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Abstract

The early embryo of the fruit fly Drosophila melanogaster has long been a model

system in which to investigate questions of how cells acquire information about their

positions in developing organisms. Only in the past few years have technological

developments in molecular biology, microscopy, and computing enabled the measure-

ment of precise levels of gene expression in vivo in the developing fly embryo at the

levels of single-cell protein concentrations and single sites of mRNA transcription. In

this work I discuss two projects that take advantage of these recent advances in order

to push the limits of our understanding, both in how cells receive precise information

about position and how this information is regulated by the genes of the patterning

gene network. The first of these projects uses measurements of protein concentration,

both in vivo and in vitro, in order to determine whether a key maternally-supplied

patterning gene is responsible for conveying all of the information that downstream

genes need to scale their expression profiles with the length of the fly embryo. We

find that this maternal gene does not scale with embryo length, implying the pres-

ence of additional inputs in enabling downstream genes to scale. The second of these

projects uses in vivo imaging of single transcription spots in the developing embryo

in order to understand how the pattern of binding sites in the regulatory region of

a gene controls the level of mRNA production, given known concentrations of input

protein. Contrary to hypotheses suggesting that mRNA production level is a com-

plicated function of the strength and position of every binding site present on the

DNA sequence, we find that the level of mRNA production and the domain along the

length of the embryo in which high levels of mRNA are produced are both very well

characterized by a linear relationship with the number of endogenous binding sites

present. The results of these projects can be refined and extended by further analysis

of scaling in mutant embryos and by measuring expression level in embryos in which

greater perturbations have been made to sequences of protein binding sites.
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Chapter 1

Introduction

By studying the development of the body plan of multicellular embryos, we can

understand how simple initial conditions give rise to complex biological structure.

In the case of the embryo of the common fruit fly (Drosophila melanogaster), the

simple initial conditions are a lattice of roughly six thousand undifferentiated cell

nuclei, and the complex biological structure is the bewildering array of cell types

that make up the organs and body segments of the adult fly [37]. The process of

cell specification that turns this uniform lattice of cell nuclei into structured tissue,

in which cells have identities specific to their locations in the embryo, is rapid and

precise: the protein concentrations of the genes responsible for differentiating cells

from each other shift dramatically over the span of several minutes, and the patterns

of protein concentrations of these genes along the length of the embryo are often

positioned with an accuracy of roughly the distance of one cell nucleus, or a few

microns [18, 26, 41]. If we want to understand the biological processes that drive

this rapid and precise development, our measurement tools must be quick enough to

track the rapid expression of genes and sensitive enough to record precise levels of

information as it is conveyed from one gene to another. This dissertation presents

two projects that use powerful quantitative measurements of protein and mRNA
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concentration in the fruit fly embryo to understand the biological mechanisms driving

embryonic development.

In this chapter, I give an introduction to key concepts that the research in this

work builds upon: the study of genes known as morphogens that convey information

about position, the issues of precision and reproducibility in the transfer of positional

information in the fly embryo, and the use of experimental techniques to measure

gene transcription as a function of space and time in the developing embryo.

The role of morphogens

How do the cells of the early fly embryo, uniformly positioned and undifferentiated,

distinguish themselves in a very short amount of time by forming specific cell types

and folding themselves into precise structures? We can start at the beginning: a

little over two hours after the embryo has been deposited by the mother, roughly six

thousand cell nuclei have formed just underneath the surface of the embryo, where

they are closely packed into roughly 60 rows along the anterior-posterior (AP) axis,

from the head to the tail of the embryo [4, 37, 41]. Within the following hour, these

nuclei are separated into individual cells by the formation of cellular membranes,

and soon afterward the single layer of cells just underneath the outer embryonic

membrane begins to fold inward, or gastrulate, in order to form multiple layers of

cells that are separated along the AP axis into various body segments that will make

up the head, thorax, and abdomen of the future adult fly [4, 37]. These gastrulation

folds occur at very specific positions along the surface of the embryo when compared

across a large population of embryos. For example, the cephalic furrow, a long and

narrow indentation of cells perpendicular to the AP axis, delineates the boundary

between the head and thorax segments of the developing fly, and the position of this

furrow is defined across multiple embryos with a reproducibility of roughly one cellular

diameter, or 1.2–1.5% of the length of the AP axis [22, 72, 83]. Because gastrulation
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folds such as the cephalic furrow occur at such reproducible positions after only three

hours since deposition by the mother [37], highly accurate information about the

position of each cell along the AP axis must be conveyed to that cell within that

short amount of time.

Researchers have long been interested in discovering the source of the information

that cells use to learn their positions in developing organisms. In the first decades of

the 20th century, Morgan hypothesized that gradients of “formative substances” were

responsible for differing rates of regeneration at different positions in the flatworm [81,

107], and Boveri and Hörstadius surmised that opposing gradients of some substance

were responsible for patterning the larvae of sea urchins [12, 28, 47]. Gradients provide

a clear means for cells in an organism to learn their positions: the information of the

local concentration level of whatever chemical comprises the gradient can be used

by each cell to make a decision as to which cell type it will differentiate into and

how it will fold as part of a complex tissue structure. Although no such position-

encoding gradients had yet been discovered in the fruit fly embryo, scientists had

begun to theorize about the precise mechanism by which these gradients might convey

information to all of the cells about their relative locations in the embryo. Two

competing hypotheses regarding this mechanism were proposed:

1. In 1952, Turing proposed that multiple chemical gradients, which he termed

morphogens, could be used to create complex spatial patterns of concentration

from which cells could learn highly specific information about their positions,

if the morphogens diffuse at different rates and interact with each other [104].

Later computer simulations demonstrated that these models, in which one mor-

phogen acts to activate a spatial pattern and another acts to inhibit it, could

predict, for instance, stationary oscillatory patterns of activator and inhibitor

morphogen concentration as a function of position [36].
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Figure 1.1: The French flag model posits that cell differentiation occurs via the cre-
ation of a morphogen gradient through diffusion and degradation (Step 1) and by cel-
lular response to a simple read-out of the local morphogen concentration level (Step
2). T1 and T2 represent threshold morphogen concentrations delineating regions of
distinct cell types. Taken from [57].

2. In 1969, Wolpert suggested a mechanism by which a single morphogen gradi-

ent could provide sufficient information for a cell to differentiate into one of

a number of different cell types [109]: it posited a morphogen gradient that

was produced by the diffusion of the morphogen chemical outward from one

end of the organism, such as the anterior or posterior pole of the fruit fly em-

bryo, and degraded upon reaching the other end of the organism. For such a

morphogen, the concentration level of the morphogen at any point along the

organism would be monotonically related to position, and so a cell could in prin-

ciple learn its unique position by exactly reading the morphogen’s concentration

at that point. If the cell had several internal reference concentration thresholds

that it compared the local morphogen concentration level against, it could use

the knowledge of whether the local morphogen concentration exceeded none,

some, or all of these thresholds in order to determine which cell type to differ-

entiate into: it would thus adopt cell type A if the local concentration exceeded

no reference threshold, cell type B if it exceeded only the lowest threshold, etc.
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This is known as the “French flag” model because the resultant organism is di-

vided into distinct regions, like the colors on the French flag, containing distinct

cell types (Figure 1.1) [57].

A huge step forward in being able to test these two hypotheses of the role of mor-

phogens in the Drosophila embryo was taken by Nüsslein-Volhard and Wieschaus in

1980 when 15 genes were discovered that, when absent from the fly genome, caused

large sections along the head-to-tail axis of the fly larva to be completely absent [84].

Among these patterning genes is hunchback (hb), known as a gap gene because its

absence in the genome leads to a gap in the normal body plan in developing fly lar-

vae. It was later found that the patterning genes discovered by Nüsslein-Volhard and

Wieschaus have high levels of expression in regions along the AP axis of the fruit

fly embryo that largely correspond to the segments of the fly larva that are missing

when each of the genes are removed from the embryo [1, 28]. However, since the dis-

covered genes have complex expression profiles along the AP axis, the mechanism or

the source morphogens by which such complex profiles could form was still unknown.

This changed with the discovery of the bicoid (bcd) gene in 1986, whose absence in the

genome causes the complete loss of all head and thorax segments in the anterior of the

fly larva [32]. Antibody staining against Bcd protein revealed that Bcd concentration

forms an exponential profile along the AP axis, peaking at the anterior of the embryo

and declining to zero towards the posterior. This exponential profile is generated by

diffusion of a clump of bcd mRNA that is deposited near the anterior pole of the em-

bryo by the mother: as the mRNA diffuses outward, it is translated into protein and

eventually degraded [23, 71]. From analyses of the expression patterns of genes such

as those discovered by Nüsslein-Volhard and Wieschaus in mutant embryos lacking

bcd, as well in as embryos in which the dosage of bcd was altered, bcd was discovered

to be the hypothesized morphogen responsible for communicating information about

position to these downstream genes [22]. Because the bcd expression profile is shaped
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by diffusion and degradation and read out by downstream genes activated at certain

target thresholds, bcd more strongly fits Wolpert’s model of a morphogen than Tur-

ing’s model of multiple morphogens whose expression profiles are shaped by mutual

interaction. Other morphogens have since been found to influence downstream genes

with expression patterns along the fly’s AP axis: among them are nanos (nos), which

is responsible for correct expression of hb in the posterior of the embryo and whose

loss prevents formation of abdominal larval segments [49, 52, 97], and torso (tor),

which produces a protein expression pattern localized near the anterior and posterior

poles of the embryo and whose presence is necessary for correct production of anterior

and posterior terminal structures [95].

Precise and reproducible transfer of information about posi-

tion

Even if the specific genes that are responsible for conveying information about position

along the AP axis to every cell in the first few hours of embryonic development

have been identified, it still must be deduced whether the information about position

encoded in gene expression levels is accurate enough to pattern the embryo correctly,

as well as whether downstream genes can read in an upstream gene’s concentration

gradient with enough fidelity to make use of that information. In order to more

concretely describe the properties that the information passed from gene to gene

in the AP patterning system must possess so that cells can accurately differentiate,

we distinguish from this point onward between the related but distinct notions of

precision and reproducibility [41]:

1. Precision describes how accurately the information about the expression level of

a gene is transferred to another gene. In the case of the input/output relation

between Bcd and Hb, for instance, precision can be measured as the percentage
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error with which a cell reads in the local Bcd protein concentration level, as

given by the cell’s output Hb protein concentration level. A very high precision

indicates that the cell’s Hb concentration at a given AP position is almost

exactly at the level predicted by the Bcd protein concentration at that position.

2. Reproducibility is the extent to which information about the expression level

of a gene is preserved throughout a population of embryos. For example, the

reproducibility of the Bcd protein concentration at one particular AP position

can be measured by the percentage variation in Bcd protein concentration at

that location among a large number of embryos. A very high reproducibility

indicates that there is almost exactly the same amount of Bcd protein at a

given AP position across all embryos measured. Reproducibility can also be

thought of as measuring how accurately specific markers, such as a certain

Bcd concentration level, are positioned across a population of embryos: a high

amount of reproducibility in this sense means that a given Bcd concentration

threshold is crossed at very nearly the same AP position in every embryo in the

population.

In order for cells in the developing embryo to receive accurate information about

their positions along the AP axis, the transfer of information about gene expression

levels in the patterning gene network must be both precise and reproducible: the

expression level of each upstream gene must accurately be determined for use by

downstream genes in the network, and the upstream gene’s expression level must not

vary to a large extent across embryos. Näıvely, we could assume that the precision

and reproducibility exhibited by morphogenic markers such as the cephalic furrow are

a result of each nucleus perfectly reading the protein concentration of upstream genes

at its particular position and using that concentration information to determine the

protein concentrations of downstream genes at that position. However, perfect read-

in of input protein concentrations is impossible because the accuracy of an estimate of
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local protein concentration is limited by the number of protein molecules that reach

the nucleus in a given interval of time: for instance, given the measured concentration

of Bcd protein halfway along the AP axis, reaching a level of precision of roughly 10%

should theoretically take nearly two hours, not taking into account changes in the local

Bcd protein concentration during that time [41, 102].

With such a limitation on the ability of genes to accurately transmit information

about expression levels to each other, how can the embryo reliably form its body plan?

Two competing hypotheses for how precision and reproducibility are introduced into

the patterning network are as follows:

1. The earliest genes of the patterning network (such as Bcd) have a very low de-

gree of reproducibility, and thus their protein concentration varies highly from

embryo to embryo. Reproducibility is introduced progressively into the pattern-

ing gene network by cross-regulation of downstream genes: thus, downstream

genes have more reproducible expression patterns than upstream genes, and

the most downstream genes of the network have sufficient information about

position to allow cells to accurately differentiate and morphogenic markers to

accurately form based on their locations in the embryo [48, 58, 77, 99].

2. The transfer of information from one gene in the patterning network to the

next is very precise, and as a result the earliest genes have the same level of

reproducibility as later genes because expression patterns of upstream genes are

faithfully read in by downstream genes, which produce their own reproducible

expression patterns as a result. Thus, the variability of the protein concentration

of an early gene such as Bcd from embryo to embryo should be roughly the same

as that of a downstream gene such as Hunchback, which should have roughly

the same level of variability as the cephalic furrow and other morphogenic mark-

ers [41, 72, 109]. This represents a conservation of information about position

in the patterning gene network: because information in the system sufficient

8



(A) (B)

Figure 1.2: Hb is measured to be vastly more reproducible than Bcd. Each curve
represents the measured Bcd (A) and Hb (B) protein concentration profile in one
fixed embryo. Considering the mean Bcd concentration at the embryo’s midpoint,
Houchmandzadeh, et al. find that the standard deviation of the AP position at
which each embryo’s Bcd concentration profile matches this concentration is 7% of
the embryo length. This is vastly greater than the equivalent quantity (1% of embryo
length) in embryos’ Hb concentration profiles. For each embryo and for both Bcd and
Hb, the mean of the lowest 20 pixels and the mean of the highest 20 pixels along the
measured curve of protein concentration are pinned to 0 and 1, respectively. Taken
from Houchmandzadeh et al. [48].

to pattern cells with observed precision and reproducibility is present in the

earliest genes and never lost, it never has to be generated by later genes in the

network.

In order to determine which of these hypotheses more correctly reflects how ac-

curate patterning information is transferred in the patterning gene network, levels of

gene expression must be measured with enough sensitivity and experimental rigor to

make accurate calculations of precision and reproducibility possible. In the past 15

years, many such quantitatively-driven measurements of gene expression have been

conducted, often with conflicting inferences about whether information sufficient to

position all cells accurately can be found during the earliest stages of the patterning

gene network [46, 56, 58, 61, 72, 99]. For example, in 2002 Houchmandzadeh, et

al. [48], using fixed embryos stained for the presence of Bcd and Hb protein, found

9



Figure 1.3: More subtle normalization of profile intensities shows that Bcd and Hb
have similar levels of reproducibility. The y-axis represents the RMS error with
which a certain threshold protein concentration level remains fixed at the same AP
position from embryo to embryo, normalized by embryo length: lower errors cor-
respond to greater reproducibility of profiles across the population of all embryos.
The blue curve represents the RMS error in Bcd protein concentration profiles from
Houchmandzadeh, et al., using their normalization technique [48]; the green curve
represents the RMS error in the same profiles, normalized to each other by χ2 min-
imization of differences among all profiles along the AP axis. Red and cyan curves
show the RMS error in Bcd and Hb expression profiles, respectively, as measured in
fixed embryos by Gregor, et al and normalized through χ2 minimization. Taken from
Gregor et al. [41].

that the variability among embryos in the position along the AP axis at which the Bcd

protein concentration gradient crosses a certain threshold level near the middle of the

embryo is roughly 7 times as great as the variability in the position at which the Hb

protein concentration gradient crosses an analogous threshold level near the middle

of the embryo (Figure 1.2). This would support the first of the two reproducibility

hypotheses above, as it would imply that information about position is made pro-

gressively more reproducible across embryos in a population as it moves from gene to

gene in the patterning gene network.

However, questions were later raised in 2007 by Gregor, et al. [41] as to the validity

of the normalization techniques applied to the data of Houchmandzadeh, et al. in

order to arrive at that conclusion. By contrast, Gregor, et al., applying more nuanced
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methods of normalizing Bcd and Hb protein concentration levels in stained embryos,

showed that the levels of reproducibility of Bcd and Hb are roughly equal (Figure 1.3).

Furthermore, they found that the level of precision of the Bcd profile is roughly the

maximum possible amount, given the number of Bcd proteins reaching the nucleus in

a given time interval, and that that observed level of Bcd precision allows for position

to be specified along the AP axis with an accuracy of one nuclear row. Thus, the

information about position contained within the Bcd concentration profile should in

principle be sufficient to communicate all necessary information about position along

the AP axis to nuclei so that they may form cellular membranes and differentiate

into different cell types with the observed accuracy of one row of cells. This is a

strong confirmation of the second of the two reproducibility hypotheses listed above,

because it implies that the necessary level of reproducibility present within the entire

AP-axis patterning gene network can be found solely in one of the earliest genes in

the network, and that that level of reproducibility is simply transferred from gene to

gene in the network instead of progressively increasing as it moves from upstream to

downstream genes.

Measuring transcription

However, solely measuring the levels of reproducibility and precision found in the

protein expression profiles of the patterning genes leaves large gaps in understanding

about the biological mechanisms by which these levels of reproducibility and precision

are preserved throughout all stages of the patterning gene network. In particular, in

order for the concentration of Bcd protein at one position in the embryo to serve as

an input to determine an output concentration of Hb protein at that position, Bcd

protein must reach and bind to a hb regulatory element on the genome, a certain

amount of hb mRNA must be transcribed from the hb coding sequence as a result of

that level of Bcd protein binding, and those hb mRNA molecules must be translated
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into proteins in order to create the output Hb protein concentration. Thus, if we can

measure spatiotemporal patterns of hb mRNA production with the same quantitative

rigor and low experimental error with which protein concentration patterns have been

measured, we will start to understand how the high level of reproducibility found in

early genes in the pattering gene network is transferred from one gene to another via

the processes of gene transcription and translation.

