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Opinion dynamics is the study of the exchange of opinions among agents embedded

and communicating over a network. In particular, issues related to the formation

of consensus of opinions, opinion clustering, and opinion influencing have drawn the

attention of researchers in areas as diverse as sociophysics, economics, finance, com-

puter science, and engineering, due to their potential application in social networks,

marketing, cooperative control of autonomous agents, etc.

In this dissertation, we utilize the Dempster-Shafer (DS) belief theoretic framework

to capture agent opinions. The DS theoretic formulation allows us to account for the

types of uncertainties that are inherent in social opinions in a more convenient and

intuitive manner. Opinions that are modeled as probability mass functions (p.m.f.s)

can also be captured as a special case of this belief theoretic formulation. The opin-

ion exchange among neighboring agents are modeled using the Conditional Update

Equation (CUE) and the opinion exchange models adhere to notions in Social Judge-

ment Theory (SJT) which examines the basic psychological processes underlying the

expression of attitudes and their modifiability through communication.

To study consensus and opinion clustering with this belief theoretic viewpoint, we

take two different approaches. In the first approach, using matrix theoretic analysis,

http://www.miami.edu/


we introduce the notion of opinion dynamic chains to account for opinions that are

modeled as p.m.f.s. In particular, we explore how the presence of opinion leaders

affects consensus and opinion cluster formation. This analysis however assumes syn-

chronous (i.e., delay-less) communication between agents. In the second approach,

we utilize notions from paracontractions theory to account for ad-hoc and dynamic

networks with possibly asynchronous message passing. With agents embedded within

such an ad-hoc, dynamic, and asynchronous network structure, and agent opinions

captured via the more general DS belief theoretic models, conditions under which

consensus and opinion clustering occur are explored, giving special attention to the

presence of opinion leaders.

Another aspect of the work undertaken in this dissertation is how to generate a

network in order for the agents to reach a consensus. In particular, given the agent

opinion distribution and the bound of confidence, we determine the edge formation

probability among agents in an Erdös-Rènyi random network. The ultimate objective

is to build the network topology for consensus-based distributed decision making.
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Chapter 1

Introduction

1.1 Overview

Collective behavior of networked multi-agent systems, where the agents behavior

is determined by local interactions between neighboring agents, finds application in

many areas of interest. In such a multi-agent system, study of how an agent’s opinions

can be modeled, how an agent exchanges its opinion with its neighbors, and how

opinions change over time, and the study of other issues related to opinion modeling

and opinion dynamics, have attracted researchers from areas as diverse as sociology,

economics, psychology, politics, finance, physics, computer science, and engineering,

for over six decades. Over these years, different models have been proposed to capture

agent opinions and opinion exchange mechanisms of networked agents as they give

valuable insights in many real-world applications. In distributed control problems,

reaching a consensus state is often desired for purposes of achieving a control objective

[1]; in estimation problems, the agents collectively attempt to estimate an underlying

statistic of a signal [2]; within the context of fusion, the agents attempt to pool

their evidence to arrive at a consensus decision [3]. In politics, information regarding

2



3

consensus or clustering of voter opinions can be of enormous benefit to candidates in

planning their campaigns [4, 5]; in social networks, these models can be utilized to

study consensus [6–8] as well as to identify influential nodes [9]; in viral marketing,

knowledge on how opinion propagation occurs via intermediaries helps promotional

activities [10, 11]. In general, such mathematical models can describe how evidence

is exchanged among agents and the formation of consensus and opinion clusters.

Mutual exchange of agent opinions can be seen as an iterative process, where each

agent updates its opinion based on its prior opinion, as well as the opinions of its

neighboring agents. In such an iterative process, one is then led to assess whether

the process converges so that each agent reaches a ‘stable’ opinion, or a fixed point.

In general, agents interactions tend to make the opinion of agents more ‘similar’ [12].

Repeated interactions lead to higher degrees of homogeneity, that can be either partial

or complete depending on the initial opinion distribution and the iterative updating

process. When a group of agents share the same fixed point, that same group of

agents is said to belong to the same opinion cluster [13]. Advancing further, when all

the agents in a multi-agent system congregate under one common fixed point, they are

said to reach a consensus. See Figures 1.1a and 1.1b. In a network where the agents

may represent soft sources, consensus usually refers to a common agreement about an

opinion of interest. To reach a consensus regarding a variable or some phenomenon

of interest, the agents typically start with their own initial states and then iteratively

exchange their states regarding their beliefs about the variable. Convergence analysis

involves the study of such iterated belief revision processes among agents embedded

in a networked environment.

It should be noted that, modeling of the agent opinion and the opinion exchange and

update mechanisms is an extremely difficult task when it comes to human agents.

A particular agent is neither simply share nor completely disregard the opinion of
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(a) Opinion clusters. (b) Consensus of opinions.

Figure 1.1: Opinion clustering and consensus. The different colors depict the
‘stable’ opinion that each agent reaches.

another agent, but rather take portions from opinions of other agents in forming its

own opinion [14]. The detailed behavior of human agents is an outcome of complex

physiological and phycological process, still largely unknown [12]. However, in many

situations certain properties of large scale phenomena do not depend on the micro-

scopic details of the process. In this dissertation we discuss opinion dynamic models

with endogenous interpersonal communications, i.e., one agent’s attitude affects an-

other’s [15]. All other affects on attitude, i.e., exogenous factors, are not addressed in

the opinion dynamic models that we consider in this dissertation. Modeling dynamics

of opinion exchange by trying to include the tractable important properties as much

as possible, and yield crucial macroscopic information is vital for decision making.

1.2 Motivation

In multi-agent systems like social networks or a group of mobile robots completing a

task, agent behavior is determined by local interactions between neighboring agents.

In distributed control problems, achieving a consensus state is often necessary for the

agents to achieve a control objective [1, 16]. Within the context of fusion, the agents
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attempt to pool their evidence to arrive at a consensus assessment or decision [3]. To

reach a consensus regarding an opinion, agents in a social network typically exchange

opinions in some manner with their neighbors, and update their own opinions, pos-

sibly resulting in a consensus. Understanding the conditions under which a group of

agents will achieve a consensus in a network with time-varying links is a challenging

problem that has recently garnered much interest.

The presence of opinion leaders uniquely influence the consensus of a multi-agent

system. Often time, leaders are the driving force which guides the opinion of the

followers in a particular opinion direction [17]. Hence the analysis of consensus in

agent systems which includes opinion leaders deserve rigorous analysis. In this thesis

we have provided theorems and corollaries weighing on the leader-followers scenario.

The study of leader-follower scenario can be utilized to understand the emergence of

extremism, minority opinion spreading/survival, emergence of political parties, etc.

[18].

With the advances in man-machine interaction (MMI) recent multi-agent systems

often consists of heterogeneous sources. These sources can include a combination of

soft sensors (i.e., human-based sources such as, expert opinions, subjective evidence,

etc.) and hard sensors (i.e., conventional physics-based sensors) [19]. Hence opinion

representation of such a diverse group consisting nuanced-opinions can be achieved

using belief theoretic framework. This makes the agent system an complex fusion

environment. The analysis of convergence of such a complex system demands addi-

tional mathematical avenues beyond the traditional matrix theoretic analysis. The

study of these heterogenous systems expands the application of multi-agent system

analysis to more wider areas of economics, political science, sociology and many other

fields in addition to the traditional signal processing realm.
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One crucial application of consensus is to make decisions in distributed agent envi-

ronments. For instance, in a scenario of autonomous mobile robot group navigation,

it is necessary for them to reach a consensus in order to navigate as one unit. Hence

designing the communication infrastructure with the most optimum topology is vital

for the group to reach a consensus and navigate together. Equipped with the knowl-

edge on the conditions for consensus formation, generation of the underlying network

topology with fault torrent capabilities and outlier removal mechanisms can boost

the deployment of autonomous multi-agent systems in many real world applications.

1.3 Contributions and Their Significance

1.3.1 Accounting for Social Judgement Theoretic Notions

Social Judgement Theory (SJT) examines the underlying psychological processes of

attitude expressions [20]. In particular, we capture three main concepts stemming

from SJT in our opinion models [21].

Bounded confidence: is the phenomenon of agents’ willingness to update their

opinions with the neighboring agents’ opinions only if those opinions are within

their acceptable range. Our opinion dynamic model accounts for bound of

confidence using a distance measure and a threshold value, as to represent the

acceptable range of each agent, in updating opinions from neighbors.

Global affinity: considers multivariate opinions to capture closeness among agents.

For instance, had we used only single valued opinions, we would not have cap-

tured the true opinion proximity of agents, because even if two agents are dis-

tanced apart from one scalar opinion, they could still be close by having other

very similar opinions. In our models, we use Dempster-Shafer Theoretic (DST)
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Body of Evidence (BoE) to represent agents, where opinions are quantified using

Dempster-Shafer (DS) masses. This allows us to capture uncertainty involved

in agent’s opinion space. In certain analysis, the opinions are modeled with

probability mass function, which is a special case of DS mass assignment.

Nature of persuasion: recognizes the agent’s ego involvement in opinion updating.

For instance, individuals with smaller ego are easy to persuade. In our model, we

handle this by assigning relevant opinion updating strategies to agent’s namely

receptive and cautious.

1.3.2 Opinion Dynamics in the Presence of Opinion Leaders

The problem of analyzing the performance of network agents exchanging evidence in

a dynamic network has recently grown in importance. This problem has relevance

in signal and data fusion network applications, and in studying opinion and consen-

sus dynamics in social networks. Most of the analysis that have been carried out

on opinion dynamics have been focused on group of homogeneous receptive agents,

without giving much attention to the leaders. Our analysis in [21] interpret leaders

with cautiously updating agents. In that we have shown conditions when we get a

consensus among a group of agents under the presence of leaders. Furthermore, we

analyze conditions for which clustering occurs under the presence of multiple opinion

leaders.

In Chapter 3 of this dissertation, we examine consensus formation in asynchronous

dynamic/ad-hoc networks within the DST framework, focusing on the specific special

cases of agent opinions represented with p.m.f.s and Dirichlet BoEs. Similar to [21]

(the analytical part in [21] can be found in AppendixA), we utilize bounded confidence

notions to assume that agents only exchange evidence and update their states with
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their neighbors whose states are close as measured by a suitable norm. In addition, we

again assume that the network connectivity graph is dynamic, and therefore that links

can appear, or disappear, meaning that the agents may not have the same neighbors

at each discrete-time instant. In contrast to [21], our work in Chapter 3 requires

less restrictive analytical assumptions. For example, we do not assume the strictly

order preserved arrangement of agent opinions that was required in [21]. Instead, we

utilize notions from matrix and graph theory and networks to analytically examine

the convergence of agent states to consensus. We assume that each agent may assume

either cautious or receptive opinion updating strategies, which allows us to study the

issue of opinion leaders and opinion followers. We examine several cases of interest in

both opinion dynamics and fusion. For example, we study the leader-follower problem

in which a subset of the networked agents achieve an ‘opinion cluster’ that is followed

and adopted by the rest of the network [17]. In addition, we study the case of multiple

opinion leaders where we show how the states may converge to opinion clusters in

which subsets of network nodes converge to distinct states. Simulation results are

provided to demonstrate the validity of the analytical results. More general analysis

of convergence with agents opinions represented as DS BoEs is presented in Chapter 4.

1.3.3 Network Generation for Consensus

One of the prominent aspects of the study of opinion dynamics is to utilize consensus

as a way of distributed decision making in a collaborative environment. In Chapter 5

a method to generate a network in order to facilitate agent communications to reach

a consensus has been presented. We have utilized analytical results on Erdős-Rényi

random graph and accounted for notions of Social Judgement Theory in our proposed

network generation mechanism. A case example has been given to explain how the

model can be used to generate a network to tolerate faults. The random nature of
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the generation process makes it difficult to fragment the group through preplanned

attacks.

1.4 Organization of the Dissertation

The dissertation has been divided into three main parts.

Part I - Introduction and Background Theory.

Part II - Theoretical Analysis of Opinion Dynamics.

Part III - Network Generation for Consensus.

1.4.1 Introduction and Background Theory

Chapter 1 and Chapter 2 give an overview of the dissertation and background theories

used in the rest of the chapters in the dissertation. Among all the background theories

provided, the Dempster-Shafer Theory Preliminaries in Section 2.1 play a pivotal role

in modeling of opinion dynamics in Part II and network generation in Part III of the

dissertation. It should be noted that, certain times, when presenting background

theory, the notations used in cited sources have been altered in order to have a

consistent notation throughout this dissertation. A summary of important acronyms,

glossary terms and nomenclature can be found right after the table of contents.

1.4.2 Theoretical Analysis of Opinion Dynamics

Our analytical studies on opinion dynamics, with special attention to consensus and

opinion clustering, are given in Part II of dissertation. Chapter 3 explains how we
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model the opinions in accordance with the notions in Social Judgement Theory (SJT).

Furthermore, in Chapter 3 conditions, under which consensus and opinion cluster-

ing formed, are analyzed with opinions restricted to probability mass functions and

Dirichlet BoEs, specially under the presence of opinion leaders. In Chapter 4 the

assumptions made on opinion modeling are relaxed and the formation of consensus

and opinion clustering are analyzed in view of nonlinear paracontracting operators.

1.4.3 Network Generation for Consensus

Chapter 5 presents a network generation mechanism which can be utilized for consensus-

based distributed decision making. We have utilized analytical results on Erdős-Rényi

random graph and accounted for notions of Social Judgement Theory in our proposed

network generation mechanism. The random nature of the generation process makes

it difficult to fragment the group through preplanned attacks. This network gen-

eration has applications in social networks, autonomous mobile robots, distributed

sensor systems, viral marketing etc.



Chapter 2

Preliminaries

2.1 Dempster-Shafer Belief Theory

Generally, probability models the extent an event is likely to occur. Often, lack of

information and ignorance make it difficult to give precise single values as a measure

of the likelihood of an event. Dempster-Shafer (DS) theory captures the effect of ig-

norance and imprecise information in a mathematically rigorous yet intuitive manner.

Following is a brief insight into the basics of DS theory (DST) and associated ideas

that are used throughout this dissertation.

2.1.1 Basic Notions

We use N and R to denote the integers and reals, respectively. Subscript (�)≥0 attached

to these are their non-negative counterparts; R[0,1] denotes the reals taking values in

[0, 1].

11
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Frame of Discernment (FoD)

In DST, and within the context of the work described in this dissertation, the Frame

of Discernment (FoD) refers to the finite discrete set Θ = {θ1, · · · , θM} of mutually ex-

clusive and exhaustive propositions [22]. The cardinality |Θ| = M of Θ is the number

of independent singleton propositions. A singleton proposition θi ∈ Θ represents the

lowest level of discernible information. The power set of the FoD 2Θ = {A : A ⊆ Θ}

denotes all the possible subsets of Θ. For A ⊆ Θ, A denotes all singletons in Θ that

are not in A.

Basic Belief Assignment (BBA)

In DST, the Basic Belief Assignment (BBA) constitutes the counterpart to the prob-

ability measure in probability theory.

Definition 2.1 (Basic Belief Assignment (BBA)). A basic belief assignment (BBA)

or mass assignment is a mapping m(·) : 2Θ 7→ [0, 1] such that the following conditions

are satisfied.

1.
∑

A⊆Θm(A) = 1.

2. m(∅) = 0. �

The BBA measures the “support” assigned to proposition A ⊆ Θ. Propositions that

receive non-zero masses are referred to as focal elements . The set of focal elements is

the core F . The triplet E = {Θ,F ,m} is referred to as the Body of Evidence (BoE).

The mass vector corresponding to the BoE E = {Θ,F ,m} is

m = [m(∅),m(θ1), . . . ,m(θM),m(θ1θ2), . . . ,m(θ1θM),

m(θ1θ2θ3), . . . ,m(θ1θ2θM), . . . ,m(Θ)]T ∈ R2M

[0,1]. (2.1)
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Notion of Ignorance

In DST, focal elements can be any singleton or composite (i.e., non-singleton) propo-

sition. DST captures the notion of ignorance by allocating masses to composite

propositions. For instance, the composite proposition {θiθj}, θi, θj ∈ Θ, is a double-

ton and the mass assignment m(θiθj) > 0 represents ignorance or lack of evidence to

differentiate between the two constituent singletons. The state of complete ignorance

can be easily captured via the vacuous BBA which has Θ as its only focal element,

i.e., the mass assignment structure of the vacuous BBA is m(A) = 1 for A = Θ (and

m(A) = 0 for A ⊂ Θ).

A BBA is called Bayesian if each focal element is a singleton. For a Bayesian BBA,

the BBA, belief, and plausibility (which will be explained in next section), all reduce

to a probability assignment.

Belief and Plausibility

The mass assignment for a particular proposition A, i.e., m(A), measures the support

assigned to proposition A itself only. On the other hand, the belief of proposition A

accounts for the support of all proper subsets of A.

Definition 2.2 (Belief). Given a BoE E = {Θ,F ,m}, the belief assigned to a propo-

sition A ∈ Θ is Bl : 2Θ 7→ [0, 1] where

Bl(A) =
∑
B⊆A

m(B). �
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Bl(A) represents the total belief that is committed to A without also being committed

to its complement A. The propositions that possess nonzero beliefs are denoted by

F̂ = {A ⊆ Θ : Bl(A) 6= 0}. (2.2)

Note that, F ⊆ F̂ , i.e., Bl(A) > 0, ∀A ∈ F .

We can characterize beliefs without any reference to the underlying BBA.

Theorem 2.3. For a given FoD Θ, the function Bl : 2Θ 7→ [0, 1] constitutes a belief

function iff the following conditions are satisfied:

1. Bl(∅) = 0.

2. Bl(Θ) = 1.

3. ∀{Ai}i=1,n st. Ai ⊆ Θ,

Bl

 ⋃
i=1,n

Ai

 ≥ ∑
I⊆{1,...,n}

I 6=0

(−1)|I|+1Bl

(⋂
i∈I

Ai

)
. �

Given the beliefs associated with a particular FoD, we may compute the corresponding

BBA as follows:

Theorem 2.4. For a given FoD Θ, suppose Bl : 2Θ 7→ [0, 1] constitutes a valid belief

function in the sense of Theorem 2.3. Then the function m : 2Θ 7→ [0, 1] defined as

m(A) =
∑
B⊆A

(−1)|A−B|Bl(B),

constitutes a valid bba as in the sense of Definition 2.1. �
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Definition 2.5 (Plausibility). Given a BoE, E = {Θ,F ,m}, the plausibility assigned

to a proposition A ⊆ Θ is Pl : 2Θ 7→ [0, 1] where

Pl(A) = 1− Bl(A). �

Plausibility corresponds to the total belief that does not contradict A. We may

calculate plausibility for any A ⊆ Θ via

Pl(A) =
∑

B∩A 6=∅

m(B). (2.3)

Clearly, Pl(A) ≥ Bl(A).

The uncertainty of A is the interval [Bl(A),Pl(A)].

Belief and Probability Functions

Probability measures can be taken as a special case of belief functions.

Definition 2.6. A belief function Bl : 2Θ 7→ [0, 1] associated with the BoE E =

{Θ,F ,m} is said to be a Bayesian belief function if it constitutes a probability mea-

sure on 2Θ. �

Theorem 2.7 gives equivalent conditions for Bayesian belief functions.

Theorem 2.7. Given a BoE E = {Θ,F ,m} and a belief function Bl : 2Θ 7→ [0, 1],

the following statements are equivalent:

• Bl(·) is a Bayesian belief function.

• Bl(·) = Pl(·).
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• All elements of F are singletons, i.e., m(A) = 0, ∀A s.t. |A| > 1.

• Bl(A) + Bl(A) = 1,∀A ⊆ Θ. �

The following additional statements hold true for Bayesian belief functions:

• m(·) = Bl(·) = Pl(·) ≡ P(·).

• Bl(A ∪B) = Bl(A) + Bl(B) whenever A,B ⊆ Θ and A ∩B = ∅.

Dirichlet BoE

A special DST model which retains the ability to capture complete ignorance with

only a slight increase in computational complexity compared to Bayesian BBA is the

Dirichlet BoE (so named because of its close relationship with Dirichlet probability

distributions [23, 24]). The singletons and Θ constitute the only focal elements of a

Dirichlet BoE.

2.1.2 DS Theoretic Conditionals

Several notions of DST conditionals exist in the literature. For example,

• Dempster’s rule of conditioning (including the non-normalized version),

• Yager-Kohlas’ rule of conditioning,

• Resemblance based rule of conditioning,

• Fagin-Halpern’ rule of conditioning.
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Of these different notions, the Fagin-Halpern (FH) conditional offers a unique prob-

abilistic interpretation and hence a natural transition to the Bayesian conditional

notion [25, 26]. The extensive study in [27] identifies several attractive properties

of the FH conditionals including its equivalence to other popular notions of DST

conditionals.

Definition 2.8 (Fagin-Halpern (FH) Conditionals). For the BoE E = {Θ,F ,m} and

A ⊆ Θ s.t. A ∈ F̂ , the conditional belief Bl(B|A) : 2Θ 7→ [0, 1] and conditional

plausibility Pl(B|A) : 2Θ 7→ [0, 1] of B given A are

Bl(B|A) =
Bl(A ∩B)

Bl(A ∩B) + Pl(A ∩B)
;

Pl(B|A) =
Pl(A ∩B)

Pl(A ∩B) + Bl(A ∩B)
. �

The Conditional Core Theorem [28] can be utilized to directly identify the conditional

focal elements to improve computational performance when applying FH conditionals.

2.1.3 Evidence Fusion

To facilitate our discussion, we wish to differentiate between the following two notions,

both related to evidence fusion, i.e., how a knowledge base incorporates new evidence

that it receives.

• Evidence combination: This corresponds to merging multiple knowledge

bases to obtain a combined knowledge base that accommodates the viewpoints

of its constituents. For instance, in the Bayesian framework, this is done via

the application of the Bayes’ rule.



18

• Evidence updating: This refers to the refinement of one’s knowledge base to

accommodate a new piece of evidence that is received. For example, in Bayesian

framework, updating is done via the conditional notion.

The evidence being received could have been generated BoEs with different underlying

FoDs. The following notions characterize the nature of these FoDs:

• Non-Exhaustive or Exhaustive: If all the FoDs are defined in the same

‘context’ so that the ‘complete’ FoD can be thought of as the union of all the

constituent FoDs, then a member FoD that is a strict subset of the complete

FoD is said to be non-exhaustive. In contrast, if the member FoDs possess all the

elements of the complete FoD, then that member FoD is said to be exhaustive.

• Heterogeneous or Homogeneous: FoDs whose singletons are defined within

different ‘contexts’ are said to be heterogeneous . The ‘complete’ FoD is then

constructed via the cross-product of these heterogeneous member FoDs. In

contrast, if the singletons of all FoDs are defined in the same context then those

FoDs are said to be homogeneous .

2.1.4 Evidence Combination

Of all DST evidence combination strategies, Dempster’s evidence combination func-

tion (DECF) is perhaps the most widely used evidence combination strategy that

yields a combined BBA which accounts for evidences of the constituent FoDs.

Dempster’s Evidence Combination Function (DECF)

Consider two BoEs E1 = {Θ,F1,m1} and E2 = {Θ,F2,m2} that span across the same

FoD. Before defining the DECF let us first define the notion of conflict.
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Definition 2.9. The conflict between the evidence present in BoEs E1 and E2 is

K12 =
∑

B∈F1,C∈F2 C∩B=∅

m1(B)m2(C). �

The BoEs E1 and E2 are said to be

• incompatible, if K12 = 1;

• compatible, if K12 ∈ [0, 1); and

• completely compatible, if K12 = 0.

DECF applies to compatible BoEs only, and it is defined as

Definition 2.10 (Dempster’s Evidence Combination Function (DECF)). Consider

two compatible BoEs E1 and E2 with conflict K12. Then the DECF generates the

BBA

m(A) ≡ (m1 ⊕m2)(A) =
∑

B∈F1,C∈F2 C∩B=A

m1(B)m2(C)

1−K12

, ∀A ⊆ Θ. �

The fusion operation of the DECF is denoted as m(·) = (m1⊕m2)(·). The ⊕ operator

is both associative and commutative thus allowing for convenient combination of

multiple BoEs. A variation of the DECF which accounts for evidence reliability is

m(·) = (m̂1 ⊕ m̂2)(·), where

m̂k(A) =


bkm(A), for A ⊂ Θ

(1− bk) + bkmk(Θ), for A = Θ.

(2.4)

Here, bk ∈ [0, 1] is referred to as the discounting factor [22].
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2.1.5 Evidence Updating

As stated before, in evidence updating one’s knowledge base accommodates a new

piece of evidence that is received. The conditional approach does exactly this.

Conditional Update Equation (CUE)

The Conditional Update Equation (CUE) [29, 30] offers a strategy to update evidence

from different BoEs Ej = {Θj,Fj,mj}, j = 1, 2, . . . , N , to arrive at a new updated

BoE E = {Θ,F ,m}. Without loss of generality, let us consider updating the BoE Ei

with the evidence in Ej, j = {1, 2, . . . , N} \ i, to generate the BoE E . In the CUE,

the updated belief of an arbitrary proposition B in the BoE E is given by

Bli(B)k+1 = αiBli(B)k +
N∑
j=1;
j 6=i

∑
A∈Fj

βij(A) Blj(B|A)k. (2.5)

Here, αi and βij are non-negative parameters that satisfy αi+
∑

j 6=i
∑

A∈Fj βij(A) = 1.

The integer subscripts k and k + 1 denote the BoE before and after the updating

operation.

The CUE-based fusion operator can be defined as follows.

Definition 2.11 (H/ operator). [19] Let EΘ ≡
{
E|E = {Θ,F ,m(·)}

}
denote the set

of all possible BoEs defined on Θ. Then the set of N BoEs corresponding to the N

agents can be represented as Ei = {Θ,Fi,mi(·)} ∈ EΘ, i = 1, 2, . . . , N . Then the

CUE operator H i
/ : E N

Θ 7→ EΘ that updates Ei with all Ej, j ∈ {1, 2, . . . ,m} \ {i} can

be written as,

H i
/

(
E1, E2, . . . , EN

)
≡ Ei C

(
E1 on E2 on · · · on Ei−1

on Ei+1 on · · · on EN
)
. (2.6)
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Selection of the CUE Parameters

The work in [30, 31] provides different strategies for the selection of the CUE pa-

rameters. The parameters αi determines the flexibility of accepting updates from

neighbors. The lower the value of αi, the higher the flexibility of the CUE update

towards changes. Two approaches for selecting αi, i = 1, 2, . . . , N , are as follows:

1. Inertia of available evidence: The weight αi can be taken as a measure of

the inertia of a particular agent toward updating with the incoming evidence.

Some inertial based strategies of selecting αi are as follows:

(a) Infinite inertia based updating: αi = 1.

