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The development in information science has enabled an explosive growth of data,

which attracts more and more researchers to engage in the field of big data analytics.

Noticeably, in many real-world applications, large amounts of data are imbalanced

data since the events of interests occur infrequently. Classification of imbalanced data

is an important research problem as lots of real-world datasets have skewed class dis-

tributions in which the majority of instances (examples) belong to one class and far

fewer instances belong to the others. A classifier induced from an imbalanced dataset

is more likely to be biased towards the majority classes and shows very poor classi-

fication accuracy on the minority classes. While in many applications, the minority

instances actually represent the concept of interest (e.g., fraud in banking operations,

abnormal cell in medical data, etc.), and the detection of these rare events has become

more important. Despite extensive research efforts, rare event mining remains one of

the most challenging problems in information retrieval, especially for multimedia big

data.

To tackle this challenge, in this dissertation, we propose an extended deep learning

approach to achieve promising performance in classifying largely skewed multimedia

dataset. Specifically, we investigate the integration of bootstrapping methods and

a state-of-the-art deep learning approach, Convolutional Neural Networks (CNNs),



with extensive empirical studies. Considering the fact that deep learning approaches

such as CNNs are usually computationally expensive, we propose to feed low-level

features to CNNs and prove its feasibility in achieving promising performance while

saving a lot of training time. Furthermore, since big training datasets are required to

train CNNs, we propose to extract features from pre-trained CNN models and feed

those features to another full connected neural network. Implementations in big data

environments show promising performance of our model in handling big datasets with

respect to feasibility and scalability.

In order to further improve the classification results and bridge the semantic gap

between high-level concepts and low-level visual features, correlation discovery in se-

mantic concept mining is worth exploring. Though inter-concept correlations have

been utilized to address this issue recently, the very small number of instances in

the minority classes often lead to the detection of imprecise correlations and unsat-

isfactory classification results. Meanwhile, correlation discovery is a computationally

intensive task in the sense that it requires a deep analysis of very large and growing

repositories. This dissertation further proposes a novel concept correlation analysis

strategy framework that utilizes the correlations between the retrieval scores and la-

bels. By integrating the correlation information, the proposed framework can help

imbalanced data classification and enhance rare class (event or concept) mining even

with trivial scores from the minority classes.

Not only deep learning but also numerous other classification algorithms have

been developed for a variety of data types. However, it is nearly impossible for one

classifier to perform the best in all kinds of datasets all the time. Therefore, ensemble

learning models which aim to take advantages of different classifiers have received a



lot of attentions recently. In this dissertation, a scalable classifier ensemble framework

assisted by a set of “judgers” is also proposed to integrate the outputs from multiple

classifiers for multimedia big data classification. Specifically, based on the confusion

matrices of different classifiers, a set of judgers are organized into a hierarchically

structured decision model. A testing instance is first input to different classifiers,

and then the classification results are passed to the proposed hierarchical structured

decision model to derive the final result. The ensemble system can be run on Spark,

which is designed for big data processing.

All the proposed components are evaluated on multimedia datasets containing dif-

ferent kinds of data. The experimental results show the effectiveness of our framework

in classifying severely imbalanced data with promising performance, and demonstrate

that the proposed classifier ensemble framework outperforms several state-of-the-art

model fusion approaches. Furthermore, the proposed framework is applied to two real-

world applications, i.e., deep learning based text data analysis on an Amazon review

dataset and efficient large-scale stance Analysis in Twitter, and achieves promising

results in both. In additional, we also design a web-based information retrieval sys-

tem and identify several future directions that could be explored to further improve

the current work.
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CHAPTER 1

Introduction

Data imbalance is a challenging and common problem in machine learning, data

mining, and information retrieval areas. A dataset is considered imbalanced when

the data instances are not close to uniformly distributed across different classes. The

classification of imbalanced datasets has recently attracted significant attentions due

to its implications in several real-world use cases. The classifiers developed on datasets

with skewed distributions tend to favor the majority classes and are biased against the

minority classes. Despite extensive research interests, imbalanced data classification

remains a challenge, especially for multimedia data. In the past decades, we have

witnessed an explosion of multimedia data, thanks to the development of social media

websites and blooming popularity of smart devices. As a result, multimedia semantic

concept mining and retrieval whose objective is to mine useful information from the

large amount of multimedia data including texts, images, and videos has become more

and more important [1–25]. The huge amount of multimedia data and the semantic

gap between low-level features and high-level semantic concepts have made it even

more challenging. To address these challenges, it requires the joint research efforts

from both big data mining and multimedia areas, and the correlations among the

classes can provide important context cues to help bridge the semantic gap.

1



2

1.1 Motivations and Challenges

Skewness in data classes poses a significant challenge in major research problems

pertaining to data mining and machine learning. Classes are rated as skewed or

imbalanced when their data instances are non-uniformly associated to the class labels.

In real-world cases, most applications have some degree of skewness inherently present

in the data. Such datasets are often grouped into major and minor classes, where

major classes have significantly greater numbers of instances associated with them

as compared to minor classes. Some prominent imbalanced data use cases include

fraud detection, network intrusion identification, uncommon disease diagnostics, and

critical equipment failure. A number of famous classification methods are built to

utilize the dataset statistics, which ends up being biased towards the majority classes.

When identifying the minor classes, these classifiers often perform inaccurately even

for very large datasets with considerable numbers of training instances.

Some notable frameworks aiming to solve this challenge were proposed before.

The authors of these frameworks, along with others, targeted this issue from two dif-

ferent perspectives. The first type is algorithm-based approaches where the authors

propose new frameworks or improve the existing methods using both supervised and

unsupervised techniques. The second type is towards the manipulation of the data

itself to reduce the skewness in the class attribution. However, the problem of imbal-

anced classes is far from being conquered, especially in multimedia data. Multimedia

data is particularly difficult because of the various data types that are layered with

spatio-temporal characteristics. Content-based multimedia data retrieval and man-

agement have become a very important research area due to its broad applications

in this century [26–39]. For instance, video content analysis, in the context of auto-
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matically analyzing human actions in videos, has been widely utilized in video event

mining, video summarization, camera surveillance, etc. Meanwhile, the deluge of

multimedia big data has made data-oriented research more and more important, es-

pecially in this big data era. Many data analysis technologies have been developed in

the past decade, including a variety of classification algorithms for different kinds of

datasets. Nevertheless, a single classifier can hardly handle heterogeneous multimedia

data types from different datasets in various situations.

1.1.1 Deep Learning for Imbalanced Big Data Classification

Recently, one of the most popular paths to handle the challenging imbalanced data

classification and retrieval for multimedia big data is to employ solutions from other

domains of machine learning such as deep learning. Deep learning is the name of a

whole family of algorithms that use graphs with multiple layers of linear and non-

linear transformations to develop hierarchical learning models [40]. However, deep

learning methods have not been used to address the data imbalance problem. As pre-

sented in [41,42] on the TREC Video Retrieval (TRECVID) 2015 datasets, even the

famous deep learning methods such as Convolutional Neural Network (CNN) which

outperforms a multitude of conventional machine learning techniques face difficulties

when dealing with the data imbalance problem.

Moreover, for big datasets in multimedia data mining, deep learning methods

are very expensive on computations. For example, the method proposed in [43]

took more than 30 days to train with 1755 videos, and the authors were only able

to successfully train the deep learning framework using a near-duplicate algorithm.

Although researches have paid extensive efforts on the data imbalance problem, rare
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concept retrieval remains one of the most challenging problems in multimedia data

[44–49].

1.1.2 Enhancing Rare Class Mining by Concept Correlation

While deep learning systems have achieved unprecedented progresses in a number

of fields, concept correlations are mined and corresponding coefficients are utilized.

Many approaches treat each concept as an individual class and convert one multi-

concept detection problem into multiple binary classification problems [50]. There-

fore, it ignores the correlations among different concepts. Nevertheless, the concepts

are correlated in real-world multimedia datasets. For instance, some concepts co-

occur more frequently, such as sky and cloud; while others rarely co-occur like road

and fish. Such characteristics of correlations provide important context cues that can

assist concept detection. Therefore, the calculation of correlations between concepts

can help a lot in semantic concept mining and retrieval. There are many types of cor-

relations, including Pearson correlation, Spearman correlation, and Cross correlation,

which detect the number of times two things occur together [51].

One major challenge in correlation discovery is the huge volume of related datasets.

With the rapid development of multimedia, communication, and Web 2.0 technology,

massive amounts of multimedia data have been increasingly available on desktops

and smart mobile devices via the Internet. Statistics shows that 72 hours of videos

with all sorts of tags are uploaded to YouTube every minute and about 1.54 million

photos are uploaded to Flickr every day [52]. Accordingly, the annual TRECVID

competition organized by National Institute of Standards and Technology (NIST) has

the “Semantic Indexing” task for concept detection from a large amount of videos
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collected from Internet [53–57]. This calls for the need to implement the proposed

framework in a big data environment.

1.1.3 Classifier Ensemble in Big Data Environment

To further improve the classification results on imbalanced datasets, a single clas-

sifier can hardly handle heterogeneous media types from different datasets in various

situations. [58] proposed a fusion based classification system using statistical fusion

such as Gaussian Mixture Model (GMM) fusion and Artificial Neural Network (ANN)

fusion. Conflict results can be generated by different classifiers and the general idea

to solve this is to find a way to fuse the results from different classification mod-

els. Previous results have indicated that the fusion of multiple different results can

improve the performance of individual classifiers.

Another research topic in multimedia data is how to utilize multiple features from

different feature extraction methods. In [59], the authors found the complementary

nature of the descriptors from different viewpoints, such as semantics, temporal and

spatial resolution. They also employed a hierarchical fusion that combines static

descriptors and dynamic descriptors. In [60], textual features were shown to provide

high-level semantics that are sometime difficult to be captured by visual features and

a sparse linear fusion scheme was proposed to combine visual and textual features for

semantic concept retrieval and data classification. Different classification frameworks

can be employed for different kinds of features, which may discover different properties

of the data [61,62].
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1.2 The Proposed Framework

Figure 1.1 shows the architecture of the proposed framework. It consists of three

components which will be briefly discussed in the following subsections.

Feature
Extraction
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CNN on Spark
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······
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results

Figure 1.1: The proposed framework
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1.2.1 The Imbalanced Concept Retrieval Component

In this dissertation, the framework proposed is for imbalanced concept retrieval

in the field of multimedia big data management. Toward such demands, a method

is proposed to help the classification of skewed data by a CNN based deep learning

framework. Then, a big data deep learning approach coupled with a bootstrapping

sampling technique is proposed to create a balanced set of batches using the train-

ing dataset. To the best of our knowledge, bootstrapping has not been used with

the deep learning frameworks. To further facilitate the capability of handling the

data imbalance problem in big datasets, a distributed computation framework using

Apache Spark is also implemented to bind the novel qualities of CNN with the boot-

strapping procedures. The proposed framework has shown to be highly impressive

and comparatively economical in classifying highly skewed multimedia datasets. The

Spark-based distributed computing capability enables a scalable architecture that can

mine unstructured key-value confidence scores of multimedia data.

1.2.2 The Score Enhancement Component

Many concepts are often correlated, either positively or negatively. Some concepts

co-occur rarely like cow and sea; while others co-occur more frequently such as bird

and sky. Such correlations can provide important context cues to help detect the con-

cepts [63–68]. While inter-concept correlations have been recently used to tackle the

issue, the very small number of training instances in the minority class makes the task

of correlation detection hard and often leads to unsatisfied concept retrieval results.

Different from those enhancement models that only consider the correlations among

concepts, we present a very different correlation analysis strategy that considers the
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correlation between concept labels and retrieval scores. Even with trivial scores from

minority classes, the proposed framework can enhance rare concept retrieval.

1.2.3 The Classifier Fusion Component

In the third component, a novel idea of classification combination is proposed

in this dissertation. Generally speaking, an ensemble of data classifiers will be al-

ways better than the individual ones as “Vox Populi, Vox Dei”. To take advantages

of different classifiers and reach the best performance on a dataset, lots of research

groups recently focus on assembling useful classifiers together. Based on the confu-

sion matrices of different classifiers, a scalable classifier ensemble framework assisted

by several “judgers” is proposed to integrate the outputs from multiple classifiers

for multimedia big data classification. These judgers are put together as a boosted

classifier. Specifically, a set of “judgers” are generated based on the training and vali-

dation results from different classifiers and features at first. On the second step, these

judgers are ranked and organized into a hierarchically structured decision model. Fi-

nally, an Apache Spark-based classification system is developed which can be used

for multimedia big data classification.

1.3 Evaluation Metrics

1.3.1 Confusion Matrix

In general, a classifier is evaluated by a confusion matrix as illustrated in Table

1.1. The columns are the predicted class and the rows are the state of nature (ac-

tual class). In the confusion matrix, TP (True Positives) and FP (False Positives)
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represent the numbers of positive data instances that are correctly or incorrectly

classified, respectively. Similarly, TN (True Negatives) and FN (False Negatives) in-

dicate the numbers of negative data instances being correctly or incorrectly classified,

respectively. For performance comparison, the precision and recall metrics [69] are

commonly used and are derived from the confusion matrix in Table 1.1 and Equations

(1.1) and (1.2).

Table 1.1: Confusion matrix

State of nature

Prediction
Positive Negative

Positive True Positives (TP ) False Negatives (FN)

Negative False Positives (FP ) True Negatives (TN)

1.3.2 Precision, Recall, and F-score

The recall and precision goals can often be conflicting, since the increase of true

positive data instances for the minority class may also increase the number of false

positive data instances, which will reduce the precision. For imbalanced data classifi-

cation, the recall value is normally considered a more important criterion because it

is more desirable to detect as many interesting events as possible, even at the expense

of adding a reasonable number of false positive data instances. For example, users

often want to locate all possible frauds in banking operations followed by a manual

double check to root out false alarms, instead of missing true scams. In addition,

F-score, also known as F1 measurement or F-value, captures the trade-offs between

precision and recall, and is considered an objective and ultimate quality metric of a

classifier which is defined in Equation (1.3).

precision =
TP

TP + FP
(1.1)
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recall =
TP

TP + FN
(1.2)

F1 = 2× precision× recall
precision+ recall

(1.3)

1.3.3 Mean Average Precision

The average precision (AP) value, a widely used metric in the multimedia concept

retrieval domain, is also used in the evaluation. For a given concept, Pre(i) indicates

the precision of the ith data instance in the ranking list. ψ is the number of the

retrieved data instances; while Gn is the total number of data instances containing

that concept in the database. Min(Gn, ψ) indicates the smaller value of Gn and ψ.

The average precision at ψ (i.e., AP@ψ) is defined in Equation (1.4). By generating

the AP values for all the target concepts and calculating the mean value of them, the

mean average precision (MAP) value is used to capture the ranking information.

AP@ψ =

ψ∑
i=1

Pre(i)× rel(i)
Min(Gn, ψ)

, (1.4)

where rel(i) =


1, if instance i is positive;

0, otherwise.

1.4 Contributions and Limitations

Several contributions are made in this dissertation on the topic of imbalanced data

classification and information retrieval for multimedia big data:

1. Developed a CNN based deep learning solution integrated with a bootstrapping

technique to overcome the data imbalance problem.
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2. Proposed to extract features from pre-trained CNN models and feed those fea-

tures to another full connected neural network considering the fact that CNNs

are very computationally expensive coupled with big training datasets.

3. Designed an efficient multimedia rare concept retrieval model by constructing

a semantic concept hierarchy and using concept correlations.

4. Novel concepts of positive and negative “judgers” are defined to assemble a novel

hierarchical structured decision framework. Meanwhile, the proposed frame-

work considers the fusion of classifiers using different kinds of features.

5. A Spark implementation of the proposed framework shows promising perfor-

mance of the designed model in handling big datasets with respect to feasibility

and scalability.

6. Two novel applications, including a very unique one for efficient large-scale

twitter stance analysis, are designed and implemented.

Meanwhile, the dissertation has the following assumptions and limitations:

1. Since deep learning has been growing very fast, many new algorithms and new

architectures appear every few months, which is out of the scope of this article.

2. The framework only focuses on multimedia data, while deep learning is now

being used in a wide range of applications. More kinds of applications could

be considered in future work such as autonomous driving, data compression,

outlier detection, Biomedicine, disaster management, etc.

3. Some parameters in the framework are based on an iterative search on the

training data to find the optimum values. This empirical approach may be
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inevitable, but in some cases an advanced parameter estimation approach can

be investigated.

1.5 Organization of the Dissertation

This dissertation is organized as follows. Chapter 2 reviews the techniques related

to imbalanced data classification, correlation coefficients, hierarchical models, deep

learning, big data technology, and fusion of multiple classifiers and features. The

advantages and limitations of peer work are analysed and discussed. Chapter 3 intro-

duces the deep learning based imbalanced multimedia concept retrieval component in

the big data environment. Chapter 4 presents the component of correlation-assisted

concept retrieval score enhancement. In Chapter 5, the classifier fusion and score

integration framework by judgers on Spark clusters is introduced. By applying the

three proposed components, Chapter 6 shows two applications in text data analy-

sis and a web-based information retrieval system. As the extensions of the existing

framework, conclusions are drawn in Chapter 7, which also propose several future

research directions.



CHAPTER 2

Literature Review

In this chapter, the literature review on the related work based on the framework

of imbalanced data classification and information retrieval for multimedia big data

is presented. The thorough review covers techniques in the area of deep learning,

imbalanced data classification, big data technology, correlation coefficients, as well

as fusion of multiple classifiers and features. Recent research directions as well as

popular algorithms in these areas are introduced in this chapter. Furthermore, the

advantages and limitations of peer work are analysed and discussed.

2.1 Deep Learning

In recent years, machine learning has become more and more popular in re-

search and a large number of applications, including multimedia concept retrieval,

image classification, video recommendation, social network analysis, text mining, etc.

Among various machine learning algorithms, “deep learning”, also known as repre-

sentation learning [70], is widely used in these applications nowadays. With great

successes around many fields, deep learning now is one of the hottest research direc-

tions in the machine learning society. This section gives an overview of deep learning

from different perspectives, and the novelty is that it focuses on different aspects of

13
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deep learning with a review of top-level papers, the authors’ experience and discovery

in research on neural networks, as well as the experience from the researchers.

2.1.1 Why Deep Learning

Similar to how medicine, energy, transportation, manufacturing, industrializa-

tion, and food production were revolutionized by electricity in the 20th century, deep

learning is poised to set course in becoming part of the next century of revolutions.

Moreover, the explosive growth and availability of data as well as the remarkable

advancement in hardware technologies have led to the emergence of new studies in

deep learning. Deep learning which has its root from conventional neural networks

significantly outperforms its predecessors. It utilizes graph technologies with trans-

formations among neurons to develop many layered learning models. Carnegie Mellon

University (CMU) even has a single machine learning department. Many latest deep

learning techniques have been presented and demonstrated promising results across

different kinds of applications such as Natural Language Processing (NLP), visual

data processing, speech and audio processing, and many other well-known applica-

tions [49, 68,71].

Traditionally, the efficiency of machine learning algorithms highly relied on the

goodness of the representation of the input data. A bad data representation often

leads to lower performance compared to a good data representation. Therefore, fea-

ture engineering has become an important research direction in machine learning for

a long time, which focuses on building features from raw data and has led to lots of

research studies. Furthermore, feature engineering is often very domain specific and

requires significant human efforts. For example, in computer vision, different kinds
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of features have been proposed and compared, including Histogram of Oriented Gra-

dients (HOG) [72], Scale Invariant Feature Transform (SIFT) [73], and Bag of Words

(BoW). Once a new feature is proposed and performs well, it would become a trend

for years. Similar situations happened in other domains including speech recognition

and NLP.

Comparatively, deep learning algorithms perform feature extraction in a quite au-

tomated way which allows the researchers to extract discriminative features without

domain knowledge and human input [74]. These algorithms include a layered archi-

tecture of data representation, where high-level features can be defined in the top

layers while low-level features are extracted from the bottom layers. These kinds of

architectures are originally inspired by artificial intelligence (AI) simulating its pro-

cess of the key sensorial areas in the human brain. The brains never learn feature

extraction algorithms like “SIFT,” but can automatically extract features from dif-

ferent scenes. The input is the scene information received from eyes; while the output

is the classified objects. This highlights the major advantage of deep learning: works

like real human brains.

2.1.2 History

While deep learning is being widely used in different domains from speech and

image recognition, to NLP and industry-focused implementations such as fraud de-

tection and recommendation systems, the history of neural networks is unbelievably

long. Building a machine which can simulate human brains had been a dream of

sages for centuries. The very beginning of deep learning can be traced back to 300

B.C. when Aristotle proposed “associationism,” which started the history of human’s
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ambition trying to understand the brain, since such an idea requires the scientists

to understand the mechanism of human recognition systems. The modern history

of deep learning started in 1943 when the McCulloch-Pitts (MCP) model was in-

troduced and known as the prototype of artificial neural models [75]. They created

a computer model based on the neural networks functionally mimicking neocortex

in human brains [76]. The combination of the algorithms and mathematics called

“threshold logic” was used in their model to mimic the human thought process but

not to learn. Since then, deep learning has evolved steadily with a few significant

milestones in its development.

