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Automated segmentation of brain lesions in magnetic resonance images (MRI)

is a difficult procedure due to the variability and complexity of the location, size,

shape, and texture of these lesions. In this study, four algorithms for brain lesion

detection and segmentation using MRI are proposed. In the first algorithm, an

automatic algorithm for brain stroke lesion detection and segmentation using single-

spectral MRI is proposed, which is called histogram-based gravitational optimization

algorithm (HGOA). HGOA is a novel intensity-based segmentation technique that

applies enhanced gravitational optimization algorithm on histogram analysis results

to segment the brain lesion. The ischemic stroke lesions are segmented with 91.5%

accuracy and tumor lesions are segmented with 88% accuracy.

Since histogram analysis limits the extracted information to the number of pixels

in specific gray levels and does not include any region based information, the accu-

racy of a histogram-based method is limited. In the second algorithm, in order

to increase the accuracy of brain tumor segmentation, a texture-based automated

approach is presented. The experimental results on T1-weighted, T2-weighted, and

fluid-attenuated inversion recovery (FLAIR) images on both simulated and real brain

MRI data prove the efficacy of our technique in successfully segmentation of brain



tumor tissues with high accuracy (95.9± 0.4% for database of simulated MR images,

and 93.2± 0.3% for database of real MR images).

In order to reduce the computational complexity and expedite the segmentation

algorithm, and also to improve the system performance, some modifications are ap-

plied in the algorithm presented in previous algorithm. In the third algorithm, we

present a fully automatic tumor system which is combination of texture-based and

contour-based algorithms. Skippy greedy snake algorithm is capable of segmenting the

tumor area; however, the algorithm’s accuracy and performance depends significantly

on its initial points. Here, we modify the previous algorithm to automatically find

proper initial points which not only obviates the requirement of manual interference,

but also increase the accuracy and speed of optimization convergence. Comparing

with previous method, this method achieves higher accuracy in tumor segmentation

(96.8± 0.3% for database of simulated MR images, and 93.8± 0.1% for database of

real MR images) and lower computational complexity.

The intensity similarities between brain lesions and some normal tissues result in

confusion within segmentation algorithms, specially in the database of real MR im-

ages. In order to improve the system performance for this database, a multi-spectral

approach based on feature-level fusion is presented in forth algorithm. Even though

using multi-spectral MRI has several drawbacks and limitations, since it makes use of

complementary information, it increases the accuracy of the system. Here, a feature-

level fusion technique based on canonical correlation analysis (CCA) is proposed. It is

worth mentioning that for the first time CCA is applied for combining MRI sequences

in order to segment tumors. Even though data fusion increases computational com-

v



plexity of the segmentation algorithm, it results in a higher accuracy (95.8±0.2% for

database of real MR images).
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CHAPTER 1

Introduction

Computer vision and machine learning is concerned with the theory of artificial

systems and the extraction of information from various images. The image data which

is processed by the computer can take many forms, such as video sequences or images.

As a technological discipline, computer vision seeks to apply its theories and models

to the construction of computer vision systems to allow it to see as a person would

see. In other words, to recognize objects, to know where it is and to interpret actions.

While this may be an easy task for a human to perform, it is a highly complicated

thing for a machine, computer or robot. Image segmentation is one of the most

challenging topics in computer vision and machine learning. It is defined as manually

or automatically partitioning the image into a set of relatively homogeneous regions

with similar properties, each of which can be tagged with a single label [4]. As an

application of image segmentation in biomedical research is to localize some specific

cells and tissues, e.g., tumor or stroke, in MR images [5]. Medical image segmentation

helps physicians to find these lesions more accurately, and in emergency cases that

specialist is not available, can be great source of information. Therefore, it is an

important and crucial process in computerized medical imaging.
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In this research, machine learning and computer vision techniques are used to

develop some approaches to automatically segment brain tumors and stroke lesions

in MR images. The importance of this study is obvious, since stroke and brain

tumors are among first five leading causes of death in the United States. According

to a statistical report published by the central brain tumor registry of the United

States (CBTRUS), 285,294 primary brain and central nervous system tumors were

newly diagnosed in period between 2004 to 2008 [6]. Eighty-five percent of brain

and central nervous system tumors occurred in the persons of white race. The same

report indicates that the incidence rate of primary brain tumors, whether benign or

malignant, with 95 percent certainty is 19.82 cases per 100,000 persons per year [6].

Based on American heart and stroke association report, about 795,000 Americans

suffer a new or recurrent stroke each year. That means a stroke occurs every 40

seconds on average. Stroke kills more than 137,000 people a year. It’s the number

four cause of death. On average, every 4 minutes someone dies of stroke. The 2006

stroke death rates per 100,000 population for specific groups were 41.7 for white

males, 41.1 for white females, 67.7 for black males and 57.0 for black females [7].

Stroke/tumor management is a critical phase in which accurate detection and seg-

mentation of brain tumor and stroke lesions in medical images have a great influence

on clinical diagnosis, predicting prognosis, and treatment of these ailments. Addition-

ally, it is beneficial for general modeling of pathological brains and the anatomical

construction of brain atlases [8]. The detailed information about the location and

volume of brain lesions is essential to number of researches in this field, such as

identifying chronic functional deficits, or sleep problem analysis of stroke patients [9].
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Typical medical imaging techniques are ultrasonography, computed tomography

(CT), positron emission tomography (PET), and magnetic resonance images (MRI).

Among them, MRI is the most widely used. One reason is being highly sensitive to lo-

cal changes in tissue water since changes in tissue water reflect physiologic alterations

that can be visualized by MRI. In addition, it is a non-invasive procedure, which un-

like other medical imaging techniques enables the differentiation of soft tissues with

high resolution. Another advantage of MRI is that it produces multiple images of the

same tissue with different contrast visualization via the application of different image

acquisition protocols and parameters [10]. These multiple MR images provide addi-

tional useful anatomical information for the same tissue. Complementary information

from multiple contrast mechanisms helps researchers study the brain pathology more

precisely.

Brain lesion detection and segmentation can happen either manually or automati-

cally. In manual segmentation, the lesion areas are manually located on all contiguous

slices in which the lesion is considered to exist. Manual segmentation is very expen-

sive, time consuming, and generally suffers from the lack of permanent availability,

reliability and reproducibility [11]. It is because of their reliance upon subjective

judgments, which raises the possibility that different observers will reach different

conclusions about the presence or absence of lesions, or even that the same observer

will reach different conclusions on different occasions [12, 13]. Therefore, an effective

automatic brain lesion segmentation algorithm is clinically beneficial and desirable.

Although there are several general segmentation methods such as thresholding

[14], region growing [15], and clustering [16–19], they are not easily applicable on the

brain lesion identification domain. The reason for this is the intensity similarities
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between brain lesions and some normal tissues, which can result in confusion within

the algorithm. For example, if the lesion is inside the white matter (WM), there

is overlapping intensity distributions between white matter lesion (WML) and grey

matter (GM). Non-parametric or multi-parametric statistical classification techniques

are not able to discriminate some areas of the WML from GM [10]. This is because of

the limited resolution of the MR images and complex shapes of the brain tissues that

impact a large number of the voxels located on the borders of various tissues. The

border voxels are generally known as partial volume voxels and contain a mixture of

tissues [10]. Therefore, there is an inherent uncertainty referred to as partial volume

effect where individual voxels contain more than one tissue type . In addition, the

image intensity in the center of a brain lesion is usually different from its periphery.

Therefore, the image intensity at the borders of the brain lesions may be the same as

GM. This phenomenon may cause confusion and misclassification of the peripheral

regions of the lesions as GM. The same problem occurs at the edge of the brain,

where the cerebrospinal fluid (CSF) and GM are averaged together and may present

the voxel intensities which are typical to brain lesions [10].

In order to overcome this problem, many researchers use multi-spectral MR images

for lesion identification [20–29]. However, applying multi-spectral MR images has four

main difficulties. First, acquiring such data is not always feasible due to patient condi-

tion severity and time shortage [9,12]. Second, collection of multi-spectral MR images

is expensive. Third, they can bring a lot of redundant information that increase the

data processing time and segmentation errors [14]. And finally, multi-spectral MRI

data suffers from inconsistency and misalignment, which requires image registration

and bias correction prior to applying the segmentation algorithm [30]. Note that, any
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inaccuracy in registration or bias correction stages will directly affect the precision of

the lesion segmentation. Owing to these limitations, detection and segmentation of

the brain lesion based on single contrast mechanism MR images is desirable.

This study consists of three phases for brain lesion detection and segmentation.

In chapter 4, a new algorithm called histogram-based gravitational optimization

algorithm, which is based on brain histogram analysis and an enhanced gravitational

optimization algorithm is proposed. It presents a new way of histogram analysis to

segment the brain. The algorithm is implemented for brain tumor and stroke de-

tection and segmentation. The proposed algorithm begins with three main stages,

which result in generation of several brain segments. These stages are: first, applica-

tion of a weighted average technique on the brain histogram; second, convolution of a

rectangular window with the histogram maximum bars; and third, connection of the

cutoff borders after thresholding. After these steps, an enhanced optimization algo-

rithm called n-dimensional gravitational optimization algorithm (NGOA) is applied

to achieve the desired number of brain segments. The n-dimensional gravitational

optimization algorithm is based on the principle of gravitational fields. It is moti-

vated by the idea of gravitational forces between several masses and Newtonian laws

of motion [31]. The objective function is a non-linear function of variables, which are

called masses and defined based on brain image histogram analysis. The value of the

objective function determines the movements and new locations of the masses. The

masses are the length of the averaging window, the length of a rectangular convolu-

tion window, and the threshold of cutoff borders. The algorithm is iterated until a

predefined iteration number or convergence is met.
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It is important to consider that in previous studies, one method is applied for

lesion detection and a different method is used for lesion segmentation, but here,

a single algorithm is used for lesion detection and segmentation at the same time,

which makes it more computationally efficient. The other contribution of the pro-

posed algorithm is that it is independent of atlas registration, control groups, and

prior anatomical knowledge. Furthermore, it uses single-spectral MRI for brain le-

sion analysis. Its importance comes from the fact that collection of multi-spectral MR

images is time and cost consuming, and acquisition of just one spectral MR is much

more practical. As another noteworthy contribution, the method is fully automatic,

no need for any help of a clinician or initialization. In addition, the gravitational

optimization algorithm is enhanced to extend it for n-dimension and decreased the

possibility of optimization algorithm being drawn into a local optimal solution.

Four criteria as sensitivity, specificity, accuracy, and similarity index are applied to

evaluate the algorithm performance. The experimental results on both synthetic and

real MR images show that the proposed algorithm, provides an accuracy of almost

91.5% for stroke segmentation and 88% for tumor segmentation.

Histogram analysis limits the extracted information to the number of pixels in

specific gray levels and does not include any region based information. Consequently,

the accuracy of a histogram-based method is also limited. Since texture-based brain

characterization has been proven to be an effective way of brain analysis, in chapter

5, in order to increase the accuracy of brain tumor segmentation, a texture-based

automated approach is presented. This algorithm consists of detection of tumor

slices, tumor segmentation, and efficacy evaluation of feature sets. The proposed

tumor slice detection technique is based on mutual information of histograms of two
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brain hemispheres. After detection of the slice that contains tumor, it is fed into the

segmentation stage, which localizes the tumor area. The candidate tumor regions are

obtained using a sliding window. This window sweeps through whole brain tissue

excluding background area. A proposed post-processing method is applied to remove

the false positives/negatives. The remarkable accuracy of the algorithm in tumor

segmentation for database of simulated and real images is 95.9±0.4% and 93.2±0.3%,

respectively.

In this chapter, two most popular sets of well-established and competent texture-

based feature extraction techniques are employed. The first set is Gabor wavelet

feature extraction method that captures frequency, locality, and orientation, pro-

viding multi-resolution texture information about the spatial-domain as well as the

frequency-domain [32, 33]. The second set, statistical features extraction methods,

is based on applying statistical texture-based feature extraction methods, such as

gray level co-occurrence matrix, histogram of oriented gradient, grey level run length

matrix methods and etc. These feature extraction methods reflect the relationship

between the intensity of two image pixels or groups of pixels. Furthermore, they

estimate image properties related to the first- and second-order statistics [34–37].

Besides tumor detection and segmentation, a study on the effectiveness of these two

feature extraction methods in this application is also offered. To reduce the possibil-

ity that the attained conclusion is only due to some idiosyncrasies of the employed

machine-learning technique, the experiments are performed using several classifiers

such as SVM, KNN, SRC, NSC, and k-means clustering. Two different MR single

contrast mechanism as T1-weighted and FLAIR are separately used for evaluation in

this study.
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In chapter 6, in order to reduce the computational complexity and expedite the

segmentation algorithm, and also to improve the system performance, some modifi-

cations are applied in the algorithm presented in previous chapter. The algorithm

modifications are applied in three main phases: feature extraction, feature selection,

and tumor localization.

First, the feature extraction methods are expanded to include anisotropic Mor-

let complex wavelet transform (AM-CWT) and dual-tree complex wavelet transform

(DT-CWT). It is worth mentioning that this is the first time that the AM-CWT and

DT-CWT are applied for brain tumor segmentation purposes. These wavelets present

aspects of data like trends, breakdown points, discontinuities in higher derivatives,

and self-similarity, which other image analysis techniques overlook [38].

Second, in order to defy the curse of dimensionality to improve prediction perfor-

mance, a novel feature selection technique based on regularized Winnow algorithm

is proposed in which the regularized Winnow algorithm is modified to be applicable

for non-binary inputs. While RWA classifier works with binary feature vectors, it is

modified to not only work as a feature selection technique but also to be able to han-

dle non-binary features. The presented feature selection method is fast and efficient

in dealing with many irrelevant attributes.

Third, in order to localize the tumor area, the candidate tumor regions are attained

using a sliding window, which sweeps through the whole brain tissue with 5 pixel steps,

which decreases the computational complexity by 25 times. A tumor classification

approach is then applied on every instance of the window. If the window is classified

to have tumor, the central pixel of the window will be labeled as tumor. On the

other hand, if it is classified as healthy, the central pixel will be labeled as healthy.
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The regions determined by our method to be tumor will be used to construct the

initial points for a skippy greedy snake algorithm. Specifying the appropriate initial

points has a significant influence on the accuracy and the convergence speed of the

skippy greedy snake algorithm. In addition, it obviates the requirement of human

interference to manually specify initial points, which is one of the common limitations

of the approaches using greedy Snake algorithm. Using this method, more accurate

results for brain tumor segmentation (96.8 ± 0.3% for database of simulated MR

images, and 93.8 ± 0.1% for database of real MR images). It also results in lower

computational complexity, since the average required time for tumor segmentation in

each detected image using previous chapter method is around 2630ms, while applying

the current method the average time is around 140ms.

The intensity similarities between brain lesions and some normal tissues result

in confusion within segmentation algorithms, specially in the database of real MR

images. In order to improve the system performance for this database, a multi-

spectral approach based on feature-level fusion is presented in chapter 7. Even

though using multi-spectral MRI have several drawbacks and limitations, since it

makes use of complementary information, it increases the accuracy of the system.

Here, a feature-level fusion technique based on canonical correlation analysis (CCA) is

proposed. CCA is one of the statistical methods dealing with the mutual relationships

between two random vectors, and it has the same importance as principal component

analysis (PCA) and linear discriminant analysis (LDA) in multivariate statistical

analysis. It is one of the valuable multi-data processing methods. In recent years,

CCA has been applied to several fields such as signal processing, computer vision,

neural network and speech recognition. After registration of MR images to make



10

them aligned, the slices containing tumor are recognized. After tumor slice detection,

in order to populate the training data, random windows located all around the brain

area are cropped. If the central pixel of the window falls in the tumor region, it is

labeled as tumor and otherwise is labeled as healthy. Testing is applied on unseen

slices using the sliding window approach presented in chapter 5. In this case of

multiple sequences, the window selects a region of interest in corresponding sequences

simultaneously. That is, for a single region of interest, there are two input images

from two MR sequences. Feature vectors are extracted from corresponding regions

of interest in both sequences simultaneously. In order to fuse the extracted features,

CCA is applied. The fused feature vectors are fed into a support vector machines

classifier and all the pixels in the brain area are labeled either healthy or tumor. A

post-processing is applied on the labeled image to remove false positives and false

negatives. The accuracy of the proposed algorithm is calculated by comparing the

resulting label image with the golden label provided by the database.

It is worth mentioning that for the first time CCA is applied for combining infor-

mation extracted from MRI sequences in order to segment tumors. Even though data

fusion increases computational complexity of the segmentation algorithm, it results

in higher accuracy (95.8± 0.2 for the database of real MR images).



CHAPTER 2

Magnetic Resonance Imaging

MRI is the imaging technique that has most benefited from technological innova-

tion. The many advances have led to improvements in quality and acquisition speed.

MRI is a medical imaging technique used in radiology to visualize detailed internal

structures. MRI makes use of the property of nuclear magnetic resonance (NMR) to

image nuclei of atoms inside the body [39].

An MRI machine uses a powerful magnetic field to align the magnetization of

protons in the body, and radio frequency fields to systematically alter the alignment

of this magnetization. This causes the protons to produce a rotating magnetic field

of larger frequency detectable by the scanner and this information is recorded to

construct an image of the scanned area of the body [40]. Strong magnetic field

gradients cause nuclei at different locations to rotate at different speeds. 3D spatial

information can be obtained by providing gradients in each direction.

MRI provides good contrast between the different soft tissues of the body, which

make it especially useful in imaging the brain, muscles, the heart, and cancers com-

pared with other medical imaging techniques such as computed tomography (CT)

11
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or X-rays. Unlike CT scans or traditional X-rays, MRI is noninvasive since uses no

ionizing radiation.

An MRI sequence is an ordered combination of radio frequency (RF) and gradient

pulses designed to acquire the data to form the image. The data to create an MR

image is obtained in a series of steps. First the tissue magnetization is excited using

an RF pulse in the presence of a slice select gradient. The other two essential elements

of the sequence are phase encoding and frequency encoding, which are required to

spatially localize the protons in the other two dimensions. Finally, after the data has

been collected, the process is repeated for a series of phase encoding steps. The MRI

sequence parameters are chosen to best suit the particular clinical application.

2.1 Gradient Echo

The gradient echo (GE) sequence is the simplest type of MRI sequence. It consists

of a series of excitation pulses, each separated by a repetition time (TR). Data is

acquired at some characteristic time after the application of the excitation pulses

and this is defined as the echo time (TE). The contrast in the image will vary with

changes to both TR and TE. Advantages of this sequence are fast imaging, low

flip angle and less RF power. The disadvantages are difficulty to generate good T2

contrast, sensitivity to B0 inhomogeneities and sensitivity to susceptibility effects.

2.2 Spin Echo

The spin echo (SE) sequence is similar to the GE sequence with the exception

that there is an additional 180 degree refocusing pulse present. The nuclear magnetic

resonance signal observed following an initial excitation pulse decays with time due
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to both spin relaxation and any inhomogeneous effects which cause different spins

in the sample to process at different rates. The first of these, relaxation, leads to

an irreversible loss of magnetization. However, the inhomogeneous dephasing can

be removed by applying a 180 degree inversion pulse that inverts the magnetization

vectors [41]. Examples of inhomogeneous effects include a magnetic field gradient and

a distribution of chemical shifts. If the inversion pulse is applied after a period t of

dephasing, the inhomogeneous evolution will rephase to form an echo at time 2t. In

simple cases, the intensity of the echo relative to the initial signal is given by e2t/T2

where T2 is the time constant for spin-spin relaxation.

2.3 Inversion Recovery

Inversion recovery (IR) sequence is usually a variant of a SE sequence in that it

begins with a 180 degree inverting pulse. This inverts the longitudinal magnetization

vector through 180 degree. When the inverting pulse is removed, the magnetization

vector begins to relax back to B0. A 90 degree excitation pulse is then applied after

a time from the 180 degree inverting pulse known as the TI (time to inversion). The

contrast of the resultant image depends primarily on the length of the TI as well as

the TR and TE. The contrast in the image primarily depends on the magnitude of

the longitudinal magnetization (as in spin echo) following the chosen delay time TI.

Inversion recovery is used to produce heavily T1-weighted images to demonstrate

anatomy. The 180 degree inverting pulse can produce a large contrast difference

between fat and water because full saturation of the fat or water vectors can be

achieved by utilizing the appropriate time to inversion.
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2.4 Fluid Attenuated Inversion Recovery

Fluid-attenuated inversion recovery (FLAIR) is a pulse sequence and another vari-

ation of the inversion recovery sequence used in magnetic resonance imaging which was

invented by Dr. Graeme Bydder. FLAIR can be used with both three-dimensional

imaging as 3D FLAIR or two dimensional imaging as 2D FLAIR. FLAIR has the

capability to allows a better detection of small hyperintense lesions.

In FLAIR, the signal from fluid e.g. CSF is nulled by selecting a TI corresponding

to the time of recovery of cerebrospinal fluid (CSF) from 180 degree inversion to the

transverse plane. The signal from CSF is nullified and FLAIR is used to suppress

the high CSF signal in T2 and proton density weighted images so that pathology

adjacent to the CSF is seen more clearly. A TI of approximately 2000 ms achieves

CSF suppression at 3.0 T. In FLAIR, bright signal of the CSF (cerebrospinal fluid)

is suppressed which allows a better detection of small hyperintense lesions.

2.5 T1-Weighted

To demonstrate T1-weighted images (T1-w), specific values of TR and TE are

selected for a given pulse sequence. The selection of appropriate TR and TE weights

an image so that one contrast mechanism predominates over the other two. A T1-

weighted image is one where the contrast depends predominantly on the differences

in the T1 times between tissues e.g. fat and water. Because the TR controls how

far each vector can recover before it is excited by the next RF pulse, to achieve T1-

weighting the TR must be short enough so that neither fat nor water has sufficient

time to fully return to B0. If the TR is too long, both fat and water return to B0
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and recover their longitudinal magnetization fully. When this occurs, T1 relaxation

is complete in both tissues and the differences in their T1 times are not demonstrated

on the image. In T1-w images, tissue with short T1 relaxation time appears brighter

(hyperintense).

2.6 T2-Weighted

A T2-weighted image is one where the contrast predominantly depends on the

differences in the T2 times between tissues e.g. fat and water. The TE controls the

amount of T2 decay that is allowed to occur before the signal is received. To achieve

T2 weighting, the TE must be long enough to give both fat and water time to decay.

If the TE is too short, neither fat nor water has had time to decay and therefore the

differences in their T2 times are not demonstrated in the image. In T2-w images,

tissue with long T2 relaxation time appears brighter (hyperintense).

2.7 Proton Density

A proton density (PD) image is one where the difference in the numbers of protons

per unit volume in the patient is the main determining factor in forming image con-

trast. Proton density weighting is always present to some extent. In order to achieve

proton density weighting, the effects of T1 and T2 contrast must be diminished, so

that proton density weighting can dominate. A long TR allows tissues e.g. fat and

water to fully recover their longitudinal magnetization and therefore diminishes T1

weighting. A short TE does not give fat or water time to decay and therefore dimin-

ishes T2 weighting. Fig. 2.1 shows a comparison of T1, T2, FLAIR and PD. In Table

2.1, TR and TE for T1, T2, and PD weighted sequences are compared.
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Figure 2.1: Samples of four MRI images: (A)T1-weighted, (B)PD, (E)FLAIR, and (F)T2
weighted axial brain images

Table 2.1: Comparing TR and TE for T1, T2, and PD weighted sequences

Sequences T1 T2 PD

TR Short (< 750ms) Long (> 1500ms) Long (> 1500ms)

TE Short (< 40ms) Long (> 75ms) Short (< 40ms)



CHAPTER 3

Related Work

Developing an automatic system for processing MRI data and automatic brain

lesion segmentation is necessary to reduce both human errors and workload. But it

is still a challenging task. Many studies and methods are reported and proposed for

solving this problem during recent decades.