The reproducibility of hb mRNA transcription across a population of embryos can

be compared to that of the Bcd protein concentration distribution that regulates it, as

well as the Hb protein distribution that it produces, through the use of single-molecule

fluorescence in situ hybridization (smFISH), a sample preparation and imaging tech-

nique that allows for highly quantitative measurements of mRNA transcription at

single transcription sites in a cell nucleus [30, 59, 71, 94]. Using smFISH, Little,

et al. [70] measured the fractional variation in the amount of hb mRNA production

at individual transcription sites to be roughly 44%, compared to the roughly 10%

fractional variation in the amount of Hb protein produced as a function of Bcd con-

centration level [41]: thus, levels of activity at single sites of hb transcription in the

embryo are much less reproducible than the levels of Hb protein that result. Little,

et al. argue that this discrepancy is a result of spatial averaging through mRNA

diffusion and temporal averaging through mRNA accumulation [70].

One important limitation of fixed-tissue imaging techniques such as smFISH is

that it only captures transcription in a particular embryo at one fixed point in time:

thus, we lose any information about the dynamics of transcription in an embryo or

how the variation among levels of transcription among different embryos changes

over time. Garcia, et al. [33] refined a method for tracking transcription events in

an embryo over time by labeling new mRNA molecules with fluorophores, fluorescent

proteins, as soon as they are produced [31]: this method allows for the full dynamics

of transcription, as opposed to transcription only at one fixed point in time, to be
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compared across embryos. With access to dynamic information, fundamental quanti-

ties of the transcription process such as the rate at which mRNA is produced can be

measured, which allows for more direct inferences to be made as to the mechanism

by which genes in the patterning network regulate each others’ expression levels in

order to convey information about position.

Overview of dissertation

Drawing upon this previous research, this dissertation details two experimental and

analysis projects that use quantitative measurements of protein and mRNA expression

as a function of space and time to further understand the propagation of information

about position in the early fruit fly embryo:

1. Previous work has studied whether levels of reproducibility of gene expression

sufficient to pattern the entire embryo exist in all patterning genes. In Chapter

2, we ask a related question regarding variability in embryo size: given that the

lengths of fly embryos along their AP axes are not all identical, are all patterning

genes equally adept at scaling their protein concentration profiles to match the

lengths of individual embryos, in order to achieve a high level of reproducibility?

Our results show that, unlike the profiles of later gap genes such as Hb, the

protein expression profile of the early patterning gene Bcd does not scale with

embryo length, which hints that the scaling of gene expression profiles arises as

a result of the collective input of multiple early morphogens in the patterning

gene network as well as cross-regulation among multiple downstream genes.

2. With the advent of the technology to measure levels of mRNA transcription in

live fly embryos, we not only get the chance to measure the dynamics of the

transfer of information about position among patterning genes, but we also gain

the opportunity to explore the biological mechanisms by which this information
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is transferred through transcription. Chapter 3 discusses an experiment to

characterize the effects that single regulatory elements have on the rate at which

hb mRNA molecules are produced. Bcd proteins bind to 6 specific sequences

near the hb coding region in order to increase the level of hb mRNA expression,

and we can add or remove different combinations of these binding sites to see

what effects this has on the resultant mRNA expression pattern. What we

find is that the identities of the binding sites that are present are relatively

unimportant in regulating the mRNA expression pattern, and that the level of

mRNA expression and the width of the expression domain increase linearly as

we increase the number of binding sites. This finding leads to several inferences

about the roles of interactions between multiple Bcd proteins as well as between

Bcd proteins and the transcriptional machinery.
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Chapter 2

Bicoid is insufficient for the spatial

scaling of Drosophila gap gene

expression patterns

This chapter is an adaptation of a draft of a manuscript that will soon be submitted

for publication. (Authors: Feng Liu*, Tiago Ramalho*, Eric M. Smith*, Mariela D.

Petkova, Martin W. Scheeler, Ulrich Gerland, and Thomas Gregor.)

The maternal morphogen Bicoid (Bcd) is a primary source of positional informa-

tion for the patterning of the early Drosophila embryo. If Bcd does not scale with

embryo length, the positional read-out error from the Bcd profile should naively be

up to the natural embryo length variability, e.g., 4% of the embryo length (EL) for

the wild-type. However, the measured positional error of the downstream gap genes

is just 1% EL. Given such low positional error in downstream genes, we ask if the

Bcd gradient can actually provide sufficient information about position for Drosophila

embryos of varying sizes. We present a method that characterizes the positional er-

ror of protein concentration profiles in a shape-independent manner, and we use this

method to directly compare the error with which both maternal factors and gap genes
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are positioned in embryos of varying egg lengths. We show that the positional error

of Bcd exceeds that of the gap genes along the entire length of the embryo. In mutant

embryos where Bcd is the only maternal positional input, the gap gene positional error

is significantly larger in the posterior half than that of wild-type embryos. However,

the gap gene positional error in bcd mutants matches wild-type levels. Therefore,

our results imply both that precisely scaled gap gene expression patterns do not rely

on Bcd alone and that scaling does not require Bcd. This agrees with a principal

component analysis that demonstrates that the hypothesis of scaling with embryo

length can be rejected for Bcd profiles, but generally not for gap gene profiles. Our

results suggest that scaling of downstream gene expression patterns emerges as a col-

lective network property, i.e., via a synergy between the combined maternal inputs

and cross-regulation of the downstream genes.

2.1 Introduction

The final products of developmental patterning processes are strikingly reproducible

from one individual to the next, and this reproducibility has been traced back to the

earliest molecular patterning events [26, 41]. Natural variations in the intrinsic length

scales of the developing organisms require specific scaling mechanisms to be estab-

lished to maintain reproducible patterning. The classical model for developmental

patterning is the interpretation of long-range signaling molecules (i.e. morphogens)

by downstream patterning genes in a concentration-dependent manner [109, 110].

While gene expression patterns are observed to be proportional to the overall size

of the system [34, 39, 48, 75], the upstream morphogen gradients are theoretically

size independent if their setup is only driven by simple diffusion [40, 43]. Hence the

origin of spatial scaling of the developmental patterns is not well understood, but two

possible scenarios have been proposed: (1) spatial scaling of developmental patterns
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stems from scaled morphogen inputs (whose setup involves mechanisms other than

simple diffusion-driven); (2) scaling is a property that emerges via the interaction

of the downstream gene network, with unscaled morphogen inputs being irrelevant

for scaling. Several patterning systems are reported to follow the first scenario, e.g.,

bone morphogenic proteins (BMP) in Xenopus laevis embryos [6, 7, 51], Decapen-

taplegic (Dpp) in the Drosophila imaginal discs [45, 106], Notch in mouse embryos

[66], but theoretically the second scenario also works as spatial pattern formation in

reaction-diffusion systems can be scale-invariant without scaled inputs [85].

Anterior-posterior (AP) patterning during Drosophila embryogenesis has long

been a model system for the study of scaling mechanisms [15, 21, 39, 40, 74]. The ma-

jor focus has been the scaling of the maternal morphogen Bicoid (Bcd) [15, 21, 39, 48],

which forms an exponential gradient along the AP axis and activates a series of down-

stream genes, such as the gap genes [23]. The length constant of the Bcd gradient was

reported to scale with embryo length among different fly species [39, 40], and thus the

scaling of Bcd had been proposed to account for the scaling of AP patterning across

different species with egg sizes that varied by up to a factor of 5. However, for the

scaling of AP patterning within a given species, the role of the Bcd gradient has been

controversial. One early study argued that the gradient was too noisy to establish the

precision and scaling of downstream gap genes, and that a “filter” mechanism must

be present [48]. Subsequently, the scaling of segmentation patterning was suggested

to be independent from Bcd gradients [46], and the repressive mutual cross-regulation

between gap genes was reported to “canalize” patterning, improving the precision and

driving the dynamic shifts of patterns [58, 77]. Therefore these results support the

second scenario, that AP patterning is driven by the interaction of the downstream

gene network.

On the other hand, recent experiments have demonstrated that Bcd gradients

are highly reproducible such that they should be able to confer scaled information
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about position with higher accuracy than the 4% natural egg size fluctuations [41].

This finding inspired several proposed mechanisms following the first scenario, i.e.

a spatially scaled morphogen gradient from which downstream genes acquire spatial

scaling. For instance, the nuclear trapping model [17, 42] predicts that Bcd gradients

have a scaled length constant, but several lines of experimental evidence contradict

such a prediction [44, 78]. It has also been suggested that scaled Bcd gradients are

generated by volume-dependent modulation of the amplitude of the Bcd gradient [15],

or by volume-dependent modulation of the length constant of the Bcd gradient [16],

but no experimental evidence has conclusively shown that this would be sufficient to

generate the scaling of the downstream gap genes. Another controversy arose form

the suggestion that the positional precision and the scaling of Bcd-target genes could

stem from a pre-steady-state decoding of Bcd gradients [20, 21, 54]. Here we address

these issues by focusing on the underlying mechanism for the spatial within-species

scaling of segmentation patterns in the early Drosophila embryo. In particular we ask

whether the Bcd gradient is able to precisely provide scaling information for embryos

of varying sizes.

Analyzing scaling mechanisms in eggs of a given fly species has been challeng-

ing since natural embryo size fluctuations from one individual to the next are small

(< 4%), even in cases where these fluctuations have been artificially increased [15, 78].

A great hurdle for progress has been the absence of a method that compares unequiv-

ocally the scaling of different protein expression profiles regardless of their shape. The

traditional methods based on simple correlation analysis [15, 16, 34, 48] or on posi-

tional error calculation using standard error propagation methods [26, 41] are often

limited to protein profiles with specific shapes, thus preventing a direct comparison

between the scaling property of, e.g., the Bcd profile and its downstream gap gene

profiles. Here we present a method named dynamic profile warping (DPW) that is

based on dynamic time warping (DTW) [53, 82, 89, 90] to quantify the scaling behav-
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ior of both maternal genes and gap genes by measuring local positional errors. We

demonstrate that DPW overcomes the limitations of traditional methods for mea-

suring scaling behavior, and that the positional error calculated with DPW provides

a universal, shape-independent metric for characterizing the spatial scaling of gene

expression profiles.

We applied this method to an extensive set of new data in order to understand

the origin of gap gene scaling in the Drosophila embryo. We have collected vari-

ous data sets for maternal gradients, including immunostained Bcd, Caudal (Cad)

and Capicua (Cic) gradients from artificially selected inbred fly lines with large and

small embryos (LE&SE, N = 512), live Bcd-GFP gradients from temperature-varied

embryos (N = 48), and live Bcd-GFP gradients from embryos at one fixed temper-

ature (N = 1018). We also collected several data sets of embryos in various genetic

backgrounds, immunostained against the four gap genes Knirps (Kni), Kruppel (Kr),

Giant (Gt) and Hunchback (Hb). Our results indicate that the positional error of

Bcd is too large to position the gap genes to the observed level of precision, and the

data of the mutant embryos reveal that Bcd alone is insufficient to position the gap

genes to wild-type precision without input from other maternal factors such as Nanos

and Torso. Furthermore, Bcd is unnecessary for precise positioning of gap genes be-

cause the gap gene positional error in bcd mutants matches that of wild-type levels,

despite severe alterations in gene expression patterns. Our combined results suggest

an alternative scenario where each maternal gradient only provides partial scaling to

the downstream network, and final scaled patterns result from collective interactions

within the gap gene network.

19



A

400 500 600
0

0.2

0.4

0.6

0.8

1

L (μm)

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

B

0 0.5 1
0

1

2

3

4

x/L

x/
L

(%
L)

Figure 2.1: A scaling mechanism is needed. (A) Measured positional errors of gap
gene expression boundaries from immunostained embryos at 42± 5 min into nc14 for
OreR embryos (black, N = 10, [26]) and for the mixture of long and short embryos of
artificial-egg-size-selected inbred fly lines (blue, N = 15, from [78]). Positional errors
of live Bcd-GFP gradients (green, N = 26) measured as in [41, 72]. All error bars
are standard deviations calculated from bootstrapping. Dashed lines represent the
expected positional error due to egg length variation according to σpos(x) = σL ∗ x/L
(see text) with σL = 3.7 ± 0.1% for OreR (black), σL = 6.2 ± 0.2% for the LE&SE
mixture (blue). These lines are the graphical representation of the lower bounds of
the positional error of completely unscaled profiles. The lines of positive (negative)
slope represent the minimum positional error of unscaled profiles that completely
coincide in absolute coordinate space with respect to the anterior (posterior) pole.
(B) Egg length distributions of wild-type embryos (OreR, black, N = 214), Bcd-GFP-
expressing embryos bred at 25 �C (green, N = 968), a mixture of Bcd-GFP-expressing
embryos bred at 18 �C and 29 �C (red, N = 46), and a mixture of large and small
embryos (blue, N = 519), from artificial egg-size-selected inbred fly lines LE and SE.
Dots and lines represent the binned values and the Gaussian function based fitting
results.

2.2 Necessity of a scaling mechanism in the early

fly embryo

Embryo-to-embryo size fluctuations in natural populations of Drosophila melanogaster

[15, 41] are relatively small. Therefore it is a priori unclear whether specific scaling

mechanisms are needed to generate the proportionality of gene expression patterns
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with egg size. The necessity for such mechanisms only becomes apparent when con-

sidering the precision of spatial gene expression markers, such as pattern boundaries

or peaks along the AP axis. The precision of the exact positions of such a marker

depends on how well the pattern scales with embryo length. If no scaling mechanism

were in place, natural egg length variation would induce a positional error along the

AP axis (Figure 2.1A). This inherent error from scaling thus sets a lower bound on

the positional error that is found in expression patterns in the absence of a scal-

ing mechanism. The magnitude of the inherent error in such “unscaled” expression

patterns is position-dependent: if a given position along an expression profile has a

fixed absolute distance from a reference point (e.g. the embryo’s poles), its relative

position with respect to embryo length should have a positional error σpos of at least

σpos(x) = σL ∗ x/L, where σL = δL/L̄ is the ratio of the standard deviation δL of

the length distribution of a population of embryos and the population mean L̄; x is

the absolute distance from the reference point. Therefore the linear function σpos(x)

defines a lower bound for the positional error of unscaled expression patterns. If the

positional error of a gene expression profile falls below these anteriorly (or posteri-

orly) anchored lines, which we will term the unscaled lines hereafter, the profile must

contain more positional precision than what could be conveyed in a perfectly unscaled

profile, and therefore such a profile must contain information about embryo size.

Given the measured natural length variation of Drosophila eggs, the lines of perfect

unscaling provide a quantitative way to test whether a given gene’s expression profile

scales with embryo length (Figure 2.1A). Egg length variation in a wild-type (OreR)

population at 25 �C is around 4% (L̄± δL = 486± 18 �m; N = 214; σL = 3.7± 0.1%

from bootstrapping; Figure 2.1B), which is small in comparison to the variability of

egg lengths between different fly species that differ by up to a factor of five [39, 40].

However, given the inherent positional error σpos in unscaled gene expression profiles,

the natural wild-type egg length variation leads to a positional error of 2% L in
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the central region of the egg and even larger in the posterior half of the egg (Figure

2.1A). This variation far exceeds the actual positional error of the gap gene expression

boundaries or peaks, which is less than 1% L along nearly the whole AP axis (Figure

2.1A) [26]. We observe a similar scenario in inbred fly lines artificially selected for

small and large egg lengths (SE and LE with length distributions of 451± 14 �m and

521 ± 25 �m, respectively; see Materials and Methods) [78], leading to an effective

relative change in mean egg length between the two fly lines of 15.5% (Figure 2.1B),

but no change in gap gene positional error is observed (Figure 2.1A). Thus, even the

relatively small egg length variability within Drosophila melanogaster is large enough

to conclude that gene expression profiles within the Drosophila segmentation network

scale with egg length at the level of the gap genes. The question remains as to how

this scaling emerges.

2.3 Measuring spatial scaling of gene expression

profiles in a shape-independent manner

To test whether the upstream inputs to the gap genes, such as the maternal factor

Bcd, are responsible for gap gene scaling, we ask whether the positional error of Bcd

matches the level of the positional error of the gap genes, if so then gap gene scaling

can be directly inferred from Bcd scaling, otherwise if the positional error of Bcd

exceeds that of the gap genes, an additional source of positional precision is necessary.

To answer this question, it is important to directly compare the positional error of

both the maternal factor Bcd and the gap genes with the same method, regardless of

the shape of their expression profiles. Furthermore, it is possible that Bcd is sufficient

for conveying positional precision to the gap genes only in the central region of the

AP axis but not along its entire length according to the volume-dependent production
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model (Figure 2.1A, [15]), a method for measuring positional error has to be local,

i.e. dependent on positions along the AP axis.

Using these criteria of shape-independence and locality, we assessed commonly

used methods for measuring positional error in fly embryos to determine their suit-

ability for reliably testing the sufficiency of Bcd to deliver positional precision to

the gap genes (Figures 2.1A and 2.2). For instance, with the correlation analysis

one measures the spatial scaling of the gap genes by finding the correlation between

the absolute distances of the patterning markers (e.g., profile boundaries or peaks)

from a reference point and the embryo length (Figure 2.2A-C). But this is unsuitable

for measuring the positional error of Bcd because the Bcd expression profile has no

well-defined boundaries or peaks. Instead, one often extracts a length constant λ or

amplitude C0 by curve fitting to the Bcd expression profiles. A method that com-

bines shape-independence and locality is obtained by error propagating expression

level variations among profiles into a variation in AP position [26, 41]. However,

when applied to single gap genes this method leads to singularities at the profile’s

peaks and troughs, thus limiting its usefulness to partial regions of the AP axis (Fig-

ures 2.3D and 2.2).

