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Abstract

This dissertation examines two topics in the area of quantum thermalization: ther-

malization of entanglement and the many-body localization phase transition. We first

explore the dynamics of the entanglement entropy near equilibrium in two quantum-

chaotic spin chains undergoing unitary time evolution. It is found that entanglement

entropy relaxes slower near equilibration for a time-independent Hamiltonian with an

extensive conserved energy, while such slow relaxation is absent in a Floquet spin chain

with no local conservation law. We thus argue that slow diffusive energy transport

is responsible for the slow relaxation of the entanglement entropy in the Hamiltonian

system, and also attempt to make the relation more quantitative. We next turn to

the many-body localization (MBL) transition, which is the quantum phase transi-

tion between the MBL phase, where localized conserved quantities emerge, and the

thermal phase. We introduce and explore a Floquet spin chain model for numeri-

cal studies of this transition in finite-size systems. With no local conservation laws

and rapid thermalization in the thermal phase, we argue that choosing a Floquet

model can maximize contrast between the MBL phase and the thermal phase in such

finite-size systems. Lastly, we present a simplified strong-randomness renormalization

group (RG) that captures some aspects of the MBL phase transition in generic dis-

ordered one-dimensional systems and might serve as a “zeroth-order” approximation

for future RG studies. This RG can be formulated analytically and is mathematically

equivalent to a domain coarsening model that has been previously solved, which thus

enables us to obtain the critical fixed point distribution and critical exponents ana-

lytically or to numerical precision. One interesting feature is that the rare Griffiths

regions are fractal, which might be qualitatively correct beyond our approximation

and suggest stronger Griffiths effects than previously assumed.
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Chapter 1

Introduction

Thermal phenomena are ubiquitous in our daily life: they represent most of our

experience dealing with macroscopic objects in nature. The study of our thermal ex-

perience begins with the investigation of macroscopic objects at thermal equilibrium

based on Newtonian mechanics. The main challenge of any analysis of macroscopic

objects with O(1023) constituent particles lies in the vast amount of information

we have to deal with if we would like to track the movement of every particle. To

circumvent this problem, statistics is brought into the subject so instead of consider-

ing the full trajectories of every particle, we only focus on a few average quantities

which we believe characterize the equilibrium properties of the system. The study of

phenomenological relations between these average quantities constitute much of ther-

modynamics, and the “derivation” of these quantities from microscopic descriptions

of the system based on the statistical idea of ensemble and the use of partition func-

tion becomes the subject of statistical mechanics. Furthermore, as quantum theory

gradually replaces Newtonian theory to become the underlying description of states of

particles, it is also natural to incorporate quantum mechanics into traditional statis-

tical mechanics which gives it power to examine less traditional macroscopic objects
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like superconductors. With thermodynamics and statistical mechanics, many thermal

equilibrium phenomena of macroscopic objects can find satisfactory explanations.

However, technically nothing really reaches perfect equilibrium: most objects that

are of interest to us are constantly perturbed by external stimulus and thus always

evolving. Our current technologies also rely more on objects being moving rather

than static. Therefore a proper understanding of dynamical properties is of great

importance and in the meantime also more difficult, as it becomes less easy to escape

the microscopic details of the system. Moreover, the study of dynamical process of

reaching thermal equilibrium seems to challenge our notions of describing thermal

equilibrium using a only few macroscopic quantities. Since quantum mechanics as-

sumes unitary dynamics which preserves all the information from initial conditions, it

is natural to expect to reach different equilibrium states starting from different initial

states. The success of description of final equilibrium with only a few macroscopic

variables, which contain much less information than initial states, thus creates a para-

dox in our understanding. The investigation of this thermalization process, and more

importantly, when it fails, has become a hot topic in recent years.

In the remaining sections of this chapter, we will briefly review some important

concepts in our understanding of the thermalization process and the many-body lo-

calization, a generic phase of matter which fails to reach thermal equilibrium.

1.1 Thermalization

1.1.1 Closed System Quantum Mechanics

In traditional statistical mechanics, we usually start with a microcanonical ensemble

of an isolated system: these are considered “simple” cases as no environmental ef-

fects have to be taken into consideration. In the quantum mechanical arena, closed

quantum system can be described by a normalized vector |ψ〉 in a Hilbert space,
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which represents full information contained in it. With n particles each having s > 1

states, the Hilbert space is of dimension sn, which can be enormous when we are

confronted with macroscopic objects in statistical mechanics where n ∼ O(1023). As

mentioned above, we introduce statistics to cope with this astronomical number and

this is implemented in quantum mechanics by using a density matrix ρ which satisfies

the following properties:

ρ† = ρ , Trρ = 1 , ρ ≥ 0 (1.1)

where the last condition means it is positive semi-definite. Generically, the density

matrix can be written as

ρ =
∑
i

pi|ψi〉〈ψi| (1.2)

with 1 ≥ p1 ≥ p2 ≥ · · · ≥ 0 and an orthonormal basis {|ψi〉}. If p1 = 1 then

pi = 0 for i ≥ 2 and the density matrix in this case represents a pure state in

Hilbert space. In other cases, the density matrix represents a probabilistic mixture

of different states and our ignorance of the exact state that the system is in, which

is the reason that the density matrix representation is useful in the formulation of

quantum statistical mechanics. The dynamics of the system is generated by a time

independent Hamiltonian H. If we are in the Schrödinger picture, the time evolution

of the system is represented by the evolution of the density matrix:

i~
dρ

dt
= [H, ρ] (1.3)

and at any time t, the measurement of a time independent operator O generates an

expectation value Tr{Oρ(t)}.

One class of operators that receives special attention in studies of thermalization

are few-body or local operators which usually have local support in real space on the
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system, where the fraction of support vanishes under thermodynamic limit. Partic-

ularly, the Hamiltonian H is usually a sum of local operators, and we only consider

extensive conserved quantities which are also sums of local operators. With this con-

straint, a generic system may have only a few (compared to the dimension of the

pure state Hilbert space) conserved quantities, even though the Hamiltonian itself

can commute with many more independent “global” operators like the projector to

one of its eigenstates. Moreover, the densities of conserved quantities can only be

transported locally, because of the locality of H.

Another interesting point to note is that the solution of Eq. (1.3) can be written

as

ρ(t) = U(t)ρ(0)U(t)† (1.4)

with unitary operators U(t) = exp(−iHt). A natural generalization of this dynamics

would be to use other unitary operators which are not naturally generated by some

Hamiltonian. A usual requirement on these unitary operators is to have their op-

erations on the system be local, since U(t) is generated by a Hamiltonian H which

only acts locally. One particular class of these unitary operators that is of interest

is Floquet operators, which can be thought of being generated by time-dependent

Hamiltonian with period τ so that H(t+ τ) = H(t). Usually we just sample the state

of the system at discrete times (stroboscopic time) nτ with integer n. The reason we

consider Floquet systems is that they have no conserved energy density [2] and in fact

we can construct Floquet systems that have no conserved densities at all. Technically

speaking, under this Floquet dynamics the system is no longer isolated as in practice

we would require external force to periodically drive the system. Nevertheless, we

can still conceptually interpret it as providing an alternative dynamics to the closed

quantum system which can become useful particularly in numerical studies.
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1.1.2 Quantum Thermalization

We are now ready to give a more precise description of the thermalization process

under quantum mechanics. Below we will define the process using subsystems and

thus canonical ensembles as in Ref. [2]. One can also directly consider the whole

isolated system and thus microcanonical ensemble as in Ref. [3].

We consider an isolated quantum system which cannot be further divided into

more closed systems. This system (or more precisely the space of degrees of freedom)

is partitioned into two parts: a subsystem S and its bath B so that the total system’s

Hilbert space is HF = HS ⊗ HB. To study thermalization, we need to take the

thermodynamic limit, and in this description it means adding more degrees of freedom

in B but keeping those in S fixed, which will result in an unbounded number of degrees

of freedom added to the whole system. On considering this process, we will focus on

initial states which change as needed as we add more degrees of freedom, and describe

them as ρN(t = 0) where N represents the total number of degrees of freedom in the

whole system. To have a well-defined thermal equilibrium in this limit, all these initial

states should thermalize to same values of intensive variables which are conjugate

to the conserved extensive quantities. An example is the temperature T which is

conjugate to the conserved energy 〈H〉. Particularly, this constrains the average

densities of these conserved quantities in this process, and requires their variance to

grow no faster than the volume of the system, i.e., the usual
√
N deviation we have

in statistical mechanics. Otherwise, this requirement does not impose any constraint

on the distribution of these densities which can take the system far from thermal

equilibrium.

At each N , the initial state evolves according to Eq. (1.3) for the whole system

and at any time t the subsystem can be characterized by a reduced density matrix

5



by taking a partial trace over the degrees of freedom in B:

ρNS (t) = TrBρ(t) . (1.5)

On the other hand, according to the canonical ensemble, there is a density matrix

ρeq given by the set of intensive variables describing the thermal equilibrium of the

full system. For example, when there is only energy conservation so that the thermal

equilibrium is given by a temperature T , we have an equilibrium density matrix

ρeq =
1

Z(T )
e
− H
kBT (1.6)

where Z(T ) = Tr exp(−H/kBT ) is the partition function. The corresponding subsys-

tem S at this equilibrium is thus described by ρeqS = TrBρ
eq. For a Floquet system

with no conserved densities, ρeqS would just be the identity operator on S up to some

normalization factor. Note the Hamiltonian implicitly has the parameter N as it is

constructed given a fixed N , so ρeqS also implicitly depends on N . The whole system

is considered to thermalize if for any subsystem S that satisfies the property given

above [4–7]:

lim
t→∞

lim
N→∞

ρNS (t) = lim
N→∞

ρeqS . (1.7)

The two limits on the left hand side have to be taken together: at finite N , ρN(t)

would be quasi-periodic and thus has no limit under t→∞, while at finite t, because

of our requirements of local operators above, all imbalance of densities of conserved

quantities relative to thermal equilibrium distributions can only be transported for a

finite distance, so large enough system would not reach thermal equilibrium.

Defining thermalizing process above can resolve the paradox between “missing

information” of initial conditions under thermalization and the preservation of in-

formation under unitary evolution in quantum mechanics: the (local) information is
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not erased but just hidden from (small) subsystems. Particularly, we can only per-

form local operations so at most only local properties about initial conditions can

be extracted. At long time, each subsystem gets heavily entangled with the whole

system so the initial local information becomes inaccessible from local operations,

and thus appears erased for the performer of local operations. This manifests itself in

our definition that ρeqS is derived from ρeq which contains no local initial information

compared to the true density matrix of the whole system ρN .

1.1.3 Eigenstate Thermalization Hypothesis

Our macroscopic world experience tells us that most generic systems thermalize, and if

a system does thermalize to a set of intensive variables, then it thermalizes under a lot

of initial states with the same conserved densities, and in fact, it seems all initial states

under the constraint would thermalize. If indeed all initial states are thermalized,

then all many-body eigenstates of the Hamiltonian H should also thermalize, which

is known as the Eigenstate Thermalization Hypothesis (ETH) [4–7]. For Floquet

systems, we instead consider the eigenstates of U(τ) which evolves the system by a

full period τ . Unlike Hamiltonian eigenstates, these states are not stationary but

periodic with period τ . To state the ETH more precisely, we consider an eigenstate

of the Hamiltonian H|n〉 = En|n〉 whose energy En corresponds to temperature Tn

at thermal equilibrium. The density matrix of the whole system at any time is

just ρ = |n〉〈n| and the subsystem S has reduced density matrix ρS = TrB{|n〉〈n|}.

According to our definition of thermalization, in the thermodynamic limit, ρS = ρeqS ,

the thermal density matrix of the subsystem from canonical ensemble at temperature

Tn. This motivates a single-eigenstate ensemble of the full system, which can be

viewed as a limiting case of microcanonical ensemble where the energy window is

reduced to contain only one eigenstate, and it would behave as any other traditional

statistical mechanics ensemble and give the correct thermal properties of subsystems
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if the ETH holds. One consequence of the ETH is the “volume law” scaling of the

entanglement entropy in an eigenstate when Tn 6= 0. Particularly, the entanglement

of entropy of the subsystem S is defined as the von Neumann entropy

SA = −Tr{ρS log ρS} , (1.8)

and its extensive part in thermodynamic limit is expected to equal to the thermal

entropy of subsystem S, which is proportional to its volume when Tn 6= 0.

With the ETH, we can view thermalization as a process of “dephasing” of off-

diagonal terms in full system density matrix. Specifically, for a given initial state

ρ(t = 0) =
∑

n,m ρnm|n〉〈m| written in eigenstate basis {|n〉} from the Hamiltonian,

the density matrix of the full system at later time t is

ρ(t) =
∑
n,m

e−i(En−Em)t/~ρnm|n〉〈m| (1.9)

which only has exponential time factors exp(−i(En −Em)t/~) for off-diagonal terms

n 6= m. As t→∞, these phase factors become essentially random, so in the computa-

tion of average values of any local observable, the contribution from these off-diagonal

terms would be almost zero, and this is called dephasing. Effectively in terms of local

observables we can think of our system as in a “diagonal” ensemble at long time:

ρD =
∑
n

ρnn|n〉〈n| . (1.10)

Since our initial state would have a set of given densities of conserved quantities

with vanishing (relative to system size) fluctuations, in the thermodynamic limit the

diagonal ensemble would only contain eigenstates with same densities of conserved

quantities, and thus all of them contribute to the desired ρeqS for any subsystem S

with vanishing fraction relative to the full system size. Technically, to really have
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zero contributions from off-diagonal terms, we would also need to require the local

observables considered to have vanishing coupling between distinct eigenstates under

thermodynamic limit [7, 8].

The ETH is not true for a broad class of systems, in which case the thermalization

may also fail. One generic case where both the ETH and thermalization fail is many-

body localized systems, which we will discuss in the next section. Another interesting

case is that of integrable systems, where the number of conserved extensive quantities

is of O(N), the total number of degrees of freedom. It is conjectured that integrable

systems thermalize to the generalized Gibbs ensemble [9] described as

ρG =
1

Z
e−

∑
n λnIn , (1.11)

which can also be thought of as the maximum entropy ensemble [10] with O(N) con-

stant of motions In and the corresponding Lagrange multipliers λn. This ensemble

is different from the usual Gibbs ensemble as the latter has only O(1) number of

constant of motions under the thermodynamic limit. One subtlety here, however,

is how to choose these constants of motions, as choosing all (including non-local)

conserved quantities would just make the ensemble trivial [3]. Motivated by stan-

dard assumption of statistical independence between subsystems in the construction

of usual Gibbs ensemble, we may choose constants of motions which are at least ap-

proximately additive for small subsystems [11]. Integrable systems also have their

own version of the ETH [12].

For systems where the ETH seems to hold, it is also difficult to either prove it

analytically or have a thorough numerical test as it requires an extrapolation to the

thermodynamic limit. On the other hand, in the usual case of successful thermaliza-

tion, it seems we do not need the strong statement where all eigenstates thermalize;

instead it is suffice if almost all eigenstates thermalize, and the latter has gained much
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numerical support [7, 8, 13–23]. However, if there are some eigenstates which violate

the ETH in any case where as a whole the system still thermalizes, it then raises a

question about what are special about these rare eigenstates.

1.2 Many-body Localization

As mentioned in the previous chapter, there are situations where the ETH and ther-

malization fail, and a large class of them can be characterized as localized systems.

The concept of localization was introduced by Anderson [24] and applies to systems

with disorder, which usually manifests itself as random terms in the Hamiltonian or

Floquet time evolution operator. Therefore when we are talking about properties of

these models, we usually mean average properties which are averaged over different

configurations of disorders. Many-body localization refers to interacting many-body

systems with disorder, and on this topic we are interested in highly-excited states

which are at energy densities corresponding to non-zero temperatures if the system

ever thermalized.

