder can localize the fluctuations and allow TO to persist

without a bulk gap and at finite energy densities. Appropriately, these ideas were

termed “localization protected quantum order” (LPQO) [149].
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We now briefly illustrate the basic idea in a simple Ising model with disorder

H =
L∑

i=1

hiσ
x
i +

L−1∑

i=1

Jiσ
z
i σ

z
i+1 + λσxi σ

x
i+1 (1.16)

where the couplings Ji and hi are random and positive with means J, h, and the

interaction λ is small compared to both J and h.

First, consider the clean system with translationally invariant couplings and J �

h. There are two nearly degenerate ferromagnetically ordered low-lying “cat” states

|±〉 ' 1√
2
(| ↑↑↑ + · · · ↑〉 ± | ↓↓↓ + · · · ↓〉) which are global superposition states that

are respectively even and odd under the Ising symmetry P =
∏

i σ
x
i . The arrows

denote the σzi eigenvalues, and the ground state is exactly two fold degenerate in the

thermodynamic limit. At any finite temperature, there is a finite density of domain

walls which are delocalized throughout the system. Thus, any two-point connected

correlation of the form 〈σzi σzj 〉c decays exponentially with |i − j| consistent with the

Landau-Peierls theorem.

Now consider the situation with disorder in the couplings J, h. First, if the in-

teraction λ is set to zero, the model (1.16) maps to a non-interacting fermion prob-

lem in which the excitations are Anderson localized. When J � h, the excita-

tions of the model are domain walls which get pinned by the disorder. Thus, ex-

cited eigenstates of the problem now look like frozen configurations of spins pointed

randomly up or down in a superposition state with their Ising reversed partner

|±〉excited ' 1√
2
(| ↑↓↓↑ + · · · ↑〉 ± | ↓↑↑↓ + · · · ↓〉). Correlation functions measured in

such highly-excited states do not decay exponentially with distance, but are O(1)

with a randomly fluctuating sign which depends on the number of frozen domain

walls crossed between sites i and j — this form of order is called spin-glass order and

the phase if termed an MBL spin glass (SG). All these statements carry through in

the presence of weak interactions λ since the remain now becomes many-body local-
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ized. In the opposite limit, h � J , the eigenstates look like frozen spins pointing

randomly left or right in the σx direction on every site and the system is an MBL

paramagnet. The transition between the SG and PM phases [182, 239] is an eigenstate

phase transition characterized by an infinite randomness fixed point, at least in the

noninteracting setting [110, 239]. The fate of the critical point in the presence of in-

teractions is a delicate question. It was suggested that the critical point would remain

localized [149] and exhibit the same scaling as the non-interacting fixed point [239],

although there is also a possibility of a delocalized (or partially delocalized) critical

point/phase between the SG and PM MBL phases.

1.7 Experimental Probes

Until recently, the phenomenon of many-body localization was only realizable in the

ideal universe of a theorist’s imagination. As we have discussed, MBL only exists for

isolated quantum systems which are decoupled from all reservoirs and baths. However,

any realistic materials system contains both electron-electron and electron-phonon in-

teractions and these couplings cannot be controlled by the experimenter. As a result,

experimental investigations of MBL in conventional solid-state systems [232, 230] are

extremely challenging. In fact, even for Anderson insulators, direct experimental

observation of the localization of electronic wavefunctions proved elusive, although

indirect signatures in transport and other measurements were found (such as the

original experiments which motivated Anderson’s work), and a scanning-tunnelling

microscopy study strikingly observed signatures of multifractality and critical corre-

lations near the metal-insulator transition [266].

However, recent advances in atomic, molecular and optical systems have resulted

in the realization of isolated, synthetic many-body systems with highly tunable inter-

actions and disorder. These have already proved extremely promising as platforms

27



Figure 1.3: A cold-atoms experiment showing signatures of MBL, taken from
Ref. [279]. A) An initial charge-density wave (CDW) state is prepared in a quasiperi-
odic optical lattice. B) Schematic phase diagram as a function of the interaction
strength U and disorder ∆. Signatures of the initial CDW persist to late times in the
MBL phase, while the charge imbalance quickly decays to zero in the ergodic phase.

for exploring questions about MBL and quantum statistical mechanics in isolated

systems. State of the art experiments in ultracold atomic systems [279, 191, 42, 75]

have demonstrated that a fingerprint of the initial state persists in MBL systems for

arbitrarily late times. These systems are isolated to a good approximation6 and the

strength of the interactions can be tuned via a Feshbach resonance. The onsite disor-

der can be realized either using an optical speckle pattern, or by superimposing lasers

with incommensurate frequencies which realizes a quasiperiodic potential which is

also known to show many-body localization [157]. These systems also offer remark-

able single-site resolution for imaging and manipulating individual degrees of freedom

which allows one to study local deviations from thermal equilibrium. A very recent

cold-atoms experiment [75] remarkably demonstrated signatures of localization in an

interacting two-dimensional system which goes well beyond the sizes and dimensions

accessible to theory and numerics! Signatures of MBL have also been observed in

trapped ion systems [289].

6While there is heating in these systems [75], its effects are believed to set in at much longer
time-scales than those probed by the experiment.
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Figure 1.3, taken from Ref. [279] depicts a particular experimental setup in Bloch’s

group which demonstrated convincing signatures of localization. A quasiperiodic opti-

cal lattice was prepared by superimposing two lasers with incommensurate frequencies

and the system was prepared in an initial charge density wave and then allowed to

relax. It was shown that, at late times, the density imbalance between the even and

odd sublattices persisted in the MBL phase while it vanished for a different set of

parameters corresponding to the ergodic phase—thus demonstrating that memory of

local initial conditions persists in the MBL phase and quantum statistical mechanics

does not hold.

1.8 Floquet Systems

Thus far, our discussion has been restricted to static time-independent Hamiltonians.

We have examined ideas of quantum thermalization, equilibration and quantum order

in this setting and shown that interacting many-body systems fall into two categories:

ergodic and many-body localized. We now add an additional ingredient to our analysis

and examine these ideas in a driven, time-dependent setting. We will consider Floquet

systems whose Hamiltonians depend on time periodically with period T , H(t) =

H(t+ T ). Such systems ubiquitously arise, for example, whenever a quantum system

is driven by external time-varying fields.

1.8.1 Floquet Formalism

In periodically driven systems, energy is no longer conserved, being replaced instead

with quasi -energies defined modulo 2π/T . According to the Floquet-Bloch theorem7,

7The proof of the Floquet-Bloch theorem proceeds exactly analogously to the proof of Bloch’s
theorem for spatially periodic lattices.
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the time dependent Schrödinger equation

i
d|ψ(t)〉
dt

= H(t)|ψ(t)〉 (1.17)

has special solutions

|ψα(t)〉 = e−iεαt|φα(t)〉 (1.18)

defined by periodic states |φα(t)〉 = |φα(t+T )〉 and quasi-energies εα defined modulo

ω = 2π/T . These replace the eigenstates of the time independent problem; in them

observables have periodic expectation values, and they form a complete basis. Sim-

ilar to the crystal momentum of a system with discrete translational symmetry, the

quasienergy can be thought of as a periodic variable defined on a quasienergy Bril-

louin zone −π/T < ε ≤ π/T . The central object determining the long-time behavior

of driven systems is the Floquet unitary U(T ) which is the time evolution operator

over a full period

U(T ) = T
∫ T

0

dt e−itH(t). (1.19)

Under the action of U(T ), the Floquet states (1.18) are mapped onto themselves upto

a phase

|ψα(T )〉 = U(T )|ψα(0)〉 = e−iεαT |ψα(0)〉.

Thus, the |φα(0)〉 are eigenstates of U(T ) with eigenvalues e−iεαT . We will henceforth

denote |φα(0)〉 as |α〉 for brevity. The “Floquet Hamiltonian” HF is defined via U(T )

as

U(T ) = e−iHFT . (1.20)

The states |α〉 are also eigenstates of HF with eigenvalues εα; however, since εα is not

uniquely defined, neither is HF .

If we probe the system stroboscopically, i.e. at multiples of the period T , it appears

from (1.20) that the Floquet problem has been mapped to standard unitary evolution
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with a time-independent Hamiltonian HF . However, this apparent simplicity is mis-

leading since, in general, it is nearly impossible to obtain the Floquet Hamiltonian

in closed form for an interacting many-body system and one has to resort to various

approximation schemes (briefly described below). Moreover, it turns out that in most

cases it is impossible to find a “physical” HF which can be written as a sum of local

terms; HF is either ill-defined (such that any expansion scheme to compute it does

not converge as L → ∞), or it generically looks highly non-local and unphysical. It

was shown that in “Floquet many-body localized” systems [199, 252, 2], a local HF

can be defined (upto boundary terms) and the system can have non-trivial late-time

states. On the other hand, in “Floquet-ergodic” systems [198, 78, 251], no local HF

can be found and system continuously absorbs energy from the drive and heats up a

trivial late-time state characterized by a Gibbs ensemble at infinite temperature. We

will discuss both classes of systems in Section 1.8.2.

We now turn to some theoretical techniques commonly employed in the study of

Floquet systems.

Magnus Expansion

The Magnus expansion [210, 37, 45] is a series expansion for the Floquet Hamiltonian,

HF =
∑∞

n=0 H
(n)
F , which is similar in spirit to the Baker-Campbell-Hausdorff formula.

It is applicable in the high-frequency limit since the terms at nth order in the series

are proportional to ω−n. The first two terms in the series are

H
(0)
F =

1

T

∫ T

0

dt H(t)

H
(1)
F =

−i
2!T

∫ T

0

dt1

∫ t1

0

dt2 [H(t1), H(t2)], (1.21)

where we note that the leading zeroth-order term is simply the time-averaged Hamil-

tonian. There are very few exact results on the convergence of the Magnus expansion,
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and there no rigorous proofs in the many-body setting, although Ref [2] attempts to

contruct a proof of Floquet localization in the MBL setting. It is certainly the case

that a convergent expansion implies a local Floquet Hamiltonian and thus dynamical

energy localization in which the system does not continuously absorb energy from the

drive in the infinite time limit. On the other hand, a divergent expansion indicates

that there is no local Floquet Hamiltonian and the system heats up indefinitely. It is

known that a sufficient (but not necessary) condition which guarantees convergence is

ω > W (T ) where W (T ) is the maximum bandwidth of H(t) during the period. While

this result is exact, it is not particularly useful for many-body systems in which the

bandwidth scales extensively with system size. Nevertheless, such expansions can

be very useful for gaining intuition about the dynamics for short times and/or fi-

nite system sizes. Finally, it is certainly the case that the Magnus expansion can

be convergent even in the thermodynamic limit— for example, this happens if the

time-dependent Hamiltonian can be mapped to a static one by going to some rotating

frame. We turn to this topic next.

Rotating Frame

There are cases, for example if the driving amplitude scales with frequency, where

one needs to re-sum an infinite sub-series in the Magnus expansion to obtain HF even

in the infinite-frequency limit [45]. In such cases, among others, the convergence of

the Magnus expansion can often be significantly improved by unitarily transforming

to a rotating frame. If the unitary UR(t), maps a state |ψ(t)〉 in the original frame

(whose time evolution is governed by H(t)) into a state |ψR(t)〉 = UR(t)|ψ(t)〉, then

the time-evolution of |ψR(t)〉 is governed by

HR(t) = UR(t)H(t)U †R(t)− iUR(t)∂tU
†
R(t).
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The zeroth order piece in the Magnus expansion is now the time-average of HR(t),

and the expansion could have much better convergence properties for cleverly chosen

unitaries UR(t) which can be found in special cases.

Replica Formalism

We end this section by describing the replica formalism [285, 276] which analyses the

Floquet problem in the frequency domain instead of the time domain. This formalism

is especially transparent in the non-interacting setting and provides a useful intuitive

picture for the Floquet states (1.18). Since H(t) and |φα(t)〉 are periodic functions in

time, we can decompose them into their Fourier series:

H(t) =
∑

n

einωtH̃(n) (1.22)

|φα(t)〉 =
∑

n

einωt|φ̃α(n)〉. (1.23)

Plugging these into the time-dependent Schrodinger equation (1.17) and using (1.18),

we get the equivalent eigenvalue problem

∑

p

H̃(m− p)|φ̃α(p)〉+mω|φ̃α(m)〉 = α|φ̃α(m)〉 (1.24)

Thus, the original time-dependent problem has been mapped onto a time-independent

problem in one higher—and infinitely extended—dimension indexed by the Fourier

index m. This may not look like much progress, but this structure transparently

illustrates the how an undriven eigenstates of the original problem will mix as a result

of introducing a drive. To see this, consider the single particle Anderson problem with

a drive

H(t) =
L−1∑

i=1

vic
†
ici + t cos(ωt)(c†ici+1 + c†i+1ci) (1.25)
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Figure 1.4: Schematic representation of the monochromatic single-particle drive (1.25)
in replica space. The replica index runs from −∞ to ∞, the onsite energies on site i
in layer m are given by vi+mω and the hopping with strength t (red lines) is between
nearest neighbor sites in adjacent layers .

The eigenstates of the undriven system with t = 0 are simply localized on individual

sites. For this monochromatically driven system, only H̃(0) and H̃(±1) are non-zero;

H̃(0) contains the time-independent piece in H and H̃(±1) couples nearest spatial

neighbors with strength t in adjacent replicas. Fig. 1.4 shows a schematic depiction

of the eigenvalue problem in replica space.

A few points worth noting. First, as a result of the drive, the hopping can now

resonantly couple pairs of sites whose on-site energies differ by multiples of ω (whereas

in the undriven setting, we required nearly equal energy differences for resonant cou-

pling). This introduces extra channels for delocalization. Second, for this single-

particle problem, the onsite energies in layer m have an extra confining potential mω.

This leads to localization in replica space via a mechanism analagous to the well-

known Wannier-Stark localization in real space. This means that we can effectively

truncate the replica index at some finite M without much error, making an actual

solution tractable.

This main take-home message from the replica picture—which also holds in the

many-body setting—is that the drive allows eigenstates of the undriven problem dif-
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fering mod ω to be coupled, and the Floquet eigenstates could look extremely de-

localized in the original eigenbasis as a result of this coupling. Let us reiterate this

in a slightly different language. Instead of working in the “repeated-zone” scheme

in energy space as the replica picture does, we could work in a single Brillouin zone

of width ω. Say H(t) = H0 + λV (t) and we treat the drive perturbatively. Then,

to arrive at the Floquet eigenstates we (i) fold the spectrum of H0 into a width ω

i.e. all eigenvalues of H0 are only considered mod ω. As a result of this folding,

previously separated energy levels now overlap and there are level crossings. (ii) We

then consider the effect of the potential V in resolving these level crossings. If V has

matrix elements between the states at a crossing, they mix. The Floquet eigenstates

look localized or delocalized in the basis of H0 depending on how much folding there

is (i.e. the size of ω) and the efficacy of the the potential in resolving the induced

level crossings.

1.8.2 Ergodicity and Localization in the Floquet Setting

We end by addressing the question of thermalization in the driven Floquet setting

for many-body quantum systems. The general belief is that a driven, ergodic many

body system continuously absorbs energy from the drive and the late-time state looks

like a trivial state at infinite temperature [198, 78, 251, 252]. This is consistent with

standard linear response reasoning wherein any nonzero frequency exhibits dissipa-

tion. Unfortunately, there are no rigorous results proving that this “heat death” is

the only allowable outcome, but this picture has been suggested by a few different

numerical works [198, 78, 251, 252]. In terms of the band-folding view described in

the previous section, the idea is that the undriven eigenstates of generic systems obey

ETH, exhibit level repulsion, and lie in an extensive bandwidth which scales with

system size. If these states are folded in a narrow O(1) bandwidth set by ω, the

drive immediately mixes a finite fraction of all unperturbed states leading to delocal-
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ization of the Floquet states in the eigenbasis of the undriven problem. Given this

strong mixing across the entire many-body spectrum of H0, we expect observables

computed in the Floquet eigenstates to effectively average essentially uniformly over

the eigenstates of H0, whence the expectation that the infinite temperature ensemble

is appropriate.

We note that similar arguments as the ones presented in Section 1.3.1 can be used

to show that stroboscopically probed observables at late times in the Floquet setting

are derived from the diagonal ensemble of the Floquet eigenstates |α〉. Since all static

and dynamic correlations are trivial in the infinite-temperature ensemble, the Floquet

eigenstates exhibit a maximally trivial form of ergodicity and look maximally random

in Hilbert space. Finally, while the drive eventually heats the system, there can be

regimes where this heating is slow, leading to long-lived prethermal states [193, 3, 53,

46, 47].

This discussion shows that to get any nontrivial dynamics in the Floquet setting

requires a mechanism for energy localization wherein the absorption from the driving

field saturates, and the long-time state of the system is sensitive to initial conditions.

In a striking development, a set of recent works has shown that a disordered many-

body localized system can remain Floquet-localized in the presence of weak enough

driving [198, 78, 251]. The basic intuition is that the heating in translationally invari-

ant systems stems from spatially extended modes which interact with and transfer

energy between each other. This can be different when disorder spatially localizes

the modes, with individual modes exhibiting something like Rabi oscillations while

interacting only weakly with distant modes.

To see more concretely why Floquet localization might be possible in an MBL

system, recall that MBL eigenstates do not satisy ETH and nearby eigenstates look

very different spatially. There is a local spectral gap [222, 162] such that a local oper-

ator can only couple states differing in energy by W ∼ O(1). Thus, if we locally drive
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an MBL system with weak amplitude and frequency ω � W , the states brought into

resonance as a result of the drive do not effectively mix and the Floquet eigenstates

can remain localized. Increasing the amplitude of the drive or reducing its frequency

can lead to Floquet delocalization as before. In Chapters 5 and 6, we explore some

of the consequences of this remarkable Floquet localization.

1.9 Open Problems

Despite remarkable progress over the last decade, our understanding of many-body

localization and quantum thermalization is still in its infancy. We briefly discuss a

few open questions that are active areas of current research, although this list is by

no means exhaustive.

1. Nature of the MBL-Ergodic transition: The phase transition between the MBL

and ergodic phases is not a thermodynamic phase transition, so it need not

fit in to the usual classifications of phase transitions. This is a dynamical

phase transition across which the nature of the system’s many-body eigenstates

changes in a singular fashion from “volume-law” entangled eigenstates that

obey the ETH to nonthermal and only boundary-law entangled eigenstates in

the MBL phase. Since the MBL-to-ETH transition lies outside the purview of

equilibrium statistical mechanics and scaling theory, very little is definitively

known about its properties. A recent paper has derived a Harris/Chayes bound

νFS ≥ 2/d for the finite-size correlation length exponent νFS at this transition in

a disordered system in d dimensions [68]. Recent approximate renormalization

group (RG) studies, which are confined to one-dimensional systems, all find

a continuous transition with a localization length exponent ν > 2 satisfying

this inequality [320, 254]. On the other hand, all exact diagonalization (ED)

numerical studies [234, 182, 208] to date (which are limited to small system sizes
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L ∼ 22) have found exponents ν which violate the Harris bound. Interestingly,

all these ED studies have observed a finite-size crossover only on the thermal

side of the transition with no observed crossover between the MBL and quantum

critical regimes.

Following Ref. [127], it is generally believed that the MBL-ergodic critical point

looks thermal, although recent computations [170] suggest that this belief is

most likely false. The derivation in Ref. [127] makes an important assumption

that the entanglement entropy of small subregions with size LA � L remains

continuous through the transition, a wholly reasonable assumption for conven-

tional continuous transitions which do not show discontinuities in local observ-

ables. On the other hand, there is evidence which suggests that this assumption

is false and the entropy of local subregions can vary discontinuously across the

transition [170], with the critical region looking localized. Thus, some aspects

of this transition look “first-order” like, even while many others look continu-

ous. Understanding the nature, properties and scaling behavior of this unique

transition with its peculiar asymmetries between the MBL/ergodic sides is an

important open question.

2. Nature of Many-Body Resonances in the MBL phase: We have discussed how

the stability of localization in the locator limit turns on bounding the probability

of single-particle/many-body resonances between pairs of sites/configurations.

We use the term “resonances” somewhat loosely to describe entanglement be-

tween different degrees of freedom in the system, which result in the eigenstates

looking like superpositions over few-to-several basis states. The transition to

the thermal phase is driven by a proliferation of many-body resonances, and un-

derstanding the structure and properties of these resonances remains an open

question which is vital for better understanding the MBL phase and the transi-

tion. In fact, even the two RG schemes [320, 254] which describe the approach
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to the ergodic phase present qualitatively different pictures for the resonances

driving the transition.

3. Structure of Quantum Entanglement in the MBL phase: We have described how

MBL eigenstates have area-law entanglement entropy. However, this is only true

for typical entanglement cuts, while the full distribution of entanglement across

cuts and eigenstates is much more involved due to the resonances discussed in

the previous point [29]. Understanding the full structure of quantum entan-

glement in the MBL phase is important both for its accurate description, and,

more practically, for refining and improving tensor-network based approaches

for efficiently diagonalizing and representing MBL systems (c.f. Chapters 7, 8).

4. What is the best definition of a “localization length” ξloc which diverges as the

delocalization transition is approached from the MBL side? There are argu-

ments [223, 168] which suggest the existence of multiple length scales which

diverge differently or not at all as the transition is approached. Which of these,

if any, govern the finite-size scaling at the transition?

5. What is the nature of eigenstate phase transitions between different localized

phases? Under what conditions does the MBL-MBL critical point look local-

ized/partially delocalized/thermal?

6. What is the nature of the phase on the delocalized side of the localization

transition? Are there alternatives to the ETH which permit delocalized but

non-ergodic phases [69]?

7. Does MBL exist in higher dimensions? If so, which properties are dimensionality

dependent [69]?
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8. What are some definitive experimental signatures of MBL, both in driven and

undriven settings? Can we observe MBL or signatures of it in real materials

systems instead of synthetically engineered AMO settings?

9. Despite the results of Chapter 2, is it possible to carefully engineer MBL systems

as platforms for a new generation of high-temperature quantum devices?

1.10 This Thesis

We now turn to the contents of this thesis. The balance comprises eleven chapters

organized in five parts. In Part II, we study the dynamical response of many-body

localized phases by considering the effects of driving an MBL system with a time-

dependent field in two different limits. In Chapter 2, we consider the adiabatic limit of

an extremely slowly varying field, while in Chapter 3 we consider the linear-response

regime of a weak-amplitude drive. The two limits give different physical insights into

the dynamics. In the first, we find, surprisingly, that a slow, gentle perturbation

induces a highly non-local charge response in an otherwise localized phase, while the

second limit elucidates the structure of the many-body resonances in the MBL phase

which contribute to the linear response a.c. conductivity.

In Part III, we extend the notion of eigenstate order in localized systems. Chap-

ter 4 shows that highly-excited eigenstates of MBL systems can display symmetry-

protected topological order, while Chapters 5 and 6 discuss phase structure in a

periodically driven Floquet setting. We show that not only can Floquet-localized

eigenstates display nontrivial phase structure, but that some of these phases show a

novel form of correlated spatiotemporal order and are absolutely stable to all generic

perturbations in the same sense in which topogically ordered phases are stable.

Part IV exploits the low-entanglement nature of MBL eigenstates to develop

tensor-network based algorithms for efficiently computing and representing highly-
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excited MBL eigenstates. In Chapter 7 we describe a variational procedure which

approximately diagonalizes the full MBL Hamiltonian in polynomial time and gives

an approximate representation of the entire many-body spectrum. Then, in Chapter 8

we describe a complementary algorithm based on the density-matrix renormalization

group which targets individual MBL eigenstates which much greater accuracy.

In Part V, we switch gears from disordered systems but still examine questions

on entanglement and quantum statistical mechanics. In both chapters, we treat the

entanglement Hamiltonian from a statistical mechanical lens. In Chapter 9, we show

that the low-energy spectrum of the entanglement Hamiltonian is much less universal

than assumed in the literature, while in Chapter 10 we examine questions about the

eigenstate thermalization hypothesis applied to the eigenstates of the entanglement

Hamiltonian.

We close in Section VI with two miscellaneous results on topologically ordered

phases. In Chapter 11, we examine the nonequilibrium dynamics resulting from

driving a system through a phase transition from a topologically ordered phase to a

trivial one at a finite rate. This is a study of the well known Kibble-Zurek mechanism

applied to topological order. Finally, Chapter 12 examines the four-state Potts model

on the frustrated pyrochlore lattice and shows that the system lies in a “Coulomb

Phase” characterized by three emergent gauge fields.
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Part II

Dynamical Response of

Many-Body Localized Systems
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Chapter 2

Non-local Adiabatic Response of a

Localized System to Local

Manipulations

A standard technique for probing the dynamical properties of a system is to perturb

it with time-varying fields and to examine the resultant response of the system to

the perturbation. While this chapter and the next have different motivations and

applications, both consider the general framework

H(t) = HMBL + v cos(ωt).

In this chapter, we probe the extremely slow (adiabatic) limit of the drive above i.e.

the limit ω → 0 for a finite v. In the next chapter, we look at the same protocol in

the opposite order of limits, v → 0 for a finite ω, in which linear response theory is

applicable.
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2.1 Introduction

As we saw in Chapter 1, MBL phases have a fascinating complex of properties in-

cluding (i) vanishing long wavelength conductivities at finite temperatures [27], (ii)

an extensive number of local conserved quantities [148, 283] leading to a breakdown

of ergodicity, (iii) spectral functions of local operators that show a ‘mobility’ gap at

all temperatures [222, 162], and (iv) highly excited MBL eigenstates that can exhibit

localization protected order – both Landau symmetry-breaking and topological order

– in dimensions and at energy densities normally forbidden by the Peierls-Mermin-

Wagner theorem [149, 239, 319, 182, 29, 24, 64, 224].

MBL systems present the tantalizing possibility of using localization to protect

high temperature quantum computation. Localized systems might serve as protected

quantum memories since they undergo only slow (logarithmic) dephasing, and even

this can be removed by spin echo procedures [29, 282, 306, 222]. Prima facie, one

expects to be able to locally manipulate degrees of freedom in such systems without

affecting distant q-bits, a property with various quantum control applications. Fur-

ther, property (iv) above raises the interesting possibility of performing topological

quantum computation at finite temperatures in the MBL regime by braiding exci-

tations in topologically ordered MBL eigenstates. While there isn’t an energy gap

at finite temperatures, the ‘mobility gap’ could serve to protect adiabatic braiding

instead.

All these applications require local manipulation of quantum degrees of freedom.

Motivated by these considerations, we study the adiabatic response of localized phases

to local perturbations using a combination of analytic arguments and numerical exact

diagonalization. In particular, we study the adiabatic time evolution of a system

governed by the time dependent Hamiltonian

H(t) = HL + V (t/τ),
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Figure 2.1: Schematic illustration of the time-dependent protocol. A local time-
dependent potential v0(τ) leads to a highly non-local adiabatic charge response in
disordered insulators, causing a ‘zone of disturbance’ with radius ∼ ln τ .

where HL is a localized Hamiltonian, V is a time dependent local perturbation which

acts only on a small compact subregion in real space, and which is zero in the distant

past and future (t→ ±∞). Finally, τ sets the time scale on which the perturbation

changes. In this work, adiatabatic time evolution will be understood to mean

|ψ(t)〉 = lim
L→∞

lim
τ→∞

U(t/τ)|ψ(0)〉

where U(t) is the unitary time-evolution operator defined by H(t), and the limit

τ → ∞ is taken before the thermodynamic limit L → ∞. We also discuss the

opposite order of limits.

A naive understanding of localization suggests that the influence of the perturba-

tion V (t) should be spatially confined to within a localization length ξ of the region

in space where V acts. The discovery [25, 284] of logarithmic dephasing and entan-

glement spreading in interacting, localized systems revises this understanding, but

nonetheless leaves in place the intuition that conserved charges, such as number and

energy, should not move over distances greater than the localization length. We will

show that this understanding needs to be further revised.

45



Our main results are as follows: (a) A local perturbation remarkably induces

a highly non-local adiabatic charge response in distant parts of the system. For

an infinitely slow perturbation, τ → ∞, there is a “zone of disturbance” where

charge rearrangement occurs over a length scale that diverges linearly with system

size. For finite τ , charge transfer takes place over length scales ∼ log(τ). See Fig.

2.1. This effect is distinct from the logarithmic entanglement growth as the charge

spreading occurs even in the non-interacting problem where there is no entanglement

spreading. (b) This effect cannot be captured by linear response theory, and revises

our understanding of susceptibility and transport in localized phases. Our results

also modify our understanding of MBL in time dependent systems [96, 251]. And

(c), there is a statistical Anderson orthogonality catastrophe [16] for both ground and

highly-excited states in strongly localized systems, contrary to established wisdom for

ground states [118]. Importantly, our work places strong constraints on possibilities

for quantum control and topological quantum computation in disordered systems as

we will discuss below. We note that there are parallels to our discussion of local

manipulations of disordered systems in the field of optics [38, 194]. We emphasize

that while our work is motivated by many body localization, our results apply also to

Anderson localized systems, such as systems on a quantum Hall plateau.

2.2 The Anderson Insulator

We start with a disordered single-particle (SP) Anderson insulator in 1D with a time-

dependent local potential where most of our results can be described in a transparent

setting. Generalizations to higher dimensions is straighforward. Many-body (MB)

eigenstates are constructed by simply filling the SP levels. To characterize the non-

local charge response of MB eigenstates, define the adiabatic change in the charge

density as:

46



−100 −50 0 50 100

x

−1.0

−0.5

0.0

0.5

1.0

δρ
a
d
(x

)

(a)

101 102 103

L

101

102

103

104

105

r2 Z
D

(b)
Ground State
Excited State

y = 2.08x −3.89
y = 2.05x −2.81

0 2000 6000 10000

Disorder Realization

0.0

0.5

1.0

〈ψ
G
S
|ψ̃
G
S
〉

(c)

−100 0 100
−1

0

1

ω

A
(ω

)

0 v0

Figure 2.2: (a) Adiabatic change in the ground state charge density (Eq. (2.1))
in a given disorder realization in a 250 site Anderson model (Eq. (2.3)) subject to
a repulsive time-dependent potential on site 0 with λ/W = .1. Charge is expelled
from site 0 and transferred to a distant location (near site 75). Inset: Same for
an excited state in the middle of the spectrum (colloquially, a T =∞ excited state)
showing a multi-particle rearrangement over a large ‘zone of disturbance’. (b) Scaling
of the radius of zone of disturbance (Eq. (2.2)) with system size for the ground state
(blue circles) and T = ∞ excited states (green squares) averaged over 104 disorder
realizations showing a linear scaling rZD ∼ L in both cases. (c) Overlaps of the
MB ground states in the presence (|ψ̃GS〉) and absence (|ψGS〉) of a local potential of
strength v0 = .4 at site 0 sorted over 104 disorder realizations with f = v0/2W = .2.
The sorted values show a statistical orthogonality catastrophe with probability f = .2.
Inset: Sketch of the disorder averaged spectral function (Eq. (2.6)) for Anderson
insulators. The spectrum is pure point, and the diffuse, non-zero strength between
(0, v0) is a signature of the long-distance charge rearrangement.

δρad(x) =
∑

α occ

|ψα(x, t =∞)|2 − |ψα(x, t = −∞)|2 (2.1)

where ψα(x, t) is the α-lowest instantaneous SP eigenstate of H(t), and the sum is

over occupied SP states in a given MB eigenstate. This expression can be applied

quite generally to many-body states of both noniteracting fermions and hard-core

bosons where all SP states can be occupied by at most one particle. Figure 2.2(a)

shows δρad for the MB ground state and an excited state (drawn randomly from the

infinite temperature Gibbs ensemble) in a given disorder realization of the Anderson

insulator; both show a long-distance rearrangement of charge. We emphasize that

this transfer is mediated by the action of a strictly local potential in an insulator!
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Figure 2.3: Single-particle spectrum of a 10 site Anderson insulator, Eq. (2.3), in a
given disorder realization as a function of time. The numbers denote the localization
centers of the corresponding eigenstates. The changing potential on site 0 brings
|ψ〉0(t) into resonance with the other eigenstates and leads to a set of avoided cross-
ings. The MB ground states at half filling (shaded levels occupied) in the distant past
and future are related through the transfer of charge from site 0 to site Rm = 2.

More precisely, define

r2
ZD =

∫ L/2
−L/2 dx x

2 δρ2
ad∫ L/2

−L/2 dx δρ
2
ad

(2.2)

where L is the system size and rZD quantifies the radius of the zone of disturbance

over which charge rearrangement takes place. It would be natural to expect rZD to

scale as the localization length ξ. Instead, we find that the disorder averaged radius

diverges linearly with system size,

√
r2

ZD ∼ L, i.e. the zone of disturbance grows

without bound in the adiabatic limit. Fig 2.2(b) shows the disorder averaged scaling

of r2
ZD with system size for both the MB ground state and T =∞ excited states.
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To understand these results, let’s turn to the specific fermionic Hamiltonian in

which our computations were performed:

H(t) = Hhopping + Vloc(t/τ)

=

L/2∑

i=−L/2+1

−λ(c†i−1ci + c†ici−1) + vic
†
ici + v0(t/τ)c†0c0 (2.3)

where λ is the nearest-neighbor hopping strength, the onsite potentials vi are drawn

uniformly from [−W,W ] and v0(t), the potential on site 0 is changed with time. We

now focus on the strong disorder limit, λ/W � 1, where the localization length ξ ∼ 1

is on the scale of a lattice constant and an especially simple picture emerges. Denote

the eigenstate with localization center at site r as |ψ〉r. As v0(t) is varied in time, the

eigenenergy of |ψ〉0 is affected most strongly. To leading order, as v0(t) sweeps the

range from −W to W , |ψ〉0(t) comes into resonance with each of the other eigenstates

giving rise to a set of avoided crossings with gaps that scale as λ exp
(
−R ln(W/λ)

)
,

the effective coupling between |ψ〉0 and |ψ〉±R. Thus, the smallest gaps (due to a

resonance between |ψ〉0 and |ψ〉O(N)) scale exponentially with system size (∼ λN)

even though the system is non-interacting, a fact previously discussed by Altshuler

et al [12] in the context of the global adiabatic optimization approach to quantum

computation. Figure 2.3 shows the evolution of the spectrum for a given disorder

realization in a 10 site chain with W = 1. We note that such resonances are also

present in an unperturbed Anderson insulator with exponentially small probability;

however, the local drive ensures that they occur with probability one.

The many-body ground state of fixed number, say m = N/2, is constructed by

filling the m lowest single-particle states Thus, if the system evolves adiabatically,

a purely local perturbation on site 0 leads to a transfer of charge a distance Rm

away, where |ψ〉Rm is the mth lowest eigenstate in the distant future! See Fig. 2.3.

The value of Rm differs between disorder realizations, but can take any value from
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1 to N/2 with equal probability in a system with uniform disorder strength. Thus,

the disorder averaged response to the local perturbation has a very wide spatial

distribution, and shows no decay on scales longer than ξloc. When v0 sweeps only a

finite fraction f of the bandwidth (∼ W ), distant charge transfer in the ground state

happens with probability f , occurring only if an occupied state is swept through

an avoided crossing with an unoccupied state. The disorder averaged response still

shows no decay. For highly excited MB states, the adiabatic response leads to a

multi-particle charge rearrangement in a diverging zone of disturbance as shown in

Fig.2.2(b).

Having characterized the spatial spread of the adiabatic response, we now turn

to the ramp time τ needed for adiabatic time evolution. In particular, we want to

know whether τ is set by the exponentially small avoided crossing gaps or by an O(1)

mobility gap [222].

For the nth SP eigenstate of H(−∞) to remain the nth instantaneous eigenstate

of H(t), the adiabaticity condition

amn(t) = ~
〈ψm(t)|∂V (t/τ)

∂t
|ψn(t)〉

(Em(t)− En(t))2
� 1 (2.4)

must be satisfied at all times for all m 6= n, where the eigenstates are defined by

H(t)ψα(t) = Eα(t)ψα(t). For a local V (t/τ), one might expect the numerator of amn

to be significant only when ψm,n are centered within a few localization lengths of each

other and the potential; however, states within a localization volume in space are

separated in energy by the mobility gap giving a large denominator. Thus, naively

amn � 1 so long as ~/τ is smaller than the mobility gap.

This reasoning fails at the avoided crossings in our locally perturbed system. At

an avoided crossing at time t between eigenstates |ψ(t)〉0 and |ψ(t)〉R the energy gap is

exponentially small in R, wheras the instantaneous eigenstates look like the symmetric
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and anstisymmetric combinations : |ψm,n(t)〉 ∼ |ψ(t)〉0±|ψ(t)〉R(t). Since V (t) is also

localized near site 0, the numerator of amn(t) receives a substantial contribution from

the diagonal piece 0〈ψ(t)|V̇ |ψ(t)〉0. Thus, the system remains adiabatic only if

τad �
~W 2(R−1)∂tV

λ2R

i.e. the mobility gap does not protect adiabaticity. Thus in a system of size L, the

drive is adiabatic for all levels only if the ramp is exponentially slow in the system

size, even for a single-particle Anderson insulator.

The preceding discussion also implies that with a finite ramp time τ , the system

is only able to adiabatically avoid level crossings with gaps > ~/τ . Since the charge

transfer is a consequence of avoided crossings and since the gaps decay exponentially

with distance W exp(−R/ξ) (in the strong localization regime), with a finite ramp

time τ , charge transfer occurs over a characteristic length scale

rZD ∼ ξ ln

(
τW

~

)
∼ ln(τ) (2.5)

This logarithmic transfer of charge is our key result. We predict a similar logarithmic

spreading in the weak localization regime, on distances larger than the localization

length.

2.2.1 Orthogonality Catastrophe

This non-local charge response implies a statistical Anderson orthogonality catas-

trophe (OC) in the Anderson insulator. Anderson’s original work had shown that

the many-body ground states of a clean (metallic) system of fermions in the pres-

ence and absence of a local impurity potential were orthogonal in the thermodynamic

limit, even for arbitrarily weak (but finite) potentials. In the strongly disordered

system under study, adding an on-site potential on site 0 of strength v0 = 2Wf with
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f < 1 leads to a distant charge transfer and hence an orthogonal new ground state

with probability f . Figure 2.2(c) shows the ground state overlaps with and without

a potential, clearly showing an orthogonality with probability f (roughly when the

starting potential on site 0 lies within v0 of the Fermi energy). For highly excited

states, we have a catastrophe with probability 1. Previous work [118] on the OC in

ground states of strongly disordered sytems only captured the non-orthogonal over-

laps that occur with probability 1−f to incorrectly conclude that strongly disordered

insulators don’t suffer from the OC.

The OC has important consequences for several dynamical phenomena in metals.

Famously, it predicts an X-ray edge singularity [211], where the low-energy X-ray

absorption spectrum in a metal has the singular form A(ω) ∼ w−1+2η and η is derived

from the Anderson OC. The primary spectral function characterizing local quantum

quenches (such as a change in the potential) takes the form: s

A(ω) =
∑

n

|〈n|GS〉|2δ(ω − En + EGS + ω0) (2.6)

where |GS〉 is ground state of the system before the quench, and |n〉, En are the

eigenstates and eigenvalues of the final Hamiltonian. For the Anderson insulator in the

λ/W � 1 limit, A(ω) looks pure point, and is characterized by delta function peaks

located between ω ∈ (0, v0) for different disorder realizations with a catastrophe.

In disorder realizations where there is no catastrophe and no long-distance charge

transfer (probability 1 − f), A(ω) has a peak at either ω = 0 or ω = v0. The

inset in Fig. 2.2(c) shows a representative sketch of the disorder averaged spectral

function – the non-zero weight between (0, v0) distinguishes the Anderson insulator

response from that of ordinary band insulators and is a signature of long-distance

charge rearrangement.
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2.2.2 Failure of linear response

Before leaving the Anderson insulator it is instructive to compare our description of

the adiabatic response to a local perturbation to the more standard account of such

a perturbation in linear response (LR) theory in the ω → 0 limit. This response

is governed by the density susceptibility which has been calculated using LR, for

example, in the classic work by Vollhardt and Wölfle [314] and the LR answer is

local on the scale of the localization length. As the standard computations are ap-

proximations carried out with disorder averaged Green’s functions and done at fixed

chemical potential, it is useful to revisit this question more carefully. For a single dis-

order realization the density susceptibility is given by a Kubo formula which involves

matrix elements of the perturbation between the exact unperturbed eigenstates. We

can estimate the density susceptibility in LR by a generalization of the arguments

used in the derivation of the celebrated Mott formula for the AC conductivity of

an Anderson insulator, σ ∼ ω2 lnd+1 ω [209] at small ω. Essentially, we translate

those arguments from the global dissipative response for the conductivity to the lo-

cal reactive response for the charge susceptibility. Accordingly, we estimate that the

charge rearrangements to distance r � ξ away from our chosen site are dominated

by unperturbed states in which the site is resonant with another at that distance.

As such a state is present with probability exponentially small in r/ξ, the disordered

averaged linear response will indeed decay exponentially on the scale of ξ. This has

been verified by numerical computations as shown in Fig. 2.4(a). The same figure

also shows the exact response averaged over the same disorder realizations and it is

clear that it is exponentially larger for r � ξ. This contrast vividly illustrates our

central observation that while the states with long-range resonances that contribute

to the Mott/ LR result are exponentially rare, even a local drive, surprisingly, creates

resonances with high probability. For concreteness, we note that the linear-response

result in Fig. 2.4 is obtained by by evaluating Eq.(2.1) with the single-particle eigen-
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states perturbed to first order in the local potential, while the exact result uses the

exact eigenstates in the presence of the potential.
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Figure 2.4: Exact (green, squares) and linear-response (blue, circle) answers for
the ground-state charge density difference (Eq. (2.1)), δρ(r), in a system of size
L = 50 due a perturbing repulsive potential of strength v0 = .4 added to the center
of the system in (a) an Anderson insulator with λ/W = .1 averaged over 105 disorder
realizations. While δρLR(r) rapidly decays away from the location of the potential,
the exact δρ(r) shows a uniform response everywhere (with amplitude scaling as 1/L).
(b) In a metal (λ = 1,W = 0), the linear-response charge response closely captures
the exact answer.
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2.3 Contrast with Clean Insulators and with Met-

als

At this point it instructive to contrast the behavior we have found for the Anderson

insulator with that of undisordered insulators (band and Mott) and that of metals.

In an undisordered insulator the particles are again localized with a length scale that

can be read off from correlation functions and which will scale inversely with the gap.

Now a) the response to an adiabatically prepared local potential is indeed localized

with this localization length, b) there is no orthogonality catastrophe, c) the adiabatic

response is accurately captured by linear response/perturbation theory. The case of

metals—ballistic and diffusive—is intermediate. In a metal a) charge can flow to

infinity and thus the adiabatic charge transfer is not restricted to the vicinity of

the applied perturbation, b) there is—famously—an orthogonality catastrophe with

a scaling with system size that is modified in the diffusive case, c) the adiabatic

response is accurately captured by linear response/perturbation theory as illustrated

in 2.4(b). As a function of the time scale we can be more specific. In both ballistic

and diffusive metals we will obtain a power law spreading of charge Rτ ∼ τσ with

σ = 1, 1/2 respectively. Indeed, charge can continue to flow even long after the

Hamiltonian stops changing (t � τ) allowing the effects of a local perturbation to

propagate out to infinity. This is in contrast to both undisordered insulators and

Anderson localized systems, where charge transfer occurs only when the Hamiltonian

is changing, and thus the influence of the perturbation is restricted to a finite region

of space (with linear size τ 0 or ln τ respectively). Moreover, the smallest gaps in

non-interacting metals scale only polynomially with system and thus an adiabatic

response can be achieved by much faster ramp rates τ as compared to localized

systems. Finally it is interesting to note that in clean insulators and metals the

adiabatic limit considered in this chapter yields the same charge response as the
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opposite limit in which L → ∞ before τ → ∞. In the Anderson insulator the

latter limit fails to exist in the mathematical sense that the charge response does not

converge to a fixed answer as τ is increased in an infinite system but instead continues

to evolve erratically as increasingly small gaps become relevant.

2.4 Generalization to MBL

We now generalize our analysis to fully MBL interacting localized systems. Our prin-

cipal results for the Anderson insulator carry over. MBL systems also exhibit a) a

zone of disturbance that grows as ln(τ), b) a statistical orthgonality catastrophe for

the ground state and a certain orthogonality catastrophe for highly excited states and

c) a failure of linear reponse to agree with this behavior. There are three new features

that come into play. First, we can consider systems that lack a parent single particle

description as they lack a conserved number and the non-local response now involves

a rearrangment in the energy density alone. Second, the rearrangement process for

highly excited states now exhibits a range of length scales from the ubiquitous ln(τ)

to the shorter, but still divergent, (ln τ)1/(d+1) at which much more comprehensive

changes take place in the structure of the ground state. Third, the termination of the

perturbation is now followed by the entanglement spreading discussed in [25, 284].

We note that the entanglement spreading is the dominant effect in work on quan-

tum revivals [306] which considers sudden quenches and thus works in the opposite

limit from the one considered here. These results can be derived within the “l-bits”

formalism introduced in [283, 148]. For specificity consider a quantum spin system

dominated by random fields:

H =

L/2∑

i=−L/2
hiσ

z
i + λH(2) (2.7)
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where the hi are taken from a distribution of width W , H(2) includes interaction

terms that may or not conserve
∑

i σ
z
i and λ is chosen appropriately small so that

the eigenstates of H are localized at all energies. Such a fully MBL system can be

recast via a unitary transformation into the form [283, 148]

H0 =
∑

i

h̃iτ
z
i +

∑

i,j

J̃ijτ
z
i τ

z
j +

∑

n

∑

i,j,{k}
K

(n)
i{k}jτ

z
i τ

z
k1
...τ zknτ

z
j . (2.8)

where the τ zi are exponentially localized emergent integrals of motion (‘l-bits’), and

the high order terms Jij and Ki{k}j fall off exponentially rapidly in the range, modulo

exponentially rare resonant ones which can be ignored for the most part. To leading

order in large W , the τ zi coincide with the σzi , but with a ‘dressing’ of multi-spin

operators that falls off exponentially in the range.

Let us now introduce a local perturbation by making the field on a particular site

h0 time dependent h0 → h0(t/τ). With this change the new h̃0 and the interaction

terms involving τ0 also become time dependent. Further, the other l-bits τi 6=0 will also

be affected due to their overlap with σ0. In particular, the l-bits themselves will have

to be redefined continuously in time, so that (written in terms of the l-bit operators

τ zi at time zero), the Hamiltonian will acquire off diagonal terms:

H(t > 0) = H0 +
∑

i

h̃i exp(−|i|/ξ0)τ zi +
∑

i

J̃ij(t)τ
z
i τ

z
0

+
∑

n,i,{k}
K

(n)
i{k}j(t)τ

z
i τ

z
k1
...τ zknτ

z
0

+
∑

j

(txj0(t)τxj τ
x
0 + tyj0(t)τ yj τ

y
0 ) + ... (2.9)

where the ... denotes higher order l-bit spin hopping terms which rearrange multiple

l-bits and the off diagonal terms all fall off exponentially with distance from 0, both

in the magnitude of individual terms and in the total weight.
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Now, a slowly varying time dependent potential induces avoided crossings, with

the minimum gaps controlled by the off diagonal terms. Range R single l-bit spin

hops will then occur IFF the Hamiltonian varies slowly compared to the gap scale

exp(−R/ξ0), where ξ0 is the characteristic length scale for decay of a typical off

diagonal term. The effect of the higher order interaction terms is to modify the

effective interaction length so that the gaps fall off as exp(−R/ξ̃), where ξ̃ is the

decay length of the total interaction. The largest gaps are typically set by many spin

rearrangements. Thus, the size of the zone of disturbance (the region over which some

l-bits are rearranged) grows as ξ̃ ln τ , with ξ̃ ≥ ξ0. For highly excited states we can

also identify a “zone of total rearrangement” - a (smaller) region of size R̃ over which

a R̃ independent fraction of the l-bits are rearranged. Since the number of l-bits that

must be rearranged in the zone of total rearrangement grows as R̃d, and the matrix

element for flipping each l-bit is exponentially small in R̃, the gaps associated with

total rearrangements will scale as exp(−R̃d+1). Thus, we expect the zone of total

rearrangement to grow as R̃ ∼ (ln τ)1/(d+1). One can also establish the remaining

results within the same framework.

2.5 Discussion and Ramifications

We conclude by discussing the implications of our work for experiments, other aspects

of the physics of localized systems and for quantum engineering. Starting with ex-

periments, it would be gratifying to directly observe the zone of disturbance created

in response to a local perturbation and it seems to us that the cold atomic systems

which have exhibited Anderson [20, 35, 190, 269] and, apparently, MBL [192] are the

best places to look.
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Alternatively experiments could look for the predicted form of the X-ray absorp-

tion spectrum sketched in Fig. 2.2(c). Apart from solids hosting disordered electron

gases [231], cold atomic gases [184] are again plausible sytems to observe this effect.

The tuned resonance behavior that underlies our chief results can, in principle,

be produced in other ways—e.g. by sandwiching a localized system between two

conducting leads and tuning the chemical potential in the conducting regions. In-

deed, this is the well known setting of the Lifshitz-Azbel [23, 240, 206] resonances

in Anderson localized systems. Quasiperiodic systems, with [157] and without [22]

interactions, are known to exhibit localized states and are natural for studying our

results in a setting without disorder.