After the MCP Model, the Hebbian theory, originally for the biological systems in

the natural environment, was implemented [77]. After that, the first electronic device

called “perceptron” with the context of the cognition system was introduced in 1958,

though it is different from typical perceptrons nowadays. The perceptron highly

resembles the modern ones which have the power to substantiate “associationism.”

At the end of the first AI winter, the emergence of “backpropagandists” became

another milestone. Werbos introduced backpropagation, the use of errors in training

deep learning models, which opened the gate to modern neural networks. In 1980,

“neocogitron” which inspired the CNN was introduced [78]; while Recurrent Neural

Networks (RNNs) were proposed in 1986 [79]. Next, LeNet made the deep neural

networks work practically in the 90s, however it did not get highly recognized [80].

Due to the hardware limitation, the structure of LeNet is quite easy and cannot be

applied to large datasets.

Around 2006, Deep Belief Networks (DBNs) along with a layer-wise pre-training

framework were developed [81]. Its main idea was to train a simple two-layer unsuper-
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vised model like Restricted Boltzman Machines (RBMs), freeze all the parameters,

stick on a new layer on top, and train just the parameters for the new layer. Re-

searchers were able to train neural networks that were much deeper than the previous

attempts using such a technique, which prompted a rebranding of “neural networks”

to “deep learning”. Originally from Artificial Neural Networks (ANNs) and after

decades of development, deep learning now is one of the most efficient tools compar-

ing to other machine learning algorithms with great performance. We have seen a

few deep learning methods rooted from the initial ANNs, including DBNs, RBMs,

RNNs, as well as the CNNs [43,82].

2.1.3 The Astonishment from AlphaGo

With no doubt, Google AlphaGo completely shocked the world at the start of

year 2017 [83]. Under the pseudonym name “master,” it won 60 straight online

games against human professional Go players from Dec. 29th, 2016 to Jan. 4th,

2017. In just a week, AlphaGo’s online record was 60 wins and 0 losses, including

three victories over Ke Jie, an 18-year-old recognized as the world’s best Go player.

Though deep learning had been the most popular research topic in machine learning

for some years, it was limited in the computer science society. The great success

of AlphaGo completely shows the power of deep learning to public as Go is quite

a popular game and the 2016 matches were watched by perhaps a hundred million

people worldwide. After the New Year break, thousands of media were reporting the

news around the world from the Wall Street Journal to China Daily, and millions of

related comments were posted on social media with hashtag “AlphaGo.” Ke initially

claimed that he would be able to beat AlphaGo, but declined to play against it at
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first for fear that it would “copy his style.” As the matches progressed, Ke went back

and forth, even lost his confidence after analyzing the first three lose matches, though

regaining confidence after AlphaGo displayed flaws in the fourth match. However,

the AlphaGo AI could be modified after each match and the “bad steps” are unlikely

happen again in the next match.

This is not the first time when humans are beaten by a computer in games. Back

to the prior generation in May 11th 1997, IBM’s chess-playing computer “Deep Blue”

won the six-game rematch 3.5-2.5 versus Garry Kasparov, whom many consider to

be the greatest chess player of all time. Figure 2.1 shows the final position after

“19.c4 ” in Game 6. While Deep Blue lost a six-game match on Feb 10th 1996, it

finally defeated Kasparov just in the next year. The results astonished the world

since the public didn’t believe computers can “think” like real human beings though

IBM refused a rematch again and retired Deep Blue. Twenty years later, while IBM

is no longer the most noticeable computer science corporation, the News of AlphaGo

from Google shocked the world again. Since the Go board is on a 19 by 19 array, the

player who starts a match has 361 possible empty points to place his or her stone

mathematically, leaving 360 empty points for his or her opponent’s next move [84].

This goes on to searching the factorial of 361 situations for the best results. Thus, the

Go board has many more options than a chess board which has only 8 by 8 possible

combinations. Moreover in a chess match, a chess piece’s move is confined to its next

step, as the rook can only move horizontally or vertically, which significantly reducing

its number of combinations. Therefore, most Go players don’t believe super machines

can defeat them after the win of Deep Blue 20 years ago. Although the evolution
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of computing makes CPU’s frequency 160 times faster than 20 years ago, the huge

number of options in Go is still beyond computing power.

(a) Deep Blue versus Kasparov, Game 6 (b) AlphaGo versus Lee Sedol, Game 5

Figure 2.1: Deep Blue in a Chess game and AlphaGo in a Go game

While human Go players need to estimate a territorial advantage on the board,

the AlphaGo does not even need to actually understand the “rule” of Go and can eval-

uate a position by applying deep learning algorithms. In other words, deep learning

algorithms can break the barrier of “human instinct” which other algorithms cannot

capture. All in all, AlphaGo is able to defeat world champion Go players because

it uses the modernest deep learning algorithms and sufficient hardware resources.

The AlphaGo mainly contains three layers including a supervised learning network,

a value network, and a reinforcement learning network [85]. Among them, the super-

vised learning network and the value network were used during single matches; while

the reinforcement learning network was responsible for reinforcement training. In a

six-game match, the reinforcement training could even be applied to the first game
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and would improve AlphaGo in the following games. The supervised learning network

learns from a board position in games and mimics where the champion players would

play for the next step based on the stored 30 million matches in its database. Finally,

AlphaGo used a mixture of the output from its value network to place stones on the

Go boards.

2.2 Imbalanced Data Classification

In general, imbalanced data classification techniques fall into three categories,

namely sampling-based, algorithm-based, and feature selection-based approaches.

2.2.1 Sampling Based

The most popular classification algorithms for imbalanced datasets are sampling-

based approaches. Oversampling and undersampling methodologies have received

significant attentions to counter the effect of imbalanced datasets. Studies have

tested different variants of oversampling and under-sampling techniques, and pre-

sented (sometimes conflicting) viewpoints on the usefulness of oversampling versus

down-sampling [86] for imbalanced datasets.

In general, downsampling is to select a part of negative samples (data instances)

to build a model with a similar number of positive samples. It is very efficient as it

uses only a subset of the majority class. The main disadvantage is that many data in-

stances in the majority class are ignored and may result in loss of information. Liu et

al. proposed two algorithms to overcome this deficiency [87]. “Easy Ensemble” sam-

ples several subsets from the majority class, trains a classification model using each

of them, and integrates the out-puts of those models to produce the final predication
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results. “Balance Cascade” trains the models sequentially. In each step, the majority

class data instances that are correctly classified by the current trained models are

removed from the next round.

In terms of oversampling, duplicate or similar positive data instances are gener-

ated by certain algorithms to make the dataset balanced. Zhang et al. presented

an improved over-sampling approach based on the synthetic minority over-sampling

technique (SMOTE) [88]. First, data distribution of the minority class is used to

estimate whether different types of data instances are overlapped. Next, synthetic

data instances are generated in different classes when classes overlap significantly with

each other. In addition, weights are increased for those positive samples that are far

from the borderline. However, oversampling can potentially lead to overfitting.

2.2.2 Algorithm Based

The common goal of algorithm-based approaches is to optimize the performance

of learning algorithms on unseen data to address the class/data imbalance prob-

lem. One-class learning methods recognize the data instances belonging to a specific

class and reject the others. Under certain conditions, such as in a multi-dimensional

dataset, one-class learning achieves better performance than the peers [89]. Cost-

sensitive learning methods try to maximize the loss functions associated with a dataset

to improve the classification performance. These learning methods are motivated by

the observation that most real-world applications do not have uniform costs for mis-

classifications. The actual costs associated with each kind of errors are unknown

typically, so these methods need to determine the cost matrix based on the data
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and apply it to the learning stage. A closely related idea to cost-sensitive learners is

shifting the bias of a machine to favor the minority class.

Genetic Algorithm based Selective Ensemble Network (GASEN) has been proven

very effective to select a subset of neural networks to form an ensemble classifier or a

regressor of the enhanced generation ability. Che et al. tested GASEN on dozens of

datasets and found that there is some potential for improving GASEN’s performance

on data imbalance learning [90]. However, such studies on GASEN are far from

extensive or systematic. Machine learning algorithms, such as Genetic Programming

(GP), can also generate biased classifiers when the datasets are imbalanced. Bhowan

et al. used new fitness functions in the GP learning process and empirically showed

better performance by the evolved classifiers on both minority and majority classes

[91].

2.2.3 Feature Selection Based

The goal of feature selection, in general, is to select n features from a feature

set that allow a classifier to reach an optimal performance, where n is a user-defined

parameter. As a key step for many machine learning and data mining algorithms

especially for high-dimensional datasets, feature selection has been thoroughly stud-

ied, where filters are used to score each feature independently based on a rule [92].

However, its importance in resolving the data imbalance problem is a recent direc-

tion [93]. This direction is motivated by the fact that in real-life data, the data imbal-

ance problem is commonly accompanied with the issue of high data dimensionality

which both sampling techniques and algorithm-based approaches may be insufficient

to deal with [89]. Therefore, a number of research work has been conducted to per-
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form feature selection to tackle the data imbalance problem recently. For example,

Ertekin [94] studied the performance of feature selection metrics in classifying text

data drawn from the Yahoo Web hierarchy. They applied nine different metrics and

measured the power of the best features using the Naive Bayes (NB) classifier.

Wasikowski et al. presented the first systematic comparison of different approaches

using seven feature selection metrics. They evaluated the performance of these metrics

based on the Receiver Operating Characteristic (ROC) curve and Area Under the

precision-recall Curve (AUC) [89]. Jamali et al. discussed a prior knowledge for

an expert system, which can identify the best performed feature selection metric

based on the data characteristics regardless of the classifier used [95]. Zheng et al.

investigated the usefulness of explicit control of combination within a proposed feature

selection framework using multinomial Naive Bayes and regularized logistic regression

as classifiers [96].

2.3 Big Data Technology

A big data processing platform not only needs a cluster computing infrastructure,

but also requires complementary tools for efficient calculations since an outdated

component could be the bottleneck of the platform. In the past 5 years, many corre-

sponding tools have been developed to support the big data era. In this dissertation,

an efficient processing platform for negative correlation discovery is built with the

utilization of some of these tools.
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2.3.1 NoSQL Database

A Database Management System (DBMS) is a software system that enables

users to define, create, maintain, and control access to the database based on a

database model. In the past half-century, a Relational Database Management System

(RDBMS) using Structured Query Language (SQL) has been a dominant solution.

Relations bring the benefits of group-keeping the data as constrained collections (in

tables) containing the information in a structured way, and relate all the inputs by

assigning values to the attributes. During the past decades, database systems that

implemented the relational models are more and more efficient and reliable, e.g.,

MySQL, PostgreSQL, and SQLite. However, with the rapid development of big data

computing techniques, the traditional relational data model faces great challenges

when working with other big data processing tools and often comes out as the bottle-

neck of the infrastructure. In particular, when the size of a relational table increases

tremendously, even answering simple queries becomes a problem.

The recent development has made many implementations available though each

works very differently and serves a specific need. These schema-less solutions either

allow an unlimited forming of entries or have a very simple but extremely efficient

key-based value stores. For example, the NoSQL database systems do not come

with a model as used with the structured relational solutions. Different from most

people think, NoSQL databases actually have existed since the 1960s, but have re-

cently gained attractions with popular options such as MongoDB, CouchDB, Redis,

and Apache Cassandra [97]. Among them, Cassandra is well-known for its high-

availability and high-throughput characteristics and is capable of handling enormous

write loads and surviving cluster node failures. In terms of the Consistency, Availabil-
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ity, and Partition tolerance (CAP) theorem, Cassandra provides tunable consistency

and availability for operations. What is more interesting when it comes to data

processing is that Cassandra is linearly scalable and it provides cross-data center

replication capabilities. In the proposed processing platform, the key-value pair can

be directly stored in Cassandra since it supports multi-values in one column.

2.3.2 Apache Hadoop

Hadoop MapReduce [98] is a software framework for easily writing applications

that process vast amounts of data in parallel on thousands of nodes of commodity

hardware in a reliable and fault-tolerant manner. Hadoop [99], its open-source imple-

mentation, allows the distributed processing of large datasets across the clusters of

computers using simple programming models. It is designed to scale up from a single

server to thousands of machines, each offering local computation and storage. Rather

than relying on hardware to deliver high-availability, Hadoop is designed to detect

and handle failures at the application layer, so delivering a highly-available service

on top of a cluster of computers, each of which may be prone to failures. Hadoop

provides a distributed file system called Hadoop Distributed File System (HDFS).

It splits the input files into large blocks and distributes them amongst the nodes in

the cluster. To process the data in parallel, Hadoop MapReduce transfers the pack-

aged code to nodes based on the data each node needs to process. A MapReduce

program consists of two user-defined functions: a map function to process pieces of

the input data (called input splits), and a reduce function to aggregate the output of

invocations of the map function. Both functions use user-defined key-value pairs as

the input and output.
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2.3.3 Apache Spark

Spark is an open source big data processing framework advertised as “lightning”

fast cluster computing built around speed, ease of use, and sophisticated analytics

[100]. It provides a faster and more general data processing platform. The Spark core

is complemented by a set of powerful, higher-level libraries which can be seamlessly

used in the same application. These libraries currently include SparkSQL, Spark

Streaming, MLlib (for machine learning), and GraphX. Additional Spark libraries

and extensions are currently under development as well. Spark introduces the concept

of an Resilient Distributed Dataset (RDD), an immutable fault-tolerant, distributed

collection of objects that can be operated in parallel. An RDD can contain any type

of objects and is created by loading an external dataset or distributing a collection

from the driver program.

Spark has several advantages compared to other big data and MapReduce tech-

nologies including Hadoop. For example, Spark’s multi-stage in-memory primitives

provide performance up to 100 times faster for certain applications [100–102] when

comparing to Hadoop’s two-stage disk-based MapReduce paradigm. In addition to

the Map and Reduce operations, Spark provides many operations called transforma-

tions such as map, flatMap, sample, filter, groupByKey, reduceByKey, union, join,

sort, cogroup, mapValues, and partionBy. Developers can use these operations stand-

alone or combine them to run in a single data pipeline use case. Moreover, Spark can

run programs up to 100x faster in memory or 10x faster on disk than Hadoop.

Both Hadoop and Spark are built on Yet Another Resource Negotiator (YARN).

In Hadoop 2.0, YARN is split from MapReduce and runs on top of it. YARN is

a generic cluster resource management framework that can run applications on a



27

Hadoop cluster. In the YARN model of computation, ResourceManager runs as a

master daemon and manages ApplicationMasters and NodeManagers. Application-

Master is a lightweight process that coordinates the execution of tasks of an applica-

tion and requests the resource containers for tasks from the ResourceManager with the

NodeManager offering the resources (memory and CPU) as the resource containers.

Mesos is a distributed system kernel which essentially uses a container architecture

but is abstract enough to allow a seamless execution of multiple (sometimes identical)

distributed systems on the same architecture, minus the resource overhead of the

virtualization systems [103]. This includes an appropriate resource isolation while

still allowing data locality needed for frameworks like MapReduce. Mesos was built

to be a global resource manager for the entire data center. The primary difference

between Mesos and YARN is their schedulers. In Mesos, when a job comes in, a job

request comes into the Mesos master, and what Mesos does is to determine what the

resources are available and to make the offers back. Those offers can be accepted or

rejected. This allows the framework to decide what the best fit is for the job that

needs to be run. If Mesos accepts the job for the resources, then it places the job on

the slave and all is done. It has the option to reject the offer and wait for another

offer to come in. One big advantage of Mesos over YARN is that it can manage all

the resources in the data center. Therefore, Spark is run on Mesos instead of YARN

in our proposed system. Mesos cluster consists of Master nodes which are responsible

for resource offers and scheduling and Slave nodes which do the actual heavy lifting

of task executions.
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2.4 Correlation Coefficients and Re-ranking Strate-

gies

A correlation coefficient is a coefficient that illustrates a quantitative measure of

the statistical relationships between two or more random variables or observed data

values. Correlations can be divided into the following four different types (namely

nominal, ordinal, interval, and ratio) based on the category of the input data. The

overall of the operations and scale measures is shown in Table 2.1.

Table 2.1: Overall of data types and scale measures

Operations

Scale Measures
Nominal scales Ordinal scales Interval scales Ratio scales

Frequent distribution Y es Y es Y es Y es

Mode Y es Y es Y es Y es

Median Y es Y es Y es Y es

Mean No Y es Y es Y es

Plus No No Y es Y es

Minus No No Y es Y es

Multiple No No No Y es

Divide No No No Y es

2.4.1 Nominal Scale

Nominal scales are used to label variables that do not have quantitative values,

and the data are put into categories without any order or structure. For example,

any data with the YES/NO labels is nominal since it has no order and there is

no distance between YES and NO. Another example is the data of colors that the

underlying spectrum is ordered but the names are nominal.

There are many coefficients in this category. Given a 2×2 contingency table, and

let Oi be an observed frequency, Ei be an expected (theoretical) frequency asserted by

the null hypothesis, and n be the number of cells in the table. χ2 [104] is the Pearson’s
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cumulative test statistics, which asymptotically approaches a χ2 distribution as shown

in Equation (2.1). If N is the grand total of the observations, the coefficient φ can be

defined in Equation (2.2). This coefficient can only be calculated for frequency data

represented in 2×2 tables.

χ2 =
n∑
i=1

(Oi − Ei)2

Ei
. (2.1)

φ =

√
χ2

N
. (2.2)

The Contingency (C) coefficient and Cramer’s V coefficient are similar. The C

Coefficient [105] in Equation (2.3) is used when there are 3 or more values for each

nominal variable, as long as there are an equal number of possible values leading to the

construction of a data matrix that has the same numbers of rows and columns (e.g.,

3×3, 4×4, etc.). C suffers from the disadvantage that it does not reach a maximum

of 1 or the minimum of -1. The highest it can reach in a 2×2 table is 0.707, and

the maximum it can reach in a 4×4 table is 0.870. It can reach values closer to 1

in the contingency tables with more categories. It should, therefore, not be used to

compare associations among tables with different numbers of categories. Moreover,

it does not apply to asymmetrical tables (i.e., those with different numbers of rows

and columns). On the other hand, Cramer’s V coefficient in Equation (2.4) is used

when the numbers of possible values for the two variables are not the same, yielding

different numbers of rows and columns in the data matrix (e.g., 2×3, 3×5, etc.).

It is also a measure of associations between two nominal variables, giving a value

between 0 and +1 (inclusive). Cramer’s V coefficient [106] is widely used because it

can solve both multiply variable cases and asymmetrical variable cases, but it can be

a heavily biased estimator of its population counterpart and may tend to overestimate
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the strength of an association.

C =

√
χ2

χ2 +N
; (2.3)

V =

√
χ2

N(k − 1)
=

√
φ2

(k − 1)
=

√
φ2

min[(r − 1), (c− 1)]
. (2.4)

2.4.2 Ordinal Scale

The order of the values in ordinal scales is more significant, so smaller (<) and

bigger (>) can be applied to the values but the differences between them is not

really known. However, an ordinal scale can only interpret a gross order but not

the relative positional distances. The simplest example is ranking, and there is no

objective distance between any two points on the subjective scale. The top may be

far superior to the second in one case; while the distance may be subjectively small

in another case.

There are several coefficients in this category. The Gamma (G) coefficient [107]

is for symmetrical correlation from -1 to +1 as follows:

G =
Ns −Nd

Ns +Nd

, (2.5)

where Ns is the parity of the number of non-inversions, i.e., the pairs of elements x,

y of σ such that x<y and σ(x)<σ(y) or x>y and σ(x)>σ(y); Nd is the parity of the

number of inversions, i.e., the pairs of elements x, y of σ such that x<y and σ(x)>σ(y)

or x>y and σ(x)<σ(y). In this case, Ns is the number of pair of cases that are ranked

the same on both variables; while Nd is the number of pair of cases that are ranked

differently on both variables. The Gamma coefficient needs all nominal variables to

be ranked. A similar one is the Kendall tau (τ) coefficient which considers the tied

pairs.
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The Somers d coefficient [104] is for asymmetrical correlation. If X is an indepen-

dent variable (column) and Ny is the parity of the number of non-inversions in rows,

versus if Y is an independent variable (row) and Nx is the parity of the number of

non-inversions in columns, then the Somers d coefficients can be defined as follows:

dxy =
Ns −Nd

Ns +Nd +Ny

; (2.6)

dyx =
Ns −Nd

Ns +Nd +Nx

. (2.7)

The Spearman’s rank correlation coefficient [108] is a nonparametric measure of

statistical dependence between two variables. It assesses how well the relationship

between two variables can be described using a monotonic function. If there are

no repeated data values, a perfect Spearman correlation of -1 or +1 occurs when

each of the variables is a perfect monotone function of the other. The Spearman

correlation coefficient is defined as the Pearson correlation coefficient between the

ranked variables. For a sample of size n, the n raw scores Xi and Yi are converted

to ranks xi and yi, and ρ is computed from Equation (2.8). Identical values (such

as rank ties or value duplicates) are assigned a rank equal to the average of their

positions in the ascending order of the values.

