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Classical machine learning algorithms were tailored to automatically classify ex-

amples that belong to mutually exclusive classes; each example may belong to one

class out of a finite set of classes. In realistic applications, however, examples often

belong to more than one class at the same time. For example, a text document that

belongs to Geography may also be labeled as Geology. Perhaps due to the popularity

of its applications, targeting this category of problems has garnered great research

interest over the past decade. A widely popular approach, called Binary Relevance

(BR), is to induce a separate classifier for each class; to determine whether the class

is relevant for an example, or not. Despite showing some success, researchers have

pointed out a critical drawback in this method. By targeting each class indepen-

dently, the learner does not model class correlations: knowing if an example belongs

to class X may indicate that it is likely to belong also to class Y. Conversely, this

information can make the example less likely to belong to class Z. Research groups

sought to incorporate class correlation information into BR by using the class labels

as additional example features. Since the information about which class an example

belongs to is unknown in unseen instances, the missing values are typically filled-in

using the outputs of other classifiers, which makes them prone to errors. This disserta-

tion identifies two weaknesses in existing methods: unnecessary label correlations, and



error-propagation. To overcome these problems, this dissertation introduces a new

multi-label classification method, called PruDent. Experiments over a broad range

of benchmark datasets indicate that PruDent compares rather favorably with exist-

ing state-of-the-art methods. Additionally, PruDent improves classification accuracy

while maintaining a linear complexity in the number of classes.
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CHAPTER 1

Introduction

The influx of data produced by venues such as social media, news articles, and

blogs is only expected to grow in the upcoming years. In order to access these

data in an efficient manner, it is desired to index them by organizing them into

known categories. When the data are sizable (e.g. millions of documents), using

man-power to categorize them no longer becomes a viable option; not only is this

process impractical, but it is also financially costly. To this end, improving automatic

classification using the techniques from the Machine Learning discipline has become

an attractive research topic. The idea is to expose the data to a learning algorithm,

known as a classifier, that can relate attributes that define examples to their respective

categories. This chapter will give a brief introduction to the traditional classification

problem first. After that is an overture to the branch of problems that constitute the

focus point of this disseration, which is known as multi-label classification. Towards

the end of this chapter, an overview of the current research difficulties is provided,

followed by the goals pursued by this research work.

1



2

1.1 The Classification Problem

The objective in a classification task is to learn a concept based on previously

known information about this concept in the form of examples that represent it. In

the Machine Learning literature, the term concept is interchangeably used with the

terms class and category. As illustrated by Figure 1.1, the learning process is per-

formed by exposing the learning algorithm to examples that are known to represent a

concept (positive examples), and those that do not represent it (negative examples).

Based on the usually numerical attributes that define examples (also called features),

a classification model is sought to predict whether a previously unseen example rep-

resents this concept or not. This classification model is referred to using the term

classifier.

attribute 1

attribute 2

attribute N

Known Examples

Concept

 Learning

Algorithm

attribute 1

attribute 2

attribute N

?

New Example

Classifier

Concept

Figure 1.1: Classifier induction process.

Classical machine learning algorithms were tailored to classify objects that may

belong to one class out of a finite set of classes. An example application of such
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is to detect oil spills in satellite images of oceanic surfaces [2]. In this case, the

concept (oil-spill) is either present in an image or not. Since there are only two

possible outcomes, this problem is known as binary classification. Also of interest are

multi-class problems where more than two outcomes are possible. For instance, one

might be interested in knowing a suitable commuting method given the day’s traffic

conditions. Here, the output can perhaps be restricted to bus, car, or metro-rail.

Classification problems that adhere to the rule that limits each example to one

class (single-label) were targeted for more than three decades. Consequently, several

learning algorithms can now achieve somewhat satisfactory classification accuracy in

these domains. Examples of the commonly used algorithms today include Decision

Trees, Neural Networks, K-Nearest-Neighbors, and Support Vector Machines.

1.2 From Single-label to Multi-label Classification

Early machine learning algorithms sought to classify examples that are categorized

using individual classes. However, this is rarely the case in many realistic applica-

tions. For instance, as depicted in Figure 1.2, an image that contains ‘PalmTree’ may

also include ‘Sun’, ‘Clouds’, and ‘Sea’. By relaxing the limitation imposed on the

number of classes an example can belong to, the problem becomes very challenging:

in addition to not knowing the number of classes relevant to an unseen example, the

number of combinations an output can take is now significantly larger, which in turn

introduces more room for error. With the start of the new millennium, problems of

this kind garnered much of the research interest becoming what is known today as

multi-label classification.
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Figure 1.2: An example beach scene image.

Early methods that target multi-label domains resorted to modifying existing

algorithms to handle multi-label outputs. In general, the solutions that followed this

approach were applicable only to specific domains such as text categorization [3].

Moreover, these methods were restricted to certain classifier types such as Neural

Networks [4] and Decision Trees [5].

In the following years, an attractive group of methods were favored among the

research community. Instead of adapting current learning algorithms to handle multi-

label outputs, they transform the multi-label problem into a single-label one. A

widely popular approach from this category of solutions is known as the Binary

Relevance (BR) method. The idea is to independently induce a separate binary

classifier for each category; each classifier is thus tasked with predicting whether a

category is relevant for a given example or not. A final classification is then obtained

by aggregating all the individual classifiers’ outputs. This approach soon became

popular because of the following advantages: First, it is very simple to implement

since it involves transforming the data rather than the algorithms. Additionally, this
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method benefits from the flexibility of being applicable to the vast library of existing

single-label learning methods. Finally, this approach scales well in large domains

since its complexity is linear in the number of classes; for each additional class, only

one more classifier is needed.

The above advantages motivated the adoption of the Binary Relevance framework

in this dissertation. Despite showing promising classification performance when com-

pared to other existing approaches [6], the Binary Relevance method also has its own

drawbacks, which are discussed in the next section.

1.3 Research Difficulties

The state of the current multi-label classification approaches leaves much to be

desired. Perhaps due to the infancy of this subdicipline of machine learning, the

classification performance of current multi-label solutions is found to be lacking when

compared to their single-label counterparts. The next paragraphs will discuss the

difficulties typically faced when dealing with multi-label classification.

In multi-label domains, the number of classes a new example belongs to is typically

unknown beforehand; it is only limited by the number of possible classes observed

previously in the dataset. While the lack of this information may not constitute

a major problem in domains with few classes, in larger domains, however, lacking

this information can significantly complicate classification. Suppose that there are

100 possible categories in a given classification problem. In this case, the classifier

is required to target an output space of 2100 possibilities. Here, finding the exact

categories a new example belongs to becomes a difficult task.
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The next research problems are mainly associated with the BR method that is

discussed towards the end of the previous section.

Recall that the BR approach assigns each class an independent classifier to identify

whether the class applies to future examples or not. To induce each of these classifiers,

the training sets are generated by choosing the examples that represent the target class

as positive examples, and all others as negative examples. As a result, the example

representation in the training sets will almost always be imbalanced; there are more

negative examples (which may belong to any other class) than positive examples of

the target class. This situation can lead classifiers that minimize the general error

to perform in an undesired manner [7]. For example, suppose that we are tasked to

predict whether a patient has a disease that occurs in only 2% of the population.

Here, a classifier that always makes a ‘negative’ diagnosis recommendation will be

98% accurate. Obviously, such information is not helpful in this case.

By targeting each class individually, the BR approach does not account for the

possible class correlations in multi-label domains. For example, in the beach image

illustrated previously by Figure 1.2, detecting the concept ocean is a strong indicator

for the possible occurrence of the concepts water and beach. Conversely, belonging to

these concepts makes the image less likely to represent downtown. Research indicates

that leveraging this information can potentially increase classification accuracy [8–12].

However, correlation information is not explicitly provided in a typical multi-label

problem. Leveraging this information is a challenging task as classes may, or may

not, be correlated. Moreover, as will be detailed in the next chapter, some correlations

may exist in only a subset of the data making them conditional to the example at

hand [13].
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The following is a summary of the challenges mentioned above:

• The number of classes assigned to each unseen example is unknown. As the

number of classes increase, this problem is further complicated.

• The example representation of classes tend to be imbalanced. Targeting each

class individually may bias the classifier towards choosing the class with the

majority of examples.

• Classes may be correlated, and this information is not explicitly provided in the

data. Capturing this information is difficult as not all classes are necessarily

related.

1.4 Research Objectives and Contributions

Despite the ubiquitous nature of multi-label applications, methods which target

this category of problems leave ample room for improvement. This research aims to

develop a multi-label solution which targets the limitations mentioned in the previous

section by adhering to the following guidelines:

• The solution must scale well in domains that are characterized by a large number

of labels.

• Classification must consider that multi-label classes are imbalanced (some classes

outnumber others). Consequently, the proposed method must maintain a good

prediction balance for each class.

• The algorithm must be able to automatically detect important class dependen-

cies that are relevant to the problem at hand.
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• When incorporating class dependencies, it must be done in a manner that im-

proves classification more often than not.

This research resulted in the development of a new multi-label classification solu-

tion [14] which targets all of the difficulties mentioned in the previous section. Orig-

inally, the goal was to incorporate all possible class correlation information in the

BR framework. However, as research progressed, it was evident that not all correla-

tions can improve classification accuracy. Moreover, the proposed work shows that

if handled incorrectly, incorporating class dependencies can harm classification per-

formance. As a result, this work was focused on automatically identifying important

class dependencies and incorporating them in a manner than improves classification

accuracy.

The newly developed multi-label classification solution, which is named Pru-

Dent [14], improves upon a previously known framework known as Stacking by miti-

gating two of its inherit problems. As demonstrated by the experiments in Section 4.4,

a clear improvement in classification accuracy was achieved. Moreover, the proposed

solution was able to improve classification performance while lowering the computa-

tional cost of the original framework. When compared to other existing state-of-the-

art approaches, the proposed solution performed rather well across a broad range of

multi-label domains.



CHAPTER 2

Multi-label Classification

Multi-label classification is a branch of machine learning which targets examples

that may belong to more than one class at the same time. This situation has been en-

countered in many realistic applications such as text categorization [3,9,15–18], image

and video annotation [19–22], and gene function prediction [5]. In the text classifica-

tion domain, a ‘Geography’ document may also be labeled as ‘History’. Similarly,

in the medical field, a ‘Cough’ diagnosis may also be associated with ‘Asthma’. Also,

in scene classification applications, a picture tagged as ‘Sunset’ may also be tagged

as ‘Ocean’. Thus, unlike single-label problems, classes in the multi-label domain can

co-occur over the same set of examples.

This chapter starts with a formal definition of the multi-label classification frame-

work. Then, the reader is presented with the general types of class dependencies

associated with multi-label domains. Following that is a section that details the cri-

teria used to evaluate multi-label classifiers. This chapter ends with a description of

the employed multi-label benchmark datasets, followed by their background informa-

tion.

9
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2.1 The Multi-label Framework

Let us first define the problem at hand. In multi-label classification, it is as-

sumed that classes are represented by a finite label space L = {l1, l2, ..., lL}, and

that examples are defined using a d-dimensional instance space X ∈ Rd. It is also

assumed that each instance, x ∈ X , is associated with a subset of the labels, Y ⊆ L.

The associated label-set can be represented as a vector, y = (y1, y2, ..., yL), such

that yi = 1 indicates that label li is relevant for a given example, and yi = 0

indicates that it is not. Using an independently and identically distributed train-

ing set, S = {(x1,y1), (x2,y2), ..., (xN ,yN)}, a classifier h is sought to carry out a

mapping h : X → L that generalizes beyond the training set. When the classifier

system is composed of a separate classifier per class, the notation follows the form

h(x) = (h1(x), h2(x), ..., hL(x)), where each binary classifier hi(x) assigns to example

x a prediction ŷi ∈ {0, 1}. To distinguish predicted label vectors from the actual

groundtruth labels, the former will be denoted as ŷ and the latter as y. Unless spec-

ified otherwise, the term N will be used to denote the number of examples, and L

will be used to represent the number of classes.

2.2 Types of Class Dependencies

Multi-label domains are characterized by having examples that may belong to

more than one class simultaneously. As a result, some classes may exhibit a correlation

pattern with others; they either co-occur frequently, or rarely occur at the same time.

Thus, it is sensible to develop an understanding of the nature of these dependencies,

which is the task of this section.
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The authors of [12] identify two types of dependencies that can exist between

classes: global dependencies, and local dependencies. They are also commonly referred

to as unconditional and conditional dependencies respectively. The subsections below

explain their differences and illustrate examples of each type. Note that the following

explanation will closely resemble that given in [12].

2.2.1 Global Dependencies

Global dependencies are characterized as being generalizable to the majority of

examples in a given dataset. In other words, they are unconditional to any particular

subset of the data. Due to this property, the literature also refers to these correlations

using the term unconditional dependencies.

Given the prevalence of this category of dependencies in the data, they tend

to be easily identifiable. For instance, suppose that a text document is about the

topic ‘Diet’. This document can arguably be attributed also to ‘Cooking’. However,

the same document can not represent ‘Mining-Industry’. Note that we can infer

this information from the topics alone, and without any knowledge of the examples’

attributes.

In [12], the authors offer a probabilistic interpretation of global dependencies; they

assert that when the classes are independent, the following equality must hold:

P (y) =
L∏
i=1

P (yi) (2.1)

Thus, when there are underlying global class dependencies, the product of the

independent (marginal) class probabilities should not equal the joint mode of the

class distribution.
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2.2.2 Local Dependencies

In contrast to global dependencies, local dependencies are associated with only a

subset of examples that usually represents a smaller portion of the data [13]. As such,

these dependencies are conditional on the examples’ features. For this reason, they

are also commonly referred to as conditional dependencies. Perhaps a good example

of this dependency type can be brought from the medical field; an ’Asthma’ diagnosis

may be associated with ‘Flu’ only if Coughing is one of the symptoms. In this case,

Coughing defines the subset in which this relationship applies.

From a probabilistic perspective, local dependencies differ from global ones by

incorporating the example, x, as a condition in the mathematical formulation. Thus,

when two classes are conditionally independent the following equation must hold:

P (y|x) =
L∏
i=1

P (yi|x) (2.2)

When considering the product rule of probability, the conditional joint mode of a

random vector can be expressed as follows:

P (y|x) = P (y1|x)
L∏
i=2

P (yi|y1, ..., yi−1,x) (2.3)

Here, the reader can see that when the classes are conditionally independent, Equa-

tion 2.3 should simplify to Equation 2.2.

Having pointed out the difference between global and local dependencies, it is

imperative to also show how they are connected. This is accomplished by considering

the following term:

P (y) =

∫
X
P (y|x) dx (2.4)
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The above equation tells us that global dependencies can be thought of as expected

dependencies which are averaged over all instances.

2.3 Performance Criteria

This section starts by explaining the classical performance criteria that are used to

assess binary and multi-class domains. Building on that knowledge, this section will

then show how some of these criteria can be extended to handle multi-label problems.

Also, this section will provide some of the criteria that were created specifically to

evaluate multi-label classifiers.

2.3.1 Classical Performance Criteria

Traditionally, in order to measure the classification performance of (single-label)

classifiers, one could simply use the accuracy function as defined below:

accuracy =
# correctly classified examples

# examples
(2.5)

This function may be suitable for problems where classes are equally represented by

examples. However, when class representations are imbalanced, using this method

will not be sufficient; a classifier can always choose the prevailing class and attain good

accuracy (see example in Section 1.3). Instead, we need a way to evaluate positive

and negative examples separately. This is where metrics such as precision (Pr)

and recall (Re), which are borrowed from the information retrieval field, come

into play. These evaluation measures are computed by considering the number of

True Positive (TP ), True Negative (TN), False Positive (FP ), and False Negative

(FN) examples. Typically, a contingency table such as Table 2.1 is constructed. For
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example, false positive (FP ) examples are those which were marked by a classifier as

positive but are in fact negative examples.

Actual Class
Positive Negative

Predicted Class Positive TP FP
Negative FN TN

Table 2.1: An example contingency table

Based on the frequency counts of a contingency table, the metrics are defined as

follows:

Pr =
TP

TP + FP
Re =

TP

TP + FN
(2.6)

On the one hand, precision measures the number of correctly classified positive

examples over the number of examples that are predicted as positive. On the other

hand, recall measures the number of correctly classified positive examples over the

number of examples that are actually positive. By looking at the denominator of

the precision equation, the reader can see that it is sensitive to the purity of the

predictions; the denominator represents the number of examples predicted as positive.

Conversely, recall quantifies how many positive examples were retrieved from the

data. In general, optimizing an algorithm towards one measure will sacrifice the

other. For instance, if a classifier is biased towards positive label predictions, it may

incur a higher number of false positives. In this scenario, recall will increase and

precision will decrease.

To establish a method of quantifying the trade-off between the two measures, [23]

suggested the use of the the F-measure as follows:
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Fβ =
(β2 + 1)× pr× re

β2 × pr + re
(2.7)

The β term in the above equation is a user specified parameter in the range [0,∞).

Using a value of β > 1 assigns more weight to recall, and when β < 1, more weight

is given to precision. When an equal balance between the two criteria is desired, the

value β = 1 is used, which represents the harmonic mean of recall and precision.

As it became widely adopted in the literature, this criterion became known as the F1

metric, and it is calculated as illustrated by Equation 2.8 below:

F1 =
2× pr× re

pr + re
(2.8)

Although the above performance criteria were designed to evaluate single-label

classifiers, these performance measures can be extended to handle multi-label classi-

fiers as well. Their multi-label extensions will be provided in the next section.

2.3.2 Multi-label Evaluation Criteria

To quantify diverse behavioral aspects of multi-label classifiers, several perfor-

mance criteria were proposed. This section will use the notations from Section 2.1 to

define the evaluation metrics. Recall that N and L denote the numbers of examples

and classes, respectively.

• 0/1 loss:

The 0/1 loss measures the exactness of the multi-label prediction by issuing

a penalty each time the predicted class vector (ŷ) of an example differs from

the vector of actual labels (y). This function is thus a generalization of the
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traditional error function to multi-label domains. For each example, a ‘0’ loss is

awarded for correct label set classification and ‘1’ otherwise (hence the name).

A final loss is then obtained by averaging the losses over all examples.

0/1 loss = 1− 1

N

N∑
i=1

ki

ki =


1, ŷi = yi

0, otherwise

(2.9)

The authors of [12] discovered that 0/1 loss can be minimized by algorithms

that are designed to find the joint mode of the label distribution, P (y), because

they target classes in tandem. This will not be the case in the hamming loss

measure, which is explained next.

• Hamming loss:

This criterion punishes a multi-label classification on a per-label basis. As such,

a partially correct classification is penalized less severely than a completely

incorrect one. It was found in [12] that algorithms which target classes inde-

pendently are sufficient for reducing this error.

hamming loss = 1− 1

L

1

N

N∑
i=1

L∑
j=1

kji

k
j
i =


1, ŷji = yji

0, otherwise

(2.10)
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Thus far, we have covered two loss functions in which a lower score signifies bet-

ter performance. The following criteria have higher scores when classifications

are better.

• Accuracy:

In [9], the authors introduced accuracy which is calculated by the following

formula:

accuracy =
1

N

N∑
i=1

|ŷi ∩ yi|
|ŷi ∪ yi|

(2.11)

The purpose of accuracy is to quantify the “closeness” of a binary class predic-

tion vector (ŷ) to the actual label vector (y). In the definition, the |.| symbol

denotes the cardinality of positive labels in the given binary vector.

• Precision, recall, and f1

Let us now consider the information retrieval metrics defined in the previous

section (Equations 2.6 and 2.8). Recall that they are employed to evaluate

classifiers which target single-label domains. The goal here is to generalize

them for application in multi-label domains. To accomplish this task, there are

two commonly used approaches: the macro, and micro averaging introduced

by [24].

In the macro averaging method, the measures are first calculated for each class

separately as defined in the previous section. To fuse the calculated measures of

each class together, they are then averaged over the total number of classes as

shown in Equation 2.12 below. In essence, each class is thus equally weighted.
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PrM =
1

L

L∑
i=1

Pri, (2.12a)

ReM =
1

L

L∑
i=1

Rei, (2.12b)

F1M =
1

L

L∑
i=1

F1i (2.12c)

When it is preferable to focus on classes which occur more frequently than

others, the micro averaging method is used instead. This averaging approach

weighs the precision, recall, and f1 measures by the “popularity” of the

individual classes. As such, the metrics are averaged over all examples as if they

belonged to one class. More populous classes are thus marked by higher weights

than less populous ones; because they contain more representative (positive)

examples.