(b) Zero inertia based updating: αi = 0.

(c) Proportional inertia based updating: αi = N/(N + 1), where N

denotes the number of ‘pieces’ of evidence that has been received so far.

2. Integrity of available evidence: The selection of αi is done such that the

integrity of the originally assigned belief and plausibility values are maintained

in the following sense:

Bli(B)k+1 ≤ Pli(B)k and Pli(B)k+1 ≥ Bli(B)k. (2.7)

Then, the range of values for αi can be given as

αi ∈


[

1− Pli(B)k
1− Bli(B)k

, 1

]
, for Bli(B)k < 1;

[0, 1], for Bli(B)k = 1.

(2.8)
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The parameters βij(A) allows one to weigh the incoming evidence. These parameters

can be selected to be proportional to the support available for the corresponding focal

element from Ei or Ej, under the constraint that they satisfy αi+
∑

j 6=i
∑

A∈Fj βij(A) =

1. This generates two main strategies which are referred to as cautious and receptive

strategies [30]:

1. Receptive Updating: This strategy weighs the incoming evidence according

to the support of each focal element receives from Ej, j = {1, 2, . . . , N} \ i, by

selecting βij(A) as

βij(A) = KijmΘj(A), (2.9)

where Kij is a constant such that αi +
∑

j 6=i
∑

A∈Fj KijmΘj(A) = 1.

2. Cautious Updating: This strategy weighs the incoming evidence according

to the support of each focal element receives from Ei by selecting βij(A) as

βij(A) = KijmΘi(A), (2.10)

where Kij is a constant such that αi +
∑

j 6=i
∑

A∈Fj KijmΘi(A) = 1.

One can extend the notions of cautious and receptive to model moderate agents, with

partially cautious agents.

3. Partially cautious updating: This strategy weighs the incoming evidence

according to the support of each focal element receives from Ei by selecting

βij(A) as

βi,j(A) = Ki,j

(
ρimi(A) + (1− ρi)mj(A)

)
, (2.11)
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where Ki,j and ρi, 0 ≤ ρi ≤ 1 are constants, such that

αi +
∑
j 6=i

∑
A∈Fj

Ki,j

(
ρimi(A) + (1− ρi)mj(A)

)
= 1. (2.12)

2.1.6 Distance Measure

In the work to follow in this dissertation, we will need a distance measure which

captures the closeness between DST BoEs. Among possible alternatives that have

appeared in the literature, for our work, we use the DST distance measure in [32, 33].

Definition 2.12 (Distance Between BoEs). [32] The distance between the two agent

BoEs Ei = {Θ,Fi,mi} and Ej = {Θ,Fj,mj} is

‖Ei − Ej‖J =
[
0.5 (mi −mj)

TD (mi −mj)
]1/2

∈ R[0,1],

where mi,mj ∈ R2M

≥0 are the mass vectors associated with the BoEs Ei and Ej, re-

spectively; D = {dmn} ∈ R2M×2M

≥0 , with

dmn =


0, if Am = An = ∅;

|Am ∩ An|
|Am ∪ An|

, otherwise.

�

2.2 Relevant Notions from Graph Theory

2.2.1 Basic Notions

A network or graph is a relational structure constituted of a finite set of objects and

the relationships between pairs of objects [34]. Vertices V (also termed as ‘nodes’,

‘points’, ‘sites’ or ’actors’) denote the finite set of objects. Edges E (also termed
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as ‘lines’, ‘arcs’, ‘links’, ‘bonds’ or ‘ties’) denote the relationship between a part of

vertices. The adjacency matrix A is an (N ×N)-sized matrix A = {Aij} s.t.

Aij =


1, if there is an edge between vertices i and j;

0, otherwise.

(2.13)

Here N = |V |, the cardinality of the vertex set V .

Throughout the dissertation, we represent agents with vertices and interaction be-

tween agents with edges. A graph can be explained with set of vertices and edges

G(V,E), or with its associated adjacency matrix A.

Networks can be either directed or undirected. In directed networks the edge set E

contains ordered vertex pairs. In contrast, the undirected network contains unordered

vertex pairs.

We use Gk = (V,Ek) to denote a time varying directed graph at discrete-time instant

k ∈ N≥0. Here, eij ∈ Ek represents an unidirectional edge from node Vj ∈ V to node

Vi ∈ V . We use Ak to identify the (N ×N) adjacency matrix associated with Ek.

Consider the directed graph Gk = (V,Ek). The out-component of vertex Vi ∈ V is the

set of vertices (including vertex Vi itself) reachable via directed paths from vertex Vi.

The in-component of vertex Vi ∈ V is the set of vertices (including vertex Vi itself)

from which vertex Vi is reachable via directed paths.

2.2.2 Random Graphs

Random graphs can be characterized by the random process which generates them.

In this dissertation, we use the Erdös-Rènyi (ER) random graph model to generate
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random graphs, mainly due to its analytical tractability. The information on the

expected structure and attributes of the ER network can be extracted easily [34].

Erdös-Rènyi Random Graph Model

Erdös-Rènyi random graph model is typically denoted as G(N, p) where N is the

number of vertices and p is the probability of independently placing an edge between

each distinct vertex pair. The mean number of edges of G(N, p) is NC2p whereas the

mean vertex degree is given by c ≡ (N − 1)p. Cleary, for a given number of vertices,

increasing p yields higher values for the mean number of edges and the mean vertex

degree.

2.2.3 Centrality Measures

Different centrality measures have been proposed in order to quantify the most central

or influential vertices [34]. Centrality measures can be categorized according to the

property they attempt to capture:

• Degree: connectedness of a vertex.

• Neighbor characteristics: presence of influential neighbors.

• Closeness: ease reaching other vertices.

• Betweenness: role in connecting other vertices.

2.2.4 Graph Composition

The concept of Graph Composition has been used in the study of reaching a consensus

in a dynamically changing environment [35]. Let G be the set of all directed graphs
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with vertex set V = {V1, V2, . . . , VN} and Gi ∈ G , where Gi = (V,Ei), i = 1, 2, . . .,

with Ei being an edge set.

Composition: The composition G1 ◦ G2 of graphs G1 and G2 is the directed graph

with vertex set V and the edge list E1◦2 in such a way, that eik ∈ E1◦2 is an edge of

the composition graph G1 ◦ G2 if there are edges eij ∈ E1 and ejk ∈ E2.

Rooted graph: A vertex Vi is a root of a directed graph G if there is a directed path

from Vi to every other vertex Vj, j ∈ {1, 2, . . . , N} \ i of G. A rooted graph is a graph

G ∈ G such that the graph G contains at least one root.

Jointly rooted sequence of graphs: Consider a finite sequence of directed graphs

G1,G2, . . . ,Gk ∈ G . We say that sequence of graphs is jointly rooted if the graph

composition G1 ◦ G2 ◦ · · · ◦ Gk is a rooted graph.

Repeatedly jointly rooted sequence of graphs: An infinite sequence of graphs

G1,G2, . . . in G is repeatedly jointly rooted with period ` if there is a positive integer

` for which each finite sequence G`(k−1)+1, G`(k−1)+2, . . . , G`k, k ≥ 1 is jointly rooted.

2.3 Relevant Notions from Matrix and Stochastic

Matrix Theory

2.3.1 Basic Notions

In this thesis we use the superscripts (�)N and (�)M×N to denote N -sized vector and

(M × N)-sized matrix counterparts. For X = {Xij} ∈ RM×N , ‖X‖ denotes its ∞-

norm, i.e., ‖X‖ = maxi∈1,M

∑N
j=1 |Xij|. We use X > 0 and X ≥ 0 to denote a

matrix/vector with positive and non-negative entries, respectively. A matrix whose
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entries are all 0 s (and is of compatible size) is denoted by 0; an N -element vector

whose elements are all 1 s is denoted by 1N .

Stochastic/sub-stochastic matrices and the limiting behavior of their products play a

critical role in our work.

Definition 2.13 (Stochastic matrix). If X ∈ RN×N
[0,1] is stochastic, then

∑N
j=1Xij =

1, ∀i ∈ 1, N , and ‖X‖ = 1. Here, ‖X‖ = maxi=1,...,N

∑N
j=1 |Xij|, i.e., ‖X‖ denotes

the ∞-norm. �

Definition 2.14 (Sub-stochastic matrix). The stochastic matrix X ∈ RN×N
[0,1] is said

to be sub-stochastic if ∃ i ∈ 1, N s.t.
∑N

j=1Xij < 1. �

2.3.2 Stochastic Chains

Definition 2.15 (Properties of Stochastic Chains). [36] Consider the stochastic chain

{Wk = {wij,k}, k ∈ N≥0, where wij,k represents the weight of the edge from vertex

j to vertex j in the directed graph Gk = (V,Ek), for k ∈ N≥0. For a given pair of

S, S ⊆ V s.t. S ∪ S = V and S ∩ S = ∅, let WSS,k =
∑

i∈S,j∈S wij,k.

(a) Balanced chains: {Wk} is balanced if there exists a scalar σ > 0 s.t. WSS,k ≥

σWSS,k for any non-trivial S ⊆ V and k ∈ N≥0. The scalar σ is referred to as a

balancedness coefficient.

(b) Strongly aperiodic chains: {Wk} is strongly aperiodic if wii,k ≥ ς for some ς > 0,

and for all i ∈ 1, N and k ∈ N≥0.

(c) Infinite flow graph: The infinite flow graph associated with {Wk} is the directed

graph G∞ = (V,E∞) where

E∞ =

{
(i, j) :

∞∑
k=0

(wij,k + wji,k =∞, i 6= j ∈ 1, N

}
. �
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Graph theoretically, S×S corresponds to the ‘flow’ entering the subset S; hence WSS

is the sum of weights of ‘flows’ entering S, i.e., the ‘flow’ leaving S. The balancedness

property requires that the ‘flows’ leaving and entering each subset of vertices do not

vanish over time [36].

2.3.3 Contraction Coefficients

Let Σ be a matrix set and Λ = Σ ∪ Σ2 ∪ · · · . A non-negative function τ : Λ → R is

called a contraction coefficient for Σ if

τ(AB) ≤ τ(A) τ(B), ∀A,B ∈ Λ. (2.14)

Contraction coefficients can be used to show that a sequence of vectors or a sequence

of matrices converges in some sense [37]. Birkhoff contraction coefficient is one such

contraction coefficient. Before we proceed to discuss on Birkhoff contraction coef-

ficient in Section 2.3.3, let us look at some preliminary notions that will help us

understand Birkhoff contraction coefficient better.

Projective Metrics

Let x,y ∈ Rn where x = (x1, · · · , xn)T and y = (y1, · · · , yn)T . If xi ≥ 0 ∀i ∈

{1, · · · , n}, then x is said to be non-negative; if xi > 0 ∀i ∈ {1, · · · , n}, then x is

said to be positive. If xi ≥ yi (or, xi > yi), ∀i ∈ {1, · · · , n}, then we write x ≥ y (or,

x > y).
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Definition 2.16 (Projective Metric). Let x,y > 0 and x,y ∈ Rn. Then the projective

metric p is given by

p(x,y) = ln

max
i

xi
yi

min
j

xj
yj

. �

The positive orthant denoted by (Rn)+, is the set of all positive vectors in Rn. The

projective metric p given in Definition 2.16 defines a scaled distance between any two

vectors in (Rn)+. If x and y are positive vectors in Rn, then p(x,y) = p(αx, βy), for

any positive constants α and β.

Definition 2.17. An m × n matrix A ≥ 0 is said to be row-allowable if it has at

least one positive entry in each of its rows; it is said to be column-allowable if AT

is row-allowable. The matrix A is said to be allowable if it is both row and column

allowable. �

Lemma 2.18. Let A be an m × n row allowable matrix and x and y are positive

vectors. Then

p(Ax, Ay) ≤ p(x,y). �

Proof. See [37], Section 2.2.1. �

Birkhoff Contraction Coefficient

Definition 2.19 (Birkhoff Contraction Coefficient). The Birkhoff Contraction Coef-

ficient of an n× n row allowable matrix A is

τB(A) = sup
p(Ax, Ay)

p(x,y)
,

where the supremum is taken over all positive vectors x,y ∈ Rn. �
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It can be seen that p(Ax, Ay) ≤ τB(A) p(x,y), ∀x,y > 0. Hence from Lemma 2.18,

τB(A) ≤ 1. (2.15)

Theorem 2.20. Let A ≥ 0 be a row-allowable matrix. Then τB(A) = 0 iff A is of

rank 1. �

Proof. See [38], Section 3.1. �

Theorem 2.21. Let A and B be n× n row-allowable, non-negative matrices. Then

τB(AB) ≤ τB(A)τB(B). �

Proof. See [37], Section 2.2. �

2.4 Opinion Models and Opinion Dynamics

2.4.1 Basic Notions

Previous work within signal processing, control, and data fusion geared towards ana-

lyzing agent consensus formation has mostly modeled an agent state as a real-valued

vector [1–3, 16] (see also [19] and references therein). While such an assumption is

useful in the context of agents achieving consensus on a control vector, or sensing net-

work agents achieving a consensus signal estimate, the assumption of a real-valued

vector may not necessarily be always suitable within higher-level fusion, or the anal-

ysis of opinion dynamics in social networks. In higher-level fusion, agents attempt

to achieve a consensus assessment regarding a situation, while in opinion dynamics

agents attempt to achieve a consensus opinion. The inherent uncertainty within such
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applications may necessitate a more structured agent state vector such as a prob-

ability mass function (p.m.f.) or a Dempster-Shafer (DS) theoretic mass function.

However, much of the work on opinion dynamics in social networks has focused on

modeling the agent states as either scalar real numbers, or a vector of real numbers

[18], e.g., see the Hegselmann-Krause (HK) model [14, 39] and the Deffuant-Weisbuch

(DW) model [40, 41].

2.4.2 Opinion Dynamics Models

Suppose there are N number of agents in the group and the opinion updating occurs

at discrete time steps, T = {0, 1, 2, 3, · · · }. In order to accommodate generalized

opinion representation in Chapter 3 we use an extended notation that has been used

in [14].

For an agent i ∈ {1, · · · , N}, let its opinion on a particular issue or proposition θ at

discrete time instance k, be denoted by mi(θ)k. To introduce and explain the opinion

models currently being used in the literature, for the remainder of this chapter, we

assume that mi(θ)k ∈ R. Later, in Chapter 3, we will introduce our DST opinion

model.

The vector m(θ)k = [m1(θ)k,m2(θ)k, · · · ,mN(θ)k]
T ∈ RN

≥0 is the opinion profile of θ

at instance k (more formal definition is given in Definition 3.1). Fixing an agent i,

the weight given to any other agent, say j, is denoted by wij, such that wi1 + wi2 +

· · · + wiN = 1 and wij ≥ 0 for all i, j. Then the opinion formation of agent i can be

given as in

mi(θ)k+1 = wi1m1(θ)k + wi2m2(θ)k + · · ·+ wiNmN(θ)k. (2.16)
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The weights may change with time or with the opinion profile, i.e., wij = wij (k,m(θ)k).

Let W (k) = {wij(k)}. Here, whenever wij(k) > 0, agent j communicates its state to

agent i, with a weight of wij at instance k.

Classical Model

WhenW (k) is a fixed stochastic matrix we can denote it without the time dependence,

i.e., as W . The classical model with fixed weights W as in

m(θ)k+1 = Wm(θ)k,∀k ∈ T, (2.17)

has been used in [42] and [6].

Friedkin-Johnsen (FJ) Model

The Friedkin-Johnsen (FJ) model [15] accounts for the susceptibility of agents in

opinion updating. Following the same notation as in (2.17), this FJ model is given as

m(θ)k+1 = AWm(θ)k + (I − A)m(θ)0, (2.18)

where A is a sub-stochastic diagonal matrix. Each diagonal element in A accounts

for the susceptibility of corresponding agent.

Deffuant-Weisbuch (DW) Model

In [40] Deffuant et al. propose a model considering the notion of bounded confidence

(See Section 2.5). Consider a population of N agents be embedded in a graph, where

agents may discuss with each other if the corresponding nodes are connected. Each
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agent’s initial opinion on θ, i.e., mi(θ)0, i ∈ {1, 2, . . . , N} is randomly chosen in the

interval [0, 1]. The opinion updating is carried out via pairwise interactions, where

at each time step, a randomly selected pair of agents are chosen [41, 43]. Let p

and q be the pair of interacting agents at time k, with opinions mp(θ)k and mq(θ)k,

respectively. DW dynamics is as follows:

mr(θ)k+1 =


mr(θ)k + µ[mr(θ)k −mq(θ)k], if r = p and |mp(θ)kmq(θ)k| < ε;

mr(θ)k + µ[mr(θ)k −mp(θ)k], if r = q and |mp(θ)k −mq(θ)k| < ε;

mr(θ)k, otherwise,

(2.19)

where µ is the parameter named convergence parameter with a value lying in the

interval [0, 1/2], and ε is a threshold value which determines the maximum social

proximity in order to exchange opinions.

Hegselmann-Krause (HK) Model

Hegselmann-Krause (HK) model [14] accounts for the similarity of opinions among

agents in opinion updating. An agent i takes only those agents j into account whose

opinions differ from his/her own by not more than a certain threshold or confidence

level εi. Assuming all agents can communicate with each other, for an agent i, the

‘opinion-wise’ closer agents set (for opinion θ) is given by

Ψ (i,m(θ)) =
{

1 ≤ j ≤ N : |mi(θ)−mj(θ)| ≤ εi
}
. (2.20)
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Assume that agent i puts an equal emphasis on all j ∈ Ψ(i,m(θ)). Then the weights

are given by

wij =


0, for j 6∈ Ψ(i,m(θ));

|Ψ(i,m(θ))|−1, for j ∈ Ψ(i,m(θ)).

(2.21)

Here |Ψ| is the cardinality of the finite set Ψ. Then, the model of bounded confidence

is given by

mi(θ)k+1 = |Ψ(i,m(θ)k)|−1
∑

j∈Ψ(i,m(θ)k)

mj(θ)k, for k ∈ T. (2.22)

Even though the bound of confidence notions of HK model is similar to that of

DW model, the major difference holds in the nature of agent interactions. In DW

model agent interactions are always pairwise whereas in HW model an agent can be

considered to update from multiple agents at a particular time index.

2.5 Social Judgement Theory

2.5.1 Basic Notions

Social Judgement Theory (SJT) discusses the basic psychological processes underlying

the expression of attitudes and their modifiability through communication [20].

Boundedness

When a group of agents communicate between each other, a particular agent may

adjust its opinion based mainly on the opinions of neighboring agents with similar

opinions. In other words, an agent may be willing to update its opinion with the

neighboring agent’s opinion only if the ‘distance’ to that opinion is less than a certain
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value ε. Bounded confidence refers to this phenomenon. The rationale for bounded

confidence stems from the concept of latitude of acceptance in SJT.

In the Sociophysics community, the Hegselmann-Krause (HK) model [14, 39] and the

Deffuant-Weisbuch (DW) model [40, 41, 43] have attracted considerable attention

for modeling real-valued opinions under bounded confidence [18]. Most of the work

on HK and DW models have been carried out on a single opinion which is usually

taken to be bounded in the range [0, 1], where 0 and 1 represent the two strong

extreme opinions whereas values in (0, 1) represent weaker/stronger opinions towards

the extremes.

Global Affinity

Fortunato, et al. [44] have considered vector opinions under bounded confidence. In

such a scenario, the affinity of a single opinion may not capture the global affinity

of the agents. For example, consider a situation where two agents A and B initially

have different views on a particular political party, say T . Thus, if only this single

opinion is considered, under a bounded confidence model, A and B may not exchange

opinions. But, if A and B agree from a global point-of-view (e.g., they may have

similar opinions about the other parties), under a bounded confidence model, they

may exchange opinions (including opinions about T ).

Nature of Persuasion

SJT further mentions that a receiving agent’s ego involvement should also be taken

into account when assessing opinion change [20]. Individuals with smaller ego involve-

ment are easy to persuade. While such individuals tend to have a higher latitude of

acceptance, nature of persuasion is a different notion than bounded confidence (which
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is accounted for via ε). For instance, one may find it difficult to persuade an agent

possessing high ego in spite of it having neighboring agents with similar opinions.

Hence, different opinion updating strategies may have to be implemented to account

for nature of persuasion of each agent. In our models, we use two main opinion

updating strategies referred to cautious and receptive update strategies.

2.5.2 Accounting for SJT Notions in Opinion Dynamics

In our work [21], we have used various notions stemming from SJT. The work in

[21] can also account for the concept of forceful agents as put forth in [45]. There are

two ways to view forceful agents: stubborn agents and community leaders/news media.

Stubbornness can be considered a form of egocentricity of agents. Community leaders

can be modeled as cautious updating agents with a higher number of neighboring

agents. They influence other agents in the community and change the opinion of

receptive agents in a particular direction.

Chapter 3 gives an extensive analysis on the consensus and opinion cluster formation

under the presence of multiple opinion leaders while accounting for notions from SJT.

Appendix Section A.1 also gives an alternative analysis on consensus formation un-

der bounded confidence. The analysis in Appendix Section A.1 is focused on opinion

models with singleton propositions only, i.e. using p.m.f.s only. However, Chapter 3

extends the analysis to agent opinions represented with Dirichlet BoEs. The analy-

sis in Chapter 4 gives a paracontractive theoretic analysis on consensus and cluster

formation for agent opinions represented with general DS masses.
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Chapter 3

Consensus in the Presence of
Multiple Opinion Leaders: Effect
of Bounded Confidence

In this chapter, we use the framework of DS theory to capture the opinion of an agent

and examine the opinion dynamics in networks where an agent can utilize either a

cautious or receptive updating strategy. In particular, we examine the case of bounded

confidence updating where an agent exchanges its evidence only with neighboring

nodes possessing ‘similar’ evidence as measured by a suitable norm. In a fusion

network, this captures the case in which nodes only update their state based on

evidence consistent with the node’s own evidence. In opinion dynamics, this captures

the notions of SJT in which agents update their opinions only with other agents

possessing opinions closer to their own. Focusing on the case where an agent state

is modeled as a p.m.f. which emerges as a special case of the DST opinion model,

in this chapter we utilize results from matrix theory, graph theory, and networks to

prove the existence of consensus agent states in several time-varying network cases

of interest. For example, we show the existence of a consensus in which a subset of

network nodes achieves a consensus that is adopted by follower network nodes. Of

particular interest is the case of multiple opinion leaders, where we show that the

38
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agents do not reach a consensus in general, but rather converge to ‘opinion clusters’.

Simulation results are provided to illustrate the main results.

In [19], the DST framework has been utilized to address consensus formation in asyn-

chronous dynamic/ad-hoc networks with applications to high-level fusion networks,

and opinion dynamics in social networks. By utilizing DST, the methods by which an

agent models an opinion and updates its opinion are now equipped with a powerful

mechanism for grappling with the uncertainty inherent in the problem, whether in

the form of vague agent opinions, or imprecise data in a fusion network (e.g., vague

witness statements). The foundations of analyzing opinion dynamics and revision of

agent state beliefs in asynchronous dynamic/ad-hoc, demonstrating conditions under

which consensus is achieved can be found in [19].

Our work, which has appeared in [21], utilizes ideas from psychology, namely SJT

[20], which examines the basic psychological processes underlying the expression of

attitudes and their modifiability through communication. In particular, we use the

notion of bounded confidence which stems from the concept of latitude of acceptance in

SJT. In a social network, agents may only communicate and exchange opinions with

their neighbors that have similar opinions on a particular topic. In other words, an

agent may be willing to update its opinion with the neighboring agent’s opinion only

if the ‘distance’ to that opinion is less than a certain bound of confidence. The opinion

exchange models in the HK and DW models account for these bounded confidence

notions. The work in [46] addresses statistical estimation of the bound of confidence.

In [47] agents are treated as Bayesian decision-makers and Bayes’ risk error has been

used to estimate the bounds. The bounded confidence assumption is also useful within

high-level fusion networks to capture the cases in which agents may only exchange

evidence with agents that have states similar to their own, and hence consistent, and

perhaps avoiding the use of faulty outlier sensors/agents.
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3.1 DST Modeling of Opinion Dynamics

In the work that follows, we consider N agents embedded in the directed graph

Gk = (V,Ek), where the node Vi ∈ V, i ∈ 1, N , represents the i-th agent. Unless

otherwise mentioned, the opinion of the i-th agent at time instant k ∈ N≥0 is taken

to be captured via the BoE Ei,k = {Θ,Fi,k,mi(·)k}, i ∈ 1, N . Note that we assume

that the FoDs associated with the agent opinion BoEs are identical and equal to Θ.

To proceed, we will need

Definition 3.1 (Opinion Profile). Consider the agent BoEs Ei,k = {Θ,Fi,k,mi(·)k}, i ∈

1, N, k ∈ R≥0. The opinion profile of B ⊆ Θ at k ∈ R≥0 is

πππ(B)k = [m1(B)k, . . . ,mN(B)]T ∈ RN
[0,1],

with πππ(B)0 ∈ RN
[0,1] denoting its initial state. �

As an example, consider N = 5 agents with identical FoD Θ = {θ1, θ2}. Then the pos-

sible set of propositions is {θ1, θ2, θ1θ2}. Now the opinion profiles of the propositions

at the time instance k ∈ R≥0 can be given as

πππ(θ1)k =



m1(θ1)k

m2(θ1)k

m3(θ1)k

m4(θ1)k

m5(θ1)k


; πππ(θ2)k =



m1(θ2)k

m2(θ2)k

m3(θ2)k

m4(θ2)k

m5(θ2)k


; πππ(θ1θ2)k =



m1(θ1θ2)k

m2(θ1θ2)k

m3(θ1θ2)k

m4(θ1θ2)k

m5(θ1θ2)k


. (3.1)

On the other hand, the opinions of the agents in this scenario are represented via the

BoEs E1,k, E2,k, E3,k, E4,k and E5,k for the five agents ∀k ∈ R≥0.
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3.1.1 Bounded Confidence

For each agent, define the following sets of neighborhood agents at time instant k:

Ni,k =
{
Vj ∈ V : j ∈ 1, N, and eij ∈ Ek

}
;

Ni,k(εi) = {Vj ∈ Ni,k : ‖Ei,k − Ej,k‖J ≤ εi} , (3.2)

where ‖ · ‖J denotes the distance measure in Definition 2.12 (while any valid norm

applicable for DST BoEs could be used); εi ≥ 0 is the latitude of acceptance or bound

of confidence associated with the i-th agent and εεε = [ε1, . . . , εN ]T . So, Ni,k(εi) denotes

the neighbors of the i-th agent at time k left after ‘pruning’ the links subjected to

the bound of confidence requirement. Also, let

G†k(εεε) = (V,E†k(εεε)), (3.3)

where E†k(εεε) = {eij ∈ Ek : ‖Ei,k − Ej,k‖J ≤ εi}.