ρ =

n∑
i

(xi − x)(yi − y)√
n∑
i

(xi − x)2(yi − y)2

(2.8)

2.4.3 Interval Scale

Data in this category are numeric scales in which not only the order but also

the exact differences between the values are known and thus the realm of statistical

analysis on such data opens up. The Celsius temperature is considered the classic
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example data in this category. Furthermore, since they are numeric variables, plus

(+) and minus (−) can also be applied.

The Pearson product-moment correlation (ρ or r) coefficient [109, 110] is an ex-

ample coefficient in this category. It is a measure of the linear correlation dependence

between two variables X and Y , giving a value between -1 and +1 (inclusive), where

-1 is a total negative correlation, 0 is no correlation, and +1 is a total positive correla-

tion. It is widely used in sciences as a measure of the degree of the linear dependence

between two variables. For a population:

ρX,Y =
cov(X, Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
, (2.9)

where cov is the covariance of X and Y and is equal to E{[x− E(x)][(y − E(y)]} =

E(xy) − E(x)E(y); σX is the standard deviation of

√
1
N

N∑
i=1

(xi − µX)2; σY is the

standard deviation of

√
1
N

N∑
i=1

(yi − µY )2; µX is the mean of X (i.e., 1
N

N∑
i=1

xi); µY is

the mean of Y (i.e., 1
N

N∑
i=1

yi); and finally E is the expectation.

2.4.4 Ratio Scale

Data in the ratio scales have the order of the values, the exact value between units,

and an absolute zero. Thus a wide range of both descriptive and inferential statistics

can be applied to the data in the ratio scale. Since they are numeric variables with

an absolute zero (like temperature, mass, etc.), the multiply (×) and divide (÷)

operators can also be applied. However, data in multimedia and social research are

usually not in this category, but most of the correlation coefficients for the interval

scales can also be applied to data in the ratio scales.
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2.4.5 Integrated Correlation Factor

While a number of approaches have adopted positive correlations to improve the

performance of semantic concept mining and retrieval, very few work is explored for

negative correlations among concepts. Based on the literature review, finding negative

correlations in the multimedia big data area is a challenge. Some studies speculated

that negative correlations might only improve the performance slightly [111]; while

some other groups even reported their performance gain by negative correlations was

nearly 0.

Unlike positive instances, the labels of a large number of negative instances are

actually inferred in many large-scale multimedia datasets. This is partially because

when the label of a training sample is manually annotated as “skipped” or “not sure”,

we usually consider it as a negative instance. Although the co-occurrence of two

concepts in a video shot (keyframe) increases the probability that they are positively

correlated, one concept does not occur while the other appears does not necessarily

mean that they are negatively correlated. It is hard to conclude the appearance of

the concept “bird” suppresses the appearance of the concept “flower” just because

they do not co-occur together.

Generally speaking, if two concepts are negatively correlated, their correlations

would not be affected by the existence of the third concept (called a control concept

in this dissertation). Integrated Correlation Factor (ICF) represents an average quan-

titative metric of correlations under different control concepts. Let Ω be the set of all

concepts, |Ω| be the total number of concepts, and CD represent the control concept.

Similarly, with the definitions of C+
T and C+

R , C+
D is the condition that a data instance

is positive for CD. Using such information, we define ICF between the target concept
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and the reference concept in Equation (2.10).

ICF (T,R) =
1

|Ω| − 2

∑
D∈Ω,D 6=T,D 6=R

ρ(CT , CR|C+
D), (2.10)

where ρ(CT , CR|C+
D) is the Pearson product-moment correlation coefficient [112] be-

tween CT and CR given C+
D , which has been explained in Section 2.4.3.

2.4.6 Hierarchical Models

Many research efforts have been conducted on organizing the hierarchies for se-

mantic concept retrieval and event detection. Most of them use inter-concept cor-

relations to build the hierarchies. Wang et al. [113] proposed a hierarchical context

model to systematically integrate feature level context, semantic level context, and

prior level context for accurate and robust event recognition in surveillance videos.

A comprehensive model that can integrate contexts from all three levels simultane-

ously was built. In [114], the authors presented a large-scale video event classification

system with a large number of event categories mined automatically from YouTube

video titles and descriptions using Part-of-Speech parsing tools, with constraints de-

rived from WordNet hierarchies. To solve the problem of multi-class object detection,

the authors proposed a boosted multi-class object cascade that only splits one class

object from the upper-level cascade when building the sub-cascades [115], which re-

duces the number of classifiers in each stage. Vreeswijk et al. [116] analysed the

differences between the images labelled at varying levels of abstraction and the union

of their constituting leaf nodes.

Recently, some researchers find that inter-concept correlations can help re-rank the

concept detection scores on event detection. The selection of event-specific concepts

based on the similarity to a textual event description had shown to yield effective
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event detection results without positive examples [117]. Tao et al. [118] showed that

inter-concept associations including both positive and negative correlations can be

used to bridge the semantic gap and enhance the performance of semantic concept

detection in multimedia data [119–122]. The concept-concept association information

integration and multi-model collaboration framework were proposed to enhance high-

level information retrieval from multimedia big data.

2.5 Fusion of Multiple Classifiers and Features

In the scope of multimedia data classification, multi-classifier fusion is an im-

portant research area because one classifier is unable to perform better than other

classifiers on all types of data. In [123], the authors developed gradient histograms

using orientation tensors for human actions. A classifier fusion based framework using

statistical fusion such as GMM fusion and ANN fusion is proposed in [58]. While con-

flict results can be generated by different classifiers, previous results have indicated

that the fusion of multiple different results can improve the performance of individual

classifiers. In general, classifier ensemble is a good resolution to conflict classification

results. However, how to find a good way to fuse these classification results from

different classifiers remains as a big issue.

Meanwhile, how to utilize multiple features [47–49,62,68,109,124–126] by different

feature extraction models from multimedia datasets is another hot research area in

the past decade. Different classification models can be employed for different kinds of

features, which may discover different properties of the data [61]. The authors in [59]

found the complementary nature of the descriptors from different viewpoints, such as

semantics, temporal, and spatial resolution. They also employed a hierarchical fusion
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that combines static descriptors and dynamic descriptors. Since high-level semantics

are sometimes difficult to be captured by visual features, textual features were used

in [127] and a sparse linear fusion scheme was proposed in their work to combine visual

and textual features for semantic concept retrieval and data classification. Generally

speaking, the existing work on multi-classifier ensemble models falls into four types

as follows.

2.5.1 Weighted Combination Strategy

The weighted combination strategy is a popular and straight-forward strategy

and commonly used in many classifier ensemble models. Two examples are sum and

product approaches as the weighted combination rules. The sum rule treats the sum

value as the arithmetic mean; while the product rule treats the product value as the

geometric mean. The sum rule is equivalent to the product rule for small deviations

in the classifier outcomes under the same assumption [128]. In general, the product

rule is good when the individual classifiers are independent.

Furthermore, the sum and product rules can be generalized to the weighted com-

bination approaches for different scores. The key to this strategy is to find a suitable

set of weights for different scores generated by different classifiers. Several different

strategies were proposed in the past in order to determine the weights. For instance,

an information gain method for assigning weights is explained in [129] where the

authors adapted and evaluated several existing combining methods for the traffic

anomaly detection problem and showed that the accuracies of these detectors could

be improved. Meng et al. [130] utilized the normalized accuracy to compute the

weights for each model built on a specific image patch. In a recent study proposed
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in [131], the researchers further extended this method by first sorting all the models

according to the interpolated average precision and then selecting the models with

top performance. The number of models to retain in the final list is determined via

an empirical study.

Although several experimental results indicate that sometimes a weighted com-

bination strategy can give a relatively good performance, the success of this kind of

approaches relies on specific knowledge from domain experts or experience from data

mining researchers to provide a good estimation of weights. This clearly shows the

importance of proper choice of weights.

2.5.2 Statistics Based Strategy

The sum rule can be also considered as a special statistics-based strategy. Some

other commonly used approaches in statistics-based approaches are “sum”, “max”,

“min”, and “median” rules. The “sum” strategy here is somewhat different from

the sum rule in the weight combination strategy and gives an estimation of the final

score based on the majority-voting theory. By setting all the weights to the same

value, it is then equivalent to the sum rule. The “max” fusion approach is a relatively

conservative estimation, where the highest score of all the models is chosen. On

the other hand, the “min” fusion strategy picks the lowest value. The fourth one,

“median” rule, gets the median value of all the scores.

Kittler et al. [132] developed a common framework for classifier combination and

showed that many existing schemes could be considered as special cases of compound

classification where all the features are used jointly to make a decision. In [133],

Kuncheva evaluated the advantages and disadvantages of these strategies in details
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from a theoretical point of view. The main advantage of the statistics-based approach

is the low time complexity, while the main disadvantage is that the performance of

these models is not quite stable under the condition that the underlying models are

not accurate.

2.5.3 Regression Based Strategy

The regression-based strategy receives a lot of attentions recently. In this research

direction, the logistic regression based model is commonly utilized. Parameters are

estimated using the gradient descent approach in the training stage. After the pa-

rameters are learned, the score of a testing data instance can be computed. In [134], a

novel logistic regression model is trained to integrate the scores from testing data by

different classification models to get a final probabilistic score for the target concept.

Although the logistic regression model sometimes gives relatively robust perfor-

mances in practice, the disadvantage of regression-based strategy is that this algo-

rithm may suffering from the problem of overfitting.

2.5.4 Bayesian Probabilistic Strategy

With the assumption of the scores are conditionally independent with each other,

the Bayesian theory is also widely used in multi-classifier fusion, and sometimes is

combined with other strategies [135]. The main issue of this strategy is that the

previous assumption does not hold under most circumstances. The final score is

computed using the Bayesian rule based on all the scores from the models.

The theory of Dempster-Shafer is an improved method of the Bayesian theory

for a subjective probability. It is also a powerful method for combining measures of
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evidence from different classifiers. The authors in [136] developed another classifier

combination technique based on the Dempster-Shafer theory of evidence by adjusting

the evidence of different classifiers based on minimizing the Mean Square Error (MSE)

of training data. However, this kind of approaches may still give a relatively bad

performance because of the severe deviation from the independence assumption in

real cases.



CHAPTER 3

Efficient Deep Learning Based
Imbalanced Multimedia Concept Retrieval

In this chapter, the proposed imbalanced multimedia concept retrieval framework

is introduced in Section 3.1. The top most challenge that deep learning faces today

is to train the massive datasets available at hand. As the datasets become bigger

and more complex, deep learning is in its path to be a critical tool to cater big data

analysis. Apparently, the most non-trivial tasks in training a deep neural network is

the training portion [76]. Since the iterative processing in Deep Learning is integral to

the accuracy, it is often very problematic to parallelize these recursive trainings [137].

Thus, the Spark implementation of our proposed framework is presented in Section

3.2 with its performance evaluated using the experimental results in the next section.

The last section concludes the findings.

3.1 Framework

3.1.1 CNN Structures

As to be introduced in this section, the deep learning frameworks like CNN have

been proven to be one of the most significant developments recently and is famous for

40
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its ability to create multiple levels of training and abstraction that help to understand

the data easily. This section discusses how the CNN framework can be utilized for

the multimedia imbalanced datasets.

CNN is a subdivision of the deep neural network chain in deep learning that, at the

root, is the variants of multilayer perceptron. CNNs are configured to utilize minimum

resources in preprocessing [49]. This is done with two techniques: the first is to limit

the links among the invisible sections and the input section so that each invisible

section links to only a subset of the input called feature maps. The motivation behind

the technique of having locally linked networks is taken from the visual cortex where

neurons also have local receptive fields [138]. The second technique is to develop

simplified computations of images. Since natural images have the tendency of being

stationary, the statistics of the different regions of natural images are similar. The

second technique takes the advantage of this, utilizes a random subset of trained

features, and convolves them to acquire feature activations of the remaining image.

Then these acquired features can be used either directly or as ensemble statistics

for classifying the data. The ensemble statistics have the characteristics of being

comparably very low dimensionality and not overfitting the model as well.

Generally speaking, a CNN model consists of three kinds of layers, which are

convolutional, pooling, and fully connected layers [139]. The convolutional layer is

composed using several feature maps as defined in Equation (3.1). The feature map

of the lth layer and jth feature batch X l
j is evaluated by convolving the feature maps

of its preceding layer X l−1
j . The convolution process uses the activation function f

with trained kernels K l
ij and an additive bias blj. The first layer X1

j corresponds to the

input data, a logistic function is selected as the activation function f that corresponds
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an assortment of the input maps.

X l
j = f

∑
i∈Mj

X l−1
i ∗K l

ij + blj

 , l ≥ 2 (3.1)

Here, a feature map is divided into several batches Mj, where Mj represents the

data batches and i is the index of each those batches. The pooling layer takes in

the input features as given in Equation (3.2) and outputs a subsampled version of

it. Here, the operation “pool” stands for a pooling procedure that evaluates the

ensemble statistics of the input maps, βlj depicts the multiplicative bias, and blj shows

the additive bias. The pooling layer is normally placed after each convolutional layer

and it typically is designated as a mean or max pooling procedure.

X l
j = f

(
βljpool

(
X l−1
j

)
+ blj

)
, l ≥ 2 (3.2)

The fully-connected layer is developed to be the high-level reasoning layer in the

network. It is placed after or close to the terminal layers of the neural network.

All neurons from the earlier layers are then connected to each neuron in the fully-

connected layer.

3.1.2 CNN with Bootstrapping

The proposed deep learning framework is contrasting from the negative bootstrap

framework developed in [140] that joins random sampling and adaptive selection to

recursively search the related negatives. The proposed bootstrapping sampling tech-

nique integrates oversampling with decision fusion to improve the CNN’s classification

accuracy on multimedia data that may or may not have skewed class attributions.

Even after the tremendous success of deep learning frameworks, to the best of the

author’s knowledge, only a handful of papers target the challenging problem of skewed
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class multimedia data. As a matter of fact, directly applying deep learning methods

on imbalanced data ends in a very bad classification accuracy. This is illustrated by

the empirical study results comparing the balanced and imbalanced datasets in Figure

3.1 where x-axis is for the number of training iterations while y-axis is for error rate,

and the error rate of the prediction is compared to the increasing number of iterations

of a CNN deep learning network. In the case of balanced datasets in Figures 3.1(a)

and 3.1(b), the error rates steadily decrease to definite points. However, when the

CNN is used with imbalanced datasets as shown in Figures 3.1(c) and 3.1(d), the

prediction error rates waver about plateau points. The reason behind this oscillating

error rate is because the deep learning training stages allot the training data into

groups. The grouping becomes unfair when the data is imbalanced and some groups

may end up containing all negative data instances and no positive data instances.

The result of this imbalanced class distribution is a low accuracy classification model.

Conventional bootstrapped samples have the imbalanced dataset with n >> m,

where n and m are the numbers of negative and positive data instances, respectively.

The proposed framework generates batches of sneg and spos data instances to balance

out the ratio r = sneg/spos, where sneg is the number of negative data instances and

spos the number of positive ones. Therefore, totally M batches will be generated,

where:

M =
n

sneg
(3.3)

Another way to see it is when n is not exactly divisible by sneg, any remaining

negative data instances will be removed in the training stage. Since the total count of

negative data instances n in the training set is large and the batch size s = sneg +spos

is typically small (i.e., resulting in a small sneg), the removed negative data instances
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(a) (b)

(c) (d)

Figure 3.1: Difference in the total error rate produced from (a) & (b) balanced datasets and (c) &
(d) imbalanced datasets
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become negligible comparative to the data instances used in the training stage. Then

from the m positive data instances, one positive data instance is randomly chosen spos

times and combined with sneg negative data instances for each batch. This process is

repeated I times to produce the batches in each learning repetition until the error rate

converges. This random stochastic process assures an equivalent probability for each

positive data instance to be selected and trained with various negative data instances

and eventually avoid overfitting. Algorithm 1 illustrates the discussed process. In each

repetition process, the bootstrapping process produces a pseudo balanced training set

from the original imbalanced dataset, which can be then used by the deep learning

model for learning.

Algorithm 1 Proposed module of CNN with bootstrapping

Split the training set into a positive set pos and a negative set neg
Divide neg into M batches, each with sneg negative data instances
for 1 to I do

for 1 to M do
for 1:spos do

randomly pick one data instance from pos;
end for
combine the data instances in pos and neg together;

end for
Train a CNN model;

end for
end;

Let the size of each input be m × m such that a four mid-layer CNN forms as

depicted in Table 3.1, where kL represents the number of mask neurons applicable

on a given subgroup of input values and nL × nL indicates the size of each mask

in the Lth convolution layer. The output from the Lth convolution layer is given to

the Lth pooling layer and it is split into a group of non-overlapping rectangles of size

pL×pL, where the pooling operations are applied for downsampling. Furthermore, the
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bootstrapping method explained earlier is then used to generateN batches of balanced

training instances that are given to the first layer of CNN in iterations. The input

layer is followed by two convolutional layers, and then followed by their respective

mean pooling layers. The first convolutional layer produces the inner product of the

k1 × (n1 × n1) masks and passes the output to the first mean pooling layer. Mean

pooling layers summarize the outputs of the neighboring subsets of masks in the

same kernel map. The output of the pooling layer is passed as the input to the

second convolutional layer. This is followed by the mean pooling layer using the same

process as mentioned earlier but with different mask sizes. The size of the vector

of the final CNN layer denotes the number of classes attributed to the data. The

experiment performs binary classification, and thus the size is set to 2.

Table 3.1: Training parameters for CNN

Layer Layer size Output size

Input (m×m)

Convolution 1 k1 × n1 × n1 k1 × (m− n1 + 1)× (m− n1 + 1)

Pooling 1 p1 × p1 k1 × (m− n1 + 1)/p1 × (m− n1 + 1)/p1
let m2 = (m− n1 + 1)/p1

Convolution 2 k2 × n2 × n2 k2 × (m2 − n2 + 1)× (m2 − n2 + 1)

Pooling 2 p2 × p2 k2 × (m2 − n2 + 1)/p2 × (m2 − n2 + 1)/p2
Output 2

Finally, the consequent convolution masks and weights are used for classification

and the class receiving the highest score will be attributed to the test data instance.

The benefit of the bootstrapping method can be observed from the prediction error

rates shown in Figure 3.2 as it is applied to the imbalanced dataset of Figures 3.2(a)

and 3.2(b), respectively. The descending error rates illustrate the effectiveness in the

convergent process.
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(a) (b)

Figure 3.2: Total error rates convergence generated from imbalanced datasets (a) & (b) using the
proposed bootstrapping method

3.1.3 Integration of CNN and Low-level Features

The training time of CNN is notorious for being computationally taxing. For

example, it took one month to train 1755 videos to achieve sufficient performance

metrics [43]. It is observed in the literature that training a deep learning method

is substantially longer if provided with the raw data at the input layer. To improve

the efficiency of CNN, we first propose a different approach by using the low-level

multimedia features that are much smaller than the raw signal data. This key pro-

cess here is that we propose to feed the low-level features into the CNN directly to

substantially reduce the m value (18 in the proposed experiment) and greatly improve

the processing times. These low-level features are composed of Haar [141], HOG [72],

HSV, YCbCr [142], and CEDD [143]. These are chained into a feature vector which

is then transformed to a matrix using PCA (Principle Component Analysis). This

transformation is required because CNN does not support one-dimensional vectors

and the features are fed as an 18 by 18 matrix. The sizes of the matrix and masks in
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Table 3 are decided based on empirical studies and could be adjusted with different

feature dimensions and datasets.

The internal deep learning process of the CNN is similar to what is described in

the previous section, except for the pooling layers that are removed because the low-

level features are not necessarily stationary in every iteration. Table 3.2 illustrates

the detailed training parameters used in the proposed framework. Since we have

earlier reduced the dimensions of the input features, a relatively small mask size can

be applied, in comparison to that in CaffeOnSpark website [144].

Table 3.2: Training parameters in the proposed framework

Layer Mask size Output size

Input (18× 18)

Convolution 1 6× 3× 3 6× 16× 16

Convolution 2 9× 3× 3 9× 14× 14

Output 2

3.2 Deployment of the Proposed Framework on a

Spark Cluster

A shortcoming of using low-level features is potentially losing information. Thus,

another idea of making an efficient framework is to build it on top of a big data pro-

cessing system. In this chapter, we built the proposed model on top of the dedicated

Spark cluster. The cluster is running most recent versions of the required distributed

big data infrastructure, i.e., Apache Hadoop 2.7.3 with Yarn and Apache Spark 2.0.