1.2.1 Single-particle Localization

Before entering the world of disorder with interaction, we will first look at a non-

interacting model with localization as in Ref. [2], which is a tight-binding model with

hopping on an infinite lattice:

H = t
∑
〈ij〉

(c†icj + c†jci) +
∑
i

Uic
†
ici , (1.12)

where t controls nearest-neighbor hopping and Ui is a random potential. This model

is written in a second quantization form so that c†i creates a particle at site i and

ci annihilates one. The Hamiltonian is essentially a single-particle Hamiltonian and
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admits single-particle eigenstates of two forms: one is localized and the other is

extended. A localized wavefunction has the asymptotic long distance form

ψα(~r) ∼ e−|~r−
~Rα|/ξ , (1.13)

where ξ is the localization length and ~Rα represents the center position that the

particle is localized about. An extended wavefunction would just have the asymptotic

long distance form |ψ| ∼ 1/
√
V where V is the volume of the whole system, and this

wavefunction “covers” all sites. A particle starting from a wave packet would have

diffusive dynamics if the wave packet is composed of extended eigenstates. In one

or two dimensions, all eigenstates are localized, and in three or more dimensions,

eigenstates would be localized with strong enough disorder, i.e., large variance of

Ui. Particularly, in three or more dimensions, there could be a transition between

extended states and localized states in the energy spectrum, which defines a “mobility

edge”. There are special critical states at the edge which display power-law instead of

exponential (as in Eq. (1.13)) localization. As the disorder strength gets stronger, the

single-particle eigenstates become strongly localized so that ξ in Eq. (1.13) is smaller

than or on the order of a lattice spacing. This happens when |tij| � |Ui−Uj| for almost

all adjacent pairs. Since one can think of Ui and Uj as energies of particles exactly

on site i and j, and tij is the hopping between these two sites, from a perturbation

theory point of view, the true eigenstates would have some hybridization between

sites i and j, and when |tij/(Ui − Uj)| � 1, the amplitude of hybridization is small,

thus the eigenstate would just be localized around one site.

One can directly write out the many-body eigenstate of Eq. (1.12) by building

up the Fock space. If a system has at least some localized single-particle eigenstates,

then almost all of its many-body eigenstates violate the ETH and the system would

not thermalize when these eigenstates are involved. For example, if the system starts
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with a spatially non-uniform density of particles in localized states on a large length

scale, then the inhomogeneity would not diffuse away as the localized states would

only move around on a length scale r . ξ, and thus the system does not reach

thermal equilibrium. Therefore, these disordered single-particle systems provide us a

first glance at how localization breaks thermalization.

1.2.2 Many-body Localization: A Spin Model

To obtain an interacting localized systems, one can directly add interaction terms in

Eq. (1.12) or similar single-particle disorder Hamiltonian. It can be shown from the

perturbation theory that the many-body localization (MBL) of particles from a single-

particle Hamiltonian can survive a weak enough interaction at non-zero temperatures

[25], and this conclusion can also be generalized to infinite temperature [26]. In this

section, we will briefly review some basic properties of MBL by looking at a spin

model from Ref. [13]:

H =
∑
i

(
~Si · ~Si+1 + hiS

z
i

)
(1.14)

where Si = σi/2 and σi are the Pauli matrices for spin-1/2 at site i, and hi are random

magnetic fields with uniform distribution on [−h, h].

At h =∞, the many-body eigenstate is just a product state of up and down spins

in z direction at each site. This state is trivially localized as each “particle”, i.e., spin,

is localized at one site. Around h = ∞, we can understand many-body eigenstates

using perturbation theory. Particularly, as in the argument of strong disorder in

Sec. 1.2.1, the typical level splitting between neighboring sites, i.e., |hi− hj|, is much

larger than interactions which is 1 in Eq. (1.14), so spins at different sites are typically

only weakly hybridized. This leads to the absence of DC spin transport and energy

transport at strong disorder h � 1, and thus the lack of quantum thermalization

from perturbation theory [25]. Numerical evidence has suggested that eigenstates of
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(1.14) violate the ETH even in the region where the perturbation theory is no longer

applicable, and the ETH is recovered only when h . 3.5 [13]. This demonstrates

a quantum phase transition at some critical disorder strength, i.e., the magnitude

of h, which separates the thermal phase, where eigenstates follow the ETH and the

system theramlizes, from the localized phase, where the ETH breaks down and the

system no longer thermalizes. This is an eigenstate phase transition as during the

transition, the properties of eigenstates have a sharp change, thus leading to changes

of the dynamics of the system. Around the transition point, it is also possible that

only some but not all eigenstates are localized, thus creating a mobility edge [25],

which leads to a more complicated behavior. In particular, statistical properties may

be changed by rare regions in a localized state with a local energy density close to

that of a mobility edge, which would generate some Griffiths phenomena [2].

Another point worth mentioning for MBL is the spread of quantum entanglement.

Even though a localized system has zero DC conductivity, entanglement does get

spread to the whole system as in a thermalized system. This can be easily seen from

a simple two-spin version of (1.14) with interaction being J instead of 1:

H = J ~S1 · ~S2 + h1S
z
1 + h2S

z
2 (1.15)

If we start with a general non-entangled product sate

|t = 0〉 = (α| ↑1〉+ β| ↓2〉)⊗ (γ| ↑2〉+ δ| ↓2〉) , (1.16)

then at any later time the state becomes (in the units where ~ = 1)

|t〉 =e−ih1tα| ↑1〉
(
e−i(h2+J)tγ| ↑2〉+ ei(h2+J)tδ| ↓2〉

)
+ eih1tβ| ↓1〉

(
e−i(h2−J)tγ| ↑2〉+ ei(h2−J)tδ| ↓2〉

)
.

(1.17)
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Except at certain special times, the state is no longer a product state and thus the

system gets entangled without any transport of energy. Qualitatively, the entangle-

ment is generated by precession of both spins, and the rate of precession depends

on the interaction with the other σzi . Quantitatively, the two eigenvalues of ρ2, the

reduced density matrix of spin 2, are

λ± =
1±

√
1− 4|γδ|2[1− (|α|2 − |β|2)2] sin2(2Jt)

2
(1.18)

so the von Neumann entropy S = −λ+ lnλ+−λ− lnλ− has a time scale t ∼ 1/J , which

only depends on the interaction between two spins. On the other, the spread of entan-

glement does distinguish the MBL systems from either general, i.e., non-integrable,

thermal systems or integrable systems. In integrable one-dimensional systems, the

entanglement spreads ballistically [27–29], i.e., an increase of entanglement entropy

linear in time, and this is also observed, at least when far away from equilibrium, in

one dimensional diffusive non-integrable models [30]. For localized models, however,

the entanglement has been shown to spread logarithmically with time [28,31–38], thus

much slower than that in thermal or integrable systems. We will explore the spread

of entanglement further in the next section.

1.2.3 Many-body Localization: A Phenomenology

We may understand fully many-body localized (FMBL) systems, where all eigenstates

display localization, better by rewriting Hamiltonian using “dressed” local operators

from bare local operators [38]. Specifically, we can consider a system with only local

two-state degrees of freedom like spins on a lattice and there are only short-range

interactions between these degrees of freedom in the Hamiltonian. Operators on each

local two-state degree of freedom i are thus a linear combination of the identity matrix

Ii and the Pauli matrices ~σi, which will be referred to as the “p-bits” (p=physical).
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In the localized phase, since the system does not admit transport, there should be a

set of localized conserved charges acting as constants of motion, and we may re-write

Hamiltonian of the system in terms of the corresponding local operators. Particularly,

it has been argued that [36–38] for FMBL systems, we can define a set of localized

two-state degrees of freedom with corresponding Pauli operators ~τi such that the

Hamiltonian can be re-written as

H = E0 +
∑
i

τ zi +
∑
ij

Jijτ
z
i τ

z
j +

∞∑
n=1

∑
i,j,{k}

K
(n)
i{k}jτ

z
i τ

z
k1
· · · τ zknτ

z
j , (1.19)

where E0 is some constant energy offset and no duplicate term is included. {~τi} gen-

erate the constants of motion and will be called “l-bits” (l=localized) in the following.

The subscript i for l-bits refers to different degrees of freedom compared to the sub-

scripts for p-bits, though for weakly interacting systems, ~τi should have substantial

overlap with ~σi and thus can be viewed as “dressed” p-bits, with the “dressing” falling

off exponentially in the space of degrees of freedom from p-bits, which would be called

real space for simplicity in the following. The interactions Jij and K
(n)
i{k}j in Eq. (1.19)

also fall off exponentially in real space. Even though in terms of p-bits the Hamilto-

nian may only couple nearby ones, Eq. (1.19) allows long-range interaction between

l-bits, as each of p-bits may have non-zero weight on distant l-bits.

Eigenstates of (1.19) are simultaneous eigenstates of all the {τ zi }, thus as in

Eq. (1.17) each l-bit would also precess about its z-axis at a rate given by its in-

teractions with other τ zi . Therefore in a generic case, as in (1.17), different l-bits

would get entangled during precession, but since there is no “flip” of {τ zi }, there

would be no “dissipation”. Eq. (1.19) can also help us gain some understanding of

the logarithmic spreading of entanglement in FMBL systems [36, 38]. On one ex-

treme, for thermalizing systems, when entanglement is generated between two p-bits

A and B through direct interaction and similarly between B and another p-bit C,
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A and C would also get entangled during the process even though they may not

directly interact. As a result, entanglement can spread ballistically in thermalizing

systems [30]. On the other extreme, for single-particle localized systems, which do

not have interactions between l-bits in (1.19), entanglement would not be generated

between any l-bits through dynamics. FMBL systems are in the middle of these two

extremes. With interaction, entanglement does get spread as is seen from Eq. (1.17).

However, entanglement propagates much slower as it can only be generated by direct

interaction between two l-bits. Intuitively, this is because the interaction between l-

bits depend only on their τ z values, which, as constants of motion, are not affected by

a third l-bit, thus the interaction between two l-bits would not be “felt” by any third

l-bit, and so is the entanglement generated from the interaction. More specifically,

we can define the effective interaction between two l-bits i and j as

Jeffij = Jij +
∞∑
n=1

∑
{k}

K
(n)
i{k}jτ

z
k1
· · · τ zkn , (1.20)

which would also depend on all the other {τ zk}. In localized systems, we expect an

exponential decay of Jeff as Jeff ∼ J0 exp(−L/ξ) with distance L between l-bits

i and j. (The position of l-bits may be not straightforward to find since they are

“extended”. For weak interactions, l-bits can be thought of locating at their “un-

dressed” p-bits.) If these two l-bits are initially not entangled, the entanglement is

generated between them at t ∼ 1/Jeff , analog to what happens with the state (1.17).

Therefore, after time t, entanglement is generated for l-bits within L ∼ ξ ln(J0t), so

the entanglement grows logarithmically in time.

We close this section by mentioning again that the l-bit reasoning here applies for

fully many-body localized systems. For localized systems which have both localized

and extended states, the situation is less clear. Naively, one may expect a similar

construction restricted to localized states, but the existence of Griffith regions in
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states near mobility edge complicates things, so the development of phenomenology

for systems with a mobility edge is still an active research problem.

1.3 Thesis Outline

In this thesis, we look at problems regarding the thermalization of entanglement and

many-body localization phase transition.

In Chapter 2, we investigate the thermalization of entanglement near thermal equi-

librium. Especially, we focus on two one-dimension spin chain models and contrast

the dynamics of entanglement entropy between a robustly non-integrable Hamilto-

nian model and a Floquet model with no conservation laws and the same average

Hamiltonian within one period. It is found that the eigenstates of Floquet model

in numerics are less affected by finite size effects in terms of entanglement entropy,

and the entanglement relaxes slower to equilibrium under Hamiltonian dynamics. We

attribute both to the presence of the energy conservation law, which constrains the

structure of eigenstates from Hamiltonian and creates slow diffusive transport of en-

ergy imbalances. We also show some preliminary results on attempts to quantify the

transport of energy imbalance and the dynamics of entropy starting from different

initial states.

In Chapter 3, motivated by the good thermalization of Floquet eigenstates under

finite size seen in Chapter 2, we propose a one dimensional Floquet spin model with

a tunable disorder strength to analyze the many-body localization phase transition

numerically. We demonstrate that our model does exhibit a phase transition and

is well thermalized/localized at reasonable sizes. The advantage of using a Floquet

model over a Hamiltonian is the suppress of finite size effect in the thermal phase,

which is of great importance as the phase transition happens in the thermal side

at finite size. We particularly focus on two correlation functions which are hard to
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observe clearly in Hamiltonian models until large sizes, and show some preliminary

finite size analysis results using these two correlations.

In the last chapter, we attempt to analyze the many-body localization phase

transition through a simplified infinite randomness renormalization group approach,

which imposes symmetric rules on thermal and localized regions. Because of the

simplification, it is possible to obtain the critical point probability distribution and

the exponents for the stability of the critical point analytically or up to numeric

precision. Particularly, this approach produces a fractal thermal Griffith structure

which seems to be a qualitatively correct feature of the transition, and its fractal

dimensions can also be found at critical point or “deep” in the thermal phase near

the critical point.
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Chapter 2

Thermalization of entanglement

2.1 Introduction

Quantum entanglement has recently been a central topic in theoretical physics. Many

aspects of the dynamics of entanglement have been recently studied, such as ballistic

spreading of the entanglement in integrable [27–29,39] and nonintegrable [30,40] sys-

tems, logarithmic spreading in many-body localized systems [32,34], and sub-ballistic

spreading due to quantum Griffiths effects [41]. In many of these examples, the en-

tanglement spreads more rapidly than conserved quantities that must be transported

by currents.

Much of the previous work on the dynamics of entanglement, however, has empha-

sized far-from-equilibrium regimes, particularly those following a quantum quench. In

this chapter, we instead explore the entanglement dynamics near equilibrium in non-

integrable, thermalizing spin chains [42] of finite length. For example, if we start in

a nonentangled initial pure state, the entanglement entropy grows linearly with time

at early time due to the “ballistic” spreading of entanglement [30,40], but then satu-

rates to its “volume-law” equilibrium value at long time. The lower two data sets in

Fig. 2.1 illustrate this. As in our introduction in Chapter 1.1.2, in the limit of a long
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spin chain, this isolated system is reservoir that thermalizes all of its subsystems, and

the extensive part of the final equilibrium value of the entanglement entropy is equal

to the thermal equilibrium entropy at the corresponding temperature, which is set by

the total energy of the initial state. We call this process, in which the entanglement

entropy approaches the thermal equilibrium entropy, the “thermalization of entan-

glement”. Note if we consider the special case in which the initial state is an exact

many-body eigenstate, then there is no dynamics and the entanglement entropy is

expected to be equal to the thermal entropy at the corresponding energy, according

to the eigenstate thermalization hypothesis (ETH) [4,5,7] discussed in Chapter 1.1.3.

In this chapter we will focus on the late time, near equilibrium regime of the

entanglement dynamics, as well as the spontaneous fluctuations of entanglement in

pure states sampled from the equilibrium density operator. Most results in this

chapter are presented in 2015 APS March Meeting and reported in the paper [43].

In Section 2.2, we introduce a nonintegrable, quantum-chaotic model Hamiltonian

and its corresponding Floquet operator, where the extensive energy conservation is

removed. In Section 2.3, we first examine the distribution of entanglement entropy of

eigenstates of the Hamiltonian and the Floquet operators, finding that the presence

of the conservation law affects the distribution. In Section 2.4, we study the dynamics

of entanglement entropy near equilibrium. We study three scenarios: starting from a

product state of two random pure states, starting from generalized Bell states with

two different pairing schemes, and the autocorrelation of the spontaneous fluctuations

of the entanglement entropy. In all cases, we find the Floquet system thermalizes

entanglement faster than the Hamiltonian system. In Section 2.5 we attempt to

make the relation between the dynamics of entanglement entropy and the transport

of energy imbalance more quantitative by investigating many more initial states. We

represent the energy imbalance by a square of energy difference between two half

chains, and this quantity is found to be strongly correlated with thermalization of
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Figure 2.1: Time evolution of the entanglement entropy for L = 14 for: product
random (PR) initial states under Floquet dynamics (2) with τ = 0.8 (red line with
circles) as well as Hamiltonian dynamics (2.1) (blue line with down triangles); “gener-
alized Bell” initial states made from pairs of random pure (RP) states (green line with
up triangles) and from “oppositely paired” (OP) states (purple line with diamonds)
both under Hamiltonian dynamics. Each case is averaged over 400 initial pure states,
and the error estimates are too small to be visible in this figure. See main text for
more details.

entropy in many cases, but exceptions do exist. In Section 2.6, we summarize our

findings.