Considering the existing literature, a generic typical computer aided diagnosis

(CAD) system for brain lesion segmentation consists of following steps: image acquisi-

tion, pre-processing, feature extraction, normalization, classification, post-processing

and evaluation. The general structure of the CAD system is presented in Fig 3.1.

The brain lesion segmentation techniques can be categorized into four categories as:

(1) data-driven, (2) statistical, (3) intelligent, and (4) deformable models [10]. Here

each category is briefly described.

Data-Driven Methods: If a method is about thresholding, region growing,

and other spatial approaches, it is categorized into the data-driven group. [42], [43],

and [44] are few examples of studies applied data-driven methods.

Another category of the data-driven methods are hierarchical techniques. Pachai

et al. [45] proposed an automatic segmentation algorithm based on a multi-resolution

17
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Figure 3.1: Flowchart of a typical CAD system for brain lesion

approach using pyramidal data structure. First, a pyramidal Gaussian decomposition

is constructed. This pyramid is a data structure which contains different resolutions

of the image at different levels. The base of the pyramid is the original image, and

other levels are filled with down-sampled and low-pass-filtered versions of the original

image using the kernels. This reduces the size of the original image by a factor of 2

in each level. From this pyramid, an expanded Gaussian pyramid is built by bringing

back the reduced size images in each level to their original size. A Laplacian pyramid

is generated by successive subtraction of the image in each level of the expanded

pyramid from the original image. The enhanced features of the pyramid are much

easier to detect than the intensities in the original image. The Laplacian pyramid is

automatically and locally thresholded.

Statistical Methods: In case the method concerns estimation of probability

density functions, it is classified into the statistical group. Statistical methods can

be grouped into two main categories: non-parametric probability map model-based

techniques and parametric model-based techniques. These two kinds of techniques

are combined to generate combinational techniques. Anbeek et al. [46, 47] used kNN

classification to determine the lesion probability per voxel. The learning set consist of
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5 voxel intensities of T1-w, T2-w, PD-w, IR, and FLAIR MR Images, in addition to

the (x, y, z) coordinates of each voxel. Then a lesion probability map is constructed

based on the number of lesion voxels among the k neighbors. Finally, the map is

thresholded to generate a binary segmentation of the lesions.

Another category of statistical methods are parametric model-based techniques.

Kamber et al. [48, 49] used mixture Gaussian model for lesions and tumors detec-

tion. Lesions are assumed as outliers of the global intensity distribution assuming

that lesion voxels are distinctly different from normal tissue characteristics. Leem-

put et al. [17, 24] developed automatic segmentation of MR images of normal brains

by statistical classification, using a stochastic model for normal brain which detects

multiple sclerosis (MS) lesions as outliers. Brain tumors however, cannot be simply

modeled as intensity outliers due to overlapping intensities with normal tissue and/or

significant size.

Warfield et al. [50, 51] combined elastic atlas registration with statistical classifi-

cation. Elastic registration of a brain atlas helped to mask the brain from surround-

ing structures. “distance from brain boundary” is used as an additional feature for

separation of clusters. Initialization of probability density functions still requires a

supervised selection of training regions. Freifeld et al. [52] used a probabilistic model

named constrained Gaussian mixture model (CGMM) based on a mixture of multiple

Gaussian distribution for each brain tissue from T1-weighted, T2-weighted and pro-

ton density weighted (PD) modalities. The parameters of this model were estimated

using the EM method. MS lesions were recognized as outlier Gaussian components

and were grouped to form a new class besides other tissues. Wells [53] introduced

expectation maximization (EM) as an iterative method that interleaves classification
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with bias filed correction. Menze et al. [54] applied a generative model based on an

improved multivariate expectation maximization algorithm for tumor segmentation

on multi-model image volumes.

Some researchers use a combination of parametric and non-parametric model-

based techniques to benefit from both techniques. Sajja et al. [22] use a combined

algorithm of parametric and non-parametric techniques to reduce the number of false

MS classification. A similar approach is employed by Datta et al. [23].

SVM and Markov random field (MRF) are also categorize into statistical method.

Ruan et al. [55] identified tumor regions by training a support vector machine on

mean and variance extracted from small patches of multi-parametric MRI images.

Lao et al. [56] used SVM for white matter lesions segmentation. Chen et al. [57]

and Lee et al. [58] used MRF and SVM based conditional random fields for tumor

segmentation, respectively. In an adaptive training framework proposed by Zhang et

al. [59], multi-kernel support vector machine was trained to do tumor classification.

Intelligent Methods: If the method involves fuzzy logic and/or neural networks,

it is categorized into the intelligent group. Zijdenbos et al. [28, 49] applied ANN for

quantification of white matter lesion and multiple sclerosis lesion. Admasu et al. [60]

suggested an improvement to the Udupas approach by using an ANN, instead of

user, to make decision about the void pixels. [61], [62], and [63] applied ANN for

brain segmentation of multi-modal medical images.

Others introduced knowledge-based (KB) techniques to make more intelligent clas-

sification and segmentation decisions. One of the knowledge-based systems is based

on fuzzy techniques. Fuzzy connectedness is a method proposed by Udupa et al. [29].

based on this principle that the object information in images is fuzzy and has a spe-
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cial connectedness which is also fuzzy. Shen et al. [9] used a fuzzy c-mean (FCM)

for stroke lesion detection based on single-spectral MRI. Fuzzy membership functions

are calculated for four categories. The tissue probability map is also calculated using

SPM5. Inconsistencies greater than a threshold between pixel intensities and prob-

abilities detects the brain lesion. In [64] and [65], fuzzy rules were applied to make

initial classification decisions, then clustering (initialized by the fuzzy rules) was used

to classify the remaining pixels.

More explicit knowledge has been used in the form of frames [66] or tissue mod-

els [67], [48]. Clark et al. [20] showed that a combination of KB techniques and

multispectral analysis (in the form of unsupervised fuzzy clustering) could effectively

detect pathology and label normal brain tissues.

Deformable Methods: In case the method concerns volume estimation and also

shrinking or increasing of the estimated volume, it is classified into the deformable

group [10]. Metaxas et al. [68] proposed a hybrid deformable method, composed

of several deformable models such as shape model, texture integration model and

graphical model is proposed in . Cai et al. [69] discriminated all the existing tissues

such as edema, white matter, grey matter, and cerebrospinal fluid using probability

map, which can also predict tumor growth at the same time.

Cuadra et al. [70] used a priori models of lesion growth in order to segment large

brain tumors in T1-weighted images. It categorized into deformable models. The

disadvantage of this method is that it is semi-automatic and requires a seed voxel

within the tumor to be chosen manually. In addition, anatomical and biological

knowledge of tumor growth is needed to select the seed appropriately. Yang et al. [71]
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presented a combination of deformable contours and FCM techniques, but still the

performance is lower than that of the statistical methods.

Comparison of Four Methods: With comparison between different brain

lesion segmentation techniques, it can be seen that the data-driven methods generate

the lowest accuracies. In this category, the thresholding methods do not consider the

overlaps among the intensity ranges of different tissues and do not therefore benefit

from the spatial information. Also, the selection of appropriate thresholds can be

complicated. The region growing and the edge detection methods work based on

the gradient of the intensities and thus are very sensitive to noise. Successful region

growing, however, requires precise anatomical information to locate single or multiple

seed pixels for each region [10].

Statistical methods such as the expectation maximization (EM) algorithm and

non-parametric methods such as Parzen window and kNN are commonly used for

image classification. In brain MRI segmentation applications, a disadvantage of the

EM algorithm is the assumption of normal distributions for the intensity variations of

the brain tissues, which is almost inaccurate especially for brain lesions. kNN suffers

from the excessive calculation time which severely affects the training stage.

Intelligent methods are also used for the segmentation of brain images and brain

lesions. ANN, FCM, fuzzy connectedness, fuzzy inference systems (FIS) are com-

monly used methods in this category. ANN presents a good accuracy but it needs a

good estimate of the number of layers and the number of nodes in each layer. Also,

excessive training time is another issue in this type of classifiers. FCM was shown to

be superior on normal brain images, but worse on abnormal brain images. A short-
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coming of FCM is its over-sensitivity to noise, which is also a flaw of many other

intensity-based segmentation methods [10].

Deformable techniques usually benefit from matching the MR images with an

atlas, to locate the lesions. The philosophy of these methods is choosing a seed

voxel of lesions manually. Thus, this selection should be based on an anatomical and

biological knowledge of lesion growth.

The most popular methods are EM, and then kNN together with FCM [10]. How-

ever, FCM cannot individually attain good results and needs to be complemented by

another segmentation method. However, the combination often increases the com-

putation time of the method. In addition, kNN has the problem of high memory

capacity for storing the model parameters. ANN is another popular method which

sometimes suffers from a long training procedure. The major problem with kNN in

the brain lesion CAD systems is its long time training. This problem can be solved

through an automated selection of training samples from non-rigidly registered MR

data with a tissue probability atlas.

Using Atlas Registration: Some approaches use geometric prior information for

MR brain image/brain lesion segmentation based on atlas-based registration. A fully

labeled template MR volume is registered to an unknown dataset. High dimensional

warping results is a one-to-one correspondence between the template and subject

images, resulting in a new, automatic segmentation. These methods require elastic

registration of images to account for geometrical distortions produced by pathological

processes. Such registration remains challenging and yet not solved for the general

use.
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Methods Using Single-Spectral MR Images: Majority of studies use multi-

spectral MR images. However, applying multi-spectral MR images has four main

difficulties [12]. First, acquiring such data is not always feasible due to patient con-

dition severity and time shortage. Second, collection of multi-spectral MR images is

expensive. Third, they can bring a lot of redundant information that increase the

data processing time and segmentation errors [30]. And finally, multimodal MRI data

suffers from inconsistency and misalignment, which requires image registration and

bias correction prior to applying the segmentation algorithm [14]. Note that, any

inaccuracy in registration or bias correction stages will directly affect the precision of

the lesion segmentation. A few studies have addressed the brain lesion segmentation

using single-spectral MR images [70, 72–78].

Prakash et al. [72] used ratio of intensity probability density functions (pdf) as

a divergence measure for stroke lesion segmentation on diffusion-weighted magnetic

resonance imaging.

Prastawa et al. [78] proposed a tumor segmentation method based on outlier

detection using the T2 MR image channel. The segmentation framework is composed

of three stages. First, abnormal regions are detected using a registered brain atlas as

a model for healthy brains. Then the robust estimates of the location and dispersion

of the normal brain tissue intensity clusters are made to determine the intensity

properties of the different tissue types. In the second stage, it is determined whether

edema appears together with tumor in the abnormal regions using the T2 image

intensities . Finally, geometric and spatial constraints are applied to detected tumor

and edema regions.



25

Cuadra et al. [70] used a priori models of lesion growth to segment large brain

tumors. However, it is a semiautomatic approach where a seed voxel of tumors has to

be chosen manually. The selection thus requires anatomical and biological knowledge

of tumor growth.

Kennedy et al. [79] presented a computational system called WebParc that mea-

sures the stroke lesion volume and provides the location information with respect

to canonical forebrain neural systems using DWI images. WebParc is implemented

in the template registration style of localization analysis, and it is a data manage-

ment system that segments the lesion manually with the clinician help. Afterward,

it extracts the lesion information with respect to a set of co-registered anatomical

templates of detailed brain structures. The setback of this system is that the lesion is

segmented manually. Moreover, it depends on registration and anatomical templates.

Mah et al. [80] introduced a simple unsupervised lesion segmentation algorithm

based on Zeta using DWI images. Zeta is a recently proposed general measure of

statistical abnormality, i.e., an abnormality score. The algorithm identifies the pa-

rameters of lesions within a brain image using a reference set of normal brain images.

To determine the abnormality of a single image, it is compared to the k instances

within the reference set that resembles it most closely. The drawback of this method

is that the first step in Zeta segmentation relies on the image registration, which is

the drawback of most voxel-wise algorithms. Moreover, Zeta requires a set of normal

images to use as a standard reference. In addition, the Zeta abnormality score is a

continuous variable with no a priori criterion on which one could discretize it.

Mujumdar et al. [81] applied combined information from DWI-(b=2000), DWI-

(b=1000) and the apparent diffusion coefficient (ADC) map to segment stroke lesions.
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Regarding the fact that DWI with higher b-values (b=2000) provides improved sen-

sitivity, higher conspicuity and reduced artifacts, it improves the detectability of

smallest infarcts than conventional DWI-(b=1000). However, in most cases, DWI

with higher b-values (b=2000) is not available and it causes an impactful restriction.

Hevia Monteil et al. [82] segmented the stroke lesions applying nonparametric den-

sity estimation based on mean shift algorithm and edge confidence map using DWI

images. Briefly, the edge confidence map is computed from the data to be segmented.

Afterward, filtering happens by applying a weighted mean shift procedure; and subse-

quently, region adjacency analysis, transitive closure operations, and pruning are used

to segment stroke lesion. The drawback of this method is its inability to accurately

handle low resolution and noisy data, particularly for the small-sized lesions.

Stamatakis et al. [73] presented a statistical method to identify brain abnormali-

ties using T1-weighted images. Every image is compared to a normal control group

and the detected structure differences between the image and the control group is

identified as an abnormality. Srivastava et al. [74] used a similar statistical approach

to detect focal cortical dysplastic lesions from a lesion-specific feature map using T1-

weighted images. However, the disadvantage of the above-mentioned methods is that

the choice of a control group (e.g., group size) can affect segmentation results [83].

In addition, the test data and the control group should be prepared using the same

scanner machine, same parameters and coils, otherwise it causes further bias.

Li et al. [84] presented a multi-stage process for stroke lesion segmentation on

DWI images. The process consists of image preprocessing, global and local regis-

tration between the anatomical brain atlas and the patient, and finally segmenting

stroke lesion based on region splitting and merging and multi-scale adaptive statisti-
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cal classification. The drawback of this method is that it relies on the registration,

and also is computationally expensive.

In a overall view, most of the lesion segmentation techniques discussed and re-

ported in the literature have a few main limitations. These limitations can be concisely

listed as: reliance on multi-spectral MRI [85, 86], dependencies on preprocessing for

bias-correction, or local or global registration of brain images to an anatomical at-

las [85–87], requiring conformances to the initial assumption such as number of tissue

classes [84,88], dependency on high resolution and low noise data [82], and not being

fully automatic [79, 84]. Finding a method to address these limitations and gaining

high accuracy is our desirable goal in this study.



CHAPTER 4

Stroke Lesion Detection Using
Histogram-Based Gravitational
Optimization Algorithm

4.1 System Approach

“It was an usual day, a few weeks after my fifteenth birthday. That day, I remem-

ber that I had soreness down the left side of my body, along with what I thought

was a bad headache. I didnt feel quite right, but I thought that this was nothing

to get concerned about. Neither did my parents. The headache, along with other

symptoms, which I now realize were warning signs of stroke, were things I had expe-

rienced before. Then the pains had disappeared after a few hours. I put these down

to crankiness, eye-strain, or teenage growing pains. That night, I went off to bed,

thinking that I would feel fine in the morning. The next thing I remember was waking

up in the intensive care ward at the local hospital. I was eventually moved out of

intensive care into a ward. I was paralysed down the left side of my body, and had a

bandage around my head. Then came the day when the doctors explained what had

happened to me. I was told that I had suffered a massive stroke.” A stroke survivor

shares his experience of the tragic incidence [89,90].

28
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Stroke is one of the most important causes of mortality and morbidity in human

being. Stroke is defined as a sudden development of a neurological deficit [12]. It can

be further divided into two major categories of ischemia with approximately 85% to

90% and haemorrhage with 10% to 15% of diversities. Cerebral ischemia happens as

a result of the bursting or blocking of an artery stops or interrupts the brain blood

supply. This damaged artery leads to an insufficient blood flow in either a global or

a focal fashion, resulting in an infarct in the brain, which encompasses dead tissues

[9]. An accurate detection and diagnosis of ischemic lesion is extremely essential for

clinical prognosis, treatment, and also stroke related research [9]. Regarding to time

importance in stroke diagnosis and limitations of access to specialist, an effectual

automatic stroke lesion detection algorithm is clinically useful and desirable.

Here a new algorithm for stroke detection and segmentation is proposed. The al-

gorithm is called histogram-based gravitational optimization algorithm (HGOA) [91].

The algorithm is based on brain histogram analysis and an enhanced gravitational

optimization algorithm. The algorithm is implemented for brain tumor and stroke

detection and segmentation. The advantage of the proposed algorithm is that it

is independent of multi-spectral MRI data, atlas registration, control groups, and

prior anatomical knowledge. Since collection of multi-spectral MR images is time

and cost consuming, acquisition of just single MR sequence is more practical. The

other contribution is its computational efficiency. It is important to consider that

in previous studies, one specific method is applied for lesion detection and another

different method is used for segmentation, but in this work, a single algorithm is

used for lesion detection and segmentation at the same time. As another noteworthy

contribution, our method is fully automatic, no need for any help of a clinician or ini-
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Figure 4.1: Histogram-based gravitational optimization algorithm

tialization. Moreover, the gravitational optimization algorithm is enhanced to extend

for n-dimension. Also with formulae modifications, the possibility of optimization

algorithm being drawn into a local optimal solution is decreased.

This algorithm can be divided into two parts as “histogram-based brain segmen-

tation algorithm” and “n-dimensional gravitational optimization algorithm” (see Fig.

4.1). The HGOA is summarized as follows:

• Select the desired number of brain segments

• Select the number of initial generation and the iteration.

• Run n-dimensional gravitational optimization algorithm. The fitness value is

defined as the squared difference between the desired number of segments and

the achieved number of segments. There are three variables that influence the

fitness value. These are the length of averaging window in step two, the length of

convolution window in step four, and the threshold value in step five, which will

be explained in the following section. The objective function of the optimization

algorithm with respect to each single set of variables is calculated using result
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of histogram-based brain segmentation algorithm, which includes seven steps as

following:

• Step1: Calculate the image intensity histogram

• Step2: Apply a weighted averaging technique on the image histogram

• Step3: Extract the local maximum from the averaged image histogram

• Step4: Convolve a rectangular window with the intensity histogram peaks ob-

tained from step 3

• Step5: Obtain the lower and the upper cutoff borders for all segments using a

threshold value

• Step 6: Connect the upper cutoff border of nth segment to the lower cutoff

border of (n + 1)th segment proportionally to the distribution value of the cal-

culated intensity histogram from step 4 (In this step the number of achieved

segments are equal to the total number of low or up cutoff borders.)

• Step 7: Allocate a specific intensity value to each generated segment.

To evaluate the performance of the lesion segmentation algorithm, a standard is

required to assess it with. Here the standard is the manual tracing of each lesion

by a trained operator: this is considered the gold standard in the field [21]. What

is needed to determine is therefore the correspondence between two binary volume

images. In line with established practices, [28, 47], the following summary measures

are used:
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Sensitivity =
TruePositives

TruePositives+ FalseNegatives
× 100% (4.1)

Specificity =
TrueNegatives

TrueNegatives+ FalsePositives
× 100% (4.2)

Accuracy =
TruePositives+ TrueNegatives

TP + TN + FP + FN
× 100% (4.3)

SimilarityIndex =
2(TruePositives)

2(TP ) + FalsePositives+ FalseNegatives
× 100% (4.4)

where True Positives (TP ) are voxels correctly identified as part of a lesion, True

Negatives (TN) are voxels correctly identified as healthy, False Positives (FP ) are

voxels incorrectly identified as part of a lesion, and False Negatives (FN) are voxels

incorrectly identified as healthy.

4.2 Histogram-Based Gravitational Optimization

Algorithm

As mentioned earlier, HGOA is separated into two parts as histogram-based brain

segmentation algorithm and n-dimensional gravitational optimization algorithm. The

histogram-based brain segmentation algorithm starts by building the image intensity

histogram. It is assumed that the local maximums of the histogram are potentially

representatives of various segments in the brain. Therefore, the number and the in-

tensity value of the histogram local maximums can be related to the number and the

center value of segments, respectively. Even though in MRI each pixel is actually a



33

Figure 4.2: Flowchart of the seven steps histogram-based brain segmentation algorithm

voxel, each pixel is treated as belonging to one segment. The reasons for this assump-

tion are computational simplicity as well as its practical medical use. Therefore, the

distance from one local maximum to another one is equally or proportionally divided

between the two local maximums to cover the whole intensity range. If it is divided

proportionally, then the local maximum value affects the width of each segment. Do-

ing so, the brain can be segmented to the same number of segments as its histogram

local maximums. However, if the desired number of brain segments is different from

the total number of brain histogram local maximums, a modified optimization algo-

rithm called n-dimensional gravitational optimization algorithm helps to dynamically

segment the brain into the desired number of segments. For this purpose, it is neces-

sary to define an optimization process in which the objective function is created from

the brain histogram analysis. An optimization process is defined to minimize the dif-

ference between the achieved number of segments and the desired number of segments.

The optimization process works based upon an iterative calculation of an objective

function, which is created from histogram-based brain segmentation algorithm.
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Normalized

Figure 4.3: The histogram of the preprocessed DWI image

4.2.1 Histogram-based Brain Segmentation Algorithm

The histogram-based brain segmentation algorithm can be described in seven steps

as shown in Figure 4.2 and detailed as follows:

Step1: the image intensity histogram is calculated. Let f be a given image

represented as a matrix of integer pixel intensities ranging from 0 to L − 1. L is

the number of possible intensity values, often 256. Let H[n] denote the normalized

histogram of f with a bin for each possible intensity [92]. So

H[n] =
numberofpixelswithintensityn

totalnumberofpixels
n = 0, 1, , L− 1 (4.5)

Noise reduction is an important step to increase image quality and to improve

the performance of quantitative imaging analysis tasks. A low pass Gaussian filter is

applied for noise removal. Figure 4.3 shows one example of histogram of a normalized

and denoised DWI image.

Step2: In order to smooth the histogram H[n], local weighted averaging technique

is applied over the histogram using the following equation:



35

Normalized

Figure 4.4: The averaging of the image histogram shown in figure 4.3

H̄[ni] =
i+G∑
i

wi.H[ni]/G

wi =
i+G∑
i

‖ni −Mw‖2 (4.6)

where H[ni] is the histogram distribution value of ith bin, wi is the weight correspond-

ing to the ith bin, and G is the length of averaging window. Mw is the average of the

intensities in the window, ni is the pixel intensity for the ith element, and H̄[ni] is

local average value of the histogram. It is obvious the greater the G, the smother the

averaged histogram will be. Figure 4.4 shows the average image histogram of Figure

4.3 for different values of G. This part helps to control the number of local maximums

and local minimums of the intensity histogram.

Step3: the local maximums of smoothed histogram are simply calculated by:

Hmax−Local[n] = H̄[ni]|(H̄[ni] > H̄[n(i+1)])
⋂

(H̄[ni] > H̄[n(i−1)]) (4.7)
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Normalized

Figure 4.5: Extraction of local maximums from figure 4.4 and G = 1

By applying equation 4.7 on Figure 4.4 with G = 1, the local maximums are

derived as represented in Figure 4.5.

