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With the increased security requirements in a variety of applications and advances in

sensor technology, emerging biometric technologies, including using some lesser known

biometrics, have become important research topics. This is due to the potential bene-

fits they may provide as independent biometric markers or as compliments to existing

biometric systems. In this work, our aim is to explore new biometric technologies for

person identification. We consider three different biometrics, namely, Three Dimen-

sional (3D) and Two Dimensional (2D) ear biometrics, 3D face recognition, and human

identification based on dental X-Ray images.

For the ear biometrics component, we propose a novel 3D shape descriptor, termed

Histogram of Categorized Shape (HCS), to robustly encode range images within a 3D

object detection framework. For the 3D ear detection task, this feature, employed in

conjunction with a linear SVM classifier and sliding window technique, produces a ro-

bust and efficient 3D ear detection system. Afterwards, we extend the HCS descriptor

to an object-centered 3D surface feature descriptor, termed Surface Patch Histogram of

Indexed Shape (SPHIS), for local surface patch representation. The SPHIS feature de-

scriptor is evaluated for its effectiveness in real world scenarios where a database may

contain ears of highly similar shape. The ear surface is also voxelized to construct a

holistic representation. Based on the novel SPHIS feature and the voxelization represen-

tation, a unified approach incorporating local and holistic surface features is proposed

to improve both the robustness and efficiency of the 3D ear shape matching subsystem,



while simultaneously improving the performance of the recognition system. In the 2D

domain, a complete, automatic ear biometric system based on 2D images is developed.

The color Scale Invariant Feature Transform (SIFT) descriptor is exploited as the fea-

ture representation, which in conjunction with a feature fusion method, maximizes the

robustness of the recognition system.

For the 3D face recognition component, we propose a method using AdaBoost to

determine the geodesic distances between anatomical point pairs that are most discrim-

inative for 3D face recognition. Through a method that establishes a dense set of cor-

respondences between face surfaces, the discriminating potential of geodesic distances

between anatomical points is investigated.

For the dental biometrics component, we present a content-based image archiving

and retrieval system for assisting in human identification using dental radiographs. The

system includes processes for dental image classification, automatic segmentation of

bitewing dental X-Ray images, and teeth shape matching.
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Chapter 1

Introduction

Over the past decades, biometric technologies along with their applications have at-

tracted increasing attention among research communities, commercial industries, and

government agencies particularly since the events of 9/11. Reliable biometric systems

have played many important roles in modern society, such as border control, homeland

security, law enforcement, access control, surveillance and financial transactions.

With the increased security requirements in a variety of applications and advances in

sensor technology, emerging biometric technologies including using some lesser known

biometrics have become important research topics. This is due to the potential bene-

fits they may provide as independent biometric markers or as compliments to existing

biometric systems. The increase in interest is evident by the growing body of literature

on emerging biometrics. For example, studies based on ear and dental biometrics, have

been featured in leading journals such as PAMI (IEEE Transactions on Pattern Recogni-

tion and Machine Intelligence), TIFS (IEEE Transactions on Information Forensics and

Security), CVIU(Computer Vision and Image Understanding), Pattern Recognition, as

well as a growing number of international conferences that are dedicated to new biomet-

ric technologies.

1
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1.1 A brief overview of biometrics

It’s been reported by a western explorer and writer Joao de Barros in the early 14th cen-

tury that Chinese merchants had already stamped children’s palm prints and footprints

on paper with ink as measures for identification. In the West, Bertillon, a French police

officer developed the first modern biometric system to identify criminals based on mea-

surements of certain portions of the body, such as foot length, skull width, cubit, hair

color, eye color, etc..

1.1.1 Biometric traits

Biometrics refers to the identification of people based on distinctive characteristics that

can be categorized as: physiological biometrics, which represent physical characteristics

and usually are measured at some point in time, such as face, fingerprints, iris, hand, ear,

DNA, retina and dental; and behavioral biometrics, which represent the way some action

is carried out and extends over time, such as voice, keystroke, gait and signature.

In general, any physiological or behavioral characteristic that can form the basis of

a biometric system has to satisfy certain requirements, including:

• Universality - every individual should have the characteristic

• Distinctiveness (Uniqueness) - any two individuals should be sufficiently different

in terms of the characteristic

• Persistence - the characteristic should remain sufficiently unchanged over a life

(in practice, unchanged during adulthood)

• Collectability - it should be feasible to readily determine and quantify the charac-

teristic

• Performance - indicates the accuracy, speed, and robustness of the system.
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• Acceptability - indicates the degree of approval of a technology by the public in

everyday life.

• Circumvention - how hard it is to fool the system.

In [94], Yun reports a comparison of several common biometrics against the seven of

categories. Yun ranks each biometric based on the categories as being low, medium,

or high as shown in Figure 1.1. A low ranking indicates poor performance in the eval-

uation criterion whereas a high ranking indicates a very good performance. Of these

characteristics, DNA, fingerprint and iris images are considered by researchers the most

accurate biometric traits. In recent years, biometrics research has moved from the listed

biometric technologies to many new biometric technologies that use various physical

and behavioral traits.

Figure 1.1: A comparison amongst the various biometric technologies reported by Yun
[94]
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1.1.2 Biometric system

Generally speaking, a biometric system is a multi-stage pattern recognition system. It

converts data derived from behavioral or physiological characteristics into templates,

which are used for subsequent recognition. Taking the Microsoft R© fingerprint reader as

an example, the stages in the fingerprint recognition system can be described as enroll-

ment and authentication.

Figure 1.2: Microsoft R© fingerprint reader.

Enrollment

Enrollment is the process by which a user’s initial biometric sample or samples are col-

lected, assessed, processed, and stored in the gallery database for ongoing authentication

use in a biometric system. In this case, a user is required to submit the index fingerprint

through the fingerprint reader. Since the quality of the enrollment essentially determines

the performance of the recognition system, it must be implemented carefully. If users

are experiencing problems in the data acquisition phase, they may need to re-enroll to

collect higher quality data.
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Authentication

Authentication is the process by which a user provides behavioral or physiological data

in the form of biometric samples to a biometric system for recognition purpose. Here,

as previously mentioned, the submission requires a user to provide the system with

the index fingerprint by placing a finger on the reader. The submitted probe biometric

samples are then compared to the stored gallery samples through a matching process to

determine the user’s identity.

The authentication of a biometric system are commonly categorized into two modes:

verification and identification. The main difference between the two modes is the match-

ing comparison between a submitted probe and the enrolled gallery biometric samples

in the database.

Verification

Verification involves confirming or denying a person’s claimed identity. It is a one to

one matching comparison between a submitted probe biometric sample and the biomet-

ric reference of a single user enrolled in the gallery whose identity is being claimed.

For example, the aforementioned Microsoft R© fingerprint reader is a typical biometric

verification system used to log on to a computer or access corporate networks. During

the feature matching phase, a matching score of the probe and gallery index finger-

print samples is generated and compared to a predefined threshold T . If the matching

score satisfies the comparison criteria, the claimed identity is accepted and the access is

granted, otherwise the access is denied.

Identification

Identification is the process of determining a person’s identity by performing matches

against multiple users’ biometric samples. In other word, it has to recognize a per-

son from a list of N users in the gallery database, based solely on biometric informa-
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tion. Clearly, identification has more computational complexity because it involves 1:N

matching compared to the 1:1 matching for verification.

1.1.3 System performance evaluation

It is clear that any biometric system can make errors of various types. Therefore it is

important to evaluate the system’s performance by obtaining the statistical estimates of

the errors using a test database.

The Receiver Operating Characteristic (ROC)

In a biometric verification scenario, the system either confirms or denies the claimed

identity. Consequently, there are two types of errors that the system can make: False

Match/Accept (FM/FA) and False Non-Match/Reject (FNM/FR). The FM/FA occurs

when the system decides the two biometrics are from the same identity while in real-

ity they are from different identities; the frequency of the FM/FA errors is called the

False Match Rate (FMR/FAR). On the other hand, FNM/FR occurs when the system

decides the two biometrics are not from the same identity while in reality they are from

the same identity; the frequency of the FNM/FR errors is called the False Non-Match

Rate (FNMR/FRR). In fact, the FMR and FNMR of a verification system can be evalu-

ated at any threshold T forming the two functions FMR(T ) and FNMR(T ). Therefore,

the system behavior at all the operating points or thresholds can be depicted as a two-

dimensional curve, called a Receiver Operating Characteristic (ROC) curve.

An example of the ROC curve is shown in Figure 1.3 in which the trade-off of the

FMR and FNMR of a biometric matcher is expressed in terms of a ROC curve. That is,

we can specify the matcher by choosing any operating point on the curve, with the FMR

and FNMR then being implicitly defined. In addition, the ROC curve can be used to

compare the performance of two biometric matchers by choosing the FMR or FNMR.
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Figure 1.3: An example of the ROC curve.

The Cumulative Match Characteristic (CMC)

In a biometric identification scenario, typically the system ranks the identities in the

gallery database based on the matching scores and returns a short list of fixed size r

of the enrolled identities that yield the highest similarity scores. Consequently, there

is a misidentification error associated with the rank-based identification, e.g. the true

identity is ranked lower than one or more of the other enrolled identities. The perfor-

mance statistic of the identification system is oftentimes depicted by the Cumulative

Match Characteristic (CMC) curve. An example of the CMC curve is given in Figure

1.4 showing correct identification versus the rank r. That is, for any given sized short

returning list, the probability of a probe’s true identity appearing on the short list. Based

on the CMC curve, we can choose r such that the system can meet a performance goal.

1.2 Motivation

Nowadays, research in biometrics has been strongly motivated by the increased appli-

cation demand. Several new biometric technologies are rapidly emerging, each with its

own strengths, weakness and potential applications. In this dissertation, our aim is to ex-
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Figure 1.4: An example of the CMC curve.

plore new biometric technologies for person identification. We consider three different

biometrics, namely, Three Dimensional (3D) and Two Dimensional (2D) ear biometrics,

3D face recognition, and human identification based on dental X-Ray images.

1.2.1 Ear biometrics

Perhaps the most important study ever conducted in ear biometrics was by an American

police officer named Alfred Ianarelli, whose collective work “Ear Identification” [42]

has been considered as a standard in this domain. Ianarelli also designed an anthro-

pometric technique for identifying ears using 12 measurements as illustrated in Figure

1.5, through which he compared over 10,000 ears. The locations shown in the figure

are measured from photographs which were both manually aligned and normalized by

experienced persons. His research ascertains that the ear contains unique physiological

features, moreover, it shows after the fourth month of life the mutual proportions of the

ear do not further change. Though the results achieved by the “Ianarelli system” are

very promising, the method is not suited for machine vision due to the difficulty of ac-

curately localizing the anatomical points which determine the entire classification of the

measurement system.
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(a) (b)

Figure 1.5: Demonstration of the Ianarelli system (adapted from [10]). (a) Anatomy, 1
Helix Rim, 2 Lobule, 3 Antihelix, 4 Concha, 5 Tragus,6 Antitragus, 7 Crus of Helix,
8 Triangular Fossa, 9 Incisure Intertragica. (b)The locations of the 12 anthropometric
measurements.

Ascertained by his work and many other investigations in ear biometrics, automating

ear biometrics has obtained increasing research interests from many different research

areas, including computer vision, pattern recognition, machine learning and graphics.

However since automating ear biometrics is a relatively new research topic, many chal-

lenging problems including fundamental ones still remain unsolved. Therefore, the main

theme of this work is to address some of the core issues in ear biometrics as well as pro-

vide methods for improving the performance of 2D and 3D ear biometric systems.

Ear segmentation

Fast and accurate ear segmentation is a fundamental but difficult problem. The input

images are often captured in unconstrained environments which introduce confounding

factors such as lighting variations, clutter, occlusion, and even unknown camera posi-

tions. Their effects, for example, are evident in earlier ear detectors using edge maps or

active shape models to locate the ear contour. The presence of occlusions due to hair
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and earrings can easily distort the ear shape, making the subsequent detection results

less reliable.

Nearly every biometric system starts with segmentation, so segmentation is of sig-

nificant importance. At present, the majority of ear biometric systems have avoided this

issue by assuming that the ear is already correctly detected due to the lack of robust

ear detectors. There have only been a few methods proposed for accurate ear detection,

which mainly focus on using color images with low run time efficiency. No approach,

though, has yet been proposed solely in the 3D domain. Therefore, the objective of this

work is to propose a more reliable and efficient 2D ear detector as well as to develop the

first 3D ear detector utilizing solely the 3D domain.

Effective 3D ear feature representation

Recently, the 3D ear has emerged as a powerful biometric trait and a few good works

have been presented reporting promising recognition performances [18, 78, 90]. How-

ever, almost all these 3D ear recognition approaches are based on a well established

Iterative Closest Point (ICP) alignment algorithm using the whole ear surface, which

is known for its drawbacks, including the requirement of a good initial alignment, a

sensitivity to occlusion and local minima, and computational costliness. These draw-

backs render the ICP algorithm based recognition methods impractical for real-world

identification applications.

In fact, 3D ear shape can be represented in many different ways rather than the

simple points cloud used in most of the related works. Therefore, finding the appropriate

representation for 3D ear shape that is amenable to robust and efficient 3D ear shape

matching is a fundamental problem in 3D ear recognition.

Perhaps the most promising practical method for addressing this issue is through

combining local and holistic surface features in a computationally efficient manner. The
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motivation behind this is that local representations have been found to be more robust to

clutter and small amounts of noise, while the holistic representation, utilizing character-

istics of the entire ear surface, is useful for describing single objects. When combined

effectively, they can provide complementary information describing the 3D ear shape

and simultaneously enhancing the matching performance.

2D ear recognition

While good 3D ear recognition performance has been reported in the literature [18, 78,

90] using images obtained from range scanners, ear recognition from 2D images remains

a very challenging problem in unconstrained environments owing to the imaging varia-

tions and limitations of 2D sensors. The performances of current state-of-the-art 2D ear

biometric systems that have been tested on a challenging, publicly available dataset [15]

are relatively low. Such methods include Principle Component Analysis (PCA) based

approach [15] which has obtained approximately a 70% rank-one recognition rate, and

feature based approach which has obtained [58] approximately a 80% rank-one recog-

nition rate on a subset of the data. Other researches have reported higher recognition

rates [12, 21, 96], however, the results are obtained from easier or smaller datasets.

A principal limiting factor to the deployment of 2D ear recognition to real-world

applications is that the 2D ear image modality has potentially large intra-class variations

due to pose, illumination and occlusion. On the other hand, the inter-class variations can

be small due to the similar appearances of ear images. Therefore, a good representation

of a 2D ear pattern should possess such characteristics as small intra-class variation,

large inter-class variations, and being robust to the variations without changing the class

label. The objective of this work is to improve 2D image based ear biometrics by ex-

ploiting robust and descriptive features that are capable of encoding the rich structures

of the ear while maintaining a high resistance to imaging variations.
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1.2.2 3D face recognition

The recently introduced 3D face modality alleviates some challenges in 2D face recog-

nition methods, such as illumination and pose variations, by introducing a depth dimen-

sion that is invariant to both lighting conditions and head pose. While relevant research

activities have significantly increased in 3D face recognition, more robust features are

always desirable for 3D face modelling.

Geodesic distance, which is exploited in this work as the local representation of the

3D face, is the distance of the shortest path from a source vertex to a destination vertex

along a surface.The use of distances to capture 3D facial information is directly moti-

vated by the relevance that metrology has in face anthropometry, the biological science

dedicated to the measurement of the human face. This field has been largely influ-

enced by the seminal work of Farkas [32]. In his work, Farkas proposed a total of 47

landmark points on the face, with a total of 132 measurements (comprising Euclidean,

geodesic and angular distances) on the face and head. Until recently, the measurement

process could only be carried out by experienced anthropometrists by hand. However,

recent advancements in 3D scanning technology and techniques for computing geodesic

distances across triangulated domains have enabled this process to be carried out auto-

matically. To consider the geodesic distances between an exhaustive pairing of vertices

would be computationally infeasible. The objective of this work is then to determine

the geodesic distances between anatomical point pairs that are most discriminative for

3D face recognition, as well as discover how many geodesic distances (and which ones)

would suffice for accurate face recognition.

1.2.3 Dental biometrics

Dental features are considered the best candidates for Postmortem (PM) identification

in forensic science. Not only do they represent a suitable repository for unique and
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identifying features, but also survive most PM events that can disrupt or change other

body tissues. Traditionally, forensic identification based on dental features relied on the

morphology of dental restorations (fillings, crowns, etc.) to identify victims. However,

modern materials used in restorations and fillings have poor radiographic characteris-

tics. Hence, it is becoming important to make identification decisions based on inherent

dental features like root and crown morphologies, teeth size, rotations, spacing between

teeth and sinus patterns.

Figure 1.6: Automatic dental identification system.

The objective of this work is to develop an Automated Dental Identification System

(ADIS) for identifying missing and unidentified people based on dental characteristics

and providing automated search and matching capabilities for dental radiographs. The

process of ADIS can be briefly illustrated by the Figure 1.6. When a PM record, e.g.,

dental radiographs as well as any available information is created, the PM record is sub-

mitted to ADIS, which retrieves from the antemortem (AM) dental records repository a

short list of candidates whose records have high similarities to the submitted PM record.

Eventually, the forensic expert examines the radiographs of these candidates to make a

final decision about the identity of the unidentified person.
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1.3 Contribution

The contributions of this dissertation are listed in two categories: general contribution

and system contribution.

1.3.1 General contribution

• We propose a novel 3D shape descriptor, termed Histogram of Categorized Shape

(HCS), to robustly encode range images within a 3D object detection framework.

• Based on the HCS descriptor, an object-centered 3D surface feature descriptor,

termed Surface Patch Histogram of Indexed Shape (SPHIS), is proposed for local

surface patch representation. The SPHIS feature descriptor is evaluated for its

descriptiveness, robustness and efficiency in real world scenarios where a database

may contain ears of highly similar shape.

• An improved 3D keypoint detection method is proposed which is amenable to

robust extraction of repeatable and discriminative 3D feature points.

1.3.2 System contribution

• An efficient and robust 3D ear detection system, based on the novel HCS feature,

is developed utilizing solely the 3D domain. The experimental results demonstrate

that the system is capable of achieving better performance than the state-of-the-

art. The proposed detection framework can be readily applied to general 3D object

detection with prominent surface shape.

• Based on the novel SPHIS feature and surface voxelization, a unified approach

incorporating local and holistic surface features is proposed to improve both the

robustness and efficiency properties of the 3D ear shape matching component,
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while simultaneously improving the performance of the delivered 3D ear recog-

nition system.

• A complete, automatic ear biometric system based on 2D images is developed.

The system is comprised of ear detection and feature matching components. The

color Scale Invariant Feature Transform (SIFT) descriptor is exploited, in con-

junction with a feature fusion method, to maximize robustness of the 2D ear

recognition system.

• An approach using AdaBoost to determine the most discriminative geodesic dis-

tances between anatomical point pairs is proposed for 3D face recognition. Through

a method that establishes a dense set of correspondences between face surfaces,

the discriminating potential of geodesic distances between anatomical points is

investigated.

• A content-based image archiving and retrieval system for assisting in human iden-

tification using dental radiographs is presented. Experimental results show that

the system is effective for dental image classification, teeth segmentation, shape

matching, and provides a good tool for forensic identification.

1.4 Dissertation outline

This dissertation is organized as follows:

In Chapter 2, we review related works, including 2D and 3D ear image segmentation,

2D and 3D ear recognition, 3D face recognition and dental biometrics.

In Chapter 3, we introduce the novel shape-based feature, termed the Histograms of

Categorized Shapes (HCS), for robust 3D object recognition and detail the proposed 3D

ear detection system.
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In Chapter 4, we propose our unified approach incorporating local and holistic sur-

face features for improving both the robustness and efficiency of the 3D ear recognition.

Chapter 5 describes the automatic 2D ear biometric system that exploits the color

SIFT feature descriptor for robust ear recognition.

Chapter 6 explains our 3D face recognition algorithm that employs AdaBoost to

determine the most discriminative geodesic distances between anatomical point pairs.

Chapter 7 presents the content-based dental biometric system for human identifica-

tion using dental radiographs.

Finally in Chapter 8, we present the conclusions and point out future directions for

extending the current work.



Chapter 2

Related Work

In this chapter we present an overview of the literature related to our work. We start

by reviewing the literature for ear biometrics. In this part, we review the work related

to ear detection, including 2D ear detection and multi-modal 2D+3D ear detection, 3D

ear recognition and 2D ear recognition. Afterwards, we review some approaches for 3D

face recognition. Finally we review the related work in dental biometrics.