Since different methods have different systematic effects, they could skew the dif-

ference of the positional errors and often lead to inconsistent results when comparing

Bcd with gap genes. We measured the Bcd gradients (at 16± 2 min into nc14, bred

at 25 �C) in a set of over 396 live embryos expressing Bcd-GFP. With correlation

analysis, we find that λ is uncorrelated with embryo length L (r = −0.01 ± 0.04,

p = 0.82), whereas λ/L is correlated with L (r = −0.42± 0.04, p = 2.2× 10−18) (Fig-

ure 2.4A,B), implying that the shape of the Bcd gradient is independent of embryo

length. On the other hand, we observe a weak correlation between C0 and L (Figure

2.5B), suggesting that the volume-dependent production model might be valid [15]

thus Bcd could be sufficient for the scaling of gap genes. However, this is inconsistent
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Figure 2.2: Comparison of the positional error of genes calculated using DPW (solid
curves), the error-propagated intensity method (dashed curves, [26, 41]), and an anal-
ysis of the variability of individual peaks and boundaries (black error bars). Profiles
are of Kr (A), Gt (B), and Hb (C) 35± 3 minutes into nc14 (N = 26), and Bcd (D)
16±5 minutes into nc14 (N = 20). Shaded regions and error bars represent standard
errors from bootstrapping. Black dashed lines represent the expected positional error
due to 6.2% variability of the embryo length for LE&SE embryos.
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Figure 2.3: Positional error calculation with DPW. (A) Comparison between a
sample Kni protein expression profile in an embryo 36 minutes into nc14 (light green
line) and its reference profile (dark green line), which is the mean profile of Kni in
a particular time class (35 ± 3 minutes into nc14, LE&SE embryos, N = 26). The
magenta line represents the displacement between the sample and reference profile
at x/L = 0.4. Three black dots mark representative peaks and boundaries. (B) The
scaling path calculated by DPW of the sample profile (light green line in (A)) with
respect to the reference profile (dark green line in (A)) is shown in green as a warped,
nearly diagonal curve. The magenta line represents the displacement at x/L = 0.4 of
the actual scaling path from the path (dashed gray line) that the sample profile would
take if it perfectly scaled with the reference profile. The color map shows the relative
intensity difference matrix between the sample profile and the reference profile (the
intensity difference increases from blue to red). DPW calculates the scaling path
by minimizing the sum of the squared intensity difference, normalized at each point
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Figure 2.4: Regression analysis shows that the length constant of the Bcd profile
does not scale with embryo length. (A) For Bcd-GFP embryos collected at 25 �C and
imaged 16 minutes into nc14 (N = 394), no significant correlation exists between the
embryo length L and the decay length λ of the Bcd profile, where λ was calculated
for each embryo from a linear fit to the logarithm of that embryo’s Bcd profile. (B)
However, there is a strong negative correlation between the embryo length and the
decay length when λ is normalized by L. The linear regression line is shown in blue.
Bcd-GFP embryos were acquired from 48 different imaging sessions; the embryos
corresponding to the imaging session plotted in Fig. 3B (N = 22) are highlighted in
red. Pearson’s r is shown in the lower left-hand corner of each plot [9]. Errors on r
are the standard error from bootstrapping over embryos.

with the result that the positional error of Bcd calculated with the standard error

prorogation method is higher than the positional error of the gap genes measured as

the variability of the patterning markers (Figure 2.1A).

To overcome the limitations of the traditional methods for measuring positional

errors, we have adapted a method known as dynamic time warping (DTW) [82, 89]

to quantify the spatial scaling of gene expression profiles with different shapes. This

technique has been extensively used for measuring the similarity between dynamic

sequences such as audio recordings [53, 90]. The goal of DTW is to minimize the sum

of the local intensity difference between two sequences by stretching or squeezing

the sequences relative to each other at every point along the sequences’ lengths.
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Figure 2.5: Correlations of the Bcd gradient amplitude with embryo length or the
profile decay length are weak. (A) The correlation between the peak Bcd amplitude
Cmax and the length L of Bcd-GFP embryos imaged 16 minutes into nc14 (N = 394)
accounts for only roughly 2% of the total variation in those two parameters. (B)
The correlation between Cmax and the decay length λ, as measured from a linear fit
to the logarithm of the Bcd profile in Bcd-GFP embryos, accounts for roughly 9% of
the variation in those two parameters. The Bcd-GFP populations plotted in red and
black in (A) and (B) are as in figure 4. (C) Values of the coefficient of determination
r2 (where r is Pearson’s r [9]) between L, λ, Cmax, the extrapolated anterior-pole
intensity C0 as calculated from a linear fit to the logarithm of the Bcd profile, and
the total Bcd intensity Ctotal integrated along the AP axis from 10 to 90% AP. All
errors on r2 are from bootstrapping over embryos.
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Figure 2.5: (continued) by the sum of the intensities, when mapping the AP positions
of the sample profile to those of the reference profile. (C) Colored dashed lines
represent the scaling paths of all the Kni sample profiles in a particular time class
(35 ± 3 minutes into nc14, N = 26). The dashed black line denotes the path of a
perfectly scaled sample profile. The purple line marks twice the positional error at
x/L = 0.4, which is calculated as the RMS of the displacement between the sample
scaling paths and the path of a perfectly scaled profile. The region at x/L = 0.35–0.45
marked with the small black box is magnified in the large black box in the lower right
corner. (D) Comparison of the DPW positional error (green solid line) with the error-
propagated positional error (green dashed line [26, 41] and the positional error of the
representative peaks and boundaries shown in (A) (black error bars). The error bars
on the markers and the shaded regions on the DPW positional error curve represent
standard error on the positional error calculated from bootstrapping. The purple
line marks the DPW positional error at x/L = 0.4. Gray dashed curves represent
the expected positional error due to 6.2% variability of embryo length for completely
unscaled LE and SE embryos.

We have repurposed DTW for protein expression profiles (termed dynamic profile

warping (DPW) hereafter) to find an ideal mapping between two profile shapes by

locally warping the profiles along their coordinate axes (Figure 2.3A,B); specifically,

we map the shape of an individual gene expression profile to the shape of the average

expression profile of that gene in the population. DPW warps profiles by shifting each

AP position in an expression profile a certain distance to overlap with its analogous

AP position in the profile of the average embryo; the shifted distance represents the

amount by which downstream genes would be expected to be spatially mispatterned

if they could perfectly interpret the protein expression level of the read-out gene

at that point. The positional error of a population of profiles at each AP position

is calculated as the RMS of the shifted distance of all profiles at that AP position

(Figure 2.3C, Materials and Methods).

Ideally, computing positional error with different methods should lead to the same

answer. We confirmed that in regions of the AP axis where the existing methods

are applicable, the positional error calculations using DPW are within measurement

errors comparable to existing methods such as the defined boundaries and peaks of

gap genes, as well as with the positional errors calculated with error propagation
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Figure 2.6: The combined positional errors of four gap genes. (A) Comparison of the
individual positional errors of the gap genes Kni (green), Kr (yellow), Gt (orange), and
Hb (red) with the combined positional error of the four gap genes (gray) measured in
LE and SE embryos 16 minutes into nc14. N = 20 for all plotted data sets. Shadows
around the positional error curves show the standard error of the positional error
calculated from bootstrapping. Dashed lines are the positional errors of completely
unscaled profiles with σL = 6.2%, matching that of the mixed LE&SE embryos. (B)
Comparison of the positional error curves of the same genes 50 minutes into nc14.
The curve of the combined positional error of the gap genes evolves over nc14 from a
“U” shape as in (A) to a flat line in (B) at roughly 1% L. Dashed lines and shadows
around positional error curves are the same as in (A).

in the regions where the magnitude of the slope of the profile is sufficiently large

(Figures 2.2 and 2.3D). This demonstrates that DPW matches the capabilities of

these other methods. Furthermore, DPW avoids the pitfalls of previous techniques to

measure scaling: it is a local measurement because it measures positional error along

the entire AP axis, and it can be applied to profiles of any shape, allowing for direct

comparison of the positional error of Bcd with that of the gap genes. The positional

error of expression profiles calculated using DPW can additionally be compared to

the unscaled lines to test whether expression profiles of any shape scale with embryo

length.

29



DPW can be extended to measure the combined positional error of multiple genes’

protein expression profiles (see Materials and Methods). The ideal way to weight dif-

ferent genes when calculating this combined positional error depends on the molecular

details of how the genes regulate the downstream network. As an approximation, we

weigh the four gap genes Kni, Kr, Gt, and Hb equally to obtain a combined positional

error (Figure 2.6A,B).

2.4 The Bcd gradient is insufficient to establish

the spatial scaling of gap gene expression pro-

files

In order to determine whether the degree of scaling inherent to Bcd is sufficient to

establish the scaling of all gap genes using DPW, we need to measure and compare

their respective positional errors. Such a comparison is influenced by three poten-

tial pitfalls that need to be addressed: the specific developmental time point of the

comparison, the respective experimental errors of the different genes, and the overall

embryo length distribution of the data sets. To address these pitfalls directly, we

obtained three independent data sets:

i. Gene expression profiles as well as positional errors are well-documented to

have a strong dependence on developmental time during the first three hours of de-

velopment [26, 58, 72]. For wild-type embryos, Bcd’s positional error is low during

nc13 and in early nc14 whereas the combined positional error of the gap genes has a

minimum roughly 40 min into the one-hour-long nc14. Therefore we obtained gene

expression profiles of Bcd and of the gap genes using immunofluorescence on fixed

embryos of the LE&SE fly lines: this data set includes embryos at different develop-

mental ages during all of nc14 and thus the dynamics of the positional error difference
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Figure 2.7: The positional error of Bcd is higher than that of the combined gap genes.
(A) The DPW positional error of Bcd 16 min into nc14 measured in LE&SE embryos
(blue, N = 20) and Bcd-GFP embryos with varied temperatures (red, N = 46)
remains higher than the combined positional errors of four gap genes 16 minutes into
nc14 (gray, N = 20) and 50 minutes into nc14 (black, N = 20) measured in LE&SE
embryos. The dashed lines are the expected positional error of completely unscaled
profiles given σL = 6.2% for the mixed LE and SE embryos. (B) The positional error
of Bcd 16 minutes into nc14 measured in Bcd-GFP fly embryos collected at 25 �C
(green, N = 22, σL = 3.8%) has a minimum along the AP axis of roughly 2% L.
The positional error of selected LE&SE embryos with σL < 3% (blue, N = 8) is
smaller than that of the full distribution (shown in (A)) that they are drawn from.
Note that this lower LE&SE positional error, as well as the Bcd positional error in
Bcd-GFP embryos, is still larger than the combined positional error of the four gap
genes 16 minutes into nc14 (gray, N = 10) and 50 minutes into nc14 (black, N = 10),
measured in selected LE&SE embryos with a σL of roughly 4%. Dashed lines are
the expected positional error of completely unscaled profiles given σL = 3.8% for the
selected subset from the mixed LE&SE embryos. Shaded regions around positional
error curves represent standard errors obtained through bootstrapping.

can be measured. We find that the positional error of Bcd is always larger than the

combined positional error of the gap genes for all of nc14. In particular, the minimum

combined positional error of the gap genes occurs at roughly 40 min into nc14 (agree-

ing with [26]), when it is roughly 1% L along the entire AP axis (Figure 2.7A). In

contrast, Bcd’s positional error is always position-dependent throughout all of nc14.
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Its minimum value is near the middle of embryo (Figure 2.7A) and it only reaches

approximately 3% L as the maximum Bcd expression reaches at 16 min into nc14,

thereby significantly exceeding the minimum combined positional error of the gap

genes. The combined positional error of the gap genes in the pole regions is higher

during early nc14 than it is later in nc14; nevertheless, this early-nc14 combined gap

gene positional error is still smaller along the entire AP axis than that of Bcd at the

same time point (Figure 2.7A). Thus Bcd alone is insufficient to establish the level of

scaling of the gap genes for LE&SE embryos during nc14.

ii. The accuracy that can be achieved when extracting gene expression profiles

from immunostainings is limited by systematic errors due to the experimental setup,

which is especially problematic here as we are interested not only in the mean protein

concentrations but also in the variances [26]. Systematic errors are particularly high

for immunostaining experiments to extract Bcd profiles, due to Bcd’s low overall ex-

pression levels and its shallow exponential shape (Figure 2.8, Materials and Methods).

We therefore obtained data from embryos expressing Bcd-GFP using live imaging,

which greatly reduces the systematic errors for profile extraction [41, 72]. In order to

maintain a broad egg length distribution comparable to that of LE&SE embryos, we

bred flies at varying temperatures resulting in an egg length variability of roughly 6%

(Figure 2.1B, Materials and Methods). Positional error measurements made at 16±2

min into nc14 (when the overall positional error of Bcd is at its minimal level) in

live embryos show a close similarity with the ones measured in fixed LE&SE embryos

using immunofluorescence (Figure 2.7A). It is therefore implausible that the overall

elevated positional error of Bcd compared to that of the gap genes can be explained

by systematic errors.

iii. The previous two datasets have greatly skewed egg length distributions com-

pared to that of wild-type (Figure 2.1B), which might systematically affect the posi-

tional error. In fact, we have some evidence from subsampling our embryo population
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Figure 2.8: Systematic errors in positional error calculations. (A) Simulated expo-
nential (blue) and step-function (red) profiles, with and without 5.5% and 1.5% noise
in amplitude and baseline fluctuations, respectively (corresponding to the noise levels
of Bcd measured in LE&SE embryos). Profiles without noise are plotted in darker col-
ors and profiles with noise are plotted in lighter colors. (B) The shape-dependence of
positional error calculations. The curve of the positional error of simulated noiseless
exponential profiles (dark blue) overlaps with that of simulated noiseless step-function
profiles dark red) except for in the region x/L < 0.4, implying that the positional er-
ror calculated by DPW is mostly independent of whether profile shapes vary quickly
or gradually over space. However, the positional error of the exponential profiles
(light blue) increases much more than that of the step function profiles (light red)
after adding noise, suggesting that the former are more sensitive to overall intensity
fluctuations than the latter. The dashed lines represent the minimum positional error
of completely unscaled profiles with σL = 7%, roughly that of the LE&SE embryos.
The simulated exponential profiles (N = 50) were generated by assuming that the
amplitude C0 is correlated with embryo volume ( δC0

C0
= 3 δL

L
) and that the length con-

stant λ = 0.17L when measured in absolute coordinates. The step-function profiles
(N = 50) have a transition point at x/L = 0.5 and were generated directly from the
simulated exponential profiles using a Hill equation with Hill coefficient n = 5.
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Figure 2.9: The positional error of Bcd gradients increases as the variability of embryo
length increases. (A) The positional error of simulated exponential profiles (with no
amplitude and baseline noise; see Materials and Methods) with volume-dependent
amplitude increases as the variability of embryo length σL increases from 3.5% (light
green) to 7% (dark green). Dashed lines and dash-dotted lines are the predicted po-
sitional error for σL = 7%, and 3.5%, respectively. (B) The dependence of positional
error on the variability of embryo length for measured Bcd and gap gene profiles. The
positional error of measured Bcd profiles from LE&SE embryos (dark green, N = 31,
σL = 8%) decreases slightly if only those LE&SE embryos with σL = 2% (light green,
N = 9) at the same time class (16 ± 5 minutes into nc14) are selected. However,
the combined positional errors of four gap genes at 16 min into nc14 are almost the
same regardless of whether we analyze all measured LE&SE embryos (gray, N = 20,
σL = 6.5%) or only selected LE&SE embryos with σL = 2.7% (orange, N = 10).
The same is true for all LE&SE embryos (black, N = 20, σL = 8%) versus selected
LE&SE embryos (brown, N = 10, σL = 2.4%) at 50 min into nc14. Dashed lines are
as in (A). Shaded regions around positional error curves represent standard errors
obtained through bootstrapping.

of the LE&SE data set that in the case of Bcd, the positional error has some egg length

distribution dependence (Figure 2.7B), whereas we know that the positional error of

the gap genes is independent of egg length distribution (Figure 2.1A, [26]). In order

to test whether our conclusion regarding the insufficiency of Bcd remains true even

with a wild-type embryo length distribution, we extracted nuclear Bcd concentrations

from live embryos expressing Bcd-GFP, bred at 25 C. The embryo length variability
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of this dataset is comparable to that of WT (roughly 4%), whereas the embryo length

variability of the other two datasets is roughly 6%. We confirm that the positional

error of Bcd, but not the combined positional error of the gap genes, depends on

the embryo length variability (Figures 2.1A and 2.9B). Moreover, the positional error

of Bcd measured in these fixed-temperature Bcd-GFP embryos is higher than the

minimal value of the combined positional error of the gap genes at the same level of

embryo length variability (Figure 2.7B).

Overall our findings suggest that the scaling information that can be provided by

Bcd to the system is incomplete, and that the scaling of the gap genes cannot be

explained by the sole input of Bcd.

2.5 Bicoid is unnecessary to establish the spatial

scaling of gap gene expression profiles

Bcd’s insufficiency for conveying the low positional error observed in the gap gene

profiles is not a proof that it is in fact unnecessary for gap gene scaling. The bcd

gene, together with nanos (nos) and torso (tor) [38], is one of the primary maternal

determinants in the early Drosophila embryo. All three set up gradients that are

thought to provide most if not all of the positional information for patterning along

the AP axis [110], including the setup, the precision and the scaling properties of

the gap genes [26]. In one plausible scenario, the informational input of Bcd could

be crucial for the gap genes to be positioned to our observed levels of precision, but

other sources of positional precision could also be needed [72]. To test this hypothesis

directly we repeated our analysis on embryos that are lacking one or two of these

three maternal inputs.

