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ABSTRACT 

COMPARA TIVE LINEAR ACCURACY AND RELIABILITY OF CONE BEAM CT 
DERIVED 2-DIMENSIONAL AND 3-DIMENSIONAL IMAGES CONSTRUCTED USING 

AN ORTHODONTIC VOLUMETRIC RENDERING PROGRAM. 

Danielle R. Periago, D.M.D. 

June 12, 2007 

The purpose of this project was to compare the accuracy and reliability of linear 

measurements made on 2D projections and 3D reconstructions using Dolphin 3D software 

(Chatsworth, CA) as compared to direct measurements made on human skulls. 

The linear dimensions between 6 bilateral and 8 mid-sagittal anatomical landmarks on 

23 dentate dry human skulls were measured three times by multiple observers using a digital 

caliper to provide twenty orthodontic linear measurements .. The skulls were stabilized and 

imaged via PSP digital cephalometry as well as CBCT. The PSP cephalograms were imported 

into Dolphin (Chatsworth, CA, USA) and the 3D volumetric data set was imported into Dolphin 

3D (Version 2.3, Chatsworth, CA, USA). Using Dolphin 3D, planar cephalograms as well as 3D 

volumetric surface reconstructions were (3D CBCT) generated. The linear measurements 

between landmarks of each three modalities were then computed by a single observer three times. 

For 2D measurements, a one way ANOV A for each measurement dimension was calculated as 

well as a post hoc Scheffe multiple comparison test with the anatomic distance as the control 

group. 3D measurements were compared to anatomic truth using Student's t test (P:50.05). The 

intraclass correlation coefficient (ICC) and absolute linear and percentage error were determined 

as indices of intraobserver reliability. 
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Our results show that for 20 mid sagittal measurements that Simulated LC images are 

accurate and similar to those from PSP images (except for Ba-Na), and for bilateral 

measurements simulated LC measurements were similar to PSP but less accurate, 

underestimating dimensions by between 4.7% to 17%. For 3D volumetric renderings, 2/3rd of 

CBCT measurements are statistically different from actual measurements, however this possibly 

is not clinically relevant 

VI 



TABLE OF CONTENTS 

PAGE 

ABSTRACT............................................................................................ v 
LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . .. . .. . . . . . . . . . . . . . .. . .. . . . . . . . .. . .. . .. . .. . . IX 

LIST OF FIGURES................................................................................... X 

INTRODUCTION .................................................................................... . 

Limitations of Conventional Film Based Cephalometric Analysis................. ... 3 

Digital Cephalometries...................................................................... 3 

Image Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

Image Clarity. . . . . . . . .. . . . . .. . . . . . . . . . . .. . .. . .. . .. . . . . .. . .. . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . .. 5 

Advanced Imaging Modalities in Orthodontics...................................... ... 8 

Computed Tomography..................................................................... 8 

Fan Beam Acquisition........................... ............................................ 10 

Cone Beam Acquisition..................................................................... 10 

Cone Beam CT in Oral and Maxillofacial Imaging..................................... II 

CBCT Advantages.... .......... ................. ......... .... .............. ....... .......... 14 

CBCT Applications...................................................... .................... 20 

Three Dimensional Cephalometries....................................................... 24 

Conventional 3D CT Imaging Accuracy.... ... ....... ... ...... ...... ............. ........ 33 

Potential of CBCT 3D Cephalometry..................................................... 37 

vii 



METHODS AND MATERIALS.................................................................... 39 

Overview. . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . . ... . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . .. . .. . . 39 

Sample ..................................................................................... 39 

Imaging.................................................................................... 41 

Lateral Cephalometric PSP Analysis........... ..... ............................... .... 46 

CBCT Reconstruction and Analysis.............. .................................. ... 47 

Measurement Analysis.................................................................. 53 

Data Collection........................................................................... 56 

Statistical Analysis.................................................................... ... 57 

RESULTS........................................................................................... 58 

Analysis of 3D Measurements............ .............................................. 58 

Measurement Reliability................................................................ 58 

Modality Accuracy....... ... ...... ........... .................. .......... ... ..... ... .... 60 

Analysis of 2D Measurements......... ............................................... 65 

Measurement Reliability. .... ........ .... ................................. ...... ....... 65 

Modality Accuracy.......................................................... ........... 65 

DISCUSSION..................................................................................... 71 

CONCLUSIONS......................................................................................... 76 

REFERENCES. . . . . . . . . . . .. . .. . .. . . . . . . . . . . .. . .. . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . .. . .. . .. . .. ... 78 

CURRICULUM VITAE......................................................................... 85 

V1ll 



LIST OF TABLES 

PAGE 

1. Comparison of Maximum Resolution of Imaging Modalities.............................. 7 

2. Comparative Specifications of FDA-Approved CBCT Systems.................. 13 

3. Radiation Exposures from CBCT and other Imaging Modalities........................ 16 

4. Features of Imaging Plate and CBCT Digital Images.. .. . . . . .. . .. . .. . .. . ... . . . . .. . .. . .. . . 45 

5. Definition of anthropometric topographic points Used as 
Landmarks for the Measurements.................... ............................................. 53 

6. Definition of Linear Planes used in the Cephalometric Analysis........................ 54 

7. Average Measure intra-Class Correlation Coefficient for Triplicate Measurements on 
MidSagittal and Bilateral Linear Measurements by Multiple Observers on 23 skulls and for a 
Single Observer on CBCT 3D Reconstructions.................................................... 58 

8. Comparison of Absolute and Percentage Mean Error for Mid-Sagittaland Bilateral Linear 
Measurements Between Dimensions of Planes on 23 Skulls and Measurements CBCT 3D 
Reconstructions. . . . . .... . .. . .... . . . . . . . .. . .. . . . . .. . . . .. . . . . . . . . .. . . . . .. . .. . .. . ... . . . . . . . . . . . . . . . . . . . .. . . .... 60 

9. Comparison of Absolute and Percentage Differences for Mid-Sagittal and Bilateral Linear 
Measurements Between Dimensions of Planes on 23 skulls and Measurements CBCT 3D 
Reconstructions............................................................................................. 62 

10. Average Measure Intra-Class Correlation Coefficient for Multiple Measurements of Linear 
Dimensions by Multiple Observers on 23 Skulls and for a Single Observer on Photostimulable 
Storage Phosphor Cephalograms (PSP) and Simulated Cephalograms Generated from CBCT 
Volumetric Datasets (CBCT LC)........ ............................................ ................... 66 

II. Comparison of Absolute and Percentage Mean Error for Mid-Sagittal and Bilateral Linear 
Measurements Between Dimensions of Planes on 23 Skulls and Measurements Made on 
Photostimulable Storage Phosphor Cephalograms (PSP) and Simulated Cephalograms Generated 
from CBCT Volumetric Datasets (CBCTLC)............................ ................................ 68 

12. Comparison of Mean Linear Measurements (±s.d.) Between Cephalometric Landmarks on 
Storage Phosphor and CBCT Derived Simulated Lateral Cephalometric Images of 23 
Skulls......................................................................................................... 69 

IX 



LIST OF FIGURES 

PAGE 

I. X-ray Beam Projection Scheme Comparing Conventional or "Fan Beam" CT and Cone Beam 
CT Geometry .................................................................................................... 9 

2. Examples of Current Commercially Available CBCT Units for 
Dento-Maxillofacial Radiology ............................................................................ 12 

3. Comparison of Voxel Acquisition Features on Conventional "Fan Beam" CT 
and "Cone Beam" CT. . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 17 

4. Surface-Rendering Reconstruction of i-CAT CBCT Data Set ...................................... 21 

5. Application of maximum intensity projection algorithms to ray-sum projections .............. 27 

6. Integration of hard- and soft-tissue volumetric data ................................................. 28 

7. Materials used for imaging of skulls ................................................................... 40 

8. Skull Positioning for Lateral Cephalometric Radiograph ............................................ 41 

9. Skull Positioning for Cone Beam Computed Tomography Scan ................................... 42 

10. Scout images of a skull demonstrating initial position of specimen with excessive tilt and after 
adjustment immediately prior to scanning ................................................................ 43 

II. Example of Effect of Post Processing using PhotoS hop on a Lateral Cephalometric Image 
Before and After Image Equalization ....................................................................... 44 

12. Image Capture from Dolphin 3D Program Demonstrating the Segmentation 
Screen ............................................................................................................ 47 

13. Image capture from Dolphin 3D Program Demonstrating the "Build X-Rays" Screen for the 
Lateral Cephalometric Projections ........................................................................... 48 

14. PA 3D Volumetric Orientation ....................................................................... 49 

15. SMV 3D Volumetric Orientation ..................................................................... 50 

16. Right Lateral 3D Volumetric Orientation_ ............................................................ 50 

x 



\7. Superior 3D Volumetric Orientation_ ................................................................. 5\ 

18. CBCT 3D Image Generated from Segmentation Demonstrating Identification of Landmarks 
and Linear Dimensions Measured in the Study......................................................... 52 

XI 



CHAPTER I 

INTRODUCTION 

Radiographic imaging is an important diagnostic adjunct in the assessment of skeletal and 

dental relationships for the orthodontic patient. Historically, cephalometric analysis of the 

maxillofacial complex for orthodontic diagnosis and treatment planning has been determined 

from linear and angular measurements made on film or digital two dimensional (20) 

cephalograms. Over the past decade, cone beam computed tomography (CBCT) specifically for 

imaging the maxillofacial region has been developed. CBCT is capable of providing sub­

millimeter spatial resolution for images of the craniofacial complex with relatively short scanning 

times (10-70 sec.) and generally lower radiation dosages than ascribed to fan-beam or helical CT 

imaging methods.[ 1] Time and dose requirements for CBCT have been suggested to be a similar 

order of magnitude to other dental radiographic modalities.[2-4] 

While CBCT images provide useful information for the orthodontist in regard to the 

position and location of impacted teeth and other pathologies, datasets can be used to generate 

both two dimensional (20) planar projection and three dimensional (3D) surface or volume 

rendered images for use in orthodontic assessment and treatment planning. CBCT has a number 

of advantages compared to conventional CT imaging for cephalometric imaging including sub­

millimeter resolution and reduced radiation exposure. Perhaps the most important clinical 

advantage is that CBCT volumetric datasets can be exported as DICOM files, imported into 

personal computers and third party software used to provide 3D reconstruction of the craniofacial 

skeleton. This possibility, and the increasing access ofCBCT imaging in orthodontics, is a 



component of the paradigm that is directing imaging analysis from 20 cephalometry to 3D 

visualization of craniofacial morphology.[5] The availability of fast scan CBCT now provides 

multi-planar reformatted (MPR) imaging and the possibility of 3D image reconstruction of the 

maxillofacial complex with minimal distortion. 

The linear accuracy of CBCT derived 20 and 3D reconstructions have not been 

previously reported for orthodontic assessment. Therefore this study was made to compare the 

accuracy of linear measurements made on 20 planar projections and 3D surface reconstructions 

generated using Dolphin 3D software (Chatsworth, CA) applied to CBCT DICOM datasets with 

direct measurements made on human skulls. 

The aims of this study were to compare the: 

I) reliability of linear measurements made from lateral cephalometric plain projection 

digital images and ray sum 20 simulated cephalometric projections derived from 

CBCT volumetric datasets using Dolphin 3D software (Chatsworth, CA) to direct 

measurements made on a sample of 25 human skulls. 

2) accuracy of linear measurements made from lateral cephalometric plain projection 

digital images and ray sum 2D simulated cephalometric projections derived from 

CBCT volumetric datasets using Dolphin 3D software (Chatsworth, CA) to direct 

measurements made on a sample of 25 human skulls. 

3) reliability of linear measurements made on CBCT derived 3D surface rendered 

volumetric images generated using Dolphin 3D software (Chatsworth, CA) to direct 

measurements made on a sample of 25 human skulls. 

4) accuracy of linear measurements made on CBCT derived 3D surface rendered 

volumetric images generated using Dolphin 3D software (Chatsworth, CA) to direct 

measurements made on a sample of 25 human skulls. 
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The Limitations of Conventional Film Based Cephalometrie Analysis 

Since 1931,20 transmission X-ray images have been used to identify specific skull 

landmarks from which vertical and antero-posterior skeletal and dental dimensions are derived. 

These lateral skull radiographs, made under standard projection conditions, are currently the 

image format used in the analysis of both bony and soft tissue landmarks for orthodontic 

diagnostic purposes as well as for growth evaluation. Post-treatment cephalograms may also 

serve to evaluate orthodontic treatment outcome and success. Traditionally, cephalograms have 

been utilized for their cost and radiation efficiency as well as their ease of use. However, 

characteristics related to projection geometry such as inherent magnification, superimposition of 

bilateral anatomic structures and distortion as well as the nature of the detector system can 

diminish accuracy and reliability in evaluation of craniofacial structures and anomalies. 

Digital Cephalometries 

Many conventional film based cephalostats are being replaced by digital systems. The 

advantages of digital cephalometric imaging versus conventional film based modalities include 

instantaneous imaging, lack of user and performance sensiti ve chemical developing processes, 

facilitated patient communication, ease of storage and retrieval, and the ability to enhance images 

for size or contrast.[6-8] Currently, three methods are available to produce digital images: 

digitization of film radiographs, solid state systems (charge-coupled device - CCO; 

complementary metal oxide semiconductor - CMOS; thin film transistor - TFT), and 

photostimulable phosphor systems (PSP).[6-1 0] Secondary capture through digitization of film 

radiographs can be achieved using a scanner with a radiograph/transparency adaptor. This method 

allows for digitization of all film radiographs, however, it is important to note that the quality of 

scanned images cannot exceed the quality of the original radiograph.[8] CCO detectors are 

sometimes incorrectly listed in the dental literature as direct digital imaging modalities, because 

the output is transferred via cables to a computer system and digitized by the frame grabber. [10] 
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They are in fact usually indirect imaging devices as they employ a scintillator in most cases, 

similar to that used with indirect screen film. CCD is the more costly option for cephalometry in 

orthodontics. Photostimulable phosphor systems (PSP) are reusable and use an imaging plate that 

superficially resembles scintillating screens used for traditional extra-oral radiography.[8] These 

phosphor plates are illuminated by a solid state laser beam to release photoluminesence. The 

released light is photomultiplied and collected by a digital imaging chip and the signals are then 

analyzed by the image processor.[6-1 0] 

Image quality in cephalometrics either analog or digital, is determined by two 

parameters: image accuracy and image quality 

Image Accuracy 

Cephalometric radiography is based on use of a standardized, reproducible head position 

in relation to the X-ray source and detector. Ear rods are used to prevent the head from rotating 

about the vertical, sagittal and transverse axes. A third reference, a nasal positioner, may be used 

to prevent the nose from rotating about the transverse axis. However, when the device is used to 

contact the external auditory meatus and soft tissues of the patient, the head can be incorrectly 

positioned sagittally, antero-posteriorly, or vertically, as the head can be slightly rotated within 

the head-holding device. 

Due to these errors caused by different positioning of the head, cephalometric linear and 

angular measurements can vary depending on the different locations of anatomic structures 

against the central ray. Malkoc et al. found that horizontal linear and angular measurements 

between the horizontal planes on lateral cephalograms were subject to changes from 16.1 % to 

44.7% with a 14° rotation of the head position. For PA cephalograms, they reported horizontal 

linear measurements, particularly mandibular length, were subject to a projection error of up to 

34.9% with head rotation.[II] 

4 



2D transmission cephalometric radiography is subject to inherent geometric differential 

magnification. All resulting images are magnified, because X-rays do not radiate parallel to the 

whole part of the projected object. The ratio of magnification varies in the different planes, and 

hence the image is distorted. In cephalometric radiography, each landmark is not located at the 

same distance from the focal area of the anode. As a result, changes may be caused in the 

relationship of the landmarks to one and another on the cephalogram.[ 12, 13] 

Image Clarity 

Clarity is the term used to describe the visibility of diagnostically important detail in an 

image. It is determined by two factors; radiographic contrast and image quality. Radiographic 

contrast is the ability to determine the difference in density between areas of the image. For both 

analog radiographic film and digital detectors contrast depends on radiation energy, subject 

contrast and scatter; however, a fourth element, detector contrast, is also a factor due to inherent 

dissimilarity between detection systems. 