2.1 Ear biometrics

2.1.1 Ear detection

Automatic extraction of the ear region from a profile image is one of the key steps for

a practical ear biometric system. A number of techniques have been proposed using

either 2D color or grayscale profile images. Abdel-Mottaleb et al. [2] use the shape of

the ear helix as a template and apply Hausdorff distance matching to search the edge

map on the skin region of a profile image to locate the ear. A similar technique is later

presented by Prakash in [65], which uses a distance transform and an edge template to

locate the ear in a profile image. Yuan et al. [92] employ the Active Shape Model (ASM)

technique to search the outer ear contour and enroll an ear representation, derived from

a trained point distributed model of a set of landmark points, in an image. Arbab-Zavar

et al. [3] make the assumption that the outer ear contour may be modeled by an ellipse,

and thus utilize the reduced Hough transform to detect candidate outer ear contours.

17
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Bustard et al. [12] propose an ear registration method by treating the ear as a planar

surface and constructing a homography transform using SIFT feature matches. Lastly,

Islam et al. [43] and Yuan et al. [93] employ the cascaded AdaBoost technique for ear

detection using Haar-like rectangular features to represent a training set of grayscale ear

images; the same approach has been successfully used for face detection.

Several multi-modal 2D+3D ear detection methods have been developed over recent

years. Yan and Bowyer [90] proposed a heuristic-based method using multi-modal 3D

range and 2D color images acquired from a profile view. The detection scheme initially

searches the ear pit by using skin detection, curvature estimation, surface segmentation,

and classification. After the ear pit is detected, an active contour algorithm, using both

the color and depth information, is applied to outline the visible ear region. Bhanu and

Chen [6,18] proposed three different techniques for locating human ears in profile range

images, including template matching using the shape index histogram, helix and anti-

helix model-based detection using clustered step edge information, and a registration-

based detection by fusion of color and range images. Detection rates achieved by these

methods are relatively low when using only the 3D modality (less than a 90% detection

rate on the University of Notre Dame dataset), which is mainly due to the features used

for detection being either sensitive to noise or not being cleanly discriminated from

backgrounds, such as in the case of hair regions.

2.1.2 3D ear recognition

3D ear biometrics is a relatively new area of research. There have been a few studies

conducted and a majority of the related work has been based on ear models acquired

using 3D range scanners. In this section, we will briefly outline some of the prominent

works in 3D ear recognition using 3D ear data acquired form a range scanner.

Bhanu and Chen [16, 17] proposed some of the earliest approaches in 3D ear detec-

tion and recognition based on range profile images. In [17], Bhanu and Chen developed
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a two-step Iterative Closest Point (ICP) approach for 3D ear matching from range im-

ages. The first step includes detecting and aligning the helixes of both the gallery and

probe ear models. Secondly, a series of affine transformations is applied to the probe

model to optimally align the two models. The Root-Mean-Square Distance (RMSD) is

employed to measure the accuracy of the alignment. The identity of the gallery model

that has the smallest RMSD value to the probe model is declared the identity of the

probe model. The authors report that out of a database of 30 subjects, 28 of them were

correctly recognized. In [18], Bhanu and Chen also propose two shape representations

of the 3D ear, namely, a local surface patch (LSP) representation and a helix/antihelix

representation, in an automatic ear recognition system. Both shape representations are

used to estimate the initial rigid transformation between a gallery-probe pair. A modi-

fied ICP algorithm is then used to iteratively refine the alignment in a least RMSD sense.

Experiments were conducted on 3D ear range images obtained from the University of

California at Riverside (UCR) dataset as well as the University of Notre Dame (UND)

dataset collection F. The UCR collection is comprised of 902 images of 155 subjects,

while the UND dataset collection F contains 302 subjects. The authors report rank-one

recognition rates of 96.4% and 94.8% on the UND and UCR datasets, respectively.

Yan and Bowyer [89] presented an experimental investigation of ear biometrics on

the UND dataset collection F containing 302 subjects comprising both 2D images and

range images. The authors explored several different approaches including the Eigen-

Ear method using 2D intensity images as input, Principal Component Analysis (PCA)

applied to range images, Hausdorff matching of depth edge images derived from range

images, and ICP-based matching of the 3D data. In their study, the ear region of each

range image is firstly cropped using manually labeled ear landmarks. Secondly, land-

marks located on the Triangular Fossa and Incisure Intertragica are utilized to align the

images for the PCA-based and edge-based algorithms, and the two-line landmark (one
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line is along the border between the ear and the face, and the other is from the top

of the ear to the bottom) is used to initially align the range images for the ICP-based

algorithm. Experiments conducted using these approaches yielded a 63.8% rank-one

recognition rate for the Eigen-Ear method, 55.3% for the PCA-based method, 67.5%

for the Hausdorff distance approach, and 98.7% for the ICP-based method. In their lat-

est work [90], the authors proposed a fully automatic 3D ear recognition system and

improve upon the automation of the ear detection module using multi-modal 2D+3D

image in a heuristic manner. Three ICP-based shape matching algorithms, including

point-to-point, point-to-surface and a mixed point-to-point and surface-to-point match-

ing are explored. To eliminate outlier matches, only points contained within the lower

90th percentile of distances are used to calculate the mean distance as the final error

metric. The best experimental results of this study are a 97.6% rank-one recognition

rate on the UND collection G dataset consisting of 415 subjects and a 94.2% rank-one

recognition rate on the subset of subjects wearing earrings.

In [78], Theoharis et al. extended their 3D deformable model-based face recognition

approach in [49] by adapting their annotated face model (AFM) for ear modeling, and

develop a semi-automatic multi-modal 3D face and ear recognition system. The system

processes each modality separately and the final recognition decision is made based

on the weighted summation of two of the similarity measures from the face and ear

modalities. For the 3D ear modality, firstly, at the model creation stage, an annotated

ear model (AEM) is constructed using only the inner area of the ear due to the fact

that the outer part of the ear is usually occluded. Then, at the model fitting stage, the

AEM is fitted to the new 3D data set, comprised of the manually cropped inner ear

regions, using a subdivision-based deformable framework. Subsequently, the so-called

geometry images of the deformed model, which encode geometric information (x, y

and z components of the vertices in R3) and the surface normals of the vertices, are



21

computed and a set of wavelet coefficients is extracted from them. These coefficients

form a 3D ear biometric signature. The method is evaluated on the UND collection G

dataset and achieves a 95% rank-one recognition rate.

In [44], Islam et al. adapted the face recognition work in [56] and developed a com-

bined local and global approach for 3D ear recognition. Firstly, a set of local features are

constructed from distinctive locations in the 3D ear data by fitting surfaces to the neigh-

borhood of these locations and sampling the fitted surfaces on a uniform grid. Features

from a probe and gallery ear model are then projected to the PCA subspace and matched.

The set of matching features are then used to establish the correspondences between the

probe and gallery models from which the two models are subsequently aligned. The

established correspondences of the coarsely aligned models are used as input to an ICP

matching stage, which refines the alignment and computes the final distance between the

models. Experiments conducted on a subset of the UND dataset collection F, consisting

of 100 subjects, achieves a 84% rank-one recognition rate for the local feature matching

component and a 90% rank-one recognition rate on a combination of the local feature

and ICP matching components.

Table 2.1: 3D ear recognition algorithms.

Author, year Subjects Images Images Matching Reported Ear
reference in dataset in gallery in probe method performance Segmentation

Chen, 2007 [18] 302 302 302 ICP 96.4% 2D+3D
Yan, 2007 [90] 415 415 1386 ICP 97.6% 2D+3D

Theoharis, 2008 [78] 324 324 324 AEM 95% Manual
Islam, 2008 [44] 100 100 100 ICP 90% 2D

Table 2.1 lists the methods previously reviewed for 3D image ear recognition based

on range images. In summary, the majority of reviewed approaches are based on global

features and the well established ICP-based alignment algorithm, which is known for is-

sues of requirement of good initial alignment, sensitive to occlusion and local minimum.



22

In addition, the ICP-based alignment algorithms are computational expensive even with

improved fast ICP algorithm, which making them impractical for identification appli-

cations. Though local features are less affected by these factors, the two local feature

representations of ear [18, 44] are either used only for coarse alignment [18] or achieve

a relatively low recognition rate [44] due to less descriptive for highly similar 3D ear

objects.

2.1.3 2D ear recognition

For more than a decade, researchers have worked in the area of ear biometrics. The ma-

jority of the work has been proposed for ear recognition based on 2D intensity images.

These 2D image-based ear recognition approaches can be broadly divided into two cat-

egories: holistic/global approaches and local approaches, which are named based on the

way that image information is used.

Holistic approach

Holistic approaches process the entire ear image simultaneously without attempting to

localize the individual feature points. The advantage of a holistic approach is that it uti-

lizes the ear as a whole and does not destroy any information by exclusively processing

only certain fiducial points. However, such techniques are sensitive to variations in posi-

tion and scale, and thus require proper image alignment and a large training dataset. This

approach has some variants in the type of information used, such as statistical analysis

and geometric transformation.

In statistical approaches to ear recognition, an ear image is represented as a high

dimensional vector. Under this representation, an image is considered as a point in the

high dimensional space. For example, a 2D intensity image of size m× n can be repre-

sented as an N dimensional vector, where N = m× n, by concatenating pixels of each

row or column of the image. Each pixel of the image corresponds to a coordinate in
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the N -dimensional space. Dimensionality reduction techniques, such as Principle Com-

ponent Analysis (PCA) and Independent Component Analysis (ICA), are then used to

map the data to a much lower dimensional subspace while preserving the variations in

the data. Afterwards, the recognition is performed on the lower dimensional representa-

tion.

PCA is the most explored approach among 2D appearance-based ear biometrics.

Given the fact that the PCA based object recognition approach has been heavily re-

searched in the field of face recognition, and given the parallels between the ear and

face biometric (e.g., image acquisition, preprocessing, and feature extraction), it is log-

ical to explore this approach for ear recognition.

Figure 2.1: Illustration of the points used for geometric normalization from [80]. The
centers of eyes are used for the face image; the triangular fossa (the upper point) and the
antitragus (the lower point) are used for the ear image.

In [80] Victor et al. used the PCA approach for 2D ear recognition and compare

the performance to the face recognition. In their experiments, first two landmark points

are manually labelled in an image as shown in Figure 2.1, and used to crop the image

to a standard size located around the landmark points. Next, the cropped image is nor-

malized to the 150 × 130 size used by the PCA software. The testing of ear and face

recognition is performed on a dataset of 72 subjects with three different gallery and
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probe combinations: 1) probes acquired on the same day as the gallery, but utilizing the

other ear (flipped), 2) probes acquired on a different day than the gallery, but same ear

and 3) probes acquired on a different day than the gallery and utilizing the other ear.

Their experimental results show that in all three experiments, face recognition achieves

better performance than ear recognition. In the three experiments the highest rank-one

recognition rates are approximately 85%, 78% and 43% for face recognition while the

performance rates for ear recognition are 40%, 52% and 31%. Chang et al. [15] later

extended the study and performed three additional experiments on the UND dataset,

collection E: 1)Day variation experiments using 88 subjects who have two images taken

on two different days under the same pose and lighting conditions. 2) Lighting variation

experiments using 111 subjects who have two images taken on a single day with the

same pose, but different lighting conditions in each image. 3) Pose variation experi-

ments using 101 subjects who have two images taken on the same day, under the same

lighting conditions, but with one image offset by a 22.5-degree rotation. Each experi-

ment uses a single probe and gallery image per subject. They achieve a 71.6% rank-one

recognition rate for the ear and a 70.5% rank-one recognition rate for the face in the day

variation experiments. In the lighting variation experiments, a 68.5% rank-one recog-

nition rate for the ear and a 64.9% rank-one recognition rate for the face are achieved.

The overall performances in the pose variation experiments are very low, with around a

20% rank-one recognition rate for both ear and face.

In [96], Zhang et al. applied ICA for ear recognition using manually cropped probe

and gallery images. The system uses ICA to create a basis space from the gallery images.

The ICA approach achieves a 94.11% rank-one recognition on a dataset of 17 subjects,

using 4 gallery images and 2 probe images per subject. On a different dataset of 60

subjects with 1 gallery image and 2 probe images per subject, the system achieves an

88.33% rank-one recognition. In their late work [95], Zhang and Mu incorporated the
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aspect ratio of the ear image into the classification scheme, and compared ICA to PCA.

They manually rotated and cropped the ear images and classified them into five groups

based on the aspect ratio. Using both PCA and ICA, they trained subspaces for each of

these five groups. The recognition is performed with PCA and ICA on the five groups

independently and the results are then fused with a Support Vector Machine.

Hurley et al. [38, 39] applied a force field transformation to a model ear image,

treating the image as an array of mutually attracting particles that act as the source of a

Gaussian force field. After applying the image transformation, ear wells and channels

are located to form the basis of features used for recognition. They later introduced

an analytical method of feature extraction based on the force field transformation and

use the template matching for ear recognition [40]. Experiments conducted on the the

XM2VTS dataset [55] using 252 images from 63 subjects, with 4 images per person,

achieve a classification rate of 99.2%.

Burge and Burger [10, 11] used graph matching techniques on a Voronoi diagram

of edges for ear recognition. First, edges are extracted using the Canny detector. Then

edge relaxation is used to form the larger curve segments, after which the remaining

small curve segments are removed. Finally, a generalized Voronoi diagram of the curves

is built and a neighborhood graph is extracted for matching.

Choras [20] introduced an ear recognition method based on geometric feature ex-

tracted from the ear image. The geometric feature is computed from the edges detected

in the image. Firstly, edge detection is performed on a manually cropped ear image.

The centroid of the edges is then used as the center of a set of concentric circles with

different radii. For each radius, detected edges intersect the circle at multiple points.

The radius, number of intersections, and total distance between the intersection points

comprise the feature vector. The method achieves a 90% rank-one recognition rate on a

dataset of 12 subjects, with 20 images per subject. Choras further develops several ad-
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ditional geometric approaches based on the edge maps [21, 22], and a 90.4% and 100%

recognition rate are reported on a dataset of 80 subjects with 800 high quality images

without earring, hair, or illumination changes.

In [13], Cadavid and Abdel-Mottaleb proposed an approach for ear biometrics using

uncalibrated video sequence. A series of frames is extracted from a video clip and the

ear region in each frame is independently reconstructed in 3D using Shape From Shad-

ing (SFS). The resulting 3D models are then registered using the ICP algorithm. They

iteratively consider each model in the series as a reference model and calculate the sim-

ilarity between the reference model and every model in the series using a similarity cost

function. Cross validation is performed to assess the relative fidelity of each 3D model.

The model that demonstrates the greatest overall similarity is determined to be the most

stable 3D model and is subsequently enrolled in the gallery database. Experiments using

a gallery set of 402 video clips and a probe of 60 video clips achieves a 95.0% rank-one

recognition rate and a 3.3% Equal Error Rate (EER).

Local approach

In [3], Arbab-Zavar et al. used the Scale Invariant Feature Transform (SIFT) to detect

the features in the ear images. A model is then learned from the detected SIFT features

that can be reliably found across ears, with each feature describing a part of the ear that

is constantly visible and distinguishable in the ear images. Recognition is performed

using the mean of the Euclidean distances between corresponding probe and gallery

features. They report an 87.3% rank-one recognition rate using the XM2VTS dataset of

63 subjects, with 4 images per subject, taken over a period of 5 months.

In [12], Bustard and Nixon described a technique for ear recognition based on 2D

images using homographies calculated from SIFT point matches. The technique at-

tempts to create a homography transform between a gallery ear image and a probe ear

image using SIFT point matches. The found homography defines the registration be-
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tween the gallery and the probe. Afterwards, an image distance algorithm is applied

to obtain a precise ranking. Recognition is performed on the XM2VTS dataset of 63

subjects with relatively unoccluded ears and achieves a 96% rank-one recognition rate.

Starting from the idea that different color spaces of the ear image could provide dif-

ferent useful information to achieve better recognition results, Nanni and Lumini [58]

propose a local approach for 2D ear authentication based on an ensemble of rectangular

ear parts in different color spaces. A total of 50 ear parts are selected using the sequen-

tial forward floating algorithm which optimizes the ear recognition performance. They

test the method on the UND dataset, collection E [15] with 464 ear images obtained

from 114 subjects. The dataset is further divided into validation and testing sets. The

validation set is used for the selection of matchers, and the testing set, which contains

probe and gallery subsets is used to evaluate the recognition performance. The method

achieves an 84% rank-one recognition rate on the test set of 50 subjects with an one

probe image versus multiple gallery images per subject configuration.

In a similar fashion to Table 2.1, we list in Table 2.2 some reviewed methods for

2D image based ear recognition. It is worth noting, through, that a direct comparison

between the performances of different methods is difficult and can at times be mislead-

ing. This is due to the fact that datasets may be of varying sizes, the image quality may

be greatly different, and some may use a multi-image gallery/probe for a subject while

others use a single-image gallery/probe.

2.2 3D face recognition

Relevant research activities in 3D face recognition have significantly increased, and

much progress has been made in recent years [98]. Several representation approaches

have been proposed for 3D face recognition, a subset of which may be categorized as

global and local surface-based representations. Global surface-based representations
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Table 2.2: 2D image-based ear recognition algorithms.

Author, year Subjects Images Images Matching Reported Ear
reference in dataset in gallery in probe method performance Segmentation

Chang, 2003 [15] 88 88 88 PCA 71.6% Manual
111 111 111 68.5%
101 101 101 19.5%

Zhang, 2005 [96] 17 68 34 ICA 94.1% Manual
60 120 60 88.3%

Hurley, 2005 [40] 63 252 252 force field 99.2% Manual
Choras, 2006 [21] 80 800 104 edge + geometric 90.4% Manual
Cadavid, 2009 [13] 402 402 60 SFS+ICP 95% Automatic

Arbab-Zavar, 2007 [3] 63 252 252 SIFT 87.3% Automatic
Bustard, 2008 [12] 63 252 252 SIFT 96% Automatic
Nanni, 2009 [58] 50 50 50 Gabor feature 84% Manual

utilize characteristics of the entire facial region as input to a recognition system. For

instance, in the Extended Gaussian Image (EGI), surface normals of a 3D model are

mapped to the normals on the surface of a Gaussian sphere [86]. The Gaussian sphere is

divided into regular cells, which are subsequently counted to form a histogram feature

vector.

Local surface-based representations are based on local measures of the 3D face im-

ages. These representations have been found to be more robust to both facial expressions

and small amounts of noise than global representations. Some local representations in-

clude Gaussian and mean curvatures [28, 57], Gaussian-Hermite moments [88], point

signatures [23, 24], Gabor filters [85], and geodesic distance [4, 61].

2.3 Dental biometrics

There are two scenarios for the use of dental identification. In the first scenario, a com-

parative identification is used to establish the degree of certainty that the dental records

obtained from the remains of a decedent and the antemortem (AM) dental records of a

missing person are from the same individual. In the second scenario, the AM records are

not available, and no clues to the possible identity exist. In this case, a postmortem (PM)
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dental profile is completed by the forensic odontologist suggesting characteristics of the

individual in order to narrow down the search. Traditionally, this kind of identification

work is carried manually by forensic odontologists [67].

There are several computer-aided PM identification systems before the automatic

dental identification systems (ADIS). CAPMI [51] and WinID [54] are the most famous

among these systems. However, these systems do not provide a high level of automa-

tion, as feature extraction, coding, and image comparison are still carried-out manually.

Moreover, the dental codes used in these systems only capture artificial dental work.

Current research on automated dental identification systems focuses on shape fea-

tures [1, 19, 29, 30, 45, 46, 59, 59, 99, 100]. During archiving, the systems segment the

AM images, extract and store either teeth contours or contour descriptors in a database.

During retrieval, when a PM image is submitted, these systems segment the image, ob-

tain contours of the teeth or contour descriptors, and match them with the ones in the

AM database. The best matches are then presented to the user.



Chapter 3

Histograms of Categorized Shapes for 3D
Ear Detection

Automatic ear detection from profile images is the first step towards realizing a practical

ear biometric system for human identification. The quality of its detection capabilities

will typically have a significant impact on a system’s overall performance.

3.1 Motivation

A number of techniques have been proposed for automatic ear detection as reviewed

in the previous chapter. No approach, though, has yet been developed solely in 3D

domain. To be able to apply these methods in the 3D domain, the range image must

have a corresponding 2D image that has been captured concurrently and registered to

the 3D modality. The 2D detection result, often a detected bounding box (BB), is used

directly to locate the ear region in the range image. This results in the cropping of

the 3D ear image by assuming that the two modalities are well registered. In practical

scenarios, the “registration” may contain errors that are caused by subject’s movement

during the acquisition process, particularly since the capture time for a profile range

image can take up to several seconds. Figure 3.1 shows an example of the registration

error in which the 2D and the range image are captured concurrently but the 2D ear

and 3D ear are not located in the same image position due to the movement of the head

during the acquisition. Given that the ear region typically occupies only a small portion

30
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of the profile face, the registration error can have a significant impact on the detection

result when the 2D detection result is directly applied in the 3D domain, or when the

method requires both 2D and 3D domains but assumes that these two modalities are well

registered.