First, to test whether bcd is necessary to establish the spatial scaling of the gap

genes, we used DPW to measure gap gene positional error in in embryos mutant for
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Figure 2.10: Bcd is neither sufficient nor necessary to establish the scaling of gap gene
expression profiles. (A) Bcd is unnecessary for establishing the scaling of gap gene
expression profiles in late developmental stages. The combined DPW positional error
of the four gap genes in bcd mutant embryos (bcdE1) is high in the anterior half of the
embryo 15–25 minutes into nc14 (light cyan, N = 18), but it recovers to the same level
as that of WT (black, N = 26, same as in Figure 2.7A) 40–50 minutes into nc14 (dark
cyan, N = 16). Dashed lines represent the expected positional error of completely
unscaled profiles with an embryo length distribution of σL = 4%, matching that of the
mutants. (B) Bcd alone is insufficient to establish the scaling of gap gene expression
profiles. In the posterior half of the embryo, the combined positional errors of the
four gap genes Kni, Kr, Gt and Hb in osk -,tsl - mutant embryos remain high from
15–25 minutes (magenta, N = 11) to 40–50 minutes into nc14 (purple, N = 16), and
they never approach the same level as that of the combined gap genes in WT embryos
(black, same as in (A)). Dashed lines are the same as in (A). Shaded regions around
positional error curves represent standard errors obtained through bootstrapping.

bcd (bcdE1), which are lacking the Bcd gradient. Although the combined positional

error of the gap genes is higher than in wild-type embryos in early nc14, it is nearly

identical to that of wild-type embryos in late nc14 (Figure 2.10A). Thus, the lack of

Bcd impairs the ability of the gap genes to be positioned precisely enough, but only

temporarily. (Note that this early-nc14 impairment of positional precision is strongest

in the anterior of the embryo, as would be expected from the loss of the Bcd profile.)

This result implies that Bcd is not only insufficient, but also ultimately unnecessary,

for the gap genes to achieve wild-type levels of positional precision. It also suggests
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that the three independent maternal inputs Bcd, Nos and Tor seem to be redundant

regarding the spatial scaling of the four gap genes in late developmental stages.

Second, to test whether the maternal inputs nos and tor are necessary to estab-

lish the observed positional precision and thus scaling, we measured the gap gene

positional error in embryos mutant for torsolike (tsl) and oskar (osk) [38, 96], which

are lacking the gradients of Nos and Tor. In these double mutant embryos the sole

AP patterning input is provided by Bcd, and the combined positional error of the

four gap genes Kni, Kr, Gt and Hb exceeds that of wild-type throughout all of nc14

in the posterior region (Figure 2.10B). This result agrees with our finding from the

previous section in that Bcd cannot convey sufficient positional precision to the gap

genes.

The results from the mutant data sets suggest that other maternal factors (in

addition to Bcd) contribute to the establishment of the scaling of the gap genes. We

further tested whether the combination of maternal factors is sufficient to establish

the spatial scaling of gap gene expression profiles. That requires measurements of the

scaling properties of the maternal factors Nos and Tor. However, neither Nos nor Tor

are transcription factors, and thus they must provide their information about scaling

indirectly via the transcription factors that they regulate, i.e. capicua (cic, regulated

by Tor [60]) and maternal Hunchback (Hbmat) (which is suppressed by Nos in the

posterior of the embryo [52]). In addition, it is uncertain if the profile of the Bcd-

regulated gene caudal (cad) contains extra positional information not bound in the

Bcd profile. Thus we measured the positional error of the maternal factors Bcd, Cad

and Cic in LE&SE embryos using DPW (as we were unable to measure the positional

error of Hbmat in LE&SE embryos). Just like Bcd, the positional errors of Cic and

Cad alone are higher than the combined positional errors of the gap genes (Figure

2.11A). However, the combined positional error of the maternal inputs Bcd, Cad and

Cic reduces the positional error along much of the AP axis to within a factor of 2 of
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Figure 2.11: The combined DPW positional error of maternal genes approaches the
same level as that of the four gap genes. (A) The combined positional error of the
maternal genes Bcd, Cad, and Cic (brown) is reduced compared with the separate
positional errors of Bcd (blue), Cad (green) and Cic (red) 16 minutes into nc14, as
measured in LE&SE embryos. However, all four of those positional errors are higher
than the combined positional error of the four gap genes Kni, Kr, Gt, and Hb 50
minutes into nc14 in LE&SE embryos. N = 20 for all data sets. Dashed lines and the
black positional error curve are as in Figure 2.3A. (B) The combined positional error
of the maternal genes Bcd, Cad, and Cad (brown, N = 15) has a similar shape in
nc13 to that of the four gap genes in early nc14. By comparison, the positional error
of Bcd in nc13 (blue, N = 20) is much higher than all of the other curves. The gray
curve, black curve, and dashed lines are as in Figure 2.3A. Shaded regions around
positional error curves represent standard errors obtained through bootstrapping.

that of the combined gap genes, and the functional shape of the combined positional

error of Bcd, Cad and Cic during nc13 closely matches that of the combined gap

genes at early nc14 (Figure 2.11B). The combined positional error of the maternal

genes could potentially be further reduced by including maternal Hb, suggesting that

the combined maternal factors might be sufficient to establish the spatial scaling of

the gap genes in early nc14. Together our results argue that no single property of any

of the maternal input factors is sufficient to explain gap gene scaling, but rather that
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gap gene scaling emerges as a collective effect, an inherent property of the genetic

network.

2.6 Discussion of scaling results with the dynamic

profile warping method

By comparing the positional precision of patterning domains to the natural fluctua-

tions of Drosophila egg sizes, we demonstrate that the Drosophila segmentation gene

network must have solved the scaling problem at the level of the gap genes. To inves-

tigate the origin of gap gene scaling we have developed a unified, shape-independent

metric for measuring the spatial scaling of gene expression profiles. Using this method

we show that Bcd is neither sufficient nor necessary for gap gene scaling, and we con-

jecture that scaling emerges as a collective network property.

With DPW we have developed a unique method for characterizing the scaling

properties of gene expression patterns that can be easily extended to systems other

than the AP patterning system in Drosophila embryos. DPW has great advantages

over traditional methods for measuring scaling in that it is applicable to genes of

arbitrary profile shape for which neither specific landmarks (such as boundaries or

peaks) nor specific functional forms can be identified. For example, the conventional

correlation analysis that assesses the scaling of the Bcd gradient relies on fitting the

Bcd gradient to an exponential shape. However, the Bcd profile might not be perfectly

exponential [91], and reducing the Bcd gradient to a few parameters introduces fitting

errors that are larger than what can be tolerated given the small natural egg size

variation. Though one concern is that the magnitude of the positional error calculated

with DPW might not directly represent how well profiles scale. The positional error

includes natural variations in profile intensity as well as measurement errors in the

profiles’ intensities and baselines that are all unrelated to actual fluctuations due to
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egg size variation. Carefully designed control experiments or simulations (as we did

with Bcd gradients) will be necessary to clarify the contributions from the factors

other than scaling (see Materials and Methods).

We also introduce lines representing the positional error of completely non-scaling

profiles to set up an objective and practical criterion for determining whether a pro-

file is spatially scaled. Compared with arbitrarily chosen thresholds in conventional

correlation analyses that test for scaling [34], these lines represent a physically mean-

ingful lower bound for the positional error of unscaled expression patterns. Namely,

the line passing through the anterior pole is the theoretical minimum positional error

for profiles that completely overlap when overlaid in absolute coordinate space with

respect to the anterior pole, and likewise with the line passing through the posterior

pole. For example, in the case of Bcd, the protein gradient originates from a source

of localized bcd mRNA at the anterior pole and diffuses outward. Thus, it is only

meaningful to compare the positional error of the Bcd gradient with the anterior-

anchored unscaled line because we expect Bcd expression profiles across all embryos

to be coincident at the anterior pole, regardless of whether or not they scale with

embryo length. On the other hand, since the combined positional error of gap genes

integrates the inputs from both poles, both unscaled lines should be used to deter-

mine scaling. By choosing the proper unscaled line(s), we are able to conclude that

a gene must be scaled if its positional error is below its respective unscaled line as

it is the case for the gap genes. One problem with the unscaled lines is that a gene

cannot to be determined to be unscaled if its positional error is above the unscaling

lines. This is because the magnitude of the positional error calculated with DPW

has contributions from different sources including scaling, natural gene expression

noise, measurement errors, etc., whereas the unscaled line only represents the po-

sitional error of perfect unscaled profiles without natural gene expression noise and

measurement errors. Therefore we cannot conclude that Bcd is unscaled based on its
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positional error lies above the anterior-anchored unscaling line (Figure 2.3) unless we

can exclude the contributions from the factors other than scaling.

Our measurements challenge several previously proposed spatial scaling mecha-

nisms for gene expression patterns in the early Drosophila segmentation gene network:

i. One hypothesis assumes that the length constant of the Bcd gradient is pro-

portional to the embryo length, which would produce a scaled Bcd gradient along

the whole AP axis if the amplitude of the gradient were fixed and the reproducibility

of the Bcd gradient were high. However, based on SDD model [41, 43], the length

constant of the Bcd gradient is λ =
√
Dτ , where D and τ are the diffusion constant

and the degradation time of Bcd molecules, respectively. These two parameters are

generally independent of embryo length. To solve this problem, τ was suggested to

be proportional to L2 if the protein degradation rate was tuned appropriately for the

fly embryos in different species [39] or if Bcd degradation were dominated by nucleus-

specific degradation and the nuclear number were fixed for the fly embryos within

one species [17, 42]. In contrast, our measurements in embryos expressing Bcd-GFP

demonstrate that the length constant (in absolute scale) is independent of L (Figure

2.4A). As previously noted, the length constant of the Bcd gradient of LE embryos is

indistinguishable from that of SE embryos [15] and for WT embryos the AP position

at which the Bcd gradient crosses at a given threshold is independent of the embryo

length [48]. In addition, the formation of the Bcd gradient has been observed to be

shaped independently of nuclei [44], and the nuclear number has been correlated with

embryo size within one fly species [78]. Thus no evidence supports the hypothesis

that Bcd is scaled via an adapted length constant of the gradient.

ii. Bcd has also been suggested to scale based on a volume-dependent production

hypothesis. In this case, the length constant remains a constant, but the amplitude

of the Bcd gradient is proportional to embryo volume [15, 105]. This model has

the following three predictions. First, in the relative scale, the profiles of the longer
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Figure 2.12: Comparison between the positional error of the simulated Bcd pro-
files and the measured Bcd gradients. (A) Compared to the positional expression
error of the Bcd gradients measured in LE&SE embryos (green), the positional er-
ror of simulated Bcd profiles with an amplitude C0 (red) extracted from the best
fit (Anoise = 0.1, Bnoise = 0.01, k = 2.7, see Materials and Methods) matches bet-
ter than that of simulated best-fit Bcd profiles with fixed amplitude C0 (magenta)
(Anoise = 0.14, Bnoise = 0.01, k = 0). (B) Compared to the positional error of Bcd
gradients measured in Bcd-GFP embryos (blue), the positional error of simulated
Bcd profiles with an amplitude C0 (red) extracted from the best fit (Anoise = 0.06,
Bnoise = 0.004, k = 3.1) matches better than that of simulated best-fit Bcd profiles
with fixed amplitude C0 (magenta) (Anoise = 0.08, Bnoise = 0, k = 0). Shaded regions
around positional error curves represent standard errors obtained through bootstrap-
ping.

embryos has short decaying constant and larger amplitude, they cross in the middle

of AP axis with the profiles of the shorter embryos with longer decaying constant and

smaller amplitude (A cartoon should help to illustrate this). Therefore the positional

error of the Bcd gradient is position-dependent and has a minimum in the middle of

the embryo (Figure 2.9A). Second, the positional error depends on the embryo length

variability (Figure 2.9A). Third, the dependence between the amplitude of the Bcd

gradient and the embryo length follows the formula δC0

C0
= k δL

L
, where k = 3, if the

embryo volume is proportional to L3. Consistent with these predictions, the positional

error of the Bcd gradients of our three fly line datasets has approximately the same

42



curve shape as predicted with this model (Figures 2.7 and 2.12). Moreover, the

positional error of Bcd gradients increases as the embryo length variability increases

(Figure 2.9B). Last, based on the best fit of the positional error of simulated Bcd

profiles to that of our measured profiles, C0 is dependent on L and the coefficient

k is between 2.7 to 3.1, which comes close to the predicted value of k = 3 (Figure

2.12, Materials and Methods). On the other hand, the correlation between C0 and

the embryo length L is very weak, and it is very hard to directly extract the exact

dependence between C0 and embryo size (Figure 2.5A). This implied that the expected

change of C0 is rather small compared with the gradient noise (including the biological

noise and measurement errors), especially when the embryo variability of WT embryos

is only roughly 4%. Thus the small modulation of C0 is too weak to supply sufficient

scaling information for Bcd gradients that could explain gap gene scaling, consistently

the minimum positional error is still higher than the combined positional error of

gap genes (Figure 2.7), limiting the effectiveness of volume-dependent modulation in

delivering positional precision to the gap genes.

iii. The pre-steady-state decoding model suggests that the genes downstream of

Bcd can be scaled if they read in the Bcd concentration before the Bcd gradient

approaches its steady state, even if the steady-state Bcd gradient is not scaled with

embryo length [8]. This model predicts that the scaling of the downstream genes’

developmental patterns is position-dependent, with hyper-scaling close to the anterior

pole and hypo-scaling close to the posterior pole [21]. However, our measurements

do not support this hypothesis: we observe that the combined positional error of the

gap genes in late nc14 is nearly evenly distributed along the entire AP axis (Figure

2.7). Moreover, developmental markers such as the cephalic furrow and individual

stripes of the even-skipped expression pattern are also scaled with embryo length even

though they are close to the anterior pole, contradicting the pre-steady-state decoding

model. Given the fact that the Bcd gradient nearly stabilizes at about nc11 [42, 71],
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which is when the transcription of zygotic gap genes also starts [55], it is plausible

that the scaling information provided by Bcd is transferred to the gap genes not via

an instant readout but rather through temporal averaging [70, 72]. This temporal

averaging of the Bcd gradient would depend on the lifetime of the gap genes and the

dynamics of the Bcd gradient, which starts to decay in nc14. Temporal averaging

may explain why the specific developmental time for the gap genes to reach minimum

positional errors is delayed by about 40 min compared to Bcd. Assuming that the

volume-dependent production hypothesis is correct, it is quite possible that temporal

averaging could help the system to filter the noise in the Bcd profile to obtain the

scaling information encoded in a modulated C0.

iv. A fourth model for spatial scaling would suggest that the Bcd gradient is

irrelevant for the scaling of AP patterning, instead the scaling is driven solely by

the interaction of the downstream gene network [46]. On the one hand, we find that

the interaction between the gap genes plays a role in establishing gap gene scaling:

although the combined positional error of the four gap genes is much higher than the

unscaled line at early developmental stages in bcd mutant embryos, it recovers to the

WT level at later developmental stages. Such a dynamic process might result from

mutual cross-regulatory repressive interactions of the gap genes that are responsible

for dynamic boundary shifts and boundary sharpening [58, 77]. One could imagine

that the same cross-regulation helps gap genes recover scaling precision by adjusting

their patterns based on the inputs from other maternal genes when Bcd is missing.

A similar scenario was observed as a response of the network to Bcd dosage changes

[72]. On the other hand, if the cross-regulation between gap genes does contribute

to the establishment of the scaling of the segmentation pattern, it cannot achieve

this goal by itself. As our double mutant data indicate, even at the end of nc14, the

positional error of the four gap genes in the posterior half remains much higher than

the WT level: all cross-regulation between the gap genes should still exist in these

44



mutants, but the crucial inputs of Nos and Tor do not. Thus the input from the

maternal factors is imperative for scaled gap gene patterns.

In conclusion, our results indicate that the underlying mechanism of the scal-

ing of segmentation patterns follows neither the scenario of initially scaled maternal

morphogen gradients nor the scenario of scaling through the interaction of the down-

stream gene network. Further studies will be necessary to elucidate the exact origin of

scaling in the patterning system, but our results project that the most likely scenario

includes synergy between the combined maternal inputs and cross-regulation of the

downstream genes, from which scaling emerges as a collective network property.

2.7 Principal component analysis affirms lack of

scaling of Bcd

The DPW method is well-suited for comparing the positional error of genes as a func-

tion of position along the AP axis, but it has the limitation that it only provides an

indirect measure of scaling. In this section we explore an alternative analysis tech-

nique that directly tests the hypothesis that a population of gene profiles scales with

embryo length, considering the profile as a whole rather than investigating specific

AP positions.

If we were to assume that a particular gene’s expression profile completely scales

with embryo length, then if we plotted the shape of the typical embryo’s profile for

this gene relative to its length (such that the anterior pole were fixed at 0 and the

posterior pole were fixed at 1), we would expect that this shape would not vary as a

function of embryo length: thus, if we observe any difference between the shape of the

typical shorter embryo and the shape of the typical longer embryo when plotted in

this manner, we would be able to attribute this shape difference to a lack of scaling.