Image quality is defined as the ability to record each point in an object as a point on the 

detector. For film imaging it is partly determined by radiographic mottle (a feature of the film 

screen system and film graininess), sharpness and resolution. For digital detectors, seven essential 

characteristics should be considered: size of active area, signal-to-noise ratio, contrast resolution, 

spatial resolution, modulation transfer function, quantum efficiency and detective quantum 

efficiency .[8,15,16] 

1. Active Area: No standard active areas have been specified for digital imaging 

systems comparable to the ISO/ANSI standards for the conventional X-ray film. For 

solid-state extra-oral systems, a narrower receptor is sometimes used for detecting the 

image and the image is formed via virtual movement. The plates used in storage 

phosphor systems can be cut to exactly replicate the size of their film counterparts 

and exposure is similar to cassette motion. 
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2. Signal-to-Noise Ratio: For any imaging system, the useful signal must be compared 

with background noise which, in analog film, is comparable to the base density plus 

fog. The base plus fog density for conventional processed film is about 1120 of the 

signal density. Both newer CCD and PSP systems outperform film in signal-to-noise 

ratios (SNS) if base plus fog is considered to be equivalent to SNR. Newer CCD 

systems exhibit a SNR of approximately 50: I. No matter what the system, all SNRs 

improve with increased radiation dose. 

3. Contrast Resolution: In imaging, the ability to separate and distinguish depends 

upon contrast between adjacent structures. Using current display monitors, working 

on the WINDOWS system, the maximum number of gray levels is 242 because the 

operating system in the past has been reported to use 14 shades and the total 

supported shades is 256 for an 8-bit display. This is usually the maximum contrast 

resolution available. 

4. Spatial Resolution: Resolutions comparable to those of conventional cephalometric 

radiographs are readily obtained using digital systems/detectors. Table I compares 

detector resolution for a number of currently available conventional film, CCD 

systems and PSP systems.[14] 

5. Modulation Transfer Function: MTF is the ability of the detector to transfer the 

modulation of the input signal at a certain frequency to its output and deals with the 

display of contrast and object size. MTF is responsible for converting contrast values 

of different sized objects into contrast intensity levels within the image. Therefore, 

modulation transfer function (MTF) is a useful measure of true or effective 

resolution, because it accounts for the amount of contrast and blur over a range of 

spatial frequencies.[ 15] 
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6. Quantum Efficiency: The average number of electrons photoelectrically emitted 

from a photocathode per incident photon of a given wavelength in a phototube. 

Quantum efficiency (QE) is a quantity defined for a photosensitive device such as 

photographic film or a charge-coupled device (CCD) as the percentage of photons 

hitting the photoreactive surface that will produce an electron-hole pair. It is an 

accurate measurement of the device's sensitivity. It is often measured over a range of 

different wavelengths to characterize a device's efficiency at each energy. 

Photographic film typically has a QE of much less than 10%, while CCDs can have a 

QE of well over 90% at some wavelengths.[16] 

7. Detective Quantum Efficiency: Detective quantum efficiency (DQE) refers to the 

efficiency of a detector in converting incident x-ray energy into an image signal, and 

is calculated by comparing the signal-to-noise ratio at the detector output with that at 

the detector input as a function of spatial frequency. It is dependent upon radiation 

exposure, spatial frequency, MTF, and detector material as well as the quality of the 

radiation applied. High DQE levels indicate that less radiation is needed to achieve 

identical image quality, therefore, improved image quality can be obtained by 

increasing DQE and leaving radiation exposure constant. An ideal detector would 

have a DQE of I, indicating that all radiation energy is absorbed and converted into 

image information. However, in clinical practice the DQE of digital detectors is 

limited to roughly 0.45 at 0.5 cycles/mm.[ 15] 

Table 1. Comparison of maximum resolution of Imaging Modalities 

Analog Film (T-Mat G) Storage Phosphor CCD-Based 

Maximum OP 100 Prototype OP 
Resolution OP100 OP 100 DenOptix DigiPan 100D 

Ip/mm 
>5;<6 >5;<6 

>4.47; 
>5;<6 

<4.86 
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Digital cephalometric images have been reported to be clinically and diagnostically 

acceptable for orthodontic treatment planning purposes;[7-1 0] however, there is a need to further 

compare various radiographic modes of image capture for cephalometry such as conventional vs. 

digital radiographs and scanned conventional films vs. digital radiographs.[9] 

Advanced Imaging Modalities in Orthodontics 

Advanced technologies are those that acquire images using a digital receptor and that 

provide the possibility of multiple planar reformatting (MPR). In these modalities, multiple 

images become truly inter-relational in that direct comparisons in multiple planes can be made. 

Some advanced technologies that are available to image the maxillofacial complex include 

magnetic resonance imaging (MRI), fan-beam computerized tomography (CT), and Cone Beam 

Computed Tomography (CBCT). The basis of advanced imaging is the recording of transmitted, 

attenuated x-rays of an object by a digital receptor to produce a digital image. Digital images are 

composed of pixels, or picture elements, arranged in a 2-dimensional rectangular grid. Each pixel 

has a specific size, color, intensity value, and location within an image and is the smallest element 

of the digitized image. In general, radiographic images use gray color with an intensity value 

between 8 bits (256 shades of gray) and 12 bits (4096 shades of gray). The number of pixels per 

given length of an image (pixels/mm), the number of gray levels per pixel (bits), and the 

management of the gray levels determine image resolution or the degree of sharpness of the 

image. A voxel is a three-dimensional stack of bitmapped images, (each voxel having a height, 

width, and thickness) and is the smallest element of a three-dimensional image.[ 18] 

Computed Tomography 

In addition to utilizing images that are digital, technological advancements now allow 

dentistry to create images of the maxillofacial region in 3-dimensions. The first 3D imaging 

technique used in dentistry was computerized tomography (CT). CT units can be divided into two 
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groups based on the acquisition X-ray geometry: fan beam and cone beam (Figure I). Essentially, 

the latter method for capturing an image differs from the traditional CT in that it does so by cone 

beam volumetric tomography. A three-dimensional X-ray beam passes through the object volume 

investigated. Simultaneously, the beam hits a two-dimensional extended detector and forms a true 

volumetric acquisition in a single scan (Figure I). 

X·ray source X-ray source 

'Cone' of X-rays 

a. b. 

Figure 1. X-ray beam projection scheme comparing conventional or "fan beam" CT Ca.) and cone 

beam CT Cb.) geometry (Images courtesy Predag Sukovic, Xoran Technologies, Ann Arbor, MI 

USA) 
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Fan beam acquisition 

CT scanners consist of an X-ray source and detector mounted on a rotating gantry (Figure 

I a). During one rotation of the gantry, the detector detects the flux (I,) of x-rays that have passed 

through the patient. These integrals constitute so-called "raw data" that are then fed into an image 

reconstruction method that generates cross-sectional images whose pixel values correspond to 

linear attenuation coefficients. Such machines acquire image data through a thin, broad, fan 

shaped X-ray beam which is transmitted through the patient. These scanners use a large, arc­

shaped detector that acquires an entire projection without the need for translation. This rotate­

only design, frequently referred to as "fan-beam", utilizes the power of the X-ray tube much more 

efficiently than the previous generations. Recent advances in CT include multi-row detectors and 

spiral scanning. Multi-row scanning allows for the acquisition of several cross-sectional slices at 

the same time, reducing scanning times. Today's state-of-the-art scanners have 64 rows of 

detectors. Spiral (helical) scanning incorporates a moving table with the rotating X-ray tube, with 

the net effect that the X-ray tube describes a helical path around the patient. 

Cone Beam Acquisition 

CBCT scanners often utilize a 20 flat panel detector (Figure I b), which allows for a 

rotation of the gantry to generate a scan of the entire region of interest using a 180 degree or 

greater rotation (up to two 360 degree rotations), as compared to conventional CT scanners whose 

multiple "slices" must be stacked to obtain a complete image. In comparison with conventional 

fan-beam or spiral-scan geometries, cone-beam geometry has higher efficiency in X-ray use, 

inherent quickness in volumetric data acquisition, and potential for reducing the cost of CT. 

Conventional fan-beam scans are obtained by illuminating an object with a narrow, fan-shaped, 

beam of X-rays. The X-ray beam generated by the tube is focused to a fan-shaped beam by 

rejecting the photons outside the fan, resulting in a highly inefficient use of the X-ray photons. 

Further, the fan-beam approach requires reconstructing the object slice-by-slice and then stacking 
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the slices to obtain a 3D representation of the object. Each individual slice requires a separate 

scan and separate 20 reconstruction. The cone beam technique, on the other hand, requires only a 

single scan to capture the entire object with a cone of X-rays. Thus, the time required to acquire a 

single cone-beam projection is the same as that required by a single fan-beam projection. 

However, since it takes several fan beam scans to complete the imaging of a single object, the 

acquisition time for the fan beam tends to be much longer than with the cone beam. Although it 

may be possible to reduce the acquisition time of the fan beam method by using a higher power 

X-ray tube, this increases the cost and size of the scanner as well as the electric power 

consumption, thus making the design unsuitable for a compact scanner. 

Although CBCT equipment has existed for over two decades, only recently has it become 

possible to develop clinical systems that are both inexpensive and small enough to be used in 

operating room, medical offices, emergency rooms, and intensive care. Four technological and 

application-specific factors have converged to make this possible. First, compact and high-quality 

flat-panel detector arrays were developed. Second, the computer power necessary for cone-beam 

image reconstruction has become widely available and is relatively inexpensive. Third, x-ray 

tubes necessary for cone-beam scanning are orders-of-magnitude less expensive than those 

required for conventional CT. Fourth, by focusing on head/neck scanning only, one can eliminate 

the need for sub-second gantry rotation speeds that are needed for cardiac and thoracic imaging. 

This significantly reduces the complexity and cost of the gantry. 

CBCT in Oral and Maxillofacial Imaging 

Currently available CBCT units in the United States are the NewTom QR DVT 3G 

(Quantitative Radiology s.r.l., Verona, Italy), CB MercuRay (Hitachi Medical Corp., Chiba-ken, 

Japan), i-CAT (Danaher/Imaging Sciences International, Hatfield, PA), I1uma, (Kodak Dental 

Imaging, Atlanta, GA/Imtec Imaging, Ardmore, OK, USA), Galileos, (Sirona Dental 

Systems,Chariotte NC), and 3D Accu-i-tomo - XYZ Slice View Tomograph, (J. Morita Mfg. 
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Corp., Kyoto, Japan), Promax (Planmeca Oy, Helsinki, Finland). All but the two are capable of 

imaging the skull to include most anthropometric landmarks used in cephalometric analysis 

(Figure 2)(Table 2). 

b. c. 
a. d. 

Figure 2: Examples of current commercially available CBCT units for dento-maxillofacial 

radiology. a. Newtom 9000G (Quantitative Radiology, Verona, Italy) b. CB MercuRay (Hitachi, 

Medical Corp. , Kashiwa-shi, Chiba-ken, Japan) c. 3D Accuitomo - XYZ Slice View Tomograph, 

(1. Morita Mfg. Corp., Kyoto, Japan) d. i-CAT (Danaher/Imaging Sciences International, 

Hatfield, PA) 
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Table 2. Comparative Specifications of FDA-Approved CBCT Systems (Modified from: [19]) 

Vendor AFP-Dent-X 
J. Morita Mnfr. Imaging Sciences Hitachi Medical 

Kodak Dental Systems 
Sirona Dental 

Corp. Inti. Systems Systems 

CBCTName NewTom3G 3D Accu-i-tomo iCAT CB MercuRay 
ILUMA Ultra Cone Galileos 
Beam CT Scanner 

Headquarters Elmsford, NY Kyoto, Japan Hatfield, P A Tokyo, Japan Ardmore, OK Charlotte, NC 

Initial FDAlCDRH 
March 2001 May 2003 October 2003 October 2003 November 2005 July 2006 

Approval 

Grayscale 12 Bit 12 Bit 12 Bit 12 Bit 14 Bit 12 Bit-sw 16 bit 

Foot Print (H x W x 
2 x 2 x 0.74 2.08 x 1.62 x 1.2 1.83 x 1.12 x 1.49 2.25 x 1.96 x 1.9 1.06 x 1.42 x 2.15 2 x 1.60 x 1.60 

D) (meters) 

Image 
Cesium iodide Cesium iodide 

Image 
127- micron 

Proprietary Siemens 
w Image Detector CsUamorphous CsI/amorphous amorphous silicon flat 

intensifier/CCD 
silicon flat panel silicon flat panel 

intensifierlCCD 
panel 

Technology 

Rotation per scan lor 2 Single 360° Rotation 
210° 200 single 

shots 

Patient Positioning Supine Seated Seated Seated 
Seated with rear-head 

Standing/sitting 
stabilization 

Pre-Installed NewTom 3G i-Dixel Xoran Cat CBWorks ILLUMINA VISION3D SIDEXIS/GALAXIS 
Software 

Scan time (s) 5.6-36 17 10-4- 9.6 20-40 14 

mA 15 max 1-10 3-5 2-15 4-7 5-7 

Kv 110 max 60-80 120 120 120 85 

Scan diameter (cm) 25 4-6 17 25 17-19 15 

Scan height (cm) 15-30 4-6 6-27.4 15-30 10-19 15 

Slice width (mm) 0.1-0.5 0.125-2.0 0.2-0.4 0.1-0.5 0.0936-0.4 
Voxel size: 150/300 

microns 



The cone-beamed technique uses a single scan in which the x-ray source and a 

reciprocating x-ray detector are attached by a "U-" or C-arm and rotate around the patient's 

head acquiring multiple projection scan images. The field of view (FOY) or area of interest 

able to be covered is primarily dependent on the detector size (Image intensifier/CCD, CMOS 

or a:SiTFT field dimensions) and beam projection geometry. While the FOY can be varied by 

the application of zoomed image reconstruction (e.g. MercuRay [Hitachi, Medical Corp., 

Kashiwa-shi, Chiba-ken, Japan]) this is usually done at the loss of image resolution. 

Data is obtained from a series of multiple single projection scan images as the x-ray 

source rotates around the patient's head. The number of projection scans comprising the data 

set is variable, depending on the system, and is referred to as the frame rate. With a higher the 

frame rate, more information is available to reconstruct the image: however, the signal-to­

noise of individual MPR slices is also higher. The advantage of a higher frame rate is that it 

reduces metallic artifact, but this is usually accomplished with a longer scan time and 

therefore radiation dosage. A number of units have variable exposure cycles. For example, 

the i-CAT has a choice of 10 second, 20 second (standard) and 40 second scans. The number 

of basis images produced is roughly proportional to the exposure time reflecting a relatively 

constant frame rate. 

CBCT Advantages 

Because CBCT provides images of high contrasting structures well, it is extremely 

useful for evaluating osseous structures. Combined with the limitation of FOY, CBCT is 

therefore well suited towards the imaging of the craniofacial area. Currently, limitations exist 

in the application of this technology for soft tissue,[23, 24] but efforts are being directed 

towards the development of software algorithms to improve signal-to-noise and optimize 

available contrast. 

The utilization of CBCT technology in clinical practice provides a number of 
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potential advantages compared with conventional CT related to the beam limitation, scan 

time reduction, and image display. Specifically the advantages of CBCT are as follows [19]: 

I) Variable FOV. Collimation of the CBCT primary x-ray beam enables limitation of the 

X-radiation to the area of interest. For most (but not all) CBCT systems an optimal 

FOV (field of view) can be selected for each patient based on suspected disease 

presentation and the region to be imaged. For example, radiographic investigation of 

the mandible can be performed by selection of an appropriate FOV. This fUnctionality 

provides additional dose savings by limiting the irradiation field to fit the FOV, with a 

resulting exposure reduction to the patient. 

2) Sub-millimeter resolution. Maxillofacial diagnostic CBCT units all use mega-pixel 

solid state devices for x-ray detection providing a minimal voxel resolution of < 

0.25mm isotropically, exceeding the specifications of commonly used multi-slice CT 

systems in terms of spatial resolution. 