Figure 3.1: Registration error in the multi-modal 2D+3D image acquisition. Left: the
2D image shown with the 2D ear contour. Right: the corresponding range image shown
with the 3D ear contour and the ear contour position detected in the 2D domain.

Detecting the ear region directly in range images for 3D ear biometrics not only

eliminates the registration problem, but also alleviates many problems that only occur

when performing 2D ear detection using gradient or edge information, such as changes

of viewpoint and illumination. The goal of this work is to exploit 3D local shape cues

and develop concise and discriminative features for 3D object recognition, and apply

them to the task of ear detection in range images. The primary challenge is thus to find

a set of features that can adequately characterize 3D human ear structure and capture

its discriminative 3D shape information, while retaining robustness to noise and pose

variations. Our feature encoding method is inspired by the widely-used Histograms of

Oriented Gradients (HOG) descriptor, which is considered as one of the best features for

the dense encoding of 2D image regions, and has been successfully used in pedestrian

detection and object classification tasks [26]. In our 3D object detection system, we

propose a novel shape-based feature descriptor, termed the Histograms of Categorized

Shapes (HCS), to densely encode 3D image windows. To build HCS descriptors, each
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Figure 3.2: An overview of the HCS feature-based 3D ear detector.

pixel in the image is assigned a shape category and magnitude based on its shape index

and curvedness values. The image detection window to be encoded is tiled with over-

lapping blocks of various sizes from which HCSs are constructed by aggregating the

pixel responses within blocks. The histograms at each block are concatenated to form a

single histogram, encoding the entire image window. This histogram can then serve as

the feature vector for 3D object recognition and detection tasks.

The remainder of this chapter is organized as follows: Section 3.2 details the gen-

eral framework of the proposed 3D ear detection technique. Section 3.3 describes the

training setup and provides the experimental results. Lastly, conclusions are provided in

Section 3.4.

3.2 System approach

An overview of our ear detection procedure using the sliding window approach is shown

in Figure 3.2. To locate the ear in a range image, the image is scanned from the top

left corner to the bottom right corner with a fixed-sized detection window. In each

window position a feature vector is extracted and employed to a binary ear/non-ear

classifier. The classifier is then used to determine whether the current window contains

an ear (positive sample) or non-ear (negative sample) by evaluating the classification

score based on the feature vector extracted from the window. Currently, Support Vector

Machines (SVM) is one of the leading techniques used for binary classification due

to its robust performance and efficiency in both the training and testing stages. The

scanning window approach employing a fixed-sized window, however, only allows for
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ear detection at a single scale. To achieve multi-scale detection, the image is gradually

resized using a scale factor, and the detection window is then iteratively applied on

each of the resized images. After scanning the detection window across the image at

multiple scales, multiple detections usually occur around the target regions and it is

useful to fuse overlapping detected windows into a single detection [82]. We select

a non-maximal suppression (NMS) method proposed by Dalal [25] as the solution to

the fusion of overlapping detected windows, in which each detection is mapped to a

respective 3D position and scale space weighted by their classification scores. A non-

parametric density estimator is employed to estimate the corresponding density function,

where the resulting peaks of the density function constitute the final detections, with

positions, scales and classification scores given by the positions of the peaks. After non-

maximal suppression, the detection system returns a bounding box containing the ear

region with an associated detection score.

3.2.1 Shape index and curvedness

Objects can be characterized by their distinct 3D surface shapes. The human ear, for

instance, contains areas around the helix ring and anti-helix that possess both prominent

saddle and ridge shapes, while the inner ear regions have rut and through shapes. In

our detection system, the HCS feature, capturing geometric aspects of the 3D object, is

defined using shape index and curvedness values.

A quantitative measure of a surface shape at a vertex p = (x, y, z), called the shape

index SI , is defined as [27]:

SI (p) =
1

2
− 1

π
arctan

(
kmax (p) + kmin (p)

kmax (p)− kmin (p)

)
(3.1)

where kmax , kmin are the principal curvatures of the surface at vertex p defined as:

kmax (p) = H (p) +
√

H2 (p)−K (p) (3.2)

kmin (p) = H (p)−
√

H2 (p)−K (p) (3.3)
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H (p) and K (p) are the mean and Gaussian curvatures, respectively. For a regular

parametric surface mapping x from Ω ⊂ <2 into <3, x : u → <3, u = (u, v), the mean

curvature H and Gaussian curvature K are given by:

K =
(
eg − f 2

)/(
EG− F 2

)
(3.4)

H = (eG− 2fF + gE)
/(

2
{
EG− F 2

})
(3.5)

where E, F , and G are coefficients of the first fundamental form and e, f , and g are

coefficients of the second fundamental form given by:

E = ‖xu‖2 , F = xuxv, G = ‖xv‖2 (3.6)

e =
det (xuuxuxv)√

EG− F 2
, f =

det (xuvxuxv)√
EG− F 2

, g =
det (xvvxuxv)√

EG− F 2
(3.7)

Note that with the definition of SI in equation (3.1), all shapes can be mapped on the

interval SI = [0, 1]. Every distinct surface shape corresponds to a unique value of SI ,

except for the planar shape. Vertices on a planar surface have an indeterminate shape

index, since kmax = kmin = 0. The shape index value captures the intuitive notion of the

“local” shape of a surface. Nine well-known shape categories and their corresponding

shape index values are shown in Table 3.1 [27]. The low-end shape index values rep-

resent the spherical cup shapes, the high-end values represent the spherical cap shapes,

and the middle-ranged values represent saddle shapes. It is worth noting that surfaces

can also be classifed into eight basic shape types based on the signs of the Gaussian

and mean curvatures as described by Besl in [5]. The shape index definition proposed

in [27], which is given in (3.1), has the added benefit over [5] in that it provides a contin-

uous value, therefore enabling the flexibility of defining categories that more effectively

classify the shape variations of specific object types. Thus the vertices comprising the

surface can be classified into basic shape types by quantizing the continuous SI scale.

Note that the shape index value is independent of the coordinate system, and therefore

it is invariant to pose.
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Table 3.1: Nine shape categories by quantizing the shape index values

Shape category SI Shape category SI

Spherical cup (0, 1/16) Spherical cap (15/16, 1)
Through (1/16, 3/16) Dome (13/16, 15/16)

Rut (3/16, 5/16) Ridge (11/16, 13/16)
Saddle Rut (5/16, 7/16) Saddle Ridge (9/16, 11/16)

Saddle (7/16, 9/16)

The shape index of a rigid object is not only independent of its position and orien-

tation in space, but also independent of its scale. To encode the scale information, we

utilize the curvedness, which is also known as the bending energy, to capture the scale

differences [27]. Mathematically, the curvedness of a surface at a vertex p is defined as:

Cv (p) =

√
k2
max (p) + k2

min (p)

2
(3.8)

It measures the intensity of the surface curvature and describes how gently or strongly

curved a surface is.

3.2.2 Histograms of Categorized Shapes (HCS)

In our detection system using the sliding window approach, the detection window is

tiled with blocks of various sizes from which the HCS feature descriptors are built and

combined. Figure 3.3 explains our feature encoding procedure for the detection window

with tiled blocks. For an image window of size 96 × 64, we construct a feature vector

based on the histograms of blocks of size 32×32, 16×16, 16×32, and 32×16 overlaid

on the image window with an overlap of half a block size. Feature descriptors derived

from larger blocks capture holistic details of the input image while features derived from

smaller blocks capture finer shape information. As mentioned in the previous subsec-

tion, surface shapes can be classified into shape categories by quantizing the continuous

range of shape index values. Each vertex in a block contributes a weighted vote for a
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shape category histogram bin based on its shape index value, with a strength that de-

pends on its curvedness. The histogram descriptor of a block is then normalized with

respect to its total energy; we term the normalized histogram descriptor HCS. In our im-

plementation, instead of using the shape categories in Table 3.1 forming a histogram of

nine shape category bins directly where the shape index intervals are not evenly spaced

over [0, 1], we simply use eight shape category bins by uniformly spacing them over

the range [0, 1]. This will result in an 8-dimensional HCS feature descriptor for each

block. The histograms at each block are concatenated to form a single histogram feature

vector encoding the detection window. Figure 3.4 illustrates an example of our feature

encoding procedure based on HCS.

Figure 3.3: Feature vector encoding. A 96 × 64 window is scanned across the image.
The detection window is comprised of blocks of sizes 32× 32 (15 blocks per window),
16 × 16 (77 blocks per window), 16 × 32 (33 blocks per window), and 32 × 16 (35
blocks per window). The blocks overlap within the window by half a block size. An
8-dimensional histogram is constructed for each block. The histograms derived from
the blocks are then concatenated to form 1280-dimensional feature vector.
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Figure 3.4: An HCS feature for encoding the 3D image, top left: input image window,
top middle: shape index, top right: curvedness, bottom left: HCS descriptors extracted
from two example blocks, bottom right: final HCS feature vector encoding the entire
3D image window.

3.2.3 Integral HCS

In order to compute the HCS features used by our detector efficiently, we make use

of the integral histogram method suggested by Porikli [64] for efficiently computing

histograms over arbitrary rectangular image regions, and devise a way for the fast eval-

uation of HCS features on the blocks. In order to extend the framework of the integral

histogram to the proposed approach, we treat each vertex as an 8-dimensional histogram,

of which the value at the dimension corresponding to its shape category is the curved-

ness value, and the other seven dimensions are assigned values of zero. The spatial

positions of the vertices are then used to propagate an aggregated function of integral

histogram, starting from a point of origin, e.g., top left corner, and traverse through the

remaining points. We iterate the integral HCS at the current vertex using the histograms

of the previously processed neighboring points. At each step, the value of the shape

category bin that the current vertex fits into is increased by its curvedness value. After



38

the integral HCS is obtained for each vertex, the HCS histogram of a rectangular block

can be computed in a constant computational time of two 8-dimensional histogram vec-

tor additions and two 8-dimensional histogram vector subtractions, accessing only the

integral histogram values at the corner points of those blocks without reconstructing a

separate histogram for every block.

3.3 Experimental results

3.3.1 Dataset

As a test case, we employed the proposed feature encoding method in a 3D ear detection

system. The subsequent 3D ear detection experiments are conducted on the publicly-

available University of Notre Dame (UND) 3D ear biometric dataset [90]. The data is

acquired with a Konica Minolta Vivid 910 3D laser scanner. The laser scanner uses the

light-stripe technique to emit a horizontal stripe of lights through a cylindrical lens on

the object. The reflected light from the object, received by the CCD, is then converted

by triangulation into distance information. The output range image contains 640× 480

grid points and each grid point has a set of distance (x, y, z) values recording the 3D

coordinates of the object. The range scanner also provides a range mask indicating the

valid grid points in the range image. In addition, a color image of the object is also

obtained while the stripe light is not emitted. The output color image contains the same

grid points as the corresponding range images in which each grid point has a set of color

(r, g, b) values recording the color information of the object. As mentioned previously,

we only use the range image for 3D ear detection, as opposed to the multi-modal 2D+3D

ear detection methods [18, 90].

The training dataset is built from 800 3D range profile facial images of 222 subjects

from a subset of the UND 3D ear biometric dataset collection F, which contains a total

of 942 profile range images. The remaining 142 images are used as our testing set.
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Figure 3.5 shows a few examples of the ear and non-ear samples of the experimental

dataset. Ear samples were obtained from manually-labeled bounding boxes (BB) of the

ears in the profile images. In order to make maximum use of these labels, the original

BBs labeled for the ear regions were randomly shifted two times within the [−5, 5]

pixel range in both the horizontal and vertical directions. The shifting is to account

for small errors in Region-of-Interest (ROI) localization which may occur in real-world

applications. For each original cropped image, we also synthesized two additional ear

samples by rotating the original image by -5 and +5 degrees, respectively. Thus, five

ear examples are obtained from a labeled ear region in the profile image resulting in

a positive training set consisting of 4000 ear examples created from the original 800

profile images. Given the bounding box locations of the ear regions in the profile images,

positive samples were cropped after adding a border of two pixels to preserve contour

information and scaled to a common, empirically-determined size of 96 × 64. The

negative training set is built from 12,000 non-ear region patches randomly cropped from

the 800 3D range profile images.

Figure 3.5: Examples of ear and non-ear images used in the training phase.

We split the resulting training data into four fully disjoint sets, which allows for a

variation of the training and validation sets during the experiments. Ear samples from

the same subjects and negative samples from the same images are kept within the same
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set, so that a subject’s ear samples captured in multiple profile images does not appear

in multiple datasets. This ensures truly independent training and testing sets, but also

implies that examples within a single dataset are not independent.

Four-fold cross validation over the four training sets is applied to determine the

optimal settings for parameter tuning, which, in our case, is only the misclassification

penalty term C for the linear SVM classifiers. In each phase three sets are used for

training and the remaining set is used for testing, and the overall performance is reported

based on the merged results obtained from the validation sets.

We found that the performances of the linear SVM classifiers trained using LIBLIN-

EAR [31] are robust to the value of C in a testing range of [2−4, 24]. Thus, we set C

to 1 for all classifiers. We also evaluated four different block histogram normalization

schemes [26]: 1) L1-norm, 2) L2-norm, 3) L1-sqrt, i.e., L1-norm followed by the square

root, and 4) L2-Hys (Lowe-style clipped L2-norm [52] limiting the maximum values to

0.2). Table 3.2 illustrates the classification error rates on our training datasets where the

L1-norm, L2-norm, L1-sqrt, and L2-hys all perform equally well. We choose the L2-

hys as the default normalization scheme in the following experiments as it can reduce

the influence of large curvedness values and has a slightly better performance on the test

data.

Table 3.2: Effect of different normalization methods

Normalization L1-norm L2-norm L1-sqrt L2-hys
Error Rate (%) 3.20 3.17 3.20 3.16

3.3.2 Detection results

The proposed 3D ear detection system based on the HCS feature is evaluated on a testing

set comprised of 142 profile range images. Our default detector for detecting 3D ears

in range profile images of size 640 × 480 has the following settings: voting vertex
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into 8 shape category bins, L2-hys block normalization, a 96 × 64 detection window,

32 × 32, 16 × 16, 16 × 32 and 32 × 16 sized blocks with an overlap of half the block

size, linear SVM classifier, multi-scale detection by gradually decreasing the size of test

image starting at a scale of 1 and ending at a scale of 0.5 using 1/1.05 or 1/1.2 scale

factor which is equivalent to incrementally resizing the detection window from a scale

of 1 to a scale of 2 using 1.05 or 1.2 scale factor, and detection window scanning across

the image with a stride of 8 pixels on both the vertical and horizontal directions. The

evaluation is performed on the detected BB candidates generated from the 142 images.

A detected BB and a manual ground truth BB form a potential match if their areas

sufficiently overlap. We employ the following two overlapping measures:

Ma = TP/(TP + FP + FN) > 0.5 (3.9)

Mb = TP/(TP + FN) > 0.9 (3.10)

where TP is the true positive standing for the ear region included in the detected

BB, FP is the false positive standing for the background area in the detected BB, and

FN is the false negative standing for the ear area in the ground truth BB that is not

included in the detected BB. Ma states that the overlap of the ground truth BB and the

detected BB must exceed 50%, and it is usually considered as a standard measure for

object detection. Mb states that a correctly detected BB must contain more than a 90%

area overlap with the ground truth BB. We utilize the detection rate versus the false

positive rate per image as an evaluation criteria, e.g., the number of correctly detected

ear windows versus the number of falsely detected windows per image. The final results

are shown in Figure 3.6. The initial SVM classifier is trained on our training set of ear

and non-ear images, and it achieves a 98.5% detection rate using a 1.05 scale factor,

and a 95.8% using a 1.2 scale factor both with a starting scale factor of 1 at a 0% false

positive rate. The classifier is then re-trained on an augmented set of hard negative
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examples constructed from the training profile images by a bootstrapping strategy [77],

in which false positives of the initial classifier are collected and added to the training set

to produce the final classifier. The final classifier obtained perfect detection with both

the 1.2 and 1.05 scale factors. Figure 3.7 illustrates several sample detection results.

Figure 3.6: A curve of the detection rate versus the false positive rate per image on the
testing dataset.

In order to allow for an independent investigation for the effectiveness of the pro-

posed HCS feature, we also implement another ear detector using the sliding window

approach and a linear SVM classifier with the same parameters described above, but in-

stead of using the HCS feature, the histogram of oriented gradient of the depth image is

used as features to encode the detection window. The detector is then trained and tested

on the same training and testing sets. Figure 3.8 shows the detection results obtained by

the histogram of oriented gradient feature. It achieves a 67% and 86% detection rate at a

0.1 and 0.5 FP per image rate, respectively, using a scale factor of 1.2. The comparison

of these results with those of the proposed method verify that the HCS is a concise and

discriminative feature for 3D object recognition.
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Figure 3.7: Sample detection results using the proposed approach.

Figure 3.8: A curve of the detection rate versus the false positive rate per image on the
testing dataset using the histogram of oriented gradient of the depth image as the feature.



44

In Table 3.3, we also compare our results with two other 3D ear detection methods

on the same dataset, along with the AdaBoost method which according to the literature

has achieved the best performance in 2D ear detection. Note that none of the three meth-

ods have reported their detection results based on the sufficient overlap measurement.

Since the AdaBoost method uses the rate of false positives per window as an evalua-

tion criteria, we convert the result to the rate of false positives per image approximately

based on the number of images used in their testing dataset. Our method outperforms

them in both detection rate and time efficiency.

Table 3.3: Performance comparison to other ear detection methods. (SF denotes scale
factor)

Author, reference Detection rate Detection time
Chen et al., [18] 87.7% 9.48s
Yan et al., [90] 85.0% N/A

Islam et al., [43] 100% at 0.035 FP 26.4s at 1.25 SF
Zhou et al., (this work) 100% at 0 FP 2.8s at 1.2 SF

3.4 Conclusion

We introduced a novel Histogram of Categorized Shape (HCS) descriptor for 3D shape

object recognition. For the 3D ear detection task, this feature, employed in conjunction

with a linear SVM classifier and sliding window technique, produces a robust detection

system. It has been demonstrated through our experiments that the HCS feature-based

detector outperforms state-of-the-art techniques when applied to the field of 3D ear de-

tection.



Chapter 4

A Computationally Efficient Approach to
3D Ear Recognition Employing Local
and Holistic Features

3D ear biometrics is a relatively new area of research. There have been a few studies

conducted and a majority of the related work in 3D ear recognition is based on the Itera-

tive Closest Point (ICP) alignment algorithm using the whole ear surface. Unfortunately

ICP is a computationally expensive technique since it requires iteratively obtaining the

nearest neighboring points of a surface on its counterpart. In this study, we explore al-

ternative 3D ear recognition methods that can achieve good recognition performance as

well as computational efficiency.

4.1 Motivation

As a typical pattern recognition problem, the performance of an ear recognition system

primarily depends on two factors: 1) determining an adequate representation of the ear

patterns and 2) deriving a classifier by which to classify a new ear image based on the

chosen representation. Generally speaking, a good representation should possess such

characteristics as small intra-class variation, large inter-class variations, and being ro-

bust to transformations without changing the class label. Furthermore, its extraction

should not depend on manual operation.

45
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In this chapter, we present a complete three-dimensional (3D) ear recognition system

combining local and holistic features in a computationally efficient manner. To the best

of our knowledge, the proposed approach is the first study in 3D ear recognition that

incorporates local and holistic features extracted from 3D range images. The motivation

behind is that local representation has been found to be more robust to clutter and small

amounts of noise, while the holistic representation utilizing characteristics of the entire

ear surface is useful for describing single objects. When combined effectively, they can

provide complementary information describing the 3D ear shape and simultaneously

enhance the matching performance.

The proposed system is comprised of four primary components, namely, 1) 3D ear

image segmentation, 2) local surface feature extraction and matching, 3) holistic surface

feature extraction and matching, and 4) a fusion framework combining local and holistic

features at the match score level. For the segmentation component, we utilize the 3D ear

detection system introduced in previous chapter, to localize a rectangular region con-

taining the ear. For the local feature extraction and matching component, we extend the

HCS feature descriptor to an object-centered 3D shape descriptor, termed Surface Patch

Histogram of Indexed Shape (SPHIS), to represent the local surface. A set of feature

points, also known as keypoints, are extracted from the segmented ear model at salient

locations. A local surface path centered on the keypoint is then cropped and the SPHIS

feature descriptor is computed to encode the local surface patch information. For local

shape matching, the nearest neighbor of each local feature of a given probe model is

obtained from a gallery model based on the distance between the feature descriptors.