Step4: a rectangular window is convolved with the histogram local maxima cal-

culated from step 3. It is assumed that the number and intensity location of the local

maxima of the histogram can be an indication of different segments in the brain im-

age. Therefore, the key idea for brain image segmentation is to automatically grow a

local maximum of the smoothed histogram toward its neighbor local maximum with

respect to its amplitude, location, and anticipated number of brain segments. To

do this, the convolution of Hmax−Local[n] and a rectangular window is employed to

connect the local maximums that are in each others neighborhood. Let W be the

length of a rectangular window called Win, and M be the length of Hmax−Local[n],

then Y [n] is the vector of length M +W − 1 whose nth element is calculated by:

Y [n] = Win[n] ∗Hmax−Local[n] =
∑
j

Win[j]Hmax−Local[n− j] (4.8)

The function Y [n] potentially has several discriminative segments. A narrower

convolved window obviously produces higher number of segments, and vice versa,

a wider convolved window results in lower number of segments. The application of
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(a)

Normalized
(b)

Figure 4.6: Connection of local maximum from Fig. 4.5 with using two different convolving
window sizes, (a) narrow window n = 4, (b) wide window n = 14

equation 4.8 on Fig. 4.5 for a narrow and a wide window is depicted in Fig. 4.6. A

narrower window obviously yields higher numbers of segments.

Step5: the lower and upper cutoff boundaries for all segments are obtained using

a threshold value. In order to create continuous and discriminative segments, convo-

lution of Hmax−Local[n] and a rectangular window, Win, was calculated, which result

in Y [n]. A threshold value as Thr controls the cutoff boundaries and removes the

values smaller than the specified threshold value in the distribution. Also it helps to

increase the flexibility of optimization method because changing the threshold level

would change the number of remained segments. The cutoff boundaries of Y [n] are

calculated as:

Xlow[ni] = {n|Y [n(i+1)] > Thr
⋂

Y [n(i−1)] < Thr} (4.9)

Xhigh[ni] = {n|Y [n(i−1)] > Thr
⋂

Y [n(i+1)] < Thr} (4.10)
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Figure 4.7: Extraction of local maximums from figure 4.4 and G = 1

The number of the segments which are visible in histogram data is the same as the

total number of lower or upper cutoff boundaries of the function Y [n]. The value of

the selected threshold has a great influence on the final number of created segments.

The application of equations 4.9 and 4.10 on the results illustrated in Fig. 4.6 is

depicted in Fig. 4.7. Significant impact of specified threshold value on the number

of generated segments is clearly seen. For example Thr2 only results in one segment,

however, Thr1 leads to four segments.

Step 6: the upper cutoff border of nth segment is connected to the lower cutoff

border of (n+1)th segment based on equation 4.11. The reason is to cover all intensity

bins and fill up the gaps between Xhigh[ns] and Xlow[n(s+1)]. Moreover, every pixel

needs to be assigned to a single segment. In this step, upper cutoff border of one

segment reaches to the lower cutoff border of the next one based on the following

rule.

Xup−new[sn] = Xlow−new[sn+1] = Xup(sn)+(Xlow(sn+1)−Xup(sn))× LM(sn)

LM(sn) + LM(sn+1)

(4.11)
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where the sn is the index of the nth segment, LM(sn) is the local maximum

amplitude of the segment sn , and LM(sn+1) is the local maximum amplitude of the

segment sn+1.

Step 7: one specific intensity value is specified for each generated segment. All

intensity values between lower and upper cutoff borders of one segment would be

represented by one intensity value named Xcenter(sn). The intensity of the sthn segment

is defined as:

Xcenter(sn) =
Xlow−new(sn) +Xup−new(sn)

2
(4.12)

The brain is segmented according to the number of generated segments, the in-

tensity of center of the generated segment, and the cutoff borders of the generated

segments. In order to automate this process, an optimization process is applied

to minimize the difference between the achieved number of brain segments and the

desired number of brain segments. The objective function is described as squared

difference between the desired number of brain segments and the achieved number of

brain segments. That is, if the brain needs to be segmented into four segments, the

desired number of brain segments would be four. Here, there are three variables that

influence the objective function. These are the length of averaging window described

in step two (G), the length of convolution window described in step four (W ), and

the threshold value described in step five (Thr). In next section, the n-dimensional

gravitational optimization algorithm is explained.
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4.2.2 N-Dimensional Gravitational Optimization Algorithm

The second part of our proposed algorithm is an enhanced optimization algo-

rithm called n-dimensional gravitational optimization algorithm (NGOA). In order to

achieve the desired number of the brain segments, NGOA is applied on the results of

histogram-based brain segmentation algorithm, which produce the objective function

value. The goal of optimization algorithm is minimization of the objective function.

NGOA utilizes the principles of gravitational field. Similar to the space gravi-

tational algorithm [31], this algorithm is motivated by a simulation of several space

masses to search for the heaviest mass. In this paper, the search is expanded over the

n-dimensional search space while in [31] masses are modeled in 2-D. Some formulae

modifications are considered in this work. According to the Newtons law of gravity,

the strength of gravity existing between particles depends on the mass of particles

and the gravitational acceleration rate and the inverse squared distance of the particle

masses. Moreover, Einstein’s general theory of relativity confirms that the particle

will be able to accelerate toward the heavy mass around it by the changes in the

geometry of space-time. It means that if K particles with different masses are left

in a free space, the particles have a tendency to move toward each other. While the

heavy particles have slight movements, the movement of lighter particles is more than

that of the heavier ones. Therefore, the lighter particles move towards heavy ones

and then keep exploring for other heavy particles around. This is very desirable in

development of optimization algorithms.

The NGOA is initialized by random selection of K sets of n-dimensional masses

and the iteration number. In other words, for the n-dimensional search space, the
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position, velocity, and acceleration of ith mass can be represented by n-dimensional

vectors as follows:

Xi = [xi1, xi2, . . . , xin]T (4.13)

Vi = [vi1, vi2, . . . , vin]T

ai = [ai1, ai2, . . . , ain]T

Therefore the total size of population is a (K×N) matrix. In NGOA, the gravitational

force on the ith object is calculated as:

Fi =

∏
j 6=imi.mj.(K ×Xi(t)−

∑
j 6=iXj(t))∑

j 6=i((xi1 − xj1)2 + ...+ (xin − xjn)2) + Iε
(4.14)

where mi is defined by the value of the inverse objective function value in a minimiza-

tion problem, equation 4.15. In a maximization objective function, there is no need

to invert the objective function value. In equation 4.15, Iε is added to denominator

to prevent dividing by zero when the distance between masses becomes zero.

mi =
1

ObjectiveFunctionV aluei + Iε
(4.15)

Following the calculation of the gravitational force on the ith mass, assuming a unit

time length, the new speed of the object is:

V (t+ 1)i =
gai

min(aj|j=1:K)
+ V (t) (4.16)

The function ai represent the acceleration of mass Xi, and the function min(aj|j=1:K)

finds the minimum acceleration between all masses. Here, g is the gravity constant.



42

Having the speed of the system at t + 1 and the previous location of the ith mass at

Xi(t), the position in the next iteration is adjusted by:

X(t+ 1)i = V (t+ 1)i +X(t)i (4.17)

It is worthy to mention that adding a random movement of the particles up to a

specific iteration number adds a randomization factor and speeds up the convergence

rate. This is done by adding a random vector to some of the worst variables. In

addition, replacing the worst variables of each iteration with the best of all past

generations moves the average of all point toward the optimal points.

In this application N = 3, which corresponds to the three variables derived from

the histogram-based brain segmentation algorithm. These three variables are G, i.e.,

the length of the averaging window, W , i.e., the length of a rectangular convolution

window (Win), and Thr, i.e., the threshold of cutoff borders as explained in section

II. The equations 4.14 to 4.17 are iteratively calculated until the objective function

or the iteration number is met or the V (t+ 1)i becomes lower than a threshold value.

4.2.3 Convergence of N-Dimensional Gravitational Optimiza-

tion Algorithm

The initial population and the number of iterations are two factors that affect

the convergence rate in the evolutionary optimization algorithms. In gravitational

optimization algorithm the gravity constant, g, controls the acceleration rate of the

optimization. The higher value of g, the higher the acceleration rate will be.

In spite of all of these considerations, one may not see the objective value sat-

isfaction since the convergence rate is also dependent to the nature of the objective
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Figure 4.8: Convergence of n-dimensional gravitational optimization for six successive runs

function. For example, strictly speaking, a second order function has only one local

and global maximum. However, summing this function with a low value random func-

tion increases the number of local maximums or minimums. This idea is employed

here to increase the chance of convergence. In other words, the convergence of the

optimization algorithm is not guaranteed but adding a low value random function

Ir, with a growing rate gr, to the preprocessed function IO, during the optimization

process increases the convergence chance. The size of Ir will be the same as function

IO. The initial amplitude of the Ir is about one percent of IO values. This leads to

a random but slight movement of local maximums along the intensity vector. These

movements increase the chance of optimization convergence immensely. Fig. 4.8 illus-

trates convergence of n-dimensional gravitational optimization algorithm for several

different runs. The whole procedure for brain lesion segmentation is summarized in

Fig.4.9.
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4.3 Experimental Results

4.3.1 Database and Image Acquisition

For stroke lesion analysis, 12 subjects (6 with stroke and 6 healthy, female 5, mean

age of 57.23, and age standard deviation of 10.9, less than one months after stroke)

were scanned in this study. All MR images were attained on a 3T Siemens Avanto

scanner (Germany). High-resolution 3-D FLAIR brain MRI images were acquired,

with the following characteristics: repetition time (TR) = 6000ms, echo time (TE)

= 128ms, inversion time = 2200ms, one acquisition, flip angle = 90◦, field of view

(FOV) = 71mm, 46 slices, voxel size = 1mm× 1mm× 1mm, and in-plane matrix =

256×256. Prior to scanning, all participants gave written informed consent according

to the guidelines of the University of Miami Institutional Review Board. Participants

were not paid for participation.

The ground truth is prepared by labeling the ischemic stroke lesion by an expert.

In this study the DWI sequences are used for this purpose. Cerebral ischemia patho-

physiology involves variation of brain water volume even in its earliest steps, and

DWIs sensitivity to changes in tissue water content allows the detection of ischemic

damage to the brain even within one hour after onset [93].

Here, sequences with stroke lesion and tumor lesion are called SL and TL, respec-

tively. The sequences without lesion, which are healthy, are called HD for DWI and

HT for T1-w.
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Figure 4.9: Flowchart of the lesion detection

4.3.2 Pre-processing

Preprocessing includes three parts: noise reduction using low pass filter (Gaussian

filter), background segmentation, and normalization.

Noise Reduction: Gaussian Filter is a low-pass spatial frequency filter where all

elements in this filter are weighted according to a Gaussian (Normal) distribution.

Depending on the mean and the variance value, (µ, σ), in the Gaussian distribution,

the convolution of this kernel with the image results in a smooth image [92]. Results

of applying Gaussian filters with different variance values are represented in Fig. 4.10.

SL1 is filtered out using the Gaussian filter using two different σ that are depicted

in Fig. 4.10. It is seen that higher value for sigma (such as σ = 4) blurs the image

more; therefore, the low value for σ is preferred.

Background Segmentation: Due to the prior knowledge of the background inten-

sity values, which is zero here, it is necessary to exclude the background from the

calculations wherever the histogram of the image is evaluated. The reason for do-

ing this is that the background normally has much higher number of pixels than the

brain. Using Gaussian filter in previous step helps to remove zero intensity values
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inside the brain part. Therefore, background separation is done excluding pixels with

zero intensity from intensity histogram.

Normalization: In order to achieve dynamic range consistency, the image is nor-

malized using the following equation.

IN = (I −Min)/(Max−Min) (4.18)

in which Max and Min are maximum and minimum of image intensity [92].

4.3.3 Brain MRI Segmentation

Original image of SL1 with stroke lesion is represented in Fig. 4.10(a). The

segmentation of SL1 into two, three and four segments is depicted in Fig. 4.11.

Correspondingly, Fig. 4.12 displays the segmentation of SL1 into five, six and twelve

segments. It is seen that after two levels of segmentation the stroke lesion appears in

the segmented image. In addition, after three levels of segmentation the tumor lesion

appears in the segmented image. It is also met that in high levels of segmentation

some of the segments are visually indiscriminative; however, there is still a clear

appearance of the lesion in the segmented image. Figure 4.14 illustrates the original

image of SL2 with stroke lesion and its segmentation into three and four segments.

Figure 4.13 and 4.15 show the original healthy image of HD1 and HD2 and their

segmentation into three and four segments, correspondingly.

Figure 4.16, 4.17, 4.18, and 4.19 show the results of five steps of histogram-based

brain segmentation algorithm for segmentation of DWI image of SL1 with stroke lesion

into three, four, five, and twelve segments, respectively. In these diagrams, part (a)

corresponds to image histogram after step 2. Part (b) shows the local maximums of
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the histogram in step 3. Part (c) illustrates the results of step 4. Part (d) displays the

results of step 5 and 6. In all these Figures, red dots are initial lower and upper cutoff

borders, which are the results of step 5, and black dots are final lower and upper

cutoff borders, which are the results of step 6 of histogram-based brain segmentation

algorithm. Figure 4.20 and 4.21 show the similar results for segmentation of DWI

image of HD1 which is healthy into three and four segments. Part (a) to (d) illustrate

the same steps as mentioned above.

4.3.4 Stroke Lesion Detection

Comparing the of positions of cutoff borders in part (d) of Fig. 4.16, 4.17, 4.20,

and 4.21, it is clear that the last segment’s intensity width differs for healthy and

lesion slices. The brain images, which include lesions are called lesion slices in this

paper. After segmentation of the brain into L segments, Lth segment’s intensity

width for lesion slices is much smaller than the healthy ones. The following criterion

is defined as the first condition for stroke lesion slice detection:

[Xup−final(L)−Xlow−final(L)] < q (4.19)

Equation 4.19 is interpreted as if Lth segment’s width is less than q, the slice is

considered as lesion slice and vise verse as healthy one. Here, q is selected as 1.8.

Comparing part (d) of Fig. 4.16 with 4.20, and also 4.17 with 4.21, one can see

the obvious difference in movements of (L− 1)th segment’s initial and final lower and

upper cutoff borders in healthy and lesion slices. Initial and final cutoff borders are

shown with red dots and black dots, respectively. After segmentation of the brain
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into L segments, following criterion is defined as the second condition for non-stroke

slice detection:

[Xup−final(L−1)−Xlow−final(L−1)] > P.[Xup−initial(L−1)−Xlow−initial(L−1)] (4.20)

Equation 4.20 is interpreted as if the intensity width of final segment is larger

than P times of the initial segment’s intensity width. Here, P is selected as 1.2. The

results show that for higher number of segments the movement of cut-off borders at

segment (L − 1) is more discriminative than that of the lower number of segmen-

tation. Therefore, for detection of the stroke lesion slice the high number (> 5) of

segmentation is preferred. For example, the brain can be segmented into eight or

twelve segments. However, for lesion extraction from a detected lesion slice, the lower

number (< 5) of segmentation is more preferable since it covers wider intensity range

around the stroke with a distributed intensity. Our experiments show that for stroke

lesion extraction, L = 3 is satisfactory. All in all, for a complete stroke lesion de-

tection and segmentation two separate segmentations are needed. Initially, the brain

image is segmented into a high number of segments (here 12) and the slice including

stroke lesion is detected. After stroke lesion detection, the brain image is segmented

into three segments and the last segment is chosen to be the stroke lesion. Here, con-

sidering logical OR between condition one and condition two, slices including stroke

lesion are detected with 94.7% accuracy.

4.3.5 Stroke Lesion Segmentation

After detection of slices including stroke lesion, the brain image is segmented into

three segments or four segments. Because of high intensity of stroke lesion, the stroke
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Table 4.1: Result of lesion segmentation using histogram-based gravitational optimization
algorithm

Num of Segms Accuracy Specificity Sensitivity Similarity index Accuracy after CV

3 segments/Stroke 89.4± 1.6 78.4± 1.1 91.1± 1.3 85.7± 1.4 91.5± 1.2

4 segments/Stroke 86.1± 1.5 90.4± 1.2 75.8± 0.8 81.1± 2.1 88.7± 1.1

4 segments/Tumor 85.2± 1.1 93.7± 0.9 92.5± 1.6 74.1± 1.7 88.1± 0.9

5 segments/Tumor 82.3± 2.2 88.8± 1.2 87.3± 2.0 70.1± 1.9 86.2± 1.8

normally is positioned in the last segment and therefore with extracting the last seg-

ment, the stroke lesion can be extracted. The results show that the stroke lesion

extracted with segmenting the brain into four segments has smaller area than the

labeled lesion, and includes less false positives. However, lesions extracted with brain

segmentation into three segments are closer to the labeled lesion but include more

false positives. Performance of histogram-based gravitational optimization algorithm

is quantified using four commonly used performance criteria: sensitivity, specificity,

accuracy, and similarity index (as explained in Section 4.1), which is presented in

Table4.1. Table 4.1 shows it is indicated that segmenting the brain into three seg-

ments for stroke lesion segmentation provides us with higher accuracy. Results of the

segmentation for two different stroke lesion samples are shown in Fig. 4.22, 4.23, 4.24

and 4.25.

4.3.6 Decreasing False Positives

The misclassification of the pixels is an important problem in the segmentation of

in MR Images. This misclassification creates false negatives and false positives, which

are mostly due to the partial volume effect [10]. The border voxels are generally known



50

as partial volume voxels and contain a mixture of tissues. This effect is generated by

the low spatial resolution of the MRI and makes determining the boundaries of the

brain tissues very difficult. The misclassified pixels can be grouped into the following

groups [10]:

• The false negatives which are in the boundary of the lesions and the grey matter.

Overlapping of the intensities of the lesions and grey matter causes the lesions

to appear as grey matter where no grey matter is expected. This problem is

more severe for the small lesions.

• The false positives which are in the boundary of the brain. Averaging the

intensities of CSF and grey matter in the boundary of the brain makes pixels

with intensities similar to those of the lesions, especially in T2-weighted and

proton density-weighted images.

• The false negatives which are in the boundary of the brain. The same problem

causes small lesions missed in the grey matter.

• The false negatives which are in the vicinity of the ventricles. Because the

intensities of the brain lesions in the vicinity of the ventricles are similar to

those of the CSF, these periventricular lesions may be misclassified as CSF in

T1-w, T2-w and PD-w images, not in FLAIR images.

A consistency verification (CV) algorithm is used to remove the false positives

and false negatives [94, 95]. That is, we use a majority filter to alter the pixel labels

that are not consistent with their neighbor labels in a certain neighborhood. For

instance, if the center pixel of a window is labeled as tumor while the majority of the
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surrounding pixels are labeled as healthy, the center pixels label is simply switched

to healthy. On the other hand, if a pixel inside the tumor area is mistakenly labeled

as healthy, since the majority of the surrounding labels are tumor, it will switch to

tumor. Here, consistency verification is applied in a 5 × 5 neighborhood window.

The results of applying consistency verification algorithm are depicted in part (d) of

Fig. 4.22, 4.23, 4.24 and 4.25. Furthermore, lesion segmentation accuracy after using

consistency verification algorithm is presented in Table 1. Despite using consistency

verification algorithm, we still have false positives, which reduce the recognition rate

in the tumor lesion segmentation. As another limitation, our method cannot detect

very small lesions (< 1cm3). Further algorithm refinement to address those drawbacks

comes at the expense of computational cost. However, higher recognition rate can

outweigh the additional computational burden in non-online procedures, which can

be considered in future research. Table 4.2 compares the limitations of the state-of-

the-art algorithms [9, 79–82,84,86–88,96] with this proposed method.

4.3.7 Tumor Lesion Detection and Segmentation

We implement our proposed method, histogram-based gravitational optimization

algorithm, on T1-weighted MR images including tumor lesions. Some examples of

this implementation are presented here. Original image of TL1 with tumor lesion is

depicted in Fig. 4.26(a). The segmentation of TL1 into two, three and four segments

is depicted in Fig.4.27. Fig. 4.28 display the segmentation of TL1 into five, six and

twelve segments. It is seen that after three levels of segmentation the tumor lesion

appears in the segmented image. Figure 4.29 and 4.30 show the original image of
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TL2 with tumor lesion and HT1 which is healthy and their segmentation into four

and five segments, correspondingly.

Figure 4.31 and 4.32 show the results of five steps of histogram-based brain seg-

mentation algorithm for T1-w image of TL1 with tumor lesion for four and five

levels of segmentation, respectively. Figures 4.33 and 4.34 show the similar results

for segmentation of T1-w image of HT1 which is healthy for four and five levels of

segmentation, respectively. Part (a) to (d) illustrate the results of the same steps as

mentioned above. Likewise, red dots are initial lower and upper cutoff borders, which

are results of step 5, and black dots are final lower and upper cutoff borders, which

are results of step 6.

For tumor slice detection, positions of cutoff borders in the second segment differ

for healthy and lesion slices when brain is divided into four segments. The following

criterion is defined as the condition for tumor lesion detection:

T = [Xlow[2] < q1
⋂

Xup[2] < q2] (4.21)

where Xlow[2] refers to the lower cutoff boundary of second segment, and Xup[2]

refers to the upper cutoff boundary of second segment. q1 is specified as 2.25, and

q2 is specified as 4.85. The slices including tumor lesion are detected with 89.3%

accuracy.