Another problem for which our results have consequences is that of Floquet local-

ization in MBL systems. It has been argued [96, 251] that MBL systems subject to a

periodic local driving do not absorb energy indefinitely. In particular, the eigenstates

of the Floquet operator for such systems are expected to be MBL. Here our results

predict that slow, low-frequency local drives (or a slow perturbation of the ampli-

tude of a fast drive) will give rise to a diverging ‘zone of disturbance’ in the Floquet

eigenstates and lead to a transfer of energy deep into the system.

We now turn to the implications of our work for quantum control, engineering

and computation where it might often be neccessary to perform local manipulations

in disordered environments while leaving distant regions untouched. At the broadest

level, our results imply that such control will be problematic if we attempt to carry

out such manipulations arbitrarily gently/slowly as one might wish to for a theoretical

analysis of devices. We emphasize that such adiabaticity is implicit in thinking of

ideal control by means of gates, for example, or even of small excitation currents

which imply slow changes of various potentials.

We will now explain in more detail why this charge rearrangement is problematic

for quantum computation. The discussion below pertains to two broad classes of
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I II

Figure 2.5: Schematic illustration of a proposal for topological quantum compu-
tation outlined in Ref. [226]. Regions I and II contain the intended non-Abelian
quasiparticles whose joint state is measured by interferometric tunneling experiments
of quasiparticles across the constrictions. In realistic experiments, there will be un-
intended quasiparticles in the shaded region outside of I and II which will rearrange
over long distances in response to the changing potential on the constriction, thereby
spoiling the braiding experiment.

systems. First, it applies to several of the most popular existing platforms for low

temperature topological quantum computation in experimentally realizable systems,

including the ground states of non-Abelian quantum Hall systems. Implementing

quantum computing in these systems is an active and challenging area of current

research that our work directly informs. Second, our results apply to the recent,

novel possibility [149] of performing high-temperature quantum computation by using

many-body localized systems which can stabilize topological order at finite energy

densities. This nascent idea, while still speculative, represents an exciting new frontier

which has attracted a lot of attention recently; our work places strong limits on the

implementations of this idea and will inform future experiments and developments in

this area.

2.5.1 Quantum computation with quantum Hall systems

For concreteness, let us analyze a well-known proposal which uses fractional quantum

Hall systems as platforms for topological quantum computation by creating and braid-
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ing localized excitations. The simplest operation for this system shown in Fig. 2.5,

taken from Ref. [226], involves constructing a quantum bit from the non-Abelian

quasiparticles and applying a NOT gate to flip the state of this bit. We summarize

this construction here and refer the reader to Ref. [226] for more details. A two-state

qubit is realized by localizing an odd number of target quasiparticles in small regions

in each half of a Hall bar (regions I and II in Fig. 2.5). The bar has a manipulatable

constriction in between regions I and II. As the constriction is narrowed, if a single

quasiparticle (or an odd number) tunnels from the top edge of the bar to the bottom,

its trajectory passes between the two sets of localized target quasiparticles which flips

the state of the qubit.

In a perfectly clean sample, the only quasiparticles present are those created by the

experimenter in regions I and II. In practice, all known experimental realizations are

disordered and exhibit broadened quantum Hall plateuax with additional topologically

charged quasiparticles that are Anderson localized by the disorder. Thus, there is a

‘background’ of localized quasiparticles in addition to those present in regions I and

II as indicated by the red dots in Fig. 2.5.

The middle constriction is controlled through an electrostatic potential with a

dipolar shadow leaking into the sample. Operating the gate involves adiabatically

changing the potential at the constriction to braid a controlled number of quasipar-

ticles around the target regions. Of course, in a realistic sample, this slowly varying

potential is also felt by the localized ‘background’ quasiparticles which can respond

by moving long distances. If the background quasiparticles move across the braiding

path, the resulting braid will be different from the intended one, causing the compu-

tational step to fail. The problem is only worsened by operating the gate arbitrarily

slowly, since that leads to an even more non-local response. Thus, there is no safe

asymptotic limit, and braiding in these devices will require considerable engineering

of time scales. The ideas laid out in this section generalize quite directly to various
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experiments aiming to perform slow, local manipulations in disordered systems with

localized (Anderson, or many-body) quasiparticles.

2.5.2 Other proposals for quantum computation

We now expand our discussion of the implications of our results in disordered envi-

ronments by considering a few other proposals for topological quantum computation.

Proposals for topological quantum computation draw their strength from the spatially

extended character of their qubits which make them relatively immune to decoher-

ence, but this spatially extended character makes them vulnerable to the non-local

response discussed in this chapter. In the prior section, we considered a single motif

that has been discussed as a gate for computation with quantum Hall systems. Here

we comment on two more proposals which all involve electrostatic gating in some

fashion:

• Measurement only computation with QH devices: In this proposal [41], the

authors describe how to implement braids and carry out computations with-

out actually physically transporting quasiparticles. Instead, the computational

steps are carried out via a series of topological charge measurements. Prima fa-

cie, it might seem that such a proposal is immune to our effect since no charges

are being transported. However, this method is also dependent on electrical

gates to carry out measurements and thus susceptible to the same issues as

more “conventional” approaches. In particular, electrical gates enter at two

stages in this scheme. First in preparing the state to be measured wherein the

idea is to prepare entangled pairs of quasiparticles by creating them from the

ground state. This has to be done via gates and will be subject to uncertainty

via our effect - extra quasiparticles will enter/exit the region to be measured

in an uncontrolled fashion. The second place where gates need to be used is

in selecting the quasiparticles to be measured - this requires directing the flow
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of the measuring current via electrical gates. Once the gates are in place, the

measurement itself can, in principle, be done asymptotically gently for our pur-

poses.

• Computation with Majorana wires: The basic ingredient in these proposals

(Ref. [32] and references therein) is to create qubits from the ends of supercon-

ducting wires in a topological phase and to move them around by the action of

gates which cause segments of a longer wire or wire network to transition be-

tween topological and non-topological phases. In the presence of disorder, these

gate potentials will cause quasiparticles to tunnel between different segments

of the wire hosting the Majoranas, as well as between the wires and the proxi-

mate superconductor which is needed for their superconductivity—thus leading

to bit flips. This effect in the absence of gate potentials has been discussed as

quasiparticle poisoning [262]. Interestingly, as in the measurement only pro-

posal discussed above, it is possible to read out the state of Majorana qubit by

means of vortices [134] which themselves will be immune to our considerations.

Finally, we turn to the possibility of performing high-temperature quantum com-

putation by using many-body localized systems. The discussion above unfortunately

has a negative implication for MBL physics. As outlined in Ref. [149], highly excited

MBL eigenstates with localized quasiparticles can still support topological order. This

observation has led to the recent, novel possibility of performing high-temperature

topological quantum computation using MBL systems. While still nascent, this ex-

citing idea has attracted a lot of attention. The discussion for quantum computation

using quantum Hall platforms directly generalizes to braiding in MBL systems since

the localized background quasiparticles can again respond to the slow braid and spoil

the computation; thus our work places strong limits on the implementations of this

idea and will inform future experiments and engineering in this field. Further, our re-

sults here imply that since one cannot define an adiabatic process with a well defined
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Berry phase, quasiparticle statistics are, as such, ill-defined in the localized setting.

Instead the topological information in the excited MBL states must be reconstructed

from other data.

Altogether, our results place natural limits on the manipulation of local degrees of

freedom in localized phases and help further elucidate the remarkably subtle nature

of localization.
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Chapter 3

Low-Frequency Linear-Response

Conductivity in Many-Body

Localized Systems

3.1 Introduction

In the last chapter, we saw that the adiabatic response of MBL systems is governed by

“induced” resonances which give predictions that are markedly different from linear

response theory. This analysis holds in the limit of extremely slow drives, ω → 0. It is

equally instructive to study the dynamical response of MBL systems by probing their

low-frequency response in the linear response regime characterized by a vanishing

drive amplitude v → 0. This calculation will be sensitive to “pre-existing” resonances

in the system as in Mott’s celebrated result on the a.c. conductivity of Anderson

insulators [209].

We have seen that while the eigenstate properties of MBL systems are, in some

respects, similar to those of noninteracting Anderson insulators, there are important
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differences in the dynamics, such as the logarithmic spreading of entanglement in the

MBL phase [152, 25, 318, 284, 148, 282, 172].

In this chapter we show that the MBL phase also differs sharply from nonin-

teracting localized systems in its low-frequency response. We focus on the infinite

temperature a.c. conductivity in the MBL phase, for concreteness and to make con-

tact with previous literature on solid-state systems (e.g., Mott’s law [209]); however,

as we argue below, our discussion directly extends to relaxation dynamics, which

is more easily accessible in experimental studies using ultracold atoms [279], polar

molecules [330], nitrogen-vacancy centers [91], and other forms of “synthetic” matter.

We identify two physical mechanisms underlying the slow response: (a) the pres-

ence of resonant pairs of charge or spin configurations, connected by slow many-body

rearrangements; and (b) the presence within an MBL system of rare thermalizing

regions, or “inclusions”, that act as local heat baths for their surroundings. These

mechanisms are absent in noninteracting systems: thus, the differences in transport

between single-particle and many-body localization can be traced to the much larger

connectivity of the many-body Hilbert space. The two mechanisms we discuss involve

dissipative dynamics, and are thus distinct from the “pure dephasing” processes that

cause the slow growth of entanglement within the MBL phase [148, 284].

Our results for the a.c. conductivity are as follows. Whereas in noninteracting

systems the a.c. conductivity σ(ω) ∼ ω2 logd+1 ω (Mott’s law [209] in d dimensions),

in the interacting MBL phase at high temperature the conductivity goes as σ(ω) ∼ ωα,

where α is an exponent that varies continuously throughout the MBL phase, ranging

from α = 1 at the MBL transition to α→ 2 deep in the MBL phase. The exponent α

has two regimes of behavior, corresponding to the two mechanisms described above.

Deep in the MBL phase, the conductivity is dominated, as in Mott’s law, by resonant

transitions between localized configurations. It is enhanced relative to noninteracting

localization because more such resonances are possible: in addition to single-particle
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hopping, a MBL state can undergo multiple-particle rearrangements. We term this

regime the “MBL-Mott” regime, and argue that response in this regime is dominated

by rare regions that are still localized but with anomalously large localization length.

Close to the transition, the conductivity is dominated by rare thermalizing or critical

regions and their surroundings; we call this the “MBL-Griffiths” regime. As the

system approaches the transition from the insulating side, thermalizing inclusions

proliferate; we show that this leads to the conductivity exponent α→ 1.

In two or more dimensions, the exponent α = 0 throughout the thermal phase

(i.e., there is presumably a nonzero d.c. conductivity). In one dimension, however,

a subdiffusive phase with a continuously varying conductivity exponent 0 < α < 1

exists on the thermal side of the MBL transition [201, 8, 320]. Remarkably, therefore,

the a.c. conductivity exponent α in one dimension is continuous and apparently

smooth across the MBL transition, approaching the critical behavior σ(ω) ∼ ω from

both sides (Fig. 3.1).

This chapter is structured as follows. In Section 3.2 we list our assumptions.

In Sections 3.3 and 3.4 we introduce the MBL-Mott and MBL-Griffiths phases re-

spectively; then in Section 3.5 we discuss the transition between these phases. In

Section 3.6 we describe the numerical methods used to compare our theoretical pre-

dictions with data on random-field Heisenberg spin chains (details of the numerical

analysis are given in Appendix 3.B). Section 3.7 connects the a.c. conductivity to the

relaxation dynamics measured in ultracold atomic experiments. Finally, Section 3.8

summarizes our results and comments on their scope.

3.2 Assumptions

We work with a generic disordered lattice Hamiltonian having a conserved density

(e.g., a particle number, or a particular projection of spin). The current associated
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Figure 3.1: A.C. conductivity exponent α of a disordered one-dimensional system
across the many-body localization transition, showing four regimes: (i) the diffusive
thermal phase; (ii) the subdiffusive thermal phase [8], which exists only in one dimen-
sion; and (iii, iv) the MBL phase. The MBL phase is divided into an “MBL-Griffiths”
regime (iii) in which low-frequency response is dominated by rare critical or thermal
regions, and an “MBL-Mott” regime (iv) in which it is dominated by pairs of reso-
nant configurations. Our main predictions are that the exponent α→ 1 [i.e., σ ∼ ω]
as the MBL transition is approached from the localized side, and that 1 ≤ α < 2
throughout the MBL phase. These are consistent with numerical simulations of a
nearest-neighbor random-field XXZ chain (shown in the plot). In the thermal phase,
finite-size effects are strong, and a more careful analysis [8] is needed to extract the
conductivity exponent.

with this charge is denoted j. The a.c. conductivity tensor σ in the T → ∞ limit is

then given by the Kubo formula:

Tσβγ(ω) =
1

ZN

∑

mn

〈m|jβ|n〉〈n|jγ|m〉δ(ω − ωmn) . (3.1)

Here T is the temperature, N is the number of sites, Z is the partition function

which in this infinite T limit is the dimension of the many-body state space; the

indices m,n run over all Z many-body eigenstates; and the current jβ is the sum

over local currents, viz. jβ ≡
∑

i ji,β. We shall only be concerned with the diagonal

elements σββ, so henceforth we shall drop the index β. Our arguments should also

apply to the frequency-dependence of the a.c. thermal conductivity, e.g., in systems
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where the only conserved quantity is the energy. We can also consider the dynamics

of a Floquet system with no conserved densities to be transported; for such systems

in the MBL phase, the mechanisms we discuss give relaxation that is a power of time

(see Section VII below).

When we consider the MBL phase, we specialize here to the case where all many-

body eigenstates are localized, so we can discuss in terms of the localized conserved

operators. However, the results we obtain should also apply to the MBL phase in

systems with a many-body mobility edge. In the latter case, when we discuss ‘rare

regions’ they are not only rare local disorder configurations in the system’s Hamilto-

nian, but also rare local configurations of the state that put it locally closer to, at, or

across the mobility edge.

We consider the a.c. conductivity here at the level of linear response theory:

i.e., we assume throughout that the drive is sufficiently weak and is present for a

sufficiently short time that linear response applies. It was shown [172] in the last

chapter that localized systems subject to a nonzero-amplitude drive go nonlinear and

display a highly non-local response at low enough frequencies. Further, an MBL

system subject to a finite-frequency drive for a long enough duration will eventually

leave the linear response regime and enter instead a Floquet MBL steady state or

even thermalize due to the a.c. drive [223, 172, 252, 251, 2, 199].

3.3 MBL-Mott regime

3.3.1 Many-body “Mott” conductivity

We begin by considering the generic behavior deep in the MBL phase. As discussed

earlier, we specialize to the regime where all eigenstates of the system are localized. In

this regime, the system Hamiltonian admits a representation in terms of effective spin-

1/2 degrees of freedom labeled τk, which are frequently referred to as local integrals of
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motion or “l-bits” [283, 148, 271]: in terms of these, H =
∑

i hiτ
z
i +
∑

i,j Jijτ
z
i τ

z
j + . . ..

Eigenstates of H are also simultaneously eigenstates of all the τ zk . These effective τ

spins are related to the microscopic degrees of freedom (which need not be spin-1/2)

by a unitary transformation that is local up to exponentially small tails. In terms of

the effective τ spins, the current operator can be expressed as

j =
∑

β,k

K
(1)
β,kτ

β
k +

∑

β,γ,k,l

K
(2)
βγ,klτ

β
k τ

γ
l + . . . , (3.2)

where β, γ = x, y, z; τβ is the appropriate Pauli matrix; and k, l run over effective

spins. The coefficients K(n) for n ≥ 2 fall off exponentially with the distance between

the farthest effective spins in that term. Stability of the MBL phase further requires

them to fall off exponentially with the order n [122]. Note that for a single-particle

(noninteracting) Anderson insulator the τβ operators are the creation, annihilation

and number operators of the localized single-particle states, so the coefficients K(n)

are zero for n > 2, i.e., the current operator only contains single-particle hops and no

multiple-particle rearrangements.

We now briefly review Mott’s argument [209] for the a.c. conductivity in nonin-

teracting localized systems at temperature T > ω. For this noninteracting case, the

transitions contributing to σ(ω) at low frequency involve rare pairs of resonant sites

that hybridize to form pairs of nearly-degenerate eigenstates (i.e., symmetric and

antisymmetric linear combinations of the wavefunctions centered at the two sites)

with small energy splitting ω. Short-distance resonances, while common, typically

have large splittings because of local level repulsion; these local processes give only a

subdominant contribution to the conductivity in the low-frequency limit 1. To find

the resonant pairs of sites with energy splitting ω that dominate in σ(ω), one has

to go a distance rω determined by the condition W exp(−rω) = ω, where W is a

1There are also random-matrix theory tails—i.e., short-distance resonances with anomalously
small matrix element—whose contribution is subleading at low ω.
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microscopic bandwidth. (We are assuming the single-particle localization length is of

order one lattice spacing and do not include factors of it.) The number of such pairs

is ∼ rd−1
ω . The typical current matrix element between such pairs of eigenstates is

ωrω ' ω log(W/ω) (because they involve moving a unit charge a distance rω at a rate

ω). Putting these pieces together, we recover the Mott result:

σ(ω) ∼ ω2 logd+1(W/ω) . (3.3)

Note that the contribution from more distant pairs is weaker, because the current

matrix element falls off as exp(−R) whereas the phase space only grows as Rd−1.

This argument is fundamentally altered by many-body processes for the interact-

ing MBL phase. Here the conductivity includes not only hopping resonances between

pairs of sites but also many-body resonances between pairs of configurations. Hence

the “phase space” factor is strongly enhanced. We now argue that this enhanced

phase space factor grows exponentially in the number of effective spins flipped.

The many-body resonances that dominate the low-frequency dynamics flip n effec-

tive spins, with those spins typically having random spacings of order the localization

length or less so that they do interact with each other. For d > 1 this set of spins will

in general have a fractal geometry. Let γ collectively denote all the relevant param-

eters (shape, typical interparticle spacing, etc.) specifying the ensemble of possibly

resonant ‘clusters’ of flipped spins. (Given a cluster, in other words, one can charac-

terize it through its parameters γ; different resonant n-spin clusters with the same γ

will have the same hybridization strength.)

The typical current matrix element for a resonance with parameters γ that flips

n spins is ∼ W exp(−n/ζ(γ)). Here ζ(γ) is a dimensionless quantity that depends

on γ and varies continuously in the MBL phase; ζ(γ) remains finite at the MBL

transition and decreases as one moves deeper into the localized phase. ζ(γ) is larger for
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resonances having more closely spaced and thus more strongly interacting spins. Let

us fix these parameters γ. Then, analogous to the single-particle case, the frequency

ω picks out an “optimal” n such that

W exp(−n/ζ(γ)) = ω ⇒ n = ζ(γ) log(W/ω). (3.4)

The number of possible resonances (in the ensemble parameterized by γ) that flip n

effective spins in the immediate vicinity of one particular real-space location is ex-

ponential in n, while the frequency bandwidth of such rearrangements is linear in n.

Thus, to leading order the density of states of possible resonances at order n grows

exponentially with n. Specifically, it grows as ∼ es(γ)n, where s(γ) is the configura-

tional entropy per flipped spin of the possibly resonant clusters in the ensemble γ.

This is the entropy of all the possible choices of the n spins flipped by the resonance.

Using this and Eq. (3.4), the density of states of resonant configurations from en-

semble γ at frequency ω grows as a power law, ω−φ, where φ = s(γ)ζ(γ), in contrast

with the logarithmic growth in the noninteracting case. The dominant resonances at

low frequency flip many spins and have their properties γ chosen so that the product

s(γ)ζ(γ) is maximized 2.

We now assume that we have maximized this product φ, and complete our estimate

of the MBL-“Mott” conductivity. The current matrix elements remain ∼ ω, up

to logarithmic factors. Putting this together with the phase space factor ω−φ, the

conductivity goes as

σ(ω) ∼ ω2−φ (3.5)

at low frequency.

2We need not be explicit about the nature of the dominant resonances to conclude that the
phase space grows as ω−φ for 0 ≤ φ ≤ 1. For simple ensembles γ0 of resonances (e.g., those
that lie on a straight line with a given average spacing), one can check that the matrix element
decreases exponentially in n and the phase space grows exponentially in n. Thus the density of
these resonances goes as ω−s(γ0)ζ(γ0). At low frequencies, this is a lower bound, whereas 1/ω is an
upper bound, assuming the stability of the MBL phase.
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For the MBL phase to be stable, we need that a typical eigenstate is, at a typical

real-space location, not involved in many resonances. From the discussion above,

the typical accessible phase space for final states with a matrix element of ω goes as

∼ ω−φ; thus the typical level spacing for these goes as ∼ ωφ. In order that long-range

resonances remain rare and do not destabilize the MBL phase, the matrix element

must vanish faster than the typical level spacing in the long-distance, small ω limit.

Thus 0 < φ < 1 (and thus 2 > α > 1) in the MBL phase, with φ increasing (thus α

decreasing) as the phase transition to the thermal state is approached.

Note that the above analysis for the MBL-Mott conductivity does not rely on

randomness of the system’s Hamiltonian. Thus we expect it to also apply to nonran-

dom MBL systems where the localization is due to spatial quasiperiodicity, such as

discussed e.g. in Refs. [157, 279].

3.3.2 Rare-region Mott resonances

In the above discussion, we argued that the low-frequency conductivity in the MBL

phase is dominated by rare many-spin resonances, and goes as ω2−sζ , where s and ζ

are properties of the MBL phase (optimized over families of resonances parameterized

by γ). However, in a disordered system, ζ is itself a random variable, so there will

be atypical clusters in which (for example) the random fields are small and therefore

the system is locally closer to the delocalization transition. (We focus on ζ but the

same argument can be applied to any other parameter.) In such segments, ζ will take

a local value ζloc that deviates from its typical value ζ̄, and the matrix element for

resonances involving n spins will be atypically large.

These rare local “regions” occur with a probability ∼ exp[−rf(ζloc)], where f(ζloc)

is a nonnegative “rate function” [86] that vanishes quadratically at ζloc = ζ̄. By

the above arguments the contribution of such a rare local resonance to the ac con-

ductivity will be ∼ ω2, while the number of spins flipped by the rare resonance is
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n ≈ ζloc log(W/ω) (which sets a minimum “size” for the rare region). Therefore the

density of such rare resonances will be ∼ ω(ζlocf(ζloc)−ζlocs). Because the initial ‘gain’

in conductivity by going to these rare local resonances is linear in (ζloc − ζ̄) while

the probability ‘cost’ is only quadratic in the deviations from typical, the generic

situation in the MBL phase of a system with quenched randomness is that the low-

ω conductivity is dominated by rare many-body resonances in rare regions that are

locally atypically close to the delocalization transition (i.e., have an atypically large

ζloc).

When the system is deep in the MBL phase, the dominant contributions to the low

frequency conductivity are from resonant clusters in regions that are themselves in

the localized phase; we call this regime the “MBL-Mott” regime. In the low frequency

limit in this regime, each resonant cluster is large compared to its local value of the

localization length. As the transition to the thermal phase is approached, at some

point before reaching the transition these dominant rare clusters become instead

locally critical or thermal quantum Griffiths regions. We now turn to such rare-

region Griffiths effects, and show that they give rise to a conductivity exponent that

approaches α = 1 at the critical point.

3.4 MBL-Griffiths regime

We shall eventually be concerned with both thermal and critical rare regions, but to

set up our discussion we begin by considering an inclusion that is locally deep in the

thermal phase, embedded in a typical insulating environment. This thermal inclusion

is of volume V , has a many-body level spacing ∆ that decreases exponentially with

V and a transport time (i.e., Thouless time) tTh that increases polynomially with

V (specifically, as V 2/d for a compact internally diffusive inclusion and with a larger

power for a fractal or critical inclusion). In general, tTh∆ � 1 for large thermal
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inclusions. (We expect this also to be true for critical inclusions in d > 1.) Moreover,

each inclusion thermalizes its immediate insulating surroundings. Thus the inclusion

consists of two parts: first, the ‘core’ of the inclusion which is the rare region that is

locally thermalizing (or critical), and second, the typical insulating region surrounding

this core, which gets strongly entangled with the core in the many-body eigenstates

(we call this the ‘periphery’). A more thorough discussion of these inclusions is

presented in Appendix A.

Now we consider the a.c. response of this inclusion, probed at a frequency

ω ∼ ∆ � 1/tTh. Because the core relaxes rapidly compared with ω, it essentially

adiabatically follows the applied electric field, and its response is reactive rather

than dissipative [154, 288]. Specifically, to leading order, the core response goes

as σ(ω) ∼ ω2tTh, which is subleading at low frequencies to the many-body Mott

contribution. Thus transport within thermal inclusion cores does not dominate the

low-frequency conductivity.

However, the periphery of an inclusion with core level spacing ∆ does contribute

strongly to its conductivity at frequencies down to ∆, as we now argue. This periphery

consists of typical MBL regions that experience the core as a finite bath [222, 162]

to which they are coupled with matrix elements that fall off as ∼ exp(−R/ζ̃) (where

R is the distance from the core and ζ̃ is a decay length). We can estimate the decay

rate of a peripheral spin, using the Golden Rule, as γ(R) ∼ W exp(−2R/ζ̃). So long

as γ(R)� ∆, the Golden Rule is valid on these time scales and the core does indeed

act as a ‘bath’ for these spins. Far from the inclusion core, however, γ(R) � ∆; a

spin at this distance resolves the discreteness of core levels and does not decay into

them. The overall picture is as follows (Fig. 3.2): The core (with level spacing ∆) is

surrounded by ‘shells’ of continuously decreasing γ(R), with the outermost ‘active’

shell having a decay rate γ(R) ' ∆. Beyond this distance the system is insensitive

to the presence of the thermal core and remains fully localized.
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Figure 3.2: Left: schematic of the structure of a thermal inclusion in the MBL phase,
showing its core (the microscopically rare thermal region), the periphery (the typical
surroundings that get strongly entangled with the rare region), and the typical MBL
surroundings where the core does not flip the local effective spins. Low-frequency
transport occurs through transport between the periphery and the core. Right:
numerically computed conductivity exponent α of an XXZ chain of size L = 12
with integrability-breaking next-to-nearest neighbor exchange coupling that contains
a thermal or critical inclusion (i.e., a region that is locally thermal or critical) of four
sites. Wtyp is the typical value of disorder, and three different disorder values for the
inclusion Winc are shown. When the typical system is in the MBL phase (Wtyp > 8),
the conductivity exponent saturates to near one, consistent with the discussion in the
main text.

This picture thus gives the behavior of the a.c. conductivity in the presence

of a single such thermal inclusion. When one probes the system at a frequency

ω ≥ ∆, the conductivity is dominated by the shell at radius Rω such that γ(Rω) = ω.

Shells closer to the core relax faster, and their response to a probe oscillating at ω

is mainly reactive; meanwhile, shells that are farther do not respond at all at ω.

The conductivity of the dominant shell is proportional to its Golden-Rule decay rate,

so this shell gives σ ∼ γ(Rω) ∼ ω (up to logω factors due to size, dipole matrix

element, etc.). The conductivity due to a single inclusion thus turns on at and

above a frequency ∆ and has the behavior σ ∼ ω at intermediate frequencies. This

reasoning extends directly to any inclusion whose core has an internal relaxation rate

greater than its many-body level spacing, and is supported by numerical simulations

(Fig. 3.2b) on inhomogeneous systems, in which thermal or critical inclusions are put
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in by hand: the conductivity in the presence of an inclusion goes as σ ∼ ω whenever

the core is thermal or critical, as expected.

We now use the single-inclusion result to study the rare-region contribution to the

a.c. conductivity of a generic MBL system, which contains some density of inclusions

at all scales. The cores of these inclusions must be thermal, but there does not

appear to be any constraint on how thermal they are, so the most common such cores

of a given size will be cores that are locally arbitrarily close to the critical point.

The inclusion cores that dominate the conductivity at low ω are thus rare locally

critical regions with level spacing ω and consequently of volume V ∼ ζc log(W/ω);

the probability of such cores is therefore ∼ pζc log(W/ω) ∼ ωg, where p is (heuristically)

the probability that a unit-volume region is locally critical 3. (One can define p

more precisely as follows: the density of critical inclusions of volume V decreases

exponentially with V , as pV .) In the MBL phase p < 1, and p approaches one at the

transition; thus the Griffiths exponent g, which is positive, approaches zero as the

transition is approached. Since each such inclusion contributes ∼ ω (up to logarithmic

corrections) to the conductivity, the resulting conductivity of the Griffiths insulator

goes as σ ∼ ω1+g, where the Griffiths exponent g goes to zero at the critical point

and rises smoothly in the MBL phase.

We briefly comment on how these Griffiths arguments connect with those in the

thermal phase [8, 320]. In the MBL phase, as discussed above, thermal inclusions of

large volume V become exponentially rare in V . On the thermal side, instead, it is

localized inclusions that become exponentially rare at large scales. In one dimension,

these rare localized inclusions act as transport bottlenecks, leading to a subdiffusive

3Here we are assuming that to make a rare inclusion core of volume V requires a number of
rare “events” in the disorder configuration that is proportional to V . One can worry about the
possibility that a fractal rare region with volume growing sublinearly in V can make an inclusion
core of volume V by including nearby regions in to the core rather than the periphery (in the
terminology of Appendix A). This scenario does not seem plausible to us.
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Griffiths phase [8]. In higher dimensions, however, rare insulating regions in the

thermal phase cannot block transport, and the d.c. conductivity is nonzero.

3.5 Transition between MBL-Mott and MBL-

Griffiths regimes

The overall behavior of the low-frequency conductivity exponent α is shown in

Fig. 3.1: everywhere in the MBL phase 1 < α < 2. Near the MBL phase transition,

critical and thermal inclusions proliferate and the dominant mechanism is “Griffiths”;

far from the MBL transition, such inclusions are too rare, and the dominant con-

tributions to conductivity are instead from rare many-body Mott resonances within

locally insulating regions (which are still less insulating than the typical region).

These regimes transition into each other as follows: Within the “MBL-Mott” phase

the dominant regions are still locally insulating; as one moves towards the transition,

these dominant regions become less insulating. Eventually, before the MBL phase

transition, the dominant regions become critical, and the system enters the “MBL-

Griffiths” phase. Throughout the MBL-Griffiths phase, the dominant rare regions

remain critical, and only their prevalence changes: as the critical point is approached,

these rare critical regions become more common, and eventually proliferate. Thus

the physics underlying the evolution of the conductivity exponent is qualitatively

different in the two regimes, and we expect that the exponent is nonanalytic (though

perhaps quite smooth) at the “Mott-Griffiths” transition between these two regimes.

The location of the Mott-Griffiths transition line in Fig. 1 is schematic—determining

the location of this transition within the MBL phase remains an interesting direction

for future work.
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Figure 3.3: Main panel: conductivity as a function of frequency in the random field
XXZ chain for system size L = 14 and disorder bandwidth W = 8, showing multiple
decades of power-law behavior. Inset: behavior of the conductivity exponent deep
in the MBL phase is consistent with the many-body Mott prediction (see main text)
that 2− α ∼ ζ, combined with the perturbative estimate ζ ∼ 1/ log(W/J).

3.6 Numerical simulations

We have checked these expectations against simulations of the conductivity in the

random-field XXZ chain, governed by the Hamiltonian

Ĥ =
J

2

∑

〈ij〉
(Ŝ+

i Ŝ
−
j + h.c.) + Jz

∑

i

Ŝzi Ŝ
z
i+1 +

∑

i

hiŜ
z
i , (3.6)

where hi is a local quenched random field drawn uniformly from [−W, W ], J is the spin

exchange energy scale, and Jz the spin-spin coupling strength. We measure energies in

units of J ; in all presented data, we also take Jz = J = ~ = 1. We diagonalize the full

Hamiltonian to calculate the conductivity σ(ω) at infinite temperature using Eq. (3.1)

by binning it on a logarithmically spaced frequency grid which typically ranges from

ω = 10−6 to 2. In Figs. 3.1 and 3.3 we have only nearest-neighbor exchange, while we
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also have second-neighbor exchange of strength J ′ = 1 in Fig. 3.2. The rationale for

the latter choice is that, while next-nearest neighbor exchange interactions exacerbate

finite-size effects, they also break integrability and make the disorder-free delocalized

phase behave thermally, even for relatively small system sizes. Thus they are essential

for correctly simulating small thermal inclusions with Winc = 0.

The conductivity exponent α, shown in Fig. 3.1, has been extracted from power-

law fits to the low frequency response that hold over multiple decades, see Fig. 3.3

main panel for the example of W = 8 which yields α ∼ 1.5. The numerical results

further confirm that the conductivity exponent α = 1 at the MBL transition and that

it asymptotes to α ∼ 2 in the strong disorder limit, see inset of Fig. 3.3. A more

detailed discussion of some numerical issues and a comparison between noninteracting

and many-body insulators is given in Appendix B.

3.7 Experimental aspects

The predictions in our work concern the finite-time dynamical properties of MBL sys-

tems; thus, they are robust against weak coupling to an external bath, which is present

in all physical systems [222]; so long as ω > Γ, where Γ is the bath-induced linewidth,

the bath will not change these conductivity power laws. Therefore our predictions for

conductivity can be tested experimentally, both in solid-state systems [231] and in

ultracold atomic systems [279]. In electronic systems, a.c. conductivity is straightfor-

ward to measure, but the long-range nature of the Coulomb interaction will modify

several of our conclusions.

In principle one can also measure a.c. conductivity in ultracold atomic systems

such as optical lattices by applying a periodically modulated tilt to the entire lat-

tice [101]. However, in the current optical-lattice MBL experiments [279] it is more

convenient to study relaxation in the time domain; we now show how our results gener-
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alize to such experiments. (Note: Ref [279] used a quasiperiodic potential, while here

we mostly consider instead systems with quenched randomness. For the quasiperiodic

systems the MBL-Mott regime should still be present, as discussed above; whether

the MBL-Griffiths regime exists is unclear, however.) In general, these experiments

involve creating a particular nonequilibrium initial configuration and measuring the

evolution of its “contrast” (i.e., the overlap between final and initial deviations from

thermal equilibrium). Note that the following analysis of the real time relaxation

does not rely on there being a conserved density, so also applies to Floquet systems

with no such transport. In the MBL phase, this contrast (which we denote C(t))

approaches a nonzero saturated value C∞; we argue that it does so at long time t as

C(t)− C∞ ∼ t1−α, (3.7)

where α > 1 is the a.c. conductivity exponent discussed here and plotted in Fig. 3.1.

This result holds in both the MBL-Mott and MBL-Griffiths regimes. In the Mott

regime, at time t, resonant pairs of configurations with splitting . 1/t are still in their

initial state and retain their initial density deviation, whereas faster pairs oscillate

and thus have “forgotten” their initial density deviation. Counting all Mott pairs

with splitting . ω, using the arguments above, we find that these go as ω1−φ = ωα−1,

which gives Eq. (3.7). Likewise, in the Griffiths regime, the contribution at time t is

due to the peripheral spins of inclusions with core level spacing ∆ . 1/t. The density

of such inclusions is ∼ ∆α−1, which once again yields the result (3.7). Note that

this decay becomes very slow as the transition is approached: the exponent (1 − α)

goes to zero at the transition. These arguments apply to the long time behavior

when C(t) is near C∞; the earlier time regime near the critical point when C∞ is

small should be governed by the dynamical critical behavior. Preliminary numerical

simulations on XXZ chains suggest that, deep in the MBL phase, these contributions
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might be difficult to detect in experiment, as their amplitude is small compared with

steady-state fluctuations of the contrast in finite systems.

3.8 Discussion

In this chapter we have argued that the low frequency a.c. conductivity in the MBL

phase goes as σ(ω) ∼ ωα, with 1 ≤ α < 2 throughout the phase, and α → 1 as

the delocalization transition is approached. Deep in the MBL phase, the dominant

processes involve transitions between rare configurations, in rare regions that are

localized but have an anomalously large localization length. Near the transition, the

dominant rare regions are locally thermal or critical instead. The power-laws we

expect on general grounds are consistent with those seen in numerical results for the

random-field XXZ model. We emphasize that the power laws we find in the optical

conductivity are not related to those predicted for electron glasses [286, 81]: we

are considering high-temperature behavior (i.e., ω � T ) in models with short-range

interactions, whereas those works consider low-temperature behavior (i.e., ω � T ) in

models with Coulomb interactions.

We conclude with some comments on the scope of our results. As already dis-

cussed above, our analysis of a.c. transport directly extends to relaxation dynamics.

Moreover, our results here should also describe, e.g., thermal transport, in systems

where the only conserved quantity is the energy. However, our analysis of the con-

ductivity relies on the fact that the conductivity is related to the spectral function

of a current (i.e., a quantity associated with a globally conserved charge) and does

not extend to generic spectral functions, such as those probed using optical lattice

modulation spectroscopy [101]. In fact for more general local spectral functions, the

operator’s matrix element between states within a MB Mott or Griffiths resonance is
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not restricted to vanish in proportion to ω so may remain of order one, resulting in a

divergent low-frequency spectral function S(ω) ∼ ω(α−2) in the MBL phase.

Our analysis also depends on both the disorder correlations and the interactions

being short-range. Specifically, we assume that the effective interactions that mediate

many-body resonances fall off exponentially with distance and with the number of

effective spins involved. Thus our conclusions are modified in an essential way when

the interactions instead fall off as a power law of distance; this case will be treated

elsewhere. It is not presently clear whether or not the stretched-exponential effective

interactions that occur at putative critical points within the MBL phase [318, 149, 239,

254, 307] substantially modify the above story. Also, our analysis of near-transition

behavior assumes that the delocalized phase is thermal, and thus may not apply

to hypothesized transitions between an MBL phase and a nonthermal delocalized

phase [84, 127, 67].

3.A Structure of a thermal inclusion

A thermal inclusion core (i.e., a large region with rare microscopic parameters) in

the MBL phase acts as a local, discrete “bath” for the peripheral insulating material

around it. Thus, in the many-body eigenstates it is strongly entangled with the

nearby (“peripheral”) typical regions. Because the inclusion is finite, sufficiently far

from it the MBL phase with area-law eigenstate entanglement re-establishes itself. In

this Appendix we discuss how this crossover takes place.

A naive estimate (which will turn out to be largely correct) is as follows: If one

ignores the discreteness of the bath levels, a Golden Rule estimate [222] suggests that

the decay rate of a typical degree of freedom (which for convenience we shall call a

spin) a distance R from the inclusion core is ∼ exp(−2R/ζ̃) where the decay length ζ̃

remains finite as the MBL transition is approached. This rate must be compared with
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the many-body level spacing ∆ ∼ e−s̃V of the inclusion core; when this putative decay

rate is smaller than the many-body level spacing, the inclusion is actually unable to

act as a bath [222] and no decay takes place. Thus, an inclusion core of volume V is

surrounded by a thermal periphery of linear size ∼ V . The characteristic relaxation

rate decays from its value at the center of the core (which is of order the bandwidth

for a strongly thermal inclusion) to its value at the edge of the periphery, which is

∼ ∆.

However, this argument is evidently incomplete. When the inclusion core ther-

malizes a spin, on sufficiently long time scales this additional spin is also “thermal”,

and thus naively might be thought able to act as a bath for other, more distant, spins.

If one iterates this reasoning, however, one arrives at an obviously incorrect result: an

inclusion core of linear size L thermalizes a region of linear size ∼ Ld around it; and

the combined level spacing of this full thermalized region is now ∼ e−sL
d2

(s being the

thermal entropy per spin), which naively allows it to thermalize yet further regions,

and so on, until the entire MBL system is thermalized. To avoid this conclusion, one

must understand why these peripheral regions that are “thermalized” by the core

cannot act as a bath for more distant insulating regions.

One can see this as follows: Let us first remove all couplings that cross the bound-

ary between the thermal inclusion core and the periphery. Then the Hamiltonian of

the now MBL peripheral region can be written in terms of l-bits, in terms of which it

takes the fully diagonal form H =
∑

i hiτ
z
i + Jijτ

z
i τ

z
j + . . .; the thermal inclusion core

is, of course, described by a generic thermalizing Hamiltonian. Now we reinstate the

boundary couplings; these are local in terms of the physical spins, and thus gener-

ally consist of a strictly local physical operator O on the MBL side of the boundary,

coupled to an operator on the thermal side. The operator O involves l-bit flips at all

distances, but contributions from distant l-bits are exponentially suppressed. Because

the intrinsic l-bit Hamiltonian is purely diagonal, an l-bit at a distance l � ζ̃ from
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the boundary can only thermalize through its exponentially weak contribution to the

operator O; in particular, the nearer l-bits do not act as a bath, and the ability of an

inclusion to thermalize its surroundings is determined by the size of its core.

3.B Details of conductivity numerics

In this section, we discuss some of the subtler issues involved in numerically extract-

ing the conductivity exponents. We begin with a discussion of finite-size effects and

boundary conditions. We then compare our many-body a.c. conductivity numer-

ics with a study of single-particle (i.e., noninteracting) insulators at similar system

sizes. We find that the size- and disorder-dependence of the many-body conductivity

is consistent with theoretical expectations, and qualitatively different from that of

the single-particle conductivity. Finally, we present data elucidating the nature of

transitions contributing to the low-frequency conductivity.

Boundary conditions and finite-size effects

In numerics on finite systems, the conductivity exponents discussed here only occur

at intermediate frequencies, ωL � ω � J , where ωL ∼ exp(−L/ζ) in the MBL phase

[or exp(−L/ξ) in the single particle case] is a size-dependent low-frequency cutoff.

ωL sets the scale for level repulsion between states or configurations that differ on

length scales on the order of the system size. The behavior below this frequency scale

depends on whether the boundary conditions are open or periodic. In the case of open

boundary conditions, the conductivity at the lowest frequencies goes as σ(ω) ∼ ω3. As

in the Mott argument, two factors of ω are due to the current matrix element, which

is constrained by the boundary conditions to vanish as ω at low frequencies. The

third factor is due to level repulsion in the Gaussian Orthogonal Ensemble [288], and

captures the phase space of pairs of states with these very small energy differences.
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For periodic boundary conditions, on the other hand, the conductivity in the finite-

size-dominated regime scales as σ(ω) ∼ ω. In that case, there is still a factor of

ω from level repulsion, but the current matrix elements do not vanish in the limit

of low frequencies, because these currents “wrap around” the system and hence do

not build up large charge imbalance even when they are at very low frequency. (The

distinction between the two kinds of boundary condition can be intuitively understood

by contrasting the behavior of (a) a finite metallic grain embedded in an insulator and

subject to spatially uniform a.c. electric field, and (b) a conducting ring with an a.c.

magnetic flux through it. The response of the former becomes essentially dielectric

in the limit of low frequencies, whereas that of the latter remains dissipative.)
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Figure 3.4: (a)-(c) Frequency-dependence of a.c. conductivity in the interacting sys-
tem with periodic and open boundary conditions (solid and dashed lines respectively)
for three values of disorder W , corresponding to the thermal phase (left), near-critical
regime (center), and deeply localized phase (right). The lowest-frequency finite-size
behavior in the thermal regime goes as σ ∼ ω for periodic boundary conditions and
σ ∼ ω3 for open boundary conditions, as discussed in the text. (d)-(f) Frequency
dependence of a.c. conductivity in noninteracting systems, for disorder values corre-
sponding to those in panels (a)-(c). Again, solid lines represent periodic boundary
conditions and dashed lines represent open boundary conditions.

This finite-size dominated regime is clearly seen in numerical simulations on the

many-body system in the thermal regime [Fig. 3.4(a)]. Deep in the localized regime,

σ(ω) is insensitive to boundary conditions in the frequency range we can access [Fig.
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3.4(c)]; the finite size effects presumably appear only at even lower frequency ωL ∼

exp(−L/ζ). In the near-critical regime (W = 4), where α is near one, the finite-

system behaviors for open and periodic boundary conditions are qualitatively different

[Fig. 3.4(b)]: For periodic boundary conditions, the low frequency regime due to the

finite size effect is expected to also have α = 1. No finite size effect is apparent at

W = 4 for periodic boundary conditions, which is possibly a consequence of the finite

size regime having essentially the same scaling as the “bulk” regime. On the other

hand, for open boundary conditions the low frequency finite size regime will have an

effective exponent αeff = 3. The beginnings of the crossover in to this regime are

apparent in Fig. 3.4(b), and we can see the results are converging with increasing L

towards the periodic boundary condition results.

The analogous results for noninteracting systems are shown in Fig. 3.4(d)-(f).

Deep in the localized phase at W = 20 the conductivity at these frequencies is dom-

inated by short distance single-particle hops, so the interacting and noninteracting

systems look similar and neither show finite-size effects. At W = 4, on the other

hand, we see clear differences. The effective exponent α for the noninteracting sys-

tem is well above one, so now the finite size effects are quite apparent for periodic

boundary conditions.

These considerations can be sharpened by comparing the conductivity exponents

extracted from the many-body (MB) interacting and single-particle (SP) noninter-

acting data, as shown in Fig. 3.5 (left). We consider systems with open boundary

conditions, and extract the conductivity exponent from a fixed frequency range that

is much smaller than the scales J2/W, J3/W 2 associated with short-distance hops.

From our previous discussion, we expect that the limiting behavior for very small

disorder is σ ∼ ω3 (because of finite size effects), whereas that for large disorder is

σ ∼ ω2 (as finite size effects move to much lower frequencies and the Mott behavior

is recovered). In the single-particle case, one expects the exponent α to cross over
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Figure 3.5: Conductivity exponent for interacting spin chains (solid red lines) and
the corresponding noninteracting chains (dashed blue lines) as a function of disorder
W , for various system sizes. The left panel shows data for open boundary conditions
(OBCs); the right panel, for periodic boundary conditions (PBCs). Exponents are
extracted from the frequency regime 10−4 ≤ ω ≤ 5 × 10−3 [OBC] and 10−4 ≤ ω ≤
J2/(4W ) [PBC]. Arrows indicate the evolution of the exponent with increasing system
size. For OBCs, the exponent crosses over from the finite-size value α = 3 to the Mott
value α ' 2 with increasing disorder. The crossover is nonmonotonic for interacting
systems but monotonic for noninteracting systems, as discussed in the text. For
PBCs, noninteracting systems again exhibit a monotonic crossover from the finite-size
exponent α = 1 to the Mott exponent α = 2. However, the exponent for interacting
systems drops well below the finite-size value α = 1, in the regime where these systems
are thermal. Moreover, finite-size effects on α seem negligible throughout the MBL
phase.

smoothly from a disorder-independent value slightly below 2 – on account of the log-

arithmic correction in Mott’s law – toward 3, and thus to increase monotonically as

the disorder is decreased. On the other hand, for MBL, we expect that as the disorder

is decreased two competing effects occur: the exponent decreases towards 1 for the

reasons discussed in the main text; on the other hand, it is also pulled up toward 3 by

finite-size effects. Thus, we expect it to exhibit a non-monotonic U-shaped disorder-

dependence with a minimum near the MBL transition. These expectations are borne

out by the numerical data (Fig. 3.5): the dip of the many-body exponent below 2

becomes stronger for larger system sizes, approaching the value for periodic boundary

conditions, and thus supporting the view that the true exponent for the many-body

case is disorder-dependent and dips well below 2.
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Figure 3.6: Distribution of squares of dipole moment matrix elements (i.e.,
|〈n|∑j jS

z
j |m〉|2) contributing to the conductivity at each frequency, for disorder cor-

responding to thermal phase (left), critical region (center), and MBL phase (right),
all with open boundary conditions. In (c) the arrows mark the peaks corresponding to
two-site and three-site hops in the MBL phase (see text); we expect the n-site peak
to vanish at a frequency ∼ 1/W n−1, giving rise to a “shoulder” in the conductiv-
ity. Lower panel: frequency-dependence of the conductivity. Note that the different
regimes of behavior in σ(ω) can be matched with features in the dipole moment
distribution.

As a final point of comparison, Fig. 3.5 (right) shows the conductivity exponents

for several different system sizes and as a function of disorder, extracted from the data

with periodic boundary conditions. For these exponents, we do the fit over several

decades of data between ωL and the microscopic scales J2/W . Thus, these exponents

can be directly compared to the analogous MB ones plotted in Figs. 3.1 and 3.3. We

see that for any given system size, the SP data look qualitatively similar to the MB

data, showing a monotonic increase from the finite-size dominated exponent α ∼ 1

at low disorder (note that α ∼ 1 at the MB transition due to a completely different

physical mechanism) to an exponent approaching 2 at larger disorders. However,

unlike the MB system, the SP effective exponents are strongly finite-size dependent

and approach a constant W -independent value on increasing system size. On the

other hand, the MB exponents show no system size dependence in the localized phase
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and converge to W -dependent values (significantly less than 2 for moderate disorder),

further supporting our claim that the MB exponents are not finite-size effects.