3) High speed scanning. Because CBCT acquires all projection images in a single 

rotation, scan time can be reduced enormously. In the fan-beam CT system, 

particularly in high resolution, each thin slice thickness can take up to several tens of 

seconds. However, various CBCT systems can scan an entire head in 10 seconds or 

less. While faster scanning times usually mean less number of projections from which 

to reconstruct the MPR images, motion artifact due to subject movement is reduced. 

Reconstruction times vary depending on FOV and scanning speed. 

4) Dose reduction. Preliminary reports indicate that CBCT patient absorbed dose can be 

significantly reduced when compared to conventional CT used with manufacturer 

recommended sequences.[25] The Newtom 9000 system (Quantitative Radiology, 

Verona, Italy) also has an automatic exposure control device which selects the starting 

intensity of the x-ray beam, depending on the size of the patient, and modifies the 

anodic current according to the density of the transversed tissues (maximum value 
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15mA). This reduces the patient absorbed dose to approximately that of a film-based 

periapical survey of the dentition [26-28] or 1-7 times that of a single panoramic image 

(varying with the panoramic system used).[29, 30] Depending on bone density, a 

traditional CT exposes the patient to approximately 6-8 times that amount when 

evaluating either the maxilla or mandible [29] and IS times the amount of CBCT 

exposure when imaging both the maxilla and mandible.[31] Table 3 compares radiation 

exposures from CBCT and other imaging modalities. 

Table 3. Radiation EXl20sures from CBCT and other Imaging Modalities (Modified from: [19]) 

Effective Dose Dose in single Dose in days Dose in % Dose % annual 

Machine & (pSv) using panoramic per capita medical CT per capita 
Technique 19901CRP multiples background equivalent background 

NewTom 3G 
45 7 4 2.1 1.2 

full (12") FOV 

NewTom 3G 
wi chin tilt & 28 4 3 1.3 0.8 
thyroid shield 

CB MercuRay 
full (12") FOV 477 74 48 22.7 13.2 
10 mA-IOOkV 

CB MercuRay 
289 45 29 13.8 8 

P (9") FOV 

CB MercuRay 
I (6") FOV 125 169 26 17 12 4.7 
(maxillary) 

CB MercuRay 
1(6") FOV wi 125 19 12 5.9 3.5 
chin tilt 

iCAT full 
135 21 13 6.4 3.7 

(12") FOV 

iCAT wi chin 
tilt & thyroid 57 9 6 2.7 1.6 
shield 

Panoramic 
(OrthoPhos 6 0.3 0.3 
Plus OS) 

CT maxilla & 
2100 385 

mandible 
243 100 58.3 

CT maxilla 1400 164 103 100 38.9 

Galileos Pending Pending Pending Pending Pending 
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5) Voxel isotropy. The smallest element of a volumetric dataset is the voxel. Voxels have 

a dimension of thickness as well as the height and width of a 2-dimensional pixel. 

Voxel representation and therefore resolution are dependent on lateral slice thickness, 

determined principally by the matrix size of the detector and longitudinal slice 

thickness (body axis), which in conventional CT is determined by slice pitch, a 

function of gantry motion. Therefore, conventional CT data is obtained anisotropically, 

where axial voxel dimensions are equal, but where coronal dimensions are greater and 

are determined by slice pitch, usually a Imm minimum (Figure 3a). Therefore, spatial 

resolution in the longitudinal slice (body axis direction) is poorer than that of lateral 

slice, On the other hand, the CBCT uses a 2D detector and the same high resolution is 

obtained in the longitudinal slice (body axis direction) and lateral slice (transverse 

direction) . This voxel representation is known as isotropic (Figure 3b). Because of this 

characteristic, coronal multi-planar reformatting (MPR) of CBCT data has the same 

resolution as axial data. 

a. Anisotropic Voxel b. Isotropic Voxel 

Figure 3: Comparison of voxel acquisition features on conventional "fan beam" CT (a.tand 

"cone beam" CT (b.) 
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6) Real time analysis and manipulation. Although conventional CT data is inherently 

digital, images are supplied to referring clinicians as fixed format, hard copies on film 

transparencies. CT image algorithms necessary to reformat the data require the 

computing power of workstations. While such data can be "converted" and imported 

into proprietary programs for use on personal computers (e.g. Simplant and Simplant 

CMF: Materialise, Ann Arbor, MI, USA; Procera: Nobel Biopharma, Sweden)) this 

process is expensive and requires an intermediary stage that potentially extends the 

diagnostic phase. Reconstruction of CBCT data is performed natively by a personal 

computer. In addition, availability of software to the user, not just the radiologist, is 

available either via direct purchase or innovative "per use" license from the various 

vendors (e.g. Danaher/Imaging Sciences International). Further, because the original 

data is isotropic, it can theoretically be re-orientated such that the patient's anatomic 

features are re-aligned. At least one manufacturer has incorporated this capability into 

both their acquisition and viewer software (Imaging Sciences International). Finally, 

the availability of cursor-driven measurement algorithms provides the clinician with an 

interactive capability for real-time dimensional assessment. 

7) Display modes unique to maxillofacial imaging. CBCT software can reconstruct the 

projection data to provide as many as 512 coronal, sagittal and axial MPR frames. 

Common to all standard viewing layouts are usually preset options providing display of 

coronal, sagittal and axial MPR frames. Basic manipulations include zoom or 

magnification, window/level, the capability to add annotation and measurement 

algorithms. Some proprietary software is capable of advanced imaging processing 

functions including: 

a. Oblique MPR such as linear oblique MRP (useful for TMJ assessment) or curved 

oblique MPR providing a "panoramic" image. 

b. Cross-sectional imaging provides sequential multi-slice images usually 
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perpendicular to the "panoramic" MPR, useful in implant site assessment or 

lateral oblique MPR which has application in the assessment of the TMJ. 

c. Variable slice thickness adjustments for oblique MPR images provide the 

clinician with the possibility of producing undistorted plain radiograph 

projection-like images. One example is the creation of a cephalometric plane 

projection, either sagitally or coronally. This is developed by increasing the slice 

thickness of a mid sagittal MPR plane to the width of the head (130-ISOmm) to 

produce an image composed of the summed voxels, an image which has been 

referred to as "Ray Sum". This image can be exported and analyzed using third 

party proprietary cephalometric analysis software. This functionality may 

potentially reduce the need for additional radiographic exposure. Oblique MPR 

images along the curve of the dental arch with slice thickness comparable to the 

in-focus image layer of panoramic radiographs (2S-3Smm) can also be 

individually created to provide a "panoramic" radiograph customized for each 

patient. However, unlike conventional panoramic radiographs, these MPR 

images are undistorted and are free from projection artifacts. 

d. Maximum intensity projection (MIP). This is a three dimensional volume 

rendering technique which is used to visualize high-intensity structures within 

volumetric data. At each pixel, the highest data value encountered along a 

corresponding viewing ray is depicted. In combination with oblique MPR and 

selection of wide slice thickness, this technique is capable of providing 3D 

surface images. This is particularly useful in cephalometric radiography. 

e. Surface and volume rendering algorithms are available with some software which 

provides three-dimensional reconstruction and presentation of data that can be 

interactively adjusted. 

f. Previously unavailable for viewer use, numerous image enhancement algorithms 
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are now able to optimize image presentation. While the diagnostic efficacy of the 

application of these algorithms is yet to be studied, preliminary investigations 

indicate that sharpening and edge filters show the greatest potential in refining 

anatomic structures for interpretation. 

8) Variable acquisition modes. Many, but not all, units are capable of variable scanning 

fields of view (FOY) from large FOY capable of imaging the entire craniofacial 

complex (currently up to l3.2cm with i-CATand 19cm with CB MercuRay to limited 

FOY for specific diagnostic tasks. The Iluma at the time of this research was limited to 

one full FOY. 

CBCT Applications 

The advent of CBCT technology has paved the way for the development of relatively 

small and inexpensive CT scanners dedicated for use in dento-maxillofacial imaging. 

Manufacturers' web sites provide numerous examples illustrating the value of CBCT in 

evaluating the position of impacted teeth, supernumerary teeth, maxillary sinus position (in 

reference to maxillary molars), mandibular canals, and lingual nerves. Maxillofacial applications 

of CBCT imaging have also been reported for oral and maxillofacial surgery,[34-38] 

implantology, [39-42] and craniofacial assessment in orthodontics.[43-48] A number of 

researchers have reported high dimensional accuracy of maxillofacial CBCT in measurement of 

facial structures. [ 42,49] Other examples of this modality's uses include surgical assessment of 

pathology, and preoperative/postoperative assessment of craniofacial fractures.[24,28,33] 
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Figure 4. Surface-rendering reconstruction ofi-CAT CBCT data set (3DVR, Allovision, 

Geenville, SC) produces interactive volumetric image that can be manipulated to display bony 

surfaces of maxillofacial complex from various standard orientations. 

Applications in Orthodontics 

In orthodontics CBCT imaging has current and potential applications in the diagnosis, 

assessment and analysis of patients with maxillofacial orthodontic and orthopedic anomalies. 

In diagnosis, CBCT provides numerous display modalities that can assist the assessement 

of numerous dental conditions of concern in orthodontics including impacted and supernumerary 

teeth. The exact position of impacted teeth and their relationships to adjacent roots or other 

anatomical structures (eg, the mandibular canal) can be comprehended, so that surgical exposure 

and subsequent movement can be planned. Some of the most significant potential gains from the 

introduction of CBCT in orthodontics are the ability of integration of information. Instead of 
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looking at individual diagnostic records-the panoramic radiograph, the cephalogram and its 

concurrent analysis, the dental models and the patient photographs-a single volume that 

contains all of this information is now available allowing for a unique appreciation of the inter­

correlations between all planes and structures. Image integration, particularly three dimensional 

imaging, may help to overcome a number of inherent deficiencies in orthodontic treatment 

planning by providing adequate visualization of anatomical structures.[51, 53] These include 

assessment of: 

I) Temporomandibular joint condition prior to treatment particularly if related to condylar 

trauma and structural development during growth 

2) Osseous structural conditions in the sagittal, vertical and transverse plane 

3) Alveolar bone width of available bone for buccolingual movement of teeth (i.e. arch 

expansion or labial movement of incisors) and evaluation of fenestrations and 

dehiscence on the buccal and lingual surfaces. 

4) Tooth inclination and torque: 3D evaluation of the axial inclination of teeth might 

provide information to supplement that obtained from models. 

5) Root resorption: Current CT machines could have too low resolution to detect early 

stages of root resorption due to orthodontic movement, but advances in technology 

might permit this in the future. 

6) Soft tissue relationships: Lip length is currently measured on lateral radiographs, but 

mouth width is not. Three-dimensional data could provide information on the 

relationship of the corners of the mouth to the underlying dentition. Also, cheek 

thickness and cheek prominence are soft tissue variables that could be investigated in 

relation to dental arch width and facial esthetics. 

7) Tongue size and posture: Volume measurements of the tongue could provide a more 

objective assessment of size, to aid in the diagnosis of open bites and arch-width 

discrepancies. 
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8) Airway assessment: Volume measurements of the airway could assess patency, 

especially in patients who are suspected of mouth breathing, adenoid hypertrophy, or 

sleep apnea. Nasal morphology and turbinates can be clearly seen in CT scans. 

9) Patients requiring surgery and those with syndromes and clefts: Surgical planning for 

such patients can benefit from 3D imaging. 3D data are especially helpful in patients 

with asymmetry, where true dimensions can be measured, without the problems of 

magnification or distortion, from which our customary 2D projections suffer. In 

patients with clefts, bone and soft-tissue defects can be understood much better. 

There is an increasing desire in orthodontics to integrate the images of all functional 

elements, both hard and soft tissue, in the assessment of patients with maxillofacial anomalies. 

Currently, this is performed using a combination of photographic and radiographic images and 

study models. Due to the fact that orthodontics involves assessment of hard tissue and soft tissue 

interactions, such as the effects of tooth movement on esthetics and on functional elements such 

as occlusion and TMJ, it is highly desirable to have one imaging modality that provides images of 

all existing elements therefore leading to a better assessment of the interactions present. 

Traditionally, conventional cephalometric projections such as the lateral cephalogram, 

posterior anterior, and submentovertex were used individually or in combination to provide two 

dimensional representations of structures in three planes of space. There was no single imaging 

technique readily available to the orthodontist that provided accurate representation of all osseous 

aspects of the TMJ complex and associated structures until the recent commercialization of 

CBCT. Hilgers et at. studied CBCT multi-planar reformatted projections for TMJ examination to 

compare the accuracy of linear measurements of the TMJ and related structures with similar 

measurements made using conventional cephalograms and with the anatomic truth. Using a 

digital caliper, the investigator measured linear dimensions between II anatomic sites to assess 

the anatomic truth for 25 dry human skulls. All skulls were imaged using i-CAT CBCT and 

digital cephalograms (PSP) were made in all three orthogonal planes (lateral cephalometric, 
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posterior anterior, and submentovertex). Linear measurements were made on seven custom 

CBCT reconstructions and the digital cephalograms. Results showed that all CBCT 

measurements were accurate; however, three of five lateral cephalometric (LC) measurements, 

four of five posterior anterior (PA) measurements, and four of six submentovertex (SMV) 

measurements varied significantly from the truth. Intra-observer CBCT measurements were 

highly reliable compared to the anatomic truth, and significantly more reliable than measurements 

made from LC, PA, an SMV images. The authors conclude that custom oblique MPR 

reconstructions using CBCT provides accurate and reliable linear measurements of mandibular 

and TMJ dimensions.[54] 

Three Dimensional Cephalometries 

Since cephalometric radiology was developed, numerous analyses have been proposed to 

facilitate communication between practitioners and to describe how individual patients vary from 

norms derived from other studies. None the less, current cephalometric analyses are two 

dimensional diagnostic renderings derived from a three dimensional structure. Cephalometric 

measurements made on 2D radiographs are subject to projection, landmark-identification, and 

measurement errors.[56-58] The major source of cephalometric error is landmark-identification, 

which is influenced by many factors such as the quality of the radiographic image, the precision 

of landmark definition, the reproducibility of the landmark location, the operator, and the 

registration procedure. Although some cephalometric landmarks are located in the midsagittal 

plane, many are located at different depth fields leading to increased distortion errors.[56-58] In 

addition, in lateral cephalometry, it is difficult to determine the difference between right and left 

sides for superimposition of images, and the sides have different enlargement ratios. It is also 

difficult to detect deformities in the midfacial area and reading films is difficult due to the 

superimposition of cranial structures.[59] Despite the potential errors innate to this technique, 
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cephalometric radiographs are still widely used and, in many cases are essential in the diagnosis 

and treatment of the patient. 

To compensate for the drawbacks of 2D measurements, many techniques have been 

developed. These techniques include the orientator, [60] the coplanar stereometric system, [61 J 

the multiplane cephalometric analysis, [62] the basilar multiplane cephalometric analysis, [63] 

and the bilanar cephalometric stereoradiography[ 64]. 