For tumor lesion segmentation, the brain is segmented into four segments or five

segments. Here, the tumor is positioned in the second segment. Therefore, tumor

lesion can be segmented with extracting the second segment. Performance of the

proposed algorithm in tumor lesion segmentation is presented in Table 4.1. Table 4.1
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shows that segmenting the brain into four segments for tumor lesion segmentation

provides us with higher accuracy, which is 86.2%. Histogram analysis limits the

extracted information to the number of pixels in the specific gray levels and does not

include any region-based information. Consequently, the accuracy of a histogram-

based method is also limited. Since we are looking for higher accuracy in tumor

lesion segmentation, a texture-based method is investigated.
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Figure 4.10: Stroke lesion: (a) original image, (b) filtered image using Gaussian filter with
σ = 0.1, (c) filtered image using Gaussian filter with σ = 4

Figure 4.11: Stroke lesion SL1: dividing into two (a), three (b), and four (c) segments

Figure 4.12: Stroke lesion SL1: dividing into five (a), six (b), and twelve (c) segment
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Figure 4.13: Healthy HD1: original image (a), its dividing into three (b), and four (c)
segments

Figure 4.14: Stroke lesion SL2: original image (a), its dividing into three (b), and four (c)
segments

Figure 4.15: Healthy HD2: original image (a), its dividing into three (b), and four (c)
segments
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Figure 4.16: 3 level segmentation of SL1 (with stroke lesion): (a) intensity histogram after
step 2, (b) the local maximums of the histogram in step 3, (c) results of step 4, (d) results
of step 5 and 6
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Figure 4.17: 4 level segmentation of SL1 (with stroke lesion): (a) intensity histogram after
step 2, (b) the local maximums of the histogram in step 3, (c) results of step 4, (d) results
of step 5 and 6



57

0.2 0.4 0.6 0.8 1
0

50

100

150

200

Normilized Intensity

D
ist

rib
ut

io
n 

V
al

ue

0.2 0.4 0.6 0.8 1
0

50

100

150

200

Normilized Intensity

D
ist

rib
ut

io
n 

V
al

ue
0.2 0.4 0.6 0.8 1

0

200

400

600

Normilized Intensity

D
ist

rib
ut

io
n 

V
al

ue

1 2 3 4 5
0

0.5

1

Number of areas
N

or
m

al
iz

ed
 In

te
ns

ity

Figure 4.18: 5 level segmentation of SL1 (with stroke lesion): (a) intensity histogram after
step 2, (b) the local maximums of the histogram in step 3, (c) results of step 4, (d) results
of step 5 and 6
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Figure 4.19: 12 level segmentation of SL1 (with stroke lesion): (a) intensity histogram after
step 2, (b) the local maximums of the histogram in step 3, (c) results of step 4, (d) results
of step 5 and 6
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Figure 4.20: 3 level segmentation of HD1 (Healthy): (a) intensity histogram after step 2,
(b) the local maximums of the histogram in step 3, (c) results of step 4, (d) results of step
5 and 6
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Figure 4.21: 4 level segmentation of HD1 (Healthy): (a) intensity histogram after step 2,
(b) the local maximums of the histogram in step 3, (c) results of step 4, (d) results of step
5 and 6
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(a) (b) (c) (d)

Figure 4.22: Stroke lesion SL1: original image (a), extracted stroke lesion manually (b),
extracted stroke lesion after three levels of segmentation (c), extracted stroke lesion after
consistency verification (d)

(a) (b) (c) (d)

Figure 4.23: Stroke lesion SL2: original image (a), extracted stroke lesion manually (b),
extracted stroke lesion after three levels of segmentation (c), extracted stroke lesion after
consistency verification (d)

(a) (b) (c) (d)

Figure 4.24: Tumor lesion TL1: original image (a), extracted tumor lesion manually (b),
extracted tumor lesion after four levels of segmentation (c), extracted tumor lesion after
consistency verification (d)
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(a) (b) (c) (d)

Figure 4.25: Tumor lesion TL2: original image (a), extracted tumor lesion manually (b),
extracted tumor lesion after four levels of segmentation (c), extracted tumor lesion after
consistency verification (d)

(a) (b) (c)

Figure 4.26: Tumor lesion: (a) original image, (b) filtered image using Gaussian filter with
σ = 0.1, (c) filtered image using Gaussian filter with σ = 4

(a) (b) (c)

Figure 4.27: Tumor lesion TL1: dividing into two (a), three (b), and four (c) segments

(a) (b) (c)

Figure 4.28: Tumor lesion TL1: dividing into five (a), six (b), and twelve (c) segments
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(a) (b) (c)

Figure 4.29: Tumor lesion TL2: original image (a), its dividing into four (b), and five (c)
segments.

(a) (b) (c)

Figure 4.30: Healthy HT1: original image (a), its dividing into four (b), and five (c) segments
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Figure 4.31: 4 level segmentation of TL1 (with tumor lesion) ): (a) intensity histogram
after step 2, (b) the local maximums of the histogram in step 3, (c) results of step 4, (d)
results of step 5 and 6
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Figure 4.32: 5 level segmentation of TL1 (with tumor lesion) ): (a) intensity histogram
after step 2, (b) the local maximums of the histogram in step 3, (c) results of step 4, (d)
results of step 5 and 6
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Figure 4.33: 4 level segmentation of HT1 (healthy) ): (a) intensity histogram after step 2,
(b) the local maximums of the histogram in step 3, (c) results of step 4, (d) results of step
5 and 6
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Figure 4.34: 5 level segmentation of HT1 (healthy) ): (a) intensity histogram after step 2,
(b) the local maximums of the histogram in step 3, (c) results of step 4, (d) results of step
5 and 6
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Table 4.2: Comparing HGOA with other methods

Dep. on

Algorithm
[96] [86] [87] [80] [88] [84] [82] [81] [9] [79] HGOA

Bias correction
√ √ √

- - - - - - - -

Registration
√ √ √ √ √

- - - - - -

Multi-spectral MRI
√ √

- - - - - - - - -

Initial assumptions - - -
√ √ √

- - - - -

High quality data - - - - - -
√ √ √

- -

Manual intervention - - - - - - - - -
√

-

Multiscale classification - - - -
√ √

- - - - -

Size of lesion - - - - - - - -
√

-
√

High computational

complexity - - - - - -
√ √ √ √

-

4.4 Conclusion

In this work, a novel method for stroke and tumor lesion detection and segmenta-

tion in the brain MR images is presented. The method is called the histogram-based

gravitational optimization algorithm, which is based on applying enhanced gravi-

tational optimization algorithm on histogram analysis results. This algorithm uses

histogram-based techniques to determine the initial set of brain segments, then ap-

plies a gravitational optimization based algorithm to reduce the number of segments,

and finally uses thresholding to detect the tumor or stroke lesions. New set of formu-

lae are designed to extend the old space gravitational optimization from 2D to ND,

and also to decrease the chance of optimization algorithm to be drawn into local op-

timal solutions. Another advantage of the proposed method is that it is independent

of atlas registration, prior anatomical knowledge, or bias corrections that restrict the

general application of many state-of-the-art methods. Reliance on atlas registration
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in other algorithms implies that their accuracy is dependent on the how well the at-

las is constructed and how well the registration algorithm can register the test data

to the atlas. Prior anatomical knowledge dependence implies that such algorithms

must be trained to incorporate such information, which can lead to error. The need

for bias correction in many other algorithms also introduces errors into the data to

be analyzed, and thus adds inaccuracy and difficulties with consistence of the final

results. As this algorithm has no reliance on any of these, it does not suffer from

inherent errors.

The other contribution of this method is in the use of single-spectral MRI. While

using multi-spectral MR images address the intensity similarities between lesion and

healthy tissues, in some of the practical clinical situations only one type of anatomical

MR image is collected due to time and cost and patient situation limitations [9,12]. In

addition, use of multi-spectral data implies the need to ensure that each of the spectra

must be properly registered. Failure to do the registration can result in misalignment

of suspected lesions in the different spectra.

The algorithm is also fully automatic and computationally light as it involves the

application of a single algorithm for both lesion detection and segmentation. Addi-

tionally, despite some other methods’ need to have the initial assumptions, such as a

given number of tissue classes or a multi-scale classification, there is no requirement

for such information. This makes the proposed algorithm much more robust and more

general than other methods.

The experimental results on both synthetic and real MR images show that the

proposed algorithm, when applied by itself, provides an accuracy of almost 90% for

stroke lesions and 85% for tumor. With the application of a consistency verification
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algorithm to reduce the false-positives, the accuracy rates climb to 91% and 88%

respectively. This compares well with other algorithms without suffering from some

of the drawbacks as stated earlier. The accuracy and computational simplicity of the

proposed method make it suitable as an additional tool for the clinician. Moreover,

the automated segmentation can be used to more consistently calculate the lesion

volumes and track them in the treatment progress.

The major shortcoming of the presented algorithm is that it is incapable of detec-

tion of hardly visible lesions. Another shortcoming is the presence of false positives,

which affects the recognition rate, especially in the tumor lesion segmentation. In

spite of the fact that this algorithm is fast and computationally efficient, the his-

togram analysis limits the extracted information to the number of pixels in the spe-

cific gray levels and does not include any region-based information. Consequently,

the accuracy of histogram-based methods is limited. In order to improve the obtained

tumor segmentation accuracy, another method is suggested in the next chapter, which

is based on brain texture analysis.



CHAPTER 5

Tumor Lesion Detection and
Segmentation Using Texture-Based
Statistical Characterization

5.1 Overview

As it was mentioned earlier, segmentation is one of the key challenges in machine

learning and computer vision realm. In medical diagnostics field, brain tumor seg-

mentation is an important and demanded application, as it provides medical experts

the information associated to lesions, which helps to control and diminish the effects

of the disease. There are intensity similarities between brain lesions and some normal

tissues that can result in confusion within the algorithm. For example, in T1-weighted

MR images, a tumor lesion has similar intensities to those of GM or CSF [4]. Owing to

this fact, general image segmentation methods are not easily applicable on the brain

lesion identification domain. In order to overcome intensity similarities problem, one

general solution is using multi-spectral MR images for lesion identification [20–24].

However, as it was mentioned earlier, applying multi-spectral MR images has its

own limitations and difficulties [9, 12]. Because of these impediments, brain lesion

detection and segmentation using single-spectral anatomical MRI is desirable.

67



68

The achieved accuracy of a histogram-based method is limited due to not includ-

ing any region based information by histogram analysis. Since texture-based brain

characterization has been proven to be an effective way of brain analysis, in this

chapter, in order to increase the accuracy of brain tumor segmentation, an auto-

mated algorithm is proposed for tumor detection and segmentation based on local

texture analysis using single contrast MR mechanism. This algorithm includes tumor

slice detection, tumor segmentation, and efficacy evaluation of two main feature sets.

After dividing the brain into two hemispheres using longest brain diameter, slices

containing tumor are detected based on thresholding the mutual information of the

histograms of two divided brain hemispheres. The advantage of this technique is its

robustness against head rotation. After detecting the image containing tumor, it is

fed into the segmentation stage, which localizes the tumor area. The candidate tumor

regions are acquired using a sliding window, which sweeps through the whole brain

tissue. Using a texture-based classification, the window center is labeled as healthy

or tumor. A proposed post-processing method is applied to remove the false posi-

tives/negatives. The algorithm is evaluated on NCI-MICCAI database on real and

simulated T1-weighted, T2-weighted, and FLAIR MR images separately. The overall

process is depicted in Fig. 5.1.

It is obvious that characterization of brain image that differentiates various type

of tissue including tumor is very important and depends to a great extent on the

choice of extracted features to describe the region of interest or its quasi-homogenous

regions [97]. Vast variety of tumors in location, size, shape, and texture makes fea-

ture extraction a perplexing task. Moreover, in the MR brain images various tissues

such as the white matter, the gray matter, and cerebrospinal fluid have complicated
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Figure 5.1: Framework of the proposed system

structures that increase difficulty of efficient feature extraction step. In spite of all

the studies focusing on extraction of features that might be found useful in tumor

segmentation [98–103], the relevant literature has not given a comparison on which

feature extraction technique is more efficient in this kind of applications. In this

chapter, two most popular main sets of well-established and competent texture-based

feature extraction techniques are applied. The first set is Gabor wavelet feature ex-

traction method that is capable of capturing frequency, locality, and orientation, pro-

viding multi-resolution texture information about the spatial-domain as well as the

frequency-domain [32, 33]. The second set, statistical features extraction methods,

include texture-based feature extraction methods, such as gray level co-occurrence

matrix (GLCM), histogram of oriented gradient (HOG), grey level run length matrix

(GLRLM) methods and etc. These feature extraction methods reflect the relation-

ship between intensity of two image pixels or group of pixels. Furthermore, they

estimate image properties related to the first- and second-order statistics [34–37].

Beside the tumor detection and segmentation, another study on the effectiveness and
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complexity of these two feature extraction methods in this application are offered. To

reduce the risk that the attained conclusion is only due to some idiosyncrasies of the

employed machine learning technique, the experiments are performed using several

classifiers such as SVM, kNN, SRC, NSC, and k-means clustering. Three different

MR sequences, i.e., T1-weighted, T2-weighted and FLAIR, are experimented in this

study.

5.2 Texture-Based Feature Extraction Methods

The fundamental objective of any diagnostic imaging investigation is tissue char-

acterization [37]. Classic methods concentrate on clustering or morphological oper-

ations. But the results are not satisfactory. The texture analysis is a useful way of

increasing the information obtainable from medical images [36].

Texture is a property that represents the surface and structure of an Image. Gen-

erally speaking, texture can be defined as a regular repetition of an element or pattern

on a surface [104]. Image textures can be defined as complex visual patterns com-

posed of entities or regions with sub-patterns with the characteristics of brightness,

color, shape, size, etc. An image region has a constant texture if a set of its charac-

teristics are constant, slowly changing or approximately periodic [105]. Texture can

be regarded as a similarity grouping in an image [106].

Texture analysis is a major step in texture classification, image segmentation and

image shape identification tasks. Texture analysis refers to a class of mathematical

procedures and models that characterize the spatial variations within imagery as a

means of extracting information. Texture defines local spatial organization of spatially
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varying spectral values that is repeated in a region of larger spatial scale. Thus, the

perception of texture is a function of spatial and radiometric scales.

Descriptors providing measures of properties such as smoothness, coarseness and

regularity are used to quantify the texture content of an object. Since an image is

made up of pixels, texture can be defined as an entity consisting of mutually related

pixels and group of pixels. This group of pixels is called as texture primitives or

texture elements, which is called texels.

Mathematical procedures to characterize texture fall into two major categories:

statistical, and syntactic.

Statistical approaches compute different properties and are suitable if texture

primitive sizes are comparable with the pixel sizes. These include Fourier transforms,

convolution filters, co-occurrence matrix, spatial autocorrelation, fractals, etc.

Syntactic and hybrid methods are suitable for textures where primitives can be

described using a larger variety of properties than just tonal properties; for example

shape description. Hybrid method is combination of statistical and syntactic methods.

Using these properties, the primitives can be identified and assigned a label.

Statistical methods has more prevalence and advantages over syntactic techniques.

They analyze the spatial distribution of gray values, by computing local features at

each point in the image, and deriving a set of statistics from the distributions of the

local features [107]. The reason behind this is the fact that the spatial distribution

of gray values is one of the defining qualities of texture.

Depending on the number of pixels defining the local feature, statistical methods

can be further classified into first-order (one pixel), second-order (two pixels) and

higher-order (three or more pixels) statistics [107]. The basic difference is that first-
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order statistics estimate properties (e.g. average and variance) of individual pixel

values, ignoring the spatial interaction between image pixels, whereas second- and

higher-order statistics estimate properties of two or more pixel values occurring at

specific locations relative to each other.

5.2.1 First-Order Statistical Features

Mean, median, average contrast, intensity energy and entropy, skewness and kurto-

sis are useful first-order statistical features. Mean is the average value of the intensity

of the image. Variance indicates the intensity variations around the mean. Skewness

quantifies the symmetry of the histogram around the mean. Kurtosis is the flatness

of the histogram. Entropy reveals the randomness of intensity values. These features

formula are listed in the following [102] [108].

Mean

µ =
G−1∑
i=0

iP (i) (5.1)

Average contrast

σ2 =
G−1∑
i=0

(i− µ)2P (i) (5.2)

Skewness

µ3 = σ−3
G−1∑
i=0

(i− µ)3P (i) (5.3)

Kurtosis

µ4 = σ−4
G−1∑
i=0

(i− µ)4P (i)− 3 (5.4)

Energy

E =
G−1∑
i=0

[P (i)]2 (5.5)
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Entropy

H = −
G−1∑
i=0

P (i) log2 P (i) (5.6)

where G is maximum gray level of the image, P (i) is probability density of occurrence

of the intensity levels which is obtained from:

P (i) = h(i)/N (5.7)

where h(i) is total number of pixels with intensity level i and N is total number of

pixels in the image.

5.2.2 Grey Level Run Length Method Features

GLRLM is a spatial domain second-order statistical method that pertains a quan-

titative parameter to spatial domain grey level value. In GLRLM, a texture primitive

called grey level run length is considered as the maximum collinear attached set of

pixels with the same grey level. The grey level runs are defined through the grey

level of the run, the length of the run, and the direction of the run [109, 110]. To

calculate GLRLM, the number of grey level runs of various lengths should be figured

out. In the grey level run length matrix of R(θ) = [r′(i, l|θ)], the element r′(i, l|θ)

provides an estimation of the number of times an image contains a run with length of

l, for grey level i, in the direction of angle θ. The grey level run length matrices R(θ)

are calculated for 0, 45, 90 and 135 degrees. The following five GLRLM features are

calculated using these matrices:

1) SRE: Short Run Emphasis

RF1(R(θ)) =
1

TP

G−1∑
i=0

NR∑
l=1

r′(i, l|θ)
l2

(5.8)
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2) LRE: Long Run Emphasis

RF2(R(θ)) =
1

TP

G−1∑
i=0

NR∑
l=1

j2r′(i, l|θ) (5.9)

3) GLD: Grey Level Distribution

RF3(R(θ)) =
1

TP

G−1∑
i=0

[

NR∑
l=1

r′(i, l|θ)]2 (5.10)

4) RLD: Run length Distribution

RF4(R(θ)) =
1

TP

NR∑
i=0

[
G−1∑
l=1

r′(i, l|θ)]2 (5.11)

5) RP: Run Percentage

RF5(R(θ)) =
1

TP

G−1∑
i=0

NR∑
l=1

r′(i, l|θ) (5.12)

in which G is the number of grey levels, NR is the number of run lengths in the

matrix, and TP is

TP =
G−1∑
i=0

NR∑
l=1

r′(i, l|θ). (5.13)

In this experiment, the above-mentioned features of GLRLM are calculated.

5.2.3 Gray Level Co-occurrence Matrix Features

Spatial gray level co-occurrence estimates image properties related to second-

order statistics, reflecting the relationship among pixels or groups of pixels (usually

two) [104]. The GLCM is a 2D histogram that describes the occurrence of pairs of

pixels that are separated by a certain distance, d. Let I(x, y) be an image with size

N ×M , and with G gray levels, and (x1, y1) and (x2, y2) be two pixels with gray level

intensities i and j, respectively. When taking 4x = x2 − x1 in the x direction and
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4y = y2 − y1 in the y direction, the connecting straight line has a direction θ which

is equal to arctan4y4x . The normalized co-occurrence matrix Cθ,d is defined as:

Cθ,d = (Num((x1, y1), (x2, y2)) ∈ (N ×M)× (N ×M)|A)/K (5.14)

Here A is a given condition, such as 4x = d sin θ,4y = d cos θ,I(x1, y1) = i,and

I(x2, y2) = j. Further on, Num represents the number of elements in the co-

occurrence matrix and K is the total number of pairs of pixels [111, 112]. Normally,

d = 1, 2 and θ = 0,45,90,and 135 degree are used for calculation. Eight different

texture features are defined using co-occurrence matrix as follows [102]:

Entropy

−
G−1∑
i=0

G−1∑
j=0

Cij logCij (5.15)

Correlation
G−1∑
i=0

G−1∑
j=0

ijCij − µxµy
σxσy

(5.16)

Homogeneity
G−1∑
i=0

G−1∑
j=0

Cij
1 + |i− j|

(5.17)

Absolute Value
G−1∑
i=0

G−1∑
j=0

|i− j|Cij (5.18)

Inertia (Contrast)
G−1∑
i=0

G−1∑
j=0

(i− j)2Cij (5.19)

Inverse Difference
G−1∑
i=0

G−1∑
j=0

Cij
1 + (i− j)2

(5.20)
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Maximum Probability

maxi,jCij (5.21)

Angular Second Moment (Energy)

G−1∑
i=0

G−1∑
j=0

(Cij)
2, (5.22)

where Cij is the element of co-occurrence matrix.

5.2.4 Histogram of Oriented Gradient Features

HOG features are feature descriptors frequently used for object-detection purposes

in image processing and computer vision. The rationale behind these descriptors

is that local object appearance and shape can be described by the distribution of

intensity gradients or edge directions. The technique sums-up incidences of gradient

orientation in localized portions of an image [17, 88]. HOG is computed on a dense

grid of uniformly spaced cells, and uses overlapping local contrast normalization for

higher accuracy [84,88]. It divides the image into small, connected regions called cells,

and for each cell compiles a histogram of gradient directions or edge orientations for

the pixels inside the cell. The combination of these histograms then constitutes the

descriptor. For improved accuracy, the local histograms can be contrast-normalized

by calculating a measure of the intensity across a larger region, called a block, and

then using this value to normalize all cells within the block. This normalization offers

lower sensitivity to changes in illumination or shadowing. Eighty HOG features are

derived in this work.
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5.2.5 Linear Binary Pattern Features

LBP operator [113] sweeps a window over the image and gives labels to central

pixel of the window by thresholding its neighborhood with the central value and

specifying binary numbers to the neighbors. Then it calculates the sum of the binary

numbers multiplied by powers of two increasing clockwise or counterclockwise. The

histogram of these 256 different labels is used as a texture descriptor. Considered

neighborhood can be in different sizes. Any radius and any number of pixels in the

neighborhood can be used. In the following, the notation (P,R) will be used for pixel

neighborhoods, which means P sampling points on a circle of radius of R. The value

of the LBP code of a pixel (xc, yc) is given by:

LBPP,R =
P−1∑
p=0

S(gp − gc)2p (5.23)

S(x) =

 1 x ≥ 0

0 otherwise

(5.24)

where g is the pixel intensity value. We have chosen P = 8 and R = 1 in our

experiment.

5.2.6 Gabor Wavelet Transform

Gabor wavelets capture the local structure of the image correspond to spatial

frequency (scales), spatial localization, and orientation selectivity. Therefore, they

are extensively applied to texture analysis and image segmentation [98]. In the spatial

domain, a two-dimensional Gabor filter is a Gaussian kernel function modulated by

a complex sinusoidal plane wave, defined as:
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G(x, y) =
f 2

πγη
(−x

′2 + γ2y′2

2σ2
)exp(j2πfx′ + φ) (5.25)

where x′ and y′ are defined as:

x′ = xcosθ + ysinθ

y′ = −xsinθ + ycosθ (5.26)

where f is the frequency of the sinusoid, θ is the orientation of the normal to the

parallel stripes of a Gabor function, φ is the phase offset, σ is the standard deviation

of the Gaussian envelope and γ is the spatial aspect ratio which specifies the ellipticity

of the support of the Gabor function. Most typically, researchers use Gabor wavelets

filters in five different scales and eight orientations [113–115]. In this work, the same

convention as shown in Fig. 5.2 is followed.

5.3 Experimental Setup

5.3.1 Detection of Tumor Slices

The main idea in tumor slice detection is based on histogram asymmetry between

the two brain hemispheres. Dividing the brain into two hemispheres is achieved

by finding the longest diameter as the brain midline. In order to find histogram

asymmetry, histograms of each hemisphere is calculated. Then, using mutual infor-

mation [116], the slice likely to contain the tumor is determined. The advantage of

this technique is its robustness against head rotation and tilt.

The algorithm includes six steps. First step separates the brain from the back-

ground. Second uses the center-mass algorithm to find the brains center. Third finds
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Figure 5.2: Gabor wavelet kernels in five scales and eight orientations

the brains borderline; cf. Fig. 5.3(b). Fourth finds the length of all possible brain

diameters. Fifth step is finding the longest diameter as brain midline. The midline

shown in Fig. 5.3(c) and Fig. 5.3(d). Sixth step finds the tumor slice based on mutual

information between histograms of two brain hemispheres.

Using brain midline, the intensity histogram for each hemisphere is calculated. In

both synthesized and real databases that are used, the number of slices is the same for

all subjects. In this case, it can be assumed that the corresponding slices in different

subjects present the same region of the brain, which have almost similar structures.

This gives us the opportunity to create the standard histograms for healthy brain

hemispheres for all slices using the training data; see Fig. 5.4(a). These standard

histograms are compared with the histograms of the testing data in order to find the
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(a) (b) (c) (d)

Figure 5.3: (a) Original Image, (b) Finding the brain borderline, (c) and (d) Example of
resulted brain hemispheres
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Figure 5.4: (a) Standard histogram of the healthy hemisphere, (b) Histogram of an example
of healthy hemisphere, (C) Histogram of an example of tumor hemisphere

hemispheres containing tumor. Fig. 5.4(b) and Fig. 5.4(c) show sample histogram of

healthy and tumor hemispheres. This method has the advantage of finding the exact

tumor hemisphere, which facilitates the segmentation process searching only in the

hemisphere of interest. If the number of slices is not consistent, another approach is

to calculate the mutual information between histograms of the two hemispheres of a

single brain image. In this case, the segmentation algorithm needs to search on the

whole brain (not only one brain hemisphere).