To illustrate this principle with real data, consider our population of temperature-
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Figure 2.13: Differences in shape among differently sized embryos indicates a lack
of scaling. (A–B) Bcd concentrations in a mixture of Bcd-GFP-expressing embryos
bred at 18 and 29 C (N = 46), plotted as a function of distance from the anterior
pole, for all embryos shorter (A) and longer (B) than the median embryo length in the
population. (C)When plotted in units relative to egg length, the mean Bcd profiles in
short (blue) and long (red) embryos differ, most notably near the anterior pole and in
the middle of the embryo. This pathological difference in shape is evidence of a lack of
scaling. (D) As a result of this difference in profile shape between long and short em-
bryos, the distribution of positions along the AP axis at which embryos cross a given
Bcd concentration threshold (horizontal dashed line) is different for our population
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Figure 2.13: (continued) of small embryos than for our population of large embryos.
P (x|m) is the probability density function for an embryo from population m to cross
the threshold of a Bcd concentration of 0.2 (au) at an AP position of x. σx is
the standard deviation of crossing positions x for the two populations of embryos,
small and large. (A–C: error bars are the standard deviations of measured Bcd
concentrations over all embryos in either the small-embryo-length or large-embryo-
length populations.)

varied embryos (Section 2.4): we can split this population into two sets consisting of

all embryos with lengths above and below the median (Figure 2.13A,B). If we plot

the mean profile (relative to embryo length) in each of these two sets on top of each

other, we find differences in profile shapes (Figure 2.13C,D). This is visual evidence

of a lack of scaling in our population of temperature-varied embryos.

To make this analysis of scaling through visual comparison of profiles more scien-

tifically rigorous, we can use the language of hypothesis testing to determine whether

profile shapes at different egg lengths are different enough to constitute a likely lack

of scaling. We take our null hypothesis to be the idea that profiles perfectly scale with

egg length: the larger the difference in profile shapes in embryos of different lengths,

the likelier it is that we will reject this hypothesis and conclude that these profiles

do not actually scale. In order to quantify the difference in profile shapes in embryos

of different lengths, we use principal component analysis (PCA) to algorithmically

extract individual features in a set of profile shapes whose correlations with embryo

length we can calculate [86, 101, 108].

If we think of our profiles as sampling the protein concentration level over p po-

sitions along the AP axis, the first principal component of PCA will be the direction

in p-dimensional space in which the variability among profiles is the highest. The

second principal component will be the direction, orthogonal to the first principal

component, along which the remaining variability among profiles is highest, and so

on [63]. In order to illustrate PCA with real data, Figure 2.14A presents Bcd profiles

from our set of Bcd-GFP embryos imaged live in nc14, and Figure 2.14B,C presents
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Figure 2.14: Principal component analysis tests the hypothesis that profiles perfectly
scale with embryo length. (A) Bcd profiles from 394 Bcd-GFP embryos, imaged
live 16 minutes into nc14, are plotted as a function of position along the AP axis
and colored according to egg length, with red representing the longest embryos and
blue representing the shortest embryos. (B,C) The first two principal components,
accounting in this dataset for 89% of the total variance in the profiles, are extracted
from the profiles. The projections of the profiles onto the vectors given by the first two
principal components are shown. (D) Scatter plot of the magnitudes of component 1
vs. component 2 for all embryos, where color again represents embryo length. (E,F)
The first two principal components plotted as a function of the deviation of egg length
L from the mean egg length 〈L〉. Red lines indicate least-squares linear regressions
to data, and error bands represent ±1 standard deviation of uncertainty on the value
of the slope of the regression.

the projections of the profiles onto the first two principal components as calculated

using PCA. Typically, the first principal component of our Bcd datasets captures the

variability in the overall magnitude of the measured protein concentrations among

embryos, and the second principal component captures the variability in effective
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protein concentration decay lengths. For each principal component, we find the mag-

nitude and direction of the projection of each profile onto the vector represented by

that component (Figure 2.14D). For the first two principal components, we perform

a linear regression over the embryos in our dataset between the strength of each of

the components and embryo length (Figure 2.14E,F): if profiles perfectly scale with

embryo length, we would expect neither of these components to have a significant

correlation with embryo length. Our null hypothesis, then, is precisely the hypothesis

that neither of the first two principal components has a significant correlation with

embryo length: more concretely, we reject this hypothesis if we can report with at

least 95% confidence that the smaller of the two p-values of the correlations between

the first two principal components and egg length is below 5%.

With this implementation of principal component analysis, we can test the hy-

potheses of whether Bcd and the gap genes, measured in the datasets described in the

previous sections, scale with embryo length. First, we can apply PCA-based hypoth-

esis testing to the datasets of live Bcd-GFP embryos and fixed wild-type embryos

immunostained for the four gap genes Gt, Hb, Kni, Kr. We find rejection of Bcd

scaling in individual imaging sessions of Bcd-GFP embryos if and only if the relative

standard deviation σL/〈L〉 of embryo length in the session is 3.7% or greater, which

implies some sensitivity of the PCA method on the variability of embryo lengths in the

population (Figure 2.15A). This rejection of the scaling of Bcd is further enhanced, as

measured by the plotted p-value, when combining all imaging sessions, as shown by

the largest circle in Figure 2.15A. These results clearly demonstrate a lack of scaling

of the Bcd gene with embryo length.

On the other hand, an analogous principal component analysis of our dataset of

fixed wild-type embryos stained for the gap genes reveals no rejection of the hypothesis

of scaling for those genes (Figure 2.15B), either for early or late nc14: thus, for

these two datasets with a wild-type embryo length distribution, our PCA results are
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Figure 2.15: Principal component analysis of live and fixed embryos with wild-type
length distributions rejects scaling of Bcd but not the gap genes. (A) Rejection
(red) or non-rejection (blue) of the hypothesis of scaling in imaging sessions of
symmetrically mounted Bcd-GFP embryos imaged live 16 minutes into nc14, as a
function of the relative standard deviation σL/〈L〉 of embryo length. The hypothesis
of scaling for an imaging session is rejected if the 95% confidence interval (error
bars) completely lies below a p-value of 5% (green horizontal line), where the
p-value represents the lower of the two p-values of the correlations between the first
two principal components and embryo length. Areas of circles are proportional
to the number of valid embryos in each imaging session. Only imaging sessions with 12
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Figure 2.15: (continued) or more valid embryos are shown. Large circle represents
all imaging sessions combined. (B) Non-rejection of scaling in early- and late-nc14
wild-type embryos stained for the four gap genes. Early embryos were imaged from
15 to 25 minutes into nc14 and late embryos were imaged from 40 to 50 minutes into
nc14. Colors, marker sizes, and error bars are as in top plot.

consistent with the hypothesis that the four gap genes scale with embryo length and

that Bcd does not. Note that this finding controls for both relative embryo length

variability and sample size in individual plotted points: first, Figure 2.15A implies

that there is a certain minimum embryo length variability in a dataset necessary to

reject the scaling hypothesis, and our early-nc14 gap gene dataset clearly exceeds this

minimum (although our late-nc14 gap gene dataset may not). Second, the number of

embryos in the Bcd and gap gene datasets are comparable, as shown by the areas of

the circles in Figure 2.15A,B.

One potential difficulty in comparing the two aforementioned datasets with wild-

type embryo length variability is the fact that they were acquired with different ex-

perimental techniques (live imaging of Bcd-GFP embryos vs. fixed immunostaining

for gap gene profiles in wild-type embryos). Two alternative datasets, the LE&SE

datasets discussed in Section 2.4, provide a way to compare the scaling of Bcd and

the gap genes under more equal experimental conditions: both datasets are immunos-

tainings of embryos bred for long and short embryo length, with a relative standard

deviation of length of roughly 6 to 7% altogether. One dataset contains embryos

stained for the maternal factors Bcd, Cad, Cic, and maternal Hb, and the other

contains embryos stained for the gap genes Gt, Hb, Kni, and Kr. Both datasets

contain embryos stained over several nuclear cycles before gastrulation, and we pick

out specific time windows to test with PCA: early nc14 embryos, late nc14 embryos,

and all embryos throughout all of nc14. Unlike the previously discussed datasets,

which show a lack of scaling of Bcd in Bcd-GFP embryos and results consistent with

scaling for the gap genes in immunostained embryos, this comparison of Bcd and the

51



Figure 2.16: Principal component analysis of live and fixed embryos with enlarged
length distributions rejects scaling for Bcd and Kr. p-values and 95% confidence
intervals (calculated as in Figure 2.15) are shown for (1) LE&SE embryos stained
for either Bcd or for the gap genes and (2) temperature-varied Bcd-GFP embryos
(labeled as such). Stained Bcd and gap gene embryos are pooled into the age ranges
of 15 to 25 minutes into nc14 (“early”), 40 to 50 minutes into nc14 (“late”), and all of
nc14 (“nc14”). Axes, colors, green bar, marker sizes, and error bars are as in Figure
2.15.

gap genes in LE&SE embryos gives a slightly more nuanced result: the hypothesis of

scaling is rejected for Kr in the time windows of late nc14 and all of nc14, for Bcd

in the time window of all of nc14, and for no other combinations of gene and time

window (Figure 2.16). Moreover, our dataset of Bcd profiles in temperature-varied

Bcd-GFP embryos (discussed in Section 2.4) also fails the scaling hypothesis (Figure

2.16). While the lack of scaling of Bcd is to be expected, the implied lack of scaling

of Kr is surprising, given that this finding is not corroborated by our PCA results in
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Figure 2.17: Embryo length varies with temperature and shrinkage rate from fixing.
(A) Dependence of embryo length on temperature for OreR (black) and Bcd-GFP
(green) embryos. Error bars are the standard deviation of the embryo length distribu-
tion. (B) Variability of embryo length vs. shrinkage rate of fixed embryos for OreR
(black) and Bcd-GFP (green) populations. The dashed line represents the variability
of the embryo length of live OreR embryos without fixing, σL = 3.8 ± 0.1%. Error
bars are the standard deviation of the embryo length distribution.

immunostained wild-type embryos (Figure 2.15) or by our DPW results (Figures 2.2,

2.6). However, it is worth noting that of the four gap genes, DPW finds Kr to have

the highest positional error as a function of position along the AP axis (Figure 2.6),

and so it is plausible that the Kr expression profile may scale less precisely than the

other gap genes.

2.8 Materials and Methods

Fly stocks and genetics

The artificially selected inbred fly lines with small and large embryos (SE and LE) are

the fly lines #9.17 and #2.46, respectively, from Martin Kreitman’s lab [15]. These

stocks were kept at 22 �C. The Bcd-GFP fly line is 2XA (egfp-bcd ; +; bcdE1) from our
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Bcd-GFP fly line library [72]. One stock of Bcd-GFP was bred for embryo collection at

25 �C. Two additional Bcd-GFP fly stocks were bred at 18 �C and 29 �C environments

for four months prior to imaging to make sure the embryo size adapted to the new

temperatures. The Bcd-GFP flies bred at 18 �C had an embryo length of 524 ± 19

�m, and Bcd-GFP flies bred at 29 �C had an embryo length of 468± 14 �m (Figure

2.17A). All embryos from these two stocks were collected at 22 �C. The mutant fly

lines Bcd+ (+; +; nos -osk -) and Bcd- (+; +; bcdE1) are from Eric Weischaus’s lab.

All of these mutant stocks were bred for embryo collection at 22 �C.

Fixed imaging and live imaging

For fixed imaging, all embryos were collected at 25 �C, heat-fixed, immunostained, and

imaged following the same protocol as described before [26]. The primary antibodies

used for the maternal genes were rabbit anti-Bcd, rat anti-Cad, and guinea pig anti-

Cic. All of the embryos were dechorionated to get rid of their outer eggshells before

measurements were taken. One artifact of the immunostaining experiment was that

it could introduce extra artificial variability of the embryo length due to differential

embryo shrinkage. In our study, we only used the data sets with a shrinkage ratio

Lfixed/Llive > 0.9, where Lfixed and Llive were the average embryo lengths of the fixed

embryos and living embryos. We chose this cutoff based on our observation that

when Lfixed/Llive < 0.9, the relative standard deviation σL of the fixed embryos is

comparable with that of the living embryos (Figure 2.17B). This was critical if we

wanted to investigate scaling in biologically relevant conditions. The live imaging

with two-photon microscopy and imaging analysis were as described before [72].

Positional error calculation with DPW

All profiles were smoothed with 0.5% L (51 out of 1000 total data points). Only the

data points in the region of 5–95% L were used in the analysis. For a given profile
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set, the intensity of the individual profile was normalized by the global minimum

and maximum intensity of all selected profiles. The reference profile was the mean

of all profiles with an embryo length of 〈L〉 (1± σL), where 〈L〉 was the average

embryo length of all the embryos in the data set and σL was the standard deviation

of the embryo length normalized by 〈L〉. This reference profile was the standard

to which each individual sample profile in the population was compared using the

DPW method. A relative intensity difference matrix was calculated as the pointwise

intensity difference between points in the sample profile and points in the reference

profile, squared and normalized by the pointwise sum of the intensities between the

two profiles. A curve was found through this matrix that minimizes the sum of all of

the matrix elements along the path: this represents the warping of the sample profile

that best fits it to the reference profile. The core curve-finding algorithm was provided

by Dan Ellis [27]. The positional error of the population of profiles of one gene at a

particular position along the AP axis was calculated as the RMS distance between

that position and the corresponding position in each of the individual profiles that

that position was warped to. To calculate the combined positional error of multiple

genes, the relative intensity difference matrix was calculated by summing the weighted

matrices of the individual genes. For mathematical simplicity, the weight of each of

the combined genes was assumed to be equal in this study. The magnitude of this

positional error does not directly represent how well profiles scale. This is because

the positional error includes natural variations in profile intensity unrelated to scaling

and fluctuations in the profiles’ intensity and baselines due to measurement errors.

We systematically investigated the systematic errors of DPW: in the case that there

are no amplitude or baseline fluctuations, the positional error calculation shows little

shape dependence between exponential profiles and step-function-like profiles (Figure

2.8A,B). However, the positional error of more gradual profiles such as exponential

profiles are more sensitive to intensity measurement errors (Figure 2.8A,B).
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Simulations of positional errors

To understand the potential underlying mechanism for the scaling of Bcd, we also

calculated the positional errors of simulated Bcd gradients using DPW. In the simu-

lation, Bcd gradients approximated as exponential profiles C(x) = C0e
−x/λ. Based on

the measurements, λ is not dependent on the embryo length L (Figure 2.7A), and thus

it is fixed as 0.2 L̄ for the gradients in the mid-coronal plane from the Bcd-GFP fly

line and 0.14 L̄ for the dorsal gradients from the LE&SE fly line. As suggested by the

volume-dependent production model, C0 could be modulated by the embryo length

with the formula δC0

C0
= k δL

L
. The gradient noise at each position x is approximated as

a Gaussian noise with the standard deviation of Cnoise = 0.15 based on previous mea-

surements on Bcd-GFP gradients. To take the measurement noise into account, we

add a Gaussian noise with the standard deviation of Anoise to account for the overall

intensity change due to either the offset of the focal plane, the fluctuation of the laser

power and etc. We also add a Gaussian noise with the standard deviation of Bnoise to

account for the auto-fluorescence, the dark counts of the detector and etc. Taken all

together, the observed profile I(x) = (1 + Anoiseg)C(x) (1 + Cnoiseg +Bnoiseg), where

g is a random number drawn from the standard normal distribution. To fit the

measured Bcd gradients, the positional errors of 100 simulated Bcd profiles were cal-

culated with DPW to compare the positional errors of the measured Bcd gradients

by searching on the parameter space. When the volume dependent production mech-

anism is on, there are three free parameters Anoise, Bnoise and k; otherwise, k is set to

be 0.
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Chapter 3

Binding site number is the most

important regulator of

enhancer-mediated activation

This chapter reproduces a draft of a manuscript that will soon be submitted for pub-

lication. (Authors: Eric M. Smith*, Jia Ling*, Hernan G. Garcia*, Hongtao Chen,

Stephen J. Small, and Thomas Gregor.)

Enhancers contain clusters of binding sites for transcription factors, but how the

activities of individual sites are coordinated to direct gene expression is still unknown.

Architectural features that are thought to affect expression output include binding

site affinity, site number, and the spatial arrangements of adjacent sites. Here we use

live imaging to investigate the impacts of single enhancer binding sites on two out-

put parameters: mRNA expression levels and boundary positioning, which reflects

enhancer sensitivity to transcription factor concentration. In contrast to previous

studies, our measurements reveal that both parameters are linearly correlated with

the number of activator binding sites, and not with measured binding site affinities or

specific spatial arrangements of sites. The additive effects of individual sites reach a
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saturation plateau that may reflect the maximum output of new transcripts from the

basal promoter. These findings suggest a simple mechanism of transcriptional regula-

tion in which binding site number is the most important input parameter driving gene

expression output. We find that a cooperative model of protein-protein interactions,

in which multiple enhancer-bound transcription factors interact with the promoter

simultaneously, can largely explain this behavior. While we find the affinities and

positions of endogenous binding sites to both be relatively unimportant in determin-

ing a binding site’s effective role in regulating expression level, there exist synthetic

binding site configurations in which both of these parameters dramatically influence

expression level.

3.1 Introduction

Networks of transcriptional regulation are critical for establishing the body plans

of multicellular organisms. The basic units of these networks are asymmetrically

localized transcription factors and small DNA elements controlling target genes (en-

hancers), which contain between 5 and 20 transcription factor binding sites [2, 19].

Studies in many systems suggest that transcription factors can act as activators or

repressors, and that the activities of individual enhancers are controlled qualitatively

by the combination of binding sites in each enhancer [3]. Despite this extensive knowl-

edge, the quantitative relationship between enhancer architecture, input transcription

factor concentration, and transcriptional output is still largely unknown.

Here we focus on a detailed analysis of transcriptional activation mediated by a

270-bp proximal hunchback (hb) P2 enhancer, which is located upstream and adja-

cent to the hb P2 basal promoter. The P2 enhancer is activated by the maternal

transcription factor Bicoid (Bcd), which is expressed in an anterior gradient [23, 71].