This results in a set of correspondences between each keypoint of the probe model and

its nearest neighboring keypoint on the gallery model. Outlier correspondences are de-

tected and subsequently removed using geometrical constraints. The number of retained

correspondences between a probe-gallery pair is used as the match score for the local
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Figure 4.1: System Overview.

shape matching component. The retained correspondences are also utilized to register

the associated gallery-probe pair. For the holistic matching component, the registered

models are discretized using a voxelization method. A match score between the vox-

elized representations of a gallery-probe pair is computed using the cosine distance. The

match scores obtained from both the local and holistic matching components are fused

to generate the final match scores. An overview of our system is provided in Figure 4.1

The remainder of this chapter is organized as follows: Section 4.2 details the local

feature extraction techniques from the 3D ear models, including an improved keypoint

detection method and a local surface patch representation. Section 4.3 describes the

voxelization method from which we derive our holistic feature descriptor. Section 4.4

presents the fusion framework used to combine the match scores produced by the lo-

cal and holistic matching components. Section 4.5 provides the experimental results

to demonstrate the performances of the proposed system in terms of identification and

verification accuracy and computational efficiency. Lastly, Section 4.6 provides the con-

clusions.
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4.2 Local feature representation

4.2.1 Preprocessing

Prior to extracting the local feature representation from the range images, a series of

preprocessing steps is performed. Firstly, the ear region is segmented from the range

images. We apply our 3D ear detection system based on the Histograms of Categorized

Shapes (HCS) feature, introduced in previous chapter, for automatic ear segmentation.

Secondly, to eliminate range sensor specific problem, such as those causing spikes

and holes to be introduced into the input image, preprocessing is also necessary be-

fore performing the feature extraction. The data preprocessing in our implementation

consists of three successive steps: 1) median filtering to remove spikes, 2) cubic inter-

polation to fill holes in the data, and 3) a Gaussian filter to smooth the data and remove

noise.

Thirdly, the surface is normalized to a standard pose. The centroid of the surface is

firstly mapped to the origin of the coordinate system. Then, the principal components

corresponding to the two largest eigenvalues of the surface are calculated. The surface is

then rotated such that the two principal components are aligned with the x and y axes of

the coordinate system. The utility of the pose normalization becomes evident in Section

4.3.1.

4.2.2 3D keypoint detection

To generate the set of local features, the input image is initially searched to identify

potential keypoints that are both robust to the presence of image variations and highly

distinctive, allowing for correct matching. The keypoint detection method proposed here

is inspired by the 3D face matching approach proposed by Mian et al. in [56], but with

major enhancements tailored towards improved robustness and applicability to objects

with salient curvature, such as the ear. In the method presented by Mian et al., the input
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point cloud of the range image is sampled at uniform intervals. By observing 3D ear

images, we found that the majority of these salient points are located in surface regions

containing large curvedness values. This signifies the fact that sampling in regions con-

taining large curvedness values will result in a higher probability of obtaining repeatable

keypoints.

Instead of uniformly sampling the range image to obtain the candidate keypoints,

we propose using a local b × b (b = 1mm in our case) window to locate the candidate

keypoints; the center point of the window is marked as a candidate keypoint only if

its curvedness value is higher than those of its neighbors in the window. The keypoint

repeatability experiment presented at the end of this section will demonstrate that by

enforcing the keypoints to have a local maximum curvedness value, more repeatable

keypoints can be found.

Once a candidate keypoint has been located, a local surface patch surrounding the

candidate keypoint is cropped from the ear image using a sphere centered at the can-

didate keypoint. The purpose of examining its nearby surface data is to further reject

candidate keypoints that are less discriminative or less stable due to their location in

noisy data or along the image boundary. If the cropped surface data contains bound-

ary points, the candidate keypoint is rejected automatically as being close to the image

boundary. Otherwise, Principal Component Analysis (PCA) is applied to the cropped

surface data, and the eigenvalues and eigenvectors are computed to evaluate its discrim-

inative potential.

A candidate keypoint is kept only if the eigenvalues computed from its associated

surface region satisfy the following criteria:

λ3/

3∑
i=1

λi > t1 and λ1/

3∑
i=1

λi < t2 (4.1)

where λ1 and λ3 are the largest and smallest eigenvalues. The threshold t1 ensures

that the cropped region associated with a keypoint has a certain amount of depth varia-
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tion. Similarly, the threshold t2 ensures that the keypoint is not located in a noisy region

or edge where the data variation is mostly carried by one principal direction. In our

implementation, t1 and t2 are chosen as t1 = 0.01 and t2 = 0.8. Figure 4.2 provides an

overview of the keypoint detection procedure. Firstly, a set of candidate keypoints are

sampled on the surface based on their curvedness values as shown in Figure 4.2(b). Sec-

ondly, PCA is performed on these keypoints’ neighboring points to reject inadequately

distinctive and noisy candidate keypoints. Figure 4.2(c) demonstrates this PCA step,

where the example candidate keypoints 1 (a less distinctive point) , 2 (a noisy point) and

3 (a boundary point) are rejected, and the retained keypoints are shown in Figure 4.2(d).

Figure 4.3 shows some examples of keypoints detected on two different ear images from

each of four individuals. Each column contains two ear images of the same individual.

Notice that the keypoints are identified at the same neighborhood locations for the same

individual.

To demonstrate the effectiveness of our keypoint detection algorithm, a repeatabil-

ity experiment is performed on the keypoints extracted from 200 3D ear images of 100

individuals in which each subject has a pair of ear images. Since the range images con-

tain real data, the ground truth correspondences of the keypoints are unknown. In this

experiment, an approximation of the ground truth correspondences is obtained using

an ICP-based registration algorithm as suggested in [56]. The pair of ear models from

the same subject is firstly registered using all of the points comprising the models. A

keypoint’s nearest neighboring keypoint in the counterpart image is considered as its

correspondence after the alignment. When the correspondence is located within a dis-

tance of the keypoint, it is considered as a repeatable keypoint. Figure 4.4 illustrates the

cumulative repeatability percentage as a function of the increasing distance of the corre-

spondences, where the line represents the mean performance across the dataset and the

bars indicate a 90% confidence range. The repeatability reaches 28.6% at 1mm by sam-



51

(a) (b)

(c) (d)

Figure 4.2: Keypoint detection. (a) A surface. (b) Candidate keypoints. (c) PCA applied
to keypoint-centered surface patches. (d) Final keypoints.

Figure 4.3: Keypoints detected on a set of 3D ears.
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pling points with locally maximum curvedness values, compared to 20.1% obtained by

a uniform sampling method. Notice that we only consider the repeatability at distances

within the resolution of the data. Overall, our keypoint detection algorithm achieves a

higher repeatability by sampling points possessing larger curvedness values.

Figure 4.4: Keypoint detection repeatability of the 3D ear.

4.2.3 Local feature representation

The previous keypoint detection step has assigned the 3D locations to the detected key-

points, which provide repeatable local 3D coordinate systems to describe the local ear

surfaces. The next step is to construct a feature descriptor for representing the local

ear surface that is highly distinctive while remaining invariant to other changes, such as

pose, background clutter and noise.

Our local feature representation using the SPHIS descriptor described below is an

extension of the HCS feature introduced in our 3D ear detection system. The extension
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includes a different computational mechanism that renders the SPHIS more accurate and

informative, allowing for the capture of more subtle inter-ear shape variations among

different subjects.

Histogram of Indexed Shape

As mentioned in previous chapter, the Histogram of Categorized Shape (HCS) descrip-

tor is built from the uniform spaced block (a rectangular region). However it can be

extended to encode shape information of any shaped surface region. In addition, instead

of classifying the surface shapes into 8 categories and forming the HCS descriptor with

8 bins, we can actually form a shape index histogram of arbitrary size by uniformly

spacing shape index values over the range [0, 1]. The larger size the histogram is, the

more descriptive the histogram descriptor. But it is worth noting that a too large sized

histogram might not be necessary and can at times hurt the robustness by making the

descriptor more sensitive to noise. The two extensions made to the HCS descriptor will

enable us to encode any surface region using arbitrary sized shape index histogram. We

term the extended descriptor Histogram of Index Shape (HIS).

In a similar fashion to HCS descriptor construction, the HIS descriptor is defined us-

ing the shape index and curvedness values calculated from the vertices contained within

the surface region to be encoded. To build the histogram descriptor, the curvedness and

shape index values are first collected at each vertex over the surface region. Each vertex

contributes a weighted vote for a histogram bin based on its shape index value, with a

strength that depends on its curvedness. The votes of all vertices are then accumulated

into the evenly spaced shape index bins forming the HIS descriptor encoding the shape

information over the surface region.

To avoid boundary affects in which the HIS descriptor abruptly changes as a ver-

tex shifts smoothly from one histogram bin to another, linear interpolation is used to

distribute each curvedness value into adjacent shape index histogram bins. Let x and c
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be the shape index and curvedness values of a 3D vertex on the surface region which

contributes a weighted vote to the HIS histogram, x1 and x2 be the centers of the two

nearest neighboring bins of x such that x1 ≤ x < x2, h be a HIS histogram with b bins.

The linear interpolation method that distributes the vertex’s curvedness c into the two

nearest neighboring bins is defined as follows:

h(x1) = h(x1) + c

(
1− x− x1

b

)
(4.2)

h(x2) = h(x2) + c

(
x− x1

b

)
(4.3)

where h(x1) and h(x2) are the values of the histogram bins centered at x1 and x2, re-

spectively. Finally, to reduce the influence of the image size changes, the HIS descriptor

is normalized with respect to its total energy .

Surface Patch Histogram of Indexed Shape (SPHIS) descriptor

Based on the HIS descriptor, the SPHIS descriptor is employed to represent the keypoint,

and is built from the surface patch surrounding it. Figure 4.5 illustrates the procedure

for constructing the SPHIS feature descriptor. Firstly, the surface patch surrounding a

keypoint is cropped using a sphere cut that is centered on the keypoint with a radius r.

The value of r determines the locality of the surface patch representation and offers a

trade off between its distinctiveness and robustness. The smaller the value is, the less

distinctive the surface patch while more resistant to pose variation and background clut-

ter. Thus, the choice of r is dependent on the applied object. In our 3D ear recognition

implementation, the radius is set to r = 14mm, which is empirically determined based

on the size of the human ear.

Secondly, the points contained within the cropped surface patch are further divided

into four subsets using three additional concentric sphere cuts with radii of ri = i×r
4
, i =

1, 2, 3, which are all centered on the keypoint, forming four sub-surface patches as

shown in the second and third rows of Figure 4.5. The motivation behind dividing
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Figure 4.5: SPHIS feature extraction. First row from left to right: the shape index map,
the 3D ear with a sphere centered at a keypoint that is used to cut the surface patch
for SPHIS feature generation, and the curvedness map. Second row from left to right:
A surface patch cropped by the sphere with the keypoint marked, and four sub-surface
patches dividing the cropped surface patch with points colored differently for each sub-
surface patch. Third row: the four sub-surface patches shown with the keypoint. Fourth
row: the HIS descriptors with 16 bins extracted from the corresponding sub-surface
patches. Last row: The final SPHIS feature descriptor.
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the cropped surface patch into sub-surface patches is to derive spatial information of the

surface patch thus make subsequently constructed SPHIS descriptor more informative.

After forming the four adjacent sub-surface patches, a HIS descriptor is built from

each of the four sub-surface patches by voting their points’ curvedness values into the

shape index bins as described in Section 4.2.3. The SPHIS descriptor construction gen-

erates an array of 1× 4 HIS descriptors with 16 bins (16 indexed shapes) from the four

sub-surface patches, as shown in the forth row of Figure 4.5, where the length of each

bin corresponds to the magnitude of that histogram entry. The four HIS descriptors are

then concatenated to form a 64-dimensional feature vector. Lastly, the shape index value

of the keypoint is appended to the feature vector to increase its discriminative potential

and reduce the probability that keypoints exhibiting different shape types are matched

in the feature matching stage. This results in a 4 × 16 + 1 = 65 dimensional feature

vector used to represent a local surface patch.

To be clear, there are three parameters involved in the calculation of the SPHIS fea-

ture descriptor: 1) the radius of the sphere r that is used to crop the surface patch, 2) the

number of sub-surface patches ns that are used to derive the HIS descriptors, and 3) the

size of the HIS descriptor sz. The first parameter r decides the locality of the descriptor

which can be determined according to the size of the represented object. The product of

the ns and sz decides the size of descriptor, offering a trade off between descriptiveness

and computational efficiency during the matching stage. Throughout this work we set

r = 14mm,ns = 4, sz = 16 for 3D ear recognition application.

4.2.4 Local surface matching engine

In our local feature representation, a 3D ear surface is described by a sparse set of

keypoints, and associated with each keypoint is a descriptive SPHIS feature descriptor

that encodes the local surface information in an object-centered coordinate system. The
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objective of the local feature matching engine is to match these individual keypoints in

order to match the entire surface.

To allow for efficient matching between gallery and probe models, all gallery images

are processed at the offline stage. The extracted keypoints and their respective SPHIS

feature descriptors are stored in the gallery. Each feature represents the local surface

information in a manner that is invariant to surface transformation. A typical 3D ear

image will produce approximately 100 overlapping features at a wide range of positions

that form a redundant representation of the original surface.

In the local feature matching stage, given a probe image, a set of keypoints and their

respective SPHIS descriptors are extracted using the same parameters as those used in

the feature extraction of the gallery images. For every feature in the probe image, its

closest feature in the gallery image is determined based on the L2 distance between

the feature descriptors. A threshold t (t2 = 0.1 in our implementation) is then applied

to discard the probe features that do not have an adequate match. This procedure is

repeated for every probe keypoint, resulting in a set of initial keypoint correspondences.

Outlier correspondences are then filtered using geometrical constraints. We apply the

iterative orthogonal Procrustes analysis method, described in Algorithm 1, to align the

two sets of keypoints and eliminate outlier correspondences by assessing their geometric

consistency. After applying this method, the local surface matching engine outputs the

number of matched keypoints M for every probe-gallery pair as the similarity score.

Figure 4.6 illustrates an example of recovering the keypoint correspondences from a

pair of gallery and probe ear models.
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Algorithm 1 Iterative orthogonal Procrustes analysis for removing outliers
1: Given a set of M initial keypoint correspondences. Let gallery points

gi = (xg
i , y

g
i , z

g
i )

T and probe points pi = (xp
i , y

p
i , z

p
i )

T , where i = 1, 2, . . . ,M
2: repeat
3: Align the keypoints of the gallery and probe models

• Calculate the centroids of the probe and gallery keypoints:
gc =

1
M

∑M
i gi,pc =

1
M

∑M
i pi

• Find the rotation matrix R using singular value decomposition:
C = 1

M

∑M
i (pi − pc)(gi − gc)

T , C = UΛVT , R = VUT

• Derive the translation vector t = gc −Rpc

• Align the keypoints of the gallery and probe models using R, t:
p′
i = Rpi + t

• Update the keypoint distances: di = ‖gi − p′
i‖2

4: Find the largest value in di. If dmax > 1.5mm, then the correspondence is re-
moved and set to M ← M − 1.

5: until dmax < 1.5mm or M < 3
6: Output M as the similarity match score.

(a) (b)

Figure 4.6: An example of finding feature correspondences for a pair of gallery and
probe ears from the same subject. (a)Keypoints detected on the ears. (b)True feature
correspondences recovered by the local surface matching engine.
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4.3 Holistic feature extraction

4.3.1 Preprocessing

The preceding section described the method by which to establish correspondences be-

tween a probe-gallery pair. The probe model is then registered onto the gallery model

by applying the transformation obtained in the local matching stage to each point on

the probe model. In the event that the number of established correspondences is below

three, we rely on the pose normalization scheme, described in Section 4.2.1, for the

model registration.

4.3.2 Surface voxelization

The holistic representation employed in this work is a voxelization of the surface. The

motivation behind using such a feature is to explore alternative methods that are more ef-

ficient than computing the mean-squared-error (MSE) between the registered probe and

gallery models. Although employing the MSE measure to calculate surface similarity is

often encountered in the literature [18, 90], it is a computationally expensive technique

because it requires obtaining the nearest neighboring points of a surface on its counter-

part (the complexity of a linear nearest neighbor search is O(Ng ·Np), where Ng and Np

denote the number of points comprising the gallery and probe models, respectively).

A voxelization is defined as a process of approximating a continuous surface in a

3D discrete domain [84]. It is represented by a structured array of volume elements

(voxels) in a 3D space. A voxel is analogous to a pixel, which represents 2D image

data in a bitmap. Advantages of such a representation include a robustness to surface

noise, which may occur when there is specularity on the surface upon acquisition. Its

robustness to noise is enabled by the flexibility to vary the quantization step (i.e., the size

of the voxel) used to discretize the surface. Furthermore, a voxelization may provide

a condensed representation of the surface (depending on the size of the voxel used),
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which reduces the storage requirements of the database. Thirdly, voxelization methods

are capable of producing normalized, fixed-sized representations across a set of varying

objects. This enables efficient voxel-wise comparisons between representations (e.g.,

computing the dot product between them). Fourthly, it can encode attributes of a surface

such as presence (i.e., whether a point on the surface is contained within a voxel), density

(i.e., the number of points contained within a voxel), and surface characteristics (e.g.,

the mean curvedness of points contained within a voxel).

The representation employed in this work is the binary voxelization. This represen-

tation simply encodes the presence of a point within a voxel. A voxel that has a point

enclosed within it is assigned a value of ’1’ and ’0’, otherwise. Algorithm 2 describes

the voxelization process using this feature. The inputs of this algorithm are the points of

the surface to be voxelized, {pi}Ni=1, the voxel dimensions, {rx, ry, rz}, and the spatial

extent of the voxel grid, {xlo, ylo, zlo, xhi, yhi, zhi}. The variable ε is used to ensure that

points along the boundary of the voxel grid are assigned to voxels. Its value should be

greater than zero but less than the minimum voxel dimension size (in our experiments,

ε = 1× 10−15).

Algorithm 2 Binary Voxelization

1: Given surface points {pi}Ni=1 = {xi, yi, zi}Ni=1, voxel dimensions {rx, ry, rz}, and
spatial extents {xlo, ylo, zlo, xhi, yhi, zhi}

2: Initialize: V = [vi,j,k]sx×sy×sz
= 0,

where for each d ∈ {x, y, z}:
sd = d(dhi + ε− dlo)/rde

3: for i = 1, . . . , N do
4: vψx(xi)

,ψy(yi),
,ψz(zi)

= 1, where:
ψd (di) = b(di − dlo)/rdc+ 1

5: end for

A sample ear model before and after undergoing binary voxelization is illustrated in

Figure 4.7.
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(a) (b)

Figure 4.7: Binary voxelization. (a) A sample ear model inscribed in a grid comprised
of cubed voxels with dimensions of size 4.0mm. (b) The voxelized model.

4.3.3 Holistic surface matching engine

In the gallery enrollment (offline) stage, for a given gallery model, a voxel grid is con-

structed from the bounding box enclosing the model. The gallery model is subsequently

voxelized, and this representation is enrolled in the gallery. In the online stage, the

transformation used to register a probe-gallery model pair in the local matching stage

is applied to the bounding box of the probe model. The joint spatial extent of the reg-

istered probe and gallery model bounding boxes is computed. The voxel grid used to

voxelize the gallery model is extended to enclose both bounding boxes. This extended

voxel grid is then used to voxelize the probe model. Additionally, the voxelization rep-

resentation of the gallery model is zero padded to account for this extension. Notice that

both models have been voxelized utilizing a common voxel grid. By voxelizing both

models using a common voxel grid and vectorizing the voxelizations, vectors of equal

lengths are produced. The similarity between these vectors is then calculated using the

cosine similarity measure, given by:

S (p, g) =
V̄p · V̄g∥∥V̄p

∥∥ ·
∥∥V̄g

∥∥ (4.4)
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where V̄p and V̄g denote the vectorized versions of matrix V (presented in Algorithm

2) of the probe and gallery models, respectively. Notice that although many voxels may

be assigned values of zero, as is apparent in Figure 4.7, they do not affect the calculation

of (4.4).

To determine the optimal voxel size for ear recognition, we conducted the experi-

ments on the dataset described in Section 4.5.1. In these experiments, only cubed voxels

were considered. We found that the voxel sizes around 1.0mm yielded the best recog-

nition performances from a range of 0.4mm to 1.8mm. For this reason, a voxel size of

1.0mm is used for all subsequent experiments presented in this work.