2.2 Models

To study a system that is robustly nonintegrable and strongly thermalizing, we choose

the spin-1/2 Ising chain with both longitudinal and transverse fields. Its Hamiltonian

is

H =
L∑
i=1

gσxi +
L∑
i=1

hσzi +
L−1∑
i=1

Jσzi σ
z
i+1 , (2.1)
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where σxi and σzi are Pauli matrices at site i. We use open boundary conditions

and set the parameters to (g, h, J) = (0.9045, 0.8090, 1.0), for which this model has

been shown to be robustly nonintegrable and strongly thermalizing for system sizes

readily accessible to exact diagonalization studies [30,44]. Here we avoid the situation

where g = J and h is so small that perturbative approach is valid, in which case this

model is integrable and has E8 symmetry [45]. The only conservation laws that this

system is known to have at this parameter choice (other than projections on to its

exact eigenstates) are total energy, and parity under spatial reflection of the chain

(i → (L + 1 − i)). This system’s “hydrodynamics” are simply its conserved energy

moving diffusively and subject to random local currents due to the system’s quantum-

chaotic unitary dynamics. We set the Planck constant ~ to unity so that time and

energy have inverse units of each other, and all energies and frequencies are in units

of the interaction J = 1.

To explore the effects of removing the conservation of total energy, we also study

a Floquet system that is a modification of (2.1). We decompose the Hamiltonian

into two parts, Hz =
∑

i(hσ
z
i + σzi σ

z
i+1) and Hx =

∑
i gσ

x
i . We periodically drive

the system with a time-dependent Hamiltonian that is in turn H(t) = 2Hz for a

time interval of τ/2 and then H(t) = 2Hx for the next τ/2, and repeat. The time-

averaged Hamiltonian is thus unchanged, but the periodic switching changes the

energy conservation from conservation of the extensive total energy to conservation

of energy only modulo (2π/τ). This change removes the diffusive transport of energy

as a slow “hydrodynamic” mode while otherwise changing the model as little as

possible. The Floquet operator that produces the unitary time evolution through one

full period is

UF (τ) = e−iHxτe−iHzτ . (2.2)
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We choose time step τ = 0.8, which was found in Ref. [44] to produce a rapid relax-

ation of the total energy within a few time steps. Specifically, this choice is based

on the relaxation of the total energy under different choices of τ for L = 12, as is

shown in Fig. 2.2, which demonstrates how the autocorrelation of the total energy

decays under discrete Floquet dynamics: Tr{HU †F (nτ)HUF (nτ)}. Both τ = 0.8 and

τ = 1 relax the total energy very quickly so that the system approaches equilibrium

within of order one time step, while for τ = 0.6 the energy relaxation has a much

slower component. τ = 1 leads to a more oscillatory behavior compared with τ = 0.8.

Therefore τ = 0.8 emerges as a nice choice for our studies. The eigenvalues of UF (τ)

are complex numbers of magnitude one. Note that time is in a certain sense discrete

(integer multiples of τ) for this Floquet system. The Hamiltonian system, with con-

served total energy, is effectively the case τ = 0, which we contrast here with the

Floquet system with τ = 0.8 where the total energy is not conserved and relaxes very

quickly. Of course, there is an interesting crossover between these two limits [1], but

we do not explore that crossover here.

Throughout this chapter, we consider the bipartite entanglement entropy of pure

states, quantified by the von Neumann entropy of the reduced density operator of a

half chain: S = −Tr{ρL log2 ρL} = −Tr{ρR log2 ρR}. We study chains of even length,

and ρL and ρR are the reduced density operators of the left and right half chains,

respectively. Note that we measure the entropy in bits.

2.3 Entanglement entropies of eigenstates

We first look at the entanglement entropy of the eigenstates of the Hamiltonian (2.1)

and of the Floquet operator (2.2), compared to random pure states of the full chain.

Figure 2.3 shows the distributions of these entanglement entropies for L = 16.
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Figure 2.2: Relaxation of total energy under Floquet dynamics for L = 12 with
different choices of driving period τ .

We can see that the entanglement of the eigenstates of the Floquet operator is

close to that of random pure states, first derived by Page [46]:

SR(L) =
L

2
− 1

2 ln 2
−O

(
1

2L

)
. (2.3)

This is consistent with previous studies which have shown that a Floquet dynamics

thermalizes a subsystem to infinite temperature [1, 44, 47,48]. The eigenstates of the

Hamiltonian, on the other hand, all have entanglement entropies that are a fraction of

a bit or more less than random pure states. What is the source of this difference? It is

because the Hamiltonian eigenstates are eigenstates of the extensive conserved total

energy, while the random pure states and the Floquet eigenstates are not constrained

by an extensive conserved quantity. This causes the probability distribution of the
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Figure 2.3: Normalized histogram of the entanglement entropy for L = 16 for: (dashed
blue line) the eigenstates of the Hamiltonian (2.1); the eigenstates of the Floquet
operator (2.2) with τ = 0.8 (solid green line); and for random pure states of the
full chain (very narrow red distribution), where the histogram is over 2000 randomly
generated pure states.

energy of a half chain to be narrower for the Hamiltonian system, since if one half chain

has a high energy (compared to its share of the eigenenergy) then the other half chain

has to have an energy that is low by the same amount. This suppresses the volume of

the possible space of half-chain states whose energy is either high or low, resulting in

a reduced entropy of the half-chain and thus reduced entanglement entropy, even for

the Hamiltonian eigenstates at energies that correspond to infinite temperature. This

goes along with the recent observation that the finite-size deviations of the eigenstates

of the Hamiltonian from the Eigenstate Thermalization Hypothesis are larger than

those of the eigenstates of the Floquet operator [44]: energy conservation somewhat

impedes thermalization.
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2.4 Dynamics of Entanglement near equilibrium

Now we turn to the dynamics of the entanglement entropy. The dynamics of a linear

operator is set by the matrix elements of the operator between energy eigenstates (or

eigenstates of the Floquet operator) and the eigenenergies. But the entanglement is

not a linear operator, so its dynamics cannot be determined so simply. We explore

the near-equilibrium dynamics of the entanglement in two different ways. First we

study the relaxation of the entanglement to its equilibrium value from particular ini-

tial states with either low or high entanglement. We then explore the dynamics of

the spontaneous fluctuations of the entanglement entropy during the unitary time

evolution of a random pure state of the full spin chain. From these studies we can

clearly show that the entanglement dynamics is slower for the Hamiltonian system,

since some of the entanglement entropy is connected to the slow diffusion of energy

between the two half-chains. In the Floquet system, on the other hand, near equilib-

rium the entanglement relaxes to equilibrium with a simple-exponential behavior in

time, with a relaxation time that is apparently independent of the system size.

2.4.1 Product of Random Pure states

For initial states with zero entanglement between the two half chains, we use a prod-

uct of random (PR in Fig. 2.1) half-chain pure states |ψ(t = 0)〉 = |ψL〉 ⊗ |ψR〉,

where |ψL〉 and |ψR〉 are picked from the ensemble of random pure states of the left

and the right half chain, respectively. On average these states have energy close to

0, so the system is near infinite temperature and starts with zero entanglement en-

tropy. As random pure states are chosen for the half chains, the expected energy

distribution between left and right halves is close to the equilibrium distribution (at

infinite temperature), indicating only a small energy transport between two halves is

required for thermalization. Fig. 2.1 plots the time-dependent entanglement entropy
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under Hamiltonian and Floquet dynamics for L = 14. The long-time average S(∞)

is estimated by averaging S(t) from t = 2500τ to t = 2999τ .

It is clear from Fig. 2.1 that the Floquet system has faster relaxation of the

entanglement entropy towards its saturation value at long times, even though the

initial spreading rate of the entanglement is the same for these two systems. Since

the only significant difference between these two unitary dynamics is whether or not

energy conservation and thus energy transport is present, Fig. 2.1 suggests that the

slow dynamical modes of this system associated with energy transport do also slow

down the long-time thermalization of the entanglement.

2.4.2 Generalized Bell States

To explore the thermalization of the entanglement from initial states with higher en-

tanglement than equilibrium, we use initial states that maximize the entanglement

entropy; we call these “generalized Bell states”. These states have Schmidt decom-

position

|ψB〉 =
1√
2L/2

2L/2∑
i=1

|Li〉 ⊗ |Ri〉 , (2.4)

where the sets {|Li〉} and {|Ri〉} are respectively complete orthonormal bases for left

and right half chains. Since these initial states have higher entanglement entropy than

equilibrium, their entropy decreases as it thermalizes. This is an amusing apparent

“violation” of the second law of thermodynamics, but it is actually not thermody-

namics, since the decrease is by less than one bit (very close to 1/(2 ln 2) by Eq. (2.3)),

and thus far from extensive.

The random pure (RP) Bell states are made by independently choosing a random

orthonormal basis for each half-chain. To make initial Bell states that also have very

large energy differences between the two half-chains, we make the opposite paired
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(OP) states that can be written as

|ψ(t = 0)〉 =
1√
2L/2

2L/2∑
i=1

eiθi |Eh
i 〉left ⊗ |Eh

2L/2+1−i〉right , (2.5)

where the |Eh
i 〉 are the eigenstates of the half-chain Hamiltonian (Hamiltonian (2.1)

with L/2 sites), with their eigenenergies ordered according to Eh
i ≤ Eh

i+1. Therefore,

by construction, many Schmidt pairs in these opposite paired Bell states have large

energy imbalance between the two half-chains, unlike the random pure Bell states

where the energy imbalance between the two halves is small. The contrast between

them shows how the slow diffusive relaxation of the energy imbalance affects entan-

glement thermalization. The ensemble of OP states that we average over is obtained

by choosing random phases {θi}.

The time evolution of the entanglement entropy for a L = 14 spin chain starting

from generalized Bell states of pairs of random pure (RP) states as well as general-

ized Bell states with opposite pairing (OP) under Hamiltonian dynamics are shown

in Fig. 2.1, with the estimated long time average subtracted. For the opposite paired

(OP) initial states, the initial large energy differences between the two half-chains in

many of the Schmidt pairs make the excess entanglement long-lived, since the relax-

ation of these energy differences requires diffusion of the energy over the full length

of the chain. For the RP initial states, on the other hand, the half-chain states are

random so do not show nonequilibrium energy correlations, and the excess entangle-

ment relaxes to equilibrium much more rapidly than it does for the OP states. This

observation hence provides additional evidence of the coupling between entanglement

entropy relaxation and energy transport under Hamiltonian dynamics.

Fig. 2.4 gives a more detailed view of the thermalization of the excess entanglement

entropy starting from these generalized Bell initial states. Here RP initial states

under Floquet dynamics are also shown; since the Floquet system does not have
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Figure 2.4: Thermalization of entanglement entropy in three cases for L = 14 (log-log
scale): from random pure (RP) generalized Bell states under Hamiltonian dynamics
(circular markers, green); from RP generalized Bell states under Floquet dynamics
(square markers, blue); and from oppositely paired (OP) generalized Bell states under
Hamiltonian dynamics (triangular markers, red). Within Hamiltonian dynamics, the
larger initial energy imbalance for the OP initial states dictates a slower thermaliza-
tion of the entanglement, while the absence of energy conservation for the Floquet
system allows the fastest thermalization of entanglement entropy among all cases
considered. See main text for description of initial states.

conserved energy we cannot construct an OP initial state for it. This figure again

shows the clear importance of energy transport for entanglement thermalization. The

excess entropy of the RP initial states decays away faster for the Floquet system as

compared to the Hamiltonian system, since the thermalization of the Floquet system

is not constrained by an extensive conserved energy. The strong initial anticorrelation

between the energies of the two half-chains greatly slows down the thermalization of

the entanglement for the OP initial states under Hamiltonian dynamics.
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2.4.3 Autocorrelation of entanglement

Next we examine the dynamics of the spontaneous fluctuations of the entanglement

entropy at equilibrium at infinite temperature, where all pure states are equally likely.

Therefore, we simply pick many random pure states of the full chain and calculate

the unitary time evolution of each initial state over many time steps. We measure

the autocorrelation of the entropy for each realization (indexed by i) as

Ri(t) =
1

M

M∑
m=1

[
Si(tm)− S̄i

] [
Si(tm + t)− S̄i

]
, (2.6)

where each run has in total 30000 time points tm, equally spaced in time by ∆t,

and Si(t) is the entropy at time t. Thus we measure the autocorrelation at integer

multiples of the time step: t = n∆t. M is the maximum number of pairs that can be

extracted from the time series. Each random initial state gives slightly different time-

averaged entropies S̄i, and thus for each run we subtract its average in Eq. (2.6). Then

we average over runs and normalize the autocorrelation to be one at time difference

t = 0. The statistical errors are estimated from this averaging over runs.

Fig. 2.5 plots the autocorrelation under Hamiltonian and Floquet dynamics with

systems of different sizes: L = 10, L = 12 and L = 14. For L = 10 the number of

independent runs in each case is N = 400, while for L = 12 and L = 14 we chose N =

100. With τ = 0.8 as before, our time points are spaced by ∆t = 3τ for Hamiltonian

dynamics and ∆t = 2τ for Floquet dynamics. It can be easily seen from Fig. 2.5 that

the relaxation of autocorrelations under Floquet dynamics is systematically faster.

Particularly, the autocorrelation in the Floquet system assumes a simple exponential

decay. This observation indicates that under the Floquet dynamics a random state

“relaxes” to equilibrium by independent and unconstrained local relaxation. In the

Hamiltonian system, on the other hand, a spontaneous fluctuation that rearranges

the energy density on a long length scale is necessarily slow, due to the slow energy
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Figure 2.5: Autocorrelation of the entanglement entropy vs. time for random pure
states under Hamiltonian (solid lines) as well as Floquet dynamics (dashed lines)
with different system sizes L in log-linear scale. For each case, the autocorrelation
is normalized to be one at time zero. Under Floquet dynamics, the autocorrelation
decays as a simple exponential function of time, and faster than under Hamiltonian
dynamics. Only weak size dependence of this normalized autocorrelation is observed
under either dynamics.

diffusion. Thus any influence of such fluctuations on the entanglement must relax

slowly. Clearly we are seeing such an influence that is causing the slower long-time

relaxation of the entanglement autocorrelation in the Hamiltonian system. Fig. 2.6

suggests that the autocorrelation under Hamiltonian dynamics decays exponentially

in square root of time, as curves become roughly straight when plotted against
√
t in

a semi-log plot, and the straightness increases as system size increases. This scaling

may be understood as fluctuation of entanglement entropy coupled to operators on the

spin chain. At time t the fluctuation couples to the O(4l) operators on a size of l ∼
√
t

by diffusion, of which only O(1) operators are slow, so only O(1/4l) ∼ exp(−c
√
t)

fraction of the information about the initial fluctuation is left at time t, where c is

some constant, resulting in an exponential decay of autocorrelation in
√
t. The same
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Figure 2.6: Autocorrelation of the entanglement entropy under Hamiltonian dynamics
vs. square root of time for random pure states with different system sizes L. On this
semi-log scale, all three curves roughly follow a straight line and the tail becomes
more straight as system size increases.

reasoning may also be applied to the Floquet system, where the slowest modes instead

have [49] l ∼ t, thus leading to a the observed simple exponential decay as is shown

in Figure 2.5.

One may also note here that under either dynamics, the relaxation of these auto-

correlations has little dependence on system size. This indicates that the fluctuations

that are contributing here are on length scales smaller than the L = 10 systems. For

the Floquet system this is consistent with the relaxation being simply local, so any

longer length scale slow operators [49] apparently do not couple substantially to the

entanglement fluctuations. For the Hamiltonian systems this absence of size depen-

dence suggests that over the time range probed here, the energy fluctuations that

couple to the entanglement are on length scales smaller than the length of the smaller

L = 10 system. But the substantially slower relaxation as compared to the Floquet
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system suggests that energy transport over a few lattice spacings does couple to the

entanglement fluctuations.

