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ABSTRACT 

 

 

 

VITAMIN A IS ESSENTIAL FOR

PROPER EMBRYONIC  

SUBMANDIBULAR SALIVARY GLAND GROWTH 

 

 

Deanna E. Buenger
 
   April 24, 2015 

 

Submandibular salivary glands (SMG) are important for the production of saliva. 

Salivary glands may be damaged by autoimmune disease, surgery, or radiation therapy.  

Retinoic acid (RA) is a signaling metabolite derived from Vitamin A that is essential for 

proper embryonic growth and development; specifically for cardiovascular, limb and 

craniofacial development. The goal of this study was to determine if there is a 

reproducible defect in the growth of SMGs in RA deficient mouse embryos compared to 

wild type. This study aims to characterize SMG growth in RA deficient embryos and 

determine if the growth could be stimulated by RA in a dose dependent manner. In 

addition, we hypothesized that there was a direct effect of the RA deficiency on SMG 

growth using an in vitro model. We examined Rdh10 mutant mouse embryos: which lack 

the enzyme retinol dehydrogenase necessary to produce RA. We examined the SMGs of 
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wild type and Rdh10 mutant embryos by hematoxylin and eosin staining at various stages 

of gland development.  We then completed whole mount antibody staining for the 

epithelium (E-cadherin) and nerve (TUJ), and compared the volumes of these glands. We 

also varied the dosage of all-trans-retinal (RAL), the intermediate in RA metabolism, 

supplementation to determine how this affects SMG growth. The mutant SMGs were 

approximately half the size of the wild type SMGs at both the early stage of gland 

development and further into development. With the higher dose of RAL, the mutant 

SMGs appeared more like the wild type, with branching and near normal SMG size. In 

order to see if RA directly affected SMG growth, wild type SMGs were cultured in vitro 

for up to 72 hours. SMGs treated with a synthetic Retinoic acid receptor (RAR) inhibitor 

(BMS 493) had less epithelium and branching compared to the control SMGs. Together, 

the results of these analyses demonstrate that RA directly affects SMG growth: 

specifically the epithelial growth and differentiation are influenced by the presence and 

dosage of RA. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

 
Salivary Gland Overview 

 
Saliva has many essential roles within the oral cavity.  Aside from the main 

purpose of providing lubrication for digestion and swallowing, saliva is also essential as a 

pH buffer for the oral tissue, as well as aiding in vocalization [1, 2]. Saliva is produced by 

three main pairs of salivary glands, in addition to thousands of minor salivary glands [3]. 

The main pairs of salivary glands include the submandibular gland, the sublingual gland, 

both of which are located in the mandible at the base of the tongue, and the parotid gland, 

located anterior to the ears overlying the masseter muscle. Healthy adults produce around 

1.5 liters of saliva per day, which, aside from comfort and convenience, is necessary to 

protect the teeth from decay causing microorganisms [4]. However, perhaps the true 

value and importance of saliva is only appreciated by patients who suffer from defective 

salivary glands and hyposalivation. 

Damaged salivary glands result in a severe dry mouth condition called 

xerostomia.  Xerostomia can be caused by surgical damage to the glands, autoimmune 

disease, (e.g. Sjőgren’s syndrome) or radiation therapy. Hyposalivation can induce dental 

caries and periodontal disease [3]. In addition, decreased saliva production results in 

problems with speech, mastication, and overall quality of life. Currently, there is no 



2 

 

effective treatment for xerostomia, therefore most patients only receive medication for 

pain management and substitute saliva or lubricants to help cope with this devastating 

condition [5]. Additional treatments include preventing dental caries with antimicrobials, 

as well as sialagogues agents to aid in saliva output [6]. 

 

Causes of Salivary Gland Damage 

One of the most common causes of salivary gland damage is Sjőgren’s syndrome. 

Sjőgren’s syndrome is one of the most common autoimmune diseases, characterized by 

ocular and oral dryness as a result of the immune system degrading the lacrimal and 

salivary glands [7]. This autoimmune disease is estimated to affect 0.01% to 3% of the 

general population [8]. Primary Sjőgren’s syndrome occurs when it is the only 

autoimmune disease afflicting the patient[9], whereas secondary Sjőgren’s syndrome 

occurs in the presence of additional autoimmune disease. Patel notes that there is much 

controversy as to classification criteria of Sjőgren’s syndrome; resulting in the prevalence 

of this condition being most likely underestimated [9]. Doctors from around the world 

follow their own classification criteria for both primary and secondary Sjőgren’s 

syndrome. What can be agreed upon are the primary symptoms, including hyposalivation 

and oral dryness [8, 9].  Regardless of the classification and diagnosis of this condition, 

the result is decreased functional salivary gland tissue, leading to xerostomia. 

Another major cause of xerostomia is radiation therapy, the often used treatment 

for head and neck cancer. According to the American Cancer Society, approximately 

40,000 people will be diagnosed with head and neck cancer in 2015 in the United States 
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(www.cancer.org). If the cancer has spread to local lymph nodes, radiation therapy is the 

primary treatment. Because of the sensitivity of their tissue, salivary glands are often 

damaged by radiation [10]. The cells in salivary glands, including the SMG, have slow 

proliferation rates and highly differentiated cell composition. These cells are highly 

sensitive to radiation, however the effects are long term and may not peak until years 

after treatment [10].Currently, the main method to protect the salivary glands from 

radiation therapy is through preventative measures. Such organ sparing procedures where 

salivary glands are relocated to a region which receives lower radiation dose [11]. Other 

preventative procedures include gene therapy to make the salivary glands more resistant 

to the radiation [11].  

 

Potential Therapies for Salivary Gland Hypofunction 

The goal of salivary gland research is to provide relief for patients suffering from 

defective salivary glands. Scientists are working towards bioengineering salivary glands 

from stem or progenitor cells [3, 11]  in order to work towards regeneration of defective 

salivary glands [12]. Ogawa et al. was able to successfully regenerate salivary glands by 

use of a bioengineered germ layer of a mouse salivary gland [13]. This study shows an 

exciting proof of concept that a treatment for xerostomia could be bioengineering salivary 

glands to form replacement glands. However, to make this process more efficient and to 

be confident that the salivary gland is fully functioning, first we must understand how the 

salivary gland grows during embryonic development, providing a template for 

bioengineering a functional salivary gland [9]. In addition, it should be noted that many 
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questions remain about the functionality of transplanted stem cells. In order to achieve a 

successful transplant, it is necessary to determine the regenerative nature of specific cells, 

and how we can direct differentiation to lead to the highly specialized cells of the salivary 

gland [14]. 

 

Submandibular Salivary Gland Development 

 Embryonic development of the SMG is a complicated process with many 

signaling pathways, cell to cell interactions, and cell processes occurring at designated 

times. For proper gland development, growth and differentiation must both occur. These 

orchestrated events are necessary to form a functional and healthy gland [1, 15]. 

Researchers in the salivary gland field often study the SMG, as it is the first gland to 

develop during embryogenesis.  

The submandibular gland is composed of both epithelial and mesenchymal tissue. 