Nature of transitions contributing to conductivity

We conclude with some details about the structure of the eigenstates contributing

to the conductivity. The conductivity always exhibits a sharp feature near ω = 1,

which is due to nearest neighbor resonances. For strong disorder (Fig. 3.4c), the

conductivity also develops a noticeable “shoulder” at a frequency ω ∼ J2/4W due

to second-neighbor resonances. For frequencies above this shoulder, the dominant

processes are these very short range hops and the power law fit does not work, not

surprisingly. This can be seen by looking at the distribution of dipole moment matrix

elements, Fig. 3.6, of transitions contributing to σ: above the shoulder in (c), a

peak appears at about unity, corresponding to second-neighbor resonances, which is

marked by the bottom horizontal arrow. Third-neighbor resonances can also be seen

as a feature near (3/2)2 = 2.25, indicated by the upper horizontal arrow. Data at

lower values of W show more such peaks, but these “shoulders” become less and less

pronounced until they disappear altogether for W . 8.
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Part III

Eigenstate Order in Many-Body

Localized Systems
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Chapter 4

Many-body Localization and

Symmetry Protected Topological

Order

4.1 Introduction

In this chapter and the next two, we extend the notions of localization protected

eigenstate order discussed in Section 1.6. As shown in Ref. [149], the eigenstates of

MBL systems can spontaneously break or preserve global symmetries and exhibit or

fail to exhibit topological order; these phenomena could violate the naive expectation

from Peierls-Mermin-Wagner type arguments. Essentially, the localization of defects

allows order to persist at energy densities where equilibrium arguments predict de-

struction of order.

In this chapter we extend the analysis of Ref. [149] to a case intermediate between

symmetry-breaking and topological order. This is the case of symmetry protected

topological order (SPT) [129, 73, 109, 280], wherein a symmetry is needed for the

phase to exist but the order itself is topological in nature and cannot be characterized
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by a local order parameter. Clean zero temperature SPT phases have a bulk gap

to well-defined excitations whose quantum numbers are not fractional. Furthermore,

SPT ground states cannot be continuously connected to trivial product states without

either breaking the protecting symmetry or closing the energy gap; however, such a

continuous path must exist if the protecting symmetry is explicitly broken. The

canonical example of an SPT phase is the Haldane phase in d = 1 [130, 131] and the

most celebrated one is by now surely the Z2 topological insulator in d = 3 (reviewed

in Ref. [133]).

With this background, we can now state our central question: Can highly ex-

cited eigenstates exhibit SPT order in the presence of MBL? We take such order to

generalize the cluster of properties listed above. Specifically, we wish to examine

Hamiltonians invariant under a protecting symmetry with highly excited eigenstates

that lie in a mobility gap. We will require an eigenstate phase transition (at which

the properties of the eigenstates change in some singular fashion) between the SPT

region and the trivial region, which is well captured by product states as long as the

protecting symmetry is intact. Further, there should be a path along which such a

phase transition is absent when the symmetry is explicitly broken.

In the following, we address this question via two examples. The first is the Hal-

dane phase protected by a discrete symmetry. We present strong evidence that the

SPT order extends in an MBL version to highly excited eigenstates even though equi-

librium considerations preclude such order. We do so by introducing an appropriate

generalization of the AKLT model of Affleck, Kennedy, Lieb and Tasaki [6, 7] that al-

lows the arguments of BAA to be brought to bear on highly excited states. We discuss

various diagnostics of the Haldane phase that extend to this regime. We also note

that the Haldane phase with continuous SU(2) symmetry does not obviously extend

to an MBL version and explain the obstacles involved in settling this question. Our

second example is the topological Ising paramagnet in two dimensions [202, 74]. Here
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again we adapt the BAA arguments to establish MBL and discuss the diagnostics

needed to establish SPT order. We conclude with some comments on generalizations

and open questions.

4.2 Haldane phase

4.2.1 Review of low energy physics

We begin with the Haldane phase of the spin-1 antiferromagnetic chain. Although

usually understood in the context of continuous rotational symmetry1, the Haldane

phase is an SPT which may be protected by any one of the following discrete sym-

metries: inversion, time reversal or the dihedral group D of π-rotations around the

x, y, z-spin axes [33, 250, 248]. At zero temperature, the clean phase is a gapped quan-

tum spin liquid which breaks none of these symmetries. It has several defining char-

acteristics. First, the bulk exhibits simultaneous long-range “string” order [87, 166]

in the operators (α = x, y, z)

σαij = −Sαi

(
j−1∏

k=i+1

Rα
k

)
Sαj (4.1)

where Rα
j = eiπS

α
j represents a rotation by π around the α spin axis of site j and Sαi

are the usual spin-1 operators. Second, the boundary exhibits protected spin-1/2 edge

modes as a consequence of which the ground state is four-fold degenerate on open

chains. Third, the presence of the protected spin-1/2 edge modes implies a two-fold

degeneracy in the entanglement spectrum for virtual (Schmidt) cuts in the bulk of

the chain. Further, the underlying spin-1 degrees of freedom do not fractionalize in

the bulk, in consonance with the definition of an SPT. The low energy excitations

are gapped spin-1 bosons called ‘triplons’, discussed later in the text. In contrast, in

1It is interesting to note that Haldane discovered the phase that bears his name studying a
dihedral-symmetric perturbation of the SU(2) invariant spin chains.
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the trivial phase with the same discrete symmetries, the ground state can always be

smoothly connected to a product state through a symmetric path [250]. The trivial

phase has no string order, boundary modes or degenerate entanglement spectra; hence

these properties signal the SPT order of the Haldane phase.

4.2.2 Ergodicity and localization in highly excited states

In the following, we will review how these signatures of the Haldane phase disappear

at T > 0 in clean systems as a consequence of the delocalization of the triplons in

highly excited states. On the other hand, in the presence of sufficient disorder, we

will argue that individual triplons Anderson localize. At sufficiently small, but non-

zero, energy density, the dilute gas of localized triplons interacts only weakly so that

the perturbative arguments of BAA apply and the system is many-body localized.

Finally, we will discuss how various defining characteristics of the Haldane phase

persist to finite energy density in a suitably modified form in this MBL phase.

To be concrete, we introduce a frustration-free model for the Haldane phase. As

the SPT order requires only the dihedral group D = {1, Rx, Ry, Rz} ≡ Z2 × Z2 to

protect it, our model has precisely this symmetry, but is otherwise very closely related

to the celebrated O(3)-symmetric AKLT model [6, 7]. The Hamiltonian, which we

refer to as the BKLT Hamiltonian, is

HBKLT =
∑

i,α

P
(2)
i,i+1

(
Ji + cαi (Sαi + Sαi+1)2 + dαi (Sαi + Sαi+1)4

)
P

(2)
i,i+1 (4.2)

where P
(2)
i,j projects onto the spin-2 representation of the spins i and j, and Ji, c

α
i , d

α
i >

0 are coupling constants2. The ground state space of HBKLT is identical to that of the

AKLT model: there are four ground states on open chains, each of which possesses an

2If cαi , d
α
i > 0, then each term is strictly positive. Note that in the spin-2 representation, the

coupling constants are not all independent as (Sαi +Sαi+1)2 = 6. Taking cαi , d
α
i to zero reduces BKLT

to the traditional AKLT model.
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explicit, compact matrix product state (MPS) representation simultaneously annihi-

lated by all P
(2)
i,i+1 and therefore by HBKLT . The excitation gap is of order Ji and the

eigenstates may be labeled by the one-dimensional representations of Z2 × Z2. Even

though the ground states are exactly known, HBKLT is not fully integrable. Its ex-

cited states should therefore be generic with respect to thermalization and many-body

localization.

The A/BKLT ground states can be constructed by splitting each spin 1 site into

two virtual spin 1/2 degrees of freedom. Pictorially,

|A; vL, vR〉 = (4.3)

where each small circle represents a virtual spin 1/2, the solid lines denote singlet

pairings and the ovals the symmetrization to reproduce a spin 1 physical degree of

freedom. Here, vL and vR are the state vectors for the boundary spins that label the

four-dimensional ground state space on the open chain. This picture immediately

reveals the physical origin of the spin 1/2 boundary modes – they correspond to the

unpaired virtual degrees of freedom left on either end of the open chain. The picture

also suggests the origin of the 2-fold degeneracy in the entanglement spectrum as the

cutting of the virtual Bell pair shared by a link.

The virtual spin structure of the A/BKLT state suggests a natural candidate for

the low energy bulk excitations,

|j, α〉 = (4.4)

where the double line at bond j indicates a virtual pair in triplet state α. Note

that we have suppressed the explicit boundary spin states vL, vR. The single ‘triplon’

states |j, α〉 are non-orthogonal but linearly independent. They span the manifold

studied in the single-mode approximation (SMA) provided by Sαj operators acting
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on |A〉 [19]3. These states are believed to be good variational approximations to the

local excitations of HAKLT , in part because the SMA calculations produce a single

triplon band quantitatively in good agreement with numerical studies [19]. We note

in passing that the bond triplon states provide a superior framework for the study of

excitations in higher dimensional valence-bond solid states as well, where the SMA is

inadequate.

In the O(3) symmetric AKLT case, the three triplon states |j, α〉 are strictly de-

generate. Breaking the O(3) symmetry down to the dihedral subgroup, as in BKLT,

lifts the degeneracy and selects the dihedral-symmetric states |x〉 , |y〉 , |z〉 as an ap-

propriate basis. In terms of virtual spins,

|x〉 = (|↑↑〉 − |↓↓〉)/
√

2

|y〉 = (|↑↑〉+ |↓↓〉)/
√

2

|z〉 = (|↑↓〉+ |↓↑〉)/
√

2

where |x〉 has eigenvalues +1,−1,−1 under Rx, Ry, Rz, |y〉 has −1,+1,−1 and |z〉

has −1,−1,+1. The reader should recognize that dihedral symmetry has picked out

the maximally entangled Bell states!

Consider now the three diagnostics of the Haldane phase in the presence of a

maximally localized triplon. (i) As the virtual spins in |j, α〉 form a Bell state across

every bond, the entanglement spectrum exhibits two-fold degeneracy across any real

space cut. It is straightforward to confirm this using the explicit MPS representation

of |j, α〉 following from Eq. (4.4). (ii) The triplon excitation produces a topological

3On a periodic chain of length L, there are L linearly independent bond triplons as we have
defined them. The spin operators Sαj create superpositions of the form Sαj |A〉 ∝ |j, α〉 − |j − 1, α〉
and thus there are only L− 1 linearly independent states in the traditional SMA calculation.
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defect in the string order parameter σβik. Explicitly,

〈j, α|σβik |j, α〉 =




−(−1)δαβ 4

9
i ≤ j < k

4
9

else
(4.5)

That is, if the string operator crosses the triplon, it picks up a minus sign unless

the flavors of the string and the triplon agree. (iii) On open chains, there remain

four degenerate, linearly-independent variational states corresponding to the choice

of boundary conditions (vL, vR) for the localized triplon state |j, α〉4.

The demise of the Haldane phase at finite energy density in the clean system

is now apparent. Diagonalizing HBKLT in the variational single triplon manifold

gives rise to three delocalized bands of triplons corresponding to each of the flavors

α. This follows from solving the generalized eigenvalue problem where HBKLT is

purely diagonal in the localized triplon basis while the overlap matrix 〈j, α|k, β〉 ∼

δαβ(1/3)|j−k| produces the off-diagonal dispersion. At low energy densities, we expect

a dilute gas of these delocalized triplons in the eigenstates of HBKLT . This fluctuating

gas (i) produces an extensive entanglement entropy for macroscopic domains which

precludes an MPS representation for the highly excited eigenstates and washes out

the two-fold entanglement degeneracy. (ii) As the triplons act as defects in the string

order Eq. (4.1), their spatial fluctuations suppress this order on the length scale of the

inverse density. Finally, (iii) the spin-1/2 boundary modes decohere due to interaction

with the delocalized bulk triplons on a time scale set by the density of triplons. This

is all consistent with the expectation that there is no order, topological or otherwise,

at finite temperature in one dimension.

4The issue of linear independence for bond triplon states is somewhat delicate. On an open chain
of length L, there are naively 12(L − 1) triplon states corresponding to the 4 boundary states, 3
triplon flavors and L− 1 positions. These span only a 12(L− 1)− 4 dimensional space. On a closed
chain, there are 3L linearly independent states.
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Figure 4.1: Seven typical eigenmodes of the Anderson problem in the single α = z
triplon manifold in a 500-site chain with periodic boundary conditions. The coupling
constants Ji are drawn uniformly from the interval (0, 1).

The presence of sufficient disorder leads to an entirely different picture of the

highly excited eigenstates – that they may many-body localize and thus retain their

SPT character. Consider the introduction of disorder in the couplings of HBKLT . So

long as Ji > 0, the ground state is completely unperturbed by this variation, which

is an extreme manifestation of the insensitivity of gapped phases to weak spatial

disorder. The excitation spectrum, on the other hand, changes dramatically. Even

for weak variations δK � K for K = J, c, d, we expect the single triplon eigenstates

to Anderson localize. This follows from analyzing the generalized eigenvalue problem

described in the paragraph above with spatially varying diagonal matrix elements.

Fig. 4.1 shows the typical localized triplon wavefunctions found by this analysis.

We now make the case for MBL following BAA. Consider the excited states with

a low density of localized triplons. The interaction U between two triplons separated

by a distance l scales as Je−l/ξ, where ξ is the longer of the triplon overlap decay
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length (1/ log(3)) and the localization length. When the typical spacing l between

excitations is sufficiently large so that the typical energy splitting between nearby

states (of order 1) is much larger than the interactions, U ∼ ±Je−l/ξ, the perturbative

BAA arguments protect triplon localization. That is, the system remains many-body

localized up to a finite energy density ε such that the typical separation J/ε is small

on the scale ξ.

The naive application of the same argument fails as one approaches the O(3)

symmetric AKLT point by taking ci, di to zero. In this limit, the local fields splitting

the triplet degeneracy vanish so that there is no regime where the typical interaction

strength U is smaller than the typical local level spacing. Rather, the localized

triplons carry spin-1 and the system of a dilute random array of non-interacting

triplons is highly degenerate. From this point of view, the interactions (still of order

U ∼ Je−l/ξ) split this large degeneracy according to a disordered system of both ferro-

and antiferromagnetic exchanges. Whether such an effective O(3)-symmetric random

spin-1 chain can exhibit a MBL phase is an intriguing open question. The application

of the real space renormalization group to such a system suggests that the system

ought to grow large effective moments [326, 151] which, if they behave classically as

one expects of large spins, would lead to thermal conduction and equilibration [228,

26].

Finally, we consider how the three signatures of the Haldane phase persist to

finite energy density in the MBL regime. First, take the ‘caricatures’ of the excited

states at low energy density given by the MPS with a low density of double lines at

prescribed bonds as in Eq. (4.4). We have already noted that (i) the entanglement

spectrum is doubly degenerate, (ii) the string order is ‘glassy’ (Eq. (4.5)), and , (iii)

the expectation value of HA/BKLT is independent of the virtual spins vL, vR on the

boundary. Thus, if the ‘caricature’ states were the true excited eigenstates in the
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Figure 4.2: The entanglement spectra of four consecutive excited states, starting with
the 60th state above the ground state, for a 12-site open BKLT chain with disorder
in all coupling constants. Each state is decomposed into two equal halves.

presence of disorder, all of the characteristics of the Haldane phase would persist to

low energy density.

Of course, the simple caricatures neglect the ‘fuzziness’ in the position of the

triplons in Anderson localized single particle wavefunctions such as in Fig. 4.1. To

construct multi-triplon ‘filled’ Anderson localized states, we define the bond triplon

creation operators:

tαj =
∏

i≤j
Rα
i (4.6)

These commuting, self-adjoint, unitary operators place triplons of type α at bond

j when acting upon the A/BKLT ground state space. The single triplon localized
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states are then created by

tαψ =
∑

j

ψαj t
α
j (4.7)

acting on the A/BKLT vacuum, where ψαj are the eigenmodes in the single triplon

problem. We caution that the mode functions ψαj are not orthonormal as they are

coefficients with respect to a non-orthogonal basis, and neither do the tαj satisfy a

canonical algebra. Nonetheless, for sufficiently dilute collections of triplons, we ex-

pect the Fock states |Ψ〉 = tα1
ψ1
tα2
ψ2
· · · tαNψN |A〉 to be good approximate representations

of the MBL eigenstates. Just as localized Fock states of normal bosons and fermions

have entanglement entropy satisfying an area law, |Ψ〉 has an area law for localized ψαj .

Thus, such states can be recast to exponential accuracy as finite dimensional MPS

states which in turn fall into the two-fold SPT classification of dihedral symmetric

states [250, 304]. We recapitulate this argument in more detail in Appendix 4.A for

non-translation invariant states. In the same appendix, we argue that the fuzzy Fock

states above are in the same non-trivial class as the A/BKLT ground state, that is,

they exhibit two-fold degenerate entanglement spectra in the bulk for a single spatial

cut. Numerical exact diagonalization results are consistent with this prediction. In

Fig. 4.2, we plot the entanglement spectra of a few excited states of the 12-site open

BKLT chain with disorder. Dihedral symmetry forces the physical spin halves at

the two boundaries to be maximally entangled; thus the spectrum should be 4-fold

degenerate if the excited state has SPT order. There is evidence of this degeneracy

in Fig. 4.2. In conclusion, states such as |Ψ〉 exhibit (i) two-fold degenerate entangle-

ment spectra in the bulk, and (ii) long-range string glass order with softened frozen

in domain walls and (iii) spin-1/2 boundary modes associated with the projective

representation of the corresponding finite dimensional MPS.
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In the presence of dihedral symmetry, the string glass order diagnoses the non-

analyticity of the eigenstates at the transitions between the SPT MBL phase and

the trivial MBL phase (or the ergodic phase). On the other hand, without dihedral

symmetry, such an order parameter distinction disappears. For example, turning on a

local Néel field induces a Néel magnetization, and as shown in Ref. [166], string order.

Thus, the non-analyticity associated with the loss of the long range string glass order

will be lost and the eigenstates in both MBL phases can be smoothly connected.

We end with a few comments. First, a numerical study in Ref. [24] probed the

boundary modes of excited MBL states in a related one-dimensional model using

spin-echo. Such numerical experiments are unavailable in the disordered BKLT model

due to the large intrinsic correlation lengths as compared to accessible system sizes.

Second, a consequence of the existence of boundary modes is a ‘pairing’ regime in the

many-body energy spectrum of open chains. In this regime, the four boundary states

can be identified by their small splitting relative to the exponentially small many-

body spacing [149]. However, there is evidence from perturbative and numerical

calculations in the non-integrable Majorana chain that this pairing may persist to

the clean limit [197]. The relationship between pairing and coherent boundary modes

is thus not settled and requires further study. Finally, the entire discussion in this

section is not special to the A/BKLT point. The MBL phase at low energy densities

continues away from these points.

4.3 Topological Ising paramagnet in d=2

4.3.1 Review of low energy physics

We now turn to discrete SPT phases in higher dimension. In particular, we consider

two dimensional spin systems with Z2 symmetry, where there is a two-fold classifi-

cation of SPTs: the trivial and the topological Ising paramagnets [202, 74, 71]. We
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Figure 4.3: (Left) Trivial paramagnet H0 defined in (4.9) is a sum of σxs terms on sites
s of the triangular lattice. (Right) Topological paramagnet HLG defined in (4.8) is a

sum of seven-spin terms involving a product of σxs and a phase factor
∏
〈sqq′〉 i

1−σzqσzq′
2

from the six spins surrounding s.

work near an exactly solvable model in the topological SPT phase, first constructed

by Levin and Gu [202]:

HLG = −
∑

s

ΛsBs, Bs = −σxs
∏

〈sqq′〉
i

1−σzqσzq
2 . (4.8)

Here, Λs are coupling constants, σs are Pauli spin-1/2 operators living on the sites

s of a triangular lattice, and the product in Bs runs over the six triangles 〈sqq′〉

intersecting the site s (see Fig. 4.3).

The Hamiltonian is invariant under the protecting Ising symmetry S =
∏

s σ
x
s .

The Bs operators on different sites commute with each other, and the gapped param-

agnetic ground state is the simultaneous Bs = +1 eigenstate ∀s. On closed manifolds,

this ground state is unique and can be written explicitly in the σz basis as a super-

position of all spin configurations each with amplitude (−1)Ndw , where Ndw is the

number of domain walls in the configuration. These non-trivial phase factors reflect

the topological nature of the ground state.
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The topological paramagnet (TPM) is to be contrasted with the better-known

trivial paramagnet (TrPM) with exactly solvable model Hamiltonian

H0 = −
∑

s

Γsσ
x
s , (4.9)

where Γs are coupling constants. The ground state of the trivial paramagnet is clearly

a simple product state which, in the σz basis, corresponds to a uniform superposition

of all spin configurations with amplitude 1.

The excitations in both models correspond to ‘spin flips’ which are sites s with

either Bs = −1 or σxs = −1, respectively. At the exactly solvable points, such

spin flips are static and thus the highly excited eigenstates are already many-body

localized analogous to the ‘caricature’ states of the previous section. Absent disorder,

this form of MBL is non-generic: any non-commuting perturbations to the model

Hamiltonians induce dispersion of the spin flips, which in turn destroys many-body

localization. For specificity, we add a ferromagnetic coupling term to make the spin

excitations dynamical and consider Hamiltonians of the form:

H̃0/LG = H0/LG − J
∑

〈ss′〉
σzsσ

z
s′ . (4.10)

For J large enough, the ferromagnetic term drives a transition out of either param-

agnet into a symmetry broken ferromagnetic phase.

4.3.2 Ergodicity and localization in highly excited states

Now include randomness in the couplings Λs and Γs. For simplicity, keep Λs,Γs > 0

to preserve the exact ground state. In this regime, the individual spin flip manifold

remains Anderson localized even with small ‘hopping’ J . BAA arguments suggest that

dilute gases of these weakly interacting point particles remain many-body localized.
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It is intuitively clear that both paramagnets continue into MBL versions at finite

energy density as the defects that would destroy the SPT order are localized. In the

following, we will consider the extension of various SPT diagnostics to finite energy

density MBL states to substantiate this intuition. We first distinguish the MBL

topological and trivial paramagnets from the extended thermal paramagnetic phase,

and then turn to diagnostics that differentiate the two MBL paramagnets.

The MBL paramagnets can be easily distinguished from their thermal counterparts

at nonzero energy densities using the behavior of certain Wilson loops5. Recall that in

2+1 dimensions magnetic systems with site variables are dual to gauge theories with

bond variables [187]. The spin models H0/HLG are respectively dual to the perturbed

toric-code (t.c.)/ doubled-semion (d.s) Z2 gauge theories, with the t.c/d.s theories

restricted to a static matter sector. These dual gauge theories live on the honeycomb

lattice; their topologically ordered deconfined phases map to the paramagnetic phases

of the spin models, while their confined phase maps to the ferromagnetic phase. The

doubled semion model is discussed in [204].

As the dual models are pure gauge, their respective deconfined phases may be

diagnosed by the celebrated perimeter-law of equal time Wilson loops. Each of the

two deconfined phases, has a (different) canonical Wilson loop which minimally probes

the confinement of charges without further exciting the gauge sector [204]. The Wilson

loops of the dual gauge theories correspond to the following operators in the original

spin variables σs, :

W0[C] =

〈 ∏

s∈A[C]

σxs

〉
(4.11)

WLG[C] =

〈 ∏

s∈A[C]

Bs

〉
(4.12)

5The two paramagnets are smoothly connected when thermalized, so no distinction is necessary.
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where the product is over all sites s lying within A[C], the area enclosed by the curve

C. These Wilson loops exhibit the “zero-law” W0/LG[C] = 1 exactly at the pure

trivial/topological paramagnetic points. The zero-law continues to a perimeter law

W [C] ∝ e−c|C| on perturbing away from the exactly solvable points. On the other

hand, the Wilson loops exhibit an area law W [C] ∝ e−c
′|A[C]| in the ferromagnetic

phase.

For clean, ergodic systems, both Wilson loops exhibit an area law at any finite

temperature T > 0. This reflects the presence of a finite density of delocalized vortex

excitations in the dual gauge theories.

The problem with disorder was discussed for the standard Z2 gauge theory by

Huse et. al. [148]. In the presence of sufficient randomness in the couplings of the

dual gauge theory, there exists a MBL topologically ordered phase for the Z2 gauge

theory at finite energy density. The excited MBL eigenstates have a finite density of

localized vortices, whence the Wilson loop W exhibits a “spin-glass” version of the

perimeter law — the magnitude of W decays as the perimeter of C, but with a sign

that depends on the number of localized vortices enclosed by C [148]. An analogous

story holds for the doubled-semion gauge theory as well. By duality, the MBL highly

excited eigenstates of the trivial and topological paramagnets exhibit a spin-glass

perimeter law for W0[C] and WLG[C] respectively. By contrast, excited eigenstates

for the thermal paramagnet exhibit area laws for these quantities just as in the clean

limit. Thus, a sharp distinction exists between the MBL and thermal phases for the

two paramagnets, diagnosed by the behavior of the Wilson loop operator.

We now turn to the question of diagnosing the two MBL paramagnets as distinct

phases. One’s first instinct might be to use the Wilson loops and, for the ideal

Hamiltonians, they work: W0[C] = 1 for the TrPM and vanishes for the TPM, while

WLG[C] = 1 for the TPM and vanishes for the TrPM. Unfortunately this does not

hold more generally; both Wilson loops exhibit a perimeter law in both paramagnetic
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phases. Possibly the “correct” one is always dominant, but this is a topic for future

work.

Instead, let us consider other possible diagnostics to separate the MBL TrPM

and TPM phases. (i) At T = 0 in the ground state, the edge of the TPM must

either by gapless or break the Z2 symmetry. (ii) If we gauge the models, the gauged

TPM exhibits vortices with semionic statistics, which, (iii) in the presence of time

reversal symmetry, bind Kramers doublets [335]6. We expect each of these properties

to extend to the MBL phase, as we explore below.

The gaplessness of the symmetric edge is not a sharp diagnostic of the TPM,

even at T = 0, as already alluded to by Levin and Gu in the clean case. The

edges can always spontaneously gap by breaking Ising symmetry for arbitrarily weak

perturbations; of course, gapped symmetry-broken edges can also be present in the

TrPM. With disorder at finite energy the situation is even worse — the many-body

spectrum is always gapless although local operators may exhibit a ‘mobility’ gap

in localized states. Thus, we might expect ‘mobility gaplessness’ in the absence of

symmetry breaking, but this is a delicate diagnostic at best.

At T = 0, Levin and Gu proposed a sharp distinction between the two param-

agnets based on a different diagnostic. They coupled both paramagnets to a static

gauge and then considered the statistics of braiding π flux vortex insertions. For the

TrPM the statistics are bosonic while for the TPM they are semionic, as the gauged

models are dual to the toric code and doubled semion theories, respectively. In a

putative MBL state, a slow physical process of inserting fluxes, braiding and annihi-

lating them should accumulate the same semionic statistical phase (on top of ‘spin

glass’-like Aharonov-Bohm contribution from each of the encircled localized charges).

The definition of ‘slow’ is subtle as the many-body spectrum is gapless, but again we

expect a local O(1) mobility gap. The exact mathematical operators which charac-

6We thank M. Zaletel for bringing this to our attention.
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terize this process in the exactly solvable models do not have simple extensions to the

general MBL state.

If the gauged paramagnet additionally has time reversal symmetry, then each

vortex of the TPM binds a Kramers doublet (the semion and the anti-semion states).

This can be seen in the exactly solvable model by defining a local charge operator

on an area A, Q[A] =
∏

p∈ABp, gauging it and noting that the gauged Q is time-

reversal odd (even) if A encloses an odd (even) number of vortices. This implies an

exact degeneracy for the entire spectrum. On the other hand, the TrPM vortices

are bosonic and do not bind Kramers doublets (the gauged charge operators are

always time-reversal even in the exact model). The degeneracy lifts exponentially

in the separation between the vortices on perturbing away from the exactly solvable

point and we expect this exponential degeneracy to persist into the MBL phase.

The careful reader might note that the typical many-body level spacing for highly

excited states is exponentially small in the system volume, and thus smaller than

the separation between paired states. This is reminiscent of the paired MBL regime

discussed by Huse et. al [148], and the ‘paired’ states share all their local properties

unlike typical MBL eigenstates close in energy. A different but related diagnostic

comes from measuring coherent ‘anyon oscillations’ between the semion and anti-

semion states in the localized background with a timescale set by their separation.

We leave the detailed mathematical understanding of these last questions as open

problems for future work.

Finally, we comment briefly on the requirement that there be a continuous path

connecting the MBL phases of the TPM and the TrPM if Ising symmetry is broken

along the path. Levin and Gu explicitly construct a local Ising symmetry-breaking

unitary operator U(θ) which transforms H0 into HLG (with Λs = Γs) along a path in

Hamiltonian space parameterized by the continuous variable θ; the same unitary can

also be used for random couplings Λs. The many-body energy spectrum, and hence

109



the level-statistics of H(θ) are identical everywhere along the path which strongly

indicates the absence of a MBL to ergodic phase transition in accordance with work

done by Huse et. al. [227]. More strongly, each localized excited eigenstate of H0

continues to a localized eigenstate of H(θ) under the action of the local unitary, and

there is a continuous mapping between MBL eigenstates everywhere along the path.

This is to be contrasted with the eigenstate phase transition that we expect between

the TPM and TrPM highly excited eigenstates when Ising symmetry is preserved.

4.4 Concluding remarks

Traditionally, the destruction of order and the proliferation of defects are closely in-

tertwined in statistical mechanics. This has led previously to the idea that the local-

ization of defects can improve order, e.g. in the case of superconductors in a magnetic

field [147] and the quantum Hall effect away from the center of the plateau [158]. The

work of Huse et al has generated the interesting possibility that this mechanism can

operate also in many body localized quantum systems where statistical mechanics

does not apply even for highly excited eigenstates. In this setting the sought after

order has to be identified for individual many-body eigenstates and has a “spin glass”

form or at least a spin glass component which is eigenstate specific.

In this paper we have considered whether SPT order can exist in highly excited

eigenstates in the MBL setting by examining two specific models. In both cases it is

not hard to see that thermal states differ qualitatively from the ground states exhibit-

ing SPT order while MBL states qualitatively resemble the ground states thanks to

the localization of defects. This is strong evidence for existence of an eigenstate phase

transition that must separate the trivial and SPT regions at nonzero energy density.

For the case of the Haldane phase in d = 1 we are able to go further and argue that

highly excited MBL eigenstates in the SPT region can be directly distinguished from

110



highly excited MBL eigenstates in the topologically trivial region. For the topological

Ising paramagnet in d = 2 this last step still needs to be taken. In both cases we have

argued the absence of an eigenstate phase transition separating the regions when the

preserving symmetry is allowed to be broken.

Evidently it would be interesting to extend this investigation to the larger zoo

of SPT phases identified in recent work, including in d = 3 where SPT order can

presumably survive to non-zero temperatures when the disordering defects have the

topology of vortex lines. One immediate restriction suggested by our analysis is that

we found it necessary to protect the Haldane phase via a discrete symmetry to invoke

MBL. If that restriction is fundamental, it may be that SPT order is strengthened by

MBL only if the protecting symmetry is discrete.

4.A Entanglement spectrum of dihedral symmet-

ric MPS without translational symmetry

In Ref. [250], Pollman and co-authors demonstrated the entanglement spectrum of

a spatial cut diagnoses the two dihedral symmetric translationally invariant phases

of integer spins in one dimension. In the topological/Haldane phase, they showed

that the entanglement spectrum is exactly double degenerate in the thermodynamic

limit, while in the trivial phase, it is not. The two phases persist in the absence

of translational invariance. In this appendix, we show that the classification of the

entanglement spectrum of the MPS also holds without translational symmetry.

Our approach and notation closely follows that in Ref. [250]. Consider an open

chain of a spin system with integer spin S in the thermodynamic limit. Let the

wavefunction of the system have a MPS representation (as is the case for the ground

state of the clean system or the highly excited MBL states in the dirty system). The
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canonical form of such an MPS in the standard pictorial notation is:

�i| i =

�i

⇤i

X

{�i}
|{�i}i

(4.13)

where i is the site label, σi is the physical spin index taking values −S,−S + 1, . . . S,

Γi is a matrix of dimension χ and Λi is a real, diagonal matrix, also of dimension

χ, with non-negative values. χ is interpreted as the dimension of the virtual spins

that make up the spin S7. For a more detailed introduction to MPS, see [277, 310].

An important property of the canonical representation is that the transfer matrix at

site i, defined as the tensor in the dashed box below, has a unique left (and right)

eigenvector of eigenvalue one:

�i⇤i�1

�⇤
i⇤i�1

=

(4.14)

The diagonal elements of Λi are the Schmidt numbers for a spatial cut between bonds

i and i + 1; the entanglement energies are the negative logarithms of these diagonal

elements. Properties of the entanglement spectrum therefore follow from the structure

of Λi,Γi.

To prove that there is a two-fold classification of the entanglement spectrum, we

proceed as follows:

1. Identify the action of the dihedral symmetry on the physical spins as a site-

dependent gauge transformation of the virtual spins

7The proof may easily be extended to site-dependent χ (χ̃i). Then, the χ defined in the text is
χ = maxχ̃i.
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2. Show that the gauge transformation is the identity up to a site-dependent phase

3. Determine that the smallest irreducible representation for the gauge transfor-

mation is either of dimension one, or two

When the smallest irreducible representation has dimension two, the Schmidt values

are forced to come in degenerate pairs and the entanglement spectrum is doubly

degenerate. When the dimension is one, there is no constraint on the entanglement

spectrum. This then is the required classification.

We now go through the steps in turn. Consider the action of the dihedral group

on the state |Ψ〉. The matrix, Γi in the MPS representation in Eq. (4.13) becomes:

Γ̃σi = (Rα
i )σσ

′
Γσ
′
i , α = x, y, z (4.15)

By definition, under the action of
∏

iR
x
i ,
∏

iR
y
i and

∏
iR

z
i , the given state goes back

to itself, up to boundary effects that are not relevant in the thermodynamic limit.

Thus, Γ̃ should be related to Γ by a gauge transformation:

Γ̃σi = eiθ
α
i (Uα

i−1)†Γσi U
α
i , (4.16)

where Uα
i is a unitary matrix commuting with Λi and θαi is real. Physically, the U

matrices implement the action of the symmetry on the virtual spins. They form a

χ-dimensional projective representation of the symmetry group of the wave function

|ψ〉. Note that the MPS with matrices (Γ̃σi ,Λi) is also in the canonical representation.

As the dihedral operators square to identity, another action of the dihedral group

provides a relation for Γi:

Γσi = ei2θ
α
i (Uα

i−1)†(Uα
i−1)† Γσi U

α
i U

α
i , (4.17)
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Substituting Eq. (4.17) in Eq. (4.14), it is easily seen that:

�i⇤i�1

�⇤
i⇤i�1

= (U↵†
i )2e�2i✓↵

i(U↵†
i�1)

2

(4.18)

The input left vector to the transfer matrix and the output vector are different. How-

ever, the norm of both vectors is χ, equal to the norm of the unimodular eigenvector.

As the transfer matrix has a unique unimodular eigenvector, both vectors have to be

proportional to the identity eigenvector in Eq. (4.14) up to a phase. Thus,

(Uα†
i−1)2 = eiφ

α
i−11 (4.19)

This gets us to the second step in the list above. Further, as the eigenvalue is one,

we obtain a relationship between θαi , φαi and φαi−1.

Finally, after a few steps of algebra, we find that:

(Ux
i )†(U z

i )† = κ(U z
i )†(Ux

i )† (4.20)

κ = ±1 (4.21)

That is, on every site i, Ux
i and U z

i either commute or anti-commute. If Ux
i and

U z
i commute (anti-commute), the smallest irreducible representation has dimension

one (two). Up to accidental degeneracies, Ux
i , U

z
i can then be expressed as direct

sums of matrices with dimension one (two). Recall however that Uα
i and the diagonal

matrix with the Schmidt numbers, Λi, commute. Thus, in the former case, there is no

constraint on the entanglement spectrum, while in the latter, the entire entanglement

spectrum (ES) has to be doubly degenerate.
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In the ground states of the clean/disordered A/BKLT chains, κ = −1 and the (ES)

is two-fold degenerate. Consider now the fuzzy Fock states defined below Eq. (4.7)

using the localized single triplon wavefunctions, |Ψ〉 = tα1
ψ1
tα2
ψ2
· · · tαNψN |A〉. In the ex-

tremely dilute limit, pick a bond m where the weight of all the single triplon states

occupied in |Ψ〉 is small. The local action of the dihedral group on this bond is the

same as in the ground state and κ = −1 on this bond. As κ is site-independent, Ux
i

and U z
i anti-commute for all i and the entanglement spectrum will be doubly degen-

erate for any spatial cut. Thus, these approximate MBL states have the topological

order of the Haldane phase.
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Chapter 5

Phase Structure Of Driven

Quantum Systems

5.1 Introduction

We saw in Section 1.6 and the previous chapter that the lack of equilibrium in MBL

systems allows for novel forms of eigenstate order and the possibility for nontrivial

phases in regimes where they would be disallowed in equilibrium. In this chapter and

the next, we continue this program of generalizing and extending ideas of equilibrium

phase structure to the nonequilibrium setting.

In particular, we consider the following question: Is there a sharp notion of a

phase in driven, interacting quantum systems? We find an affirmative answer for

Floquet systems whose Hamiltonians depend on time t periodically, H(t+T ) = H(t)

(see Section 1.8.1 for an introduction). Unlike in equilibrium statistical mechanics,

disorder turns out to be an essential ingredient for stabilizing different phases; more-

over, the periodic time evolution allows for the existence (and diagnosis) of phases

without any counterparts in equilibrium statistical mechanics.
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Naively, Floquet systems hold little promise of a complex phase structure. As

discussed in Section 1.8.2, generic interacting Floquet systems absorb energy in-

definitely from the driving field and heat up to a trivial “infinite temperature”

state [198, 78, 251]. On the other hand, in the presence of disorder, weakly driven

MBL systems can remain Floquet localized [199, 252, 2] and display a set of properties

closely related to those exhibited by time-independent many-body localized systems.

In the following we show that such Floquet-MBL systems can exhibit multiple

phases. Some of these are driven cousins of MBL phases characterized by bro-

ken symmetries and topological order. Remarkably, others are genuinely new to

the Floquet setting, characterized by order and non-trivial periodic dynamics. Our

analysis identifies a key feature of the Floquet problem, the existence of localized

Floquet eigenstates (1.18), which permits us to extend the notion of eigenstate or-

der [149, 239, 319, 64, 24] to time dependent Hamiltonians. Our work also builds on

the discovery of topologically non-trivial Floquet single particle systems and recent

advances in their classification [298, 229, 161, 181, 207, 180, 273, 225]. As we will

explain, non-trivial single particle drives can yet lead to trivial many-body (MB) pe-

riodic dynamics even without interactions. Thus, the full framework of disorder and

interactions is required for the MB problem.

We illustrate our ideas in the simple interacting setting of a one dimensional

disordered spin chain with Ising symmetry,

H =
∑

i

Jiσ
x
i σ

x
i+1 +

∑

i

hiσ
z
i + Jz

∑

i

σzi σ
z
i+1. (5.1)

Carrying out a Jordan-Wigner transformation on only the first two terms gives a p-

wave superconducting free-fermion model, whereas the final term is a density-density

interaction in the fermion language. The paramagnetic and symmetry-broken ferro-

magnetic phases of the Ising model are related by a well-known duality. We first show

117



that there are two Floquet phases, paramagnet (PM) and spin glass (SG), that con-

nect smoothly to phases in the undriven systems. We then identify two new phases

that do not, which we term the Floquet 0π-PM and the Floquet πSG. It turns out that

the dynamics of the πSG phase show a novel form of correlated spatiotemporal order

and the properties of this phase are remarkably robust to arbitrary perturbations—we

will discuss these features in detail in the next chapter.

5.2 Floquet Paramagnet and Spin Glass

We begin with the two phases that do exist in undriven systems and demonstrate the

stability of these to being (not too strongly) driven. Starting with the non-interacting

limit, Jz = 0, we choose the Ji and the hi to be log-normally distributed with a tunable

mean log(Ji) ≡ log J , fixed log(hi) ≡ log h = 0 and two fixed and equal standard

deviations δ log(hi) = δlog(Ji) = 1. Work on random, non-interacting Ising models

culminating in Ref. [110] finds a ground state phase diagram which is a paramagnet

for log J < log h and a Z2 breaking ferromagnet for log J > log h, separated by

an infinite disorder fixed point at log J = log h. The work on eigenstate order has

shown that, with disorder and localization, both phases exist at all energies with

the symmetry-breaking phase exhibiting SG order in individual eigenstates instead of

ferromagnetism. The eigenstates are also eigenstates of parity P =
∏
σzi , and deep in

the PM phase, they (roughly) look like frozen spins along the z direction | ↑↓↓ · · · ↑〉

while deep in the SG phase they look like global superposition/cat states with spins in

the x direction with frozen domain walls |±〉 = 1√
2
(| →←→ · · · →〉±| ←→← · · · ←〉).

With weak interactions, 0 < Jz � 1, the strongly localized PM and SG phases

remain MB localized [239, 182]. The fate of the SG-PM transition is more sensitive

to the inclusion of interactions. It was suggested that it would remain localized [149]
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and exhibit the same scaling as the non-interacting fixed point [239]; we comment on

the analogous question in the Floquet setting below.

We consider a periodic binary drive—computationally much simpler than a

monochromatic modulation—switching between two static Hs with log J differing

by 1:

H(t) =
∑

i

fs(t) Jiσ
x
i σ

x
i+1 +

∑

i

hiσ
z
i + Jz

∑

i

σzi σ
z
i+1,

fs(t) =





1 if 0 ≤ t < T
4

or 3T
4
< t ≤ T

e if T
4
≤ t ≤ 3T

4

. (5.2)

We set Jz = 0.1 in the following. For −1 ≤ log J ≤ 0 the drive straddles the undriven

phase transition, up to small corrections to its location due to the interaction.

Drives consistent with Floquet localization require both small interactions and not

too small frequencies. We arrange the latter by defining, for each set of (log J , log h)

parameters, an effective “single-particle bandwidth”, W = max(σJ , σh), where σh and

σJ are the standard deviations of hi and Ji determined from the underlying log-normal

distributions. The period is then defined by ω = 2π/T = 2W . This choice ensures a

roughly constant ratio of ω/W for different log J − log h values and thus isolates the

effect of tuning the means through the phase diagram. The lowest frequency in our

drives is bigger than the estimated single particle bandwidth but much smaller than

the MB bandwidth, so that localization is not a foregone conclusion.

Recall from Section 1.8.1 that the solutions of the time-dependent Schrodinger

equation |ψα(t)〉 = e−iεαt|φα(t)〉 are defined in terms of the periodic states |φα(t)〉 =

|φα(t+T )〉 which are obtained from the eigenstates |α〉 of the time-evolution operator

U(T ) = e−iHFT with eigenvalues e−iεαT . The quasienergies εα are defined modulo ω.

In Fig. 5.1 we characterize the quasi-energy spectrum εn ∈ [0, 2π) using the level

statistics of HF . We define quasi-energy gaps by δn = εn+1−εn and the level-statistics
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Figure 5.1: Disorder averaged level statistics 〈r〉 of HF for the driven, disordered
Ising model (5.2). 〈r〉 approaches the Poisson limit of .386 with increasing L deep
in the PM and SG phases, showing that these remain well localized. There is a
peak in 〈r〉 near the non-interacting critical point at log J = log h indicating partial
delocalization, although the value still remains well below the Circular Orthogonal
Ensemble (COE) value of .527. (inset): The SG diagnostic χSG defined in (5.4) goes
to 0 in the PM and approaches a non-zero value in the SG phase. All data is averaged
over 2000− 105 samples depending on L.

ratio r = min(δn, δn+1)/max(δn, δn+1). Away from the critical region which—given

the weak interactions and large frequency of the drive—is close to the undriven, non-

interacting transition point log J = log h, the disorder averaged 〈r〉 approaches the

Poisson limit of .386 with increasing system size L, signaling a lack of level repulsion

and hence MBL. In the interacting critical region we find a peak in 〈r〉 which does

not grow with system size and is much less than the delocalized COE value of .527;

we return to this below.

With localization established, we turn to distinguishing the phases. Consider a

pair of Z2 invariant correlators (with A = x or y)

Cα
AA(ij; t) = 〈φα(t)|σAi σAj |φα(t)〉 (5.3)
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for i− j � 1 in any given Floquet eigenstate. We find that for log J < log h both cor-

relators vanish with increasing system size L at all t, signaling a PM. For log J > log h,

both are generically non-zero, though of random sign varying with eigenstate and lo-

cation, signaling SG order. For the SG, our parameters give |Cα
xx(ij; t)| � |Cα

yy(ij; t)|

at all t although the more general signature is that |Cα
xx(ij; t)| and |Cα

yy(ij; t)| cross

0 mod 4 times within the period for 0 < t < T . For our parameters, it suffices to

compute

χSGα (t) =
1

L2

L∑

i,j=1

(〈φα(t)|σxi σxj |φα(t)〉)2 (5.4)

for t = 0. In Fig. 5.1 (inset) we plot the disorder averaged χSGα (0); the trend

with system-size indicates that χSG(t) > 0 in the spin-glass and χSG(t) → 0 in the

paramagnet.

Three comments are in order. First, recall that it would be sufficient to establish

the existence of the Floquet PM—the SG can be obtained by duality1. Second, in

chains with uniform couplings, both spin and dual spin order vanish in all but one

of the Floquet eigenstates (the notion of the “ground-state” is not well defined in

a Floquet system) even without interactions—this is the Landau-Peierls prohibition

against discrete symmetry breaking in disguise. Localization is essential to avoid

this. Third, the |±〉 MB Floquet eigenstates in the localized SG phase come in

conjugate, almost degenerate pairs with different parity but with similar domain wall

configurations. In the fermionic formulation of the problem, the PM is topologically

trivial while the SG is non-trivial. The non-interacting SG phase has zero energy

edge Majorana modes in open chains, and the two-fold degeneracy of the many-

body SG spectrum (in this language) stems from the occupation/unoccupation of

the bilocal Dirac mode formed from the edge Majoranas. With interactions, the

1In the tails of the SG phase, log(J)− log(h) & 2, the values of the couplings J are much bigger
than the fixed interaction strength Jz = 0.1 so the problem effectively looks non-interacting. The
PM does not suffer from this problem, and the strongly localized, interacting SG can be simply
obtained by dualizing the PM.
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edge mode remains coherent only in the MBL setting [64, 24]. Thus, the degenerate

Floquet eigenstates can be connected by either (i) spectrum-generating operators

localized near the edges which toggle the state of the coherent edge mode (fermionic

language) or (ii) any spin operator that flips the parity of the eigenstates. Concretely,

the spectral function of σ+
i , the spin raising operator on any site i, in the Floquet

eigenbasis

A(ω) =
1

2L

∑

αβ

〈φα(0)|σ+
i |φβ(0)〉δ(ω − (εα − εβ)) (5.5)

is a delta function peaked at ω = 0 (this phase will hence also be labeled the ‘0’ phase

below). Finally, we note that the SG displays long-range string order in all eigenstates

regardless of boundary conditions. Without disorder, the string order vanishes even in

the many body eigenstates of free fermion chains—despite the non-trivial momentum

space topology present in their Hamiltonians.

5.3 Paramagnet-Spin Glass Phase transition

In the non-interacting problem we have strong evidence that the infinite disorder

fixed point continues to control the physics. We have examined HF and we find

that all its eigenstates are localized even at the transition, and its structure differs

from the canonical strong-disorder renormalization group form [110] by short ranged,

irrelevant, terms. The ultimate fate of the critical region in the interacting driven

problem is an interesting open question, but we note for now that our data on 〈r〉

suggests a partially delocalized interacting critical point.

5.4 π Spin Glass and 0π Paramagnet

We now present two new Ising phases which exist only in the driven system—the π-SG

and the 0π-PM. Existing work on the band topology of translationally invariant Z2

122



0 π/2
hT1

π/2

J
T

2

(a)
PM

0πPM

0SG πSG

10−2 10−1

Jz

0.39

0.44

0.48

0.52

〈r
〉

(b)

L = 8
L = 10
L = 12

Figure 5.2: (a) Phase diagram for the binary Ising drive, Eq. (5.6) without inter-
actions (Jz = 0) and disorder. (b) Level Statistics 〈r〉 of HF in the π phase with
parameters defined in the text and disorder averaged over 2000-100,000 realizations
for different Ls. HF is localized for interaction strengths Jz . 0.1.

symmetric free-fermion chains [161, 28, 296] has shown that the Floquet eigenmodes

for such chains with open boundary conditions can exhibit edge Majorana modes

with εα = π/T in addition to the better known edge modes with εα = 0. In the MBL

setting in the ‘π’ phase, the MB Floquet eigenstates are long-range ordered and come

in |±〉 cat pairs separated by quasienergy π/T . These can again be connected by

either spectrum generating operators localized near the two edges (fermion language)

or by local parity odd operators (spin language). Thus, the spectral function A(ω)

(5.5) now shows a delta function peak at ω = π/T .

We now establish these phases for the binary periodic drive

H(t) =





Hz if 0 ≤ t < T1

Hx if T1 ≤ t < T = T1 + T2

(5.6)

123



Hz =
L∑

i=1

hiσ
z
i +

L−1∑

i=1

Jzσ
z
i σ

z
i+1,

Hx =
L−1∑

i=1

Jiσ
x
i σ

x
i+1 + Jzσ

z
i σ

z
i+1 .

Fig. 5.2(a) shows the uniform, non-interacting phase diagram with the four possible

driven Ising phases. The phases labeled ‘0’ and ‘ π’ have edge Majorana modes at

quasienergies 0 and π/T respectively. With disorder and localization, these phases

display long-range SG eigenstate order in the correlators (5.3) for both A = x, y.