The bounded confidence process of updating an agent’s opinion is as follows [18, 44]:

the i-th agent updates its BoE Ei in response to the opinion BoE Ej of its neighbor,

the j-th agent, only if j ∈ Ni(εi). In [40], the threshold εi is referred to as an openness

character. Another interpretation views εi as an uncertainty, i.e., if the i-th agent

possesses an opinion with some degree of uncertainty εi, then it ignores the views of

those neighboring agents who fall outside its uncertainty range.

3.1.2 Opinion Updating and Consensus Formation

In what follows, we will use S to identify the indices corresponding to a subset V (S)

of the agents in V , i.e., V (S) = {Vi ∈ V | vi ∈ S ⊆ {a, 2, . . . , N}}. To proceed, we

adopt the following
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Definition 3.2 (Opinion Clusters, Consensus). Let Ei,k, i ∈ 1, N, k ∈ N≥0, denote

the opinions of N agents embedded within the network Gk = (V,Ek), where each

agent repeatedly updates its state by iterative opinion exchange. Let V (S) identify

a subset of the agents in V .

(a) Suppose limk→∞ ‖Ei,k − Ej,k‖J = 0, ∀i, j ∈ S (or equivalently, limk→∞ Ei,k ≡

E∗, ∀i ∈ S) and suppose limk→∞ Ei,k 6= E∗, ∀i ∈ 1, N \ S. Then, the agents in S

are said to form an opinion cluster.

(b) The agents are said to reach a consensus if S = V , i.e., all the agents in V form

a single opinion cluster. �

Henceforth, our results will only be stated with the formation of a consensus in mind

(e.g., see Lemma 1). Due to (b) above, these results can easily be reformulated so

that they pertain to the formation of opinion clusters.

In our work, we assume that each agent updates its opinion in accordance with the

CUE [29, 30]. Depending on the number of cautious agents present, we consider three

cases:

1. No Opinion Leaders: This is the most common scenario that appears in the

literature [14, 18, 40]. Here, all agents are receptive and no opinion leaders are

present.

2. Single Opinion Leader: Here, all agents are receptive except one cautious agent

or opinion leader. This is the scenario considered in typical leader-follower

models [2], and the recent work in [19]).

3. Multiple Opinion Leaders: Here, there are multiple cautiously updating opinion

leaders, generally with different initial opinions. To our knowledge, this case

has not been addressed prior to this present work of ours.
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Our work, which is based on the work in [13, 39], provides sufficient conditions for

consensus/cluster formation under certain strong assumptions (e.g., the agent opin-

ions can be ordered as what is referred to as an εεε-chain). We relax such assumptions

in this work by utilizing properties of products of stochastic/sub-stochastic matrices.

Suppose the i-th agent updates its opinion Ei by taking into account its neighboring

agents j ∈ Ni,k(εi), where εi > 0 is the i-th agent’s bound of confidence. The CUE

being the update strategy being employed, the i-th agent’s updated opinion can be

expressed as [30]

mi(B)k+1 = αi,kmi(B)k +
∑
j 6=i

∑
A∈Fj,k

βij(A)kmj(B|A)k. (3.4)

Here, j ∈ Ii,k where Ii,k denotes the index set of agents inNi,k(εi); the CUE parameters

αi,k, βij(·)k ∈ R[0,1] satisfy

αi,k +
∑
j 6=i

∑
A∈Fj,k

βij(A)k = 1. (3.5)

The work in [30] identifies two update strategies which determine the CUE parameter

set {βi,j(·)k} to be employed:

(a) Receptive updating: Select βij(A)k ∝ mj(A)k. Receptively updating agents are

referred to as opinion followers.

(b) Cautious updating: Select βij(A)k ∝ mi(A)k. Cautiously updating agents are

referred to as opinion leaders.
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3.2 Probabilistic Agent Opinions

When the DST BoEs Ei,k, i ∈ 1, N, k ∈ N≥0, possess only singleton focal elements, we

essentially have the case of probabilistic agent opinions. In this case, the CUE-based

opinion update in (3.4) reduces to the discrete-time dynamic system

πππ(θp)k+1 = Wk πππ(θp)k, p ∈ 1,M, (3.6)

where πππ(�)k ∈ RN
[0,1], Wk = {wij,k} ∈ RN×N

[0,1] is row-stochastic [37], and its elements are

given by

wij,k =


αi,k, for i = j;

(1− αi,k)/|Ni,k(εi)|, for j ∈ Ni,k(εi);

0, otherwise.

(3.7)

As in [48], we refer to Wk as the confidence matrix because wij,k represents the weight

the i-th agent attaches to the opinion of the j-th agent at time step k. Note that,

Wk constitutes the weighted adjacency matrix of G†k(εεε) in (3.3).

The work in [19] studies in detail how cautious agents possessing DST opinions behave

under a CUE-based update strategy. For our purposes, we would only need

Proposition 1. When agents possessing probabilistic agent opinions employ a CUE-

based update strategy, the opinion of a cautiously updating agent is invariant. �

Proof. Without loss of generality, suppose the i-th agent is a cautious agent. Its

CUE-based update is given by (3.4), where

βij(B)k = µij,kmi(A)k; αi,k +
∑
j 6=i

∑
A∈Fj,k

µij,k = 1,
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for singletons A,B ∈ Θ. But, we know that [26], for singleton propositions A,B ∈ Θ,

m(B|A) = 1 only if B = A, and m(B|A) = 0 otherwise. With this substitution, (3.4)

reduces to m1(B)k+1 = m1(B)k, ∀k ∈ N≥0. �

To proceed, we will need

Definition 3.3 (Left (or Backward) Products). [49]

(a) Left Product: The left product of the sequence of matrices {Wk}, Wk ∈ RN×N ,

is

Wk:` =


I, for k < `;

W`, for k = `;

WkWk−1 · · ·W`, for k > `.

(b) Left-Converging product: The left product Wk:0 is said to be left-converging if

limk→∞Wk:0 exists, in which case we write W∞ = limk→∞Wk:0. �

Note that, with Definition 3.3, the dynamic system in (3.6) can be expressed as

πππ(θp)k+1 = Wk:0πππ(θp)0. (3.8)

Thus, whenever W∞ exists,

lim
k→∞

πππ(θp)k+1 = W∞πππ(θp)0. (3.9)

Clearly, the convergence of agent opinions depends on the existence and the nature of

W∞. When W∞ exists, let us denote the converged opinion profile for θp as πππ∗(θp) ∈

RN
[0,1]. Consensus (in the sense of Definition 3.2) is a special case of a converged

opinion profile.
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Lemma 1. The agents form a consensus iff ∃ηηη = {ηp} ∈ RM
[0,1] s.t.

πππ∗(θp) = ηp1N ,∀p ∈ 1,M, ∀i ∈ 1, N. �

Proof. Suppose πππ∗(θp) = ηp1N , ∀p ∈ 1,M, ∀i ∈ 1, N , for some ηηη = {ηp} ∈ RM
[0,1]. This

clearly means that

lim
k→∞
Ei,k ≡ E∗, ∀i ∈ 1, N.

Thus, the agents form a consensus.

Conversely, if

lim
k→∞
Ei,k ≡ E∗, ∀i ∈ 1, N,

we must have πππ∗(θp) = ηp1N ,∀p ∈ 1,M, ∀i ∈ 1, N . �

The limiting behavior of the stochastic matrix product {Wk} plays a crucial role in

consensus analysis when DST BoEs possess only singleton focal elements.

Lemma 2. Consider the stochastic chain {Wk}, k ∈ N≥0, s.t. W∞ = 1 vT for

some stochastic vector v ∈ RN
[0,1]. Then, the agents reach the consensus πππ∗(θp) =

(vTπππ(θp)0) 1, where πππ(θp)0 ∈ RN
[0,1] denotes the initial opinion profile. �

Proof. Use (3.9):

lim
k→∞

πππ(θp)k+1 = 1 vTπππ(θp)0 = ηp1, ηp = vTπππ(θp)0.

So, from Lemma 1, we achieve a consensus. �
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3.2.1 No Opinion Leaders

This is the most widely studied scenario and many consensus-related results can be

found in the literature [2, 18, 48, 50, 51]. The work in [48] studies convergence when

each element in the stochastic chain {Wk} has positive diagonals. From a graph

theoretic viewpoint, this implies that there is a path from each vertex to itself; from

an opinion dynamics perspective, this is referred to as having the self-communicating

property [48]. This self-communicating property in [48] is closely related to the strong

aperiodicity property in [51]: given a balanced and strongly aperiodic stochastic chain

{Wk}, W∞:k0 is rank one for all k0 ∈ N≥0 iff the infinite flow graph of {Wk} is

connected.

3.2.2 Single Opinion Leader

We first introduce

Definition 3.4 (Opinion Dynamics Chain Driven By One Group (1-ODC)). The

directed dynamic network G†k(εεε) = (V,E†k(εεε)) in (3.3) is said to be an opinion dynamics

chain driven by one group (1-ODC) if its corresponding confidence matrix Wk in (3.6)

can be expressed as the lower block triangular matrix

Wk =

Ak 0

Ck Dk

 ,
where Ak ∈ RNC×NC

[0,1] and Dk ∈ RNout×Nout
[0,1] , and the other matrices have compatible

sizes. �
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Figure 3.1: An opinion dynamics chain driven by one group (1-ODC).

One may view an 1-ODC as consisting of a ‘central’ component

G†C,k(εεε) = (VC , E
†
C,k(εεε)) (with NC agents), (3.10)

and another component

G†out,k(εεε) = (Vout, E
†
out,k(εεε)) (with Nout agents), (3.11)

s.t. no agent in G†out,k(εεε) belongs to the in-component of G†C,k(εεε), for any k ∈ N≥0.

See Fig. 3.1. Note that, Ak and Dk correspond to the confidence matrices of agents

in G†C,k(εεε) and G†out,k(εεε), respectively. In a social setting the agents embedded in the

central G†C,k(εεε) can be viewed as an elite group which influences the opinions of the

followers. For instance, the elite group can be a media organization or set of high

profile leaders.

Theorem 1. Consider agents embedded in a 1-ODC employing a CUE-based update

strategy. Furthermore, suppose that

• limn→∞An:0 = 1NCvTA, where vA ∈ RNC
[0,1] is a stochastic vector so that the agents in

VC reach their own consensus, and

• ‖Dk‖ ≤ ρ < 1, ∀k ∈ N≥0.
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Then, the agents in V (i.e., agents in VC and Vout) will reach a consensus at the

consensus reached by the agents in VC . �

Proof. The CUE-based opinion update strategy yields the dynamic system

πππA(θp)k+1

πππD(θp)k+1

 = Wk

πππA(θp)k

πππD(θp)k

 , (3.12)

where k ∈ N≥0, θp ∈ Θ, and

Wk =

Ak 0

Ck Dk

 =⇒ Wn:0 =

An:0 0

Pn Dn:0

 . (3.13)

Here the sub matrices have sizes compatible with Wk. Use Wn+1:0 = Wn+1Wn:0 to get

Pn+1 = Cn+1An:0 +Dn+1Pn, P0 = C0, (3.14)

for n ∈ N≥0. Due to the row-stochasticity of Wk, we have

1Nout = Ck1NC +Dk1Nout , ∀k ∈ N≥0. (3.15)

Subtract 1Noutv
T
A from both sides of (3.14):

Pn+1 − 1Noutv
T
A = Cn+1An:0 +Dn+1Pn − 1Noutv

T
A

= Cn+1An:0 +Dn+1Pn − [Cn+11NC +Dn+11Nout ] v
T
A

= Cn+1[An:0 − 1NCvTA] +Dn+1[Pn − 1Noutv
T
A],
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for n ∈ N≥0. Here, we have used (3.15). Employing the notation ∆Pn = Pn −

1Noutv
T
A, n ∈ N≥0, we express this as

∆Pn+1 = Cn+1[An:0 − 1NCvTA] +Dn+1∆Pn, n ∈ N≥0.

Then, we may bound ‖∆Pn+1 −Dn+1∆Pn‖ as

|‖∆Pn+1‖ − ‖Dn+1∆Pn‖| ≤ ‖∆Pn+1 −Dn+1∆Pn‖

= ‖Cn+1[An:0 − 1NCvTA]‖

≤ ‖An:0 − 1NCvTA‖. (3.16)

We proceed by noting that limn→∞An:0 = 1NCvTA, where NC-sized stochastic vector,

implies that the agents in VC converges to a consensus (see Lemma 2). Hence, given

an arbitrary εA > 0, ∃NA ∈ N≥0 s.t.

‖An:0 − 1NCvTA‖ < εA, ∀n ≥ NA. (3.17)

From (3.16) and (3.17), we can obtain the following: given an arbitrary εA > 0,

∃NA ∈ N≥0 s.t.

|‖∆Pn+1‖ − ‖Dn+1∆Pn‖| < εA, ∀n ≥ NA.

So, for n ≥ NA, we have

‖∆Pn+1‖ < ‖Dn+1∆Pn‖+ εA < ρ ‖∆Pn‖+ εA, (3.18)

where we use the fact that ‖Dn+1‖ ≤ ρ < 1, ∀n ≥ NA. This upper bound for ‖∆Pn+1‖

yields

‖∆PNA+L‖ < εA

L−1∑
`=0

ρ` + ρL‖∆PNA‖, L ≥ 0. (3.19)
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We note that

lim
L→∞

(
εA

L−1∑
`=0

ρ` + ρL‖∆PNA‖

)
=

εA
1− ρ

,

i.e., given an arbitrary εP > 0, ∃LP ∈ N≥0 s.t.

εA

L−1∑
`=0

ρ` + ρL‖∆PNA‖ −
εA

1− ρ
< εP , ∀L ≥ LP .

Use this in (3.19):

‖∆PNA+L‖ < εP +
εA

1− ρ
, ∀L ≥ LP ;

in other words,

lim
n→∞

‖∆Pn‖ = lim
n→∞

‖Pn − 1Noutv
T
A‖ = 0.

Using (3.13) in (3.12), we get

πππA(θp)n+1

πππD(θp)n+1

 =

An:0 0NC×Nout

Pn Dn:0


πππA(θp)0

πππD(θp)0

 . (3.20)

Let us take the consensus among agents in VC as

πππ∗A(θp) = (1NCvTA)πππA(θp)0.

Then, by (3.20), we can write

πππ∗A(θp)

πππ∗D(θp)

 =

1NCvTA 0NC×Nout

1NCvTA 0Nout×Nout


︸ ︷︷ ︸

1NC+Noutv
∗T

πππA(θp)0

πππD(θp)0

 , (3.21)

where v∗ is a (NC +Nout)-sized stochastic vector created by concatenating the vectors

vA and 0Nout×1. But (3.21) satisfies the conditions of Lemma 2. So, all agents in V
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achieve a consensus. Moreover, as (3.21) shows, this consensus is the same consensus

achieved by the agents in VC . �

An immediate consequence of Theorem 1 is

Corollary 1. Consider the network G†k(εεε) = (V,E†k(εεε)) in (3.3) populated with re-

ceptively updating opinion followers and a single cautiously updating opinion leader.

Suppose Dk corresponds to the confidence matrix of the receptively updating opinion

followers with ‖Dk‖ ≤ ρ < 1, ∀k ∈ N≥0. Then, with a CUE-based update strategy,

all the agents reach a consensus opinion, and this consensus opinion is equal to the

opinion of the opinion leader. �

Proof. Construct a 1-ODC as in Definition 3.4 with G†C,k(εεε) containing the opinion

leader only and G†out,k(εεε) populated with the opinion followers. Proposition 1 implies

that V †C (which consists of only the cautiously updating opinion leader) generates a

consensus. Therefore, according to Theorem 1, all the agents in V reach a consensus,

and this consensus is the opinion leader’s opinion. �

3.2.3 Two Opinion Leaders

GC1,k(ε)
†

Gout,k(ε)
†

GC2,k(ε)
†

Ck
(1)

Ck
(2)

Figure 3.2: An opinion dynamics chain driven by two groups (2-ODC).

The situation turns out to be significantly more complicated when there are multiple

opinion leaders. To look at the two opinion leader case, let us introduce

Definition 3.5 (Opinion Dynamics Chain Driven By Two Groups (2-ODC)). The

directed dynamic graph G†k(εεε) = (V,E†k(εεε)) in (3.3) is said to be an opinion dynamics
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chain driven by two groups (2-ODC) if its corresponding confidence matrix Wk in

(3.6) can be expressed as the lower block triangular matrix

Wk =


A

(1)
k 0 0

0 A
(2)
k 0

C
(1)
k C

(2)
k Dk

 .

where A
(1)
k ∈ RNC1×NC1

[0,1] , A
(2)
k ∈ RNC2×NC2

[0,1] , and Dk ∈ RNout×Nout
[0,1] , and the other matri-

ces have compatible sizes. �

One may view a 2-ODC as consisting of two ‘central’ components

G†C1,k(εεε) = (VC1, E
†
C1,k(εεε)) (with NC1 agents), and; (3.22)

G†C2,k(εεε) = (VC2, E
†
C2,k(εεε)) (with NC2 agents), (3.23)

plus a third component

G†out,k(εεε) = (Vout, E
†
out,k(εεε)) (with Nout agents), (3.24)

s.t. no agent in G†out,k belongs to the in-components of either G†C1,k(εεε) or G†C1,k(εεε).

See Fig. 3.2. Note that, A
(1)
k , A

(2)
k , and Dk correspond to the confidence matrices of

agents in G†C1,k(εεε), G
†
C2,k(εεε), and G†out,k(εεε), respectively.

In a social setting the two ‘central’ components can be viewed as two elite groups. We

assume that the two elite groups do not exchange opinions directly among each other.

We now demonstrate that the agents in even a 2-ODC cannot yield a consensus in

general, even though the agents in VC1 and VC2 achieve their own consensus opinions.

Theorem 2. Consider agents embedded in a 2-ODC employing a CUE-based update

strategy. Furthermore, suppose that
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• limn→∞A
(1)
n:0 = 1NC1

vT1 and limn→∞A
(2)
n:0 = 1NC2

vT2 , where v1 ∈ RNC1

[0,1] and

v2 ∈ RNC2

[0,1] are stochastic vectors so that the agents in VC1 and VC2 achieve their

own consensus opinions, and

• ‖Dk‖ ≤ ρ < 1, ∀k ∈ N≥0.

Then, the following are true:

(a) The agents in V (i.e., agents in VC1, VC2, and Vout) reach a consensus iff the

consensus opinions of the agents in VC1 and VC2 are equal.

(b) When the consensus opinions of the agents in VC1 and VC2 are not equal, a

consensus among the agents in Vout occurs if ∃λ(1), λ(2) ∈ (0, 1) s.t. λ(1) +λ(2) =

1 and λ(1)C
(1)
k 1NC1

= λ(2)C
(2)
k 1NC2

, ∀k ∈ N≥0. �

Proof. Note that we may write

Wn:0 =


A

(1)
n:0 0 0

0 A
(2)
n:0 0

P
(1)
n P

(2)
n Dn:0

 ,

where, for n ∈ N≥0,

P
(1)
n+1 = C

(1)
n+1A

(1)
n:0 +Dn+1P

(1)
n , P

(1)
0 = C

(1)
0 ;

P
(2)
n+1 = C

(2)
n+1A

(2)
n:0 +Dn+1P

(2)
n , P

(2)
0 = C

(2)
0 . (3.25)

(a) Suppose the two consensus opinions of the agents in VC1 and VC2 are equal.

One may then recast the 2-ODC as a 1-DOC with the confidence matrices

corresponding to the central component and the other component taken as[
A

(1)
k 0

0 A
(2)
k

]
and Dk, respectively. Noting that the central component reaches a
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common consensus opinion, apply Theorem 1 to show that all the agents must

reach a consensus which is identical to the common consensus opinion formed

within the central component. Conversely, if the two consensus opinions of the

agents in VC1 and VC2 are not equal, no consensus is possible among the agents

in VC1 and VC2 because these two sets of agents do not update from each other.

(b) Suppose the two consensus opinions of the agents in VC1 and VC2 are not equal.

Due to the row stochasticity of Wk, we have

1Nout = C
(1)
k 1NC1

+ C
(2)
k 1NC2

+Dk1Nout ;

λ(2)1Nout = C
(1)
k 1NC1

+ λ(2)Dk1Nout , k ∈ N≥0, (3.26)

where we used

λ(1)C
(1)
k 1NC1

= λ(2)C
(2)
k 1NC2

.

Now, proceeding as we did in the proof of Theorem 1, subtract λ(2)1Noutv
T
1 from

both sides of (3.25) and substitute for 1Nout from (3.26) to get

P
(1)
n+1 − λ(2)1Noutv

T
1 = C

(1)
n+1[A

(1)
n:0 − 1NC1

vT1 ] + Dn+1[P (1)
n − λ(2)1Noutv

T
1 ],

for n ∈ N≥0. As before, we use the notation ∆P
(1)
n = P

(1)
n − λ(2)1Noutv

T
1 to

express this as

∆P
(1)
n+1 = C

(1)
n+1[A

(1)
n:0 − 1NC1

vT1 ] +Dn+1∆P (1)
n ,
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for n ∈ N≥0. Now, bound ‖∆P (1)
n+1 −Dn+1∆P

(1)
n ‖ as

|‖∆P (1)
n+1‖ − ‖Dn+1∆P (1)

n ‖| ≤ ‖∆P
(1)
n+1 −Dn+1∆P (1)

n ‖

= ‖C(1)
n+1[A

(1)
n:0 − 1NC1

vT1 ]‖

≤ ‖A(1)
n:0 − 1NC1

vT1 ‖,

where we used the sub-stochasticity of C
(1)
n .

Now, as in the proof of Theorem 1, use the fact that the agents in VC1 and VC2

each achieve a consensus to show that

lim
n→∞

‖P (1)
n − λ(2)1Noutv

T
1 ‖ = lim

n→∞
‖P (2)

n − λ(1)1Noutv
T
2 ‖ = 0.

Denote the consensus among the agents in VC1 and VC2 as

πππ∗A(1)(θp) = (1NC1
vT1 )πππA(1)(θp)0;

πππ∗A(2)(θp) = (1NC2
vT2 )πππA(2)(θp)0,

respectively. Then we have


πππ∗
A(1)(θp)

πππ∗
A(2)(θp)

πππ∗D(θp)

=


1NC1

vT1 0 0

0 1NC2
vT2 0

λ(2)1NC1
vT1 λ(1)1NC2

vT2 0



πππA(1)(θp)0

πππA(2)(θp)0

πππD(θp)0

,

where πππ∗D(θp) is given as

πππ∗D(θp) = 1Nout

[
λ(2)vT1 λ(1)vT2

]πππA(1)(θp)0

πππA(2)(θp)0

 .
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Hence, from Lemma 2, we conclude that the agents in Vout reach a consensus if

λ(1) + λ(2) = 1, ∀k ∈ N≥0. �

One may interpret this result in the following manner: the matrices C
(1)
k and C

(2)
k

signify the ‘weights’ or ‘bias’ that agents in Vout give to the agents in VC1 and VC2,

respectively. To reach a consensus, each agent in Vout must give the same proportion

of weights to the agents in VC1 and VC2 for all k ∈ N≥0: λ(2) > λ(1) implies that a

higher weight is given to the opinions of the agents in VC1 than to the opinions of the

agents in VC2. This might be due to stronger interconnections between the agents in

VC1 and Vout or it could simply be due to a bias towards the opinions of the agents

in VC1.

As an immediate consequence of Theorem 2 we get

Corollary 2. Consider the network G†k(εεε) = (V,E†k(εεε)) in (3.3) populated with re-

ceptively updating opinion followers and two cautiously updating opinion leaders.

Suppose Dk corresponds to the confidence matrix of the receptively updating opinion

followers with ‖Dk‖ ≤ ρ < 1, ∀k ∈ N≥0. Then, with a CUE-based update strategy,

the following are true:

(a) All the agents reach a consensus iff the opinions of the two opinion leaders are

equal.

(b) When the opinion leaders do not possess the same opinion, the opinion followers

form an opinion cluster if the proportion of weights that each receptive agent

gives to the two opinion leaders is identical and no opinion leader is given zero

weight. �
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3.3 Dirichlet Agent Opinions

Next, let us suppose that agents opinions are modeled via Dirichlet BoEs Ei,k, i ∈

1, N, k ∈ N≥0. Then, using the properties Bl(θi|θi) = 1, Bl(θi|θj) = 0, i 6= j, and

Bl(B|Θ) = B, ∀B ⊆ Θ, one can easily show that the CUE-based update mechanism

in (3.4) retains the Dirichlet property of the updated BoEs at each step [30]. For

this Dirichlet BoE case, the CUE-based opinion update reduces to the following DT

dynamic system:

πππ(θp)k+1 = W̆k πππ(θp)k, p ∈ 1,M. (3.27)

Here πππ(·)k is as in (3.6) and W̆k = {w̆ij,k} ∈ RN×N where w̆ij,k, i, j ∈ 1, N, k ∈ N≥0.

When the i-th agent is receptively updating,

w̆ij,k =



αi,k, for i = j;

(1− αi,k)(1 +mj(Θ)k)

|Ni,k(εi)|
, for j ∈ Ni,k(εi);

0, otherwise;

(3.28)

when the i-th agent is cautiously updating,

w̆ij,k =



1, for i = j;

(1− αi,k)mi(Θ)k
|Ni,k(εi)|

, for j ∈ Ni,k(εi);

0, otherwise.

(3.29)

While we may still refer to W̆k as the corresponding confidence matrix, unlike Wk,

W̆k is not necessarily stochastic.
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To proceed we take inspiration from [30], where it is shown that under mild conditions,

the masses for complete ambiguity Θ vanish when two Dirichlet agents mutually

update each other. The same result turns out to hold true for multiple BoEs.

Lemma 3. Consider the CUE-based updating of the Dirichlet BoEs as in (3.27). If

αi,k +
∑
j 6=i

βij(Θ)k ≤ ρ < 1, ∀i, j ∈ 1, N, ∀k ∈ N≥0,

then limn→∞mi(Θ)n = 0, ∀i ∈ 1, N . �

Proof. Observe that the update of πππ(Θ) can be written as

πππ(Θ)k+1 = ΓΓΓkπππ(Θ)k,

where

ΓΓΓk =



α1,k β12(Θ)k β13(Θ)k · · · β1N(Θ)k

β21(Θ)k α2,k β23(Θ)k · · · β2N(Θ)k
...

...
. . .

...
...

βN1(Θ)k βN2(Θ)k βN3(Θ)k · · · αN,k


.