The size of the tumors detectable by this method depends on the threshold for

the amount of mutual information. Higher values make it easier to detect small
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tumors, but only at the cost of a certain percentage of false positives (healthy slices

are detected to contain a tumor lesion). On the other hand, lower threshold prevents

false positives, but the algorithm will not be able to detect small tumors. This is a

trade-off problem as a degree of freedom for the designer depending on the application.

In the experimental case, the threshold is chosen based on the observations made of

the training data, tolerating the system’s failure to detect very small and hardly

visible tumors.

5.3.2 MRI Intensity Normalization

Due to the intra-scan and inter-scan image intensity variations, after detection of

slices that include tumor, the MR image intensity [117] is normalized. Image inten-

sity normalization is necessary in quantitative texture analysis of magnetic resonance

imaging. There are six MRI intensity normalization methods: contrast stretch nor-

malization, intensity scaling, histogram stretching, histogram normalization, Gaus-

sian kernel normalization, and histogram equalization. Based on the result of [117],

the histogram normalization method presents the best performance compared to the

other normalization methods. Here histogram normalization method is applied prior

to quantitative texture analysis, which is about stretching and shifting original image

histogram in order to cover all the gray scale levels in the image. It is defined as:

f(x, y) =
(GWM −BWM)

(hmax − hmin)
(h(x, y)− hmin) +BWM (5.27)

where h(x, y) is the original histogram of the initial image, f(x, y) is new histogram,

and hmin and hmax are smallest and largest gray scale level , respectively. GWM and

BWM are new minimum and new maximum intensity levels.
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Figure 5.5: Real parts of the results of applying Gabor filters to the windowed brain image

5.3.3 Windowing

In order to create the training set, we automatically crop random windows from

each selected hemisphere containing tumor. Having the brain midline and borderline

helps us to restrict the windows to just cover the brain tissue and not the background.

For the test step, a same size sliding window sweeps all over the brain, excluding the

background area. Two sets of features are extracted using the aforementioned feature

extraction methods.

5.3.4 Feature Aggregation

The Gabor wavelet features and statistical features are extracted using Gabor

wavelet transform, first-order statistical descriptors, GLCM, GLRLM, HOG, and

LBP methods, as described in Section 5.2.

Gabor wavelet features are extracted by applying Gabor wavelet kernels with five

different scales and eight orientations on three different window sizes as 33 × 33,
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45× 45, and 65× 65 windows. The length of Gabor feature vector is 43,560, 81,000,

and 169,000, regarding to 33 × 33, 45 × 45 and 65 × 65 window sizes, respectively.

Fig. 5.5 illustrates the real parts of the results of applying Gabor wavelet filters to a

sample window in the brain MR image.

First-order statistical features include mean, median, average contrast, intensity

energy and entropy, skewness and kurtosis. In our experiment, GLCM features are

extracted by applying the angle θ = 0, 45, 90 and 135 degrees. In each orientation,

GLCM matrix and eight derived features are calculated.

GLRLM features are calculated for 0, 45, 90 and 135 degrees. Extracted features

are SRE, LRE, GLD, RLD, and RP in four directions.

HOG features measure the occurrences of gradient orientations in the regional

areas of the image. Using two scales and 8 orientations, eighty HOG feature values

are extracted. Finally, the length of LBP features is 256. The total of seven first-order

statistical features, 20 GLRLM features, 112 GLCM features, 80 HOG features, and

256 LBP features makes a 475-dimentional statistical feature vector. It is shown in

Fig. 5.6.

5.3.5 Feature Dimensionality Reduction

For feature dimensionality reduction, we rely on principle component analysis

(PCA). PCA is a mathematical tool that uses an orthogonal transformation to project

a set of possibly correlated variables into a group of linearly uncorrelated ones that

are called principle components [59]. The principal components attempt to maintain

most of the variability of the data. We apply PCA to each set of extracted features,

obtaining principal (feature) vectors from which we then select those with the highest
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Figure 5.6: Diagram of two sets of extracted features

eigenvalues. Lets assume we have N nonzero eigenvectors as the output of the PCA.

We select M eigenvectors corresponding to the highest eigenvalues. The optimal

number of selected features (M) is obtained by calculating the reconstruction ratio,

γ [60]. γ is defined as the ratio of the sum of the M selected eigenvalues to the sum

of all eigenvalues, as:

γ =
M∑
i=1

γi/
N∑
i=1

γi (5.28)

where γis are the eigenvalues sorted decreasingly. Here we chose to be 0.99. In all

our cases, maximum of 20 features are satisfying the above constraint.

5.3.6 Feature Classifications

For classification, four supervised robust classification techniques are applied and

the results are compared. These techniques are SVM, KNN, NSC, SRC [118] and one

unsupervised clustering method, k-means.
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The number of healthy windows is much higher than the number of tumor win-

dows, which makes the training set imbalanced. To avoid the usual difficulties known

to be caused by imbalanced training sets, we preferred to use the same number of

healthy windows as that of tumor windows. Training samples are randomly selected.

A 10-folded cross-validation is used to validate the robustness of our model. Cross

validation helps also to prevent over-fitting.

After training the classifier, the recognition rate of the classifier on independent

data (unseen during learning) is used as the indicator of our algorithm’s performance

in tumor lesion segmentation, and also each feature set’s suitability for tumor lesion

segmentation.

5.4 Experimental Results

5.4.1 Materials And Labeling of Training Examples

Brain tumor image data used in this work were obtained from the NCI-MICCAI

2013 Challenge on Multimodal Brain Tumor Segmentation [119] organized by K.

Farahani, M. Reyes,B. Menze, E. Gerstner, J. Kirby and J. Kalpathy-Cramer . The

challenge database contains fully anonymized images from the following institutions:

ETH Zurich, University of Bern, University of Debrecen, and University of Utah

and publicly available images from the Cancer Imaging Archive (TCIA). All in all,

twenty-five real and simulated T1-w and flair MR images of the brain with high-grade

glioma are applied in this study. Few examples of this data set - simulated and real

T1-w, T2-w, and FLAIR - are depicted in Fig. 5.7, 5.8, 5.9, 5.10, 5.11, and 5.12,

respectively.
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Figure 5.7: Examples of simulated T1-weighted brain MR images

Labeling: As indicated, each window was treated as a separate training example,

described by a feature vector. We label the training examples as positive or negative.

An example is labeled as positive if the tumor pixels cover more than half of the

window. To be able to evaluate statistical significance of our results, all experiments

are conducted using the 10-folded cross-validation technique, which makes it possible

to use t-test.
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Figure 5.8: Examples of simulated T2-weighted brain MR images

5.4.2 Establishing Optimum Conditions

Before proceeding to the work, we need to answer two questions regarding the

conditions used in the experiments. What is the impact of noise-reduction on texture-

based feature extraction? What is the optimum size of the window?

Regarding the first question, noise in the original image is reduced by Gaussian

filters. Keeping all other conditions the same, statistical feature vectors are extracted
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Figure 5.9: Examples of simulated FLAIR MR images

with noise reduction, and then without noise reduction. The experiments summarized

in Fig. 5.13 show that noise-reduction actually impaired classification accuracy when

we apply texture-based features. Therefore, we decided to avoid noise reduction.

Regarding the second question, different window-sizes are tried. The statistical

feature vectors obtained from three different window-sizes (33 × 33, 45 × 45, and

65 × 65) are classified by several classification methods. As shown in Fig. 5.14, the
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Figure 5.10: Examples of real T1c-weighted MR images

window size 45×45 yieldes the highest accuracy. Based on this experience, we decide

to use the 45× 45 window size in the rest of the study.

5.4.3 Tumor Segmentation Result

After a slice is recognized to have tumor, we apply the segmentation to localize the

tumor area. We attain the candidate tumor regions using a sliding window that sweeps

the whole brain tissues. Gabor wavelet and statistical feature sets are extracted

from each instance of the window. After applying PCA for dimensionality reduction

on each feature set, they are classified applying different classification approaches.

Fig.5.15(a) shows the results of SVM with linear and RBF kernels for Gabor wavelet



90

Figure 5.11: Examples of real T2-weighted MR images

and statistical features extracted from T1-w images of simulated data. The horizontal

axis represents the number of features used for classification purposes, and the vertical

axis shows the classification accuracy. We can see that, with only 10 first features

of the PCA output the accuracy of the classifiers becomes stable. Increasing the

feature vector length over 10 does not influence the accuracy rates significantly. Using

10 features, classification accuracy of SVM with linear kernel and RBF kernel are

95.1± 0.2% and 95.7± 0.3% for statistical features, and 92.2± 0.5%, and 94.3± 0.4%

for Gabor features, respectively.
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Figure 5.12: Examples of real FLAIR MR images

Classification result of kNN classifier is shown in Fig. 5.15(b). With only 10 first

features of the PCA output the accuracy of the classifiers becomes stable. Using

10 features, classification accuracy of kNN with k=1 and k=7 are 89.6 ± 0.3% and

92.5 ± 0.7% for statistical features, and 87.5 ± 0.7%, and 90.7 ± 0.8% for Gabor

features, respectively. Again, increasing the feature vector length over 10 does not

influence the accuracy rates significantly.

Fig.5.15(c) shows the results of NSC with Gaussian and general under-sampling

for Gabor wavelet and statistical features. The NSC is a technique known to be

very sensitive to noise and the result is polluted with distortions. Using 15 features,
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Figure 5.13: Comparison of accuracy of different classification methods using statistical
features with and without noise reduction

classification accuracy of NSC-Gaussian and NSC-general are 63.5 ± 1.3%, 63.8 ±

0.8% for statistical features, and 61.8 ± 1.6%, and 64.5 ± 1.1% for Gabor features,

correspondingly. In our experiments, general case outperforms the Gaussian.

Additionally, the accuracy of sparse representation classifier gets stable with ap-

plying only 12 first features of the PCA output and offers 78.1 ± 0.4% recognition

rates for statistical features and 71.1 ± 0.2% for Gabor feature, as it is depicted in

Fig. 5.15(d).

Next, unsupervised k-means clustering divides the feature vectors into two groups

of normal and tumors. Labels achieved from k-means clustering for test group are

then compared with the real labels, and the accuracy is calculated. Classification

accuracy of k-means using Euclidean and city-block distances are 83.2 ± 0.1% and

85.4±0.2% for statistical features, and 69.6±0.3% and 71.3±0.2% for Gabor features,

respectively.

Based on these results, statistical features and SVM with RBF kernel are used in

order to segment the brain tumors. After feature extraction from each instance of
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Figure 5.14: Comparison of accuracy of different classification methods for 3 different win-
dow sizes as 45, 33, and 65

the window, if the window is classified to have tumor, the central pixel of the window

will be labeled as tumor. On the other hand, if it is classified as healthy, the central

pixel will be labeled as healthy. Fig. 5.16 (second column) shows the result of this

labeling on three sample brain slices using . As it can be seen, there are some parts

of the tumor that is mistakenly labeled as healthy or some parts of the healthy tissue

labeled as tumor by mistake. In order to remove these false positives/negatives, a

consistency verification algorithm is applied.

A consistency verification (CV) algorithm is used to remove the false positives and

false negatives. That is, we use a majority filter to alter the pixel labels that are not

consistent with their neighbor labels in a certain neighborhood. For instance, if the

center pixel of a window is labeled as tumor while the majority of the surrounding

pixels are labeled as healthy, the center pixels label is simply switched to healthy.

On the other hand, if a pixel inside the tumor area is mistakenly labeled as healthy,

since the majority of the surrounding labels are tumor, it will switch to tumor. Here,

consistency verification is applied in a 3 × 3 neighborhood window. The results of
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Figure 5.15: (a) Classification accuracy of SVM (linear and RBF kernel) for Gabor wavelet
and statistical features for different numbers of features, (b) Classification accuracy of kNN
(k=1 and k=7) for Gabor wavelet and statistical features for different numbers of features,
(c) Classification accuracy of NSC (Gaussian and general) for Gabor wavelet and statistical
features for different numbers of features, (d) Classification accuracy of sparse representation
classifier for Gabor wavelet and statistical features for different numbers of feature
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Figure 5.16: Examples of tumor lesion segmentation on T1-weighted simulated data. (first
column) Golden label, (second column) segmented lesion before consistency verification,
(third column) segmented lesion after consistency verification, (forth column) overlay of
Golden label on the brain image, (fifth column) overlay of our segmented area on the brain
image.

applying consistency verification algorithm are depicted in part (c) of Fig. 5.16.

Similar results for tumor segmentation on FLAIR and T2-w MR images are depicted

in Fig. 5.18.

We notice that in most cases, by increasing the number of neighbors considered

in kNN algorithm the accuracy rates tend to increase which is compatible with theo-

retical expectation. In addition, support vector machines provide better classification

accuracy rates compared to kNN, NSC, and SRC. Moreover, support vector machines

with radial basis functions achieve highest estimation accuracy compared to linear and

quadratic kernel functions.
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(g) (h) (i)

Figure 5.17: Examples of tumor lesion segmentation on T1-w (first row), FLAIR (second
row) and T2-w (third row) simulated data. (a) original data, (b) golden label, (c) segmented
lesion after consistency verification
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(g) (h) (i)

Figure 5.18: Examples of tumor lesion segmentation on T1-w (first row), FLAIR (second
row) and T2-w (third row) real data. (a) original data, (b) golden label, (c) segmented
lesion after consistency verification
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Table 5.1: Comparing Stat method with other methods

Dep. on

Algorithm
[120] [121] [20] [122] [123] [124] [55] [125] [126] SFSW

Bias correction - - -
√ √

-
√

- - -

Registration -
√ √ √ √ √ √

- - -

Multi-spectral MRI -
√ √ √ √

-
√

- - -

Initial assumptions - - -
√

- - - - - -

High quality data -
√ √

- - - - -
√

-

Manual intervention
√

- - - - - - - - -

over-segmentation
√

- - - - - -
√

- -

High computational

complexity - - - -
√ √ √ √ √ √

5.5 Comparing Statistical Features and Gabor Fea-

tures

While many techniques for feature extraction have been published, we are not

aware of any convincing comparative study in the field of tumor segmentation. We

evaluate the proficiency and ability of two widely used feature sets –Gabor wavelets

and statistical features– in tumor segmentation domain. These two feature sets pos-

sess different abilities to give rise to accurate MRI lesion segmentation. We quantify

the ability using three commonly used performance criteria: sensitivity, specificity,

and accuracy that are described in Section 4.1.

Table 5.2 summarizes the classification accuracies achieved by different classifiers

on simulated T1-w images described by the two different feature sets: Gabor wavelets,

and statistical features. Table 5.3 and 5.4 shows the classification accuracies of the

same classifiers on FLAIR and T2-weighted sequences of simulated dataset explained

by two feature sets as Gabor wavelets and statistical features. Generally FLAIR
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images provide us with higher segmentation accuracy because they have minimal

sensitivity to CSF. Therefore, the partial volume effects that cause misclassifications

in T1-w images do not cause the same problem in FLAIR images. Similarly, Table 5.5

and Table 5.6 and Table 5.7 show the result of classifiers on real dataset for T1c-w,

FLAIR, and T2-w images, respectively. It is clearly seen that in most of the cases

statistical features provide higher accuracy than Gabor wavelets features.

Table 5.2: Classification accuracies achieved on the two different feature sets obtained from
simulated T1-w images. The bolded values denote cases in which the given features set
yields significantly better results than the other set (T-test with significance level of 5%).

SVM SVM kNN kNN NSC NSC k-means k-means Sparse

Linear RBF K=1 K=7 General Gaussian Euclidean City-block Representation

Gabor

Wavelet 92.2 94.3 87.5 90.7 64.5 61.8 69.6 71.3 71.1

Features ±0.5 ±0.4 ±0.7 ±0.8 ±1.1 ±1.6 ±0.3 ±0.2 ±0.2

Statistical 95.1 95.7 89.6 92.5 63.8 63.5 83.2 85.4 78.1

Features ±0.2 ±0.3 ±0.3 ±0.7 ±0.8 ±1.3 ±0.1 ±0.2 ±0.4

Table 5.3: Classification accuracies achieved on the two different feature sets obtained from
simulated FLAIR images. The bolded values denote cases in which the given features set
yields significantly better results than the other set (T-test with significance level of 5%).

SVM SVM kNN kNN NSC NSC k-means k-means Sparse

Linear RBF K=1 K=7 General Gaussian Euclidean City-block Representation

Gabor

Wavelet 95.0 95.6 93.5 95.7 65.1 64.4 79.3 82.4 74.8

Features ±0.2 ±0.2 ±0.3 ±0.5 ±1.2 ±1.7 ±0.3 ±0.2 ±0.7

Statistical 95.3 95.9 94.3 94.5 66.8 65.2 91.4 92.9 79.1

Features ±0.3 ±0.4 ±0.1 ±0.4 ±1.3 ±0.9 ±0.8 ±0.4 ±0.6
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Table 5.4: Classification accuracies achieved on the two different feature sets obtained from
simulated T2-w images. The bolded values denote cases in which the given features set
yields significantly better results than the other set (T-test with significance level of 5%).

SVM SVM kNN kNN NSC NSC k-means k-means Sparse

Linear RBF K=1 K=7 General Gaussian Euclidean City-block Representation

Gabor

Wavelet 93.1 93.6 89.3 89.7 62.5 61.3 74.9 79.7 70.8

Features ±0.3 ±0.1 ±0.2 ±0.5 ±0.8 ±1.3 ±0.4 ±0.3 ±0.4

Statistical 94.8 93.2 91.2 92.4 64.1 63.8 79.8 86.4 76.6

Features ±0.1 ±0.5 ±0.4 ±0.3 ±1.2 ±0.9 ±0.2 ±0.5 ±0.6

Table 5.5: Classification accuracies achieved on the two different feature sets obtained from
real T1c-w images. The bolded values denote cases in which the given features set yields
significantly better results than the other set (T-test with significance level of 5%).

SVM SVM kNN kNN NSC NSC k-means k-means Sparse

Linear RBF K=1 K=7 General Gaussian Euclidean City-block Representation

Gabor

Wavelet 90.1 90.0 79.7 80.5 57.9 58.3 71.7 72.6 68.2

Features ±0.5 ±0.4 ±0.8 ±0.9 ±1.9 ±1.5 ±0.1 ±0.5 ±0.2

Statistical 90.9 92.3 88.1 89.7 61.6 60.5 71.2 73.1 65.5

Features ±0.3 ±0.1 ±0.6 ±0.7 ±1.5 ±1.6 ±0.4 ±0.1 ±0.7

Of course, the picture provided by classification accuracy can be somewhat one-

sided. For better insight, therefore, Tables 5.8 to5.12 present values of three perfor-

mance criteria –sensitivity, specificity and accuracy– for T1-w images of simulated

dataset. It can be see that statistical features lead to significantly better results for

all three criteria in the case of SVM with linear and RBF kernels, kNN (k=1), SRC,

NSC with Gaussian under-sampling, and k-means clustering. In NSC with general

under-sampling case, Gabor wavelets features lead to better results along all three

ones. For kNN (k=7), the majority of better performances are still with statistical

features. Similar experiments on FLAIR sequences of simulated data, as well as, T1-w

and FLAIR images of real data are applied and similar results are achieved.
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Table 5.6: Classification accuracies achieved on the two different feature sets obtained from
real FLAIR images. The bolded values denote cases in which the given features set yields
significantly better results than the other set (T-test with significance level of 5%).

SVM SVM kNN kNN NSC NSC k-means k-means Sparse

Linear RBF K=1 K=7 General Gaussian Euclidean City-block Representation

Gabor

Wavelet 86.6 92.2 82.6 83.8 61.5 59.6 71.5 70.1 70.3

Features ±0.3 ±0.1 ±0.5 ±0.1 ±1.2 ±1.7 ±0.6 ±0.2 ±0.4

Statistical 91.3 93.2 86.5 88.4 60.9 61.3 77.2 80.7 73.9

Features ±0.2 ±0.3 ±0.3 ±0.4 ±1.6 ±1.4 ±0.2 ±0.8 ±0.5

Table 5.7: Classification accuracies achieved on the two different feature sets obtained from
real T2-w images. The bolded values denote cases in which the given features set yields
significantly better results than the other set (T-test with significance level of 5%).

SVM SVM kNN kNN NSC NSC k-means k-means Sparse

Linear RBF K=1 K=7 General Gaussian Euclidean City-block Representation

Gabor

Wavelet 88.3 92.9 81.6 83.7 64.4 62.9 76.3 75.2 71.9

Features ±0.1 ±0.3 ±0.2 ±0.1 ±0.9 ±1.3 ±0.3 ±0.5 ±0.4

Statistical 91.7 92.4 85.3 88.4 63.8 63.5 79.8 80.5 74.1

Features ±0.4 ±0.2 ±0.4 ±0.5 ±1.7 ±1.1 ±0.5 ±0.6 ±0.8

Although Gabor wavelets are employed widely in computer vision and medical

image processing, they occupy large amount of memory, and their high redundancy

makes the computation heavy and slow. To get a better idea about these costs, we

measured the run-times needed for the individual steps. The results summarized in

Table 5.13 were measured on an Intel Xeon CPU X5472 machine at 3 GHz and with

64 GB of RAM. We should remember that this concerns T1-w images of 25 subjects,

which each subject has 181 slices. Table 5.14 shows the average run time for a

single slice. They indicates that statistical features in comparison with Gabor wavelet

features have the potential to be highly valuable in tumor segmentation methods.
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Table 5.8: Results of SVM Classifier for T1-w images of simulated dataset. The bolded
values denote cases when the given features set yield significantly better results that the
two other sets (T-test with significance level of 5%).

SVM with Linear kernel SVM with RBF kernel

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Gabor-wavelet 90.6 91.8 92.2 95.4 93.9 94.3

Features ±0.4 ±0.9 ±0.5 ±1.3 ±0.2 ±0.4

Statistical 96.3 94.8 95.1 96.2 95.7 95.7

Features ±0.7 ±0.3 ±0.2 ±0.9 ±0.1 ±0.3

Table 5.9: Results of kNN classifier for T1-w images of simulated dataset. The bolded
values denote cases when the given features set yield significantly better results that the
two other sets (T-test with significance level of 5%).

kNN (K=1) kNN (K=7)

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Gabor-wavelet 86.7 88.1 87.5 89.2 91.3 90.7

Features ±0.9 ±0.7 ±0.7 ±0.8 ±0.6 ±0.8

Statistical 89.8 90.3 89.6 92.7 91.1 92.5

Features ±1.1 ±0.4 ±0.3 ±0.9 ±0.5 ±0.7

5.6 Conclusion

In this chapter, a texture-based approach for tumor detection and segmentation

using single-spectral MR images is presented. An integrated automated framework

that is able to detect the MR images containing tumor lesion and then segment the

tumor lesion is implemented on T1-weighted, T2-weighted, and FLAIR sequences.

The remarkable accuracy of the proposed algorithm in tumor segmentation (95.9 ±

0.4% for FLAIR images of simulated data, and 93.2 ± 0.3% for FLAIR images of

real data) demonstrates the efficiency of this method. The proposed method detects

the slices containing tumor using mutual information of histograms of two brain

hemispheres. This allows it to recognize the brain hemisphere containing tumor,
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Table 5.10: Results of NSC classifier for T1-w images of simulated dataset. The bolded
values denote cases when the given features set yield significantly better results that the
two other sets (T-test with significance level of 5%).