Moreover, in the π-SG phase, the time dependence of the Cxx and Cyy correlators

over the period is non-trivially correlated: their magnitudes must cross twice (modulo

4) during a period. Thus, in this phase, the axis of SG order rotates by an angle π

(modulo 2π) about the z-axis during the period which can be intuitively understood

by thinking semi-classically about the drive (5.6) at the extremal boundaries of the

phase diagram shown in Fig. 5.2(a). This sign reversal of the order parameter and thus

doubling of the period (also found previously in [70]), provides a potential Floquet

realization of a time crystal [328, 321]. Note that the issue at hand is a rotation of

the order parameter about the z-axis, and thus one might imagine the existence of

different Floquet phases (Z classification) corresponding to rotations by all multiples

of π. However, it was shown [316] that only the magnitude of the rotation modulo

2π is robust to continuous deformations of the unitaries, thus giving the two ‘0’

and ‘π’ phases. As before, without localization, only one of the Floquet eigenstates

(analogous to the ground state) will display long-range order in the 0, π phases. The

other two phases, labeled PM and 0π, have no long-range order and are respectively

dual to the 0 and π phases.

We now turn to numerically identifying the localized π phase with disorder

and interactions. We pick T = 1, T2 = π/2 and hiT1 uniformly from the interval
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Figure 5.3: (a) Disorder averaged spectral function A(ω) defined in Eq. (5.5).
Solid (dashed) lines are for the π-SG (0-SG) phase showing a delta function peak
at ω = π/T (0) for small interaction strengths which disappears as the interaction is
increased. (b) Time dependence of the Cxx and Cyy correlators defined in Eq. (5.3)
over one period for an eigenstate in the π phase; L = 10, T1 = 1 and Jz = 0.04. The
crossings are robust in the π phase.

(1.512, 1.551) and JiT2 from (0.393, 1.492), so that all pairs of values (hiT1, JjT2) lie

in the π/T Majorana region of the free uniform chains. We have confirmed that

the free fermion disordered drive exhibits π/T Majoranas for open chains while all

other modes are localized in the bulk. In Fig Fig. 5.2(b) we examine stability to

interactions via 〈r〉 and clearly observe a transition around Jz ≈ 0.1, with the small

Jz regime being the MBL phase we seek.

Fig. 5.3(a) shows the appearance of the π/T peak in the disorder averaged spectral

function (5.5) for system size L = 10 as the delocalization transition is crossed by

decreasing the interaction strength. In contrast, the dashed lines show the spectral

function for a similar drive in the 0-SG phase, clearly showing a peak at ω = 0.

Finally, Fig. 5.3(b) displays the anticipated time dependence of the SG order in the

Cxx and Cyy correlators in a single eigenstate of the interacting system with Jz = 0.04

and L = 10. The crossings in the correlator within the period (modulo 4) are robust

in the π-SG phase and topologically distinct from the correlators in the 0-SG phase
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where there are no crossings (modulo 4). We emphasize that this is a true bulk

diagnostic of the phase which, unlike the presence of an edge mode, is insensitive to

boundary conditions. We also note that the non-trivial spin dynamics captured by it

cannot be obtained without localization.

Finally we turn to the 0π-PM which is dual to the π-SG. This is an SPT phase with

no bulk long-range order, but with coherent edge states. In the fermionic language,

there are now two Majorana modes at each edge, one at quasienergy 0 and the other

at π/T and thus MB spectrum is paired into conjugate sets of four MB states—two

degenerate pairs of states separated by quasienergy π/T . The eigenstates in this

phase do not look like global superposition states and the spectral function of bulk

spin operators shows no structure. On the other hand, spectral functions of edge

operators which toggle the state of the edge modes show a peak at both 0 and π/T .

5.5 Summary and open questions:

We have shown that MBL Floquet systems exhibit sharply defined phases bounded by

parameter surfaces across which properties of their Floquet eigensystems change in a

singular fashion. These phases include the trivial Floquet-ergodic phase and multiple

non-trivial non-ergodic phases exhibiting various forms of ordering and dynamics,

some of which are entirely new to Floquet systems. The net result is something

quite striking given the contentious history of non-equilibrium statistical mechanics.

Indeed, it is quite likely that Floquet systems constitute the maximal class for which

such a definition of phase structure is possible; with generic time dependences it would

not be surprising if heating to infinite temperatures is the inevitable result. Going

forward we anticipate a more systematic search for Floquet phases and a better

understanding of their phase diagrams. In this context we note two studies that
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include disorder, but not interactions, in Floquet systems [300, 299]. It should also

be possible to observe the new localized phases by the methods of Ref. [279].
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Chapter 6

Absolute Stability and

Spatiotemporal Long-Range Order

in Floquet Systems

6.1 Introduction

In the previous chapter, we showed how Floquet localization allows phases to be

defined for MBL-Floquet systems via a generalization of the idea of eigenstate or-

der [169]. We now turn to a more detailed characterization of these Floquet phases.

In the undriven setting, an early paradigm for classifying phases, associated most

with Landau, characterizes phases through the spontaneous breaking of global sym-

metries present in the microscopic Hamiltonian i.e, phases are either paramagnetic,

or spontaneously symmetry broken (SSB). In modern parlance, the phases obtained

thereby are symmetry protected since their distinctions are erased if the symmetries

are not present microscopically. More recently, it has been found that this character-

ization is too coarse — not all paramagnetic phases should be considered identical.

Indeed, there exist paramagnetic symmetry protected topological (SPT) phases, such

128



as those discussed in Chapter 4, which do not break any symmetries, but which

nevertheless cannot be adiabatically connected to one another in the presence of

the protecting global symmetry [72]. Remarkably, we now know of other phases,

such as those with topological order, which do not even require a global symmetry

and are absolutely stable—their ground state (and sometimes even low temperature)

properties are stable to arbitrary weak local perturbations [325, 178, 136]. Equally

remarkably, we have seen that in MBL systems, the entire many body spectrum

displays some absolutely stable property and is characterized by a full set of emer-

gent local conserved quantities [148, 283, 153, 284, 66, 271, 238, 260]. As we have

seen, one can also combine MBL with the above quantum orders to obtain MBL

phases in which individual highly excited eigenstates show SSB, SPT, or topological

order [149, 239, 29, 64, 24, 255].

We now consider these ideas in the driven setting. In the previous chapter, we

showed that both paramagnetic and spin-glass phases can be defined for Floquet

MBL systems. In very recent work, a classification was given for Floquet phases that

either preserve [317, 100, 253] or spontaneously break [316] unitary global symme-

tries1. In the present chapter we build on the latter work and show that a subset

of the SSB phases identified therein are stable to arbitrary weak local perturbations,

including those that explicitly break any of the defining global symmetries. Thus this

subset is absolutely stable—a remarkable outcome for a driven system. The apparent

puzzle that SSB phases can be stable absent Hamiltonian independent symmetries is

resolved elegantly: at general points in these absolutely stable phases, the drives (in

the infinite volume limit) are characterized by a set of Hamiltonian dependent emer-

gent unitary and antiunitary symmetries. Ex post facto, we see that the symmetric

models in the previous chapter and Refs. [169, 316] live in lower dimensional sub-

manifolds (characterized by Hamiltonian independent symmetries) of a much higher

1We use the term “spontaneously break unitary global symmetries” to mean that the eigenstates
exhibit the long-range order characteristic of spontaneous symmetry breaking.
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Figure 6.1: (a) Schematic depiction of the manifold of Floquet unitaries that are
absolutely stable and characterized by Hamiltonian dependent emergent symme-
tries (grey area). Special sub-manifolds (colored lines) within the absolutely stable
manifold are characterized by Hamiltonian independent unitary (Ui) and antiunitary
(Ti) symmetries. Special models (black stars) can lie at the intersection of several
sub-manifolds with exact symmetries. As an example, the πSG model defined in
Refs. [169, 316] is absolutely stable and possesses the Ising unitary symmetry P and
an antiunitary symmetry T = KP where K is complex conjugation. (b) Schematic
depiction of the spatiotemporal long-range order found in absolutely stable phases—
the order looks “antiferromagnetic” in time and glassy in space.

dimensional absolutely stable phase — we sketch the resulting structure in Fig. 6.1.

This analysis uncovers a much richer symmetry structure than the global unitary

symmetries used in previous work.

Strikingly, the out of equilibrium dynamics in these phases exhibits sharp uni-

versal signatures associated with oscillations of an emergent order parameter; these

generalize the multiple period oscillations uncovered in previous work [169, 316] on

symmetric drives. For example, we show that starting from arbitrary short range

correlated initial states, the late time states show sharp oscillations of generic local

operators at multiples of the fundamental period. This particular dynamical feature

is a great boon to a future experimental detection of these phases as experimentalists

are required neither to fine tune the Hamiltonian nor the starting state to observe a

sharp signature!
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These longer periods raise the question of whether they should be thought of as

representing spontaneous breaking of yet another symmetry—that of time transla-

tions by a period of the drive2. We note that the idea that time translations might

be analyzed in this fashion was first mooted by Wilczek [328] for time independent

Hamiltonians; there is, however, now a proof [321] that such “time crystals” do not

exist for undriven systems in equilibrium. We analyze this question further and find

that strictly speaking all MBL systems, driven or undriven, exhibit some eigenstate

correlations characteristic of temporal glasses—an aperiodic breaking of time trans-

lation invariance (TTI). For the Floquet broken symmetry phases however, the long

distance correlations simultaneously exhibit spin glass order in space and multiple

period oscillation in time. These lead to the characteristic space-time snapshot il-

lustrated for the simplest such phase in Fig. 6.1(b). Evidently the system exhibits

spatiotemporal3 long-range order in both space and time. The modulation in time,

which is antiferromagnetic, does indeed break time translation symmetry but it pre-

serves the combination of a translation and emergent Ising reversal. We note that

a similar spatiotemporal order—now ferromagnetic in space—was previously exhib-

ited in the large N Floquet theory [70] and discussed in the terminology of a lack of

synchronization with the drive.

We note that the discovery of these absolutely stable Floquet phases can also be

viewed as the realization that while a Hamiltonian that lacks any symmetries (inclu-

sive of time translation invariance) exhibits only a trivial phase, introducing discrete

time translation invariance alone is sufficient to introduce a non-trivial phase struc-

ture. This would appear to be the minimum symmetry condition for this purpose.

In the rest of the chapter we describe these results in more detail. We begin

with the simplest example of a SSB phase that is absolutely stable—this is the Ising

2We thank Ehud Altman for this incisive question.
3While spatiotemporal order has been discussed for classical systems out of equilibrium, e.g.

Ref. [275], to our knowledge this is the first appearance of such order for quantum systems.
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π spin-glass or πSG introduced in Chapter 5 and Refs [169, 316]. In Sec. 6.2 we

establish its absolute stability and analyze its emergent symmetries, correlations and

characteristic spectral features within the paradigm of eigenstate order. Next, in

Sec. 6.3 we study the nature of dynamical correlations in the πSG in individual

eigenstates and starting from generic short ranged entangled states, and discuss why

the πSG should be identified as a Floquet space-time crystal. We then discuss the

catalog of other absolutely stable Floquet phases in Sec. 6.4, and show how some

Floquet SPT phases exhibit time crystallinity at their boundaries. We end with some

concluding remarks in Sec. 6.5.

6.2 The π Spin glass: Absolute stability and emer-

gent symmetries

6.2.1 Properties of the πSG phase

Chapter 5 and Refs. [169, 317, 316] discussed various SSB/SPT phases with Floquet

eigenstate order, but not all of these phases are absolutely stable to arbitrary pertur-

bations. In this work, our canonical example of an absolutely stable Floquet phase

will be the π spin-glass (πSG) phase [169]. A concrete model Floquet unitary in this

phase in 1d is

Uf0 = Px exp[−i
L−1∑

r=1

Jrσ
z
rσ

z
r+1]; Px =

∏

r

σxr , (6.1)

where L is the system size, the σαr for α = {x, y, z} are Pauli spin 1/2 degrees of

freedom on site r, P ≡ Px is the global Ising parity symmetry (Py,z analogously

defined), and the Jr’s are random couplings drawn uniformly from [J − δJ, J + δJ ].

We note several properties of this model:

132



1. Uf0 commutes with the unitary symmetry P . Defining anti-unitary operators

Tα = PαK where K is complex conjugation, Uf0 also has T ≡ Tx symmetry:

T Uf0T −1 = U−1
f0 . It similarly has Ty,z symmetry for systems with an even

number of sites4. Thus, this model lies at the intersection of several special

submanifolds with Hamiltonian independent symmetries (Fig. 6.1) and is ex-

tremely robust to a large class of perturbations which preserve some exact

symmetry. Note that the anti-unitary symmetries T are a combination of K

and a spatial Ising flip.

2. The eigenspectrum of Uf0 can be found by noting that all the domain wall

operators Dr ≡ σzrσ
z
r+1 commute with Px, Uf0 and with one another. Thus, the

eigenstates look like symmetric/antisymmetric global superposition states (also

called cat states) of the form

|±〉 ∼ |{dr}, p = ±1〉 =
1√
2
|{σzr}〉 ±

1√
2
|{σzr}〉 ,

where {σzr} = {↑↓↓ · · · ↑} labels a frozen spin-glass configuration of z spins (and

hence the domain wall expectation values dr), {σzr} is its spin-flipped partner,

and p = ±1 is the Ising parity eigenvalue of the eigenstates.

3. The eigenstates above have corresponding unitary eigenvalues u(d, p) =

pe−i
∑L−1
r=1 Jrdr . Note that the opposite parity cat-state partners have unitary

eigenvalues differing by a minus sign u(d,−1) = −u(d,−1) and hence quasiener-

gies differing by π/T . We refer to this phenomenon as a π spectral pairing of

cat states.

4. The Floquet eigenstates exhibit long range connected correlations (LRO) and

spin glass (SG) order in σzi , but show no long-range order in σxi and σyi .

4These symmetries have similar implications, which we do not discuss here for brevity.
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5. The order parameter for the πSG model oscillates with frequency π/T or period

2T , as indicated by the stroboscopic equation of motion σzr (nT ) = (−1)nσzr .

This follows directly from the fact that σzr anticommutes with Uf0. While

〈σzr (nT )〉 = 0 in the Floquet eigenstates, the observable shows a periodic time

dependence with period 2T in short-range correlated states of the form |{σzr}〉 ∼

|+〉+ |−〉. On the other hand, the σx and σy operators do not show period 2T

oscillations.

6.2.2 Absolute stability and emergent symmetries

How robust are the above properties to perturbations of the form H(t) → H(t) +

λV (t)? Numerical results in the previous chapter have already demonstrated the

stability of Uf0 to weak Ising [169] symmetric perturbations. We will provide evidence

that this phase is, in fact, absolutely stable to all generic weak perturbations — we will

define dressed spin operators (Floquet l-bits) for the perturbed system and show that

it displays emergent symmetries with the same effect on eigenspectrum properties as

the exact Ising symmetry.

The first step in the argument is to observe that the stability of the localization

of the unperturbed unitary to arbitrary weak local perturbations (for sufficiently

strong disorder) is itself not a consequence of symmetries. More technically, call

the corresponding perturbed Floquet unitary Ufλ where λ is the strength of the

perturbation. We expect that the stability of localization implies the existence of a

family of local unitaries5 Vλ which relate the eigenvectors of Uf0 to those of Ufλ for λ

in some non-vanishing range [2, 252, 316, 99]. Note that the locality of such a unitary

is a subtle business outside of the very strongly localized region due to proliferating

resonances and Griffiths effects [29, 121].

5A local (or low depth) unitary is a unitary which can be written as V = T e−i
∫ t
0
dsK(s) for some

local bounded Hamiltonian K(t), with t finite in the thermodynamic limit.
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Assuming that a low depth Vλ exists, it relates the new eigenvectors of Ufλ denoted

|α〉λ to the eigenvectors of Uf0 via

|α〉λ = Vλ|{dr}, p〉.

The new quasienergies are similarly denoted as εαλ . These local unitaries allow us

to define a set of dressed, exponentially localized operators τr,λ (analogous to the

l-bits [284, 283, 148, 271, 66] in static MBL systems) together with a dressed parity

operator P λ via

τβr,λ = Vλσβr V†λ

P λ =
∏

r

τxr . (6.2)

We will often suppress the explicit λ dependence of ταr,λ for brevity and β = x, y, z.

Defining (local) dressed domain wall operators as Dλ
r ≡ τ zr τ

z
r+1, we get

Dλ
r |α〉λ = Vλ(σzrσzr+1)|{dr}, p〉 = dr|α〉λ,

P λ|α〉λ = VλP |{dr}, p〉 = p|α〉λ. (6.3)

Thus, the perturbed eigenstates are also eigenstates of the dressed operators Dλ
r and

P λ which means these operators commute with Ufλ, and we can rewrite |α〉λ more

suggestively as |{τ zr }, p = ±1〉 using the same notation as before. By definition, τ zr

anticommutes with P λ. Further we show in App. 6.A that it also anticommutes with

Ufλ in the large system limit

[τ zr , Ufλ]+ = O(e−cL)
L→∞−−−→ 0 , (6.4)
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using only the assumptions of locality and continuity. This implies that the Floquet

eigenvalues are odd in p. Together with the previous statements about the commuta-

tion properties of P λ and Dλ with Ufλ, it is easy to show that the unitary eigenvalues

take the form uλ({dr} , p) = pe−if({d}). Re-expressing the eigenvalue dependence on

conserved quantities in operator language gives

Ufλ = P λe−if({Dλr}) , (6.5)

where f is a functional of Dλ, or equivalently an even functional of the τ zr ’s. One

can moreover argue that f can be chosen to be local, using the fact that the Floquet

unitary itself is low depth [317, 316]. Thus, f generically takes the form

f({Dλ}) =
∑

ij

Jijτ
z
i τ

z
j +

∑

ijkl

Jijklτ
z
i τ

z
j τ

z
k τ

z
l + · · ·

where the couplings Jij ∼ e−|i−j|/ξ decay exponentially with distance reflecting the

locality of the unitary.

Written this way, the Floquet unitary (6.5) clearly has a Z2 symmetry P λ —

although we say it is emergent because P λ, in general, depends on the details of

the underlying Hamiltonian. Ufλ similarly has an emergent antiunitary symmetry

T λ ≡ P λKλ where Kλ is complex conjugation defined with respect to the τα. Note

that Eq. (6.5) takes much the same functional form as the model unitary Eq. (6.1), and

correspondingly its eigenstates exhibit long-range order in the dressed order parameter

τ zr (associated with spontaneous breaking of Pλ), and short range order in τx,yr . The

statements about π spectral pairing and the temporal dependence of observables (in

particular τ z(nT ) = (−1)nτ z(0)) also follow directly6.

6In principle we can now identify symmetry defined submanifolds based on keeping the emergent
symmetries about any fixed point in the πSG which provides an “origin independent” view of the
structure of the phase. The functional form of the perturbed unitary Ufλ (6.5) and its implications
are among the central results of this chapter.
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Finally, we note that Refs [169, 317] also defined a 0SG phase with the model

unitary exp[−i∑L−1
i=1 Jiσ

z
i σ

z
i+1]. Like the πSG, this is also a phase with long-range SSB

Ising order, but one in which the cat states are degenerate instead of being separated

by π/T . If we generically perturb about this drive, we must begin with Floquet

eigenstates that explicitly break the Ising symmetry in order for the change of basis

unitary Vλ to be local. Implicitly this requires us to work in the infinite volume limit

directly. In this case, one can show that τ z commutes (rather than anticommutes)

with the Floquet unitary, and one can readily use this to split the degeneracy between

the Floquet eigenstates, rendering this phase unstable to arbitrary perturbations. By

contrast, in the πSG phase, the cat states are π split and therefore non-degenerate —

a fact which is essential to the stability of the SSB order to arbitrary perturbations.

6.2.3 Long range order and numerics

We now numerically check for the predicted π spectral pairing in a perturbed model

of the form

Ufλ = P exp[−i
L−1∑

r=1

Jrσ
z
rσ

z
r+1 − iλ

L∑

r=1

hxrσ
x
r + hyrσ

y
r + hzrσ

z
r ] (6.6)

The fields Jr, h
x,y,z
r are drawn randomly and uniformly with Jr = 1, δJr = 0.5, hxr =

δhxr = 0.1, hyr = δhyr = 0.15, hzr = δhzr = 0.45 and the notation x, δx means that x is

drawn from [x− δx, x+ δx]. The perturbation breaks all the unitary and anti-unitary

symmetries present in the original Uf0 model. To check for spectral pairing, we define

the nearest neighbor gap between the perturbed quasienergies as ∆i
0 = ελi+1 − ελi and

the π gap as ∆i
π = ελi+N/2 − ελi − π/T where N = 2L is the Hilbert space dimension,

and where the second equation follows from the fact that the quasienergy bandwidth

is π/T and we expect states halfway across the spectrum to be paired at π/T (See

Fig. 6.2 (inset) for an illustration of these definitions). The system shows spectral
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Figure 6.2: Disorder and eigenstate averaged spectral gaps for the generically per-
turbed model (6.6) without any P and T symmetries plotted as a function of the
perturbation strength λ and system size L. The nearest-neighbor quasienergy gap
∆0 shows no λ dependence but decreases exponentially with L. On the other hand
∆π which measures the spectral pairing of even-odd parity states scales as λL (fits
to this form superimposed). Thus, there is a window of λs for which ∆π � ∆0 and
the system exhibits robust spectral pairing in the L → ∞ limit. Gaps smaller than
∼ 10−14 are below numerical precision, thus the initial λ independent trend in the
∆π data for larger L. (inset): Cartoon of the quasienergy spectrum illustrating the
definitions of ∆0 and ∆π.

pairing at π if there is a range of λ’s for which ∆π � ∆0 as L→∞. Fig. 6.2 shows

the mean ∆π and ∆0 log-averaged over eigenstates and several disorder realizations

for different λ’s and L’s. We see that ∆π ∼ λL whereas ∆0 ∼ e−sL where s ∼ log(2)

is a λ independent entropy density. Thus, we can get robust pairing in the window

| log λ| > s.

Having shown how the robustness of the πSG phase is associated with sponta-

neously broken emergent symmetries and long-range order in the τ z variables, we can

now ask what effect this long-range order has on correlations in the physical σα de-

grees of freedom. Generically we expect the expansion of the physical spins in terms
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Figure 6.3: Disorder and eigenstate averaged end-to-end connected correlation func-
tions for σx,z in the “generic” model (6.6) with no P, T symmetries (blue squares,
red circles) and a model [99] with T symmetry obtained by setting hy = 0 in (6.6)
(black diamonds, green triangles). As discussed in the text, the generic model shows
long-range order for both operators which is signaled here by correlations scaling
as λ2 independent of system size. On the other hand, in the model with T sym-
metry, only σz shows long-range order while the σx correlator scales as λf(L) where
f(L) ∼ 0.9L − 1.4 (fits shown) and thus vanishes in the L → ∞ limit. This is to
be expected from symmetry constraints. The σy correlators (not shown here) also
display long-range order in the generic model but not in the T symmetric model.

of l-bits to have some components which are diagonal and odd in τ z, for example

σαr = cατ zr + · · · . As a result σα=x,y,z
r are all expected to have long range connected

correlation functions, as well as a component exhibiting 2T periodic stroboscopic os-

cillations. These predictions agree with our numerical results Fig. 6.3 and Fig. 6.4

respectively.

On the other hand, when we perturb Uf0 in a manner that respects an explicit

symmetry like P or T , the resulting models reside in a special submanifold of the

absolutely stable phase. The presence of the exact symmetries constrains the form

of the dressed τα operators and leads to concrete predictions about the order in and
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temporal dependence of different operators. For example, it was argued [316] that

when the perturbation λV (t) is such that Ufλ continues to have Ising symmetry,

Vλ can be chosen to commute with P . As a result, P λ = P , and σy,z are odd

under P λ whereas σx is even under P λ. This means an operator expansion of σxr

in terms of the dressed ταr operators can only involve even combinations of τ : σzr =

α1τ
x
r + β2τ

z
r τ

z
r+1 + . . .. Hence the connected correlation functions of σxrs should decay

exponentially with |r−s|, and this operator is not expected to have robust period 2T

oscillations. On the other hand σy,zr will generically exhibit both long range connected

correlations as well as period 2T oscillations.

Similarly we can pick perturbations for which Uf,λ respects antiunitary symmetries

like T = PK, i.e., for which T Uf,λT = U−1
f,λ. As an example, the model studied in

Ref. [99] resembles Eq. (6.6) with hy = 0, so has the effect of perturbing Eq. (6.1)

by λV ∼ hzrσ
z
r + hxrσ

x
r . With this choice of V it is straightforward to verify that the

corresponding Uf,λ respects T symmetry

T Uf,λT −1 = (PK)Ufλ(PK)†

= (PK)P exp[−i
L−1∑

r=1

Jrσ
z
rσ

z
r+1 + hzrσ

z
r + hxrσ

x
r ](PK)†

= exp[i
L−1∑

r=1

Jrσ
z
rσ

z
r+1 + hzrσ

z
r + hxrσ

x
r ]P

= U−1
f,λ . (6.7)

In this case, we can pick the change of basis matrix Vλ to commute with T (see

App. 6.B) which implies that τx, τ y, τ z are even, even, and odd respectively under T .

In turn, the operator expansions of σx,y can only contain terms with even numbers of

τ zs in their expansions. Hence neither should exhibit protected π/T oscillations, nor

should they have long range connected correlations as demonstrated in Fig. 6.3. This

140



accounts for the absence of π/T oscillations for σxr (nT ), σyr (nT ) in the data presented

in Ref. [99].

6.3 The π Spin Glass: Spatiotemporal Long Range

Order

We have already discussed above that at general points in the absolutely stable πSG

phase the emergent order parameter operators, τ zi , change sign every period. Prima

facie, this implies the spatiotemporal order sketched in Fig. 1b: spin glass order in

space and antiferromagnetic order in time.

The aim of this section is to more sharply characterize this spatiotemporal order.

As the πSG is a localized phase, unlike in the equilibrium context, there is not an

obviously correct set of correlations one should examine to detect said order. We

propose to examine the time dependent one and two point correlation functions of

local operators in two families of states. The first are the Floquet eigenstates which

are the basis of the eigenstate order paradigm of phase structure in Floquet systems.

The second are the late time states reached by time evolving from general initial

states; these are particularly relevant to experiments where the preparation of Floquet

eigenstates is not feasible.

6.3.1 Eigenstate correlations and response

We start by considering Floquet eigenstates for the πSG. All single time operators

〈O(t)〉 in these are strictly periodic with period T—this is the analog of the time inde-

pendence of single time operators in Hamiltonian eigenstates and hence the temporal

component of the order is invisible to such operators. The invisibility of temporal

order in the 〈O(t)〉 is analogous to the invisibility of Ising symmetry breaking in

one point expectations of spatially local Ising-odd operators in globally Ising sym-
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metric states. From this perspective [321] it follows that to detect temporal order

we must either (a) examine a two time function of some operator or (b) explicitly

add an infinitesimal field that selects the desired temporal order (much as we would

examine long-range order in two-point functions of Ising-odd variables and/or add

an infinitesimal Ising symmetry breaking term to detect spontaneously broken Ising

symmetry).

We begin with (a) and examine time-dependent correlators

Cα(nT ; r, s) ≡ 〈α|Or(nT )Os|α〉

=
∑

β

e−inT (εα−εβ)〈α|Or|β〉〈β|Os|α〉 (6.8)

of operators Or/s localized near sites r, s in the Floquet eigenstates |α〉 = |{d},±〉λ
(see Sec. 6.2 for notation). The operator expansion of Or/s in the τα basis will

generically contain terms that are odd combinations of τ zs. In the πSG phase, these

have matrix elements between |α〉 and its parity flipped partner and thus Cα(nT )

generically has a frequency π/T component. In addition, the off-diagonal terms in

the operator expansion involving τ {x,y} will make local domain wall excitations near

sites r/s. Now a crucial point: if r, s are held a fixed distance apart in the infinite

volume limit, then Cα(nT ) breaks TTI for any MBL-Floquet system. The reason

is that one can crudely view a Floquet MBL system as a set of weakly interacting

localized modes (the effective domain wall operators in this case) each with their own

local spectra. As in the simplest case of 2-level systems whose physics is that of

Rabi oscillations, these local subsystems (which are excited by τx/y) exhibit response

at frequencies incommensurate with the driving frequency. The presence of these

incommensurate frequencies means Cα(nT ) in all MBL-Floquet systems always look

glassy, although for the πSG there is generically also a quantized response at π/T .
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This short distance temporal glassiness however goes away when we examine long

distances in space by placing the operators arbitrarily far apart in an infinite system,

i.e., by taking limL→∞ before examining the limit |r − s| → ∞. Since the operator

expansions of Or/s are exponentially localized near sites r/s, the off-diagonal terms

in the expansion of Or which create domain-wall excitations near site r cannot be

annihilated by the action of Os in the limit |r − s| → ∞ under the assumption of

locality.

Thus, the only terms that contribute to Cα(nT ; r, s) in this limit are diagonal in

τ zs. Terms odd in τ z give a response at π/T while the even terms give a response at

frequency 0. Thus we can write

Cα(nT ; r, s) ∼ c0(r;α)c0(s;α) + c1(r;α)c1(s;α)(−1)n

where the second piece reflects the spatiotemporal order of the odd τ z terms, as well

as the connected part of the correlation function. The dependence of the coefficients

on r, s and α has been made explicit to emphasize the glassy nature of the order

in space. This establishes a connection between the long range spatial order in the

eigenstates and the period 2T temporal order.

The above analysis can be complemented by taking the approach (b) and adding

to H(t) a “staggered field” in time of the form ε
∑

n(−1)nV δ(t−nT ), where V is odd

and diagonal in τ z. Now consider time-dependent expectation values of generic local

operators Or (which have a projection on odd τ z terms) in the Floquet eigenstates

|α〉ε for the new period 2T unitary which can be reshuffled to the form Uf,ε(2T ) =

e−i2εVU2
f,0. This problem looks like the classic Ising symmetry breaking problem. At

ε = 0, Uf,ε(2T ) = U2
f,0 has two degenerate states in the infinite volume limit. If V

breaks the symmetry between two members of the doublet then

lim
ε→0

lim
L→∞ ε〈α|Or(nT )|α〉ε = b0(r;α) + b1(r;α)(−1)n
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since the perturbed period 2T eigenstates |α〉ε just look like product states of τ z in

this limit and are thus superpositions of the opposite parity eigenstates of Ufλ. On

the other hand, the opposite order of limits gives limL→∞ limε→0 ε〈α|Or(nT )|α〉ε =

b0(r;α). We emphasize that the measures discussed here are eigenstate measures. If

averaged over all eigenstates the signatures vanish.

6.3.2 Quenches from general initial states

We now turn to the question of evolution from more general initial states rather than

eigenstates. This is experimentally important, and more particularly so because the

Floquet eigenstates for the πSG are macroscopic superpositions and thus hard to

prepare. For concreteness, consider starting from a short-range correlated state like

a product state of the physical spins. In the following we will adapt the analysis of

dephasing in quenches in MBL systems [284, 149]. We will assume that the starting

state exhibits a non-zero expectation value for the order parameter, i.e. 〈ψ0|τ zi |ψ0〉 6=

0; if it does not the temporal features will be entirely absent. For simplicity we will

only discuss one point functions as they are already non-trivial in this setting and the

generalization is straightforward.

In a finite size system, τ z only anticommutes with the Floquet unitary up to

exponentially small in L corrections (6.4), which in turn introduce corrections to the

equation of motion: τ z(nT ) = (−1)nτ z(0) + O(e−L). This leads to exponentially

small shifts in the spectral pairing at π/T which varies randomly between pairs of

eigenstates. Ignoring these shifts for times 1 � t � O(e+L), one can readily show

that for any finite system the one point functions will generically show glassy behavior

with incommensurate Fourier peaks along with an additional peak at π/T ; see Fig. 6.4

for an illustration. More precisely, the logarithmic in time dephasing of correlations in

MBL systems [284, 148] can be used to show that the correlators will show aperiodic

behavior stemming from these additional Fourier peaks with a power law envelope
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∼ t−b, where b > 0 depends on the localization length [284]. Thus, finite systems

at large but not exponentially large times look like time-glasses with an additional

quantized response at ω = π/T . However, if one waits a time t ∼ eL that is long

enough to (i) resolve the exponentially small many-body level spacings and (ii) to

resolve the shifts in the spectral pairing away from π/T, both the peak at π/T and

the extra incommensurate peaks almost entirely decay away due to usual dephasing

mechanisms leaving behind aperiodic oscillations with a magnitude of O(e−L). It is

worth reminding the reader that the precise details of the time dependence will reflect

the choice of the starting state and disorder realization.

We can formalize the above in two non-commuting limits: (a) limt→∞ limL→∞

and (b) limL→∞ limt→∞. While (a) characterizes the “intrinsic” quench dynamics

of this phase, experiments will only have access to limit (b). In (b) the late time

aperiodic oscillations with envelope O(e−L) discussed above also go away, and the

one-point functions are constants. In (a) we never reach times of O(eL) and instead

observe persistent oscillations with period 2T out to t → ∞ with all additional

incommensurate oscillations decaying away as a power of time.

Thus, the intrinsic dynamical response of this phase is characterized by a single

quantized Fourier peak at ω = π/T which goes along with formally exact spectral

pairing at π/T and LRO in τ z. In this limit, the late time state exhibits a precisely

doubled period for every single realization of disorder and combined space-time mea-

surements would lead precisely to the kind of snapshot sketched in Fig. 1b. More

concretely, state-of-the-art experiments in ultracold atoms [279, 191, 42, 75] have

convincingly demonstrated that a fingerprint of the initial state persists to asymptot-

ically late times in the MBL phase. In a generalized experimental setup probing the

πSG phase in the MBL Floquet problem7, the persistence of the starting fingerprint

would measure localization and spatial spin glass order, while oscillations in time

7We thank Christian Gross for discussions on possible experiments.
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Figure 6.4: Fourier transform over time window ∆t = 500T of one point time-
dependent expectation values 〈ψ0|σ{x,y,z}(nT )|ψ0〉 in the “generically” perturbed
model (6.6). The initial state |ψ0〉 is a product state with physical spins σα ran-
domly pointing on the Bloch sphere and uncorrelated from site to site. As discussed
in the text, the response looks “glassy” with several incommensurate Fourier peaks
in the addition to the peak at π/T , although we expect these to decay away in the
L→∞, T →∞ limit. Data is shown for a single disorder realization in a system of
length L = 10.

would measure the temporal response at π/T . We also note that a recent experi-

ment demonstrated signatures of MBL in two dimensions [75] and, more generally,

we expect our considerations to apply in all dimensions where MBL exists [69].

6.3.3 Comments

In the above discussion we have considered two settings, that of Floquet eigenstates

and of late time states stemming from quenches. It is useful to contrast our find-

ings with their analogs for general MBL phases (Floquet or undriven), and for ETH

obeying phases (focussing on the undriven case, as the Floquet version has trivial

infinite temperature correlations). We find that unequal time correlations in eigen-
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states generically break TTI in all MBL phases, which thus generically look glassy.

By contrast similar correlations in ETH systems do not generically break TTI. In the

πSG we find that eigenstate correlations specifically designed to pick out the order

parameter dynamics are “antiferromagnetic” in the time domain and thus break TTI

while they are “ferromagnetic” for the 0SG and thus do not. Turning now to the late

time states coming from quenches, in MBL phases these are initial state dependent

while in ETH phases these are not. Hence if we look for TTI breaking via these late

time states we do not observer it in all ETH phases as well as MBL phases except the

πSG (and its relatives which we discuss in the next section). We remind the reader

though that in the πSG we need to quench from states that exhibit a macroscopic

expectation value for the order parameter. All in all we conclude that the πSG ex-

hibits a distinct and novel pattern of spatiotemporal order that is new to quantum

systems.

6.4 Generalizations

Here we list a number of generalizations of the πSG phase. Ref. [316] presented a

family of models with an explicit global symmetry group G which exhibit eigenstate

long-range order, protected spectral pairing and temporal crystallinity. First we note

that, much like the πSG, many of these models are absolutely stable to local pertur-

bations, even those that break the global symmetry G. We then explain why bosonic

SPT Floquet drives [317, 100, 253, 272] are not stable to the inclusion of symmetry

breaking perturbations, although in the presence of the protecting symmetry they

exhibit time crystallinity at their edges.
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6.4.1 Zn and non-abelian models:

Consider first models with global Zn symmetry [316, 265]. There are n possible phases

with completely spontaneously broken symmetry [316], labelled by k = 0, 1, . . . n− 1.

The eigenvectors of the corresponding unitary are the Zn equivalents of cat states

i.e., macroscopic superpositions of n spin configurations. In cases with k 6= 0, and

in the presence of Zn symmetry, the spectrum consists of multiplets of n cat states

appearing in n/g distinct groups each with degeneracy g ≡ gcd (n, k). The n/g

distinct groups are split by quasienergy multiples of 2πg/nT . As for the πSG, some of

these statements survive even when Zn symmetry is explicitly broken. In particular,

while the g fold degeneracy for each group of cat states can readily be broken, it

remains the case that each eigenstate is paired in a multiplet of n/g related cat

states, separated by quasienergy 2πg/nT . A similar statement holds for the non-

abelian models in Ref. [316]. These more general drives have an explicit unitary

non-abelian symmetry G, and are classified by an element of the center of the group

z ∈ Z(G). Let q denote the order of z. The spectrum consists of q groups of G/q

degenerate cat-like states, and the q groups are separated by quasi-energies which are

multiples of 2π/qT . The |G|/q degeneracy at each quasienergy can once again be

lifted using symmetry breaking perturbations, but each eigenstate is still paired with

q cat state partners, split by quasienergy multiples of 2π/qT .

6.4.2 Stability of SPTs and boundary time crystallinity

While the πSG phase is absolutely stable, similar Floquet generalizations of bosonic

SPT phases [316] are not. Before showing this, let us first note that some Floquet

SPTs spontaneously break TTI at their boundaries. This boundary TTI breaking

is not tied to bulk LRO and the phases are correspondingly unstable to symmetry

breaking perturbations. We illustrate this with the simple example of an Ising Floquet

SPT, the so-called 0πPM [169, 317]. In fact, as shown in the previous chapter,
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Figure 6.5: (left) Phase diagram for the MBL Ising symmetric drives presented in
Refs. [169, 316] showing the 0SG and πSG phases which are long-range ordered and
spontaneously break Ising symmetry, as well as the 0πPM and trivial paramagnetic
phases which have no LRO. The 0πPM is an SPT with non-trivial edge modes and can
spontaneously break time translation symmetry on its edges. (right): On perturbing
with generic Ising symmetry breaking fields hgen, only the πSG is absolutely stable
and continues into a phase with LRO and an emergent symmetry. The other three
phases can be continuously connected to the trivial MBL paramagnet in the presence
of hgen.

the 0πPM and πSG are neighbors on a common Floquet phase diagram [169, 317,

316] Fig. 6.5(left) which also contains the 0SG discussed earlier and a trivial MBL

paramagnet. A simple Floquet unitary for 0πPM on a system with boundary is [317]

Uf = σz1σ
z
N exp[−i

N−1∑

r=2

hrσ
x
r ], (6.9)

where the fields hr are randomly distributed. This model has trivial bulk para-

magnetic eigenstate order, but it also has non-trivial Ising odd “pumped charges”

σz1/L, using the parlance of Ref. [317]. As a consequence, the eigenspectrum ex-

hibits “spectral quadrupling”. Labeling the simultaneous eigenvalues of Uf , P by

(u, p = ±1), it can be shown that states always appear in multiplets of the form

(u, 1), (u,−1), (−u, 1), (−u,−1) i.e., there are two groups of degenerate states split
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by exactly π/T quasienergy—hence the name 0πPM. The π/T quasienergy splitting

in πSG was associated with the breaking of TTI, so it is natural to also expect TTI

breaking for the 0πPM. Indeed, for the special model Eq. (6.9), the σx edge operators

have stroboscopic equations of motion σx1,N(nT ) = (−1)nσx1,N(0), with period 2T . At

generic points in the 0πPM phase obtained by perturbing (6.9) with Ising symmetric

perturbations, dressed versions of these edge Pauli operators (and generic edge op-

erators with non-zero projections on the dressed Pauli edge operators) will exhibit

period 2T oscillations persistent for exponentially long time scales in system size (in

the same spirit as Ref. [24]). Indeed, using Ising duality [169], statements about the

dynamics of Ising even edge operators in the 0πPM paramagnet directly translate

into statements about local bulk operator dynamics in the (Ising symmetric) πSG in

Sec. 6.3. We emphasize, however, that for 0πPM generic local bulk operators will not

show period doubling in the limit L→∞.

Despite the non-trivial dynamics in the 0πPM, the spectral pairing properties of

this phase (and the more general bosonic Floquet SPT phases discussed in Ref. [317])

are unstable to the inclusion of small, generic symmetry breaking perturbations at

the boundary. To see how this works in more generality, note that Floquet MBL

unitaries can be re-expressed in a certain canonical form [317]

Uf0 = vLvRe
−if , (6.10)

where f is a local MBL Hamiltonian functional of the l-bits in the bulk, and vL,R are

unitaries localized at the left/right edges of the system respectively which commute

with the bulk l-bits. Note that the model Eq. (6.9) is a special realization of this

more general canonical form. The SPT order of Uf0 is captured by two pieces of

data: (i) The bulk SPT order, which is determined by the classification of f as an

undriven Hamiltonian, and (ii) the “pumped charge”, characterized by the commuta-
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tion relations between the vL,R and the global symmetry generators [317]. Note that

Eq. (6.10) can readily be detuned – whilst maintaining locality and unitarity – to a

form with trivial pumped charge, e−if , through an interpolating family of unitaries

Ufλ = e−iλ log vRe−iλ log vLUf0 with λ being tuned from 0 to 1. Note further that if vL,R

have non-trivial commutation relations with the global symmetry, this interpolating

family of unitaries breaks the global symmetry. It may still occur that f , an MBL

Hamiltonian, has a non-trivial SPT classification and therefore e−if has spectral pair-

ing and edge states. However, this SPT order is readily destroyed by perturbing f

non-symmetrically as one would perturb an undriven SPT so as to gap out its edge

states. This instability of the boundary-TTI breaking SPT phases reiterates our cen-

tral message that the absolute stability of a TTI breaking phase is intrinsically tied

to the coexistence of bulk spatial LRO.

The instability of 0πPM SPT combined with our prior statements on the insta-

bility of pairing in the 0SG leads to the picture depicted in Fig. 6.5(right)—in the

presence of generic Ising symmetry breaking perturbations, the four Ising symmet-

ric MBL-Floquet phases are reduced to two: the absolutely stable continuation of

the πSG, and a trivial PM. The 0SG and the 0πPM can be continuously connected

to the trivial PM without going through a phase transition in the presence of Ising

symmetry breaking terms.

We end this section by briefly commenting on the stability of fermionic SPTs.

Interacting SPTs protected by fermion parity are more robust. Let us focus on class

D [161, 169, 317] for concreteness. While it is true that edge modes are unstable

to fermion parity breaking perturbations, fermion parity is never broken for phys-

ical/local Hamiltonians H(t) – hence, in the detuning argument above, Ufλ is not

a truly local unitary for intermediate values of λ when vL,R are fermion parity odd

(we say the pumped charge is fermion parity odd [317]). However, as with all of the
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examples discussed here, the Floquet edge modes can be removed by breaking time

translation symmetry.

6.5 Concluding remarks

We have shown the existence of a family of phases of Floquet systems which are

absolutely stable—a generic interior point in such a phase is stable to all weak local

perturbations of its governing unitary. These phases are characterized by emergent,

Hamiltonian dependent, abelian global symmetries and spatiotemporal long range

order based on these. Submanifolds of these phases exhibit Hamiltonian independent

symmetries which can be unitary or anti-unitary. At generic points in these phases,

late time states evolved from randomly picked short ranged entangled states exhibit

long range order in space and sharp oscillations of the emergent order parameter

which can be used to identify the phases.

These Floquet phases join two previously established paradigms for such abso-

lute stability—those of topological order and that of MBL for time independent

Hamiltonians—and a comparison between these three is in order. Topological or-

der, exemplified by the Z2 order of the toric code and its weak local perturbations,

is characterized by the absence of symmetry breaking and the presence of emergent

gauge fields. Such phases are in a different language quantum liquids with long range

(ground state) entanglement [72] which features account intuitively for their absolute

stability.

MBL is characterized by a complete set of emergent, Hamiltonian dependent,

local integrals of the motion (l-bits) and in its minimal form involves eigenstates that

exhibit only short ranged entanglement. Its absolute stability can be attributed to

the localization being unrelated to any spatial ordering—it is primarily a dynamical
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phenomenon. By contrast, broken symmetries are not absolutely stable—symmetry

induced degeneracies are lifted when symmetries are broken.

It is not hard to believe that one can mix topological order and MBL and still

end up with an absolutely stable phase and this was discussed as an example of

eigenstate order in Ref. [149]. By contrast it is also natural to conclude that MBL

and symmetry breaking to not lead to absolute stability and this is also trivially

the case. What is therefore striking is that a third ingredient, Floquet periodicity,

allows broken symmetries and MBL to combine to yield absolutely stable phases.

The resulting phases also exhibit long range entanglement in the form of the cat

eigenstates and thus are stabilized by a relative of the mechanism which operates in

the case of topological order.

Finally we note that the absolute stability of symmetry broken phases in this

chapter can be put on a similar footing to the well known absolute stability of topo-

logical phases [325]. Recent work [163, 116] characterizes pure abelian gauge theories

as spontaneously breaking 1-form global symmetries in their deconfined phases. In

the presence of matter, the generators for these higher form symmetries are emergent

and thus Hamiltonian dependent. For example, in the perturbed 2D toric code, the 1-

form symmetries are generated by dressed line operators [136]. More generally, a large

class of well known and undriven absolutely stable topologically ordered phases are

characterized by spontaneously broken emergent 1-form global symmetries, while the

Floquet drives in this work are characterized by emergent global (0-form) symmetries.

In a related note, one can consider Floquet unitaries constructed from topologically

ordered Hamiltonians, such as the toric code, which toggle states between different

topological sectors. Such drives exhibit spatial topological order, do not break any

global symmetries, but do break TTI because the Floquet unitary described does

not commute with operators which measure the topological sector. Just as the cat

states are split by π/T quasi-energy in the πSG, different topological sectors are split
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by π/T in this topological example. It is somewhat a matter of taste whether these

should be identified as Floquet time crystals.

6.A τ zr,λ either commutes or anti-commutes with

Ufλ

To prove this assertion, we will use only the locality of the Vλ, Ufλ. First note that we

can express a product of any two τ zλ operators as a product of l-bits τ zr,λτ
z
s,λ =

∏s−1
r Dλ

r .

This compound operator commutes with with Uf,λ because the Dλ
r do , i.e.,

Uf,λτ
z
r,λτ

z
s,λU

†
f,λ = τ zr,λτ

z
s,λ (6.11)

However note that the unitaries defined as

θr ≡ τ zr,λUf,λτ
z
r,λU

†
f,λ (6.12)

θs ≡ τ zs,λUf,λτ
z
s,λU

†
f,λ (6.13)

are local to r, s respectively. This follows from two observations. First τ zr,λ is local

to r because Vλ is assumed low depth. Second, Uf,λτ
z
r,λU

†
f,λ is local to r because τ zr,λ

is, and Uf,λ is low depth (being the finite time ordered exponent of a bounded local

Hamiltonian). Plugging Eq. (6.12) and Eq. (6.13) into Eq. (6.11) gives

Uf,λτ
z
r,λτ

z
s,λU

†
f,λ = τ zr,λθrθ

−1
s τ zs,λ = τ zr,λτ

z
s,λ (6.14)

implying that

θrλ = θsλ (6.15)

154



despite the fact that θrλ, θsλ are exponentially localized to potentially distant sites r, s

– in particular we could say choose |r− s| = L/2 to be of order the system size. The

implication is then that, up to exponentially small corrections in system size, θr,sλ are

pure phases. The corrections take the form Ce−L/ξ, where C, ξ do not depend on the

system size, and only depends on the details of Vλ, Uf,λ (such as their depth, which

is assumed to be finite). The fact (τ zr,λ)
2 = 1 and θrλ approximately a pure phase

implies θ2
rλ = 1 + ε where ε is a correction of the form ce−L/ξ and c = O(1). This

shows that

θrλ = ±1 . (6.16)

to the same degree of a approximation. Supposing we know that θr0 = −1 exactly

– as is the case for the fixed point πSG model Eq. (6.1). If Vλ, Ufλ is a continuous

family of unitaries it follows by continuity that θrλ = −1 in the large system limit,

for all applicable λ.

6.B Symmetries and the Vλ unitaries

Here we argue that diagonalizing unitaries Vλ for families of unitaries Ufλ respecting

a fixed symmetry (e.g., Ising parity or time reversal) and exhibiting absolutely stable

long ranged order, can themselves be chosen to commute with the fixed symmetry.