During the earliest stages of development, the epithelium is the instructive tissue, guiding 

the mesenchyme towards the beginning of gland development [16], however this role is 

transferred to the mesenchyme in later developmental stages. The SMG produces both 

serous and mucous secretions, a unique feature compared to the other main salivary 

glands. The serous secretions contain digestive enzymes, such as amylase, which are 

necessary for breaking down food [6]. The mucous secretions provide the lubrication and 

viscosity of saliva, aiding in vocalization and swallowing, while also protecting the oral 

cavity from pathogens and oral flora that stimulate tooth decay. The developed SMG is 

composed of a series of ducts and branches of epithelial bundles. Branching 
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morphogenesis, a necessary feature in SMG development, is simply defined by the 

salivary epithelium undergoing repetitive sequences of branching to create buds and 

clefts [17] . These bundles are called acini and are formed from acinar cells. The acini are 

what secrete saliva into the ducts, which then empty into the oral cavity. At the earliest 

stage, around E11.5 (embryonic day 11.5), a signal, not yet identified, alerts the oral 

tissues where to form a SMG and a placode of epithelium begins to develop. By day 

E12.5 an initial bud stage occurs when the epithelium invaginates into the surrounding 

mesenchymal tissue to form the precursor for a salivary gland (fig 1.). The 

pseudoglandular stage occurs on E13.5, in which a few of the branches of epithelium 

begin to develop. By the canalicular stage, at E15.5, there are many more branches and 

the ducts and lumens begin forming through apoptosis and tubulogenesis [18]. The gland 

continues growing and branching even after it reaches the terminal bud stage on E17.5. 

The SMG does not reach full size until after birth and near puberty. Branching 

morphogenesis is essential to SMG development as it allows compact overall size yet has 

vast epithelial surface area which is crucial for the generation of large surface area to 

produce sufficient amounts of saliva [19]. 

Because salivary glands are complex organs, there are many cell processes, 

signaling pathways and tissue interactions that must be understood in order to fully 

comprehend their development. Also important to salivary gland development is 

parasympathetic innervation, which was recently discovered necessary for salivary glands 

to grow and branch correctly [20, 21]. Other research has found that FGF10 (fibroblast 

growth factor 10) signaling within the primordial epithelium is necessary for 

communication to the mesenchyme [20]. This tissue to tissue interaction is essential for 
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initiation and gland formation [16]. The mesenchyme is the instructive tissue from E11.5 

and on through gland development. When mesenchyme is taken from the second 

pharyngeal arch and placed next to any developing epithelium,[16] it branches and looks 

similar to a developing salivary gland [16]. Other research has verified that Sonic 

Hedgehog (SHH) signaling is another essential developmental pathway necessary for 

salivary gland development [22]. FGF8 also plays a dose dependent role in epithelium 

development, although it does not work through the FGF10 signaling pathway [23]. 

These are just a handful of examples of the research going on in the salivary gland field. 

All of these projects contribute toward understanding the complexity of the salivary 

glands and how these signaling pathways interconnect and work in harmony in order to 

form a functional salivary gland. 
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Figure 1: Developmental stages of the submandibular gland. Depicted in pink is 

epithelium, and the blue depicts the surrounding mesenchyme. Salivary gland 

development is first visible as a thickening of oral epithelium on E11.5. Next is the initial 

bud stage at E12.5, then the pseudoglandular stage on E13.5 shows some branching 

morphogenesis taking place. The canalicular stage around E15.5 is when the canals and 

lumens begin to form. Duct formation continues even throughout the terminal bud stage 

of E17.5. 
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Vitamin A Metabolism in the Developing Embryo 

Vitamin A, the parent molecule of the Retinoids is inactive in this form [24]. In 

this inactive state, Vitamin A (Retinol) is stored in the liver and bone marrow of adults 

[23]. Before the body can use Vitamin A, it must be converted to its active form- Retinoic 

Acid (RA). During development, RA is a necessary signaling molecule needed to activate 

many developmental genes [25]. The metabolism of Retinol is a complex process 

involving first the oxidation of Retinol to all-trans-Retinal (fig 2.). Next, RAL is 

converted to the active form, RA, and can then activate many developmental genes. This 

step is carried out by the ALDH1a family of enzymes, when these specific family 

members are knocked out, we see RA deficiency in certain regions of the developing 

embryo [26]. RA acts as a ligand and binds to a family of receptors, RAR (Retinoic Acid 

Receptors) and RXR (Retinoid-x Receptors), which include multiple isoforms. These RA 

receptors are a part of the nuclear super family of receptors, which activate or inhibit 

downstream genes. The RAR heterodimerizes with RXR, and together this complex 

interacts with the promoter sequence of specific genes [27]. RA receptors are active and 

specific depending on the tissue and developmental stage involved [28].The metabolism 

of Vitamin A is depicted below (fig.2). 
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Figure 2. Vitamin A metabolism. The metabolism of Vitamin A converts Retinol into the 

active form called Retinoic Acid (RA). The first step in this process involves the RDH10 

enzyme which oxidizes Retinol into the intermediate, RAL. From this step, RAL is then 

converted into RA, the active metabolite that activates many developmental genes. The 

ligand RA, activates the developmental genes by activating RAR (Retinoic Acid 

Receptors) and RXR (Retinoid X Receptors), as shown above. 

 

 

 

 

 



10 

 

RA has been shown to be essential during embryonic development [29]. RA 

dosage, interactions with other signaling pathways, involvement with cell processes such 

as proliferation and apoptosis and the developmental stage of RA’s presence are all 

essential for organogenesis [25]. Common symptoms of Vitamin A deficiency during 

embryogenesis include lack of eye development, cleft palate, and arrested ascension of 

kidneys as well as cardiovascular defects [24, 27, 28, 30]. Vitamin A deficiency (VAD) 

symptoms are devastating, and often the embryo doesn’t survive development and live to 

post-natal stages. Depending on the severity of VAD as well as the stage during gestation 

when the embryo is deprived, the embryos will often suffer cardiovascular fatality and 

resorb[26]. 

It was recently determined that one enzyme is primarily responsible for the first 

step in Vitamin A metabolism[26]. RDH10 (retinol dehydrogenase 10) oxidizes Retinol 

into RAL [25, 26]. This is a reversible step. Sandell et al. have developed a method to 

study RA deficient mouse embryos that survive to later stages of gestation, allowing the 

organs of interest to grow under VAD conditions [25, 26]. By using the intermediate 

formed during Vitamin A metabolism, RAL, maternal supplementation is used to keep 

the embryos alive [25]. The strain of animals used is Rdh10trex/+ heterozygotes.  Based on 

Mendalian genetics, when one Rdh10trex/+ is crossed with another Rdh10trex/+ 

heterozygote, roughly 25% of the filial embryos are homozygous for the mutation. These 

mutants completely lack the enzyme RDH10, and therefore cannot metabolize Vitamin 

A. Normally with this level of RA deficiency, the mutant embryos would not survive past 

E11.5. However, with the maternal diet receiving the intermediate, RAL, enough RA is 

made to overcome cardiovascular fatality, allowing the embryos to survive (fig.3). If this 
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intermediate is given at the critical time for heart and lung development, embryos are 

rescued, allowing them to develop to the time of salivary gland development (fig. 3). This 

system salvages the embryos, and is a great benefit to allow us to study embryos under 

VAD conditions. 