The condition in the statement implies that ‖ΓΓΓk‖∞ ≤ ρ < 1, ∀k ∈ N≥0, which

guarantees the claim. �

Note that each BoE being updated possessing at least one singleton focal element

ensures that the condition in Lemma 3 is satisfied, which in turn ensures that the

mass for each completely ambiguous proposition vanishes in the limit. Recall that

Corollaries 1 and 2 apply to probabilistic agents. In the following sections, we present

the counterparts to these results which apply to Dirichlet agents.
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3.3.1 Single Opinion Leader

Let us consider a 1-ODC as in Definition 3.4 and the corresponding confidence matrix

W̆k as

W̆k =

Ak 0

Ck Dk

 , (3.30)

where Ak ∈ RNC×NC
[0,1] and Dk ∈ RNout×Nout

[0,1] , and 0 and Ck have compatible sizes. As

explained in Section 3.2.2, in this 1-ODC consists of a ‘central’ component G†C,k(εεε) =

(VC , E
†
C,k(εεε)) with NC agents (see Fig. 3.1) and a ‘follower’ component G†out,k(εεε) =

(Vout, E
†
out,k(εεε)) with Nout agents. Note that in the ‘follower’ component all the agents

are receptively updating. Ak and Dk correspond to the confidence matrices of agents

in G†C,k(εεε) and G†out,k(εεε), respectively.

Theorem 3. Consider agents possessing Dirichlet opinions embedded in a 1-ODC

employing a CUE-based update strategy. Furthermore, suppose that

• condition in Lemma 3 is satisfied,

• limn→∞An:0 = 1NCvTA, where vA ∈ RNC
[0,1] is a stochastic vector so that the agents

in VC reach their own consensus, and

• ∃ND s.t., ‖Dk‖ ≤ ρ < 1, ∀k > ND and k,ND ∈ N≥0.

Then the agents in V (i.e., agents in VC and Vout) will reach a consensus at the

consensus reached by the agents in VC . �

Proof. The CUE-based update strategy yields the dynamic system

πππA(θp)k+1

πππD(θp)k+1

 = W̆k

πππA(θp)k

πππD(θp)k

 , (3.31)
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where k ∈ N≥0, θp ∈ Θ, and

W̆k =

Ak 0

Ck Dk

 =⇒ W̆n:0 =

An:0 0

Pn Dn:0

 . (3.32)

The sub matrices have compatible sizes with W̆k. From W̆n+1:0 = W̆n+1W̆n:0, we can

get

Pn+1 = Cn+1An:0 +Dn+1Pn, P0 = C0,

for n ∈ N≥0. Unlike with agents possessing probabilistic opinions, in this scenario

with Dirichlet agent opinions, W̆k is not necessarily stochastic. However, since the

conditions in Lemma 3 are satisfied, ∀ε > 0, ∃kD ∈ N≥0 such that |W̆kv − 1N | < ε,

∀k > kD and with v being any stochastic vector. Then ∀ε > 0,∃kD ∈ N≥0 s.t.

‖Ck1NC +Dk1Nout − 1Nout‖ < ε, ∀k > kD.

Using the notation ∆Pn = Pn − 1Noutv
T
A, n ∈ N≥0, and following similar arguments

as in the proof of Theorem 1, we get, ∀εD > 0, ∃kD ∈ N0 s.t.

|‖∆Pn+1‖ − ‖Dn+1∆Pn‖| ≤ ‖An:0 − 1NCvTA‖+ εD, ∀n > kD. (3.33)

From limn→∞An:0 = 1NCvTA, given an arbitrary εA > 0 ,∃NA ∈ N≥0 s.t.

‖An:0 − 1NCvTA‖ < εA, ∀n ≥ NA. (3.34)

Then from (3.33) and (3.34), we can obtain the following:

|‖∆Pn+1‖ − ‖Dn+1∆Pn‖| < εA + εD, ∀n ≥ max(kD, NA).
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Let max{kD, NA, ND} = NB. So, ∀n ≥ NB, we have

‖∆Pn+1‖ < ‖Dn+1∆Pn‖+ εA + εD < ρ ‖∆Pn‖+ εA + εD,

where we use the fact that ‖Dn+1‖ ≤ ρ < 1, ∀n ≥ ND. This upper bound for

‖∆Pn+1‖ yields

‖∆PNB+L‖ < (εA + εD)
L−1∑
`=0

ρ` + ρL‖∆PNB‖, L ≥ 0. (3.35)

We note that

lim
L→∞

(
(εA + εD)

L−1∑
`=0

ρ` + ρL‖∆PNB‖

)
=
εA + εD
1− ρ

,

i.e., given an arbitrary εP > 0, ∃LP ∈ N≥0 s.t.

(εA + εD)
L−1∑
`=0

ρ` + ρL‖∆PNB‖ −
εA + εD
1− ρ

< εP , ∀L ≥ LP .

Use this in (3.35):

‖∆PNB+L‖ < εP +
εA + εD
1− ρ

, ∀L ≥ LP .

In other words,

lim
n→∞

‖∆Pn‖ = lim
n→∞

‖Pn − 1Noutv
T
A‖ = 0.

Using (3.32) in (3.31), we get

πππA(θp)n+1

πππD(θp)n+1

 =

An:0 0NC×Nout

Pn Dn:0


πππA(θp)0

πππD(θp)0

 .
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Let us take the consensus among agents in VC as

πππ∗A(θp) = (1NCvTA)πππA(θp)0.

Then, by (3.20), we can write

πππ∗A(θp)

πππ∗D(θp)

 =

1NCvTA 0NC×Nout

1NCvTA 0Nout×Nout


︸ ︷︷ ︸

1NC+Noutv
∗T

πππA(θp)0

πππD(θp)0

 , (3.36)

where v∗ is a (NC +Nout)-sized stochastic vector created by concatenating the vectors

vA and 0Nout×1. But (3.36) satisfies the conditions of Lemma 2. So, all agents in V

achieve a consensus. Moreover, as (3.36) shows, this consensus is the same consensus

achieved by the agents in VC . �

An immediate consequence of Theorem 3 is

Corollary 3. Consider the network G†k(εεε) = (V,E†k(εεε)) in (3.3) populated with recep-

tively updating Dirichlet opinion followers and a single cautiously updating Dirichlet

opinion leader. Suppose that the condition in Lemma 3 is satisfied. Let Dk denote

the confidence matrix of the receptively updating opinion followers with ‖Dk‖ ≤ ρ <

1, ∀k ≥ ND, for some ND ∈ N≥0. Then all the agents reach a consensus opinion. �

Proof. Construct a 1-ODC as in Definition 3.4 with G†C,k(εεε) containing the opinion

leader only and G†out,k(εεε) populated with the opinion followers. Proposition 1 implies

that V †C (which consists of only the cautiously updating opinion leader) generates a

consensus. Therefore, according to Theorem 3, all the agents in V reach a consensus

opinion. �
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3.3.2 Two Opinion Leaders

Let us consider a 2-ODC as in Definition 3.5 and the corresponding confidence matrix

W̆k as

W̆k =


A

(1)
k 0 0

0 A
(2)
k 0

C
(1)
k C

(2)
k Dk

 . (3.37)

where A
(1)
k ∈ RNC1×NC1

[0,1] , A
(2)
k ∈ RNC2×NC2

[0,1] , and Dk ∈ RNout×Nout
[0,1] , and the other ma-

trices have compatible sizes. As explained in Section 3.2.3, this 2-ODC consists of

two ‘central’ components G†C1,k(εεε) = (VC1, E
†
C1,k(εεε)) (with NC1 agents) and G†C2,k(εεε) =

(VC2, E
†
C2,k(εεε)) (with NC2 agents), plus a third component G†out,k(εεε) = (Vout, E

†
out,k(εεε))

(with Nout agents) s.t. no agent in G†out,k belongs to the in-components of either

G†C1,k(εεε) or G†C1,k(εεε). See Fig. 3.2. Note that, A
(1)
k , A

(2)
k , and Dk correspond to the

confidence matrices of agents in G†C1,k(εεε), G
†
C2,k(εεε), and G†out,k(εεε), respectively.

Theorem 4 below shows that a 2-ODC cannot yield a consensus in general. Fur-

thermore, it provides conditions for consensus among the Nout agents embedded in

G†out,k(εεε).

Theorem 4. Consider agents embedded in a 2-ODC employing a CUE-based update

strategy. Furthermore, suppose that

• condition in Lemma 3 is satisfied,

• limn→∞A
(1)
n:0 = 1NC1

vT1 and limn→∞A
(2)
n:0 = 1NC2

vT2 , where v1 ∈ RNC1

[0,1] and

v2 ∈ RNC2

[0,1] are stochastic vectors so that the agents in VC1 and VC2 achieve their

own consensus opinions, and

• ‖Dk‖ ≤ ρ < 1, ∀k ≥ ND, for some ND ∈ N≥0.
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Then, the following are true:

(a) The agents in V (i.e., agents in VC1, VC2, and Vout) reach a consensus iff the

consensus opinions of the agents in VC1 and VC2 are equal.

(b) When the consensus opinions of the agents in VC1 and VC2 are not equal, a

consensus among the agents in Vout occurs if ∃λ(1), λ(2) ∈ (0, 1) s.t. λ(1) +λ(2) =

1 and λ(1)C
(1)
k 1NC1

= λ(2)C
(2)
k 1NC2

, ∀k ∈ N≥0. �

Proof. From (3.37) we can get

W̆n:0 =


A

(1)
n:0 0 0

0 A
(2)
n:0 0

P
(1)
n P

(2)
n Dn:0

 ,

where, for n ∈ N≥0,

P
(1)
n+1 = C

(1)
n+1A

(1)
n:0 +Dn+1P

(1)
n , P

(1)
0 = C

(1)
0 ;

P
(2)
n+1 = C

(2)
n+1A

(2)
n:0 +Dn+1P

(2)
n , P

(2)
0 = C

(2)
0 .

(a) Suppose the two converged consensus opinions of the agents in VC1 and VC2 are

equal. Then by following a similar argument as in the proof of Theorem 2(a)

and using the result of Theorem 3 we can show that all agents must reach a

consensus. Conversely, if the two converged consensus opinions of the agents in

VC1 and VC2 are not equal, no consensus is possible among agents.

(b) Suppose the two consensus opinions of the agents in VC1 and VC2 are not equal.

Unlike with agents possessing probabilistic opinions, in this scenario with Dirich-

let agent opinions W̆k is not necessarily stochastic. However, since the condition



66

in Lemma 3 is satisfied, ∀ε > 0, ∃kD ∈ N≥0 such that, |W̆kv−1N | < ε, ∀k > kD

with v being any stochastic vector. Then ∀ε > 0, ∃kD ∈ N≥0 s.t.

‖C(1)
k 1NC1

+ C
(2)
k 1NC2

+Dk1Nout − 1Nout‖ < ε;

‖C(1)
k 1NC1

+ λ(2)Dk1Nout − λ(2)1Nout‖ < ε, ∀k > kD,

where we used

λ(1)C
(1)
k 1NC1

= λ(2)C
(2)
k 1NC2

.

Now, proceeding as we did in the proof of Theorem 3, and with the notation

∆P
(1)
n = P

(1)
n − λ(2)1Noutv

T
1 we get, ∀εD > 0, ∃kd ∈ N≥0 s.t.

|‖∆P (1)
n+1‖ − ‖Dn+1∆P (1)

n ‖| ≤ ‖∆P
(1)
n+1 −Dn+1∆P (1)

n ‖

= ‖C(1)
n+1[A

(1)
n:0 − 1NC1

vT1 ] + εD‖

≤ ‖A(1)
n:0 − 1NC1

vT1 ‖+ εD,

where we used the sub-stochasticity of C
(1)
n for ∀n > kD.

Now, as in the proof of Theorem 3, use the fact that the agents in VC1 and VC2

each achieve a consensus to show that

lim
n→∞

‖P (1)
n − λ(2)1Noutv

T
1 ‖ = lim

n→∞
‖P (2)

n − λ(1)1Noutv
T
2 ‖ = 0.

Denote the consensus among the agents in VC1 and VC2 as

πππ∗A(1)(θp) = (1NC1
vT1 )πππA(1)(θp)0;

πππ∗A(2)(θp) = (1NC2
vT2 )πππA(2)(θp)0,
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respectively. Then we have


πππ∗
A(1)(θp)

πππ∗
A(2)(θp)

πππ∗D(θp)

=


1NC1

vT1 0 0

0 1NC2
vT2 0

λ(2)1NC1
vT1 λ(1)1NC2

vT2 0



πππA(1)(θp)0

πππA(2)(θp)0

πππD(θp)0

,

where πππ∗D(θp) is given as

πππ∗D(θp) = 1Nout

[
λ(2)vT1 λ(1)vT2

]πππA(1)(θp)0

πππA(2)(θp)0

 .
Hence, from Lemma 2, we conclude that the agents in Vout reach a consensus if

λ(1) + λ(2) = 1, ∀k ∈ N≥0.

�

As an immediate consequence of Theorem 4 we get

Corollary 4. Consider the network G†k(εεε) = (V,E†k(εεε)) in (3.3) populated with re-

ceptively updating Dirichlet opinion followers and two cautiously updating Dirichlet

opinion leaders. Suppose that the condition in Lemma 3 is satisfied. Let Dk denote

the confidence matrix of the receptively updating opinion followers with ‖Dk‖ ≤ ρ <

1, ∀k ≥ ND, for some ND ∈ N≥0. Then, with a CUE-based update strategy, the

following are true:

(a) All the agents reach a consensus iff the converged opinions of the two opinion

leaders are equal.

(b) When the opinions of the opinion leaders are not equal, the opinion followers

form an opinion cluster if the proportion of weights each receptively updating

agent gives to the two opinion leaders is identical for k ≥ ND and no opinion

leader is given zero weight. �
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3.4 Empirical Evaluation and Discussion

In this section, we present some of the typical results obtained through extensive sim-

ulations of scenarios where agent opinions are captured via p.m.f.s (see Section 3.4.1),

Dirichlet BoEs (see Section 3.4.2), and more general DST BoEs (see Section 3.4.3).

The results confirm our theoretical analysis in Section 3.2 and demonstrate the ap-

plicability of these results for the more general DST models presented in Section 3.1.

In all the simulations, the agents employ a CUE-based update strategy to update their

opinions with αi = 0.50, ∀i ∈ 1, N , and the agents’ bounds of confidence taken to be

identical, i.e., εi = ε, ∀i ∈ 1, N . Note that, for αi > 0, ∀i ∈ 1, N , and for sufficiently

large ε, all the agents satisfy the self-communicating or the strong-aperiodic property

[48, 51]. Even though the agents are embedded in a static network, the agents must

accommodate the bounds of confidence as the opinions are updated. In effect, this

creates a dynamic network G†k(εεε).

For ease of visualization, the results of consensus/cluster formation are displayed

using bifurcation diagrams that depict the state of consensus/cluster formation in

the limit density versus ε [18].

3.4.1 Probabilistic Agent Opinions

For our simulations we embed seven agents on a graph of seven nodes and 100 agents

on ER random graphs of 100 nodes. First we present the results for seven agents,

and then the results for 100 agents.
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3.4.1.1 Simulations with Seven Agents

The FoD of the opinion BoE of each agent is Θ = {θ1, θ2, θ3}. For the results shown

in Figures 3.3 to 3.6, initial opinion profile of θ1 is selected as

πππ(θ1)0 = [0.80, 0.78, 0.76, 0.40, 0.80, 0.10, 0.20]T ; (3.38)

the remaining masses are equally distributed between the opinion profiles πππ(θ2)0 and

πππ(θ3)0.

No Opinion Leaders

Fig. 3.3a shows the network topology of the seven receptive agents Ri, i ∈ 1, 7 and

Fig. 3.3b shows the corresponding bifurcation diagram. As can be seen from Fig. 3.3b,

for smaller values of ε, seven ‘opinion clusters’ are generated because agents are

essentially isolated. As the value of ε is increased, the number of opinion clusters

decreases because the agents are updating their opinions based on opinions of their

neighbors who are within their confidence bounds. Eventually, for ε > 0.46 (approx.)

consensus emerges (see Fig. 3.3b). This is expected from our analytical results in

Section 3.2.1.

Even though the underlying network topology shown in Fig. 3.3a is static, opinion

updating occurs in a dynamic network G†k(εεε). To illustrate this further, consider the

case when ε = 0.5. As Fig. 3.3c illustrates, agent pairs (R3, R6) and (R5, R7) do not

exchange opinions because their opinion distances exceed the bound of confidence

ε = 0.5. However, after the first iteration of opinion exchanges, distances among

agents change. As Fig. 3.3d illustrates, the opinion distances of all agents (including

(R3, R6) and (R5, R7)) are now well within ε = 0.5 and, at the second iteration, all

agents exchange opinions with their neighboring agents.
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(a) Network topology. (b) Bifurcation diagram for πππ(θ1).

(c) For ε = 0.5, first iteration:
(R3, R6) and (R5, R7) do not ex-
change opinions because the corre-
sponding opinion distances are above

ε = 0.5.

(d) For ε = 0.5, second iteration: All
neighbor agents exchange opinions be-
cause all corresponding opinion dis-

tances are below ε = 0.5.

Figure 3.3: Probabilistic agents: Simulation results for seven receptively updating
agents (Ri, i ∈ 1, 7) and no opinion leaders. A consensus occurs for ε > 0.46
(approx.). For ε = 0.5, Figs 3.3c and 3.3d show the ‘directions’ of opinion exchange
at the first two iterations. Edge labels indicate the distance between the opinions

of the corresponding agent pair.
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Single Opinion Leader

To create this scenario, we replace the receptive agent R1 in Fig. 3.3a with a cautious

agent C1 and obtain the graph shown in Fig. 3.4a. For this topology the bifurcation

diagram for πππ(θ1) is depicted in Fig.3.4b. As before, for smaller values of ε, each agent

forms its own ‘opinion cluster’. For larger values of ε, in accordance with Corollary 1,

a consensus is formed, and this consensus opinion is the opinion of the opinion leader

C1 (viz., m(θ1) = 0.80). As Fig. 3.4b indicates, this consensus begins to appear

for ε > 0.46 (approx.). The dynamic nature of opinion exchange in the first three

iterations is illustrated in Figs 3.4c, 3.4d, and 3.4e.

Two Opinion Leaders

Here we replaced the two receptive agents {R1, R7} in Fig. 3.3a by the cautious agents

{C1, C7}, respectively. Figs 3.5a and 3.5b show the corresponding network topology

and bifurcation diagram for πππ(θ1), respectively. In accordance with Corollary 2,

no consensus is reached because the two opinion leaders {C1, C7} possess different

opinions.

With the opinions of two opinion leaders being different, the number of opinion clus-

ters created depends on the bound of confidence ε. For 0.31 < ε < 0.42 (approx.),

we observe two opinion clusters, the minimum number of clusters possible. We have

achieved this by picking the agent BoEs carefully so that the network separates into

two components, each with its own opinion leader, for the aforementioned values of ε.

For these values, the network gets separated into two components {C1, R2, R3, R,R5}

and {C7, R6} because ‖E3−E6‖ > ε and ‖E5−E7‖ > ε, for 0.31 < ε < 0.42 (approx.).

The ensuing network generates two opinion clusters at the opinions of the two opinion

leaders C1 and C7. For larger values of ε, some (or all) receptive agents get influenced
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(a) Network topology. (b) Bifurcation diagram for πππ(θ1).

(c) For ε = 0.46, first itera-
tion: (R3, R6) and (R5, R7)

do not exchange opinions.

(d) For ε = 0.46, sec-
ond iteration. (R3, R6) now
exchange opinions; (R5, R7)
still do not exchange opin-

ions.

(e) For ε = 0.46, third it-
eration. All agents exchange
opinions with their neigh-

bors.

Figure 3.4: Probabilistic agents: Simulation results for one opinion leader (C1)
and six receptively updating agents (Ri, i ∈ 2, 7). A consensus occurs for ε > 0.46
(approx.), at C1’s opinion (i.e., m(θ1) = 0.80). For ε = 0.46, Figs 3.4c, 3.4d, and
3.4e show the ‘directions’ of opinion exchange at the first three iterations. Edge
labels indicate the distance between the opinions of the corresponding agent pair.

by both opinion leaders which creates different opinion clusters that are influenced

by both opinion leaders.

As asserted in Corollary 2, when the two opinion leaders possess different opinions, the

receptive agents will reach a consensus if the matrices C
(1)
k and C

(2)
k in Definition 3.5

satisfy λ(1)C
(1)
k 1NC1

= λ(2)C
(2)
k 1NC2

, ∀k ∈ N≥0. Fig. 3.6a shows a network topology

which satisfies this condition, and the corresponding bifurcation diagram in Fig. 3.6b



73

(a) Network topology.

(b) Bifurcation diagram for πππ(θ1).

Figure 3.5: Simulation results for two opinion leaders (C1 and C7) and five re-
ceptive agents (Ri, i ∈ 2, 6). With the two opinion leaders possessing different
opinions, no consensus is achieved. A minimum of 2 opinion clusters are achieved
for 0.31 < ε < 0.42 (approx.). There is no consensus among the receptive agents.
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(a) Altered topology.

(b) Bifurcation diagram for πππ(θ1).

Figure 3.6: Simulation results for two opinion leaders (C1 and C7) and five re-
ceptive agents (Ri, i ∈ 2, 6) embedded in a topology that generates a consensus

among the receptive agents. This consensus appears for ε > 0.43 (approx.).

shows the appearance of a third opinion cluster around m(θ)1 = 0.50 (approx.) for

ε > 0.43 (approx.).

3.4.1.2 Simulations with 100 Agents

Further experiments were carried out with 100 agent with completely connected graph

and then Erdős-Rényi (ER) random graph model.
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(a) No opinion leaders.

(b) One opinion leader.

(c) Two opinion leaders.

Figure 3.7: Simulation results for 100 agents embedded in an Erdős-Rényi random
graph with p = 0.10 and agent BoEs sampled from Dir(1, 1, 1). Consensus can be

seen in Fig. 3.7a and 3.7b, for ε > 0.26 and ε > 0.21, respectively.
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Completely Connected Graph

We have explored all the three scenarios: all receptive agents, one cautious agent, and

multiple cautious agents embedded in completely connected graph with each agent

having the identical FoD Θ = {θ1, θ2, θ3}. An agent i’s opinion is represented via

a DST model with focal elements restricted to be singleton propositions, i.e., the

opinion model is essentially a p.m.f. with probabilities {mi(θ1),mi(θ2), · · · ,mi(θM)},

where
∑M

j=1mi(θj) = 1.

Completely Connected Graph: All Receptive Agents

Uniformly Distributed Case:

Most studies on real-valued opinion dynamics (with agents having a single opinion in

the range [0, 1]) have used random and uniformly distributed initial opinion profiles or

initial densities that are uniformly distributed in the opinion space [18]. In accordance

with these previous works, we have conducted a trial experiment with N = 100

receptive agents, assuming that the initial DST mass of the opinion on θ1 is uniformly

distributed in the range [0, 1], i.e., mi(θ1) = U(0, 1), i ∈ {1, . . . , 100}. The remaining

mass is equally distributed among the other singletons θ2 and θ3. Fig. 3.8 shows the

corresponding bifurcation diagram with respect to θ1. It can be seen that, for smaller

values of ε (approximately < 0.12), no consensus is formed. Indeed, the lower the

value of ε, the higher the number of clusters. The cluster formation at ε = 0.1 and

consensus at ε = 0.3 appear in Figs 3.9a and 3.9b, respectively.

Dirichlet Distribution Case:

Further experiments were carried out by sampling opinions from a Dirichlet distri-

bution [52], i.e., mi(θ1, θ2, θ3; 2, 2, 2) = Dir(2, 2, 2), i ∈ {1, . . . , 100}. The symmetric

Dirichlet distribution corresponds to the case having no prior information to favor one
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Figure 3.8: All receptive agents case/mass for θ1 sampled from a uniform distri-
bution: bifurcation diagram for θ1. The mass values of singleton θ1 of agents in the
limit density are given for different bound of confidence values ε. The intensity of

each point corresponds to the denseness of the representing cluster.

singleton over the other. The symmetric Dirichlet distribution with concentration pa-

rameter equal to one is equivalent to a uniform distribution over the open standard

2-simplex. The parameters (2, 2, 2) in the Dirichlet distribution enforce a symmetric

and dense distribution with a centered mode. Fig. 3.10 shows the bifurcation diagram

with all receptive agents. It can be seen that consensus is reached when ε > 0.15

(approximately). Fig. 3.11 shows that the minimum bound of confidence ε required

for consensus gets lower as the number of agents increases. This is to be expected

because, as the number of agents increases, it is easier to make an ε-chain with a

lower bound of confidence.
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(a) Bound of confidence ε = 0.1.

(b) Bound of confidence ε = 0.3

Figure 3.9: All receptive agents case/mass for θ1 sampled from a uniform distri-
bution: evolution of opinion profile of θ1.
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Figure 3.10: All receptive agents case/masses of all singletons sampled from
Dir(2, 2, 2): bifurcation diagram for θ1.

Completely Connected Graph: One Cautious Agent

A test with one cautious agent and 99 receptive agents was carried by selecting the

initial mass assignment of the cautious agent as, mC1(θ1) = 0.50, mC1(θ2) = 0.25

and mC1(θ3) = 0.25. Masses of the receptive agents were sampled from Dir(2, 2, 2).

The bifurcation diagram with respect to θ1 is given in Fig. 3.12, where consensus is

reached when ε > 0.13 (approximately). As expected from the analysis, the cautious

agent acts as an opinion leader and guides the consensus by influencing all the other

receptive agents to converge to the cautious BoE EC1.
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Figure 3.11: All receptive agents case/masses of all singletons sampled from
Dir(2, 2, 2): minimum bound of confidence required for consensus versus the num-
ber of receptive agents (solid line: estimated minimum bound of confidence, shaded:

standard error).

Completely Connected Graph: Multiple (Two) Cautious Agents

Fig. 3.13 gives the bifurcation diagram for the scenario with two cautious agents

C1, C2 and 98 receptive agents. The mass assignment for the initial state of cautious

agents are mC1(θ1) = 0.75, mC1(θ2) = 0.125, mC1(θ3) = 0.125, and mC2(θ1) = 0.25,

mC2(θ2) = 0.375 and mC2(θ3) = 0.375. The masses of the opinions of receptive agents

were sampled from Dir(2, 2, 2). As the ‘stubborn’ opinion leaders carry different

opinions, we will not see any consensus in this scenario. The minimum number of

two clusters can be observed for 0.08 < ε < 0.23 (approximately), where receptive

agents are influenced by the closest opinion leaders and cling to the closest group.

Note that the singleton opinions on θ1 have been clustered to two groups with masses

belonging to either mC1(θ1) or mC2(θ1); other singletons behave similarly. Further,

since the majority of the receptive agents were initially closer to the cautious agent
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Figure 3.12: One cautious agent case/masses of receptive agents sam-
pled from Dir(2, 2, 2)/masses of cautious agent {mC1(θ1),mC1(θ2),mC1(θ3)} =

{0.50, 0.25, 0.25}: bifurcation diagram for θ1.