The developed Spark cluster serves as the primary test bed cluster for deep learning

and distributed processing experiments [47–49,109,124].
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Figure 3.3 illustrates the core infrastructure of the cluster. There are 4 nodes in

total with the master node connected to a dedicated class-c dedicated IP. The overall

cluster configuration is heterogeneous but is normalized to the least performing node

in the infrastructure. Each node is setup to instantiate 2 workers with 4 GB of

memory and 1 TB of storage. The data files were replicated across the three Hadoop

HDFS instances in all data nodes, namely data node 1, data node 2, and data node

3 as shown in Figure 3.3.

Figure 3.3: The infrastructure of the built spark cluster

The main abstraction that Spark provides is a resilient distributed dataset (RDD),

an in-memory storage abstraction of frame confidence score elements partitioned

across the nodes of the cluster that can be operated on in parallel. These RDDs

were created from confidence score files present in Hadoop Distributed File System

(HDFS). The proposed CNN framework ran on Spark as tasks coordinated by the

master node in the cluster which has a driver program. Linear speedup was achieved
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by modifying the Spark configuration and setting parallelism to the number of cores

present in the cluster to utilize the cluster to its maximum capacity. It is recom-

mended that a maximum of 2 to 3 tasks are to be run on a CPU core at an instance

of time. The number of tasks executed in parallel on a node is equal to the number

of cores in the corresponding node. Spark automatically sets the number of map

tasks to run on each file according to the number of partitions present. A partition is

defined by each file which is loaded from the HDFS. Executors were started on each

node of the cluster to perform the tasks.

Deep learning methods are notorious for computationally expensive and impracti-

cal for streaming data. The attempt to overcome this challenge is to use a distributed

environment and Spark. By the empirical testing and evaluation, it was observed that

the same neural network implementation using Java in Apache Spark 2.0 achieved

400% speed improvement over Matlab 10 performed on the same cluster.

There are a lot of use-cases where multi-core or GPU based processing or con-

ventional HPC systems may be significantly faster than any Spark implementation.

We have to take all the feasibility cases into account and argue the case of building

a system to make positive forward progress in this research. Since Spark is only

good with recursive statements and streaming inputs, in the case of classifying data,

MapReduce will probably do a competitive job to Spark due to the fact that there is

only one time read involved from the hard disk.

Although the Spark clusters are proven to be suitable for recursive computing,

how to distribute the neural network training remains as a challenging issue. Since

all parameters in a certain layer are updated after training each mini batch, most

popular neural network models cannot be deployed on distributed computing clusters
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to run parallel processing. Another problem to deploy the neural network frameworks

on Spark is that Spark supports Scala and Java stably, but only partially supports

Python. Hence, we use a deep learning tool written in java called Deeplearning4j [145]

to implement parallel computing on training the neural network models.

The basic idea of training a neural network model on Spark is parameter averaging.

As drawn in Figure 3.4, the input data is divided into several subsets based on the

configuration of the master node. With the same as the regular neural network

training steps (please note that the “data split” here is different from the “batch”),

the Spark driver (i.e., the master node) starts with a randomly generated parameter

set and an initial network configuration. For each subset of the training data, the

master node distributes the parameters, configuration, and network updater states

to all slave nodes. Then, each slave node trains its own portion of the subset and

updates the parameters as well. After several iterations, the parameters and states

are sent back to the master node which will average the parameters and states to

update the trained neural network. Then, the average values are distributed to the

slave nodes as well as the workers again for further training.

In this study, we identify the best available features to identify the skewed and

imbalanced classes and improve the classification of the imbalanced datasets. It is

an industry best practice to start with the current best features and further improve

the performance by processing the skewed and imbalanced classes. Recently, those

features extracted from pre-trained deep learning models are proven to outperform

traditional low-level features. In this chapter, we use a pre-trained and fine-tuned

CNN model on the ImageNet data, Alexnet [82], for keyframe feature extraction.

The Alexnet structure is well-trained and proven with great performance. It contains
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Figure 3.4: The flowchart of training CNNs on the built Spark cluster

five convolutional layers and three fully-connected layers and the CNN features are

extracted from all the training and testing keyframes from the output layer, i.e., the

8th layer with one-thousand dimensions. These features are finally fed to a neural

network with two fully connection layers, where the first layer contains 100 neurons

and the second one is composed of 10 neurons.

3.3 Experimental Results

3.3.1 Evaluation on the UCF11 Dataset

First, the proposed model is tested on a relatively balanced video dataset, UCF

YouTube Action (UCF11) dataset [146], to prove the efficiency of feeding the low-

level features to the CNN models. UCF11 includes videos collected from YouTube

with various problems like non-static background, low video quality, camera motions,
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poor illumination conditions, etc. It is a relatively balanced dataset as compared to

the TRECVID dataset and contains 11 action categories: basketball shooting, bik-

ing/cycling, diving, golf swinging, horseback riding, soccer juggling, swinging, tennis

swinging, trampoline jumping, volley ball spiking, and walking with a dog. This

dataset is very challenging [147] due to the large variations in camera motion, ob-

ject appearance and pose, object scale, viewpoint, cluttered background, illumination

conditions, and etc. For each category, the videos are grouped into 25 groups with

more than 4 action clips in it. The video clips in the same group share some com-

mon features, such as the same actor, similar background, and similar viewpoint.

The STIP features [148] are extracted from each UCF11 video. STIP is built on the

idea of the Harris and Forstner interest point operators to detect local structures in

space-time where the image values have significant local variations in both space and

time. STIP features can be obtained by estimating the spatio-temporal extents of the

detected events and computing their scale-invariant spatio-temporal descriptors. The

dimensions of the STIP features are reduced to 32 from 162 by applying the principle

component analysis (PCA) technique for fast computation purposes. In the video

representation part, 256 Gaussian components in GMMs (Gaussian Mixture Models)

are used and the leave-one-out cross validation scheme is employed. Since UCF11

is a relatively balanced dataset, in the bootstrapping step, a small number of data

instances are randomly picked from each category (5 in thi experiment) to form the

batches for CNN training. Figure 3.5 shows some example frames from the UCF11

dataset.

Table 3.3 shows the confusion matrix of applying the proposed framework to the

UCF11 dataset. Here, “Bas” denotes basketball shooting, “Bik” is for biking/cycling,
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Figure 3.5: Example of UCF11 dataset with approximately 1168 videos in 11 categories
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and so on. The vertical labels are the ground truth, i.e., the actual labels; while

the horizontal side shows the prediction labels. The number in each grid shows the

percentage of the data instances. For instance, the number “85” shows that 85 percent

of the ’horseback riding’ testing instances are correctly identified; while the number

“1” shows that 1 percent of the horseback riding data instances are misclassified as

soccer juggling.

Table 3.3: Confusion matrix of the UCF11 Dataset

Truth

Prediction
Bas Bik Div Gol Hor Soc Swi Ten Tra Vol Wal

Basketball 55 5 3 8 1 1 2 13 0 11 1

Biking 1 73 0 0 10 0 3 3 2 2 5

Diving 5 2 76 1 1 1 2 1 1 6 3

Golf Swing 12 1 1 82 0 1 2 2 0 0 0

Horse Riding 1 6 1 0 85 1 1 1 1 0 6

Soccer Juggling 4 1 1 4 5 63 6 5 1 4 5

Swinging 1 4 4 1 1 1 79 0 4 3 2

Tennis Swing 8 1 1 8 4 3 2 72 1 1 1

Trampoline Jumping 1 0 1 0 2 9 8 1 77 1 1

Volleyball Spiking 7 1 2 1 0 2 1 8 0 79 0

Walking with a dog 2 7 2 3 20 1 2 5 2 0 54

Table 3.4 shows the performance comparison between the proposed approach

and three other state-of-the-art methods. Specifically, [123] used the combination

of Histograms of Gradients into orientation tensors and applied SVM as the classi-

fier. In [147], motion features based on the ROI (Region of Interest) estimation and

AdaBoost were used to integrate all the heterogeneous yet complementary features

for recognition. In [149], SVM was applied to a tensor motion descriptor with optical

flow for action recognition. As shown in Table 3.4, the proposed approach achieves

the best accuracy rate among all the methods. This experiment clearly proves that

while this framework aims to address the challenges caused by a highly imbalanced

data distribution, it is also very effective in classifying relatively balanced datasets.
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Table 3.4: Result comparison for the UCF11 dataset

Group Accuracy

Perez et al. [123] 68.9%

Liu, Luo, & Shah [147] 71.2%

Mota et al. [149] 72.7%

The proposed framework 72.8%

3.3.2 Experimental Results on the TRECVID Dataset

In order to demonstrate the effectiveness of the proposed framework for imbal-

anced multimedia data classification, the TRECVID dataset [150], a large-size bench-

mark dataset with highly skewed data distribution, is used in the experiment. In

particular, the IACC.1 dataset from the TRECVID 2015 datasets (Over et al., 2015)

is used. The semantic indexing (SIN) task in TRECVID 2015 aims to recognize the

semantic concept contained within a video shot, which can be an essential technology

for retrieval, categorization, and other video exploitations. Here, the concepts refer

to the high-level semantic objects such as a car, road, and tree. Figure 3.6 shows four

sample keyframes with the labelled concepts. There are several challenges such as

data imbalance, scalability, and semantic gap. As a result, traditional deep learning

approaches, including CNNs, often perform poorly on the TRECVID dataset due to

the problem of under-fitting, huge diversity, and noisy and incomplete data annota-

tion [41, 42]. Please note that the data imbalance degrees of different concepts vary

in the TRECVID dataset, and thus a fixed batch size may not be suitable for every

testing concept. To address this issue, the batch size is chosen dynamically based

on the number of positive data instances in the training set. In this experiment,

the batch size is set to be twice bigger than the number of positive training data

instances. Sample keyframes with annotated concepts in the TRECVID dataset are

shown in Figure 3.6.
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(a) (b)

(c) (d)

Figure 3.6: Sample keyframes with annotated concepts in the TRECVID dataset: the concepts are
(a) face, (b) politics, (c) bicycling, and (d) tree, respectively
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Here, the TRECVID dataset is chosen mainly because it contains a large number

of data instances and is highly imbalanced [151]. In the selected IACC.1 dataset, a

total number of 262,911 data instances are used for training; while 113,046 data in-

stances are used for testing. The proposed framework is evaluated on 84 concepts with

severely skewed data distributions and P/N ratios lower than five ten-thousandths,

where the P/N ratio is the ratio between the number of positive data instances and

the number of negative data instances. As indicated in [152], in imbalanced data

classification, the recall metric is considered more important than precision and the

F-score represents the trade-off between precision and recall. As shown in Figures 3.7

and 3.8, the recall and F-score values of the proposed framework using the low-level

features and the features from the pre-trained CNN models are compared with the

scores from TiTech (Tokyo Institute of Technology) that achieved the best perfor-

mance in the semantic indexing task several times in the past years [153].

In case of the TRECVID confidence score evaluation, we have to work with the

unstructured key-value pairs of the TRECVID video shots. There is a need to store

the massive TRECVID multimedia data, in the order of several Terabytes, with

redundancy over the years since 2003 until recent. We have stored the TRECVID

video frames as well as the extracted confidence scores that are continuously used in

the models to compare with previous datasets or to train for the recent competition.

The photos and video frames can be stored in the HDFS and processed using the Spark

engine and the confidence scores can be assigned and stored back in the HDFS. The

resultant confidence scores are unstructured key-value pairs that need to be stored

in the HDFS based redundant data store and accessed for data mining processing.

Therefore, Spark befits as a perfect candidate solution to this problem.
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From the results drawn on Figures 3.7 and 3.8, the F-scores generated from the

low-level features are higher than those of the TiTech group for two thirds of the

84 concepts; while the results by those features from the pre-trained CNN models

perform better than four fifths of the TiTech scores. For the recall measurement,

both of the proposed frameworks generate better results for almost every concept.

The only exception is when using the low-level features, they may fail to identify

a true positive data instance due to the noisy data annotations and information

lost in feature extraction. It is also worth noting that for 50 concepts, the TiTech

group can only locate zero or one true positive data instance; while the proposed

approach reaches more than 0.628 recall value on average. This clearly demonstrates

the effectiveness of integrating CNNs with the bootstrapping strategy in the proposed

framework for imbalanced multimedia data classification, especially on the fact that

the study in [154] showed that the performance of CNNs is far worse than all other

classifiers the authors tried on the TRECVID dataset.

3.4 Conclusions

In this chapter, we proposed to extend the CNN-based deep learning technique by

incorporating a bootstrapping algorithm. Moreover, to achieve faster computation

speeds and better handling of unstructured key-value pairs of the TRECVID video

data, we harnessed the power of Apache Spark. The Spark system is implemented

on a dedicated Spark cluster developed solely for the computational needs of the

research. In the bootstrapping stage, pseudo balanced training batches are rendered

and inserted into the CNN for classification. The experimental results establish the

effectiveness of the proposed framework for accurately classifying highly imbalanced
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Figure 3.7: Recall comparisons on all imbalanced concepts
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Figure 3.8: F-score comparisons on all imbalanced concepts
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multimedia data. Different from many existing methods in deep learning that take

the required raw media data in the input layer, the proposed deep learning framework

works efficiently on the low-level features, which largely reduces the required training

time in deep learning. Furthermore, a computational boost is achieved with the power

of distributed computing using Apache Spark and better information retrieval results

are generated by the features from the pre-trained CNN models.

Though we propose a powerful imbalanced big data processing system using Spark

in this chapter, running deep learning algorithms on GPU is much more efficient than

on CPU. Therefore, it is better to extend the system for accelerating deep learning on

Spark applications using GPUs. Since GPUs provide both high-computation capabil-

ities and high-memory bandwidth, they can be used to accelerate both computation-

intensive and memory-intensive Spark jobs. In the future, we plan to enhance this

system and run deep learning applications on distributed GPUs with Spark.



CHAPTER 4

Correlation-Assisted Concept Retrieval
and Score Enhancement

A video shot usually contains multiply concepts which are correlated in real-world

multimedia datasets, either positively or negatively. In other words, some concepts

co-occur more frequently, e.g., sea and whale; while others rarely co-occur, e.g., sky

and meeting. Such correlations can provide important context cues to help detect the

concepts [44,46,92,155,156]. This chapter is organized as follows. In the Section 4.1,

a hierarchy is built using the inter-concept correlations. The second section describes

a novel idea of enhancing imbalanced concept detection using the correlation between

the retrieval scores and labels. The third section shows how to setup the framework

and compares the results of the proposed system on the TRECVID dataset. Finally,

the last section draws the conclusion and identifies future research directions.

4.1 Building Hierarchies for Datasets

4.1.1 Conditional Probability Calculation

Although the inter-concept connection information has been proposed to enhance

semantic concept retrieval results, most of them utilize the hierarchical relationship

63
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from the data provider [157] for combining the classes to generate reorganized hier-

archies. For instance, if a dataset contains labels “apple”, “banana”, and “fruit”, the

data provider may give a note “apple imply fruit”. In such case, the data instances

with the label “apple” would be automatically added to the label “fruit”. However,

many other kinds of relationships are not that straightforward and relationships gen-

erated manually may lead to biases and not suitable for big datasets.

In this framework, we first build a hierarchical model for all concepts based on

conditional probabilities generated from the training set. Here we define Cparent as

a parent concept and Cchild as a child concept. Let P (.) be the probability, then

C+
parent denotes the positive collection of Cparent; whereas C+

child represents the positive

collection of Cchild. If Cparent is the parent of Cchild, the appearance of Cchild should

imply the appearance of Cparent. As an example, if a video shot contains the concept

“car”, it definitely includes the concept “vehicle” as well, unless the ground truth is

incorrect. In this example, “car” is a child concept while “vehicle” is a parent concept.

The probability of Cparent appearing increases if Cchild appears, and the probability

of Cparent appearing decreases if Cchild does not appear. This conditional probability

can be computed by Equation (4.1).

P (C+
parent|C+

child) =
P (C+

parent and C+
child)

P (C+
child)

. (4.1)

4.1.2 Bottom-up Organization

In real-world, some concept pairs have the parent-child relationship (like “sky”

and “sun”). This kind of inter-concept relationships should also be considered. In

addition, since the concept labels in multimedia datasets are usually manually decided

by the volunteers or by some automatic labeling techniques, the ground truth is not
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always correct. Therefore, a threshold of 0.9 is set to determine whether two concepts

have the parent/child relationship, which is represented as P (C+
parent|C+

child) > 0.9.

Animal

Mammal

Cetacean

Whale

Figure 4.1: Parent/Child relationship examples 1

Outdoor

Road

Traffic

Figure 4.2: Parent/Child relationship examples 2

Next, the hierarchy model of all concepts is built from the leaf nodes (in a bottom-

up manner) using all the parent-child concept pairs generated and filtered. If a

concept has no child but at least one parent, it is considered as a leaf node and is

added to the initial model. The following step shows the example of including the

“direct” parent nodes for the “whale” leaf node. A whale is a cetacean, a mammal,
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and an animal as well. With the fact that the appearance of a whale implies the

appearance of a cetacean and “cetacean” implies “animal”, these two concept pairs

also have the parent-child relationship. Thus, “whale” is first included as a child node

and then followed by “cetacean”, “mammal” , and “animal”. If a parent concept has

no parent like “animal” in this case, it will be finally considered as a root (head)

node. These operations are shown in Figure 4.1 and Figure 4.2.

Office
Buildings

Military
Buildings

Conference
Buildings

Building

Religious
Building

Residential
Building

Figure 4.3: Siblings relationship examples 1

Hockey

Sports

Baseball Golf Soccer Football Tennis Basketball

Figure 4.4: Siblings relationship examples 2
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After finding out all the qualified parent-child concept pairs, we can combine

the branches into a tree and thus find the siblings of the child concepts as given in

Figure 4.3 and Figure 4.4. Different tree structures would be generated from different

datasets, even from different subsets of a dataset. In the aforementioned example, if

the concept “mammal” is removed, “animal” could be the direct parent of “cetacean”

in the updated hierarchy. In general, the more concepts included, the more complete

the model would be. Though the hierarchy model can never be perfect, it is suitable

for the particular dataset on which it based.

4.2 Prediction Score Enhancement for Rare Con-

cept Retrieval

4.2.1 Score Based Correlation Generation

As mentioned in related work, most previous research including the aforemen-

tioned conditional probability approaches calculates the inter-concept correlations

and builds the hierarchical structures using the label information in the training

data, i.e., the appearance or non-appearance of the concepts. One main problem of

using such information to leverage the retrieval scores is the correlation coefficients

among rare concepts, and correlation coefficients between imbalanced concepts and

balanced concepts are usually weak. Suppose that we calculate the correlation be-

tween a common concept with 10,000 instances and a rare concept with 10 instances,

the correlation coefficient will be small and even one wrong label for the rare concept

in the training set will lead to a big mistake in inter-concept correlation calculation

and thus cause wrong results.
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Another issue is that high correlations between concepts do not necessarily lead

to the high correlation between the concepts and the detection (prediction) scores,

especially for rare concepts since the quality of scores from imbalanced concepts is

often worse than those from the balanced concepts. This is caused by the nature of

the original dataset (with a skewed distribution) and directly using rare concepts’

correlation information for score integration may even downgrade the original results.

For instance, the concept “hurricane” should have a positive correlation with the

concept “disaster”. However, with the bad prediction scores, the concept “hurricane”

does not really help the retrieval of the concept “disaster” in the imbalanced dataset.

There are only 6 out of the total of 137,272 video shots that include the concept

“cow” in the TRECVID dataset. This raises the third issue: the detection scores of

rare concepts themselves can be relatively imprecise. Most of the classifiers cannot

get acceptable prediction scores for these rare concepts albeit with such a big training

dataset. To solve these three issues, we propose a model to integrate the prediction

scores of the rare concepts using the Pearson correlation coefficients from both the

label and score information for score enhancement in this framework.

The Pearson product-moment correlation coefficient [110], denoted by ρ (or r),

measures the strength of a linear association between two variables X and Y , and is

widely used as a measure of the degree of the linear dependence between X and Y .

It attempts to draw a line of best fit through the data of two variables, and ρ (or r)

indicates how far away all these data points are to this line of best fit. The ρ (or r)

values are between +1 and -1 (inclusive), where +1 is a total positive correlation, 0

is no correlation, and -1 is a total negative correlation. Let cov(X, Y ) and E be the

covariance and expectation of X and Y , σX and σY be the standard deviations of X
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and Y , and µX and µY be the mean values of X and Y . For a population, we have

the following:

ρX,Y =
cov(X, Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
; where (4.2)

cov(X, Y ) = E{[x− E(x)][(y − E(y)]} = E(xy)− E(x)E(y);

σX =

√√√√ 1

N

N∑
i=1

(xi − µX)2;

σY =

√√√√ 1

N

N∑
i=1

(yi − µY )2;

µX =
1

N

N∑
i=1

xi;

µY =
1

N

N∑
i=1

yi.

Here we define CT as the label information of an imbalanced (target) concept,

and let SR be the prediction score of a support (related) concept which can be either

a balanced concept or imbalanced one. Take “cow” as a target concept. In order

to enhance the prediction score of the rare concept “cow”, all ρ(CT ,SR) are calculated

and ranked. In the equation, T is the concept “cow” and R = 1, 2, · · · , N and N is

the number of concepts. The top ten related concepts are shown in Figure 4.5, which

means the prediction scores of these concepts are helpful to enhance the prediction

score of the concept “cow”.