Prµ =

∑L
i=1 TPi∑L

i=1 TPi + FPi
, (2.13a)

Reµ =

∑L
i=1 TPi∑L

i=1 TPi + FNi

, (2.13b)

F1µ =
2× Prµ ×Reµ

Prµ +Reµ
(2.13c)

As presented in this section, there are many aspects to consider when evaluating

multi-label classifiers. Choosing which of these metrics to optimize is perhaps deter-

mined by the end-user’s needs. For completeness, this dissertation will document the

experiments using all of the above performance criteria.
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2.4 Multi-label Benchmark Data

The circumstance in which classes overlap over the same set of examples occurs in

many real world applications. For the sake of comparing algorithms that target this

kind of data, several benchmark testbeds were brought from the biology; image, audio,

and video annotation; and text document categorization domains. This dissertation

employs a broad range of such datasets that are presented in Table 2.21. The choice of

testbeds was motivated by their frequent appearance in recent papers. The datasets

are sorted in the table by their complexity (L×N×D), where L, N , and D stand for

the number of classes, examples and features respectively. In the number of features

column (D), features that are continuous are denoted using the term ‘n’, and binary

features are denoted using ‘b’.

The dataset statistics table also includes two metrics that specifically characterize

multi-label datasets: Label Cardinality (LC), and Label Density (LD). They were

introduced by [10] in order to quantify the distribution of classes in a given dataset.

LC is the average number of classes that appear per example, LC = 1
N

∑N
i=1 |Yi|.

The value of LC is higher if the examples frequently belong to several categories.

It is also important to know the proportion of the total number of labels that LC

constitutes. For example, having an average co-occurrence of 2 classes out of 100

indicates a sparser distribution than 2 out of 6. To quantify this circumstance is the

task for the other measure. More specifically, LD is LC divided by the total number of

1The datasets can be obtained from http://meka.sourceforge.net/#datasets and
http://mulan.sourceforge.net/datasets-mlc.html. For rcv1, subset1 was used. For nus-wide,
the cVLAD+ features version was used.
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name domain features (D) classes (L) examples (N) LC LD
emotion music 72n 6 593 1.87 0.31
yeast biology 103n 14 2417 4.24 0.3
scene image 294n 6 2407 1.07 0.18
cal500 music 68n 174 502 26 0.15
genbase biology 1186b 27 662 1.25 0.05
medical text 1449b 45 978 1.25 0.03
slashdot text 1079b 22 3782 1.18 0.05
enron text 1001b 53 1702 3.38 0.06
langlog text 1004b 75 1460 1.18 0.02
mediamill video 120n 101 43907 4.4 0.04
bibtex text 1836b 159 7395 2.4 0.02
nus-wide image 128n 81 269648 1.87 0.02
imdb text 1001b 28 120919 2.0 0.07
rcv1 text 47236n 101 6000 2.88 0.03
tmc2007 text 500b 22 28596 2.16 0.1

Table 2.2: Data Sets Statistics

possible labels, LD = LC
L

. While LC provides a measure of the “multi-labelledness,”

LD shows the sparsity of label occurrences.

Throughout the remainder of this chapter, the reader will be presented with the

necessary background information about each of the employed datasets in the order

of appearance in Table 2.2:

• Emotion

This dataset represents the problem of extracting human emotions and mood

that are experienced when listening to music [25, 26]. The data was created

by extracting a 30 second sound clip that occurs after an initial 30 seconds

have elapsed from a full sound track. Based on this short clip, a set of 72

features are extracted. Of which, 8 are rhythmic and 64 are timbre features. To

quantify emotions, the Tellegen-Watson-Clark model was used giving a total of
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Yeast Gene 

Function Classes

metabolism Transcription Energy
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death and aging

cellular-

communication

signal transduction

Figure 2.1: Gene functional groups of the first level in the hierarchy of yeast gene functions
[1].

6 emotional classes: amazed-surprised, happy-pleased, relaxing-calm, quiet-still,

sad-lonely, and angry-fearful. Finding the appropriate labels associated with

each song was done with the aid of three experts from the School of Music

Studies in the authors’ University. Perhaps to reduce the noise in the data,

only the songs with identical chosen labels from the three experts were allowed

in the database. Ultimately, 593 clips remained.

• Yeast

This testbed represents a collection of gene micro-array expressions and phylo-

genetic data of the Yeast Saccharomyces cerevisiae organism [1,27]. Micro-array

expression data is obtained by subjecting yeast to specific test criteria after a

target gene is modified. Experiments include diauxic shift, the mitotic cell

division cycle, sporulation and temperature reduction shocks. The task here

is to predict the functional class of genes using their micro-array expression
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data. However, each gene can be associated with more than 190 functional

classes. As such, the authors of [1] utilized the hierarchical structure of the

functional classes such that only the classes of the first level of the hierarchy

were included. This reduced the set of classes to the 14 categories depicted

in Figure 2.1. Examples of these classes include metabolism, protein synthesis,

and cellular biogenesis. The 2417 genes of this data set are described by 103

numerical features.

• Scene

The scene database consists of a set of scenic images which are obtained from the

Corel Stock Photo and some personal images of the authors in [19]. Each image

is first transformed to the CIELUV color space. Then, images are converted

to a low resolution 7 × 7 bins. For each bin, the mean, variance, and some

other computationally inexpensive texture-based features are extracted forming

a total of 294 numerical features. The 2407 images of this domain are allowed

to belong to 6 possible classes and their combinations. These classes are Beach,

Sunset, Fall-Foliage, Field, Mountain, and Urban. To assign the groundtruth

labels to each image, they used the annotations of three human observers.

• Cal500

Targeting the music domain, this dataset represents a compilation of 500 “West-

ern Popular” songs [28]. The task is to annotate new songs using meaningful

keywords such as instrument names (e.g. Guitar, Piano, and Saxophone) and

music genres (e.g. Hip-hop, Jazz, and Rock). The objective is to provide a

query-by-text system for music lookup. The features of each song consist of
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time series MFCC-Delta feature vectors, which are obtained by sliding a half-

overlapping short-time window [28]. In order to acquire the training set classes,

the authors conducted a survey over a group of 66 undergraduate students.

At least 3 semantic annotations were provided for each song. A total of 1708

annotations were acquired for all songs.

• Genbase

This dataset belongs to the biology domain where the task is to predict the

function of a protein based on its structure [29]. The idea comes from the foun-

dation that proteins that belong to the same family of functions are found to

be structurally similar. Protein patterns are defined by the specific sequence

of their amino-acid chains. The authors refer to such sequences in combination

with computational representations of sequence alignments as motifs. The fea-

tures used in this testbed are binary representations of whether a motif exists

in a given protein or not. The vocabulary used in this dataset is composed of

1186 motifs. In total, 662 proteins were exported, and 27 class labels composed

of the 10 most common families of protein functions were selected. Examples of

class families include cytokines-and-growth-factors, receptors, transferases, and

DNA-or-RNA-associated-proteins.

• Medical

The medical dataset is concerned with classifying clinical free text of radiol-

ogy reports (chest x-ray and renal procedures) using 45 ICD-9-CDM diagnosis

codes [30]. As described by the authors, radiology reports are composed of two

essential parts. The first of which is the clinical history, and the second is the
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impression. The former is provided by the ordering physician before the radio-

logical procedure is conducted. The latter is given by the specialized radiologist

after the procedure. To create this dataset, radiology reports were collected over

a period of one-year from the Cincinnati Childrens Hospital Medical Centers

(CCHMC) Department of Radiology. This resulted in 20,275 documents. Data

was then subjected to anonymization techniques, followed by manual inspection

and removal of records that contain protected health information to meet the

United States HIPAA standards. Since some annotations can be subjective,

the authors employed a majority voting strategy using the annotations of the

CCHMC staff and two independent coding companies. Whenever the three enti-

ties produced disjoint label sets, the corresponding medical record was removed.

As a result of the above procedures, only 978 documents remained.

• Slashdot

The target of this database is to automatically tag articles submitted to a web

blog known as Slashdot2. As introduced by [11], each article’s text was converted

to a bag of words feature vector using the StringToWordVector function from

the Weka machine learning software package [31]. There are 22 tags (labels)

in this dataset. Examples of these tags include topics such as Entertainment,

News, Science, Mobile, and Games.

• Enron

During the Enron Corporation scandal investigation in 2001, the Federal Energy

Regulatory Commission (FERC) posted the company’s email library on the

2http://slashdot.org
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Coarse Genre Forwarded Information Primary Topics Emotional Tone

Company Business Government report(s) Regulations Humor
Purely Personal News Articles Internal Projects Admiration

Employment Press Releases Legal Advise Sarcasm
Document Editing Business Letters Trip Reports Worry/Anxiety

Table 2.3: Enron Sample Topics

web and made it public. Soon after, research groups leveraged this library to

improve classification of emails into users’ folders [32]. The raw corpus consists

of 619,446 messages which belonged to 158 users. However, a cleaner version of

the database was later made available3 by a joint effort between Massachusetts

Institute of Technology (MIT), Carnegie Mellon University (CMU), Stanford

Research Institute (SRI), and University of California Berkeley. Cleaning the

dataset involved removing personal emails and fixing integrity problems that

existed in the original data. The 1702 emails were labeled by students of the

Applied Natural Language Processing (ANLP) course in UC Berkeley. Each

message was labeled by two students. However, the web source does not claim

consistency, comprehensiveness, nor generality about the provided labelings.

There are a total of 53 possible classes that are placed into four groups. Table 2.3

shows a sample of 16 topics and their corresponding groups.

• Langlog

The same authors [11] of the slashdot dataset mentioned above also mined blog

posts from a website that is about languages4. Here, the classification task is

concerned with tagging each post with the correct topic(s). This dataset con-

tains 75 tags which include topics such as Humor, Punctuation,

3The dataset is available at http://bailando.sims.berkeley.edu/enron email.html
4http://languagelog.ldc.upenn.edu/nll/
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Language and culture, Semantics, and Idioms. To describe each post, tex-

tual content was converted into a bag-of-words (boolean) feature vector using

the StringToWordVector function available in the Weka machine learning soft-

ware package [31].

• Mediamill

The American National Institute of Standards and Technology (NIST) initi-

ated the TRECVID Video Retrieval Evaluation in an effort to push research

in the areas of automatic segmentation, indexing, and content-based retrieval

of digital video. In the year 2006, the authors of [20] provided a processed

version of the 85 hours video content from the TRECVID data of the previ-

ous year. Examples in this dataset are composed of key-frames taken from the

corpus videos. The authors provide a 101 concept lexicon which were chosen

at random from the videos. Concepts such as Tree, Desert, Tony Blair,

Smoke, Prisoner, Waterfall, and Football were among the concepts they

considered. The chosen features were taken from the visual content by choos-

ing color-invariant texture features from specific regions within each key frame.

Then, the obtained features were translated into similarity scores of 15 low-level

concepts such as Road, Waterbody, and Sky. The authors then varied the re-

gions and concatenated the similarity scores producing a total of 120 numerical

features.
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• Bibtex

The authors in [33] provided this dataset to target the automatic tagging of

Bookmarks and Bibtex entries in the Bibsonomy5 social bookmarking website.

The website enables users to store, share, and organize (using tags) Bibtex

entries as well as website bookmarks. However, this dataset is only concerned

with the problem of tagging Bibtex entries. The desired classification system for

this dataset should recommend in an efficient manner a set of relevant tags when

a user submits a new item to the Bibsonomy web page. The authors kept only

the journal, booktitle, bibtexAbstract, and title fields of the bibtex

entries. Textual content was converted to binary bag-of-words features. To

reduce the dataset, the authors considered only tags assigned to at least 50

Bibtex entries and words appearing in a minimum of 100 entries. Examples

of the remaining tags include Programming, Physics, Science, Imaging,

Language, and Architecture.

• Nus-wide

Image sharing websites such as Flickr6 allow users to tag their images using

keywords to keep them organized. Taking advantage of Flickr’s publicly ac-

cessible database, the National University of Singapore affiliated authors [21]

randomly collected a sample of 300, 000 images along with their 425, 059 unique

user assigned tags. Among all tags, the authors selected only 81 concept based

on the following: (i) they appear frequently in the database.(ii) correspond to

general and specific categories and (iii) are consistent with previous works in

5http://www.bibsonomy.org
6http://www.flickr.com
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Activities Program Scene People Objects Graphics
Swimming Sports Airport Police Animal Map
Earthquake - Temple Military Flags -

Surfing - Ocean Person Boats -
Wedding - Grass Person Tiger -

Table 2.4: Nus-wide Sample Topics

the literature. A sample of the selected tags are presented in Table 2.4 along

with their top categories. The elimination process left 269, 648 examples. To

reduce the tagging errors (noise), the images were given to high-school and Uni-

versity of Singapore students to verify present tags and complete missing ones.

In terms of features, the paper represented the images using a vector composed

of a color histogram (64 features), color correlogram (144 features), edge di-

rection histogram (73 features), wavelet texture (128 features), color moments

selected from a 5×5 grid (255 features), and bag-of-words SIFT descriptions

(500 features). Later, these features were deemed unnecessary and prohibitive

for large scale image retrieval problems by [22]. Instead, the authors extracted

features using the VLAD (Vector of Locally Aggregated Descriptors) feature

representation and then applied PCA plus whitening to reduce the vector size

to 128 features. Their experiments indicate an improvement in classification

accuracy as well as efficiency.

• IMDb

The goal of this data set is to assign movie genres to films using only the text

content of their synopsis. Data was collected by [11] from the famous Interna-
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tional Movie Database website7. There are 28 movie genres in the database. Ex-

amples of these genres include Thriller, Action, Drama, Comedy, Horror,

and Sci-Fi. The movie synopsis text was modeled using the bag-of-words

method with the help of the StringToWordVector function in the Weka ma-

chine learning software package [31]. The repository contains a total of 120, 919

movies.

• Rcv1

Reuters, one of the biggest international news agency, made available a corpus

of newswire articles collected over a year between 2005 and 2006. At that time,

the newspaper agency was generating 11, 000 articles per day. To facilitate the

retrieval of articles, the agency imposed a hierarchical code book to be used

by editors for labeling each news article. The codebook contains three main

categories: Topic, Industry, and Region. Coders (i.e. editors) were asked to

assign the codes such that each article must contain at least one Topic code

and one Region code. Also, they were required to choose codes that were

most specific in the hierarchy, such that parents of the code are automatically

assigned. However, the authors in [34] found the corpus to have violations and

errors to the coding scheme. Consequently, they proposed a revised version in

which they fixed the observed errors. The dataset listed in Table 2.2 is a subset

of the revised version which contains 6000 documents that are labeled with only

the Topic category of codes (101 classes). This subset (subset 1) was chosen

because it frequently appears in the literature. Among the topic codes are

7http://www.imdb.com
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Religion, Sports, Elections, and Weather. Feature representation in this

corpus is done by concatenating the headline of the article with the main text

and then doing the following: (a) reducing the letters to lower case, (b) applying

tokenization, (c) punctuation removal and stemming, (d) term weighting, (e)

feature selection, and (f) length normalization.

• Tmc2007

Aviation safety reports in free text format were provided as part of the SIAM

Text Mining Competition during the year 2007. These reports document prob-

lems that occurred in certain flights for the purpose of being able to identify re-

curring anomalies. The classification system is required to label the documents

according to the types of problems they describe. Feature representation of the

free text reports follow the boolean bag-of-words model (500 features). There

are 285, 596 reports and 22 possible problem categories. According to [35], the

defined categories include Alignment, Contamination, and Design.



CHAPTER 3

Related Work

The previous chapter defined the problem of multi-label classification, along with

the means to evaluate the classifier which target this field of machine learning. Build-

ing on this knowledge, this chapter provides a survey of what has already been done

to target the multi-label classification field.

Multi-label classification extends the traditional multi-class problem such that

examples may belong to multiple classes at the same time. As surveyed by the authors

of [10], and more recently [36], the approaches targeting the multi-label problem are

divided into two main categories: algorithm adaptation and problem transformation

methods. The approaches from the first group adapt single-label algorithms to make

them return multi-label outputs. In the other category, the multi-label problem is

transformed into a single-label domain where a traditional (binary or multi-class)

classifier is then employed. This chapter will review solutions from both categories,

and then focus on the family of approaches that are closest to this dissertation’s

contribution.

31
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3.1 Algorithm Adaptation Methods

The idea of adapting a traditional classification algorithm to produce multi-label

outputs was perhaps one of the earliest in the multi-label field. In general, solutions of

this type of approaches pertain to specific types of classifiers. It is thus sensible to give

introductory knowledge on the types of classifiers before discussing their multi-label

versions. This will be the followed scheme in this section.

3.1.1 Boosting

The authors of [37] discovered that after inducing a classifier, it is possible to im-

prove its accuracy by inducing an additional classifier which focuses on its incorrectly

classified examples. The original algorithm was called AdaBoost and the underlying

idea became widely known today as boosting. AdaBoost was implemented per the

following iterative steps:

1. Assign training set examples equal numerical weights.

2. Choose a sample S of the training set according to the assigned example weights.

Thus examples marked with higher weights are more likely to be selected.

3. Using the sample S, induce a so called ‘weak learner’ h(x). The original algo-

rithm’s weak learner function predicted the output class of an example based

on one of its attributes.

4. Test the weak learner from the previous step by applying it to the entire training

set.
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5. Increase the weights of examples that were incorrectly classified in the previous

step, and decrease the weights of others. Increasing the weights of misclassified

examples will ensure that they receive more attention in the next iteration.

6. Store the induced weak learner.

7. Repeat steps 2 to 6 until a termination criterion is met, such as a low error rate.

Once learning is concluded, classification of new examples is done by taking a

weighted average of the predictions of all induced ‘weak’ learners. The weights in

this situation can be assigned based on the individual recorded accuracy of each weak

learner.

The boosting idea lead to the invention of one of the earliest approaches in multi-

label classification. Specifically, the authors of AdaBoost extended their work in [38]

to handle multi-label outputs in a new algorithm which they called BoosTexter [15].

Their intention was to target the problem of text categorization, hence the name.

BoosTexter handles multi-label domains by assigning weights to each document-

class pair. Thus, the total number of weights is N ×L, where N and L are the

numbers of examples and classes respectively. Two versions were created for the

multi-label domains, AdaBoost.MH and AdaBoost.MR. The first version considers

the hamming-loss metric (see Section 2.3) to account for classification errors. In the

latter version, they consider instead ranking-loss which is based on the order of

relevancy of predicted classes for each example.

Boostexter was criticized by [1] for its rather simple decision function at its core

(i.e. the weak learner). Moreover, [4] found that the algorithm performed poorly
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in complex domains. Finally, classifier induction was computationally prohibitive in

domains with many labels and attributes—see the discussion in [39] and [40].

In [41], the authors modified AdaBoost.MH such that multiple decision criteria are

selected in each boosting iteration (one per class). Also, they added to the features

of examples the outputs of all the weak learners of previous iterations. The authors

argue that by taking into account the outputs of previous weak learners (one per

class), they essentially incorporate class correlations into the learning system.

3.1.2 Decision Trees

A decision tree learner belongs to the divide-and-conquer classification methods.

As such, training data is recursively divided into partitions based on features that

describe examples. The ultimate goal is to create final data partitions that are each

represented predominantly by a single concept.

Figure 3.1 illustrates an example decision tree structure. Here, the learned concept

is whether the insurance price for a given driver and car pair is going to be High or

Low. To find the insurance price for a car that is new to the database, classification

is done by comparing the features of the car to the decision nodes’ criteria (i.e. oval

shaped) starting from the root node. Eventually, a leaf node is reached where no

further paths can be followed. Determining the output class (i.e. price) is then

achieved based on the distribution of the training examples that are represented in

this leaf node; the dominant class is typically chosen as the final outcome.

In order to build an efficient decision tree, we would like to minimize classification

error using as few decision nodes as possible. One reasonable consideration is to

choose a splitting criterion that will create the most homogeneous data partitions
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Driving

 Years

Accidents

Per Year

Car Year

Car Type

High

Low

High High Low

High

<=2>2

<2>=2

<=2010<2010

Luxury
Sports

Normal

Figure 3.1: A decision tree example. The objective is to determine the price of insuring a
given vehicle and driver. Decision nodes are represented using ovals, and boxes represent
leaf nodes.

after the split; certain classes will be more dominant than others. This was the

motivation behind a famous decision tree algorithm known as C4.5 [42], which is

an improved version of the author’s previous algorithm [43]. To choose a suitable

splitting criterion, this technique measures the decrease in Entropy (randomness)

when a feature value is assumed to be known. Entropy is defined as in Equation 3.1.

Here, for a given partition S, the portion of positive examples for class li are denoted

using P+
i .