C2, as can be seen from the higher intensity line in Fig. 3.13, the group formed under

C2 has a higher agent density compared to the group with C1. However, for ε > 0.23,

the number of clusters is fixed at 3. When the receptive agents have a higher bound of

confidence, they get influenced by both opinion leaders, thus forming a group where

the majority of the group has opinions in the convex hull of the leader opinions.

We also make another observation. In the presence of cautious agents, the number

of iterations required before reaching a fixed point is higher compared to that of a

scenario with all receptive agents. Fig. 3.14 shows that, in the presence of cautious

agents, it requires about 200 iterations to reach a fixed point, whereas in all receptive

agents case Fig. 3.9, it has taken less than 10 iterations to reach a fixed point.
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Figure 3.13: Two cautious agents case/masses of receptive agents sampled
from Dir(2, 2, 2)/masses of cautious agents are {mC1(θ1),mC1(θ2),mC1(θ3)} =
{0.75, 0.125, 0.125}, {mC2(θ1),mC2(θ2),mC2(θ3)} = {0.25, 0.375, 0.375}: bifurca-

tion diagram for θ1.

ER Random Graph

For our simulations, we embed 100 agents in random graphs of 100 nodes generated

using the Erdős-Rényi (ER) random graph model with edge formation probability p =

0.10 [34]. It is well established that, for an ER random graph, the phase transition for

network connectivity occurs when p > ln n/n [34], which is about 0.046 for n = 100.

To be safe, we used p = 0.10 for generating all random graphs. Also, every random

graph was tested for connectedness before starting the simulation. Therefore, for

sufficiently large values of ε, the graph G†k(ε)ε)ε) is essentially the same as Gk, and thus

it is connected.
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(a) ε = 0.1

(b) ε = 0.3

Figure 3.14: Two cautious agents case/masses of receptive agents sampled
from Dir(2, 2, 2)/masses of cautious agents are {mC1(θ1),mC1(θ2),mC1(θ3)} =
{0.75, 0.125, 0.125}, {mC2(θ1),mC2(θ2),mC2(θ3)} = {0.25, 0.375, 0.375}: evolution

of opinion profile of θ1.
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The BoE of each agent was sampled from the symmetric Dirichlet distribution Dir(1, 1, 1),

which is equivalent to a uniform distribution over the open standard 2-simplex [52].

As Figs 3.7a and 3.7b show, for ε > 0.26 (approx.) and ε > 0.21 (approx.), a con-

sensus appears when there are no opinions leaders and when only one opinion leader

is present, respectively. In accordance with Corollary 2, Fig. 3.7c shows that there is

no consensus among the 100 agents when two opinion leaders have different opinions.

3.4.2 Dirichlet Agent Opinions

Here, we repeat the experiments conducted with the 7-agent topologies in Section 3.4.1.1

but with Dirichlet agent opinions. For all the agents, we kept the same mass vectors

πππ(θ2)0 and πππ(θ3)0 as those in Section 3.4.1.1 while we used πππ(Θ)0 = 0.1; the remaining

masses were assigned to πππ(θ1)0.

Fig. 3.15 shows the corresponding bifurcation diagrams. As is evident, and in consis-

tent with Corollary 3, a consensus can be seen in Figs 3.15a and 3.15b for ε > 0.51

and ε > 0.5, respectively. However, in Fig. 3.15c, there is no consensus among the

agents. This is consistent with Corollary 4(a) because the cautious agents do not pos-

sess the same converged opinion. The minimum number of opinion clusters appear

for 0.26 < ε < 0.52 (approx.).

Interestingly, even for higher values of ε, no consensus emerges even among the re-

ceptive agents. Indeed, one would expect that the receptive agents who are now less

restrained to exchange opinions with their neighbors would form an opinion clusters

of their own. In contrast, when the agents are embedded in the graph shown in

Fig. 3.6a, a consensus emerges among the receptive agents for ε > 0.46 (approx.).

See Fig. 3.16. This is because the graph topology in Fig. 3.6a satisfies the condition

in Corollary 4(b).
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(a) No opinion leaders.

(b) One opinion leader.

(c) Two opinion leaders.

Figure 3.15: Dirichlet agents: Simulation results for 7 agents with no opinion
leaders, one opinion leader and two opinion leaders embedded in the graphs in
Figs 3.3a, 3.4a, and 3.5a respectively. Consensus can be seen in Fig. 3.15a and

3.15b, for ε > 0.51 and ε > 0.5, respectively.
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Figure 3.16: Dirichlet agents: Simulation results for two opinion leaders (C1

and C7) and five receptively updating agents (Ri, i ∈ 2, 6) embedded in the graph
in Fig. 3.6a generates a consensus among the receptively updating agents. This

consensus appears for ε > 0.46 (approx.).

3.4.3 DST Agent Opinions

3.4.3.1 Simulations with Seven Agents

In this study, we assigned random DS mass assignments for the seven agents em-

bedded within the topology in Fig. 3.6a. For this purpose, we utilized the Dirichlet

distribution which has been widely employed in opinion modeling [53–55]. In partic-

ular, for each agent in each trial, the DS masses for θ1, θ2, θ3, (θ1θ2), (θ1θ3), (θ2θ3),

and Θ = (θ1θ2θ3) were sampled from the Dirichlet distribution Dir(4, 4, 4, 2, 2, 2, 1).

Figs 3.17a, 3.17b, and 3.17c show the bifurcation diagrams when the network contains

no opinion leaders, one opinion leader, and two opinion leaders, respectively.

As Fig. 3.17a shows, with no opinion leaders, a consensus appears for ε > 0.18

(approx.). Fig. 3.17b shows bifurcation diagram when only one opinion leader is

present, and we can see that a consensus appears for ε > 0.17 (approx.). As Fig. 3.17c
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(a) No opinion leaders.

(b) One opinion leader.

(c) Two opinion leaders.

Figure 3.17: General DST agents: Simulation results for seven receptively up-
dating agents embedded within the network topology in 3.6a and DST mass values
sampled from Dir(4, 4, 4, 2, 2, 2, 1). A consensus appears for the no opinion leader
and one opinion leaders cases in Fig. 3.17a and 3.17c for ε > 0.18 (approx.) and

ε > 0.17 (approx.), respectively.
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shows, with two opinion leaders, no consensus is reached among the agents. However,

it is interesting to note that three opinion clusters emerge for ε > 0.21 (approx.).

In essence, the observations related to consensus and opinion cluster formation when

agents opinions are modeled via DST BoEs are in accordance with the results obtained

with probabilistic agent opinions. The main reason for utilizing the DST framework

for capturing agent opinions is its ability to capture the types of uncertainties and

the nuances that are characteristic of agent states and opinions. DST agent opinions

can also generate new emergent behavior which cannot be captured via probabilistic

agents. For example, consider 7 receptive agents embedded within the topology in

Fig. 3.3a. The initial opinions and the converged opinions for ε = 0.30 appear in

Table 3.1. Notice that two opinion clusters have emerged: the first cluster formed

by {R1, . . . , R5} converge to the probabilistic opinion {m∗1(θ1), m∗1(θ2), m∗1(θ3)} =

{0.63, 0.19, 0.18}; the second cluster formed by R6 and R7 converge to the general

DST opinion {m∗2(θ1), m∗2(θ2, θ3)} = {0.15, 0.85} which allows no further ‘refinement’

between the singletons θ2 and θ3. Such emergent behavior is qualitatively different

than what appears in prior models [14, 18, 39–41].

Table 3.1: Initial and Converged Opinions (with ε = 0.30)

Agent DST Mass Values
θ1 θ2 θ3 (θ1, θ2) (θ2, θ3)

Initial Opinions:
R1 0.60 0.10 0.10 0.10 0.10
R2 0.62 0.11 0.04 0.11 0.12
R3 0.51 0.12 0.05 0.12 0.20
R4 0.57 0.15 0.03 0.15 0.10
R5 0.60 0.10 0.10 0.10 0.10
R6 0.10 – – – 0.90
R7 0.20 – – – 0.80

Converged Opinions (with ε = 0.30):
{R1, . . . , R5} 0.63 0.19 0.18 – —
{R6, R7} 0.15 – – – 0.85
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3.5 Chapter Summary

In this chapter, we explore the DST framework for representing agent opinions and

the formation of consensus and opinion clusters when agents residing within a net-

work exchange and update their opinions. In particular, we examine the effect that

opinion leaders have on these processes. Our opinion model explained in this chapter

accounts for aspects from SJT and possesses the ability to capture a wider variety

of uncertainties and nuances in agent opinions, an advantage inherited from its DST

basis. Theoretical analysis, which focuses on probabilistic and Dirichlet agent opin-

ions, provides conditions for the emergence of consensus and opinion clusters in the

presence of opinion leaders. The results in this chapter show that a consensus can

be formed when the number of opinion leaders is no more than one and with a suf-

ficiently high bound of confidence of the agents. With two or more opinion leaders

possessing different opinions, no consensus can be reached in general. We have also

analyzed the conditions for opinion cluster formation among the opinion followers.

Chapter 4 extends the theoretical analysis to scenarios where agent opinions are

captured via more general DST BoEs, adopts tools from paracontractions theory

[19]. It is also noteworthy that for simulations in this chapter we have taken all

agents to possess the identical bound of confidence value. When this is not the case,

the opinion exchange mechanism itself would be directional (because an agent with

a lower bound of confidence may update itself from its neighbor agent who may not

update itself because of a higher bound of confidence value). An interesting future

research problem is the study of networked agents whose bounds of confidence values

are different. Another interesting issue to be addressed is the assessment of the

convergence speed of our algorithms [56].



Chapter 4

Consensus/Opinion Clustering:
Paracontractions theoretic view

The study of consensus from the viewpoint of nonlinear paracontracting operators

allows one to account for time-varying graph topologies with asynchronous nonlinear

protocols [57–59]. In this chapter, we use the paracontraction theoretic notions in

analyzing the formation of not only consensus, but also opinion clustering in the

presence of opinion leaders (or cautious agents).

4.1 Problem Formulation

As before, let us consider a set of N agents embedded in the directed graph G†k(εεε) =

(V , E†k(εεε)) where ε denotes the bound of confidence. Remember the edges, E†k are re-

fined in accordance to SJT, hence the graph G†k(εεε). The set of nodes V = {v1, v2, · · · , vN}

denotes the agents and eij ∈ E†k(εεε), represents unidirectional information exchange

link from agent j to agent i. In this chapter, the discrete time index, denoted by kd,

will be taken flexible, such that kd will represent the time instances when the multi-

agent system undergoes change. The index kd is often called as the Event-based

Discrete Time Index (EDTI). We can carefully select and properly arrange kd such

90
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(a) Agents v1,v2 and v3 updating at the same time k = 0

(b) kd = 0 (c) kd = 1 (d) kd = 2

Figure 4.1: For a situation of four agents v1,v2,v3 and v4 exchange opinions at
time k = 0, event-based discrete time index kd for each agent has been given.

that only one agent vi updates its state at a given event-based time index. Figure 4.1

shows an illustration of the selection of event-based discrete time indexing for an

opinion updating scenario with four agents represented with v1,v2,v3 and v4. From

the figure it can be seen that, a separate event-based discrete time index has been

allocated for each individual agent update. Furthermore, for notational convenience

let us denote the state of agent, vi ∈ V at discrete time event kd by xi[k
d].

However, in Figure 4.1, the temporal coupling of agents have not been presented

enough. For instance, in Figure 4.1c it is not clear whether agent v2 updates from a

delayed state of v1 or the updated current state of v1. Hence, we use iteration graphs

for better representation.
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4.1.1 Iteration Graphs

The graphical representation shown in Figure 4.1 only describes the spatial coupling

among agents and cannot completely represent the communication delays. Because

of that, the representation in Figure 4.1 is ambiguous when used with event-based

indexing as it has a weaker capability on handling temporal coupling among agents.

Iteration graphs can represent spatial as well as temporal coupling [60]. Each updating

agent at a discrete event-based time index gets a vertex. Furthermore, a set of vertices

are reserved for the initial conditions, with negative valued discrete time indexes

corresponding to each agent. Therefore, the set of discrete time indexes for the full

set of vertices in the iteration graph is, {−N, · · · ,−1} ∪ N0. There will be an edge

from a vertex corresponding to time index kd1 to a vertex with kd2 , if and only if, at

the kd2 the iteration update, the agent opinion vector corresponding to kd1 has been

used.

Figure 4.2 gives an illustration of the iteration graphs using and extended example

used that of Figure 4.1. The interaction topologies of a four-agent system at time

k = 0 and k = 1 is shown in Figures 4.2a and 4.2b respectively. The corresponding

iteration graph is given in Figure 4.2c. The initial conditions of agents v4, v3, v2 and

v1 are shown with vertices corresponding to discrete time indexes −4,−3,−2 and −1

respectively. Starting from kd = 0, each and every individual agent update has been

given. For instance, at kd = 0 agent v1 gets updated from the initial condition of

agent v2 at k = 0. At kd = 3 agent v2 gets updated from the opinions of agents v1

and v3 at k = 1.
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(a) k = 0 (b) k = 1

(c) Iteration graph.

Figure 4.2: Iteration graph four-agent system with different interaction topolo-
gies. The discrete-time indexes −4,−3,−2 and −1 corresponds to initial conditions.

Indexes from 0 onward corresponds to updating of each individual agents.

4.1.2 Agent Interaction Topologies

The spatial connectivity among agents at different EDTIes are referred to as agent

interaction topologies [61]. Let us denote the jth interaction topology used by agent vi

by Ti,j, i ∈ {1, · · · , N} and j ∈ {1, · · · , ni}, where N is the number of agents in the

system and ni is the number of topologies for agent vi. Also, let the set of interaction

topologies be denoted by T ≡ {Ti,j|i = 1, · · · , N ; j = 1, · · · , ni}.

Under EDTIes, only a single agent gets updated (via its interaction topology) from

other connected agents in the system. Thus we can associate each time index with the

corresponding updating agent, hence forming a interaction topology sequence. Let us

denote this topology sequence as {T [kd] ∈ T |kd = 0, 1, 2, · · · }. Now, T [kd] identifies

the interaction topology of the updating agent at EDTI kd for kd = 0, 1, 2, · · · .
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Depending on the connection of each agent to other agents, we can categorize multi-

agent systems as, fully connected vs. partially connected or static vs. dynamic system.

In a fully connected multi-agent system, the interaction topology of each agent has

incoming connections from all other agents in the system. On the other hand, in

a partially connected system, at least one of the agents in the community has, at

least one of the other agents, who is not connecting via and incoming edge. If the

interaction topologies of agents vary over time then the system is dynamic, and static

otherwise. Therefore, in a static multi-agent system, we can denote the time indepen-

dent interaction topology of each agent vi as Ti such that, ∀i ∈ {1, · · · , N}, Ti,j = Ti.

Again, N denotes the number of agents in the system.

4.1.3 Synchronous Versus Asynchronous Consensus Proto-

cols

To keep the generality, let the opinion state of agent vi at time k be noted by m-tuple,

xi[k]. The initial state of agent vi is xi[0] ∈ Rm. Under this notation the consensus

can be defined as in Definition 4.1.

Definition 4.1. (Opinion Clusters, Consensus) Let a system of agents V = {v1, v2, . . . , vN}

with each agent vi having state xi[k] has subsets S̋ ⊆ V . Then for any valid norm

‖ · ‖,

1. Suppose limk→∞ ‖xi[k] − xj[k]‖ = 0, ∀vi, vj ∈ S̋, then the agents in S̋ are said

to form an opinion cluster.

2. A consensus will be reached when S̋ = V .

�
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Note that, Definition 4.1 is indeed similar to Definition 3.2 in Chapter 3 except that

Definition 4.1 is more general s.t. it is applicable to any m-tuple.

A consensus protocol is a consensus generating mechanism. We use the well estab-

lished consensus protocols to study the formation of opinion clusters as well. A

synchronous consensus protocol is a system where all the agents update their states

at the same time using the latest value from their neighbors. Equation (4.1) gives a

linear synchronous consensus protocol.

xi[k + 1] =
N∑
j=1

hij[k]xj[k], (4.1)

where hij[k] is non-negative and
∑N

j=1 hij[k] = 1, for all i and k.

However, in some situations, due to the non-existence of a central clock and unreliabil-

ity of communication links, studying asynchronous consensus protocols is important.

Equation (4.2) gives an example of asynchronous protocol.

xi[k + 1] = Hi,j(x1[s1(k)], · · · , xN [sN(k)]) (4.2)

where sr(k), r = 1, · · · , N are sequences from N0, with sr(k) ≤ k,∀r, k and T [k], k =

0, 1, · · · . The difference k − sr(k) gives the iteration delays . The operator Hi,j could

be either linear or nonlinear. By deploying EDTIing we can arrange kd such that

only one agent update each event-based discrete time instance. Hence equation (4.2)

can be re-written as in equation (4.3) with EDTIes.

xi[k
d + 1] =

 Hi,j(x1[s1(kd)], · · · , xN [sN(kd)]) if T [kd] = Ti,j,

xi[k
d] otherwise.

(4.3)
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This gives us the flexibility to identify operators attached to each EDTI. For each

unique operator observed during the whole updating process, let us give a unique

index from a set I. Operators belonging to various agents are defined on different

products of Rm, depending on the number of neighboring agents from whom the

opinions are updated. Hence, an operator identified with index i applied on ni neigh-

boring agents can be denoted1 as H i : Rmni → Rm. Then the pool of operators can

be given as H = {H i|i ∈ I}. Let the updating sequence of agent operator indices be

denoted by I(kd), such that, if agent r updates at EDTI kd using operator H i, then

I(kd) = i, where i ∈ I.

Let us consider the sequence of indices identifying the operators at each time index

as follows,

Definition 4.2 (Index sequence of fusion operators I). [19, 60] Let kd denote the

discrete event-based time index and I[kd] ∈ I is the index of corresponding operator

H
I[kd]
/ at kd. Then the sequence of fusion operators I is defined as I ≡ {I[kd] ∈

I|kd = 0, 1, 2, . . .}. �

From now onward for the rest of this chapter we only consider EDTI, unless otherwise

stated. So we can simplify the notation of indices and simply use k for event based

time indexing instead of kd.

4.1.3.1 Fixed Points

Convergence problems including consensus can be considered as a special case of

finding common fixed points [60] of a finite set of paracontracting operators (defined

in Section 4.3). A fixed point of a multiple point operator corresponding to agent r,

1Note that the indexing of the operators Hx are different of that Hy,z.
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H i : Rmni → Rm is a vector ξr ∈ Rm which satisfies,

H i(ξ1, ξ2, . . . , ξr, . . . , ξni) = ξr , (4.4)

where i ∈ I, 1 ≤ r ≤ ni and ni ∈ {1, 2, . . . , N}.

If a particular fixed point ζ, is a fixed point for all the operators in a pool of opera-

tors H, it is termed as a common fixed point, such that H i(ζ, . . . , ζ) = ζ, ∀H i ∈ H.

In Section 4.3 criteria for contraction will be discussed. However, for an arbitrary

asynchronous iteration scheme, having common fixed points does not guarantee con-

vergence even with contractive operators. For instance, when the operators have

several common fixed points and the sequence alternates between the fixed points

from time to time, clearly it will not converge. Hence the asynchronous iterations re-

quire coupling conditions for convergence, which will be discussed in the next section.

4.2 Asynchronous Iterations and Coupling Condi-

tions

An asynchronous iteration denoted by (H,X0, I,S) is defined as below.

Definition 4.3. Let I be some set, N ∈ N is a fixed number and H = {H i|i ∈

I} be a pool of operators H i : Dni → D, where ni ∈ {1, 2, . . . , N}, ∀i ∈ I and

D ⊂ Rm is closed. Also let X0 = {x[0], x[−1] . . . , x[−N ]} ⊂ D be a set of given

vectors. Then, if there are sequences I = I(k), k = 0, 1, . . . , of elements in I,

S = {s1(k), . . . , snI(k)(k)|k = 0, 1, . . .} of nI(k)-tuple from N0∪{−1,−2, . . . ,−N} with

sr(k) ≤ k for each k ∈ N0, r = 1, 2, . . . , nI(k), we call the sequence x(k), k = 0, 1, . . .,
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given by

x[k + 1] := HI(k)
(
x[s1(k)], x[s2(k)], . . . , x[snI(k)(k)]

)
, k = 0, 1, . . . , (4.5)

as an asynchronous iteration, denoted by (H,X0, I,S). �

In summary, the asynchronous iteration denoted by (H,X0, I,S), each symbol en-

capsulates meaning as

H denotes the pool of operators

X0 denotes the initial conditions

I index sequence of updating operators

S sequence of delays involved

In order to satisfy the theorems of convergence that we will discuss later in Section 4.3,

let us study certain condtions on I and S.

Definition 4.4. Let us consider the asynchronous iteration (H,X0, I,S). Then

(a) I is admissible if ∀k ∈ N0, {I(k)} ∪ {I(k + 1)} ∪ · · · = I holds.

(b) I is an indexwise-regulated sequence if ∀i ∈ I, ∃ci ∈ N0, s.t. ∀k ∈ N0, i ∈

{I(k)} ∪ {I(k + 1)} ∪ · · · ∪ {I(k + ci)}

(c) I is regulated if ∃c ∈ N0 s.t. ∀k ∈ N0, {I(k)} ∪ {I(k + 1)} ∪ · · · ∪ {I(k + c)} = I,

i.e., I has to be finite.

(d) S is called admissible if for k →∞, sr(k)→∞, ∀r = 1, . . . , nI(k).

(e) S is said to be regulated if s := maxk,r(k − sr(k)) exists.
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�

As already mentioned, even if there are common fixed points with contracting oper-

ators (see Section 4.3) the sequence could still be divergent. Hence we will consider

confluence conditions on an asynchronous iterations (H,X0, I,S) to converge.

Definition 4.5. Let (H,X0, I,S) be an asynchronous iteration, with directed graph

G†k(εεε) = (V,E†k(εεε)), whose vertices V are given by V = N0 ∪ {−1,−2, . . . ,−N}, and

whose edges are given by ek,k0 ∈ E
†
k(εεε) iff ∃r, 1 ≤ r ≤ nI(k0−1), s.t. sr(k0 − 1) = k,

∀k ≥ −N , k0 ≥ 1. Now (H,X0, I,S) is called confluent, if there are numbers u0, b ∈ N

and a sequence {bk ∈ N|k = u0, u0 + 1, . . .} s.t. ∀k ≥ u0 following is true:

(a) for every vertex k0 ≥ k there is a directed path from bk to k0 in iteration graph

G†k(εεε),

(b) k − bk ≤ b,

(c) S is regulated,

(d) for every i ∈ I, there are numbers ci ∈ N, so that ∀k ≥ u0, there exists a vertex

vik ∈ V , which is a successor of bk and a predecessor of bk+ci and for which

i(vik − 1) = i.

�

4.3 Criteria of Contraction

In order to find a common fixed point in a pool of operators H, let us analyze criteria

of contraction, strictly non-expansive, (c)-paracontracting. We use the notation of

X = (x1, x2, . . . , xN) for an element of RmN , where xr ∈ Rm, r = 1, 2, . . . , N .
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Definition 4.6. Let H be a pool of operators then,

i.) If ∀i ∈ I, X, Y ∈ Dni , Dni ⊂ Rmni , 0 < ω < 1 and a valid norm ‖ · ‖

‖H i(X)−H i(Y )‖ ≤ ωmax
r
‖xr − yr‖,

then H is called contractive on D.

ii.) If ∀i in I, X, Y ∈ Dni and a valid norm ‖ · ‖,

‖H i(X)−H i(Y )‖ < max
r
‖xr − yr‖

or

H i(X)−H i(Y ) = xr − yr

∀r ∈ {1, . . . , ni}, then H is called strictly non-expansive on D.

iii.) If ∀i ∈ I, X ∈ Dni and a valid norm ‖ · ‖, H i is continuous on Dni , then H is

(c)-paracontracting on D, if for any fixed point ξ ∈ Rm of H i,

‖H i(X)− ξ‖ < max
r
‖xr − ξ‖, r ∈ {1, . . . , ni},

or X = (x, . . . , x) and x is a fixed point of Hk.

iv.) If for every vector x ∈ D there is a valid norm ‖ · ‖ on Rm, and ξ ∈ Rm is a fixed

point of exactly the nonempty subset {H i|i ∈ I} of H, and if this entails for all

i ∈ I and X ∈ Dni

‖H i(X)− ξ‖ ≤ ωi(X) max
r
‖xr − ξ‖,

where the set of functionals {ωkξ (·) : D → [0, 1]|i ∈ I} is equicontinuous (i.e.

when all continuous functions variation over a given neighborhood is equal) on
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D, & ∀X ∈ Dni , for which

IX,ξ = {i ∈ Iξ|∃r ∈ {1, 2, . . . , ni} : H i(x1, x2, . . . , xni) 6= xr},

is not empty, if

sup
i∈IX,ξ

ωiξ(x
1, . . . , xn1) < 1

holds, then H is called (n)-paracontracting on D.

�

4.3.1 Convergence Theorems

Now we can state the convergence theorems as in [57].

Theorem 4.7. Let ‖ ·‖ be a strictly convex vector norm on Rm and H be a finite (c)-

paracontracting pool on Rm and let I be regulated. Then the asynchronous iteration

(H,X0, I,S) converges if and only if common fixed point of H exists. �

From Theorem 4.7 it is clear that (H,X0, I,S) converges, it converges to a common

fixed point of (H,X0, I,S).

Theorem 4.8. Let H be a (n)-paracontracting pool D ⊂ Rm, and assume that H has

a common fixed point ζ ∈ D. Then a confluent asynchronous iteration (H,X0, I,S)

converges to a common fixed point of H. �
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4.4 Non-linear Asynchronous Consensus Protocol

Here the originally formulated opinion dynamics system will be formulated as an

asynchronous iteration problem. Then after verifying the paracontracting property

of the pool of operators and the coupling conditions, Theorem 4.7 or Theorem 4.8

can be applied [60].

4.4.1 Formulation of Asynchronous Iteration Problem

In (4.5) the opinion vector x ∈ D ⊂ Rm is updated at every iteration step and all

components of x have the same delay. However, the asynchronous updating in (4.3)

has different xi, i ∈ {1, 2, . . . , N} updating at each step. In order to represent (4.3) in

the form of (4.5) we can introduce an auxiliary system with new states y[k]. Once the

consensus problem is formulated as confluent asynchronous iterations, we can apply

the associated convergence theorems.