As shown in Figure 4.5, the top ten related concepts are “Herbivore”, “Ruminant”,

“Mammal”, “Quadruped”, “Wild Animal”, “Vertebrate”, “Animal”, “Animal Pens

And Cages”, “Sea Mammal”, and “Cattle”, respectively. Clearly, most of them are

reasonable at the first glance, expect “Sea Mammal”. Nevertheless, the shapes of

some sea mammals are similar to those of the cows. Especially, one common kind of
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Figure 4.5: Top ten related concepts that support the rare concept “cow”
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sea mammal, manatee, is also known as “sea cow”. This highlights another advantage

of the proposed framework, which can find the potentially related concepts. Figure

4.5 also implies that the prediction score of the concept “cow” itself is imprecise and

thus will not be integrated for the enhancement.

4.2.2 Negative Related Concepts

After ranking top ten related concepts by their correlation values and building a

hierarchy as shown in Figure 4.5, it can be further expanded using the hierarchical

models built in Section 4.1. For a target concept CT , if a related concept CR is

connected to it, its parent will also be added to the model. In this example, since

“Quadruped” is connected to “cow”, “Animal” would be included as well. However,

since “Animal” is already included based on the ranked scores, we don’t need to add

it again as shown in Figure 4.5. In this framework, CT is a rare concept. Afterward,

the scores of the top ten related concepts are used to train an integration model using

a discriminant analysis classifier.

As discussed earlier, some concepts such as “sky” and “shark” rarely co-occur,

which can also provide important context cues to help detect the concepts. Take the

aforementioned example, the top ten concepts that have a negative relationship with

“cow” are “Hospital”, “Bomber Bombing”, “Fear”, “Factory”, “Sports Car”, “Dis-

gust”, “Handshaking”, “Airplane Landing”, “Black Frame”, and “Network Logo”.

Here, these 10 concepts are not simply irrelevant to “cow” as they look like, but they

also have relatively strong negative relationships. That is, if “Hospital” appears in

a testing frame, “cow” is very unlikely to appear in the same frame. Therefore, the
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opposite numbers of scores from those negative-related concepts can be integrated in

the enhancement framework.

4.2.3 Score Integration

To train the integration model, 5 different kinds of popular algorithms are used,

including Support Vector Machine (SVM) [158,159], Naive Bayes (NB) [160], Random

Forest (RF) [161, 162], Logistic Regression (LR) [134, 163, 164], and Discriminant

Analysis Classifier (DAC) [134,163,164].

A Support Vector Machine (SVM) is a discriminative classifier formally defined

by a separating hyperplane to classify the dataset so that the geometric margin is

maximized. A “Naive Bayes” (NB) is a classification technique based on the Bayes’

Theorem with an assumption of independence among predictors. A Random Forest

(RF) is a meta estimator that fits a number of decision tree classifiers on various

sub-samples of the dataset and uses averaging to improve the predictive accuracy

and control over-fitting. Logistic Regression (LR) is another predictive analysis and

a kind of generalized linear model. It can be used to conduct when the dependent

variable is binary just like in this case. Instead of just predicting binary-valued labels

in linear regression, logistic regression uses a different hypothesis class to predict the

probability that a given example belongs to the positive (e.g., fraud) class versus the

probability that it belongs to the negative (e.g., non-fraud) class by a logistic function.

Discriminant Analysis Classifier (DAC) assumes that the data from different classes

are generated based on different Gaussian distributions. In the training phase, the

fitting function calculates the parameters of a Gaussian distribution for each class;
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while in the testing stage, the trained classifier finds the class with the smallest

misclassification cost.
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Figure 4.6: The proposed framework

4.2.4 Workflow

The proposed framework includes a training stage as well as a testing stage as

shown in Figure 4.6. The testing dataset is first split into three parts, including a

training set, a validation set, and a testing set. In the training phase, the training set

conditional probabilities are calculated to build a hierarchical model for all concepts

from the training label information.

Next, for all the validation video shots and N concepts, N concept detection

models are trained such that for each video shot, the nth model outputs a score

measuring the likelihood that concept n exists in that video shot. For this part, all

kinds of classifiers can be employed to generate different prediction scores, which may
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lead to different score-based correlations from the same dataset. That is, for the same

CT (like “cow”) in the TRECVID dataset, different hierarchies can be generated based

on different classifiers applied. In the aforementioned example, ten score vectors of

the positively related concepts and ten score vectors of the negatively related concepts

are put together to train an integration model.

In the testing step, each testing video shot of the target concept is plugged into all

concept detection models to generate the corresponding testing scores for the related

concepts chosen. These scores are then input to the trained score integration model

to generate a new set of re-ranked scores. Please note that the scores of the target

concept may or may not be used, as shown in Figure 4.5, depending on whether they

are chosen in the training phase or not. Finally, the new output scores are evaluated.

4.3 Experiments and Results

4.3.1 TRECVID Dataset

In the experiment, the IACC.1.A and IACC.1.B datasets are chosen from the se-

mantic indexing (SIN) task of the TRECVID 2015 benchmark [165], which aims to de-

tect the semantic concept contained within a video shot. The task assign IACC.1.A as

the training dataset and IACC.1.B as the testing dataset. There are several challenges

for the SIN task, such as data imbalance, scalability, and the semantic gap [166,167]

as mentioned earlier.

The TRECVID conference series encourage research in information retrieval and

provide a huge number of videos for training, and there are more than 300 hours

in IACC.1.A and IACC.1.B datasets. By extracting keyframes from each video shot,
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totally 262,911 training data instances are generated. We further divide the IACC.1.B

dataset into a validation set with 68,663 data instances and a testing set with the

same number of data instances [168].

In this dataset, totally 346 concepts are given, including many popular semantic

concepts like “Face”, “Vehicle”, and “Violent” which are common and appear in

many research papers. The list of concepts and the detailed explanations can be

found in [53]. In this framework, we download the detection scores from the DVMM

Lab of Columbia University [169] for all video shots, who ranked the first several

years in the TRECVID competition. The TRECVID 2015 training labels are also

utilized to increase the number of ground truth in the negative association selection

component. The proposed multimedia big data mining system is tested using some

of the results from previous work in [109,110].

4.3.2 Experimental Results

Since we target on imbalanced concept retrieval in this framework, 20 most rare

concepts with an average P/N ratio of 0.0001 are chosen. Among the video shots in

the testing dataset, each of them have no more than 10 video shots in the dataset.

These 20 concepts are: “Car Crash”, “Cigar Boats”, “Crustacean”, “High Security

Facility”, “Helicopter Hovering”, “Cetacean”, “Military Buildings”, “Rpg”, “Pris-

oner”, “Police Truck”, “Colin Powell”, “Earthquake”, “Oil Drilling Site”, “Rescue

Helicopter”, “Dolphin”, “Security Checkpoint”, “Fire Truck”, “Whale”, “Cows”, and

“Yasser Arafat”.

The experimental results are shown in Table 4.1. The “Baseline” one is calculated

using the raw scores directly from the classifiers in [169]. Though the scores here were
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Table 4.1: Experimental results on 20 most rare concepts

Framework

MAP
MAP10 MAP20 MAP50 MAP100 MAP200 MAP500

Baseline 0.0446 0.0438 0.0312 0.0318 0.0322 0.0302

SVM (LL) 0.0125 0.0125 0.0125 0.0125 0.0130 0.0130

SVM (SL) 0.0167 0.0167 0.0167 0.0088 0.0088 0.0090

NB (LL) 0.0056 0.0142 0.0142 0.0124 0.0124 0.0124

NB (SL) 0.0056 0.0146 0.0146 0.0113 0.0132 0.0137

RF (LL) 0.0375 0.0408 0.0297 0.0215 0.0215 0.0215

RF (SL) 0.0426 0.0460 0.0401 0.0417 0.0417 0.0417

LR (LL) 0.0234 0.0309 0.0335 0.0278 0.0256 0.0230

LR (SL) 0.0467 0.0532 0.0554 0.0551 0.0535 0.0529

DAC (LL) 0.0532 0.0577 0.0554 0.0485 0.0462 0.0436

DAC (SL) 0.1130 0.1130 0.0856 0.0733 0.0711 0.0614

Proposed 0.1321 0.1101 0.0916 0.0885 0.0850 0.0681

the best prediction scores, it still performs bad on rare concept retrieval because of

the extremely skewed distributions. As mentioned in Section 4.2.3, we use differ-

ent classifiers including Support Vector Machine (SVM), Naive Bayes (NB), Random

Forest (RF), Logistic Regression (LR), and Discriminant Analysis Classifier (DAC)

to re-rank those scores. “LL” is for label-label correlations, which means only using

the correlations calculated by the label information in the training dataset. Com-

paratively, “SL” stands for score-label correlations, which is the main contribution of

this framework.

The results clearly show that if the target concepts are extremely rare, using only

correlations calculated by the label information from the training dataset does not

help and can even downgrade the results. Table 4.1 shows that we achieve a better

score enhancement when using the information generated by the score-label correla-

tions, in comparison with that using the label-label correlations for every classifier.

Albeit with the imprecise raw scores on rare concepts, the proposed framework can

successfully re-rank and enhance the results as can be seen from Table 4.1.
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Since the Naive Bayes (NB) approach is based on applying the Bayes’ theorem

with strong independence assumptions between the attributes, which is not true in

this case (inter-concept correlations), it performs the worst. Furthermore, because

of the nature of Random Forrest (RF) (i.e., random tree selected), we run it three

times and the results are averaged. The proposed framework is presented in the

“Proposed” column which also includes information from negative correlations. It

uses the correlations found in Section 4.2.2 and integrates the scores from those

negative-related concepts.

4.4 Conclusions

Rare concept retrieval is a challenge task due to the nature of the imbalanced

datasets. Since the data instances in the majority class usually overshadows those in

the minority class, it is hard to get acceptable retrieval results when the target concept

is a rare concept. In this section, we propose a score re-rank system using the label-

score correlations to leverage the semantic concept retrieval task from the video shots.

The experimental results clearly show the effectiveness of the proposed framework and

how it can successfully enhance the prediction scores of the rare concepts.

The label-score correlations also work like inference rules which can provide a clue

for how to define a rare concept. Suppose we have the data of an unknown kind

of “animal”, using the proposed framework can help find the relationships between

several known animals and concepts with it. Considering the “cow” example, we can

now better answer the question of what is a “cow”. Similarly, we can somehow define

a new concept, a new species, or a new object, even though we do not know what it is

now. This kind of definitions is very helpful to the fields of information retrieval and
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knowledge discovery, which can be further investigated as the future work. Another

research direction is to find an efficient way to build larger concept hierarchies. When

we have thousands of concepts in a dataset, the trees will be much more complicated

and thus more research efforts are needed.



CHAPTER 5

Classifier Fusion and Score Integration
by Judgers

In this chapter, a novel idea of classifier combination is proposed and organized

as follows. In Section 5.1, the proposed classifier fusion model [170] is introduced

in details. In the experimental section, two benchmark action datasets are used for

evaluation. Finally, concluding remarks are presented in the last section.

5.1 Framework

5.1.1 Classifier Ensemble

Suppose we have an instances x, where x is a d-dimensional feature vector. Let

ω1, ω2, · · · , ωM be M categories, and α1, α2, · · · , αM be a finite set of possible actions.

Suppose we have totally N classifiers, namely c1, c2, · · · , cN . Each classifier will gen-

erate a posterior probability Pcn(ωj|x) for x. Here, we define a loss function λ(αi|ωj)

which describes the loss occurred for taking action αi when the state of nature is ωj.

Obviously, we can get a set of posterior probabilities used for classification generated

by different classifiers as: Pc1(ωj|x), Pc2(ωj|x), · · · , Pcn(ωj|x).

79
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For each probability function, the expected loss associated with taking action αi is

defined in Equation (5.1). Then, as a classification problem, a zero-one loss function

is defined in Equation (5.2).

Rcn(αi|x) =
M∑
j=1

λ(αi|ωj)Pcn(ωj|x) (5.1)

λ(αi|ωj) =

 0 i = j

1 i 6= j

, where i, j = 1, 2, · · · ,M (5.2)

Using these definitions, for each classifier, the condition risk for category ωj is

defined in Equation (5.3). R needs to be minimized to achieve the best performance

for a certain classifier cn using Equation (5.4) as follows.

Rcn(αi|x) =
∑
j 6=i

Pcn(ωj|x) = 1− Pcn(ωi|x) (5.3)

Rcn =

∫
x∈Ω

Rcn(α|x)p(x)dx =

∫
x∈Ω

[1− Pcn(ω|x)] p(x)dx (5.4)

Considering N different classifiers, most previous fusion methods use a certain al-

gorithm to fuse different Pcn(ωj|x) for M categories. For example, using the weighted

combination rules, we can generate a combined posterior and a new conditional risk

R using Equations (5.5) and (5.6).

Pfusion(ωj|x) =
N∑
n=1

wnPCn(ωj|x) (5.5)

Rfusion =
∫
x∈Ω

[1− Pfusion(ω|x)] p(x)dx

=
∫
x∈Ω1

[1− Pfusion(ω1|x)] p(x)dx+
∫
x∈Ω2

[1− Pfusion(ω2|x)] p(x)dx

+ · · · +
∫
x∈ΩM

[1− Pfusion(ωM |x)] p(x)dx,

where Ω1 ∪ Ω2 ∪ · · · ∪ ΩM = Ω and Ωi ∩ Ωj = φ (i 6= j, i, j = 1, 2, · · · ,M)

(5.6)

As discussed in Chapter 2, the issue of earlier ensemble models is that we can

only fuse classifiers performing well in all categories while integrating a relatively
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bad classifier may lead to even worse results and eventually reduces the performance

in most of the time. However, as a bad guy with a good point, a relatively bad

classifier may outperform a good classifier for a certain class. Thus, the proposed

framework can still use it to enhance the classification result even though it is not a

good choice for all the other classes. We did this by splitting a classifier is split into

different “judgers”, with each judger working independently to determine the label

of a testing instance. We can thus find the good point in a bad classifier and the

conditional risk can be reduced by using different posteriors for different classes, as

shown in Equation (5.7).

Rmin =
∫
x∈Ω1

[1− Pmax(ω1|x)] p(x)dx+
∫
x∈Ω2

[1− Pmax(ω2|x)] p(x)dx

+ · · · +
∫
x∈ΩM

[1− Pmax(ωM |x)] p(x)dx

(5.7)

5.1.2 Generation of Judgers

In order to generate judgers, the proposed classifier fusion model firstly split a

dataset into three parts including a training, a validation, and a testing dataset.

The classification models are then trained using the training dataset, followed by

the calculation of precision and recall on the corresponding validation dataset. Here,

precision is defined as a positive judger and recall rate is denoted as a negative judger,

where TP stands for the true positive value, and FP and FN are the false positive

and false negative values, respectively as shown in Equation (5.8) and (5.9).

Jpos = precision =
TP

TP + FP
(5.8)

Jneg = recall =
TP

TP + FN
(5.9)

Suppose there are M classes in a certain dataset. For one type of features fl (l ∈

[1, L], L is the number of feature descriptors, which is two in this framework), based
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on the classification results on the validation dataset, 2×M judgers will be generated

for a certain classifier cn (n ∈ [1, N ], N is the total number of the classification models

built on one type of features) as follows:

Jn,lpos1
, Jn,lpos2

, Jn,lpos3
· · · Jn,lposm · · · , J

n,l
posM

Jn,lneg1
, Jn,lneg2

, Jn,lneg3
· · · Jn,lnegm · · · , J

n,l
negM

(5.10)

Here, Jn,lposm is a positive judger generated by classifier cn using feature fl for the

class ωm (m ∈ [1,M ], M is the total number of categories). Correspondingly, Jn,lnegm is

a negative judger. If Jn,lposm is high, it indicates that this judger is relatively accurate.

Accordingly, if it judges a testing instance as in class ωm, it is highly likely that this

judgment is correct. On the other hand, if Jn,lnegm is high, it can be considered as a

good negative judger since if classifier cn does not label a testing instance as class

ωm, the ground truth of the instance is not likely to be ωm. These judgers form

the committee to give the final classification results. In summary, suppose there are

totally N classifiers and L types of features fed for each classification model, the total

number of judgers is 2 ×M × N × L. As an instance, for the UCF11 dataset [127]

used in this work, there are 11 classes. Considering all the three types of classifiers

introduced on two kinds of features, the total number of judgers generated would be

132 equal to 2× 11× 3× 2.

5.1.3 The Classifiers Fusion Model

After both positive and negative judgers are generated, the next important issue

is how to fuse the outputs from different judgers to draw the final conclusion. In

order to assemble these judgers, a novel classifier ensemble framework is proposed as

shown in Figure 5.1.
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Figure 5.1: The proposed classifier ensemble framework

As shown in Figure 5.2, all the judgers generated are used to build a novel classifier

fusion model. For a testing instance x, each classifier will assign x a serial of positive

and negative judgers on each feature space. Suppose we have the following list of

judgers: J11
pos1

, J11
neg1

, J11
pos2

, J11
neg2

, · · · , J21
pos1

, · · · J31
pos1

, · · · J32
posM

, J32
negM

.

Here, the positive judgers are first used and will be re-ranked by their accuracies.

When the highest positive judger ranks the first and assigns x as class ωm, x will be

determined as class ωm. For example, for a testing instance, if J32
pos1

is the largest

positive judger with the highest accuracy, that testing instance will be classified as

class 1.

In the next step, the highest positive judger will be compared with the largest

negative judger for the same class, i.e., Jn,lneg1
in the previous example. Take the same

example, if the value of J21
neg1

is larger than J32
pos1

(meaning that the negative judger

dominates the classification), x won’t be assigned to class 1 because there exists a
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Figure 5.2: An example of the proposed classifier ensemble framework
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larger negative judger. That is to say even if the largest positive judger assigns a

testing instance to class ωm, it will be skipped and the second largest positive judger

followed will be considered and compared with the corresponding largest negative

judger. A similar process continues until a positive judger assigns x to a class without

the corresponding largest negative judger rejecting it. The results of this particular

testing instance are shown as follows:

J32
pos1

, J12
pos3

, J31
pos8

, J22
pos2

, · · ·

J32
pos1

< J21
neg1

J12
pos3

> max Jn,jneg3

(5.11)

In this example, the proposed model assigns x to class 3. This procedure is applied

to all the testing instances. In very rare cases, however, it should be noticed that

if all the corresponding largest negative judgers reject the classification results from

the positive judgers, the testing instance will be assigned back to the decision of the

highest positive judger at the beginning.

5.2 Proposed Apache Spark Cluster

Nowadays, a number of large-scale data processing frameworks are turning towards

generalized MapReduce frameworks after Apache Hadoop is released. Among them,

Spark is an open source big data processing framework advertised as extremely fast

cluster computing and increases the capability of conventional MapReduce use-cases.

It is a fast and general engine for big data processing and has been deployed for

many popular large-scale systems. With cores complemented by a set of higher-level

libraries including Spark Streaming, SparkSQL for NoSQL database, GraphX for

graphs computation, and Mllib for machine learning.
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Based on Spark, an efficient system for classifier fusion of large-scale data is built

as shown in Figure 3.3. Spark Core is the foundation of the overall project which

provides the distributed task dispatching, scheduling, and basic I/O functionalities.

Currently, the Spark cluster contains four boxes with one master node and three slave

nodes. Each node is setup to instantiate 2 workers with 4 GB of memory and 1 TB

of storage.

The main abstraction Spark provided is a Resilient Distributed Dataset (RDD)

which is an immutable fault-tolerant, distributed collection of objects that can be

operated in parallel. An RDD can contain any type of objects and is created by

load-ing an external dataset or distributing a collection from the driver program.

In addi-tion to the only two operations in MapReduce, Spark provides many other

operations called transformations such as map, sample, groupByKey, reduceByKey,

union, join, sort, mapValues, and partionBy. The above operations can be used either

stand-alone or in combination to run in a single data pipeline use case. Currently,

Spark is originally written in Scala and now fully supports Java; while it also supports

Python unstably. In this framework, the codes are all written in Java.

In details, we first read the keys (sample ID) and values (scores from different

classifiers for different features) as follows to build a very efficient multimedia large-

scale data classification model using Spark:

Key = sample1, V alue = (sc1,f1,ω1

1 , sc1,f1,ω2

1 · · · sc2,f1,ω1

1 · · · scN ,fL,ωM
1 )

Key = sample2, V alue = (sc1,f1,ω1

2 , sc1,f1,ω2

2 · · · sc2,f1,ω1

2 · · · scN ,fL,ωM
2 )

Key = sample3, V alue = (sc1,f1,ω1

3 , sc1,f1,ω2

3 · · · sc2,f1,ω1

3 · · · scN ,fL,ωM
3 )

· · ·

Key = sampleP , V alue = (sc1,f1,ω1

P , sc1,f1,ω2

P · · · sc2,f1,ω1

P · · · scN ,fL,ωM

P )

(5.12)
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Here, the meanings and notations are the same as introduced in previous sections

and the output values are the classification results. To easily compare the performance

with other existing approaches, two popular medium-sized video datasets are used

in the experiments. Nevertheless, the Spark cluster is able to handle large-scale

multimedia datasets easily. For a larger dataset, more key-value pairs will be created

and thus the system can help more in terms of efficiency in comparison to classical

classifier fusion models.