H(S) =
L∑

i=1

−P+li log(P+li) (3.1)

In order to choose the best split, the C4.5 algorithm iterates over all features finding

the one that will maximize the difference in entropy before and after the split. This

is known as Information Gain, and it is calculated as follows: Suppose a split using
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attribute z generates T partitions. The information gained from using this feature is

calculated as in Equation 3.2. Note that P (Si) denotes the portion of examples that

are represented in the partition Si with respect to the original partition S (before the

split).

IG(S, z) = H(S)−
T∑

i=1

P(Si)H(Si) (3.2)

One issue inherit to using information gain as described above is that it prefers

features that have several values even if each split generates a partition that has one

example. In the Car Insurance scenario, if we also consider the license plate number

of a given car as a feature, the algorithm would ultimately choose this feature yielding

a partition for every car in the training set. This happens because a high information

gain will be observed in each partition; they will each contain a single car, and

therefore a single class. Obviously, using the license plate number is not suitable to

determine the insurance price for future cars. To overcome this drawback, it was

suggested to use Information Gain Ratio instead [44], which takes into account the

number of examples in each generated partition as follows:

IGR(S, z) = H(S)−
∑T

i=1 P(Si)H(Si)∑T

i=1−P(Si) log P(Si)
(3.3)

The denominator in the fraction part of the equation is known as the Intrinsic Value of

the split. After some thought, the reader can see that this method will no longer favor

nominal features that have a high number of possible values. Note that continuous

variables do not fall under this category; they are typically separated by imposing a

threshold value which generates a binary split [44] as illustrated by Figure 3.1 (e.g.

‘Accidents Per Year’).
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In addition to classifying unseen examples, decision trees are able to associate a

confidence value with each class prediction by looking at the distribution of training

examples that fall into each leaf node. To illustrate how confidence values are cal-

culated, suppose a test example is classified into a leaf node in which 4 positive and

2 negative training examples were observed. Here, the classifier will label the test

example with the positive class; since positive examples constitute the major portion

in that leaf node. Additionally, the classifier can associate a prediction confidence

value of 2
3

based on the distribution of this leaf’s training examples ( 4
(2+4)

).

While the estimated probabilities are expected to be accurate when there is a

substantial number of examples in each leaf node, this will not be the case when

the number of examples is small. According to [45], basing the prediction confidence

on a small sample size (especially when the dataset is noisy) can provide misleading

probability estimates. To overcome this small-sample estimation hurdle, a technique

known as Laplace smoothing is typically applied [46]. Calculating the Laplace confi-

dence values is done as in Equation 3.4 below. Here, N denotes the number of training

examples observed in the leaf node, and Np refers to the quantity of these examples

that belong to the positive class. When applied to the previously mentioned example,

the smoothed confidence value will now become (4+1)
(6+2)

= 5
8
. As will be seen in the next

chapter, this function can be modified to better fit special class distributions, such as

that of the imbalanced classes representation mentioned in Section 1.3.

P (⊕) =
Np + 1

N + 2
(3.4)

Another benefit that is gained when using decision trees is their ability to be

interpreted as human readable rules. For instance, in [5] the authors were interested
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in interpreting what factors (features) are responsible for determining a class label

more than achieving complete classification. Intuitively, each path (root to leaf node)

in the tree can be interpreted as a rule which consists of predicate conjunctions. By

looking at the previous example in Figure 3.1, the following rules can be inferred:

• if (DrivingYears < 2) then InsurancePrice is High.

• if (DrivingYears >= 2) and (AccidentsPerYear >= 2), then InsurancePrice

is High.

Let us now discuss the computation complexity of decision trees. The following

derivation will closely resemble that discussed in [47]. In order to simplify the deriva-

tion, a few assumptions have to be made. First, the tree is assumed to have have a

depth in the order of O(log(N)) where N is the number of training instances. This

assumption follows from the desired goal of having a “bushy” decision tree such that

it does not have any long individual branches. It is also assumed that examples are

going to be different from each other (no duplicate examples), and are separable by

the given number of example-attributes D.

Based on the assumptions from the previous paragraph, the induction complexity

of a decision tree is in the order of O(DN log(N)), where D and N are the number of

attributes and examples respectively. To elaborate, each node requires D iterations

(one per attribute) and each test will be carried out (at the worst case) over all

instances, N . This process is carried out at every depth level (log(N)). Note that

when the attributes are nominal, they are not going to be used more than once in a

given tree-branch since an example can only have one value of the nominal attribute.

However, when the attributes are numeric, they are reusable since multiple binary
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splits can be formed from the same numeric attribute. The above derivation assumes

the worst case scenario in which all attributes as numeric. To classify previously

unseen examples, a test operation must be made for every node along a given path

in the tree. Thus, classification complexity is in the order of O(log(N)).

Decision trees were designed to handle classes that are mutually exclusive; a re-

striction that does not apply in multi-label domains. Thus adapting decision trees to

produce multi-label outputs was the target of the study in [5]. The authors modified

the well-known C4.5 algorithm by extending the entropy function to handle multiple

labels as demonstrated by Equation 3.5 below. Unlike the previous definition (Equa-

tion 3.1), for every class, negative examples (or examples that may also belong to

other classes) are counted. Therefore, an example that belongs to multiple classes is

counted more than once. In addition to modifying the entropy equation, they also

had to allow the leaves of the tree to be associated with subsets of classes rather than

individual ones.

H(S) =
L∑

i=1

−P+li log(P+li)− P−li log(P−li) (3.5)

Another multi-label algorithm that relies on the concept of decision trees is that

by the authors of [48]. Motivated by the Alternating Decision Tree algorithm [49],

the authors implemented a multi-label version where the induction of the decision

tree is done using the AdaBoost.MH [38] algorithm from Section 3.1.1. As a gained

advantage of using their method over AdaBoost.MH, the authors argue that their

approach can produce human readable rules since they construct decision trees.
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3.1.3 Neural Networks

The collaborative work between a logician and a neurophysiologist lead to the

invention of the Neural Networks classifier [50]. As indicated by its name, the goal

of this induction method is to simulate the biological brain’s neural activity in an

attempt to automatically recognize patterns. Neural Networks consist of several in-

terconnected single neurons that are also known as Perceptrons [51]. Each neuron is

mathematically represented using a function of several numerical inputs and a bias

as illustrated by Figure 3.2. When the output is binary, as in dichotomies, the sign

of the weighted sum of inputs is often selected as the function of the neuron:

f(x) = sign(w0.x0 + w1.x1 + w2.x2) (3.6)

In essence, when the the product of the vectors and weights is w.x > 0 the

predicted class is positive. Otherwise, a negative class is predicted.

Figure 3.2: An example neuron with two inputs and a single output.

After initializing the internal weights of a perceptron with arbitrary values, train-

ing the perceptron is done by presenting it with each example from the training set

and observing any errors that appear at the outputs. The errors are then used to up-

date the input weights such that it produces an output closer to that of the expected

one. This process, called an “epoch”, is repeated until a certain criterion is met,
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Figure 3.3: An example neural network with 3 neuron layers. The middle (hidden) layer
consists of 5 neurons. There are 3 input neurons and 2 output neurons respectively.

such as observing a low error rate. The original update method [51] used the sign of

the predicted output to calculate the output error. Later, an alternative method was

introduced [52] which instead uses the product of the weights and inputs directly;

without using the sign function. The latter approach is known as the Widrow-Hoff

algorithm.

It was found that perceptrons are suitable for linearly separable problems. How-

ever, when problems are more complex (i.e. non-linear), a network of neurons becomes

necessary; the outputs of some neurons are used as inputs in others. An example of

such network is presented in Figure 3.3. Unlike the single-neuron case, neural net-

works can produce multiple outputs and even contain hidden layers of neurons that

are located between the input and output layers. Having many neurons requires addi-

tional weight variables to realize the inter-neuron connections, which means additional

memory and computation requirements. Perhaps one of the most famous implemen-
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tations of these methods is the Back-Propagation of errors method from [53]. Showing

great success, their approach updates the weights of a multi-layered neural network

based on the contributions of each neuron to the error.

Although Neural Networks can handle the multi-label classification problem by

implementing a group of outputs at the output layer, it was found that modifying the

error function to account for the errors between class pairs produced promising results

in multi-label domains [4]. In their paper, the authors implemented two versions of

neural networks. The first of which uses the regular error function, BASICBP. The

other variant uses the difference between class pairs as the error function, which

they called BP-MLL. Their paper shows that BP-MLL outperforms BASICBP over

a broad range of metrics. However, the authors admit that training BP-MLL is

computationally expensive due to its complex error function. A similar idea was

proposed by the authors of [18], where a perceptron is trained for each pair of classes.

Their intention was to decouple the optimization process from any specific ranking

criteria.

3.1.4 Support Vector Machines

Instead of carrying out several “epochs” to realize the optimal input weights as

done in the Perceptron from the previous section, an algorithm called Support Vector

Machines (SVM) was later invented which finds the optimal values using only a subset

of the training examples [54,55]. To illustrate this process, let us refer to Figure 3.4.

Here, 2-dimensional examples are represented using circles which are color coded

based on their class affinity; positive examples are white colored, negative examples

are gray. Instead of considering all examples in the training set, SVM focuses only



43

Figure 3.4: A 2-dimensional linearly separable example problem. Positive and negative
examples are indicated using white and gray circles respectively. The chosen support vectors
are marked with red circles. The marginal distance is denoted using the letter, d.

on examples that neighbor the boundary between the two classes. Intuitively, one

can realize a separating hyperplane using only the information from these examples.

Marked with red circles in Figure 3.4, these examples are referred to as support vectors.

One can see that many orientations of the separating hyperplane can achieve

perfect separation of the two depicted classes. The optimization algorithm in SVM is

driven by the idea that a better generalization can be achieved when the separator is

positioned with a maximum distance (d) to the closest support vectors. Thus, future

examples are less likely to be affected by the orientation of the separating hyperplane.

Note that when a perfect separation is not possible, the optimization method reduces

the overall error by incorporating a penalty function for misclassified examples.

To put the SVM classifier in mathematical terms, let us suppose the data is

comprised of N examples that are each defined by a feature vector x and class label

yi = {−1, 1}, S = {(x1, y1), (x2, y2), ..., (xN , yN)}. The SVM classifier determines the

class label of an unseen instance by first calculating the dot product of the features

x and the set of weights w which define the orientation of the hyperplane. A scalar
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term b (known as bias) is then added to the dot product which leads to the formula

in Equation 3.7.

f(x) = x.w + b (3.7)

Using the sign of the function’s output, a test example is considered positive when

f(x) > 0, or negative otherwise.

Finding the optimal weights w involves solving the following minimization prob-

lem:

Minimize :
1

2
‖w‖2

subject to : y(xi ·w + b)− 1 ≥ 0,∀xi ∈ S
(3.8)

Here, minimizing the term 1
2
‖w‖2 follows from the width of the margin being

2
‖w‖2 . Note that the equality in Equation 3.8 will hold (i.e. = 0) when the examples

lie exactly at a distance d = 1 from the hyperplane. These examples are defined as

the support vectors which are marked by the red circles in Figure 3.4. Solving the

above minimization problem is done with the help of a Quadratic Programming (QP)

solver. However, as pointed out by [56], when datasets are large, many off-the-shelf

solvers are not practically feasible; since the programs must handle a matrix that

has a number of elements equal to the square of the number of training examples.

Thus, the same author suggested a method which breaks the problem into smaller

subsets. In turn, this reduces the complexity to that between linear and quadratic

time in the number of examples. This technique is known as Sequential Minimization

Optimization (SMO) [56], and it is currently being used by recent versions of machine

learning software tools such as WEKA [31] and LIBSVM [96].

To handle non-linearly separable problems, SVM can be extended using what are

known as kernel functions, Φ(x). The process involves mapping the examples’ features
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into a high dimensional feature space in order to make them easier to separate. Thus

the training data will now take the form, S = {(Φ(x1), y1), (Φ(x2), y2), ..., (Φ(xn), yn)}.

Typical kernel functions used in tandem with SVM include Polynomial kernels, Gaus-

sian Radial Basis Functions, and Sigmoids.

SVM is designed to separate dichotomous datasets. In order to handle multi-

label domains, a separate SVM is typically induced for each class in a one-vs-rest

scheme: for each class, examples that belong to the target class are labeled as positive

examples and all other examples are regarded as negative instances. In typical multi-

label domains, this makes each binary training set imbalanced; negative examples

(which may belong to any of the other classes) will outnumber positive ones. Since

the target of SVM ’s optimization problem is to reduce the overall error, it does

not differentiate between the positive and negative examples in finding the optimal

separating hyperplane. Consequently, when classes are imbalanced, the boundary

tends to be closer to positive examples causing many of them to be falsely classified

as negative. To balance the predictions of negative and positive examples in SVM,

the boundary can be shifted towards the negative examples after induction. This was

the motivation behind the work in [7].

Inducing a separate SVM classifier per class has another associated problem; it

assumes that classes are independent of each others. This may not necessarily be the

case in multi-label domains as discussed in Section 2.2. To overcome this problem, the

authors of [1,27] created an algorithm called RankSVM which considers the difference

between the hyperplanes of each class in the optimization problem. They argue that

class co-occurrence patterns may affect the final hyperplanes’ orientations. Their



46

approach yielded improvements in classification accuracy and outperformed the once

famous boosting algorithm AdaBoost.MH (see Section 3.1.1).

3.1.5 K-Nearest-Neighbors

In contrast to the previous classifier types, the K-Nearest-Neighbors (KNN) al-

gorithm [57, 58] does not undergo a learning process prior to testing new examples.

Instead, this classifier delays the learning process until it is presented with a test

example [59]. To classify a new example , the algorithm first finds the K training

examples that are most similar in the feature-space to the test example. Quantifying

the similarity between examples is done using a distance measure such as the eu-

clidean distance. After identifying the K closest examples, called Nearest Neighbors,

the classifier chooses the output label to be that which applies to most of the K

selected examples.

X

Figure 3.5: A 2-dimensional K-Nearest-Neighbor classification problem. Here, positive and
negative examples are indicated using white and gray circles respectively. The test example
is marked with a cross-mark (X). The closest K = 5 training examples are identified by the
red circle.

To illustrate this process, let us refer to Figure 3.5. Here, examples are defined

using a two-dimensional feature vector x = (x1, x2). Suppose we are tasked to predict
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the class of the example identified with a cross-mark (X). If we consider the closest 5

examples (i.e. K = 5), then the chosen nearest neighbors are those enclosed by the

red circle. As can be seen in the figure, the majority of the enclosed examples are

negative instances. Thus, the chosen classification for the test example is negative as

well. It is imperative to choose an odd number of nearest neighbors to guarantee a

valid voting outcome; where no ties are possible.

One advantage in using the KNN classifier is that it can be directly applied to non-

linearly separable problems as well. As can be seen in Figure 3.5, if a test example is

located in the top right corner in this 2-dimensional field, it will be likely be classified

correctly as positive. The same thing cannot be said about a linear classifier such as

that previously shown in Figure 3.4 from the previous section.

The drawback of using the KNN classifier lies in its classification time. Since

each test example must first be compared to the training set examples, the process

is extremely sensitive to the dimension and size of the training set. As a result,

the algorithm’s computational time can be prohibitive in large domains. There are

known methods to speed up the look-up of the nearest neighbors such as the KD-Tree

approach from [60].

Applying the KNN classifier to multi-label problems was first done by the authors

of [61], which they called ML-KNN for Multi-label K-Nearest-Neighbors. Their algo-

rithm produces multi-label predictions by applying the same voting scheme described

above to each class separately. Although they show that their algorithm outperformed

the SVM based RankSVM algorithm (see Section 3.1.4) and the boosting based Ad-

aBoost.MH (see Section 3.1.1), they do not however provide the computational time

results.
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To end this section, it is important to note that most algorithm adaptation at-

tempts were tailored for specific domains such as biology [5] and text categoriza-

tion [3]. Moreover, these methods are generally restricted to specific types of classifiers

such as SVM, Decision Trees and Neural Networks. The next category of methods

will be applicable to a much broader variety of classifiers.

3.2 Problem Transformation Methods

Instead of adapting the algorithms to make them return multi-label outputs, this

category of methods transform the data to a single-label domain that traditional

classifiers can handle. To obtain a better understanding of these methods, let us

use the sample data set from Table 3.1. Note that there are 8 examples(rows) and

4 classes (columns). When a class is relevant for an example, it is indicated using

the cross-mark, X. Note that some classes may overlap over the same example, as

in the case of Example 2 which belongs to classes A and B. Let us now discuss the

transformation methods.

Classes A B C D
Ex. 1 X - - -
Ex. 2 X X - -
Ex. 3 - X X X
Ex. 4 - - - X
Ex. 5 X X - -
Ex. 6 X - X -
Ex. 7 - - X -
Ex. 8 - X X -

Table 3.1: A Sample Data Set with L = 4
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Class A
Ex. 1 X
Ex. 2 X
Ex. 3 -
Ex. 4 -
Ex. 5 X
Ex. 6 X
Ex. 7 -
Ex. 8 -

Class B
Ex. 1 -
Ex. 2 X
Ex. 3 X
Ex. 4 -
Ex. 5 X
Ex. 6 -
Ex. 7 -
Ex. 8 X

Class C
Ex. 1 -
Ex. 2 -
Ex. 3 X
Ex. 4 -
Ex. 5 -
Ex. 6 X
Ex. 7 X
Ex. 8 X

Class D
Ex. 1 -
Ex. 2 -
Ex. 3 X
Ex. 4 X
Ex. 5 -
Ex. 6 -
Ex. 7 -
Ex. 8 -

Table 3.2: Binary Relevance Transformation

3.2.1 Binary Relevance Transformation

The most intuitive approach to transform multi-label problems, which is borrowed

from multi-class domains [62], is to target each class independently. This is done by

dividing the data into multiple single-label (binary) datasets as in Table 3.2. On

account of the problem being now represented by multiple dichotomies, a binary

classifier is thus induced for each class. The class vector of a new example can then

be obtained by aggregating the outputs of all binary classifiers. This technique is

known in the literature as the Binary Relevance (BR) method. Figure 3.6 illustrates

the overall structure of this method.

The BR approach has been shown to be very competitive with other multi-label

approaches [11]. Despite its successes [6], however, BR does not account for class

correlations because it targets each class independently. Arguably, a beach scene may

be strongly correlated with water. The same fact cannot be said about beach and

mall. This criticism was the source of concern for many studies [1,8,11,12,17,63–65].

BR is also known to suffer from an imbalanced representation of classes in the binary
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Figure 3.6: An example structure of the BR method with L = 4. Here, hj(x) is the binary
classifier assigned to the jth class. Each example x is passed to the binary classifiers in
parallel.

training sets. For example, in Table 3.2, one can see that class D has only 2 positive

examples out of 8. This issue was discussed at great length in [7] and [66].

3.2.2 Pairwise Transformation

ClassPair (A,B)
Ex. 1 X
Ex. 3 -
Ex. 6 X
Ex. 8 -

ClassPair (A,C)
Ex. 1 X
Ex. 2 X
Ex. 3 -
Ex. 5 X
Ex. 7 -
Ex. 8 -

ClassPair (A,D)
Ex. 1 X
Ex. 2 X
Ex. 3 -
Ex. 4 -
Ex. 5 X
Ex. 6 X

ClassPair (B,C)
Ex. 2 X
Ex. 5 X
Ex. 6 -
Ex. 7 -

ClassPair (B,D)
Ex. 2 X
Ex. 4 -
Ex. 5 X
Ex. 8 X

ClassPair (C,D)
Ex. 4 -
Ex. 6 X
Ex. 7 X
Ex. 8 X

Table 3.3: Pairwise Transformation

Instead of targeting each class independently, the second transformation method

creates a dichotomy for each class pair. The goal here is to capture pairwise depen-

dencies between classes. Hence, the technique is known as Pairwise Transformation
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(PW). To train the classifier assigned to each class pair, the approach considers only

examples that belong either to the first or to the second class in the pair, but not

both. This creates as many as L(L− 1)/2 binary subsets, where L is the number of

classes. Applying this transformation method to our sample dataset is illustrated in

Table 3.3. A few remarks can be made: first, not all examples are present in each

subset. Secondly, when a pair of classes co-occur frequently, or if either of the classes

are rare, this pair will have very few examples in its subset. Consider for example

the class pair (C,D); not only is the pair represented by half the examples, it is also

highly imbalanced (only one negative example exists in the subset). Conversely, when

members of a class pair are abundant and they do not exhibit a direct co-occurrence

pattern, the class pair will be represented by a highly populated subset of examples.