. 
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 Figure 3. Vitamin A metabolism in the Rdh10trex/trex mutant embryos. This image 

demonstrates that Rdh10trex/trex mutant embryos lack the enzyme required for the first step 

in this metabolic pathway. With this level of RA deficiency, the mutant embryos will not 

survive. However, the innovation to this research rescues the Rdh10trex/trex mutant 

embryos by giving a maternal supplementation of RAL. This allows the embryos to make 

enough RA to survive cardiovascular fatality. This process rescues the embryos, and 

allows them to survive to the time of SMG development, even with RA deficient 

conditions. 
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Study Hypothesis 

 There is much about salivary gland development and morphogenesis that is 

unknown. Understanding how the various signaling pathways interact, and at what times 

these communications need to take place during development is still being studied and 

learned. Preliminary data from Sandell et al. suggested that there was a growth defect in 

the RA deficient embryo’s SMGs. The impact and role of RA on the developing SMG 

has not yet been studied. Because of the innovative maternal supplementation system, we 

can study the developing SMGs and allow the embryos to survive to the point of gland 

development.  In this study we would like to see how RA levels affect SMG growth and 

differentiation to better understand how healthy, normal salivary glands mature. This 

project can contribute to science as we work toward regeneration and bioengineering of 

new salivary glands, as a treatment of defective salivary glands. It was hypothesized that 

RA is necessary for proper development of the embryonic SMG. The first aim was to 

show that there is indeed a reproducible growth defect in the RA deficient embryos. The 

next aim was to see if the epithelium is the tissue affected by the RA deficiency. The third 

aim was to evaluate if this growth defect is present at multiple stages of gland 

development, or only present at a specific time. This research gives us insight as to the 

role of RA on the developing SMG. 
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CHAPTER 2: MATERIALS AND METHODS 

 

Maternal Supplementation: 

All-trans-Retinal (RAL) (Sigma Chemical, St. Louis, MO) was prepared in a dark 

room and on a bed of ice. The RAL was suspended by diluting 4 mg of RAL per 80 

microliters of filter sterilized Ethanol. This amount was aliquoted into light inhibiting 

(amber) Eppendorf tubes and stored at negative 20 degrees Celsius until the day it was 

used. Plugged dams received RAL treatments on embryonic day 7.5, 8.5, 9.5, 10.5, 11.5 

and then the diet was changed to a clean cage with A5010 mouse food on the 12th day. 

Approximately 50g of 5010 mouse food was crushed using a mortar and pestle until it 

was finely ground. The food was added to a sterile plastic zip bag. A pipet was used to 

suspend the RAL into 50 ml of water. The water was inverted several times to ensure that 

the RAL was thoroughly mixed. The 50 ml of water and RAL was added to the bag with 

the crushed mouse food and mixed. The moist food was then deposited onto a sterile 

culture dish which was covered with a light blocking igloo (VWR, CA) to prevent light 

from degrading the RAL. This was placed in the mouse cage and was replaced every 24 

hours. 

The Euthanasia and Dissection: 

The following animal protocols were approved by IACUC at the University of 

Louisville (#11116). Mice were euthanized using a CO2 gas chamber. Cervical 
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dislocation was also performed to verify that the animal was deceased before beginning 

the embryo harvest. Embryos were dissected out of the mother and immediately put into 

a dish where they were submerged in 10 mM PBS (phosphate buffered saline). If 

embryonic day was equal to or greater than E15.5, the embryos were decapitated 

immediately. Upon completion of removing the embryonic sac, placenta and procuring a 

tissue sample for genotyping, embryos were fixed overnight in 4% Paraformaldehyde 

(PFA) at 40C. Approximately 24 hours later, the embryos were dehydrated through a 

series of methanol washes. From PFA, the embryos were equilibrated to methanol 

following a series of 30 minutes washes. 

  

Paraffin Embedding and Sectioning: 

Tissues were dehydrated and prepared through 30 minute washes from the 

following procedure. Beginning from absolute ethanol, to 50:50 EtOH and Neo-Clear, to 

absolute Neo-Clear (2X). The tissues were then incubated for two hours in warm paraffin 

in the warming vacuum oven at the melting temperature for the paraffin used (58 ̊ C). 

After two hours, this paraffin was replaced with freshly melted paraffin and the tissues 

were incubated for another two hours in the vacuum oven. Each specimen was embedded 

in the frontal orientation by placing them in a mold filled with warm paraffin. The 

embedded specimen was then stored at 20 C̊ for a minimum of a few hours, so that the 

paraffin could set. A microtome was used for the paraffin sectioning. The sectioning was 

carried out, placing the paraffin block on the machine and sections of 10 µm were 

created. The sections were floated in the warm water bath, then placed onto a clean 
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microscope slide.  Slides were allowed to air dry overnight, then were put away and 

stored at room temperature until further analysis. 

 

Hematoxylin and Eosin (H and E) Staining: 

The protocol for Hematoxylin and Eosin staining of paraffin slides begins by 

dehydrating the tissues with two X 10 minute washes in xylene. Next, the slides were 

moved to two X 5 minute washes in 100% ethanol. After this step, the slides were moved 

stepwise through 95% ethanol, and 70% ethanol for 2 minute rinses. The paraffin slides 

were then submerged in hematoxylin for 8 minutes. The slides were then moved into a 

cold tap water bath for a 5 minute rinse. After this, the slides were placed for 30 seconds 

in 0.1% acid alcohol (J.T. Baker HCL) then were moved back into a cold tap water bath 

for an additional minute.  After this, the slides were moved into a lithium carbonate 

solution for 45 seconds. This solution was prepared with approximately 1.3 g of lithium 

carbonate per 100 mL of distilled water. The slides were then rinsed in a running water 

bath for 5 minutes. Next, the paraffin slides had 10 quick dips in 80% ethanol before 

having 10 quick dips in eosin (Harleco, KS). After the eosin, the slides had a five minute 

wash in 95% ethanol then they were moved to absolute ethanol for two 5 minute washes. 

For the last step, the slides were placed in xylene for 5 minutes, and this was repeated 

two times. After the staining was complete, the slides were covered with coverslips, using 

permount and allowed to air dry. 

Whole Gland Dissection of Submandibular Glands: 
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Timed mating’s were set up using Rdh10trex/+ heterozygotes. When a vaginal plug 

was found, that day was counted as embryonic day 0.5. On the desired embryonic stage 

day, the dam was euthanized following the above procedure. The collected embryos were 

placed in 10 mM PBS for the dissection. The SMGs were dissected out from the 

mandible and were fixed in 4% PFA overnight. The next day, the tissues were rinsed in 

PBS and moved stepwise to absolute methanol. 

 

Antibody Staining of Whole Mount SMG: 

This is a three day procedure. Day 1: SMG specimens that had been stored in 

100% methanol (MEOH) were incubated in Dent’s Bleach for 2 hours at room 

temperature. Dent’s Bleach is composed of MEOH: DMSO: 30%H202, 4:1:1. The glands 

were equilibrated to PBS, moving stepwise through the following solutions for 10 

minutes each. The glands were then blocked in TN plus block for 2 hours (Perkin—

Elmer with TSA kit). Next, the antibodies were prepared (see antibody section) diluted in 

TN+block and incubated overnight at 4oC.  

Day 2:  Unbound primary antibody was removed by washing five times for 1 hour in 

PBS. Secondary antibodies were diluted in TN+block and diluted antibodies were applied 

and specimens were incubated overnight at 4oC.  

Day 3: Unbound secondary antibody was removed by washing in PBS for 20 minutes 

(3X). Bound antibody complexes were then fixed to the tissue by incubation for 1 hour in 

4% PFA. Lastly, specimens were moved to PBS, and then equilibrated to MEOH. 
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Mounting antibody stained specimens for confocal imaging: A concave slide was used 

with vacuum grease to hold a plastic ring on the perimeter of indentation. BABB, a tissue 

clearing agent, was used to clear the tissue and then a slide cover was placed over the ring 

with BABB filled up to the rim.  

 

Immunohistochemistry and Heat Induced Epitope Recovery for Paraffin sections: 

Slides with paraffin sections were prewarmed in an oven (58  ̊C) for 30 minutes in 

a glass rack. The slides were transferred quickly to xylene for 3 five minute washes and 

then were moved to 100% ethanol for 2 five minute wash. The slides were then placed in 

95% ethanol for 3 two minute wash. Then move to 70% ethanol for a two minute wash, 

then two minutes in PBS. 