5.3 Experimental Results

To test the efficiency of the proposed classifier ensemble framework, two popular

and widely accepted benchmark multimedia datasets in the field of human action

recognition are used in the experiments. These two datasets are the KTH dataset [171]

and the UCF11 dataset [146].

In the two experiments on KTH and UCF11, the 25-fold cross validation is

adopted. Three classifiers introduced in Section 5.3.2 are used, namely SVM, SRC,

and HDC; while both SIFT and STIP features are used.

5.3.1 Feature Extraction

Different from some other papers that extract features from the whole images or

frames, we do feature extraction only from the Region of Action (ROA) in order to

capture the action related information. Here, we use the ROA selection and feature

extraction strategy from [66] which improve the action detection and recognition

performance in an automated system by fully exploring the ROAs. This cited work
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also analyses and integrates the motion information of actions in both temporal and

spatial domains.

This approach can be roughly divided into three steps. In the first step, ROAs

are driven from two popular spatio-temporal methods including Harris3D corners and

optical flow. Next, the idea of integral image in [172] is utilized for its fast imple-

mentation of the box type convolution filters. Similar idea is also used in SURF [173]

promoted from SIFT [148]. Finally, the Gaussian Mixture Models (GMM) are applied

sequentially in this framework. All the mean vectors of the Gaussian components in

the generated GMM model are concatenated to create GMM supervectors for video

action recognition. SIFT and STIP [174] features which are widely used are extracted

from frames in video datasets in this work to describe the action sequences in video

action recognition. Other good features can be also fed to the proposed model for

better results.

5.3.2 Classification

Similar as features, the classifiers fusion framework accepts most kinds of classi-

fiers. Specifically, three popular classification algorithms are used in this framework

as follows:

Support Vector Machine

SVM (Support Vector Machine) is one of the state-of-the-art algorithms for classi-

fication in the data mining area. The general idea is to build a separating hyperplane

to classify the data instances so that the geometric margin is maximized. In order to

handle the case that the classes are linearly inseparable. The kernel trick is utilized.
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In this framework, we applied the LibSVM, which is one of the most popular off-

the-shelf software implementations. The radial basis function (RBF) kernel is chosen

based on experimental results of empirical study.

Sparse Representation

Sparse representation [175] is a hot research topic in the past decade which builds

overcomplete dictionaries to represent the training dataset. With this kind of dic-

tionaries including prototype signal-atoms, signals can be described by sparse linear

combinations of these atoms. Sparse representation has been widely used in the

areas of image denoising, object detection, semantic concept retrieval, information

compression and other useful applications including multimedia data classification.

Here, we use Sparse Representation Classification (SRC) [176–181] along with

its dictionary learning techniques and design a framework to analyse actions of one

person and events between multiple people. For the task of dictionary learning, the

widely-used K-SVD algorithm is adopted, which aims at deriving the dictionary of

sparse representation using the Singular Value Decomposition (SVD). The class label

of a testing instance can be determined by finding the minimum reconstruction error

of the testing sample represented by the trained dictionaries. A disadvantage of the

SRC scheme is its high computational complexity associated with the minimization

problem.

Hamming Distance

A novel scheme Hamming Distance Classification (HDC) [182,183] is also included

in this work. HDC is an efficient classifier for real-time applications due to its effi-
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ciency. For each class, a threshold will be calculated by the median value of the inner

products of each pair of features in the training set. Given a testing instance, a binary

string can be coded based on the inner product between the testing sample and each

training sample. If the inner product of the testing sample and a training sample is

less than the trained threshold, it would be assigned to “0”; otherwise, it would be

coded as “1”. Finally, the hamming distance between the bit vector from the testing

instance and each class is calculated, and this testing sample is assigned to the class

with smallest hamming distance.

5.3.3 Results on the KTH Dataset

The KTH dataset includes 6 different human actions (i.e., boxing, hand clapping,

waving, jogging, running, and walking) from 25 actors in 4 kinds of scenarios (namely

indoors, outdoors, outdoors with scale variation, and outdoors with different clothes).

Thus, there are 600 video sequences in total. All videos are in the “avi” format

and were recorded in a controlled setting with slight camera motion and a simple

background as shown in Figure 5.3.

Table 5.1 shows the confusion matrix of experimental results. To fully evaluate

the model, the proposed fusion strategy is compared with 6 other fusion strategies

in terms of accuracy and the results are given in Table 5.2. The arithmetic mean

and geometric mean represent the sum and product of the scores. Two ways of

hybrid means are also tested. One is first to calculate the arithmetic mean scores

among different classifiers based on the same kind of features and then to compute

the geometric mean scores between different kinds of features; the other kind is to do

the opposite.
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Figure 5.3: Sample frames from the KTH dataset

Table 5.1: The confusion matrix of six action categories in the KTH dataset

Framework

MAP
Box Clap Wave Jog Run Walk

Box 96 3 0 0 0 1

Clap 0 99 0 0 0 1

Wave 1 5 94 0 0 0

Jog 0 0 0 88 11 1

Run 0 0 0 0 100 0

Walk 0 0 0 0 0 100

Table 5.2: Comparison of the proposed classifier ensemble framework and other fusion algorithms
on the KTH dataset

Algorithm Average Precision

Arithmetic mean 90.7%

Geometric mean 90.0%

Hybrid mean (Arithmetic for different features) 90.7%

Hybrid mean (Geometric for different features) 90.3%

Linear regression on SIFT 90.5%

Linear regression on STIP 91.2%

The proposed strategy 96.2%
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In addition, the proposed classifier ensemble model is compared to 4 other pub-

lished frameworks. Table 5.3 compares the accuracies among them. We also split

the experiment by first using only SIFT and then using only STIP as described in

Section 5.1. As can be clearly seen from the comparison results, the proposed model

performs better the other ones.

Table 5.3: Comparison of overall average precision of the proposed method and state-of-the-art
methods on the KTH dataset

Group Average Precision

Schuldt et al. [171] 71.5%

Dollar et al. [184] 80.7%

Yin et al. [185] 82.0%

Niebles et al. [186] 91.3%

The proposed work on SIFT 93.7%

The proposed work on STIP 95.3%

The proposed work on both features 96.2%

5.3.4 Results on the UCF11 Dataset

The UCF11 dataset which also known as “YouTube Action Dataset” is more chal-

lenging than the KTH dataset, since it contains realistic actions, camera motions,

and complicated backgrounds. There are eleven action categories, namely basket-

ball shooting, biking/cycling, diving, golf swinging, horseback riding, soccer juggling,

swinging, tennis swinging, trampoline jumping, volleyball spiking, and walking with

a dog. For each category, the videos are grouped into 25 groups with more than 4

action clips in it. Some sample frames are given in Figure 3.5.

Similar to the experimental steps for the KTH dataset, we compare the proposed

work with 6 other fusion strategies in terms of accuracy and the results are given

in Table 5.4. Meanwhile, we also compare the results with 4 other state-of-the-art

models and the results are shown in Table 5.5. Table 5.5 also shows the advantage
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of the proposed model which can fuse different kinds of features to achieve a better

performance than the other methods, though the result by only one kind of feature

may not able to always outperform other methods.

Table 5.4: Comparison of the proposed ensemble model and other fusion algorithms for the UCF11
dataset

Algorithm Average precision

Arithmetic mean 74.91%

Geometric mean 74.82%

Hybrid mean (Arithmetic for different features) 75.27%

Hybrid mean (Geometric for different features) 75.09%

Linear regression on SIFT 77.82%

Linear regression on STIP 75.91%

The proposed strategy 80.3%

Table 5.5: Comparison of overall average precision of the proposed method and state-of-the-art
methods for the UCF11 dataset

Method Average precision

Chen et al. [187] 67.5%

Perez et al. [123] 68.9%

Liu et al. [147] 71.2%

Mota et al. [188] 75.4%

Multi-classifier on SIFT 69.1%

Multi-classifier on STIP 74.8%

The proposed work on both features 80.3%

5.4 Conclusions

Recently, ensemble learning models have received a lot of attentions with the

at-tempt to take advantages of multiple useful classifiers. In this section, a novel

classifier ensemble framework based on judgers is proposed to fuse the classification

results generated from different classifiers and features. The proposed framework is

built on an Apache Spark cluster and applied to two different human action video

datasets as a proof-of-concept. The experimental results show that the proposed

framework outperforms several existing state-of-the-art classification approaches.
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Although these two datasets are medium-sized, the proposed framework is capable

of handling big datasets as it is built on Spark. Thus, the proposed framework can be

easily extended to work with more classifiers and features for other multi-class and

multi-feature classification problems. Theoretically, the more classifiers and features

included, the more judgers will be generated correspondingly, which can potentially

lead to better classification results.



CHAPTER 6

Applications

Several frameworks have been proposed using the deep learning techniques that

show promising results in application domains such as automatic speech recogni-

tion [189], computer vision [190], and Natural Language Processing (NLP) [191].

This chapter is organized as follows. Utilizing the proposed framework in text data

analysis, Section 6.1 introduces its application on an Amazon review dataset while

Section 6.2 shows a novel fast stance analysis model for the 2016 United States pres-

idential election campaign details. In Section 6.3, an online information retrieval

system is presented for demonstration purpose.

6.1 Imbalanced Text Data Classification

In this section, we will investigate how the proposed deep learning framework

performs when dealing with the imbalanced text data with the help of NLP.

6.1.1 Motivation

In the previous sections of this dissertation, we mainly focus on image and video

data while the data imbalance problem also exists in text data. For example, the

95
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analysis of reviews from online reviewers is one of the most important research topics.

Reviews are the prime mover of goods on e-commerce websites as they impact nearly

20% of the online sales. With global e-commerce product sales pegged at $2 trillion,

i.e., 8.3% of US retail sales of the fourth quarter, consumer reviews translate to nearly

$400 billion according to the Department of Commerce [192]. Interestingly, these

voices sprout from only 5% to 10% of online customers who actually write reviews.

Meanwhile, useful reviews often fall behind due to the mixed sentiments towards

the product. Given a 4-star rating, buyers often overlook the details concerning the

service, quality, pricing, and other notable services tagged with the product. By ap-

plying machine learning techniques on the reviews, buyers would know the reason why

the product lost 1 star and the merchant could improve their parts/service/quality

correspondingly. Therefore, we propose to develop a novel framework that learns the

reviews from multiple categories and breaks down each review to establish baseline

averages of the following types:

1. Pricing

2. Quality

3. Delivery and Packaging

6.1.2 Challenges

Text classification is a classical and important research topic in NLP and machine

learning with many applications. Currently, the most advanced and efficient way to

handle this challenging situation would be to employ solutions from other domains

of machine learning such as deep learning. While some previous approaches on deep
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learning were applied to the Amazon review dataset [193] and relatively good per-

formance was reported in comparison to the traditional Bag-of-Words (BoW) and

Bag-of-ngrams (n-grams) techniques, they all ignored a vital issue in the dataset.

The Amazon review dataset is a topically imbalanced dataset with a skew distribu-

tion, i.e., most ratings are 4 or 5 stars, while only a few products get 1 or 2 stars.

However, we believe that the reviews for bad products with low ratings are more im-

portant, since they usually point out the problems and can help Amazon to eliminate

dishonest sellers. Such skewness as in the Amazon review dataset poses a significant

challenge in major research problems pertaining to data mining and machine learning

as discussed in Section 2.2.

Recurrent Neural Network (RNN) has effective performance on processing sequen-

tial data, including text data. Therefore, RNN is also an important approach to solve

the text classification problem. Gated RNN is proposed and applied to sentiment

classification for texts [194]. The gated RNN takes the sentence vectors generated

by either a CNN or Long-Short Term Memory (LSTM) and combines them to form

a document-level vector, which is used for classification. This hierarchical structure

of gated RNN is also applied to the Hierarchical attention network (HAN) [195],

where the attention mechanism is incorporated to implicitly encode the structural

knowledge in the document representation and thus to improve the classification per-

formance. Their paper reports that they got 63.6% accuracy on the Amazon review

dataset using Recursive Neural Networks (RNN); while Joulin et al. [196] got 60.2%

accuracy using fastText. We applied their algorithms to a subset of the Amazon re-

view dataset and got similar results: 55.80% using RNN and 58.47% using fastText.

However, 68.69% of the ratings are 5 stars, which means we could easily reach 68.69%
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accuracy by assigning 5 stars to all the testing samples though the performance would

be meaningless at all. As shown in Tables 6.1 and 6.2, most reviews are 5 stars while

many popular deep learning algorithms can hardly retrieve true-positive reviews with

1 star or 2 stars, i.e., most of them are biased towards the majority classes (e.g.,

5 stars). When identifying the minor classes, these classifiers often perform inaccu-

rately, even for very large datasets with considerable numbers of training instances

(2 million training samples in both cited papers).

Table 6.1: Confusion Matrix of the Amazon review dataset using RNN

Ground truth

Predicted label
1 star 2 stars 3 stars 4 stars 5 stars

1 star 0% 0% 15.52% 6.90% 77.59%

2 stars 0% 0% 10.94% 4.69% 84.38%

3 stars 0% 0% 16.39% 3.83% 79.78%

4 stars 0.22% 0% 17.51% 8.53% 73.74%

5 stars 0.20% 0.07% 12.02% 8.14% 79.57%

Table 6.2: Confusion Matrix of the Amazon review dataset using fastText

Ground truth

Predicted label
1 star 2 stars 3 stars 4 stars 5 stars

1 star 0% 0% 3.45% 24.14% 72.41%

2 stars 0% 0% 0 17.50% 82.50%

3 stars 0% 0% 2.61% 19.61% 77.78%

4 stars 0.21% 0.21% 2.26% 18.31% 79.01%

5 stars 0% 0.19% 2.70% 17.97% 79.14%

6.1.3 Outline

The rating of the Amazon reviews can be regarded as an application of the text

classification problem, where each level of the rating is correspondingly mapped to one

class. To simplify this task and make it more suitable for our framework, we polarize

the training dataset and make it to a two-class problem, i.e., map “1 star” to positive

and “5 stars” to negative. Deep learning methods including RNN, TextCNN, and
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their combinations are commonly used to conduct the analysis and classification on

text data and have shown a lot of promising results in different applications [194–197].

In this application, TextCNN [197] is applied to test our framework in Chapter 2.

After polarization, positive and negative sentences are loaded from the raw data

files. Then, the next step in cleaning up text data (e.g., removing special characters) is

to have a better dataset for training. The CNN model we use in this dissertation looks

roughly as shown in Figure 6.1. The first layer embeds words into low-dimensional

vectors. The next layer performs convolutions over the embedded word vectors using

multiple filter sizes. In this example, it slides over 3, 4, or 5 words at a time. Finally,

we max-pool the result of the convolutional layer into a fixed-length feature vector,

add dropout regularization, as well as classify the result using a softmax layer.

Figure 6.1: Model architecture with one channel for an example sentence
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The first layer in our model is the embedding layer, which maps vocabulary word

indices into low-dimensional vector representations, i.e., word2vec vectors. It’s es-

sentially a lookup table that we learn from the data. Using filters of different sizes,

convolutional layers are built followed by max-pooling. To overcome the class imbal-

anced problem as mentioned in Chapter 2, we plan to build a balanced training set

and feed similar numbers of training samples for each class to a CNN model. Basi-

cally, more positive training instances (in this case for the “1 star” reviews) would

be generated based on their statistical distribution and the same number of training

samples from the negative class (i.e., “5 stars” reviews) would be packed and fed to

the CNN model. The details are shown in Algorithm 1. Since convolutional layers

produce various sizes of vectors by different shapes of filters, we use a 1-maximum

pooling layer to merge the results into fixed-length feature vectors. Similar to CNNs

in image classification, the dropout layers are applied for regularization, i.e., stochasti-

cally “disable” a fraction of their neurons which prevent neurons from co-adapting and

force them to learn individually useful features. Especially for an imbalanced dataset,

a high dropout rate is necessary to prevent overfitting on the negative samples. Us-

ing feature vectors after the max pooling layer with dropout applied, predictions are

finally generated by doing a matrix multiplication and picking the class with a higher

score. We could also apply a softmax function to convert raw scores into normalized

probabilities, which wouldn’t change the final predictions.

To learn reviews in terms of multiple categories, one of the most popular algo-

rithms for topic modelling is Latent Dirichlet Allocation (LDA). In the NLP domain,

LDA is a generative statistical model that allows sets of observations to be explained

by unobserved groups that explain why some parts of the data are similar. The first
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step of LDA is grouping words into topics. Then, a document can be classified to a

certain topic based on which group of words it talks about. However, some of the

topics retrieved by LDA may not make sense as shown in Table 6.3a. Moreover, only

the number of topics can be controlled by LDA rather than the types we designed in

Section 6.1.1. In supervised learning, we can go back and check the potential problem

in the decision making process while it is not applicable in unsupervised learning. In

order to tell the LDA model to split documents into n topics, we can set n groups

of “seed” words and let the model converge around those terms [198], which named

GuidedLDA. During the initialization step in GuidedLDA, we can give an extra boost

to seed words and thus bias them more towards the seeded topics. Table 6.3b lists

an example of seed words for seed topics in Section 6.1.1 and the final results, i.e.,

words selected by GuidedLDA, are shown in Table 6.5a.

Table 6.3: LDA versus GuidedLDA

(a) Top 20 words in each topic
selected by LDA

Topic 1 Topic 2 Topic 3

pedal guitar strings

sound one guitar

amp well sound

can use like

use just great

great strap picks

one stand good

like good just

good great string

just can pick

(b) Seeded 10-word set in selected topics for
GuidedLDA

Pricing Quality Delivery

price quality delivery

cheap excellent early

expensive reliability fast

bargain usability time

reasonable durability package

worth compatibility condition

cost ability sealed

affordable poor whole

professional loose

utility

Nevertheless, two major issues still remain in GuidedLDA. One is that the topics

selected may not be separable, and the other is a document may belong to multiple

documents. Different from image and video data which work with high-dimensional

datasets encoded as vectors of the individual raw pixel-intensities, NLP systems tra-
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ditionally treat words as discrete atomic symbols. However, these encodings are kind

of arbitrary, and provide useless information to the system regarding the relation-

ships that may exist between the individual words. Furthermore, representing words

as discrete “ids” often leads to data sparsity, which means more data are required

to successfully build the statistical models. While Hinton proposed the idea of dis-

tributed representations of words in 1986 [199], which states that words appeared in

the same contexts share semantic meaning; two papers published in 2013 by Mikolov

introduced word2vec [200,201], which is an efficient predictive model for learning word

embeddings from raw texts, become popular in the field of NLP. Word2vec comes in

two flavors, i.e., the Continuous Bag-of-Words model (CBOW) which predicts target

words from source context words versus the Skip-Gram model which predicts source

context words from the target words. In this application, we use the seed words in

GuidedLDA and apply word2vec to find similar words in raw text in order to find

reviews on the three selected topics in Section 6.1.1.

6.1.4 Experimental Results on Amazon Product Data

The dataset used for evaluation contains product reviews and metadata from

Amazon, including more than one hundred million reviews from 1996 and has been

widely used in a lot of publications [195, 196]. The reviews in this dataset include

ratings, texts, and helpfulness votes. In this experiment, reviews from a subset,

Musical Instruments, are polarized and used for imbalanced text data classification.

To highlight the contribution of this dissertation and exclude irrelevant variables, we

use static word vectors and learn our own word embeddings from scratch rather than

using pre-trained word2vec vectors. 128 filters are used for each size of the filter, and
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the dropout rate is set to 0.9 to maximally prevent the model from being biased the

negative class. The comparison of results in terms of AP are shown in Table 6.4 and

prove the effectiveness of the proposed framework as it outperforms the regular CNN

for most kinds of settings. The second column of Table 6.4 is for the number of filters.