4.4 Fusion

The local and holistic matching components result in two similarity matrices Si each

of size P × G, where i ∈ {1, 2} denotes the matching engine and P and G represent

the number of probe and gallery models, respectively. We fuse the local and holis-

tic match scores using the weighted sum technique. This approach is in the category

of transform-based techniques (i.e., based on the classification presented in [68]). How-

ever, the combination of the match scores is meaningful only when the scores of the indi-

vidual matchers are comparable. Hence, the sigmoid function score normalization [14],

which is proven as an efficient and robust technique in [68], is used to transform the

match scores obtained from the different matchers into a common domain. It is defined

as follows:

snj =





1

1+exp
(
−2

(
sj−τ

α1

)) sj < τ,

1

1+exp
(
−2

(
sj−τ

α2

)) otherwise,
(4.5)

where sj and snj are the scores before normalization and after normalization, τ is the

reference operating point and α1 and α2 denote the left and right edges of the region

in which the function is linear. The double sigmoid normalization scheme transforms

the scores into the interval of [0 1], in which the scores outside the two edges are non-
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linearly transformed to reduce the influence of the scores at the tails of the distribution.

In our implementation, we select τ , α1, and α2 such that τ , τ−α1, and τ+α2 correspond

to the 60th, 95th, and 5th percentile of the genuine match scores, respectively [14]. The

weighted sum of the normalized scores are then used to generate the final match score:

Sf =
2∑

j=1

wj ∗ snj (4.6)

where snj and wj are the normalized match score and weight of the jth modality,

respectively, with the condition
∑2

j=1wj = 1. The weights can be assigned to each

matcher by exhaustive search or based on their individual performance [68]. In this

work, we use equal weights for our local and holistic matchers (e.g., wj = 0.5, j = 1, 2).

4.5 Experimental results

4.5.1 Dataset

The experiments are conducted on the publicly-available University of Notre Dame

(UND) 3D ear biometric dataset, collection G [90]. The data is acquired with a Mi-

nolta Vivid 910 camera. During each acquisition session, the subject sat approximately

1.5 meters away from the camera, and the camera outputs a 640× 480 range image. In

the dataset, there are 415 subjects with 415 time-lapse gallery-probe pairs. In this work,

we report the results on the entire dataset. The identification results (rank-one recogni-

tion rate) obtained by current state-of-the-art systems on this dataset are 97.6% by Yan

and Bowyer in [90], 96.4% by Chen and Bhanu in [18] using a subset of 302 subjects,

and 95% by Theoharis et al. in [78] using a subset of 324 subjects.

4.5.2 Recognition performance

In an identification scenario, our matching approach combining the local and holistic

surface features achieves a rank-one recognition rate of 98.6% on the 415-subject dataset
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with 415 probe models and 415 gallery models. The Cumulative Match Characteristic

(CMC) curves for each feature modality and their fusion are shown in Figure 4.8. In a

verification scenario, our approach achieves an Equal Error Rate (EER) of 1.6%. The

Receiver Operating Characteristic (ROC) curves for each feature modality and their

fusion are illustrated in Figure 4.9.

Figure 4.8: 3D ear verification performance as an CMC curve.

In Table 4.1, we provide a comparison of the experimental results with three state-

of-the-art 3D ear biometric systems applied to the same dataset. Two of these systems (

[18,90]) use ICP-based algorithms for shape registration and matching which are highly

time consuming and renders real-world deployment impractical. The proposed approach

achieves the best performance among them in both accuracy and efficiency.

4.6 Conclusion

We have presented a complete, automatic 3D ear biometric system using range images.

The proposed 3D ear surface matching approach employs both local and holistic 3D ear
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Figure 4.9: 3D ear verification performance as an ROC curve.

Table 4.1: Performance comparison to other 3D ear recognition systems

Author Identification Verification Run time Ear Detection
year, reference (Rank-one) (EER) (per pair)

Chen, 2007, [18] 96.4% 2.3% 1.1s Automatic
Yan, 2007, [90] 97.6% 1.2% 5-8s Automatic

Theoharis, 2008, [78] 95% N/A N/A Manual
This work 98.6% 1.6% 0.02s Automatic

shape features. The experimental results demonstrate the accuracy and efficiency of our

novel 3D ear shape matching approach. The proposed system achieves a recognition

rate of 98.6% and an equal error rate of 1.6% on a time-lapse data set of 415 subjects.

Moreover, the proposed approach takes only 0.02 seconds to compare a gallery-probe

pair. This is approximately 100 times faster than existing approaches.



Chapter 5

Robust 2D Ear Recognition Exploiting
the Color SIFT Descriptor

Though 3D recognition using range images can overcome some disadvantages in 2D

image based ear recognition, such as image quality degradation caused by lighting varia-

tions, and achieve better recognition performance, there are great needs from the market

for 2D image based ear biometrics mainly because : 1) 2D image based ear biomet-

rics have wider range of applications, particularly in video surveillance and forensic

science, since conventional digital and video cameras are much more widespread than

3D scanners; 2) 2D ear images can be captured in a non-intrusive way (i.e., requires no

cooperation from the user) at a distance. For the above mentioned reasons, improving

2D image based ear biometrics is becoming an increasingly important research topic.

5.1 Motivation

At present, good recognition performances have been reported in 3D ear recognition

systems, while most current 2D image based ear recognition systems perform well only

under constrained environments. In fact, it has been observed from systems employing

well-studied biometric markers (e.g., fingerprint, iris, and face), that the quality of the

captured image has a significant impact on the image based biometric system’s perfor-

mance.

66
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In this chapter, we study the 2D image based ear biometric for human recognition.

In particular, we propose a complete, automatic ear biometric system using 2D profile

images. The system is comprised of two primary components, namely: 1) ear detec-

tion from the profile image; 2) image feature extraction and ear recognition. For the

ear detection component, we adapt the Histogram of Oriented Gradient (HOG) [26]

feature and apply the detection procedure proposed in Chapter 3, which utilizes the slid-

ing window and SVM classifier techniques to localize a rectangular region containing

the ear. For the ear image feature extraction and matching component, we extend the

Scale Invariant Feature Transform (SIFT) algorithm originally performed on the inten-

sity channel [52] to the RGB color channels to maximize the robustness of the SIFT

feature descriptor, while simultaneously improving the matching performance.

The rest of this chapter is organized as follows. In Section 5.2, we detail the ear

detection system for segmentation of the ear from 2D profile images. In Section 5.3,

we provide a description of the SIFT feature extraction method, and present the feature

fusion and matching procedure based on SIFT features extracted from the RGB color

channels. In Section 5.4, we present our experimental results and comparisons with

state-of-the-art systems. Finally, Section 5.5 provides the conclusions.

5.2 Ear detection from profile images

An overview of our 2D ear detection system using the sliding window approach is shown

in Figure 5.1. It is the same procedure applied in the 3D ear detection system as dis-

cussed in Chapter 3, but instead of using the HCS feature, the Histogram of Oriented

Gradient (HOG) is used as the feature to encode the detection window. The reason we

choose the HOG feature is that research has shown that the HOG is one of the best

features to capture the local shape information. It has also demonstrated to achieve

excellent performance in 2D object detection tasks [26].
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a) Input
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Figure 5.1: An overview of the HOG feature-based 2D ear detector.

5.2.1 Modified HOG feature construction

The HOG feature descriptor is in fact a dense version of the SIFT feature descriptor, i.e.

SIFT descriptor computed on a dense grid. Figure 5.2 demonstrates the construction of

the SIFT/HOG descriptor [52]. The SIFT/HOG descriptor is created by first computing

the gradient magnitude and orientation at each point on the image region. These points

are weighted by a Gaussian circular window to down-weight pixels near the boundary.

These pixels are then accumulated into orientation histograms with 8 bins (8 orienta-

tions) encoding the image information over sub-regions (also known as cells), as shown

on the right of the Figure 5.2, with the length of each arrow corresponding to the sum

of the gradient magnitudes within the sub-region. Figure 5.2 shows a 2 × 2 descriptor

array computed on an 8 × 8 block for displaying purpose, whereas the SIFT/HOG is

constructed using a 4× 4 descriptor array computed from a 16× 16 sample region.

Despite its novelty and success in pedestrian detection tasks, the original HOG fea-

ture construction method for encoding the detection window has two major disadvan-

tages: 1) it uses fixed size small blocks (16x16 pixels) to tile the detection window which

is less informative than varied size blocks and miss some global features of the detection

window; and 2) it uses Gaussian weighting and tri-linear interpolation sub-procedures

in the HOG construction to ensure better detection performance. However, the integral

histogram approach is not applicable to these two sub-procedures, and thus the original

HOG feature can not be computed efficiently for object detection purpose.

In our 2D ear detection system, we make two modifications to the original HOG

construction method to overcome the two aforementioned disadvantages. Firstly we in-
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crease the feature space for encoding the detection windows by using varied size blocks

with different aspect ratios. In practice, we use blocks of size 32× 32, 16× 16, 16× 32,

and 32× 16 to calculate the HOG descriptors. These blocks are tiled on the 96× 64 de-

tection window with an overlap of half a block size. Secondly, to take advantage of the

integral histogram approach for efficiently computing the HOG feature on the blocks,

we skip the Gaussian weighting and tri-linear interpolation sub-procedures. Although it

may be inferior to the original method for the construction of the HOG, it is acceptable

in this application since the ear is relatively easier to detect than pedestrians in a traf-

fic scene because the ear’s immediate background, the profile face, is more predictable.

Moreover, since we use varied sized blocks, this simplified procedure can still achieve

good detection performance while much more efficient.

Figure 5.2: Illustration of the HOG/SIFT feature construction method from [52].

5.2.2 Integral HOG

The modified HOG feature construction enables us to use the integral histogram repre-

sentation to efficiently calculate the HOG features for encoding the detection window.

After the integral HOG is obtained at each point, the HOG of a block can be computed

using only the integral HOG values at the four corner points of the block without recon-

structing a separate HOG for every block.

The HOG descriptor of a block is then normalized with respect to its total energy

using the L2-hys ( clipped L2-norm [52] limiting the maximum values to 0.2) normal-
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ization. This will result in an 8-dimensional HOG feature descriptor for each block.

The HOGs at each block that tile the detection window are then concatenated to form a

1280-dimensional feature vector encoding the entire detection window. An illustration

of the feature encoding procedure can be found in Figure 3.3 of Chapter 3.

5.3 2D ear recognition using the color SIFT descriptor

Generally speaking, geometric and photometric variations, in particular, pose and light-

ing variations, are the most challenging issues in 2D image based ear biometrics. To

achieve good recognition performance, ear feature extraction should maximize the ro-

bustness with respect to these variations. Recently, SIFT has emerged as a powerful

local feature for image matching and object recognition [52]. Unfortunately, it has not

been well investigated in ear biometrics.

In this work, by exploiting the properties of color analysis, we propose a novel ap-

proach for improving ear recognition based on the fusion of SIFT features that are ex-

tracted from multiple color channels. The following will describe in detail the feature

extraction and matching processes.

5.3.1 SIFT feature

The SIFT feature representation, proposed by Lowe [52], is a method that transforms

image data into scale-invariant coordinates relative to the local features. For a given

intensity image, there are three primary stages involved in extracting the SIFT features:

1) scale-space extrema detection and keypoint localization, 2) orientation assignment

and 3) SIFT feature descriptor construction.

The first stage searches over all image scales and locations to identify keypoints by

using a difference-of-Gaussian function:

D (x, y, σ) = L (x, y, kσ)− L (x, y, σ) (5.1)
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where L(x, y, σ) is the scale space of the input image that is produced from the convo-

lution of a variable-scale Gaussian, G(x, y, σ), with the input image, I(x, y) :

L (x, y, σ) = G (x, y, σ) ∗ I (x, y) (5.2)

G (x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

(5.3)

As discussed in [52], the extrema in the Laplacian pyramid, which is approximated

by the difference-of-Gaussian of the input image in different scales, has been proven to

be the most robust interest point detector. Therefore, the points located at the extrema

of a difference of Gaussian pyramid of the input image are identified as candidate key-

points. Next, at each candidate keypoint location, a detailed model is fit to determine

the accurate location and scale based on measures of the keypoint’s stability.

In the second stage, the algorithm assigns orientations to the keypoints based on the

local image gradients:

m (x, y) =

√
(L (x+ 1, y)− L (x− 1, y))2 + (L (x, y + 1)− L (x, y − 1))2 (5.4)

θ (x, y) = tan−1(L (x+ 1, y)− L (x− 1, y)) / (L (x, y + 1)− L (x, y − 1))2 (5.5)

where m(x, y) is the gradient magnitude, and θ(x, y) is the orientation. L is the

Gaussian smoothed image at the keypoint’s scale so that all computations are performed

in a scale-invariant manner. An orientation histogram is formed from the gradient ori-

entations of sample points within a region around the keypoint where each sample con-

tributes a vote weighted by its gradient magnitude and by a Gaussian-weighted circular

window. The dominant direction of the local gradients, which is represented by a peak

in the orientation histogram is used to assign the orientation to the keypoint. Figure 5.3

shows an example of the keypoints detected on an intensity ear image in which keypoints

are displayed as vectors indicating the detected scale, orientation, and location.

In the third stage, the SIFT descriptor construction is performed on the image data

that has been transformed relative to the keypoint’s orientation, scale and location. The
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Figure 5.3: An example of the SIFT features extracted from an intensity ear image.

SIFT construction generates a 4x4 descriptor array computed from a 16x16 sample ar-

ray as shown in Figure 5.2. Therefore, the SIFT descriptor is a 4 × 4 × 8 = 128 (8

orientations) dimensional vector. To reduce the influence of illumination changes, the

descriptor is normalized to unit length.

In summary, the SIFT feature extraction approach generates a set of features forming

a redundant local representation of the image. The features are highly distinctive and

invariant to image translation, scaling and rotation, and partially invariant to illumination

changes.

5.3.2 Color SIFT descriptor

The SIFT algorithm, originally performed in the intensity domain, has two potential

disadvantages when used in object recognition. Firstly, it is not invariant to lighting

color changes since the intensity channel is a combination of the R, G and B color chan-

nels. Secondly, it neglects the color information which is also valuable for recognizing

objects.
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To address these issues, recently a taxonomy of the SIFT descriptor’s invariant

properties under principle photometric changes has been presented by van de Sande et

al. [79]. In their work, an image f(x), under the assumption of Lambertian reflectance,

is modelled as:

f(x) =

∫

w

e(λ)ρk(λ)s(x, λ)dλ+

∫

w

A(λ)ρk(λ)dλ (5.6)

where e(λ) is the color of the light source, s(x, λ) is the surface reflectance and ρk(λ)

is the camera sensitivity function with k ∈ {R,G,B}, x is spatial coordinates, w is the

visible spectrum, and A(λ) is the term that models the diffuse light. The taxonomy is

derived by considering the extended diagonal model, or von Kries Model [83], with an

offset of illumination changes:

f c = Du,cfu (5.7)

where fu is the image taken under an unknown light source, f c is the same image

transformed under the reference light, and Du,c is a mapping matrix which maps colors

that are taken under an unknown light source u to their corresponding colors under the

reference illuminant c:




Rc

Gc

Bc


 =




a 0 0 o1
0 b 0 o2
0 0 c o3







Ru

Gu

Bu

1


 (5.8)

in which a, b and c model the intensity changes of different light colors and the offsets

(o1, o2, o3)
T model the intensity shifts due to the diffuse lighting.

Under the extended diagonal model, the SIFT descriptor, constructed from the inten-

sity channel, is invariant to diffuse light since the gradient, operating on the derivative,

cancels out the offsets. It is also invariant to light intensity change, i.e. a scaling of

the intensity channel with a = b = c, since the SIFT descriptor is normalized and the

gradient magnitude changes have no effect on the final descriptor. The intensity SIFT
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descriptor is not invariant to light color changes in which a 6= b 6= c, because the in-

tensity channel is a combination of the R, G and B channels. However the color SIFT

descriptor constructed from each independent color channel is invariant to the light color

changes.

In this work, we adapt their work and use a combined set of color SIFT descriptors

for representation of the 2D ear image. In particular, we use the RGB-SIFT descriptors,

e.g. the SIFT descriptors extracted independently from the R, G and B color channels,

as the combined set of feature descriptors for representing the ear image:

f(I) = f(IR) ∪ f(IG) ∪ f(IB) = {f1, f2, ...fn} (5.9)

where f(I) is the combined set of RGB-SIFT feature descriptors, and f(IR), f(IG),

f(IB) are the sets of SIFT feature descriptors extracted from R, G, B channels respec-

tively. As indicated by the taxonomy, the combined set of RGB-SIFT feature descriptor,

is expected to achieve increased illumination invariance as well as discriminative power.

5.3.3 Feature fusion for ear recognition

In the feature representation, a 2D ear image is described by a combined set of color

SIFT features that encode the local image information of the ear image. Our 2D ear

recognition is performed by matching these individual SIFT features in order to match

the entire ear image and find the identity from the gallery database. In a typical SIFT

feature based object recognition, the feature matching procedure includes three steps.

For a given gallery-probe image pair, the individual features from the probe ear are

first matched to the features from the gallery image using a nearest-neighbor search.

Secondly, the matches are grouped to identify the clusters belonging to a single object.

Finally the geometric consistency of the matches is verified and outlier matches are

removed through a least-squares fitting.
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Figure 5.4: Four-step ear image matching procedure.

Since we are using SIFT features extracted from multiple color channels, this match-

ing procedure is extended by adding a feature fusion step before the final geometric

verification. All matches passed though the second step are fused in the extra step for

removing duplicated matches. Duplicated matches that are located in the same positions

of the image but from different color channels are merged such that only one match that

yields the smallest matching distance is kept for generating the matching score. Figure

5.4 demonstrates the proposed four-step matching procedure. First, as shown in the first

row of Figure 5.4, for every probe feature from the R, G and B channels, its closest

feature in the corresponding color channel of the gallery image is determined based on

the distances between the feature descriptors. The matches are then grouped based on

the keypoints’ properties, including location, scale and orientation, as shown in the sec-

ond row of Figure 5.4. The matches from all the three color channels are then fused to

remove duplicated matches as shown in the third row of Figure 5.4. Finally, the outlier

matches are removed using geometric constraint as shown in the forth row of Figure 5.4.
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The matching score of the gallery-probe image pair is calculated based on the dis-

tances between all the matched features as:

S(Ig, Ip) =
m∑
i=1

1

dis(f g
i , f

p
i ) + ε

(5.10)

where Ig is the gallery ear image, Ip is the probe ear image, m is the number of retained

matches, dis(f g
i , f

p
i ) is the distance between the two feature descriptors of a match in

which f g
i is from the gallery image and fp

i is from the probe image, and ε is a small value

preventing division by 0 or a very small distance value. We use the cosine distance as the

metric in our implementation for computational efficiency. The identity of the gallery

ear image that has the largest matching score to the probe ear image is declared the

identity of the probe ear.

5.4 Experimental results

5.4.1 Datasets

The experiments are conducted on the University of Notre Dame (UND) 2D ear bio-

metric dataset, collection E, as well as the dataset collected by West Virginia University

(WVU). The UND dataset is the one of the most challenging datasets because there is a

time lapse of a few months between acquisitions, as well as lighting and pose variations

between the gallery and probe images. The WVU dataset is currently one of the largest

datasets, but neither time lapse nor lighting variations between the gallery and probe

images is presented in the dataset.

The UND dataset

There are 464 1200 × 800 still images from 114 individuals in the dataset, which were

acquired at UND. The dataset is designed to measure the 2D image based ear biometric

system’s performance under three image condition variations, including day variation,
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lighting variation and pose variation, in which each individual has 3-9 images captured

at different times, lighting conditions, or poses.

For the day variation experiment, 56 subjects have a profile image taken in one ac-

quisition session and then another image taken under the same conditions on a different

day. For the lighting variation experiment, 111 subjects have a profile image taken in

one session and then another image taken in the same session, but under a different

lighting condition. For the pose variation experiment, 101 subjects have a profile image

taken in one acquisition session and then another image taken at an off-axis head pose

of 22.5 degrees in the same acquisition session.

The WVU dataset

The dataset contains 462 video clips captured by WVU using a video camera which has

a frame resolution of 640×480. The video clips were captured in an indoor environment

with controlled lighting conditions. In each clip, the camera captured a full profile of a

subject’s face starting with the left ear and ending on the right ear by moving the camera

on a circular track around the face while the subject sits still in a chair.