HIER (Heat Induced Epitope Retrieval): Slides were placed in a 2 L beaker filled 

with about 400 mL of citrate buffer. Once visibly boiling for 10 minutes, the beaker was 

removed from heat and allowed to cool. At room temperature, the slides were immersed 

in PBS. A PAP pen was used to mark a hydrophobic perimeter around the tissue. Then 

the slide was washed twice with PBS, within the PAP pen circumference. PBS was then 

removed and the slide was blocked for 1 hour with 100-200 microliters of 10% calf 

serum (made in 0.1% triton) and stored in a humid box for the incubation.  

Next, two quick washes with PBS were completed, followed by a rinse in PBS 

with 0.1% Triton. The primary antibodies were prepared by diluting them in the 4% calf 

serum in 0.1% Triton –PBS. Approximately 100-200 microliters of primary antibody was 

added to each slide over the sections. Slides with primary antibodies were incubated for 
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an hour in the humid box. To remove unbound primary antibodies, slides were washed 

2X quickly in PBS/0.1% Triton, then were placed for five minutes in a wash of 

PBS/Triton (2X). 

The secondary antibodies were prepared by diluting in 4% calf serum and then 

centrifuging for two minutes. Once prepared, about 100-200 microliters of the diluted 

secondary antibody was added to the slide over the sections. The slides were then 

incubated in the humid box for one hour. Next the slides were washed in PBS triton (five 

minutes) then two quick washes with PBS- Triton. The slides were covered using 

antifade gel (Invitrogen, NY) and stored in a light sensitive box. Reagents needed for this 

procedure included 10 mM citrate buffer, 0.1% Triton-PBS, 10% calf serum in .1% 

Triton PBS blocking solution and 4% calf serum in 0.1% Triton-PBS. 

 

 

Antibodies:  

Primary Antibodies:  

 E-cadherin Mouse: BD Biosciences 610182. Dilution used [1:50]. 

 TUJ 1: Covance, 500017-641. Dilution used [1:1000]. 

 E-cadherin Rabbit: 3195-9. Dilution used [1:200]. 

 Phosphohistone 3(PH3): EMD Millipore Corp: 06-570. Dilution used [1:500]. 

  PSP: [31, 32]. Dilution used [1:100].  

 Secondary Antibodies: 
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o AF488: Donkey anti mouse IgG. Invitrogen A21202. Dilution used [1:300] 

o AF488: Donkey anti rabbit IgG. Invitrogen A21206. Dilution used [1:300]. 

o AF546: Goat anti mouse IgG. Invitrogen A11030. Dilution used [1:300]. 

o AF546: Goat anti rabbit IgG. Invitrogen A11010. Dilution used [1:300]. 

o AF660: Goat anti rabbit. Invitrogen 421073. Dilution used [1:300]. 

o AF660: Goat anti mouse. Invitrogen A21055. Dilution used [1:300]. 

 

 

Culturing SMGs in vitro: 

Wild type (FVB/NJ) mice were mated and embryos harvested at the desired 

embryonic day.  Media was stored at -20 ̊C, but freshly thawed DMEM (VWR, CA) in 

37 ̊C incubator for duration of harvest.  SMGs were collected (preferably E13.5) and left 

in a dish of DMEM with Hepes, a pH buffer (VWR, CA). 

Five ml of DMEM was pipetted (VWR, CA) into a culture dish. A filter was 

placed in the medium on a silicone raft, then a gland was placed on the top of the filter 

paper (VWR, CA). For control dishes, 14 µL DMSO was added to the media. For 

experimental dishes, the RAR antagonist BMS-493(Tocris, United Kingdom) 14 µL was 

added to the media (10 nM-[33, 34]). The dishes were covered and placed in the 

incubator (5%CO2 and 37 ̊ C) for 24, 48 or 72 hours. After the desired time in culture, the 

glands were fixed in 4% PFA overnight. Then the glands were moved stepwise to 

absolute methanol.  
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Statistical Analysis:  

 

Statistical analysis can be used to determine if there is a significant difference 

between two groups of numbers. Student T-tests were completed (using Microsoft Excel 

software) to compare cross sectional area analysis data for the wild type and mutant 

numbers. In our case, this was used on the cross section area analysis for E12.5 and E15.5 

SMG development from H and E stained sections. Graphs and histograms were also 

created on this program. 

Nonparametric statistical analysis was completed on mini tab 

(www.minitab.com), a statistical software purchased through the University of 

Louisville. This nonparametric analysis was needed for small subsets of numbers, such as 

the volume comparison for the whole mount glands. The nonparametric test gives us the 

same information as the T-test however it does not assume normal distribution because 

the n value is small.  
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CHAPTER 3: RESULTS 

Verify a reproducible growth defect in the SMG of RA deficient embryos.  

 

In order to verify that there was a reproducible growth defect of the SMGs in the 

RA deficient embryos, pregnant mice were treated with a low dose of RAL to ensure 

their survival so that the RA deficient developing embryos would survive to the stage of 

salivary gland development. Embryos were collected (n=8, from two different litters) at 

E12.5, during the initial bud stage. This is the earliest stage that a defined gland could be 

detected, as the epithelium invaginates into the surrounding mesenchyme (fig.1). 

Embryos were fixed, dehydrated then prepared and embedded in paraffin.  Embryos were 

embedded in the frontal orientation (fig.4).  After paraffin sectioning, H and E staining 

was completed to allow the histology to be seen clearly. Very consistently, we saw 

smaller E12.5 glands in the homozygous Rdh10trex/trex mutants compared to the wild type 

embryos (fig.4). 

To verify that there was a true difference in size between the E12.5 mutant and 

wild type SMGs, a statistical analysis was completed on the paraffin sections. Taking the 

largest cross section of the gland, the area was calculated by using the Leica software 

(fig.5).  As seen in the figure, only the epithelium cross-section area was calculated. 

Below is a graphical representation of the cross-sections areas. The size discrepancy is 

shown and was seen consistently throughout all of the glands. 



23 

 

 
Figure 4. Hematoxylin and Eosin staining of E12.5 embryos. Above represents the frontal 

orientation paraffin sections and H and E staining of wild type and Rdh10trex/trex embryos. 

At E12.5, initial bud stage, we see the Rdh10 mutant (on right) SMG is visibly smaller 

than the wild type on the left, shown with the red arrows. For this H and E analysis, n=8 

wild type glands and n=8 mutant glands. The above images are representative examples 

from the data.  
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Figure 5.  Hematoxylin and Eosin staining of E12.5 SMGs and statistical analysis. The 

above figure demonstrates the process of the statistical analysis of the cross sections of 

E12.5 SMGs.  Taking the largest cross-section of the gland, Leica software was used to 

compute the area of the gland. The graph demonstrates the cross section areas as a 

histogram based on the whole numbers, units are in pixels squared (PX2). For the 

statistical analysis, n=8 for the wild type glands and n=8 for the mutant glands. The error 

bars show the standard deviation as calculated by Microsoft Excel. The calculated p value 

was 0.025 which is less than the α value of 0.05. The t test results indicate statistically 

significant cross section area difference between the mutant and wild type SMGs. 
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Another graphical representation was completed to look at the variation of the 

cross section of the glands as a proportion. The wild type cross section was normalized 

and that cross section area became 1. Therefore, fig. 6 (below) allows us to see that the 

initial bud SMG of Rdh10 mutant embryos are approximately 50% the average cross 

section area compared to the wild type SMGs. 
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Figure 6. Graphical representation of E12.5 SMG cross section area analysis. This graph 

shows the cross section area of E12.5 SMGs normalized to the wild type average. The Y 

axis shows the proportion of the cross section area, with the wild type cross section area 

representing 1. Based on our data, the average mutant cross section area is near 50% the 

size compared to the wild type average cross sectional area. For this graphical 

representation, n=8 wild type glands and n=8 mutant glands. A student T-test was 

completed on this data, and verified that the difference between the mutant and wild type 

cross section area is statistically significant (P<α: 0.025 < 0.05).  
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These data indicate that the RA deficient embryos SMG have a growth defect that 

is reproducible. Further statistical analysis was completed to show if there was a 

significant difference between the wild type and mutant cross section areas of the E12.5 