Since the mid 1970s, 3D analyses and related procedures in orthodontics have been 

attempted through several different approaches.[56] There have been three dimensional 

cephalometrics proposed that use a combination of lateral and frontal cephalograms. These 

methods rely on the identification of the same point on both radiographs and the implementation 

of geometry to calculate the point three dimensionally. These approaches, however, are not truly 

three dimensional and have obvious limitations in that the accuracy depends on a correct 

correspondence between the landmark locations on the two radiographs, and points not visible on 

both radiographs cannot be used.[51] Advances in the use of 3D imaging software have permitted 

important changes in the perception of 3D craniofacial structures.[56] CBCT produces a lower 

radiation dose than spiral CT and is comparable to conventional radiographs. Because of its 

volumetric data, CBCT allows secondary reconstructions, such as sagittal, coronal, and para-axial 

cuts and 3D reconstructions of various craniofacial structures.[34,43,56] Unlike the traditional 

cephalometric radiograph, the CBCT produces images that are anatomically true (I: I in size) 3D 

representations, from which slices can be displayed from any angle in any part of the skull and 

provided digitally on paper or film. Other reasons for the implementation of 3D cephalometry 

include:[59] 

I) actual measurements can be obtained 

2) a spatial image of the craniofacial structures can be produced 

3) the 3D image can be rotated easily by changing the rotational axis 

4) the inner structures can be observed by removing the outer surfaces 
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5) various anatomical areas can be observed independently by changing the density 

According to Hajeer there are numerous benefits of 3D imaging in orthodontics 

including: pre- and post-orthodontic assessment of dentoskeletal relationships and facial esthetics, 

auditing orthodontic outcomes with regard to soft and hard tissues, 3D treatment planning and 3D 

soft and hard tissue prediction. 3D orthodontics also offers efficiency in archiving 3D facial, 

skeletal and dental records for treatment planning, research and medico-legal purposes.[55] Some 

authors indicate that three dimensional CBCT images may be useful in the assessment of growth 

and development. [ 18,20,35-37,50] 

However, many practitioners are accustomed to working with traditional two dimensional 

cephalograms and may be hesitant to turn to 3D, however, 2D conventional measurements do not 

have to be abandoned when moving to 3D implementation. Three dimensional data can be 

rendered as a 2D projection resembling a radiograph allowing traditional analyses to be 

completed, and customary cephalometric points can also be digitized in 3D on the volumetric 

rendering itself.[51] Halazonetis believes that the push at implementation of 3D imaging in 

cephalometrics will lead to an introduction of new landmarks and new analyses which also 

incorporate advances from related fields, such as geometric morphometrics.[51] 

Several CBCT systems permit reconstructions that are comparable with traditional 

cephalometric projections. Recently, Farman and Scarfe reported a methodology for generating 

simulated lateral cephalometric images from CBCT using "ray-sum" muItiplanar reformatted 

(MPR) volume reformation.[65] The authors describe a methodology in which existing CBCT 

image data sets acquired using a 20-second exposure cycle were used to create two dimensional 

projection images. The three methods of acquisition involved I) Scout method: exporting the 

lateral scout radiograph taken initially to confirm the patient's position, which only provided a 

lateral cephalogram, 2) Basis image method: selecting the individual lateral and anteroposterior 

basis images with the least anatomic discrepancies between the right and left sides corresponding 

to lateral and posteroanterior cephalometric projections and 3) Ray-sum method: manipulation of 
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the volumetric data set allowed for the development of cephalometric images in all three 

orthogonal planes. The ray-sum method includes two dimensional cephalometric reconstructions 

that were developed by increasing the slice thickness of each plane, hence providing an image 

composed of the summed voxels, or a ray-sum image. The authors indicate that the major 

difference between the scout or basis image method, or conventional cephalometric images, and 

the ray-sum method, is that ray sum image projections are orthogonal and have equal 

magnification between the beam's entrance and exit sides of the patient. The authors were able to 

produce slices equal to the dimension of the chosen voxel resolution, thus removing anatomic 

superimposition of landmarks and allowing for more precise definition of bony landmarks. The 

authors suggest that the use of 3D surface rendering techniques such as volume rendering (Figure 

4) and maximum intensity profile algorithms (Figure 5) will redefine orthodontic treatment 

planning due to the ability to view 3D volumes of the maxillofacial complex from any plane. 

Figure 5. Application of maximum intensity projection algorithms to ray-sum projections 

show relationships of numerous elements (eg, angulation of tooth roots in alveolar bone) 

27 



because of their transparent nature. Ray-sum projections provide surface representation of 

CBCT volumetric data as posteroanterior, submentovertex, and lateral skull images.[65] 

Figure 6: Integration of hard- and soft-tissue volumetric data are achieved through surface­

and volume-rendering techniques. Visualization of dental occlusion from different 

perspectives can be achieved via production of surface images of selected maxillofacial 

structures. [65] 

In a recent study, Moshiri et al. showed that data from full field scanners can be used to 

generate simulated cephalometric images.[66] This observational cross-sectional in vitro study 

was conducted to compare the accuracy of linear measurements made on planar images from 

photostimulable phosphor based cephalograms and two dimensional (2D) simulated lateral 
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cephalograms derived from full field cone beam computed tomography (CBCT) with direct 

measurements made on human skulls. The investigator measured the linear dimensions between 

15 anatomical landmarks on 23 dentate dry human skulls using a digital caliper to provide nine 

orthodontic linear measurements (S-N, Ba-N, M-N, ANS-N, ANS-PNS, Pog-Go, Go-M, Po-Or 

and Go-Co). The skulls were stabilized and imaged with CBCT with a single 360°, 20s, O.4mm 

voxel resolution scan. Three 2D simulated cephalometric projections were created: I) Scout (S), 

2) "ray-sum" reconstructed (RS) and 3) basis projection single frame (F) images. Conventional 

lateral cephalograms (LC) were acquired using a Quint Sectograph and a storage phosphor 

imaging plate system. TIFF Images were imported into a cephalometric analysis program 

(Dolphin Imaging Cephalometric and Tracing Software, Chatsworth, CA, USA) and a single 

observer computed the linear measurements between landmarks and compared them to the 

anatomic truth. The results showed that the ICC for LC was significantly less than for skull and 

all CBCT derived modalities. Statistical differences between modalities were found for all 

measurements except Po-Or (p=0.27). For S-N, Ba-N, ANS-PNS and N-M, values for lateral 

cephalogram measurements were significantly different from actual dry skull dimensions, 

whereas CBCT values did not differ from the dry skull measurements. All modalities provided 

significantly different measurements for Pog-Go and Go-M. For ANS-N and Go-Co all CBCT 

measurements were significantly less than lateral cephalogram measurements. In addition for Go­

Co, measurements from scout images were significantly different from actual dimensions. The 

study concluded that for most measurements in the sagittal plane, simulated 2D lateral 

cephalometric projections from CBCT are more accurate than lateral cephalogram images. The 

authors also add that while cephalometric images generated from single CBCT basis projections 

provide added accuracy in cephalometric analysis, there was no additional advantage in using ray 

sum images generated from the CBCT volumetric dataset. 

Adams et at. conducted a study to evaluate and compare traditional 2D cephalometric 

analysis to a 3-D imaging system with regard to accuracy in recording the anatomical truth as 
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defined by physical measurements taken using a calibrated caliper.[67] The study used nine dried 

human skulls to locate thirteen skeletal landmarks both by traditional 2D cephalometry as well as 

the three dimensional approach. The high average intra-class correlation (0.995), variance (.054 

mm2
), and standard deviation (SD ±0.237 mm) as averaged over 76 measurements derived from 

precision calipers, using the predetermined 13 skeletal landmarks, established these physical 

measurements as the gold standard for comparison of the two radiographic methods. The 

measurements from the 2D model indicated higher variability, with a larger mean standard 

deviation (6.94 mm) compared with the 3D measures (0.54 mm). The 2D analysis lacked 

precision as compared with the 3D analysis (points clustered within 0.5 mm). As compared to the 

gold standard, the ranges between the two systems demonstrated a much larger magnitude of 

potential error inherent in the 2D system. According to the study, when comparing the actual 

distance of anatomical distances as measured on a human skull to the measurements derived from 

a 2D or 3D model, the 3D method is more accurate and precise than the 2D. According to the 

authors, "Evaluating distances in 3D space with a 2D image grossly exaggerates the true measure 

and offers a distorted view of craniofacial growth." 

Chidiac et al. compared measurements from human skulls and their images from lateral 

and PA cephalometric radiographs and CT scanograms on thirteen adult skulls. They were unable 

to reveal any statistically significant differences between mean angular values on cephalometric 

radiographs and CT views. For sagittal distances, the highest correlation was between the direct 

measure of condylion-to-pogonion and its radiographic image (r= 0.73). Correlations between 

radiographic and skull transverse measures were higher (0.46 < r < 0.80) than the corresponding 

skull vs. CT measures (0.06 < r < 0.38). CT and CR images are 2D slices and projections, 

respectively, of 3D structures. They found that radiographic images have a distortion 

(approximately 8%) that brings Co-Pg closer to its anatomic distance, inadvertently contributing 

to better clinical planning, particularly in orthognathic surgery. The pattern of distortion of PA 

images was in opposite directions for CR and CT views. They concluded that cephalograms and 
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CT scanograms are close in depicting angular relations of structures, but they differ in the 

accuracy of imaging linear measurements, because the location and size of an object within the 

imaged 3D structure varies with both records.[68] 

Most recently, Chan et al. compared eight measurements [(sagittal (Sella-Nasion, ANS­

PNS), transverse (biorbital, bicoronoidal, and palatal width) and vertical (upper, lower, and 

posterior facial height)] between 12 commonly used craniometric landmarks made directly on 

five dry skulls to traditional cephalometry and CBCT (Hitachi CB MercuRay system) using three 

fields of view (6", 9", and 12"). Intraoperator analysis for skull, CBCT and cephalometric 

measurements showed good correlation (r>0.93). Both cephalometric and all CBCT 

measurements showed high correlation (r>0.96) and no statistical significant difference when 

compared to skull measurements. The average absolute difference between cephalometric and 

skull measurements was 3.34 ± 4.55mm. Comparing skull to CBCT measurements, 6", 9", and 

12" FOV images showed differences of 0.53 ± 0.46mm, 0.48 ±0.44mm, and 0.46 ±0.45mm 

respectively. They concluded that CBCT measurements showed reliability and more linear 

measurement accuracy than cephalometry and that CBCT linear measurement accuracy improved 

as voxel size decreased.[69] 

Although recent studies have shown that CBCT derived images are accurate in regard to 

linear cephalometric measurements,[66,67] the current challenge for clinicians is to understand 

and interpret 3D imaging, because there is currently no specific way to analyze these 3D images, 

and interpretation limitations still exist.[56] Lagravere et al. proposed a reference landmark for 

use in three dimensional cephalometric analysis with 3-dimensional volumetric images.[56] 

CBCT scans were obtained on 10 patients, all using the same imaging protocol of having the 

patient lie down with the Frankfort horizontal plane perpendicular to the floor. Images were 

converted into DICOM format and then rendered into volumetric images using AMIRA software. 

The investigators used the sagittal, axial, and coronal slices and the 3D image reconstruction for 

landmark positioning. A point located equidistant to the points in the centers of each foramen 
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spinosum (ELSA) was established as the reference point (x=o, y=O, z=O coordinates). 

Traditionally used cephalometric landmarks were located on the volumetric images and 

coordinates of the different landmarks were determined with respect to that reference. 

Coordinates of ELSA were registered in a datasheet in the form of x, y, and z dimensions for the 

10 subjects measured at three independent times. Present statistical tests do not consider 3D data 

values, therefore in order to find the intraexaminer reliability, it was necessary to convert all 3D 

values (x, y, and z) to a sole value using the Delta E formula obtained from the Commission 

Internationale de I' Eclairage L *a*b* color systems (Vienna, Austria). This system was applied 

because both use similar Cartesian coordinate systems. The intraexaminer reliability was 

determined to be kappa = 0.998. Other cephalometric landmarks were then located in different 

parts of the images where linear and angular measurements could be determined. ELSA as an x = 

0, y = 0, z =0 reference point in 3D images was used because the location of the foramina 

spinosum was shown to have a low identification error in both the vertical and horizontal planes. 

The reason in choosing this landmark was twofold: I) it is a small circle when viewed axially and 

is easy to locate by using the condyle and the glenoid fossa as guides, and 2) published literature 

has demonstrated that most of the cranial base growth (>85%) occurs in a child's first 5 years 

with only minor changes after that age. The authors state that although 3D imaging is a new type 

of auxiliary examination in orthodontics, no validated method of describing change exists. Most 

clinicians analyze these images by visually identifying the structures seen without exact 

measurements or other quantitative analysis. The authors conclude that because ELSA has high 

intrareliability that it is an adequate reference point for 3D cephalometric analysis. 

Although three-dimensional imaging provides volumetric images that can be compared to 

reality in a I to I ratio, there is no validated method to describing change with this modality, 

because most clinicians simply analyze the images with no exact measurements or quantitative 

analysis.[70] By establishing a precise and reliable instrument for analyzing images produced by 

3-D technology, clinicians may have new possibilities for determining changes produced by 
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certain types of orthodontic treatment. In a subsequent study, Lagravere et at. propose certain 

landmarks and planes to standardize 3D cephalometric image orientation.[70] CBCT scans were 

obtained on 10 adolescents free from craniofacial anomalies. Images were converted into DrCOM 

format and then rendered into volumetric images using AMIRA software. The investigators used 

the sagittal, axial, and coronal slices as well as the 3D reconstruction of the images for landmark 

positioning. To determine orientation planes, the reference point ELSA from the previous study 

was located, then points located at the superior-lateral border of the external auditory meatus 

(SLEAM) bilaterally and on the mid-dorsum of foramen magnum (MDFM) were located. 

Coordinates (in mm) were established for these three points with respect to ELSA and 

intrareliability values were determined by using the intraclass correlation coefficient for all four 

points. The axial-horizontal plane (x-y plane) was then determined by using both superior 

external auditory meatus and ELSA; the sagittal-vertical plane (z-y plane) was formed by ELSA 

and mid-dorsum foramen magnum perpendicular to the x-y plane. Because all points are located 

on structures that are not significantly affected by growth after 5 years of age these planes are 

adequate for standardizing the orientation of 3D images and eliminating the possibility of 

different results when using other landmarks or structures that might be influenced by growth or 

treatment. With these planes, the effect of the patient's head position during image acquisition for 

analysis would be eliminated. The authors conclude that ELSA, rSLEAM, ISLEAM, and MDFM 

have high intrareliability when locating them with 3D images. The x-y and z-y planes formed by 

the respective points are an adequate way to standardize the orientation of 3D images. 

Conventional 3D CT Imaging Accuracy 

The clinical applicability of 3D CT has been evaluated in many studies, and a number of 

authors have investigated the accuracy of reconstruction software using conventional fan beam 

derived data sets.[71-73] Recent studies have indicated that there is a high degree of accuracy of 
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3D reconstructions.[74-76] with differences between measurements and actual dimensions being 

2mm to 3mm.[77,78] 

The accuracy of craniometric measurements in 3D surface rendering technique has 

previously been reported,[75] and recently a new 3D CT volume rendering protocol in vitro and 

in vivo was established regarding the mental foramen, testing the accuracy and precision of the 

system.[79] However, there had previously been no report concerning the validation of the soft 

tissue and the corresponding bone craniometric measurements using specific computer system 

tools in association with a 3D-CT volume rendering technique. Therefore, Cavalcanti et al.[74] 

investigated the precision and accuracy of anthropometric measurements using 3D conventional 

(spiral) CT volume rendering by imaging 13 cadaver heads and compared the dimensional 

accuracy of 10 linear measurements on 2D and 3D reconstructed images performed by two 

radiologists with those obtained using a spatial digitizer. They used craniofacial measurements 

including AI-AI (Nasal breadth), G-Op (Skull length), N-Me (Facial height), N-Ns (Nasal 

height), Po-AI (Camper's plane), Po-G (Distance between Po and G), Po-Me (Distance between 

Po and M), Po-N (Distance between Po and N), Po-Ns (Distance between Po and Ns), and Zy­

Zy. They found no statistically significant differences between interobserver and intraobserver 

measurements or between imaging and physical measurements in both 3D-CT protocols. The 

standard error was found to be between 0.45% and 1.44% for all the measurements in both 

protocols, indicating a high level of precision. Furthermore, there was no statistically significant 

difference between imaging and physical measurements (P~O.OI). The error between the mean 

actual and mean 3D-based linear measurements was 0.83% for bone and 1.78% for soft tissue 

measurements, demonstrating high accuracy of both 3D-CT protocols. The authors concluded 

that the new methodology allowed for a qualitatively high 3D resolution in both bone and soft 

tissue parameters. They also express that the anthropometric measurements in 3D-CT were 

considered to be accurate and precise for craniofacial applications. 
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Recently, Swennen et al. developed a new voxel-based 3D cephalometry method.[80] 

From a single computed tomography data set, virtual lateral and frontal cephalograms are 

computed and linked with both hard and soft tissue 3D surface representations, allowing the setup 

of a precise and reproducible 3D cephalometric reference system[81 ,82] and reliable and accurate 

definition of 3D cephalometric hard and soft tissue landmarks[83,84]. Voxel based 3D 

cephalometry was developed and validated by using spiral multi-slice CT (MS-CT) data.[85] 

Statistical analysis showed that MS-CT 3D cephalometry is highly accurate and reliable with 

intraobserver measurement errors as low as 0.88, 0.76, and 0.84 mm for horizontal, vertical, and 

transverse orthogonal measurements, respectively. Interobserver measurement error was also low: 

0.78,0.86, and 1.26 mm for horizontal, vertical, and transverse orthogonal measurements 

respecti vely. Squared correlation coefficients showed high intraobserver and interobserver 

reliability.[86,82] The authors state that MS-CT cephalometry is a powerful craniofacial 

measurement tool with several advantages:[80] 

I) truly volumetric 3D depiction of hard and soft tissues of the skull 

2) real size (I: 1 scale) and real time 3D cephalometric analysis 

3) no superimposition of anatomic structures 

4) high accuracy and reliability 

5) the setup of a biological meaningful 3D cephalometric reference system for cross­

sectional and longitudinal analysis of craniofacial changes. 