For concreteness, focus on a system with an anti-unitary symmetry T with T 2 = 1

– the unitary symmetry case goes through similarly. Thus we consider a family of

unitaries Ufλ obeying T UfλT Ufλ = 1, with Uf0 given by Eq. (6.1). Note first that

the spectrum of Uf0 generically has no degeneracies. Assuming the same is true of

Ufλ for now, consider the action of T on eigenstates. As T UfλT Ufλ = 1, it follows

that UfλT | {d} , p〉λ = ud,p,λT | {d} , p〉λ. Hence T preserves eigenstates of Ufλ. As
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the eigenstates are non-degenerate it follows that

T | {d} , p〉λ = eiθd,p | {d} , p〉λ (6.17)

for some state dependent phase eiθd,p . Eq. (6.17) immediately implies dλ,r = T dλ,rT

and P λ = T P λT which we can rewrite as

VλdrV−1
λ = Vλ,T drV−1

λ,T

VλPV−1
λ = Vλ,T PV−1

λ,T

where Vλ,T ≡ T VλT −1, and dr, P are the undressed domain wall and parity operators.

The upshot is that the unitary

Qλ ≡ V−1
λ Vλ,T (6.18)

commutes with the commuting set of operators {dr}, P . As these operators uniquely

label a complete basis, Qλ is completely diagonal in {dr}, P . In other words it can

be expressed as

Qλ = e−iqλ(dr,P ) (6.19)

for some real functional qλ of the labels. In fact, using locality arguments similar to

those in Sec. 6.A (and in the appendix to Ref. [317]) we find

Qλ = P ae−isλ({d}) (6.20)

up to exponentially small corrections in system size, where a = 0, 1, and s is a local

functional of domain walls. We can use continuity of Vλ again to argue moreover

that a = 0. Therefore we have shown that Vλ,T = VλQλ. We now use this result

to construct a new change of basis matrix which is invariant under time reversal.
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We define a new change of basis unitary Wλ ≡ Vλe−isλ({d})/2. Wλ indeed achieves

the desired local change of basis, but is also time reversal invariant. We henceforth

redefine | {d} , p〉λ ≡ Wλ | {d} , p〉. The operators dλ,r, P
λ are unaffected by this

change in convention.
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Part IV

Tensor-Network Approach to

Many-Body Localization
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Chapter 7

Efficient Variational

Diagonalization of Many-Body

Localized Hamiltonians

7.1 Introduction

In this chapter and the next, we take a quantum information theoretic view of many-

body localization. In particular, we discuss two complementary ways in which the

low entanglement in MBL eigenstates can be exploited for efficiently finding and

representing these states.

In the Anderson problem, the many-body Fock/Slater states constructed from the

single particle states have two important features. First, they exhibit an economical

description—L single particle states for a system of size L are sufficient to construct

all 2L many-body states. Second, all many-body states exhibit an area law [290,

135, 311, 98] for the entanglement entropy stemming from the localized nature of the

constituent single particle states.
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As discussed in Section 1.5, it was noted early on [234, 29] that many-body eigen-

states in the MBL regime have only local entanglement and thus also obey the area

law. Further, the phenomenology of MBL systems was traced to an emergent set

of L commuting local integrals of motion (the “l-bits”) which exist in fMBL sys-

tems [148, 283, 153] as discussed in Section 1.4.

These two developments invite a natural closure in which the full set of 2L many-

body eigenstates are explicitly constructed from O(L) local ingredients, at least ap-

proximately. The well known connection of the area law to matrix-product state

(MPS) / tensor network representations of many-body states [124, 281, 115] suggests

that the latter are the correct language in which to carry out this program. The pro-

gram has two components: showing that such a compact representation exists and

providing a recipe for finding it without recourse to a knowledge of the exact eigen-

states, potentially rendering a much larger range of system sizes computationally

tractable.

In an important development, two groups have addressed the existence problem.

Building on earlier work [239], Pekker and Clark (PC) [238] have shown that the

unitary operators that exactly diagonalize fMBL systems can be represented by ma-

trix products operators (MPOs) [309, 281] of bond dimensions that appear to grow

very slowly with system size1 —in contrast to delocalized systems where the dimen-

sion grows exponentially with system size. The slow growth that they do observe is

presumably due to rare many-body resonances/Griffiths effects; in its absence, the

MPOs would yield the sought after O(L) local description of the full spectrum. Par-

allel work [61] argued for the congruent result that the presence of local integrals

of motion implies the existence of a single “spectral tensor network” that efficiently

represents the entire spectrum of energy eigenstates in the fMBL phase. These devel-

1The PC prescription matches eigenstates obtained via exact diagonalization (ED) to the “best”
(most local) diagonalizing unitary operator in a time that scales as O(2L) instead of the prohibitive
worst case time which scales as O(2L!). Although it is not yet clear how to exhaust all gauge degrees
of freedom to find the optimal representation and the truncation error yields a loss of unitarity.
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(a)

(b)

Figure 7.1: (a) Schematic representation of an MPS representation of a state |ψ〉. (b)
Variational ansatz for the unitary U that encodes all eigenstates of a fully many-body

localized Hamiltonian. The local unitaries u
[m]
[n] are parametrized as u

[m]
[n] = eiS

[m]
[n] with

real symmetric matrices S
[m]
[n] , n = 1 . . . L− 1 and m = 1 . . . Nlayer.

opments however have not led to an algorithm for finding a compact representation

directly without having to diagonalize the full system at a cost that scales exponen-

tially with system size.

In this chapter we propose an approach to directly and efficiently find an ap-

proximate compact representation of the diagonalizing unitary by using a variational

unitary MPO (VUMPO) ansatz. To this end, we construct a cost function whose

minimum yields the exact unitary and, hence, the entire set of 2L exact eigenstates

of a system of L qubits. We show that for a fixed bond dimension of the approximate

Ũ , optimizing the cost-function in d = 1 can be performed at a computational cost
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that is only linear in system size which, in theory, allows us to access system sizes far

beyond those possible by ED.

7.2 MPS and MPO notation

An MPS representation of a quantum state living in a basis spanned by L qubits

takes the form

|ψ〉 =
∑

{σ}

∑

0≤γi<D
B[1]σ1
γ1

B[2]σ2
γ1γ2
· · ·B[L]σL

γL−1
|σ1 · · ·σL〉, (7.1)

whereas an MPO representation of an operator in the same Hilbert space takes the

form

O =
∑

0≤γi<D
{σ},{τ}

A[1]σ1,τ1
γ1

· · ·A[L]σL,τL
γL−1

|σ1 · · · σL〉〈τ1 · · · τL|, (7.2)

where σi, τi ∈ {↑, ↓} and we use a compact notation in which σ = σ1, σ2, · · · , σL
denotes the 2L states (analogous for τ ). Figure 7.1 shows a pictorial representation

of these objects. The MPSs/MPOs are represented by rank three/four tensors B[i]/A[i]

on each site i (except the first and last tensors which are rank two/three); the external

leg(s) σi, τi refer to the physical spin indices whereas the γi are the internal virtual

indices that are contracted. Each B[i]σi/A[i]σiτi is a D2 dimensional matrix where D

is the bond-dimension of the matrix. Note that we do not put any constraints on the

total magnetization and consider all 2L states. Using standard methods [277] for the

conservation of quantum numbers in tensor networks, a projection onto sectors with

fixed magnetization is easily possible.
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Figure 7.2: Comparison of the exact energy levels (blue lines) with the ones found
by the variational optimization (red lines) for W = 8 and L = 8 as a function of
the number of layers of two-site gates. The right panel shows a zoom of some energy
levels at the bottom and in the center of the spectrum.

7.3 Method

We now introduce the VUMPO ansatz and an algorithm to numerially optimize it.

Let us assume that H is an fMBL Hamiltonian defined on an L-site chain of spin

1/2 operators. It is our goal to find a unitary MPO approximation Ũ of the unitary

that diagonalizes the Hamiltonian such that the 2L eigenstates of H are given by

|ψτ 〉 ≈
∑
{σ} Ũ

σ
τ |σ〉. In the parlance of Refs. [148], the physical basis operators σi

are the “p-bits” wheras the τi are the local “l-bits”. Each eigenstate is labeled by

the occupation of l-bits τ = {↑↑↓ · · · ↑}, and is obtained by acting with the MPO

representation of U on the product state |τ 〉. In this language of MPOs, it is clear

how the 2L MB eigenstates are constructed from the L matrices A[i]τi ; further, if the

bond-dimension of the matrices scales as O(1) with the system size, the eigenstates

are only locally entangled in the p-bit basis and a description of the full eigenbasis in

terms of O(L) local ingredients is possible.
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The VUMPO is found by numerically minimizing the cost functional

f({A[n]}) =
∑

{τ}
〈ψτ |H2|ψτ 〉 − 〈ψτ |H|ψτ 〉2 ≥ 0, (7.3)

with 〈ψτ |ψτ ′〉 = δτ ,τ ′ . The cost function is the variance of the energy summed over

all approximate MB eigenstates. Naively, one might expect the time to evaluate the

cost function Eq. (7.6) to scale exponentially with the system size L as the sum is

performed over 2L MB eigenstates. However, remarkably, the computation can be

performed in a time scaling linearly with system size [309]! For example, the term
∑
{τ}〈ψτ |H|ψτ 〉2 can be evaluated by “doubling” the degrees of freedom and defining

a state |φ〉 =
∑
{τ} |ψτ 〉|ψτ 〉|τ 〉. With this notation we find that

∑
{τ}〈ψτ |H|ψτ 〉2 =

〈φ|H ⊗ H ⊗ 1|φ〉. This expectation value can be efficiently evaluated using the

MPO formalism and the most expensive part of the evaluation scales, for a given

Hamiltonian in MPO form, as ∝ LD5 (see 7.A for details). One can now iteratively

minimize f by locally optimizing each A[n] using, for example, the conjugate gradient

algorithm.

In general, an MPO compression of a unitary operator will not strictly respect

unitarity. To get a valid positive-definite cost function in these cases, we need to

add a Lagrange multiplier to enforce unitarity. In practice, this leads to either very

unstable, or very computationally expensive optimizations.

The key to a stable optimization protocol turns on restricting our algorithm to

the manifold of strictly unitary MPOs of a given bond-dimension. To achieve this,

we parameterize the VUMPO as a finite depth circuit of two-site unitaries as shown

in Fig. 7.1(b). This Ansatz incorporates two important properties: (i) The VUMPO

is unitary for all parameters and (ii) it is local for any finite Nlayer. We use a single

unitary to obtain all eigenstates, but readers will note the obvious connection to the

quantum computational notion [30]. Finally, we note that we can rewrite the unitary
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network as a strictly unitary MPO with bond dimension D ≤ 22Nlayer , where Nlayer is

the number of layers of two-site gates2. However, this step is not necessary and we

can evaluate the cost function by directly contracting the unitaries circuit which, in

fact, gives a considerable speed up for the systems we consider here3.

The algorithm to find the VUMPO is then similar in spirit to the density matrix

renormalization group (DMRG) method [327], except instead of finding the lowest

energy state, we minimize the cost function Eq. (7.6) by sweeping through the local

unitaries:

(i) Initialize the local unitaries u
[m]
[n] = eiS

[m]
[n] by choosing random symmetric matrices

S
[m]
[n] , where n = 1, 2, · · ·L and m = 1, 2, · · ·Nlayer.

(ii) Locally minimize the cost function by varying the elements of a given S
[m]
[n] by

using, e.g., a conjugate gradient method.

(iii) Update the network and repeat the previous step for the next unitary.

(iv) Continue the sweeping procedure by minimizing the local unitaries successively

until convergence. A full sweep across all the unitaries has to scale as O(L).

We find that the number of steps needed for convergence appears to be approxi-

mately independent of L. This gives an overall scaling of the algorithm as O(LD5) ∼

O(LeNlayer). Once the algorithm has converged, the VUMPO can be used to obtain all

the eigenstates of the system, and to efficiently compute observables using the MPS

formalism.

2The maximum bond dimension follows from the fact that the maximum entanglement for a
bipartition of an approximate eigenstate is bounded by the number of two layer gates extending
across the entanglement cut.

3Using the locality of the unitary circuit, the cost function can be evaluated locally and thus it
is, in principle, possible to generalize the approach to higher dimensions.
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7.4 Results

We consider the Heisenberg model with random z-directed magnetic fields (1.5):

H = J
∑

n

~Sn · ~Sn+1 −
∑

n

hnS
z
n. (7.4)

where ~Sn are spin 1/2 operators, the fields hn are drawn randomly from the interval

[−W,W ], J = 1 and the MBL transition is at approximately W ' 3.5.

7.4.1 Energy Spectrum

We begin by comparing the energies obtained using the VUMPO approach with the

exact spectrum (full diagonalization). The converged results for W = 8 and L = 8

with different numbers of layers Nlayer are shown in Fig. 7.2. For Nlayer = 0, the

VUMPO is the identity (i.e, no variational parameters) and the resulting approximate

eigenstates are simple product states of the form |σ1〉|σ2〉 . . . |σL〉 with σn =↑, ↓. The

overall bandwidth in this case agrees relatively well with the exact results because

W is the dominant energy scale in the problem. However, as shown in the zoomed

in plots, the deviation of individual energy levels is relatively large compared to

the mean-level spacing because the product states completely neglect local quantum

fluctuations which are present in the exact eigenstates. Increasing Nlayer strongly

improves the agreement between the exact and approximate energy levels as the

network successively adds entanglement over longer distances.

Next we turn to the mean variance of the energy, which is simply the disorder

averaged cost function Eq. (7.6) divided by 2L. Figure 7.5 shows this quantity disorder

averaged over 50 realizations as a function of system size for different fixed Nlayer.

We observe a linear increase of the mean variance with system size, and find that

the slope decreases as Nlayer is increased. This tells us that for a given Nlayer our

approximate eigenstates involve a constant error per unit length which decreases as
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Figure 7.3: Mean variance of the energy as a function of system size for different
number of layers for W = 8. Inset: Mean variance as function of W for a fixed L = 8.

Nlayer is increased. When reducing the disorder strength W below the MBL transition,

all excited eigenstates have a volume law and the MPO approximation, which is based

on the locality of the eigenstates, breaks down (see inset of Fig. 3)

7.4.2 Spectral Functions

To examine the quality of our approximated eigenstates (with a view to capturing local

properties), we use the VUMPO ansatz to obtain the infinite-temperature spectral

function

A(ω) =
1

2L

∑

{τ1},{τ2}
|〈τ1|SzL/2|τ2〉|2δ(ω − Eτ1 + Eτ2). (7.5)

Spectral functions can again be efficiently evaluated using matrix-product techniques

and it is also possible to efficiently target different energy densities by considering

finite-temperature spectral functions [309, 343]. Figure 7.4 compares A(ω) obtained

using the VUMPO approach for L = 10 with different disorder strengths and Nlayer =

0, 1, 2 with the exact results. The large peak at ω = 0 reflects the strongly localized
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Figure 7.4: Comparison of the exact spectral function A(ω) (black dots) with those
obtained using different approximations (see text for details) for L = 10 and W = 8.
Spectra are shown using a Lorentzian broadening with an imaginary part of ε = 0.1.
Inset: Same data with W = 16.

nature of the eigenstates, i.e., the eigenstates of H are close to being eigenstates of

local Sz operators. It is interesting to compare the peaks at ω > 0 which are due to

local fluctuations in the eigenstates. Clearly, Nlayer = 0 does not show any features

because the VUMPO is diagonal in Sz. When additional layers of unitaries are taken

into account, the peak structure of A(ω) is well approximated. The agreement in

both the frequencies and the intensities rapidly improve with increasing Nlayer, and

the results match almost perfectly for W = 16. Note that despite the extremely strong

disorder, simply approximating the eigenstates as product states fails to capture any

of the interesting features.

7.4.3 Comments on accuracy

We have presented some evidence above for the accuracy of the VUMPO obtained by

our method. It remains to establish more precise theorems on what values of Nlayer it

would take to calculate various physical quantities to a specified accuracy. In a step

in that direction, PC have looked at the bond dimension needed to ensure that the
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smallest singular value in the Schmidt decomposition across any cut in U is less than

some fixed ε. This ensures that the discarded weight on truncating the unitary to

bond dimension D is small. They found a slow growth of the Dmin needed to achieve

a desired ε with L. In the absence of rare resonances or Griffiths regions, Dmin would

presumably saturate at a fixed O(1) value for a fixed error density independent of

system size implying that we would need only O(1) layers to represent the entire

spectrum to the desired accuracy. As it is, with the resonances/Griffiths regions

present, Dmin is expected to grow as poly(L) whence Nlayer will grow logarithmically.

Let us return to our spectral function computation above but this time we first

obtain the exact 2L× 2L dimensional unitary that diagonalizes H and then compress

it to an MPO of a given bond dimension D. We do this by iteratively maximizing the

“overlap” of an MPO with a fixed bond dimension with the “most local” and “most

positive” diagonalizing unitary obtained by following the PC prescription [238]. As

seen in Fig. 7.4 (labeled ED MPO), when compressing UPC to D = 16 (which can

exactly represent our Nlayer = 2 results), the spectral functions A(ω) are reproduced

in a comparable accuracy as in our VUMPO approach.

7.5 Summary and discussion

We have introduced an algorithm to find a variational unitary MPO that approxi-

mately diagonalizes fully many-body localized Hamiltonians. Our method finds an

approximation to all 2L eigenstates of the Hamiltonian in a time that remarkably

scales only linearly with system size! We have benchmarked the method by compar-

ing the results to exact diagonalization for small systems and studied the scaling of

the mean variance as a function of system size. For a Heisenberg model in a strongly

disordered field we find good qualitative and quantitative agreement of the obtained

energies and spectral functions for a fixed Nlayer and, importantly, rapid improvement
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with increasing Nlayer. With this work we have provided a proof of principle that we

can efficiently (i.e, polynomially in system size) perform a variational calculation that

provides a complete diagonalization of fMBL systems. As the VUMPO encodes the

entire set of eigenstates for fMBL Hamiltonians, many relevant observables such as

spectral functions and conductivities can be evaluated efficiently at zero and finite

temperatures.

A few comments are in order. First, it is intuitively clear that our VUMPOs should

capture most of the structure of the eigenfunctions, or equivalently l-bits, out to a fixed

“lightcone” radius, set by Nlayer. In terms of the dynamics this should allow accurate

inclusion of local excitations on the same length scale and via the recently discussed

connection between the energy and size of many-body resonances [121] down to a

related frequency scale. Indeed, this feature can be effectively used to study different

“slices” of the response function as more layers are added. For example, Figure 7.4

shows that the exact solution in the case of W = 8 shows certain features at lower

frequencies which are absent in the variational solution. Second, for a given VUMPO,

one can construct [294] a family of parent Hamiltonians H = U †HdiagU with the same

eigenstates by picking different energy distributions for diagonal Hamiltonians in the

“l-bit” basis, Hdiag.

Going forward we can visualize many possible avenues for improving our method.

Initially it may be possible to choose the same number of two-qubit gates in a different

architecture [278, 195] to get a softer cutoff on the entanglement. More ambitiously

we could allow for some two-qubit gates with a longer range and optimize over both

the architecture of the unitary network, and the particular gates used. It is also

possible to engineer the cost function to target a desired energy density via a pseudo-

thermal weighting which could improve such focused results for fixed resource use and

also allow MBL systems exhibiting mobilty edges to be treated. Of course the most

desired improvement would be to run at Nlayer > 2 which is currently stymied by the
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exponential scaling of the cost function. As the diagrams to be contracted now start

resembling 2D tensor-network graphs, algorithms from this field could presumably be

used to improve the scaling of contraction times.

7.A Efficient evaluation of the cost functional

In this section we discuss some details of how to efficiently evaluate the cost function

f({A[n]}) =
∑

{τ}
〈ψτ |H2|ψτ 〉 − 〈ψτ |H|ψτ 〉2 ≥ 0, (7.6)

using the MPO formalism. Due to the unitarity of U , the first term,
∑

τ 〈ψτ |H2|ψτ 〉, is

simply TrH2. If H is represented by a χ dimensional MPO, the trace can by evaluated

with a cost scaling as ∼ Ld3χ2 as shown in Fig. 7.5 (top); d is the dimension of the

local Hilbert space on each site and is equal to 2 for the spin-1/2 operators considered

in this work. The second term,
∑

τ 〈ψτ |H|ψτ 〉2, is somewhat more challenging. We

first “double” the system by taking two identical copies and form a tensorproduct

with a state |τ 〉 (which is simply a product state of the “l-bits”),

|φ〉 =
∑

τ

|ψτ 〉|ψτ 〉|τ 〉. (7.7)

Using the state |φ〉 and that 〈τ |τ ′〉 = δτ ,τ ′ , we find that

∑

τ

〈ψτ |H|ψτ 〉2 = 〈φ|H ⊗H ⊗ 1|φ〉. (7.8)

This expectation value can again be evaluated efficiently using the MPO formalism

as demonstrated in Fig. 7.5 (bottom). Given that D > χ > d, the most expensive

part of the contraction scales as ∼ LD5χ2d4.
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Figure 7.5: Diagrammatic representation of the tensor contractions required to eval-
uate the terms in the cost function Eq. (7.6). The tensors A[n] represent the unitary
and M the Hamiltonian. The back dots are delta functions δa,b,c.
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Chapter 8

Obtaining Highly-Excited

Eigenstates of MBL Hamiltonians

by the Density Matrix

Renormalization Group

8.1 Introduction

We have, by now, emphasized multiple times the centrality of many-body eigenstates

in the MBL phase for understanding a regime where quantum statistical mechanics

simply does not apply. Since typical MBL eigenstates have only local, area law, en-

tanglement [234, 29]—although deviations from the area law due to rare many-body

resonances and Griffiths effects are a complication to bear in mind—the well known

connection between area laws and matrix-product state (MPS)/tensor-network repre-

sentations of many-body states [124, 281, 115, 308] implies that they can be efficiently

described, even at large L. Indeed, the previous chapter developed an efficient varia-

tional algorithm [249] to actually find an approximate, compact representation of the
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diagonalizing unitary for fully MBL systems—and hence obtain all the eigenstates.

This algorithm captures the gross features of the spectrum very well, but does not

target individual eigenstates to high accuracy. Here we describe an alternative, com-

plementary, procedure that can be used obtain specific excited MBL eigenstates to

high accuracy for large system sizes.

Our approach is directly inspired by the density matrix renormalization group

(DMRG) [277, 327] which has been used to great effect to obtain modestly entan-

gled ground states in low-dimensional systems. In the MPS formalism, the DMRG

algorithm variationally optimizes the MPS to minimize the ground state energy of a

given Hamiltonian H. Naively, we could modify this algorithm for MBL systems by

targeting the eigenstate with energy closest to a specified excitation energy. However

this is, in its simplest form, problematic due to the extremely small—O(e−L)—generic

many-body level spacings as we will explicitly show below.

We show that this problem can be overcome by making use of a defining charac-

teristic of MBL phases, namely the existence of the l-bits discussed in Section 1.4.

Importantly, since neighboring eigenstates with respect to the energy differ exten-

sively in their spatial properties—we must typically flip O(L) l-bits to go between

them— there is a (soft) gap to excitations with finite numbers of l-bit flips. This

leads to a natural algorithm in which we select excited eigenstates based on their

overlap with particular, localized spatial patterns instead of their proximity to par-

ticular energies. By this overlap metric, “nearby” states differ by a few [O(1)] flips of

local “l-bits. But such states are typically far separated in energy and thus the danger

of mixing in eigenstates with exponentially small energy splittings is minimized.

We start with a brief review of the ground state DMRG method before describ-

ing our modified DMRG-X procedure. We then apply the method to the random

field Heisenberg chain and evaluate our results using various metrics like energy vari-

ances and overlaps with exact eigenstates. For strong enough disorder, we obtain
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eigenstates with machine-precision variance and find a rapid convergence of vari-

ances with bond dimension. Finally, we use our eigenstates to efficiently compute

local-expectation values and demonstrate the failure of the eigenstate thermalization

hypothesis (ETH) [89, 291, 267] in the MBL phase. We note related work [334] that

also generalizes DMRG to highly excited states using a more complex energy based

targeting approach.

8.2 DMRG-X Method

The proposed method is a reformulation of the standard DMRG algorithm [327, 277]

to find highly-excited states of MBL systems. For a one-dimensional system of L

sites, a general quantum state |Ψ〉 can be written in the following MPS form:

|Ψ〉 =
∑

j1,...,jL

B[1]j1B[2]j2 . . . B[L]jL|j1, . . . , jL〉. (8.1)

Here, B[n]jn is a χn×χn+1 matrix and |jn〉 with jn = 1, . . . , d is a basis of local states

at site n (for a spin 1/2 system, d = 2). Each matrix product
∏

iB
[i]ji in Eq. (8.3)

produces a complex number which is the amplitude of |Ψ〉 on the basis state |j1 · · · jL〉.

The key insight behind the success of DMRG is that ground states of one dimensional

systems are efficiently approximated by MPS [308]. Starting from an initial random

MPS, the DMRG algorithm sweeps through the system and iteratively optimizes the

matrices B[n]jn by locally minimizing the energy with respect to a given Hamiltonian

H1. For the commonly used two-site update which simultaneously updates the ma-

trices B[n]jn and B[n+1]jn+1 , an effective Hamiltonian H is constructed by projecting

H to a mixed χnχn+2d
2 dimensional basis . Here, the local basis states |jn〉|jn+1〉

represent the two updated sites, and the eigenstates of the reduced density matrix

|χn〉L and |χn+2〉R compactly represent the environment to the left and right of the

1See 8.A for details.
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updated sites. The ground state of H is found and the matrices on sites n, n+ 1 are

updated. The procedure is then repeated for all sites until convergence is achieved.

The DMRG-X method for finding excited eigenstates proceeds similarly to the

standard DMRG algorithm in that we iteratively optimize an MPS. The key difference

is that the algorithm does not attempt convergence in the energy of H but instead

in the local spatial structure of the eigenstate. We start by initializing the algorithm

with a product state that has a finite overlap with some l-bit state, e.g., for the

random-field Heisenberg model discussed below, we choose random states in the σz

basis of the form |ψ〉0 = | ↑↓↓↑ ... ↓↑〉. We start our DMRG-X algorithm with the

following local two-site update : (i) Construct the effective Hamiltonian H. (ii) Pick

the eigenstate of H that has maximum overlap with the current MPS. (iii) Update the

tensors B[n]jn and B[n+1]jn+1 . To produce the data below, we use a full diagonalization

of H which scales as χ6 with χ being the mean bond dimension. Alternatively, it is

also possible to find a small set of k eigenstates of H near the energy of the current

MPS and then pick the eigenstate with largest overlap. This yields an algorithm that

scales approximately as χ3, but an optimal k has to be found for each case.

This DMRG-X prescription ensures that no individual update step of the MPS

matrices results in a large spatial reorganization, which is appropriate for a localized

phase. By contrast, if we pick excited eigenstates of H that are closest in energy

to some target energy, the exponentially small energy gaps mean that we could be

picking very different eigenstates (as labeled by their l-bit quantum numbers) at each

step. This will, in general, result in a slow convergence and/or a final state that is a

superposition of many nearby eigenstates.
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Figure 8.1: Comparison between eigenenergies obtained using exact diagonalization
(blue) and variational DMRG-X (red) for a system of size L = 12, disorder strength
W = 8 and bond dimension χ = 16. The successive panels which zoom into the shaded
regions of the spectrum show that all individual eigenenergies are obtained extremely
accurately. The bottom right panel shows the exact and variational amplitudes for
a particular eigenstate with Mott-resonances, showing that the method successively
captures resonant states.

8.3 Comparison with ED for small systems

We now benchmark our method against the Heisenberg model with random z-directed

magnetic fields (1.5):

H = J
∑

n

~Sn · ~Sn+1 −
∑

n

hnS
z
n. (8.2)

where J = 1, ~Sn are spin 1/2 operators and the fields hn are drawn randomly from

the interval [−W,W ]. At strong disorder, typical eigenstates look like product states

in the σz basis with small fluctuations. Equivalently, the “l-bits” τ zi look like σzi with

exponentially decaying corrections from operators away from site i. As the disorder

is lowered, the probability of many-body “Mott-type” resonances [121, 209], wherein

the eigenstates are approximately equal-weight superpositions of a few basis states,
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increases. These resonant states have energy splittings that decay exponentially with

the maximum distance involved in the resonance. At even smaller W s, the approach

to the ergodic transition is marked by a “Griffiths” region [121, 320] in which locally

ergodic/critical inclusions start to proliferate.

Figure 8.1 shows a comparison between eigenenergies obtained using exact diago-

nalization (blue) and variational DMRG-X (red) for a system of size L = 12, disorder

strength W = 8 and bond dimension χ = 16. To obtain the full spectrum, we feed the

algorithm all possible σz product states as initial states. We find that the variance

in the energy of all variationally obtained DMRG-X eigenstates is less than machine

precision (∼ 10−12), and the overlap of these states with the exact eigenstates is unity

up to machine precision.

The zoomed in energy levels show that the method successively resolves the ex-

ponentially small splittings in the spectrum extremely accurately. However, a few

exact eigenenergies have no DMRG-X partner—when two or more eigenstates of H

have maximum weight on the same input basis state, the input state converges to

one of these eigenstates leaving the other unpaired. We can avoid this duplication

by requiring every new state to be orthogonal to the prior ones, but this will not be

necessary in larger systems where our goal will never be to obtain every eigenstate.

One might worry that this is method biased towards product states and fails to

capture resonant eigenstates. The bottom-right panel of Fig. 8.1 shows a represen-

tative eigenstate with a many-body “Mott” resonance involving a few distant basis

states which is exactly captured by the variational state. We emphasize that the

algorithm only uses a product state as an initial input; after that, the algorithm con-

verges to the previously chosen eigenstate of H. As long as the bond dimension χ

is sufficiently large for the eigenstates of H to capture resonances, it is easy for the

algorithm to converge to a resonant superposition starting from one of the product

states with significant weight in the resonant eigenstate.
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Figure 8.2: (a) Disorder averaged logarithm of the energy variance σ2 plotted against
bond-dimension χ for different disorder strengths W and system sizes L. We see a
rapid decrease of the typical σ2 with χ for moderate-strong disorder, with variances
falling below machine precision (shaded grey region below 10−12) at small χ� 2L/2.
(b), (c) Variance and 〈σz12〉 plotted against DMRG time-steps for a typical run in
which χ is successively increased after each 25 steps to obtain a single eigenstate with
L = 24,W = 12 using our overlap-based DMRG-X method (red), and a more naive
energy-targeting method (blue) showing vastly better convergence for the overlap
method.

8.4 Larger systems

We now turn to an evaluation of the algorithm for system sizes inaccessible to ED

by examining typical variances in the energy, σ2 = 〈H2〉 − 〈H〉2 for approximate

eigenstates of the Hamiltonian (8.2) obtained using DMRG-X at different disorder
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strengths W and system sizes L. Figure 8.2(a) shows the disorder averaged value of

log10 σ
2 as a function of bond-dimension χ for randomly chosen excited states from

200-1000 disorder samples at different values of W and L. The grey line at 10−12

marks the approximate value of machine-precision and we average log σ2 to capture

typical behavior instead of deviations due to rare eigenstates.

At strong and moderate disorder (W = 8, 12), we see an initial rapid decrease

of σ2 with χ followed by a saturation—the saturation is expected to happen when

the bond dimension becomes large enough to capture entanglement over a correlation

length log2 χ ∼ ξ. Even at moderate disorder W = 8, the bond dimension saturates

quickly and χ ∼ 40� 2L/2 is already sufficient to capture states to machine precision

accuracy! In this regime, this method can be used to really push the boundaries

on the system sizes that we have been able to study through ED. As the transition

to the ergodic phase is approached, locally thermal Griffiths regions become more

probable and the eigenstates become more entangled. We see that the accuracy of

the method for the small bond dimensions considered starts to break down around

W = 5, though a rough extrapolation suggests that we can still make significant

improvements by using larger χ. The increase in variance with system-size at fixed

χ is to be expected since even clean ground state DMRG methods make a constant

error per unit length and yield a variance that grows with system size.

At even larger sizes or/and small W , inevitable locally thermal/ critical Griffiths

inclusions will require special handling as a subset of the l-bits now look more delo-

calized and the eigenstates have a very different structure from product states within

the inclusions. A comparison with ED (not shown) on a system with an artificially

engineered thermal inclusion shows that the variationally obtained states correctly

capture local observables away from the inclusion, but make superpositions between

eigenstates that differ primarily in the inclusion region. In principle, it is possible to

purify these states to obtain an eigenstate by using a hybrid energy-overlap method;
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an inclusion of length ` occurs with probability [121] p`W with pW < 1 and has a level

spacing ∆ ∼ 2−`. We identify the Griffiths inclusion by looking for a diminished value

of the frozen moment |〈σzi 〉| in the states obtained by DMRG-X. We then feed these

states into a hybrid algorithm which picks states at a chosen energy from the subset

of states which have large overlap with the starting state away from the inclusion.

This ensures that we’re only trying to resolve the larger level spacing ∆� 2−L, while

also maintaining the integrity of the state away from the inclusion.

Note that for a typical cut somewhere along the chain, the entanglement entropy

scales an an area law with co-efficient ξ proportional to the localization length since

the state looks thermal on length scales shorter than ξ [127]. This implies that

the typical bond dimension scales exponentially with ξ. On the other hand, the

maximum entanglement entropy across all cuts in the chain scales logarithmically

with L (a thermal region of size ` is exponentially rare in `, but has O(L) chances for

occuring somewhere in a system of size L, thereby giving ` ∼ log(L)). This implies

a polynomial scaling with L for the maximum bond-dimension χmax. Combining this

with the χ6L scaling of the cost of the DMRG-X algorithm means that the algorithm

scales exponentially in ξ and linearly in L if the maximum χ is fixed at some O(1)

number ∼ eξ. On the other hand, if the bond dimension is allowed to grow to achieve

a certain accuracy, then the cost scales polynomially in L with a power larger than 1

and dependent on W .

We end with two comments. First, for large system sizes, we can randomly sam-

ple from the spectrum and approximate the underlying density of states by randomly

choosing intial product states. Even though the DMRG-X sweep does not use energy

targeting, we can still effectively target different energy densities. Deep in the disor-

dered phase, the initial product state is exponentially close to an actual eigenstate,

and thus 〈H〉 is almost constant during a run.
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Figure 8.3: (a) 〈α|σzi |α〉 plotted against Eα = 〈α|H|α〉 for an ergodic system with
W = 1.5 and eigenstates |α〉 obtained via ED. This is an ETH obeying phase where the
observable varies smoothly with energy and the fluctuations decrease with increasing
L. (b) Same quantity evaluated with ∼ 500 variationally obtained eigenstates |α〉 of
an MBL Hamiltonian with W = 8 and L = 18, 24 showing a clear violation of ETH

.

Second, since the variationally obtained states are MPSs, few-point observables

can be computed extremely efficiently. In Fig 8.3(b) we show 〈α|σzi |α〉 plotted against

Eα = 〈α|H|α〉 for ∼ 500 variationally obtained eigenstates |α〉 of an MBL Hamilto-

nian with W = 8 and L = 18, 24. We see a clear violation of ETH since the local

observable does not vary smoothly with Eα and the fluctuations do not decrease with

L. This also lends additional support that our method is correctly capturing MBL

eigenstates since the violation of ETH would have been much weaker if the states |α〉

were superpositions of actual eigenstates. Such a test is especially useful at large Ls

where the average level spacing is smaller than machine precision and we need to rely

on methods other than the variance to diagnose the goodness of the variational states.

Figure 8.3(a) shows the analogous calculation in an ergodic system with W = 1.5 and

eigenstates obtained via ED. Here we do see a smooth variation of the observable with

Eα, and the characteristic decrease in fluctuations [34] with increasing L.
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8.5 Energy targeting

We now compare the convergence of our overlap method with the simplest energy

targeting method which picks the eigenstate of H closest to a chosen energy. Fig-

ure 8.2(b) shows a typical DMRG-X run with L = 24 and W = 12 to obtain a

single eigenstate. The bond dimension is increased every 25 steps and takes the val-

ues χ = (4, 8, 16, 24, 32). We see that the overlap method (shown in red) converges

extremely quickly each time the bond-dimension is increased and rapidly reaches ma-

chine precision. On the other hand, the energy targeting method (shown in blue) run

for the same disorder realization and a target energy equal to the energy of the state

obtained via the overlap method (upto 4 digits of precision) shows an extremely poor

convergence and very large variances. In Fig. 8.2(c) we plot the expectation value

of σz for a site in the middle of the chain evaluated using the states at each DMRG

step. As expected, the overlap method shows very little fluctuation in this quantity,

while the naive energy approach is clearly seen to be rattling between states with

extremely different local quantum numbers.

8.6 Summary and Outlook

In summary, we have developed a DMRG-X method that successfully obtains highly

excited eigenstates of MBL systems to machine precision accuracy at moderate-large

disorder in a time that scales only polynomially with L. This method explicitly takes

advantage of the local spatial structure and order characterizing MBL eigenstates,

thereby moving away from traditional energy based DMRG algorithms.

A natural next step is to use the DMRG-X method to obtain phase boundaries

between localized phases with different kinds of eigenstate order present. The na-

ture of the phase transition between different localized phases is an important open

183



B[1] B[2] B[3] B[4] B[5] B[6]

j1 j2 j3 j4 j5 j6

�[1] �[2] �[3] �[4] �[5] �[6]⇤[1] ⇤[2] ⇤[3] ⇤[4] ⇤[5]

M [5]M [4]M [3]M [2]M [1] M [6]

�[n] �[n+1]
⇤[n]

d d

dd

�

�

�

�

M [n]

| i =

| i =

H =

⇥ =

H =

=

(a)

(b)

(c)

(d)

(e)

Figure 8.4: Diagrammatic representation of (a) the state |Ψ〉 as an MPS, (b) |Ψ〉 as
a canonical MPS, (c) the Hamiltonian H as an MPO, (d) co-efficients Θ of |Ψ〉 in the
variational basis and (e) the effective Hamiltonian H in the variational basis.

question, and refining this technique to access these transitions at larger system sizes

should help settle some of these questions.

8.A Details of the DMRG-X Method

In this section, we briefly recapitulate the standard DMRG algorithm [327] imple-

mented in the language of matrix-product states (MPSs) [277], before providing more

details on the DMRG-X method. Section IV in Ref. [183] also provides a very clear

exposition of these numerical methods and some of our discussion closely follows this

reference.
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A general quantum state |Ψ〉 for a one-dimensional system of L sites can be written

in the following matrix-product state (MPS) form:

|Ψ〉 =
∑

j1,...,jL

∑

0<γn<=χn

B[1]j1
γ1

B[2]j2
γ1γ2

. . . B[L]jL
γL−1
|j1, . . . , jL〉. (8.3)

where |jn〉 with jn = 1, . . . , d is a basis of local states at site n (for a spin 1/2

system, d = 2 and |jn〉 = | ↑〉, | ↓〉), and the B[n] are rank three tensors (except

on the first and last sites where they are rank two tensors). Figure 8.4(a) shows

a pictorial representation of an MPS. The enternal legs jn are the “physical” spin

indices whereas the internal legs γn are the virtual indices that are contracted. Each

B[n]jn is a χn × χn+1 matrix (at the boundaries χ1 = χL+1 = 1) and each matrix

product
∏

iB
[i]ji in Eq. (8.3) produces a complex number which is the amplitude of

|Ψ〉 on the basis state |j1 · · · jL〉.

The maximum dimension χ of the {B[n]} matrices is called the bond-dimension of

the MPS and low entanglement states can be efficiently represented my MPSs of bond

dimension χ� dL/2. The relationship between χ and the entanglement can be made

more precise by considering the Schmidt decomposition of the state |Ψ〉. For a given

bipartition of the system into left and right halves, a singular value decomposition

can be used to rewrite |Ψ〉 as

|Ψ〉 =
∑

α

Λα|α〉L|α〉R

where the |α〉L/R form orthonormal bases for the left and right halves respectively,

L〈α|β〉L = R〈α|β〉R = δαβ, and the entanglement entropy of the bipartition is defined

through the Schmidt values Λα as SE = −∑α |Λα|2 ln |Λα|2. Following a prescription

by Vidal [312], it is possible to define a canonical form (Fig.8.4(b)) for the MPS by

rewriting each matrix B[n]jn as a product of a χn×χn+1 dimensional complex matrix

Γ[n]jn and a square diagonal matrix Λ[n] such that matrices Λ[n] matrices contain the
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non-zero Schmidt values for a bipartition between sites n and n+ 1

|Ψ〉 =
∑

j1,...,jL

Γ[1]j1Λ[1]Γ[2]j2Λ[2] . . .Λ[L−1]Γ[L]jL|j1, . . . , jL〉 =

χn+1∑

α=1

Λ[n]
αα|αn〉L|αn〉R, (8.4)

and the states

|αn〉L ≡
∑

j1···jn
(Γ[1]j1Λ[1] · · ·Λ[n−1]Γn)α|j1 · · · jn〉

|αn〉R ≡
∑

jn+1···jL
(Γ[n+1]jn1 Λ[n+1] · · ·Λ[L−1]ΓL)α|jn+1 · · · jL〉 (8.5)

define the orthonormal Schmidt states for the left and right halves of the bipartition

respectively. This canonical form clearly relates the bond dimension of the MPS χ to

the number of Schmidt values contributing significantly to the entanglement entropy.

A standard two-site DMRG algorithm tries to find the ground state |ψ0〉 by vari-

ationally optimizing the MPS matrices on neighboring sites to minimize the energy

〈ψ0|H|ψ0〉 while keeping the rest of the chain fixed. We define a matrix-product oper-

ator (MPO) representation of H exactly analagous to Eq. 8.3 but now using 4-index

tensors M as shown in Fig. 8.4(c), and then implement the following steps:

• To update the MPS between sites n and n+1, rewrite the state |Ψ〉 in the basis

spanned by the states |jn〉, |kn+1〉 and the left and right Schmidt states |αn−1〉L
and |βn+1〉R

|ψ〉 =
∑

j,k,α,β

Θjk
αβ|αn−1〉L|jn〉|kn+1〉|βn+1〉

where the definition of Θ is shown pictorially in Fig. 8.4(d) and follows directly

from the definitions (8.5).

• Define an effective Hamiltonian H as the Hamiltonian projected to the |αjkβ〉

basis. This is a d2χ2× d2χ2 dimensional operator, again best seen pictorially in

Fig. 8.4(e).
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• Find the ground state of H, denoted by Θ̃jk
αβ. This is the optimal state for

minimizing 〈ψ0|H|ψ0〉 in this subspace.

• Do an an SVD on Θ̃ to put the MPS back in canonical form with the matrices

Γ[n],Λ[n],Γ[n+1] updated.

• Repeat for the next pair of sites and iteratively sweep through the chain till the

state converges.

The only difference between the ground-state DMRG algorithm outlined above

and DMRG-X is in step 3. In the DMRG-X algorithm, we find all the d2χ2

eigenstates of H instead of just its ground state. We then pick Θ̃ as the eigen-

state of H with the maximum overlap with the previously found state in the

iterative scheme. The algorithm is initialized with an appropriate initial state

which is perturbatively “close” to the true eigenstates of the MBL Hamiltonian

(such as a product state in the σz basis).
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Part V

Statistical Mechanics with the

Entanglement Hamiltonian
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Chapter 9

How Universal is the Entanglement

Spectrum?

9.1 Introduction

A set of ideas from quantum information has revitalized the study of phase structure

in condensed matter [14]. Amongst these is the elucidation of the entanglement in

wavefunctions. As we saw in Sections 7 and 8, the area-law entanglement entropy in

highly excited eigenstates is a key signature of the MBL phase and plays a crucial

role in tensor-network approaches to diagonalizing MBL Hamiltonians. More con-

ventionally, the entanglement entropy has been studied in ground states of quantum

systems. This quantity obeys an area law in gapped phases [98] with a subleading

universal correction indicating the presence of topological order [177, 203].

In a striking development, Haldane and Li [205] found that the largest eigenvalues

of the reduced density matrix in a subregion A could contain more universal signatures

than just the entanglement entropy. Consider a bipartition of the system into two

parts, A and B. The reduced density matrix for A, ρA = TrB|ψ〉〈ψ| is obtained for

the wavefunction |ψ〉 by tracing over the degrees of freedom in part B. Haldane and
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Li defined the “entanglement Hamiltonian” HE as ρA = exp(−HE), and its energy

spectrum as the “entanglement spectrum” (ES). They found that the low-energy ES of

the Pfaffian quantum Hall state resembled the minimal edge excitation spectrum, and

proposed the ES as a fingerprint of topological order. A large literature followed [44,

196, 332, 256, 297, 305, 108, 250, 164, 140, 92, 264, 63, 235, 145, 259, 244, 295], and

the idea has been applied to broken symmetry [77, 214, 9, 10, 188, 243, 146, 242, 159]

and near critical points [51, 274, 82, 200, 119]. Broadly speaking, this body of work

suggests that a) the low-energy ES contains universal information about the phase

that goes beyond the entanglement entropy and b) this information reflects the actual

excitation spectrum of the systems at issue.

In this chapter, we offer a critique of these beliefs and show that the low-energy

ES contains much less universal information than assumed. Define the canonical en-

semble of HE as ρE = e−HE/TE , where TE is the entanglement temperature. For any

operator OA in A, 〈OA〉 = Tr(ρAOA) = Tr(e−HEOA). Thus, all physical observables

in the parent wavefunction are derived from the canonical ensemble of HE at entan-

glement temperature TE = 1. On the other hand, the low-energy ES probes the limit

TE → 0. For generic Hamiltonians, these two limits need not be in the same phase,

and the exponentially fewer eigenstates near the ground state contribute vanishingly

to physical canonical averages at TE = 1.

We show that, as a consequence, HE can exhibit quantum phase transitions (QPT)

with accompanying singular changes in the ES that are entirely spurious. These

ES rearrangements take place away from actual phase boundaries and all physical

observables remain completely analytic. This implies that previously used diagnostics

of phase structure based on the low-energy ES, such as the “tower of states” in

broken symmetry systems, quasi-degeneracies of the excitation spectrum and the

entanglement gap as an order parameter can fail. We first present simple, general

arguments in the context of broken symmetries and then illustrate them by explicit
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computation for a 2D Ising model. We then give an analogous treatment for the

σxy = 1 phase of the Chern insulator which will bring us full circle to the work of Li

and Haldane.

A few results in the literature already suggest the need for caution in using the ES.

The ES is a purely ground state property. More than one local Hamiltonian can have

the same ground state and thus the same ES, and examples where the spectrum is

gapped in one case and gapless in another are known [106]. Further, by the area-law,

HE lives in one dimension less than H so the two spectra cannot easily match unless

the low energy excitations are at the boundary. The failure mode of the ES discussed

here is new and cuts across both considerations.

9.2 Systems with symmetry breaking

The belief in the literature is that symmetry breaking in HE (and the related “tower of

states” spectrum for continuous symmetries) reflects order in the underlying ground

state. We show that this belief is mistaken.

Consider the Ising model in a transverse field δ (TFIM). In d ≥ 2 dimensions,

the TFIM is ferromagnetic for δ < δPc and paramagnetic for δ > δPc . We use P

and E to denote physical and entanglement related quantities. By the area law,

the entanglement Hamiltonian associated with a cut in real space describes a d − 1

dimensional boundary system. The generic phase diagram of HE as a function of

TE and δ (Fig. 9.1) must satisfy the following constraints: a) the TE = 1 cut must

coincide with the physical phase diagram, b) as δ → 0, HE projects onto the ideal

ferromagnetic state and hence is ordered at all TE, c) as δ → ∞, HE projects onto

the ideal paramagnetic state and cannot support order at any TE. Together (a) and

(b) imply the existence of the ordered region FM1 wherein the boundary spins in HE

exhibit ferromagnetic order; the bulk spins far from the cut will be trivially ordered
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Figure 9.1: Phase diagram of the entanglement Hamiltonian HE(δ) for an Ising model.
Blue dot at δPc : physical transition. Black star at δEc : pseudo QPT. FM2: spurious
ordered phase. Dashed line separating FM2 and PM: pseudo transition in d ≥ 3. If
generic, T+

Ec =∞.

at any TE. Now (a) also implies that the boundary correlation length diverges as

δ → δPc at TE = 1. The correlation length at TE = 0 is even longer at any δ near

δPc . Thus, at small TE, FM1 should continue into a second ordered region FM2 for

δ > δPc . The phase FM2 is spurious as, in this regime, the low-energy ES is ordered

when the physical state is paramagnetic. At δEc > δPc , there is a ‘pseudo’ QPT from

FM2 into the paramagnet, accompanied by singular rearrangements in the ES.

A few comments about Fig. 9.1 before we turn to a computation. First, mi-

croscopic couplings in HE exhibit singularities in the vicinity of the critical point

δPc [77]. Thus, the two ordered phases on either side, FM1 and FM2, need not con-

nect smoothly1. Second, for the generic TFIM, T+
Ec = ∞ as the boundary HE is

always ordered when the bulk is. For the PEPS/Rokshar-Kivelson wavefunction we

1In higher dimensions, the simplest hypothesis is that T−
Ec = 1 on the critical line; the computa-

tions reported in Ref. [213] bear on what happens in 2 < d < 3, but they currently deal only with
subleading terms in the thermodynamics of HE .
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consider below, the evidence appears consistent with T+
Ec < ∞. Third, in d = 2, by

the Peierls-Mermin-Wagner theorem, FM2 only exists at TE = 0.