2.5 Energy Imbalance and Relaxation of Entropy

In the above we have seen that diffusive relaxation of the energy distribution slows

down the thermalization of entanglement entropy near equilibrium. A natural follow-

up analysis would then be to investigate any quantitative relation between energy

imbalance and the relaxation of entanglement entropy in the Hamiltonian. In this

section, we show some preliminary work in this direction. For simplicity, we represent

the energy imbalance as square of energy difference between two half chains: δE2(t) =

〈(HL −HR)2〉(t). This can be thought of as the energy imbalance mode with the

longest wavelength inside the chain, and in general it should be the most relevant near

equilibrium because imbalance in shorter wavelength is expected to be transported

away faster. To get a more complete picture, in the following we consider more initial

states and here is the definition of states shown in Fig. 2.7:

• Small Bell 16 : A modification of OP states which can have initial entanglement

entropy below the thermal value. As in Eq. (2.5), we consider a list of left half

chain eigenstates |Eh
1 〉left, |Eh

2 〉left, · · · , |Eh
N〉left and right half chain eigenstates

|Eh
N〉right, |Eh

N−1〉right, · · · , |Eh
1 〉right which are in opposite energy orderings of

each other, where Eh
i ≤ Eh

i+1 and N = 2L/2 is the dimension of the half chain

Hilbert space. The two lists are divided intoM intervals so that each interval has

the same number d half chain eigenstates. This requires M = 2m for some inte-

ger m ≤ L/2. For each interval i, we can construct two random pure states |ψL〉i

and |ψR〉i on the subspace spanned by |Eh
nd+1〉left, |Eh

nd+2〉left, · · · , |Eh
(n+1)d〉left

for the left half chain and |Eh
N−nd〉right, |Eh

N−nd−1〉right, · · · , |Eh
N−(n+1)d+1〉right for
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the right half chain, respectively. Our initial state in this case is then

|ψ(t = 0)〉 =
1√
M

M∑
i=1

eiθi |ψL〉i ⊗ |ψR〉i (2.7)

with random phases {θi}. In the following we choose the state with M = 16

intervals; thus comes the number 16 in the name. This initial state has 4 bits

of entropy.

• One Side Energy 14 and Two Side Energy 14 : A further modification of

Small Bell states defined above. We again start with a list of left half chain

eigenstates |Eh
1 〉left, |Eh

2 〉left, · · · , |Eh
N〉left and right half chain eigenstates

|Eh
N〉right, |Eh

N−1〉right, · · · , |Eh
1 〉right in opposite ordering of energies, but instead

of dividing them into M intervals all having d states, we divide the lists into

interval of equal energy differences. More precisely, we divide the half chain en-

ergy spectrum into M intervals each with energy difference ∆E = (Eh
N−Eh

i )/M ,

and label the end points of intervals as e1 = Eh
1 , e2 = e1 + ∆E, · · · , eM+1 = Eh

N .

Because of numeric precision, the probability of any half chain eigenstate having

energy exactly equal to ei for i 6= 1, M + 1 is 0. In the “one side” case, we only

apply this division to left half chain eigenstates, so that each |Ei〉left goes into

interval j if ej ≤ Eh
i ≤ ej+1. Under this assignment, some energy intervals may

actually be empty if no |Eh
i 〉left falls into it, and for simplicity we will re-label

all non-empty intervals consecutively from 1 to M
′ ≤ M . For right half chain

eigenstates, we still divide them into M
′

intervals and |Eh
i 〉right would go to

interval j if its corresponding left half chain eigenstate |Eh
N−i+1〉left goes to the

jth interval in left list. In the “two side” case on the other hand, we also divide

the spectrum of right half chain into M intervals and put eigenstates into these

intervals as for left half chain. As a result, the ith interval from the left half

chain contains identical half chain eigenstates as in the (M + 1 − i)th interval
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from the right half chain (empty intervals included). As in the “one side” case,

we can relabel intervals from both half chains to exclude empty intervals so

that there will be M
′ ≤ M non-empty intervals from either side. We can then

construct random pure states |ψL〉i and |ψR〉i from subspaces spanned by half

chain eigenstates from the ith (non-empty) interval of left and right half chains

respectively, The initial state is then

|ψ(t = 0)〉 =
1

Z

M
′∑

i=1

4

√
niLn

i
Reiθi |ψL〉i ⊗ |ψR〉i (2.8)

with random phases {θi}, where niL and niR are the dimensions of the subspaces

from the ith left and right half chain intervals, and Z is a normalization constant.

The amplitudes are chosen to ensure a “fair” mix of states in this generalized

Bell state. Particularly, in the “one side” case, for any i we have niL = niR

so that 4
√
niLn

i
R/Z =

√
niL/N , thus it weighs each product state |ψL〉i ⊗ |ψR〉i

according to the number of orthonormal states used to construct each random

pure state. The 14 here means M
′
= 14. Moreover, if M

′
= 1 we get back to a

PR state, and when M
′
= N , we obtain an OP state.

• Restricted product random states : Initial state is a product state of two random

pure states formed on a restricted subspace of half-chain eigenstates:

|ψ(t = 0)〉 = |ψL〉 ⊗ |ψR〉 . (2.9)

Here |ψ〉L and |ψ〉R are random pure states constructed on the subspace spanned

by the 12 half chain eigenstates {|Eh
i 〉} with smallest energy magnitude |Eh

i |.

• Restricted product random 57 states : A restricted product random state as

above, where |ψ〉L and |ψ〉R are constructed on the subspace spanned by the 57

half chain eigenstates with smallest energy magnitude instead 12. We choose 57
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because this state appears to relax fastest among all restricted product random

states using different number of half-chain eigenstates.

• Restricted opposite pairing states : An OP state where the first 12 half-chain

eigenstates with smallest energy magnitude are chosen to pair oppositely in

energy in Eq. (2.5). This state would be qualitatively similar to the original OP

state but with smaller entanglement entropy.

• Restricted random pure paired states : An RP state, where the half-chain or-

thonormal basis of random pure states in Eq. (2.4) come from the subspace

spanned by the first 12 half-chain eigenstates with smallest energy magnitude.

It has smaller entanglement entropy compared to the original RP state.

• Random product states : A product state of random spins at each site:

|ψ(t = 0)〉 = |~s1〉 ⊗ |~s2〉 ⊗ · · · ⊗ |~sL〉 (2.10)

with

|~si〉 = cos

(
θi
2

)
| ↑i〉+ eiφi sin

(
θi
2

)
| ↓i〉 (2.11)

where random phases θi ∈ [0, π) and φi ∈ [0, 2π).

• Random pair states with different angles : A generalization of OP states, which

are still generalized bell states from pairing half-chain eigenstates:

|ψ(t = 0)〉 =
1

2L/2

2L/2∑
i=1

eiθi |Eh
i 〉left ⊗ |Eh

f(i)〉right (2.12)

with Eh
i ≤ Eh

i+1 and Ẽh
f(i) ≤ Ẽh

f(i+1), where the “effective” energy is defined as

Ẽh
i = Eh

i sin(α) +Gi cos(α) (2.13)
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Here {Gi} is a set of independent Gaussian random variables with mean 0 and

standard deviation equal to the sample standard deviation of {Eh
i }. α is the

angle quoted in the legend of Fig. 2.7. When α = −π/2, we recover the OP

states, and when α = 0 half-chain eigenstates are paired randomly.

Fig. 2.7 shows the entropy difference ∆S(t) = S(t)− S(∞) versus δE2 as various

states approach equilibrium for Hamiltonian system with L = 12, where S(∞) is

estimated from long time averages. Long time averages of energy imbalance δE2 are

also subtracted in the plots. Results are binned together according to time and each

bin is of 30 time units wide. Error bars represent the standard errors within each bin

when averaged over 400 runs. The product random states are PR states described

in Sec. 2.4.1, and as expected for them δE2 is at equilibrium value almost from the

beginning.

It can be seen that when states are approaching equilibrium, most of them roughly

fall on a line, suggesting a linear relation between ∆S and δE2. This provides a more

quantitative description of our observation in Sec. 2.4.2 that larger energy imbalance

results in slower entropy relaxation. One would also expect this linear coefficient to

be almost independent of initial conditions when we are this close to thermal equi-

librium, though a closer look around 0 given in Fig. 2.7(b) suggests multiple slopes

when approaching equilibrium. This seeming surprise, however, may merely come

from finite size effects, as it actually has been observed (not shown here) that with

L = 12 states starting with ∆S > 0 may reach a slightly different equilibrium condi-

tion that those starting with ∆S < 0, and these differences may translate into slightly

different linear coefficients between ∆S and δE2. On the other hand, it is interesting

to note that there are initial states like random product states which do not develop

a linear relation between ∆S and δE2 on the scale plotted and seems to deviate from

our expectation that larger energy imbalance impedes entropy relaxation more. For

instance, random product states and the full product random states have entropy
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relax slower than that of the restricted random product states using 57 eigenstates,

even though the former two both have smaller δE2 to start with. One possible expla-

nation may be related to how we characterize the energy imbalance here, since the

exceptional states in our case all have δE2 close to their equilibrium values. Because

δE2 only represent the the longest wavelength energy imbalance mode, as they be-

come unusually small, modes of shorter wavelength would start to have significant

influence on energy transport even at late stages of thermalization, and their relations

with thermalization of entanglement are not correctly captured in Fig. 2.7. Therefore,

a more thorough study of the relation between energy imbalance transport and entan-

glement entropy relaxation in Hamiltonian systems can be a possible future project

which may provide further insight into the details of thermalization of entanglement.

(a) (b)

Figure 2.7: Entropy difference against energy imbalance (long time averages sub-
tracted) with various initial states along the evolution. All data are grouped in bins
of 30 time units wide. Most states roughly fall on a line when approaching equilib-
rium but exceptions do exist. (b) gives a closer look at the center and multiple slopes
can be observed which may result from finite size effect.

2.6 Conclusion

In conclusion, we have investigated the thermalization of the entanglement entropy

by comparing state evolution of spin chains under Hamiltonian dynamics and Flo-
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quet dynamics, with the two systems having the same time-averaged Hamiltonian.

Eigenstates of these two dynamics have quite different distributions of the entangle-

ment entropy. The Floquet eigenstates all have entanglement close to that of random

pure states, while the Hamiltonian eigenstates all have significantly less entanglement

due to the constraint of total energy conservation. We show that the entanglement

entropy relaxes to equilibrium more slowly under Hamiltonian dynamics, both for

initial states well away from equilibrium and for the spontaneous fluctuations of the

entanglement entropy at equilibrium. The Hamiltonian system has slow diffusive

energy transport, while the Floquet system does not. This slow diffusive relaxation

of the energy distribution in the Hamiltonian system results in slow relaxation near

equilibrium of the entanglement entropy. We further demonstrate some preliminary

investigation of the relation between energy imbalance and entropy relaxation. Char-

actering energy imbalance by its longest wavelength mode, we find most initial states

follow our expectation that a larger energy imbalance leads to slower relaxation of

entanglement entropy. However, exceptions do exist which confine the validity of our

simple picture and requires further more thorough study of the topic.
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Chapter 3

Floquet model of the many-body

localization transition

3.1 Introduction

In the last chapter we have seen that conservation laws may impede the thermaliza-

tion of entanglement entropy, and that at finite sizes Floquet systems’ eigenstates

are better thermalized than those from Hamiltonian systems. In this chapter, with

the help of these observations, we will now turn to the study of a particular phase

transition: the dynamical quantum phase transition between many-body localization

(MBL) and thermalization. This phase transition has attracted much recent interest,

but remains poorly understood [2, 13, 25, 26, 41, 50–65]. It is a new type of phase

transition for which we have not (yet?) found methods that allow a detailed and

convincing study of its properties. Much of the work studying this phase transition is

numerical, using various numerical approaches, particularly for one-dimensional spin

chain models. Such studies have a large amount of freedom in choosing the specific

model to focus on, since all one really needs is a model exhibiting the MBL phase,

the thermal phase, and the phase transition between them. In this chapter we want
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address the question of what features one should possibly look for in choosing the

“best” type of model to study.

The many-body localized phase is now understood to be a new type of integrable

system, with an extensive number of localized conserved quantities [38, 66]. The

phase transition into the MBL phase from the thermal phase can thus be thought of

as the emergence of all these new conservation laws. This suggests that an important

property of the thermal phase may be its lack of localized conserved quantities. In

finite sized systems any conserved quantity is in some sense localized due to the

finite size, so one can thus argue that the best representative of the thermal phase

may be a phase with zero local conservation laws, not even energy. Such models are

available in the form of so-called Floquet models [47, 48, 67] which are also explored

in Chapter 2. They have a discrete time dynamics where the time evolution operator

that advances time by one unit of time is a local unitary operator, U . Generically,

such Floquet models have no local conservation laws or symmetries in their thermal

phase, and when they thermalize they maximize the entropy without any constraint,

so in a certain sense they thermalize to infinite temperature. As shown in Chapter 2,

having no conservation laws allows such Floquet models to thermalize faster than the

corresponding Hamiltonian models that have conserved energy slowing down their

thermalization [43].

In this chapter, we propose a specific such spin-1/2-chain Floquet model with

no conservation laws. In the limit of zero disorder this model becomes the model

introduced in Chapter 2 as an example of a Floquet model that thermalizes very

rapidly [43, 49]. We will show results of several quantities for this model which are

frequently used to characterize the transition, and demonstrate that the model can

indeed reach a fully thermalized phase as well as a fully localized phase, and the

signal-to-noise ratio is already very good in the thermal regimes at a reasonable sys-

tem size. Particularly, we will look at two spin correlation functions across the whole
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chain. Correlation functions play an important role in studying the “traditional”

phase transition, but are under-presented in numerical studies of MBL phase transi-

tions, possibly because of the large noise background appearing in finite size studies,

especially on the thermal side, which is exactly the problem that we hope our model

can ameliorate.

The model is introduced in Section 3.2. We then discuss our numerical results

charactering the transition in Section 3.3. Preliminary finite size analysis using cor-

relation functions is demonstrated in Section 3.4 and we summarize this chapter in

Section 3.5.

3.2 Model

The simplest nearest-neighbor interaction in a spin-1/2 chain is an Ising interaction

σzjσ
z
j+1. So we choose a model that has only this interaction. To make the system

nonintegrable and rapidly thermalizing when we are deep in the thermal phase we

need to have both a transverse and a longitudinal field. We choose to put the disorder

only in the longitudinal field, so the deeply localized limit is quite simple. As we turn

on this random longitudinal field, we decrease the (nonrandom) transverse field to

keep the mean-square field constant. Thus we arrive at the following unitary time

evolution operator:

U = e−i
τ
2

∑L
j=1 gWσxj e−iτ

∑L−1
j=1 σ

z
j σ
z
j+1−iτ

∑L
j=1(h+g

√
1−W 2Gj)σ

z
j e−i

τ
2

∑L
j=1 gWσxj , (3.1)

with open boundary conditions and fixed parameters (g, h, τ) = (0.9045, 0.8090, 0.8),

following Refs. [43, 44]. {Gj}Lj=1 is a set of independent Gaussian standard normal

random variables, and σxi and σzi are the Pauli matrices at site i. The model can be
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thought of as driving the system periodically with period 2τ with

Hx =
L∑
j=1

gWσxj (3.2)

Hz =
L−1∑
j=1

σzjσ
z
j+1 +

L∑
j=1

(h+ g
√

1−W 2Gj)σ
z
j (3.3)

such that Hx acts for a time interval of length τ and Hz then acts for another τ , then

it repeats. For convenience we choose here our reference time point at the “center”

of Hx’s turn, so that U has time reversal symmetry, which makes all eigenvectors

real in the basis of products of spins pointing along z directions, making numerical

diagonalization of U more efficient. W here controls the disorder strength by scaling

the Gaussian random longitudinal fields and the strength of the transverse field. As

W → 1, the model becomes the nonrandom Floquet model used in Refs. [43, 44], so

it is thermalizes rapidly with only weak finite size effects. As W → 0, the transverse

field is turned off and the model is trivially localized with its conserved operators (its

“l-bits” [38]) being simply the {σzi }. Tuning W between 0 and 1 thus gives us the

dynamical phase transition between the MBL phase and the thermal phase.