NSC in Gaussian case NSC in General case

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Gabor-wavelet 60.1 61.3 61.8 66.4 63.1 64.5

Features ±1.3 ±0.7 ±1.6 ±1.7 ±1.0 ±1.1
Statistical 62.9 64.8 63.5 62.5 62.7 63.8

Features ±1.4 ±0.3 ±1.3 ±1.2 ±0.9 ±0.8

Table 5.11: Results of k-means classifier for T1-w images of simulated dataset. The bolded
values denote cases when the given features set yield significantly better results that the
two other sets (T-test with significance level of 5%).

K-means with Euclidean distance K-means with City block distance

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Gabor-wavelet 67.7 71.1 69.6 70.3 72.1 71.3

Features ±1.2 ±0.9 ±0.3 ±1.5 ±0.6 ±0.2

Statistical 84.2 80.3 83.2 85.2 83.3 85.4

Features ±1.1 ±0.6 ±0.1 ±1.6 ±0.5 ±0.2

which decreases the computational process from analyzing the whole brain to just

one hemisphere. In addition, it is independent of atlas registration, prior anatomical

knowledge, or bias corrections that restrict the general application of many state-of-

the-art methods. Note that, any inaccuracy in registration or bias correction stages

will directly affect the precision of the lesion segmentation. The other benefit of the

proposed method is in the use of single-spectral MRI. While using multi-spectral MR

images address the intensity similarities between lesion and healthy tissues, in some

of practical clinical situations only one type of anatomical MR image is collected due

to time, cost, and patient situation limitations. In addition, use of multi-spectral

data implies the need to ensure that each of the spectra must be properly registered.
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Table 5.12: Results of SRC classifier for T1-w images of simulated dataset. The bolded
values denote cases when the given features set yield significantly better results that the
two other sets (T-test with significance level of 5%).

Sparse Representation Classifier

Sensitivity Specificity Accuracy

Gabor-wavelet 69.5 74.2 71.1

Features ±1.9 ±0.8 ±0.2

Statistical 74.0 80.9 78.1

Features ±1.6 ±1.3 ±0.4

Table 5.13: Average run time for each step of the algorithm for 25 subjects

Algorithm Step Processing Time

Tumor slice detection 12 minutes

Gabor-wavelet feature extraction 14 minutes

Statistical feature extraction 15 minutes

PCA on Gabor-wavelet feature 52 minutes

PCA on statistical feature 6 minutes

Additionally, despite the need of some other methods to have the initial assumptions,

such as a given number of tissue classes or a multi-scale classification, this algorithm

does not require any such information. This makes the proposed algorithm much

more robust and more general than other methods.

As an additional study, the capability and efficacy of two different feature sets,

Gabor wavelets and statistical features, in automated segmentation of brain tumor

lesions in MRI images are compared. Applying gray level co-occurrence matrix, grey

level run length matrix, histogram of oriented gradient, and linear binary pattern

method, second-order statistical feature vectors are derived. Adding first-order sta-

tistical features to this group, a 475-dimensional statistical feature vector is obtained.

On the other hand, employing the Gabor wavelet transform, in five scale and eight
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Table 5.14: Average run time for each step of the algorithm for 1 slice

Algorithm Step Processing Time

Tumor slice detection 720 ms

Gabor-wavelet feature extraction 840 ms

Statistical feature extraction 900 ms

PCA on Gabor-wavelet feature 3,120 ms

PCA on statistical feature 360 ms

orientations, an 81000-dimensional Gabor wavelet feature vector is captured. The

comparison results indicate that statistical features usually offer higher accuracy than

Gabor wavelet features. Moreover, statistical features have much smaller dimension-

ality than Gabor wavelet-based feature (475 vs. 81000). Although Gabor wavelets

are employed widely in computer vision and medical image processing due to their

effective directional selectivity, they occupy large amount of memory; they are highly

redundant and lead to high computational costs. Even in the laboratory conditions,

although the feature extraction time for both Gabor wavelet and statistical features

are almost the same, the dimensionality reduction using PCA is almost eight times

faster for statistical features. These observations seem to prove that statistical fea-

tures are adequately enough to discriminate tumor tissues from other tissue types in

T1-weighted, T2-weighted, and FLAIR images.



CHAPTER 6

A Winnow-Based Feature Selection and
Contour-Based Segmentation of Brain
Tumor Lesions

6.1 Motivation

Using the proposed algorithm in the previous chapter, the maximum obtained

accuracy for tumor segmentation was 95.9± 0.4% for simulated data and 93.2± 0.3%

for real data. In order to reduce the computational complexity and expedite the

segmentation algorithm, and also to improve the system performance, some modifi-

cations are applied in the algorithm presented in previous chapter. The algorithm

modifications are applied in three main phases: feature extraction, feature selection,

and tumor localization.

First, the feature pool size is increased with adding other useful texture-based

feature extraction techniques such as anisotropic Morlet complex wavelet transform,

dual-tree complex wavelet transform, and wavelet packet decomposition. It is worth

mentioning that for the first time, in this study anisotropic Morlet complex wavelet

transform and dual-tree complex wavelet transform are applied in tumor segmentation

study.

106
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Adding these texture-based features to extracted statistical features from previous

chapter, construct a very long feature vector. One of the efficient ways of reduction

of dimensionality of data in mining the large feature sets without sacrificing class dis-

crimination is feature selection. There are many potential benefits of feature selection

like facilitating data visualization and data understanding, reducing the calculation

and storage requirements, reducing training and utilization times, and defying the

curse of dimensionality to improve classification performance [127]. Moreover, fea-

ture selection methods are usually fast and more efficient than feature dimensionality

reduction approaches. In this section, a novel feature selection approach based on

regularized Winnow algorithm (RWA) is proposed. RWA is originally a classifier,

however, the low complexity of this method motivates to employ it in feature selec-

tion. While RWA classifier works with binary feature vectors, it is modified to not

only work as a feature selection technique but also to be able to handle non-binary

features. The presented feature selection method is fast and efficient in dealing with

many irrelevant attributes.

For localizing the tumor area, a sliding window sweeps through the whole brain

tissue, excluding background area, to localize candidate tumor regions. In order to

decrease the calculation time, the window sweeps with the step size of five pixels.

In this application, it decreases the calculation complexity by 25 times. A tumor

classification approach is then applied on every instance of the window. If the window

is classified to have tumor, the central pixel of the window will be labeled as tumor.

On the other hand, if it is classified as healthy, the central pixel will be labeled

as healthy. Then, the obtained candidate pixels determined by this method to be

as tumor is used to construct the initial points for skippy greedy snake algorithm.
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Skippy greedy snake algorithm is an active contour model, which performs the search

in an alternate skipping way between the even and odd nodes of a snake with different

step sizes. The alternative step sizes are adjusted so that the snake is less likely to

be trapped at a pseudo-local minimum. The iteration process is based on a coarse-

to-fine approach to improve the convergence. Specifying the proper initial points

has a great influence on the accuracy and convergence speed of the skippy greedy

snakes algorithm. In addition, it satisfies the requirement of human interference to

manually specify initial points. Using this method, more accurate results besides less

computational complexity for brain tumor segmentation are achieved.

6.2 Texture-Based Feature Extraction Method

6.2.1 Anisotropic Morlet Complex Wavelet Transform

Wavelet transform is a powerful tool in signal and image processing because of its

capability in presenting aspects of data which other signal analysis techniques overlook

like trends, breakdown points, discontinuities in higher derivatives, and self-similarity

[38]. In mathematical point of view, a wavelet transform is an integral transform,

in which the kernel is a function (wavelet) that has dense support, indicating that

the function is non-zero over a finite interval and zero elsewhere [1]. This feature

makes wavelet analysis an efficient tool in compression and de-noising the signal

without considerable degradation, and also in identification of local characteristics of

a random field.

One of the important wavelets is Morlet wavelet, which has numerous applications

in signal and image processing fields. The Morlet wavelet has a form very similar to
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the Gabor transform. The important difference is that the window function also

needs to be proportioned by a scaling parameter, while the size of window in Gabor

transform is known to be fixed [128]. The standard Morlet wavelet is a complex-valued

wavelet that has directionally-dependent real and imaginary parts but is isotropic in

magnitude. The new fully-anisotropic Morlet wavelet that we use, is anisotropic in

its real and imaginary parts and also in its magnitude.

If we want to explain it briefly, we can say:

The continuous wavelet transform of a 2D space function, f(X), is defined by [129]

Wψf(a, b) =

∫ +∞

−∞
f(X)ψ̄a,b(X)dX, (6.1)

where Wψf(a, b) is the wavelet coefficient, X = (x, y) is the spatial position, the

overbar denotes complex conjugate, and ψa,b(X) for this 2D domain is given by [130]

ψa,b(X) =
1

a
ψ(
X − b
a

), (6.2)

where ψ(X) is the mother wavelet, b is a shift parameter, and a is a scale parameter

or dilation parameter. The normalization constant 1/a, is defined such that the total

energy of the analyzing wavelet is independent of the scale, i.e.

∫ +∞

−∞
|ψa,b(X)|2dX =

∫ +∞

−∞
|ψ(X)|2dX (6.3)

for all values of a.

As explained before, the wavelet can be any function that has a zero mean and

mild decline such that it is non-zero only over a small region. Antoine et al. defined

one such function called Morlet wavelet as [131]
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ψ(X) = eik0.xe−1/2(x.A
TAx) − e−1/2(k0BTBk0)e−1/2(x.A

TAx) (6.4)

where k0 is a wave vector, A is an anisotropy matrix, B = A−1, and the superscript

T denotes the matrix transpose. If |k0| is sufficiently large, i.e. |k0| ≥ 5.5, the

second term in equation (6.4) is negligible and can be ignored. The Morlet wavelet

is a directional wavelet, which is capable of analysis of different orientations of the

random field. This can be accomplished by modification of equation (6.1) to include

the variable orientation θ

Wψf(b, a, θ) =
1

a

∫ +∞

−∞
f(X)ψ̄(

X − b
a

, θ)dX, (6.5)

The only difference between equation (6.1) and equation (6.5) is that the wavelet and

the wavelet coefficient in equation (6.5) are functions of the orientation angle θ.

Kumar [132] controlled the orientation of the wavelet by defining the wave vector

as k0 = (k0cosθ, k0sinθ) with k0 ≥ 5.5 to obtain a wavelet can be rotated through an

angle θ. The Morlet wavelet proposed by Kumar [132] has directionally-dependent

real and imaginary parts, which allows it to identify dominant orientations in a ran-

dom field. However, it is isotropic in magnitude and does not take advantage of the

anisotropy of random fields. As an development, Neupauer et al. [130] presented a

modified fully-anisotropic Morlet wavelet, which takes advantage of both being di-

rectional dependent in the real and imaginary part, and also being anisotropic in

magnitude. It is noteworthy that strength of an anisotropic Morlet wavelet is in iden-

tification of dominant orientations in anisotropic random fields. In this wavelet both

the elliptical envelope and the wave vector are rotated through an angle defined by
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the orientation parameter θ [1]. Fully-anisotropic Morlet complex wavelet transform

(AM-CWT) is defined by Neupauer et al as:

ψ(x, θ) = eik0C.xe−1/2(Cx.A
TACx) (6.6)

where k0 = (0, k0), k0 ≥ 5.5, A = diag(L, 1). L is the anisotropy ratio, defined as the

ratio of the scaling factor in the direction perpendicular to θ to the scaling factor in

the θ direction. Also, C is a linear transformation matrix given by:

C =

 cosθ sinθ

−sinθ cosθ

 (6.7)

Using this linear transformation causes the entire wavelet rotates through an angle

θ, which is defined as positive in the counterclockwise direction. Fig. 6.1 illustrates

the real parts of basic, shifted, and scaled Morlet wavelet, and anisotropic wavelet.

In order to obtain powerful textural features of images, the energy of wavelet

coefficients for each combination of parameters is also calculated using the equation

below:

Energya,θ,L =
∑
by

∑
bx

|Ca,θ,L,by ,bx|2 (6.8)

thus, we will have 225-dimensional feature vector for each wavelet transformation

with a certain dilation, angle, and anisotropy ratio (L).

6.2.2 Dual-Tree Complex Wavelet Transform

Another recently-developed and useful kind of wavelet transform is dual tree com-

plex wavelet transform (DT-CWT), which is modified version of discrete wavelet
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Figure 6.1: Effect of an isotropic Morlet wavelet transform parameters: (a) mother wavelet;
(b) shifted wavelet (b = [6,−4]); (c) scaled wavelet (a = 2); (d) rotated wavelet (θ = 30);
(e) anisotropic wavelet (θ = 0, L = 0.5) and (f) anisotropic wavelet (θ = 30, L = 0.5). Black
rings represent envelope that contains most energy of wavelet. [1].

transform (DWT). The main limitations of DWT in pattern recognition application

is lack of shift invariance and poor directional selectivity because of the decimation

operation during the transform [133]. The limitation of being shift variant causes

a small shift in the input signal brings very different output wavelet coefficients. In

order to overcome these limitations of DWT, Kingsbury [2] introduced dual-tree com-

plex wavelet transform. This method has the following properties: 1) approximate

shift invariance, 2) good directional selectivity in 2-D with Gabor-like filters (also true

for higher dimensionality, m-D), 3) perfect reconstruction using short linear-phase fil-
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ters, and 4) limited redundancy, independent of the number of scales, 2m : 1 for m-D.

In image processing applications, this method is known to be free of checkerboard ar-

tifact, providing better angular resolution, and offering six directional wavelets (165,

135, 105, 75, 45, 15 degrees) [134]. The success of the transform is because of the

two trees of real-valued wavelet filters operating on the same data in parallel. These

filters are designed such that the two trees produce the real and imaginary parts of

the complex-valued coefficients.

Given a 2-D image I, its wavelet transform with respect to the analyzing wavelet

of ψ is:

I(a, θ, b) = a−1
∫
d2xψ̄(a−1r−θ(x− b))i(x) = a

∫
d2keib.kψ̂(ar−θk)î(k) (6.9)

where the hat sign denotes a Fourier transform and b, a, and θ are translation,

dilation, and rotation angle (r−θ is the rotation matrix) of the analyzing wavelet ψ,

respectively. Therefore, complex wavelet transform (CWT) of an image is a function

of four variables: two position variables bx, by, a dilation parameter a, and a rotation

angle θ. This explains the efficiency of the CWT in treating singularities, since

it unfolds them from two to four dimensions. Also, contrary to discrete wavelet

transform (DWT), the wavelet function ψ, in the equation above is largely arbitrary

and is not determined by the multiresolution scheme.

DT-CWT is composed of two parallel wavelet transforms, and according to the

wavelet theory, the wavelet coefficients dRea (k) and scaling coefficients cRej (k) of the

upper tree can be computed via inner products [135]:
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dRea (k) = 2a/2
∫ +∞

−∞
f(X)ψh(2

aX − k)dX (6.10)

a = 1, ..., j (6.11)

cRej (k) = 2j/2
∫ +∞

−∞
f(X)φh(2

jX − k)dX (6.12)

where l is the scale factor and j is the maximum scale. ψ(t) is real-valued bandpass

wavelet and φ(t) is real-valued lowpass scaling function. Similarly, the coefficients of

the lower tree can be computed as:

dIma (k) = 2a/2
∫ +∞

−∞
f(X)ψg(2

aX − k)dX a = 1, ..., j (6.13)

cImj (k) = 2j/2
∫ +∞

−∞
f(X)φg(2

jX − k)dX (6.14)

The wavelet and the scaling of the DT-CWT coefficients can then be expressed

by combining the output of the dual tree as follows:

dCa (k) = dRea (k) + dIma (k) (6.15)

cCj (k) = cRej (k) + cImj (k) (6.16)

In this application, the coefficients of the high-pass sub-bands of each decomposi-

tion level and lowpass sub band from the final level are used as textural features.
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Figure 6.2: Components of the reconstructed image of a light circular disc on a dark back-
ground, for wavelets and scaling functions at levels 1 to 4, using the 2-D DT CWT (upper
row) and 2-D DWT (lower row). Only half of each wavelet image is shown in order to save
space. At each wavelet level, all six directional subbands are retained [2].

6.2.3 Wavelet Transform Decomposition

In two-dimensional images, the wavelet decomposition is acquired as a set of

independent, spatially oriented frequency channels. The HH (as it shown is Fig.

6.3) resulting sub image corresponds to diagonal details (high frequencies in both

directions - the corners), HL illustrates horizontal high frequencies (vertical edges),

LH shows vertical high frequencies (horizontal edges), and the sub image LL shows the

lowest frequencies, which is called approximation. In the next step of analysis, the sub

image LL is decomposed with the same high pass and low pass filters, while the lowest

frequency component is always in the upper left corner of the image. In each stage of

the analysis, four sub images are generated whose sizes are reduced twice compared to
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Figure 6.3: Wavelet Decomposition

Figure 6.4: Wavelet packet transform

the former scale. Reasonable texture segmentation results can be obtained after 2 to 4

scales of wavelet decomposition. Experience proved that symmetric wavelet functions

are superior to non symmetric ones because of the linear-phase property of symmetric

filters [136] [137]. In this study, haar wavelet is used for wavelet decomposition.

6.2.4 Wavelet Packet Decomposition

As an extension of the standard wavelets, wavelet packets represent a generaliza-

tion of the multi-resolution analysis and use the entire family of sub band decomposi-
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tion to generate an over complete representation of signals. Two-dimensional discrete

wavelet packet decomposition allows us to analyze an image simultaneously at differ-

ent resolution levels and orientations. In 2-D discrete wavelet packet transform (2-D

DWPT), an image is decomposed into one approximation and three detail images.

The approximation and the detail images are then decomposed into a second-level

approximation and detail images, and the process is repeated (as it is shown in Fig.

6.4). The standard 2-D DWPT can be implemented with a low-pass filter and a

high-pass filter [138]. The 2-D DWPT of a N ×M discrete image A up to level P + 1

(P 6 min(log2 n, log2m)) is recursively defined in terms of the coefficients at level p

as follows:

Cp+1
4k,(i,j) =

∑
m

∑
n

h(m)h(n)Cp
k,(m+2i,n+2j) (6.17)

Cp+1
4k+1,(i,j) =

∑
m

∑
n

h(m)g(n)Cp
k,(m+2i,n+2j) (6.18)

Cp+1
4k+2,(i,j) =

∑
m

∑
n

g(m)h(n)Cp
k,(m+2i,n+2j) (6.19)

Cp+1
4k+3,(i,j) =

∑
m

∑
n

g(m)g(n)Cp
k,(m+2i,n+2j) (6.20)

where C0
0 is the image A and k is an index of the nodes in the wavelet packet tree

denoting each subband. At each step, the image Cp
k is decomposed into four quarter-

size images Cp+1
4k , Cp+1

4k+1 , Cp+1
4k+2 , and Cp+1

4k+3.

The coefficients’ energy and Shannon entropy in different subbands are computed

from the subband coefficient matrix as:
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Energyp(k) =
∑
i

∑
j

|Cp
k,(i,j)|

2 (6.21)

Entropyp(k) = −
∑
i

∑
j

|Cp
k,(i,j)|

2 log |Cp
k,(i,j)|

2 (6.22)

Where Energyp(k) and Entropyp(k) are the energy and entropy of the image pro-

jected onto the subspace at node (p, k). The entropy of each sub band provides a

measure of the image characteristics in that sub band. The energy distribution has

important discriminatory properties for images and as such can be used as a feature

for texture classification. From equation above, it follows that the wavelet entropy is

minimum when the image represents an ordered activity characterized by a narrow

frequency distribution, whereas the entropy is high when an image contains a broad

spectrum of frequency distribution. In this study, Haar mother wavelet was employed

to decompose the images to second level of wavelet packet decomposition and Shan-

non entropies of images at each sub band have been used as image features. Also

energies and entropies of sub bands of wavelet decomposition are calculated.

6.3 Feature Selection Using Modified Regularized

Winnow Algorithm

Feature selection and feature dimensionality reduction is an important step in

machine learning procedure. The focus of feature selection is to select a subset

of variables from the input which can efficiently describe the input data while re-

duces the effect of noise or irrelevant variables, and still provides good prediction

results [127]. Feature selection helps in understanding data, reducing computation
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complexity, reducing the effect of curse of dimensionality, and improving the classifier

performance [139].

Winnow algorithm [140, 141] is a binary classifier, which learns linear threshold

hypotheses. The algorithm is specialized for binary inputs and is a multiplicative

update algorithm which is proved to be appropriate for problems with many irrelevant

attributes.

Working with Winnow algorithm, one of the concern is its convergence. Littlestone

et al. in [140] show that its convergence is guaranteed for linearly separable data.

However, in practical applications, many of data may not always be linearly separable.

Zhang [142] sugessted a modification of Winnow which extends its application for

linearly non-separable case, and makes a reliable probability estimate. The basic

idea is about modification of the original Winnow algorithm to solve a regularized

optimization problem. The result of modified Winnow algorithm converges both in

the linearly separable case and in the linearly non-separable case. Consider the binary

classification problem: to determine a label y ∈ {−1, 1} associated with an input

vector x. We need to find a weight vector w and a threshold θ such that wTx < θ

if its label y = −1 and wTx ≥ θ if its label y = 1. For simplicity, θ is assumed to

be zero in many applications. The θ restriction does not cause problems in practice

since one can always append a constant feature to the input data x, which offsets the

effect of θ. Given a set of labeled data (x1, y1), ..., (xn, yn), this algorithm updates the

weight vector w by going through the training data repeatedly. when the algorithm

is not able to correctly classify an example, the weight vector is updated.

The Winnow algorithm (with just positive weight) uses multiplicative update: if

the linear discriminant function with current weight vector wi−1 misclassifies an input
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training vector xi with true label yi, then each component j of the weight vector wi

is updated as:

wij ←− wi−1j exp(ηxijy
i) (6.23)

where η > 0 is the learning rate parameter. The initial weight vector can be taken as

wj = µj > 0, where µ is a prior which is typically chosen to be uniform (one).

For facing convergence problem for linearly non-separable data, one may partially

solve the problem by decreasing the learning rate parameter η during the updates.

However, this is not clear what is the best way to do so. Therefore in practice, it is

perplexing to implement this idea properly.

Zhang et al. [142] converted Winnow algorithm into a numerical optimization

problem that is able to handle linearly non-separable data. Instead of looking at one

example at a time as in an online formulation, Zhang incorporated all examples at

the same time. A linear weight ŵ is defined as:

ŵ = arg min
w

[∑
j

wjln
wj
eµj

+ c

n∑
i=1

f(wTxiyi)

]
(6.24)

where

f(v) =


−2v v < −1

1
2
(v − 1)2 v ∈ {1, 1}

0 v > 1

(6.25)
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and c > 0 is a given parameter called the regularization parameter. The optimal

solution ŵ of the above optimization problem can be derived from the solution α̂ of

the following dual optimization problem:

α̂ = maxα
∑

i

[
αi − 1

2c
(αi)2

]
−
∑

j µjexp(
∑

i α
ixijy

i)

s.t. αi ∈ [0, 2c] (i = 1, ..., n).