SMGs. For the student t-test, n= 8 wild type SMGs and n=8 mutant SMGs. By looking at 

the results of the student T-Test, we see that the p-value (0.025) is less than the α value 

(0.05). This means we reject the null hypothesis, which states that there is no true 

difference between these groups of data (table 1.). Our data indicates that difference 

between the wild type cross section areas and the mutant cross section areas is significant 

and that this growth defect is indeed reproducible.   
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Area Analysis of E12.5 SMGs (Units is in Pixels Squared) 

Wild Type Mutant    
204274.18 14258.96    
49763.98 10642.61    
128968 149480.6    
134665.9 12871.56    
119008 174782.6    
124006 17086.41    
165339.9 93298.89    
192456.7 65451.89    

 

T.Test: Two-Sample Assuming Equal Variances 

   

  
Variable 

1 
Variable 

2 

Mean 1 0.480896 

Variance 0.12069 0.222854 

Observations 8 8 

Pooled Variance 0.171772  

Hypothesized Mean 
Difference 0  

Df 14  

t Stat 2.505003  

P(T<=t) one-tail 0.012611  

t Critical one-tail 2.624494  

P(T<=t) two-tail 0.025222  

t Critical two-tail 2.976843   

 

Table i. T-test analysis of E12.5 cross section area. Above is the T-Test results completed 

on the Microsoft Excel software. For this analysis, n=8 SMGs for both the wild type and 

mutant groups. We can interpret the data by comparing the p-value (0.025) to the α value 

(0.05). Because the p-value is less than the α value, we reject the null hypothesis that 

there is no difference between the two groups of data. Since we reject the null hypothesis, 

then we can accept the alternative hypothesis- which says that there is a difference 

between the wild type and mutant cross section areas. Therefore, the T-test shows that 

difference between the mutant average cross section areas compared to the wild type 

cross section area is significant.  
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Evaluate if the growth defect in the developing SMG of RA deficient embryos is present  at 

a later stage 

In order to see if this growth defect in the RA deficient embryos is present at later 

stages of SMG development, embryos were collected at E15.5 (the canalicular stage) and 

the similar process was followed as completed for the E12.5 embryos. As seen in fig. 7, 

the Rdh10 mutant SMGs compared to the wild type SMGs still display a growth defect. 
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Figure 7. Hematoxylin and Eosin staining of E15.5 SMGs. In order to see if the growth 

defect in the RA deficient embryos continued to later stages of SMG development, 

embryos were collected at E15.5 (the canalicular stage) and the similar process was 

followed as completed for the E12.5 embryos. As seen in this figure, the Rdh10 mutant 

SMG still displays a growth defect compared to the wild type littermate embryo, as 

shown with the red arrows. 
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Figure 8. Hematoxylin and Eosin staining of E15.5 SMGs and statistical analysis. The 

figure above shows the statistical analysis for the canalicular stage E15.5, H and E 

stained paraffin slides. The largest cross section was studied. The Leica software 

calculated the cross section area of the SMG. The graph demonstrates the areas shown as 

a proportion, and the average wild type cross section area was normalized to represent 1. 

For this analysis, n=6 wild type glands and n=6 mutant glands. The error bars 

demonstrate the standard deviation. Based on student t-test results, our p value 

(0.00000274) is less than our α value (0.05), meaning that our data is statistically 

significant. We can see the growth defect of the RA deficient SMG is still present at 

E15.5, as the mutant cross section area is about 50% compared to the wild type. 
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In order to verify that there is a reproducible growth defect in E15.5 SMGs, 

further statistical analysis was completed. For each embryo (n=6, 2 litters), the largest 

cross section of the gland was stained and then, using Leica software, the cross sectional 

area was calculated (fig.8). Using the wild type SMGs as the normalized cross section 

area, we see the graphical representation of the mutant size compared to the wild type. 

Once again, we see a difference in growth of the SMGs in RA deficient embryos at the 

later developmental stage of E15.5. A T-test statistical analysis was completed to 

determine if the difference between the cross section areas of the mutant and wild type 

SMGs was significant. The finding is significant if the p-value (5.48E-06) is less than the 

α value (0.05). Our data (table 2) demonstrates that there is a statistical difference 

between the average cross section areas, comparing the wild type and mutant SMGs. 

Based on the H and E staining and analysis at E12.5 and E15.5, we see that the growth 

defect in RA deficient embryos is present at the early initial bud stage of gland 

development and also seen at the later canalicular stage. 
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Area Analysis of E15.5 SMGs ( Units is in Pixels Squared) 

Wild Type Mutant    
771720.285 515165.874    
684234.9 225990.6    
709840 399737.6    
945058.13 373442.54    
643872.572 329268.506    
736636.913 385275.859    

 

 

t-Test: Two-Sample Assuming Equal Variances 

   

  
Variable 

1 
Variable 

2 

Mean 748560.5 371480.2 

Variance 9.31E+09 7.43E+09 

Observations 6 6 

Pooled Variance 8.37E+09  
Hypothesized Mean 

Difference 0  

Df 12  

t Stat 7.709608  

P(T<=t) one-tail 2.74E-06  

t Critical one-tail 2.680998  

P(T<=t) two-tail 5.48E-06  

t Critical two-tail 3.05454   

 

Table ii. Above is the T-test for the E15.5 SMG cross section area analysis data, as 

calculated by Microsoft Excel. The above table shows the calculated cross sectional areas 

of the E15.5 SMGs. The student t-test was completed, with n=6 for both wild type and 

mutant SMG data. Based on the T-test results, the p-value (5.48E-06) is less than the α 

value (0.05), indicating that there is a true difference between these groups of data. 

Therefore, we can conclude that the difference between the mutant and wild type cross 

section area, is significant. 
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In order to more clearly visualize the epithelium of the RA deficient SMGs, 

immunofluorescence antibody staining was used to highlight the epithelium of E15.5 

paraffin sectioned embryos (frontal orientation). E-cadherin, shown in red, depicts the 

epithelium (fig.9). The Rdh10 mutant glands are smaller in cross section area, as shown 

below, and this analysis shows that there is less epithelium in the mutant gland as well. 