6) MS-CT Cephalometry is a major improvement over conventional 2D cephalometry, 

however, some drawbacks do exist: [80] 

7) horizontal positioning of the patient during record taking falsifies the position of the 

soft tissue facial mask 

8) lack of a detailed occlusion due to artifacts 

9) limited access for the routine craniofacial patient because of higher cost 

10) higher radiation exposure than other craniofacial x-ray acquisition systems 
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Most recently Park et al.[59] have described organized, methodological approaches to 

cephalometric analysis of 3D CT images. Axial images of 30 subjects were taken using CT 

Hispeed Advantage (GE Medical System, Milwaukee) and reconstructed into 3D models using 

Vworks 4.0 (Cybermed, Seoul, Korea). Horizontal, midsagittal, coronal, maxillary, mid­

maxillary, mandibular, and mid-mandibular planes were all established. 19 Landmarks were first 

designated on the 3D surface model, and their positions were verified in multiple planar reformat 

mode, then the Vworks 4.0 and Vsurgery (Cybermed) programs were used to measure the 3D 

models. The following measurements were determined: 

I) Zygoma: facial index, midface angle, and Bc point 

2) Maxilla: canting, rotation, divergence, A-point, and PNS point 

3) Mandible: canting, rotation, divergence, body length, ramal height, gonial angle, chin 

prominence, internal ramal inclination, external ramal inclination, lateral ramal 

inclination, B-point, Pog point, Me point, and mandibular facial width 

4) Facial convexity (indicates the protrusive state ofBc, A, B, and Pog to the coronal 

plane) 

The results show that cephalometric measurements of the subjects were comparable with 

the normal Korean averages (t test, p$..O I) and no statistically significant differences were found. 

All landmarks were reproducible, and there was no significant intraexaminer error between the 2 

sessions (p?:.0 I). The authors do suggest that there are some limitations when using conventional 

3D CT as a diagnostic tool. Relatively large errors in the vertical position (z-coordinate) 

compared with the anteroposterior (y-coordinate) and transverse (x-coordinate) positions were 

found. The authors state that these errors can be overcome if thin slices are used during the 

reconstruction. The authors also express that high cost and radiation dose of conventional CT are 

major disadvantages, and can be improved upon by using cone beam CT, which offers a dose 

similar to the range of a conventional dental radiographic examination (40 to 50f,lSv). In addition, 

in some craniofacial deformities, Orbitale or Porion are deviated, therefore, points in the 
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horizontal plane should not be used as the reference plane. This limitation can also be overcome 

by using CBCT, in that CBCT can take an image in the natural head position, and the horizontal 

reference plane can be parallel to the floor, which is not influenced by Porion and Orbitale. The 

authors conclude that valuable information can be obtained from a 3D CT reconstruction, and that 

good treatment results can be obtained with a more precise diagnosis, and the continuous 

development of 3D analysis will provide more accurate data on a patient.[59] 

Potential of CBCT 3D Cephalometry 

The application of CBCT technology has allowed the development of a new generation of 

commercial volumetric dentofacial imaging acquisition systems.[59] CBCT scanners allow image 

acquisition of a large part of the craniofacial complex with only a 3600 rotational sequence, and 

with dedicated CB reconstruction algorithms a CT data volume is obtained. [86] These scanners 

focus mainly on bony imaging, leading to a significant decrease in radiation dose. Interesting 

advantages of CBCT 3D cephalometry for the future include: [80] 

1. Reduced radiation exposure 

2. Natural shape of the soft tissue facial mask because of the vertical scanning procedure (i­

CAT, CB MercuRay) 

3. Reduced artifacts at the level of the occlusion 

4. Increased access for the routine dentofacial patient because of in-office imaging 

(sufficiently compact to be installed in orthodontic and oral surgery outpatient clinics and 

pri vate practices) 

5. Reduced cost 

Current limitations of CBCT 3D cephalometry include the scanning volume and positional 

dependency of the image value of a structure in the field of view of the scanner.[80] The 

NewTom 3G, i-CAT, and CB MercuRay CBCT scanners all have a scanned volume that is 

sufficient enough for the setup of the anatomic Cartesian 3D cephalometric reference system and 
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3D cephalometric hard and soft tissue analyses that do not involve the calavarium or complete 

ears. However, the 3D Accu-i-tomo and NewTom 9000 systems are not suitable for 3D 

cephalometry methods due to scanning volumes that are too smaI1.[80] In CBCT systems, the 

image value of an organ is dependant upon the position in the image volume. Hence, x-ray 

attenuation of CBCT acquisition systems currently produces different HU values or radiographic 

densities for similar bony and soft tissue structures in different areas of the scanned volume. An 

example of this would be that dense bone has a specific image value at the level of menton, but 

the same bone has a significantly different image value at the level of the cranial base.[80] 

Vannier states that when new developments in the synthesis and optimization of CBCT 

reconstruction algorithms allow the full exploitation of the potential of area detectors in CBCT, 

that CBCT will provide even more important benefits in craniofacial imaging.[44] Therefore it is 

suggested that improvements in both CB reconstruction algorithms and post-processing will solve 

or reduce this problem soon.[80] 

In conclusion, CBCT derived 3D cephalometry has a number of potential advantages for 

cephalometric imaging including sub-millimeter resolution, reduced radiation exposure, and 

inclusion of soft tissue profile. Perhaps the most important clinical advantage is that CBCT 

volumetric data can be exported as DICOM files and imported into personal computer based 

software to provide 3D reconstruction of the craniofacial skeleton. This possibility and the 

increasing access of CBCT imaging in orthodontics is a component of the paradigm that is 

directing imaging analysis from 2D cephalometry to 3D visualization of craniofacial 

morphology. [5] The availability of fast scan CBCT now provides an alternate imaging modality 

capable of providing a 3D representation of the maxillofacial complex with minimal distortion 

using multi-planar reformatted (MPR) images. 
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Overview 

CHAPTER III 

METHODS AND MATERIALS 

This investigation was designed as an observational ex vivo comparison of linear 

cephalometric dimensions measured on a sample of 23 skulls to measurements obtained from 

three modalities 1) digital 2D lateral cephalograms, 2) CBCT derived simulated lateral 

cephalometric images generated using Dolphin 3D software (Chatsworth, CA) and, 3) Shaded 

surface 3D reconstructions generated using Dolphin 3D software. This study did not require 

approval by the Institutional Human Remains Committee, University of Louisville, Louisville 

KY. The skulls were imaged using CBCT and extraoral lateral cephalometric skull 

projections. CBCT volumetric data sets were oriented to represent standard head positioning 

and simulated lateral cephalograms generated using Dolphin 3D software. Twenty 

cephalometric dimensions were measured on the skulls with a vernier caliper and compared 

to magnification corrected measurements obtained from displayed images for each of the 

three modalities. A single rater (PI) performed the measurements on three independent 

occasions for each modality and the mean measurements and standard deviations compared 

with ANOV A with post hoc analyses. 

Sample 

Twenty three intact dentate human skulls (n=23) were obtained through the 

Department of Anatomical Sciences and Neurobiology at the University of Louisville. No 

demographic data was available on the available human remains so therefore the sample was 
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not identified by age, gender or ethnic group. The skulls were selected upon the basis of the 

following criteria: presence of a full permanent dentition and a reproducible, stable occlusion. 

A stable mandibular relation to the maxilla was achieved for each skull. Careful consideration 

was taken to assure that proper positioning of the condyle within the glenoid fossa was 

achieved and reproducible upon imaging and acquisition of measurements. Occlusal 

interdigitation was also considered in achieving proper mandibular and maxillary alignment. 

No skulls presented any damage or abnormalities that would interfere with the cephalometric 

dimensions of interest. All of the skulls were inspected and deemed eligible for providing 

measurements in the study by two independent observers, Dr. William C. Scarfe and Dr. 

Mazyar Moshiri. 

To provide soft-tissue equivalent attenuation, two latex balloons filled with water 

were placed in the cranial vault prior to imaging. To separate the mandibular condyle from 

the temporal fossa, a 1.5 mm thick Styrofoam wedge was placed in the joint space between 

the glenoid fossa and the condylar head. For all images, the teeth were placed in centric 

occlusion (maximum intercuspation) and the jaws were held closed by bilateral metal springs. 

A custom plastic head holder, with a polyvinyl chloride pipe extension for placing into the 

foramen magnum, was constructed to support the skulls during imaging (Figure 7). 
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Figure 7. Materials used for imaging of skulls: gloves filled with water, skull holder and foam 

wedges, and skull. 

Imaging 

Two modalities were used to image the 23 skull specimens: 

1. Lateral Cephalometric Radiography. Extraorallateral cephalometric 

projection radiography was performed using a Quint Sectograph (Model QS 

1O-1627W; Denar Corporation) using a 10:1 parallel grid. This device 

maintains a source-to-mid-sagittal distance of 5 ft. Exposure settings were at 78 

kVp, 200 rnA, and 2115s. These were determined by subjective evaluation of 

image quality of multiple images over a range of exposures taken on a skull 

with a lcm thick Perspex attenuation material over the exit beam. Skulls were 

positioned in the cephalostat in standard lateral cephalometric position and 

stabilizing by two ear pieces inserted into the external auditory meati of the 

skull and oriented such that the Frankfort plane was parallel to the floor. The 

skull was oriented such that the sagittal plane was parallel to the X-ray beam 

with the facial bones of the left side of the skull of the specimen closest to the 
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imaging detector. The central ray of the beam was directed at the external 

auditory meati. 

Figure 8. Skull positioning for lateral cephalometric radiograph 

2. Cone beam computed tomography (CBCT). CBCT images were acquired of 

the entire skull using the i-CATTM CBCT unit (Imaging Sciences International, 

Hatfield, PA, USA). The device was operated at 1-3mA and 120 kV using a 

high frequency, constant potential, fixed anode with a nominal focal spot size 

of O.Smm. Each skull was positioned into the device supported by the 

constructed plastic head holder. The hard tissue chin of each skull was inserted 

into the chin holder and vertical and horizontal laser lights on the device used 

to position the head. The head was oriented such that the mid-sagittal was 

perpendicular to the floor and the horizontal laser reference was along an 

imaginary line at the intersection of the posterior maxillary teeth and alveolar 

ridge (Figure 9). 
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Figure 9. Skull positioning for cone beam computed tomography scan 

Lateral scout radiographs were then taken and small adjustments made to the 

skull orientation such that discrepancies between bilateral structures (e.g. 

posterior and inferior border of the mandibular ramus, zygomatic arch) were 

less 5mm (Figure 10). 

a. b. 

Figure 10. Scout images of a skull demonstrating initial position of specimen with excessive tilt 

(a) and after adjustment immediately prior to scanning (b) 
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This positioned the skull for imaging such that the minimal amount of 

distortion occurred and that analysis with the proprietary software could be 

facilitated. A single 3600 rotation, 20 s. scan, comprising 306 basis projections 

was then made for each skull with a "Full" field of view (17.0 em (diameter) x 

13.2 em (height)) collimation using XoranCat acquisition software (Xoran 

Technologies, Ann Arbor, MI, version 1.7.7). Exposure parameters were 

controlled by automatic exposure control. 

Primary reconstruction of the data was performed immediately after acquisition. Data 

sets were stored as DICOM and imported into Dolphin 3D Imaging for orientation and 

construction of P A cephalogram. 

Pre-Processing of PSP Images 

Extra-oral cephalometric images were acquired using an extra-oral photostimulable 

storage phosphor 8" x 10" imaging plate and scanned at 300dpi and 16-bit TIFF using the 

DenOptix Imaging system (GendexlKavo, Lake Zurich, IL, USA). The proprietary software 

used was VixWin 2000 (Version 1.2) digital imaging software (GendexlKavo, Lake Zurich, 

IL, USA). Images were exported from VixWin as lossless 16-bit TIP format without image 

enhancement. For display and analysis extraoral images were imported into a commercial 

photographic imaging software (Adobe Photoshop V7.0, 2002; Adobe, San Jose, CA) and 

images equalized prior to measurement (Figure 11). This was performed to standardize post 

processing and image display rather than use the proprietary Vix Win software equalization 

algorithm. Equalization redistributes the brightness values of pixels so that they more evenly 

represented over the entire range of brightness levels. After detecting the brightest and 

darkest values in the composite image, they are remapped such that the brightest value 
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represents white and the darkest represents black. Brightness is then equalized by distributing 

the intermediate pixel values evenly through the gray scale. 

a. b. 

Figure 11 Example of effect of post processing using PhotoS hop on a lateral cephalometric 

image (a.) before and (b.) after image equalization. 

CBCT images were acquired with a mega pixel (1024 x 1024) flat-panel 

hydrogenated amorphous silicon detector with cesium iodide scintillator and secondary 

reconstructed images reformatted from 306 projections for 20 sec scans each providing a 

pixel matrix size of O.4mm. 

Use of Dolphin Imaging Program for Analysis 

The Dolphin Imaging Cephalometric and Tracing Software (Chatsworth, CA) was 

used exclusively to analyze both the lateral cephalometric digital and CBCT data. 
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Lateral Cephalometric PSP Analysis 

Equalized lateral cephalometric Images were imported into the dolphin program. 

Because of the differences in image dimensions and dpi, calibration of each image was 

necessary. Therefore a 100-mm radiographic film calibration ruler (Model PN 130-0168, 

Dolphin Imaging Cephalometric and Tracing Software, Chatsworth, CA USA) was placed in 

the mid-sagittal plane of the skull perpendicular to the radiographic beam. This image was 

used to calculate the image-casting magnification factor for PSP images and calibrate 

distances measured in the cephalometric analysis program. The calculated calibration 

magnification factors and resulting dpi used within the software program are shown in Table 

4. 

Table 4. Features of imaging plate and CBCT digital images 

Image Dimensions 

Image (Width x Height) Image 

Matrix Physical File 
Size Size size Calibration Final 

Modality Type (Pixels) (inches) (kB) dpi Factor dpi 

Projection Lateral 2847 x 9 . .5 x 
6,804 300 9.92% 327 

radiograph Cephalometric 2386 7.96 

Images were coded and the PI viewed all images on a 20.I-inch flat panel color 

active matrix TFT (FlexScan L888, Eizo Nanao Technologies Inc., Cypress, CA) screen with 

a resolution of 1600 x 1200 at 85 Hz and a 0 .. 255 mm dot pitch, operated at 24 bit. A custom 

analysis within the program was developed that directed the observer to identify specific 

anatomic landmarks on the images (Table 5). Landmarks were identified by using a cursor-

driven pointer. The resultant analysis provided specific linear measurements (Table 6) which 

were exported as text data. Some anatomic landmarks required identification of bilateral 

structures that are inherently difficult to view on conventional cephalometric images. For 

these points the observer was instructed to attempt to differentiate between left and right 
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features and construct a point midway between them. If the feature could not be 

differentiated, both right and left condyle landmarks were considered coincident. Although 

theoretically this would lead to differential magnification of left- and right-sided condylar 

images compared with the mid-sagittal correction factor, the minimal influence on absolute 

dimension in relation to the size of the feature and the summation of these distances should 

average the effect. 