3.3 Numerical results

In the following, we investigate several quantities near the MBL phase transition

using this Floquet model and exact diagonalization, demonstrating its ability to give

reasonably sharp results even for relatively small system sizes.

3.3.1 Entanglement entropy

One quantity that characterizes the phase transition is the entanglement entropy

of the eigenstates of the Floquet time evolution operator U . As in Chapter 2, we

consider the bipartite entanglement entropy SE in bits given by the von Neumann
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entropy of the reduced density operator of a half chain: SE = −Tr{ρL log2 ρL} =

−Tr{ρR log2 ρR}, where ρL and ρR are the reduced density operators of the left and

right half chains when the full chain is in an eigenstate of U and the length L of the

chain is an even number. When W → 1, Floquet dynamics thermalizes these half

chains to infinite temperature [1, 44, 47, 48, 67], so for large enough L all eigenstates

have entanglement entropy close to that of random pure states [43] as is seen in

Chapter 2. A random pure state has “volume-law” entanglement entropy [46] as

given in Eq. (2.3):

SR(L) =
L

2
− 1

2 ln 2
−O

(
1

2L

)
, (3.4)

and we will normalize our eigenstate entanglement entropies by this value. On the

other hand, in the localized phase, eigenstates of U have “boundary-law” entangle-

ment entropy [2,68], so SE/SR → 0 as L→∞ in the MBL phase. Fig. 3.1 shows the

normalized mean entanglement entropy Snorm = 〈SE〉/SR across the transition as W

and L are varied. Here · · · indicates averaging over all eigenstates for one disorder

realization, and 〈· · · 〉 indicates averaging over different realizations of the disorder.

There are 100 disorder realizations up to size 10 and 50 realizations for size 12. We

can see the transition of this normalized entropy from 0 (localized) to 1 (thermal) as

W increases, with the transition becoming a steeper function of W as L is increased,

as expected and as seen in Hamiltonian models [51,57].

Another quantity related to entanglement entropy that is studied [51, 57] is the

variance of the distribution of SE. Our variance is calculated as σ2
E = 〈(SE − Save)2〉,

where Save is the average entanglement entropy over all eigenstates from all realiza-

tions of the disorder. The results are shown in Fig. 3.2, which shows the peak in this

quantity that increases strongly with L and occurs on the thermal side of the phase

transition; the location of the peak approaches the transition as L is increased [51,57].

This entanglement variance is expected to vanish in the limit of large L in the thermal

44



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
W

0.0

0.2

0.4

0.6

0.8

1.0

S
n
or
m

L=6

L=8

L=10

L=12

Figure 3.1: The normalized average entanglement entropy of all eigenstates. The
normalization is chosen so a random pure state has normalized entropy one. The
statistical error bars where not visible are smaller than the symbols. Our estimate of
the critical point from other data, shown below, is Wc ' 0.3, with the MBL phase at
W < Wc and the thermal phase at W > Wc.

phase, as entropies of all eigenstates approach the Page value [43] SR. This expected

trend is clear in Fig. 3.2, even though the lengths sampled are modest.

3.3.2 Level statistics

Level statistics are frequently used to distinguish localized and thermal phases. For a

Floquet system the eigenvalues of U are unimodular, so can be written in terms

of phases θn as eiθn . We label the 2L eigenvalues with integers n consecutively

around the unit circle. A convenient measure of the level repulsion is [13, 26, 48]

r = 〈min (∆θn,∆θn+1)/max (∆θn,∆θn+1)〉, where ∆θn = θn − θn−1. In the localized

phase, we expect r ∼= 0.39 at large L following Poisson level statistics, while in the

thermal phase we expect r ∼= 0.53 at large L following circular orthogonal ensemble
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Figure 3.2: The variance σ2
E of the eigenstate entanglement entropy.

level statistics [1]. Results for this level statistics parameter r are shown in Fig. 3.3.

It can be clearly seen that as the chain length L gets larger, r becomes a steeper

function of W , and the system is well thermalized/localized at two ends of the range

of W even for a size as small as L = 10. One may note that our model has an

inversion symmetry about the center of the spin chain if we go to exactly W = 1 (no

disorder), which would lead to accidental near-degeneracies between sectors of even

and odd parities, disguising the level repulsion of thermal states. However, this is not

a problem here, as Fig. 3.3 shows that the system is well thermalized by W ' 0.9

and still has enough disorder to guard against this inversion symmetry effect.

3.3.3 Correlation functions

Now we turn to the behavior of two long-distance correlation functions. The farthest

distance in these spin chains with open boundary conditions is from the spin at one

end of the chain to that at the other end. The end-to-end σz correlation averaged
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Figure 3.3: The level statistics parameter r of the eigenstates, as defined in the text.
In the localized phase, r approaches ∼= 0.39 at large L due to Poisson level statistics.
In the thermal phase, the value approaches∼= 0.53 due to circular orthogonal ensemble
statistics [1]. These two limiting values are indicated by the dashed lines.

over all eigenstates of U is

Czz =
1

2L

∑
n

(
〈n|σz1σzL|n〉 − 〈n|σz1|n〉〈n|σzL|n〉

)2
. (3.5)
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We also look at a four point unequal-time end-to-end σz correlation which is averaged

over infinite time, so measures the “frozen correlations”:

Czzt = lim
T→∞

1

T

∫ 2T

T

(
〈σz1(0)σzL(0)σz1(t)σzL(t)〉 − 〈σz1(0)σzL(0)〉〈σz1(t)σzL(t)〉

− 〈σz1(0)σz1(t)〉〈σzL(0)σzL(t)〉 − 〈σz1(0)σzL(t)〉〈σzL(0)σz1(t)〉
)
dt

=
1

2L

∑
n

|〈n|σz1σzL|n〉|2 −

(
1

2L

∑
n

|〈n|σz1|n〉|2
)(

1

2L

∑
n

|〈n|σzL|n〉|2
)

−

(
1

2L

∑
n

〈n|σz1|n〉〈n|σzL|n〉

)2

− 1

22L

∑
n 6=m

(
|〈n|σz1|m〉|2|〈n|σzL|m〉|2

+〈n|σz1|m〉2〈m|σzL|n〉2
)
,

(3.6)

where L is the length of the system and {|n〉}n is the set of all eigenstates of U . Here

〈· · · 〉 means the average over an infinite temperature ensemble with density matrix

I/2L. σz1 and σzL are the Pauli matrices at two ends of the spin chain and σz1(t) as

well as σzL(t) are these two operators under the Heisenberg picture at time t. The

two point correlation function measures the square of the fluctuation from the two

end spins averaged over all eigenstates. For fully localized or thermal eigenstates,

the fluctuation should be exponentially suppressed by the length of the chain, so Czz

should be negligible in these two regimes when the system is large enough. As we

approach the transition point from both sides, since correlation length increases, Czz

should also increase and in the infinitely large system, there would be a peak at the

transition point. Similarly, Czzt measures the correlation of fluctuation over time. It

is small in both thermal phase, because of the short correlation length in time for

thermal states, and localized phase, because of the small magnitude of the fluctuation

itself. As we approach the transition point, a peak is expected due to the increase in

fluctuation and correlation length in time.

The peaks of these two correlation functions are difficult to observe in Hamiltonian

systems because of the presence of conservation laws which hinders the thermalization
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of the system [43]. This creates a noisy background in thermal regimes, and since

at finite size the transition point is in the thermal phase, this makes localizing the

peak more difficult. Fig. 3.4 shows the two correlations for a “standard” Hamiltonian

model [13] frequently used in MBL phase transition studies:

H =
L∑
i=1

(
hiS

z
i + ~Si · ~Si+1

)
(3.7)

with hi being uniformly random on [−W,W ]. In Fig. 3.4(a) the peak of Czz is just

barely visible at L = 14; the failure to thermalize the system at small W creates large

residual correlations which hides the peak. The situation of Czzt is better: the peak

becomes visible around L = 10 but may only be good enough for analysis around L =

12. On the other hand, in the Floquet system, as it is better thermalized at finite size,

we would obtain a better signal-to-noise ratio at smaller sizes. The numerical results

are shown in Fig. 3.5, where each point is an average over independent realizations

and error bars represent statistical errors. Up to L = 11 there are 100 realizations and

at L = 12 there are 50 realizations. Large values can still be observed in the thermal

phase due to finite size effect at small L, but these values decrease exponentially as

L increases. For Czz peaks become quite obvious for L & 9 and for Czzt even L = 7

gives a reasonable peak to analyze: the situations at finite size are thus much better

than those under the Hamiltonian dynamics. As system size increases, these peaks

gradually move to the localized side as expected, and it is interesting to note that

starting around L = 9 the peak height no longer decreases. As these peaks are much

narrower than those from variance of entanglement entropy, further investigations of

them with finite size scaling can certainly aid in finding the transition point more

accurately.
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Figure 3.4: Numeric results of the two correlation functions defined in the text for
Hamiltonian (3.7). The peak indicates the transition between localized phase and
thermal phase. (a) shows the equal time two point correlation Czz and (b) shows the
four point time correlation Czzt.
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Figure 3.5: Numeric results of the two correlation functions defined in the text for
our Floquet model. (a) shows the equal time two point correlation Czz and (b) shows
the four point time correlation Czzt.
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3.3.4 Linked cluster expansion

Recently Ref. [60] proposed a numerical linked cluster expansion study of entangle-

ment entropy to obtain an estimation of the upper bound of the transition point.

Here we apply the same calculation to our Floquet model at infinite temperature.

Following Ref. [60], we define

an =
∑
c,|c|=n

S̃(c), S̃(c) = S(c)−
∑
c′⊂c

S̃(c
′
) (3.8)

at an order n, where S(c) is the bipartite von Neumann entropy across a pre-defined

cut for a set of connected sites c across the cut, averaged over all eigenstates. Fol-

lowing Ref. [60], the disorder averaging over 5000 realizations is performed before

the subgraph subtraction. For thermal states following volume law entanglement, an

is expected to saturate to 1/2 for high enough n [60]. In the localized phase, an is

expected to decay exponentially to 0 when n is larger than some correlation length, so

an extrapolation of a∞ ≥ 0 corresponds to a breakdown of area law of entanglement

entropy [60]. The results for our model are shown in Fig. 3.6. As W → 1, an grad-

ually settles down to about 1/2, demonstrating that our system is well thermalized

in this region. On the other end, as W → 0, an steadily decreases, consistent with a

transition from volume law entanglement to area law entanglement. For small enough

W , we can see an suggests an extrapolation with a∞ = 0, indicating the entry into

localized regimes. The upper bound for our transition thus can be crudely estimated

as W . 0.36.
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Figure 3.6: Numeric linked cluster expansion for the entanglement entropy. In the
thermal phase, an would approach 1/2 as n→∞, and in the localized phase an would
decrease exponentially to 0 for large enough n.

3.4 Preliminary Finite Size Analysis

3.4.1 Different System Sizes

To get a further understanding of the two correlations, we can study the end-to-end

correlations versus different systems sizes. In the following, each point shown is an

average over 100 realizations of random disorders for L ≤ 11 and 50 realizations for

L = 12. Fig. 3.7 demonstrates the results in the thermal region (W = 0.9) and

Fig. 3.8 plots the MBL region (W = 0.2). One may notice the rather nosisy results

for Czz and Czzt in localized regions. This may come from the broad distributions

of correlations among different eigenstates, which make the sample mean taken here

converges slowly to the true mean value. To get a better statistics, we can define the
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log zz correlation square:

Lzz =
∑
n

ln (〈n|σz1σzL|n〉 − 〈n|σz1|n〉〈n|σzL|n〉)
2 /2L. (3.9)

which will have a narrower distribution. According to Jensen’s inequality, this would

be smaller than taking the logarithm of Czz directly. We do not define similar quantity

for Czzt as the mix of eigenstates in Eq. (3.6) makes the definition more difficult. In

the thermal region, an exponential relation is present for both zz correlation square

Czz and log zz correlation square Lzz with similar exponents (−0.58±0.01 for Czz, and

−0.56±0.02 for the slope of Lzz), consistent with our expectation that small variance

of correlations among eigenstates leads to similar results in these two methods. On

the other hand, in the MBL region, the raw Czz gives a relatively poor exponential

relation while Lzz still gives a quite straight line with a slope −1.78±0.05. Therefore

we see that the decay in the MBL region for the end-to-end correlation is much shaper,

suggesting a much smaller finite size noise in the localized region, consistent with our

observation. In the thermal region, the time correlation Czzt also behaves nicely,

exhibiting an exponential relation with system sizes, and the exponent −0.61± 0.01

from a simple linear fitting is also similar to what is seen for Czz. However, in the

MBL region, Czzt behaves rather irregularly under different system sizes.

Fig. 3.9 shows Czz and Lzz in the transition region around W = 0.3 and W =

0.4. Fig. 3.9(a) shows Czz from the thermal region to where the transition roughly

happens, while Fig. 3.9(b) gives the correlation from the thermal to the localized

region. Fig. 3.9(c) shows Lzz from the transition to MBL region, while Fig. 3.9(d)

plots Lzz in the whole region. As we gradually move out of the thermal region, at

large L, correlation decays slower as system sizes increases, and then starts to increase

when we approach the critical point, which generates the peaks we observe. When

we gradually move into the localized region, an exponential decay emerges again. At
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Figure 3.7: End-to-end correlations versus system size L at W = 0.9 in the thermal
region.

small L, the correlation always decreases as we increase W , thus giving no peaks.

This difference between different system sizes may result from the finite correlation

length probed at these points.

3.4.2 Different Separation Between Spins

To further study the properties of the correlations, we can investigate Czz with dif-

ferent spin separations: for a given distance r, we can change σz1 and σzL in Eq. 3.5 to

two spins which have r extra bonds between them, and for simplicity we only study

patterns that are symmetric about the spin chain center. Under this notation, r = 1

represent two adjacent center spins and with r = L − 1 we go back to our original
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Figure 3.8: End-to-end correlations versus system size L at W = 0.22 in the localized
region.

Czz. In the following, every point in the plots is averaged over 500 realizations for

L ≤ 8, 100 realizations for L = 9 , 10 , 11 and 50 realizations for L = 12. Fig. 3.10

and Fig. 3.11 demonstrate the relation between correlation and the separation r with

various system sizes in the thermal region (W = 0.9) and MBL region (W = 0.2).

In the thermal region, the correlation is roughly independent of r except when r is

small, and the flatness at moderately large r increases as system sizes L increases.

This is consistent with our expectation that eigenstates are extended in the thermal

region so the correlation should not decay. In the MBL region on the other hand, all

correlations show an exponential decay with r, consistent with the picture of localized

eigenstates. It is interesting to note that as L increases, the decreasing rate slows

down. Presumably, the diminishing decrease rate should converge to some finite value
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Figure 3.9: End-to-end Czz versus system sizes L inside the transition region.

as L→∞ so that in the thermal dynamic limit Czz still decreases exponentially with

r. In either case, we can see that the end-to-end correlation decreases as L increases,

consistent with what we observed above. For Lzz, analog behaviors are observed.