4.4.1.1 Formulating the Asynchronous Consensus Problem as Asynchronous

Iterations

We can rewrite equation (4.3) using the index sequence of updating sets I as in (4.6).

xi[k + 1] =


H i(x1[s1(k)], x2[s2(k)], . . . , xN [sN(k)]) if i = I(k),

xi[k] if i 6= I(k),

(4.6)

where sr(k), k = 0, 1, . . ., r = 1, 2, . . . , N , with sr(k) ≤ k ∀r, k and I(k), k = 0, 1, . . .

is a sequence of operators.
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Without loss of generality, let us assume sr(k), k = 0, 1, . . ., are selected such that

all xr[s
r(k)] in (4.6) themselves are updated at time sr(k). Further assume that, the

initial condition of agents, i.e., xr[0], r = 1, 2, . . . , N are mapped to x[−r] such that,

x[−r] := xr[0] ∀r = 1, 2, . . . , N.

The asynchronous iteration (H,Y0, I,S) can be taken as,

y[k + 1] = HI(k)(y[s̃1(k)], y[s̃2(k)], . . . , y[s̃nI(k)(k)]), k = 0, 1, . . . (4.7)

where H = {HI(k)|k = 0, 1, . . .} as in (4.6), I = I(k), k = 0, 1, . . ., S = {s̃i(k)|k =

0, 1, . . . ; i = 1, 2, . . . , NI(k)}, with s̃i(k) := sNI(k)(i)(k),∀k ∈ N0, i = 1, . . . , NI(k), and

Y0 is y[−r] := xr[−r], r = 1, . . . , N . Hence from (4.7) y[k+ 1] = xI(k)[k+ 1], ∀k ∈ N0.

4.4.2 Verification of the Paracontracting Property of the Pool

of CUE-based Operators

4.4.2.1 The Pool of CUE-based Operators

Let EΘ ≡
{
E|E = {Θ,F ,m(·)}

}
denote the set of all possible BoEs defined on

Θ. Then the set of N BoEs corresponding to the N agents can be represented as

Ei = {Θ,Fi,mi(·)} ∈ EΘ, i = 1, 2, . . . , N . Then the CUE operator H i
/ : E N

Θ 7→ EΘ

that updates Ei with all Ej, j ∈ {1, 2, . . . ,m} \ {i} can be written as,

H i
/

(
E1, E2, . . . , EN

)
≡ Ei C

(
E1 on E2 on · · · on Ei−1 on Ei+1 on · · · on EN

)
,

where CUE is as mentioned in Section 2.1.5. We follow the claims and proofs in

[19] on the paracontracting property of CUE operators. The proof of Claim 4.9 is
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an extension of the proof presented in [19] giving special attention to fixed points

associated with cautious agents.

Claim 4.9. The operator H i
/ : E N

Θ 7→ EΘ is paracontractive on EΘ with respect to any

p-norm, ‖ · ‖ : EΘ 7→ R given by

‖E‖ =

(∑
B⊆Θ

|m(B)|p
) 1

p

. (4.8)

�

Proof. Consider a set of N BoEs Ei ∈ EΘ, i = 1, 2, . . . , N and arbitrary fixed point

E? ∈ fix(H i
/). In order to show the paracontractivity of the operators H i

/, we need

to prove

‖H i
/(E1, E2, . . . , EN)− E?‖ < max

j
‖Ej − E?‖,

or

Ej = E?, otherwise, for j = 1, 2, . . . , N.

Let Bj ⊆ Fj where ∀B ∈ Bj, @C ∈ Fj such that C ⊂ B. Now for any B ∈ Bj, with

a conditioning event A ∈ Fj,

∑
A∈Fj

mj(A)mj(B|A) =
∑

B⊆A∈Fj

mj(A)mj(B|A) +
∑

B⊃A∈Fj

mj(A)mj(B|A).
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It can be shown that when A ⊂ B, m(B|A) = 0, either by applying Conditional Core

Theorem (CCT) [26] or with an analysis as in Appendix C.1.

∑
A∈Fj

mj(A)mj(B|A) =
∑

A∈Fi,A⊃B

mj(A)mj(B|A)︸ ︷︷ ︸
≥0

+mj(B)mj(B|B)︸ ︷︷ ︸
=1

+
∑

A∈Fj ,A⊂B

mj(A)mj(B|A)︸ ︷︷ ︸
=0

.

∑
A∈Fj

mj(A)mj(B|A) ≥ mj(B), ∀B ∈ Bj. (4.9)

Now ∀B ∈ F and for any p ∈ R>0,

∑
B∈F

∣∣∣∣∣∣
∑
A∈Fj

mj(A)mj(B|A)−m

∣∣∣∣∣∣
p

<
∑
B∈F

|mj(B)−m(B)|p ,

because of (4.9),
∑

B∈F m(B) = 1 and the fact that Ej 6= E . We also know that,

∑
B⊆Θ

∑
A∈Fj

mj(A)mj(B|A) = 1,

and ∑
A∈Fj

mj(A)mj(C|A) ≤ mj(C), ∀C /∈ Bj.
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Furthermore, ∀C /∈ F ,
∑

C/∈F m(C) = 0,

∑
C/∈F

∣∣∣∣∣∣∣
∑
A∈Fj

mj(A)mj(C|A)− m(C)︸ ︷︷ ︸
m(C)=0,∀C/∈F

∣∣∣∣∣∣∣
p

=
∑
C/∈F

∣∣∣∣∣∣
∑
A∈Fj

mj(A)mj(C|A)

∣∣∣∣∣∣
p

≤
∑
C/∈F

|mj(C)|p

=
∑
C/∈F

|mj(C)−m(C)|p .

Hence,

∑
C/∈F

∣∣∣∣∣∣
∑
A∈Fj

mj(A)mj(C|A)−m(C)

∣∣∣∣∣∣
p

≤
∑
C/∈F

|mj(C)−m(C)|p . (4.10)

In [19] the contractive property of H i
/ has been clearly shown for widely considered

all receptive agent scenario. Let us further analyze the contractive property of the

CUE operators with special attention to cautious agents. First let us consider the

case with N agents where there is one cautious agent and rest of the (N − 1) agents

are receptive2.

Without loss of generality, let the index of the cautious agent be given by c and the

receptive agents are indexed with {1, 2, . . . , N} \ c. Then for the CUE updates of the

receptive agents we can write (4.11).

2We simply refer agents who update opinions using receptive strategy as receptive agents and
those who update with cautious strategy as cautions agents.
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‖Hr
/ (E1, E2, . . . , EN)− E‖p

=
∑
B⊆Θ

∣∣∣∣∣∣∣∣λrmr(B) +
∑
j=1
j 6=r

∑
A∈Fj

κj,rmj(A)mj(B|A)−m?(B)

∣∣∣∣∣∣∣∣
p

(4.11)

for r = {1, 2, . . . , N} \ c, where λr and κj,r are such that, λr +
∑

j 6=r κj,r = 1, and

m?(B) corresponds to a fixed point.

For CUE updates of cautious agents equation (4.12) holds.

‖Hc
/ (E1, E2, . . . , EN)− E‖p

=
∑
B⊆Θ

∣∣∣∣∣∣∣∣λcmc(B) +
∑
j=1
j 6=c

∑
A∈Fj

µjmc(A)mj(B|A)−m?(B)

∣∣∣∣∣∣∣∣
p

(4.12)

where c is the index of the cautious agent and λc +
∑

j 6=c µj = 1, and m? corresponds

to a fixed points as before.

In [19] it has been shown that (4.11) would lead to

‖Hr
/ (E1, E2, . . . , EN)− E‖ (4.13)

< max
k

[∑
B⊆Θ

|mr(B)−m?(B)|p
] 1
p

(4.14)

= max
k
‖Ek − E?‖p. (4.15)

Following a similar analysis, we can show that for the pool of operators to be para-

contractive and for agents to reach a consensus, the fixed point indeed should be in

accordance with the opinion of the cautious agent. From (4.12),
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‖Hc
/ (E1, E2, . . . , EN)− E‖p

=
∑
B⊆Θ

∣∣∣∣∣∣∣∣λc
(
mc(B)−m?(B)

)
+

N∑
j=1
j 6=c

∑
A∈Fj

µjmc(A)mj(B|A)− (1− λc)m?(B)

∣∣∣∣∣∣∣∣
p

let max
j

(mj(B|A)) = mk(B|A), then

≤ max
j

∑
B⊆Θ

∣∣∣∣∣∣∣∣λc(mc(B)−m?(B)) +
N∑
j=i
j 6=c

∑
A∈Fj

µjmc(B)mk(B|A)− (1− λc)m?(B)

∣∣∣∣∣∣∣∣
p

= max
j

∑
B⊆Θ

∣∣∣∣∣∣∣∣∣∣∣∣
λc(mc(B)−m?(B)) +

N∑
j=1
j 6=c

µj

︸ ︷︷ ︸
=1−λc

mc(B)
∑
A∈F

mk(B|A)− (1− λc)m?(B)

∣∣∣∣∣∣∣∣∣∣∣∣

p

≤ max
j

∑
B⊆Θ

{∣∣λc(mc(B)−m?(B)
)∣∣+

∣∣∣∣∣(1− λc)(∑
A∈F

mc(B)m?
k(B|A)−m?(B)

)∣∣∣∣∣
}

≤
∑
B∈Θ

{∣∣λc(mc(B)−m?(B)
)∣∣+ (1− λc) |mc(B)−m?(B)|

}
=
∑
B∈Θ

|mc(B)−m?(B)|

≤ ‖Ec − E?‖p. (4.16)

�

Hence in order for the pool of operators to be paracontractive and for agents to reach

a consensus under confluence conditions, the fixed point has to be on the opinion of

the cautious agent after a sufficiently large number of iterative updates. For instance,

if the cautious agent does not change its opinion, then to achieve a consensus all the

agents has to converge to the opinion of the cautious agent.
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4.4.3 Verification of Confluence Conditions

In order to avert divergence of an iterating process, one can verify the confluence

conditions as given in Definition 4.5.

Claim 4.10. [60] Consider an asynchronous iteration (H,Y0, I,S) as given in (4.7)

along which the sequence of iteration graphs G†1(εεε),G†2(εεε), . . . is repeatedly jointly rooted

with period `. If,

1. When updating each agent vi0 always uses its own latest state to update its

current state, i.e. si0(k) = max{k0 ≤ k|I(k0 − 1) = i0}, ∀k > min{k0 ∈

N≥0|I(k0) = i0} with Ik = i0,

2. I = I(k), k = 0, 1. . . . , is regulated,

3. k − sr(k) ≤ s, ∀k ∈ N≥0, r = 1, 2, . . . N , for an s ∈ N≥0,

then, (H,Y0, I,S) is confluent. �

Proof. See the proof of Lemma 3 in [60]. �

4.4.4 Nonlinear Consensus Protocol

In [19] convergence to consensus has been studies under several network configurations

as

• Synchronous, fully connected,

• Synchronous, static, partially connected,

• Synchronous, dynamic, partially connected and
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• Asynchronous, fully connected networks

with remarks for asynchronous, dynamic, partially connected networks. We utilize

those remarks given for asynchronous, dynamic, partially connected networks to study

the consensus/opinion cluster formation with multiple cautious agents (opinion lead-

ers). But before that, let us analyze fixed points associated with cautious agents.

Following claim gives conditions under which a cautious agent becomes a fixed point.

Claim 4.11. A cautious agent with disjoint focal elements will not change its BoE

as far as it is not receiving evidence with lower cardinality elements than it currently

possesses. �

Proof. Consider set of N BoEs Er = {Θ,Fr,mr(·)}, r = {1, 2, . . . , N} updating

opinions with each other under CUE. Without loss of generality, assume agent i is

a cautious agent. In order for agent i to have disjoint focal elements B ∈ Fi, such

that for any two focal elements B,C ∈ Fi, B ∩C = ∅. For the cautious agent not to

receive any lower cardinality elements than it currently possesses, @D ∈ ∪Nj=1Fj, such

that D ⊂ B, B ∈ Fi. Now for any B ∈ Fi of the caution agent the update equation

is as (4.17).

Bli(B)(k+1) = αi,kBli(B)k +
N∑
j=1,
j 6=i

∑
A∈Fj

βij(A)kBlj(B|A)k, (4.17)

where αi,k +
∑

j 6=i
∑

A∈Fj βij(A)k = 1, ∀k = 0, 1, 2, . . .. Furthermore for cautious

updating βij(A)k = µij,kmi(A)k, hence we can write (4.17) as (4.18).

Bli(B)(k+1) = αi,kBli(B)k +
N∑
j=1,
j 6=i

∑
A∈Fj

µij,kmi(A)kBlj(B|A)k︸ ︷︷ ︸
Cases

(4.18)
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Case 1. When A = B:

From [25] it can be easily seen that Bl(B|A) = 1.

Case 2. When A ⊃ B:

Using the conditionals in [25] we can see that

Blj(B|A)k = Blj(B)k/(Blj(B)k + Plj(B̄ ∩ A)k).

However for A ⊃ B, mi(A)k = 0 because Fi has only disjoint elements. Therefore

this case will not affect the update process.

Case 3. When A ⊂ B:

Not applicable because |A| < |B|, i.e., A the receiving evidence has lower cardinality

than the cardinality of the updating element B.

Case 4. When A ∩B 6= ∅, A * B and A + B:

In this scenario mi(A)k = 0, hence no effect on the update.

It can be seen that only case 1 affects the update process. Then from (4.18) it can

be seen that the updated belief of the cautious agent on B, i.e. Bli(B)(k+1), is just a

convex combination of the previous belief Bli(B)k hence no change in updated beliefs.

However, we picked element B arbitrarily, therefore the above arguments are valid

for any element in Fi. This indeed shows that the BoE of the cautious agent does

not change with the assumptions in place. �

As shown in (4.16), we can associate the presence of fixed point with the cautious

agent. From here onwards we use the notation such that, for the cautious agent with

BoE Ec the associated fixed point is denoted as E?c . Hence from the Claim 4.11, it

is clear that when the cautious agent’s BoE Ec with disjoint focal elements does not

receive evidence with lower cardinality elements than it currently possesses, Ec = E?c .
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4.4.4.1 Asynchronous, Dynamic, Partially Connected Network

The asynchronous updating for this scenario can be written as in (4.19).

Ej[k + 1] =


HI(k)
/ (Ei1 [si1(k)], Ei2 [si2(k)], . . . , Eini [s

ini (k)]), j = i← I(k)

Ej[k], j 6= I(k)

(4.19)

for all j ∈ {1, 2, . . . , N} where the notation follows as mentioned in sections above.

Consider (H/,Y0, I,S) as the asynchronous iteration obtained after transforming the

asynchronous update given in (4.19). In [19] it has been proven that for scenarios with

all receptive agents and a group of receptive agents with one cautious agent achieve

consensus when the asynchronous iterations satisfy the confluence conditions. A

key assumption for the asynchronous iterations to satisfy the confluence conditions,

is the sequence of iteration graphs G†1(εεε),G†2(εεε), . . . being repeatedly jointly rooted.

Furthermore, without loss of generality, the analysis in [19] has been carried out on

finite pool H/ of CUE-based operators that contains common fixed points, and will

be the case in our analysis as well.

4.4.5 Opinion Clusters with All Receptive Agents

Another interesting phenomenon that occurs, is the formation of opinion clusters

among sub-groups of agents. In other words, each sub-group reaches its own “consen-

sus” state separately. Following analysis gives conditions for the formation of opinion

clusters with a group of all receptive agents.

For N receptive agents let us consider that the updating system has a sequence of

interaction iteration graphs G†0(εεε),G†1(εεε), . . . taken from the set G with vertex set V =
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v1, v2, . . . , vN . After sufficient number of iterations q, let us assume that the sequence

of interaction iteration graphs G†q(εεε),G
†
q+1(εεε),G†q+2(εεε), . . . can be divided in to two

subsequence of interaction iteration graphs G(a)
1 (εεε),G(a)

2 (εεε), . . . and G(b)
1 (εεε),G(b)

2 (εεε), . . .

with disjoint index sequences I(a) and I(b) respectively. Then we can define two

asynchronous iterations using following steps,

• After iteration q we can separate the vertices V in to two disjoint sets V (a) and

V (b) such that they corresponds to index sequences I(a) be V (a), and V (b) for

I(b).

• Denote the pool of operators for G(a)
1 (εεε),G(a)

2 (εεε), . . . asH(a)
/ , and for G(b)

1 (εεε),G(b)
2 (εεε), . . .

as H(b)
/ .

• Take the state of agents V (a) at time index q as the initial conditions Y(a)
0 , of

the sequence G(a)
1 (εεε),G(a)

2 (εεε), . . . and the state of agents V (b) at q as the initial

conditions Y(b)
0 , of the sequence G(b)

1 (εεε),G(b)
2 (εεε), . . ..

• Let the sequence of delays involved in updating agents V (a) and V (b) be repre-

sented by S(a) and S(b) respectively.

Now we can identify two separate asynchronous iterations as (H(a)
/ ,Y(a)

0 , I(a),S(a)) and

(H(b)
/ ,Y(b)

0 , I(b),S(b)). If those two iterations satisfy the conditions given in Claim 4.10

and the sequences G(a)
1 (εεε),G(a)

2 (εεε), . . . and G(b)
1 (εεε),G(b)

2 (εεε), . . . are repeatedly jointly

rooted, then by Theorem 4.8 there will be two separate opinion clusters each having

its own consensus. It should be noted that when the individual consensus reached by

separate opinion clusters, are the same in value (which is not the case in general), it

can be counted under one global consensus.
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4.4.6 Consensus/Opinion Clusters with One Cautious Agent

Embedded in a Group of Receptive Agents

In the presence of a cautious agent the nature of the common fixed point depends on

the fixed point reached by the cautious agent E?, as shown in (4.16). Furthermore,

Claim 4.11 gives conditions where a cautious agent does not change its opinion thus

a fixed point E?c .

Let us consider that, among the N agents, one agent is cautious and other N−1 agents

are receptive. Without loss of generality we can assume that agent corresponding to

node vc is the cautious agent. Following a similar notation as with all receptive

agent scenario, we can see that the agents will reach a consensus if the sequence of

interaction iteration graphs G†0(εεε),G†1(εεε), . . . are repeatedly jointly rooted and satisfy

conditions in Claim 4.10. This has been analyzed in [19] and with the notation here,

the consensus will indeed be on the fixed point of the cautious agent, i.e., E?c .

In contrast, when the sequence of interaction iteration graphs G0(εεε),G1(εεε), . . . are not

repeatedly jointly rooted, but after finite number of iteration that sequence divides

into two subsequences G(a)
1 (εεε),G(a)

2 (εεε), . . . and G(b)
1 (εεε),G(b)

2 (εεε), . . . as before, we can find

opinion clusters with the given conditions.

4.4.7 Consensus/Opinion Clusters with Multiple Cautious

Agents Embedded in a Group of Receptive Agents

Here we study the situation with two cautious agents in a group of receptive agents.

The assertion for studying a situation with two cautious agents is, it can be generalized

to analyze multiple cautious agents scenario. Let us consider N agents, with two
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cautious agents and (N − 2) receptive agents. Without loss of generality we can

assume that the two cautious agents are represented with vertices vc1 and vc2 .

Now for conditions mentioned in Claim 4.11 the two fixed points corresponding to

cautious agents vc1 and vc2 are denoted as E?c1 and E?c2 respectively. In order for all

agents to reach a consensus the fixed points corresponding to the cautious agents have

to be the same, i.e., E?c1 = E?c2 . Furthermore, when the sequence of interaction iteration

graphs G†0(εεε),G†1(εεε), . . . are repeatedly jointly rooted and satisfy the conditions in

Claim 4.10, then all the agents will reach a consensus.

However, in general scenario it is unlikely that the two cautious agents will reach the

same fixed point, which indeed leads to either polarization or clustering. Polarization

can be seen as a special case of clustering where only two clusters of agents are

reaching consensus individually. We can give conditions when polarization occurs

with two cautious agents as follows.

After finite number of iterations, consider that the sequence of interaction iteration

graphs can be divided into two subsequences G(a)
1 (εεε),G(a)

2 (εεε), . . . and G(b)
1 (εεε),G(b)

2 (εεε), . . .

each embedding a cautious agent vc1 and vc2 respectively. When each interaction

sequence G(a)
1 (εεε),G(a)

2 (εεε), . . . and G(b)
1 (εεε),G(b)

2 (εεε), . . . is repeatedly jointly rooted and

satisfies the conditions in Claim 4.10, then polarization will occur with each subgroup

reaching consensus on E?c1 and E?c2 .

4.5 Chapter Summary

In this chapter we modeled the formation of consensus of agent opinions as con-

vergence to a common fixed point of paracontraction operators. We exploited the
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paracontraction nature of the CUE in opinion updating and focused on the conflu-

ence conditions which need to be satisfied for the existence of a common fixed point.

In particular, the paracontractive nature of the CUE operator under the presence of

cautious agents gave insights into the nature of consensus with opinion leaders.

Event-based discrete time indexing allows one to represent temporal coupling of agents

with iteration graphs. Iteration graphs can effectively represent communication delays

which are otherwise difficult to capture with traditional graphs. This indeed led the

analysis of opinion dynamics in more general setting having asynchronous, dynamic,

partially connected networks.
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Chapter 5

Random Network Generation for
Consensus-Based Distributed
Decision Making

5.1 Network Generation for Multi-Agent Systems

Enforcing a consensus in a continuous opinion dynamic system is pivotal in a wide

range of multi-agent distributed decision-making applications. For instance, when

autonomous mobile robots soldiers collaborate to complete a task, forming a consensus

is important for them to cofunction as one unit. For a given agent opinion distribution

it is the confidence bound of agents which governs the properties of the communication

topology among agents in order to reach a consensus. If the confidence bound is less

then it will demand more connections among agents to compensate for the links that

get pruned due to confidence bound notions. The conditions sufficient for consensus

have been discussed in Chapters 3 and 4. In this chapter, the conditions which lead

to a consensus with our opinion model while accounting for the bound of confidence

notions are analyzed.

The network generation mechanism has to be executed by autonomous agents each

having confined prior information, without access to a central node. A naive solution
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is to suggest a completely connected network where each autonomous agent makes

communication connections with all other agents in the network. But the number

of edges such a strategy produces is prohibitive and is in the order of O(N2), where

N is the number of agents. Moreover, the actual number of connections required to

reach a consensus is significantly lower than the amount of edges generated by the

completely connected network protocol. The network generation protocol proposed in

this chapter produces edges in the order of O(N lnN) and more importantly accounts

for the notion of bound of confidence in SJT.

While SJT is intuitive in a social network setting one may question the utility of bound

of confidence notions in a scenario like navigation of autonomous mobile robots. We

can set the bound of confidence parameter to ignore a ‘faulty’ sensor which shows

drastically different values from all its neighbor sensors. This will prevent the outlier

information provided by a corrupted agent affecting the other agent opinions. The

case example in Section 5.7 further clarifies the important role the bound of confidence

notion may play in such a setting.

5.1.1 Previous Work on Network Generation

Networks such as phone chain of closets [62] which can be viewed as agents being

connected in a circle (or a line) have edges in the order of O(N). Assigning ordered

tags to each agent, one can design a protocol for autonomous agents to communicate

and reach a consensus. However, a disruption in communication in two links either

due to bound of confidence notions or simply due to network failures, results in the

network being disconnected, thus obstructing a consensus state being achieved.
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Even though the standard Erdős-Rényi (ER) random graphs [63] may not reflect cer-

tain important characteristics observed in real networks (e.g., clustering and assorta-

tive mixing) [34], random graphs are perhaps the most studied models of networks for

the purposes of empirical evaluation of models and algorithms, significance testing of

real data, and verification of theoretical results [34, 64, 65]. The main reason is that

many important attributes of random graphs have theoretically derived expressions.

For instance, an ER random graph G(N, pa) yields a strongly connected network when

pa >> ln N/N , where pa is the independent edge formation probability between a

pair of agents [34]. However, when the bound of confidence of each agents’ opinions

are taken into consideration, the ER random may split into two or more components

otherwise strongly connected. Hence finding the conditions such that the agent com-

munication network remains connected even under bound of confidence notions is

essential for the agents to reach a consensus state.

5.1.2 Contributions Under Network Generation

Our proposed ER random network generation mechanism can nurture a consensus

state even when the agent interactions are dictated by confidence bound of agents.

Let us consider that the agents are embedded in an ER random graph G(N, pa). Then,

we show the following:

• When agents who invoke bound of confidence interact with each other, the

‘effective’ opinion exchange network can be considered as a realization of the

ER random network G(N, pc), where the edge formation probability pc < pa.

Indeed pc is a function of εεε and the probability density function (PDF) of the

opinion distance between agents. Here, εεε ∈ RN is a vector that represents

the confidence bound of each agent. Throughout this chapter, for analytical
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convenience we consider the homogeneous setting where all agents have the

same confidence bound ε.

• A theoretical lower bound for the edge formation probability pa of the basic

underlying ER random graph G(N, pa), such that a consensus state can be

nurtured for a given bound of confidence value ε even under the ‘effective’

opinion exchange network of G(N, pc).

• We employ non-parametric kernel density estimation methods to avoid the ne-

cessity of obtaining a parametric form of the PDF of the distance between agent

opinions.

The proposed method generates ER random graphs having edges in the order of

O(N lnN). Even though the order of edges is slightly higher compared to networks

like phone chain of closets, our proposed method accounts for notions in SJT and can

be designed to tolerate a given amount of network failures.

5.2 DST Modeling of Opinions

In the analysis that follows, we consider N agents embedded in a directed graph G.

The agent opinions are modeled as explained in Section 3.1 with DST BoEs, viz., the

opinion of the i-th agent at time instant k ∈ N≥0 is taken to be captured via the

BoE Ei,k = {Θ,Fi,k,mi(·)k}, i ∈ 1, N . We assume that the agent opinion BoEs are

associated with the identical FoD Θ. The opinion update model accounts for bounded

confidence notions as in Section 3.1.1. Opinion exchange is CUE-based as described

in Section 3.1.2.

Let us consider the CUE-based fusion operation as defined in Definition 2.11 in Chap-

ter 2. Without loss of generality we can consider a discrete event-based time index as
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explained in Section 4.1, where only one agent updates its state at any given discrete

time index kd. One can think of this as an ‘expansion’ of time axis such that only

one CUE update operation is carried at a particular time index kd. Furthermore, let

I denotes a finite index set from the positive integers, i.e., I ⊂ N. I can be consid-

ered as the set of unique indices of agents’ fusion operators. In our analysis we use

paracontraction notions from [19] and Chapter 4.

5.3 Sensitivity of Confidence Bound

Suppose the underlying graph G(N, pa) is generated based on the ER random graph

model with edge formation probability pa. Based on the confidence bounds, the agent

connections are given by graph G†k(εεε), as in (3.3). For two agents with BoEs Ei and

Ej embedded in G†k(εεε), let us denote the probability that their opinions are within

the confidence bound of each other as pb(ε). Using the distribution of opinions we

estimate pb(ε) as

pb(ε) = P (‖Ei − Ej‖J < ε) , (5.1)

where ‖ · ‖J is as in Definition 2.12. Hence, we can write an expression for the

probability pb(ε) as

pb(ε) = P

(√
0.5(mi −mj)

TD(mi −mj) < ε

)
(5.2)

where D is as defined in Definition 2.12.