Table 6.4: Comparison of the proposed framework and original TextCNN on the Amazon review
dataset

Framework # Size AP10 AP20 AP50 AP100 AP200 AP500 AP1000

Original 4 3-6 0.0000 0.0000 0.0000 0.0000 0.0071 0.0110 0.0143

Proposed 4 3-6 0.6250 0.4722 0.2784 0.2564 0.1986 0.1511 0.1181

Original 5 3-7 0.0000 0.0000 0.0000 0.0000 0.0111 0.0151 0.0200

Proposed 5 3-7 0.7222 0.5281 0.4556 0.3755 0.2792 0.2144 0.1736

Original 6 3-8 0.0000 0.0000 0.0000 0.0172 0.0172 0.0126 0.0145

Proposed 6 3-8 0.4958 0.4832 0.4025 0.3334 0.2589 0.1784 0.1452

Original 7 3-9 0.0000 0.0000 0.0000 0.0000 0.0084 0.0092 0.0113

Proposed 7 3-9 0.7111 0.6695 0.5589 0.3659 0.2731 0.2073 0.1633

Original 7 5-11 1.0000 1.0000 0.2746 0.2255 0.1702 0.1038 0.0810

Proposed 7 5-11 1.0000 0.5588 0.2644 0.2124 0.1497 0.1143 0.0966

Original 7 7-13 0.6000 0.4237 0.3594 0.2252 0.1721 0.1371 0.1049

Proposed 7 7-13 0.7667 0.6464 0.4792 0.3573 0.2350 0.1557 0.1198

In the second stage, a word2vec model is built using the same dataset. Particularly,

a skip gram neural network model is trained to map words into vectors. Given the

same set of seed words, we find 10 most similar words for each seed word in Table

6.3b based on its word2vec value and the result is shown in Table 6.5b. Each testing

instance (document) is labelled as one or the mix of three interested topics, i.e.,

pricing, quality, as well as delivery and packaging. Since it is an unsupervised learning

task and we don’t have the ground truth, the same number of testing instances are

randomly picked from each topic based on the results by GuidedLDA and the proposed

framework. The comparison of the accuracy is depicted in Table 6.6, which proves

the effectiveness of our model.
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Table 6.5: GuidedLDA versus Proposed

(a) Words selected by GuidedLDA
using seed words in Table 6.3b

Pricing Quality Delivery

price quality time

quality sound guitar

good time strings

great pedal one

money price use

well studio just

worth one like

guitar can will

cheap use cheap

sound amp can

one good quality

better great good

value like get

product pedals long

much just well

strings cheap string

cost mic strap

just get price

time will sound

expensive guitar much

(b) Words selected by word2vec in each topic
for clustering

Pricing Quality Delivery

price quality delivery

pricei qualityi deliver

pricey highquality delivered

pricy reality delivering

pricethe fidelity delivers

priced quantity promptly

prices qualities promised

priceless reliability overpriced

overpriced craftsmanship thoroughly

pricier conspros prompt

pricing utility promise

cheap excellent early

cheapy excels nearly

cheaply exceeds clearly

... ... ...

expensive reliability fast

expense durability faster

inexpensive usability fasten

... ... ...

... ... ...

Table 6.6: Comparison of the proposed framework and GuidedLDA on Amazon review clustering

Topic

Accuracy
GuidedLDA Proposed

Pricing 72.3% 89.7%

Quality 82.7% 93.0%

Delivery & Packaging 27.7% 62.3%
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6.2 Efficient Large-scale Stance Analysis in Twitter

This application introduces a novel framework for stance detection in bipolar

affinities. The 2016 U.S. presidential election campaign was used as a test use case

because of its significant and unique counter-factual properties. The results show that

our proposed framework achieves high accuracy when compared to several existing

state-of-the-art methods.

6.2.1 Introduction of Stance Classification

In recent years, there has been a major growth in the use of microblogging plat-

forms. Microblogs allow the users to exchange small contents such as short videos,

sentences, and links. Some previous research efforts were paid on these kinds of mul-

timedia data [44–46, 64–67, 92]. Twitter is one of the most widely used microblog

platforms. Users range from regular users to politicians, celebrities, and company

representatives. Therefore, it is possible to collect posts of users from different so-

cial and interested groups. Meanwhile, the battle on Twitter is an integral part of

a prearranged effort to disturb the 2016 U.S. presidential election. To visualize the

overall picture, Figure 6.2a is used to show the daily tweet counts between Hillary

Clinton and Donald Trump for the election time period in 2016; while the popularity

measure between the two candidates is shown in Figure 6.2b by mapping the retweet

and favorite counts of the two candidates.

One important research direction here is stance analysis which implies the polit-

ical tendency of the public. In this dissertation, “stance classification” is defined as

automatically determining whether a Twitter user tends to endorse the candidate of

Democratic or Republican Party. By tweets from the Twitter accounts, researchers
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(a) Daily tweets of the two candidates (b) Popularity vs following measure of all support-
ers grouped by their candidates

Figure 6.2: Daily tweets versus Retweet and favorite counts

can deduce whether a user is either for or against the target. Therefore, another

objective of this dissertation is to automatically infer the stances of Twitter users to

see whether a user is likely a Hillary Clinton or Donald Trump supporter. While most

election predictions reply on polls, automated stance classification can be applied to

a much larger number of samples and bring complementary information to predict

the election results.

6.2.2 Previous Work on Stance Analysis

Based on our best knowledge, though stance analysis has not been used for elec-

tion prediction, some earlier work ran experiments that used Twitter hashtags and

emoticons such as #bestfeeling, #epicfail, and #news to identify positive, negative,

and neutral tweets to train and analyse the sentiment of a tweet [202]. The sen-
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timents were identified as a powerful predictor in differentiating the behaviours of

various accounts. Agarwal et al. [203] proposed a 3-way task of separating tweets

into positive, negative, and neutral, and then used 3 models: unigram, feature-based,

and tree kernel-based models to split the data. It was proposed in [204] to use a

psychometric instrument to classify six mood states including tension, depression,

anger, vigour, fatigue, and confusion. The authors used aggregated Twitter content

to compute a six-dimensional mood vector for each day in the timeline. One chal-

lenge in Twitter analysis is to identify and collect the right corpus that corresponds

well to the domain and context of the tweets. This was attempted in [205] to fo-

cus and improve the corpus by an automatic collection and by using TreeTagger for

POS-tagging. The wide scale effects of socioeconomic events on the overall general

mood of tweets were explored in [204] over the longer periods of time. This provides a

useful yardstick to track the sentiments, but this method does not solve the problem

of context invariance.

A hypothesis was proposed in [206] that every non-hyperbolic tweet was from Don-

ald Trump’s staff while every hyperbolic tweet was from Donald Trump himself. The

researchers collected Donald Trump’s tweets from Donald Trump’s account including

the “source” information and found out that most tweets are from either iPhones

or Android phones. Their analysis showed that the iPhone and Android tweets are

clearly from different people since tweets from them used different hashtags, retweeted

in distinct ways, and were posted during different times. They also found that the

iPhone tweets were less angry and more positive with benign announcements, while

the Android tweets tended to be more negative with angry words. In [207], machine

learning techniques were utilized to do sentiment analysis on candidates’ Twitter
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mentions. They collected millions of tweets posted by users who discussed U.S. poli-

tics for Americans and non-Americans worldwide, and classified them based on their

sentiment. Each posted tweet related to Hillary Clinton or Donald Trump was la-

belled with either positive, neutral, or negative. The authors concluded that there

were much more negative tweets about both candidates than positive tweets, while

there were less tweets that mentioned Hillary Clinton than Donald Trump. In [208],

two groups of hashtags were defined arbitrarily, where each group was assumed to

support Hillary Clinton or Donald Trump, respectively. After that, the author used

descriptive statistics methods and concluded that Donald Trump’s campaign knew

more about how to use Twitter chat bots than the Hillary Clinton’s side.

6.2.3 Twitter Dataset

The rise in popularity of social interacting websites such as Facebook, Twitter,

and Snapchat has been challenged by the upsurge of unwelcomed and troubling bodies

on these systems. This includes spam senders, malware systems, and other content

contaminators. Before we start to introduce our framework, it is noted that highly

automated accounts with 450 tweets per day produced almost 18% of entire Twitter

circulation in the 2016 U.S. presidential election. Since it is also observed that those

disruptive systems called bots are inclined more towards circulating negative news

than positive information, we apply a novel framework named Associative Affinity

Factor Analysis (AAFA) [209, 210] designed for bot identification which can identify

real people from bots in order to remove fake accounts before stance analysis.

In order to do stance analysis for the 2016 U.S. election test use case, a dataset

that includes the supporters of both sides is necessary. However, due to privacy is-
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sues, it is nearly impossible to get the account names of the supporters. Luckily,

Wikipedia provides the lists of Hillary Clinton and Donald Trump presidential cam-

paign endorsements [211]. These lists include “big names” who have publicly claimed

their endorsements for the office of the president of Hillary Clinton and Donald Trump

as presidential nominees. Since these supporters are notable individuals, the infor-

mation was reliable and did not change much in the campaign. After data cleaning,

310 supporters of Hillary Clinton and 412 supporters of Donald Trump were included

to build the experimental dataset.

In addition, the Twitter API was used to collect 3240 tweets from each supporter

with time, resource, retweet, etc. After the data collection, we extracted the details

of the supporters’ accounts, cleaned the text data from all tweets, and mapped the

truncated words to get the hashtag information.

6.2.4 Affinity-based Stance Detection

Consider each hashtag in a tweet as a concept and find the recurring itemset

in Donald Trump’s retweets or comment feed. If we are able to find multiple in-

stances of people continuously together based on the Association Affinity Network

(AAN) [49,110,212,213], then they are bots. The confidence score is replaced by the

average sentiment score. It was observed that bots usually have consistently positive

or negative sentiments in their tweets. In addition, for real human supporters, indi-

viduals who endorsed Hillary Clinton tended to use different hashtags comparing to

those supported Donald Trump, and vice versa.

One attempt in the literature [208] built two groups of arbitrary hashtags, from

their domain knowledge, to find the Hillary Clinton and Donald Trump supporters.
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However, this approach lacks reproducibility and domain invariance. To overcome

this challenge and find distinct hashtags, we apply the log odds ratio approach [214].

For a hashtag n, we calculate CH
n and CT

n which represent the numbers of times n

was used by the Hillary Clinton supporters and Donald Trump supporters. Similarly,

UH
n and UT

n represent the numbers of distinct accounts of the Hillary Clinton and

Donald Trump supporters that used hashtag n. Next, the scores SCn and SUn are

calculated to measure the likelihood values of a hashtag being associated with either

of the candidates as shown in Equations (6.1) and (6.2).

S
C
n = log2

CH
n +1

N∑
i=1

CH
i +1

CT
n +1

N∑
i=1

CT
i +1

; (6.1)

S
U
n = log2

UH
n +1

N∑
i=1

UH
i +1

UT
n +1

N∑
i=1

UT
i +1

. (6.2)

Here, N refers to the total number of supporters. The scores and the ranked

hashtags are given in Table 6.7. For comparison, the hashtag lists are shown in Table

6.8 by the domain knowledge [208] and the tweets from the candidates (i.e., Hillary

Clinton and Donald Trump) [207]. It is clear that some unique tashtags can only be

automatically found using the proposed framework, e.g., CIR (Comprehensive Immi-

gration Reform Act), RenewUi (federal unemployment extension), RestoreTheVRA

(Voting Rights Act), Dobbs (Lou Dobbs), PJNET (Patriot Journalist Network), and

VAWA (Violence Against Women Act).



111

Table 6.7: Ranked hashtags based on the proposed framework (case insensitive)

Rank
# of hashtags used # of distinct accounts that use a hashtag

Hillary Clinton Donald Trump Hillary Clinton Donald Trump

1 CIR Dobbs RaiseTheWage TrumpPence16

2 RenewUi TrumpPence16 HoldTheF loor CrookedHillary

3 RaiseTheWage PJNET RestoreTheV RA WakeUpAmerica

4 ActOnClimate WakeUpAmerica V AWA PJNET

5 WomenSucceed TrumpTrain MarriageEquality V oteTrump

6 DoY ourJob AmericaF irst WorldAidsDay Jesus

7 RestoreTheV RA ProLife GunV iolence TrumpRally

8 DisarmHate TeaParty ProtectOurCare Hannity

9 TimeIsNow MakeAmericaGreatAgain StopGunV iolence Trump45

10 GetCovered ConfirmGorsuch LoveIsLove TrumpPence2016

Table 6.8: Ranked hashtags based on domain knowledge and tweets from the candidates (case
insensitive)

Rank
Domain knowledge Candidate tweets

Hillary Clinton Donald Trump Hillary Clinton Donald Trump

1 votehillary2016 MAGA DemsInPhilly Trump

2 V oteHillary HillarysBigotry RNCinCLE MakeAmericaGreatAgain

3 NeverTrump CrookedHillary DebateNight V oteTrump

4 IAmWithHer Hillary4Prison debatenight AmericaF irst

5 WeAreWithHer NeverHillary TBT MAGA

6 NoTrump TrumpTrain NBCNewsForum ImWithY ou

7 TrumpLies V oteTrump DemConvention TrumpTrain

8 StopTrump LockHerUp WomanCard TrumpPence

9 DumpTrump WakeUpAmerica EstoyConElla FITN

10 TrumpUnfit TrumpsArmy LoveTrumpsHate GOPDebate
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6.2.5 Results of Stance Classification

To apply the affinity-based stance detection method, the hashtags of people sup-

porting Hillary Clinton and Donald Trump were extracted. The associative affinity

was evaluated for one-itemset and two-itemset hashtags occurring in their tweets.

The final ranking of the predictive hashtags was ranked according to an empirically

selected threshold. Each hashtag itemset has a dynamic threshold but the hashtags

with the highest affinities were selected. Table 6.7 illustrates these case insensitive

ranked hashtags for the two candidates. The final hashtag lists are selected based on

both the “number of a hashtag being used” and the “number of distinct accounts that

use a hashtag”. The overlapped hashtags are cleaned and finally a list of 128 hashtags

is created to generate the feature vectors for the Hillary Clinton and Donald Trump

supporters. Based on the number of a hashtag used, a feature vector is generated and

normalized for each account.

Table 6.9: Accuracy and F-score comparisons in stance analysis

Classifier Accuracy F-score

SVM 0.8089 0.7128

Random Forest 0.8492 0.8156

DAC 0.7493 0.6190

Linear Regression 0.7812 0.6853

Logistic Regression 0.7867 0.7061

For comparison, our stance classification model is evaluated against several pop-

ular classifiers including Support Vector Machine (SVM) [158], Random Forest [161],

Discriminant Analysis Classifier (DAC), Linear Regression, as well as Logistic Re-

gression [134]. As shown in Table 6.9, an average accuracy of 80 percent is obtained

without any domain knowledge and polls. Random Forest performs the best for this

task due to the nature of our feature vectors (i.e., different weights for the hashtags).

We could achieve higher accuracy as well as F-score values by removing some testing
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instances with the number of hashtags in Table 6.7 lower than a certain threshold, as

many people may refuse to disclose their endorsements in polls. Since the number of

accounts (i.e., the size of the dataset) is already small, we would prefer not to remove

any data instance. Another reason would be explained at the end of this section.

6.2.6 Deep Learning Based Stance Analysis

By applying a similar framework as discussed in Section 6.1.3, this stance analysis

task can also be solved by deep learning. After several common pre-processing steps,

a TextCNN model for this balanced Twitter dataset is built for binary classification.

With an additional max pooling layer to fuse the results from whatever number of

tweets in the final stage, the owner of a Twitter account can be labelled as a Hillary

or Trump supporter. The experimental results are provided in Table 6.10 with 90

percent accuracy. Nevertheless, there are more than 1 million tweets in this dataset

per candidate, which makes the computational complexity in the training procedure

very high, in terms of both time and space. Additionally, many tweets are irrelevant

with politics. For instance, most tweets of Katy Perry, the biggest celebrity supporter

of Hillary, are regarding music. The training effort paid on those tweets are therefore

useless and may potentially hurt the model.

Table 6.10: Confusion matrix for stance analysis by deep learning on raw text data

Ground truth

Predicted label
Hillary supporter Trump supporter

Hillary supporter 100 3

Trump supporter 21 116

Using the results from the previous section, we can pick only those tweets with the

list of 128 hashtags to build the TextCNN model and thus save 90 percent training

time. For a few number of accounts that don’t use any of the selected hashtags, we
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simply label them as Trump supporters for convenience. The accuracy on the filtered

Twitter data is 88.75% as shown in Table 6.11, which is just 1 percent lower than the

results on the raw text data.

Table 6.11: Confusion matrix for stance analysis by deep learning on filtered data

Ground truth

Predicted label
Hillary supporter Trump supporter

Hillary supporter 81 22

Trump supporter 5 132

Furthermore, the time complexity of the algorithm in the previous section is clearly

less than the model built using deep learning. Recall that the classifier fusion frame-

work in Chapter 5, we find the affinity-based method is a good classifier for Hillary

supporters by the confusion matrix on the validation set in Table 6.12. By applying

the model in the previous section to a validation set, we get 97.3% accuracy on Hillary

supporters, which means if the affinity-based classifier considers a testing Twitter ac-

count supports Hillary, the owner is highly possible a real Hillary supporter. Also,

if the affinity-based method labels the owner of a Twitter account as a Hillary sup-

porter, it doesn’t need to go through the testing stage in the deep learning based

model.

Table 6.12: Confusion matrix for affinity-based stance detection on validation set

Ground truth

Predicted label
Hillary supporter Trump supporter

Hillary supporter 73 30

Trump supporter 2 136

The final experiments are conducted using the framework in Chapter 5 and the

results from affinity-based and deep learning based classifiers can be thus integrated

together. The final results which prove the efficiency of the overall framework for this

application are shown in Table 6.13. Since the time complexity of the affinity-based
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method is much less than the deep learning one, 50 percent testing time could be

saved approximately (assuming that Hillary has a 50 percent favorable rating).

Table 6.13: Accuracy comparisons on Twitter dataset

Classifier Accuracy

Affinity-based (RF) 84.9%

Deep learning based (raw text data) 90.0%

Deep learning based (filtered data) 88.8%

Proposed framework 90.8%

To show the effectiveness of the proposed framework, a mathematical proof is

given below. Let p be the favorable rating of Hillary which is unknown, p̂ be the

rating in a sample set, and σ̂ be the estimated favorability. For a two-candidate

election poll, based on the Central Limit Theorem (CLT), if a polling organization

samples n adults, the 95% confidence interval is:

[p̂− 2× σ̂, p̂+ 2× σ̂]; where σ̂ =

√
p̂(1− p̂)

n
(6.3)

Let d be the sampling error, i.e., the radius of the confidence interval. Since

p̂ > 0.5, p̂× (1− p̂) < 0.25. Therefore, we have:

1.96×
√
p̂(1− p̂)

n
≤ 1.96×

√
1

4n
≤ d; so n ≥ 1.962

4d2
(6.4)

If d = 0.03 or 3%, n ≥ 1067.11 ≈ 1068. If d = 0.01 or 1%, n ≥ 9604. Based

on Law of Large Numbers (LLN), lim
n→∞

p̂ = p while there is a trade-off between the

sampling error and the number of samples. Therefore, a polling company often only

samples one thousand adults. Even if the company can afford the cost to get ten

thousand samples, the time cost for the poll would be too long. Meanwhile, 3% is a

big number in many swing states, especially Hillary swamps Trump in popular vote

for just 2.1%.

Using the proposed framework, assume the classification accuracy is q and n is big

enough, p actually follows a Beta distribution as shown in Equation (6.5) or Equation
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(6.6). If p̂ = 50%, q = 90.8%, and n = 1000, a high kurtosis Probability Density

Function (PDF) of the Beta distribution is drawn in Figure 6.3 and the corresponding

Cumulative Distribution Function (CDF) is drawn in Figure 6.4a. Figure 6.4b shows

the CDF when n equals one million, where p has a 99.9999% probability falling into

the interval of 50% ± 0.3%. The model designed in this Section is able to process

hundreds of testing samples per minute and thus handling one million samples be-

comes possible. All in all, the proposed framework in this application could save 90

percent of the training time and 50 percent of the testing time, and generate better

classification results.

Bpdf =
[q × p+ (1− q)× (1− p)]p̂×n [(1− q)× p+ q × (1− p)](1−p̂)×n∫ 1

0
[q × ṗ+ (1− q)× (1− ṗ)]p̂×n [(1− q)× ṗ+ q × (1− ṗ)](1−p̂)×n dṗ

(6.5)

Betapdf (x;α, β) =
xα−1 (1− x)β−1∫ 1

0
ẋα−1 (1− ẋ)β−1 dẋ

; where

x = 1− q − p̄+ 2qp̄, α = np+ 1, β = n− np+ 1 (6.6)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Figure 6.3: Probability density function when n = 1000
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Figure 6.4: Cumulative density function

6.3 DDM Miner: A Web-Based Information

Retrieval System for Multimedia Big Data

Multimedia Information Retrieval (MIR), i.e., identification and labelling of mul-

timedia data, is an important task in multimedia research, especially for multimedia

big data. This dissertation presents an MIR system, called DDM Miner, designed

and developed in the Data Mining, Database & Multimedia (DDM) Research Group.

DDM Minter enables various feature extraction, model integration, and big data tech-

niques to process and manage multimedia big data, integrates and fuses the scores

obtained from different extraction and representation models, and generates semantic

labels for given images for information retrieval. It uses the Spark platform and high

performance NoSQL (Not Only SQL) databases to enable schema-less data models

and distributed computation to speed up information retrieval.