Among the 462 video clips, 402 clips containing unique subjects are enrolled in

the gallery, while the remaining 60 video clips containing repeated subjects are used as

probes. Gallery and probe clips were all acquired on the same day under the same light-

ing condition. There are 135 video clips in the dataset that contain occlusions around

the ear region. These occlusions occur in 42 clips where the subjects are wearing ear-

rings, 38 clips where the upper half of the ear is covered by hair, and 55 clips where the

subjects are wearing eyeglasses as reported in [13].
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5.4.2 Ear detection

Training

The positive training data is built with 2230 profile face images covering a wide range

of ethnicities and head poses. This includes 942 frontal profile images of 302 subjects

from the UND biometrics database Collection F, 1216 profile images of 304 subjects

from the WVU database, with 4 images per subject captured at off-axis poses (relative

to the front profile) of 0, 10, 20, and 30 degrees, and 92 frontal profile images of 92

subjects from UM database [2]. Our negative training data is built from 25,000 non-ear

images, including randomly cropped non-ear images from profile face regions and some

images of trees, birds and landscapes downloaded from the web.

Figure 5.5: Examples of ear and non-ear images used in the training phase.

Figure 5.5 shows a few examples of ear and non-ear samples in the training data

set. Ear samples are obtained from manually labelled Region-of-Interests (ROIs), e.g.

ear regions, in the profile images. In order to make maximum use of these labels, the
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bounding boxes of the originally labelled regions were randomly shifted two times be-

tween [-5 5] pixels in the horizontal and vertical directions. The shifting is to account

for small errors in ROI localization within an application system. We also synthesized

for each original cropped ear image two additional ear samples by rotating the original

images by -5 and +5 degrees, respectively. Thus, five ear examples are obtained from

each labelled ear region in a profile image resulting in a total of 2, 230 × 5 = 11, 150

ear image samples for the positive training set. Given the bounding box locations of the

ear area in the profile images, positive samples were cut out after adding a border of 2

pixels to preserve contour information and scaled to a common size of 96× 64.

We split the training data into five fully disjoint sets, which allows for a variation of

training and validation sets and parameter tuning during the training stage. Ear samples

from the same subjects and negative samples from the same images are kept within the

same set, so that a person’s ear samples captured in multiple profile images are kept only

in one data set. This ensures truly independent training and testing sets, but also implies

that examples within a single data set are not independent.

Five-fold cross validation over the five training sets is applied to determine the op-

timal settings for parameter tuning, which, in our case, is only the misclassification

penalty term C for the linear SVM classifiers. In each phase four sets are used for train-

ing and the remaining set is used for validation. We found that the performances of

the linear SVM classifiers trained using LIBLINEAR [31] are robust to the value of C

in a testing range of [2−4, 24]. Thus, we set C to 1 for the SVM classifier. After the

parameter tuning, the initial SVM classifier is trained on our training set using all ear

and non-ear samples. The classifier is then re-trained on an augmented set of hard nega-

tive examples constructed from the training images by a bootstrapping strategy [77], in

which false positives of the initial classifier are collected and added to the training set to

produce the final classifier.
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Detection results

The proposed ear detection system is evaluated on a testing set comprised of 276 profile

images from 92 subjects in the WVU dataset, with three images per subject captured at

off-axis poses up to 30 degree. The ear regions are also manually labelled in these im-

ages enabling measurements of the segmentation quality. The evaluation is performed

on the detected Bounding Box (BB) candidates generated from the test images. A de-

tected BB and a manually labelled ground truth BB form a potential match if their areas

sufficiently overlap. We employ the following the standard overlapping measure for

object detection:

TP/(TP + FP + FN) > 0.5 (5.11)

We utilize the detection rate versus the false positive rate per image as an evaluation

criteria. The ear detection results on the entire testing set are shown in Figure 5.6. The

detector obtains a 98.5% detection rate using a 1.05 scale factor, and a 97.8% using a

1.2 scale factor. Figure5.7 illustrates the detection results on three individuals’ profile

images at varying poses.

5.4.3 Ear recognition

The recognition experiments performed on the UND dataset includes three experiments:

a day variation experiment, an illumination variation experiment and a pose variation

experiment. The ear images used in the recognition experiments are all segmented by

the proposed 2D ear detector.

The day variation experiment is considered as the baseline as suggested in [15].

This experiment is to evaluate the recognition performance for gallery and probe im-

ages taken under the same conditions but on different days. Figure 5.8 depicts the CMC



81

Figure 5.6: A curve of the detection rate versus the false positive rate per image on the
testing dataset.

Figure 5.7: Sample detection results using the proposed approach.
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curves obtained in the experiment. The proposed method using the RGB-SIFT descrip-

tor and feature fusion achieves a 100% rank-one recognition rate, while using only the R,

G, B color channels or the intensity SIFT (the original SIFT) achieves rank-one recog-

nition rates of 84%, 91%, 91% and 89% rank-one recognition rates respectively.

Relative to the baseline experiment, the lighting variation experiment is conducted

to measure how a lighting condition change between the gallery image and the probe

image affects the recognition rate. The proposed method using the RGB-SIFT descrip-

tor achieves an 86% rank-one recognition rate while the intensity SIFT based method

achieves a 69% rank-one recognition rate as shown in Figure 5.9. The pose variation ex-

periment is to evaluate how a 22.5 degree pose variation between the gallery and probe

images affects the recognition rate. The rank-one recognition rates achieved in this ex-

periment as shown in Figure 5.10, are much lower than the ones achieved in either the

baseline or the lighting change experiment. However the proposed method still performs

significantly better than the original SIFT feature based method.

In Table 5.1, we compare the proposed method with two state-of-the-art algorithms

applied to the same dataset. Overall, the results demonstrate our method outperforms

them in both recognition accuracy and system efficiency since both methods need human

intervention in ear detection or image registration.

Table 5.1: Performance comparison to other 2D ear biometric systems on the UND
dataset.

Author, year reference Chang, 2003 [15] Nanni, 2009 [58] This work
Ear detection Manual Manual Automatic

Ear registration Manual Manual Not required
Rank-1 for varying days 70.5% N/A 100%

Rank-1 for varying illuminations 68.5% N/A 85.6%
Rank-1 for varying poses 20% N/A 49.5%

Average rank-1 on 50 subjects N/A 84% 85.3%

On the WVU dataset, we conduct a series of experiments to evaluate the recognition

performance of the proposed method under pose variations. In the experiments, we
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Figure 5.8: Ear identification on the UND dataset for varying days.

Figure 5.9: Ear identification on the UND dataset for varying illuminations.
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Figure 5.10: Ear identification on the UND dataset for varying poses.

maintained the same gallery set in which the images are captured in the frontal ear pose

while the six probe sets contain images that are captured at off-axis ear poses (relative

to the ear) of 0 , 5 , 10 , 15 , 20 , and 25 degrees, respectively. Figure 5.11 illustrates

the posed ear images for a subject in the probe sets. Figure 5.12 shows the experimental

results obtained by the proposed method using the RGB-SIFT descriptor. The rank-one

recognition rate is 100% when the gallery and probe images are both from a frontal ear

pose, and 95% when the probe images are from an off-axis ear pose of 15 degree. In

contrast, the state-of-the-art evaluated on the same dataset [13] achieves corresponding

rank-one recognition rates of 95% and 91.67%, respectively. Figure 5.13 demonstrates

the performance of the different SIFT descriptors under pose variations, in which similar

performance is found owing to the fact there is no lighting variation in the dataset.
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5.5 Conclusion

This chapter described a complete, automatic ear biometric system based on fusion of

the color SIFT descriptors extracted from the R, G, and B color channels of the 2D

images. When evaluated on the most challenging UND datasets, it demonstrates ro-

bustness to imaging variations, including day and lighting variations. In addition, it has

been demonstrated through our experiments that the proposed system outperforms the

state-of-the-art when applied to 2D ear recognition on both the UND and WVU datasets.

Figure 5.11: Ear images under varying poses. From top left to bottom right: 0 , 5 , 10 ,
15 , 20 , and 25 degree off-axis, respectively.
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Figure 5.12: Ear identification on the WVU dataset for varying poses.

Figure 5.13: Ear identification on the WVU dataset for varying poses using different
descriptors.



Chapter 6

Determining Discriminative Anatomical
Point Pairings using AdaBoosted
Geodesic Distances for 3D Face
Recognition

Ear and Face biometric markers are often-times jointly present in the image acquisition

and therefore can offer certain advantages over other multi-modal biometrics. Given the

parallels between the ear and face biometric (e.g., image acquisition, preprocessing, and

feature extraction), in this dissertation, we conduct a study in 3D face recognition.

6.1 Motivation

While many sophisticated 2D face recognition have been proposed, their collective per-

formance remains unsatisfactory in unconstrained environments. The introduction of

3D face modality alleviates some of these challenges by introducing a depth dimension

that is invariant to both lighting conditions and head pose. Using 3D image for face

recognition has shown great potential to overcome the disadvantages of 2D image based

face recognition.

Geodesic distance, the distance of shortest path from a source vertex to a destina-

tion vertex along a surface, between anthropometric landmarks have been observed to

be effective features for recognizing 3D faces by the work of Farkas [32]. In his work,

Farkas proposed a total of 47 landmark points on the face, with a total of 132 measure-

87
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ments (comprising Euclidean, geodesic and angular distances) on the face and head.

Until recently, the measurement process could only be carried out by experienced an-

thropometrists by hand. However, recent advancements in 3D scanning technology and

techniques for computing geodesic distances across triangulated domains have enabled

this process to be carried out automatically.

To consider the geodesic distances between an exhaustive pairing of vertices would

be computationally infeasible, as it would result in CN
2 pairings (where N denotes the

number of vertices comprising a 3D face model). The question then arises of how many

geodesic distances (and which ones) would suffice for accurate face recognition. This

problem has been investigated in 2D image based face recognition primarily for deter-

mining the most discriminative Gabor filters of a Gabor filter bank [73, 91, 97]. These

methods deploy the magnitude and/or phase responses of Gabor filters in varying ori-

entations and scales as weak classifiers to an Adaboost algorithm. The AdaBoost al-

gorithm [33] provides a simple yet effective stagewise learning approach for feature

selection and classification.

In this chapter, we propose a method using AdaBoost to determine the geodesic dis-

tances between anatomical point pairs that are most discriminative for 3D face recog-

nition. Firstly, a generic 3D face model is registered to each 3D face model (termed

scanned models) contained within a database. This results in a conformed model in-

stance for each scanned model. The conformed model instances provide a one-to-one

correspondence between the vertices of the scanned models. Secondly, the geodesic

distances between a subset of vertex pairings are computed across all conformed model

instances. Thirdly, weak classifiers are formed based on the geodesic distances and are

used as input to an Adaboost algorithm, which constructs a strong classifier based on a

collection of weak classifiers.
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The remainder of this chapter is organized as follows: Section 6.2 details the method

for conforming the generic model onto the scanned models. Sections 6.3 and 6.4 de-

scribe the geodesic distance features and the Adaboost processes, respectively. Section

6.5 reports experimental results. Lastly, conclusions are given in Section 6.6.

6.2 Construction of dense correspondences

Here, we consider the variations in facial structure across subjects contained within a 3D

face database. Our objective is to attain a precise conformation between a generic model

and each scanned model within the database. This enables us to establish a one-to-one

correspondence between the vertices of each conformed instance of the generic model.

6.2.1 Global mapping

The thin plate spline method (TPS) is applied to a set of control points in order to

coarsely register the generic model onto a scanned model. This set of control points,

consisting of 19 facial landmarks, have been semi-automatically labeled on both the

generic and scanned models using a statistical approach described in [71]. This ap-

proach is based on a mixture of factor analyzers method (MoFA) and utilizes both the

3D range image and a registered 2D image for feature localization. The facial land-

marks, shown in Figure 6.1(a), include the inner and outer eye corners, tip and bridge of

the nose, lip corners, upper and lower lip, chin, hairline center, and the upper and lower

connections of the ears to the face. It is worth noting that a minimum of three landmarks

are required for the global mapping process described in this section, however, its per-

formance enhances with the number of initial correspondences. Facial landmarks that

are not accurately localized automatically are manually labeled so not to affect subse-

quent stages of the proposed method.
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The TPS method fits a mapping function between the corresponding control points

{ci}Ni=1 and {yi}Ni=1 of the generic and scanned models, respectively, by minimizing the

following energy functional, known as the bending energy:

∫∫∫
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dxdydz (6.1)

The mapping function, f(·), maps each vertex of the generic model’s surface into a new

location, represented by,

f(ci) = yi; i = 1, . . . , N (6.2)

f(p) = α0 + αxx+ αyy + αzz +
N∑
i=1

wiϕ(p− ci) (6.3)

where ϕ (·) = ‖·‖3 is the kernel function, the vertex p = (1, x, y, z), and α0, αx, αy, αz

are the parameters of f(·) that satisfy the condition of bending energy minimization [7].

The generic and scanned models before and after the global mapping are illustrated in

Figure 6.1 (a) and (b), respectively.

6.2.2 Local conformation

The aforementioned global mapping process is effective in providing a coarse registra-

tion between the generic and scanned models. However, the accuracy of conformation

must be much higher for facial structure analysis. Although the control points of the

generic model map to the exact locations of their scanned model counterparts, surround-

ing surface regions still demonstrate inadequate disparities. To refine the conformation,

a local deformation process, similar to the one presented in [53], is employed.

Firstly, both the generic and scanned models are sub-divided into regions based on

their respective control points. A Voronoi tesselation, illustrated in Figure 6.2, is con-

structed from the control points of the scanned model. This essentially partitions the
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(a) (b)

Figure 6.1: Global mapping. (a) The generic (left) and scanned (right) models prior to
the global mapping. (b) The TPS method coarsely registers the two models based on a
set of control points. The figure was generated by overlaying the generic and scanned
texture-mapped models after global mapping.

models into 19 corresponding regions. Secondly, point correspondences are established

between each pair of corresponding facial regions. A vertex, pi, on the generic model is

compared against all vertices on the scanned model that are contained within pi’s coun-

terpart region. The correspondence is established based on a similarity measure, defined

as:

S = −αDis− βNorm− γCur (6.4)

This similarity function is comprised of three weighted terms that consider the Euclidean

distance between vertices (Dis), the difference in angle between normals (Norm), and

the difference between curvature shape indices (Cur). The weighting coefficients (α, β,

and γ) sum to one. The Norm and Cur terms in (6.4) are further defined as:

Norm =
cos−1 (normal1 • normal2)

π
(6.5)

Cur =

∣∣∣∣
1

π

{
atan

(
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g
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g

)
− atan

(
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s + k2

s

k1
s − k2

s

)}∣∣∣∣ (6.6)

Let Mg and Ms denote the generic and scanned models, respectively. The Dis term is

defined as the Euclidean distance between a vertex on Mg and a tentative similar vertex
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on Ms. The Norm term computes the angle between normal1 (normal of vertex on

Mg) and normal2 (normal of vertex on Ms). The ’•’ denotes the dot product between

the normals. The Cur term is a quantitative measure of the shape of a surface at a vertex.

kj
g, kj

s, j = 1, 2 are the maximum and minimum principal curvatures of the vertices on

Mg and Ms, respectively. In (6.4), it is apparent that each term is always negative;

therefore, values that are closer to zero signify greater similarity.

This method results in a correspondence for each vertex on the generic model with

a vertex on the scanned model. However, some of these correspondences may contain

outliers. Therefore, a statistical measure using quartile analysis is applied to the simi-

larity scores in order to retain reliable correspondences and discard outliers. For each

of the regions, the upper quartile (Q1), lower quartile (Q3), and the inter-quartile range

(Q3 −Q1) of the similarity scores is computed. Correspondences in a given region with

similarity scores that are greater than Q1− 2 (Q3 −Q1) are retained while all others are

discarded.

Each vertex on the generic model with an unreliable correspondence undergoes a

second process for re-establishing correspondence. For the sake of clarity, let us denote

an unreliable correspondence by pu
g ↔ pu

s . To re-establish a correspondence for pu
g ,

firstly, the six nearest neighbors of pu
s are obtained from the scanned model. The nearest

neighbors are selected only from vertices on the scanned model that were declared as

having reliable correspondences. An interpolated (virtual) vertex, V (pu
g ), is created

at the mean location of the nearest neighbors of pu
s . The generic model vertex, pu

g ,

is then assigned (virtually) to the interpolated vertex on the scanned model, V (pu
g ),

as a correspondence. This enables us to establish a reliable correspondence for each

vertex on the generic model in order to drive the refined conformation described in the

following section.
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(a) (b) (c)

Figure 6.2: Local mapping. (a) The generic and (b) scanned models are sub-divided into
corresponding regions based on their respective control points. (c) The similarity values
of the correspondences established between the generic model and a sample scanned
model.

6.2.3 Generic model conformation

To complete the refined conformation of the generic model onto the scanned model, an

energy minimization functional, E, is applied. The energy functional is calculated from

the point correspondences established in the previous section, and is given by:

E = Eext + λEint (6.7)

where Eext and Eint denote the external and internal energies, respectively, and λ is a

weighting coefficient that dictates the contribution of the internal energy term.

The external energy term, Eext, drives the vertices of the generic model to the loca-

tion of their counterparts on the scanned model, and is given by:

Eext =
N∑
i=1

wi ‖pi − p̃i‖2 (6.8)

where {wi}Ni=1, are weighting coefficients associated with the correspondences (in our

experiments all weights were set to 1), and {pi}Ni=1 and {p̃i}Ni=1 are the generic model

vertices and their scanned model counterparts, respectively.
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The internal energy term, Eint, impedes the movement of the vertices on the generic

model from their initial arrangement. It is given by:

Eint =
N∑
i=1

∑
j∈KNN

(‖pi − pj‖ −
∥∥p0

i − p0
j

∥∥)2 (6.9)

where pj is the jth nearest neighbor of pi (in our experiments we consider the K =

4 nearest neighbors) in the initial arrangement of the vertices, and p0
i , p

0
j denote the

vertices’ initial locations. Since the energy functional in (6.7) is quadratic with respect

to pi the multivariate equation can be reduced to a sparse set of linear equations, and

can be efficiently solved using a quadratic programming method such as the conjugate

gradient method [66].

The generic model conformation process is repeated for all scanned models within

the database. This results in a conformed instance of the generic model for each scanned

model within the database. Figure 6.3(d) illustrates an example conformed generic

model after local mapping.

(a) (b) (c) (d)

Figure 6.3: (a) The generic model prior to global and local mapping. (b) A sample
scanned model. (c) The two models are finely registered based on a dense set of corre-
spondences. (d) The conformed generic model after the local mapping.

It is also worth noting that the FRGC database consists of frontal views for all sub-

jects, however, there is a scale ambiguity due to the acquisition device not being at a

fixed distance away from the subjects. We applied the Procrustes analysis method [50]

to the 19 control points of both the initial generic model (prior to conformation) and the
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conformed generic model to derive a scale factor. This scale factor is then applied to the

conformed generic model for normalization.

6.3 Computing geodesic distances between anatomical point pairs

Geodesic distance is the distance of shortest path from a source vertex, pi, to a destina-

tion vertex, pj , along a surface. We utilize the geodesic distances between vertex pairs

of the conformed generic model to construct a set of weak classifiers for face recog-

nition. The Fast Marching Method (FMM), proposed by Sethian in [72] for computing

geodesic distances across a triangulated surface, is employed in this work for computing

geodesic distances.

In our experiments, we use the geodesic distances from a set of source vertices to

a subset of their surrounding vertices as features. There are a total of 205 source ver-

tices that are uniformly distributed across the facial region, as shown in Figure 6.4(a).

The destination vertices for a given source vertex, psrc = (x, y), are computed as

pdes = (x+ r cos θ, y + r sin θ), where four distances, r ∈ {15, 30, 45, 60}, and 24

orientations, θ ∈ {
0, 1

2π
, 2
2π
, · · · , 23

2π

}
, are used. Figure 6.4(b) illustrates an example of

a source vertex and its surrounding destination vertices used for computing the geodesic

distance features, and the solid line shows the boundary of the face model. For each

source vertex, there are 4 × 24 = 96 corresponding geodesic distances if all of its des-

tination vertices are contained within the face boundary. If a destination vertex lies

outside of the face boundary, then it is discarded. Figure 6.4(c) illustrates an exam-

ple of the geodesic paths from the nose tip source vertex to a subset (outer ring) of its

destination vertices. The lower right-hand corner image illustrates their corresponding

positions on the image.
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(a) (b) (c)

Figure 6.4: (a) Grid of source vertices. (b) The nose tip source vertex (blue) and its
destination vertices (red). (c) The geodesic paths from the nose tip source vertex to a
subset of its destination vertices

6.4 Learning the most discriminant geodesic distances between anatom-
ical point pairs by AdaBoost

We construct a set of weak classifiers for face recognition using the geodesic distances

described in the previous section. We use the Adaboost learning algorithm, formulated

by Freund and Schapire [33], termed Real Adaboost, to train a strong classifier based

on a weighted selection of weak classifiers. The following section will describe Ad-

aboost methods as well as the method of constructing the weak classifiers known as

classification and regression trees.