Fig. 3.12 shows the relation between Lzz and r in the transition region of dif-

ferent W . As we go into transition region from the localized side, systems at large

length start to flatten the exponential decay of correlations, and in the mean time

the correlation curve as a whole starts to drift down. It seems that the combination

of flattening and decrease in value results in similar peak heights of end-to-end corre-

lations during the transition at different lengths, as the decay of correlations tends to

drag the peak down, while the flattening tends to push it up. Meanwhile, we can also

see that at large L, for some W on the thermal side, the correlation may even increase
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Figure 3.10: Relation between correlations and the separation r (number of bonds)
between two spins symmetric about the spin chain center at W = 0.9 in the thermal
region for different L.
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Figure 3.11: Relation between correlations and the separation r (number of bonds)
between two spins at W = 0.22 in the MBL region for different L.
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at large r, similar to what we observed in Fig. 3.9. This may come from our use of

open boundary condition, which makes spins closer to two ends different compared

to spins near the center. Thus when eigenstates are still not fully extended, the spins

at two ends are more localized than those in the middle. As we move further into

the thermal phase, this particular behavior at large r diminishes. Fig. 3.13 shows

the change of correlation in the transition zone at L = 12, which gives a more clear

picture of change of correlations from MBL phase to thermal phase, particularly, the

flattening of correlations, and the non-monotonic behavior in r when W increases.
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Figure 3.12: Relation between correlations and separation r of spins in the transition
region for different system sizes.

Now we show our attempt to obtain exponent components based on the scaling

we have observed. At the true critical point Wc of the infinite system, we expect the
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Figure 3.13: Relation between correlations and separation r in the transition region
for L = 12.

correlation function to follow

CL(r) ' rηf(r/L) = Lηg(r/L) ∼= Lηg

(
r

L− 1

)
(3.10)

for relatively large L, so we should see a power law in L by plotting end-to-end

correlation CL(r = L − 1). Because we expect the critical point to be within the

MBL phase, to have better statistics, we will focus on the log zz correlation square

Lzz, so in the following CL(r) ≡ Lzz(r, L). To reduce the pollution from finite size

effect, we only consider system sizes L ≥ 8 and apart from L = 12, all points are

averaged over 100 runs, and for L = 12, points are averaged over 50 runs. The log-log

plot (or more precisely semi-log plot for the log zz correlation square) is shown in

59



Fig. 3.14(a). It can be seen that from W = 0.2 to W = 0.3 they all demonstrate

somewhat straight lines, possibly due to the small number of points we have. If

we expect the critical point to be not that far into the MBL phase, given that at

L = 12 the peak is at about W = 0.5, we may say Wc ' 0.3 as it is the largest W

in the plot which shows a reasonable linear behavior. Linear regression at W = 0.3

gives η ' −6.29 ± 0.16. Fig. 3.14(b) gives CL(r) × L−η in the log-log plot, which,

if plotted against r/(L − 1), should collapse to a single line with different L if our

scaling assumption is correct. It can be seen that curves are still far apart from each

other with η = −6.295. In fact, if we use a different power η ' −2 in Fig. 3.14(c), the

curves collapse much better. This suggests our data may still be heavily influenced

by finite size effect, possibly because the use of only end-to-end spins, which feel the

boundaries of the system strongly.

If we use more spins on the spin chain, we can also directly search different W and

η to find the best “collapse” of CL(r) in terms of r/(L− 1) as in Fig. 3.14(c), though

the difficulty lies in how to define a reasonable measure of the goodness G of the

“collapse”. One straightforward way is to construct a “base curve” in the plot and

compute the “distance” from all curves to this base curve. Note each curve represents

CL(r) at some integer r ≤ L for a fixed L. Here at a given η and W , we construct

the base curve using points from L = 12 as base points since this case has the most

points. The base curve is defined as h̃12(x) = h̃12(
r
11

) = C12(r) × 12−η with linear

interpolation between all the base points. For another L and r′, we then have a point

hL(x′) = hL( r′

L−1) = CL(r′) × L−η at x′ = r′/(L − 1) and can compute its distance

to the base curve by dL(r′) =
∣∣∣hL(x′)− h̃12(x′)

∣∣∣. The distance from a given curve

with a fixed L to the base curve is thus characterized by distances of all the sampled

points from this curve to the base curve. We then define the goodness of collapse at

a given η and W to be G(η,W ) = 1
m

∑
L

∑
r dL(r)2, where m is the total number of

different curves. As above only systems with sizes between 8 and 12 are considered
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Figure 3.14: (a) shows the end-to-end Lzz against the logarithm of system size L. (b)
shows the collapse of data at W = 0.3 with a fitted power η = −6.295, and (c) shows
the collapse with another power η = −2.

in this calculation. The 3D plot of G is shown in Fig. 3.15(a). Fig. 3.15(b) shows

the lowest G∗ at a given W and Fig. 3.15(c) illustrates the “best” η∗ that gives rise

to G∗ at a given W . It can be seen that between W = 0.36 and W = 0.5, the best

collapse is achieved by having a positive η, which seems physically unreasonable. The

global minimum is found at W = 0.36 and η = 1.0, which is barely within the bound

set in Section 3.3.4 but with an unphysical exponent, suggesting we possibly should

not take these numbers too seriously. Fig. 3.15(d) gives the collapse with η = 1.0 at

W = 0.36, which is actually not bad. To avoid the seemingly unphysical positive η,

we may assume that in this case we actually have η ' 0 and the not large positive

number is caused by statistical errors. Fig. 3.15(e) then gives the collapse with η = 0
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at W = 0.36, which is still reasonable. This seems to suggest that the actual η may

be quite close to 0, and we may just directly search the “best” collapse by using η = 0

in the above. The results are shown in Fig. 3.16. A local minimum is still formed

around W ' 0.36, though in this case W = 0.38 has the lowest value, and violates

the bound seen in Section 3.3.4, thus possibly not accurate. Nevertheless, we still

plot the collapse in Fig. 3.16(b) with W = 0.38 which is also pretty good. On the

other hand, we may also do the same search for the best power η∗ and critical point

Wc but restricting η ≤ 0. The results are shown in Fig. 3.17. The best collapse is

found at η = 0 and Wc = 0.38, but in general it seems any W between 032 and 0.38

can be candidates for Wc.

The above analysis suggests the difficulty in locating η, so if we just want to

estimate Wc, instead of imposing η = 0 or η ≤ 0 by hand, we may abandon finding it

at all and assume a more general scaling form

CL(r) ' ALg(
r

L− 1
) (3.11)

at the critical point for the correlation, and we can directly search for a W where

curves are “best parallel” to each other. Without using any further knowledge about

the shapes of curves, we can again use L = 12 to construct a base curve h̃12(x) =

h̃( r
11

) = C12(r) with linear interpolation, and similarly define (signed) distance to

this base curve from a point with given L and r′ as dL(r′) = hL(x′) − h̃12(x′) with

hL(x′) = CL(r′) and x′ = r′/(L−1). The goodness of being parallel is then GP (W ) =∑
L σ

2(dL)×NL, where σ2(dL) is the variance of all the distances at a fixed L to the

base curve, and NL is the number of points at that L. Here for simplicity, we ignore

any normalization constant. This gives us a rather general measure of “paralleness”

of curves applicable to any set of curves. On the other hand, if we are within MBL

phase, as we suspect of the Wc, the curves are almost simple exponential in r at a fixed
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Figure 3.15: The search for the best η and W given a measure of goodness G for data
collapse defined in the text. (a) shows the 3D plot of the goodness and (b) gives the
smallest G at each W . (c) maps out the best η corresponding to each G∗ and (d)
shows the collapse of the data at the best combination found: W = 0.36, η = 1.0. (e)
shows the collapse at W = 0.36 and η = 0.
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Figure 3.16: The search for the best W of data collapse at η = 0. (a) shows the
goodness of collapse which has a minimum at W = 0.38, and (b) plots the collapse
at W = 0.38.
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Figure 3.17: (a) shows the goodness of collapse for different choices of η and Wc with
the requirement that η ≤ 0. (b) gives the best η for each Wc.
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L, so we can also judge the quality of being parallel by investigating the variances

of slopes in the log-log plot, which is much easier and possibly more accurate than

the generic way mentioned above. Particularly, we can define the goodness of being

parallel at a given W as GL(W ) = σ2(s̃L), i.e., variance of scaled slopes at different

L, where the scaled slope at a given L is defined as s̃L = b̂1/R
2, with b̂1 being the

fitted slope in the log-log plot and R2 indicating the goodness of fit. Presumably,

these scaled slopes can be used to punish the curves which are not very linear. The

goodness from these two methods are shown in Fig. 3.18(a) and Fig. 3.18(b), and

both give a global minimum at W = 0.36. As expected, the two measures resemble

each other for small W where the system is in localized phase, but surprisingly also

similar for relatively large W where correlations CL(r) may not be simple exponential

in r. Besides, they look similar to Fig. 3.15(b), which suggests that when curves do

not collapse, they also tend to not be parallel to each other. Combining the results

above, it seems the critical point may be around W = 0.36. If we still believe in

the scaling form CL(r) ' Lηg( r
L−1) and η cannot be positive, then η ' 0 or may be

just a small negative number at the critical point. The small magnitude of η is also

consistent with our difficulty in seeing the decrease of peak heights for large L when

they are reasonably close to the true critical point.

3.4.3 Distance to Correlation Peaks

Another scaling law that may be of interest in the MBL phase transition involves

positions of peaks of correlations: |Wpeak(L)−Wc| ∼ L−1/ν , and we may estimate

ν by investigating |Wpeak(L) − Wc| in a log-log plot versus L. One estimation of

errors for locating correlation peaks can be written as max {dp, dnn}. Here dnn is the

distance from the peak point to its nearest neighboring W used and thus comes from

our discrete sampling of disorder strength W . dp, on the other hand, represents the

error associated with statistical uncertainties of correlation values, which come from
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Figure 3.18: The search for the best W where data curves are most parallel to each
other. In (a) a general goodness is demonstrated and in (b) the goodness is based on
the assumption that data curves for a given L are roughly exponential in r.

finite number of realizations of disorders. Particularly, if we denote the uncertainty

for a correlation value CL(W ) as δCL(W ) and an estimated peak position as Wpeak,

then we can define a set of W as C = {sampled W |CL(W ) + δCL(W ) ≥ CL(Wpeak)−

δCL(Wpeak)}, so that

dp = max
W∈C
|W −Wpeak| (3.12)

From Fig. 3.5(a) and Fig. 3.5(b) it can be observed that δCL(W ) is usually larger

around Wpeak than deep in the phase, so dp may become a more serious problem

than dnn if we do not have large enough realizations. Another error in estimating ν

comes from the small sample size of Wpeak, and it can only be reduced by having more

system sizes. This illustrates the small advantage brought by our model: since given

current computational power we can only perform exact diagonalization at L ' 18,

being able to identify peaks at smaller L would slightly improve our accuracy. In the

following, we would only reduce dnn by performing a finner sampling of W in regions

around peaks suggested by Fig. 3.5(a) and Fig. 3.5(b), and keep the same number

of runs up to L = 12, so our results can only serve as a demonstration rather than

providing an accurate numeric estimation of ν.
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Fig. 3.19(a) and Fig. 3.20(a) illustrate Czz and Czzt with statistical errors for

L ≥ 7. Wpeak are found as the W which gives the largest correlation values, and

also reported in the plots. It can be seen that in our case dp is much larger than dnn

and thus severely constrains the accuracy of our results. Since peaks are still in the

thermal region, there would be not much difference between Czz and Lzz, so only the

former is considered. |Wc−Wpeak| against system size L at different Wc are shown in

a log-log plot at Fig. 3.19(b) for Czz and Fig. 3.20(b) for Czzt. The roughly straight

lines suggest our estimation of Wpeak are not too bad for Czz but interestingly not for

Czzt, so in the following we will only focus on Czz. The two points L = 7 and L = 12

are particularly off the trend from Fig. 3.19(b). This is understandable as at L = 7

the peak in Czz is only barely identifiable and we only have 50 realizations at L = 12.

However, the major difficulty in estimating Wc is that all lines are look straight. We

know that when Wc → ∞, all points would lie on a flat line, but it also seems as

Wc decreases, we are still left with straight lines, just with steeper slopes. Why the

“near” power-law relations would prevail in a range of Wc, if it is not an artifact of

our numerical computation, still eludes us. The linear regression results are shown in

Table. 3.1 for Czz, where L = 7 points are excluded in the hope to slightly increase

the accuracy. If we can still interpret R2 as a representation of linearity in our small

sample analysis, then we see as Wc increases, the linearity worsens, though seems at

a slower rate at Wc ' 0.37. If this boundary is real, then it possibly can be used to

pick Wc ' 0.37 as our critical point, and in this case it is just barely consistent with

our estimation in Section 3.4.2. The power around this Wc is ν ' 0.6 for Czz, which

strongly violates the Chayes inequality [64,69] in one dimension with ν ≥ 2, and this

is also observed in some other numerical studies [51,57]. As we mentioned earlier, we

should not read too much into this preliminary analysis.
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Figure 3.19: The peak positions from Czz with a finer sampling and the scaling with
different choices of Wc.
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Figure 3.20: The peak positions from Czzt with a finer sampling and the scaling with
different choices of Wc.

Wc ν R2 Wc ν R2

0.3 0.81± 0.06 0.9838 0.31 0.78± 0.06 0.9837
0.32 0.75± 0.06 0.9836 0.33 0.72± 0.05 0.9835
0.34 0.69± 0.05 0.9834 0.35 0.66± 0.05 0.9832
0.36 0.64± 0.05 0.9831 0.37 0.61± 0.05 0.9829
0.38 0.58± 0.04 0.9826 0.39 0.55± 0.04 0.9823
0.4 0.52± 0.04 0.9819 0.41 0.49± 0.04 0.9815

Table 3.1: Fitted slopes from Czz scaling points in Fig. 3.19(b) excluding L = 7.

68



3.5 Conclusion

In this chapter, we propose a one-dimensional disordered Floquet model which can

be used for numerical studies of the phase transition between the thermal phase

and the MBL phase. Because of the lack of conservation laws, the Floquet model

is better thermalized compared to Hamiltonian models at finite size, providing a

better signal-to-noise ratio in the thermal phase, thus more suitable for finite size

investigation as usually at finite size the transition occurs in thermal regimes. Here

we calculated various popular quantities that are used for the characterization of the

transition for our model, and they all confirm that our model can have both a well

localized phase and a well thermalized phase even at a relative small size. Thus our

model can be a good candidate used for more accurate numerical investigation of

the MBL phase transition. We further show some preliminary results on finite size

scaling using correlation functions. Assuming a scaling form Eq. (3.5), the results

suggest a transition point WC ' 0.36 and a possible exponent component η ' 0,

though our analysis is still affected by possible finite size effect and we only crudely

sampled the interested region. We also investigate another scaling equation (3.12).

It roughly gives the same Wc as above, but given our setup it is too inaccurate to

draw any quantitative conclusion. A more thorough and careful numerical finite size

studies using the model proposed in this chapter can be a future project which may

quantitatively provides more insight into the MBL phase transition.

69



Chapter 4

Many-body localization phase

transition: a new simplified

approximate renormalization group

4.1 Introduction

In the previous chapter we showed some numerical investigation of the phase transi-

tion between many-body localization (MBL) and thermalization. In this chapter, we

will take another look at it from a different approach. The MBL phase transition is

a dynamical quantum phase transition which appears to be a completely new type of

quantum phase transition [2,13,25,26,41,50–65,70]. It occurs in the thermodynamic

limit of large systems for certain closed quantum many-body systems with quenched

disorder. It separates the thermal phase where the closed system serves as a “bath”

for itself and at long times approaches thermal equilibrium at a nonzero temperature

and thus a state described by equilibrium quantum statistical mechanics, from the

MBL phase where these statements are not true and instead the system remains local-

ized near its initial state. Thus it is a phase transition where the long-time behavior
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of the system stops being given by equilibrium quantum statistical mechanics. It is

also an “eigenstate phase transition” [71], where the nature of the eigenstates of the

system’s dynamics changes from thermal and volume-law entangled, to localized and

boundary-law entangled.

Many questions remain unanswered about this MBL phase transition. A theoret-

ical tool that has been highly successful in understanding more “traditional” classical

and quantum phase transitions and critical systems is the renormalization group

(RG). Two recent papers have formulated and studied approximate RG treatments

of the MBL phase transition in one-dimensional systems [41,54]. In the present chap-

ter, we simplify these RG approaches even more, allowing a more exact study of the

resulting fixed point and phase transition within our simplified RG [70]. These ap-

proximate RG’s can serve at least two purposes: (i) as examples that suggest possible

properties of these phases and this phase transition, and (ii) as first steps towards

possibly developing a more systematic RG treatment of these systems.