Bcd binds to 6 different well-characterized locations within the P2 enhancer [24], and
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ID Binding site combination # Bcd sites Orientation N
1 __ __ __ __ __ __ __ 0 1 5

2 __ __ __ __ Hb __ __ 0 1 10

3 A1 __ __ __ Hb __ __ 1 1 6

4 __ __ __ __ Hb A2 __ 1 1 8

5 __ __ __ __ Hb __ A3 1 1 7

6 A1 __ __ __ Hb __ A3 2 1 8

7 __ __ __ __ Hb A2 A3 2 1 10

8 __ __ X2 X3 Hb __ __ 2 1 6

9 A1 __ __ __ Hb A2 A3 3 1 12

10 __ X1 X2 X3 __ __ __ 3 1 7

11 __ X1 X2 X3 Hb __ __ 3 1 10

12 A1 X1 X2 X3 Hb __ __ 4 1 6

13 __ X1 X2 X3 Hb A2 __ 4 1 5

14 __ X1 X2 X3 Hb __ A3 4 1 6

15 A1 X1 X2 X3 Hb A2 __ 5 1 7

16 A1 X1 X2 X3 Hb __ A3 5 1 9

17 __ X1 X2 X3 Hb A2 A3 5 1 6

18 A1 X1 X2 X3 Hb A2 A3 6 1 15

Table 3.1: Eighteen constructs were tested in which different combinations of Bcd
and Hb binding sites were disabled via point mutation. All plots in Figure 3.1 were
generated using embryos containing one of these 18 constructs, in which various com-
binations of binding sites were mutated out of the endogenous P2 enhancer. All listed
constructs were inserted into the genome in the same orientation (labeled orientation
1). N represents the number of embryos imaged per construct.

drives gene expression throughout the anterior half of the early Drosophila embryo

with an expression boundary at roughly 50% embryo length (EL) [25, 98]. Bcd is

thought to control levels of hb RNA production in anterior nuclei and position the hb

boundary, both via a threshold-dependent mechanism.

The six Bcd-binding sites in the P2-enhancer vary in sequence, with three high-

affinity sites (A1–3, Figure 3.1A) and three tightly clustered lower-affinity sites (X1–3,

Figure 3.1A) [24]. To quantitatively test the contributions of each site, we directly

measured in vivo transcriptional outputs from 18 reporter genes containing precise
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Figure 3.1: The rate of mRNA production is independent of binding site position
or affinity. (A) Cartoon of template for reporter constructs. (B) Library of 18 P2
enhancer mutants with different combinations of deletions of Bcd and Hb binding
sites. For the complete library list of mutations used refer to Table 3.1. (C)
Individual sites of nascent transcript formation are visualized as fluorescent puncta
allowing for quantification of the fraction of active nuclei and the rate of mRNA
production. Inset: Magnified region of 14×14 �m showing an active (green arrow)
and inactive nucleus (white arrow). (D) The mean fluorescence as a function of time
for all active nuclei in a bin the size of 2.5% of the length of the AP axis reports
on the average rate of mRNA production and the average number of total mRNA
molecules produced. (E) Average rate of mRNA production as a function of AP
position for different numbers of Bcd binding sites in the P2 enhancer. Numbers
of Bcd binding sites reflect sites listed in [25]; more Bcd binding sites may be
present in the hb P2 enhancer, as discussed in [76]. (F) Average rate of mRNA
production as a function of position along the AP axis. Enhancers with the same
number of binding sites yield statistically comparable rates of mRNA production.
Here three examples of constructs with 5 Bcd binding sites each (colored lines) are
shown, plus the average (blue line in E); for the complete set see Table 3.1. (G)
The variability in the mRNA production rate among all embryos with a certain
number of binding sites (black) is comparable to the embryo-to-embryo variability
within a single fly line (grey bar), but lower than the variability among embryos
bearing different numbers of Bicoid binding sites (colors). The black points represent
the standard deviation of the rate of mRNA production among all embryos with
a given number of Bicoid binding sites, and the gray band denotes the average
(plus/minus one standard deviation) of the standard deviations of the rates of
mRNA production over the individual collections of embryos sharing the same P2
enhancer mutant. Because the black points and gray band are at roughly the same
height, we can consider different enhancers with the same number of binding sites to
yield roughly the same rate of mRNA production. Each colored point is the standard
deviation of the rate of mRNA production for all embryos with one of two numbers
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Figure 3.1: (continued) of Bcd binding sites, where the lower of the two numbers for
each point is given by its position along the horizontal axis. Because these colored
points are above the black points that represent one given number of Bicoid binding
sites, we can thus distinguish between embryos with different numbers of binding sites.
(E–F: error bars are standard errors of the mean of the rates of mRNA production
(fitted to raw fluorescence values) over multiple embryos; G, standard deviations are
calculated as described in Figure 3.2 and error bars are obtained from bootstrapping
over embryos. Absolute calibration error is not included and can be as high as 30%
[33].)
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Figure 3.2: Detrending allows for a comparison in the standard deviations of the
rate of mRNA production across different production rate levels. (A) Each point
represents the mean and standard deviation of the rate of mRNA production in one
2.5% window along the AP axis for one of the 18 constructs listed in Table 3.1. Color
represents the number of Bcd binding sites in the construct. A spline curve (gray)
was fit to the standard deviation of production rate as a function of mean production
rate. (B) The difference between each point in (A) and the spline fit, shown as a
detrended standard deviation in production rate.

mutations in individual sites and combinations of sites (Figure 3.1A, B, Table 3.1).

All constructs contained as a template the hb P2 enhancer, the hb P2 basal promoter,

24 MS2 stem loops, the lacZ coding region, and the alpha tubulin 3’UTR [33]. In

vivo multi-photon fluorescence imaging of embryos containing single copies of each

construct revealed individual sites of nascent transcription in each nucleus (Figure

3.1C). Intensity measurements of these sites over time allowed us to extract rates of

transcriptional initiation and the total amount of produced mRNA molecules for each

construct (Figure 3.1D).

61



(A) (B)

Average Average

0.2 0.3 0.4 0.5 0.6
2

3

4

5

6

7

8

9

AP position (x/L)

Pr
od

uc
tio

n 
ra

te
 (m

R
N

A/
m

in
)

0.2 0.3 0.4 0.5 0.6
2

3

4

5

6

7

8

9

AP position (x/L)

Pr
od

uc
tio

n 
ra

te
 (m

R
N

A/
m

in
)

(C)

0.2 0.3 0.4 0.5 0.6
2

4

6

8

10

12

14

16

18

AP position (x/L)

Pr
od

uc
tio

n 
ra

te
 (m

R
N

A/
m

in
)

Figure 3.3: Enhancers with the same number of binding sites yield statistically com-
parable rates of mRNA production. (A) Average rate of mRNA production as a
function of position along the AP axis. Here three examples of constructs with either
only three “A” or three “X” Bcd binding sites (colored lines) are shown, as well as the
average rate of mRNA production of embryos of all three constructs together (black
line). (B) Same as (A), but three constructs with only two “A” or two “X” Bcd
binding sites are compared. (C) Same as (A), but two constructs (#19 and 20 in
Table 3.2) with all 6 endogenous Bcd binding sites that only differ in the presence of
the Hb binding site are compared. (A–C: Error bars are standard errors of the mean
of the rates of mRNA production (fitted to raw fluorescence values) over multiple
embryos.)

3.2 Linearity of expression with binding site num-

ber

As expected, expression levels increase with the number of Bcd binding sites present

in the constructs (Figure 3.1C,E). Surprisingly, however, mutations in strong A sites

cause similar effects on mRNA production rates to those caused by mutations in weak

X sites (Figure 3.3A,B). Additionally, mRNA production rates are independent of the

positioning of the various binding sites and only depend on the number of binding

sites present in a given enhancer construct (Figure 3.1F). The standard deviation

of the rate of all embryos from all fly lines with the same number of binding sites

is comparable to the standard deviations of multiple embryos of individual fly lines

separately (Figure 3.1G). We thus grouped all the constructs by their binding site

number, and collapsed the data for each group (Figure 3.1E). In contrast, when we

group embryos with different numbers of binding sites together, the standard devia-
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ID Binding site combination # Bcd sites Orientation N
19 (A1 X1 X2 X3 __ A2 A3) 6 2 8

20 (A1 X1 X2 X3 Hb A2 A3) 6 2 8

21 (A1 X1 X2 X3 Hb A2 A4 A3) 7 1 5

22 (A1 X1 X2 X3 Hb A2 A5 A3) 7 2 6

23 (A1 X1 X2 X3 Hb A2 A4 A5 A3) 8 2 3

24 (A2 A3) plus (A1 X1 X2 X3 Hb A2 A3) 8 2 3

25 (A1 X1 X2 X3) plus (A1 X1 X2 X3 Hb A2 A3) 10 ? 4

26 (A1 X1 X2 X3 Hb A2 A3) plus (A1 X1 X2 X3 Hb A2 A3) 12 1 3

Table 3.2: Further constructs allow for investigation of additional effects on mRNA
production. Constructs in the above table are not used in Figure 3.1 but feature in
later figures. Among these are (1) constructs that were integrated into the genome
in the opposite orientation (#19 and 20, labeled as orientation 2) to those in Table
3.1 and (2) constructs with additional Bcd binding sites not found in the endogenous
P2 enhancer (#21 through 26), either by mutating binding sites into the endogenous
enhancer or by integrating fragments of a second P2 enhancer next to the existing
enhancer (Figure 3.4D). N represents the number of embryos imaged per construct.

tions of the rates in these groups are higher (Figure 3.1G), demonstrating that our

measurements can distinguish between populations of embryos with different num-

bers of binding sites. Thus the specifics of the individual sequences and their relative

position within the enhancer are much less predictive of transcription rate than the

actual number and affinity of binding elements [14, 25, 98].

To systematically characterize the effect of binding site copy number on enhancer

action quantitatively, we use a more convenient representation of our data in terms

of input-output functions for the rate of mRNA production, where the position along

the AP axis is replaced by its corresponding Bcd concentration (Figure 3.4A). When

performing a fit of each input-output function to a sigmoidal curve, we obtain the

maximum and basal rates of transcription, the dissociation constant, and the sensi-

tivity of the curve (see Figure 3.4 caption). Despite the highly nonlinear nature of

the input-output functions, we find that the rate of transcription increases linearly as

binding site number is varied between 0 and 6, while the basal rate remains constant
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Figure 3.4: Rate of mRNA production and boundary position scale linearly with
number of Bicoid binding sites. (A) Fit of the rate of mRNA production as a
function of the Bcd activator concentration for the wild-type P2 enhancer (six Bicoid
binding sites). Bcd concentration is inferred from the AP position (Figure 3.5A;
[72]). The data are fitted to a sigmoidal curve with sensitivity 4.5± 0.8. Inset: Fit of
the fraction of active nuclei as a function of Bcd concentration to a sigmoidal curve
with a sensitivity of 8 ± 1. (B) Maximum (black), transition (orange) and basal
(blue) rate of transcription as a function of the number of Bcd binding sites in the
P2 enhancer display linear and saturated ranges. Gray point represents the mean
rate of transcription for embryos with a P2 enhancer containing no Bcd binding sites.
The slope in the increase of the maximum rate of transcription with binding site
number is 1.5 ± 0.1 mRNA/min/binding site. The mean basal transcription rate is
3± 1 mRNA/min. Filled circles represent all embryos with a certain number of Bcd
binding sites and open circles represent embryos from individual constructs listed in
Table 3.1 and all constructs with more than 6 binding sites in Table 3.2. All data are
from sigmoidal fits to the rates of mRNA production (Figure 3.5B). (C) Boundary
position as a function of number of Bicoid binding sites. The position is inferred from
the fitted Kd in Figure 3.5B following Figure 3.5A. (D) Two strategies were employed
to add extra binding sites to the endogenous P2 enhancer: synthetically mutating
Bcd binding sites into the endogenous enhancer (top) and adding parts of an extra
enhancer beside and further away from the promoter than the existing one (bottom).
(E) Boundary position as a function of number of binding sites shows a linear trend
for different Bicoid dosages: for the wildtype level (2x) of Bicoid the slope of this
trend is 0.040 x/L per binding site, for half the wildtype level (1x) the slope is 0.028
x/L per binding site, and for double the wildtype level (4x) the slope is 0.051 x/L
per binding site. Light green and red lines represent the expected boundary positions
for 1x and 4x dosage, respectively, if mRNA production was a direct readout of Bcd
concentration for altered Bcd dosages. (See Figure 3.6A,B for analogous plots of the
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Figure 3.4: (continued) fitted maximum production rate and boundary position of the
fraction of active nuclei.) Expected boundary position curves calculated by interpo-
lating from the known Bcd concentration profile with halved or doubled amplitudes,
following Figure 3.5A. Dark green, black, and dark red lines represent regression lines
to Bcd dosage points. (F) The Bicoid concentration at the boundary remains largely
unchanged within experimental error independently of the activator dosage, support-
ing the claim that our reporter construct responds directly to Bicoid concentration.
Light green and red dashed lines represent the expected boundary positions for 1x
and 4x dosage, respectively, if mRNA production perfectly compensated for changes
in Bcd dosage, i.e. if boundary positions exactly matched their 2x counterparts. (See
Figure 3.6C for an analogous plot of the threshold Bicoid concentration at the bound-
ary between high and low fractions of active nuclei.) (A: error bars are standard errors
of the mean of the rates of mRNA production (fitted to raw fluorescence values) over
multiple embryos; B, C, E, and F: error bars are 68% confidence intervals from fits of
the rates of mRNA production to sigmoidal functions. C, E, and F: open and filled
circles are as in B. Absolute calibration error is not included and can be as high as
30% [33].)

for all our constructs (Figure 3.4B). In addition, the Bcd concentration correspond-

ing to each dissociation constant defines the boundary between high and low rates

of expression along the AP axis. Interestingly, this boundary position also varies

nearly linearly in the range of 0 to 6 Bcd binding sites (Figure 3.4C). Thus both

the initiation rate and the boundary location depend additively on how many of the

six endogenous Bcd binding sites are present, and they seem to be independent of

binding site strength and site distance from the promoter.

3.3 Extensions to the endogenous system

To test the upper limit of these linear relationships, we increased the number of bind-

ing sites in our constructs beyond the six endogenous sites found in the P2 enhancer.

Multiple cloning strategies were used, such as adding exogenous sites within the P2

enhancer, and splicing part of a second P2 enhancer next to the first (Figure 3.4D).

However, for any number of possible binding sites larger than the endogenous six,

both the maximum rate and the location of the boundary saturate (Figure 3.4B,C).
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Figure 3.5: Extracting curves of mRNA production rate from raw data and known
Bcd concentration. (A) The AP position can be extracted from Bcd concentration
and vice versa. A curve of the Bcd concentration profile recorded live from Bcd-GFP
embryos [72] is used to interpolate a Bcd concentration from an arbitrary AP position
or vice versa, allowing for calculations of boundary positions from fits of Kd to rates of
mRNA production, as in Figure 3.4A. The black vertical line represents 30% AP, and
the black horizontal line represents the corresponding Bcd concentration, 35.0 nM, at
that position. (B) Sigmoid functions (red) are fit to rates of mRNA production as a
function of Bcd concentration (black). For each curve of N binding sites, the range of
Bcd concentration to fit to was determined by eye (black circles). Error bars on rates
of mRNA production are standard errors of the mean rate of mRNA production over
all embryos with N binding sites.

Hence linearity is bound at the lower end by our detection limit (Figure 3.1G) and

has an intriguing upper bound that coincides with the number of binding sites found

in the endogenous enhancer.

To test whether Bcd is solely responsible for the observed linear relationships, we

performed live imaging measurements on a subset of our constructs in different Bcd
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Figure 3.6: The maximum rate of mRNA production and the boundary position
between high and low fractions of active nuclei vary as a function of Bcd dosage.
(A) The maximum rate of mRNA production, as extracted from fits of sigmoid
functions to the rates of mRNA production along the AP axis, is lower for embryos
with half and twice the WT amount of Bcd (green and red respectively) than for
embryos with WT amounts of Bcd, given the same number of Bcd binding sites. (B)
The boundary position between high and low fractions of active nuclei (extracted
according to Figure 3.4A inset) varies as a function of Bcd dosage and the number of
Bcd binding sites in a way that suggests partial compensation for altered Bcd dosage.
Light red and light green curves represent expected boundary positions if rates of
mRNA production directly read out Bcd concentration with no compensation, as in
Figure 3.4E. (A, B: Dark green, black, and dark red lines represent regression lines
to Bcd dosage points.) (C) The Bcd concentrations at the boundary between high
and low fractions of mRNA production vary according to Bcd dosage for a given
number of Bcd binding sites. Light green and light red dashed lines represent the
expected Bcd concentrations at the boundary if boundary positions along the AP
axis stay fixed as the Bcd dosage changes, as in Figure 3.4F. Error bars for all plots
represent 68% confidence intervals of fits of the rates of mRNA production (for A) or
the fraction of active nuclei (for B and C) to sigmoid functions.

dosage backgrounds. Within the range of the six endogenous Bcd binding sites we

see the same linear relationship for boundary position as a function of number of

sites regardless of whether the measurements are performed with half or twice the

wild-type Bcd dosage (Figure 3.4E). Thus, the placement of the mRNA expression

boundary in embryos with altered Bcd dosage can be predicted solely (for constructs

with many Bcd binding sites) or largely (for constructs with few Bcd binding sites)

by the shift in Bcd spatial concentration caused by the altered dosage. These results

suggest that the Bcd gradient is the main driver of the mRNA expression pattern

directed by the P2-enhancer, and challenges the idea that it responds synergistically
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Figure 3.7: The variability of the rate of mRNA production is on the level of 20% for
all Bcd dosages. (A–C) Each colored point represents the standard deviation of the
rate of mRNA production divided by the mean rate of mRNA production in a 2.5% AP
window for all embryos with a given number of Bcd binding sites, indicated by color,
for embryos with half-WT (A), WT (B), and double-WT (C) levels of Bcd dosage.
Error bars on points represent standard errors from bootstrapping over embryos, and
only 2.5% AP windows in which rates of mRNA production were extracted from
at least 3 embryos are included. Solid curves represent the plotted points collapsed
into bins of width 1 mRNA/min; only bins with at least 3 points (indicated by the
presence of an error bar) are plotted. Error bars on solid curves are standard errors
over all points in the bin. (D) Each of the binned trendlines from (A–C) are plotted
together, showing roughly 20% variability for each Bcd dosage.

to inputs from Bcd and Hb [87, 93]. To test this directly, we mutated the Hb site in

the P2 enhancer, which had very little effect on enhancer activity (Figure 3.3A,C).