This is the case in class pair (A,D).

To predict the labels of previously unseen examples, each pairwise classifier casts

a vote for one of its class members. Positive example predictions equate to a vote for

the first class in the pair, and negative predictions vote for the second class. Following

that, classes are ranked according to the vote of all pairwise classifiers. With the help

of a predefined number-of-votes threshold, the relevant classes are then separated from

the irrelevant ones. A novel approach from this group of transformation methods is

that of [67]. Instead of using a prespecified threshold for all classes, the authors

created an artificial category which lies between the relevant and irrelevant classes.

This means an additional L number of classifiers are added to the system. These

classifiers are then trained to produce a positive label prediction for irrelevant classes

and negative prediction otherwise. Although the pairwise approach models 2nd degree

dependencies, it is however computationally inefficient in domains with great many



52

Classes A C D A+B A+ C B + C B + C +D
Ex. 1 X - - - - - -
Ex. 2 - - - X - - -
Ex. 3 - - - - - - X
Ex. 4 - - X - - - -
Ex. 5 - - - X - - -
Ex. 6 - - - - X - -
Ex. 7 - X - - - - -
Ex. 1 - - - - - X -

Table 3.4: Label Powerset Transformation

classes due to its quadratic running time with respect to the number of classes (L(L−

1)/2). There are attempts to overcome this limitation such as those in [68] and [69].

3.2.3 Label Powerset Transformation

An alternative transformation technique converts each class combination into a

single class. Thus, a maximum of 2L classes may be present, with L being the

number of individual classes in the original dataset. This approach, called the Label

Powerset method (LP) makes it possible to use a single-label (though multi-class)

classifier directly on the converted set. Unlike BR (see section 3.2.1), the LP method

explicitly models label correlations giving it an advantage in that regard. However,

this conversion method also has its trade-offs.

To see the issues that are associated with LP, let us consider applying it to our

sample dataset as done in Table 3.4. The reader can observe the following: first of

all, not all combinations exist in the data. For instance, class B never occurs on its

own and therefore it no longer exists as a singular class. Consequently, the classifier

may overfit the training data and will never predict this class alone. Also, the dataset

has become remarkably sparse; for each combination, there exist only a few positive
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examples. Finally, although not shown in our example, when classes frequently co-

occur over the examples, this may lead to an upper bound of 2L classes which renders

this approach impractical for large datasets. This is why some authors attempted to

reduce the method’s complexity by considering only some label combinations [70], [71].

Unfortunately, these algorithms are still costly in large multi-label domains [11].

In a more recent attempt, a hybrid method was proposed, LPBR, that combines

BR with LP [72, 73]. The idea is to partition the label space into dependent and

independent groups using a heuristic such as Information Gain which was discussed

in Section 3.1.2. After partitioning the classes, the authors apply LP to the dependent

group, and BR to the independent classes. While showing an improvement in terms

of classification accuracy, the technique was still computationally very costly.

3.3 Label Dependent Binary Relevance Methods

Thus far, this chapter has reviewed methods which adapt single-label algorithms to

output multi-label predictions, and transformation methods which rather convert the

data into a single-label domain. For a better insight of proposed idea in this work, this

section will focus on the family of methods that are closest to the proposed solution;

the group of methods that are based on the BR framework discussed previously in

Section 3.2.1. Note that for the brevity of this review, the notations from Section 2.1

will be adopted in this section.

Recall that the BR technique targets the classes independently from each other.

As was demonstrated by so many studies [1,11,12,17,63–65], class dependencies may

prove beneficial for classification purposes. Attempts to rectify the class independence
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. inputs .
x1 x2 x3 x4 ŷ1 ŷ2 ŷ3 output

h1(x) 0.23 -0.4 0.55 0.1 1
h2(x) 0.23 -0.4 0.55 0.1 1 0
h3(x) 0.23 -0.4 0.55 0.1 1 0 1
h4(x) 0.23 -0.4 0.55 0.1 1 0 1 1

Table 3.5: Prediction steps of the Classifier Chains. Here, the number of classes is L = 4.
The example’s original feature vector is x = [0.23,−0.4, 0.55, 0.1], and the predicted labels
are ŷ = [1, 0, 1, 1].

drawback of BR have resulted in the development of state-of-the-art multi-label clas-

sification methods, which are discussed next.

3.3.1 Classifier Chains

A “straightforward” approach to incorporate label dependencies into BR is the

Classifier Chain (CC) learning system from [11, 74]. The idea (illustrated by Fig-

ure 3.7) is to create a random sequence of chained classifiers (one per class) in a such

a way that each binary learner accepts the classifications of the previous classifiers

in the chain as additional features, hz(x) = h(x, ŷ1, ŷ2, ..., ŷz−1). Prediction happens

following the steps shown in Table 3.5 (from top to bottom). Note that the order of

the classifiers in the chain was kept intact to eliminate any confusion.

A probabilistic interpretation by [12] and [75] show that CC approximates in a

greedy manner the conditional joint mode of the label distribution, P (y|x). This

conclusion stems from the product rule of probability explained in Section 2.2. The

same performance criteria from Section 2.3 were used by the authors of [11] to show

that CC compares favorably with other recent algorithms. However, CC also has

some related shortcomings.
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h (x)1 h (x')2 2 h (x')3 3 h (x')4 4

Figure 3.7: A structural representation of the Classifier Chain method with L = 4. Here,
hj(x) is the binary classifier assigned to the jth class, and x′z = x ∪ (ŷ1, ŷ2, ..., ŷz−1).

The CC approach was analyzed by [6, 12, 75–77] and found to underperform in

large data sets mainly due to error-propagation, and also because its classification

depends on the order of the classifiers in the classifier chain. To overcome these prob-

lems, the same authors proposed an ensemble version, Ensemble Classifier Chain

ECC, where they create multiple classifier chains each with a different order of clas-

sifiers. Prediction is then carried out by a voting mechanism such as choosing the

majority vote for each class. While somewhat mitigating the previous drawbacks,

ECC incurs additional computational costs because of the additional classifiers. In

an effort to show the importance of label ordering, the authors of [78] proposed a

Bayesian optimal classifier chain, but the price for their success was that the system

was computationally tractable only in data sets with no more than 12-15 labels. In

addition to the label-ordering issue, the CC algorithm follows the assumption that all

classes are related; this makes the system somewhat domain-dependent. Improving

CC is currently an active research area. In [79], the authors proposed a method which

optimizes the selected ensemble of classifier chains according to the f1 measure from

Section 2.3. Another interesting improvement is that introduced in [80] which uses a

different sequence of classifiers for each test example.
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Figure 3.8: A Stacking structure example with L = 4. Here, h
(i)
j (x) denotes the binary

classifier for the jth class in the ith layer; x denotes the regular feature vector; and x′ =
x ∪ ŷ(1) is the features-plus-labels vector. The dotted line indicates which features are
ignored when training using actual labels.

3.3.2 Stacking Classifiers

As discussed in the previous section, the classification performance of CC was

found to be sensitive to the order of the classes in the classifier chain. One way to

deal with the label-ordering problem is to include classifications of all other classes

as features to be used by every classifier. Closely resembling the proposed method,

this approach is typically implemented by stacking two layers of BR classifiers as

in Figure 3.8. During classification, primary predictions are first obtained using

the independent first-layer classifiers as in BR (see Section 3.2.1), h(1). The idea

is then to capture label dependence by augmenting the regular feature set, x, with

the primary predictions, ŷ(1), forming the so-called meta-examples, x′. The newly-

formed examples are then forwarded to the now-dependent second-layer models to

produce final classifications. Table 3.6 illustrates the prediction steps as was done for

CC in the previous section. The reader may note that, the only prediction that was

changed in this example is that of class 3 where the original prediction was switched

from 1 (relevant) to 0 (irrelevant). This two-step method was first introduced in [9].
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STEP 1 inputs .

x1 x2 x3 x4 output ŷ(1)

h
(1)
1 (x) 0.23 -0.4 0.55 0.1 1

h
(1)
2 (x) 0.23 -0.4 0.55 0.1 0

h
(1)
3 (x) 0.23 -0.4 0.55 0.1 1

h
(1)
4 (x) 0.23 -0.4 0.55 0.1 1

STEP 2 inputs .

x1 x2 x3 x4 ŷ
(1)
1 ŷ

(1)
2 ŷ

(1)
3 ŷ

(1)
4 output ŷ(2)

h
(2)
1 (x) 0.23 -0.4 0.55 0.1 . 0 1 1 1

h
(2)
2 (x) 0.23 -0.4 0.55 0.1 1 . 1 1 0

h
(2)
3 (x) 0.23 -0.4 0.55 0.1 1 0 . 1 0

h
(2)
4 (x) 0.23 -0.4 0.55 0.1 1 0 1 . 1

Table 3.6: Prediction steps for Stacking, The number of labels L = 4. The example’s original

feature vector x = [0.23,−0.4, 0.55, 0.1], and the primary predictions are ˆy(1) = [1, 0, 1, 1].

The secondary (final) predictions are ˆy(2) = [1, 0, 0, 1]

Throughout the rest of this dissertation, this technique will be referred to as as

Stacking.

There are two ways to train the second layer of the stacking approach, h(2). Orig-

inally, meta-examples are created using (possibly continuous) predictions of the first-

layer [9]. This training approach is perhaps motivated by the ability to capture and

correct estimation errors of the first layer’s classifiers. Nevertheless, using training

classifications may overfit the data by biasing the meta-examples. For instance, in

each iteration of the boosting algorithm from Section 3.1.1, a specific classifier is

induced to target the selected subset of examples corresponding to that iteration.

This induced classifier is specialized for that subset, which makes it biased towards it.

Similarly in Stacking, the predictions assigned by the classifiers for the training set

are not guaranteed to be the same for previously unseen instances. It is possible to
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avoid biasing by cross-validation (e.g. [7,81]), the price being increased computational

costs.

Alternatively, one can augment the regular feature vector with class labels directly

obtained from the training set. This method was used recently by [65] who call it

Dependent BR (DBR). When creating meta-examples, this method does not include

the labels of the target class for each binary classifier to prevent the learner from

picking it as the only criterion; since the target class prediction will be equal to the

value of that label-feature. This principal is reflected in the example illustrated in

Table 3.6, where those label-features are left blank. Additionally, the dotted lines in

Figure 3.8 show which label-features are excluded in this mode of training.

3.3.3 Computation Complexity

Let us now consider how much computational complexity the CC and Stacking

approaches add to BR. In this analysis, the terms D, N , and L will refer to the number

of features, examples, and classes respectively. Since the CC and Stacking approaches

rely on a base (binary) learning algorithm at their core, the terms FB(N,D) and

F ′B(D) will refer to the training and testing complexities of the employed base learning

algorithm. For instance, when the decision tree classifier is used as the base learner,

the term FB(N,D) will be refer to O(DN log(N)) during training and F ′B(D) will

refer to O(log(N)) during testing (see Section 3.1.2). Note that this terminology

follows that recently used by [36].

The BR method constructs one classifier for each category in the dataset. As

such, the number of classifiers induced is going to be L. Furthermore, each classifier

will be induced on the same number of features D, which yields a training complexity
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BR CC Stacking
Training O(L · FB(N,D)) O(L · FB(N,D + L)) O(L · FB(N,D + L))
Testing O(L · F ′B(D)) O(L · F ′B(D + L)) O(L · F ′B(D + L))

Table 3.7: Computational complexities of BR, CC, and Stacking. N , D, and L represent
the number of examples, features, and classes respectively. FB and F ′B refer to the induction
and testing complexities of the employed base classifier.

in the order of O(L · FB(N,D)). The CC approach is equivalent to BR in that the

total number of induced classifiers is equal to the number of labels, L. However, each

classifier will take into consideration the class labels of the previous classifiers in the

chain for a total of D+L features. Thus, the training complexity of CC is in the order

of O(L ·FB(N,D+L)). In the ensemble version (ECC), for an ensemble of Q classifier

chains, the number of induced classifiers is increased to Q×L. Thus, the complexity

becomes O(Q ·L · FB(N,D+L)). Due to the two-layer formation of Stacking, a total

of 2× L classifiers are induced. Also, the classifiers of the second layer will take the

input of the first layer as additional features. This makes the complexity of stacking

in the order of O(L · FB(N,D + L)).

During training, when meta-examples are constructed using the class labels (di-

rectly from the training set), the Stacking and CC methods can both be parallelized

since the information is available before hand. The same cannot be said when class

predictions are used to train the dependent classifiers. Here, each classifier needs to

be induced in sequence for the CC method. In stacking, induction of the first-layer

can be parallelized, and then the second-layer of classifiers is constructed in the same

way.

When testing previously unseen examples, the BR method will have a complexity

that is O(L ·F ′B(D)). Since the CC and Stacking approaches involve additional class-
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features, their testing complexities will be in the order of O(L ·F ′B(D+L)). However,

in a parallel execution environment, the advantage of Stacking is that the first-layer

can be run in parallel, followed by the second-layer in the same fashion. This cannot

be achieved by the CC method because each classifier in the chain depends on the

preceding classifiers. When the algorithms are run serially, the Stacking approach

can take twice the execution time of CC. In this case, Stacking loses its parallel

computational advantage. A summary of the algorithmic complexities deducted in

this section is provided in Table 3.7.



CHAPTER 4

The PruDent Algorithm

The popularity of multi-label classification applications has motivated the devel-

opment of the many existing approaches discussed in Chapter 3. The BR method

from Section 3.2.1 is arguably the most intuitive way to target multi-label classi-

fication; which assigns a separate binary classifier for each class. Perhaps due to

its simplicity, and compatibility with the existing library of traditional single-label

methods, BR quickly became popular among the research community.

Despite showing competitive classification performance [6, 11], some researchers

pointed out a possible weakness. By inducing a binary classifier for each class inde-

pendently from other classes, the learner ignores class dependencies (see Section 2.2).

And yet, research groups demonstrated significant classification improvement when

class correlations are incorporated in the learner [1, 8, 11,12,17,63–65].

One way to incorporate class correlations into BR is to extend the feature vector

of examples by information about the classes to which the given example has already

been shown to belong. In fact, the state-of-the-art Classifier Chains and Stacking

methods from Section 3.3 follow this arrangement specifically. Although they incor-

porate class correlations in BR, however, such methods fail to pay adequate attention

61
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to two critical issues: error-propagation, and unnecessary class dependencies. Let us

take a look.

Error-Propagation: When adding to the attribute vector the information about

the example’s belonging to some other classes, it is often assumed that these added

class labels are correct. In real-world applications, however, this is not necessarily the

case. Consequently, an error made by one classifier can affect the other (dependent)

classifiers. This problem will be referred to as error-propagation, a term also used

by [76].

Unnecessary Dependencies: Not all class relations can improve classification.

Intuitively, if a text document belongs to Cooking, it is likely to belong also to Diet.

Nevertheless, the same document will not likely be classified as Mining-Industry.

Suppose we extend this problem by adding the topic Economy. Here, the class Economy

does not correlate with Diet: a document’s belonging to one class does not tell us

anything about its belonging to the other class. An attempt to use this particular

class relationship, such as between Economy and Diet, is thus unlikely to improve

performance; it may rather lead to an unnecessary increase in computational costs.

Even worse, error-propagation could become more problematic when there are more

error-prone features at hand.

The technique PruDent [14], introduced in this chapter, seeks to address both of

these issues. Here, the outputs of independent classifiers (using the BR framework)

are treated as new attributes that are added to the original attribute vector. Unnec-

essary label dependencies are pruned out, and confidence values calculated for the

classifications are employed in a manner that reduces error propagation.
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Experiments with popular testbeds indicate that PruDent ’s classification perfor-

mance compares favorably to that of other state-of-the-art algorithms. Moreover, the

technique scales-up well for large domains: its computational costs grow linearly in

the number of labels. Apart from experimental evaluation of the technique’s perfor-

mance, this chapter reports extensive experiments exploring its behavior.

The organization of this chapter is as follows. The motivations driving the design

of the proposed technique are presented in Section 4.1. Following the implementation

details of PruDent in Section 4.2, the experiments and their results are summarized

in Sections 4.3 and 4.4, respectively. This chapter ends with some specific aspects of

the approach, which are discussed in Section 4.5.

4.1 Goals for The Proposed Technique

The previous chapter described two popular algorithms that use class predic-

tions as additional features: the Classifier Chains and Stacking methods. Unfortu-

nately, these approaches include unnecessary relationships and do not deal with the

error-propagation associated with these additional features. The goal of the proposed

method is to address these issues by targeting the two relevant questions; namely,

which class dependencies are relevant? and how to diminish error-propagation? Let

us take a closer look.

4.1.1 Which Class Dependencies Are Relevant?

As discussed in Section 3.3, the CC [11] and Stacking [9, 65] approaches incor-

porate label dependence into BR by appending the set of class labels to the regular

features. Generally, these methods assume dependence between all classes, an as-
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sumption that is often violated in realistic applications. As shown by [81], some label

dependencies are unnecessary. Including them can not only incur additional compu-

tational overhead, but also reduce classification accuracy because of their associated

errors.

Which means that some pruning may be necessary.

Many heuristics can be used here. One reasonable consideration is to keep only the

most relevant dependencies. Thus [81] and [73] measured dependencies between pairs

of classes by a special version of the Pearson product moment Correlation Coefficient

(PCC) [82] for dichotomous variables; then they eliminated class pairs with values

below a certain threshold. The PruDent technique follows a similar approach which

relies on Information Gain (IG) that is often used in feature selection [66, 82, 83].

Although both criteria, PCC and IG, can identify independence, the latter was used

because the learning algorithm used in the experiments (see Sections 4.3.1 and 3.1.2)

employs the same heuristic1. Note that the novelty of the proposed approach is not

specific to this pruning method. This serves as an example to illustrate the idea of the

proposed algorithm. The method may perform equally well with other dependency

measures.

While simple methods to identify independence like IG and PCC are commonly

used in the literature, one could also employ more sophisticated techniques such as

those from the association rule mining field [84–86]. Nevertheless, these approaches

typically seek to discover only positively related classes; classes that co-occur fre-

quently rather than those that rarely co-occur together. Recent studies tell us that

1The similar Information Gain Ratio was not used since the drawback of IG in preferring multi-
valued attributes does not apply here; labels can only take binary values.



65

the latter type of dependencies can be more than valuable for classification purposes,

even when they are used exclusively [87].

The proposed algorithm quantifies the strength of a correlation between pairs of

classes using IG. To calculate IG, entropy is used per the definition in Equation 3.1

(Chapter 3). However, since entropy is now being used to identify class correlations,

it makes sense to replace the symbol for a “subset of examples” (S) with that of the

reference class (yi) entropy is calculated for. Equation 4.1 shows this new formulation.

To simplify the expression, the prior signifying the portion of positive examples that

belong to class yi, P (yi = 1), is substituted with P+
i , and similarly P (yi = 0) (for

negative examples) is replaced with P−i . To calculate the information gained by

incorporating labels of class ‘B’ as an additional feature when targeting class ‘A’,

the entropy function is used as illustrated by Equation 4.2. Note that IG values are

always in the interval [0, 1].

H(yi) = −P+i log(P+i )− P−i log(P−i ) (4.1)

IG(yA, yB) = H(yA)− H(yA|yB) (4.2)

After calculating IG for all label-pair combinations, dependencies with values

below a certain threshold, φ, are omitted. An optimal value of φ can be found by

a validation-set procedure; a subset of the training data is used as test examples to

find which φ values are suitable for the given classification problem.

An important difference between the proposed approach and the one used by [81]

has to be pointed out. In their system, they discard the original example features

when forming the meta-examples discussed in Section 3.3.2. Instead, the only features
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they use are the outputs of the first-layer classifiers. The distinction between the two

approaches lies in the type of dependency being modeled. On the one hand, using

the classification vector alone targets dependencies that are global with respect to the

entire training set. On the other hand, concatenating the original features with the

classification vector also captures dependencies conditional on a subset of examples.

The reader is referred to Section 2.2 for a detailed explanation.

4.1.2 How to Diminish Error-Propagation?

The previous step related a class to other classes by way of Information Gain.

The removal of unnecessary dependencies also reduces error-propagation thanks to

the reduction of error-prone features used in building meta-examples. However, a

more drastic solution is needed to prevent the remaining classifier-dependent features

from propagating errors to other classifiers.

When a feature depends on a previous classification, errors in this classification

will affect all classifiers that use this feature. One way to mitigate error-propagation

is to assign confidence values to the classifications. This makes it possible to compare

the confidences of independent and dependent class predictions per unseen instance,

and then choose the classification where the confidence is higher. Intuitively, when

class dependencies apply to an example, the dependent classifiers should have greater

confidence in their classifications.