(6.26)

The j-th component of ŵ is given by

ŵj = µjexp(
n∑
i=1

α̂ixijy
i) (6.27)

A Winnow-like update rule can be derived for the dual regularized Winnow formu-

lation. At each data point (xi, yi), all αks with k 6= i are calculated, and αi is updated

to approximately maximize the dual objective functional using gradient ascent:

αi → max( min( 2c , αi + η(1− αi

c
− wTxiyi) ) , 0 ) (6.28)

where

wj = µjexp(
n∑
i=1

αixijy
i) (6.29)

The dual variable α is initialized to be zero, which corresponds to w = µ. Then α

and w are updated by repeatedly going over the data sequentially from i = 1, ..., n.

The αi is memorized and when the same point is revisited in later iterations, the

memorized αi is applied in the formula.

Littlestone [140] shows that the original Winnow method was robust to irrelevant

features in that the number of mistakes it makes to obtain a classifier (in the sepa-

rable case) depends only logarithmically on the dimensionality of the feature space.
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Generalization bounds of regularized Winnow that are similar to the mistake bound

of the original Winnow (in the sense of logarithmic dependent on the dimensionality)

have been given by Zhang [143]. These results imply that the new method, while

it can properly handle non-separable data, shares similar theoretical advantages of

Winnow in that it is also robust to irrelevant features.

As it was mentioned before, regularized Winnow algorithm is a classifier for binary

input. Using Winnow algorithm as a feature selection method, the problem we have

is the non-binary extracted features from brain MR images. For facing this issue, we

quantize each feature to be either zero or one. The threshold value that is used for

quantization is determined by finding the median of the values of each feature such

that half of the samples have values less than the threshold and the other half greater

than the threshold. Since the number of healthy and tumor samples are equal, in the

ideal case, i.e., the most discriminating feature, either zero or one will be assigned

to the same class. Quantizing each feature into two levels as zero and one, we will

obtain a binary feature vector suitable for regularized Winnow algorithm. Note that

the obtained threshold values are used to quantize the feature vectors of the testing

samples. After applying the Winnow algorithm, the weights assigned for the features

represent the discriminative power of each feature. Feature selection can be done

by selecting the most discriminative feature. This feature selection method has the

advantage of being fast and efficient in dealing with many irrelevant attributes.

6.4 Skippy Greedy Snake Algorithm

Snake is an active contour model (ACM) and a energy-minimizing spline guided by

external constraint forces and influenced by image forces that pull it toward features
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such as lines and edges [144]. The snake is a method of contour representation with

a number of nodes υ(s), called snaxels, where s is the normalized arc length in the

range 0 < s < 1 [3]. The convergence is governed by two energy functions, the

internal energy Einternal and the external energy Eexternal, which are defined based on

the template properties and the image properties, respectively. Einternal consists of

two terms, the continuity force and the curvature force, denoted as Econt and Ecurv,

respectively. The energy functional to be minimized for a snake with N snaxels is as

follows [3]:

N−1∑
i=0

E(υ(i), j) =
N−1∑
i=0


αiEcount(υ(i), j)

+βiEcurv(υ(i), j)

−γiEimage(υ(i), j)


. (6.30)

where j refers to the Gp neighboring pixel positions under examination with step size

δk which is based on a pixel search pattern (p), around the ith snaxel, where j = j±δk,

δ ∈ 0,±1, .... The snaxel movement is to choose the pixel in the neighborhood that

minimize the equation 6.30. For the traditional snakes (greedy snake algorithm),

step size is δ ∈ 0,±1, ..., which means that all the pixels are at the first degree

neighborhood relation at all directions. The coefficients α, β, and γ are weighting

factors that control the relative importance of the continuity energy, bending energy,

and image forces, respectively. The continuity energy Econt(υ(i), j) is approximated

as the first-order continuity function of the snaxels with

Ecount(υ(i), j) =
|davr − dυ(i)−υ((i+1),j)|

max{|davr − dυ(i)−υ((i+1),j)|}
(6.31)
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where dυ(i)−υ((i+1),j) refers to the distance between the two consecutive snaxels υ(i)

and υ(i+ 1, j). The average distance between the adjacent pixels is as follows:

davr = (1/N)
N−1∑
i=0

dυ(i)−υ((i+1),j) (6.32)

Econt is the degree of uniformity of the distance distribution between adjacent snaxels

of a contour. When the distances between the adjacent snaxels are close to the

average distance davr, Econt(υ(i), j) approaches zero. davr is updated at the end of

each iteration.

The continuity term encourages the snaxels to be evenly spaced, while the curva-

ture energy indicates the degree to which a snaxel is being bent with respect to its

two adjacent snaxels. Ecurv is calculated as follows:

Ecurv(υ(i), j) =
|υ(i− 1)− 2υ(i, j) + υ(i+ 1)|

max{|υ(i− 1)− 2υ(i, j) + υ(i+ 1)|}
(6.33)

These two energy terms are normalized by the respective largest values in the neigh-

borhood. The counteracting energy functional Eimage(υ(i), j), which is also to be

normalized, is defined based on the local gradient magnitude as follows:

Eimage(υ(i), j) =
I(υ(i), j)

max(I(υ(i), j))−min(I(υ(i), j))
(6.34)

where I(υ(i), j) represents the intensity gradient at the point j of the snaxel υ(i)

with a step size of ±δ, and and min(I) and max(I) are the minimum and maximum

gradients for all Gp pixels in the neighborhood. The new position of the snaxels is

the one that results in the maximum reduction of the total energy based on 6.30.
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Figure 6.5: Black pixels are examined for a possible local minimum (a) in GSA, (b) in
FGSA alternating between the patterns b1 and b2, and (c) in the case of SGSA, the step
sizes of adjacent snaxels are alternated between the step size δ0 = 1 in c1 and δ1 = 2 in
c2 [3].

Greedy snake algorithm (GSA) [145] and fast greedy snake algorithm (FGSA) [146]

search for the new position of a snaxel based on search patterns with a step size δ

equal to 1. In the case of the GSA, the energy functional is computed at each snaxel

for its current pixel and for its eight neighboring pixels, to determine its new position

in an iteration. Therefore, the number of neighboring pixels examined is 9, as shown

in Fig. 6.5(a). The FGSA employs two patterns that are swapped alternately at

successive iterations, so the number of pixels examined is reduced to 5. One FGSA

search pattern has a cross pattern shape and the other has a diagonal pattern shape,

as illustrated in Fig. 6.5(b) [3].
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The main limitation of snake algorithm is possibility of getting trapped around

an undesired local minimum due to the slithering behavior of convergence [3,147]. In

this sense, FGSA has the advantage of introducing a perturbation type of behavior.

Nevertheless, FGSA still has a high probability of being trapped around an undesir-

able local minimum. Possible methods of escaping from the local minima include the

exploration of all possible positions of the snake and the application of simulated an-

nealing. However, these approaches are too computational for practical applications.

Possible solutions to alleviate the effect of local minima are to smooth the images

with either a median or Gaussian filter with a large window size, and to increase the

step size of the search windows. In fact, a snaxel in FGSA cannot move in a straight

path because of the use of alternate patterns. The maximum cost occurs when the

routing path is a vertical or a horizontal straight line. In this case, the number of

iterations required will be doubled, and, therefore, the advantage of reducing pixels

to be examined will disappear.

Skippy greedy snake algorithm introduced by Sakalli et al. [3] uses two different

step sizes as denoted by δ0 and δ1. The step sizes of even and odd ordered snaxels

alternate between δ0 = 1 and δ1 = 2 at each iteration. The step size of the search can

be set to a higher value if the neighboring pixels are highly correlated, which is the

case pointed out for natural images [148]. Therefore, the pixels in the vicinity of the

current snaxel can be searched in a skipped way. However, it is possible that a pixel

position which can produce a smaller value of energy functional might be skipped.

This implies that the step sizes should be selected in such a way that all possible

positions can be reached by the snaxels, particularly in the fine tuning stage. For the

same reason, if the step sizes are chosen to be large, then alternate step sizes between
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adjacent snaxels moving in shorter step sizes will probably prevent the snaxels from

going astray. Using this idea, the pixels that are skipped during the large step size

will be examined with the small step size in the reverse direction.

In comparison of FGSA and SGSA, it is seen that FGSA requires a higher number

of iterations, while SGSA a fewer iterations [3]. The efficiency achieved by FGSA is

due to the fact that a less number of pixels are examined in a larger area for any

search pattern. When the reduction in pixel numbers to be examined is taken into

account, the FGSA has a computational efficiency of 1.2 to 1.35 times of GSA. The

SGSA achieves a higher efficiency level, reaching 1.5 times of GSA when the number

of iterations exceeds 20. Therefore, the computational efficiency of the skippy greedy

snake algorithm is higher than that of the fast GSA.

The common factor which is important in three snake algorithms is specifying ap-

propriate initial points. Determining suitable initial points has a great impact on the

accuracy of snake algorithm in segmentation. In this study, we apply skippy greedy

snake algorithm for last step of the proposed segmentation system. Appropriate ini-

tial points are established using the determined region as tumor lesion by third step

of the system.

6.5 System Approach

Skippy greedy snake algorithm in capable of segmenting the tumor area however

the algorithm’s accuracy and performance depends significantly on its initial points.

In this chapter, a novel algorithm is presented to automatically find proper initial

points which not only obviates the requirement of manual interference but also in-

crease the accuracy and speed of optimization convergence. The same methods as
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Figure 6.6: System overview

mentioned in previous chapter are used for tumor slice detection and MRI intensity

normalization. After detection of a slice containing tumor lesion, it is fed into the

segmentation stage, which localizes the tumor area. The candidate tumor regions are

obtained using a sliding window with step size of 5 pixels, which sweeps through the

whole brain tissue. A tumor classification approach is then applied on every instance

of the window. If the window is classified to have tumor, the central pixel of the

window will be labeled as tumor. On the other hand, if it is classified as healthy, the

central pixel will be labeled as healthy. The obtained candidate pixels determined

by our method to be as tumor lesion are used to construct the initial points for ac-

tive contour model implemented with skippy greedy snake algorithm. The system

overview is depicted in Fig. 6.6
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6.5.1 Windowing

In order to create the training set, we automatically crop random windows from

each selected hemisphere containing tumor. Having the brain midline and borderline

helps us to restrict the windows to just cover the brain tissue and not the background.

For the testing step, a same size sliding window sweeps all over the brain, excluding the

background area. The sweeping steps of sliding window are 5 pixels. The computation

complexity of sliding window presented in the previous chapter is reduced by 25 times

in this application. A set of statistical and wavelet features are extracted using the

aforementioned feature extraction methods from each instance of the sliding window.

6.5.2 Feature Aggregation

Different statistical and wavelet features are extracted from each instance of the

window. Wavelet features are extracted using DT-CWT, AM-CWT, wavelet decom-

position and wavelet packet decomposition, as described in Section 6.2.

We use Y l, Y h, and Y scale features from Dual Tree complex wavelet transfor-

mation, where Y l is a cell array including the lowpass sub band from the final level,

Y h is a cell array containing the highpass subband for each level and Y scale is a cell

array containing the lowpass coefficients at every scale. The length of the Dual Tree

feature vector is 180.

Morlet-wavelet features are extracted by applying Morlet-wavelet kernels with two

different scales and eight orientations. Including wavelet energy feature, the length

of feature vector is 1616.
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Table 6.1: Brain tumor segmentation accuracy using different feature sets on T1-w images
of simulated data

NN 3-NN 5-NN 7-NN

Feature Type Acc. Dim. Acc. Dim. Acc. Dim. Acc. Dim.

DT-CWT 93.25 180 93.37 180 93.63 180 93.64 180

AM-CWT 94.16 1616 94.02 1616 93.95 1616 93.92 1616

DWPT 91.93 128 91.78 128 91.71 128 91.59 128

DWT 93.42 273 93.55 273 93.68 273 93.66 273

Statistical 89.6 475 90.1 475 91.9 475 92.5 475

Total 90.1 2672 90.22 2672 91.36 2672 91.6 2672

Winnow 92.3 70 92.72 100 92.85 100 93.2 100

Table 6.2: Brain tumor segmentation accuracy using different feature sets on FLAIR images
of real data

NN 3-NN 5-NN 7-NN

Feature Type Acc. Dim. Acc. Dim. Acc. Dim. Acc. Dim.

DT-CWT 88.02 180 88.14 180 88.37 180 88.41 180

AM-CWT 90.05 1616 90.09 1616 90.11 1616 90.24 1616

DWPT 88.38 128 88.26 128 88.16 128 88.12 128

DWT 87.55 273 87.59 273 87.62 273 87.65 273

Statistical 86.5 475 86.9 475 87.7 475 88.4 475

Total 87.08 2672 88.35 2672 88.35 2672 88.48 2672

Winnow 90.5 70 90.8 100 91.3 100 91.5 100

Table 6.3: Tumor segmentation results using WWSS method

Simulated Simulated Simulated Real Real Real

T1 FLAIR T2 T1 FLAIR T2

Sensitivity 86.4± 0.6 90.64± 0.4 88.1± 0.3 78.65± 0.2 84.92± 0.4 77.43± 0.2

Specificity 98.8± 0.1 97.78± 0.5 97.31± 0.4 97.49± 0.1 95.12± 0.2 96.35± 0.5

Accuracy 96.6± 0.2 96.8± 0.3 96.1± 0.1 93.4± 0.4 93.8± 0.1 92.3± 0.2

Similarity Index 92.33± 0.1 91.38± 0.3 91.18± 0.1 85.72± 0.2 84.4± 0.4 83.23± 0.5
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Table 6.4: Comparing tumor segmentation accuracy using WWSS method and our previous
method

Simulated Simulated Simulated Real Real Real

T1 FLAIR T2 T1 FLAIR T2

Method in chapter 5 95.7± 0.3 95.9± 0.4 94.8± 0.1 92.3± 0.1 93.2± 0.3 91.7± 0.4

Current Method 96.6± 0.2 96.8± 0.3 96.1± 0.1 93.4± 0.4 93.8± 0.1 92.3± 0.2

The length of the feature vector achieved from applying 2D wavelet packet de-

composition on each window is 128. In addition, using 2D wavelet transform decom-

position on each window results in creating a 273 dimensional feature vector.

The total wavelet feature vector is a 2197-dimensional feature vector. In addition

to wavelet features, the statistical features including 7 first-order statistical features,

20 GLRLM features, 112 GLCM features, 80 HOG features, and 256 LBP features,

which makes a 475-dimentional statistical feature vector is added to feature pool.

Concatenation of statistical and wavelet features creates a 2672-dimensional feature

vector.

Figure 6.7: Examples of tumor lesion segmentation on simulated T1-w sample. (a) origi-
nal data, (b) golden label, (c) segmented tumor using sliding window with 5 pixels steps,
(d)segmented tumor using sliding window with 10 pixels steps
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(i) (j) (k)

Figure 6.8: Examples of tumor lesion segmentation on T1-w (first row), FLAIR (second
row) and T2-w (third row) simulated data. (a) original data, (b) golden label, (c) segmented
lesion after consistency verification, (d)segmented lesion using snake algorithm

6.5.3 Feature Selection and Classifications

After a slice is recognized to have tumor, segmentation step is applied to localize

tumor area. The candidate tumor regions are acquired using a sliding window that

sweeps the whole brain tissues with 5 pixels step size. In comparison with previous

chapter, using 5 pixels step size causes to reduce computational time by 25 times.

Different Wavelet feature sets are extracted from each instance of the window. After

applying modified regularized Winnow algorithm for feature selection on each feature
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(i) (j) (k) (l)

Figure 6.9: Examples of tumor lesion segmentation on T1-w (first row), FLAIR (second
row) and T2-w (third row) simulated data. (a) original data, (b) golden label, (c) segmented
lesion after consistency verification, (d)segmented lesion using snake algorithm

set, they are classified into either tumor or healthy. If the window is classified to

have tumor, the central pixel of the window is labeled as tumor. On the other hand,

if it is classified as healthy, the central pixel is labeled as healthy. For classification,

k nearest neighborhood is applied on both real and simulated data. The results are

represented in Table 6.1 and Table 6.2 for simulated and real data, respectively.

The candidate pixels obtained from kNN classifier are used in constructing the

initial points of skippy greedy snakes algorithm. Fig. 6.7 depicts segmented tumor

using sliding window with 5 and 10 pixels steps. Greedy snake is an ACM and an

energy-minimizing spline guided by external constraint forces and influenced by im-

age forces that pull it towards features such as lines and edges [144]. Energy function
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(i) (j) (k) (l)

Figure 6.10: Examples of tumor lesion segmentation on T1-w (first row), FLAIR (second
row) and T2-w (third row) simulated data. (a) original data, (b) golden label, (c) segmented
lesion using sliding window after consistency verification, (d)segmented lesion using snake
algorithm

consists of three components as: continuity, curvature, and gradient. Each of these

components is weighted by a specified parameter to make the total energy. In this

algorithm, initial points need to be defined in the region of interest. The initial points

are usually in the shape of an elliptic contour, which is specified manually. This is

considered as one of the main limitations of snake algorithm. The location of the ini-

tial points are updated through an iterative process. Energy function for each point

in a local neighborhood is calculated. Each point moves to the point with lowest en-

ergy function. This procedure repeats until termination condition met, which can be
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(i) (j) (k) (l)

Figure 6.11: Examples of tumor lesion segmentation on T1-w (first row), FLAIR (second
row) and T2-w (third row) real data. (a) original data, (b) golden label, (c) segmented
lesion using sliding window after consistency verification, (d)segmented lesion using snake
algorithm

either a defined number of iterations, or stability of the position of the points. Speci-

fying the proper initial points has a great influence on the accuracy and convergence

speed of the skippy greedy snakes algorithm. In addition, it satisfies the requirement

of human interference to manually specify initial points. The proposed approach la-

bels some pixels to be in the tumor region, which determines the approximate tumor

area. Peripheral shape obtained from outside boundary of the segmented tumor are

used as initial points of skippy greedy snakes algorithm. This method facilitate the

tumor segmentation procedure and decrease the computational complexity. The av-

erage required time for tumor segmentation in each detected image using previous

chapter method is around 2630ms, while applying the current method the average
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Table 6.5: Comparing WWSS method with other methods

Dep. on

Algorithm
[120] [121] [20] [122] [123] [124] [55] [125] [126] [149] WWSS

Bias correction - - -
√ √

-
√

- - - -

Registration -
√ √ √ √ √ √

- - - -

Multi-spectral MRI -
√ √ √ √

-
√

- - - -

Initial assumptions - - -
√

- - - - - - -

High quality data -
√ √

- - - - -
√

- -

Manual intervention
√

- - - - - - - - - -

over-segmentation
√

- - - - - -
√

- - -

High computational

complexity - - - -
√ √ √ √ √ √

-

time is around 140ms. The processing time decrement is very valuable in facing large

database. Fig 6.8 and Fig 6.9 show samples of tumor segmentation on T1-w, FLAIR,

and T2-w images of simulated and real data, respectively. Each row includes a sam-

ple of the original data, the golden label of tumor, segmented lesion after consistency

verification, and segmented lesion using snake algorithm. In order to make the differ-

ences more visible, Fig 6.10 and Fig 6.11 show the segmented region corresponding to

the samples illustrated in Fig 6.8 and Fig 6.9. It is seen that the snake algorithm has

provided better results than previous method. The obtained segmentation accuracy

is presented in Table 6.3. It is worthy to note that specificity has a higher value than

sensitivity in this experiment. The comparison of this method and method presented

in previous chapter is shown in Table 6.4. Applying this technique, besides higher

accuracy, the computational complexity is considerably decreased. Table 7.2 shows

the comparison of the current method, which is called WWSS with other well-known

techniques.



137

6.6 Conclusion

This chapter presents a new method to accelerate and improve the brain tumor

segmentation accuracy of the previous framework. In order to reduce the computa-

tional complexity and expedite the segmentation algorithm, and also to improve the

system performance, some modifications are applied in the segmentation algorithm

presented in previous chapter. The algorithm modifications are applied in three

main phases: feature extraction, feature selection, and tumor localization. Beside

other texture-based feature extraction methods mentioned in previous chapter, fully

anisotropic complex wavelet, and dual tree complex wavelet transform are employed

for feature extraction on brain MR images. It is worth mentioning that for the first

time, anisotropic Morlet complex wavelet transform and dual-tree complex wavelet

transform are applied in tumor segmentation study. These features are capable of

extracting directional texture information and presenting trends, breakdown points,

discontinuities in higher derivatives, and self-similarity of brain MR images. Adding

these features to the existed feature pool increases the size of feature pool excessively.

For defying the curse of dimensionality, a novel feature selection technique based on

regularized Winnow algorithm is presented. RWA is originally a classifier, however,

the low complexity of this method motivates to employ it in feature selection. While

RWA classifier works with binary feature vectors, it is modified to not only work as

a feature selection technique but also to be able to handle non-binary features. The

presented feature selection method is fast and efficient in dealing with many irrele-

vant features. For localizing the tumor area, a sliding window as explained in the

previous chapter is used. The difference is here the sliding window sweeps through
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whole brain tissue with step size of five pixels. It decreases the calculation complex-

ity by 25 times. A tumor classification approach is then applied on every instance

of the window. Then, the obtained candidate pixels determined by this method to

be as tumor are used to construct the initial points for skippy greedy Snake algo-

rithm, which is a contour-based algorithm. Specifying the appropriate initial points

has a great influence on the accuracy and convergence speed of the skippy greedy

snakes algorithm. In addition, it satisfies the requirement of human interference to

manually specify initial points. More accurate results are obtained for brain tumor

segmentation.

As it was mentioned earlier segmentation methods can be categorized into three

general groups as contour-based, region-based, and texture-based approaches [4]. This

method is a combination of texture-based and contour-based algorithms. Similar to

previous system, this system is independent of atlas registration, prior anatomical

knowledge, bias corrections, and multi-spectral MR images. Additionally, it is fully

automatic, and does not require manual initialization. Despite some other methods

that need to have the initial assumptions, such as a given number of tissue classes

or a multi-scale classification, this algorithm does not need any such information.

This makes the proposed algorithm much more robust and more general than other

methods. Comparing with the previous system, it is more computationally efficient

and provides higher segmentation accuracy.



CHAPTER 7

Brain Tumor Segmentation Using
Multi-Spectral MR Images Based on
Canonical Correlation Analysis

7.1 Introductory Remarks

Using the algorithm proposed in the previous chapter, the maximum obtained

accuracy for tumor segmentation was 96.8% for the database of simulated MR images

and 93.8% for the database of real MR images. In order to improve the system

performance for the real MR data, a multi-spectral approach based on information

fusion using canonical correlation analysis (CCA) is presented in this chapter.

As it was mentioned in the previous chapters, the intensity similarities between

brain lesions and some normal tissues result in confusion within the algorithm. For

example, if the lesion is inside the white matter (WM), there is overlapping intensity

distributions between white matter lesion (WML) and grey matter (GM). In order

to overcome this problem, many researchers use multi-spectral MR images for lesion

identification [20–29].

In the application of brain tumor segmentation, a typical system can be divided

into four main modules:

139
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• Capturing the raw data

• Feature extraction module, which processes the data to extract a feature set

that is a compact representation of the trait

• Matching module, which employs a classifier to compare the extracted probe

feature set with the templates in the gallery set to generate matching scores

• Decision module, which uses the matching scores to recognize the probe tem-

plate [150].

In a multimodal system, information reconciliation can occur in any of the afore-

mentioned modules.

• Fusion at the data or feature level: Either the data itself or the feature sets

originating from multiple sensors/sources are fused.

• Fusion at the match score level: The scores generated by multiple classifiers

pertaining to different modalities are combined.