6.4.1 Real Adaboost

Boosting is a method of obtaining a highly accurate classifier by combining many weak

classifiers, each of which is only moderately accurate. The following briefly describes

the Adaboost algorithm, proposed by Freund and Schapire [33]. Let S = {(xi, yi)}Mi=1

be a sequence of M training examples where sample xi ∈ <N belongs to a domain or

sample space χ, and each label yi belongs to a binary label space Υ = {−1,+1}. Each

sample xi is comprised of a set of N features, such as the geodesic distances between

a set of anatomical point pairings employed in this work. A weak classifier is used to
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generate a predicted classification for a sample based on the value of a single feature.

The weak classifiers in this work are constructed using the classification and regression

trees method (CART), which is described in Section 6.4.2.

The idea of boosting is to use a set of weak classifiers to form a highly accurate

classifier by calling the weak classifiers repeatedly with different weighting distributions

over the training examples. Boosting is comprised of three key steps: 1) computing

the weight distribution, 2) training the weak classifier and 3) computing a real-valued

function, ft. The AdaBoost algorithm runs for T iteration, where each sample xi is

assigned a weight wt(i) at each iteration t = {1, . . . , T}. Initially, all weights are

set equally, and are redistributed at each iteration in order to manipulate the selection

process. At each iteration t, the weak classifier produces a mapping ht (x) : χ 7→ <,

where the sign of ht (x) provides the classification, and |ht (x)| is a measure of the

confidence in the prediction. The class predictions are then used to construct a weighted

class probability estimate given by:

pt (x) = P̂w (y = +1|x) ∈ [0, 1] (6.10)

The weights are then redistributed and normalized as follows:

wt+1 (i) =
wt (i) exp (−yiht (xi))

Zt

(6.11)

Increasing the weights of samples that are misclassified by ht, in the next iteration, fa-

vors the weak classifiers that handle correctly these difficult samples. Zt denotes the

normalization factor which ensures that the sum of all weights equals 1. The contribu-

tion to the final classifier is the logit-transform of the class probability estimate given

by:

ft (x) =
1

2
log

(
pt (x)

1− pt (x)

)
(6.12)
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6.4.2 Classification and regression trees

Classification and Regression Trees (CART), proposed by Breiman et al. [8], is a de-

cision tree learning method that is typically used to generate weak classifiers for the

AdaBoost algorithm. The objective is to construct a model that predicts the value or

class of a target variable based on one or more input variables.

CART is a form of binary recursive partitioning. The term binary implies that each

tree node, containing a decision rule, can only be split into two decisions. Thus, each

node can be split into two child nodes, in which case the original node is called a parent

node. The term recursive refers to the fact that the binary partitioning process can be

applied repeatedly. Thus, each parent node can give rise to two child nodes and, in turn,

each of these child nodes may themselves be split, forming additional children. The

term partitioning refers to the fact that the dataset is split into subsets or partitioned. At

the end of each tree path is a leaf node that contains the predicted class label or value

of its subset. The recursion process is completed when all variables contained in a node

have the same value of the target variable, or when splitting no longer adds value to the

predictions.

In our algorithm, we select decision stumps as weak classifiers. A decision stump is

a decision tree with a root node and two leaf nodes. For each feature in the input data,

a decision stump is constructed. The following points support our selection of decision

stumps as the weak classifiers: 1) the model that decision stumps use is very simple

and 2) there is only one matching operation in each decision stump for testing a sample;

thus, the computational complexity of each decision stump is very low.

6.4.3 Intra-class and inter-class space

The Adaboost algorithm works with binary (two-class) classifiers, and face recognition

is effectively a multi-class problem. Therefore, the face recognition problem must be
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transformed from a multi-class problem to a two-class problem. We employ a statis-

tical approach to construct two classification spaces, namely, the intra-class space and

the inter-class space [69]. The intra-class space is formed by analyzing the variations

in geodesic distances between the conformed generic model instances of an individual.

Conversely, the inter-class space is formed by analyzing the variations in geodesic dis-

tances between the conformed generic models of different individuals. Firstly, let the set

of geodesic distances extracted from a given conformed generic model, M, be denoted

by G (M) = {D (pi,pj) |i ∈ [1, . . . , Nsrc] , j ∈ [1, . . . , des(pi)]} where D (·, ·) repre-

sents the geodesic distance, Nsrc is the number of source vertices, and des(pi) denotes

the number of destination vertices associated with source vertex pi. The intra-class and

inter-class spaces are respectively defined as:

CI = {|G (Mp)−G (Mq)| , p = q} (6.13)

CE = {|G (Mp)−G (Mq)| , p 6= q} (6.14)

where Mp and Mq are the conformed generic models taken from subject p and q,

respectively, and p = q denotes that Mp and Mq are two model instances of the same

subject while p 6= q signifies that the models belong to different subjects. Samples of

class CI are designated with label +1 and samples of class CE with −1.

6.4.4 Implementation

Given a training set that includes N images for each of K individuals, the total num-

ber of image pair combinations is CKN
2 , where the majority of pairs belong to the CE

class and a small minority of K × CN
2 pairs belong to the CI class. In order to select a

subset of samples to represent the overwhelmingly large number of CE samples, and to

manage the imbalance between CI and CE samples, we employ the re-sampling scheme

proposed in [91]. Algorithm 3 outlines the training process.
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Algorithm 3 Training process with re-sampling scheme
1: Given the labeled training set X, include all CI samples and select CE samples

randomly at the rate of 1:6 to generate a training subset x ∈ X.
2: for q = 1, . . . , Q do
3: Perform AdaBoost on x for t = {1, . . . , Tq} iterations producing a collection of

weak classifiers Fq (x) =
∑Tq

t=1 ft (x)
4: Replace the CE samples of x; if sign (Fq(xi)) 6= yi, add it to the training subset,

x.
5: end for
6: Final classifier: sign (F (x)) = sign

(∑Q
q=1 Fq (x)

)

The final classifier, F (x), is the summation of a set of strong classifiers, Fq (x) =
∑Tq

t=1 ft (x), where each Fq (x) is a collection of weak classifiers obtained from the qth

iteration’s training samples. After each iteration, a re-sampling scheme is employed

to replace CE samples for the subsequent iteration. Because of the limited number of

CI samples, all CI samples are retained in each iteration, and only CE samples are re-

sampled. If at iteration q, a CE sample, xi, is misclassified by the strong classifier,

Fq (x), xi is added to the set of training samples for iteration q + 1. The number of

Adaboost iterations, Tq, is contingent on the strong classifier, Fq (x), achieving an ac-

ceptable false positive and false negative classification rate. Each iteration of the training

process has a false acceptance rate (FAR) of 2% and a false rejection rate (FRR) of 0%,

ensuring that the trained classifier is capable of separating the CI samples from the CE

samples. The ratio of CI samples to CE samples is maintained at 1:6 due to the imbal-

ance between CI and CE samples.

6.5 Experimental results

We tested the proposed method on the FRGC 3D face database D collection, and used

525 3D range images of 179 subjects. These images were acquired at the University

of Notre Dame between January and May 2003. Two four-week sessions were con-

ducted for data collection, approximately six weeks apart. Subjects participated in one
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or more acquisitions, with a minimum of one week between successive acquisitions. In

each acquisition session, subjects were imaged using a Minolta Vivid 900 range scan-

ner. Subjects stood approximately 1.5 meters from the camera, against a homogeneous

background, with one front-above-center spotlight illuminating their face. They were

instructed to maintain a neutral facial expression and to look directly at the camera.

The Minolta Vivid 900 uses a projected light stripe to acquire triangulation-based range

data. It also captures a color image near-simultaneously with the range data capture.

The result is a 640 × 480 sampling of range data and a registered 640 × 480 color

image.

The range images were split evenly into a training set and a testing set, except for

subjects who possess only a single range image. For these cases, the range images were

automatically enrolled into the training set. This resulted in a training set consisting of

319 range images of 179 subjects and a testing set of 206 range images of 118 subjects.

The training set yielded 199 and 50,525 intra-class and inter-class range image pairs,

respectively. At any given training stage, all 199 intra-face pairs and 1,200 inter-face

pairs are used for training.

The method described in Section 6.3 resulted in 16,589 geodesic distance features

per conformed generic model instance. The training process iterated through 8 stages,

and generated a final classifier consisting of 814 geodesic distance features. The distri-

bution of features selected by the training process is shown in Figure 6.5(a), where the

point size indicates the proportion of selected features associated with a source vertex.

This illustrates that the most discriminant facial regions are the areas around the nose,

eye brows, mouth, and chin (e.g. high curvature regions) when using geodesic distances.

To evaluate the performance of the proposed method, we applied it to the probe and

gallery sets of the testing set. Intra-class and inter-class pairs were constructed between

a probe image and all images contained within the gallery. This resulted in one intra-



102

(a) (b)

Figure 6.5: (a) Features selected by AdaBoost, (b) Rank-one recognition rate as a func-
tion of the number of features selected

class pair and 117 inter-class pairs for each subject in the probe set. The final classifier,

obtained from the Adaboost algorithm, was then applied to the sample set of each subject

to produce the class predictions. As mentioned in Section 6.4.1, the sign of the classifier

output provides the classification, and the absolute value is a measure of the confidence

in the prediction. Therefore, a match score can be derived based on the absolute value

of the classifier output, and since intra-class pairs are labeled as positive, the maximum

match score would be the rank-one result. Algorithm 4 outlines the recognition process.

Algorithm 4 Recognition Process
1: gallery samples (xg

i , y
g
i ), i = 1, 2, . . . ,M, xg

i ∈ RN

2: probe samples (xp
i , y

p
i ), i = 1, 2, . . . , L, xp

i ∈ RN

3: for u = 1, . . . , L do
4: for v = 1, . . . ,M do
5: Fv (x

p
u) =

∑
t ft (|xp

u − xg
v|)

6: end for
7: ypu = ygi , i = argmax

v=1,...,M
Fv (x

p
u)

8: end for

A plot of the rank-one recognition rate as a function of the number of geodesic

distance features used is shown in Figure 6.5(b). As illustrated in Figure 6.5(b), the rank-
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one recognition rate improves from 28% with 10 features to 97.2% with 600 features.

In Table 6.1, we compare our results with state-of-the-art systems [48, 70]. Although

the rank-one recognition rate reported here is less than those reported in [48, 70], the

advantage of our approach is in the computational efficiency of the matching process.

As discussed in Section 6.4.2, there is only one matching operation in each decision

stump for testing a sample; thus, the computational complexity for each decision stump

is extremely low. The final classifier is a weighted collection of decision stumps. As

there are n weak classifiers comprising the final classifier, the computational complexity

of testing a sample is O(n), where n is approximately equal to 600 in our case. The

computational complexity reported in [70] is O(KN), where N is approximately equal

to 30,000 vertices and K ≤ 20 denotes the number of iterations used for fine-tuning the

face model registration. The matching process proposed in [48] consists of computing

the L1-norm distances between 1-channel and 3-channel deformation images of a probe

and gallery subject. The computational complexity of this method is O(4N), where N

denotes the number of vertices in the facial region. In the case that N = 30,000 vertices,

the computational complexity of this method is 120,000 steps.

Table 6.1: Performance comparison to other 3D face recognition systems tested on the
FRGC database D collection

Author, year, reference Subjects in dataset Images in dataset Core matching algorithm Recognition rate
Kakadiaris et al., 2005, [48] 275 943 Deformable model 99.3%

Russ et al., 2005, [70] 200 398 Hausdorff distance 98.5%
this work 179 525 Geodesic distance, Adaboost 97.2%

6.6 Conclusion

In this work, we have presented a method for 3D face recognition using adaboosted

geodesic distance features. Experimental results have shown that the system can achieve

a 97.2% rank-one recognition rate using only 600 features. The geodesic distances
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selected by the Adaboost algorithm are contained primarily within the regions of the

nose, eye brows, mouth, and chin. These salient facial regions are consistent with those

reported in psycho-visual analyses of human face perception and recognition [36].



Chapter 7

A Content-based System for Human
Identification based on Bitewing Dental
X-Ray Images

Human identification based on dental features has played an important role in forensic

science for identifying missing people. Based on the information provided by experts

from the Criminal Justice Information Services Division (CJIS) of the FBI, there are

over 100,000 unsolved Missing Person cases in the National Crime Information Center

at any given point in time, 60 percent of which have remained in the computer system for

90 days or longer. CJIS has included in its strategic plan the creation of an Automated

Dental Identification System (ADIS), with similar goals and objectives to its Automated

Fingerprint Identification System (AFIS) but using dental/teeth characteristics instead

of fingerprints.

7.1 Motivation

Dental features are regarded as the best candidates for postmortem (PM) biometric iden-

tification. Not only they represent a suitable repository for unique and identifying fea-

tures, but also survive most PM events that can disrupt or change other body tissues, e.g.

bodies of victims of violent crimes, motor vehicle accidents, and work place accidents,

whose bodies can be disfigured to such an extent that identification by a family member

is neither reliable nor desirable.

105
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Traditionally, dental identification methods, in which PM dental records are ana-

lyzed and compared against antemortem (AM) records to confirm identity, rely on den-

tal restoration and dental work features rather than inherent tooth characteristics, e.g.,

morphology of teeth and roots. Clearly, individuals with numerous and complex dental

treatments are often easier to identify than those individuals with little or no restorative

treatment. But, in many cases these features are not enough to get correct identifications,

moreover, these identification methods are not fully automated as image comparison is

carried out manually [51, 54, 60]. In the future, these features may become unreliable

and difficult to use due to the advances in dentistry. For example, contemporary genera-

tions have less dental decay than their predecessors; also cavities in today’s children and

their offsprings will be virtually undetectable because of using hi-tech pit and fissure

sealants. Consequently, it becomes important to develop automatic dental identification

systems using inherent dental features [47], such as shapes of roots and crowns, and

space between teeth, for substituting the manual methods [76].

To build automatic dental identification systems, there are several challenges. For

example, dental features may change over time. Therefore, they are not always reli-

able and the system needs to decide when to rely on them and when to ignore them.

Meanwhile the system needs to handle dental radiographs of poor quality and take view

variance of the images into consideration. An important issue is the segmentation of

the teeth from the radiograph. This step is crucial for the success of the automated den-

tal identification system, because the accuracy of the extracted features depends on the

results of the segmentation.

In this chapter we present a system for archiving and retrieval of dental images to be

used in identification based on dental images. The system includes steps for dental im-

age classification, automatic segmentation of bitewing dental X-Ray images, and teeth

shape matching. The major reason for working with bitewing images is that the shapes
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of molar teeth in bitewing images are considered more distinctive than other teeth. Also,

the bones are usually visible and distinguishable from the teeth and can be used to sep-

arate the roots from the crowns of the teeth. As we will see in the experiments, since

the quality of bitewing images is usually not poor, most of the teeth in these images

could be successfully separated into crowns and roots, which is potentially important

for extracting features for identification.

The remainder of this chapter is organized as follows: Section 7.2 introduces our

method for classifying the three types of dental images, details the algorithm for seg-

menting bitewing images, and describes the teeth matching algorithm. Section 7.3 dis-

cusses the experimental results of the classification, segmentation, and retrieval using

the proposed methods in section 2. The conclusions are discussed in Section 7.4.

7.2 System components

Figure 7.1 shows a high-level diagram of our system. The system contains two stages:

archiving and retrieval. During archiving, the system processes AM images, classifies

and segments them, extracts the teeth contours and archives them in a database. In

the retrieval stage, a PM image is submitted; the system classifies and segments the

image and uses extracted contours of the teeth to calculate shape distance between the

PM image and the AM images, and presents AM images with the smallest distances

to the user. The details of the system components: dental image classification, image

segmentation, shape based retrieval, are presented in the rest of this section.

7.2.1 Dental image classification

Image classification is the first step in the system. In our system, there are three types

of dental images according to the way they capture the dental features, i.e., panoramic,

periapical and bitewing (see Figure 7.2). The periapical images are further subclassified

into upper periapical, which shows the upper jaw, and lower periapical, which shows the
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Figure 7.1: Archiving and retrieval stages of human identification system.

lower jaw. Different types of dental radiographs contain different information of dental

features. Our system classifies the dental images and only archives the bitewing images.

In the future, we plan to use the classification results to select the appropriate archiving

procedure for each type of the images.

Panoramic images have more teeth than perapical and bitewing images, and there-

fore have more vertical edges which correspond to the teeths boundaries (see Figure

7.3). We can use the amount of vertical edges as a feature to distinguish between the

panoramic images and the other two types of dental images. In order to distinguish

between periapical and bitewing images, we use a feature related to the orientation of

horizontal and near horizontal edges. There are two types of horizontal (or near hori-

zontal) edges: one with upward gradient and the other with downward gradient. It is

clear that a periapical image has more of one type of these edges than the other, while a

bitewing image or a panoramic image has near equally horizontal (and near horizontal)

edges with both upward and downward gradients (see Figure 7.4). The second feature

used is either the ratio of the number of horizontal edges with upward gradient to the

total number of horizontal edges, or the ratio of the number of horizontal edges with

downward gradient to the total number of horizontal edges.
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(a) (b) (c) (d)

Figure 7.2: The three types dental images. (a) Bitewing; (b) Upper periapical; (c) Lower
periapical; (d) Panoramic.

(a) (b) (c) (d)

Figure 7.3: Vertical edges in the three types dental images. (a) Bitewing; (b) Upper
periapical; (c) Lower periapical; (d) Panoramic.

(a) (b) (c)

(d) (e) (f)

Figure 7.4: Horizontal edges with upward gradient in (a) Bitewing; (b) Upper periapical;
(c) Lower periapical and horizontal edges with downward gradient in (d) Bitewing; (e)
Upper periapical; (f) Lower periapical.
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From the discussion above, we have a total of two features to classify the three types

of images: 1) The quantities of the vertical edges in the image; and 2) Ratio of horizontal

edges with upward gradient to the total amount of horizontal edges. These two types of

features are only related to the content of the dental images and are independent of the

size of the image.

Given a dental image, a Bayes classifier is used to classify the dental image as fol-

lows: Let ci denotes the i-th class, where i = 1, 2, 3, 4 for panoramic, bitewing, upper

periapical or lower periapical class, respectively. According to the Bayes rule, the pos-

teriori probability of an image with feature vector x being from class ci is:

p (ci|x) = p (x|ci) p (ci)
p (x)

(7.1)

Where x is the feature vector, p(x|ci) and p(ci) are the conditional and priori prob-

abilities, respectively. We are assuming that the features are independent and have a

Gaussian distribution, therefore, p(x|ci) can be calculated as:

p (x|ci) = 1

(2π)
d
2 |Σi| 12

exp

[
1

2
(x− µi)

t Σ−1 (x− µi)

]
(7.2)

Where µi is the mean, Σi is the covariance matrix. Assuming p(ci), i = 1, 2, 3, 4, are

uniform, an image can be classified to the class with the maximum conditional proba-

bility, i.e., Maximum Likelihood classification.

7.2.2 Image segmentation

The goal of our segmentation method is to segment the teeth from the background in

bitewing images, and extract for each tooth the contour of the crown and the root. Since

dental radiographs often suffer from poor quality, low contrast and uneven exposure that

complicate the task of segmentation, the segmentation is the most challenging step in

the whole system, and could critically affects the accuracy of the system.
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The proposed segmentation method consists of three steps, region of interest (ROI)

localization, image enhancement, and tooth segmentation. The ROI localization step

isolates the region of each tooth from the image. The image enhancement step is per-

formed before segmentation to improve the quality of the dental X-ray images. The

tooth segmentation step obtains the contour of the teeth and separates it into crown and

the root parts with the help of the bone information.

ROI Localization

If we can separate the image into ROI regions, where each region contains only one

tooth, it will then become easier to segment the tooth from the background. We use the

method of active contours, i.e., “snakes”, to separate the ROI regions.

A traditional snake is a curve, v(s) = [x(s), y(s)], s ∈ [0, 1], that moves through the

spatial domain of an image to minimize an energy function given by

E =

∫ 1

0

[
1

2

(
α|v′

(s) |2 + β|v′′
(s) |2

)
+ Eextv (s)

]
ds (7.3)

Where α and β are weighting parameters that control the snakes tension and rigidity,

respectively, and v
′
(s), v

′′
(s) denote the first and second derivatives of v(s) with respect

to s. The external energy function Eext is derived from the image so that it will have

small values at the features of interest [87]. In our work, we use the external energy

function defined by

Eext (x, y) = Gσ (x, y) I (x, y) (7.4)

Where I (x, y) is the gray-level image, and the Gσ (x, y) is a two dimensional Gaussian

function with standard deviation σ. With this definition, the function Eext will have

smaller values at bones and background areas that separate individual teeth. A large σ

will cause the image to blur, which is often necessary to increase the capture range of

the active contour.
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Figure 7.5(a) shows the result of separating the upper and the lower jaws in a bitew-

ing image using this algorithm. The white line is the result from the “snakes” method

after several iterations on the initial line, where the initial line is horizontal or near

horizontal and runs across the middle part of the image through the area of the lowest

intensity. The initial line is obtained using horizontal integral projection [1,9]. With the

assumption that there exists a horizontal or near horizontal straight line with an angle θ

that could be used as an approximation for separating the upper and the lower jaws, the

integral projection function, defined in equation (7.5), will have the minimal value at the

position of that line.