This verifies that not only are the RA deficient SMGs smaller in cross sectional area but 

there is less epithelium in the glands. 
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Figure 9. Immunofluorescence staining of E15.5 SMGs. This figure depicts the 

immunofluorescence staining of E15.5 paraffin section slides. Red demonstrates the 

epithelium, and the green highlights the nerve of the E15.5 SMGs. The mutant SMGs 

have less epithelium than wild type, and shown by the immunofluorescence staining. 
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Figure 10. Whole mount images of E13.5 SMGs. The above figure shows the whole 

mount analysis of the E13.5 glands immunostained with E-cadherin to visualize 

epithelium. Figure 10 demonstrates the 2D representation of the gland taken on a 

confocal laser microscope. For this analysis, 3 separate litters were studied (n=3) with the 

wild type gland on the left and mutant gland shown on the right. On the far right is the 

cartoon depiction of the pseudoglanduar stage SMG. This simple schematic shows the 

epithelium in pink and the mesenchyme in blue. At the pseudoglanduar stage, we see a 

few epithelial buds and branching begin.  
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In order to accurately assess the growth defect of the RA deficient SMGs, we 

sought to measure the epithelial volume of Rdh10trex/trex mutant SMG relative to wild 

type. In order to measure epithelial volume a whole mount gland analysis was completed 

using immunofluorescence and confocal laser microscopy imaging. SMGs were 

harvested at E13.5 and antibody staining for E-cadherin was completed. The confocal 

was used to capture both the 2D and 3D image of each gland. In order to look at 

variations among different litters, 3 different litters were analyzed for this data. Shown 

above (fig.10) is the 2D image taken from the confocal Z stack. The wild type gland for 

each litter is shown on the left and the mutant gland in shown on the right. For each litter, 

we see a growth defect in the epithelium. Using the Imaris software, volume was 

calculated for each gland by compiling the 2D epithelium boundaries from the z stack 

and forming a 3D surface (fig.11). Figure 12 depicts the 3D volume calculated from the 

rendered surface by the Imaris Software. 

 

 

 

 

 

 

 

 



38 

 

 

 

Figure 11.  E13.5 SMGs whole mount analysis. The image above shows that the Imaris 

software compiled the confocal Z stack images to form a 3D representation of the E13.5 

whole mount SMGs. The volume of the epithelium was calculated, and these volumes 

were used for further statistical analysis to compare the mutant and wild type SMG’s 

volume.  
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4 mg 
RAL   litter 1 litter 2 litter 3 

Wild Type Volume ( µm3) 1.42E+06 1.47E+06 5.88E+06 

      
Mutant Volume (µm3) 5.55E+05 5.89E+05 2.59E+06 

 

Figure 12. E13.5 whole mount volume images (low dose RAL). The above figure shows 

the volume based on the compilation of the confocal Z-stacks, as formed by the Imaris 

software, and the units are in µm3. Shown below the volume images, are the actual 

calculated volumes of the E13.5 SMGs. These calculated volumes were used for 

statistical analysis, in which the Wilcoxon Signed Rank test verified a statistically 

significant difference between the mutant and wild type SMGs volume. For this analysis, 

n=3 separate litters, and p (0.091) less than α (0.10).  
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Figure 13. E13.5 SMGs whole mount statistical analysis. This figure shows a graphical 

representation of the E13.5 SMG volumes. Wild type SMG volume for each litter was 

normalized as the standard (blue).We can see that the mutants SMG volume (red) at 

E13.5 is about 45% that of the wild type’s volume. N=3 separate litters for this volume 

analysis. The Wilcoxon Signed Rank Test was completed on these volumes, and verified 

a statistically significant difference between the mutant SMGs volume and the wild type 

SMG volume (P< α, 0.091<0.10). 
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Shown above in Fig.13, is the graphical representation of the whole mount 

volume analysis. Shown individually for each litter, the graph depicts the volume of the 

mutant SMG is about 40% compared to its wild type SMG volume. This method was 

used to account for variation in growth and development for each litter. By comparing a 

mutant to its corresponding wild type, we can know that the mutant and wild type were at 

identical stages of development.  

In order to see if the SMGs grow in direct response to the dose of RA present, we 

repeated the volume analysis on embryos that were supplemented with a higher dose of 

RAL (fig.14). The same whole mount analysis was completed by looking at three 

separate litters, and comparing the mutant and wild type glands at E13.5 (fig.15). 

As shown in Fig.15 the SMG of mutant embryos that received the higher dose of 

RAL are near the size of the wild type littermates. Note that this RAL dosage is not a full 

rescue, as many mutant embryos displayed many phenotypes of RA deficiency such as 

small forelimbs and orofacial clefts.   
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Figure 14. Vitamin A metabolism allows for adjustment and higher dosage of RAL. In 

order to see if the SMGs were impacted by the dose of RA, we increased the maternal 

supplementation of RAL to a higher dose (15 mg /g food/day). The amount of RAL given 

through the mother’s diet was over tripled compared to the previous analysis at the low 

dose of RAL (4 mg/g food/day). Since we used RDH10trex/trex RA deficient system, we 

can adjust the amount of RAL, and verify if this has an impact on the developing SMG. 
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Figure 15.  Increased amounts of RAL stimulated mutant SMG growth. This figure 

demonstrates that by increasing the amount of maternal supplementation of RAL the 

mutant SMGs grew better and appear to be closer to the wild type SMG size. These 

images are the 3D representation of the glands as formed by the Imaris software. N=3 

separate litters for this analysis. The growth defect between the mutant and wild type 

SMG, was statistically significant as shown by the Wilcoxon Signed Rank test (p<α, 

0.091<0.10).  
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Figure 16. E13.5 SMGs whole mount images (high dose RAL). Shown above we see that 

the high dose of RAL allowed the mutant SMGs to grow better, closer to normal, than the 

low dose. This figure is a 2D representation based on the confocal Z stacks. Three 

different litters were studied (n=3). One wild type gland and one mutant gland were 

studied from each litter.  The wild type is shown on the left and the corresponding mutant 

is on the right. Relative to the mutant SMG from the low dose RAL experiment, the 

mutant SMGs with the higher dose of RAL grew better and are closer to the size of their 

corresponding wild type. 
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Following the same procedure as for the low dose RAL treated glands, whole 

E13.5 SMGS were harvested. The glands were stained for E-cadherin and imaged on the 

confocal. The 3 litters and corresponding wild type and mutant glands are shown in fig. 

16 (above). The mutant glands (on the right) are near the same size compared to their 

corresponding wild type glands (on the left). Volume of the glands was calculated by 

compiling the z stack from the confocal images, and the 3D representations are shown in 

Fig.17. Fig.17 also shows a table of the volumes of the SMGs as calculated by the Imaris 

Software. Fig.18 is the graphical representation of the E13.5 SMGs volumes. 

Normalizing the wild type SMGs volume and comparing their mutant’s volume allows us 

to minimize the variation accounted for the difference in maturity and development 

among the litters. The data shows that the volume of the mutant SMG is about 75% 

compared to the wild type SMG volume. The Wilcoxon Signed Rank test was completed 

on the MiniTab software, and found that the p value (0.093) was less than the α value      

(0.10). Based on these test results, the difference between the mutant SMG volume and 

the wild type SMG volume is statistically significant. 
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15 mg RAL  litter 1 litter 2 litter 3 
     
Wild Type Volume 
(µm3) 2.32E+06 2.74E+06 2.05E+06 

     
Mutant Volume (µm3) 1.50E+06 1.92E+06 1.77E+06 

 

Figure 17. E13.5 SMGs whole mount 3D images (high dose RAL). The above figure 

shows the 3D representation of the E13.5 SMGs. The 3D surface images are based on the 

compilation of the confocal z stacks, as formed by the Imaris Software. This analysis was 

completed on 3 separate litters of animals (n=3) and one wild type and one mutant from 

each litter was analyzed. Shown below the SMG images, are the actual volumes of each 

gland, as calculated by the software (units are µm3).  
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Figure 18. E13.5 SMGs whole mount statistical analysis (high dose RAL). This is the 

histogram of the volume of the E13.5 SMGs, as calculated by the Imaris program. The 

wild type volume for each litter was normalized and represents 1 (shown in blue). 3 

different litters were studied for this analysis (n=3) and one wild type and one mutant 

SMG were used from each litter.  Based on the graph, we see that the volume of high 

dose RAL mutant SMGs volume (red), is between 70%-80% the size of wild type 

littermates. The Wilcoxon Signed Rank test was completed, and verified a statistically 

significant difference between the mutant SMG volume and the wild type SMG volume. 