118

6.3.1 Multimedia Information Retrieval

Bridging the gap between multimedia data and its semantic meaning effectively is

crucial in MIR, especially in multimedia big data. It is well-acknowledged that there

are huge variations in multimedia big data, and it is hard to find a general method

that classifies all kinds of multimedia data with high accuracies. This is also due to

the fact that various features capture disparate characteristics of the data, and thus

contribute to semantics mining differently. On the other hand, different classifiers

can handle heterogeneous multimedia data in various conditions. Therefore, feature

fusion and classifier ensemble techniques can be applied to utilize and integrate the

features and scores obtained from different models to analyse the semantic meanings

of the multimedia data [48,49].

Recently, deep learning has been used and greatly improved the retrieval accuracy.

For example, ResNet [215] can achieve a 4.8% top-5 error rate and a 20.1% top-

1 error rate for the ImageNet classification task. However, training a deep neural

network (DNN) requires a sufficiently large training dataset and a great amount of

computational resources. Furthermore, DNNs trained on one kind of multimedia data

might not work well for data from different sources since DNNs cannot capture all

the semantics in the data that are required for information retrieval.

To solve the above issues and enhance the retrieval performance of the deep learn-

ing techniques, we propose to utilize both the high-level features obtained from DNNs

and the conventional hand-crafted features such as Histogram of Oriented Gradient

(HOG) features, Scale-invariant feature transform (SIFT) features, Haar-like features,

and color space information [72]. In addition, the scores from different classifiers in-
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cluding Support Vector Machine (SVM), Logistic Regression (LR), Random Forrest

(RF), etc. will be integrated to achieve the best retrieval performance.

6.3.2 DDM Miner System

Our DDM Miner system is a novel distributed and web-based system, hosted

on a Spark cluster as shown in Figure 3.3, that adopts a collaborative filtering ap-

proach [216]. The Spark cluster is a heterogeneous configuration consisting of four

nodes (one master and three worker nodes), running Yarn and Mesos for cluster

and data management. DDM Miner allows a user to upload the multimedia data of

interest (e.g., an image) via the web interface (as shown in Figure 6.5) to mine its un-

derlying semantics (e.g., concept labels/classes) for information retrieval. The users

can upload their own images to the server and visually verify the proper submission of

the input file. The system provides various deep learning and ensemble based models

to fuse low-level features from different layers for semantics mining. Such selection

enables the user to explore the predictability and usefulness of each feature/classifier

combination. That is, once the upload is complete, the user can review the query

type, select the model(s) to generate the corresponding features, and decide the score

integration technique to determine the labels of the uploaded data. If applicable, the

parameter setup of the selected model can be modified in the right panel.

The DDM Miner system will detect the proper replication of the instances and

schedule the feature extraction and model execution on the respective nodes to mine

the concept labels. The proposed system can also generate conventional low-level

features that can capture some distinguished characteristics of the images. The clas-

sification result of a sample image is shown in Figure 6.6, where the uploaded image
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Figure 6.5: The image classification interface

is in the middle and the top 5 concepts (labels/classes) are displayed on the bottom

along with their representative images. The data, related images, features, and la-

bels are stored in a NoSQL database under Cassandra. The semantics information

of the different images will be consolidated in a Score Integration module which uses

Association Rule Mining (ARM) or Multiple Correspondence Analysis (MCA) to in-

tegrate the scores of similar images [163]. Final labels will be transformed in an XML

wrapper and passed to the web-based GUI where it will be displayed to the user.

Compared to similar online portals, our DDM Miner system uses a big data en-

vironment (Spark) and assembles multiple feature and fusion technique choices. Its

interface is user friendly and interactive, and allows the option for enhancement train-

ing.
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Figure 6.6: The classification result for a sample image



CHAPTER 7

Conclusions and Future Work

This chapter concludes all the previous chapters, develops the direction for future

research, and introduces latest research progress on deep learning.

7.1 Conclusion

Classification of imbalanced data is an important research problem as lots of real-

world datasets have skewed class distributions in which the majority of the examples

(or instances) belong to some classes and far fewer instances belong to others. While

in many applications, the minority instances actually represent the concept of interest

(e.g., fraud in banking operations, abnormal cell in medical data, etc.), a classifier

induced from an imbalanced dataset is more likely to be biased towards the majority

classes and show very poor classification accuracy on the minority classes. Despite

extensive research efforts, imbalanced data classification remains one of the most

challenging problems in data mining and machine learning, especially for multimedia

data.

In this dissertation, an extended CNN framework is proposed by integrating it

with a bootstrapping strategy. During the bootstrapping process, a set of pseudo

balanced training batches are generated based on the properties of the dataset and

122
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fed into the CNN for classification. Using the TRECVID, KTH, and UCF11 datasets,

the experimental results demonstrate the effectiveness of our framework in classifying

multimedia data with a highly skewed data distribution. In addition, different from

many existing studies in deep learning that take raw media data as the input, it is

shown that our extended CNN framework can work effectively on low-level features,

which greatly shortens the required training time in deep learning.

Next, a novel concept correlation analysis strategy framework using the correlation

between the retrieval scores and labels is proposed to enhance rare class/concept

mining. The experimental results on TRECVID dataset clearly show the effectiveness

of the proposed framework and how it can successfully enhance the prediction scores

of the chosen rare concepts.

For the third component, a novel classifier ensemble framework is proposed to fuse

the classification results generated from different classifiers using different features. As

a proof-of-concept, the proposed framework is applied to categorize human actions in

videos. Experimental results on the KTH and UCF11 datasets show that the proposed

framework is capable of taking advantages of different classifiers and outperforms some

existing state-of-the-art approaches.

Two applications in the field of text data analysis prove the effectiveness of the

proposed framework for real-world tasks. The first one is for Amazon review dataset

while the second one proposes a novel framework to detect the stance between the

followers of the two dominant presidential candidates, i.e., Hillary and Trump. For

our best knowledge, we are the first group that uses machine learning algorithms

for stance analysis in election predictions. Furthermore, a web-based information

retrieval system is built to better demonstrate our work.
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All in all, a Spark-based big data processing environment is implemented for all

the components. The proposed framework can handle big datasets as it is integrated

with Spark.

7.2 Future Work

On the basis of the current solutions and experimental results, several future

research directions are identified and proposed in the following subsections.

7.2.1 Deep Learning on Quality of Feedback and Sub-category

Classification of Reviews

In the existing framework, only text data in the Amazon review dataset are used.

Meanwhile, based on user metadata, review metadata, and the average sentiment

score of the reviews, a latent class profile can be created while multiple factor anal-

ysis could be applied on the mixed feature dataset. Then, hierarchical clustering

can provide more information with the subgroup analysis of people reviewing for a

particular product/service.

To identify fake reviews, we can consider each keyword in a review as a concept

and find the recurring itemset of a particular individual. It was observed that incen-

tivized reviews have consistently positive or negative sentiments on their accounts.

For non-incentivized comments, individuals who endear a product tend to use dif-

ferent keywords as compared to those who dislike it. If we are able to find multiple

instances of an account continuously using similar keywords, we have a high prob-

ability of identifying fake reviews in the future framework. Due to the imbalance
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characteristic of all consumer feedback data, part of future experiments will be con-

ducted to an experiment where we use bots to create fake comments on Amazon.

Bots will be learnt to comment both good and bad about the products, and then

those comments would be used in future experiments. This will help to develop the

benchmarks of fake reviews and aid in decisions about other users.

Finally, after filtering all low-quality and fake reviews, each review will be split

into sentences which will be labelled in one of the sub-categories using the current

framework in Section 6.1. For each sub-category (e.g., service), we pick some service-

related words and use the word2vec [200,201] model to find similar words to build a

word set for the service sub-category. It was observed that the keywords and their

affinities are highly domain and topic specific, i.e., user behaviour is heterogeneous

when spanned over different categories [196]. To overcome the challenge of domain

invariance, we previously have successfully used the log odds ratio approach in Section

6.2. To further extend the existing framework on multiple categories and find most

distinct keywords for the sub-category classification problem, all the sentences will

be transformed into feature vectors for classification and a rating will be generated

for each sub-category. Furthermore, if a review covers several sub-categories, it will

be more possible to be considered as a high quality review.

Figure 7.1 depicts future work of the review quality and sub-category classification.

It consists of four parts: input (blue), review rating (green), review data formatting

(orange), and sentence-level review analysis (red). In general, the future framework

collects the review data, analyses them, and generates the quality of feedback and

the sub-category classification results of reviews.
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Figure 7.1: Our future framework on Amazon review dataset

As discussed before, given an Amazon review dataset or a review (text) online,

we will first judge whether the review is low-quality or high-quality as well as from a

bad buyer or nice buyer. Then, the estimated overall rating and the rating for each

category will be generated by our framework. The preliminary expected results can

be found in Table 7.1.

Table 7.1: Sample results of future work on Amazon review dataset

(a) Sample results of fake review detection

Attribute Quality of feedback

Fake or not 0.13(Negative)

Review quality 0.84(High)

(b) Sample results of sub-category classification

Sub-category Prediction

Pricing 2 stars

Quality 3 stars

Delivery and Packaging 1 star

Parts

Cable 4 stars

Mouse N/A

Screen 1 star

Overall rating 3 stars

From the Table 7.1a, we consider the review is unlikely a fake review based on our

model. Furthermore, since the review covers several sub-categories, which means the

reviewer fully considered many factors, it is labelled as a high quality review. Such
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a review can be highlighted when Amazon users browse the product’s webpage. In

Table 7.1b, our model gives the details of the reviewer’s attitude on each sub-category.

It is clear that the reviewer is quite satisfied about the packaging while think she/he

received it too late. The average rating of each sub-category of the product will

be shown on the product’s webpage to help Amazon users know the details of the

product and also help the merchant improve the shipment process and other weak

points.

7.2.2 Improving Stance Analysis with Advanced Information

and Multi-modality Training

For stance analysis, an important insight is to observe if the accuracy of the clus-

tering methods would be affected if we use real accounts with unknown predilections.

This would help us also identify and evaluate the undecided voters. Currently, it is

out of the scope to assert the ground truth for accounts having relative unknowns,

but an extension of this framework will collect and extend the dataset with hand

labelled real accounts and re-evaluate the stance.

Besides, other information in tweets including the resources, retweets, favorites,

etc. would be also considered for better stance detection and bot classification in the

future. In order to handle billions of tweets and get more data of supporters, more

twitter accounts with labels must be included. One possible way is to get twitter

accounts following one of the candidates, for example Hillary supporters’ accounts.

We can add those accounts to Hillary supporters’ dataset after removing outliers.

It is noticeable that Hillary Clinton and Donald Trump supporters tend to post

different kinds of data such as images and videos from various domains. Since most
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of the current deep learning models only focus a single modality leading to an im-

poverished model of the world, research efforts are now also paid on cross-modality

structures which may yield a huge step forward in deep learning. Some teams have

been trying to use a multi-model architecture with modality-nets for multi-modality

training which can simultaneously learn multiple tasks from various domains [217].

For different data types, different small modality-nets will be used to deal with inputs

and outputs, e.g., image, language, and audio. For the “body” neural networks, we

may use convolutional layers, an attention mechanism, and sparsely-gated layers. All

in all, an unified deep learning model could be trained in the future to deal with

multimodal inputs in stance analysis.

7.2.3 DDM Miner on a Big Data Processing Platform

While many popular big data systems adopted Spark, the designed Spark-based

big data processing system can be further upgraded to a data processing platform ar-

chitecture with Spark, Mesos, Akka, Cassandra, and Kafka (SMACK). Furthermore,

Spark can be deployed on different kinds of resource management systems such as

Apache MesosTM [103] which is a cluster resource management system with efficient

resource isolation and sharing across distribute applications. It has also been shown

that traditional Relational Database Management Systems (RDBMSs) are not able

to meet the big data management needs and have become the bottleneck of a big data

processing platform. New database technologies like NoSQL are the solution. Among

them, Apache CassandraTM [97] is a distributed, highly available database designed

to handle large amounts of data across multiple data centers. Using these techniques,

an efficient multimedia big data mining system can be built to improve DDM Miner
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on a big data processing platform for multimedia semantic concept retrieval. As part

of the existing work, the use of these big data techniques will be explored in the future

for multimedia big data analysis.

Furthermore, to take advantages of modern search engines, we plan to crawl and

grab similar multimedia data online and feed them into our models to help semantics

mining (e.g., labelling). Therefore, DDM Miner will be able to illustrate the per-

formance of feature fusion and classifier ensemble for general MIR, and as the first

step to experiment which sets of features and/or classifiers are more suitable on the

given multimedia data. Here, we use the example of images to illustrate our future

system. The web-based system initiates a remote procedure call to the Spark master

node instance that initiates a web crawler using Google Image Search Rest API. This

crawler will search for the top ten visually similar images of the uploaded data. The

inflated dataset will then be streamed into the cluster using SPARK streaming engine

and replicated across all nodes. Figure 7.2 illustrates its flowchart. As part of the

future work, the functionalities of all the components of the proposed framework will

be integrated (whenever applicable) into this web-cased DDM Miner system.

7.3 Latest Developments in Deep Learning

To date, a number of frameworks have been proposed by implementing the latest

deep learning techniques and have shown promising results across a wide variety of

domains including NLP (e.g., sentence classification, translation, etc.), visual data

processing (e.g., computer vision, multimedia data analysis, etc.), speech and audio

processing (e.g., enhancement, recognition, etc.), social network analysis, and health-

care. Other than all the aforementioned applications, deep learning algorithms are
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Figure 7.2: Flowchart of the future DDM Miner system

also applied to information retrieval, robotics, transportation prediction, autonomous

driving, data compression, outlier detection, biomedicine, disaster management, etc.

Please note that deep learning has shown its capability to be leveraged in various

applications and only some of the selected applications are introduced here.

With the enormous amounts of data collected worldwide every day, the most non-

trivial tasks in training a deep neural network is the training part apparently [76].

While GPU are well-known for large-scale matrices computing in network architec-

tures on a single machine, a number of distributed deep learning frameworks have

been developed to speed up the training part in deep learning [48, 218, 219]. Some

popular deep learning frameworks like TensorFlow [220] also start to support parallel

training on distributed systems. While huge amounts of data come without labels or

with noisy labels, some researchers change their interests to improve noise robustness
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of the training modules. They use unsupervised or semi-supervised deep learning to

train deep neural networks subject to class-dependent label noise, as well as auto-

matically remove outliers scattering among practical data collections [221,222]. Less

than one year after the success of AlphaGo, DeepMind trained an update version, Al-

phaGo Zero, without using data from human games but stronger than any previous

version which highlighted the importance of training using unlabelled data [223]. Just

two months later, their newest version Alpha Zero with a multi-skilled architecture

achieved a superhuman level of play in both Shogi and Chess.

Researchers had paid lots of efforts using computer vision techniques to navi-

gate through outdoor environments and plan around distant obstacles. With modern

transportation prediction and vision-based navigation techniques, autonomous driv-

ing has gone from possible to inevitable. A large number of big companies and unicorn

startups are working on self-driving automotive technologies including Google, Tesla,

Aurora, Uber, etc. Back to 2008, Hadsell et al. used a relatively simply deep belief

network with two convolutional layers and one max subsampling layer to extract deep

features [224]. They used a self-supervised learning approach to achieve long-range

vision in off-road terrain by training a classifier to discriminate the feature vectors.

While autonomous driving technology is now more and more mature, a self-driving

Uber car killed an Arizona pedestrian on March 19th, 2018. This shows that it still

has a long way to go.

Another unintuitive deep learning application is data compression, especially loss-

less compression. Researchers train a special kind of neural networks, “autocoder”,

which has the same numbers of inputs and outputs. A simple autoencoder neural

network uses unsupervised learning and applies backpropagation to minimize the dis-
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tance between inputs and outputs, i.e., reconstruction error. It can be utilized for

data compression if the number of hidden units is smaller than the number of inputs or

outputs. The difference between an autoencoder and a general purpose compression

tool like 7-zip is that the autoencoder is particularly trained for some data. A most

recent lossless compression tool, DeepZip [225], is proposed by Kedar Tatwawadi,

which consists of a RNN based probability estimator and an arithmetic coding block

for large-scale data. The former one is trained to estimate the conditional probability

distribution of a piece of data based on the rest of data, while the later one uses the

estimated probabilities for coding and decoding.

Based on the observation that the inliers and the outliers can be separated by their

reconstruction errors when the data are reconstructed from deep learning features,

an autoencoder can also be utilized for outlier detection. Xia et al. [222] use the

reconstruction errors of an autoencoder to automatically remove outliers from noisy

data. They prove that it is an efficient tool for the unsupervised outlier removal

task based on the difference between the nature of normal data and outliers. In

the learning process of the autoencoder, discriminative information is progressively

injected to make the inliers and the outliers more separable. They only minimize

the reconstruction errors for the positive data rather than all the data to make the

reconstruction errors more discriminative. By doing so, the reconstruction errors of

the positive data are even smaller; while those of the outliers are not. Their idea

was implemented in two steps iteratively and adaptively. First, the data are labelled

as positive data or outliers according to their reconstruction errors, and then the

network parameters are updated in the autoencoder by reducing the errors of the

positive data, resulting in a more discriminative reconstruction.
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[131] N. Liu, E. Dellandréa, L. Chen, C. Zhu, Y. Zhang, C.-E. Bichot, S. Bres,
and B. Tellez, “Multimodal recognition of visual concepts using histograms of
textual concepts and selective weighted late fusion scheme,” Computer Vision
and Image Understanding, vol. 117, no. 5, pp. 493–512, 2013.



145

[132] J. Kittler, M. Hatef, R. P. Duin, and J. Matas, “On combining classifiers,”
IEEE transactions on pattern analysis and machine intelligence, vol. 20, no. 3,
pp. 226–239, 1998.

[133] L. I. Kuncheva, Combining pattern classifiers: methods and algorithms. John
Wiley & Sons, 2004.

[134] T. Meng and M.-L. Shyu, “Leveraging concept association network for multi-
media rare concept mining and retrieval,” in Proceedings of the IEEE Interna-
tional Conference on Multimedia and Expo, Melbourne, Australia, July 2012,
pp. 860–865.

[135] L. Xu, A. Krzyzak, and C. Y. Suen, “Methods of combining multiple classi-
fiers and their applications to handwriting recognition,” IEEE transactions on
systems, man, and cybernetics, vol. 22, no. 3, pp. 418–435, 1992.

[136] A. Al-Ani and M. Deriche, “A new technique for combining multiple classifiers
using the dempster-shafer theory of evidence,” Journal of Artificial Intelligence
Research, vol. 17, pp. 333–361, 2002.

[137] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and A. Y. Ng, “On
optimization methods for deep learning,” in The 28th International Conference
on Machine Learning, Washington, USA, 2011, pp. 265–272.

[138] E. R. Kandel, “An introduction to the work of david hubel and torsten wiesel,”
The Journal of physiology, vol. 587, no. 12, pp. 2733–2741, 2009.

[139] J. Bouvrie, “Notes on convolutional neural networks,” 2006.

[140] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convo-
lutional networks for visual recognition,” in European Conference on Computer
Vision. Springer, 2014, pp. 346–361.

[141] D. Verma, V. Maru et al., “An efficient approach for color image retrieval
using haar wavelet,” in Proceeding of International Conference on Methods and
Models in Computer Science (ICM2CS). IEEE, 2009, pp. 1–5.

[142] S. Sural, G. Qian, and S. Pramanik, “Segmentation and histogram generation
using the hsv color space for image retrieval,” in International Conference on
Image Processing, vol. 2. IEEE, 2002.

[143] S. A. Chatzichristofis and Y. S. Boutalis, “Cedd: color and edge directivity
descriptor: a compact descriptor for image indexing and retrieval,” in Interna-
tional Conference on Computer Vision Systems. Springer, 2008, pp. 312–322.

[144] Yahoo, “Caffeonspark,” https://github.com/yahoo/CaffeOnSpark, accessed
October, 2017.



146

[145] Skymind, “Deeplearning4j,” https://deeplearning4j.org/, accessed October,
2017.

[146] J. Liu, Y. Yang, and M. Shah, “Learning semantic visual vocabularies using
diffusion distance,” in Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on. IEEE, 2009, pp. 461–468.

[147] J. Liu, J. Luo, and M. Shah, “Recognizing realistic actions from videos “in the
wild”,” in Computer vision and pattern recognition, 2009. CVPR 2009. IEEE
conference on. IEEE, 2009, pp. 1996–2003.

[148] I. Laptev, “On space-time interest points,” International journal of computer
vision, vol. 64, no. 2-3, pp. 107–123, 2005.

[149] V. F. Mota, E. d. A. Perez, L. M. Maciel, M. B. Vieira, and P. H. Gosselin, “A
tensor motion descriptor based on histograms of gradients and optical flow,”
Pattern Recognition Letters, vol. 39, pp. 85–91, 2014.

[150] G. Awad, J. Fiscus, M. Michel, D. Joy, W. Kraaij, A. F. Smeaton, G. Quénot,
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