We demonstrate the above scenario through an explicit calculation in a 2D Ising

model. We work with the Rokhsar-Kivelson (RK) Ising wavefunction [270],

|Ω〉 =
∑

σ

e−Ecl/2 |~σ〉 , (9.1)

where Ecl defines the classical anisotropic Ising model for spins σzi,j = ±1 on sites

(i, j) of a 2D square lattice

Ecl(~σ) =
∑

i,j

−βx(σzi,jσzi,j+1 − 1)− βy(σzi,jσzi+1,j − 1). (9.2)

The probability of a given configuration is e−Ecl(~σ). Thus, the quantum RK wave-

function reproduces classical probabilities in the z-basis. The RK wavefunction is

the ground state of a local Ising-symmetric parent Hamiltonian HRK(βx, βy), which is

quantum critical on the same critical line as the classical 2D Ising model [137, 55, 18]:

sinh(2βcx) sinh(2βcy) = 1. This critical line defines the analog of δPc in the preceding

discussion.

To compute HE, we place the system on an open cylinder of length Lx and cir-

cumference Ly and trace out half the cylinder (Fig. 9.2). Consider the limit βx � 1,

βy = 0 in the PM phase. This corresponds to Ly decoupled classical Ising chains

parallel to the x axis. As |Ω〉 obeys a strict area law, the basis states of HE can be

labelled by the spins at the boundary of the entanglement cut. For chain i, the two

states are
∣∣σzi,n;A

〉
≡
∑

σzi,j
j=0,...n−1

e
∑n−1
j=0

βx
2

(σzi,jσ
z
i,j+1−1)

n∏

j=0

⊗
∣∣σzi,j

〉
(9.3)

where n = Lx/2 and σi,n is the spin to the left of the cut. A small value of βy couples

the chains. Using perturbation theory, we can systematically calculate HE in powers
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Figure 9.2: Left: the RK Ising model on the square lattice. Right: the three layer
Chern insulator model with magnetic flux between the layers. Region B is traced out
in the ground state to obtain the entanglement Hamiltonian in A.

of βy (keeping βx � 1). To first order,

HE = −2e−βx
Ly∑

i=1

σ̃xi,n −
βye

2βx

2

Ly∑

i=1

σ̃zi,nσ̃
z
i+1,n,

where σ̃x,z act on the basis states in Eq. (9.3) in the usual way. The condition for our

perturbative result to be valid is βye
2βx � 1. Although the states of HE are labelled

by the boundary, they have weight in the 2d bulk.

We now present our central result. As HE is a 1D TFIM, it undergoes a pseudo

QPT transition at a critical value of βEy

βEy ∼ 4e−3βx . (9.4)

This critical point lies within the regime of validity of our perturbation theory

βEy e
2βx � 1. The physical transition in HRK is however at

βPy ∼ e−2βx . (9.5)
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Thus, βEy � βPy with the inequality getting parametrically better for larger βx; the

zero temperature entanglement transition in HE precedes the physical one in a con-

trolled limit. Essentially, the ground state of HE undergoes a surface ordering tran-

sition at βEy before the bulk orders at βPy .

These pseudo transitions can be diagnosed by the oft-studied Renyi entropies.

The Renyi entropy Sn is proportional to F1/n − F1, where FT = −T log(Tr e−HE/T )

is the entanglement free energy at temperature T . Therefore, whenever HE has a

pseudo TE > 0 phase transition, the S1/TE Renyi exhibits unphysical singularities in

the PM. In the (2+1)D TFIM, Singh et. al. [287] show that S2 is analytic for δ 6= δPc .

This is consistent with the proposed phase diagram as only S∞ is singular in the PM

phase in d = 2. Previous Renyi studies of the RK Ising model have only focused on

sub-leading terms [293], while the relevant signature here is in the leading term.

Recent studies in systems with continuous symmetry breaking [214, 10, 188, 243]

have reported that the ES shows the characteristic “tower of states” (ToS) structure

of finite-size systems in the ordered phase. Our arguments show that the ES can

be ordered even when the ground state is disordered in d ≥ 3 (FM2 in Fig. 9.1),

with XY symmetric systems exhibiting Kosterlitz-Thouless order even in d = 2. In

this spurious region, the ES exhibits ToS structure, falsely diagnosing order. If the

symmetry is successively broken in stages (e.g. O(4) → O(3) → O(2)), then a

spurious ToS may also appear in the putative ordered phase. However, we note that

for non-RK wavefunctions, the spacing in the ToS in HE scales with system size L as

e−L
d−1

in the spurious FM2 phase, and as eL
d

in FM1. In principle, this identifies the

spurious ToS in this case, though it requires more numerically intensive work. For

RK wavefunctions, the scaling is the same in both ferromagnets.
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9.3 Chern Insulator/QH Hall fluid

The quantum Hall (QH) fluids are incompressible in the bulk, but support chiral, gap-

less edge excitations. The topological order in these fluids is manifest in the universal

content of the edge theory. In the ideal ν = 1/3 fractional QH Laughlin state, the

edge is a single chiral boson with a universal compactification radius. The low-energy

ES of such ideal states (and more realistic states) mimics the edge spectrum [205].

However, the edges of realistic states can exhibit edge reconstruction in which

one or more non-chiral modes get added to the spectrum [59, 165, 331]. This leads

us to conjecture that the ES can also exhibit additional non-chiral modes. Further,

there exist phase transitions in which the ES reconstructs while the system remains

in the same topological phase. For related comments, see [295]. While the traditional

discussion of edge reconstruction in the QHE requires interactions, we substantiate

our conjecture below with an example involving a free fermion Chern insulator.

The connection between the physical and the virtual edge is direct for free

fermions [108]. First, HE for the ground state of a free fermion Hamiltonian is

quadratic [241]2. Thus, the ES vs the momentum along the cut, ky is a band

spectrum. Second, the single particle entanglement energies, ξi, are monotonically

related to ei, the energies of a “flat-band” Hamiltonian restricted to region A:

ei = (1/2) tanh (ξi/2) (9.6)

The “flat-band” model on A+B is in the same phase as the original Hamiltonian and

has the same eigenstates, but with flattened bands [179]. Thus, the transitions at the

physical edges of A in the flat-band model appear in the ES of the ground state of

H. We plot (Fig. 9.3) ei vs ky instead of the actual many-body ES for clarity.

2More generally, HE is quadratic for any Slater determinant many-body state.
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Figure 9.3: Entanglement spectra (Eq. (9.6)) of the ground states of the three layer

model with M1 = −2.5, M2 = −1, M3 = −3.5 and Lx = Ly = 200. (a) λ = 0, ~Al = 0.

(b) λ = 1/2, ~A1 = − ~A3 = (−π/2,−π/2), ~A2 = (0, 0). (c) ~A1 = − ~A3 = (−π,−π),
~A2 = (0, 0).

Consider the C = 1 Chern insulator on a periodic lattice. To allow for multiple

edge modes, we take three independent bipartite layers in which the lower bands have

C = 1 in two layers and C = −1 in the third layer. In the ground state, all three low

energy bands are occupied and the system exhibits net C = 1 with two right moving

and one left moving chiral edge modes, i.e. the edge content exceeds the minimal edge

content (central charge c = 1) by one non-chiral mode (whence c = 3). This appears

in the ES in Fig. 9.3(a) as well. By deforming the Hamiltonian without closing the

gap to the three high energy bands, we can modify the Chern numbers of the three

lower bands to C = 1, 0, 0. The ES then exhibits one chiral mode with c = 1 and

there has to be a QPT in HE en route.

For simplicity, we give a different deformation in which we perturb the starting

problem with a combination of interlayer hopping and uniform magnetic fields parallel
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to the layers (Fig. 9.2). The Hamiltonian is:

H =
3∑

l=1

hl( ~Al,Ml)− λ
2∑

l=1

a†~k(l + 1)a~k(l) + h.c.+ b†~k(l + 1)b~k(l) + h.c. (9.7)

where l is the layer index, λ the hopping amplitude between identical sites on adjacent

layers and

hl( ~Al,Ml) =
∑

~k

(
a†~k(l) b†~k(l)

)
(~d(~k + ~Al,Ml) · ~σ)



a~k(l)

b~k(l)




~d(~k,Ml) =

(
sin(kx), sin(ky), 2 +M − cos(kx)− cos(ky)

)

is the single layer Hamiltonian on layer l. Each layer is bipartite and a†~k(l), b
†
~k
(l) create

Bloch waves on the two sublattices. ~Al are constant vector potentials corresponding

to magnetic fluxes parallel to and between the layers. The phase diagram of one layer

at half filling is a function of Ml only: for Ml > 0 or Ml < −4, the ground state

is a trivial insulator. When −2 < Ml < 0, the ground state is a Chern insulator

with Chern number C = −1, while C = 1 corresponds to −4 < Ml < −2. At

Ml = 0,−2,−4, the system is gapless with Dirac fermion excitations.

At λ = 0, ~Al = ~0, we pick Ml so that layers 1 and 3 are in the C = 1 phase and

layer 2 is in the C = −1 phase. On turning on weak inter-layer coupling and magnetic

fluxes, this point extends into a C = 1 phase. The location of the Fermi points in the

ES depends on a combination of λ and the fluxes. We can therefore arrange for the

Fermi points of opposite chirality to be far apart in the starting configuration with the

two left moving ones degenerate (Fig. 9.3(a)), then evolve into a configuration where

they are all at distinct locations (Fig. 9.3(b)), and finally arrive at a configuration

where an oppositely charged pair can meet and annihilate (Fig. 9.3(c)).

The transition in the ES is a genuine QPT, as the central charge changes. However,

the net chiral central charge, Cc = Cleft−Cright, is unchanged. More physically, there
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is a residual universality in the edge (or ES) structures for a given bulk QH state as

the conductance is the same at any T (or TE). In principle, this can be extracted from

the low-energy ES of sufficiently large systems (much larger than currently accessible

in computational studies). All the methods to date to extract Cc rely on the entire

spectrum [338, 76, 336].

We end with three comments. First, the quasi-degeneracies of particle-hole ex-

citations as a function of momentum δky relative to the ground state of HE—the

commonly employed diagnostic for topological order— change. In Fig. 9.3(c), they

take the values {1, 1, 2, 3, 5 . . .} for δky = 0, 1, 2 . . . , while in the middle and left pan-

els, they are modified to {1, 2, 5 . . .} for δky = 0, 1, 2. This modified counting is not

universal; by changing the speeds of the movers on the left edge, almost any sequence

is possible. Second, the arguments above should apply to fractional QH states, as

they exhibit edge reconstruction. Recent work [52] has shown that for sufficiently

complex abelian quantum Hall states, even the minimal edge structure is not unique

and there can be phase transitions between distinct stable edge structures. The ES

should exhibit analogous phase transitions. Third, while our general arguments apply

to isotropic states, we work with anisotropic states for convenience.

9.4 Conclusions

This chapter has two central messages about the low-energy entanglement spectrum.

First, HE can exhibit spurious quantum phase transitions that have nothing to do

with any physical phase transitions. All physical observables are derived from HE at

TE = 1 and can remain analytic even as the low-energy ES exhibits singular changes.

Second, previously used diagnostics of phase structure based on the low-energy ES,

such as the tower of states, quasi-degeneracies, and the entanglement gap, either fail
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completely or require much more careful analysis. Altogether our work indicates the

need for caution in interpreting the results of ES computations.
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Chapter 10

Eigenstate Thermalization and

Representative States on

Subsystems

10.1 Introduction

In Chapter 9, we employed the strategy of doing statistical mechanics with the en-

tanglement Hamiltonian HE to study the limits of the universality of the low-energy

entanglement spectrum. This chapter continues in this vein and discusses the impli-

cations of applying the eigenstate thermalization hypothesis to HE.

We consider the following problem. Let |AB〉 be a pure state of the quantum

system A ∪ B made up of degrees of freedom that can be partitioned into spatially

disjoint regions A and B with A being the smaller subregion. We wish to find a

pure state on region A, |ψA〉, which we can use for practical purposes to reproduce

expectation values of typical operators of interest in region A. We will call such a

state a “representative state” (RS) on A.
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Evidently, proceeding axiomatically would require us to define which operators are

“typically of interest” and what error is acceptable for “practical purposes”. With

these defined we can then ask for what states |AB〉 and bipartitions A and B such

RS can be found. We will not try to carry out such an exercise in the abstract.

Instead we will use ideas from quantum statistical mechanics, notably the equivalence

of ensembles and the eigenstate thermalization hypothesis (ETH) [89, 291, 267] to

discuss several broad classes of states for which one can usefully define RS. Possibly

future work can fold our concrete examples into a more general account.

The striking feature of a RS description of subsystems is that it dispenses with

the entanglement between the degrees of freedom in A and those outside. This en-

tanglement is at the root of the exact description by means of the reduced density

matrix

ρA = TrB|AB〉〈AB|

which is the textbook prescription for describing a subsystem. We are interested in

replacing this exact description with an RS description.

The intuition for why it may be possible to replace ρA with a single state on A

comes from writing ρA in the suggestive form [205]

ρA = e−HE

which defines the entanglement Hamiltonian HE on A. In this form, ρA is the canon-

ical density matrix of HE at entanglement temperature TE = 1, and all physical ob-

servables in A are derived from this ensemble: 〈OA〉TE=1 = Tr(ρAOA) = Tr(e−HEOA).

If HE is assumed to be “generic” – in the sense that we can do quantum statistical

mechanics with it – we can replace canonical averages with a single quantum state

via the ETH. More concretely, the ETH assumes that eigenstate expectation values

(EEVs) of few-body observables computed from individual eigenstates in an energy
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window match canonical or microcanonical averages in the thermodynamic limit. It

follows that if HE satisfies the ETH, we can replace the canonical ensemble of HE with

eigenstates of HE drawn from the right entanglement energy window. These states

are the desired “representative states”. Further, in cases where HE doesn’t satisfy the

ETH (e.g. HE is integrable/free or many-body localized [227]), RS can be found for

a smaller, more restricted class of observables in a manner to be discussed later. We

note that a similar line of reasoning in subsequent work by Garrison and Grover [117]

shows that a single many-body eigenstate can be used to encode the full Hamiltonian

for the purposes of reproducing few-body observables in small subsystems.

In this article we will discuss three families of quantum states for which an RS

description can be provided. These are a) ground states of local quantum Hamiltoni-

ans, b) highly excited states (those with a finite energy density) of local Hamiltonians,

and c) randomly picked states in Hilbert space. For (a) and (b) we will consider sub-

systems A such that both A and B are simply connected domains, while for (c) we

will consider arbitrary subsystems of A ∪ B. In all three cases we use the number of

spins/qubits in A, denoted by |A|, as our control parameter with the implicit ordering

1 � |A| ≤ |B|. In this limit we will argue that we can reproduce the expectation

values of few-body operators1 on A to controlled accuracy by means of RS.

In detail, we start with a free fermion system for which HE is known to be free (and

hence integrable) [241]. While this is a “non-generic” case which doesn’t permit us to

use the full machinery of ETH, it nonetheless provides a transparent illustration of our

ideas for a special class of operators that are “orthogonal” to the conserved quantities.

We consider RS descriptions of both the ground state and highly-excited states of the

free-fermion system. We then generalize our results to ground and excited states of

generic gapped, local quantum Hamiltonians. In this case, we provide evidence that

HE will also be generic and we can use the ETH to argue for RS. Finally, we consider

1One question we leave open is the meaning of “few”, where the corresponding question regarding
ETH is still open.
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randomly picked vectors in Hilbert space where the RS can be obtained quite directly.

We conclude with some comments on generalizations and open questions.

10.2 Free fermions

We begin with a gapped free fermion model in 2D which illustrates the ideas and errors

involved in a representative states description. Consider the dimerized hopping model

in 2D:

H = −
∑

i,j

txi,i+1 c
†
i,jci+1,j + ty c†i,jci,j+1 + h.c. (10.1)

where ci,j are fermionic operators on sites (i, j) of a 2D square lattice, the hopping

in the x direction, txi,i+1, alternates between 1 ± δ, and ty is the hopping in the y

direction. The Hamiltonian is readily diagonalized in momentum space, and there

are two bands with momenta in the reduced Brillouin zone. At half filling, the model

is gapped for either ty < δ < 1 or δ > 1 and ty < 1.

The entanglement Hamiltonian for free fermion systems is itself quadratic [241]:

ρA =
1

Z
e−HE , HE =

|A|∑

i=1

εif
†
i fi (10.2)

where the operators fi live in A and are related to the original fermionic operators by

a canonical transformation, and Z = TrρA. The single-particle entanglement energies

{εi} are easily calculated through their monotonic relation with the eigenvalues ξi of

the correlation matrix Crr′ ≡ 〈c†rcr′〉 restricted to region A:

εi = log

(
1− ξi
ξi

)
. (10.3)

Evidently, HE is also integrable, with the set of conserved quantities f †i fi.
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We will show that we can find representative states in A that reproduce canonical

averages computed using ρA. However, the RS cannot be used to reproduce all few-

body observables in A. Since HE is integrable (and thus non-generic for the purposes

of the ETH), we must restrict ourselves to few-body observables that are roughly uni-

formly “spread” over all conserved quantities in HE. As our underlying Hamiltonian

is translationally invariant, we expect that momentum conservation is broken in HE

by boundary effects alone so that the f †i fi have a fair degree of locality in momentum

space. This indicates that operators which are local in real space are good candidates

for an RS description and we study these below.

We do this in turn for the system at zero and finite temperatures.

10.2.1 T = 0

Pick a set of parameters ty and δ such that the Hamiltonian H is gapped at half

filling. At zero temperature, the system is in the ground state of H on A ∪ B. We

trace over half the system with the entanglement cut along the y axis to obtain ρA

and HE in the usual fashion. Gapped ground states are believed to satisfy an area

law for the entanglement entropy [98]:

SE = −Tr ρA log ρA ∼ sLd−1
A

where LA is the linear size of region A and d is the spatial dimenson. In d = 1, a

rigorous proof of the above scaling exists [135, 17]. The entanglement entropy is the

thermal entropy of HE at TE = 1; as this scales only with the area of the boundary,

HE is morally a (d − 1)-dimensional Hamiltonian whose low-energy excitations live

on the boundary between A and B.

The many-body eigenstates of HE are Slater determinants in terms of the f op-

erators in (10.2). For spatially local observables, the canonical ensemble of HE at
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TE = 1 can be replaced by individual eigenstates: we pick representative states |ψA〉

by filling single particle states f †i |0〉 with the Fermi-Dirac (FD) probability distribu-

tion at TE = 1 and µE = 0. Thus the representative states lie in an energy window

that scales as
√
Ld−1
A about the mean entanglement energy 〈HE〉TE=1.

Drawing states using the FD distribution ensures that averages for operators Â

computed using the ensemble of RS agree with the canonical average of HE. However,

there are fluctuations from eigenstate to eigenstate within the energy window which

can be shown to scale as

〈
Â
〉
TE=1

= 〈ψA| Â |ψA〉+O

(√
1

Ld−1
A

)
. (10.4)

The scaling follows from the expansion of the Â in the mode occupation basis: Â =

1

Ld−1
A

∑
i n̂ia(i), where n̂i = f †i fi and a(i) is a smooth function of the mode index

i. In each RS, n̂i = 0, 1, while the probability that n̂i = 1 is given by the FD

distribution. Further, the occupation numbers of different modes in the RS ensemble

are uncorrelated. Thus, Eq. (10.4) follows from the central limit theorem. Observe

that the fluctuations go to zero in the infinite volume limit for d > 1.

We now present numerical evidence supporting our claims. For simplicity, we

study expectation values of local density operators Âi = c†i,0ci,0, though more com-

plicated m-local operators could also be considered. Note that translation invariance

is preserved along the y direction so operators are only labeled by i, their position

along the x axis. The main plot in Fig. 10.1(a) shows 〈ψA| Âi |ψA〉 for 100,000 rep-

resentative states |ψA〉 randomly picked with FD probabilities. We work in a system

of length L = 256 and LA = 128, and consider Âi for all sites i along the x axis.

The red line is the canonical average 〈Âi〉TE=1 = TrρAÂi. We see that the EEVs in

representative states 〈ψA| Âi |ψA〉 follow the canonical average 〈Âi〉TE=1 quite closely,

with the error being maximum for operators near the boundaries of A. This is consis-
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Figure 10.1: (Color online) (a) 〈ψA| c†ici |ψA〉 plotted against the position i for 100,000
randomly picked representative states |ψA〉 in a dimerized free-fermion system of linear
dimension L = 256, LA = 128 and temperature T = 0. The thick, red (grey) line
denotes the canonical average. The error is maximum for boundary operators. Inset:
Same results for a system at temperature T = 1. In this case there is no discernible
difference in the variance between boundary and bulk operators consistent with the
volume law. (b) Standard deviation of 〈ψA| c†ici |ψA〉 for i at the boundary at T = 0
(blue circles), i at the boundary at T = 1 (green squares) and i deep in the bulk at

T = 1 (red stars) plotted against system size. The best-fit lines confirm the
√

1
Ld−1

scaling of the error for boundary operators at T = 0, and the
√

1
Ld

scaling for both

boundary and bulk operators at finite T . (c) standard deviation of 〈ψA| c†ici |ψA〉 as
a function of position i, showing exponential decay with distance from the boundary.

tent with the picture that the O(Ld−1) eigenstates of HE that contribute to canonical

averages resemble the starting ground state in the bulk of A and only differ on the

boundary. Fig. 10.1(b) (blue circles) shows the standard deviation of 〈ψA| Âi |ψA〉 for

i at the boundary of A for various system sizes confirming the
√

1
Ld−1 scaling of the

error posited in (10.4). Finally, Fig. 10.1(c) shows that for a fixed system size, the

error decreases exponentially with distance from the boundary.

We note that even though we picked representative states by filling single-particle

orbitals with Fermi-Dirac probabilities at TE = 1, our results also apply to other

reasonable prescriptions for picking RS. For example, we can equally consider all

states in some fixed O(1) window about 〈HE〉TE=1 and with some fixed spread in

particle number. This prescription will still give a
√

1
Ld−1 scaling of the error, but

now with an improved coefficient.
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10.2.2 T > 0

We repeat the analysis of the previous subsection, now starting with |AB〉 as an

excited eigenstate of the hopping Hamiltonian H. We work at a finite physical tem-

perature T = 1, and we can construct |AB〉 by filling single-particle orbitals with

Fermi-Dirac probabilities at T = 1 and µ = 0. However, for computational ease,

we prefer to start with the Gibbs state on A ∪ B instead of individual eigenstates.

It is easy to check that selecting RS for the Gibbs state and excited eigenstates are

equivalent upto an error of O
(
1/Ld

)
.

The entanglement entropy for such finite temperature states shows a volume law

scaling SE ∼ sLdA, and HE acts as a genuine d− dimensional Hamiltonian with

excitations living everywhere in the bulk of A. This changes the scaling of various

estimates in the previous section from Ld−1 to Ld, leading to an improved convergence.

Since HE is still a free-fermion Hamiltonian, we pick RS according to FD probabilities

at TE = 1, µE = 0 as before.

The inset in Fig. 10.1(a) shows 〈ψA| Âi |ψA〉 for 10,000 randomly picked represen-

tative states |ψA〉 in a system of linear dimension L = 256, LA = 128. In this case, the

spread in eigenstate expectation values appears equal for operators at all positions.

Boundary operators are not special, consistent with the volume law for the entan-

glement entropy of excited states. Fig. 10.1(b) (boxes and stars) shows the standard

deviation of 〈ψ| Âi |ψA〉 for sites i lying deep in the bulk of A and on the boundary,

confirming the
√

1
Ld

scaling of the error in both cases. Note the improvement in the

convergence of the EEVs at the boundary compared to zero-temperature case.

In summary, we have found RS |ψA〉 in free fermion systems that typically repro-

duce the EEVs of spatially local observables computed with ρA in A. The typical

error in replacing ρA with |ψA〉 scales as O(
√

1/Ldeff
A ), where deff is the effective di-

mensionality of HE and equals d − 1 at T = 0 and d for T > 0. For T > 0, the

convergence is independent of the distance from the boundary, while at T = 0, the
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convergence is exponentially suppressed with the distance from the boundary. Thus,

the boundary operators at T = 0 exhibit the slowest convergence with system size LA.

Three aspects deserve re-emphasis. First, not all states drawn from the FD distribu-

tion at TE = 1 (or from an energy window about TE = 1) are good RS. The scaling

of error results are for typical states drawn from such ensembles. Second, the conver-

gence depends on the choice of ensemble for the RS, and can be optimized. Third,

for this free fermion example, RS can be found only for a restriced class of few-body

operators that live in position space and are spread over all conserved quantities.

At this point, it is instructive to delineate two systematic trends in error estimates.

The first is the scaling of error with system size as a function of temperature. We

have seen that the effective dimensionality of HE changes from deff = d− 1 at T = 0

to deff = d for T > 0. Since the error scales with deff , the RS description for a given

system is more accurate at higher temperatures. In the second case, we keep the

temperature (and hence deff) fixed and compute the dependence of the error on some

physical parameter Γ in the Hamiltonian. In particular, we can imagine tuning Γ in

a way that evolves the ground-state of H(Γ) from a product state to a more generic

area-law entangled state. In this case, the error scales as c(Γ)
√

1
Ldeff

, where c(Γ) is

parameter dependent and depends on the coefficient s of the entanglement entropy

scaling SE ∼ sLdeff . For product states, |ψ〉 = |A〉|B〉, both s and c(Γ) are zero,

consistent with the fact that the best RS is simply |A〉 with no error.

Before moving on to more generic examples, let us briefly consider the implications

of our free-fermion study for disordered, localized entanglement Hamiltonians that

also fail to satisfy ETH. If HE is non-interacting and Anderson localized [15], its

eigenstates are localized in position space. Analogous to the free-fermion example,

we now expect few-body operators in a suitably defined “momentum” space to have

an RS description2. Many-body localized HE deserve further thought, but here again

2Translation invariance is broken by disorder. By “momentum” we just mean a set of variables
obtained by an appropriate Fourier transform of the position coordinates
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we might expect to find RS for observables that are spread over the local integrals of

motion [148, 283] of HE.

10.3 Generic eigenstates

The previous section provided a transparent illustration of representative states for

the case where |AB〉 is a Slater determinant eigenstate of a free fermion Hamiltonian.

Now we turn to eigenstates of more generic, local quantum Hamiltonians which will

not be Slater determinants. For such states, we expect HE to be non-integrable and

we can bring the full machinery of quantum statistical mechanics and ETH to bear

on our RS description. This has three important consequences:

1. Representative states can be used to reproduce expectation values of a much

wider class of few-body operators. Unlike the free fermion case, we are no longer

restricted to operators orthogonal to conserved quantities.

2. Fluctuations in EEVs for states that are close in energy are exponentially sup-

pressed as O(e−L
deff
A ), where deff = d (or d − 1) is the effective dimensionality

of HE for states obeying the volume (or area) law for the entanglement en-

tropy [267, 34]. This is to be contrasted with the free fermion case where con-

served quantities led to a much larger fluctuation of O(
√

1/Ldeff
A ) from eigenstate

to eigenstate.

3. The total error in replacing ρA with |ψA〉 scales as O(1/Ldeff
A ) for reasons that

will be explained below. Again, this is to be compared to a larger error that

scales as O(
√

1/Ldeff
A ) for the free fermion case.
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Points 2 and 3 above warrant further elucidation. If HE satisfies the ETH, then

EEVs of an operator Â are hypothesized to have the form [291, 292]:

〈n| Â |n〉 = A(E) + e−S(E)/2f(E)Rn (10.5)

where |n〉 are eigenstates of HE with entanglement energy eigenvalue E and S(E)

is the entropy (computed using HE) at E. Here, A(E), f(E) are smooth functions

of E and Rn is a random sign. Since S(E) ∼ sLdeff
A , Eq. (10.5) implies that the

dominant contribution to the EEVs comes fromA(E). Thus, the EEVs vary smoothly

with energy between neighboring eigenstates and fluctuations between eigenstates

(∼ e−S/2) are exponentially suppressed, which is the content of point 2. Eq. (10.5) is

the fundamental assumption of ETH, and the steady state properties under unitary

evolution by HE and the emergence of statistical mechanics as the correct equilibrium

description follow from it.

Turning now to point 3, observe that

〈
Â
〉
TE=1

=
TrAe−HE
Tr e−HE

=

∫
dE eS(E)−EA(E)∫
dE eS(E)−E +O(e−S/2)

where the integral is over the entanglement energies. For d > 1 and deff > 0, S(E)

and E are extensive in LA. Thus, the integrals can be evaluated by steepest descent

and expanding about the saddle point gives

〈
Â
〉
TE=1

= A(〈E〉) +O

(
1

Ldeff
A

)
(10.6)

where 〈E〉 = 〈HE〉TE=1 is the mean entanglement energy.
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Let us now put together the various ingredients. First, a reasonable, operator

independent prescription for picking representative states involves drawing eigenstates

of HE with some probability in an energy window ∆E about 〈E〉. For example,

∆E ∼
√
Ldeff
A if states are drawn with canonical probabilities, or we can equally well

pick a fixed O(1) energy window. If A(E) varies systematically with E, then

A(E) ' A(〈E〉) +
dA
dE

(
∆E

Ldeff
A

)
(10.7)

for energies within ∆E of 〈E〉, and we have been careful to include the fact that we’re

interested in local operators that depend on the energy density. To optimize the error

in the RS, let’s specify an O(1) energy window so the second term in Eq.(10.7) scales

as O(1/Ldeff
A ). Then, from Eqs. (10.5), (10.6) and (10.7), we get that

〈
Â
〉
TE=1

= 〈n| Â |n〉+O

(
1

Ldeff
A

)
(10.8)

when |n〉 are eigenstates of HE lying within ∆E of 〈E〉. This is the statement of

point 3 with |n〉 acting as the representative states |ψA〉.3

As in the free-fermion case, we would like to support our claims with numerical

evidence for some example cases. Proceeding as before would require numerically

obtaining eigenstates of generic, interacting Hamiltonians which is severely limited

by system size. Instead, our strategy will be to obtain HE for a particular exam-

ple wavefunction and present evidence of its non-integrability by examining its level

statistics. This provides strong, albeit indirect, evidence since our result, Eq. (10.8),

follows more or less axiomatically from non-integrability and ETH.

3 One can improve matters for a single operator by carefully selecting an RS which reproduces
its exact expectation value to higher accuracy but not for the full set we wish to reproduce.
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Figure 10.2: (Color online) Level spacing ratio statistics of HE for the Rokhsar
Kivelson state (green crosses) (10.9) compared to the Poisson (red dashed line) and
GOE (black solid line) distributions. The statistics clearly look GOE consistent
with a non-integrable HE. This is to be contrasted with the Poissonian statistics of
the integrable transfer matrix (blue dots) Tσi,σj in (10.11). r refers to the ratio of
subsequent level spacings, and P (r) is the probability of obtaining a given r. The
GOE form is derived in Ref. [21].

To this end, consider the Rokhsar-Kivelson (RK) Ising wavefunction [270],

|AB〉 =
∑

σ

e−Ecl/2 |~σ〉 , (10.9)

where Ecl defines the classical anisotropic Ising model for spins σzi,j = ±1 on sites

(i, j) of a 2D square lattice

−Ecl(~σ) =
∑

i,j

βx(σ
z
i,jσ

z
i,j+1) + βy(σ

z
i,jσ

z
i+1,j). (10.10)

The probability of a given configuration is e−Ecl(~σ). Thus, the quantum RK wave-

function reproduces classical probabilities in the z-basis. The RK wavefunction is

the ground state of a local Ising-symmetric parent Hamiltonian HRK(βx, βy), which is
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quantum critical on the same critical line as the classical 2D Ising model [137, 55, 18]:

sinh(2βcx) sinh(2βcy) = 1. To compute HE, we place the system on a cylinder of length

Lx and circumference Ly and trace out half the cylinder with the cut parallel to the

y axis. The system obeys a pefect area law and SE ∼ sLy. For simplicity, we take

the limit Lx →∞. We can rewrite |AB〉 in the more convenient form

|AB〉 =
∑

σL

∑

σR

√
TσL,σR〈σR |λ〉 〈λ |σL〉

λ2
|σL〉 |σR〉

≡
∑

σL

∑

σR

MσL,σR |σL〉 |σR〉 (10.11)

where σL (σR) labels the spins in the column immediately to the left (right) of the

entanglement cut in A (B), and |σL〉 (|σR〉) is the RK Ising wavefunction in A (B) with

the boundary spins fixed to be σL (σR). Tσi,σj is the (integrable) transfer matrix of the

2D Ising model. It is 2Ly dimensional, “transfers” from column to column, and the

indices σi/j label the states of the Ly spins in columns i/j of the lattice. λ is the largest

eigenvalue of T with corresponding eigenvector |λ〉. The entanglement Hamiltonian

is related to the matrix M though HE = − log(M †M) and the entanglement energies

are obtained via a singular value decomposition of the matrix M .

Fig. 10.2 shows the statistics of the ratio of adjacent level spacings of the transfer

matrix Tσi,σj , and the entanglement Hamiltonian for a paramagnetic system of size

Ly = 16 and with βx = βy = 0.43 4. Level spacings of integrable systems are known

to show Poissonian statistics, while those of non-integrable systems show Gaussian

Orthogonal Ensemble (GOE) statistics [39]. The figure clearly shows that HE is

non-integrable, even though it is so closely related to the integrable transfer matrix.

4 The entanglement Hamiltonian has translation, Ising and inversion symmetry. We break trans-
lation symmetry by using open boundary conditions, and take the even sector with respect to both
Ising and inversion symmetries to access the largest matrix size for level spacing statistics. The
statistics are the same for each symmetry sector and do not depend on the boundary condition.
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In general, we expect generic states to give generic, non-integrable entanglement

Hamiltonians which are suspectible to the analysis of this section.

10.4 Random states

Another limit in which we can apply the idea of representative states is when |ψAB〉 is

a randomly picked pure state with respect to the Haar measure on the Hilbert space

of A ∪B. In this sense, one can find RS for almost all states!

For simplicity, we consider the “random sign” states introduced in Ref. [128] below,

although the same results also apply to states drawn from the Haar measure on the

space of unit vectors in the entire Hilbert space as the reader can readily check.

Let |cAB〉 represent a state in the computational basis on A∪B. In this basis, we

define the set of “random sign” states via

|AB〉 =
1√NA∪B

∑

cAB

sgn(cAB) |cAB〉 (10.12)

where the sgn function is a random variable that equals ±1 with equal probability

over the NA∪B configurations in Hilbert space. We use NL to denote the Hilbert

space dimension of region L. Hence for spin-1/2s, NA∪B = 2N , where N is the total

number of sites in the system, NA∪B = NANB, and |cAB〉 = |cA〉 |cB〉.

For observables Ĉ in some finite bounded region C ⊂ A it is a straightforward

application of the central limit theorem to show that

〈AB| Ĉ |AB〉 = 〈Ĉ〉TE=1

= TrρAĈ = TrρC Ĉ

= Tr∞Ĉ +O

( NC√NA∪B

)
(10.13)
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where ρC is the reduced density matrix of region C and Tr∞Ĉ = 1
NA∪B

∑
cAB
〈cAB| Ĉ |cAB〉

is the infinite temperature canonical average of observable Ĉ. Observe how 〈Ĉ〉 is

just Tr∞Ĉ upto exponentially small corrections in the system size LAB. Hence our

randomly picked states behave like infinite temperature states on the full system. Our

first guess might be to use the results of the previous section on generic eigenstates

to find representative states for |AB〉. However, those results do not apply here since

ρA ∼ I (up to exponentially small corrections in L) for such random-sign states, and

HE = 0 is highly degenerate and non-generic.

Fortunately we can get around this problem by simply taking a representative

state on region A, |ψA〉, which is itself a random sign state. The same considerations

as above imply that in such a state

〈ψA| Ĉ |ψA〉 = Tr∞Ĉ +O

( NC√NA

)
, (10.14)

which says that 〈Ĉ〉 in representative states is again Tr∞Ĉ upto exponentially small

corrections in LA. Thus, the RS captures the same physics as the canonical ensemble

of HE if the size of region C is much smaller than that of A. For a finite region C,

the error in replacing the canonical ensemble with the RS is exponentially small in

the size of A.

Note that unlike the previous two sections, we were able to pick RS for random

sign states without taking into account the specific state |AB〉. This is because of the

particularly simple form that all observables take in these states. However, lest the

reader be worried that these states are just trivial, we note that subsystems of such

randomly picked states are close to maximally entangled with their environment as

evidenced by the work of Page [233].
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10.5 Concluding Remarks

In this chapter we have demonstrated that for few-body observables, the reduced

density matrix of a subsystem A entangled with a larger system can be replaced by

a “representative” pure state on A alone for three different classes of states: low

entanglement ground states of local quantum Hamiltonians, highly entangled ran-

domly picked states, and highly excited eigenstates of local quantum Hamiltonians

which interpolate between these two limits in the amount of bipartite entanglement

they exhibit. The error in such a replacement is well controlled and quantified for

these families of states, and vanishes as the volume of A approaches infinity. We

have provided both numerical data and general arguments from quantum statistical

mechanics and the ETH in support of this picture. Further, we expect that when

HE is non-generic with respect to the ETH, the RS description should continue to

hold for a limited set of observables and we have demonstrated this explicitly for free

fermions.

Future work could provide a more general account of classes of states |AB〉 that

do, and do not, lend themselves to a description of this kind. Natural generalizations

include applying these ideas to states |AB〉 with topological or symmetry-breaking

order, and the reader can readily verify that the RS description naturally generalizes

for local observables in these cases.

The ideas in this chapter present an interesting hierarchical onion-like picture. We

can replace a pure state on A∪B with a pure state on A alone, which in turn can be

replaced by a pure state on a subset A1 ⊂ A, which itself can be replaced by a pure

state on A2 ⊂ A1, and the process can be continued ad infinitum in the limit that

the volume of each subsystem approaches infinity.

Finally, we observe that the RS description is not entirely an exercise in the

abstract. Isolated quantum systems in pure states form the starting point in the de-

scription of many physical phenomena. Isolated systems are of course an idealization
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since some degree of entanglement with the environment is inevitable, in which case

the system is properly described by a density matrix. Our work suggests that the

pure state description is still useful, with an error that vanishes as the system is made

larger.
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Part VI

Miscellaneous Results on

Topological Phases
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Chapter 11

Kibble-Zurek Scaling and

String-Net Coarsening in

Topologically Ordered Systems

11.1 Introduction

This chapter lies at the intersection of two interesting streams of contemporary re-

search: the study of the non-equilibrium dynamics of quantum systems, and the study

of topologically ordered phases of matter. Consider driving a topologically ordered

system through a phase transition to a topologically trivial, or relatively trivial, phase

by changing some parameter in the Hamiltonian at a slow, but finite rate. This work

investigates the ensuing non-equilibrium dynamics resulting from this “trans-critical

protocol” [62], with particular emphasis on universality and the non-Landau character

of the transition.

The Kibble-Zurek (KZ) mechanism [174, 340, 341] is a scaling theory of the de-

fects generated by slowly cooling a classical system through a continuous symmetry-

breaking phase transition. Kibble originally formulated this problem as a cosmo-
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logical theory of the phase transitions in an expanding universe, and Zurek later

applied it to condensed matter systems. The central physical insight is that suf-

ficiently distant parts of the system settle into independently seeded local broken

symmetry “directions” whence the mismatch must be accommodated by a finite

density of defects. The mechanism has since been generalized to quantum phase

transitions [245, 95, 342, 79]. Although several experiments are consistent with the

predictions of Kibble-Zurek [93, 212, 219], decisive confirmation of the scaling law of

defect densities is still lacking. A recent experiment in an inhomogenous system of

trapped ions [258] provides the most compelling evidence in this regard1. Polkovnikov

and co-workers have also studied the scaling theory of the excess heat density and the

interplay between the ramp velocity and finite size [245, 83]. For a recent review of

the broader context of these developments in the study of non-equilibrium quantum

phenomena, see Ref. [247] .

A few observables [83, 88, 36, 80] other than the universal non-equilibrium defect

density have been studied in the KZ problem, now defined more broadly as the non-

equilibrium temporal evolution of a system in the vicinity of a critical point. Recently,

Chandran et. al. [62] have systematized the universal content in the KZ problem in a

scaling limit, and written non-equilibrium scaling functions for all physical observables

in this limit. The scaling functions describe the entire time history, and asymptote to

equilibrium and coarsening scaling regimes in the appropriate limits. The universal

content depends only on the pairing of the dynamical universality class of the critical

point, and the particular protocol through parameter space.

The KZ scaling theory also provides an elegant framework within which to in-

vestigate ramp dynamics of phase transitions beyond those of traditional symmetry

breaking. These transitions could involve the destruction of the topological order

of states of matter like spin liquids and the fractional quantum Hall phases. Topo-

1Confirmation is still lacking in transitions in thermodynamic systems that are not described
within mean field theory.
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logically ordered phases are not locally distinguished by any order parameter, but

are characterized by emergent gauge fields and fractionalized excitations. Their non-

local structure makes them particularly robust to local perturbations and well-suited

to perform “topological” quantum computation [226]. Despite their robustness, a

strong enough perturbation can drive a transition from a topologically ordered phase

to a trivial or relatively trivial (i.e. one with a smaller gauge group) phase. For

appropriately selected perturbations, this transition will be continuous.

This chapter addresses the KZ problem when a system is driven from a topologi-

cally ordered phase to a proximate trivial or relatively trivial phase. We do so for a

class of topological phases that possess lattice realizations where the gauge degrees

of freedom are manifest: these are the toric code/lattice Z2 gauge theory [187, 178]

and the string-net models of Levin and Wen [204] that realize doubled non-Abelian

Chern-Simons theories. By a combination of duality and perturbative arguments, we

show that KZ scaling in the generalized sense of Ref. [62] holds for various observ-

ables even though the canonical KZ signature of a density of topological defects is not

meaningful. We further provide strong arguments that the late time dynamics in the

scaling regime exhibits a slow coarsening of the string-net that is condensed in the

starting topologically ordered state. To our knowledge, this is the first treatment of a

quantum coarsening regime in the dynamics of an isolated quantum system. As the

extended string-nets are central to the topological character of the starting phase2,

their slow decay outside the phase is a (potential) signature of the physics of the

parent phase. In the same spirit, we find that the exponentially small energy split-

ting of topologically degenerate ground states on closed manifolds can be amplified

in the KZ process to a splitting linear in the system dimension. The restriction to

the scaling limit always brings simplification as particular gapped degrees of freedom

2Sensitivity to the topology of the lattice manifold requires extended degrees of freedom like
strings. The strings form nets as the phase is a liquid.
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are, at worst, dangerously irrelevant. That is, they do not affect the scaling regime

but do alter the asymptotically long time behavior of the KZ process.

The most relevant precursor to our work is found in the cosmology literature in the

papers of Rajantie and Hindmarsh [142, 263]. They studied the non-equilibrium dy-

namics of ramps through the finite temperature phase transition in the non-compact

Abelian Higgs model; their protocol moves between the gapless Coulomb phase with

gapped matter to the fully gapped Higgs phase. However, there are three important

differences. First, their work involves finite temperature in an essential way. The zero

temperature limit of their protocol would involve exciting the system in the gapless

phase even before the transition is reached. Second, the non-compactness of their

gauge field makes the physics of their Higgs phase qualitatively different from that

of the compact gauge models considered by us. This difference is quite visible in

our choice of observables. Third, we work on the lattice in the “electric flux” repre-

sentation, a natural choice in the condensed matter setting, while they work in the

continuum with the vector potential. Thus our discussion of string-net coarsening has

no analog in their formulation. In the condensed matter literature, ramps across topo-

logical transitions [85] in (1+1)D and sudden quenches in one of our model systems,

the perturbed toric code, have been studied before [261, 302]. The sudden quenches

are in a completely different limit from the slow ramps we study here as they inject

a large amount of energy into the system. Finally, low temperature spin ice exhibits

topological order in a classical limit [56] and its dynamics following quenches is dom-

inated by monopoles of the gauge field. However in this case, non-universal lattice

effects turn out to dominate the long time behavior [57] .

We turn now to the contents of the chapter. We begin in Sec. 11.2 by reviewing the

phase diagram of the Z2 gauge theory coupled to matter and describing the transitions

out of its topologically ordered phase. Readers literate in the canon of topological

phases can skim this section for our notation. Section 11.3 describes the KZ ramp
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across the pure matter sector of the Z2 theory which has a conventional symmetry-

breaking transition. This section contains a new analysis of coarsening in the (2+1)D

transverse field Ising model and summarizes our previous understanding of KZ. In

11.4, we discuss our results on the KZ scaling functions and string-net coarsening

for ramps in the pure gauge sector of the theory, which has a confinement transition

without a local order parameter. We then generalize the scaling theory to a ramp

across an arbitrary point on the critical line in the phase diagram in 11.5. In Sec. 11.6,

we turn to generalizations of these results to phases with non-Abelian topological

order; specifically, we discuss a particular transition from the SU(2)k ordered phases.

We end with a discussion of generalizations to other theories.

11.2 Review of the phase diagram of the Z2 Gauge

Theory

The phase diagram of the (d + 1) dimensional Z2 gauge theory with matter [112]

contains a topologically non-trivial (deconfined) phase and a topologically trivial

(confined-Higgs) phase. The topological order in the deconfined phase is described by

the BF theory [132]. We work in d = 2 for which the Z2 theory is precisely (the topo-

logically ordered) Kitaev’s toric code with perturbations [178]. We start by reviewing

the key features and the excitation spectrum of the toric code. We then discuss two

perturbations that drive a continuous transition to a topologically trivial phase.
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11.2.1 The perturbed toric code

The toric code [178, 176] is defined in terms of spin-1/2 degrees of freedom that live

on the links l of a 2D square lattice:

HTC = −K
∑

P

BP − ΓM
∑

s

As

≡ −K
∑

P

∏

l∈∂P
σzl − ΓM

∑

s

∏

l:s∈∂l
σxl (11.1)

where the As and BP are “star” and “plaquette” operators. s and P denote the

sites and elementary plaquettes of the lattice, while ∂P and ∂l are the boundaries

of plaquettes and links. HTC can be rewritten as a gauge theory with matter by

identifying the σl variables as the gauge degrees of freedom, and introducing new spin

1/2 ‘matter’ variables, τs, on the sites of the lattice. Upon restricting the expanded

Hilbert space to the ‘physical’ subspace of gauge-invariant states

Gs|ψ〉 = |ψ〉, Gs = τxs
∏

l:s∈∂l
σxl , (11.2)

the toric code Hamiltonian (11.1) is equivalent to the gauge-invariant Hamiltonian:

H0 = −K
∑

P

∏

l∈∂P
σzl − ΓM

∑

s

τxs . (11.3)

Note that Gs defines a set of local symmetries at each site since [H0, Gs] = 0 ∀ s.

In the x basis of the spin operators, it is useful to think of τ and σ as the electric

‘charges’ and ‘fluxes’ in the theory respectively: τxs = −1 (+1) if an electric charge is

present (absent) at site s, while σxl = −1 denotes the presence of electric flux on link

l. In this language, we recognize the gauge-invariant condition (11.2) as the lattice

Z2 version of Gauss’s law. In the conjugate z basis, the operator BP ≡
∏

l∈∂P σ
z
l

measures the magnetic flux through the plaquette P .
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The model is exactly solvable as both terms in H0 commute with each other

and the gauge constraint Gs. The ground state is charge-free and vortex-free: a

simultaneous +1 eigenstate of τxs and BP for all s, P . As the ground state is free of

charge, it is a loop gas of electric flux. That is, it is an equal amplitude superposition

of configurations where links with σxl = −1 form closed loops. The degeneracy of

the ground state manifold depends on the topology of the lattice; on the torus, it is

four-fold degenerate. The four ground states cannot be distinguished locally. They

are labelled by the eigenvalues ±1 of the non-local Wilson loop operators W nc ≡
∏

l∈Cnc σ
z
l along the two distinct non-contractible loops Cnc on the direct lattice.

The elementary excitations of the model are gapped and are of two types: e and

m. e denotes the presence of electric charge on site s, while m is a magnetic vortex

on plaquette P characterized by BP = −1. e and m are individually bosonic, but

have mutual semionic statistics. The non-local string operators

W e(s, s′) =
∏

l∈C:
s,s′∈∂C

τ zs σ
z
l τ

z
s′ , Wm(s̄, s̄′) =

∏

l∈C̄:
s̄,s̄′∈∂C̄

σxl (11.4)

defined respectively on the curves C and C̄ on the direct and the dual lattice, create

a pair of electric charges and vortices at their ends as shown in Fig. 11.1.

H0 is robust to small local perturbations and extends to a topological phase.

Nevertheless, a strong enough perturbation will eventually drive a transition into a

trivial phase. The toric code Hamiltonian perturbed by transverse fields is H =

HTC −
∑

l Γσ
x
l + Jσzl ; both perturbations drive continuous transitions to trivial

(spin-polarized) phases when made large. In the gauge-invariant formulation of the

Z2 gauge theory with matter, the perturbed Hamiltonian takes the form

−H = K
∑

P

BP + ΓM
∑

s

τxs + J
∑

l

σzl
∏

s∈∂l
τ zs + Γ

∑

l

σxl . (11.5)

226



�x
l = �1

�x
l = 1

= �1⌧x
s

BP= �1

�z
l = 1

�
z l
=
�1 Wm

W e

Figure 11.1: A section of the toric-code lattice with operators in the magnetic (left)
and electric (right) bases. Matter (τ) and gauge (σ) variables are located on the
sites and links respectively. The Wm operator (11.4) flips a string of σz variables and
creates a pair of magnetic vortices at its endpoints, while the W e operator flips spins
in the x basis to create a pair of electric charges linked by electric flux.