• Fusion at the decision level: The final output of multiple classifiers are consoli-

dated via techniques such as majority voting [151].

Lesion segmentation systems that integrate information at an early stage of pro-

cessing are believed to be more effective than those systems which perform integration

at a later stage. Since the feature set contains richer information about the input

data than the matching score or the output decision of a matcher, fusion at the fea-

ture level is expected to provide better recognition results. Most studies apply the

information fusion in the decision level, because fusion at feature level is difficult to
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achieve in practice. The main reason for this is incompatibility of feature sets of the

various modalities. Fusion at the decision level is considered to be rigid due to the

availability of limited information. Thus, fusion at the match score level is usually

preferred, as it is relatively easy to access and combine the scores presented by the

different modalities [150].

Even though analysis of several sets of data, either of the same type as in multitask

or multisubject data, or of different type or nature as in multimodal data, is prevalent

in many fields like biometric or biomedical studies, it is still a challenging problem

in biomedical image analysis because of the rich nature of the data made available

by different imaging modalities [152]. Since each modality or sequence has its own

advantages and data content, fusion of data from different modalities or sequences

promises to provide a better understanding of the problem. The main purpose of

analyzing multiple modalities is to utilize the common as well as unique information

from complementary modalities to reach better understanding.

In this study, feature level fusion is used to combine information from two MRI

sequences. Canonical correlation analysis (CCA) as a well-known tool for feature

level fusion is employed. It is worth mentioning that for the first time CCA is ap-

plied for combining MRI sequences in order to segment tumor. CCA is one of the

statistical methods dealing with the mutual relationships between two random vec-

tors, and it has the same importance as principal component analysis (PCA) and

linear discriminant analysis (LDA) in multivariate statistical analysis. It is one of the

valuable multi-data processing methods. In recent years, CCA has been applied to

several fields such as signal processing, computer vision, neural network and speech

recognition [153]. Even though data fusion increases computational complexity of
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the segmentation algorithm, it results in higher accuracy. That is a trade-off between

accuracy and computational cost.

In order to create the training set, random windowing method explained in Chap-

ter 5 is used for cropping brain tissue from each selected hemisphere containing tumor.

The only difference is that for each window instance, the corresponding region in other

MR sequence is also attained at the same time. Different statistical and wavelet fea-

tures are extracted from the cropped brain tissues. The feature vectors attained from

two different MRI contrast mechanisms are then fused using CCA. The fused feature

vectors are used to train the classifier.

For the test step, a sliding window of the same size sweeps all over the brain

tissue simultaneously in two different MR sequences. Two sets of features are ex-

tracted from the corresponding window instance using the aforementioned feature

extraction methods. CCA is used to fuse the extracted features from two different

MR images. After data fusion, support vector machines classifier labels the window

either as healthy or tumor. The label is assigned to the central pixel of the window.

7.2 Canonical Correlation Analysis

Canonical correlation analysis, developed by H. Hotelling [154], is a way of mea-

suring the linear relationship between two multidimensional variables [155]. It finds

two bases, one for each variable, that are optimal with respect to correlations, and

at the same time, it finds the corresponding correlations. In other words, it seeks for

two bases in which the correlation matrix between the variables is diagonal and the

correlations on the main diagonal are maximized. The dimensionality of these new

bases is equal to or less than the smallest rank of the two variables.
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An important property of canonical correlations is that they are invariant with

respect to affine transformations of the variables. This is the most important differ-

ence between CCA and ordinary correlation analysis, which highly depends on the

basis in which the variables are described. Although it has been a standard tool in

statistical analysis, and used in economics, meteorology and even in classification of

malt whisky, CCA is surprisingly unknown in the fields of machine learning and signal

processing.

Let X = (x1, x2, ..., xn) ∈ Rp×n and Y = (y1, y2, ..., yn) ∈ Rq×n be two sets of

feature vectors of length p and q extracted from n samples. CCA aims to find two

sets of basis vectors, wx and wy for the two sets of variables X and Y , such that the

correlation between the projections of the two variables into these canonical vectors

x∗i = wTx (xi− x̄) and y∗i = wTy (yi− ȳ), i = 1, 2, ..., n are mutually maximized. In other

words, if ρ is defined as below, ρ needs to be maximized.

ρ =
E[xy]

(E[x2]E[y2])1/2
=

E[wTxXY wy]

(E[wTxXX
Twx]E[wTy Y Y

Twy])1/2
. (7.1)

Hence, it is equal as

ρ =
wTxCxywy

(wTxCxxwxw
T
y Cyywy)

1/2
, (7.2)

where Cxx ∈ Rp×p and Cyy ∈ Rq×q are the within-set covariance matrices of x and y,

respectively, while Cxy ∈ Rp×q is the between-set covariance matrix.

Let

A =

 0 Cxy

Cyx 0

 , B =

 Cxx 0

0 Cyy

 , (7.3)
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the canonical vectors wx and wy can be obtained as the solution of the following

eigenvalue equation [156]:

Aw = λBw , (7.4)

where λ is the eigenvalue and w = (wx, wy). Note that the number of non-zero solution

to 7.2 is d which is not greater than the smallest of p and q, i.e., d ≤ min(p, q).

One of the ways to solve 7.2 is Singular Value Decomposition (SVD). The canonical

vectors wx and wy can be obtained by value decomposition of the matrix L defined

as below:

L = C−1/2xx CxyC
−1/2
yy ∈ Rp×q . (7.5)

Let L = UDV T be the SVD of L, where U = (u1, u2, ..., up) and V = (v1, v2, ..., vq)

are the eigenvector matrices, the canonical vectors can be obtained as:

wxi = C−1/2xx ui (7.6)

wyi = C−1/2yy vi . (7.7)

Once wx and wy are obtained, the dimensionality reduction of the original data

can be performed in the form of XR = W T
x (X − X̄) and Y R = W T

y (Y − Ȳ ), where

X̄ and X̄ are the means of X and Y , respectively. W T
x = [wx1, wx2, ..., wxd] and

W T
y = [wy1, wy2, ..., wyd] denote two projective matrices whose columns correspond to

the first d largest common eigenvalues of 7.4. As a result, both XR and Y R are of

size d× n respectively.
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Figure 7.1: Framework of the proposed system

As defined in [153], feature-level fusion is performed either by concatenation or

summation of the transformed feature vectors:

Z1 =

 X∗

Y ∗

 =

 W T
x X

W T
y Y

 =

 Wx 0

0 Wy


T  X

Y

 , (7.8)

or

Z2 = X∗ + Y ∗ = W T
x X +W T

y Y =

 Wx

Wy


T  X

Y

 , (7.9)

where Z1 and Z2 are called the Canonical Correlation Discriminant Features (CCDFs).

7.3 System Overview

The system overview is depicted in Fig. 7.1. The following sections provide the

details about the steps shown in the framework.

7.3.1 Detection of Tumor Slices

In order to detect images containing tumors, the same method described in chapter

5 is used. The main idea is based on histogram asymmetry between the two brain
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hemispheres. Two brain hemispheres are separated by finding the longest diameter

as the brain midline. In order to find histogram asymmetry, the mutual information

between histograms of two hemispheres is calculated. If the mutual information

falls below a certain threshold, the imageis recognized to contain tumor. Here, the

number of slices in all sequences are equal and corresponding slices represent the

image of same brain region. Owing this fact, tumor detection is applied to just one

MR contrast mechanism. If one slice in one MR sequence is detected to have tumor,

the corresponding slices in the other sequences are considered to have tumor as well.

7.3.2 MRI Intensity Normalization

The same methods mentioned in chapter 5 are used for MRI intensity normaliza-

tion.

7.3.3 Windowing

After tumor slice detection, in order to populate the training data, random win-

dows located all around the brain area are cropped. If the central pixel of the window

falls in the tumor region, it is labeled as tumor and otherwise is labeled as healthy.

In order to populate the training set, random windows located all around the

brain area are cropped. If the central pixel of the window falls in the tumor region,

it is labeled as tumor and otherwise is labeled as healthy. The only difference is

that for each window instance, the corresponding region in other MR sequence is also

attained at the same time. In order to have corresponding regions from different MR

images, the images need to be aligned. MRI registration is used to automatically

align different MR sequences to a common coordinate system. One common method
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is using intensity-based image registration. Unlike some other techniques, it does not

find features or use control points. Intensity-based registration is often well-suited for

medical and remotely sensed imagery [157].

Using a window, a region of interest is cropped in corresponding sequences. That

is, if an area is cropped in one MR sequence, the corresponding area in the second

MR sequence is also cropped simultaneously. Therefore, for a single region of interest,

we have two input images from two MR sequences. For the test step, a same size

sliding window sweeps all over the brain tissue in different MR sequences and selects

corresponding regions in the same way explained for the training part.

For this experiment, combination of two MR images are processed. These combi-

nations are as following:

T1-w and T2-w,

T1-w and FLAIR,

T2-w and FLAIR.

7.3.4 Feature Aggregation

Different statistical and wavelet features are extracted from corresponding regions

of interest in two MR sequences. Wavelet features are extracted using DT-CWT,

AM-CWT, wavelet decomposition and wavelet packet decomposition, as described in

Section 6.2.

Y l, Y h, and Y scale features from Dual Tree complex wavelet transformation, are

extracted where Y l is a cell array including the low-pass sub-band from the final level,

Y h is a cell array containing the high-pass sub-band for each level and Y scale is a

cell array containing the low-pass coefficients at every scale.
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Morlet-wavelet features are extracted by applying Morlet-wavelet kernels with two

different scales and eight orientations.

The length of the feature vector achieved from applying 2D wavelet packet de-

composition on each window is 128. In addition, using 2D wavelet transform decom-

position on each window results in creating a 273 dimensional feature vector.

The total wavelet feature vector is a 2197-dimensional feature vector. In addition

to wavelet features, the statistical features including 7 first-order statistical features

is added to feature pool. Statistical feature vector includes 20 GLRLM features,

112 GLCM features, 80 HOG features, and 256 LBP features, which makes a 475-

dimentional vector. Concatenation of statistical and wavelet features creates a 2672-

dimensional feature vector.

7.3.5 Feature Fusion and Classifications

After a slice is recognized to have tumor, segmentation step is applied to segment

the tumor area. The candidate tumor regions are acquired using a sliding window

that sweeps through the whole brain tissue. The sliding window selects a region of

interest in corresponding slices in two MR sequences. It means that for a single region

of interest, we have two input images cropped from two MR sequences.

Different features are extracted from each region of interest in two MR images at

the same time. After applying PCA to reduce the dimensionality of the feature vec-

tors, CCA is employed for feature fusion. Then, the fused features are classified into

either tumor or healthy using SVM classifier. Seventy percent of data are randomly

chosen for training set, and the rest is used for testing. If the region of interest is

classified to have tumor, the central pixel of the window is labeled as tumor. On the
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Figure 7.2: Tumor segmentation accuracy of fused T1-w and FLAIR

other hand, if it is classified as healthy, the central pixel is labeled as healthy. The

classification results are depicted in Fig. 7.2, Fig. 7.3, and Fig. 7.4. It is seen that

fusion of two MRI sequences using CCA outperforms the classification results of using

other two MRI sequences separately, regardless of the number of features employed.

A consistency verification algorithm is used to remove the false positives and

false negatives. As it was explained in 5.4.3, consistency verification algorithm is a

majority filter to alter the pixel labels that are not consistent with their neighbor

labels in a certain neighborhood. Here, consistency verification is applied in a 3 × 3

neighborhood window. Segmented lesions in two MR sequences are shown in Fig.
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Figure 7.3: Tumor segmentation accuracy of fused T1-w and T2-w

7.5. The segmentation results achieved from current method are shown in Table 7.1.

The comparison of this method and methods presented in previous chapters is shown

in Table 7.2. It is seen that achieved accuracies from the current proposed method is

higher than the accuracies from the proposed previous methods.

7.4 Conclusion

In order to improve tumor segmentation accuracy for real data, we have presented

CCA-based approach for feature-level fusion of two MR contrast mechanisms. Using

this method, we take advantage of complementary information of different MR images.
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Figure 7.4: Tumor segmentation accuracy of fused T2-w and FLAIR

After registration of different MR images to make them aligned, using the method

mentiond in chapter 5, the slices containing tumor are recognized. Since the number

of slices in all sequences are equal and corresponding slices represent the image of

same brain region, tumor detection is applied to just one MR contrast mechanism. If

one slice in one MR sequence is detected to have tumor, the corresponding slices in

other sequences are considered to have tumor as well.

After tumor slice detection, histogram normalization method is applied to nor-

malize MRI intensity of MR images. In order to populate the training data, random

windows located all around the brain area are cropped. If the central pixel of the
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Table 7.1: Tumor segmentation accuracy using CCA method

Real Real Real

T1 and T2 T1 and FLAIR T2 and FLAIR

Current Method 95.1± 0.3 95.8± 0.2 95.4± 0.4

Table 7.2: Comparing tumor segmentation accuracy using fusion method and our previous
methods

Real Real Real

T1 FLAIR T2

Method in chapter 5 92.3± 0.1 93.2± 0.3 91.7± 0.4

Method in chapter 6 93.4± 0.4 93.8± 0.1 92.3± 0.2

Real Real Real

T1 and T2 T1 and FLAIR T2 and FLAIR

Method in chapter 7 95.1± 0.3 95.8± 0.2 95.4± 0.4

window falls in the tumor region, it is labeled as tumor and otherwise is labeled as

healthy. Testing is applied on unseen slices using the sliding window approach pre-

sented in chapter 5. Using a window, a region of interest is cropped in corresponding

brain area in two MRI contrast mechanisms simultaneously. Therefore, for a single

region of interest, we have two input images, which are from two MR sequences.

Different features are extracted from corresponding regions of interest in two MR

sequences. In order to fuse the extracted features, canonical correlation analysis is

applied. After applying CCA, the fused features are classified into either tumor or

healthy using SVM. If the region of interest is classified to have tumor, the central

pixel of the window is labeled as tumor. On the other hand, if it is classified as

healthy, the central pixel is labeled as healthy. It is worth mentioning that for the
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first time CCA is applied for combining MRI sequences in order to segment tumors.

Even though data fusion increases computational complexity of the segmentation al-

gorithm, it results in higher accuracy. Therefore, it is a trade-off between the accuracy

and the computational complexity, and it can be useful in the applications in which

the accuracy is more important than the computational cost.
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Figure 7.5: Examples of tumor lesion segmentation on database with real MR images.
(first and second columns) database images, (third column) ground truth, (forth column)
segmented lesion after consistency verification using current technique. In first and second
row, T1 and FLAIR are fused. In third row, T2 and FLAIR are fused. In forth row, T1
and T2 are fused.



CHAPTER 8

Conclusion

Using computer vision and machine learning techniques, four methods are de-

veloped for brain lesion detection and segmentation in magnetic resonance medical

images. Most of the methods discussed and reported in brain lesion segmentation

field suffer from dependencies on multi-spectral MRI data, multi-scale classification,

local or global registration, or high-resolution and non-noisy data. Other limitations

for some methods are their high computational complexity and not being fully auto-

mated. To address the above-mentioned shortcomings, in the first stage of this study,

a novel method for stroke lesion detection and segmentation in the brain MR images

is proposed in chapter 4. The method is called the histogram-based gravitational

optimization algorithm (HGOA), which is based on applying enhanced gravitational

optimization algorithm on histogram analysis results using single-spectral MR im-

ages. This algorithm uses histogram-based techniques to determine the initial set of

brain segments, then applies a gravitational optimization-based algorithm to reduce

the number of segments, and finally uses thresholding to detect the tumor or stroke

lesion.
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This system is independent of atlas registration, prior anatomical knowledge, bias

corrections, and multi-spectral MR images. The other advantage is in the use of

single-spectral MRI. While using multi-spectral MR images address the intensity

similarities between lesion and healthy tissues, it has some drawbacks and limita-

tions. In some of practical clinical situations only one type of anatomical MR image

is collected due to time and cost and patient situation limitations. In addition, use

of multi-spectral data implies the need to ensure that each of the spectra must be

properly registered and aligned. It is worthy of mention that the algorithm is fully

automatic and computationally light as it involves the application of a single algo-

rithm for both lesion detection and segmentation. Additionally, despite some other

methods requirements to have the initial assumptions, such as a given number of

tissue classes or a multi-scale classification, our algorithm does not require any such

information. The experimental results on both database of synthetic and real MR

images show that the proposed algorithm provides an accuracy of almost 91.5% for

stroke lesions and 88% for brain tumor lesions. This compares well with the other

algorithms without suffering from some of the deficiencies as stated earlier. The accu-

racy and computational simplicity of HGOA method make it suitable as an additional

tool for the clinician. Moreover, the automated segmentation can be used to calculate

the lesion volumes and track them more consistently in the treatment progress.

The major shortcoming of the proposed method is that it is incapable of detection

of hardly visible lesions (< 1cm3). Another shortcoming is the presence of false posi-

tives, which affects the recognition rate, especially in the tumor lesion segmentation.

For increasing tumor segmentation accuracy, an integrated automated framework,

which is able to detect the MR images containing tumor lesion and segment the tu-
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mor lesion is presented in chapter 5. Since texture-based brain characterization

has been proven to be an effective way of brain analysis, a texture-based automated

approach is presented and experimented on T1-weighted, T2-weighted, and FLAIR

MRI sequences. The tumor slice detection technique is based on mutual informa-

tion of histograms of two brain hemispheres. The tumor segmentation technique is

based on region-based and texture-based classification using a sliding window, which

sweeps through the brain tissues. The remarkable accuracy of this algorithm in tumor

segmentation (95.9 ± 0.4 for simulated database, and 93.2 ± 0.3 for real database)

demonstrates the efficiency of the proposed method. Comparing with the previous

results, higher segmentation accuracy for brain tumor lesions is achieved. Similar to

the previous approach, this method is also independent of atlas registration, prior

anatomical knowledge, bias corrections, and multi-spectral MRI.

As an additional study, we also compare the capability and efficacy of two different

feature sets, i.e., Gabor wavelets and statistical features, in automated segmentation

of brain tumor lesions in MRI images. Applying gray level co-occurrence matrix,

grey level run length matrix, histogram of oriented gradient, and linear binary pat-

tern method, second-order statistical feature vectors are derived. Adding first-order

statistical features to this group, a 475-dimensional statistical feature vector is ob-

tained. On the other hand, employing the Gabor wavelet transform, in five scale and

eight orientations, an 81000-dimensional Gabor wavelet feature vector is captured.

The comparison results indicate that statistical features usually offer higher accu-

racy than Gabor wavelet features. Moreover, statistical features have much smaller

dimensionality than Gabor wavelet-based feature (475 vs. 81000). Although Gabor

wavelets are employed widely in computer vision and medical image processing due to
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their effective directional selectivity, they occupy large amount of memory; they are

highly redundant and lead to high computational costs. Even in the laboratory con-

ditions, although the feature extraction time for both Gabor wavelet and statistical

features are almost the same, the dimensionality reduction using PCA is almost eight

times faster for statistical features. These observations seem to prove that statistical

features are adequately enough to discriminate tumor tissues from other tissue types

using MRI images.

In chapter 6, the system presented in chapter 5 is enhanced to accelerate the pro-

cedure, reduce the computational complexity, and increase the brain tumor segmenta-

tion accuracy. The algorithm modifications are applied in three phases as feature ex-

traction, feature selection, and tumor localization. Fully anisotropic complex wavelet

transform, dual tree complex wavelet transform, wavelet transform decomposition,

and wavelet packet decomposition are employed for texture-based feature extraction

of brain MR images. The anisotropic Morlet complex wavelet transform and dual-tree

complex wavelet transform are applied for the first time in tumor segmentation study.

These features are capable of extracting directional texture information and present-

ing trends, breakdown points, discontinuities in higher derivatives, and self-similarity

in brain MR images. Adding these features to the existed feature pool increases the

size of feature pool excessively. For defying the curse of dimensionality, a new feature

selection technique based on regularized Winnow algorithm is proposed. While RWA

classifier works with binary feature vectors, it is modified to not only work as a feature

selection technique but also to be able to handle non-binary features.

For localizing the tumor area, a sliding window sweeps through the whole brain

tissue to localize candidate tumor regions with the step size of five pixels. It decreases
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the calculation complexity and expedites the segmentation procedure. A tumor classi-

fication approach is then applied on every instance of the window to label the window

central pixel as healthy or tumor. The obtained candidate pixels determined by this

method to be as tumor lesion is used to construct the initial points for skippy greedy

snake algorithm. Specifying the appropriate initial points has a great influence on the

accuracy and convergence speed of the skippy greedy snakes algorithm. In addition,

it obviates the requirement of human interference to manually specify initial points.

This algorithm achieves more accurate segmentation results (95.9± 0.4 for simulated

database, and 93.2± 0.3 for real database) with less computational cost.

Methods presented in chapter 5 and chapter 6 have some advantages as follow-

ing: They are independent of atlas registration, prior anatomical knowledge, or bias

corrections that restrict the general application of many state-of-the-art methods.

Reliance on atlas registration in other algorithms implies that their accuracy is de-

pendent on how well the atlas is constructed and how well the registration algorithm

can register the test data to the atlas. Prior anatomical knowledge dependence im-

plies that such algorithms must be trained to incorporate such information, which can

lead to error. The need for bias correction in many other algorithms also introduces

errors into the data to be analyzed, and therefore adds inaccuracy and difficulties

with consistency of the final results. The other contribution is in the use of single-

spectral MRI. Due to registration requirement of multi-spectral MRI study, failure

to do the registration can result in misalignment of suspected lesions in the different

spectra. Additionally, despite some other methods requirements to have the initial

assumptions, such as a given number of tissue classes or a multi-scale classification,
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the algorithms do not require any such information. And finally, these methods are

fully automatic.

In order to improve tumor segmentation accuracy in the database of real MR

images, we have presented a canonical correlation analysis-based approach for feature-

level fusion of two MR contrast mechanisms in chapter 7. Using this method, we take

advantage of complementary information of two MR sequences. After registration of

different MR images to make them aligned, using the method mentioned in chapter

5, the slices containing tumor are recognized. In order to populate the training data,

random windows located all around the brain area are cropped. If the majority of

pixels of the window fall in the tumor region, the window is labeled as tumor and

otherwise is labeled as healthy. Testing is applied on unseen slices using the sliding

window approach presented in chapter 5. In this case of multiple sequences, the

window selects a region of interest in corresponding sequences simultaneously. That

is, for a single region of interest, there are two input images from two MR sequences.

Feature vectors are extracted from corresponding regions of interest in both sequences.

In order to fuse the extracted features, canonical correlation analysis is applied. The

fused feature vectors are fed into a support vector machines classifier and all the pixels

in the brain area are labeled either healthy or tumor. Consistency verification as a

post-processing is applied on the labeled image to remove false positives and false

negatives. The accuracy of the proposed algorithm is calculated by comparing the

resulting label image with the golden label provided by the database.

It is worth mentioning that for the first time CCA is applied for combining infor-

mation extracted from MRI sequences in order to segment tumors. Even though data

fusion increases computational complexity of the segmentation algorithm, it results in
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higher accuracy. The segmentation accuracy of 95.8±0.2 is achieved for the database

of real MR images.

As future work, we will focus on enhancing the performance of the method in

case of very small lesions can be focused. Moreover, working on reduction of false

positives, beyond the use of the consistency verification algorithm can be considered.

The capability of the proposed method in detection of other type of brain lesion such

as lesions caused by injury and dementia can also be evaluated.
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