CBCT Reconstruction and Analysis 

The CBCT data was exported from the XoranCat software in DrCOM multi-file format and 

imported into Dolphin 3D (Pre-release V.2.3, Dolphin Imaging, Chatsworth, CA) on the same 

computer. All constructions and measurements were performed on a 20.I-inch flat panel 

color active matrix TFf (FlexScan L888, Eizo Nanao Technologies [nc., Cypress, CA) screen 

with a resolution of 1600 x 1200 at 85 Hz and a 0.255 mm dot pitch, operated at 24 bit. Two 

reconstructions were performed of the volumetric dataset: 

I) Reconstruction of a planar lateral cephalometric projection from CBCT dataset 

using Dolphin 3D software 

2) Reconstruction of three-dimensional volumetric renderings from CBCT dataset 

using Dolphin 3D software 

For both reconstructions, first the 3D surface rendering was generated by manually 

adjusting the threshold of visible pixel levels. This was the method used for segmentation 

(Fig. 12). 
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Figure 12 Image capture from Dolphin 3D program demonstrating the segmentation 

screen. The hard tissue volume segmentation is selected (upper left) and using the 

segmentation cursor (lower left) the displayed gray level of the voxels is dynamically altered 

to provide the most realistic appearance of the skull with minimal loss of cortical bone due to 

thin structures and minimal superimposition of artifacts and soft tissue. 

Reconstruction of a planar lateral cephalometric projection 

For the reconstruction of the planar cephalometric images, the "Build Radiographs" 

Icon was selected and the Dolphin 3D program constructed 2-dimensional lateral 

cephalometric renderings from the acquired data set. These images were copied and 

subsequently imported into a cephalometric analysis program (Dolphin Imaging 

Cephalometric and Tracing Software, Chatsworth, CA) and images were then analyzed using 

the same methodology as described above for the two-dimensional digital lateral 
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cephalometric images. Current versions of Dolphin 3D generate 7 variations of images 

(Dolphin 1, Dolphin 2, Dolphin 3, Ray-Sum, Emboss, MIP and Trace Filter) which are 

automatically copied into the Dolphin Imaging system. The pre-release version used in this 

study did not incorporate these features and therefore only one image was available for export 

(refelTed to as "Dolphin 3) . Dolphin 3 is a modified Ray-Sum image with optimized gamma, 

sharpness, contrast and brightness 
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Figure 13 Image capture from Dolphin 3D program demonstrating the "Build X-

Rays" screen for the lateral cephalometric projections. The hard tissue volume segmented is 

displayed (upper left) and using the arrow cursor (left) the direction of the reconstruction 

(either left or right) and volume to be included in the reconstruction (determined by manually 

changing the position of the left or right white limits or performed semi-automated by 

selection of the lateral margins) are determined. The resultant image is shown and exported to 

Dolphin Imaging. 
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Reconstruction of a 3D Shaded Surface Volumetric Renderings 

For the three-dimensional volumetric renderings, after segmentation of the image, the 

cephalometric landmarks were located and marked on the surface rendered volumetric image. 

The Dolphin 3D software allowed 3D CBCT measurements from different views using 

rotation and translation of the rendered image. Landmarks were identified by using a cursor­

driven pointer. This was performed by a sequence of pre-set volumetric orientations (Figure 

14-17). 

Figure 14. PA 3D Volumetric Orientation allowed identification ofNa, A point, ANS, B 

point, Gn, Pog and Or bilaterally located. (5=Nasion ; 6=ANS , 7=A point, 8=B point, 

9=Pogonion , lO=Gnathion , 11=left Orbitale , 12=right Orbitale) 
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Figure 15. SMV 3D Volumetric Orientation allowed identification of Me, PNS and Ba. 

(l=Menton, 2=PNS, 3=Basion) 

Figure 16. Left and Right Lateral ((Only Right shown) 3D Volumetric Orientation allowed 

identification of Co, Po and, Go. (13= Condylion, 14= Porion, 15= Gonion) 
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Figure 17. Superior 3D Volumetric Orientation allowed identification of cranial fossa and S. 

(4=Sella) 

Because Sella is a spatial landmark, for the purposes of this study, Sella was assumed 

to be on the anterior of the clivus, midway between the anterior clinoid processes. As the 

volume rendering was reoriented, the positions of the previously positioned landmarks were 

verified and, if necessary, relocated. 

Finally measurements between specific landmarks were made. For the pre-release 

software version used, points and planes were unnamed. Therefore it was necessary to select 

points to identify a linear plane. This was performed in a specific sequence such that linear 

measurement I corresponded to Na-A, linear measurement 2 corresponded to Na-B and so 

forth. In this way the resulting analysis provided specific linear measurements (Figure 18) 

which could be exported as text data. This procedure was repeated three times by the first 

author. 
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Figure 18. CBCT 3D image generated from segmentation demonstrating identification of 

landmarks and linear dimensions measured in the study. 

Measurement Analysis 

On each skull, fourteen conventional craniometric anatomic landmarks were 

identified on using an indelible marker (Table 5). Operational definitions of these landmarks 

were developed considering the vagaries of established definitions and in regard to 

minimizing location subjectivity. 
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Table 5. Definition of anthropometric topographic points Used as Landmarks for the 

Landmark (abbreviation) 

Sella (S) 

Nasion (Na) 

Basion (Ba) 

Anterior Nasal Spine 
(ANS) 

Posterior Nasal Spine 
(PNS) 

A point (A) 

B point (B) 

Menton (Me) 

Gnathion (Gn) 

Pogonion (Pog) 

Gonion* (Go) 

Porion* (Po) 

Condylion* (Co) 

Orbitale* (Or) 

* Bilateral landmark 

Measurements 

Definition 

Midpoint of rim between the anterior clinoid process in the median 
plane 

Mid-sagittal point at the junction of the frontal and nasal bones at 
the naso-frontal suture 

Most inferior point on the anterior margin of foramen magnum, at 
the base of the clivus 

Most anterior limit of the of the floor of the nose, at the 

tip of the anterior nasal spine 

Point along palate immediately inferior to the pterygomaxillary 
fossa 

Signifies the apical base, the juncture of maxillary basal bone with 
alveolar bone. The most posterior point between the innermost 
curvature of the anterior nasal spine and the crest of the labial 
alveolar plate 

Signifies the apical base, the juncture of mandibular basal bone 
with alveolar bone. The most posterior point between pogonion and 
the crest of the labial plate 

Most inferior point along the curvature of the chin in the mid­
sagittal plane 

Most anterior inferior point along the curvature of the chin in the 
mid-sagittal plane 

Most anterior point along the curvature of the chin in the mid­
sagittal plane 

Point along the angle of the mandible, midway between the lower 
border of the mandible and posterior ascending ramus 

Most superior point of the anatomic external auditory meatus 
(anatomic Porion) 

Most posterior superior point of the mid-planed contour of the 
mandibular condyle 

Most inferior point on infraorbital rim 

Twenty linear measurements characterizing the horizontal and vertical dimensions of 

the maxillofacial skeleton were then developed from a consideration of the operational 

definitions and with regard to sagittal assessments provided by conventional extraoral lateral 
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cephalometric plane projection imaging (Table 6). To establish the true distances between the 

selected anatomic points, measurements were made by two research associates three times 

independently using an electronic digital caliper (27-500-90, GAC, Bohemia, NY). The mean 

of the measurements was designated as the anatomic truth. 

Table 6. Definition of Linear Planes used in the Cephalometric Analysis 

Abbreviation Name Definition 

Mid-sagittal Planes 

S-Na 

Na-Ba 

ANS-PNS 

Na-A 

Na-B 

Na-Me 

Na-ANS 

Ba-ANS 

Sella-Nasion 

Nasion-Basion 

Anterior Nasal Spine­
Posterior Nasal Spine 

Nasion-A point 

Nasion-B point 

Nasion-Menton 

Nasion-Anterior 
Nasal Spine 

Basion-Anterior 
Nasal Spine. 

A line connecting Sella and Nasion used to represent 
the cranial base in the midsagittal plane 

A line connecting Nasion and Basion used to 
represent the cranial base in the Ricketts Analysis 

A line connecting ANS and PNS. Used to represent 
the palatal plane or angle of the maxilla 

A line connecting Nasion and A Point. A sagittal 
reference line for the maxilla's anterior-posterior 
position in the Steiner Analysis 

A line connecting Nasion and B Point. Represents 
the anterior-posterior position of the mandible in the 
Steiner Analysis 

A line connecting Nasion and Menton. Represents 
total anterior face height. 

A line connecting Nasion and ANS. Represents 
upper facial Height 

A line connecting Basion and Anterior Nasal Spine 

Bilateral Planes 

Pog-Go 

Pog-Co 

Go-Me 

Go-Co 

Go-Gn 

Pogonion-Gonion A line connecting Pogonion and Gonion. Represents 
mandibular body length 

Pogonion-Condylion A line connecting Pogonion and Condylion. 
Represents mandibular unit length 

Gonion-Menton A line connecting Gonion and Menton. Represents 
the mandibular plane 

Gonion-Condylion A line connecting Gonion and Condylion. Represents 
posterior facial height 

Gonion-Gnathion A line connecting Gonion and Gnathion. Used to 
represent the mandibular plane in the Steiner 
Analysis 
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Measurements on digital extraoral images were petformed by the author on three 

separate occasions for each skull in the Dolphin Cephalometric and Tracing Software 

program (Chatsworth, CA). 

A custom lateral cephalometric analysis template was designed within the Dolphin 

imaging program measuring the linear dimensions of interest to this study. Using the custom 

analysis the PI identified the selected cephalometric landmarks on each lateral cephalometric 

cephalogram three times and linear distances were calculated by the measurement algorithm 

implemented by the Dolphin software. 

The same steps were repeated for the simulated lateral cephalometric images 

constructed from the CBCT volumetric data sets; however no equalization was necessary for 

these images. One set of measurements was taken for each skull at the 20 s scanning interval. 

The monitor used was a IT'. (Proview, California) flat panel TFT color monitor with a screen 

resolution of 1280 x 1024, a 0.23mm dot pitch set at an image quality of 32-bit. 

While the measurement algorithm of the CBCT software is calibrated with respect to 

voxel dimensions and provides a true I: I image ratio, direct measurements from the digital 

extraoral projections suffer from differential magnification. 

Data Collection 

All measurements from the Dolphin custom cephalometric analysis were exported 

with the "data" export function into a text document. The text documents were entered, 

rearranged and data subsequently exported into a Microsoft Excel 2003 (Microsoft, 

Redmond, W A, USA) database. Mean ± standard deviation of three independent replicates of 

the 20 measurements were calculated for each skull sample and for the three modalities 

(digital photostimulable storage phosphor lateral cephalometric (PSP), simulated lateral 

cephalometric generated from the CBCT volumetric dataset (CBCT LC) and, the 3D shaded 

surface volumetric rendering (CBCT 3D). The data files were then coded for use with the 
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Statistical Package for the Social Sciences software (SPSS, Version 12.0, SPSS, Inc., 

Chicago, IL, USA) which was used to conduct the analyses. 

Statistical Analyses 

Because of the inherent difference sin comparing 2D dimensions to 3D 

measurements, for the purposes of the study, data was analyzed accordingly. 

The first analysis (3D Analysis) comprised comparisons of the anatomic 

measurements from the skulls to those derived from 3D volumetric renderings (Anatomic 

measurement vs. CBCT 3D). The second analysis (2D Analysis) comprised comparisons of 

the anatomic measurements from the skulls to those derived from 2D representations 

(Anatomic measurement vs. CBCT LC vs. PSP) 

The Statistical Package for the Social Sciences version 12.0 software (SPSS, 

Chicago, II, USA) was used for data analysis. To determine intra-observer reliability, the 

average measures intraclass correlation coefficient (ICC) was determined for repeat 

measurements. In addition, absolute and percentage mean error; standard deviations and 95% 

confidence levels were calculated. Absolute and percentage linear means of triplicate 

measurements between specified anatomic landmarks were calculated and standard 

deviations and 95% confidence levels calculated. For the 3D Analysis, the digital 

measurements of the skulls were taken as ground truth and compared with the PSP lateral 

cephalograms as well as the 3D CBCT measurements with a two tail paired Student's t test at 

an it priori level of significance of P~.05. For the 2D Analysis, the digital measurements of 

the skulls were taken as ground truth and bilateral measurements were pooled to provide a 

mean. This skull dimension was compared with measurements from the PSP lateral 

cephalograms as well as the simulated lateral cephalometric from CBCT with a one way 

ANOV A using Scheffe post hoc analysis. The it priori level of significance for both analyses 

was P~.05. 
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CHAPTER IV 

RESULTS AND CONCLUSIONS 

Because of the inherent difference in the measurements obtained from the modalities 

investigated, the analysis of data was performed in two sections. 

1. The first analysis (3D Analysis) comprised comparisons of the anatomic measurements 

from the skulls to those derived from 3D volumetric renderings (Anatomic measurement 

vs. CBCT 3D). 

2. The second analysis (2D Analysis) comprised comparisons of the anatomic 

measurements from the skulls to those derived from 2D representations (Anatomic 

measurement vs. CBCT LC vs. PSP) 

For each analysis intra-observer reliability and modality accuracy were calculated and 

compared to anatomic dimensions obtained from the skull. 

Analysis of 3D Measurements 

Measurement Reliability 

Table 7 shows the average measure ICC of triplicate skull measurements made by 

multiple raters compared to triplicate linear measurements made by the first author for each linear 

dimension for 3D CBCT. The mean skull ICC (0.996 ± 0.007; range; 0.981 to 0.991) was 

significantly higher than the mean ICC for 3D CBCT (0.976 ± 0.016; range; 0.941 to 0.993) 

(t=5.468, P<.OOI). 
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Table 7. Average measure intra-class correlation coefficient for triplicate measurements for mid-

sagittal and bilateral linear measurements by multiple observers on 23 skulls and for a single 

observer on CBCT 3D reconstructions. 

Modality 

Skull CBCT 3D Reconstructions 

CL CL 

Plane Location Mean Lower Upper Mean Lower Upper 

S-N Mid-sagittal 0.998 0.996 0.999 0.941 0.882 0.973 

Ba-Na Mid-sagittal 0.996 0.994 0.998 0.993 0.987 0.997 

ANS-PNS Mid-sagittal 0.994 0.989 0.997 0.954 0.907 0.979 

Na-A Mid-sagittal 0.999 0.997 0.999 0.964 0.928 0.983 

Na-B Mid-sagittal 0.996 0.994 0.998 0.964 0.927 0.983 

Na-Me Mid-sagittal 0.997 0.995 0.999 0.994 0.988 0.997 

Na-ANS Mid-sagittal 0.997 0.995 0.999 0.958 0.917 0.981 

Ba-ANS Mid-sagittal 0.990 0.981 0.996 0.979 0.957 0.990 

Pog-Go Right 0.999 0.999 0.999 0.987 0.974 0.994 

Left 0.999 0.999 0.999 0.990 0.980 0.995 

Pog-Co Right 0.999 0.999 0.999 0.952 0.904 0.978 

Left 0.969 0.998 0.999 0.972 0944 0.987 

Go-Me Right 0.999 0.999 0.999 0.982 0.964 0.992 

Left 0.999 0.999 0.999 0.987 0.974 0.994 

Go-Co Right 0.999 0.998 0.999 0.990 0.981 0.996 

Left 0.999 0.999 0.999 0.983 0.966 0.992 

Go-Gn Right 0.997 0.993 0.999 0.965 0.931 0.984 

Left 0.995 0.990 0.998 0.986 0.972 0.994 

Po-Or Right 0.996 0.994 0.998 0.980 0.96 0.991 

Left 0.996 0.992 0.998 0.987 0.974 0.994 

CL = 95% confidence interval 

Table 8 shows the absolute and mean percentage intrarater measurement error for 3D 

CBCT and skull measurements. Mean percentage measurement error for 3D CBCT (2.31 ± 

2.11 %; Range; 1.07 ±O .72% to 3.86 ± 1.85%) was significantly higher than repeated 
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measurements to directly determine anatomic skull dimensions (0.63 ± 0.51 %; Range; 0.29 ± 

0.13% to 1.18 ± 0.58%) (t = 16.6, P<.OO I). For all measurements except Ba-Na, 3D CBCT mean 

absolute and percentage error was significantly higher than direct skull repeated measurements. 