In [66], it has been assumed that the distance among agents does not increase after an

interaction, which is referred to as private marginal benefit . Based on that assumption
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we can find conditions to apply Claim 1 taken from [19] in order to facilitate the

infrastructure for a possible consensus among agents as follows.

5.3.1 Convergence of Synchronous, Dynamic, Partially Con-

nected Network

With discrete event-based time indexing, each agent in the multi-agent system of N

agents can be considered to iteratively update its state Ei[kd] = {Θ,Fi[kd],mi(·)[kd]}

at discrete event-based time index kd via some fusion operator H i
/. Note the difference

in time index from k to kd to represent the discrete time indices and it will be used

in Section 5.3.1 mainly for the application of paracontraction theories. In all other

sections the time index is represented by k. In our analysis since we consider a

partially connected, synchronous, dynamic network the opinion updating process in

terms of fusion operator and discrete event-based time indices can be given as

Ei[kd + 1] =


HI[kd]
/ (Ei

1,kd
[kd], Ei

2,kd
[kd], . . . , Ei

ni,k
d
[kd]) , for i = I[kd],

Ei[kd], otherwise,

(5.3)

where {i1,kd , i2,kd , . . . , ini,kd} = Ii,kd is as explained in (3.4) and (3.5).

The following result is from [19]:

Claim 1 (Convergence: partially-connected network). If I is regulated, iterated up-

dating in (5.3) converges as long as the graph union of agent interaction topologies

of all agents is connected. �

Thus, essentially we need to satisfy two main conditions. The first is to make the index

sequence I regulated, which can be achieved when all agents periodically update from
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their neighbors. The other condition to make the graph union of agent interaction

topologies of all agents connected, which we explore in the following section.

5.3.2 Connected Graph Union in G†k(εεε)

Let us denote the probability of two arbitrarily selected agents being connected in

G†k(εεε) as pc. Let the random variable C represent the connectedness among two

arbitrarily selected agents in G†k(εεε). C = 1 represents a connection and C = 0

represents no connection. However, the underlying graph G is been generated as

an ER random graph with edge formation probability of pa. Let A represent the

connectedness among two arbitrarily selected agents in G. Then A is a random

variable with Bernoulli distribution,

P (A = 1) = pa= 1− P (A = 0).

Furthermore, let B represent the random variable where arbitrarily selected two

agents’ opinions are within the confidence bound of each other. Hence B also follows

a Bernoulli distribution as

P (B = 1) = pb(ε) = 1− P (B = 0).

Now C can be written as C = AB because C = 1 only when both A and B equal to

one. However, A and B are mutually independent Bernoulli random variables, hence

the product C is also Bernoulli [67]. Then C is a random variable with Bernoulli

distribution,

P (C = 1) = pc = 1− P (C = 0),
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where pc = papb(ε). In other words, we can think of G†k(εεε) as an ER random graph

generated with edge formation probability of pc.

For an ER random graph, the threshold for the connectedness is pc > lnN/N with

probability tending to one [68], where N is the number of agents embedded in the

graph G. Thus for a given pb(ε) if we select a sufficiently large pa such that papb(ε) >

lnN/N , then the initial graph G†0(εεε) will be connected with probability tending to

one. Then based on the assumption of private marginal benefit we can consider that

G†k(εεε) continues to be connected ∀k ∈ N≥0 thus satisfying the conditions for Claim 1.

However, the convergence of the sequence in (5.3) indeed implies a consensus among

agents [19].

One can think of the above analysis as a bottom-up approach of assessing the emer-

gence of a consensus given confidence bound ε, opinions distribution and underlying

graph G. However, with a top-bottom approach we can reverse the analysis and find

out the required structure of the underlying graph G in order to yield a consensus

among agents as discussed next.

5.4 Network Generation for Consensus

From the analysis in Section 5.3 it can be seen that under the assumption of private

marginal benefit, if we can generate an initial graph G such that we satisfy the con-

dition of pc > lnN/N in G†0(εεε) then there will be consensus among agent opinions

almost surely. Suppose the PDF of the agent opinion distances are given by f
Z
(z)

where Z is

Z =
√

0.5(mi −mj)
TD(mi −mj), i, j ∈ 1, N. (5.4)
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Using f
Z
(z) we can estimate pb(ε) as

pb(ε) =

∫ ε

0

f
Z
(z) dz. (5.5)

Hence if we can satisfy the condition

pa >
lnN

Npb(ε)
, (5.6)

a consensus among agent opinions could emerge. Note that in case of the value of

minimum probability pa is greater than 1 we simply omit this result, because it is not

possible to generate an underlying graph to reach a consensus under such condition.

For instance, when the agents’ confidence bounds are almost zero, i.e., the agents are

not willing to update from other agents, it is not possible for a consensus to emerge

among agents in general, even with a completely connected underlying network G.

This is because, when bound of confidence notions are taken into account G†k(ε) will

not be connected.

Next we consider a special case of uniformly distributed agent opinions for analytical

convenience followed by a more general representation of agent opinions.

5.4.1 Consensus with Uniformly Distributed Agent Opinions

Consider N agents possessing opinions which are uniformly distributed. Let Θ =

{θ1, θ2} be the FoD of agent opinions. Then the mi(θ1) of each agent i ∈ 1, N has a

distribution as

f
(
mi(θ1)

)
=


1, for 0 ≤ m(θ1) ≤ 1,

0, otherwise,

(5.7)
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and mi(θ2) = 1−mi(θ1). In other words, one can see this as sampling from the beta

distribution Beta(1,1). Then following (5.4) the random variable Z for this case can

be simplified as

Z = |mi(θ1)−mj(θ1)|, i, j ∈ 1, N. (5.8)

Applying (5.8) in (5.5) we get,

pb(ε) = P(|mi(θ1)−mj(θ1)| < ε),

= P(−ε < mi(θ1)−mj(θ1) < ε). (5.9)

But we know that mi(θ1) and mj(θ2) are independent and uniformly distributed

random variables. Hence,

f(mi(θ1)−mj(θ1)) = f(mi(θ1)) ∗ f(−mj(θ1)), (5.10)

where f(mi(θ1)), f(−mj(θ1)) take the form in (5.7). Let zij = mi(θ1) −mj(θ1) and

from the convolution in (5.10) we get

f(zij) =


zij + 1, for −1 ≤ zij < 0,

1− zij, for 0 ≤ zij ≤ 1.

(5.11)

Using (5.11) in (5.9) we get

pb(ε) = 2

∫ ε

0

(1− zij) dzij,

=
(
2ε− ε2

)
. (5.12)
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From (5.6), if we generate the underlying graph G as an ER random graph with edge

formation probability pa such that

pa >
lnN

Nε(2− ε)
, (5.13)

then we should see a consensus among agent opinions almost surely.

5.4.2 Consensus with General DS Agent Opinions

In order to capture nuanced agent opinions it is crucial to utilize general DS BoEs for

agent opinion representation. Let the FoD for all N agents be Θ = {θ1, θ2, . . . , θM}

and each agent opinion is represented with a DS BoE Ei = {Θ,Fi,mi(·)}, i ∈ 1, N .

One can use Dirichlet Distribution, often denoted as Dir(αααD), where αααD ∈ R2M

≥0 , to

represent the distribution of agent opinions. For the mass vector m as given in (2.1),

let the αααD be

αααD = [αθ1 , . . . , αθM , αθ1θ2 , . . . , αθ1θM , αθ1θ2θ3 , . . . , αθ1θ2θM , . . . , αΘ] ∈ R2M−1
[0,1] . (5.14)

Then for each agent BoE the opinions can be sampled from the Dirichlet distribution

f(m;αααD) =
Γ
(∑

A⊆Θ αA
)∏

A⊆Θ Γ(αA)

∏
A⊆Θ

(m(A))αA−1. (5.15)

Similar to the analysis with uniformly distributed agent opinions in Section 5.4.1, one

can proceed with the analysis by using convolution to directly find the probability

density function of agent opinion distances fZ(z), where Z is as given in (5.4). How-

ever, we have utilized non-parametric kernel density estimation methods to directly
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estimate fZ(z) as explained in 5.5. Using fZ(z), pb(ε) can be found as in (5.5), hence

a lower bound for pa as in (5.6).

5.5 Non-Parametric Estimation of Agent Opinion

Distance Distribution

Nonparametric (NP) p.d.f. estimation techniques possesses the ability to detect struc-

tures which sometimes remain undetected by traditional parametric estimation tech-

niques [69]. With parametric form of the agent opinions distribution estimation we

have to assume a parametric form of the opinion distribution. For instance, one

may assume a multivariate Gaussian distribution and try to estimate the distribution

parameters to fit the observed opinion data. However, the assumed parametric distri-

bution might not be the best form to represent the underlying distribution and worst

of all the underlying distribution might not be confined to a standard parametric

form. We utilize non-parametric kernel density estimation methods where we do not

have to assume the functional form of the distribution [70]. However we have to select

a proper kernel and a bandwidth for kernel density estimation with non-parametric

techniques.

Using the notation in [70] we can elaborate more on nonparametric p.d.f. estimation.

Consider a particular data point z. The a kernel K(z) has to satisfy, K(z) ≥ 0,

∀z ∈ R, and
∫
K(z)dz = 1. A kernel which satisfies this requirement is given in

(5.16).

Kh(zi, z) = k

(
zi − z
h

)
(5.16)
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where, h refers to as the bandwidth (which is different to the meaning in spectral

analysis) and k(·) could be any univariate kernel, such as, uniform, Epanechnikov,

biweight, triweight, Gaussian etc . . . .

While the selection of the kernel is an important choice, its overall effect on the results

is limited when compared to the effect that the bandwidth can have. The two popular

data-driven method for bandwidth selection are least-squares cross-validation (LSCV)

and likelihood cross-validation (LCV). We have selected Gaussian kernel with cross

validation based bandwidth for the non-parametric estimation of the PDF fZ(z) [71].

Let fZ(z) denote the p.d.f. of z and estimator of p.d.f. by f̂Z(z). Assume that we

were given a data-set with n instances, {z1, z2 · · · , zn}. Then the estimated p.d.f.

f̂Z(z) can be found as:

f̂Z(z) =
1

nh

n∑
i=1

Kh(zi, z). (5.17)

5.6 Empirical Evaluations and Discussion

In this section we present simulations of agent networks where agent opinions are

captured with DS BoEs. The agents in all the simulations employ a CUE-based

opinion update strategy with αi = 0.5, ∀i ∈ 1, N . The agents’ bounds of confidence

are taken as identical, i.e., εi = ε, ∀i ∈ 1, N . Note that, even though the agents

are embedded in an underlying static network, the agents have to accommodate the

bounds of confidence as the opinions are updated, hence creating a dynamic network

G†k(ε).

We have selected 400 agents with identical FoDs Θ = {θ1, θ2}. The opinions of the

agents have been sampled from a Dirichlet distribution f(m;αααD) as in (5.15), where
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Figure 5.1: PDF of opinion distances when the agents opinions are distributed
with Dirichlet distribution f(m;αααD) as in (5.15), where αααD = [1, 1, 1].

αααD = [1, 1, 1] and m = [m(θ1),m(θ2),m(θ1θ2)]. The following three steps explain the

estimation of edge formation probability pa for G†0(ε).

Step I Estimating the p.d.f. of opinion distances

As explained in Section 5.5 non-parametric kernel density estimation method

[70] has been utilized to find fZ(z). For the chosen opinion distribution f(m;αααD),

the probability density function of agent opinion distances fZ(z) is shown in

Fig. 5.1.

Step II Calculate the probability pb(ε)

After estimating the PDF of opinion distances fZ(z) we can calculate the prob-

ability pb(ε) of two randomly chosen agent opinions are within the bound of

confidence ε using (5.5).

Step III Estimating the probability pa

Using pb(ε) the minimum edge formation probability pa for G†0(ε) to be connected

can be estimated using (5.6), where N = 400.
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Figure 5.2: Comparison of estimated minimum edge formation probabilities pa of
G for in ER random graph with the minimum values obtained with simulations for
G†0(ε) to be a connected graph. The agents opinions are distributed with Dirichlet

distribution f(m;αααD) as in (5.15), where αααD = [1, 1, 1].

We have simulated the scenario with 400 agents with opinions sampled from f(m;αααD)

to find the minimum edge formation probability pa for different confidence bounds ε.

Fig. 5.2 shows a comparison of minimum edge formation probability pa found with

estimations and simulations. As can be seen from Fig. 5.2 the minimum pb(ε) for

connectedness of G†0(ε) is closer to the estimated value specially when the bound of

confidence ε is higher.

With the connectedness of G†0(ε) and the assumption of private marginal benefit we can

assume that the graph union of agent interaction topologies of all agents is connected.

When the agent updating sequence I is regulated we can apply Claim 1. Claim 1

states a convergence of sequence in (5.3) and as discussed in 5.3.2 the convergence in

(5.3) implied a consensus. Hence, if we generate the underlying graph G such that

even after the bound of confidence notions the graph union of all agent interaction

topologies remain connected, then a possible consensus should emerge. Fig. 5.3 shows
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Figure 5.3: Comparison of estimated minimum edge formation probabilities pa
of G for in ER random graph with the minimum values obtained with simulations
for agents to reach a consensus. The agents opinions are distributed with Dirichlet

distribution f(m;αααD) as in (5.15), where αααD = [1, 1, 1].

the comparison of estimated and simulated values of minimum ER edge formation

probability pa for the agents to reach a consensus.

Fig. 5.3 shows that the simulated minimum value of pa for consensus is closer to the

theoretical estimation, particularly for larger values of confidence bound ε. However,

for smaller value of ε the minimum values obtained for pa from simulations tends to be

larger than the theoretically estimated values. We hypothesize that one reason behind

the difference between simulated and estimated values is the assumption of private

marginal benefits. As per the observations the private marginal benefit assumption

seems to be valid for larger values of confidence bounds ε. However, further analysis

has to be done to assess the validity of this hypothesis specially for lower values of

the confidence bounds.
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5.7 Case Example: Autonomous Mobile Robot Nav-

igation

5.7.1 Scenario

Consider a platoon of autonomous mobile robot soldiers who are required to stay

together and navigate as a group. Hence, the group must establish as consensus

opinion regarding the direction to navigate. To keep the case example simpler let us

assume the robots are navigating toward the North by default and based on their

sensor information they only need to take the decision either to turn toward the East

or the West. We use the DS framework to model opinions, because we need to handle

the situation where the agents may not have clear sensor information hence do not

have a firm opinion on the direction initially. Let the FoD of agents be denoted by

Θ = {θE, θW}. mi(θE)k and mi(θW )k represent the mass of the opinion of i-th agent at

time instance k on turning to East and West respectively. The doubleton mi(θEθW )k

captures the ambiguity of the i-th agent at time instance k on whether to turn East

or West.

Let us assume the platoon consists of N = 250 autonomous robots. Communicating

through a completely connected underlying network is costly in terms of the number

of connections (62250 edges in total) and indeed unnecessary. Let us go through some

possible network topologies that the platoon can establish on their own. Before that

let us briefly discuss the importance of confidence bound and fault tolerance in a

scenario like this.
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5.7.2 Role of Confidence Bound

While the confidence bound notion is intuitive for opinion exchange among humans,

one may ask, what role does bound of confidence notion play for mobile robots or

any other distributed sensor scenario? Furthermore, if the objective is to establish

a consensus opinion, what purpose does it serve to deploy the bound of confidence

notion among the mobile robots? To answer that, let us consider a case of having

an agent with faulty sensors, thus generating a drastically different “opinion”. If this

”errorneous” opinion is used by the neighboring agents within their update processes,

the converged or consensus state will certainly be affected. However, by deploying a

bound of confidence on agent updates, the system can avoid obvious outliers.

5.7.3 Fault Tolerance

Fault tolerant design is crucial for a mission critical system to continue operating

properly even in an event of failure of some communication links or some agents. For

instance, let us consider the agents are embedded in a circular topology. While it is

difficult to design a protocol for autonomous agents to circularly connect themselves

considering the bound of confidences (which depend on the dynamic opinions), the

topology is extremely vulnerable to failures. An attacker would only need to turn

down two mobile agents or two communication links to separate the system into

two groups making the group to reach a consensus improbable. Hence, the circular

topology is clearly not a fault tolerant design.

To surpass the vulnerability with circular design, one might propose a lattice like

underlying network. However, an attacker could still break the group into small par-

titions by targeting selected agents. The attacker can achieve this by destroying agents

in a line. Likewise any predictive standard connected topology can be separated with
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a predefined attack strategy. But what if we generate the network with a random

strategy? Then, it would be difficult for the attacker to separate the group with a

preplanned strategy. Let us now discuss how we can utilize the proposed method in

this chapter to build a random topology among autonomous agents accounting for

the bound of confidence and fault tolerance.

5.7.4 Design with Proposed Method

Let us assume that we need the platoon of 250 mobile robots to be properly functional,

even with the loss of 50 agents. Furthermore, suppose the probability distribution

fZ(z) has been estimated as explained in Section 5.4 using training data. The level

of confidence bound ε for mobile agents is a design parameter.

For this example, let us pick the confidence bound as ε = 0.4 and the agents opinions

are sampled from a Dirichlet distribution f(m, [1, 1, 1]). Then using (5.5) we can

estimate pb the probability of randomly picked two agents’ opinions are within bound

of confidence. For ε = 0.4 the value of pb(ε = 0.4) = 0.75. Since we need to design

the system to function properly even with a loss of 50 agents, we use N = 200 and

the value of pb(ε) in (5.6) and find the minimum edge formation probability pa to be

0.0353 (approx.).

The autonomous agents could form the network as a ER random graph with edge

formation probability pa = 0.0353 (or slightly higher for robustness). The network

will have communication links around 2198 (total number of links ×pa). Due to the

random nature of the network generation, it is not possible for an attacker to separate

the group with a predefined plan based on the structure of the graph. Assuming the

failures/attacks occur for randomly selected agents, the agent system will continue to
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reach a possible consensus and navigate as one group even in the loss of some agents

(up to 50, approximately for this scenario).

5.8 Chapter Summary

In this chapter, we have presented a network generation method to facilitate a possible

consensus among agents with iterating opinion exchanges. Utilizing non-parametric

techniques on prior data (or using the knowledge of agent opinion distribution), an

estimation of the probability of two random agents’ opinion within a certain confi-

dence pb(ε) can be found. Along with probability pb, using the knowledge on the edge

formation probability for phase transition of Erdős-Rényi random graphs pc, we can

estimate the edge formation probability pa of the original static underlying agent net-

work G. With the assumptions in place, we were able to compare the estimated and

simulated results for pa. The validity of the proposed mechanism was demonstrated

for relatively larger values of confidence bounds ε.

Equipped with this network generation mechanism, in a distributed multi-agent en-

vironment, autonomous agents could form edges with probability pa as a ER graph.

The decision of the group will be taken based on the consensus opinion of all agents. A

case example presented in Section 5.7 explains how the proposed method can be used

in a scenario of the navigation of autonomous mobile robot soldiers. The proposed

method accounts for bound of confidence notions and can be designed to tolerate

faults.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The main subject matter being explored in this dissertation is the formation of a

consensus and/or clustering when networked agents exchange their opinions. We

primarily employed DS theoretic models to capture agent opinions. This framework

is better suited to capture a wider variety of uncertainties, such as those encountered

in soft evidence sources (e.g., human-generated nuanced opinions). Of particular

importance among the results presented in this dissertation is the incorporation of

SJT theoretic notions, including the bound of confidence, in the opinion exchange

process. Under bound of confidence agents were considered to exchange opinions

only with neighboring agents with ‘closer’ opinions.

The work in Chapter 3 explores the cases where agent opinions are captured via

p.m.f.s and Dirichlet BoEs, both special cases of the DST framework. We have

provided analytical results based on matrix theory giving conditions under which a

consensus will be reached in the presence of opinion leaders. The work in Chapter 3

assumes an asynchronous network, i.e., there are no delays in the update process of

agent opinions.

138
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The work in Chapter 4 employs the paracontractions theoretic view of the network and

the opinion exchange mechanism. This allows most of the simplifying assumptions

made in Chapter 3 to be relaxed, thus allowing asynchronous updating and agents

opinions that are represented via general DST BoEs.

The work in Chapter 5 proposes a method that can be used to generate a random

network such that a possible consensus state can be sustained even when bound

of confidence notions are employed by the embedded networked agents. The fault

tolerance and outlier removal capabilities makes the proposed network generation

model applicable in a wide range of scenarios which are prone to preplanned attacks

and severe conditions.

6.2 Future Work

6.2.1 Opinion Dynamics

Our analysis made the assumption that all agents possess identical FoDs. To make

the analysis more general the scenario having agents with non-identical FoDs [72]

should be studied. Furthermore in regard to the bound of confidences of agents, we

considered the case of homogeneous confidence bound where all the agents possess

the same confidence bound. Future work can extend the analysis to handle the

heterogeneous case where each agent may possess a different confidence bound [73].

In Chapter 4.1 with the paracontractions theoretic view of consensus and opinion

clusters, bound of confidence has been modeled as another parameter which controls

agent connectedness, hence the confluence conditions. However, this does not directly

capture the relationship of confidence bound with the opinion updating equation.

Further analysis could be done incorporating bound of confidence into the conditional
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operator itself so that the pool of paracontracting operators H/ encapsulates the

bounded confidence notions. Then one can apply the convergence theorems in [19]

with the same confluence conditions, where bound of confidence notions are taken

not under confluence conditions but under paracontracting operators.

6.2.2 Influencing an Opinion

For future work it is beneficial to study the problem of influencing a network of

agents with a desired opinion preferably in the least amount of iterations. Suppose

we are trying to spread an opinion or market a product over a group of individuals

and the resources are limited such that we can target only one or few individuals.

Then naturally the question arises as which individual should be targeted in order to

propagate the opinion via the interactions that individual has with other members of

the group.

The notion of influencing a network has been analyzed in economics community par-

ticularly in viral marketing. Some researchers model it as a influence maximization

problem [10, 11] whereas some in micro-finance, model it as finding the node with

highest diffusion centrality [74]. Furthermore, finding influential nodes has attracted

sociophysicist and other researchers who studies opinion formation on social networks

[9, 75–77].

For instance, in viral marketing it is important to select individuals who can spread

the ideas over a network as fast as possible. Had we picked an isolated individual

or an individual with less connections to other individuals, the spreading of the idea

would not be very effective. Instead if the selected individual has connections to other

individuals in the network via different paths, then it is likely that the idea would

spread more rapidly over the entire network.
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6.2.2.1 Previous Work

Optimal Opinion Control

In [4] influencing a network with a strategic agent has been modeled an an optimal

control problem. They consider a campaign of certain length, where the strategic

agent tries to influence the ongoing dynamics among normal agents with strategically

placed opinions in such a way that, by the end of the campaign, as many normal agents

as possible end up with opinions in a certain interval of the opinion space. That model

considers the notions of SJT, in particular, bounded confidence. However, there is

a subtle difference between the influence model in [4] and our objective. In [4] the

strategic agent change the its opinion time to time in order to get the ultimate desired

outcome. For instance, at the beginning the influencing agent could pose an opinion

closer to neighbors in-order to be within their bound of confidence ranges. When time

progress the influencing agent alter its option towards the ultimate opinion that needs

to be spread across the network. In contrast, our objective is to place the cautious

agent (tantamount to the strategic agent in [4]) with a fixed option that needs to be

spread, in the most productive location in the connected random network, based on ex

ante estimates. The randomness of the underlying networks discerns our work further

from the problem addressed in [4] where the underlying network (before accounting

for bounded confidence notions) is completely connected.

PageRank Related Methods

The network topology where agents are embedded plays an important role in deciding

the location of most influential agent. As briefly explained in Section 2.2.3, the

centrality measures quantify and order the influential vertices. One such popular

centrality measure is PageRank. PageRank model of opinion formation on social
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networks has been proposed in [75, 77]. In [75] they find that the society elite,

corresponding to the top PageRank nodes, can impose its opinion on a significant

fraction of the society.

Epidemiological Models

Epidemic models are mainly used to analyze the transmission of communicable dis-

eases through individuals. One can model of spreading of an opinion as spreading

of a diseases with epidemiological models [12]. Two popular epidemiological models

are SIR (Susceptible-Infected-Recovered) and SIS (Susceptible-Infected-Susceptible).

In [78] k-shell decomposition analysis is used to locate the influential spreaders. In

k-shell decomposition analysis each node is assigned an integer index or coreness ks,

which represents the location of the node according to successive layers (k shells)

in the network. In [78] it further claims the robustness of the ks index measure

stating the node rankings are not influenced significantly in the case of incomplete

information.

However, we have an open question whether we can model opinions with epidemic

models. One argument behind that doubt is, for instance, in SIR model the transition

from recovery to susceptible is modeled merely with a transition probability which

does not capture the all the notions of opinion exchanges including the notion of SJT,

to the best of our knowledge.

6.2.2.2 Opinion Influencing

In our opinion dynamic models, the receptive agents are embedded in an underlying

random network and the opinion leader, i.e., cautious agent, with the desired opinion

attempts to influence the opinion of receptive agents to within a certain interval in
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the opinion space. The opinions are represented with DST BoEs. For analytical

convenience we assume that there is a resource constraint that we have only one

cautious agent and that an agent can make a connection with only one receptive

agent in the network. Our intent is to find the best receptive agent to make the

connection with the cautious agent, such that the desired opinion to be influenced

can be propagated in the least number of opinion update iterations.

At first we can consider the situation with one opinion leader. If two or more opinion

leaders are present the setting takes a more game theoretical context[4], in which

opinion leaders have to take into account that there are others that try to influence

the desired opinions as well. In game theoretic terms opinion leaders not only have

to play with receptive agents but also play a game against (or with) each other1.

6.2.2.3 Simulations

A preliminary simulation has been done in order to assess the appropriateness of

existing network centrality measures in order to find the most influential agent in a

group of 20 agents. Each agent’s opinion is modeled with DST BoEs Ei = {Θ,Fi,m},

where Θ = {θ1, θ2, θ3} and i = {1, 2, . . . , 20}. The mass assignment for each agent is

given in Table 6.1 and the graph with connections among agents is shown in Figure 6.1.

The opinion update of each agent is modeled with CUE and all the agents given in

Table 6.1 are considered as receptive agents. The opinion to be influenced throughout

the network is chosen as θ1 where we stop the opinion updating iterations when all

agents agreeing for opinions that are closer to θ1. In order to ‘inject’ the opinion to

the network we attach a cautious agent E21 = {Θ,F21,m}, with m(θ1) = 1 to any

single selected agent in the network which we find as most influential in terms of

spreading the opinion of interest, i.e., θ1.