This intuition is visualized by Figure 4.1. Suppose that classifier h
(2)
3 (second-layer

for class 3) uses the output of h
(1)
1 as an additional feature. If h

(1)
1 incorrectly classifies

an example, the error is propagated to h
(2)
3 . This error could have been avoided if we

had used the class prediction of the independent classifier h
(1)
3 as a final classification.
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Figure 4.1: Error propagation. The tick-marks denote correct classifications; cross-marks
denote incorrect classifications. The dotted line indicates error propagation.

The underlying premise here is that classification confidences can offer a guideline

for the decision which classifier (dependent or independent) is safer for a particular

example.

4.2 The PruDent Algorithm

The proposed algorithm is based on the stacking idea from Section 3.3.2. The

reason why stacking is preferred over CC is to eliminate the effect of the order in which

the class labels enter the feature vector; also, stacking can easily re-use independent

BR classifiers when the classes are deemed mutually independent. In the next section,

a formal definition of the PruDent algorithm is provided. Whenever needed, the

notation from Section 2.1 will be used.

4.2.1 Training Phase

Training is carried out in a fashion similar to that of the stacking approach where

two sets of binary classifiers are induced (Figure 3.8). Prior to induction, the proposed
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algorithm prunes unnecessary dependencies so as to construct specialized feature

vectors for each class.

1 2 3 4
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Figure 4.2: An example IG matrix with the number of classes L = 4.

Identification of Unnecessary Dependencies:

To identify weak label dependencies, PruDent first calculates IG (Equation 4.2) for

all label pairs. This results in an L×L matrix IG where entry IGi,j corresponds to

the IG value of the label-pair li and lj. Figure 4.2 illustrates an example matrix when

the number of classes L = 4. Since IG is symmetrical and the IG of a class and itself

is ’0’, only L(L− 1)/2 calculations are needed.

Pruning Unnecessary Dependencies:

The removal of unnecessary dependencies is carried out by comparing each entry in

IG to a pre-specified threshold, φ. Whenever IGi,j < φ, the class-pair dependency

of li and lj is tagged as unnecessary. Eventually, IG is converted to a binary matrix

where ’0’ valued entries correspond to unnecessary dependencies and ’1’ otherwise.

Figure 4.3 illustrates the generated binary matrix when a threshold (φ = 0.1) is

applied to the example matrix from the previous step.

Note that higher threshold values may result in entire rows containing nothing

but ’0.’ Labels corresponding to such rows are deemed independent from all others.

The value of φ can be determined using a validation-set process.
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Figure 4.3: The remaining dependencies in the IG matrix from Figure 4.2 when a threshold
φ = 0.1 is applied.

Classifier Induction:

Using the stacking method from Section 3.3.2, the first-layer of classifiers (h(1) in

Figure 3.8) is induced as in BR where the regular feature vector x is used. Recall

that the second-layer classifiers (h(2)) are trained using meta-examples created by

augmenting the original feature set with the vector of class labels. Unlike other

stacking techniques, the proposed algorithm uses the previously created IG matrix

to form specialized feature vectors: for each class, li, only training-set labels of classes

that correspond to non-zero IGi,j entries are used. Thus, the feature vector used to

train a classifier for li becomes x̂i = x ∪ {yj} : IGi,j 6= 0. Note that when a class has

no dependencies (the row contains only ’0’s), no second-layer classifier is constructed.

This makes the proposed approach faster than previous stacking methods (not all

classes require the induction of a second-layer classifier).

4.2.2 Prediction Phase

Classification begins by obtaining primary class predictions using the independent

first-layer as in stacking ; then, the predictions are combined with the original features

to construct meta-examples ; after that, they are forwarded to the second-layer to
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deliver the final classifications. Here, the proposed approach has an additional step

in which the primary predictions could be re-used.

First-layer classification:

During testing, each unseen example is submitted to the first-layer of classifiers (h(1)

in Figure 3.8) to obtain primary class predictions. In addition to their binary values,

the proposed approach also records their associated prediction confidences. The confi-

dence values depend on the technique chosen on the base classifier—for instance, they

can be determined by the distance to the hyperplane in SVMs [88]. The experimental

setup of the proposed method is detailed in Section 4.3.1.

Meta-example construction:

Recall that to train the second-layer classifiers, (h(2)), meta-examples are used. To

build the meta-examples, the class labels from the training set were used to fill in the

class-features. Obviously, this information is not available during prediction; labels

of unseen instances are unknown. To overcome this hurdle, the missing values are

filled using the primary predictions of the first-layer classifiers. Consequently, the

newly-formed examples for class li are now x̂i = x∪ {ŷj} : IGi,j 6= 0. Note that label

predictions, ŷ, are used here instead of the actual labels, y.

Second-layer classification:

After creating the meta-examples in the previous step, they are forwarded to the

second-layer classifiers. As a result, secondary predictions are obtained along with

their associated confidence values. In other stacking techniques, these class predic-

tions become final, but the proposed algorithm follows a more sophisticated approach.

Choosing the final classification:

Thus far, each test instance has a primary and secondary prediction from the first-
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and second-layer classifiers respectively. Moreover, each of the predictions is assigned

a confidence value. Recall (Section 4.1.2) that error-propagation can be reduced with

the help of confidence values. Here, PruDent re-uses the primary predictions as final

classifications whenever they have higher confidence values than their secondary coun-

terparts. Thus, for each class-example pair, the confidences of both class predictions

are compared, and the more confident classification is chosen.

4.2.3 Computational Complexity

Having explained the implementation details of PruDent, let us now consider

its computational complexity. The format of this deduction will follow that from

Section 3.3.3. Specifically, the termsN , D, and L will refer to the number of examples,

features, and classes respectively. To denote the learning and testing upper bounds of

the employed base learning algorithm, the terms FB(N,D) and F ′B(D) will be used.

In terms of training, as in the original Stacking approach, PruDent requires the

induction of a classifier for each class in the first layer. For the second layer, only

classes that are deemed dependent will require building an additional classifier (to

capture the label dependencies). To establish whether a class is dependent on others

or not, the proposed algorithm computes the Information Gain for each pair of classes

as described by the previous section. Thus, L(L−1)
2

operations are required. This

makes the complexity in the order of O(N ·L2) since the operation requires checking

the class affinities of all examples. Given the above explanation, at its worst case

(i.e. when all classes are deemed dependent), PruDent ’s computational complexity

during training becomes O(L · FB(N,D + L) + N · L2). Although checking for class

dependencies has a quadratic complexity, in practice, calculating entropy between
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pairs of classes is a fast operation and requires a small computational overhead when

compared to the induction time of the base learning algorithms. Furthermore, in a

parallel computation environment, identifying label dependencies between each pair

of classes can be efficiently run on separate processing threads.

During testing, PruDent requires all examples to be classified first by the inde-

pendent layer of classifiers. After that, the class predictions are appended to the test

example’s features and they are passed to a second layer of classifiers whenever classes

are deemed dependent on others. In the worst case scenario, for every test example,

the algorithm will require two classification operations for each class. This makes the

testing computational bound (for each test instance) in the order of O(L ·F ′B(D+L)),

which resembles that of the original Stacking method from Section 3.3.2.

4.3 Experiments

Two major aspects are of interest: the filtering of unnecessary dependencies, and

the use of classification confidence for the reduction of error-propagation. The ex-

periments will first demonstrate the effect of each of the two aspects on classification

performance. After this, PruDent will be compared with other existing state-of-the-

art techniques.

4.3.1 Methods and Setup

To conduct the experiments, the publicly available J482 algorithm was used to

induce the base classifier for binary subproblems. This learning algorithm was chosen

not only because it is so well-known, but also because its performance is shown to be

2A java implementation of the C4.5 decision-tree induction technique; J48 is part of the WEKA
software package [31]
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competitive to the likes of SVM and NB [70, 81]. To smooth-out the prediction con-

fidences of the J48 classifier, the built-in Laplace smoothing option for classification

confidence (the flag ’-A’) was used initially. Later, this method was replaced with the

m-estimate equation described in Section 4.4.3.

Classification performance was assessed by the criteria from Section 2.3. To eval-

uate statistical significance of the results, the 5 × 2 CV recommended by [89] was

coupled with the two-tailed t-test (95% confidence level).

The following two versions of PruDent were considered:

1. Confident Stacking (Conf-ST)

2. Pruned and Confident Stacking (PruDent)

In Conf-ST, only the confidence-comparison modification from Section 4.1.2 is ap-

plied. The second version incorporates also the pruning of unnecessary dependencies

using information gain; the acronym, PruDent, stands for Pruned and confiDent.

To demonstrate the performance of PruDent, it has to be compared with compet-

ing techniques. To this end, the CC and DBR approaches described in Section 3.3

were implemented. The latter seems to be the most recent stacking approach known

in the literature. The decision to use the CC and DBR methods was motivated

by their comparable complexity. The ensemble version of CC was not used, in the

comparisons, because of its higher computational costs.

Since the proposed idea considers pruning, the 2BR pruning algorithm from [81]

was added to the comparison, which was described earlier in Section 4.1.1. Their

approach trains the second-layer classifiers using the prediction confidences of the

first-layer. To avoid biasing, they apply stratified CV on the training set. Thus,
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following the notations from the previous section, the induction complexity of their

algorithm is in the order of O(L[F · FB(N,D) + FB(N,L)]), where F is the number

of folds. Although their default number of folds is 10, only 3 folds were used to make

the computational cost manageable.

The threshold parameters of the pruning algorithms were determined with the

help of a validation set that represents 1
3

of the training set. The tested values were

[0.01, 0.05, and 0.1] for PruDent and [0.1, 0.2, and 0.3] for 2BR. The target of the

optimization was to maximize micro-f1 .

To show the best classification performance stacking is capable of (i.e. with no

error-propagation), another version of stacking was added to the comparison which

uses the testing set labels (during testing) to build the meta-examples. This version

is called NE-ST for No-Error Stacking.

4.3.2 Data Characteristics and Data Preprocessing

The experiments relied on real-world benchmark testbeds from the biology, music,

text, and image domains, which are presented in Section 2.4. During data prepro-

cessing, the classes represented by less than 10 examples were eliminated (they do

not make much sense when the 5x2CV methodology is used). Also, all unlabeled

examples were removed. Finally, the features with singular values (only one value is

encountered) were eliminated. Surprisingly, this reduced the feature set of the dataset

genbase from 1185 to only 112—the eliminated features contained the value “NO.”

For larger data sets (mediamill, tmc2007, bibtex, rcv1, nus-wide, and imdb),

classes that constitute less than 2% of the examples were removed (so as to reduce

data complexity). Table 4.1 shows the characteristics of the preprocessed datasets.
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The format of the presented table follows that of the original table of datasets (Ta-

ble 2.2 in Section 2.4).

name domain features labels examples LC LD
emotion music 72n 6 593 1.87 0.31
genbase biology 112b 16 662 1.19 0.07
yeast biology 103n 14 2417 4.24 0.3
scene image 294n 6 2407 1.07 0.18
cal500 music 68n 141 502 25.5 0.18
medical text 1421b 20 949 1.2 0.06
langlog text 916b 38 1197 1.3 0.03
enron text 1001b 42 1702 3.34 0.08
slashdot text 1079b 18 3776 1.18 0.07
mediamill video 120n 29 41962 4.20 0.14
tmc2007 text 499b 15 28098 2.14 0.14
bibtex text 1836b 26 4804 1.44 0.06
rcv1 text 944n 42 6000 2.46 0.06
nus-wide image 128n 21 195834 2.1 0.1
imdb text 1001b 20 118716 1.97 0.1

Table 4.1: Preprocessed Data Sets Statistics

4.4 Results

4.4.1 Pruning Unnecessary Dependencies

Earlier, we stipulated that using all class labels as additional features is unnec-

essary, and this may even impair classification performance due to their associated

errors. The task for the first experiment is therefore to investigate the practical

impact of pruning unnecessary dependencies.

Section 4.1.1 suggested that the choice of the relevant labels be based on their

mutual Information Gain. Following this suggestion, the proposed method elimi-

nates any pairwise class dependencies whose IG values do not reach a pre-specified
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(a) macro-precision
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(b) macro-recall
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(c) macro-f1

Figure 4.4: The percent difference with respect to BR when applying information
gain threshold φ. The results are in terms of the information retrieval metrics
(macro-precision, macro-recall, and macro-f1).

threshold, φ. To learn which concrete values should be used, the next experiment

varies the threshold value from the range φ ∈ [0−0.3]. The results of this experiment

are illustrated in Figures 4.4 to 4.6.

The plotted results in the in the figures show by how many percentage points each

metric increases or decreases with respect to BR when changing the value of the IG

threshold, φ. To improve the chart’s readability, some data sets whose curves were
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(a) micro-precision
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(b) micro-recall
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(c) micro-f1

Figure 4.5: The percent difference with respect to BR when applying information
gain threshold φ. The results are in terms of the information retrieval metrics
(micro-precision, micro-recall, and micro-f1).

too similar to tell us anything new were eliminated. Let us now take a look at the

results.

By looking at the information retrieval metrics charts in Figure 4.4 and 4.5, the fol-

lowing observations are evident. When no pruning is applied (i.e. φ = 0), precision

(Figures 4.4a and 4.5a) decreases indicating that errors may be reducing the clas-

sifier’s ability to identify the usually dominant negative examples. After applying

pruning however, precision improves although by a small margin. An exception to
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(a) hamming-loss
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(b) 0/1-loss
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(c) accuracy

Figure 4.6: The percent difference with respect to BR when applying information gain
threshold φ. The results are in terms of hamming-loss, 0/1-loss, and accuracy.

this phenomenon is the dataset cal500 which experienced a decrease in precision.

This is perhaps due to the high number of co-occurring classes in cal500 (LC = 25.5

in Table 4.1), which in turn lowers the false positive rate.

Figures 4.4b and 4.5b tells us that most datasets experienced a decrease in recall

when pruning is applied. This means that limiting the number of correlations that

are modeled in the learner reduces its positive class predictions. Another observation

that can be made is the instability of the results when varying the value of φ. This

may be attributed to the noisy nature of the class-attributes that are added to the
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feature vector. It is worthy to note that some datasets experienced an increase in

micro-recall (Figure 4.5b) at higher information gain thresholds such as emotion

and cal500. This indicates that major classes may be more susceptible to the presence

of unnecessary class correlations in the feature vector.

In terms of the f1 measures, while some data sets suffered a decline in perfor-

mance, others gained, even if only by a small margin. A closer inspection reveals

that classification on denser data sets exhibited stronger improvement than that on

sparser data. Notably, the emotion data set (LD = 0.3) experienced improvement

upon BR across a wide range of thresholds. Other data sets showed a minor increase

only with certain threshold ranges; this was the case of yeast, scene, and enron. In

the case of mediamill, no noticeable performance improvement was observed. The

domain genbase (not shown in the graph) experienced no change in performance

across the entire range of threshold values.

Figure 4.6 presents the classification performance results in terms of hamming-loss,

0/1-loss, and accuracy. Note that an improvement in the first two measures is in-

dicated by a percentage decrease since that they are loss measures. Recall that

hamming-loss punishes a prediction based on the number of classes misclassified per

example. As expected, Figure 4.6a shows that most datasets suffer from a higher

(worse) hamming-loss rate when no pruning is done. As the threshold is set higher,

hamming-loss is reduced considerably. However, no significant improvements are ob-

served when compared to BR even when high values of φ are used. The same cannot

be said about 0/1-loss which punishes a class prediction vector even if it is partially

correct. Depicted in Figure 4.6b, the results show that there is an improvement when

compared to BR across a wide range of thresholds. Also of note, some datasets re-
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quire no pruning to minimize this loss metric. This improvement can be attributed

to the higher number of predicted positive examples, observed by the high recall,

in combination of the sparse nature of most datasets.

The results of the accuracy measure are similar to the f1 results analyzed above.

Specifically, when no pruning is applied, the accuracy of the predictions is lower than

that of BR. However, as the less relevant correlations are pruned-out, the classifier’s

accuracy increases.

4.4.2 Incorporating Classification Confidence

The next experiment explores the effect of using classification confidence (Sec-

tion 4.1.2). Recall that, when classifying an example, PruDent calculates the clas-

sification confidences of the first- and second-layer classifiers, compares them, and

then chooses the layer with the higher confidence. The motivation is to reduce error-

propagation. Whether this really happens has to be established experimentally.

Figures 4.7 to 4.9 present the results of running the same experiments from the

previous section with the inclusion of the prediction confidence comparison. When

the results are compared with those from the previous experiment, the reader can see

that comparing confidences prior to making predictions does affect performance. Let

us take a closer look.

Looking at the precision results shown in Figures 4.7a and 4.8a, there is a clear

improvement with respect to BR. This was not the case in the previous experiment

(see Figures 4.4a and 4.5a). In terms of recall, an improvement over BR is apparent

in micro-recall across a wide range of threshold values. In contrast, macro-recall

experienced a degradation in performance in most datasets. Thus, classes that are
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(a) macro-precision
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(b) macro-recall
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(c) macro-f1

Figure 4.7: The percent difference with respect to BR when applying information gain
threshold φ and prediction-confidence comparison. The results are in terms of the informa-
tion retrieval metrics (macro-precision, macro-recall, and macro-f1).

marked by a higher number of positive examples were recalled more successfully than

rarely occurring classes. Despite the decrease in recall, the macro and micro variants

of f1 experienced an overall improvement in most datasets. The improvement in the

micro variant was again more visible as a result of the more accurate classifications

of major classes (those represented by a higher portion of examples). The macro-f1

results of cal500 and yeast, however, did not experience improvements (with respect
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(a) micro-precision
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(b) micro-recall
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(c) micro-f1

Figure 4.8: The percent difference with respect to BR when applying information gain
threshold φ and prediction-confidence comparison. The results are in terms of the informa-
tion retrieval metrics (micro-precision, micro-recall, and micro-f1).

to BR) throughout the entire range of thresholds. This is somewhat expected given

the low macro-recall observed for the two datasets.

Incorporating classification confidence yields a significant improvement when con-

sidering the hamming-loss and 0/1-loss metrics. As illustrated by Figures 4.9a

and 4.9b, both of these loss metrics experienced a decrease indicating an improve-

ment in the quality of predictions. For example, hamming-loss in Figure 4.9a almost

always experienced improvements which was not the case in the experiment from
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(a) hamming-loss
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(b) 0/1-loss
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(c) accuracy

Figure 4.9: The percent difference with respect to BR when applying information
gain threshold φ and prediction-confidence comparison. The results are in terms of
hamming-loss, 0/1-loss, and accuracy.

the previous section (Figure 4.6a). The same can also be said about 0/1-loss. It

is also important to note that in half of the datasets, hamming-loss improves only

when some of the unnecessary class correlations are pruned. Thus, in some domains,

pruning weak class correlations is a vital step to achieve classification improvements.

Perhaps further adding evidence to the importance of incorporating classification

confidences is the result of the accuracy measure in Figure 4.9c. Here, a remarkable
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improvement is achieved when compared to the version which does not account for

classification confidence (Figure 4.6c in the previous section).

In general, incorporating classification confidence in stacking resulted in classifi-

cation improvements across most of the multi-label performance criteria. The only

weakness that has not been addressed is the low recall rates when compared to their

precision counterparts. The next section proposes a solution for that problem.

4.4.3 Addressing the Low Recall Rates

The previous two experiments demonstrated the effect of pruning unnecessary de-

pendencies and incorporating prediction confidence in the stacking framework. Apply-

ing both techniques lead to a clear improvement in classification accuracy. However,

as witnessed by the low recall rates after applying the confidence-comparison modifi-

cation, negative predictions were favored more often than positive ones. This result

is perhaps attributed to the imbalanced representation of classes in each binary train-

ing set; negative examples usually occupy a higher portion of examples than positive

ones. The intuition here is that negative predictions must have higher confidence

values than their positive counterparts. To verify this statement, a closer look at how

prediction confidences are produced is necessary.

Recall from Section 4.3.1 that the C4.5 decision tree algorithm (J48) was used

as a base learner for each binary subproblem in the experiments. It follows from

Section 3.1.2 that prediction confidences in that classifier are calculated using the

distribution of examples in each leaf node. Also recall that the Laplace method,

described in Section 3.1.2, is typically used to smooth-out the prediction confidence

values. This has been the method followed thus far in the experiments (see Sec-
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tion 4.3.1). The Laplace technique is a special case of the m-estimate approximation

method illustrated by Equation 4.3. As in the Laplace equation from Section 3.1.2

(Equation 3.4), the term N denotes the total number of examples, and Np refers to

the number of positive training examples observed in a given leaf node. Here, two

additional parameters (p and m) are used to bias examples towards a given prior class

distribution. The term p refers to the ratio of positive examples believed to exist in

the dataset, and m is used to control the influence of the chosen p parameter when

assigning prediction confidence values.