Modality Accuracy 

Table 9 provides comparison of mean linear measurements obtained from 3D CBCT 

reconstructions and actual skull dimensions. 3D CBCT measurements were significantly different 

to actual skull measurements for 13 of the 20 parameters; seven of the eight mid-sagittal 

measurements (all except Na-A) and six of the 12 bilateral measurements (Pog-Gorighb Go-Me, 

GO-Gnleft, and Po-Or). The greatest mean difference of 3.32 mm (3.56%) was found with Ba­

ANS. In eight of 20 measurements (40%), an average difference of less than I mm, three of which 

were significantly different from actual measurements was found. In six measurements (30%) a 

mean difference of between I mm and 1.5 mm was found, and for five skulls the CBCT 

measurements were significantly different from actual measurements made directly on the 

anatomic specimens. In four measurements (20%) an average difference of between 1.5 mm and 

2 mm was found, all of which were significantly different from the assumed anatomic truth. 

Finally for two measurements (10%) a mean difference greater than 2mm was found, one of 

which was significantly different from the mean direct skull measurements. In all comparisons, 

except Na-B and Go-Gn bilaterally, 3D CBCT measurements were less than skull measurements. 

The mean percentage difference between the mean "actual" and mean 3D-based linear 

measurements was -1.13% (s.d. ±1.47%) and ranged from -0.27 for Na-A to -3.44% for ANS­

PNS. 
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Table 8. Comparison of absolute and percentage mean error for mid-sagittal and bilateral linear measurements between dimensions of planes on 

23 skulls and measurements CBCT 3D reconstructions. 

Skull CBCT 3D Reconstructions 

Absolute Error (mm) Percentage Error (%) Absolute Error Percentage Error Significance 

Plane Location Mean ±s.d. CL Mean ±s.d. CL Mean ±s.d. CL Mean ±s.d. CL t P 

S-N MS 0.41 ± 0.2 0.09 0.7 ± 0.34 0.15 1.82 ± 0.86 0.37 3.86 ±1.85 0.80 7.61 < 0.001 

Ba-Na MS 0.69 ± 0.35 0.15 0.7 ± 0.36 0.15 0.85 ± 0.60 0.26 1.07 ± 0.72 0.31 I.l 0.280 

ANS-
MS 0.55 ± 0.25 0.11 l.l8 ± 0.58 0.25 1.30 ± 1.46 0.63 3.55 ± 4.00 1.73 2.43 0.019 PNS 

Na-A MS 0.33 ± 0.16 0.07 0.64 ± 0.31 0.13 1.44 ± 1.08 0.47 3.52 ± 2.62 1.13 4.90 < 0.001 
0\ 

Na-B MS 0.33 ± 0.18 0.08 0.38 ± 0.20 0.09 1.41 ± 2.02 0.87 1.96 ± 2.76 1.19 2.53 0.015 

Na-Me MS 0.49 ± 0.64 0.28 0.45 ± 0.54 0.23 1.05 ± 0.55 0.24 1.22 ± 0.65 0.28 3.16 <0.01 

Na-ANS MS 0.32 ± 0.17 0.08 0.7 ± 0.36 0.16 1.16 ± 0.86 0.37 3.2 ± 2.45 1.06 4.54 <0.001 

Ba-ANS MS 1.07 ± 0.93 0.40 1.16 ± 0.99 0.43 2.1l±2.12 0.91 2.98 ± 3.13 1.35 2.15 0.040 

Pog-Go Rt 0.29 ± 0.10 0.05 0.35 ± 0.13 0.06 1.24 ± l.l2 0.48 1.88 ± 1.77 0.76 4.04 < 0.001 

Lt 0.3 ±O.ll 0.05 0.36 ± 0.13 0.06 1.21 ± 0.80 0.34 1.83 ± 1.14 0.49 5.40 < 0.001 

Pog-Co Rt 0.33 ± 0.15 0.06 0.29 ± 0.13 0.06 2.27 ± 1.80 0.78 2.49 ± 2.05 0.89 5.16 < 0.001 

Lt 0.35 ± 0.24 0.10 0.31 ± 0.21 0.09 1.61 ± 1.65 0.72 1.77 ± 1.91 0.83 3.60 <0.001 

Go-Me Rt 0.31 ± 0.15 0.06 0.38 ± 0.19 0.08 1.33 ± 0.86 0.37 2.12 ± 1.31 0.56 5.66 < 0.001 

Lt 0.40 ± 0.59 0.25 0.51 ± 0.75 0.33 1.11 ± 0.90 0.39 1.77 ± 1.38 0.60 3.17 < 0.01 

CL = 95% Confidence Interval 



Table 8 (Continued). Comparison of absolute and percentage mean error for mid-sagittal and bilateral linear measurements between dimensions 

of planes on 23 skulls and measurements CBCT 3D reconstructions. 

Skull CBCT 3D Reconstructions 

Absolute Error (mm) Percentage Error (%) Absolute Error Percentage Error Significance 

Plane Location Mean ±s.d. CL Mean ±s.d. CL Mean ±s.d. CL Mean ±s.d. CL t P 

Go-Co Rt 0.37±0.18 0.08 0.65 ± 0.30 0.13 0.97 ± 0.71 0.31 2.13 ± l.50 0.65 3.91 < 0.001 

Lt 0.30 ± 0.12 0.05 0.54 ± 0.23 0.1 1.12 ± 0.97 0.42 2.45 ± 2.03 0.78 4.04 < 0.001 

Go-Gn Rt 0.69 ± 0.51 0.22 0.88 ± 0.68 0.29 1.56 ± l.24 0.54 2.44 ± l.98 0.86 3.08 < 0.01 

Lt 0.71 ± 0.66 0.29 0.88 ± 0.78 0.34 1.43 ± 0.77 0.33 2.22 ± 1.28 0.55 3.36 < 0.01 

0\ Po-Or Right 0.56 ± 0.23 0.10 0.7 ± 0.28 0.12 l.22 ± 0.90 0.39 l.96 ± 1.45 0.63 3.41 <0.01 
N 

Left 0.58 ± 0.18 0.08 0.74 ± 0.23 0.10 1.10 ± 0.68 0.29 1.80 ± 1.13 0.49 3.54 < 0.001 

* MS=Mid-sagittal; Rt=right, Lt=left CL = 95% Confidence Interval 



Table 9. Comparison of Absolute and Percentage differences for mid-sagittal and bilateral linear measurements between dimensions of planes on 

23 skulls and measurements CBCT 3D reconstructions. 

Difference 

CBCT3D 
Absolute Percentage Significance 

Plane Location Skull Reconstructions Mean CL Mean CL t P 

S-N MS 59.31 ± 3.75 58.56 ± 3.67 -0.75 (-1.25 to -0.24) -1.26 (-2.11 to-OA) -3.059 0.006 

Ba-Na MS 98.81 ± 4.99 97.18 ± 4.92 -1.63 (-2.02 to -\.25) -1.65 (-2.04 to -1.27) -8.72 <0.001 

ANS-PNS MS 47.70 ± 3.25 46.06 ± 3.29 -1.64 (-2.32 to -0.95) -3A4 (-4.86 to -1.99) -4.94 <0.001 

Na-A MS 51.00 ± 3.36 50.86 ± 3.23 -0.14 (-0.63 to 0.34) -0.27 (-1.24 to 0.67) -0.61 0.546 

0' Na-B MS 88.64 ± 5.71 89.75 ± 6.07 1.11 (0.59 to 1.62) 1.25 (0.67 to 1.83) 4.5 <0.001 
w 

Na-Me MS 108.58 ± 7.06 107.77 ± 7.03 -0.81 (-1.26 to -0.36) -0.75 (-1.16 to -0.33) -3.77 0.001 

Na-ANS MS 46A1 ± 2.86 45.58 ± 2.85 -0.83 (-l.l0 to -0.55) -1.79 (-2.37 to -l.l9) -6.17 <0.001 

Ba-ANS MS 93.17±6.31 89.85 ± 7AO -3.32 (-4.96 to -1.68) -3.56 (-5.32 to -1.8) -4.19 <0.001 

Pog-Go Rt 83.33 ± 5.83 81.86 ± 5.65 -lA8 (-2.08 to -0.87) -1.78 (-2.50 to -1.04) -5.09 <0.001 

Lt 84.20 ± 9.76 81.78 ± 5.71 -2A2 (-5.31 to OA7) -2.87 (-6.31 to 0.56) -1.73 0.097 

Pog-Co Rt 114.77 ± 5.39 114.20 ± 4.84 -0.57 (-1.32 to 0.17) -0.50 (-1.15 to 0.15) -1.59 0.127 

Lt 114.63 ± 5A4 113.88 ± 5.02 -0.75 (-1.67 to 0.16) -0.65 (-1.46 to 0.14) -1.69 0.104 

Go-Me Rt 79.89 ± 5.59 78.16±5.19 -1.73 (-2.35 to -1.12) -2.17 (-2.94 to -IA) -5.83 <0.001 

Lt 79.31 ± 5.93 78.21 ± 5.29 -1.09 (-1.64 to -0.55) -1.37 (-2.07 to -0.69) -4.14 <0.001 

CL = 95% Confidence Limit 



Table 9 (Continued). Comparison of Absolute and Percentage differences for mid-sagittal and bilateral linear measurements between dimensions 

of planes on 23 skulls and measurements CBCT 3D reconstructions. 

Difference 

CBCT3D 
Absolute Percentage Significance 

Plane Location Skull Reconstructions Mean CL Mean CL t P 

Go-Co Rt 56.38 ± 4.97 56.22 ± 4.71 -0.16 (-0.74 to 0.43) -0.28 (-1.31 to 0.76) -0.547 0.590 

Lt 56.54 ± 5.04 56.00 ± 4.21 -0.53 (-1.07 to 0.002) -0.94 (-1.89 to 0.0) -2.067 0.051 

Go-Gn Rt 79.85 ± 6.52 81.18 ± 6.02 l.33 (-0.064 to 2.72) 1.67 (-0.08 to 3.41) 1.98 0.061 

Lt 79.78 ± 6.20 81.04 ± 5.92 1.27 (0.38 to 2.16) l.59 (0.48 to 2.71) 2.95 0.007 

0- Po-Or Right 78.97 ± 4.79 77.59 ± 4.43 -1.38 (-2.06 to -0.69) -1.75 (-2.61 to -0.87) -4.16 <0.001 
+>-

Left 78.00 ± 4.82 76.33 ± 4.83 -1.67 (-2.41 to -0.93) -2.14 (-3.09 to -l.19) -4.68 <0.001 

* MS = Mid-sagittal; Rt = right; Lt = left CL = 95% Confidence Interval 



Analysis of 2D Measurements 

Measurement Reliability 

Table 10 shows the average measure ICC of triplicate skull measurements made by 

multiple raters compared to triplicate linear measurements made by the first author for each linear 

dimension for PSP and CBCT LC. The one-way ANOV A identified a significant difference 

(F=3.29; p=.048), however post hoc analysis was unable to identify differences between PSP 

(0.973 ± 0.052; range; 0.942 to 1.0), skull (0.997 ± 0.003; range; 0.996 to 0.998), or CBCT LC 

(0.999 ± 0.00 I; range; 0.998 to 0.999) ICC. 

Table II shows the absolute and mean percentage intrarater measurement error for PSP, 

CBCT LC and skull measurements. One-way ANOV A analysis demonstrated differences 

between modalities with absolute (F= 13.71, p<.OO I) and percentage error measurements 

(F= 12.52, p<.OO I). Mean absolute measurement error for skull dimensions (.49 ± .22mm; Range; 

.362 - .612) were significantly lower than PSP (.93 ± .44mm; Range; .68 to 1.18) or CBCT LC 

(1.19 ± .39mm; Range; .97 to 1.41). Mean percentage measurement error for skull dimensions 

(.66 ± .27%; Range; .50% - .82%) were significantly lower than PSP (1.39 ± .77%; Range; .94% -

1.83%) or CBCT LC (1.75 ± .60%; Range; 1.4% - 2.09%). For all measurements, except Po-Or, 

CBCT LC mean absolute and percentage error was significantly higher than direct skull repeated 

measurements. 

Modality Accuracy 

Table 12 provides a comparison of mean linear measurements obtained from PSP, CBCT 

LC and actual skull dimensions. Overall no differences between modalities were found (F=.098, 

p=.91). However for all of the bilateral structures, except Go-Co, skull dimensions were 

significantly less than either PSP or CBCT LC measurements. This difference varied from 4.7% 

(Po-Or) to 17% (Go-Me). No differences were found between measurements obtained from PSP 

or CBCT cephalometric images for all bilateral structures. 

65 



For all mid-sagittal measurements, except Ba-Na, no differences between modalities were 

found. For Ba-NA PSP measurements were significantly larger than skull or CBCT LC 

dimensions by 4.5%. 
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Table 10. Average measure intra-class correlation coefficient for multiple measurements of linear dimensions by multiple observers on 23 skulls 

and for a single observer on photostimulable storage phosphor cephalograms (PSP) and simulated cephalograms generated from CBCT volumetric 

datasets (CBCT LC). 

Modality 

Lateral Cephalometric images 

Skull PSP CBCTLC 

Mean CL Mean CL Mean CL 

Plane Mean Lower Upper Mean Lower Upper Mean Lower Upper 

S-N 0.998 0.996 0.999 0.794 0.588 0.906 0.997 0.995 0.999 
0'1 
--.l Ba-Na 0.996 0.994 0.998 0.994 0.988 0.997 0.999 0.998 0.999 

ANS-PNS 0.994 0.990 0.997 0.972 0.944 0.987 0.999 0.999 0.999 

Na-A 0.999 0.997 0.999 0.986 0.972 0.994 0.999 0.999 0.999 

Na-B 0.996 0.994 0.998 0.997 0.994 0.999 0.999 0.998 0.999 

Na-Me 0.997 0.995 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

Na-ANS 0.997 0.995 0.999 0.993 0.986 0.997 0.997 0.995 0.999 

Ba-ANS 0.990 0.981 0.996 0.998 0.996 0.999 0.998 0.998 0.999 

Pog-Go (Lt.) 0.999 0.999 0.999 0.985 0.970 0.993 0.999 0.998 0.999 

Pog-Go (Rt.) 0.999 0.999 0.999 

Pog-Co (Lt.) 0.999 0.999 0.999 0.987 0.974 0.994 0.999 0.999 0.999 

Pog-Co (Rt.) 0.999 0.999 0.999 

CL = 95% Confidence Interval 



Table 10 (Continued). Average measure intra-class correlation coefficient for multiple measurements oflinear dimensions by multiple observers 

on 23 skulls and for a single observer on photostimulable storage phosphor cephalograms (PSP) and simulated cephalograms generated from 

CBCT volumetric datasets (CBCT LC). 

Modality 

Lateral Cephalometric images 

Skull PSP CBCTLC 

Mean CL Mean CL Mean CL 

Plane Mean Lower Upper Mean Lower Upper Mean Lower Upper 

Go-Me (Lt.) 0.997 0.995 0.999 0.979 0.959 0.991 0.999 0.999 0.999 
0-
00 Go-Me (Rt.) 0.999 0.999 0.999 

Go-Co (Lt.) 0.999 0.999 0.999 0.977 0.953 0.989 0.999 0.999 0.999 

Go-Co (RtO.) 0.999 0.999 0.999 

Go-Gn (Lt.) 0.995 0.990 0.998 0.982 0.963 0.992 0.999 0.998 0.999 

Go-Gn (Rt.) 0.997 0.993 0.999 

Po-Or 0.998 0.997 0.999 0.972 0.944 0.987 0.999 0.998 0.999 

0.998 0.996 0.998 

CL = 95% Confidence Limit 



Table 11. Comparison of absolute and percentage mean error for mid-sagittal and bilateral linear measurements between dimensions of planes on 

23 skulls and measurements made on photostimulable storage phosphor cephalograms (PSP) and simulated cephalograms generated from CBCT 

volumetric datasets (CBCT LC). 