One feature of our RG that we highlight, since it was not emphasized in the

previous RG studies [41, 54] nor in the recent study of Griffiths effects in the MBL

phase [59], is the possibility that the thermal Griffiths regions within the MBL phase

have a fractal dimension df < 1 in these one-dimensional systems. This is a clear

result of our RG, and the mechanism by which this happens seems like it might be

more generally valid and not just an artifact of our approximations. One consequence

of such fractal Griffiths regions is that averaged correlations and entanglement within

eigenstates in the MBL phase can decay with distance x as stretched exponentials,

∼ exp (−(x/x0)
df ), instead of the simple exponentials that one might naively expect.

Most results in this chapter are reported in the paper [72]. We will discuss our

approximate RG in detail in Section 4.2. The fixed point distribution and the critical

exponents for its stability will be calculated in Section 4.3 and Section 4.4. Section

4.5 is devoted to the fractal effect, and we will summarize this chapter in Section 4.6.

71



4.2 An Approximate RG

Now we present our approximate RG, pointing out and discussing the various assump-

tions and approximations that are used. We refer to the two previous RG studies as

VHA [41] and PVP [54]. Like them, we consider a one-dimensional system whose

dynamics is given by a local Hamiltonian, or more generally a local Floquet oper-

ator, with quenched randomness. The system has a MBL phase transition and the

system’s parameters are near this critical point. We assume, as in VHA, that each

local region of this system can be classified either as thermalizing (T) or insulating

(I). This need not be true of the system at the microscopic scale, but we are assuming

that under coarse graining the critical point does flow to an infinite-randomness fixed

point where such a “black and white” description is correct, and we have already

coarse-grained enough for this to be a good approximation. This does happen within

our RG (as well in both VHA and PVP), so this assumption is at least internally

consistent. One question for future investigation is whether all these approximate

RG’s are possibly missing some important physics of the transition by not allowing

for some intermediate local behaviors between fully thermalizing and fully insulating

to be relevant at the critical fixed point.

If we have such a one-dimensional system and, as we assume, all regions of it can

be classified as either T or I, then the system is a chain of “blocks” of various lengths

that alternate along the chain between T and I. In the previous RG studies [41, 54],

each such block was characterized by only two parameters: the typical many-body

energy level spacing of the block, and some rate at which entanglement can spread

from one end of the block to the other end. Our RG is even more “simplified” and

characterizes each block only by whether it is T or I and by its many-body level spac-

ing. The justifications for making this approximation of ignoring the precise value of

the “entanglement rate” for each block are as follows. For almost all T blocks the

entanglement rate at large ` is much larger than the level spacing which is exponen-
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tially small with `. As a consequence it is a reasonable approximation to ignore the

precise magnitudes of these large T-block entanglement rates and just assume they

are very fast compared to the many-body level spacing [70]. Near the critical point

the I blocks at large ` are almost all near critical and have entanglement rates whose

logarithms are close to that of the level spacing, so we make the approximation that

the entanglement rate and the many-body level spacing are equal for each I block [70].

These are certainly oversimplifications, and we know that our RG does get some of

the physics incorrect, as we discuss below. The virtues of our RG are its simplicity

and that even with this simplicity it does appear to get some of the physics of the

MBL transition qualitatively correct.

The many body level spacing of a one-dimensional block of length ` is ∼ exp (−s`),

where s is the entropy per unit length (e.g., s = log 2 for a spin-1/2 chain at infinite

temperature). We use the block’s length ` as the parameter that quantifies its level

spacing. The nth block in the chain has length `n. Once we have coarse-grained

to a scale where adjacent blocks typically differ substantially in length, we can use

a strong-randomness RG approach, justified by the typical ratio of many-body level

spacings in two adjacent blocks being ∼ exp (−s|`n − `n+1|)� 1. Note that our RG,

like the previous ones [41,54], assumes that the dynamic critical scaling is given by the

many-body level spacing, which is consistent with numerical studies on a spin-chain

model’s dynamics near its MBL transition [13].

A single RG step is simply as follows: Find the shortest remaining block; say it is

block n. This is the remaining block with the largest level spacing. Merge this block

with its neighbor blocks on both sides to make a new larger block with length

`new = `n−1 + `n + `n+1 . (4.1)
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Figure 4.1: A sketch of the RG rules. (a) shows the TIT rule where a central I
(insulating) block is surrounded by two longer T (thermal) blocks, and after merging
the new longer block is thermal. (b) shows the ITI move where a T block is surrounded
by two longer I blocks and the resulting new block is insulating.

If the shortest block n is an I block, then the new longer block is a T block. A sketch

of this “TIT” move is shown in Fig. 4.1(a). The neighbor blocks, both of which are

T blocks that are longer than I block n, serve as local “baths” and thermalize the

shorter central I block. This relies on the level spacings in both of the longer neighbor

T blocks being much smaller than the rate of entanglement spread across the shorter

central I block, so the two T blocks get strongly entangled across the I block. Thus

it is quite plausible that the eigenstates of this new T block of length `new, isolated

from its neighbors, are thermal, with thermal “volume-law” entanglement within this

new block. In this case, where two longer T blocks thermalize a shorter I block,

the approximations we make in our simple RG seem plausible near the MBL phase

transition. It is for the other case, when block n is a T block, that we have to make

some questionable assumptions to produce a simple RG.

If the shortest block n is a T block, then the two neighbor blocks are I blocks,

and we assume the new longer block that is then made in this RG step is an I

block. Fig. 4.1(b) illustrates this “ITI” rule. The two longer I blocks are isolating

the shorter central T block from other T blocks, and thus localizing it. On one level
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this seems sensible: the rate of entanglement spread across the neighbor I blocks is

much smaller than the level spacing of the shorter central T block, so should not mix

the eigenstates of the central block. But if we ask about the rate of entanglement

spread across the new long I block of length `new, a reasonable estimate would be

∼ exp (−s(`n−1 + `n+1)), since the spread across the central T block is assumed to

be very fast. This suggests that our new long I block may not really be insulating,

since this rate is much larger than its level spacing, but we will proceed with the

assumption that this new block is indeed I.

One feature of this simple RG that makes it simple is that it is invariant on swap-

ping I and T. This is because we are treating the process of two T blocks thermaliz-

ing a shorter central I block as mathematically the same as two I blocks localizing a

shorter central T block. Unfortunately, we know that the real system does not have

such a symmetry. Facilitating entanglement is very different from, and much “eas-

ier” than, blocking the spread of entanglement, because interacting quantum systems

generically do get entangled. In the “battle” between thermalization and localization,

thermalization always has “the upper hand”. And we know from all the numerical

studies of one-dimensional models that the properties of the phase transition are very

asymmetric between the MBL phase and the thermal phase, with the critical point

appearing very localized and the changes in systems’ properties happening almost all

on the thermal side of the phase transition (see, e.g., Refs. [41, 51,54]).

Our approximate RG is mathematically equivalent to a domain coarsening model

solved by Rutenberg and Bray [73] and Bray and Derrida [74]. The model they solved

is a limiting case of deterministic zero-temperature domain coarsening in a classical

one-dimensional system with short-range interactions and a nonconserved Ising-like

order parameter. In this limit the shortest domain disappears first, allowing the two

adjacent domains to grow, merge, and thus produce a new domain whose length is

the sum of the lengths of the original three domains. Our RG is also similar to those
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of Fisher for the ground states of certain disordered spin chains [75]. The difference

from Fisher’s RG is “simply” a sign: his RG can be written as `new = `n−1−`n+`n+1,

where ` in this case is the logarithm of the renormalized interaction.

4.3 Critical Fixed Point Distribution

Due to the symmetry between T blocks and I blocks within our RG, the length

distributions of these two types of blocks are identical at the critical fixed point. To

derive the RG equations [73,75], we define the length cutoff

Λ ≡ min
n
`n (4.2)

and

ζn ≡ `n − Λ (4.3)

for a block of length `n, so ζn ≥ 0. The RG rule (4.1) becomes (giving the shortest

block the label n = 2):

ζnew = ζ1 + ζ2 + ζ3 + 2Λ = ζ1 + ζ3 + 2Λ , (4.4)

where ζ2 = 0 because the second block is at the cutoff: `2 = Λ. Fisher’s RG does

not have the additive 2Λ term; it is instead ζnew = ζ1 + ζ3. This difference makes our

fixed point rather different from Fisher’s, although the same approach is used to write

out the fixed point equation. A key point in both RGs is that the length of the new

block only depends on the 3 blocks that are removed, so if the lengths of the blocks

are initially uncorrelated, no correlations are generated by this RG [73,75]. And any

short-range correlations between block lengths are suppressed by the coarse-graining

of the RG. Thus the fixed point distribution has the block lengths uncorrelated, so

we only need to study the single-block length distribution.
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The probability distribution of ζ at cutoff Λ is denoted as ρ(ζ,Λ). In order to

treat the critical point we now assume both types of blocks have the same length

distribution. At each RG step, when the cutoff Λ changes by dΛ, all the blocks with

ζ in the interval [0, dΛ] are removed and new blocks are formed by combining them

with their two neighboring blocks. The distribution then needs to be re-normalized

and shifted back to have ζmin = 0. These steps all combine to produce the integro-

differential equation:

∂ρ

∂Λ
=
∂ρ

∂ζ
+ ρ(0,Λ)

∫ ∞
0

dζa

∫ ∞
0

dζb ρ(ζa,Λ)ρ(ζb,Λ)δ(ζ − ζa − ζb − 2Λ) . (4.5)

As the cutoff Λ gets large, the distribution of ζ becomes broad, and the system thus

approaches an infinite-randomness fixed point. To treat that fixed point, we divide

all lengths by the cutoff, thus keeping the rescaled length cutoff at one:

η ≡ ζ

Λ
, ρ(ζ,Λ) ≡ 1

Λ
Q(η,Λ) =

1

Λ
Q(

ζ

Λ
,Λ) . (4.6)

Q(η) is then invariant under the RG flow at the critical fixed point. We thus have

the RG equation for the critical fixed point distribution Q∗(η), independent of Λ, as:

d

dη

[
(1 + η)Q∗

]
+Q∗(0)Θ(η − 2)

∫ η−2

0

Q∗(ηa)Q
∗(η − ηa − 2)dηa = 0 . (4.7)

As the total length of system is constant,
∑

n `n is also fixed. At the fixed point,

this becomes ∑
i

`i = Λ
∑
i

(1 + ηi) = ΛN(Λ) (1 + 〈η〉f.p.) (4.8)

where N(Λ) is the total number of blocks when the cutoff is Λ and 〈η〉f.p. is the

average value of η at the fixed point, which is independent of Λ. This implies that the

product ΛN is a constant, which results in Q∗(0) = 1/2, and this acts as a boundary

condition for Eq. (4.7) so that it can be integrated out iteratively. In the interval
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0 ≤ η ≤ 2, Eq. (4.7) is solved by

Q∗(η) =
1

2(1 + η)
, for 0 ≤ η ≤ 2 , (4.9)

and using this expression, in the interval 2 ≤ η ≤ 4 we have

Q∗(η) =
1

1 + η

[1

2
−
∫ η

2

ln(η′ − 1)

4η′
dη′
]
, for 2 ≤ η ≤ 4 . (4.10)

In principle, the analytical form of Q∗(η) for any η ≥ 0 can be obtained in the

same way by treating Q∗(η) in a piecewise manner. This shows that the physical

(non-negative at all η ≥ 0) solution to Eq. (4.7) is unique. The closed form solution

for Q∗(η) is shown in Rutenberg and Bray [73]. Asymptotically Q∗(η) falls off expo-

nentially: Q∗(η) ∼ CQ exp(−λQη) for η � 1. The function is exhibited in Fig. 4.2.

0 2 4 6 8 10
η

10-2

10-1

100

Q
∗
(η

)

Figure 4.2: The scaled fixed point length distribution Q∗(η).
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4.4 Critical Exponents

By perturbing the distribution away from Q∗(η), we can study the critical components

related to the stability of this fixed point. Moving away from the critical point

generates different distributions for T and I blocks: QT (η,Λ) and QI(η,Λ), and when

the critical fixed point is unstable under this perturbation, the difference grows as

the RG flows, driving the system into either the thermal phase or the localized phase.

Similar to the derivation of Q∗(η), the RG equations for these two distributions can

be found as

Λ
∂QT

∂Λ
= QT + (1 + η)

∂QT

∂η
+QT (η,Λ)

[
QT (0,Λ)−QI(0,Λ)

]
+QI(0,Λ)Θ(η − 2)

∫ η−2

0

dηaQT (ηa,Λ)QT (η − ηa − 2,Λ) ;

Λ
∂QI

∂Λ
= QI + (1 + η)

∂QI

∂η
+QI(η,Λ)

[
QI(0,Λ)−QT (0,Λ)

]
+QT (0,Λ)Θ(η − 2)

∫ η−2

0

dηaQI(ηa,Λ)QI(η − ηa − 2,Λ) .

(4.11)

To investigate the critical exponents, we consider a small perturbation away from

Q∗(η): 
QT (η,Λ) ≡ Q∗(η) + δT (η,Λ) ,

QI(η,Λ) ≡ Q∗(η) + δI(η,Λ) ,

(4.12)

and for QT,I to still be probability distributions, δT,I both must satisfy

∫ ∞
0

δT,I(η,Λ)dη = 0 . (4.13)

For simplicity in calculation, we further define


δ+(η,Λ) ≡ δT (η,Λ) + δI(η,Λ) ,

δ−(η,Λ) ≡ δT (η,Λ)− δI(η,Λ) ,

(4.14)

79



so to linear order, the equations for δ+ and δ− are

Λ
∂δ+
∂Λ

= δ+ + (1 + η)
∂δ+
∂η

+ δ+(0,Λ)Θ(η − 2)

∫ η−2

0

dηaQ
∗(ηa)Q

∗(η − ηa − 2)

+ Θ(η − 2)

∫ η−2

0

dηa δ+(ηa,Λ)Q∗(η − ηa − 2) (4.15)

and

Λ
∂δ−
∂Λ

=δ− + (1 + η)
∂δ−
∂η

+ 2Q∗(η)δ−(0,Λ)

− δ−(0,Λ)Θ(η − 2)

∫ η−2

0

dηaQ
∗(ηa)Q

∗(η − ηa − 2)

+ Θ(η − 2)

∫ η−2

0

dηa δ−(ηa,Λ)Q∗(η − ηa − 2) . (4.16)

To find the eigenmodes of the RG flow at the critical fixed point, we set


δ+(η,Λ) ≡ Λ1/ν+f+(η) ,

δ−(η,Λ) ≡ Λ1/ν−f−(η) .

(4.17)

Under this standard scaling assumption, we have

1

ν+
f+(η) = f+(η) + (1 + η)

df+
dη

+ f+(0)Θ(η − 2)

∫ η−2

0

dηaQ
∗(ηa)Q

∗(η − ηa − 2)

+ Θ(η − 2)

∫ η−2

0

dηa f+(ηa)Q
∗(η − ηa − 2) . (4.18)

and

1

ν−
f−(η) =f−(η) + (1 + η)

df−
dη

+ 2Q∗(η)f−(0)

− f−(0)Θ(η − 2)

∫ η−2

0

dηaQ
∗(ηa)Q

∗(η − ηa − 2)

+ Θ(η − 2)

∫ η−2

0

dηa f−(ηa)Q
∗(η − ηa − 2) . (4.19)
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The critical exponents can then be found as eigenvalues of these two equations. Note

that the solutions also need to satisfy the normalization constraint from Eq. (4.13):

∫ ∞
0

f±(η)dη = 0 . (4.20)

On the other hand, integrating both sides of Eqs. (4.18) and (4.19) gives

( 1

ν±
− 1
)∫ ∞

0

f±(η)dη = 0 (4.21)

assuming both integrations exist. Therefore the normalization constraint is automat-

ically satisfied if the eigenvalue is not 1; otherwise we do need to check the normal-

ization.