P (⊕) =
Np + p.m

N +m
(4.3)

The Laplace method uses the value 0.5 for the p parameter and 2 for the m

parameter. This implies that the dataset is believed to contain an equal number of

positive and negative examples, hence p = 0.5. However, in the BR setting, each

binary classifier is trained using a dichotomous training set which uses the examples

of the target class as positive examples and all others as negative. As a result, each

binary training set will often have imbalanced class representation; negative classes

will outnumber positive examples. This is where a modification becomes necessary.

Since the experiments revealed that negative example predictions are favored more

often than positive predictions (low recall and high precision), it is thus desired

to bias the prediction confidence towards positive examples. To this end, the built-in

Laplace method of the used classifier was replaced with the m-estimate approximation

technique described above. To favor positive class predictions, the parameter m was

set to 3 and p was set to 2
3
; this means that the prior will now assume that 2

3
of
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(a) macro-precision
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(b) macro-recall
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(c) macro-f1

Figure 4.10: The percent difference with respect to BR when applying information gain
threshold φ and the m-estimate prediction-confidence comparison. The results are in terms
of the information retrieval metrics (macro-precision, macro-recall, and macro-f1).

examples are positive in each binary training set. Note that the p and m parameters

need not be exact. Auxiliary experiments indicate a similar outcome when p is varied

in the range [5
9
− 4

5
].

To verify whether biasing the prior towards positive examples affects classification

performance, the previous set of experiments was repeated; this time, the m-estimate

approximation with the chosen parameters (m = 3 and p = 2
3
) was used to estimate

the prediction confidence values instead of the original Laplace method. Figures 4.10
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(a) micro-precision
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(b) micro-recall

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−4

−2

0

2

4

6

8

Information Gain Threshold φ

M
ic
ro
-F
1
(%

)

 

 

emotion
scene
yeast
enron
medical
langlog
cal500
mediamill

(c) micro-f1

Figure 4.11: The percent difference with respect to BR when applying information gain
threshold φ and the m-estimate prediction-confidence comparison. The results are in terms
of the information retrieval metrics (micro-precision, micro-recall, and micro-f1).

to 4.12 plot the acquired results in a similar fashion to that of the previous experi-

ments.

Figure 4.10a and 4.11a tell us that precision decreased when compared to the

previous experiment; a result that is expected since the classifier is now biased to-

wards predicting positive labels. Despite this decrease, however, there is still an

improvement when compared to BR. Moreover, the improvement is more substantial

in macro-precision indicating that precision of the popular classes was less affected.



88

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−10

−5

0

5

10

15

20

Information Gain Threshold φ

H
a
m
m
in
g
-l
o
ss

(%
)

 

 

emotion
scene
yeast
enron
medical
langlog
cal500
mediamill

(a) hamming-loss
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(b) 0/1-loss
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(c) accuracy

Figure 4.12: The percent difference with respect to BR when applying information gain
threshold φ and m-estimate prediction-confidence comparison. The results are in terms of
hamming-loss, 0/1-loss, and accuracy.

The recall results (Figures 4.10b and 4.11b) indicate a significant improvement

in classifying positive examples when compared to the previous experiment. The

proposed algorithm was able to outperform BR in macro- and micro-recall, which

was not the case when the Laplace confidence estimation was used. The increase in

recall is also reflected in macro- and micro-f1. Since f1 is the harmonic mean

between precision and recall, its increase indicates that recall was improved

while maintaining good precision; leading to class predictions that are more evenly
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distributed. Note that in the emotion dataset, the highest increase in micro-f1 (8%)

is four times that of the original experiment which uses no confidence comparison in

Figure 4.5c (2%).

In terms of the loss metrics, the results in Figure 4.12a shows an improvement in

hamming-loss, but not as much as when the Laplace estimation was used. This is

perhaps due to the sparsity of the multi-label data; since negative examples in each

dataset are more frequent, biasing the predictor towards positive examples makes it

more prone to partial errors. Unlike hamming-loss, the difference in 0/1-loss is not

very clear; an improvement over BR is still evident despite changing the confidence

estimation method.

Looking at the accuracy results in Figure 4.12c, the reader can see that using

the m-estimate confidence approximation yielded a better outcome than when using

Laplace (Figure 4.9c). Moreover, the results indicate an increase in performance

across the majority of the datasets.

We learn from this experiment that using prediction confidences in stacking is

essential for all data sets. Notably, most data set experienced improvements when

we compare Figures 4.4 to 4.6 with Figures 4.10 to 4.12 respectively. However, using

confidences alone is not enough to improve classification upon BR in some data sets

(e.g. yeast and scene in Figure 4.11c). Here, pruning unnecessary dependencies

becomes essential.

It is important to comment on the bell shape of the performance curves. When the

pruning threshold φ is first increased, some unnecessary dependencies are excluded

from the learning model, and this results in better classification, but a further increase

of the threshold eliminates also dependencies that might have been helpful. In fact,
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the proposed algorithm converges to BR when φ = 1. In this case, all label pairs are

deemed independent and no second-layer classifiers are constructed.

4.4.4 PruDent and Conf-ST Versus Other Algorithms

Thus far, we have seen the effect of enhancing the stacking approach with the two

proposed modifications: the first prunes out unnecessary dependencies, the second

limits error-propagation. When used in combination, they should result in a clear

improvement in classification performance.

To verify this statement, the next experiments compare the performance of Pru-

Dent with that of state-of-the-art CC, DBR and 2BR techniques. To these compar-

isons, a variation of the proposed algorithm is added: in this, only the limiting of

error-propagation is incorporated, leaving all dependencies intact. Recall from Sec-

tion 4.3.1 that this version is called Conf-ST (Confident Stacking). It makes sure to

also test for the case of no class-dependency pruning.

Tables 4.2 through 4.10 compare the performance of these algorithms along the

metrics from Section 2.3. The result of the best algorithm in each domain is boldfaced.

When there is more than one winner, they are all boldfaced unless all techniques are

tied. Significance tests relied on the paired t-test with 95% confidence. In the tables,

the symbols ↑ and ↓ indicate that the performance of a technique is significantly higher

or lower, respectively, than that of PruDent. Similar formalism is used in the case of

Conf-ST, using symbols ⇑ and ⇓, respectively.

Before starting to discuss the experimental results, an important difference be-

tween the two variants of the proposed technique, and CC and DBR must be pointed

out. As explained, Conf-ST and PruDent degenerate to independent BR models
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macro-
precision

Previous Techniques Proposed Techniques Maximum

(higher is
better)

BR CC DBR 2BR Conf-ST PruDent NE-ST

emotion 0.580± 0.01↓ 0.589± 0.01 0.557± 0.03
↓
⇓ 0.550± 0.05

↓
⇓ 0.595± 0.02 0.602± 0.03 0.700± 0.02

genbase 0.990± 0.003 0.990± 0.003 0.990± 0.003 0.864± 0.10
↓
⇓ 0.990± 0.003 0.990± 0.003 0.990±0.003

yeast 0.402± 0.01
↓
⇑ 0.384± 0.01↓ 0.368±0.007

↓
⇓ 0.374± 0.04↓ 0.379±0.008↓ 0.425± 0.02⇑ 0.841±0.005

scene 0.626± 0.01⇑ 0.612± 0.02
↓
⇑ 0.542± 0.03

↓
⇓ 0.689± 0.05

↑
⇑ 0.575±0.009↓ 0.638± 0.03⇑ 0.863± 0.01

cal500 0.180±0.001
↓
⇓ 0.194± 0.008 0.206± 0.001

↑
⇑ 0.112± 0.01

↓
⇓ 0.193± 0.005 0.193± 0.005 0.466± 0.02

medical 0.593± 0.05 0.600± 0.05 0.608± 0.05 0.466± 0.02
↓
⇓ 0.595± 0.05 0.593± 0.05 0.659± 0.05

langlog 0.144± 0.02 0.145± 0.03 0.145± 0.02 0.021± 0.01
↓
⇓ 0.145± 0.02 0.145± 0.02 0.149± 0.03

enron 0.227± 0.02⇑ 0.227± 0.01⇑ 0.220± 0.02↓ 0.115± 0.02
↓
⇓ 0.213± 0.01↓ 0.229± 0.02⇑ 0.306± 0.02

slashdot 0.447± 0.05
↓
⇑ 0.430± 0.03⇑ 0.221± 0.03

↓
⇓ 0.225± 0.03↓ 0.249± 0.04↓ 0.450± 0.05⇑ 0.651± 0.04

mediamill 0.406±0.008
↓
⇓ 0.360±0.009

↓
⇓ 0.346±0.003

↓
⇓ 0.280± 0.04

↓
⇓ 0.441± 0.02 0.441± 0.02 0.670±0.003

tmc2007 0.679±0.005
↓
⇓ 0.675±0.006

↓
⇓ 0.665±0.006

↓
⇓ 0.660± 0.04↓ 0.683±0.005↓ 0.688± 0.005⇑ 0.707±0.006

bibtex 0.549±0.008⇓ 0.549±0.005⇓ 0.548± 0.01⇓ 0.393± 0.02
↓
⇓ 0.555± 0.010↑ 0.550±0.009⇓ 0.565±0.009

rcv1 0.351±0.003
↓
⇓ 0.337±0.009

↓
⇓ 0.325±0.006

↓
⇓ 0.183± 0.02

↓
⇓ 0.384± 0.007↑ 0.372±0.007⇓ 0.706± 0.01

nus-wide 0.240±0.002
↓
⇑ 0.224±0.003

↓
⇑ 0.138±0.003

↓
⇓ 0.224± 0.01

↓
⇑ 0.166±0.004↓ 0.318± 0.004⇑ 0.474±0.002

imdb 0.250± 0.01
↓
⇑ 0.213± 0.03

↓
⇑ 0.123± 0.01

↓
⇓ 0.072± 0.02

↓
⇓ 0.140± 0.01↓ 0.276± 0.02⇑ 0.525± 0.02

Table 4.2: macro-precision. ↑ or ↓ indicate significantly higher or lower than PruDent
respectively. ⇑ and ⇓ indicate significantly higher or lower than Conf-ST respectively.

when their classification confidences are higher than their dependent counterparts.

In DBR, classifications of the dependent models are always used, regardless of their

confidence values. Thus, Conf-ST and PruDent are expected to be more conservative

in using label dependencies, behaving like a hybrid between BR and DBR. When com-

paring PruDent to Conf-ST, the former is expected to be more conservative because

it prunes unnecessary dependencies, (which makes it even closer to BR).

Due to their conservative nature, the two variants of the proposed algorithm

excelled in such performance metrics as precision and accuracy. Tables 4.2 and

4.8 informs us that PruDent had the highest macro-precision in more domains than

the other methods, and in micro-precision, the algorithm was very competitive to

the others. Also, the two versions had the highest accuracies in 11 out of the 15 data

sets.

In terms of the macro and micro versions of the performance metrics, it is clear

that the proposed algorithms scored better in the micro variants—especially in the
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macro-
recall

Previous Techniques Proposed Techniques Maximum

(higher is
better)

BR CC DBR 2BR Conf-ST PruDent NE-ST

emotion 0.562± 0.04
↓
⇓ 0.565± 0.02

↓
⇓ 0.555± 0.03

↓
⇓ 0.496± 0.05

↓
⇓ 0.618± 0.02 0.624± 0.03 0.684± 0.02

genbase 0.962± 0.02 0.963± 0.02 0.965± 0.02 0.848± 0.08
↓
⇓ 0.962± 0.02 0.962± 0.02 0.965± 0.02

yeast 0.376± 0.01
↓
⇓ 0.376± 0.01⇓ 0.411± 0.01↑ 0.257± 0.02

↓
⇓ 0.411± 0.01↑ 0.387± 0.01⇓ 0.836±0.004

scene 0.615± 0.01
↓
⇓ 0.618± 0.02

↓
⇓ 0.649± 0.02⇓ 0.460± 0.05

↓
⇓ 0.688± 0.02↑ 0.635± 0.02⇓ 0.843± 0.02

cal500 0.153±0.003
↓
⇓ 0.173± 0.006

↑
⇑ 0.161±0.002

↑
⇑ 0.118± 0.02

↓
⇓ 0.154±0.002↓ 0.156±0.003⇑ 0.407±0.004

medical 0.515± 0.03 0.521± 0.03 0.527± 0.02 0.460± 0.03
↓
⇓ 0.521± 0.02 0.517± 0.03 0.581± 0.03

langlog 0.104± 0.02↑ 0.105± 0.02↑ 0.105± 0.02⇑ 0.015± 0.02
↓
⇓ 0.103± 0.02 0.103± 0.02 0.109± 0.02

enron 0.163±0.005
↓
⇓ 0.173±0.006⇓ 0.187± 0.005↑ 0.116± 0.01

↓
⇓ 0.185±0.005↑ 0.171±0.007⇓ 0.230±0.008

slashdot 0.204±0.010⇓ 0.237± 0.01
↑
⇓ 0.510± 0.03

↑
⇑ 0.177± 0.02

↓
⇓ 0.459± 0.03↑ 0.203±0.010⇓ 0.463± 0.03

mediamill 0.276±0.005
↑
⇑ 0.285± 0.008

↑
⇑ 0.281±0.002

↑
⇑ 0.165±0.005

↓
⇓ 0.269± 0.004 0.269± 0.005 0.619±0.003

tmc2007 0.578±0.005
↓
⇓ 0.575±0.006

↓
⇓ 0.575±0.007

↓
⇓ 0.491± 0.02

↓
⇓ 0.602± 0.005↑ 0.594±0.005⇓ 0.609±0.004

bibtex 0.453±0.008
↓
⇓ 0.456±0.010⇓ 0.457± 0.01⇓ 0.342± 0.03

↓
⇓ 0.469± 0.005↑ 0.455±0.009⇓ 0.471± 0.01

rcv1 0.280± 0.004
↑
⇑ 0.277±0.004

↑
⇑ 0.261±0.004

↓
⇑ 0.133± 0.02

↓
⇓ 0.245±0.004↓ 0.270± 0.01⇑ 0.628± 0.01

nus-wide 0.195±0.001
↑
⇓ 0.195±0.003

↑
⇓ 0.282± 0.003

↑
⇑ 0.076±0.004

↓
⇓ 0.252±0.003↑ 0.177±0.001⇓ 0.428±0.001

imdb 0.061±0.001
↓
⇓ 0.086±0.002

↑
⇓ 0.314± 0.02

↑
⇑ 0.013± 0.02

↓
⇓ 0.307± 0.02↑ 0.076±0.001⇓ 0.298±0.004

Table 4.3: macro-recall. ↑ or ↓ indicate significantly higher or lower than PruDent respec-
tively. ⇑ and ⇓ indicate significantly higher or lower than Conf-ST respectively.

case of the recall and f1 criteria. The acquired micro-recall and micro-f1 scores

were the highest among all algorithms, which was not the case of macro-recall and

macro-f1. This leads us to believe that major classes (those represented by more

examples) were classified with greater success than minor ones. Perhaps this is due

to the less defined co-occurrence patterns, given the quantity of positive examples in

minor classes. This hypothesis is also supported by the algorithm’s success along the

macro-f1 criterion in the dense emotion, yeast and scene domains (see Table 4.1).

In terms of loss metrics, the results show that PruDent did particularly well along

the hamming-loss metric. This was to be expected because PruDent is very close

to BR, which is generally believed to be good in terms of hamming-loss [6, 12]. The

2BR method shares this success to some degree: while it outperformed PruDent in

some domains, in other domains it was not as successful. The success of 2BR can be

attributed to its ability to correct errors because it trains the second-layer classifiers
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macro-f1 Previous Techniques Proposed Techniques Maximum
(higher is
better)

BR CC DBR 2BR Conf-ST PruDent NE-ST

emotion 0.567± 0.02
↓
⇓ 0.574± 0.01

↓
⇓ 0.553± 0.02

↓
⇓ 0.497± 0.03

↓
⇓ 0.604± 0.01↓ 0.610± 0.02⇑ 0.690± 0.01

genbase 0.973± 0.01 0.973± 0.01 0.974± 0.01 0.850± 0.09
↓
⇓ 0.973± 0.01 0.973± 0.01 0.974± 0.01

yeast 0.381±0.007
↓
⇓ 0.376± 0.01↓ 0.382±0.006

↓
⇓ 0.268± 0.02

↓
⇓ 0.387±0.006↓ 0.392± 0.004⇑ 0.839±0.003

scene 0.619±0.008↓ 0.614± 0.01↓ 0.583± 0.02
↓
⇓ 0.532± 0.04

↓
⇓ 0.623±0.009↓ 0.634± 0.01⇑ 0.853± 0.01

cal500 0.156±0.001
↓
⇓ 0.176± 0.006

↑
⇑ 0.170±0.003

↑
⇑ 0.104± 0.01

↓
⇓ 0.161± 0.001 0.161± 0.002 0.419±0.007

medical 0.532± 0.03 0.538± 0.03 0.544± 0.02⇑ 0.450± 0.02
↓
⇓ 0.534± 0.02 0.533± 0.03 0.597± 0.03

langlog 0.114± 0.02 0.114± 0.02 0.114± 0.02 0.013± 0.01
↓
⇓ 0.112± 0.02 0.112± 0.02 0.118± 0.02

enron 0.181±0.006↓ 0.187± 0.006 0.188± 0.006
↑
⇑ 0.109± 0.01

↓
⇓ 0.184± 0.005 0.184± 0.008 0.251±0.007

slashdot 0.239± 0.01 0.249± 0.02⇑ 0.229± 0.02
↓
⇓ 0.182± 0.02

↓
⇓ 0.236± 0.02 0.240± 0.01 0.527± 0.03

mediamill 0.318± 0.005⇑ 0.313± 0.006 0.300±0.003
↓
⇓ 0.185±0.007

↓
⇓ 0.310±0.005↓ 0.316±0.005⇑ 0.640±0.002

tmc2007 0.621±0.003
↓
⇓ 0.617±0.002

↓
⇓ 0.614±0.005

↓
⇓ 0.542± 0.02

↓
⇓ 0.634± 0.004↑ 0.632±0.003⇓ 0.652±0.003

bibtex 0.491±0.005
↓
⇓ 0.492±0.007⇓ 0.493±0.009⇓ 0.348± 0.02

↓
⇓ 0.500± 0.004↑ 0.492±0.006⇓ 0.509±0.010

rcv1 0.308± 0.003⇑ 0.301±0.004
↓
⇑ 0.284±0.005

↓
⇓ 0.140± 0.01

↓
⇓ 0.287±0.004↓ 0.308± 0.005⇑ 0.661± 0.01

nus-wide 0.213± 0.001
↑
⇑ 0.207±0.003

↓
⇑ 0.176±0.002

↓
⇓ 0.094±0.004

↓
⇓ 0.192±0.001↓ 0.210±0.001⇑ 0.449±0.001

imdb 0.080±0.001
↓
⇓ 0.096±0.002

↑
⇓ 0.137± 0.004

↑
⇑ 0.013±0.001

↓
⇓ 0.133±0.005↑ 0.087±0.001⇓ 0.363±0.007

Table 4.4: macro-f1. ↑ or ↓ indicate significantly higher or lower than PruDent respectively.

⇑ and ⇓ indicate significantly higher or lower than Conf-ST respectively.

using the first-layer predictions. When considering the 0/1-loss criterion, the CC

method outperformed the other algorithms. This is due to its greedy approximation

of the joint conditional mode (see Section 2.2) , which was shown to minimize this

metric [12]. Note that minimizing this metric in cal500 is difficult due to the large

number of labels in this data set (see Table 4.1); predicting all 141 labels correctly for

each example is hard to achieve considering also the high LC-value in this domain.