Skull PSP CBCTLC Significance 

Plane Location * Absolute Percentage Absolute Percentage Absolute Percentage F p 

S-N MS 0.42 ± 0.20 0.70 ± 0.34 0.85 ± 2.12 1.45±3.65 1.91 ± 1.86 2.49 ± 3.40 3.16 0.049 

Ba-Na MS 0.69 ± 0.35 0.71 ± 0.36 0.61 ± 0.75 0.60 ± 0.75 1.25 ± 0.72 1.94 ± 1.63 6.95 0.002 

ANS-PNS MS 0.55 ± 0.25 1.18 ± 0.58 0.93 ± 0.65 1.98±1.41 0.89 ± 0.47 1.29 ± 0.82 4.11 0.021 

Na-A MS 0.33 ± 0.16 0.64 ± 0.31 0.64 ± 0.35 1.25 ± 0.66 0.97 ± 0.82 1.60 ± 1.48 8.63 0.000 
0\ 
\.0 Na-B MS 0.34 ± 0.18 0.38 ± 0.20 0.64 ± 0.36 0.71 ±0.39 1.01 ± 0.57 1.45 ± 0.97 15.77 0.000 

Na-Me MS 0.49 ± 0.64 0.45 ± 0.55 0.35 ± 0.23 0.32 ± 0.20 1.12 ± 0.69 1.5 ± 0.82 12.38 0.000 

Na-ANS MS 0.33 ± 0.17 0.70 ± 0.36 0.41 ± 0.23 0.90 ± 0.50 2.10 ± 1.93 3.43 ± 3.76 18.04 0.000 

Ba-ANS MS 1.07 ± 0.93 1.16 ± 0.99 0.51 ± 0.42 0.54 ± 0.44 1.37 ± 0.78 1.96 ± 1.35 7.91 0.001 

Pog-Go Ave. Lt/Rt 0.30 ± 0.07 0.35 ± 0.08 1.37 ± 1.01 1.97 ± 1.51 1.01 ± 0.88 1.67 ± 1.81 11.52 0.000 

Pog-Co Ave. LtlRt 0.34 ± 0.14 0.30 ± 0.12 0.99 ± 0.90 0.93 ± 0.79 1.09 ± 0.74 1.52 ± 0.99 8.42 0.001 

Go-Me Ave. Lt/Rt 0.35 ± 0.29 0.45 ± 0.38 1.40 ± 1.14 2.18±1.88 0.88 ± 0.74 1.17 ± 0.94 9.90 0.000 

Go-Co Ave. Lt/Rt 0.34 ± 0.10 0.60 ± 0.18 1.52±0.10 2.81 ± 1.90 0.71 ± 0.57 1.04 ± 0.93 19.03 0.000 

Go-Gn Ave. Lt/Rt 0.70 ± 0.37 0.88 ± 0.45 1.72± 1.14 2.33 ± 1.62 1.18 ± 0.67 1.72 ± 0.94 9.31 0.000 

Po-Or Ave. Lt/Rt 0.57±0.13 0.72±0.15 1.09 ± 0.85 1.44 ± 1.07 1.15 ± 1.48 1.65 ± 2.42 2.41 0.098 

* MS=Mid-sagitta1; Rt=right, Lt=left 



Table 12. Comparison of Mean Linear measurements (±s.d.) between cephalometric landmarks on Storage Phosphor and CBCT Derived 

Simulated Lateral Cephalometric Images of 23 Skulls. 

Lateral Cephalometric Significance 

Plane Location Skull Storage phosphor Simulated from CBCT F p 

S-N MS 59.31 ± 3.75 59.76 ± 2.41 58.60 ± 3.65 0.71 0.5 

Ba-Naa MS 98.81 ± 4.99 103.30 ± 5.63 100.33 ± 5.02 4.4 .016 

ANS-PNS MS 47.70 ± 3.25 46.87 ± 2.94 46.98 ± 2.87 0.5 0.61 

Na-A MS 51.00 ± 3.36 50.87 ± 2.78 50.66 ± 2.59 0.08 0.93 

Na-B MS 88.64 ± 5.71 89.64 ± 5.83 88.82 ± 5.95 0.19 0.83 
-.l Na-Me MS 108.58 ± 7.06 109.38 ± 6.98 107.96 ± 6.64 0.24 0.79 0 

Na-ANS MS 46.41 ± 2.86 46.25 ± 2.58 45.94 ± 2.49 0.19 0.83 

Ba-ANS MS 93.17±6.31 96.11 ± 6.48 94.80 ± 5.98 1.23 0.29 

Pog-Gob Bilat 83.76 ± 7.46 70.83 ± 5.77 71.44 ± 6.48 28.08 <0.001 

Pog-Cob Bilat 114.7 ± 5.35 105.40 ± 5.25 105.76 ± 5.92 21.02 <0.001 

Go-Meb Bilat 79.6 ± 5.72 65.46 ± 5.27 65.16 ± 6.06 48.39 <0.001 

Go-Co Bilat 56.46 ± 4.93 55.06 ± 5.02 55.72 ± 4.68 0.47 0.63 

Go-Gnb Bilat 79.81 ± 6.24 74.37 ± 5.92 75.12 ± 6.65 5.09 0.009 

Po_Orb Bilat 78.49 ± 4.73 75.02 ± 3.71 74.31 ± 4.04 6.57 0.003 

a Significant difference between Truth and the PSP lateral cephalometic (p=.O 18). b Significant 
difference between truth and lateral cephalometries from both methods (both p<.OOOl) 



CHAPTER V 

DISCUSSION 

No single imaging technique has been readily available that provides an accurate, easily 

interpreted representation of all osseous aspects of the craniofacial region in one exposure. 

Previously, a plain lateral cephalogram in combination with a panoramic radiograph and 

occasionally a posterior anterior or submentovertex projection has been used for standard imaging 

analysis in orthodontics. The introduction of maxillofacial cone beam imaging equipment 

provides clinicians with an opportunity to generate 2D simulated projections and 3D volumetric 

renderings easily using relatively inexpensive third party personal computer based software. The 

rapidly emerging availability of this technology will undoubtedly expand the use and application 

of 3D imaging, particularly in the field of orthodontics. The aim of this study was to compare 

linear dimensions between common cephalometric landmarks on a sample of skulls to both 3D 

measurements and 2D measurements obtained from reconstructed CBCT images and planar PSP 

lateral cephalometric radiographs. 

For 2D analysis we found that for most mid-sagittal measurements, simulated lateral 

cephalometric images produced from reconstructed CBCT volumetric dataset were similar to 

those from PSP images. In addition we found these measurements to be accurate, except for Ba­

Na from PSP, which overestimated this dimension. For bilateral measurements, simulated CBCT 

LC measurements were similar to those obtained from PSP however, as expected because of 

projection geometry, both modalities were less accurate, underestimating dimensions by between 

4.7% to 17%. Our results compare well to those of Chan et al.[69] who also found no statistically 
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significant difference between skull, traditional frontal cephalometric and CBCT measurements. 

Our results also compare favorably with previous work done by Chidiac et al.[68] who were 

unable to reveal any statistically significant differences between mean angular values on 

cephalometric radiographs and CT views. 

For 3D measurements we found that for two-thirds of dimensions, CBCT measurements 

were statistically significantly different from actual measurements. However analyzing the 

absolute and percentage differences, this statistical significance probably does not translate into 

clinical relevance. Statistical differences most likely resulted from small standard deviations 

within the measurements. In addition, the greater intraobserver variability demonstrated by the 

3D CBCT measurements may have also contributed. These results are very similar in magnitude 

to those of Cavalcanti et at. [74] However; they reported no statistically significant difference 

between imaging and physical measurements. Their mean difference between actual and 3D­

based linear measurements was 0.83% as compared with -1.13 ± 1.47% in the present study. In 

the present study, 40% of measurements had an average difference of less than one millimeter, 

70% had an average difference of less than 1.5 mm and 90% had an average difference of less 

than 2 mm. These absolute differences compare favorably with those reported by additional 

authors.[48,49] 

For two dimensional analyses, the only sagittal measurement where lateral cephalograms 

were inaccurate was Na-Ba. This inaccuracy is most likely due to the intrinsic difficulty in 

locating Basion on a lateral cephalogram. Geelen et at. [87] compared the reproducibility of 

cephalometric landmarks on conventional films and PSP images displayed both as hard copy and 

on computer screen and found Basion to have the third highest envelope of identification 

intrarater error (after Porion and Orbitale) with a mean deviation of 1.28± 1.06mm, 1.46 

± 1.54mm and 1.99± 1.67 mm respecti vely. The anatomic location of Basion, which is situated 

between muscle and parenchyma, is considered to be an area of the image of high anatomic, 
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structural noise, where there is a low signal to noise ratio. The gray areas of the image are 

resultantly blurred therefore making anatomic landmark identification more difficult. 

We anticipated differences in cephalometric dimensions obtained from bilateral planes 

compared to skull measurements. This is because of the concept of linear projective 

transformation.[88] This concept explains that due to the position and orientation of equidistant 

lines in 3D space, that these lines are projected onto the film plane as different lengths due to 

inherent geometric projection errors. So any measurement made on the film is not correct when 

compared to the "Anatomic Truth." 

For two dimensional measurements, mean absolute and mean percentage intrarater 

measurement error for skull dimensions (049 ± .22mm) were significantly lower than PSP (.93 ± 

o44mm) or CBCT LC (1.19 ± .39mm). Mean percentage measurement error for skull dimensions 

(.66 ± .27%) were significantly lower than PSP (1.39 ± .77%) or CBCT LC (1.75 ± .60%). This 

difference may be due to the fact that all skull landmarks were physically located with an 

indelible marker, serving as a fiducial reference point for physical measurements. The 

digitization of landmarks on PSP and CBCT lateral cephalograms was performed three times 

independently by the PI and therefore it was necessary to re-Iocate landmarks and re-measure 

distances with each tracing. The lack of a digital indelible landmark position for PSP and CBCT 

lateral cephalometric radiographs contributed to the overall increased mean absolute 

measurement error for these two modalities. This result is also unexpected because of the inherent 

resolution differences between PSP images and CBCT derived images. PSP cephalometric 

images have an inherent spatial resolution of 300 dpi whereas CBCT images have a Oo4mm voxel 

size (63.5 dpi). However Held et al. (2001) found that the ability to identify landmarks did not 

differ significantly between cephalometric images scanned at resolutions ranging from 600 to 75 

dpi. 

There are numerous factors which should be considered when applying the results of this 

investigation to clinical situations. First and foremost this study was performed on human skulls. 
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The accuracy of measurement distances between three dimensional landmarks on actual patients 

may be affected by a reduction in image quality due to soft-tissue attenuation, metallic artifacts 

and patient motion. Variation in scanning protocol such as voxel size and number of basis 

projection images may also influence measurement accuracy. Therefore it would be expected that 

the dimensional accuracy of all measurements would be somewhat less on patient derived data. 

There are also some potential limitations when using 3D images derived from CBCT 

data. Three dimensional volumetric depictions depend on appropriate segmentation - the 

thresholding of bone pixel values and suppression of surrounding tissue values to enhance the 

structure of interest. This process is dependent on the software algorithm, the spatial and contrast 

resolution of the scan, the thickness and degree of calcification or cortication of the bony 

structure and the technical skill of the operator. In this study, the Dolphin 3D software provides a 

semi-manual method of segmentation, dependent on the interaction of the operator with the data 

to produce a visually acceptable 3D rendering. These limitations result in deficiencies or voids in 

the surface of the image. These occur in regions that are represented by few voxels or have gray 

values still representing bone, but outside the threshold. These areas include the posterior and 

anterior superior walls of the maxillary sinus, bone overlying the dentition and cortical bone of 

the mandibular condyle. Consequently this may lead to greater landmark identification error and 

subsequent measurement error. Anatomic landmarks whose accuracy may be affected by poor 

segmentation include A point, ANS, PNS, Porion, and Condylion. 

In addition, the method of establishing dimensional truth could have potentially 

contributed to bias in the results. While the landmark identification and measurements on the 3D 

rendered images were repeated three times by a single observer, the landmark identification on 

the skulls was performed only once and measurements performed three times by two observers 

independently. This reduced the error of point identification on the skulls; however, the 

establishment of a consensus landmark location was necessary to provide a fiducial reference to 
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which we could assess the inherent clinical inaccuracies of both landmark identification and 

measurement associated with the 3D image rendering. 

We were unable to completely simulate soft tissue effects of attenuation on image quality 

in this study as this would have been problematic in positioning and orientation of the skulls. 

While the use of water balloons placed within the cranial cavity provided some degree of soft 

tissue attenuation, the lack of peripheral attenuation material may have allowed easier 

identification of landmarks on 3D surface rendered images. 

While the results of this investigation indicate that it is possible to generate reliable and 

accurate simulated lateral cephalometric images from CBCT volumetric data sets, before this 

technique is recommended it will be necessary to compare the relative diagnostic yield from 

existing imaging series. In addition it is necessary to compare the measurement accuracy of 2D 

images obtained from CB volumes using dose reduction techniques such as decreasing the 

number of basis images. It has been reported effective dose E(ICRPI990) and E(lCRP2005 draft) for the i­

CAT is 134.8!ASv and 193.4!ASv respectively for a 12" FOV scan and a 20 sec. scan. While it is 

hoped that a CBCT examination would never be substituted for a panoramic examination alone, 

in the case of orthodontic diagnosis, performance of a CBCT scan to generate a panoramic, lateral 

and posterior-anterior (PA) cephalometric images may be considered.[89] Dose calculations 

using ICRP 1990 tissue weights are 6.2 ""Sv for a direct digital panoramic image[2] and 3.4 ""Sv 

for 2 cephalometric images.[90] If the calculation of E is modified to include salivary glands then 

the panoramic and cephalometric doses increase to 22!ASv and 6.8!ASv, respectively. Therefore a 

conventional digital orthodontic extraoral series (panoramic, lateral cephalaometric and PA) 

would provide a dose of between 9.61 ""Sv [E(ICRPI990)] and 28.8""Sv [E(lCRP2005 draft)]. Comparing 

this radiation detriment from conventional digital to CBCT derived simulated images using the 

standard number of projections (20 sec., 306 projections), CBCT imaging is between 6 [E(lCRP2005 

draft)] and 14 [E(ICRPI990)]) times these conventional exposures. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The purpose of this project was twofold: I) to compare the accuracy and reliability of 

linear measurements on lateral cephalograms made conventionally using photostimulable storage 

phosphor imaging plates (PSP) and simulated lateral cephalometric images from ray sum 

reconstructions of cone beam computed tomographic (CBCT) volumetric datasets of the same 

anatomic specimens and 2) to compare the accuracy and reliability of measurements of 3D 

shaded surface volumetric reconstructions. 

While the ICC was high for both 2D and 3D modalities, the mean absolute and mean 

percentage intrarater measurement error for skull dimensions were significantly lower than PSP 

cephalograms, CBCT cephalograms and 3D CBCT images. Measurements on I-CAT CBCT 

simulated lateral images using Dolphin Software were as reliable and as accurate as PSP 

cephalometric measurements. We found that for most mid-sagittal measurements, simulated 

lateral cephalometric images produced from reconstructed CBCT volumetric dataset were similar 

to those from PSP images. In addition we found that these measurements were accurate, except 

for Ba-Na from PSP, which overestimated this dimension. For bilateral measurements, simulated 

CBCT LC measurements were similar to those obtained from PSP however, as expected by 

considerations of projective geometry, underestimated dimensions by between 4.7% to 17%. 

While many linear measurements between cephalometric landmarks on 3D volumetric 

surface renderings obtained using Dolphin 3D software generated from i-CAT CBCT datasets 

may be statistically significantly different from anatomic dimensions, most can be considered to 

be sufficiently clinically accurate (-1.13 ± 1.47%) for craniofacial analyses. 
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While CBCT imaging provides reliable and accurate 2D simulation images and accurate 

and reliable 3D rendering, dose considerations with the adoption of any technique involving 

ionizing radiation must be considered. Conventional digital orthodontic extraoral series 

(panoramic, lateral cephalaomertic and PA) provide a dose of between 9.6[.!Sv [E(ICRPI990)] and 

28.8[.!Sv [E(lCRP2005 draftl Comparing this to the theoretical dose from CBCT i-CAT imaging using 

the standard number of basis projection images (306) (E(ICRPI990) and E(lCRP2005 draft) of 1 34[.!Sv and 

1 94[.!Sv respectively), CBCT imaging still provides between 7 [E(lCRP2005 dram] and 14 [E(ICRPI990)]) 

times more radiation detriment. 

While CBCT imaging provides clinically reliable and accurate 3D volume rendered 

images and 2D simulation images, dose considerations demand that evidence-based selection 

criteria should be developed for CBCT in orthodontics that take into account the ALARA 

principle [65]. 
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