1[4] suggests concepts like Nash equilibrium to find solutions to such complicated games.
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Table 6.1: Simulation setup.

Agent
Focal element

θ1 θ2 θ3 θ1θ2 θ1θ3 θ2θ3 Θ

1 0.8 — — — — 0.2 —
2 0.8 — — — — 0.2 —
3 0.6 0.2 0.1 0.1 — — —
4 0.7 — — 0.2 0.1 — —
5 0.7 — — — — — 0.3
6 0.6 — — 0.2 — 0.2 —
7 0.7 — — — — 0.1 0.2
8 0.6 — — 0.3 — — 0.1
9 0.4 — — 0.2 0.2 — 0.2
10 0.3 — 0.1 0.2 0.2 — 0.2
11 0.3 — 0.2 0.3 — 0.1 0.1
12 0.2 0.1 0.2 0.1 0.1 — 0.3
13 0.2 — 0.3 0.2 — — 0.3
14 0.2 — 0.5 — — 0.2 0.1
15 0.2 — 0.5 0.1 — 0.1 0.1
16 0.2 — 0.6 — — — 0.2
17 0.1 — 0.6 — — 0.2 0.1
18 0.1 — 0.7 — — 0.1 0.1
19 0.1 — 0.7 — — 0.2 —
20 0.1 — 0.8 — — — 0.1

For instance, suppose we choose agent four as the point of entry to the network and

attach agent 21 with agent 4 in order to drive the agents to the opinion of 21st agent.

Figure 6.2a shows the initial attachment of 21st agent to the 20 agent network via

agent 4. The bound of confidence level has been chosen as ε = 0.9 and the iterative

updating is continued until all agents reach opinions with distances (as mentioned in

Section 2.1.6) less 0.1 of the opinion of 21st agent.

Even though 4th agent is the node possessing highest degree in terms of direct con-

nections it is not the best agent to connect 21st agent, in order to spread the opinion

of 21st agent with minimum number of iterations. Table 6.2 gives the number of

iterations for all first 20 agents to reach opinions with distance less than 0.1 of the

opinion of the 21st agent. As seen from the table, under the given circumstances it
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Figure 6.1: The graph showing the connection of 20 agents.

is agent 11 who should be picked to propagate the desired opinion with minimum

number of iterations (counting to 145) as depicted in Figure 6.3.

6.2.2.4 Conclusion: Opinion Influence

The ultimate objective is to come up with an opinion influencing centrality measure,

which gives a higher rank for agents who can influence the network of agents faster

for a given opinion. For this purpose, we believe that the following factors may play

a critical role:

• Geodesic distance to other agents in the network.

• Impact of bound of confidence on the geodesic distance to other agents.
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(a) The initial state.

(b) After 201 update iterations.

Figure 6.2: Influencing the network via agent 4.

• Whether some following agents have already possess the opinion that needs to

be influenced. For instance, if the majority of closely connected agents already

possess the opinion we need to influence, then it would rather be effective to

influence a small set of agents who possess different opinions.
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Table 6.2: Simulation Results on Network Influence.

Agent # iter
Rank and Centrality

Degree PageRank Betweenness Closeness Katz

11 145 4 0.075 0.36 0.442 0.231
13 159 4 0.07 0.246 0.404 0.23
9 162 4 0.063 0.287 0.422 0.228

10 168 3 0.059 0.152 0.388 0.228
16 184 3 0.072 0.137 0.345 0.23
15 194 3 0.049 0.136 0.339 0.223
12 197 2 0.047 0.0117 0.352 0.223
4 201 6 0.107 0.252 0.352 0.235
7 202 2 0.045 0.184 0.38 0.223

14 205 3 0.061 0.092 0.317 0.226
6 207 3 0.056 0.106 0.358 0.225

17 216 3 0.046 0.063 0.279 0.221
3 220 2 0.038 0.064 0.333 0.22
2 226 3 0.043 0.035 0.297 0.221

18 236 2 0.028 0.067 0.284 0.217
20 244 2 0.039 0.014 0.264 0.22
8 247 2 0.032 0 0.288 0.219

19 249 2 0.023 0.023 0.25 0.216
1 253 2 0.024 0 0.271 0.217
5 317 1 0.022 0 0.264 0.216

Ideally, one prefers to do all the centrality calculations with initial setup and select

the best agent to influence a network at all time. However, this is not necessarily the

case due to the dynamic nature of agent interactions. One can periodically check for

best agent to influence and it will clearly affect the computation time. The topology

of the agent network along with the initial distribution of agent opinions plays a

central role in the opinion influence centrality measure.
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(a) The initial state.

(b) After 145 iterations.

Figure 6.3: Influencing the network via agent 11.



Appendix A

Alternative Analysis of Agent
Opinions Under Bounded
Confidence for Chapter 3

Section A.1 gives an alternative proof for the consensus formation under bounded

confidence primarily based on the work of [39] and [13].

A.1 Consensus Formation Under Bounded Confi-

dence

Consider our N BoEs {E1, . . . , EN} defined on the same FoD Θ = {θi, . . . , θM}. Note

that mi(θw)k denotes the opinion on singleton θw ∈ Θ of agent i ∈ {1, . . . , N} at

discrete-time k ∈ N. The vector m(θw)k = [m1(θw)k, . . . ,mN(θw)k]
T ∈ RN

≥0 is the

opinion profile of singleton opinion θw at time k.

Suppose agent i updates Ei by taking into account the opinions of all agents j whose

BoEs Ej lie within the distance εi from agent i’s own opinion, i.e., ‖Ei − Ej‖ ≤ εi.

Here, εi > 0 is the bound of confidence of agent i based on the selected norm. The

opinion update is modeled via the CUE in (2.5) which, in terms of masses, can be
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expressed as

mi(B)(k+1) = αi,kmi(B)k +
∑
j 6=i

∑
A∈Fj,k

βij(A)kmj(B|A)k, (A.1)

where i, j ∈ {1, . . . , N}, αi,k and eq : CUEmParAβij(·)k are non-negative real num-

bers satisfying

αi,k +
∑
j 6=i

∑
A∈Fj,k

βij(A)k = 1. (A.2)

For mathematical convenience, we assume a homogeneous bounded confidence model,

i.e., all agents are taken to have the same confidence range εi ≡ ε. In addition, we

also assume a static network (in the sense that the communication links are static).

The analytical results below apply to the case where the DST models contain only

singleton focal elements (i.e., the p.m.f. case).

Definition 1. For agent i ∈ {1, . . . , N}, the set of neighborhood agents at discrete-

time instance k is

Ik(i) = {j = 1, . . . , N : ‖Ei − Ej‖ ≤ ε}.

The number of neighbor agents of agent i is τi,k = |Ik(i)|. �

For the case of DST models that has only singleton focal elements, one can show that

the opinion update can be written as the following discrete-time dynamical system:

m(θw)k+1 = Akm(θw)k, (A.3)
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where the initial conditions are denoted as m(θw)0 ∈ (R≥0)N and the N ×N matrix

Ak = {aij,k} is defined as

aij,k =


αi,k, for i = j;

γi,k, for j ∈ Ix(i);

0, otherwise.

(A.4)

Here, γi,k = (1− αi,k)/τi,k.

We also use the following notion [13, 39]:

Definition 2. The range R of a singleton opinion profile θw at discrete-time k is

R(m(θw)k) = max
1≤i,j≤N

(mi(θw)k −mj(θw)k), θw ∈ Θ. (A.5)

�

In [39], sufficient conditions for consensus have been given using a certain ε-profile.

However, this previous work only considers real-valued agent opinions. Here, we

extend the result to p.m.f.s under certain assumptions on DST BoEs.

Similar to the real-valued opinions case in [13, 39], let us assume that our BoEs

can be arranged as an ordered list according to the distance relative to a particular

‘reference’ BoE. Without loss of generality, we take E1 as the reference BoE and re-

label all the BoEs as E1, . . . , EN so that ‖E2 − E1‖ ≤ . . . ≤ ‖EN − E1‖. If this order

does not change when the opinions of agents get updated each time, then it is called

an order preserving arrangement. Furthermore, if each singleton opinion profile can

be arranged in the same order as the BoE indices as ascending or descending mass

values, then it is referred to as a strictly order preserved arrangement.
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Definition 3. Under the strictly order preserved arrangement, the BoE setting is said

to have a ε-chain if each agent has distance to its neighbors less than the bound of

confidence ε such that

‖Ei+1 − Ei‖ ≤ ε, ∀i = 1, . . . , N − 1. (A.6)

�

A.1.1 All Receptive Agents

We first explore consensus when all agents are receptive. For this purpose, we consider

a strictly order preserved arrangement and analyze fixed points of the agent opinions.

For such an arrangement, the diagonal and off-diagonal entries of the transition matrix

Ak are positive (Proposition 3 in [13]). Furthermore, a product of (N − 1) such

matrices, say Bζ = {bij,ζ}, is positive and given by

Bζ = A(N−1)(ζ+1)−1 · · ·A(N−1)ζ > 0, (A.7)

i.e., bij,ζ > 0, for all i, j, and ζ ∈ N.

For all singleton opinion profiles m(θw), θw ∈ Θ, the updates at discrete-time (k+ 1),

such that k ∈ (N − 1) · N, can be given as

m(θw)k+1 = BζBζ−1 · · ·B0m(θw)0, (A.8)

where ζ = (k + 1)/(N − 1)− 1.

From [39], for a non-negative row stochastic matrix C, we have the following result:
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Lemma 4. [39] When a matrix C is row stochastic, then, for all m(θw) ∈ RN
≥0,

R (Cm(θw)k) ≤

(
1− min

1≤i,j≤N

N∑
`=1

min{ai`,k, aj`,k}

)
R(m(θw)k). (A.9)

�

As the matrices Bζ s are positive row-stochastic, from Lemma 4 we have

Lemma 5. For all positive row-stochastic matrices Bζ s,

R(Bζm(θw)k+1) ≤ λR(m(θw)k+1), for some λ < 1. (A.10)

�

From Lemma 5, we know that R(Bζm(θw)k+1) < R(m(θw)k+1). Hence, from Corol-

lary 7 in [13], we can form a sequence (R(m(θw)k̃))k̃ that converges to 0. Due to the

row stochasticity of Ak, from Lemma 4, we can show that the sequence (R(m(θw)k))k

is monotonically decreasing and indeed a Cauchy sequence. But, (R(m(θw)k̃))k̃ is a

subsequence of the sequence (R(m(θw)k))k. Hence the sequence (R(m(θw)k))k con-

verges to 0.

When (R(m(θw)k))k → 0, ∀θw ∈ Θ, we reach a consensus. In summary, we have

shown that consensus will be reached for a strictly order preserved arrangement of

BoEs with an ε-chain. However, when a ‘crack’ appears in the ε-chain, the agents

get divided into independent groups, and the above result applies to each subgroup

yielding a fixed point with separate cluster points for each independent group.
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A.1.2 One Cautious Agent

When a cautious agent, E
C1
, C1 ∈ {1, . . . , N}, is present with all the others being

receptive agents, the transition matrix Ak at time k can be given as in

Ak =


Pk uk Sk

0
T

1 0
T

Rk vk Qk

 , (A.11)

where

Pk, Qk, Rk, Sk = square matrices of appropriate size;

uk,vk = vectors of appropriate size;

0 = zero vectors of appropriate size.

The matrix in (A.11) is row-stochastic. Hence, Lemma 4 can be applied. Further,

for the all singleton scenario, as the opinion of the cautious agent does not change, it

can be seen that

min
y∈Ik(C1)

[my(θw)k+1] ≤ mC1(θw)k+1

≤ max
z∈Ik(C1)

[mz(θw)k+1], (A.12)

for all y, z ∈ Ik(C1), θw ∈ Θ. Hence the neighboring receptive agents of cautious

agent C1 converge to the opinion of the leader, viz., C1. When the conditions for

the ε-chain are satisfied, a consensus will be reached. The fixed point is given by

the masses of the cautious agent’s singleton opinions. Again, when a crack appears

in the ε-chain, agents get divided into independent groups. However, the group that

contains the cautious agent converges to the cautious agent’s opinion.
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A.1.3 Multiple Cautious Agents

If there are more than one cautious agent, clearly there will be no consensus (unless

of course all the cautious agents have the same opinion). In a strictly order preserved

arrangement with an ε-chain, the receptive agents who get updated from only one

cautious agent converge to that particular cautious agent’s opinion. The analysis is

similar to the scenario with one cautious agent (see Section A.1.2).

When there is more than one cautious agent in the bound of confidence of a receptive

agent, two possibilities could happen.

(a) If the receptive agent continues to have more than one cautious agent for iterations

to come, then it will converge to a fixed point. The fixed point is in the convex

hull of the set of points corresponding to neighboring cautious agents.

(b) Even if the receptive agent’s neighborhood initially contains more than one cau-

tious agent, this neighborhood could later contain fewer cautious agents. This

situation can be addressed as in A.1.2 or item (a) above.



Appendix B

Application of Opinion Dynamic
Model in Chapter 3

We have applied our opinion model to capture the political opinion dynamics of

students in an MIT dormitory during the 2008 presidential election. The political

opinions have been extracted from the main Social Evolution dataset[79].

B.1 Social Evolution Dataset

The social evolution experiment has been designed to study the adoption political

opinions, diet, exercise, obesity, eating habits, epidemiological contagion, depression

and stress, dorm political issues, interpersonal relationships, and privacy. The dataset

contains the spatio-temporal patters in everyday life of a population of 30 freshmen,

20 sophomores, 10 juniors, 10 seniors and 10 graduate student tutors.

B.1.1 Political Opinions

The political opinions have been captured using three monthly web-based surveys,

once each in Septermber, October, and November 2008 (immediately after the US
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presidential election) [80]. The political opinions captured in the surveys are explained

in Table B.1.

Table B.1: Captured Political Opinions

Political Opinions Possible Responses

Political interest Very interested
Somewhat interested
Slightly interested
Not at all interested

Liberal or conservative Extremely liberal
Liberal
Slightly liberal
Slightly conservative
Conservative
Extremely conservative
Moderate middle of the road

Preferred party Democrat
Republican
Member of another party
Independent

Preferred party details Strong Democrat
Democrat
Not very strong Democrat
Not very strong Republican
Republican
Strong Republican
Neither

Likely candidate to vote Definitely Barak Obama
(before election) Probably Barak Obama

Probably John McCain
Definitely John McCain
Other candidate
Undecided

Voted candidate Barak Obama
(after election) John McCain

Other candidate
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B.1.2 Opinion Modelling

Based on the political opinions of the first survey in September, initial student opin-

ions were modeled with DS BoEs. The FoD was taken as Θ = {θ1, θ2, θ3} where

θ1 ≡ ‘Vote for Obama’, θ2 ≡ ‘Vote for McCain’ and θ3 ≡ ’Vote neither’. Note the

higher cardinality proposition like θ1θ2θ3 represent nuanced opinions. For our prelim-

inary simulations we selected masses as given in Table B.2.

Table B.2: Initial DS mass assignment on political opinions

Survey Response DST Mass Values
θ1 θ2 θ3 Θ

‘Definitely Barack Obama’ 0.97 – – 0.03
‘Probably Barack Obama’ 0.75 – – 0.25
‘Definitely John McCain’ – 0.97 – 0.03
‘Probably John McCain’ – 0.75 – 0.25
‘Other candidate’ – – 0.75 –
‘Undecided’ – – – 1.00

B.1.3 Network Topology and Opinion Updating

Using the survey results of social evolution dataset the underline network topology

where agents, i.e., students, embedded was estimated. We used survey information

on

• ‘Close friend’

• ‘Socialize twice per week’

• ‘Political discussant’

• ‘Facebook tagged photos’

• ‘Blog, LiveJournal, Twitter’



159

to built the agent interaction topology. However a proper modeling of the co-evolution

of behaviors and social relationships using mobile phone data can be found in [81].

Opinion exchanges were modeled using conditional update equation (CUE) as ex-

plained in Section 2.1.5. The opinion update strategy of a particular student was

decided based on the ‘preferred party details’ of the political opinion surveys. Stu-

dents with political preferences as ‘strong democrats’ and ‘strong republicans’ were

considered as ‘cautious’ agents while all other students as ‘receptive’ agents. The

inertia of CUE was selected as α = 0.5 for all agents. Furthermore, the bound of

confidence ε = 0.8 was considered for all agents.

B.1.4 Analysis of the Results

The number of iteration the opinion exchange needs to be done to explain the voting

by the time of election date has to be properly investigated. However, by trial and

error, for this scenario we analyzed the result after 8 iterations of opinion exchanges

among agents. Clearly the number of iterations depend on the ‘inertia’ used in CUE.

To report the performance we use DS theoretic performance measures based on the

definition given for DS theoretic precision and recall in [82]. However, to give a

performance we need to identify ‘positive’ and ‘negative’ samples. For our discussion,

let us assume data with ‘vote for Obama’ as ‘positive’ samples and all others as

‘negative’ samples. Moreover, let the positive data points be denoted as ‘a’ and

negative points as ‘b’. Hence for this selection of ‘positive’ and ‘negative’ samples ‘a’

corresponds to θ1 and ‘b’ corresponds to θ1θ2.

Let s denote a data point. Using pignistic transformations [83] we can then obtain the

pignistic probabilities B̂etP (x)s, x = {a, b}, for each sample s. Let the set of positive

samples be denoted by S(+) and set of negative by S(−). Under this setting the ‘true



160

positives’(TP), ‘false positives’(FP), ‘false negatives’(FN) and ‘true negatives’(TN)

can be given as:

TPDS
∑

s∈S(+)
B̂etP (a)

FPDS
∑

s∈S(−)
B̂etP (a)

FNDS

∑
s∈S(+)

B̂etP (b)

TNDS

∑
s∈S(−)

B̂etP (b)

Now the DS F-measure is given in (B.1) as

Fβ(DS) =
(1 + β2) · TPDS

(1 + β2) · TPDS + β2 · FNDS + FPDS
. (B.1)

Under the given settings we got F1(DS) = 0.83 (approx.). However further tuning has

to be done in order to improve the performance of the model.

B.1.5 Conclusion of the Analysis

The preliminary analysis tested the usage of our opinion model in political opinions

of social evolution dataset. The model allowed us to ‘predict’ the opinion dynamics

given the initial opinions and network topology. However, further tuning has to be

done to properly assess the opinion parameters as well as the network topologies.



Appendix C

Lemmas and Proofs of Chapter 4

Claim C.1. Consider the BoE E = {Θ,F ,m(·)} and A,B ∈ F . For A ⊂ B,

m(B|A) = 0. �

Proof. We know that, Bl(B|A) = Bl(AB)

Bl(A∪B)+Pl(A∪B̄)
.

But when A ⊂ B, A ∪B = A and A ∪ B̄ = ∅.

Hence,

Bl(B|A) = 1 (C.1)

and

Bl(A|A) = 1. (C.2)

By (C.1) and (C.2) we can see that m(B) = 0.

�
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Erdős-Rényi, 25, 122

Even-based index, 90

Evidence fusion, 17

evidence updating, 17, 18

Exogenous, 4

Fault tolerance, 135

Fixed point, 96

common fixed point, 99

Focal element, 12

Forceful agents, 36, see Opinion

leaders

Frame of Discernment, 12

Fully connected, 94

Graph composition, 25

Graph union, 123, 132

Hard sensors, 5

Heterogeneous, 18

Homogeneous, 18

Ignorance, 13

Indexwise-regulated, 98

Infinite flow graph, 27

Iteration delays, 95

Iteration graph, 91, 92

Jointly rooted, 26, 109

Kernel density estimation, 128

Leader-follower problem, 8

Left converging, 45

Left product, 45

Network generation, 118, 120, 125

Non-parametric, 128, 131

ODC

1-ODC, 47

2-ODC, 52

Openness character, 41



171

Opinion clusters, 42, see also

Consensus, 69, 71, 94

Opinion followers, see Receptive

Opinion leaders, 7, see Cautious, 71,

81

Opinion profile, 31, 40

Opinion updating models

classical model, 32

DW model, 32

FJ model, 32

HK model, 33

Optimal control, 141

PageRank, 141

Paracontract, 90

Paracontracting property, 103, see also

Paracontract

Partially connected, 94

Plausibility, 15

Polarization, 115, see Clustering

Private marginal benefit, 122

Projective metric, 29

Receptive, 22, 36

receptive updating, 43

Regulated, 98, 99, 123, 132

Repeatedly jointly rooted, 26, see

Jointly rooted

Rooted graph, 26

Self-communicating property, 47, 68

Sensitivity, 122

Singleton, 13

Soft sensors, 5

Spatial coupling, 92

Stochastic, 27

sub-stochastic, 27

Stochastic chain, 47

Strategic agent, 141

Strictly non-expansive, 100

Strongly aperiodic, 27, 68, see also

Self-communicating property

Susceptibility, 32

Synchronous, 95

Temporal coupling, 91

Topology

agent-interaction, 93

Uncertainty, 15

Viral marketing, 140


	University of Miami
	Scholarly Repository
	2017-02-07

	Consensus and Clustering of Networked Agent Opinions: A Belief Theoretic View
	Ranga Dabarera
	Recommended Citation


	List of Figures
	List of Tables
	Acronyms
	Glossary
	Nomenclature
	I Introduction
	1 Introduction
	1.1 Overview
	1.2 Motivation
	1.3 Contributions and Their Significance
	1.3.1 Accounting for Social Judgement Theoretic Notions
	1.3.2 Opinion Dynamics in the Presence of Opinion Leaders
	1.3.3 Network Generation for Consensus

	1.4 Organization of the Dissertation
	1.4.1 Introduction and Background Theory
	1.4.2 Theoretical Analysis of Opinion Dynamics
	1.4.3 Network Generation for Consensus


	2 Preliminaries
	2.1 Dempster-Shafer Belief Theory
	2.1.1 Basic Notions
	2.1.2 DS Theoretic Conditionals
	2.1.3 Evidence Fusion
	2.1.4 Evidence Combination
	2.1.5 Evidence Updating
	2.1.6 Distance Measure

	2.2 Relevant Notions from Graph Theory
	2.2.1 Basic Notions
	2.2.2 Random Graphs
	2.2.3 Centrality Measures
	2.2.4 Graph Composition

	2.3 Relevant Notions from Matrix Theory
	2.3.1 Basic Notions
	2.3.2 Stochastic Chains
	2.3.3 Contraction Coefficients

	2.4 Opinion Models and Opinion Dynamics
	2.4.1 Basic Notions
	2.4.2 Opinion Dynamics Models

	2.5 Social Judgement Theory
	2.5.1 Basic Notions
	2.5.2 Accounting for SJT Notions in Opinion Dynamics



	II Opinion Dynamics
	3 Consensus in the Presence of Multiple Opinion Leaders: Effect of Bounded Confidence
	3.1 DST Modeling of Opinion Dynamics
	3.1.1 Bounded Confidence
	3.1.2 Opinion Updating and Consensus Formation

	3.2 Probabilistic Agent Opinions
	3.2.1 No Opinion Leaders
	3.2.2 Single Opinion Leader
	3.2.3 Two Opinion Leaders

	3.3 Dirichlet Agent Opinions
	3.3.1 Single Opinion Leader
	3.3.2 Two Opinion Leaders

	3.4 Empirical Evaluation and Discussion
	3.4.1 Probabilistic Agent Opinions
	3.4.1.1 Simulations with Seven Agents
	3.4.1.2 Simulations with 100 Agents

	3.4.2 Dirichlet Agent Opinions
	3.4.3 DST Agent Opinions
	3.4.3.1 Simulations with Seven Agents


	3.5 Chapter Summary

	4 Consensus/Opinion Clustering: Paracontractions theoretic view
	4.1 Problem Formulation
	4.1.1 Iteration Graphs
	4.1.2 Agent Interaction Topologies
	4.1.3 Synchronous Versus Asynchronous Consensus Protocols
	4.1.3.1 Fixed Points


	4.2 Asynchronous Iterations and Coupling Conditions
	4.3 Criteria of Contraction
	4.3.1 Convergence Theorems

	4.4 Non-linear Asynchronous Consensus Protocol
	4.4.1 Formulation of Asynchronous Iteration Problem
	4.4.1.1 Formulating the Asynchronous Consensus Problem as Asynchronous Iterations

	4.4.2 Verification of the Paracontracting Property of the Pool of CUE-based Operators
	4.4.2.1 The Pool of CUE-based Operators

	4.4.3 Verification of Confluence Conditions
	4.4.4 Nonlinear Consensus Protocol
	4.4.4.1 Asynchronous, Dynamic, Partially Connected Network

	4.4.5 Opinion Clusters with All Receptive Agents
	4.4.6 Consensus/Opinion Clusters with One Cautious Agent Embedded in a Group of Receptive Agents
	4.4.7 Consensus/Opinion Clusters with Multiple Cautious Agents Embedded in a Group of Receptive Agents

	4.5 Chapter Summary


	III Network Generation for Consensus
	5 Random Network Generation for Consensus-Based Distributed Decision Making
	5.1 Network Generation for Multi-Agent Systems
	5.1.1 Previous Work on Network Generation
	5.1.2 Contributions Under Network Generation

	5.2 DST Modeling of Opinions
	5.3 Sensitivity of Confidence Bound
	5.3.1 Convergence of Synchronous, Dynamic, Partially Connected Network
	5.3.2 Connected Graph Union in Gk†(-.4) 

	5.4 Network Generation for Consensus
	5.4.1 Consensus with Uniformly Distributed Agent Opinions
	5.4.2 Consensus with General DS Agent Opinions

	5.5 Non-Parametric Estimation of Agent Opinion Distance Distribution
	5.6 Empirical Evaluations and Discussion
	5.7 Case Example: Autonomous Mobile Robot Navigation
	5.7.1 Scenario
	5.7.2 Role of Confidence Bound
	5.7.3 Fault Tolerance
	5.7.4 Design with Proposed Method

	5.8 Chapter Summary

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Opinion Dynamics
	6.2.2 Influencing an Opinion
	6.2.2.1 Previous Work
	6.2.2.2 Opinion Influencing
	6.2.2.3 Simulations
	6.2.2.4 Conclusion: Opinion Influence



	A Alternative Analysis of Agent Opinions Under Bounded Confidence for Chapter 3
	A.1 Consensus Formation Under Bounded Confidence
	A.1.1 All Receptive Agents
	A.1.2 One Cautious Agent
	A.1.3 Multiple Cautious Agents


	B Application of Opinion Dynamic Model in Chapter 3
	B.1 Social Evolution Dataset
	B.1.1 Political Opinions
	B.1.2 Opinion Modelling
	B.1.3 Network Topology and Opinion Updating
	B.1.4 Analysis of the Results
	B.1.5 Conclusion of the Analysis


	C Lemmas and Proofs of Chapter 4
	Bibliography
	Index