However, whereas constructs with high numbers of binding sites exhibit the same

threshold Bcd concentrations regardless of Bcd dosage, we noticed that constructs

with lower numbers of binding sites “compensate” for the change in Bcd concentration

by shifting their threshold Bcd concentrations accordingly (Figure 3.4F). As a result,

the boundaries between domains of high and low mRNA expression in constructs with

few Bcd binding sites are closer to those found in embryos with WT Bcd dosage than
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would be expected if the response to dosage is completely linear for all constructs

(Figure 3.4E). The variability in the rate of mRNA production across embryos falls

in the 20% region for all Bcd dosages (Figure 3.7). We speculate that the presence

of many Bcd binding sites in the wild type P2 enhancer may override the effects of

Hb in the placement of the mRNA expression boundary, regardless of Bcd dosage. In

constructs with lower numbers of Bcd binding sites, however, Hb may tend to push

the mRNA expression boundary in embryos of altered Bcd dosage towards where it

would be if the Bcd dosage were unperturbed.

3.4 The role of protein-protein cooperativity in

gene expression

To gain insight into the underlying molecular mechanisms of Bcd activation that have

been further constrained by our observations, we invoke a thermodynamic DNA-

binding model [10, 11]. Homotypic clusters of transcription factors play key roles

in endogenous developmental programs [68], and they have been used extensively

in synthetic contexts to increase the level of gene expression of minimal enhancers

[29, 93, 100]. Despite extensive use of thermodynamic models describing protein-DNA

binding of such constructs [29, 35, 92], no consensus exists about the effect of multiple

activator DNA occupancy on the ensuing rate of transcription. Here we consider two

scenarios that relate enhancer occupancy directly to actual levels of gene expression

(Figure 3.8A).

In the first scenario, only a single activator bound to a single site within a ho-

motypic cluster interacts with the transcriptional machinery [29]. In this simple

activation case, the role of multiple binding sites in a regulatory element is to in-

crease the probability of activator occupancy at the enhancer. In a second scenario,

called additive activation, multiple activators can be bound simultaneously and inter-
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Figure 3.8: Multiple Bicoid molecules enhance transcription additively and are re-
cruited to the DNA cooperatively. (A) Competing models of activator action. In
simple activation models only one activator contacts the transcriptional machinery
at a time. Here, the role of extra binding sites is, through cooperativity between Bcd
molecules, to increase the probability of having one activator bound to the enhancer
[29]. In a synergistic activation scenario each bound Bicoid molecule contacts the
transcriptional machinery independently resulting in an additive contribution to the
total rate of transcription. (B) Thermodynamic models accounting for simple and
additive activation. The states, their degeneracies, and weights for both models are
identical, but the rate of transcription corresponding to each state is unique to each
model. Model parameters are the Bcd concentration [Bcd], the dissociation constant
Kd corresponding to each binding site, and a parameter ω for protein-protein inter-
actions between bound Bcd molecules. (C) The maximum rate of transcription in
the simple activation scenario is independent of the number of binding sites. In con-
trast, the maximum rate of transcription for additive activation grows linearly with
the number of activator binding sites and is consistent with our data. (Black and
gray points are as in Figure 3.4B.) (D) Sensitivity of the rate of mRNA production
as a function of the number of Bicoid binding sites. Sensitivity values larger than
one suggest a cooperativity mechanism such as Bicoid protein-protein interactions
reflected by values of the cooperativity parameter larger than one. (C and D: error
bars are standard errors of the mean of raw fluorescence values over multiple embryos.
Absolute calibration error is not included and can be as high as 30% [33]).
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Figure 3.9: Hierarchy of models describing Bicoid binding. (A) Model of an enhancer
with a single Bcd binding site. The dissociation constant is given by Kd. (B) Model
of an enhancer with two Bcd binding sites. Here, the cooperativity parameter ω
is introduced and the degeneracy of states bearing the same number of bound Bcd
molecules is taken into account.

act with the transcriptional machinery independently, contributing additively to the

ultimate rate of mRNA production [92]. The two models are identical in terms of the

thermodynamic description of Bcd-binding, resulting in their having the same states

and corresponding statistical weights (Figure 3.8B, see Materials and Methods, and

Figure 3.9).

Despite identical statistical weights, however, each model predicts a different rate

of transcriptional initiation. In simple activation all states with at least one Bcd

molecule bound lead to a rate of mRNA production of r over the basal rate rbasal.

In the additive activation model the rate of mRNA production scales linearly with

the number of bound Bcd molecules. At saturating Bcd concentrations all binding

sites are occupied, and the two models make polarizing predictions on how the rate

depends on binding site occupancy, as seen in Figure 3.8C. Clearly, our data are

consistent with linear scaling, and thus with the additive activation model. This

suggests that multiple Bcd molecules can contribute independently to transcriptional

activation and that this independent effect adds linearly.

The origin of the spatial non-linearity leading to a sharp posterior hb boundary

has been repeatedly suggested to originate from Bcd activator protein-protein inter-
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actions leading to DNA-binding cooperativity [14, 25, 41, 67, 73, 76, 98]. Indeed, in

vitro and in vivo experiments have identified Bcd residues that alter the degree of

such interactions [13, 67]. This cooperativity is reflected in our experiments by sen-

sitivity values that are greater than one (Figure 3.8D). To account for these data, we

incorporated cooperativity into our model using an interaction parameter ω (Figure

3.8B). A value of ω = 1 denotes no cooperativity, while higher values correspond to

cooperative interactions. Our data match values of ω that correspond to interaction

energy values ln (ω) kBT ranging between 9–14 kBT . These energies are significantly

higher than those for pure protein-protein interactions, which are expected to be on

the order of 3 kBT [88]. The need for such high interaction energies to explain the

sensitivity of observed boundaries suggests the presence of extra interactions lead-

ing to cooperativity (see SI). Despite these discrepancies, our measurements show an

unequivocal direct measurement of cooperativity in Bcd binding to enhancers and

present the potential to use our assay to quantify how this cooperativity changes for

different Bcd mutants and enhancer architectures.

3.5 Discussion of enhancer dissection

Our model shows clear signatures of cooperativity leading to sharp boundaries along

the embryo. The independence on Bcd binding site positioning together with the

large measured sensitivities of the input-output functions suggest that Bcd protein-

protein interactions are much more flexible than observed in classic examples such as

the interferon gamma enhancer [64], Mat alpha 2 [62], and Lambda repressor binding

[69]. In these examples cooperativity strongly depends on the relative position and

orientation of nearby binding sites for transcription factors. The observed indifference

of the effective cooperativity observed against changes in the position of binding sites

could arise from global effects that are not based on direct protein-protein interactions
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between Bcd molecules. For example, DNA binding proteins could indirectly interact

with each other by aiding in the eviction of a nucleosome occluding DNA binding

sites. Indeed, such mechanism of cooperativity has been demonstrated in yeast [79]

and has been further theorized to be of broad relevance to transcriptional regulation

[50, 80].

This study presents a systematic and quantitative dissection of the design features

of a simple regulatory sequence element within a developmental program. Two differ-

ent models for enhancer function have recently been put forth [65], the enhanceosome

model and the billboard model. The enhanceosome model determines enhancer func-

tion by the precise placement of multiple transcription factors along the enhancer

allowing for specific interactions between each other and with the transcriptional ma-

chinery. In the billboard model transcription factors interactions are flexible but the

identity and number of the different molecular players bound to an enhancer rather

than their particular spatial distribution determine enhancer action. Our data on the

hunchback P2 enhancer is clearly consistent with the latter. The only parameter rele-

vant for determining the output level of gene expression is its number of Bcd binding

sites, with each bound Bcd molecule contributing additively and independently to the

rate of mRNA production. This work exemplifies the power of quantitative analyses

to constrain models of the microscopic action of transcription factors that determine

the body plan of a multicellular organism and calls for the further systematic and

quantitative dissection of more complex regulatory decisions in development.

3.6 Modifications of binding site position and

affinity reveal additional regulatory effects

In Section 3.2, we removed binding sites from the endogenous proximal hb enhancer in

order to demonstrate that all binding sites in the endogenous enhancer have roughly
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Figure 3.10: Mutating the affinity of strong sites to weak reduces expression level
and domain. The rate of mRNA production in nc14 is shown for embryos containing
constructs in which transcription is regulated by the WT hb P2 enhancer (black), a
P2 enhancer in which the three strong sites have been mutated into weak sites (red),
a P2 enhancer in which the strong sites have been disabled completely (yellow), and
a P2 enhancer in which all six strong and weak sites have been disabled (blue). Error
bars are standard errors of the mean rate of mRNA production over all embryos.

equal contributions to expression level, despite differences in binding site affinity

and position: however, this does not prove that binding sites are always functionally

identical in vivo regardless of affinity or position. This section details two experiments

in which alterations of binding site affinity and position reveal both parameters to

have immense regulatory power under certain conditions foreign to the endogenous

enhancer.
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Figure 3.11: Mutating the affinity of weak sites to strong alters the expression pattern.
The rate of mRNA production in nc14 is shown for embryos containing constructs in
which transcription is regulated by the WT hb P2 enhancer (black), a P2 enhancer
in which the Hb autoregulatory site has been disabled (teal), and a P2 enhancer in
which the weak sites have been mutated into strong sites (red). All three constructs
are in orientation 2 (Table 3.2). Error bars are standard errors of the mean rate of
mRNA production over all embryos.

Changes in the affinity of endogenous binding sites change

expression level and domain

Another way to test the affinity of binding sites, in addition to removing them com-

pletely via point mutations, is to change the affinity of endogenous binding sites by

altering the binding site sequences to convert the strong sites to weak sites or vice

versa. We previously found that the expression level and domain, under regulation by

the three strong sites A1, A2, and A3 alone, is the same as when they are regulated

by the three weak sites X1, X2, and X3 alone (Figure 3.3A): this implies that the

contributions of the strong and the weak sites to the overall expression pattern are

the same. One plausible hypothesis, then, would be that altering weak sites to strong
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sites or vice versa should not have an effect on the expression pattern. However, mea-

surements of such constructs completely betray this hypothesis: altering the three

strong sites to weak sites reduces the level of gene expression to roughly that found

with three weak sites alone (Figure 3.10), and altering the three weak sites to strong

sites makes the expression domain larger and the boundary between high and low

expression regions much shallower (Figure 3.11).

These results indicate that affinity plays a strong role in expression level in vivo:

the challenge, then, is to reconcile this finding with the knowledge that the three

strong and the three weak sites have the same effect when regulating expression by

themselves. One possible hypothesis is that the cooperativity among binding sites,

alluded to in Section 3.4, is dependent on the distance between neighboring binding

sites: it is conceivable that the weakness of the weak binding sites in binding protein

and driving increased expression may be counteracted in the wild-type hb P2 enhancer

by the fact that the three weak binding sites are roughly 16 and 13 base pairs apart,

end-to-end, whereas the strong binding sites are roughly 110 and 105 base pairs apart

[25]. Thus, binding to a weak binding site may be made more likely when proteins

are already bound to neighboring, nearby weak binding sites, whereas strong binding

sites may be strong enough that cooperativity among those sites is less crucial.

Changes in the position of the wild-type enhancer relative to

the promoter change expression level

Just as we mutated the affinity of endogenous binding sites in order to directly mea-

sure the differences in the functions of binding sites of different affinity, we can also

alter the spacing between the binding sites and the promoter in order to provide an-

other test of the dependence of the expression pattern on binding site position. The

nearest of the six known Bcd binding sites on the hb P2 enhancer is located only 59

base pairs away from the transcription start site in the wild-type fly [25]. Thus, if
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Figure 3.12: The expression level varies non-monotonically as a function of the dis-
tance between the hb promoter and the proximal enhancer. The rate of mRNA
production in nc14 is shown for embryos containing constructs in which the wild-type
hb P2 enhancer is placed in the wild-type position near the P2 promoter (black), as
well as separated from the promoter by half of the length (gray), the entire length
(red), and double the length (orange) of the P2 enhancer. The wild-type P2 enhancer,
located in the wild-type position relative to the promoter but with all Bcd binding
sites disabled via point mutation (green), is shown for comparison. Error bars are
standard errors of the mean rate of mRNA production over all embryos.

there is any dependence of the expression pattern on binding site distance from the

promoter, adding extra nucleotides between this closest Bcd binding site and the pro-

moter (and thus moving all six binding sites further away from the promoter) should

dramatically reveal this dependence by creating a large change in the expression pat-

tern. We created three constructs in which the wild-type P2 enhancer is separated

from the P2 promoter by a different fraction of the total length of the enhancer (ei-

ther 0.5, 1, or 2 times the length of the enhancer), and we find that, surprisingly, the

expression pattern varies non-monotonically as a function of the distance between

the enhancer and the promoter (Figure 3.12). Specifically, the expression level drops
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to close to the basal level when the enhancer is separated from the promoter by a

distance of half of the length of the enhancer, but this level returns to roughly halfway

between wild-type and basal levels of expression when the distance is increased to one

or two times the length of the enhancer. (In all three constructs, the spacer between

the enhancer and promoter is composed of duplicates of the wild-type hb P2 enhancer

in which all known binding sites have been mutated out.) This counter-intuitive result

clearly reflects a deeper level of complication in the regulation of expression level by

binding site position, and may indicate the role of nucleosome positioning in affecting

promoter-enhancer accessibility [50, 80].

It is important to note that both of the tests of the regulatory roles of affinity

and position described in this section are in some way more invasive than the tests of

affinity and position discussed in Section 3.2, where the linearity of expression level

and domain with binding site number is described. Whereas those previous tests of

affinity and position merely disabled binding sites in various combinations, the two

tests described in this section create new enhancer configurations in which binding

sites are placed in contexts exogenous to the wild-type fly embryo, which may not

provide a fair assessment of the roles of binding sites in the wild-type enhancer. Still,

both sets of perturbations to the hb P2 enhancer provide insights about the possible

effects that changes in binding site position and affinity can have on transcriptional

activity. Altogether, we see from these experiments that there are cases in which both

affinity and position have very strong impacts on the resultant expression level, but

that in the endogenous context these impacts are lessened.
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3.7 Materials and Methods

Transgene construction and fly strains

A 472-bp fragment spanning the hunchback P2 enhancer and hb basal promoter (-321

to +151 bp) was either PCR-amplified (for #18 and #20) or chemically synthesized

(for #1–#17, #19, and #21–#23) (Integrated DNA Technologies, Inc.), with HindIII

added at 5’ and NcoI added at 3’. A1 (TAATCC) was mutated to TCAACT, A2

and A3 (TAATCC) were mutated to CATACT, X1 and X2 (TAAGCT) were mu-

tated to TAGACT, and X3 (TCATCCAA) was mutated to TACATACC, and Hb

site (TTTTTTG) was mutated to ATGTTCA. None of the mutations introduce new

Bcd or Hb binding sites according to JASPAR [111]. To create extra Bcd sites A4

and A5, hexamers 26-bp and 58-bp downstream of A2 resembling weak Bcd sites

were converted to TAATCC. Amplified or synthesized fragments were digested with

HindIII and NcoI and placed upstream of 24 MS2 stem loops and a lacZ reporter

gene (Figure 3.1A) [33]. For other constructs with more than six Bcd sites, an intact

or spliced P2 sequence was PCR-amplified, digested with HindIII and inserted 5’ to

the HindIII digested construct #18. The enhancer-promoter regions and the MS2

stem loops of all reporter constructs were verified by sequencing. Those constructs

have two attB sites in the backbone and were inserted into the 38F1 landing site on

chromosome II using ΦC31 integrase-mediated cassette exchange [5].

To identify the orientation of the transgene insertion in the genome, genomic DNA

was extracted and amplified with two pairs of primers: sjs584 (AACAACACTAT-

TATGCCCACCA) and P2TATAF (TTGGTGCTGCTTCTGTTG), sjs586 (CTG-

GAATTCGGCTTCGACT) and P2TATAF. sjs584 and sjs586 reside in the two attP

sites flanking the transgene respectively and P2TATAF is inside the hb basal pro-

moter. If the combination of sjs586 and P2TATAF produced an 800 bp band, the

orientation of that transgene was designated as 1.
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For measurements of embryos with WT Bcd dosage (Bcd2x), female virgins con-

taining MCP-GFP and Histone-RFP fluorophores (yw;Histone-RFP;MCP-NoNLS(2)

for embryos with WT Bcd dosage) were crossed with males containing the reporter

constructs. For Bcd1x embryos, yw;sp/CyO;BcdE1,MCP-NoNLS(2) males were

crossed with yw;His-RFP;MCP-NoNLS(2) females, and their female progeny were

crossed with construct-bearing males. Bcd4x embryos were generated from a cross

between construct-bearing males and Bcd-GFP;His-RFP/CyO;MCP-NoNLS(2)

females.

Sample preparation and live imaging

Sample preparation and live imaging with two-photon microscopy was conducted fol-

lowing experimental procedures detailed in [33], with the following changes: embryos

were imaged from mitosis 13 until 12 minutes into nc14 had elapsed, after which time

the recording session was stopped. Each time point consists of 8 z-slices taken 1 �m

apart, with 2 frames imaged per z-slice and aligned and averaged after imaging. Each

frame has a resolution of 1024x256 pixels and extends to roughly 40% of the length

of the AP axis in the anterior and middle of the embryo (typically in the range of 15

to 60% AP). Images were acquired on two custom-built two-photon microscopes [72]

with a laser wavelength of 970 nm for excitation of both MCP-GFP and Histone-RFP.