This test was completed with the program MiniTab, and found that the p (0.093) <α 

(0.10).  
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Figure 19. Immunofluorescence staining for PSP (Parotid Secreting Protein) on E15.5 

SMGs. The above figure shows the immunofluorescence staining of E15.5 paraffin 

sections (treated with low dose RAL), stained for PSP on 10X magnification. This 

analysis was to see if the RA deficiency impacted the differentiation of the acinar cells in 

the mutant SMG compared to the wild type. By using the PSP antibody, we can assess 

the presence of differentiated cells and compare them to the mutant and wild type SMG. 

We see less differentiated cells in the mutant SMG compared to the wild type SMG. 
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Cell differentiation is an essential part of the development process. In order to 

assess if differentiation was impacted by the RA deficiency, we used an antibody to 

highlight differentiated acinar cells, PSP- Parotid Secreting Protein. PSP expression in 

the parotid gland is a sign of a terminally differentiated acini. The PSP protein has also 

been found in the perinatal SMGs, although expression levels diminish as the animal 

approaches adulthood [35, 36]. In figure 19 we see the PSP expression in the wild type on 

the left; on the right is shown the PSP expression in the Rdh10trex/trex mutant SMG. These 

data indicate that the mutant SMG is less differentiated compared to the wild type SMG 

(fig.20).  
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Figure 20. Immunofluorescence staining of PSP on E15.5 SMGs. This figure shows a 

20X magnification of the E15.5paraffin section SMGs on the left. On the right is the 40X 

magnification, and the red arrows demonstrate the expressing PSP cells. PSP staining was 

stronger in the wild type glands relative to the mutant glands. These data indicate that the 

mutant SMG is less differentiated than glands from wild type littermates. One wild type 

embryo and one mutant embryo were analyzed for this data.  
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Figure 21. Cultured SMGs in vitro treated with RAR inhibitor (48 hrs.). The figure shows 

wild type glands cultured beginning at E13.5 for 48 hours. The control glands grew well 

and have more epithelium and branching compared to the BMS 493 treated glands. The 

BMS 493 treated glands were from the same corresponding animal on the left, and we see 

less branching and overall growth compared to the control SMGs. These are just two of 

the representative pairs of data, as this analysis was completed on 3 separate litters. N=21 

glands for each group, control and treated SMGs. 

 

 

 

 

 

 



52 

 

In order to determine whether the effect of RA on the developing SMGs is direct, 

glands were cultured with and without synthetic RAR inhibitor. SMGs were harvested at 

E13.5 and were cultured for up to 3 days (72 hours). Half of the glands were treated with 

a synthetic pan-Retinoic Acid Receptor inhibitor – BMS493 diluted in DMSO, while 

contralateral glands were grown in control medium. The control medium received 

equivalent amounts of DMSO to account for the fact that the BMS 493 was suspended in 

DMSO. Shown above is a representative example of the progress of the SMGs after 48 

hours grown in culture (fig.21). We see the controls on the left, and their corresponding 

treated glands on the right. BMS 493 is a synthetic pan-RAR inhibitor used to block the 

RAR in the developing glands. After 48 hours in culture, BMS 493 treated glands have 

less epithelial growth and branching compared to the control glands.  

In order to quantify the effect of the RAR inhibitor at 48 hours in culture, the end 

buds were counted for both the control glands and the treated glands (table iii.) [37]. 

Depicted with red arrows, fig.22 demonstrates what was considered an end bud, and how 

these were counted on all the cultured glands. These data are the result of three individual 

experiments from three separate litters, and n=21 glands. Shown below, (fig.23) is the 

graphical representation of the end bud statistical analysis. The graph shows the average 

number of end buds for both the control and the treated SMGs, as well as error bars 

displaying the standard deviation from the collected data. Also shown, is a graph 

comparing the average end buds on the control and the treated cultured SMGs as a 

proportion (fig.24). We see from this data (table iii), that RA does have a direct effect on 

the developing SMGs. Specifically, the epithelium growth and branching is impacted 

when RA is blocked in vitro. 
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Figure 22. Counting end buds on cultured SMGs (48 hrs.). The above shows how the end 

buds were counted on the cultured SMGs for statistical purposes. Each individual section 

of epithelium was counted for both the control and BMS glands (depicted with a few red 

arrows). For this statistical analysis, n=21 control glands and n=21 treated glands from 3 

separate projects. The t-test verifies statistical strength to this analysis as the p value 

(0.000066) is less than the α value (0.05).  
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Figure 23. Statistical analysis of cultured SMGs (48 hrs.). The figure above shows the 

average number of end buds after 48 hours in culture for E13.5 SMGs. The control SMGs 

had an average of 11 end buds and the BMS 493 treated glands had an average of nearly 

four end buds per SMG ( n=21 glands). The error bars demonstrate the standard 

deviation. A t-test was completed on this data, and the p value (0.000066) was less than 

the α value (0.05). Therefore, the t-test verifies that this data is statistically significant.  
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Figure 24. Statistical analysis of cultured glands (48 hours). This graph shows the 

average number of end buds for the control and the BMS 493 treated SMGs, with the end 

buds shown as a proportion. The average number of control end buds was normalized to 

1, and we can see that the BMS 493 treated SMGs have about 30% the number of end 

buds of corresponding control glands.  For this analysis, n=21 control SMGs and n=21 

treated SMGs. A t-test was completed on this data and verified that the findings are 

statistically significant (P<α : 0.000066< 0.05).  
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Figure 25. Cultured SMGs treated with RAR inhibitor (72 hrs.). This image shows that 

the variation between the control and BMS 493 treated glands is more obvious if the 

glands are cultured for 72 hours. At this stage, accurate counting end buds was not 

feasible, as the control SMG had healthy, robust branching. These are representative 

images of the collected data, and this experiment was completed 3 different times. 
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Shown above (fig.25) are some representative images from cultured glands after 3 

days (72 hours) in culture. We see the growth defect of the RAR inhibited cultured SMGs 

is even more obvious as the glands continue to grow.  Although statistical analysis was 

not completed on glands grown in culture for 72 hours, the experiment was completed on 

three separate litters, and the results were consistent.  
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After 48 
hours in 
culture   

Control  
BMS 493 
Treated 

27  2 

7  3 

29  1 

8  3 

12  4 

6  4 

4  3 

4  1 

4  2 

5  2 

9  2 

4  2 

5  2 

7  3 

7  1 

7  4 

10  9 

19  3 

21  6 

28  2 

15  3 
Average 

11.33333  
        Average 

2.952381 

 

Table iii:  Above is the end bud data for the cultured SMGs at 48 hours. This table shows 

the number of counted end buds per gland (n=21 control SMGs, n=21 treated SMGs). 