L (θ, x) =
∑
y

Iθ (x, y) (7.5)

Where the Iθ is the original image rotated by θ. x and θ together determine the initial

near horizontal line for the snakes method. To separate the teeth in each jaw, the initial

separating lines are obtained using vertical integral projection. Figure 7.5(b) shows one

example of separating teeth using the “snakes” method.

(a) (b)

Figure 7.5: ROI Localization using snakes (a) Separation of upper and lower teeth; (b)
Separation of individual tooth.

In dental image segmentation, identifying missing teeth is a very important issue.

Once the missing teeth are identified in the image at the ROI localization stage, this

information can help in the matching stage. For example, if a PM image contains teeth
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in positions corresponding to missing teeth in an AM image, this means a match is

impossible.

We developed a method to identify missing teeth areas after locating the initial lines

which separate the teeth in each jaw using integral projection. Figure 7.6(a) shows a

bitewing image with a molar tooth missing. Figure 7.6(b) shows the lines obtained by

integral projection, where each separated region contains only one tooth. The middle

vertical line actually runs across a missing tooth region. To identify a missing tooth, we

first use region growing to obtain the dark area around the initial line, which corresponds

to the missing tooth or air, and calculate the centers of mass for the two adjacent regions

(surrounding teeth), shown as Figure 7.6(c). Let b be the distance between the two

centers of mass, and a be the portion of b that lies inside the dark region. Assuming that

the dark area is either a missing tooth or a gap between teeth, to decide which class the

area belongs to, we use the ratio of a to b as the feature and apply a Bayes classifier to

classify it based on this feature. The Bayes classifier is designed using the following

decision functions:

dj (x) = p (x|wj) p (wj) j = 1, 2 (7.6)

Where x is the ratio of a to b, w1 denotes the missing tooth class, and w2 denotes the

gap class. p (wj) for j = 1, 2, are the prior probabilities and p (x|wj) are the conditional

probability distributions. We estimated the conditional probability distributions of the

two classes from a training set of 26 images half of them have a missing tooth.

A dark area with a feature value x is assigned to missing tooth class if that d1(x) is

greater than d2(x). If the dark region is for a missing tooth as in Figure 6.b, the middle

vertical line has to be replaced by two new lines closer to the adjacent teeth, shown as

Figure 7.6(d).
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(a) (b)

(c) (d)

Figure 7.6: Missing tooth detection (a) original image; (b) Initial localization result from
integral projection; (c) Features for detection of a missing tooth; (d) Final result.

Enhancement

Dental radiographs often suffer from low contrast and uneven exposure that complicate

the task of segmentation. Applying enhancement usually helps the segmentation. In

dental radiographs there are three distinctive regions: background (the air), teeth, and

bones (see Figure 7.7). Usually the teeth regions have the highest intensity, the bone re-

gions have high intensity that sometimes is close to that of the teeth, and the background

has a distinctively low intensity. Threshold can be used to separate the background from

the image, but threshold methods may fail to discriminate teeth from bones because

their intensities are sometimes similar, especially in cases of uneven exposure. In order

to prepare the image for successful segmentation, the first step is to enhance the images

contrast by making the teeth regions brighter and suppressing the intensity in the bone

and the background regions.

Two morphological filters, top-hat filter and bottom-hat filter, can be used to ex-

tract light objects (or, conversely, dark ones) on a dark (or light) but slowly changing
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Figure 7.7: A typical dental X-ray image.

background [75] [81]. The top-hat filter returns the difference between the result of

morphological opening operation and the original image. The bottom-hat filter is per-

formed by subtracting the original image from the result of grayscale closing operation.

To enhance the bright regions that correspond to the teeth, the top-hat filter is applied.

Similarly, to enhance the dark bones and air areas, bottom-hat filter is applied to produce

large pixel values in the result, where there are small dark regions in the original image.

In our method, we use both top-hat and bottom-hat filtering operations on the original

image. The enhanced image is obtained by adding to the original image the result of the

top-hat filter and subtracting the result of the bottom-hat filter, as follows:

EnhancedImage = OriginalImage+ tophat(OriginalImage)

− bottomhat(OriginalImage)
(7.7)

Figure 7.8 shows an example of applying the above enhancement algorithm on a bitew-

ing dental image. Figure 7.8(a) shows the original image and Figure 7.8(b) and Figure

7.8(c) show the results of applying the top-hat and the bottom-hat filters, respectively.

Figure 7.8(d) shows the resulting enhanced image, where the teeth have been brightened

and the background and the bone regions have been suppressed.
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(a) (b) (c) (d)

Figure 7.8: An example of dental image enhancement. (a) Original image; (b) Result of
top-hat filtering; (c) Result of bottom-hat filtering; (d) The final enhancement result.

Teeth segmentation

After obtaining the enhanced image using top-hat and bottom-hat filters, the system

segments the images as follows. First, it obtains the initial contours. Then it refines

these initial teeth contours using the active contour method. Finally, the teeth contours

are separated into the crowns and the roots.

A window-based adaptive threshold is used to segment the enhanced image to min-

imize the influence of uneven intensity and noise in the bone regions [63]. The idea of

window-based adaptive threshold is to examine the intensity values of the local neigh-

borhood of each pixel. If the intensity value of the pixel is larger than the average

intensity of its neighbors, then it is classified as belonging to a tooth, otherwise it is

classified as belonging to background. Next, the system uses the results from ROI local-

ization to isolate each tooth region in the threshold image. Then, it applies size filtering

to smooth the teeth region and remove noisy areas [35,37,74]. The initial teeth contours

are extracted from the teeth regions in the images.

Due to the variance in the quality of dental images, sometimes the initial contours are

not good enough to ensure successful matching. To overcome this problem, we apply the

“snakes” method again to refine the contours and obtain more reliable results. Here the

external energy function is different from the one used for ROI localization. The external
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energy function is a Laplacian of Gaussian operation as defined in equation (7.8), and

it will have small values at step edges and will lead the snake towards boundaries of

teeth [62].

Eext = −|∇ (Gσ (x, y) ∗ I (x, y)) |2 (7.8)

Figure 7.9 shows an example of the teeth segmentation stage for the image whose en-

hancement result has been shown in Figure 7.8. Figure 7.9(a) is the segmented image

using the window based adaptive threshold. Figure 7.9(b) shows the isolated teeth re-

gions using the results from ROI localization. Figure 7.9(c) shows the separated and

smoothed teeth regions that are used for extracting initial teeth contours.

(a) (b) (c)

Figure 7.9: An example of teeth segmentation. (a) Result of adaptive thresholding; (b)
Teeth regions isolation using the result from ROI localization; (c) Result after morpho-
logical operations.

After obtaining the final teeth contours from the active contours, the system will

separate them into crown and root parts. Basically, the crown is the upper part of the

tooth outside the gum, and the root is the part of the tooth that sits in bones between

teeth. Positions of the bones provide important information to separate the crown and

the root parts of the teeth. As shown in Figure 7.10, lines that connect the tips of the

bones approximate the gum line, which separate teeth into crowns and roots. To obtain

the positions of the tips of the bones, the system segments the bones from the original
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Figure 7.10: Separation of crown and root.

image. This is achieved by subtracting the segmented teeth from the original image

followed by a threshold operation to segment the bones from the background (see Figure

7.11).

Figure 7.11: Segmented bones image.

In a bitewing dental image (see Figure 7.10), there are two gum lines, the upper jaws

gum line and the lower jaws gum line, need to be located. To do this, the system first split

the bones image into two parts, one contains lower jaws bones and the other contains

upper jaws bones. The split is done by using the result from ROI localization. In these

images, the bones are usually not vertical, but have a slope with the vertical direction.

To determine the slope of the bones in each jaw, the system rotate the image in a range
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of angles, e.g., [−30, 30], with an interval of one degree, and establish a vertical integral

projection for each rotated image,

Hθ (y) =
∑
x

Bθ (x, y) (7.9)

Where Bθ (x, y) is the rotated bones image, and θ denotes the angle of rotation. The

rotation angle θ that makes the bones vertical will result in many zero values in Hθ (y),

and therefore the standard deviation of Hθ (y), as calculated in equation (7.10), will

most probably have the maximum standard deviation value among all std
(
Hθ (y)

)
, θ ∈

[−30, 30].

std
(
Hθ

)
=

[
1

M − 1

M∑
j=1

(
Hθ (y)−H

θ
)2
] 1

2

(7.10)

WhereM is width of the bones image and

H
θ
=

1

M

M∑
j=1

Hθ (y) (7.11)

Thus the slope of bones can be determined. Figure 7.12 shows an example of the vertical

Figure 7.12: Bone image and its rotated version with the integral projection for both
images.
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integral projection. The upper row of Figure 7.12 shows the original bone image of the

upper jaw and the rotated version of the image, where the bones are almost vertical. The

lower row of the figure shows their integral projections, where it is clear that the second

image produces more zero values as evident by the larger intervals of zeros.

When the bones are vertical in a rotated image, the tips can be approximated using

the top center points of the bones. The positions in the original image can be computed

according to the rotation angle between the rotated image and the original image. Fi-

nally, by connecting these tips in the original image and locating the intersection points

with teeth contours, the teeth contours are separated into roots and crowns (see Figure

7.13). Two examples of segmentation with crowns and roots separated are shown in

Figure 7.14.

(a) (b)

Figure 7.13: Separated roots and crowns.

7.2.3 Shape based retrieval

The extracted contours are used in calculating the distance between the submitted PM

case and the cases in the AM database. Sometimes the teeth in the dental images are

partially visible. Therefore, the extracted boundaries in these images can be partial

boundaries of the teeth. This can happen for both AM and PM teeth. To solve this

problem, we apply Partial bi-directional Hausdorff distance [41] for shape matching.
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(d) (e) (f)

Figure 7.14: Teeth segmentation and separation of crowns and roots. (a) Original im-
ages; (b) Results of adaptive thresholding; (c) Refined teeth contours with points that
separate the roots and crowns.

The partial bidirectional Hausdorff distance as a function of transformation of PM shape

is defined as:

HLK (T (P ) , P ′) = max {hL (P
′, T (P )) , hK (T (P ) , P ′)} (7.12)

where P is the PM tooth boundary, T (P ) is the transformation of P , which can be

represented as

T (P ) = AP + t

=

(
cos θ sin θ
− sin θ cos θ

)
∗
(

s 0
0 s

)
∗
(

x
y

)
+

(
tx
ty

) (7.13)

P ′ is the AM tooth boundary, hK (T (P ) , P ′) is the partial directed distance from T (P )

to P ′, where 1 6 K 6 q (q is the number of points of P ), and hL (P
′, T (P )) is the

partial directed distance from P ′ to T (P ), 1 6 L 6 q′ (q′ is the number of points of

P ′). The definition of partial directed distance, e.g., hK (T (P ) , P ′) denotes the Kth

ranked value in the set of distances from T (P ) to P ′. That is, for each point of T (P ),

the distance to the closest point of P ′ is computed, and then the points of T (P ) are
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ranked based on the respective distances. The Kth ranked distance value tells us that

K of the points T (P ) are each within that distance of some points in P ′. This process

automatically selects the K best matching points in T (P ), which means that matching

only takes a portion of the contour points into consideration. In practice, to compute the

partial directed distance, we specify some fraction f1, f2, where 0 < f1, f2 < 1, and let

K = f1 ∗ q, L = f2 ∗ q′. The fractions f1, f2 determine how much missing points of the

AM and PM teeth contours we can tolerate.

The matching is performed by finding a transformation, (i.e., rotation, scale and

translation), that results in a minimum Hausdorff distance. As mentioned earlier in the

chapter, our segmentation method can separate each tooth into crown and root, matching

starts by establishing initial correspondence between boundary points to limit the search

space and efficiently calculate the Haustorff distance. Since the crowns are usually

visible, the system can align the two boundaries using only the points of the crowns

to obtain the initial parameters of the transformation. Then the minimum Hausdorff

distance is found using Quadratic Programming optimization method [34].

For each query shape and a database shape pair, the shape distance is defined as

the minimized Hausdorff distance normalized by the scaling factor s used in equation

(7.13). Finally, the system ranks the shape distances of AM images to generate a list

to present to the user. The AM image that has minimum Hausdorff distance to the PM

image is considered as the best match.

7.3 Experimental results

In the dental image classification experiment, we used 60 images as the training set,

with 15 images obtained from each of the four types of dental images, e.g. panoramic,

bitewing, lower periapical and upper periapical images. The proposed image classifica-

tion algorithm was tested on a set of 123 images, in which 9 are panoramic images, 82



123

are bitewing images, 15 are lower periapical images and 17 are upper periapical images.

Figure 7.15 shows few of the images that we used in the experiments. In our classifi-

cation experiments, 5 cases were misclassified out of 123 cases, i.e., the error rate was

4%.

Figure 7.15: Sample of the images used in dental image classification.

We also evaluated the overall performance of the system for retrieval. We used a

set of 102 bitewing AM images in our experiment. The contours of the teeth in these

AM images were extracted and archived in the AM database. To enhance the chances

of correct identification, we used for queries two or three adjacent molar and pre-molar

teeth together. Figure 7.16 shows two typical query shapes from PM images. By using

the contours of several teeth simultaneously rather than single tooth, more information

such as the relative positions and the distances between teeth is utilized, which help

produce more robust retrieval results.

We tested the algorithm for retrieval using 40 PM images. Since the relative posi-

tions of teeth in different jaws may change due to the movement of the jaws, we divide
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(a) (b)

Figure 7.16: Query teeth shapes from PM images. (a) A molar together with an adjacent
premolar; (b) One molar together with two premolars.

the teeth in the dental image into two groups: the upper jaw teeth and the lower jaw

teeth. For each PM image, two queries corresponding to the upper and the lower jaws

were formed. The final matching distance between the PM image and the AM image

takes into account the retrieval results from the two queries. This is achieved by using

the average matching distances of the two queries as the matching distance between the

PM image and an AM image. The AM image that has the minimum matching distance

is considered the most similar image to the PM image. Given a PM image the system

retrieves the most similar AM images in the database using the bidirectional Hausdorff

matching distance.

Figure 7.17 shows an example, where both the two queries from the PM image

obtain the correct AM image as the first match. Figure 7.18 shows another example,

where the query from upper jaw of the PM image obtains the correct AM image as the

second match, whereas the query from the lower jaw obtains the correct AM image as

the fourth match. The final result after using the average matching distance gives the

correct AM image as the best match.

Among the 40 submitted PM images, 33 out of the 40 images obtained the correct

AM images as the most similar images. For the remaining seven images, three of them

obtained the correct AM images as the second most similar images; the other four im-

ages obtained the correct AM images as the 3rd, 4th, 7th, and 11th most similar images.
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(a) (b)

Figure 7.17: Both query teeth shapes get the correct AM image as the first match. (a)
PM image with query shapes. (b) Correct AM image with the query shapes. Matching
distance is 6.9096.

This means that if the user looks only at the top five most similar images, the system

has a precision of 95%. The reasons for the cases where the correct AM images do not

rank first could be 1) the teeth shapes extracted from AM images are not very accurate

because of the image quality, 2) the shape of the same tooth in AM and PM images may

vary due to changes in the viewing angle, and 3) tooth shape may vary because of aging.

(a) (b) (c)

Figure 7.18: (a) PM image with query shapes. (b) Upper jaw query superimposed on
the correct AM image that was retrieved as the best similar image. (c) Lower jaw query
superimposed on the correct AM image that was retrieved as the second most similar
image. Final matching distance was 11.1521 for the correct image.

7.4 Conclusion

In this chapter we presented a content-based archiving and retrieval system of dental

images for use in human identification. It contains three major stages: dental image

classification, bitewing image segmentation and retrieval based on teeth shapes using
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bidirectional Hausdorff distance. In the classification stage, two features are proposed

for dental X-Ray image classification. The classified bitewing images are segmented to

extract the contours of molars and premolars, which are then used to archive the images

in an AM database. During retrieval, a PM bitewing image is segmented to extract

teeth contours, which are used to find the most similar images in the AM database using

Hausdorff distance measure. The experiments show that the three stages of the system

are robust. Most of the images that we have could be well segmented. For the case where

there is overlap between the teeth, more work needs to be done for the segmentation step.



Chapter 8

Summary and Future Work

8.1 Summary

In this work, we studied three different types of biometrics, namely, ear biometrics

including 3D ear biometrics and 2D image-based ear biometrics, 3D face recognition,

and human identification based on dental X-Ray images. We summarize the major

contributions of this dissertation in the following:

• We propose a novel 3D shape descriptor, termed Histogram of Categorized Shape

(HCS). Based on the novel HCS feature, we develop the first efficient and robust

3D ear detector performed solely in the 3D domain that is capable of achieving

better performance than the state-of-the-arts. The proposed framework can be

readily applied to detect 3D objects with prominent surface shape.

• We propose a fully automatic 3D ear recognition system that incorporates local

and holistic surface features for matching 3D ear in a computationally efficient

manner. First a set of feature points, also known as keypoints, are extracted from

the ear models at distinctive locations using an improved 3D keypoint detection

method. The proposed novel SPHIS feature descriptors calculated for each key-

point are used to form the local representation of the 3D ear. Secondly, in lo-

cal shape matching, the local features of a given probe model are matched to a

gallery model. Thirdly, for the holistic matching, the probe and gallery models
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are discretized using a voxelization method. A match score between the vox-

elized representations of a probe and gallery model pair is computed using the

cosine distance. Finally the match score is generated by fusing the match scores

from both the local and holistic feature matching engines.

• We propose a complete, automatic ear biometrics system using 2D images. The

system is comprised of two primary components: ear detection from the pro-

file image, and feature representation and matching. For the ear segmentation

component, we modify the HOG feature construction to achieve computational

efficiency and extend our 3D ear detection procedure to 2D ear detection. For

the ear image feature extraction and matching component, we extend the SIFT

method originally proposed for the intensity image to independent color channels

for improving the robustness of the feature descriptor. The features extracted from

different color channels are fused through the matching process.

• We propose a method using AdaBoost to determine the geodesic distances be-

tween anatomical point pairs that are most discriminative for 3D face recogni-

tion. First, a dense set of correspondences between face surfaces is established by

registering the face models to a generic 3D face model. Secondly, the geodesic

distances between a subset of vertex pairings are computed across all model in-

stances. Thirdly, weak classifiers are formed based on the geodesic distances and

are used as input to an Adaboost algorithm, which constructs a strong classifier

based on a collection of weak classifiers.

• We present a content-based dental image archiving and retrieval system for use in

human identification. It contains three major components: dental image classifi-

cation, bitewing image segmentation and retrieval based on teeth shapes. Exper-

imental results show that the system is effective for dental image classification,
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teeth segmentation, shape matching, and provides a good tool for forensic identi-

fication.

8.2 Future work

For the 3D ear biometrics component, the future directions for extending the work pre-

sented in Chapter 3 will include evaluating the proposed detector on general 3D object

detection tasks, and investigating the use of proposed HCS feature for 3D object classifi-

cation. The future directions for extending the work presented in Chapter 4 will include

further speeding up the local feature matching process by using a probabilistic version

of the k-d tree algorithm or by reducing the dimensionality of the descriptor using fea-

ture embedding techniques. We will also explore using of the proposed approach for

general 3D object retrieval and recognition. In the 2D domain, future work includes

improving the performance of the 2D image-based ear biometric system, e.g. increas-

ing the system’s robustness to pose and lighting variations by incorporating information

from other domains, and using measures of image quality to reject problematic data at

image acquisition stage.

For the 3D face recognition component, future work directions for extending the

work presented in Chapter 6 will include investigating alternate distance metrics, and

applying this method to 3D face models demonstrating facial expression. Conventional

shape matching methods commonly used in 3D face recognition are time consuming,

thus it is also possible to apply the proposed approach as a data reduction technique

to reduce the number of vertices considered when matching 3D facial data; effectively

increasing computational efficiency while maintaining an acceptable recognition rate.

For the dental biometrics component, the future work will include using more fea-

tures, such as soft biometric features in addition to geometry-based features, for image

retrieval, and developing algorithms to allow fast retrieval by incorporating different
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types of image features. It is also possible to work on extending the segmentation algo-

rithm to handle the image with poor quality and to segment the other two types of dental

images, i.e., panoramic and periapical images.
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