We diagonalized these two eigenvalue equations numerically. The derivative was

discretized to second order as a right derivative to make it well-behaved even at

η = 0 where the functions do not exist to the left (for η < 0), and the integration

was discretized with the trapezoidal rule. For f+ all eigenfunctions corresponding to

the largest eigenvalue of 1 are of the same sign and so are not normalizable and are

thus unphysical. The second largest eigenvalue has a real part of about −4.4. This

shows that δ+ decays at least as fast as ∼ Λ−4.4 when the RG is flowing and therefore

is irrelevant and associated with the flow on the critical manifold toward the fixed

point distribution. This shows that the fixed point distribution Q∗(η) is stable if QT

and QI are perturbed in the same direction.

For f−, again the eigenvalue with the largest real part is 1
ν−

= 1 and its corre-

sponding eigenfunction cannot be normalized and so is unphysical. The eigenvalue

with the second largest real part is positive and real and is the critical exponent we

are looking for. Fig. 4.3(a) and Fig. 4.3(b) show our estimates of 1/ν− at different

ηmax and ∆f . It can be seen that the results converge well when ηmax is increased and

∆f is decreased, and when ∆f = 0.005 and ηmax = 40, we have 1/ν− ≈ 0.3994 which
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Figure 4.3: The eigenvalue 1/ν− and eigenfunction f−(η) from numerical diagonal-
ization: (a) shows the eigenvalues at different ηmax with ∆f = 0.005. (b) shows the
eigenvalues at different ∆f with ηmax = 40. (c) gives the corresponding eigenvector
at ∆f = 0.005 and ηmax = 40.

matches what was obtained by Bray and Derrida [74]. The next eigenvalue after that

has a negative real part ∼= −1.8, so as expected there is only one physical relevant

operator at this critical fixed point. The corresponding eigenfunction is shown in

Fig. 4.3(c) with f−(0) normalized to 1. The numerical integration of it using trape-

zoidal rule gives about −0.0001, which confirms the constraint
∫∞
0
f−(η) = 0 to the

numerical precision we used. Since this critical exponent is positive, the fixed point

distribution is unstable against this perturbation which drives QT and QI in opposite

directions and the system thus flows away from criticality into either the thermal or

the MBL phase. The difference grows as ∼ Λ1/ν− as the length cutoff increases.
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Note that this ν− ∼= 2.50 satisfies and does not saturate the Chayes inequality

[64, 69], which in this case of d = 1 is ν− ≥ 2. This is qualitatively the same as the

previous RGs [41,54], although this value of ν− is quantitatively a little smaller than

those of VHA and PVP. Some good understanding of “why” this exponent exceeds

the Chayes bound still eludes us.

4.5 Fractal Griffith Regions

As the RG flows away from the critical fixed point into one of the phases, the two

length distributions become very different in width. If we flow into the thermal phase

the chain becomes mostly T, with the remaining I blocks being rare and almost all of

length very close to the length cutoff. The T blocks get an arbitrarily broad length

distribution, with almost all T blocks much longer than the cutoff. Since almost all

blocks of length near the cutoff are I blocks, almost all RG moves are TIT moves and

make the already long T blocks even longer; our RG seems like a safe approximation

for these moves. However some small fraction of the RG moves are ITI moves with

the three blocks all being of length near the cutoff. These are the moves that maintain

the population of rare I blocks (the Griffiths regions), but these are precisely the type

of RG moves for which our RG approximations are not to be trusted, as we discuss

above. Thus we do not expect our approximate RG to correctly model the Griffiths

regions of rare insulating segments in the thermal phase, even qualitatively. We will

return to this after examining the Griffiths regions in the MBL phase.

As the RG flows from near the critical fixed point to “deep” in the MBL phase,

it goes into the MBL regime where almost all RG moves are ITI moves that make

the already long I blocks even longer. For these moves, our RG is typically a good

approximation, because the T block that is “integrated out” is typically much shorter

than the two adjacent I blocks, so effectively we are just joining two very long I blocks
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to make an even longer I block. However, occasionally there remains a rare short I

block with length at the cutoff that is slightly shorter than its adjacent T blocks,

and it produces a TIT move and allows the rare T blocks to grow, thus generating

the Griffiths regions, which are rare long T blocks within the MBL phase. For these

moves, our RG seems like a reasonable approximation: the two T blocks get entangled

with each other across the short I block between them.

T

T I T

T TI T I I T

T I T I T I T I T I T I T I T

Figure 4.4: A sketch of part of the fractal structure of a rare large Griffiths T (locally
thermalizing) region in the MBL phase.

Now let us ask what is the most probable way that our RG makes a large T

Griffiths block within the MBL phase near the transition. This is illustrated in

Fig 4.4. The large T block arose from a TIT move. In this limit where the RG has

flowed from near the critical point to “deep” within the MBL phase, almost all T

blocks have lengths near the cutoff, so in this TIT move, the I block’s length is at

the cutoff and the two T blocks most likely have lengths just above the cutoff, so

all three blocks are of essentially the same length. The I block can be typical, so it
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typically arose much earlier in the RG by integrating out a very short T block. The T

blocks are themselves rare and each arose when the cutoff length was roughly 3 times

shorter from similar TIT moves. Thus we see that within this RG these Griffiths

regions are generated from a fractal set of rare T blocks that, on scales much smaller

than the final rare T block, happened to be placed just correctly such that they are

able, within this approximate RG, to thermalize all the intervening typical I blocks.

This fractal set of rare T blocks has fractal dimension df = log 2/ log 3 ∼= 0.631 in the

limit of the largest such Griffiths regions.

We can also formulate RG equations for df exactly at the critical point as in

Ref. [75] so that we can obtain df at the transition point to numeric precision. To

do so, we first define a length `T in a thermal block to be the total length of fractal

thermal parts inside it as shown in Fig. 4.4. With this definition, effectively `T = 0

inside an insulating block and at each RG step, we have extra RG rules as `
′
T =

`Tn−1 +`Tn+1 when the central block n is insulating and `
′
T = 0 otherwise. In general,

`T ∼ `df for a thermal block of length ` and df < 1 represents a fractal structure. To

incorporate `T into RG equations, we need to redefine QT to include another variable

representing `T . Analog to the treatment of magnetic moments in Fisher [75], we

define

γ = `T/Λ
df ≥ 0 (4.22)

where Λ is defined in Eq. (4.2), so now we have new scaled probability distribution

QT (η, γ) while QI is the same as before. The RG equation for Q∗T at the critical point

is then

∂

∂η

[
(1 + η)Q∗T (η, γ)

]
+ df

∂

∂γ

[
γQ∗T (η, γ)

]
+

1

2
Θ(η − 2)

∫ η−2

0

∫ γ

0

Q∗T (η1, γ1)Q
∗
T (η − η1 − 2, γ − γ1)dη1dγ1 = 0 (4.23)
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whereas that of Q∗I remains the same. Note
∫∞
0
Q∗T (η, γ)dγ = Q∗(η) gives back the

critical distribution calculated in Section 4.3. To cast Eq. (4.23) into a more tractable

form, we further define

g(η) =

∫ ∞
0

γQ∗T (η, γ)dγ . (4.24)

The integration is expected to exist, since the conditional expectation of γ, C(η) =

g(η)/Q∗(η), is expected to exist for all η. Moreover, analog to the treatment of

magnetic moments in Fisher [75], C(η) is expected to follow a power law at large η,

so asymptotically g(η) ∼ ηβ exp(−λQη). Eq. (4.23) implies that

(1− df )g(η) + (1 + η)
dg

dη
+ Θ(η − 2)

∫ η−2

0

g(η1)Q
∗(η − η1 − 2)dη1 = 0 (4.25)

and this equation gives β = 1 from asymptotic analysis. Finding df at the critical

point then becomes an eigenvalue problem which can be solved numerically as in

Section 4.4. Here η were sampled with spacing ∆g from 0 up to ηmax. Fig. 4.5

illustrates the numerical results. They demonstrate that our results converge very

well when ηmax is increased and ∆g is decreased, and suggest that df ≈ 0.8249 < 1 so

we are indeed looking at a fractal structure at the transition point. This numerical

value itself, however, is likely to be less reliable than the one near the transition point

in the MBL phase, as the ITI moves become more questionable when we approach

from the MBL phase to the thermal phase.

The above fractal dimension df can be examined numerically. Particularly, the

conditional expectation of `T at the cutoff follows

r(Λ) = ln
(
E[`T |η = 0]

)
= df ln Λ + lnC(0,Λ) (4.26)

where C(η,Λ) is the conditional expectation of γ at a given η, which would be in-

dependent of Λ at a fixed point. Therefore df can be obtained by plotting r(Λ)
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Figure 4.5: The eigenvalue df from numerical diagonalization of equation Eq. (4.25).
(a) shows df at different ηmax with ∆g = 0.005. (b) shows df at different ∆g with
ηmax = 40.

against Λ, which can be constructed by recording a T block’s length ` = Λ and `T

when it is decimated. At the critical point, we can use the numerical Q∗(η) as the

starting distribution to simulate the RG flow. It is found that (not shown here)

df ≈ 0.829±0.006 at the critical point, thus in agreement with the analytic approach

df ≈ 0.8249. We can also test df in the Griffith regions with initial length distri-

butions QT (η) = eQ∗(eη) and QI(η) = Q∗(η/e)/e, so we start near the transition

and flow away into the MBL phase. After a short transient, it is found the results

approach the expected LT ∼ Ldf , with df = 0.635 ± 0.03, quite consistent with the

expected fractal dimension.

In our simplified RG, we work only near the critical point, where the entanglement

rate across an I block is close to the block’s many-body level spacing. If the bare

system is actually farther into the MBL phase away from the critical point, then the

entanglement rate across a typical I block will decay with block length faster than

the many-body level spacing, and when we grow a fractal Griffiths region using TIT

moves (in a less simplified RG such as VHA [41]) and typical I blocks, then for the two

T blocks to become entangled, the I block needs to be shorter than the two T blocks

and as a result its fractal dimension df will be larger, with log 2/ log 3 < df < 1. In

87



the limit where the bare system is deep in the MBL phase df approaches unity, and

df decreases as the transition is approached.

If this proposal of fractal Griffiths regions within the MBL phase in one dimension

is not just an artifact of the approximations we make, there seem to be at least two

possible scenarios: One possibility is that the result is only partially correct: the

microscopic T blocks within the fractal Griffiths region do get entangled with each

other, but they do not succeed in becoming strongly entangled with, and thus locally

thermalizing, the typical I blocks that are in between them within the Griffiths region.

In this case, there will be resulting correlations and entanglement within the many-

body eigenstates that extend across the Griffiths regions, so extend to distance ` with

a probability that falls off as a stretched exponential function of `. But the effective

many-body level spacing of this Griffiths region may be set not by the full length of

the region, but only by the length ∼ `df that is within the entangled T blocks on the

microscopic scale. This is the scenario that was mentioned and assumed in Ref. [59].

The other possibility is that the Griffiths regions are fully thermal and entangled, and

they respond dynamically like they have a many-body level spacing set by their full

length `. In this case the result of Ref. [59] is modified so the spatially averaged low-

frequency conductivity σ(ω) behaves instead as log (σ(ω)/ω) ∼ −| logω|df . Since df

is not much less than one, for small system data this will be hard to distinguish from

the continuously varying power of ω that arises [59] from the first scenario. However

it would be a modification to the conclusions of Ref. [59], so that the Griffiths regions

always dominate over the Mott many-body resonances in the limiting low-frequency

conductivity of an infinite system.

Our simplified RG of course also gives fractal insulating Griffiths regions in the

thermal phase, by symmetry. But this is almost certainly an artifact of the oversim-

plifications of this RG: A low density fractal of well-placed rare insulating regions is

not capable of changing an otherwise typical thermal region into an insulator. Thus
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our results do not suggest that a revision of the discussions [41, 56, 65] of Griffiths

effects within the thermal phase is needed.

4.6 Conclusions

In this chapter we introduced a simplified RG for the MBL phase transition in one-

dimensional systems. It is mathematically equivalent to an exactly solved domain

coarsening model [73, 74], so the critical fixed point distribution and the critical ex-

ponents that characterize the stability of the critical point within our RG are known

analytically or to numerical precision. Even though some over-simplifications are in-

corporated to achieve this tractability, our approximate RG may correctly capture

some qualitative features of the phase transition and of the MBL phase, and might

provide a basis for future more systematic RG studies. One particular feature of this

RG that we discussed in some detail is the fractal thermal Griffiths regions within the

MBL phase that it produces, which seem like they might be a qualitatively correct

feature of MBL in one dimension with quenched randomness.
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Chapter 5

Conclusion

In this thesis we have discussed our studies on thermalization and the many-body

phase transition between the localized phase and the thermal phase. The investi-

gation of thermalization process under quantum theory started at the foundation of

quantum mechanics, but the details of the dynamical process still eludes our un-

derstanding. A particular interesting topic in this area recently is the many-body

localized systems where the thermalization fails. The transition of thermalized sys-

tems into the localized phase is an eigenstate phase transition that waits further

exploration.

In Chapter 2, we studied the influence of conservation laws on thermalization

of entanglement. We focused our numerical studies on two one-dimensional spin

chains and examined our results between a Hamiltonian model which is robustly

non-integrable and a Floquet model which has no conservation laws. The energy

conservation for the Hamiltonian model restricts its eigenstates, thus they appear

less thermalized at finite size than those of the Floquet model. By studying dynamics

of von Neumann entanglement entropy from different initial states, it is found that

the energy conservation slows down the thermalization of entanglement, which we

attribute to the slow diffusive transport of energy imbalances across the spin chain
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under the conservation law. We further found that under Hamiltonian dynamics, a

larger energy imbalance initially leads to slower entropy dynamics, and similar results

also apply to relaxation of entropy fluctuations. We examined the dynamics of the

energy imbalance with the longest wavelength, i.e., the variance of energy difference

between left and right half chains 〈(HR − HL)2〉, and found that in most cases it

is directly correlated with the dynamics of entropies, which is consistent with our

qualitative observation, but exceptions do exist. Therefore to have a more thorough

understanding of the thermalization of entanglement under energy conservation, a

more careful analysis of the transport of energy imbalance under quantum mechanics

is needed.

In Chapter 3, we turned our attention to the many-body localization phase tran-

sition and proposed a Floquet model for numeric studies. Since if Floquet systmes

thermalize, their eigenstates appear to thermalize better at finite size than those of

Hamiltonian systems, this model may aid us in obtaining more accurate numeric re-

sults as the transition point is located in the thermal phase at finite size. We checked

some popular quantities for our Floquet model, and they confirmed that it indeed

has a well thermalized region and a well localized region at reasonable system sizes.

We specifically looked at two correlation functions involving the spins at two ends of

the spin chain. They are expected to display peaks at the transition point, but the

peaks were difficult to observe in Hamiltonian systems at small sizes while much more

obvious in our Floquet model. We attempted a preliminary finite size analysis of the

correlations at different system sizes and with different spin separations. The results

were qualitatively promising, but to be statistically more accurate we certainly need

to go to larger systems with more realizations of disorder configurations, which can

be a future research project.

In Chapter 4, we investigated the many-body localization phase transition using a

simplified renormalization group (RG) approach, which we hope can serve as basis for
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further more complete RG treatments. Under coarse graining, we divided the system

into regions which are either thermal or localized, and the RG rules are symmetric

of both, which is not an accurate description of the whole system, but we hope it

can capture some physics qualitatively correct near the fixed point and it also makes

the mathematics tractable. This approximate RG is mathematically equivalent to a

domain coarsening model [73,74] whose fixed point distribution and stability critical

exponents can be found analytically or to numeric precision. We also constructed

a fractal structure whose fractal dimension can be found at the critical point and

“deep” in the localized region near the fixed point, and it may affect the Griffith

regions near transition.

Thermalization and many-body localization are rich subjects with many interest-

ing and far-reaching topics to explore. The results presented in the thesis have only

just scratched the surfaces of these colossal buildings, and hopefully they can provide

some insights into future research.
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