In general, the performance of both versions of the proposed technique is better

in dense data sets (see Section 4.3.2). For example, in emotion, PruDent achieved

the best results along all performance criteria. In domains with lower density, the

algorithms were still able to perform well in aspects such as hamming-loss, accuracy

and all the micro variants. A remarkable example of this is the micro-f1 score of

the sparse slashdot domain. The similar DBR method underperformed even BR in

this domain, while PruDent was the best performer.
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hamming-
loss

Previous Techniques Proposed Techniques Minimum

(lower is
better)

BR CC DBR 2BR Conf-ST PruDent NE-ST

emotion 0.258±0.009
↑
⇑ 0.255± 0.01

↑
⇑ 0.274± 0.02

↑
⇑ 0.261± 0.02

↑
⇑ 0.245± 0.01 0.241± 0.01 0.187±0.008

genbase 0.002± 0.001 0.002± 0.001 0.002± 0.001 0.007±0.004
↑
⇑ 0.002± 0.001 0.002± 0.001 0.002±0.001

yeast 0.255±0.004
↑
⇓ 0.273±0.005↑ 0.289±0.005

↑
⇑ 0.221± 0.004

↓
⇓ 0.278±0.005↑ 0.243±0.003⇓ 0.044±0.001

scene 0.139±0.004⇓ 0.144±0.005
↑
⇓ 0.181± 0.01

↑
⇑ 0.129± 0.004⇓ 0.161±0.005↑ 0.134±0.009⇓ 0.053±0.005

cal500 0.205±0.002
↑
⇑ 0.219±0.004

↑
⇑ 0.206±0.003

↑
⇑ 0.189± 0.01

↓
⇓ 0.196±0.003↓ 0.199±0.003⇑ 0.145±0.001

medical 0.025±0.001
↑
⇑ 0.025±0.002⇑ 0.024± 0.001 0.031± 0.01 0.024± 0.001 0.024± 0.001 0.018±0.001

langlog 0.044±0.002
↑
⇑ 0.043±0.001⇑ 0.044±0.001

↑
⇑ 0.037± 0.006

↓
⇓ 0.043±0.001↓ 0.043±0.002⇑ 0.043±0.001

enron 0.067±0.002
↑
⇓ 0.069±0.001

↑
⇓ 0.078±0.002

↑
⇑ 0.065±0.003⇓ 0.071±0.002↑ 0.064± 0.001⇓ 0.052±0.002

slashdot 0.056±0.001
↑
⇓ 0.071±0.008

↑
⇓ 0.266± 0.03

↑
⇑ 0.063± 0.02⇓ 0.228± 0.03↑ 0.055± 0.001⇓ 0.027±0.002

mediamill 0.108±0.001
↑
⇑ 0.119±0.002

↑
⇑ 0.122±0.001

↑
⇑ 0.098± 0.001

↓
⇓ 0.105±0.001↑ 0.103±0.001⇓ 0.062±0.001

tmc2007 0.086±0.001
↑
⇑ 0.087±0.001

↑
⇑ 0.089±0.001

↑
⇑ 0.088±0.002

↑
⇑ 0.082±0.001↑ 0.081± 0.001⇓ 0.076±0.001

bibtex 0.040±0.001⇑ 0.040±0.001⇑ 0.040±0.001⇑ 0.040± 0.009 0.039± 0.001↓ 0.040±0.001⇑ 0.039±0.001

rcv1 0.066±0.001
↑
⇑ 0.068±0.001

↑
⇑ 0.070±0.001

↑
⇑ 0.064± 0.005 0.063± 0.001↓ 0.064±0.001⇑ 0.026±0.001

nus-wide 0.119±0.001
↑
⇓ 0.125±0.001

↑
⇓ 0.234±0.004

↑
⇑ 0.093± 0.001

↓
⇓ 0.183±0.003↑ 0.103±0.001⇓ 0.079±0.001

imdb 0.110±0.001
↓
⇓ 0.120±0.003

↑
⇓ 0.300± 0.02

↑
⇑ 0.104± 0.02⇓ 0.295± 0.02↑ 0.113±0.001⇓ 0.078±0.001

Table 4.5: hamming-loss. ↑ or ↓ indicate significantly higher or lower than PruDent respec-
tively. ⇑ and ⇓ indicate significantly higher or lower than Conf-ST respectively.

When comparing PruDent with Conf-ST, we can see that Conf-ST generally per-

forms better in the recall metrics. This may be due to its covering a greater range of

label dependencies and making a greater number of positive label predictions. How-

ever, this advantage comes at the cost of a serious decrease in precision, with the

inevitable consequences for the f1 measures. The pattern can be clearly seen in the

slashdot data, where PruDent did not suffer from a decline in f1. This further con-

firms the claim that unnecessary label dependencies can negatively affect classifiers.

We are lead to believe that Conf-ST is preferable in domains where false positives

are more easily tolerated.

To conclude this section, note that PruDent was quite able to reach the per-

formance ceiling of stacking in some occasions. For example, the performance in

bibtex was close to that of the No-Error Stacking, NE-ST. Surprisingly, PruDent

and Conf-ST surpassed even NE-ST in the micro-recall of tmc2007. Since NE-ST
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0/1-loss Previous Techniques Proposed Techniques Minimum
(lower is
better)

BR CC DBR 2BR Conf-ST PruDent NE-ST

emotion 0.832± 0.01
↑
⇑ 0.773± 0.02 0.836± 0.02

↑
⇑ 0.819± 0.02

↑
⇑ 0.779± 0.01 0.770± 0.02 0.705± 0.02

genbase 0.023± 0.010 0.023± 0.010 0.022± 0.010 0.087± 0.06
↑
⇑ 0.023± 0.010 0.023± 0.010 0.022±0.010

yeast 0.946±0.006
↑
⇑ 0.873± 0.01

↓
⇓ 0.946±0.006

↑
⇑ 0.934±0.009↑ 0.938±0.009↑ 0.916±0.008⇓ 0.387± 0.02

scene 0.585± 0.01
↑
⇑ 0.488± 0.02

↓
⇓ 0.575± 0.01

↑
⇑ 0.618± 0.03

↑
⇑ 0.539± 0.01 0.542± 0.02 0.254± 0.02

cal500 1.000± 0.0 1.000± 0.0 1.000± 0.0 1.000± 0.0 1.000± 0.0 1.000± 0.0 1.000± 0.0

medical 0.364± 0.02
↑
⇑ 0.348± 0.02↓ 0.356± 0.02⇑ 0.445± 0.2 0.345± 0.01↓ 0.354± 0.02⇑ 0.298± 0.02

langlog 0.918± 0.01⇑ 0.915± 0.01⇑ 0.914± 0.01⇑ 0.967± 0.03
↑
⇑ 0.911± 0.01↓ 0.917± 0.01⇑ 0.913± 0.01

enron 0.909± 0.02
↑
⇑ 0.874± 0.02

↓
⇓ 0.907± 0.02

↑
⇑ 0.929± 0.03

↑
⇑ 0.898± 0.02 0.891± 0.02 0.823± 0.02

slashdot 0.737±0.009
↑
⇑ 0.681± 0.03

↓
⇓ 0.734±0.009

↑
⇑ 0.776± 0.08 0.731±0.008↑ 0.726±0.008⇓ 0.304± 0.03

mediamill 0.927±0.001
↑
⇑ 0.887± 0.003

↓
⇓ 0.928±0.001

↑
⇑ 0.913±0.003⇑ 0.906±0.002↓ 0.911±0.005⇑ 0.785±0.002

tmc2007 0.691±0.004
↑
⇑ 0.670±0.005

↑
⇑ 0.692±0.005

↑
⇑ 0.723± 0.01

↑
⇑ 0.663± 0.006 0.664± 0.003 0.638±0.004

bibtex 0.626±0.007⇑ 0.621±0.008
↓
⇑ 0.621±0.007

↓
⇑ 0.660± 0.1 0.614± 0.007↓ 0.627±0.007⇑ 0.615±0.007

rcv1 0.939±0.004
↑
⇑ 0.859± 0.007

↓
⇓ 0.931±0.003⇑ 0.974±0.007

↑
⇑ 0.913±0.003↓ 0.931±0.007⇑ 0.623± 0.02

nus-wide 0.924±0.001
↑
⇑ 0.867± 0.002

↓
⇓ 0.922±0.001

↑
⇑ 0.924±0.006

↑
⇑ 0.892±0.001↑ 0.873±0.001⇓ 0.674±0.004

imdb 0.948±0.001
↑
⇑ 0.906± 0.006

↓
⇓ 0.954±0.001

↑
⇑ 0.997±0.003

↑
⇑ 0.945±0.001↑ 0.924±0.001⇓ 0.704±0.002

Table 4.6: 0/1-loss. ↑ or ↓ indicate significantly higher or lower than PruDent respectively.

⇑ and ⇓ indicate significantly higher or lower than Conf-ST respectively.

is unpruned, its high performance implies the problem lies more in the errors of the

class-features than in overfitting class dependencies.

The following is a summary of the acquired findings:

• PruDent improves upon BR in all measures except macro-recall.

• Conf-ST outperforms BR along recall, 0/1-loss, and accuracy.

• PruDent is better-suited for majority classes.

• In most domains, PruDent outperformed all other algorithms in terms of

macro-precision and micro-f1.

• CC was the winner in most domains along 0/1-loss; DBR was the best along

macro-recall.

• PruDent and 2BR were superior along hamming-loss.

• Conf-ST is better than PruDent in recall.
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accuracy Previous Techniques Proposed Techniques Maximum
(higher is
better)

BR CC DBR 2BR Conf-ST PruDent NE-ST

emotion 0.438± 0.02
↓
⇓ 0.463± 0.01

↓
⇓ 0.416± 0.02

↓
⇓ 0.419± 0.02

↓
⇓ 0.481± 0.01↓ 0.487± 0.01⇑ 0.575± 0.01

genbase 0.986± 0.005 0.986± 0.006 0.986± 0.005 0.942± 0.05
↓
⇓ 0.986± 0.005 0.986± 0.005 0.986±0.005

yeast 0.423± 0.01
↓
⇑ 0.416±0.004↓ 0.403± 0.01

↓
⇓ 0.429± 0.01↓ 0.417± 0.01↓ 0.449± 0.01⇑ 0.880±0.004

scene 0.520± 0.01
↓
⇓ 0.574± 0.02↑ 0.518± 0.01

↓
⇓ 0.425± 0.05

↓
⇓ 0.567± 0.01↑ 0.552± 0.02⇓ 0.817± 0.02

cal500 0.217±0.002
↓
⇓ 0.218±0.007

↓
⇓ 0.220±0.001

↓
⇓ 0.221± 0.01

↓
⇓ 0.238± 0.005 0.238± 0.006 0.412±0.002

medical 0.708± 0.02
↓
⇓ 0.716± 0.02 0.715± 0.01⇓ 0.659± 0.09 0.724± 0.01↑ 0.714± 0.02⇓ 0.772± 0.02

langlog 0.137± 0.02 0.139± 0.02 0.139± 0.02 0.043± 0.05
↓
⇓ 0.141± 0.02 0.137± 0.02 0.143± 0.02

enron 0.387± 0.02
↓
⇓ 0.409± 0.01

↓
⇓ 0.391± 0.01

↓
⇓ 0.388± 0.03

↓
⇓ 0.424± 0.01 0.430± 0.01 0.529± 0.01

slashdot 0.303±0.008
↓
⇓ 0.364± 0.03↑ 0.347±0.005

↑
⇓ 0.267± 0.04

↓
⇓ 0.353±0.008↑ 0.308±0.009⇓ 0.729± 0.03

mediamill 0.443±0.002
↓
⇓ 0.440±0.004

↓
⇓ 0.424±0.002

↓
⇓ 0.450±0.004

↓
⇓ 0.469± 0.001↑ 0.466±0.004⇓ 0.661±0.001

tmc2007 0.576±0.003
↓
⇓ 0.581±0.003

↓
⇓ 0.572±0.004

↓
⇓ 0.551± 0.02

↓
⇓ 0.610± 0.004↑ 0.605±0.002⇓ 0.623±0.003

bibtex 0.522±0.006⇓ 0.526±0.007
↑
⇓ 0.528±0.007

↑
⇓ 0.469± 0.05

↓
⇓ 0.536± 0.005↑ 0.523±0.007⇓ 0.536±0.007

rcv1 0.255±0.004⇑ 0.272± 0.007
↑
⇑ 0.225±0.005

↓
⇓ 0.172± 0.01

↓
⇓ 0.242±0.004↓ 0.256±0.005⇑ 0.619± 0.01

nus-wide 0.237±0.001
↓
⇓ 0.270±0.003

↓
⇑ 0.222±0.001

↓
⇓ 0.177± 0.01

↓
⇓ 0.261±0.001↓ 0.284± 0.001⇑ 0.551±0.002

imdb 0.137±0.001
↓
⇓ 0.197± 0.01⇑ 0.171±0.002

↓
⇓ 0.009±0.009

↓
⇓ 0.177±0.002↓ 0.188±0.002⇑ 0.479±0.002

Table 4.7: accuracy. ↑ or ↓ indicate significantly higher or lower than PruDent respectively.

⇑ and ⇓ indicate significantly higher or lower than Conf-ST respectively.

4.5 Beyond Performance Criteria

Having explored the performance of the techniques, let us turn our attention to

some other behavioral aspects.

4.5.1 Computational Time

Section 4.2.1 tell us that PruDent constructs a secondary classifier only if a class is

related to others. As an added bonus, this also reduces the computational complexity

of the algorithm: when a class is deemed independent from all others, no dependent

models are constructed for it; instead, classifications of its respective independent

classifier are used. To illustrate the amount of complexity reduction, the graph in

Figure 4.13 shows the induction and testing wall times of the algorithms on a sample

of the datasets. The experiments were run using 10 threads of the Intel(R) Xeon(R)

E5-2670 2.60GHz processor. Whenever possible, the algorithms were parallelized
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micro-
precision

Previous Techniques Proposed Techniques Maximum

(higher is
better)

BR CC DBR 2BR Conf-ST PruDent NE-ST

emotion 0.598± 0.02↓ 0.603± 0.02↓ 0.571± 0.03
↓
⇓ 0.589± 0.04 0.612± 0.02 0.620± 0.03 0.711± 0.02

genbase 0.996± 0.001 0.996± 0.001 0.996± 0.001 0.985± 0.02 0.996± 0.001 0.996± 0.001 0.996±0.001

yeast 0.669± 0.01⇑ 0.639±0.006
↓
⇑ 0.615± 0.01

↓
⇓ 0.724± 0.02

↑
⇑ 0.625± 0.01↓ 0.676± 0.01⇑ 0.952±0.003

scene 0.603± 0.02⇑ 0.576± 0.02
↓
⇑ 0.462± 0.03

↓
⇓ 0.742± 0.04

↑
⇑ 0.506± 0.02↓ 0.619± 0.03⇑ 0.858± 0.01

cal500 0.539±0.001
↓
⇓ 0.493± 0.01

↓
⇓ 0.528±0.006

↓
⇓ 0.529± 0.04↓ 0.550±0.008↓ 0.554± 0.01⇑ 0.680±0.007

medical 0.848± 0.02 0.847± 0.02 0.854± 0.02⇑ 0.756± 0.2 0.849± 0.02↓ 0.851± 0.02⇑ 0.909± 0.01

langlog 0.317± 0.04⇓ 0.323± 0.04⇓ 0.317± 0.04⇓ 0.371± 0.3 0.343± 0.04↑ 0.328± 0.04⇓ 0.330± 0.04

enron 0.663± 0.01⇑ 0.644± 0.02⇑ 0.575± 0.01
↓
⇓ 0.640± 0.04⇑ 0.605± 0.01↓ 0.668± 0.02⇑ 0.793± 0.01

slashdot 0.616± 0.02
↓
⇑ 0.338± 0.1

↓
⇑ 0.145±0.005

↓
⇓ 0.565± 0.2⇑ 0.154±0.009↓ 0.647± 0.02⇑ 0.915± 0.03

mediamill 0.793±0.003
↓
⇑ 0.766±0.005

↓
⇓ 0.752±0.003

↓
⇓ 0.808± 0.008

↑
⇑ 0.777±0.002↓ 0.796±0.004⇑ 0.881±0.002

tmc2007 0.738± 0.003
↑
⇑ 0.734±0.002⇑ 0.723±0.005↓ 0.715± 0.02↓ 0.725±0.005↓ 0.735±0.002⇑ 0.774±0.004

bibtex 0.829± 0.007⇑ 0.828± 0.007 0.826±0.008⇑ 0.788± 0.2 0.822±0.010↓ 0.828±0.007⇑ 0.836±0.007

rcv1 0.451±0.005
↓
⇓ 0.437± 0.01

↓
⇓ 0.410±0.007

↓
⇓ 0.369± 0.1

↓
⇓ 0.466± 0.008 0.472± 0.01 0.870±0.007

nus-wide 0.481±0.002
↓
⇑ 0.458±0.003

↓
⇑ 0.261±0.004

↓
⇓ 0.616± 0.01

↑
⇑ 0.344±0.004↓ 0.544±0.001⇑ 0.693±0.002

imdb 0.372±0.002
↓
⇑ 0.342± 0.02

↓
⇑ 0.182±0.008

↓
⇓ 0.414± 0.2⇑ 0.182±0.008↓ 0.373±0.002⇑ 0.693±0.002

Table 4.8: micro-precision. ↑ or ↓ indicate significantly higher or lower than PruDent
respectively. ⇑ and ⇓ indicate significantly higher or lower than Conf-ST respectively.

by inducing each binary classifier on a separate thread and submitting all testing

examples to classifiers simultaneously.
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Figure 4.13: Induction times (shaded) and testing times (white) of the competing algo-
rithms.

In terms of training, CC and BR take the least amount of time because they only

train one classifier per class. The DBR and Conf-ST algorithms train two classifiers

per class—they take twice as much time. As expected, PruDent takes less time than

the other stacking methods because it prunes unnecessary dependencies. Since 2BR
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micro-
recall

Previous Techniques Proposed Techniques Maximum

(higher is
better)

BR CC DBR 2BR Conf-ST PruDent NE-ST

emotion 0.591± 0.04
↓
⇓ 0.586± 0.03

↓
⇓ 0.574± 0.03

↓
⇓ 0.554± 0.05

↓
⇓ 0.645± 0.02 0.651± 0.03 0.698± 0.02

genbase 0.994± 0.004 0.994± 0.004 0.994± 0.004 0.975± 0.02
↓
⇓ 0.994± 0.004 0.994± 0.004 0.994±0.004

yeast 0.686± 0.04
↓
⇓ 0.643± 0.02

↓
⇓ 0.701± 0.03

↓
⇓ 0.686± 0.03 0.707± 0.03 0.708± 0.03 0.951±0.002

scene 0.591± 0.01
↓
⇓ 0.596± 0.02⇓ 0.633± 0.02

↑
⇓ 0.424± 0.06

↓
⇓ 0.669± 0.02↑ 0.611± 0.02⇓ 0.841± 0.02

cal500 0.467±0.004
↓
⇓ 0.464± 0.01

↓
⇓ 0.460±0.002

↓
⇓ 0.473± 0.04↓ 0.500± 0.01↓ 0.510± 0.01⇑ 0.666±0.005

medical 0.864± 0.01⇓ 0.864± 0.02
↓
⇓ 0.871± 0.02⇓ 0.876± 0.02 0.883± 0.02↑ 0.872± 0.02⇓ 0.925±0.008

langlog 0.232± 0.04↑ 0.234± 0.03 0.234± 0.03 0.083± 0.1
↓
⇓ 0.235± 0.03 0.229± 0.03 0.241± 0.03

enron 0.619± 0.02
↓
⇓ 0.627± 0.01

↓
⇓ 0.675± 0.02

↓
⇓ 0.704± 0.05 0.730± 0.01↑ 0.702± 0.02⇓ 0.752± 0.01

slashdot 0.369±0.010⇓ 0.438± 0.04
↑
⇓ 0.761± 0.03

↑
⇑ 0.343± 0.03

↓
⇓ 0.726± 0.03↑ 0.366± 0.01⇓ 0.732± 0.01

mediamill 0.735±0.003
↓
⇓ 0.731±0.008

↓
⇓ 0.739±0.003

↓
⇓ 0.748±0.009

↓
⇓ 0.781± 0.002↑ 0.770±0.003⇓ 0.873±0.001

tmc2007 0.726±0.004
↓
⇓ 0.723±0.006

↓
⇓ 0.722±0.005

↓
⇓ 0.743± 0.04

↓
⇓ 0.796± 0.005↑ 0.788±0.003⇓ 0.757±0.003

bibtex 0.727±0.004
↓
⇓ 0.730±0.004⇓ 0.732±0.006

↑
⇓ 0.676± 0.02

↓
⇓ 0.740± 0.004↑ 0.728±0.005⇓ 0.739±0.006

rcv1 0.390± 0.005
↑
⇑ 0.375± 0.01⇑ 0.313± 0.01

↓
⇓ 0.291± 0.05

↓
⇓ 0.331±0.008↓ 0.379±0.009⇑ 0.804±0.006

nus-wide 0.438±0.001
↓
⇓ 0.436±0.005

↓
⇓ 0.515±0.003

↑
⇓ 0.356± 0.02

↓
⇓ 0.548± 0.003↑ 0.481±0.002⇓ 0.667±0.001

imdb 0.232±0.002
↓
⇓ 0.296± 0.03

↓
⇓ 0.587± 0.005

↑
⇑ 0.008±0.008

↓
⇓ 0.581±0.007↑ 0.325±0.004⇓ 0.544±0.002

Table 4.9: micro-recall. ↑ or ↓ indicate significantly higher or lower than PruDent respec-
tively. ⇑ and ⇓ indicate significantly higher or lower than Conf-ST respectively.

has a more sophisticated training process (see Section 4.3.1), its induction time is

longer than that of the others.