Fluorescence was collected using a Zeiss 25x (NA = 0.8) oil/water-immersion objec-

tive and two gallium-arsenide-phosphide photomultiplier tubes (H10770PA-40 SEL,

Hamamatsu). Imaging power at the back aperture was 10–13.5 mW, with transcrip-

tion spot brightness normalized among imaging sessions and between microscopes to

correct for power differences (Figure 3.13A). Pixel sizes on the two microscopes were

220 and 240 nm, and time resolutions were 39 and 46 s, respectively.
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Figure 3.13: Analysis of measurement errors. (A) Calibration of transcription spot
brightness between the two microscopes on which embryos were imaged for this
work. Curves are of the relative amount of mRNA production, as measured by
transcription spot brightness level, on each microscope, summed over the first 12
minutes after mitosis 13 and averaged among all transcription spots in 2.5% AP
bins. Transcription spots were measured in embryos containing constructs with
the hb P2 enhancer fully intact (#18 of Table 3.1). Normalization of fluorescence
level (gray line: relative production rate = 1) was performed by averaging over the
ratios of the values in the 5 shaded AP bins. Error bars are standard errors of
the mean amount of mRNA production over embryos (8 embryos for microscope 1,
7 embryos for microscope 2). (B) Imaging power variability within each imaging
session adds an average error of 2.5% to the measurement of the rate of mRNA
production. For each of the 99 imaging sessions in which embryonic development
was recorded for this work, the illumination power delivered by the objective was
measured before and after imaging; the top axis of the plot records the percent
change in illumination power between the beginning and end of each session.
We find the standard deviation of each session’s illumination power difference
and propagate these standard deviations into corresponding percent errors in
the rate of mRNA production in the embryos measured in each imaging session
(bottom axis). The dark green vertical line represents the mean mRNA production
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Figure 3.13: (continued) rate error over all imaging sessions, 2.5%. (C) Fits of rates of
mRNA production to time traces of transcription spot brightness (Figure 3.1D) lead to
an average error of 5.7%. Histogram shows the error (the half-width of the one-sigma
confidence interval) in the mRNA production rate, as a percentage of the production
rate, resulting from fitting the rate of mRNA production to the mean brightness time
trace over all transcription spots in a bin of width 2.5% AP in a single embryo; 1627
errors from 167 embryos of normal Bcd dosage are shown. The mean percent error,
5.7%, is marked by a dark blue vertical line. All fits to rates of mRNA production
with errors larger than 50% of the rate value (gray line) were automatically excluded
by the code; 26 rates out of 1653 were excluded using this filter. (D) Comparison of
measurement errors. Black curves represent the mean rates of mRNA production over
all embryos of WT Bcd dosage with constructs containing a certain number of Bcd
binding sites. Gray curves represent the standard errors on the mean rates of mRNA
production resulting from averaging together multiple embryos: these are the errors
shown in Figure 3.1F. Red, green, blue, and purple curves represent the measurement
errors resulting from microscope calibration (A), power variability (B), fitting to
rates of mRNA production (C), and imaging (Materials and Methods), respectively.
Microscope calibration error only applies to embryos imaged on microscope 2 (last
four panels), whose recorded fluorescence levels needed to be rescaled to match those
of embryos imaged on microscope 1 (Materials and Methods). Curves are plotted in
regions along the AP axis in which rates of mRNA production from at least 3 embryos
could be fitted.

Analysis of movies from live imaging

Nuclei and particle tracking and transcription spot brightness detection in movies

of embryonic development were conducted as in [33]. Rates of mRNA production

were obtained for every embryo by a linear fit to the upward slope of the average

fluorescence time trace for all detected particles in a 2.5% AP window (Figure 3.1D),

with manual correction where necessary. The fitted values of the slopes are the

reported rates of mRNA production. All embryos for which 4 or more 2.5%-AP-

width windows (judged by either the rate of mRNA production, the fraction of active

nuclei, or the total amount of mRNA production) lay outside 2 standard deviations

of the average for that AP position and that construct were considered outliers and

discarded: out of 430 otherwise usable embryos measured in service of this work, 11

embryos were discarded using this criterion.
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Measurement errors

For this work, the rates of mRNA productions were calculated in 2.5%-AP-width

windows in single embryos, which were then averaged over all embryos with a given

construct or a given number of Bcd binding sites in order to produce the data shown

in the main and supplemental figures. The reported rate of mRNA production r′ in

a single 2.5%-AP-width bin in a single embryo was calculated by

r′ = M

(
p0
p

)2

r, (3.1)

where M is the scale factor to account for the difference in fluorescence between

microscopes, p is the illumination power used to image the embryo (p0 is a reference

power, 10 mW), and r is the uncorrected rate of mRNA production as calculated by

a linear fit to the mean rate of mRNA production in a 2.5%-AP-width bin in one

embryo (Figure 3.1D). The errors associated with each of these quantities, as well as

several others, are discussed below.

1. The scale factor M was calculated to correct for the different levels of fluores-

cence between the two two-photon microscopes used to image embryos for this

work. M was produced by averaging over the ratios, in the five 2.5%-AP-width

bins between 20% and 30% AP, of the mean amount of fluorescence produced

in the first 12 minutes of nc14 for embryos imaged on either microscope (Figure

3.13A). By propagating the standard errors of the mean amount of fluorescence

produced in the five named bins on both microscopes, we calculate the resul-

tant error on the rate of mRNA production for embryos imaged on microscope

2 compared to microscope 1 to be 8.3% (Figure 3.13D). This microscope cali-

bration error applies almost entirely to embryos with half- and double-WT Bcd

dosage as well as to embryos with more than 6 binding sites, which constituted

the vast majority of all embryos imaged on microscope 2.
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2. The illumination power p was measured immediately before and after every

imaging session in order to compensate for the differences in power among dif-

ferent imaging sessions. (The power correction factor applied to the uncorrected

rate of mRNA production r is proportional to the square of the per-session illu-

mination power because fluorescence level scales quadratically with illumination

power on a two-photon microscope [103].) The standard deviation (using an

unbiased estimator) of the illumination power measured before and after each

imaging session was error-propagated using the above formula to find the mean

per-session error on the rate of mRNA production arising from power variation

over an imaging session, 2.5% (Figure 3.13B). Assuming no covariance between

the rate of mRNA production and the power variability (for simplicity), the

percentage error from power variability on the mean rate of mRNA production

varies according to the number of embryos imaged per 2.5%-AP-width bin, but

is generally (5th to 95th percentile) in the range of 0.7 to 1.9% (Figure 3.13D).

3. Each uncorrected rate of mRNA production r was calculated from a linear fit

to the mean fluorescence time trace over all transcription spots in a 2.5%-AP-

width bin in a single embryo (see Figure 3.1D, previous Materials and Methods

section). By propagating the error in each fit to a resultant error in the corrected

rate of mRNA production, we find that the mean error in the rate of mRNA

production arising from fitting to a mean fluorescence time trace is 5.7% (Figure

3.13C). This error from fitting, when converted to a percentage error on the

mean rate of mRNA production of all embryos with the same number of binding

sites, varies by number of binding sites and AP position, but is generally (5th

to 95th percentile) in the range of 0.8 to 7.0% (Figure 3.13D).

4. The error in the rate of mRNA production due to imaging noise was estimated

by recording 3 movies of nascent transcription spots with roughly 2 to 3 times
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the usual time resolution (14 to 23 s per time frame). splitting each movie into

3 separate sub-movies, each with a time resolution closer to that of a normal

movie, and then calculating the standard deviation over the 3 sub-movies in

the rate of mRNA production of all transcription spots in a bin of width 2.5%

AP [33]. This variability in measured mRNA production rate within these

movies of embryonic development, when converted to a percentage error on the

mean rate of mRNA production resulting from imaging, varies according to the

number of embryos imaged per 2.5%-AP-width bin, but is generally (5th to

95th percentile) in the range of 1.3 to 3.6% (Figure 3.13D).

5. The standard error of the mean rate of mRNA production, averaged over all

embryos with a given number of binding sites, varies by binding site number

and AP position, but is generally (5th to 95th percentile) in the range of 4.1 to

18.3% (Figure 3.13D).

From Figure 3.13D, we see that the largest of these measurement errors on the

rate of mRNA production, the microscope calibration error and the error from av-

eraging over embryos (#1 and 5, respectively, on the above list), can be as high as

1 mRNA/min or more, especially for embryos containing constructs with more than

the 6 endogenous Bcd binding sites. However, in most regions along the AP axis and

for most numbers of binding sites, our highest error only reaches to a few tenths of an

mRNA/min. This is much lower than the observed variability in the rates of mRNA

production among embryos both with the same and different numbers of binding sites

(Figures 3.1G and 3.2), thus demonstrating our ability to detect very fine biological

differences in rates of mRNA production.
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Thermodynamic DNA binding model with cooperativity

Thermodynamic models of transcriptional regulation have been largely used to de-

scribe the interactions between transcription factors bound to regulatory regions and

the transcriptional machinery [10, 11]. The main assumption of these models is that

the time scales of transcription factor binding and unbinding to regulatory DNA are

faster than the downstream rate of transcriptional initiation. Under this assumption,

binding of transcription factors is in quasi-equilibrium such that the tools of statis-

tical mechanics can be applied to describe the probability of occurrence of different

binding configurations to the enhancer.

We invoke such a thermodynamic model to describe Bcd binding to the enhancer.

For example, an enhancer bearing only one Bcd binding site can be either empty or

occupied by one Bcd molecule (Figure 3.9A). For the empty state we assign a weight

of 1. For the occupied state we assign a weight of [Bcd]
Kd

, with [Bcd] being the Bcd

concentration and the dissociation constant of Bcd to its binding site given by Kd.

The probability of finding Bcd bound to the DNA is then given by

pbound =

[Bcd]
Kd

1 + [Bcd]
Kd

, (3.2)

which corresponds to dividing the weight of the bound state by the sum of the weights

of all states the system can be found in.

As we increase the number of binding sites beyond one, we need to account for

more possible Bcd configurations on the DNA: e.g. when two Bcd binding sites are

present, the system can be found in multiple configurations (Figure 3.9B). Note that

we assume that both binding sites have the same dissociation constant Kd. This

assumption is consistent with our observation that binding site position and affinity

do not affect the output level of gene expression significantly (Figure 3.1E,G). This

observation also tells us that states 1 and 2, each corresponding to having only one
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Bcd molecule bound to either of the two binding sites, should each have the same

effect on the output rate of transcription initiation. As result of this indifference, we

enumerate states based on the number of Bcd molecules bound to the DNA rather

than their particular spatial configuration. This leads us to define the degeneracy of

a state as the number of ways that m Bcd molecules can be arranged on n binding

sites:

degeneracy (m,n) =

(
n

m

)
=

n!

m!(n−m)!
. (3.3)

Finally, the fact that the values obtained for the sensitivity of the input-output

functions are greater than 1 (Figure 3.8D) suggests the presence of protein-protein

interactions between bound Bcd molecules leading to cooperativity. We account for

this cooperativity through the pairwise interaction parameter ω, and we assume that

these interactions only take place between neighboring Bcd molecules bound to the

DNA. Note that an ω value of 1 corresponds to no interactions, while larger values

correspond to cooperative interactions between Bcd molecules. With these results in

hand, we can now write the states for an enhancer with n Bcd binding sites and their

corresponding weights (Figure 3.8B).

A missing piece in our models is how to relate the enhancer occupancy state to

the output rate of mRNA production. A simple mathematical description of the rate

of mRNA production is

d[mRNA]

dt
=

∑
i

piri + rbasal, (3.4)

where pi is the probability of finding the enhancer in state i and ri is the corresponding

rate of mRNA production in that state. Additionally, we consider a basal rate of

transcription given by rbasal. Note that we ignore mRNA degradation in this simple

model. The probabilities pi are calculated by dividing the weight for state i by the

sum of the weights corresponding to all states that the enhancer can be found in.
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In this paper we explore two extreme cases for ri. In the simple activation model,

only one bound Bcd molecule can interact with the transcriptional machinery at a

time, leading to a rate of mRNA production r. In this model, the presence of extra

Bcd molecules increases the overall occupancy of the enhancer but does not change

the nature of the interaction between Bcd and the transcriptional machinery. In

contrast, in the additive activation model, every bound Bcd molecule can interact with

the transcriptional machinery and contribute a value r to the overall rate of mRNA

production. Namely, the output rate of n bound Bcd molecules will be nr + rbasal.

These two models have been independently used to describe transcriptional reg-

ulation in flies and other model organisms [29, 35, 92]. However, their polarizing

experimental predictions have not been contrasted. In particular, after some algebra,

the rate of mRNA production in the simple activation case is given by

d[mRNA]

dt

∣∣∣∣
simple act.

= r

1
ω

[(
1 + ω [Bcd]

Kd

)n

− 1
]

1 + 1
ω

[(
1 + ω [Bcd]

Kd

)n

− 1
] + rbasal, (3.5)

whereas the rate of mRNA production for additive activation is

d[mRNA]

dt

∣∣∣∣
add. act.

= r

[Bcd]
Kd

n
(
1 + ω [Bcd]

Kd

)n−1

1 + 1
ω

[(
1 + ω [Bcd]

Kd

)n

− 1
] + rbasal. (3.6)

In the anterior region of the embryo, saturating concentrations of Bcd are present

such that [Bcd]
Kd

� 1, resulting in

d[mRNA]

dt
([Bcd] → ∞)

∣∣∣∣
simple act.

= r + rbasal (3.7)

and

d[mRNA]

dt
([Bcd] → ∞)

∣∣∣∣
add. act.

= rn+ rbasal. (3.8)

88



Namely, at saturating concentrations of Bcd, the rate of mRNA production should

not change with the number of Bcd binding sites n in simple activation, but it should

grow linearly for additive activation. Note that at this concentration the cooperativity

parameter ω plays no role in the predictions. These predictions are contrasted with

our experiments (Figure 3.8C), which clearly support the additive activation model

interaction between Bcd and the transcriptional machinery.

Given this model we can also calculate the sensitivity of the input-output function

by finding the maximum of its log-log derivative, namely

sensitivity = max

⎛
⎝d log

(
d[mRNA]

dt

)
d log ([Bcd])

⎞
⎠. (3.9)

Fits to the sensitivity plotted as a function of n for different values of ω show how

our model can account for the overall increasing trend of the sensitivity as a function

of the number of Bcd binding sites (Figure 3.8D).
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Chapter 4

Conclusion

The two projects discussed in the previous chapters deepen our understanding of the

mechanisms by which patterning genes in the first developmental stages of the fruit

fly embryo communicate information about position, and they do so by identifying

the functions and limitations of two different ways by which positional information is

conveyed in the patterning gene network. The study of the scaling of gene expression

profiles with embryo length in Chapter 2 finds that the patterning gene Bicoid (Bcd)

is unable on its own to create the scaled expression patterns of the downstream gap

genes. In Chapter 3, the study of the DNA regulatory elements by which Bcd protein

concentration determines the spatial pattern of hunchback (hb) mRNA expression

finds that the level and domain of expression is a linear function of binding site

number, and that the expression pattern is insensitive to the specificity and position

of Bcd binding sites in the endogenous DNA sequence.

Our finding that Bcd is insufficient to convey scaled information to the gap genes

can be extended by expanding our definition of what it means for a gene expression

pattern to scale with embryo length, and by studying gap gene scaling under further

perturbations to the maternal gene inputs. In Chapter 2, the dynamic profile warping

method is used to assess the scaling of gene expression profiles by measuring the
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variability of positions along the anterior-posterior axis, in a population of embryos,

in which local features such as peaks and boundaries are found. By contrast, principal

component analysis generalizes this definition of scaling to also consider scaling of the

amplitude (or any other feature) of expression profiles with embryo length. Using this

more holistic method, the scaling or lack thereof of any part of a gene’s expression

profile is taken into account through rigorous hypothesis testing to determine the

overall scaling of the expression pattern with embryo length. A careful analysis of

the scaling of gap gene expression profiles in embryos in which further combinations

of the maternal factors Bcd, Nanos, and Torso are present or absent could help reveal

the full extent to which these maternal factors work in tandem to supply information

about embryo length to the gap genes.

Similarly, our finding in Chapter 3 of the linearity of hb expression level and

domain with the number of Bcd binding sites is an important result on its own,

but it could be extended by a careful analysis of further perturbations to the wild-

type proximal hb enhancer, as discussed in Section 3.6. Our results from disabling

combinations of binding sites show that mRNA expression level in this enhancer is

independent of Bcd binding site position within the roughly 300-base-pair extent of

the endogenous enhancer, but a steep drop in expression level exists when the entire

enhancer is moved away from the promoter by several hundred base pairs. This may

imply the presence of multiple length scales in the regulation of mRNA expression in

this system: a short length scale on which expression is insensitive to position and a

longer length scale over which expression is dependent on proximity to the promoter.

Measurements of other spacing lengths between the promoter and enhancer will clar-

ify this relationship between enhancer-promoter positioning and mRNA expression.

Likewise, the changes in mRNA expression observed when mutating strong sites into

weak sites and vice versa, and the accompanying hypothesis of distance-dependent

cooperativity, can be tested by directly varying the distance between a pair of en-
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dogenous strong or weak sites or by weakening strong sites and removing endogenous

weak sites. Lastly, our result of the insensitivity of mRNA expression to the position

and affinity of the endogenous binding sites in their wild-type configuration cannot

necessarily be generalized to other enhancers in control of other genes: measurements

of expression in response to perturbations of binding sites in systems other than the

proximal hb enhancer may tell us how universal this phenomenon is across the fly

genome.
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