The phase diagram of this theory was explained in detail in the seminal paper by

Fradkin and Shenker [112] and has more recently been confirmed in several numerical

studies [94, 303, 313, 301, 329]. We will now briefly review this model in different

parameter regimes.

11.2.2 Pure matter theory (Γ = 0)

For Γ = 0, the gauge degrees of freedom are static and frozen into a vortex-free

configuration in the ground state sector. It is therefore convenient to diagonalize H

in the gauge-variant subspace where σzl = 1 for all l and project the eigenstates to

the gauge-invariant subspace afterwards. The Hamiltonian then maps to the (2+1)D

transverse field Ising model (TFIM) for the matter spins:

HTFIM = −J
∑

〈ss′〉
τ zs′τ

z
s − ΓM

∑

s

τxs . (11.6)

On tuning J , the TFIM undergoes a conventional ‘Higgs’ phase transition from a

paramagnetic phase to a symmetry-broken ferromagnetic phase. In a complementary

view, the static electric excitations e defined at the toric code point (Γ = J = 0)
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acquire dynamics when J 6= 0 and eventually condense at a critical value of J . The

transition is in the 3D Ising universality class and is detected by the local order

parameter, 〈τ z〉 in the gauge-variant subspace. In the gauge-invariant subspace, τz

maps on to a non-local string operator.

After projection, the state with {σzl = 1} is the vortex-free configuration in the

topological sector defined by the Wilson loop W nc = 1 for both non-contractible

loops on the torus. This choice maps to a TFIM with periodic boundary condi-

tions in both directions of the torus; the remaining three topologically inequiva-

lent vortex-free configurations generate TFIMs with different boundary conditions

(periodic-antiperiodic etc.). The four-fold degeneracy of the topological phase van-

ishes in the Higgs/ferromagnetic phase.

11.2.3 Pure Gauge Theory (J = 0)

In this case, matter is static. The ground state is in the charge-free sector (τxs = 1),

and the Hamiltonian for the gauge variables in this sector is:

HZ2 = −K
∑

P

BP − Γ
∑

l

σxl . (11.7)

When Γ/K is small, the gauge variables are weakly fluctuating and the elementary

excitations are well-described as vortex pairs. At some critical Γ/K, the vortices

condense and the gauge variables strongly fluctuate past this point. This transition

cannot be diagnosed by a local order parameter. Instead, the vortex condensate phase

is marked by the vortex pair creation operator, 〈Wm〉 6= 0 for vortices separated by

long distances. In the conjugate electric field basis, flux loops become costly as Γ is

increased; hence the transition is from a topological loop gas phase at the toric code

point to a phase in which flux loops become confined.
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Figure 11.2: T = 0 phase diagram of the Z2 theory in d = 2 dimensions. The matter
and gauge axes are dual, and the Higgs and charge confined phases are smoothly
connected.

In a different language, the transition is understood as a deconfinement-

confinement transition for the static electric charge [112] and is diagnosed by

the free energy cost of creating a pair of (infinitely separated) charges. The cost is

finite in the deconfined phase, but infinite in the confined phase, and is equivalent to

the change in behavior of the expectation of the contractible Wilson loop:

W (L) ≡
〈∏

l∈C
σzl

〉
(11.8)

from a perimeter law (W (L) ∼ exp(−L)) to an area-law (W (L) ∼ exp(−L2)). C is a

contractible loop and L is its perimeter.

In d = 2, the Z2 Ising gauge theory is self dual [323, 187]. Thus the pure gauge

theory also maps to a (2+1)D TFIM and the confinement-deconfinement transition
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belongs to the 3D Ising universality class. The details of this duality are explained

in Ref. [187], and have been summarized in Fig. 11.3. We emphasize that despite the

duality, the transition is not described by a local order parameter, as will be even

clearer in Sec. 11.6.

11.2.4 The full phase diagram

The full T = 0 phase diagram of the Ising gauge theory in (2+1)D is shown in

Fig. 11.2. Fradkin and Shenker [112] have shown that the confinement/Higgs tran-

sitions are stable on moving away from the pure gauge/matter axes. Further, the

Higgs and confined phases are smoothly connected. However the diagnostics previ-

ously discussed, like the Wilson loop, no longer differentiate between the two phases.

In a recent paper [126], Gregor et. al. have shown that an appropriately defined

line tension, related to the Fredenhagen Marcu [113, 114] order parameter studied

by lattice gauge theorists, can be used to diagnose the transition everywhere in the

phase diagram. We will use this quantity in combination with the topological ground

state degeneracy to study ramps across generic points on the critical line in the phase

diagram.

11.3 Kibble Zurek I - Ramp across the Higgs tran-

sition

We begin by reviewing the Kibble-Zurek (KZ) formalism for linear ramps (a Trans-

Critical-Protocol in the parlance of Ref. [62]) across the conventional 3D Ising tran-

sition along the pure matter line at Γ = 0 in Sec. 11.3.1. The late time evolution

of the system is naturally described as “coarsening”: a dynamical process previously

discussed only in classical systems. We take the first steps to apply these ideas to an

isolated quantum system in Sec. 11.3.2.
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11.3.1 Scaling theory: Review

The system is in equilibrium in the paramagnetic phase at t = −∞ and is driven

to the ferromagnetic phase by changing the transverse field ΓM(t) linearly: δ(t) ≡

(ΓM(t) − ΓMc)/ΓMc = −t/τ . The critical point (CP) is at δ = 0 and τ is the ramp

time. The response of the system to slow ramps is characterized by three chronological

regimes: adiabatic evolution at early times, ‘critical’ or diabatic evolution near the

CP, and a late-time regime that we argue to be domain-growth.

At early times, the system is far from the CP and evolves adiabatically. Critical

slowing down implies that the instantaneous correlation time diverges as ξt ∼ |ΓM −

ΓMc|−νz near the CP and adiabaticity must break down before the CP is reached. ν

and z are respectively the correlation length and dynamic exponent with ν = 0.627

and z = 1 in this case [107] . The system falls out of equilibrium at the KZ time,

t = −tK, when the time remaining to reach the critical point, tK, becomes equal to

ξt:

ξt(−tK; τ) = tK ⇒ tK = τ
νz
νz+1 . (11.9)

At t = −tK the evolution of the system become diabatic and, to zeroth order, the

system remains frozen until it emerges on the other side of the CP at t = tK. The KZ

time, tK, defines a KZ length, lK = t
1/z
K which is the correlation length at the time

the system falls out of equilibrium. Finally, for t� tK, we get coarsening.

Recently, Chandran et. al. [62] formulated a scaling limit in which the physics

described above becomes universal for a given pairing of a critical point and a ramp

protocol. This limit is defined as τ →∞ with time and length scales measured in units

of the diverging scales tK and lK. As δ(tK) → 0 in this limit, the out-of-equilibrium

response of the system is completely controlled by the critical point. The content of

the scaling theory is not just the critical exponents, previously discussed by Kibble
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and Zurek, but also scaling functions for various physical observables. For example,

the equal-time two-point correlation function of the order parameter defined as:

〈τ zs (t)τ zs′(t)〉τ ≡ Gττ(|s− s′|, t; τ), (11.10)

has the KZ scaling form

lim
τ→∗∞

l2∆
K Gττ(x, t) = Gττ

(
x

lK
,
t

tK

)
(11.11)

where τ →∗ ∞ is defined as the limit τ → ∞ with x
lK

and t
tK

held fixed, x is the

distance between sites s and s′, and ∆ is the scaling dimension of the operator τ z. ∆

is equivalent to β/ν, and is numerically found to be 0.518 in the (2+1)D TFIM [107]

.

The scaling function should asymptote to the correct equilibrium form in the limit

t/tK → −∞ with x/ξ(t; τ) fixed

Gττ
(
x̂, t̂
)
∼ t̂2ν∆Geqττ

(
x̂t̂ν
)

(11.12)

where x̂ and t̂ are defined as x/lK and t/tK respectively, Geq is the equilibrium scaling

function, known to decay exponentially in the Ising model, and x̂t̂ν = x/ξ(t). For the

rest of this article, the hat superscript will be reserved for the variables scaled by lK

or tK, depending on their units.

A full description of the diabatic regime, previously termed ‘critical coarsen-

ing’ [36], is much harder. The difficulty surpasses static computations in the analogous

quantum critical regime as it involves real time.

As the scaling content at late times has not appeared in the literature before, we

devote the next subsection to it. We can also investigate the scaling functions for

thermodynamic quantities like the excess energy density above the ground state [83],
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q, and the entropy density [62, 246] s:

q(t; τ) ∼ l−dK t−1
K Q(t̂) (11.13)

s(t; τ) ∼ l−dK S(t̂) (11.14)

Both quantities tend to zero as t/tK → −∞ when the evolution is adiabatic and

become non-zero when the system falls out equilibrium. The evolution at late times

is therefore best understood through the finite excess energy density (q > 0) or finite

temperature phase diagram.

11.3.2 Coarsening

We now address the late time dynamics of the KZ ramp. It is generally believed

that a classical system quenched to an ordered phase with multiple vacua undergoes

coarsening, whereby each local broken-symmetry region grows in time and the sys-

tem is asymptotically statistically self-similar on a characteristic length scale, lco(t).

Put another way, the two-point function heals to its equilibrium value on the scale ξ

within each domain, and is exponentially suppressed between domains, each of grow-

ing length lco � ξ. In the late time regime, dynamical scaling is expected to hold

when there are no growing scales competing with lco. For more details, see Ref. [43].

We now generalize this idea to the KZ ramp in the quantum TFIM. For simplicity,

let us stop the ramp in the ordered phase at some t/tK = t̂s � 1, while continuing

to measure time and length on the scales set by tK, lK. The superscript s denotes

stopping. The system initially appears disordered. At infinitely long times however,

we expect that the system is thermal and ordered, as the (2+1)D TFIM is not known

to be integrable. Further, we expect the approach to equilibrium to be through

domain growth or coarsening, driven by the lack of long range order at late times.

The system then locally breaks the symmetry but is globally disordered, with long
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domain walls past the growing length scale, lsco(t)� lK. Assuming local equilibration,

the physics of coarsening can be captured in a hydrodynamic theory with two slow

modes: the non-conserved, scalar order parameter and the conserved energy density3.

We shall call this Model C in a slight abuse of language (properly it refers to the theory

with thermal noise included [143]). As t̂→∞ , we therefore predict that the system

obeys the dynamic scaling hypothesis, that is, it looks self-similar on the scale of a

growing length lsco(t; τ) and that Gsττ has the late time form:

Gsττ
(
x̂, t̂
)
∼ (t̂s)2ν∆Gcoττ (x̂lK/l

s
co) , (11.15)

where lsco(t; τ) = lK

(
t

tK

)1/zd

and zd = 2.

The value of the dynamic exponent, zd, quoted above is only known numerically [186,

185]. Gcoττ is a scaling function that can also be computed within Model C [186, 185,

339, 215] .

The above discussion hinges on two key assumptions. First, the infinite time state

of the system should have long-range order, that is, the late time evolution should be

in the ordered phase. More precisely, we require the excess energy density (11.13) at

the stopping time q(t̂s; τ) to be smaller than critical energy density qc(t̂
s; τ), below

which the system will be ordered in equilibrium. The dominant contribution to q (at

t̂s) is from the defect density on the scale lK frozen in at t ≈ tK. Assuming that these

defects evolve adiabatically for t > tK, we may conservatively estimate q to scale as

the single-particle gap 1/ξ(t̂s; τ)z. As promised, this density is much smaller than the

instantaneous critical density, qc ∼ 1/ξd+z:

q

qc
∼ ξd ∼

(
1

t̂s

)νd
� 1. (11.16)

3The momentum density appears as an additional conserved quantity in this field theory. It is
our current belief that this does not change the relevant power in the coarsening regime, but we are
investigating this.
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For all t̂ > t̂s, the energy of the system is conserved and q and qc do not change in

time. Thus, the system evolves in the ordered phase at late times.

The second assumption is that of local equilibration over hydrodynamical time-

scales. In Model C, the latter is the time-scale for domain growth by lK. It can be

inferred from Eq. (11.15) to be δtco ∼ tK t̂
1−1/zd . On the other hand, the time-scale

for local equilibration processes on the scale lK is set by tK. The validity of Model

C as the late-time dynamical description relies on the equilibration time being much

smaller than δtco. As the inequality tK � δtco is parametrically controlled by t̂, the

coarsening behavior in Model C is a better and better approximation to the quantum

dynamics as t̂→∞.

Finally, in the original KZ problem (where we don’t stop the ramp), the late time

evolution is also in the finite-temperature ordered phase as the relation q/qc � 1

holds for every t/tK � 1. However, the continuously changing parameter in the

Hamiltonian affects the local equilibration argument in two important ways. First,

the characteristic size of the domains grows at a slower rate:

lco(t; τ) = lK

(
t

tK

)θ
where θ = ν

(
z

zd
− 1

)
+

1

zd
. (11.17)

In the (2+1)D TFIM, θ = (1 − ν)/2 and is smaller than 1/zd. This slowing down

can only help in the argument given above. The second effect is that the single

particle gap ∆ grows as 1/tK(t/tK)νz at late times. This, however, increases various

scattering times (and consequently various equilibration times) in the problem and

the applicability of hydrodynamics here becomes a delicate affair. In Appendix 11.A,

we argue that the process that drives coarsening and increases entropy involves the

interaction of the long domain walls with the bulk quasiparticles within each domain.

As the bulk quasi-particles scatter off the walls parametrically many times before the

system parameters are changed, coarsening can at least self-consistently be justified.

235



We therefore conjecture that the two point function as t̂→∞ holding x/lco(t) fixed

obeys dynamic scaling:

Gττ
(
x̂, t̂
)
∼ t̂2ν∆Gcoττ (x̂lK/lco) . (11.18)

In this process, the entropy density increases weakly in time. The late time

asymptotes reflect this:

Q(t̂) ∼ q0t̂
νz + q1t̂

νz−θ (11.19)

S(t̂) ∼ s0 − s1t̂
−θ.

The leading terms in S would be present even if the evolution were adiabatic. The

sub-leading term is the thermodynamic signature of coarsening. From this point,

every time we invoke results from coarsening, the reader should keep in mind the

subtleties presented in this section.

11.4 Kibble Zurek II - Ramp across the confine-

ment transition

We now ramp across the pure gauge theory Eq. (11.7) by tuning Γ. In this case, the

transition is from a topologically ordered deconfined phase to a confined one, and

there is no description in terms of a local order parameter. Nevertheless, we will

now show that the KZ mechanism for Landau transitions discussed in the previous

section can be generalized to these transitions. Additionally, the loops and strings

characterizing the topological phase (string-nets) will coarsen.

Our main tool is the duality in (2 + 1)D between the pure gauge theory and the

TFIM summarized in Fig. 11.3. Importantly for us, the presence of electric flux on a
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Figure 11.3: Table summarizing the duality between the pure Z2 gauge theory (11.7)
and the TFIM in d = 2. Dark and light lines denote the direct and dual lattice
respectively.

link (of the direct lattice) maps to a domain wall between the TFIM spins (on the dual

lattice), while the vortex operator BP maps to the dual transverse field. The duality

also ensures that a finite temperature confined phase exists, and that coarsening is

described by the hydrodynamics of Model C.

For specificity, we begin the ramp at the deconfined toric code point in one of the

ground state sectors. The ground state is a loop gas of the electric flux lines in the

σx basis. By duality, these are the domain walls of the paramagnetic phase of the

TFIM. The system falls out of equilibrium in the deconfined phase before it is taken
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through the transition, with a network of loops of minimum size lK. In the confined

phase, flux loops map to the costly domain walls of the dual ferromagnetic phase.

Post the diabatic regime in the confined phase, this network of loops (string-nets) is

diluted (average size increases as lco) as the system coarsens. More generally, we can

imagine string-nets being diluted in a generic topological theory and we will show

some examples of this in Section 11.6.

As before, energy conservation requires the decreasing electric flux density to

be compensated for by an increasing bulk energy density. Essentially, the system

arrives in the confined phase (which is a vortex condensate) with a greater electric

field density and a smaller magnetic vortex density as compared to the instantaneous

ground state. The subsequent evolution through coarsening increases the typical size

of the electric flux loops to lco(t), thereby decreasing the electric field density and

increasing the bulk energy density of the vortex condensate.

Next, the two-point correlator that detects long-range order in the dual TFIM,

〈τ zs̄ τ zs̄′〉, maps to the vortex pair creation operator (11.4), 〈Wm(s̄, s̄′)〉 that detects

vortex condensation. As the condensed phase is also a confining phase for charge,

a non-zero value of 〈Wm〉 for long strings detects charge confinement. The scaling

form for 〈Wm〉 is given by Eq. (11.11), and its asymptotic behavior is identical to

that of the two-point function discussed in the pure-matter theory. In particular, in

the coarsening regime, the dual TFIM is ordered on length scales less than lco(t).

Correspondingly, 〈Wm〉 is also non-zero on scales shorter than lco(t) but decays ex-

ponentially on longer length scales. Thus, the non-local string operator 〈Wm〉 probes

the crossover scale from confinement to deconfinement as a function of time. Fig.

11.4(a) shows the scaling for 〈Wm〉.

Finally, we can consider an interesting observable that we did not discuss in the

TFIM. This is the Wilson loop (11.8), W (R, t; τ) on a curve of radius R. Were the

evolution to be adiabatic, W (R, t; τ) for large R would obey a perimeter law when
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Figure 11.4: An illustration of two scaling functions showing adiabatic behavior in
the deconfined phase at early scaled times (black) and coarsening behavior in the
confined phase at late scaled times (red). The crossover on the scale l̂co ≡ lco/lK in
the red curves is a signature of string-net coarsening. The hat superscript denotes
scaled variables like t̂ = t/tK etc. (a) The scaling function of the string operator that
creates a pair of vortices at ŝ and ŝ′ (〈Wm〉 defined in Eq. (11.4)) as a function of
the scaled vortex separation |ŝ− ŝ′|. This operator is dual to the two-point correlator
〈τ zs τ zs̄′〉 in the TFIM. (b) The logarithm of the scaling function of the Wilson loop as

a function of the scaled radius illustrating Eq. (11.20). The time dependence of ξ̂
and l̂co is respectively t̂−ν and t̂θ.

t < 0 and an area law when t > 0. In the KZ scaling limit, the scaling of the Wilson

loop takes the form W (R, t; τ) ∼ W(R̂, t̂), where R/lK = R̂. Its asymptotic behavior

is:

W(R̂, t̂) ∼





exp(−R̂ t̂ν), if t̂� −1

exp(−(R̂ t̂ν)2), if t̂� 1 and R̂� t̂θ

exp(−(R̂/t̂θ)), if t̂� 1 and R̂� t̂θ.

(11.20)

These scaling forms follow simply from the picture of adiabatic evolution when t̂ �

−1 and a growing length lco(t) separating confinement from deconfinement when

t̂ � 1. The Wilson loop therefore also probes the crossover scale from confinement

to deconfinement as a function of time. Fig. 11.4(b) shows the scaling of the Wilson

loop.
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11.5 Kibble Zurek III - Ramp across a generic

transition in the Z2 theory

We will now see how the discussions of the previous two sections can be generalized

to ramps crossing any critical point in the full Z2 phase diagram. First, consider

moving off the pure gauge line by introducing a small, but non-zero J . The coupling

to matter is irrelevant to the T = 0 transition; hence, the confinement-deconfinement

transition in Fig. 11.2 persists for non-zero J and remains in the same universality

class. Since the gap to charge excitations does not close on making J non-zero, we

can re-write the Hamiltonian as one with no gauge-matter coupling (to any fixed

order in J) through a canonical unitary transformation. The transformation defines

“dressed” charge and gauge operators − in the dressed variables, the ground state is

charge-free and ∆c is the non-zero gap to charge excitations.

As we heat the system in the process of the ramp, we also need to consider the

finite temperature phase diagram and the excited spectrum when J 6= 0. Although

the ground state is (dressed) charge-free, the excited states have an exponentially

small density of charge, e−∆c/Teff , at any effective temperature Teff corresponding to

an excess energy density q. The presence of charge at finite temperatures is extremely

significant for the late-time coarsening picture for two reasons. First, it destroys the

finite temperature confined phase at any non-zero J , without which a coarsening de-

scription is not meaningful. Synergistically, a finite density of charge implies that the

electric field lines naturally end somewhere. Thus, the pictures of flux-loops/domain

walls coarsening are no longer sensible at the longest length scales.

Fortunately, the Kibble-Zurek scaling limit saves us from the problems raised

above. This is because the ratio q/qc goes to zero as t/tK → ∞ (Eq. (11.16)) or

equivalently, the effective local temperature, Teff , computed from q goes to zero in

the scaling limit (Teff is well-defined as the system is locally in equilibrium. See
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Sec. 11.3.2). ∆c, on the other hand, remains finite. This implies that the ratio

of the average distance between charges to the KZ length, e∆c/Teff/lK, is formally

infinite in the scaling limit. Thus, while the dressed charges modify the true long-

time behavior by ending coarsening, the scales on which they do so lie outside the

KZ scaling regime: in this way, the coupling to matter is a dangerously irrelevant

variable in the KZ problem (in the scaling limit).

While we can write scaling functions for dressed observables, the results are not

very elegant since the Hamiltonian dependent dressed operators are different at dif-

ferent points in time. A crisper solution is to use the line tension [126]/ Fredenhagen-

Marcu (FM) order parameter [113, 114] alluded to previously. This is defined as

R(L) =
W1/2(L)√
W (L)

=
〈τ zs (

∏
l∈C1/2

σzl )τ
z
s′〉√

〈∏l∈C σ
z
l 〉

, (11.21)

where C is a square loop of side L and C1/2 is the open rectangle of sides L and L/2

obtained by cutting C in half, s, s′ are the endpoints of C1/2 and W is the contractible

Wilson loop.

As L → ∞, R(L) is zero in the deconfined phase and non-zero otherwise. In

this way, R(L) acts as a test of long range “order”, and appropriately generalizes the

two-point spin correlator Gττ from the pure matter theory (11.10), and the vortex

pair creation operator Wm (11.4) from the pure gauge theory. In fact, in the gauge-

variant subspace {σzl = 1} on the pure matter line, R(L) exactly reduces to Gττ .

The scaling form and asymptotes of R(L) therefore follows from Eq. (11.11) and the

discussion below it. Of course, by duality, an identical analysis can be carried out by

perturbing away from the pure-matter line as long as we interchange the gauge and

matter degrees of freedom.
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11.6 Extension to generalized Levin-Wen models

In this section, we generalize the Kibble-Zurek problem to transitions in which topo-

logical order is reduced as opposed to destroyed. Specifically, we consider transitions

out of a broader, non-Abelian, class of topological phases in lattice spin models of the

Levin-Wen [204] type. Along special lines in the phase diagram, we show that the dy-

namics and scaling properties are exactly equivalent to those of the Z2 gauge theory.

We identify analogous observables and the coarsening degrees of freedom of the string

net that is condensed in the starting topological phase. However, we will see that the

mapping of the dynamics is not an equivalence. We then consider perturbations away

from this line, finding that as for the Z2 gauge theory, in the scaling limit these other

perturbations do not alter the coarsening dynamics, but can be either irrelevant or

dangerously irrelevant perturbations.

We restrict our discussion to the subset of SU(2)k models whose topological order

is that of a doubled, achiral, Chern-Simons theory with gauge group SU(2) and a

coupling constant of k in appropriate units, though the construction of Ref. [204] is

more general. We also restrict to particular transitions that change the topological

order by condensing bosonic vortex defects; the transitions we consider here were

shown [49] to be dual (in a certain limit) to the TFIM.

11.6.1 Levin-Wen Hamiltonians with Ising transitions

The SU(2)k models we study live in a Hilbert space built from tensoring a finite set

of spin variables on each link of a honeycomb lattice, σl ∈ {0, 1
2
, 1, ..., k

2
}. These

are analogous to the set of possible electric fluxes (σxl = ±1) in the Z2 gauge theory.

The idealized Levin-Wen Hamiltonians are similar in spirit to the toric code, and are
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constructed from a set of commuting projectors

HLW = −K
∑

P

PP − ΓM
∑

s

Ps (11.22)

where P represents a plaquette, and s a site. These models can be viewed as deforma-

tions of lattice gauge theories with a continuous gauge group. They are ‘deformed’ in

the sense that their representation theory is truncated, even though the gauge group

is not discrete. In our context, a lattice SU(2) theory would have electric fluxes cor-

responding to all allowed spin values 0, 1/2, 1, ..., while the models in question have

a maximum spin k/2. (We refer to the link spins as ‘electric flux’ though, more ac-

curately, they are the representations of the lattice gauge/quantum group). Instead

of describing our analysis for general values of k, we will now specialize to k = 2 in

the interests of pedagogical simplicity and return to comment on the generalization

subsequently.

We now discuss the detailed form of the Hamiltonian (11.22) for SU(2)2. The

vertex projector Ps penalizes violations of angular momentum conservation, analogous

to the Gauss’s law constraint Gs = 1 in the Z2 theory. If the three links entering a

vertex have spins i, j and l, angular momentum conservation requires l ∈ i× j. The

rules for adding angular momentum have to be modified to be consistent with the

truncation, however. For the SU(2)2 model, the result is [40]:

Ps| i j
k

〉 =





1 (0, 0, 0) (0, 1, 1)
(

1
2,

1
2, 1

) (
1
2 ,

1
2, 0

)

0 otherwise

(11.23)

where it is understood that the eigenvalue of Ps is independent of interchanging the

spins on the three links entering the vertex.
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The plaquette term PP projects onto states in which P has no magnetic flux,

and is written as a superposition of “raising operators”: PP = 1
D (1 +

∑k/2
σ=1/2 aσB

σ
P ),

where Bσ
P raises all spins on the plaquette P by σ in the truncated spin space. By

“raising” , we mean a combination of raising and lowering angular momenta in the

truncated spin space. D is the total quantum dimension, equal to 2 here, while the

coefficients aσ depend on the quantum dimension [204] of the spin representation σ.

In SU(2)2, they are a0 = 1, a1/2 = −
√

2, a1 = 1. Bσ
P raises all spins in P by raising

the spin on each link l ∈ ∂P . The action of Bσ
l on a link l with spin i ∈ {0, 1/2, 1} is:

Bi
l |0〉 = |i〉

B
1/2
l |1/2〉 ∝ |0〉 ± |1〉 B

1/2
l |1〉 ∝ |1/2〉

B1
l |1/2〉 ∝ |1/2〉 B1

l |1〉 ∝ |0〉

The numerical coefficients are chosen such that the amplitude for creating any con-

figuration with a 0-eigenvalue under Ps is 0, ensuring that the vertex and plaquette

projectors commute. Their precise value is related to the 6j symbols of the quantum

group SU(2)2, but we will not require their detailed form here. Interested readers

can consult Ref. [204] for more details.

As PP and Ps commute, the spectrum of the Hamiltonian can be determined

exactly. The ground state is a generalization (a string-net) of the loop gas ground state

of the toric code, though there can be relative sign differences between terms in the

Levin-Wen ground state wavefunction. As in the toric code, the excited eigenstates

of (11.22) consist of “matter” excitations of energy ΓM , and “vortex” excitations, of

energy K. In the SU(2)2 model there are anyonic spin-1/2 charges, fermionic spin-1

charges, and spin-1/2 or spin-1 vortices, both of which have bosonic statistics. The

spectrum can be made to correspond exactly to that of the doubled SU(2)2 Chern-
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Simons theory. Accordingly the topological ground state degeneracy is known [144]

to be 9, as in the doubled Chern-Simons theory.

We can drive a phase transition in our system by perturbing the model (11.22)

with transverse fields which create pairs of charges or vortices, as we did for the toric

code by adding σxl and σzl . The vortex excitations have bosonic statistics and hence

transverse fields which create vortex pairs can drive a transition to a vortex condensed

phase in which string-nets are confined. On the other hand, the analogue of the Higgs

transition is not evident for our problem as both charges are non-bosonic.

To drive the Ising transition that we are interested in, we add a transverse field

which will condense spin-1 vortices. The Hamiltonian that we will tune through this

transition is

HSU(2)2
= −K

∑

P

1

2
(1 +B1

P )− ΓM
∑

s

Ps

−K
∑

P

1√
2
B

1/2
P − Γ

∑

l

(−1)2σl (11.24)

where we have separated PP into operators that “raise” spins by integer and half-

integer amounts, and added a transverse field perturbation, Γ(−1)2σl . The transverse

field creates a pair of spin-1 vortices on the plaquettes adjacent to l, and has eigenvalue

1 on integer spin links, and −1 on half-integer spin links. Because the transverse field

term squares to the identity (and all vortex creation operators commute), the vortices

are Ising like.

On every plaquette P and site s, the eigenvalues of B1
P and Ps are conserved,

since these operators commute with HSU(2)2
. Thus, we can consider the transition

engendered by varying the ratio K/Γ in the subspace of the Hilbert space where the

conditions

Ps|Ψ〉 = |Ψ〉, B1
P |Ψ〉 = |Ψ〉 (11.25)
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are always satisfied. In this subspace, the transition can be mapped onto the transition

in the pure Z2 gauge theory discussed in Sect. 11.2.3, and is therefore in the 3D Ising

universality class as discussed in Ref. [49]. Here we give a different derivation of this

result which focuses on the ground state wavefunctions and is better adapted to our

purposes in this chapter.

To understand the mapping between HSU(2)2
and HZ2 (11.7), notice first that

the condition Ps|ψ〉 = |ψ〉 ensures that we are always working in the “charge-free”

sector where the (deformed) angular momentum is conserved at each vertex. This,

together with Eq. (11.23), stipulates that we only need to consider configurations

where the number of half-integer spins entering each vertex is even - or equivalently,

configurations in which half-integer spins form closed loops. Similarly, in the absence

of charge in the pure Z2 theory (11.7), the gauge constraint Gs in Eq. (11.2) ensures

that links with electric flux (σx = −1) form closed loops. The Levin-Wen transverse-

field operator (−1)2σl assigns an energy penalty to the spin 1/2 edges that form these

loops, similar to the action of the transverse-field term σxl on links with electric flux in

the Z2 theory. Thus both models describe a transition in which loops (of half-integer

spin variables in the Levin-Wen case or σx = −1 variables in the Z2 gauge theory

case) become confined, and vortices become condensed as Γ/K increases.

There is, however, a qualitative difference between the operators
∏

l∈∂P σ
z
l and

B
1/2
P , both of which change the number of loops in a given configuration. While σzl

simply flips the spin on the link l, the operator B
1/2
P maps a spin 0 or 1 link to a spin

1/2 link, but a spin 1/2 link to a superposition of a link in the state 0 and a link in

the state 1. Thus one might worry that the two operators generate the same set of

configurations (after identifying s = 0, 1 with σx = 1, and s = 1/2 with σx = −1),

but with different statistical weights.

We show in Appendix 11.B that this is in fact not the case. Specifically, we prove

that for any Γ, the ground state wave-function of either model can be expressed in
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the form

|Ψ〉 =
∑

{l}
βΓ
{l}|Ψ{l}〉 (11.26)

where {l} denotes a set of links on which σl = 1/2 in the Levin-Wen model restricted

to (11.25), or σxl = −1 in the pure Z2 gauge theory. Crucially, we find that β{l}

is the same for each set {l} in both models. Operators in the Levin-Wen model

which commute with the conditions (11.25) are either diagonal in the vortex basis, or

diagonal in the spin basis and sensitive only to the spin on each edge modulo 1. The

expectation value of any such operator is therefore identical to that of its Z2 analogue,

cementing the equivalence of the two models.

We conclude that within the sub-sector (11.25), the transition is equivalent to

that of the pure Z2 gauge theory, and dual to that of the TFIM. It follows that

our previous discussion of string net coarsening, and the scaling of vortex creation

operators, applies mutatis mutandis to the model at hand.

Note, however, that the topological order of the initial and final phases of Eq.

(11.24) is not the same as in the Z2 gauge theory; there are additional deconfined

excitations on both sides of the transition. (In fact, the confined phase of HSU(2)2
is

a Z2 gauge theory [50]). There must therefore be some operators in the Levin-Wen

model whose behavior through the ramp is not captured by the mapping to the Ising

gauge theory.

To make this more explicit, we consider the fate of Wilson loop operators. In the

Levin-Wen model there are two of these:

W1/2(R, t; τ) =

〈∏

l∈C
B

1/2
l (t)

〉

W1(R, t; τ) =

〈∏

l∈C
B1
l (t)

〉
. (11.27)
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In order not to create vortices along the curve C, these raising operators must act with

appropriate configuration-dependent complex coefficients, as discussed in Refs. [204,

48]. W1/2(R, t; τ) is clearly the analogue of the Wilson loop operator in the Z2 gauge

theory; its expectation value obeys a perimeter law in the small Γ/K phase, and an

area law in the large Γ/K phase, and its universal scaling in a linear ramp is given

by Eq. (11.20). However, as the spin-1 variable remains deconfined throughout the

phase diagram, W1(R, t; τ) always obeys a perimeter law. Its expectation remains

constant in the scaling limit as the system passes through the critical point.

A related effect can be seen in the amplification of the energy splitting between

ground states in different topological sectors discussed in the previous section. The

SU(2)2 Levin-Wen model has 9 ground states on the torus. It can be shown [49]

that 6 of these obtain an energy cost of order L in the condensed phase, while one

new ground state sector emerges, leaving a total of 4 topologically distinct ground

states. These 4 correspond to the two possible eigenvalues of W nc
1 (R, t; τ) along each

non-contractible curve.

Though we have primarily discussed the SU(2)2 Levin-Wen model, the main re-

sults apply to a large family of models in which there is an excitation that behaves

like the Ising vortex [49]. Specifically, all the SU(2)k models exhibit Ising transitions

in which the half-integer spins (integer spins) can be mapped onto Z2 gauge configu-

rations with σx = −1 (σx = 1). They have two families of Wilson-line operators: the

half-integral Wilson line operators, which obey an area law in the confined phase, and

scaling relations analogous to those of Eq. (11.20); and the integral Wilson line op-

erators, whose expectation values do not depend on t, τ and which remain perimeter

law throughout the ramp4.

It is worth mentioning that the Ising transition we have discussed here is but one of

a variety of confining transitions that can be realized in Levin-Wen models [49, 120].

4The Higgs transition may survive when k is a multiple of 4 as some of the charges are bosons.
Little is known about these transitions.
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In the SU(2)2 model discussed above, for example, we could also add a transverse

field term of the form cos πsl (which has eigenvalues (1, 0,−1) for sl = (0, 1/2, 1),

respectively). This confines both spin-1/2 and spin 1 labels, engendering a transition

to a completely confined phase where both Wilson loop operators in Eq. (11.27) obey

an area law. In this case the vortices that proliferate are not Ising-like, however, since

the operator cosπsl does not square to 1. Very little is known about the critical theory

in this case, and we expect that the transition is not in the 3D Ising universality class,

so that the scaling functions and coarsening behavior will be fundamentally different

from those of the Z2 gauge theory.

11.6.2 Away from the pure Z2 limit

Thus far, we did not concern ourselves with the other excitations in the SU(2)2

Levin-Wen model as their number was conserved in the ramp and we remained in

the subspace (25) at all times. However, the other excitations, charges of spin 1 and

1/2, and vortices of spin 1/2, will be created in a ramp if we perturb away from

the limit of Eq. (11.24) by adding terms to the Hamiltonian which break the local

conservation laws. In particular, the spin 1/2 charge has anyonic statistics relative to

the condensing vortices, so that a finite density of these destroys confinement (these

are analogous to the matter sources of the Ising gauge theory). Once again, the

KZ scaling limit saves the day. These spin 1/2 charges remain gapped throughout

the transition. Thus, as for the Ising gauge theory with matter, in the scaling limit

we expect that the density of all of these excitations is vanishingly small throughout

the coarsening regime; terms violating the conservation of the spin-1/2 charge at each

vertex then act as dangerously irrelevant variables in the manner described in Section

11.5.

Spin 1 charges and spin-1/2 vortices, however, have bosonic statistics relative to

the spin 1 vortex, and do not have analogues in the Z2 theory. Once again, for small
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perturbations which violate the exact local conservation of these excitations, they

remain gapped throughout the transition and hence do not affect coarsening in the

KZ scaling limit. Since a dilute density of such charges does not destroy confinement,

however, we expect that they will not destroy coarsening even outside of the scaling

limit.

11.7 Concluding Remarks

In this chapter, we have initiated the study of the Kibble-Zurek problem for topo-

logically ordered phases by studying the linear ramp across a transition that re-

duces/breaks topological order and written down a scaling theory for it. Interestingly,

unlike broken symmetry cases where it is natural to ramp from less to more order,

here it is more natural to ramp from more to less order. The latter leads to our

identification of the slow dynamics of string net coarsening much as the former leads

to defect coarsening à la Kibble and Zurek. Of course, one can study the reverse

protocol and the associated scaling although we have not done so here in the interests

of not taxing the reader’s patience unduly.

The basic framework here can be easily generalized to other transitions out of

topological phases; although for string-net coarsening to be visible, the gauge degrees

of freedom must have a ready identification. Examples are transitions out of Zn phases

with n ≥ 3 in d = 2+1 and with n ≥ 2 in d = 3+1. The Levin-Wen models also offer

a “target rich” domain, although the analysis is likely to prove more complicated for

more general condensation transitions. It will also be interesting to move to contexts

with conserved currents where one can study the temporal and spatial evolution of

transport coefficients, such as the Hall conductance.

Finally, for the statistical mechanically inclined, we would like to draw attention

to our identification of gapped matter as a dangerously irrelevant variable in the
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dynamical KZ context. This is clearly a more general idea—e.g. irrelevant departures

from integrability will be similarly dangerous—and it suggests that in the KZ problem,

more couplings will be classified as such than in the standard equilibrium analysis.

11.A Scattering times in coarsening

Here, we identify the dynamical process enabling coarsening at late times alluded to

in Sec. 11.3.2, and justify that it remains in equilibrium during the KZ ramp. The

criterion to remain in equilibrium is that the time-scale for such a process, tco, is

parametrically smaller than the time-scale for the change in the transverse-field tΓ.

Using (ΓM − ΓMc) = −t/τ , we estimate tΓ to be:

tΓ ≡
ΓM − ΓMc

dΓM/dt
= t.

The system at late times has two kinds of excitations that are remnants of the para-

magnetism at early times: 1) The long domain walls of average size lco and 2) The

bulk gapped quasi-particle excitations about each ferromagnetically ordered state.

As t/tK →∞, the latter can be treated as classical particles. The average density of

these particles and their momentum is essentially determined at t ∼ tK and is fixed

to be ∼ 1/l2K and 1/lK respectively. Their mass is determined by the gap ∆(t). The

growing mass and the long inter-particle distances as compared to the instantaneous

correlation length ξ justify the classical particle approximation. An average velocity

of these particles can be determined as

vp ∼
p

m
∼ 1/lK

∆
,

where p is the average momentum and m the mass. The mechanism of coarsening

proceeds through the transfer of energy between the long domain walls and these
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particles. To wit, the relevant time-scale tco is the scattering time between these

particles and the wall:

tco ≡
lco
vp
.

Recall that the growth law when ξ is a function of time is (Eq. (11.17)):

lco(t; τ) ∼ ξ(t; τ)

(
t

ξ(t; τ)z

)1/zd

∼ lK

(
t

tK

) 1−ν
2

,

where in the last step, we have substituted the critical exponents of the (2+1)D

TFIM, z = 1, zd = 2. Putting the pieces together, we see that tco � tΓ ⇒ ν < 1.

This certainly holds at the 3D Ising critical point where ν ≈ 0.6. Thus, we conclude

that coarsening described by Model C is indeed the correct long time asymptote for

the KZ scaling functions in a linear ramp.

Finally, we observe that all dynamical processes in the (2+1)D TFIM do not

remain in equilibrium in the KZ ramp at late times. The scattering time between

quasi-particles, tpp, grows as ∆2 in this limit and is parametrically larger than tΓ. A

hydrodynamical description, if it exists, is therefore more delicate than the case when

the ramp is stopped at some t/tK = t̂s.

11.B Mapping of general SU(2)k models to the Z2

gauge theory

In this Appendix, we will discuss in more detail the mapping from the confining

transition in the SU(2)2 Levin-Wen model to the pure Z2 gauge theory (11.7). As

discussed earlier, the transition in question involves varying K/Γ in Eq. (11.24), while

restricting the Hilbert space to states with eigenvalue 1 under the vertex projector,
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and the integer part of the plaquette projector. In this subspace, links with half-

integer spins form closed loops. The mapping to the pure gauge Z2 theory involves

mapping half-integer (integer) spins to the presence (absence) of Z2 electric flux σx =

−1 (+1). The transverse field operator (−1)2σl maps to σxl , and B
1/2
P to BP =

∏
l∈∂P σ

z
l . We will now show that the probability to be in any loop configuration is

the same in both theories for every choice of K/Γ.

We will begin with some notation. Let C denote the collection of links on the

lattice that form closed loops, and 〈α1/2(C)〉 the probability for a configuration in C.

We will work here in the restricted Hilbert space of states for which

Ps|Ψ〉 = |Ψ〉 B1
P |Ψ〉 = |Ψ〉 (11.28)

and assume that our lattice has no boundary. To make the analogy to the Z2 gauge

theory, we also define the analogous operator, αx(C), whose expectation value gives

the probability for a closed loop configuration of links with σxl = −1.

Our objective is to prove that, for every Γ and K, 〈α1/2(C)〉 = 〈αx(C)〉. Since

operators that commute with the conditions (11.28) are either diagonal in the spin

basis and sensitive only to sl mod 1, or diagonal in the vortex basis (dual to the basis

of spin-1/2 loops), this is sufficient to prove that their critical behavior is identical.

We will carry out the proof in two steps. First, we will show the equality for the

two solvable points Γ = 0, K > 0 and K = 0,Γ > 0, where we can construct exactly

the ground-states in both models. We will then use perturbation theory to argue that

the result holds throughout the phase diagram.

253



11.B.1 Equal weighting of loops in the ground states at the

solvable points

For K = 0,Γ > 0, the ground state has σxl ≡ 1 in the Z2 gauge theory, and σl ∈ {0, 1}

for the Levin-Wen model. In this limit, for any C we have trivially that 〈α1/2(C)〉 =

〈αx(C)〉 = 0 and the result holds.

Focusing on the opposite limit ( Γ = 0, K > 0), let us construct the exact ground

states in the two models. We begin with the Z2 gauge theory. Let |0〉 denote the

state with σx = 1, τxs = 1 on all links and sites. This satisfies the Gauss law, but

is not an eigenstate of the plaquette projector. To construct such an eigenstate, we

take

|ΨTC〉 =
1√
N

NP∑

n=1

∑

∗Pn

∏

P∈∗Pn
BP |0〉 =

2√
N

∑

{C}
|ΨC〉 (11.29)

where ∗Pn runs over all possible distinct choices of n plaquettes on the lattice, and

N is a normalization. This sum generates all possible configurations C of loops

with σx = −1, weighted equally (each configuration is in fact generated twice, since
∏

P BP = 1). Since B2
P = 1, BPi

∏
P∈∗Pn BP =

∏
P∈∗P′n BP , where ∗P′n is ∗Pn with Pi

either added (if it was not originally in the set) or deleted (if it was). It follows that

1√
N

NP∑

n=1

∑

∗Pn
BPi

∏

P∈∗Pn
BP |0〉 =

1√
N

NP∑

n=1

∑

∗Pn

∏

P∈∗Pn
BP |0〉

and |ΨTC〉 is a ground state.

A similar construction can be used in the Levin-Wen models. Let |Ψe〉 be a state

satisfying (11.28), with σl an integer for every link l (careful inspection of these two

conditions reveals that |Ψe〉 is a superposition of configurations of closed spin-1 loops).

Now consider:

|ΨLW 〉 =
1√
N

NP∑

n=1

∑

∗Pn

∏

P∈∗Pn

1√
2
B

1/2
P |Ψe〉 (11.30)
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We will show presently that

(
B

1/2
P

)2

= 1 +B1
P B

1/2
P B1

P = B1
PB

1/2
P = B

1/2
P (11.31)

Using this fact, we have

B
1/2
Pi

∏

P∈∗Pn
B

1/2
P =





∏
P∈∗Pn¬Pi B

1/2
P

(
1 +B1

Pi

)
Pi ∈ ∗Pn

∏
P∈∗Pn∪Pi B

1/2
P Pi 6∈ ∗Pn

It follows that

1√
2
B

1/2
Pi
|ΨLW 〉 = |ΨLW 〉 (11.32)

and |ΨLW 〉 is a ground state.

Now, for any closed loop L, we can generate a configuration with σl = 1/2 on

all links in L, and no other links, by acting on |Ψe〉 with the product of B
1/2
P on all

plaquettes inside the loop or all plaquettes outside the loop (these are the only such

configurations on the right-hand side of Eq. (11.30)). In the Z2 gauge theory the

same holds for closed loops of σx = −1. Hence given C, we have

〈α1/2(C)〉 =
1

N
〈Ψe|


 ∏

P∈∗P(C)

1√
2
B

1/2
P




2

|Ψe〉

=
1

N
〈Ψe|

∏

P∈∗P(C)

1

2

(
1 +B1

P

)
|Ψe〉

=
1

N
(11.33)

where ∗P(C) contains either all plaquettes inside, or all plaquettes outside, the closed

loops in configuration C, and the last equality is a result of imposing (11.28). Thus

for Γ = 0 all possible configurations of spin-1/2 loops occur with equal probability in

the ground state of the SU(2)2 Levin-Wen model.
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We note that these results carry over directly to the more general case of an SU(2)k

Levin-Wen model, upon replacing spin-1/2 (spin-1) with the set of all half-integer

(integer) spins, and B
1/2
P (B1

P ) with the sum of all half-integer (integer) spin-raising

terms in the plaquette operator (weighted by their respective quantum dimensions).

It remains to show that Eq. (11.31) holds, which we will do for general k. We

let P1/2
P = 1

D
∑

σ=1/2,3/2,... aσB
σ
P denote all half-integer raising terms in the plaquette

operator, and P1
P = 1

D

(
1 +

∑
σ=1,2,... aσB

σ
P

)
denote all integer terms. Following Levin

and Wen, we choose the constant D such that PP ≡ 1
2

(
P1
P + P1/2

P

)
is a projector.

We then have

(P1
P + P1/2

P )2 = (P1
P )2 + (P1/2

P )2 + P1/2
P P1

P + P1
PP1/2

P

= 2(P1
P + P1/2

P )

Now, (P1/2
P )2 and (P1

P )2 both contain only terms that raise the spins in P by an

integer amount, while P1
PP1/2

P = P1/2
P P1

P contains only half-integral raising operators.

It follows that

(P1
P )2 + (P1/2

P )2 = 2P1
P , P1

PP1/2
P = P1/2

P . (11.34)

We also have

(P1
P + P1/2

P )(P1
P − P1/2

P ) = 0 (11.35)

since it can be shown [49] that (P1
P + P1/2

P ) projects onto flux-free states, while

(P1
P − P1/2

P ) projects onto states with an Ising vortex. It follows that

(P1/2
P )2 = (P1

P )2 = P1
P (11.36)

This also implies that P1
P is a projector, and thus that the eigenvalues of P1

P are

0 and 1. (From Eq (11.36) and the fact that PP is a projector, it follows that the

eigenvalues of P1/2
P are 0,±1; when restricted to configurations where P1

P |Ψ〉 = |Ψ〉,
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they are ±1, as one expects from the correspondence of P1/2
P to the plaquette term

of the toric code.)

11.B.2 Away from the solvable points

Next, we wish to show that the result of the previous section holds true throughout

the phase diagram. One way to do this is to invoke the result of Ref. [49], where it

was shown that within the subspace of states satisfying (11.28), the SU(2)k Levin-

Wen models are exactly dual to the transverse-field Ising model. We can identify all

states in this Hilbert space by the configuration of dual Ising spins (together with

their topological ground-state sector, in periodic boundary conditions). The duality

relation— which also holds for the Z2 gauge theory — ensures that the probability

amplitude to be in a given vortex configuration is identical in both models. The

physical operators in this Ising subspace are either diagonal in the vortex (or dual

Ising spin) basis, or diagonal in the basis of spin-1/2 loops. (These are precisely the

operators that do not cause violations of (11.28), and cannot distinguish between

edges of spin 0 and spin 1). It follows that all expectation values of such operators —

including 〈α1/2(C)〉— must also be identical to their Z2 analogues (such as 〈αx(C)〉).

Here we will take an alternative, perturbative approach to prove the desired result.