This data was collected from three different litters of animals. The average number of end 

buds per gland is shown at the bottom of the chart. This data is statistically significant as 

verified by a t-test, with the p value (0.000066) < α value (0.05). These data show that 

when RAR is inhibited in a cultured SMG, there is a statistically significant difference in 

the SMGs growth and differentiation (branching morphogenesis). 
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t-Test: Two-Sample Assuming Equal Variances 

   

  
Variable 

1 
Variable 

2 

Mean 11.33333 2.952381 

Variance 70.93333 3.347619 

Observations 21 21 

Pooled Variance 37.14048  
Hypothesized Mean 

Difference 0  

Df 40  

t Stat 4.456196  

P(T<=t) one-tail 3.29E-05  

t Critical one-tail 1.683851  

P(T<=t) two-tail 6.57E-05  

t Critical two-tail 2.021075   

 

Table iv. T-test for cultured SMGs (48 hrs). This table shows the t-test results 48 hour 

cultured SMGs. n=21 control glands studied, and n=21 treated glands studied. This test 

verifies a statistically significant difference between the control glands average number  

of epithelial end buds and the treated glands average number of epithelial end buds. The p 

value (0.000066) is less than the α value (0.05), which says to reject the notion that there 

is no true difference between the two sets of data. Therefore, we can be assured that there 

is a statistically significant difference between the numbers of epithelial end buds per 

gland when comparing the control glands to the BMS treated glands at 48 hours in 

culture.  
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Figure 26. Immunofluorescence staining of cultured SMGs. The image above shows 

immunofluorescence of the SMG epithelium after 48 hours in culture. We see the control 

glands branched well and the epithelium grew, however the BMS 493 treated gland has 

minimal branching, a result of differentiation, and less epithelial growth.  
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 Shown in fig. 27 is the epithelium immunofluorescence staining of a 

representative example of control and BMS 493-treated cultured SMGs. This method 

allows us to see the epithelium clearly, as we assess the variation between the control and 

the treated cultured glands. The control gland on the left, has numerous branches and 

more epithelium, whereas the gland on the right, looks near the size as an E13.5 SMG. 

The right gland is the gland treated with the RAR inhibitor, and we can see the growth 

defect in both amount of epithelium as well as in number of branching end buds. These 

images were taken on the confocal and are a 2D image from the z stack. 

Shown below (fig.27) is the same pair of 48 hour cultured SMG stained with a 

marker of proliferating cells. The green fluorescence indicates phosphohistone 3 (PH3) 

expressing cells, which is a marker of cells actively in mitosis. This analysis was to see if 

the growth defect of the BMS-treated glands was a result of a decreased number of 

proliferating cells. Shown below are the confocal images for this analysis, including the 

2D image from the Z stack representing the control (left) and treated gland (right).  
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Figure 27. Immunofluorescence of cultured SMGs – both E-cadherin and PH3. This 

figure shows the immunofluorescence of the cultured E13.5 SMGs (48 hours in vitro). 

We see the epithelium depicted in red, and the PH3 expressing cells in green. These 

images were taken on the confocal laser microscope. It is clear to see that the SMG 

treated with BMS 493(right), has less epithelial growth as well as branching compared to 

the control gland (shown on the left).  
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Figure 28.Quantifying cell proliferation in cultured control and BMS treated glands. 

Using the Imaris program, we were able to form a grid on our confocal Z stack of the 

E13.5 cultured glands. This allowed the number of PH3 positive cells to be counted per 

100 microns squared. Three different areas were studied for both the control gland and 

the treated gland (n=3). The number of PH3 expressing cells were counted for each area, 

and on average, there is less proliferating cells (PH3 expression) in the BMS 493 treated 

gland compared to the control gland.  
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In order to quantify the proliferating cells (PH3 expressing cells) on the 48 hour 

cultured and immunofluorescence stained cells, we formed a 3D image (fig.28) using the 

Imaris software we were able to overlay a grid on top of the gland images. Using this as a 

measurement tool, we could count the number of PH3 expressing cells per 100 

micrometers squared, and compare the averages for both the control and the treated 

cultured SMG. Shown below is a graphical representation of the PH3 analysis of the 

immunofluorescence of the cultured SMGs (fig.29). We see that the average number of 

proliferating cells, based on three random fields of view, is lower in the BMS-treated 

gland compared to the control. This suggests that the growth defect in the BMS 493 

treated cultured glands is because of less proliferating cells compared to the control 

gland. Further testing is necessary to give statistical strength to this finding, as this 

analysis was only completed on one pair of glands from the same embryo. 
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PH3 Analysis of the E13.5 Cultured 
SMGs 
100 microns squared areas (100 

µm2) 

Grid 1 30 29 

Grid 2 41 29 

Grid 3 28 24 

Average 33 27 

 

Figure 29. Statistical analysis of cultured control and treated SMGs. Above shows the 

average number of mitotic cells in the cultured glands per 100 microns squared. The error 

bars on the graph show the standard deviation, and 3 samples were used for this analysis 

(n=3).  The chart shows the actual number of PH3 positive cells for the 3 grid regions that 

were randomly selected. Based on this preliminary data, the average number of mitotic 

cells (per 100 microns squared) is less in the BMS 493 treated gland compared to the 

control. Note that this analysis was completed on 1 pair of glands.  
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CHAPTER 4: DISCUSSION AND CONCLUSION 
 

 
Saliva is necessary for the health of the oral tissues, prevention of tooth decay, 

and aiding in the processes of speech and digestion. Produced by the salivary glands, 

saliva is necessary for the basic function of the organism. In the case of hyposalivation, 

patients suffer discomfort, pain and a diminished quality of life as there is no effective 

treatment to reverse defective salivary glands. Xerostomia is the severe dry mouth 

condition that occurs as a result of the defective salivary glands, stemming from surgical 

damage, autoimmune disease or radiation therapy. Scientists are working toward 

bioengineering salivary glands from stem or progenitor cells in order to correct defective 

salivary glands. In order to direct stem cell growth towards differentiated and functional 

salivary gland tissues, first it must be fully understood how salivary glands form and 

develop in the embryo.  

Vitamin A deficiency in embryonic salivary gland development has not been 

previously studied. By using the innovation of maternal RAL supplementation, we can 

use a RA deficient animal model and study the developing embryo’s salivary glands 

under such conditions. Our data shows a reproducible growth defect in the SMGs of RA 

deficient embryos (fig. 5 and 8). This growth defect was present at the early stages of 

gland development such as the initial bud stage (E12.5) and is seen throughout the gland 

development (E13.5 and E 15.5). A small initial bud was seen in mutant embryos. This 
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suggests that RA is not absolutely essential for the invagination of the epithelium into the 

surrounding mesenchyme. Rather, RA is needed for growth and proliferation of the 

epithelium. In our mutant animals, RAL was administered at different doses, resulting in 

surviving embryos with smaller glands compared to its wild type counterpart. 

Our analyses show the dosage of RA directly affects the SMG development. By 

increasing the maternal RAL supplementation from 4 mg to 15 mg, we observed that the 

increased RA stimulated SMG growth. This suggests a direct correlation between the 

amount of RA present and the epithelial growth of the SMG at E13.5.  

We examined whether the growth defect of RA deficient SMGs might be 

associated with premature terminally differentiated cells. Based on preliminary data, the 

mutant SMG appears to have less terminally differentiated cells compared to the wild 

type SMG. 

Our in vitro experiments with the SMGs show a direct effect on epithelial growth 

when the RA signaling was blocked with a chemical inhibitor. The SMGs that were 

treated with BMS 493, the synthetic pan-RAR inhibitor, displayed less epithelial growth 

and branching. This data clearly indicate that RA is necessary for branching and 

proliferation of the epithelium in vitro, demonstrating that RA directly affects the gland 

growth and branching of the gland in a culture dish. 

In summary, our data show that RA has a direct affect on the development of the 

SMGs. RA is necessary for the branching and proliferation of the epithelium in the 

developing embryonic SMG. With minimal amounts of RA, we glands are smaller, with 

less branching and less cellular proliferation. This work can contribute towards 

understanding the complete picture of RA and its importance on the developing SMG. 
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These data can lend knowledge towards directing stem or progenitor cells to create a 

bioengineered salivary gland, offering a treatment for those who suffer with damaged 

salivary glands. 
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