We will begin at an arbitrary point in the deconfined phase, and consider constructing

the wave-functions in both theories to some finite order in perturbation theory. These

wave functions are linear combinations of the unperturbed (Levin-Wen or toric code)

ground state, together with excited states of the form

|Ψ{l}〉 =
∏

l∈{l}
hl|Ψ0〉 (11.37)

where we have defined the transverse field operator hl ≡ σxl for the toric code, and

(−1)2sl for the Levin-Wen model, and |Ψ0〉 denotes the unperturbed ground state. If
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l1 and l2 are two links bordering plaquette P , we have

σxl1,2BP = −BPσ
x
l1,2

(−1)2sl1,2B
1/2
P = −B1/2

P (−1)2sl1,2

[
σxl1σ

x
l2
, BP

]
=
[
(−1)2sl1 (−1)2sl2 , B

1/2
P

]
= 0

Thus |Ψ{l}〉 is a state with vortices on each plaquette with an odd number of edges

in the set of links {l}. It also follows that choices of {l} which differ by a product
∏

l∈C∗ hl, where C∗ is a set of closed curves on the dual lattice, create identical excited

states, as
∏

l∈C∗ hl|Ψ0〉 = |Ψ0〉. Finally, we have

〈Ψ{l}|Ψ{l′}〉 = δ{l}∪{l′},C∗ (11.38)

In other words, the inner product is 1 if the combination of the two sets {l} and {l′}

of links forms a set of closed curves on the dual lattice, so that |Ψ{l}〉 and |Ψ{l′}〉 have

vortices on the same plaquettes. Similarly, we may compute matrix elements of the

Hamiltonian within these excited states via:

〈Ψ{l}|
∏

l∈{l′′}
hl|Ψ{l′}〉 = δ{l}∪{l′}∪{l′′},C∗ (11.39)

The crucial point is that for any choice of {l}, {l′}, {l′′}, these matrix elements are

identical in both models. Since the weight of each unperturbed excited state in the

exact ground state can be constructed perturbatively using only matrix elements of

this form, it follows that

|Ψ〉 =
∑

{l}
βΓ
{l}|Ψ{l}〉 (11.40)

with β{l} the same for each set {l} in both models.
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Finally, we observe that α1/2(C) and αx(C) both have the form

αν =
∏

l∈C

1

2
(1− hl) (11.41)

and, in particular, commute with hl on every link. (Here αν = α1/2(C), αx(C) as

appropriate). This, together with the relation (11.39), implies that

〈αν〉Γ =
∑

{l},{l′}
β

Γ

{l} β
Γ
{l′}〈Ψ0|

∏

l∈{l}
hl αν

∏

l∈{l′}
hl|Ψ0〉

in both models. We have already shown that the coefficients βΓ
{l} are the same, and

the possible choices of {l}, {l′} on which the δ function has support are a geometric

property of the lattice. Invoking the result of the previous subsection, we can thus

conclude that for all Γ in the deconfined phase,

〈α1/2(C)〉Γ = 〈αx(C)〉Γ (11.42)

Our derivation has implicitly relied on the fact that we can construct the exact

ground state perturbatively, starting from the ground state of the toric code or Levin-

Wen solvable point. Thus the above argument fails at the critical point, and in the

phase where Γ/K is large. In this regime, however, we may make essentially the same

argument, by replacing hl with the plaquette operator, and |ΨLW 〉, |ΨTC〉 (denoted

by |Ψ0〉 in the derivation above) with |Ψe〉 and |0〉 respectively. In this case, the basis

of excited states generated will be an eigenstate of σx (toric code) or (−1)2s (Levin-

Wen). There is no need to define an analogue of C∗, since if two distinct products of

plaquette projectors produce the same loop configuration state, then their product is

the identity operator.
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In each phase, we can thus argue that Eq. (11.42) holds to arbitrary order in

perturbation theory. It follows that as the phase transition is second order, it must

also hold at the critical point, proving the result.
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Chapter 12

A Bionic Coulomb Phase on the

Pyrochlore Lattice

12.1 Introduction

Much recent activity in condensed matter physics has involved the study of “topo-

logically ordered” phases which characteristically exhibit emergent gauge fields and

deconfined fractionalized excitations at low energies. Canonical quantum examples

of these are the various fractional quantum Hall phases [324, 337] and much of the

physics is present in the elegant classical physics of the spin ice compounds [56].

Gauge fields are intimately connected to local constraints, as in the textbook

example of Maxwell electromagnetism wherein Gauss’s law reflects a constraint at

each point in space that must be obeyed by the dynamics. In a condensed matter

setting, the analogous constraints arise as a low-energy effective truncation of the

space of configurations; examples range from the dimer configurations of short range

RVB theory [217] to the string nets of Levin and Wen [203].

A subclass of these constraints literally take the form of lattice versions of the

familiar Gauss’s law for abelian gauge fields, albeit with restricted microscopically
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realizable values for the lattice electromagnetic fields. The introduction of an ap-

propriate classical statistical mechanics that consists of averaging over all allowed

configurations with uniform weight leads to the so-called Coulomb phase [139] with

dipolar correlations, whose coarse-grained description realizes a Euclidean Maxwell

theory. More elaborately, the introduction of a quantum dynamics in the constrained

manifold can lead to a version of Maxwell electrodynamics coupled to electric charges

and magnetic monopoles. An elegant point of intersection between the classical and

quantum Coulomb phases is an appropriate Rokhsar-Kivelson point where the ground

state wavefunction is itself an equal amplitude superposition of allowed configura-

tions [141, 218].

In this chapter we expand the catalog of Coulomb phases. We study the antiferro-

magnetic four-state Potts model on the highly frustrated pyrochlore lattice and show

that its ground state manifold exhibits correlations characterized by three abelian

gauge fields. We find that the fundamental excitations/defects above this ground

state manifold are charged under these gauge fields in an unusual way—they carry

nonzero charges for two of the three gauge fields whence we refer to them as bions.

(The term dyon is already reserved for particles charged under dual electric and mag-

netic fields whereas here both fields are of the same species.) In the classical setting,

which is our primary interest in this chapter, the import of the charge assignments

is that it predicts the entropic force between different bions and more generally the

free energy/entropy for any configuration of multiple bions. Our evidence for these

assertions comes from a Monte Carlo simulation that agrees with the correlations

predicted by the triple Maxwell theory, and which yields statistics of flux-loops in the

ground state manifold that have been previously suggested to be a sharp diagnostic

of the Coulomb phase [160].
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Readers familiar with the existing literature on Coulomb phases will note that

it is already known [155, 138] that classical O(N) spins with a nearest neighbor

antiferromagnetic interaction on the pyrochlore lattice

(a) exhibit a Coulomb phase with one gauge field for N = 1 (Ising) spins which is

the case relevant to spin ice and indeed observed in experiments,

(b) exhibit order by disorder for N = 2 and

(c) exhibit a Coulomb phase with N gauge fields for N ≥ 3.

It is interesting to situate the current work in this context. To this end imagine start-

ing with O(3) symmetric Heisenberg spins that live on the sphere (Fig. 12.2c) whose

ground state correlations are governed by three independently fluctuating gauge fields.

Excitations above this manifold are gapless and involve arbitrarily small charges un-

der the gauge fields. If we restrict their range by generating an easy axis (Fig. 12.2a)

we return to the Ising case where the number of gauge fields is now down to one

and the excitations are gapped and quantized. The import of this current chapter is

that if we restrict the range to four symmetric points on the sphere (Fig. 12.2b) the

number of gauge fields is unchanged although the excitations again become gapped

and quantized. We believe that this reduction can be extended to higher dimensions

by considering generalizations of kagome/pyrochlore [1] involving d + 1-simplices in

d dimensions and starting with O(d) spins and restricting them to d + 1 state Potts

configurations.

We would be remiss if we did not note that this chapter generalizes the early

results of Kondev and Henley [189] from the two dimensional lattice known variously

as the square lattice with crossings or planar pyrochlore, to three dimensions. Readers

who peruse the early paper will spot the family resemblance immediately.

In the balance of the chapter, we will set up the Potts model and its mapping

to vector spins (Section II), map these in turn to a coarse grained description in
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terms of pseudo-magnetic flux/gauge fields and confirm the resulting predictions for

the correlations (Section III), discuss the bionic excitations (Section IV), study the

statistics of loops (Section V) and conclude with some brief remarks (Section VI).

12.2 The Model

The pyrochlore is a lattice of corner-sharing tetrahedra which can be constructed

from the diamond lattice by placing a site at the midpoint of each bond (Fig. 12.1).

The result is a quadripartite structure, which may alternatively be described as an

fcc lattice with a four-site basis. From the former construction, it is evident that the

centers of the tetrahedra lie on the sites of the diamond lattice: in other words, the

dual lattice of the pyrochlore is the diamond lattice – a fact which we will make use

of extensively below. We now turn to the Potts model which we will introduce from

the perspective of the Heisenberg model as this will yield a vector spin representation

of the Potts spins which will be central to this chapter.

The pyrochlore lattice is highly frustrated from the perspective of classical

collinear antiferromagnetism: the nearest-neighbor classical Heisenberg antiferro-

magnet on this lattice has an extensive ground state degeneracy and remains a

quantum paramagnet at all temperatures [216]. Since they will be relevant to us, we

briefly summarize some details of the Coulomb phase for O(3) (Heisenberg) spins on

the pyrochlore. The canonical nearest-neighbor Heisenberg Hamiltonian

H = J
∑

〈i,j〉
Si · Sj (12.1)

can be re-written, up to an overall constant, as

H =
J

2

∑

�

(∑

i∈�
Si

)2

,
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where the sum in parenthesis runs over the four spins at the corners of each tetra-

hedron, and the outer sum runs over all tetrahedra in the lattice. Thus, the ground

states are defined by spins satisfying local constraints:

∑

i∈�
Sαi = 0 (12.2)

for each tetrahedron and each spin component α.

As a result of these local constraints, each ground state can be mapped to a

configuration of divergence-free fluxes, one for each spin component, on the dual

diamond lattice. Upon coarse-graining, the entropic cost of fluctuations within the

ground state manifold leads to an emergent ‘electrodynamics’ − with the coarse-

grained fluxes playing the role of divergence-free lattice electromagnetic fields. The

process yields asymptotically dipolar forms for spin (and field) correlation functions,

a hallmark of the celebrated “Coulomb Phase”.

We now consider applying a symmetry breaking potential that restricts the Heisen-

berg spins to four symmetrically situated points in spin space (Fig. 12.2b). The spin

on each pyrochlore site must now belong to the following set of four spins pointing

towards the corners of a regular tetrahedron in spin-space:

SA = (−1, 1, 1); SB = (1,−1, 1);

SC = (−1,−1,−1); SD = (1, 1,−1). (12.3)

Observe that any two (different) spins in (12.3) make an angle of cos−1(−1
3
) with one

another, so that the dot-product of any two spins in the set is Sα ·Sβ = 4 δαβ−1 where

α, β = A,B,C, or D. Thus the nearest neighbor interaction energy has the character

of an antiferromagnetic Potts interaction between four states: it prefers neighbors

to be different but is indifferent to how that is achieved. Formally, the Hamiltonian
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(12.1) with the spins restricted to the set (12.3) is equivalent to the Hamiltonian

HP = J
∑

〈i,j〉
δσi,σj . (12.4)

where the Potts spins σi can be in one of four states: A,B,C or D. In essence we have

mapped from Potts variables to a set of vector spins. The ground state constraint

(12.2) restricted to the set (12.3) is equivalent to the condition that each tetrahedron

to contain all four Potts states.

The Potts model has a discrete macroscopic ground state degeneracy—a remnant

of the continuous macroscopic degeneracy of the O(3) model [216]. To show this, a

strict lower bound on the entropy can be obtained by using the degeneracy of the

three-state Potts model on the kagome [150, 31] and by viewing the pyrochlore as

alternating layers of kagome and triangular planes. The result is the bound [236] Ω >

4 (1.208 72)N/2, corresponding to an entropy S/kBN > (1/2) log(1.208 72). A more

direct estimate is the Pauling entropy [237] for this system. For a given tetrahedron,

4! of the possible 44 states are ground states. Treating the tetrahedral constraints as

independent gives a ground state degeneracy

Ω = 4N
(

4!

44

)Ntet
=

(
3

2

)N/2
,

where N is the number of spins and Ntet = N/2 is the number of tetrahedra. This

corresponds to an entropy per spin S/kBN = (1/2) log(3/2) which is, interestingly,

the same as the Pauling estimate for the entropy of spin ice [56]. As advertised in the

introduction, the reduction from Heisenberg spins to Potts spins suggests that the

latter system will still exhibit a Coulomb phase. We now turn to a precise formulation

of this conjecture.
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12.3 Flux Fields and Correlations

12.3.1 Flux Fields

Our development of flux fields closely parallels the construction in the case of the

O(N) antiferromagnet [155, 138]. The essential idea is to map the spin variables to

a flux field defined on the sites of the dual diamond lattice. The local ground state

constraint (12.2) – which still applies to the Potts spins as defined in (12.3) – is then

mapped into a requirement that the flux configuration be divergence-free.

We begin by defining bond vectors uκ pointing from the even to the odd sublattices

of the bipartite diamond lattice (i.e., from the centers of ‘up’ to ‘down’ tetrahedra on

the pyrochlore), which take the form

u1 =

(
−1

4
,
1

4
,
1

4

)
; u2 =

(
1

4
,−1

4
,
1

4

)
;

u3 =

(
−1

4
,−1

4
,−1

4

)
; u4 =

(
1

4
,
1

4
,−1

4

)
(12.5)

where the fcc lattice constant has been chosen as a = 1. The spins live on the

midpoints of the bonds; Fig. 12.1 illustrates the geometry of the lattice and the bond

vectors.

Next, we define three vector flux fields on each bond, one for each spin component

of the Potts spins represented in (12.3):

Bα
κ = Sακuκ, (12.6)

where Sκ denotes the spin on bond uκ, and α = 1, 2, 3 labels the spin components.

The flux field on a site of the diamond lattice is defined as the sum of the fields on
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Figure 12.1: Geometry of the pyrochlore lattice. The centers of the up and down
tetrahedra define the two sublattices of the diamond lattice, denoted by black and
red dots. The pyrochlore lattice sites lie at the vertices of the tetrahedra. The vectors
uκ define the bond vectors of diamond.

the four tetrahedral bonds emerging from that site,

Bα(R) =
4∑

κ=1

Sακ (R)uκ, (12.7)

where R is a diamond lattice vector, and κ sums over the four tetrahedral sites (on

pyrochlore) surrounding the diamond site (tetrahedron center). The mapping from

spin to flux variables is invertible (see Appendix).

From our definition of the Potts spins, (12.3), we see that in any ground state,

for each spin component Sα, we have two “incoming” (+1) and two “outgoing” (−1)

spins on each tetrahedron, i.e. each tetrahedron obeys a two-in, two-out ‘ice rule’

for each spin component. It follows from this, and our definition of the flux fields,

that the local Potts constraint maps to a zero-divergence condition for each of the Bα

fields, ∇ · Bα = 0. In an electrodynamic representation it is appropriate to refer to

these flux fields as ‘magnetic’ fields and then their sources will be monopoles—this is
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the nomenclature that is natural in the context of spin ice and is the one we will use

here1.

Naively, the problem just looks like three copies of spin ice, one for each spin

component. Of course, the three components are not independent and therefore we

might expect some correlation between the three magnetic fields. However, we will

see shortly that our naive expectation is justified: at long distances, these cross-

correlations vanish and the physics is described by three independent divergence-free

‘Maxwell’ fields.

12.3.2 Coarse-grained Free Energy and Correlations

Thus far, we have given a characterization of the ground state manifold in terms of

divergence-free configurations of three magnetic fields. However, in order to compute

correlations in the limit T → 0, we need a more workable description of the ground

state manifold which we will now obtain by coarse graining.

Let us consider one of the three magnetic fields, say B1. If we were to flip the

direction of flux on one of the “in” bonds at a diamond site (say by switching spins SA

and SB), the zero divergence condition would require us to also flip the direction of

an “out” bond at the site. We can continue flipping spins in such fashion until we get

either a closed loop of SA, SB spins, or a string of SA, SB spins that extends across

the entire system (for finite systems, the latter eventually closes through periodic

boundary conditions). Flipping spins that lie on closed loops leaves the net magnetic

flux through the system unchanged, while flipping spins on spanning strings changes

the net flux threading the system. Since the average flux contributed by a closed loop

is zero, systems with large numbers of closed “flippable” loops will have a small net

B1. On the other hand, a large and saturated net B1 requires the field on almost

1Alternatively we could just as well refer to them as electric fields, sources as electric charges and
the constraint as Gauss’s law. This is more natural in thinking of quantum models where there is a
natural identification with lattice gauge theories.
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every site of the dual lattice to point in the same direction and therefore the number

of flippable loops is small – an intuitive picture is that a the only flippable loops in a

saturated field configuration are those that span the system.

Thus far, we have only talked of lattice magnetic fields that live on the bonds

of the pyrochlore. To derive long-wavelength properties, we need to define smoothly

varying continuum fields. We do this by coarse-graining - the field B̃α(r) is defined as

the average of the lattice fields Bα in some neighborhood of r that is much larger than

the lattice spacing but much smaller than the system size. The discrete constraint

naturally translates into a divergence-free constraint for the coarse-grained fields.

Microscopically, there are many more configurations consistent with a small net

coarse-grained B̃1 rather than a large saturated B̃1; the same arguments obviously

apply to all three magnetic fields. Therefore configurations with small average fields

are entropically favored. To lowest order, the (entirely entropic) free energy as a

function of the coarse-grained fields and consistent with symmetries can be written

as

Ftot(B̃
α(r)) = −TS

=
1

2

κT

a

∫
d3r

(∣∣∣B̃1(r)
∣∣∣
2

+
∣∣∣B̃2(r)

∣∣∣
2

+
∣∣∣B̃3(r)

∣∣∣
2
)

(12.8)

where we’ve inserted a factor of the lattice-spacing a to make the stiffness, κ, di-

mensionless. Since we are restricting our attention for the moment to ground state

configurations, the coarse-grained fields still satisfy the zero-divergence constraint,

∇ · B̃α = 0. The free energy (12.8) coupled with the divergence-free constraint yields

three copies of Maxwell electrodynamics in a standard fashion. Introducing three

vector potentials Aα to implement the constraints, we can rewrite the free energy as

F =
1

2

κT

a

∫
d3r

3∑

α=1

|∇ ×Aα(r)|2
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(c)(a) (b)

Figure 12.2: Spin space representation of Ising, Potts and Heisenberg spins (left
to right). The red areas represent the accessible portions of spin space - Ising spins
are confined to lie on only two points, 4-state Potts spins occupy only four points,
and Heisenberg spins can lie anywhere on the sphere. While Ising spins only require
a single gauge field for their description, Heisenberg spins require three such fields.
Somewhat surprisingly Potts spins – which a priori would appear to have a much
reduced symmetry compared to the Heisenberg case – also require three gauge fields.

We calculate the long distance correlators of the magnetic fields, and the result is

the dipolar form typical for Coulomb phases

Gαβ
ij (r) ≡ 〈B̃α

i (r)B̃β
j (0)〉

=
a

4πκ
δαβ

3rirj − r2δij
r5

(12.9)

where i, j refer to the x, y, z components of each magnetic-field.

Finally, we reiterate that Ising spins, which occupy only two collinear points on

a sphere in spin-space, require a single magnetic field B to describe their Coulomb

phase. Classical O(3) spins can lie anywhere on a sphere, and they require three fields

B1, B2 and B3 for their description – one for each spin component. It is interesting

that even though Potts spins are locked to just 4 points in spin space, they still require

three magnetic fields for their complete description: the theory thus renormalizes at

low temperatures to an effective O(3) symmetry. Fig. 12.2 illustrates this idea.
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12.3.3 Monte Carlo Simulations

In order to test our conjectured form (12.9) for the real-space correlation functions for

the magnetic field, we turn now to a Monte Carlo study of the ground state manifold.

We perform simulations on systems with L × L × L unit cells with L = 8, 16, 32

and periodic boundary conditions; since there are 4 sites per pyrochlore unit cell,

this corresponds to 4L3 spins. The simulations were performed using a standard

“worm-update” algorithm. In each update step we first identify a closed “worm” of

alternating spin flavors (for instance AB . . . AB), and then flip all the spins along the

worm (i.e. interchange the spins A ↔ B). This move respects the Potts constraint

since each bond in the worm is only part of a single tetrahedron, and exchanging

spin-flavors on a bond still leaves a tetrahedron with all four Potts flavors. There are
(

4
2

)
= 6 types of worms, and the starting site for a worm and its type were chosen

randomly for each update. It is instructive to think of this in the language of fluxes:

interchanging A and B sites corresponds, via Eq. (12.3), to identifying a closed loop

of type 1,2 and 3 fluxes and then reversing the first two of these. Reversing closed

loops of fluxes clearly leaves the solenoidal constraints intact.

We simulate M independent Markov chains, each with N configurations along

the chain (M and N were typically 100 and 10,000 respectively). To generate these,

we begin with M independent “seed” ground state configurations and use the worm

update described above to generate the states along the chain. To ensure that suc-

cessive states along the chain were roughly independent, we perform several (∼ 30)

such worm updates before recording a new configuration which is then added to the

chain.

In analyzing the data, we first obtain the average value of the correlation functions

for each Markov chain, and then average these across all M chains. The error is

estimated as the standard error of the single-chain averaged correlation function across

the M independent chains.
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Figure 12.3: Monte Carlo data for three representative correlation functions
G11
xx(r1), G12

xx(r1) and G11
yz(r1) in the direction r1 = n1

(
0, 1

2
, 1

2

)
for lattice sizes

L = 8, 16, 32. The correlators are multiplied by the cube of the distance n3
1, and

the horizontal trends are consistent with the expected dipolar form (12.9). All cross-
correlators Gαβ

ij for α 6= β vanish (only G12
xx displayed) confirming the diagonal form

for the free energy (12.8).

We compute the average correlation function Gαβ
ij (r) = 〈Bα

i (x + r)Bβ
j (x)〉 in two

independent directions r for all 36 combinations of α, β, i, j. The vectors r were chosen

as r1 = n1

(
0, 1

2
, 1

2

)
and r2 = n2 (0, 0, 1) with n1, n2 ∈ Z. These correspond to the fcc

lattice vectors r1 = n1a1 and r2 = n2(a1 + a2 − a3) where the ai are fcc basis vectors

with lattice constant a = 1.

The correlations fall off as 1/r3 consistent with the dipolar form (12.9). Figs. 12.3

and 12.4 show the representative correlators G11
xx(r), G11

xy(r), and G12
xx(r) multiplied

by n3
i , in the two directions r1 and r2. The agreement with the dipolar form is best

in the regime a � r � L. The cross-correlators Gαβ
ij (r) for α 6= β vanish in all

directions for all i, j, confirming the diagonal form for the effective free energy (12.8).
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Figure 12.4: Monte Carlo data for three representative correlation functions
G11
xx(r2), G12

xx(r2) and G11
yz(r2) in the direction r2 = n2 (0, 0, 1) for lattice sizes

L = 8, 16, 32. Once again, the correlators are multiplied by the cube of the dis-
tance n3

2, and the trends are consistent with the expected dipolar form (12.9). Note
that the correlations are weaker in the direction r2 as compared to r1 because same
values of n for the two cases correspond to larger physical distances r2.

We also checked that the ratios of correlations for different i, j asymptote to the values

predicted by (12.9). For example, G11
xx/G

11
zz → −2 in the direction r1.

Finally, we use correlation data to numerically estimate a value for the stiffness,

κ/a through (12.9). Correlations in the direction r1 yielded an average stiffness

κ1 = 7.38 ± 0.46, while correlations in the direction r2 gave κ2 = 8.13 ± 0.93; the

values in the two directions are equal within the margins of error. The lattice constant

a is set to unity.

12.4 Charges, defects and Dirac Strings

While the effective free energies for the Heisenberg and Potts models are the same,

the two differ in the nature of their excitations. Excitations above the ground state
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Potts manifold are gapped and quantized, with “bionic” defects that are charged

under two of the three gauge fields.

In the ground states, each site of the dual diamond lattice has two incoming and

two outgoing fluxes for each of the three magnetic fields. We can create defects by

violating the zero-divergence constraint at a dilute set of points in the lattice. Such

defects are “charged” under the different fields, with positive (negative) charges equal

to the net outgoing (incoming) fluxes of each type at the defect. This is the usual

charge in the sense of Gauss’s law: each such charge represents a source of magnetic

flux, and a violation of the divergence-free constraint for at least one of the fields.

It is convenient to first catalog defects in the Potts language: a defect arises when

the four spins surrounding a dual lattice site violate the Potts rule. The simplest

defects are those in which one spin flavor is repeated on a tetrahedron; for instance,

we can have a defect tetrahedron with spins SB, SB, SC and SD. There are twelve

such defect tetrahedrons: we have four choices for the spin flavor that gets repeated

(SB in our example), and three choices for the flavor that the repeated spin replaces

(SA in the example).

Each of these defects have different charges under the three gauge fields. Looking

at the spins in (12.3), we see that an “up” tetrahedron with SB, SB, SC , SD has spin

components Sx = (1, 1,−1, 1), Sy = (−1,−1,−1, 1) and Sz = (1, 1,−1,−1). Thus,

its charges under the three magnetic fields B1, B2 and B3 are Q1 = +2, Q2 = −2

and Q3 = 0 respectively. All twelve defects have a similar structure, in that they are

doubly charged under two of the three magnetic fields – hence the name bions. Table

12.1 catalogues the charges of the different bions. (These charges are reversed for

corresponding defects on “down” tetrahedra, since the sense of “in” and “out” flux

is reversed). Figure 12.5 depicts the 12 possible bions in Q1, Q2, Q3 space.

Charge conservation demands that the defects are always created in oppositely

charged pairs. One way to do this is to imagine creating a pair of bions by exchanging

275



Figure 12.5: Charges of the twelve types of bions (black dots) shown in Q1, Q2, Q3

space, where Qi represents the charge under the field Bi. Each bion is charged
under two gauge fields. The twelve charges naturally map to six oriented edges of a
tetrahedron.

spins along a “Dirac string” containing two flavors of spin. For instance, we create

a BBCD defect by replacing an A spin with a B spin on an “up” tetrahedron. This

creates a second, oppositely charged defect on the adjoining “down” tetrahedron.

The second defect can be moved away from the first by continually flipping a string

of A, B type spins. The second defect is of type AACD when it lies on another

“up” tetrahedron; we may verify that the tetrahedron AACD carries opposite charge

Q1 = −2, Q2 = +2 and Q3 = 0. We can think of the Dirac string as a flux tube

carrying two flavors of flux (B1 and B2 in our example) that connects bions that

are oppositely charged under two magnetic fields. Figure 12.6 shows a Dirac string

connecting two bions.

Additionally, we can also imagine creating composite defects by adding two or

more of the twelve fundamental bions. The composite charges form an fcc lattice

which is a natural extension of Figure 12.5. There is an intuitive geometric picture

for understanding the charge structure of the bions. The four spins point to the

four corners of a tetrahedron in spin-space (and all spin-components sum to zero);
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(c)(a) (b)

Figure 12.6: Dirac string connecting two bions. The colors orange , blue, green and
red represent the spin flavors SA, SB, SC and SD respectively. The three arrows on
each site represent the three magnetic fields B1 (black), B2 (purple), and B3 (gray).
(a) Ground state configuration of the 4-state Potts model with no defects. Each
tetrahedron has all four spin flavors, and all three magnetic fields obey two-in-two-
out rules at each tetrahedron. (b) Switching SA (orange) to SB (blue) on the bottom
tetrahedron creates (BBCD) type bions on two adjoining tetrahedra (red and blue
spheres). The magnetic fields are no longer divergence-free, and the bion on the up
tetrahedron has charges Q1 = +2, Q2 = −2, Q3 = 0 (opposite charges for the bion
on the down tetrahedron). (c) The bions move apart by flipping a trail of SA, SB
spins. The Dirac string acts as a flux tube carrying B1 and B2 type magnetic fluxes
between the two bions.

replacing SA with SB to create a defect gives a vector of charges Q = −SA + SB

under the different gauge fields. The charge Q thus corresponds to an edge of the

spin-space tetrahedron. In this way, all twelve fundamental bions can be mapped to

six oriented edges of a tetrahedron in spin-space.

The bions act as sources of magnetic flux and experience a Coulomb force un-

der each of the three magnetic fields. The origin of this force is purely entropic in

nature. We imagine a finite number Nb of bions scattered throughout the lattice at

positions r1, r2, · · · rNb . We can compute the partition function Z by integrating over

all configurations of magnetic fields consistent with the distribution of bions. This

gives the free energy of the sources in accordance with Z/Z0 = e−Fint/T , where Z0 is
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the partition-function in the absence of bions. Explicitly this yields:

Fint =

Nb∑

i=1
j<i

a T

4πκ

(
Qi

1Q
j
1 +Qi

2Q
j
2 +Qi

3Q
j
3

)

|ri − rj|

+

Nb∑

i=1

α
aT

4πκ

(Qi)2

a
(12.10)

where i, j sum over all pairs of bions and Qi
α represents the charge of the ith bion

under the field Bα. The first term in (12.10) represents the Coulomb interaction

energy of pairs of bions separated by distance |ri − rj|, while the second term is the

free energy of individual, isolated bions arising from self-interaction in the field theory.

The self-interaction term has an ultraviolet ambiguity, represented by the unknown

constant α, which (naturally) cannot be fixed by the coarse-grained free energy alone.

Also note that (12.10) predicts that the interaction energy between a pair of bions

is sensitive to their type. For example, bions of type AABC and DDBC (equally

and oppositely charged under B1 and B3) interact more strongly than say AABC

and AABD which are charged under different gauge fields.

This is a good place to briefly comment on the finite-temperature properties of

the Potts spins - in particular the form of the correlation function Eq. (12.9). We

know that the dipolar form of the correlation function is derived from the divergence-

free constraint on the magnetic fields. This constraint is exactly satisfied at T = 0

and gradually weakened as the temperature T is increased. Heuristically, we might

expect the correlation to be dipolar up to some (temperature dependent) correlation

length ξ(T ), and decay exponentially on length scales longer than ξ. It is easily

seen [156] that for Ising spins, the creation energy of gapped ice-rule violating defects

(monopoles) yields ξ ∼ e2J/3T . On the other hand, for Heisenberg spins the gapless

excitations yield much softer violations of the divergence-free rule and, correspond-

ingly, a much shorter finite-temperature correlation length given by [125] ξ ∼ 1/
√
T .
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For gapped Potts spins, the creation energy of a Bionic defect is 4J which gives

ξ(T ) ∼ e4J/3T ; the gap to excitations helps preserve the dipolar form of the corre-

lations to higher temperatures. As is typical, the gap also manifests itself in the

exponential low-temperature decay of various thermodynamic quantities but these

are not the focus of this chapter.

12.5 Worm length distributions

Coulomb phases come with a natural incipient loop structure—absent defects one

can define closed lines of flux thanks to the underlying conservation laws. This makes

the statistics of the loops worthy of interest. Indeed Jaubert, Haque and Moessner

(JHM) [160] have studied loop statistics for the ground state manifold of spin ice and

found a characteristic scaling of their probability distribution which they have related

to the properties of random walks in three dimensions. This suggests that this scaling

might be more generally associated with Coulomb phases and we will investigate and

verify that possibility here.

Specifically, JHM have studied the distribution of worm lengths for spin ice which

is easily done by keeping track of the worms used to update configurations in the

Monte Carlo. As in our problem, worms in spin ice are closed strings of alternating

spin flavors but now with the feature that while there is only one species of worm,

at each step there is a binary choice that must be made randomly2. For these JHM

found a characteristic scaling for probability distribution of worm lengths p(`),

p(`) =
1

L3
f

(
`

L2

)
(12.11)

2Ref. [160] also studied closed loops of up and down spins alone but they have no analog in the
4-state Potts problem.
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Figure 12.7: Probability distribution of worm-lengths ` for system-sizes L = 8, 16, 32.
We clearly see two regimes – an `−3/2 scaling for short loops, and an ` independent
scaling for winding loops.

where ` refers to the worm length and L is the linear dimension of the system size.

This scaling form unifies two populations of worms: short worms whose probability

scales as p(`) ∼ `−3/2, and long winding worms (that close after spanning the system

through periodic boundary conditions) for which p(`) ∼ L−3.

We have investigated analogous worm-length distributions in the Potts model.

It should be noted that the Potts model has six species of worms (each worm has

only two Potts spin flavors and
(

4
2

)
= 6). However, by symmetry, all six worm

types have identical distributions in the Coulomb phase. Fig. 12.7 shows the worm-

length distributions obtained for system sizes L = 8, 16, and 32 plotted in scaled

variables. Leaving aside the deviations at very small and very large loops sizes we see

that that the loop distribution indeed obeys the scaling form (12.11) which is then

independent evidence that the Potts model is in a Coulomb phase. We direct the

reader to Ref. [160] for a rationalization of this scaling in terms of the properties of

random walks.
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12.6 Concluding Remarks

To summarize, we have shown that the classical antiferromagnetic four-state Potts

model on the pyrochlore lattice is in a Coulomb phase described by three emergent

gauge fields as T → 0. It is instructive to view the Potts model as arising from

a symmetry breaking potential that restricts O(3) spins to just four points in spin

space. Nevertheless, we have shown that the long-wavelength effective free energies

of the O(3) and Potts models are identical.

An important point of difference between the Heisenberg and Potts models lies

in the nature of excitations above the ground state manifold. While the Heisenberg

model involves gapless excitations, the Potts model has gapped excitations with a

novel charge structure. We find twelve types of “bionic” defects, each charged under

two of the three gauge fields. The charges are deconfined and can be connected by

“worm-like” flux tubes of alternating spin flavor. We computed probability distribu-

tions for lengths of closed worms, and found scaling laws in accordance with previous

diagnostics of the Coulomb phase.

The evident next step in this program is to incorporate quantum dynamics in a

quantum Potts model exhibiting a Rokhsar-Kivelson point.

12.A Spin-Spin Correlation Functions

It is useful to have a reference for converting the flux-field correlation functions (12.9)

to spin-spin correlation functions for the Potts spins living on the four sublattices of

pyrochlore. We have three flux fields B1, B2, B3 each with three components, for

a total of nine flux components; these are labeled Bα
i for α = 1, 2, 3 and i = x, y, z

in (12.9). One the other hand we have four Potts spins on every diamond site, each

with three components, for a total of twelve spin components; we label these Sακ

for α = 1, 2, 3 and κ = 1, 2, 3, 4. However, the constraint equations on the Potts
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spins (12.2) ensure that there are only nine independent spin components, thereby

permitting an invertible mapping from flux-fields to spins.

As an example, we use the definitions of the flux fields on the diamond sites

(12.7) and the definitions of the bond vectors uκ (12.5), to explicitly write the x, y, z

components of

B1(r) = Sx1 (r)u1 + Sx2 (r)u2 + Sx3 (r)u3 + Sx4 (r)u4

as

B1
x =

1

4
(−Sx1 + Sx2 − Sx3 + Sx4 )

B1
y =

1

4
(Sx1 − Sx2 − Sx3 + Sx4 )

B1
z =

1

4
(Sx1 + Sx2 − Sx3 − Sx4 )

where we have dropped the explicit dependence on r to simplify our notation. Finally

we impose the spin constraint equations (12.2) to eliminate Sα4 and we get

B1
x =

1

2
(−Sx1 − Sx3 )

B1
y =

1

2
(−Sx2 − Sx3 )

B1
z =

1

2
(Sx1 + Sx2 ) .
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A similar exercise can be carried out for the B2 and B3 spins to give the following

matrix of transformations:




B1
x

B1
y

B1
z

B2
x

B2
y

B2
z

B3
x

B3
y

B3
z




=




−1
2

0 0 0 0 0 −1
2

0 0

0 0 0 −1
2

0 0 −1
2

0 0

1
2

0 0 1
2

0 0 0 0 0

0 −1
2

0 0 0 0 0 −1
2

0

0 0 0 0 −1
2

0 0 −1
2

0

0 1
2

0 0 1
2

0 0 0 0

0 0 −1
2

0 0 0 0 0 −1
2

0 0 0 0 0 −1
2

0 0 −1
2

0 0 1
2

0 0 1
2

0 0 0







Sx1

Sy1

Sz1

Sx2

Sy2

Sz2

Sx3

Sy3

Sz3




We can invert the relation above to obtain the spins in terms of the flux fields as

follows:




Sx1

Sy1

Sz1

Sx2

Sy2

Sz2

Sx3

Sy3

Sz3




=




−1 1 1 0 0 0 0 0 0

0 0 0 −1 1 1 0 0 0

0 0 0 0 0 0 −1 1 1

1 −1 1 0 0 0 0 0 0

0 0 0 1 −1 1 0 0 0

0 0 0 0 0 0 1 −1 1

−1 −1 −1 0 0 0 0 0 0

0 0 0 −1 −1 −1 0 0 0

0 0 0 0 0 0 −1 −1 −1







B1
x

B1
y

B1
z

B2
x

B2
y

B2
z

B3
x

B3
y

B3
z




These relations allow us to express spin-spin correlation functions as simple linear

combinations of the Bα
i correlations.
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12.B Symmetries and Stability of the Free Energy

We have claimed in the bulk of the chapter that the long-wavelength coarse-grained

free energy is insensitive to breaking Heisenberg (O(3)) symmetry down to a Potts

symmetry. In this section, we formalize this claim using a renormalization-group

argument. We will show that the lowest order terms that can be added to the free

energy (and are allowed by symmetry considerations) are irrelevant in an RG sense.

Consider a given ground state configuration of Potts spins on the pyrochlore lat-

tice. Permuting the spins (say by exchanging spins of type SA and SB on every

tetrahedron) gives another ground state configuration. Each such “internal” symme-

try of the microscopic spin degrees of freedom should translate into a symmetry of

the coarse-grained B̃ fields3 in accordance with Appendix A. In fact, six permutation

group elements are required to generate all 4! = 24 permutations of the Potts spins;

these map to the following symmetries of the free energy:

f(B̃1, B̃2, B̃3) = f(B̃2, B̃1, B̃3)

= f(B̃3, B̃2, B̃1)

= f(B̃1, B̃3, B̃2)

= f(−B̃1,−B̃2, B̃3)

= f(−B̃1, B̃2,−B̃3)

= f(B̃1,−B̃2,−B̃3) (12.12)

An example best illustrates how one arrives at the symmetries in Eq. (12.12). A

given tetrahedron has magnetic fields defined by

B1 = SxA ua + SxB ub + SxC uc + SxD ud

= −ua + ub − uc + ud

3We choose a coarse-graining procedure that respects the microscopic symmetries.
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B2 = SyA ua + SyB ub + SyC uc + SyD ud

= +ua − ub − uc + ud

B3 = SzA ua + SzB ub + SzC uc + SzD ud

= +ua + ub − uc − ud

where {a, b, c, d} ∈ Permutation{1, 2, 3, 4} label the u sublattice vectors on which the

spins {SA, SB, SC , SD} live. Then, exchanging spins SA and SB leads to the modified

fields

B′1 = SxB ua + SxA ub + SxC uc + SxD ud

= +ua − ub − uc + ud

= B2

B′2 = SyB ua + SyA ub + SyC uc + SyD ud

= −ua + ub − uc + ud

= B1

B′3 = SzB ua + SzA ub + SzC uc + SzD ud

= +ua + ub − uc − ud

= B3

with B1 and B2 exchanged. The same analysis carries through for all tetrahedra,

and exchanging SA and SB everywhere on the lattice is equivalent to exchanging
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the coarse grained fields B̃1 and B̃2. This gives the first of the symmetries listed in

Eq. (12.12); the others can be derived in an analogous manner.

Let us pause to consider the implications of Eq. (12.12). The first three equations

require a symmetry under exchanging any of the Bα fields; this justifies having the

same coefficient in front of all three quadratic, diagonal terms in the free energy

Eq. (12.8). The last three equations forbid quadratic terms that are off-diagonal in

the fields. For example, a term like B̃1B̃2 is not a symmetry under {B̃1, B̃2, B̃3} →

{−B̃1, B̃2,−B̃3}. At this point quadratic terms like B̃x
1 B̃

y
1 can still be added, though

we will soon show that these are forbidden by spatial symmetries.

Having considered transformations of the “internal” spin degrees of freedom, we

now turn to lattice transformations. The space group Fd3̄m of the pyrochlore lat-

tice consists of the 24 element tetrahedral point group 4̄3m and a further 24 non-

symmorphic elements, involving a combination of rotations or reflections with trans-

lation by half a lattice vector. For the pyrochlore dressed with Potts spins, the space

group elements transform one ground state configuration into another.

The Bα, are lattice vector fields whose transformation under the space group

elements (like rotations R) derives from the transformation of the lattice bond vectors

u. For example, the field B1 transforms as:

Bi
1(r) =

4∑

κ=1

Sxκ(r)uiκ

→
4∑

κ=1

Sxκ(Rr)Rijujκ

≡ RijBj
1(Rr).

Since the free energy involves an integral over all space, the change in the spatial loca-

tion of the fields (r→ R r) can be undone by a simple change of integration variables;

what matters is the transformation of the vector indices of the fields. Microscopically,

the transformation of the vector indices derives entirely from a permutation of sub-
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lattice indices i.e. a spin belonging to sublattice 1 of a tetrahedron at location r

gets rotated to, say, sublattice 3 of the tetrahedron at location R r. In this way, all

we’re concerned about is the action of the space group elements in permuting sub-

lattice indices. The 4! permutations of the sublattice indices lead to the additional

symmetries:

f(Bx
α, B

y
α, B

z
α) = f(By

α, B
x
α, B

z
α)

= f(Bz
α, B

y
α, B

x
α)

= f(Bx
α, B

z
α, B

y
α)

= f(−Bx
α,−By

α, B
z
α)

= f(−Bx
α, B

y
α,−Bz

α)

= f(Bx
α,−By

α,−Bz
α) (12.13)

where α = 1, 2, 3 labels the type of magnetic field and we have used a compressed

notation to label the nine arguments of the free energy function.

We should emphasize that permuting sublattices is very different from permuting

spins. In the latter case, we exchange spins of types SA and SB regardless of the

sublattices on which they lie; in the former, we exchange the spins living on sublattice

1 and 2 regardless of their type. As shown by Eqs. (12.12), (12.13), exchanging spins

leads to symmetries under exchanging different types of B fields, while exchanging

sublattices leads to symmetries under exchanging different spatial components of a

given type of field.

As before, let us consider an example to understand the symmetries listed in

Eq. (12.13). Fix the center of one tetrahedron as the origin and rotate the lattice by

π about the axis (0, 0, z). (This is the Cz element of the tetrahedral point group).

This axis bisects the edges u12 ≡ (u1 − u2) and u34 of the tetrahedron at the origin.

The rotation by π does a dual exchange of sublattice indices 1� 2 and 3� 4 on each
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tetrahedron (in addition to rotating the tetrahedron’s center). A given tetrahedron

has B1 fields defined by

Bx
1 = Sx1 u

x
1 + Sx2 u

x
2 + Sx3 u

x
3 + Sx4 u

x
4

= 0.25(−Sx1 + Sx2 − Sx3 + Sx4 )

By
1 = Sx1 u

y
1 + Sx2 u

y
2 + Sx3 u

y
3 + Sx4 u

y
4

= 0.25(Sx1 − Sx2 − Sx3 + Sx4 )

Bz
1 = Sx1 u

z
1 + Sx2 u

z
2 + Sx3 u

z
3 + Sx4 u

z
4

= 0.25(Sx1 + Sx2 − Sx3 − Sx4 )

where {S1, S2, S3, S4} are the spins living on sublattices {u1,u2,u3,u4} respectively

as in Appendix A. Now, exchange u1 � u2 and u3 � u4. The transformed field

equations are:

(Bx
1 )′ = Sx1 u

x
2 + Sx2 u

x
1 + Sx3 u

x
4 + Sx4 u

x
3

= 0.25(+Sx1 − Sx2 + Sx3 − Sx4 )

= −Bx
1

(By
1)′ = Sx1 u

y
2 + Sx2 u

y
1 + Sx3 u

y
4 + Sx4 u

y
3

= 0.25(−Sx1 + Sx2 + Sx3 − Sx4 )

= −By
1
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(Bz
1)′ = Sx1 u

z
2 + Sx2 u

z
1 + Sx3 u

z
4 + Sx4 u

z
3

= 0.25(Sx1 + Sx2 − Sx3 − Sx4 )

= Bz
1 .

The transformation has flipped the sign of the first two components of B1 correspond-

ing to the fourth symmetry in Eq. (12.13). Of course, exactly the same transforma-

tions carry through for B2 and B3. Also note that in 3D, the matrix for rotating by

π about the z axis looks like

Rz
π =




−1 0 0

0 −1 0

0 0 1




whose action is also to flip the first two vector indices of the fields it acts on.

Finally, armed with the symmetries in Eqs. (12.12), (12.13) it is easy to see that

the simplest terms we can add to the quadratic free energy defined in Eq. (12.8) are

cubic in the fields, and symmetric with respect to exchanging the types of fields and

the x, y, z components of each field:

F = Fquad +

∫
d3r (B1

xB
2
yB

3
z +B1

yB
2
xB

3
z + permutations). (12.14)

The added terms are cubic in the gradient of the vector potential and thus irrelevant

under a renormalization-group analysis for determining the long-wavelength correla-

tions of the fields. This confirms the stability of the quadratic, diagonal free energy

used in the bulk of our analysis. In future work, it would be interesting to explicitly

derive the perturbative corrections to the correlations stemming from Eq. (12.14).

289



Type of Defect Charges and Flux Lines

Q1 = −2




Connected by a Dirac
string of type A D

A A B C Q2 = 0
Q3 = +2

Q1 = +2
D D B C Q2 = 0

Q3 = −2

Q1 = 0




Connected by a Dirac
string of type A C

A A B D Q2 = +2
Q3 = +2

Q1 = 0
C C B D Q2 = −2

Q3 = −2

Q1 = −2




Connected by a Dirac
string of type A B

A A C D Q2 = +2
Q3 = 0

Q1 = +2
B B C D Q2 = −2

Q3 = 0

Q1 = 0




Connected by a Dirac
string of type B D

B B A C Q2 = −2
Q3 = +2

Q1 = 0
D D A C Q2 = +2

Q3 = −2

Q1 = +2




Connected by a Dirac
string of type B C

B B A D Q2 = 0
Q3 = +2

Q1 = −2
C C A D Q2 = 0

Q3 = −2

Q1 = −2




Connected by a Dirac
string of type C D

C C A B Q2 = −2
Q3 = 0

Q1 = +2
D D A B Q2 = +2

Q3 = 0

Table 12.1: Catalog of defects and charges. Each defect is charged under two gauge
fields - hence they are called bions.
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Néel State. Physical Review Letters, 50(15):1153–1156, Apr. 1983.

[132] T. H. Hansson, V. Oganesyan, and S. L. Sondhi. Superconductors are topolog-
ically ordered. Annals of Physics, 313(2):497 – 538, 2004.

[133] M. Z. Hasan and C. L. Kane. Colloquium : Topological insulators. Rev. Mod.
Phys., 82:3045–3067, Nov 2010.

[134] F. Hassler, A. Akhmerov, C. Hou, and C. Beenakker. Anyonic interferometry
without anyons: how a flux qubit can read out a topological qubit. New Journal
of Physics, 12(12):125002, 2010.

[135] M. B. Hastings. An area law for one-dimensional quantum systems. J. Stat.
Mech., 2007(08):P08024, 2007.

[136] M. B. Hastings and X.-G. Wen. Quasiadiabatic continuation of quantum states:
The stability of topological ground-state degeneracy and emergent gauge invari-
ance. Phys. Rev. B, 72:045141, Jul 2005.

[137] C. L. Henley. From classical to quantum dynamics at rokhsar–kivelson points.
Journal of Physics: Condensed Matter, 16(11):S891, 2004.

300



[138] C. L. Henley. Power-law spin correlations in pyrochlore antiferromagnets. Phys.
Rev. B, 71:014424, Jan 2005.

[139] C. L. Henley. The “coulomb phase” in frustrated systems. Annu. Rev. Cond.
Mat. Phys., 1(1):179–210, 2010.

[140] M. Hermanns, A. Chandran, N. Regnault, and B. A. Bernevig. Haldane statis-
tics in the finite-size entanglement spectra of 1/m fractional quantum hall
states. Phys. Rev. B, 84:121309, Sep 2011.

[141] M. Hermele, M. P. A. Fisher, and L. Balents. Pyrochlore photons: The U(1)
spin liquid in a S = 1

2
three-dimensional frustrated magnet. Phys. Rev. B,

69(6):064404, Feb 2004.

[142] M. Hindmarsh and A. Rajantie. Defect formation and local gauge invariance.
Phys. Rev. Lett., 85:4660–4663, Nov 2000.

[143] P. C. Hohenberg and B. I. Halperin. Theory of dynamic critical phenomena.
Rev. Mod. Phys., 49:435–479, Jul 1977.

[144] Y. Hu, S. D. Stirling, and Y.-S. Wu. Ground-state degeneracy in the levin-wen
model for topological phases. Phys. Rev. B, 85:075107, Feb 2012.

[145] T. L. Hughes, E. Prodan, and B. A. Bernevig. Inversion-symmetric topological
insulators. Phys. Rev. B, 83:245132, Jun 2011.

[146] S. Humeniuk and T. Roscilde. Quantum monte carlo calculation of entangle-
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for a finite-temperature insulator. Scientific reports, 5, 2015.

[231] M. Ovadia, D. Kalok, I. Tamir, S. Mitra, B. Sacépé, and D. Shahar. Evidence
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[280] N. Schuch, D. Pérez-Garćıa, and I. Cirac. Classifying quantum phases us-
ing matrix product states and projected entangled pair states. Phys. Rev. B,
84:165139, Oct 2011.

[281] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac. Entropy scaling and
simulability by matrix product states. Phys. Rev. Lett., 100(3):030504, 2008.

[282] M. Serbyn, M. Knap, S. Gopalakrishnan, Z. Papić, N. Y. Yao, C. R. Laumann,
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