During testing, the stacking methods take roughly twice as much time as BR.

However, the CC method exhibits longer testing times because, unlike the stacking

methods, it cannot be parallelized during testing (see Section 3.3.3).

4.5.2 Remaining Dependencies

To help us understand the impact of the remaining dependencies, Figure 4.14

shows the remaining relationships in the emotion domain, using the best IG thresh-

old from Figure 4.11c (since micro-f1 was the target criterion when choosing φ in

the experiments). The solid lines indicate direct concept correlations, and the dashed

lines indicate inverse correlations. Classes that are not connected by any lines are

deemed unnecessary. Note that the same pairs of dependent classes were reproduced

using PCC (Section 4.1.1) with φ = 0.25 in order to reveal the signs of the rela-
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micro-f1 Previous Techniques Proposed Techniques Maximum
(higher is
better)

BR CC DBR 2BR Conf-ST PruDent NE-ST

emotion 0.594± 0.03
↓
⇓ 0.594± 0.02

↓
⇓ 0.571± 0.02

↓
⇓ 0.568± 0.02

↓
⇓ 0.628± 0.01↓ 0.635± 0.02⇑ 0.704±0.009

genbase 0.995± 0.002 0.995± 0.002 0.995± 0.002 0.980± 0.02
↓
⇓ 0.995± 0.002 0.995± 0.002 0.995±0.002

yeast 0.677± 0.02
↓
⇑ 0.641±0.008

↓
⇓ 0.655± 0.02

↓
⇓ 0.703± 0.008

↑
⇑ 0.663± 0.02↓ 0.691± 0.02⇑ 0.952±0.002

scene 0.597± 0.01
↓
⇑ 0.585± 0.01↓ 0.534± 0.02

↓
⇓ 0.536± 0.04

↓
⇓ 0.576± 0.01↓ 0.614± 0.01⇑ 0.849± 0.01

cal500 0.500±0.003
↓
⇓ 0.478± 0.01

↓
⇓ 0.491±0.001

↓
⇓ 0.498± 0.02

↓
⇓ 0.524±0.009↓ 0.531± 0.01⇑ 0.673±0.006

medical 0.856±0.007
↓
⇓ 0.855±0.010⇓ 0.863± 0.010 0.791± 0.2 0.865± 0.007↑ 0.861±0.008⇓ 0.917±0.005

langlog 0.268± 0.04⇓ 0.271± 0.03 0.269± 0.03⇓ 0.096± 0.10
↓
⇓ 0.278± 0.03 0.269± 0.04 0.278± 0.03

enron 0.640± 0.01
↓
⇓ 0.635± 0.01

↓
⇓ 0.621± 0.01

↓
⇓ 0.667± 0.01↓ 0.661±0.010↓ 0.684± 0.01⇑ 0.772±0.007

slashdot 0.462± 0.01⇑ 0.365± 0.06
↓
⇑ 0.243±0.007

↓
⇓ 0.406± 0.1⇑ 0.254± 0.01↓ 0.467± 0.01⇑ 0.813± 0.02

mediamill 0.763±0.001
↓
⇓ 0.748±0.005

↓
⇓ 0.746±0.002

↓
⇓ 0.777±0.002

↓
⇓ 0.779±0.001↓ 0.783± 0.001⇑ 0.877±0.001

tmc2007 0.732±0.002
↓
⇓ 0.728±0.003

↓
⇓ 0.722±0.003

↓
⇓ 0.728± 0.01

↓
⇓ 0.759± 0.003 0.760± 0.002 0.766±0.003

bibtex 0.775±0.003⇓ 0.776±0.004⇓ 0.776±0.003⇓ 0.700± 0.2 0.779± 0.003↑ 0.775±0.003⇓ 0.785±0.004

rcv1 0.418±0.003⇑ 0.404±0.010
↓
⇑ 0.355±0.008

↓
⇓ 0.310± 0.04

↓
⇓ 0.387±0.006↓ 0.420± 0.005⇑ 0.835±0.005

nus-wide 0.458±0.001
↓
⇑ 0.446±0.004

↓
⇑ 0.347±0.003

↓
⇓ 0.451±0.009

↓
⇑ 0.423±0.003↓ 0.511± 0.002⇑ 0.680±0.001

imdb 0.286±0.002
↓
⇑ 0.317± 0.03

↓
⇑ 0.277±0.009↓ 0.015± 0.01

↓
⇓ 0.277±0.009↓ 0.347± 0.003⇑ 0.610±0.002

Table 4.10: micro-f1. ↑ or ↓ indicate significantly higher or lower than PruDent respectively.

⇑ and ⇓ indicate significantly higher or lower than Conf-ST respectively.

tionships. As demonstrated by the diagram, the remaining relations conform with

common expectations; the ‘SadLonely’ class rarely co-occurs with ‘HappyPleased’,

the ‘RelaxingCalm’ class is arguably related to ‘QuietStill’, and not all occurrences

of ‘AmazedSurprised’ are also considered ‘HappyPleased’.

Figure 4.14: Remaining emotion relations with φ = 0.05
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PruDent Conf-ST
% % % % % % % %
Classified Unchanged Corrected Harmed Classified Unchanged Corrected Harmed

emotion 57.4± 6.6 41.7± 7.6 8.7± 0.8 6.9± 1.2 58.3± 6.2 42.3± 6.9 8.6± 0.8 7.4± 1.02
yeast 76.4± 1.5 59.2± 2.6 9.2± 0.8 8.0± 0.7 90.7± 3.2 67.0± 2.9 10.7± 0.7 13.0± 0.9
scene 62.8± 23.3 56.0± 21.0 3.6± 1.4 3.1± 1.8 71.1± 7.4 57.6± 7.7 5.6± 0.4 7.9± 0.7
cal500 52.3± 9.9 43.4± 8.7 4.8± 0.5 4.2± 0.6 75.2± 0.05 64.0± 0.3 6.1± 0.1 5.2± 0.2
medical 57.6± 13.4 57.2± 13.3 0.2± 0.1 0.2± 0.1 97.6± 1.4 97.1± 1.4 0.3± 0.1 0.2± 0.1
slashdot 43.1± 15.3 42.9± 15.2 0.2± 0.1 0.1± 0.1 92.9± 4.4 70.4± 3.9 2.6± 0.3 19.8± 3.4
mediamill 52.1± 13.4 47.9± 12.5 2.3± 0.5 1.8± 0.4 81.9± 0.8 75.4± 0.8 3.4± 0.1 3.1± 0.1
bibtex 40.7± 42.9 40.5± 42.7 0.07± 0.08 0.06± 0.07 93.8± 3.0 93.1± 3.0 0.4± 0.1 0.3± 0.04
nus-wide 57.9± 1.1 51.5± 1.2 4.0± 0.03 2.4± 0.03 68.7± 0.6 53.2± 0.5 4.6± 0.03 11.0± 0.3

Table 4.11: Percent of test examples classified using dependent models.

4.5.3 Percent of Dependently Classified Examples

Section 4.1.2 explained how the proposed technique limits error-propagation by

re-using independent models whenever they have higher classification confidence than

their dependent counterparts. Let us now take a closer look. Specifically, we would

like to know the percentage of testing examples classified using dependent models,

and to know also the percentage of classifications that were corrected. To this end,

another experiment was run which measures the number of dependently-classified

testing examples, and noted their independent, and dependent classifiers’ predictions.

Table 4.11 shows a sample of the averaged values obtained by 5x2 CV.

The results indicate that PruDent used the dependent classifiers more than 50%

of the time in 10 out of the 15 data sets. However, the algorithm looks rather con-

servative when compared to Conf-ST. Although Conf-ST tends to use the dependent

classifiers more liberally, the algorithm can produce more harmful classifications than

correct ones; this happened more conspicuously in slashdot and nus-wide. Unlike

Conf-ST, the PruDent version always corrected more incorrect classifications than

vice versa. To end this section, it is worth noting that although PruDent was suc-

cessful more often than not in employing the second layer of classifiers, it still left
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room for improvement; harmed classifications occupy a considerable portion of test

examples in some datasets (e.g. yeast and emotion). The reason why errors still

occur in this paradigm is a topic worth investigating in future research.



CHAPTER 5

Alternative “PruDent” Paradigms

The previous chapter introduced the stacking-based algorithm PruDent and demon-

strated its classification performance when the C4.5 decision tree learner is applied

to the binary subproblems. This chapter is composed of two parts that address

the following questions: first, can PruDent be improved further by modifying the

m-estimate parameters (p and m) that are used to estimate prediction confidence?

Furthermore, how can PruDent be applied to a base classifier that does not provide

probabilistic confidence values, such as Support Vector Machines? In an attempt to

answer these questions, this chapter will suggest some possible solutions.

5.1 Optimizing the M-estimate Parameters

Recall from Section 4.1.2 that PruDent compares the prediction confidences of the

first- and second-layer classifiers in stacking to select the class label that is less likely

to be error-prone. To estimate these confidence values, the first experiments employed

the Laplace smoothing method per Section 3.1.2. However, despite showing improved

classification accuracy, some datasets were improved only when the Laplace method

was later replaced with the m-estimate technique (see Section 4.4.3). Specifically,
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the latter approach can bias the classifier such that it favors predicting the minority

classes, which attained a better balance between the precision and recall criteria

from Section 2.3. For the reader’s convenience, the mathematical formulation of the

m-estimate method is repeated below. Here, N denotes the number of examples in

the leaf node in which the confidence score is estimated from, and Np refers to the

number of these examples that are instances of the positive class.

P (⊕) =
Np + p.m

N +m
(5.1)

In the experiments of the previous chapter, the parameters p and m were fixed to

the values of 2
3

and 3 respectively. This means that minority classes are going to be

given a higher preference by setting their prior to 2
3

despite typically occurring in a

small proportion of the data. In addition, setting the m parameter to the value of 3

gives a very small precedence to the selected prior; it will only affect the probability

estimate if the sample size it is drawn from (in the leaf node of the tree) is very small.

While these parameter values gave good classification performance, choosing the same

fixed values may not necessarily be optimal for all domains. For instance, when a

class is extremely rare, over-biasing the classifier towards predicting the minor class

may reduce precision more than in a less imbalanced distribution. Moreover, the

decrease in precision can outweigh the gain in recall which ultimately decreases

their harmonic mean, f1. Thus, choosing the m-estimate parameter values can per-

haps be done by looking at the characteristics of the target domain. The next sections

discuss two possible heuristics which set the values of the parameters p and m based

on the dataset at hand.
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5.1.1 Choosing the Value of M

There are several ways to select the p and m parameters to cater to a specific

dataset. Let us first consider the m parameter. As introduced in [45], the value of

the m parameter is said to be domain dependent. Specifically, the author suggested

that this parameter should be based on the level of noise in the dataset. Thus,

when the data are noisy, choosing a higher value of m will yield a more conservative

confidence estimate. However, the information about the noise in a given domain is

not provided beforehand. In fact, determining the amount of noise in a dataset is a

difficult problem [90]. To quantify the noise level, a commonly accepted heuristic is

to train a classifier on the dataset and then observe the rate of incorrectly classified

examples [91, 92]. The assumption is that when the dataset is perfectly separable,

the noise level is expected to be low and the accuracy of the classifier is expected

to be high. The author of the employed decision tree algorithm (C4.5 ) illustrated a

similar scenario in [43]; as the level of noise increases, the classification accuracy is

expected to decrease. Based on the evidence provided by the above literary works, it

makes sense to choose the value of m in accordance with the observed error rate of

the classifier. However, the error rate by itself provides us with a mere fraction of the

entire dataset and does not give us any concrete values. This means that we need to

establish an upper limit for the m parameter value.

The m parameter is concerned with the sample size in which a probability estimate

is drawn from. On the one hand, choosing an m value that is equal to the number of

all examples in the dataset will affect all leaf nodes in the decision tree. On the other

hand, if we assume that examples are distributed evenly in the leaf nodes, choosing a
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very small value of m will have little to no effect when a dataset is very large. Note

that, this will be the case even when a class is rare in a large data set. For example,

suppose a dataset contains 10, 000 training examples, of which 200 (i.e. 2%) belong

to a given class. Here, selecting a value of m = 3 will not have a significant effect

on the probability estimates especially if examples are distributed evenly among the

leaves. Thus, one should consider the number of examples in the training set when

choosing the value of m.

Another important aspect that is worth considering is how the training examples

are distributed in the decision tree. If a tree contains only a few leaf nodes, we expect

the representation of examples to be large in the leaf nodes. This is the case when a

tree can easily separate the data. Conversely, in a more difficult problem, we expect a

higher number of leaf nodes to be present in the tree, which leads to a smaller number

of training instances in each leaf node.

Based on the above remarks, it is sensible to select an upper value of m that is

going to be dependent on: (i) the number of examples in the dataset and, (ii) the

number of leaf nodes in the tree. Following these guidelines, the upper limit of m

can be set to the average number of examples in the leaf nodes of the decision tree

as follows:

Maximum m =
number of examples

number of leaf nodes
(5.2)

The above suggested limit provides us with the maximum value to be used for m

under the assumption that examples are distributed evenly in the tree. Choosing the

final concrete values will be discussed by the experiments setup in Section 5.1.3.
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5.1.2 Choosing the Value of P

In terms of the parameter p (the prior belief), the introducing author of the

m-estimate method [45] suggested the choice of p to be equal to the proportion of

positive examples in the dataset. However, the results of the previous chapter (see

Section 4.4.3) tell us that this approach will not necessarily guarantee a balanced

distribution of the predicted classes, especially when the class representations are im-

balanced. Therefore, a different method is needed to boost the prediction confidence

of the rare classes whenever they are encountered.

When choosing the value of p, a trade-off is commonly faced between the recall

and precision rates (see Section 2.3). One the one hand, choosing a small p will make

the classifier more reluctant to label examples as positive instances. Doing so may

increase precision at the cost of a possible decrease in recall. On the other hand,

choosing a high p value will bias the classifier towards preferring positive class labels.

This leads to an increase in recall with the drawback being a possible decrease

in precision. When the classes have an imbalanced representation in the dataset,

which is the circumstance typically faced in multi-label domains, most classifiers are

biased towards predicting the class that constitutes a majority of examples. This

happens because the goal of most classifiers is to reduce the expected error (e.g. [7]).

To counter this behavior, we would like the p value to give a higher preference to the

classes that constitute a minority of examples.

One may be inclined to set the value of p based on the proportion of positive

examples for a given class in the training set, P+ = Np

N
, where Np is the number of

positive examples and N is the total number of examples in the training set. Thus,
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a lower ratio of positive examples P+ will correspond to a higher p value. One such

solution would be to assign the value of p to 1 − P+. However, using this scheme

can lead to a serious consequence when a class is extremely rare (i.e. < 5%) in the

dataset; a situation that is not uncommon in multi-label domains. Consider the case

where a class is represented by 2% of the instances in a dataset. Accordingly, using

p = 1−P+ will set the value of p to 0.98. While having a high p value may guarantee

the highest possible recall the classifier is able to attain, choosing such a high value

when a class is extremely rare may dramatically reduce precision due to the higher

possibility of false positive predictions.

The above realization leads us to the following important question: how high can

the p value be safely set? Ideally, we would like the classifier to have a stronger bias

towards positive instances when they have a reasonable presence in the dataset. To

achieve a safe setting for p, the following approach is considered:

p = min{1, 1

2
+
Np

N
} (5.3)

In the above formula, when a class is extremely rare (e.g 2%), the p value will only

have a very small bias towards the positive class (e.g. p = 0.52). Also, when a class

has a higher presence in the dataset (e.g. 30%), the p value will correspond to a

higher bias (e.g. p = 0.8). Note that when the positive examples are close to 50%,

the algorithm will almost always prefer the positive class labels. This should not

affect the f1 criteria since the negative class labels will have a smaller influence on

the outcome; precision will suffer less from false positives as the number of negative

examples decreases. Whether using the above heuristic for the parameter p leads to

classification improvements will be established experimentally by the next section.
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5.1.3 Experiments

The previous sections provided a guideline to choosing the p and m parameters of

the m-estimate technique employed by PruDent. In the next round of experiments,

we would like to know whether using these heuristics does improve its classification

performance. To this end, the original PruDent (with p = 2
3

and m = 3) is compared

with two other configurations as follows. In the first version (PruDent-A), the m

parameter is set to half of the upper limit that was established in Section 5.1.1, and

p is set per Equation 5.3 from the preceding section.

Additionally, we would like to know whether basing the m parameter on the error

rate of the classifiers (as suggested by [45]) does improve the classifier’s outcome.

To test this hypothesis, the second compared version (PruDent-B) will set the m

parameter as follows. First, the error rate of each classifier is recorded using a val-

idation set process that represents 1/3 of the training set. These error rates are

then used to calculate m for each class (in each layer) using the following formula:

m = 2 × error × number of examples
number of leaves

. Thus, a higher error rate will correspond to a

higher m value. Note that the error rate is multiplied by 2 since the maximum error

a classifier can have is 50%, or 0.5.

The conducted experiments followed the same setup from Section 4.3.1 where

the datasets from Table 4.1 are used, and the pruning thrshold φ is optimized for

micro-f1. Since the goal of the experiments is to show whether changing the p and

m parameters achieves a better balance between recall and precision, the results

of the experiments are reported using the relevant macro-f1 and micro-f1 criteria

from Section 2.3.
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macro-f1 Original Non-Error Based m Error-based m
(higher is better) PruDent PruDent-A PruDent-B
emotion 0.62± 0.02 0.62± 0.02 0.62± 0.02
genbase 0.97± 0.01 0.97± 0.01 0.97± 0.01

yeast 0.391± 0.008 0.400± 0.006↑ 0.400± 0.006↑

scene 0.63± 0.01 0.641± 0.009↑ 0.64± 0.01

cal500 0.161± 0.002 0.173± 0.001↑ 0.177± 0.001↑

medical 0.54± 0.03 0.54± 0.03 0.54± 0.03
langlog 0.11± 0.01 0.11± 0.01 0.11± 0.01

enron 0.195± 0.008 0.189± 0.007↓ 0.190± 0.007↓

slashdot 0.24± 0.01 0.24± 0.01 0.24± 0.01
mediamill 0.319± 0.005 0.314± 0.008 0.314± 0.006

tmc2007 0.634± 0.004 0.634± 0.004 0.632± 0.004↓

bibtex 0.494± 0.009 0.495± 0.009 0.495± 0.010

rcv1 0.304± 0.006 0.30± 0.01 0.300± 0.009↓

nus-wide 0.209± 0.001 0.207± 0.001↓ 0.203± 0.006↓

imdb 0.086± 0.001 0.094± 0.001↑ 0.092± 0.002↑

Table 5.1: The macro-f1 results when using the new formulas for the p and m parameters.
The ↑ and ↓ indicate that the result of the respective algorithm is significantly higher, or
lower than the original PruDent respectively. The result of the highest performing algorithm
for a given dataset is boldfaced.

micro-f1 Original Non-Error Based m Error-based m
(higher is better) PruDent PruDent-A PruDent-B

emotion 0.63± 0.02 0.64± 0.02↑ 0.63± 0.02
genbase 0.994± 0.002 0.994± 0.002 0.994± 0.002

yeast 0.69± 0.02 0.71± 0.01↑ 0.71± 0.01↑

scene 0.60± 0.02 0.612± 0.009↑ 0.61± 0.01↑

cal500 0.53± 0.01 0.547± 0.006↑ 0.552± 0.006↑

medical 0.86± 0.01 0.86± 0.01 0.86± 0.01
langlog 0.27± 0.02 0.27± 0.02 0.27± 0.02
enron 0.690± 0.005 0.691± 0.004 0.691± 0.003
slashdot 0.46± 0.01 0.46± 0.01 0.46± 0.01

mediamill 0.784± 0.001 0.787± 0.001↑ 0.787± 0.001↑

tmc2007 0.760± 0.002 0.763± 0.002↑ 0.763± 0.002↑

bibtex 0.779± 0.003 0.779± 0.004 0.779± 0.003

rcv1 0.420± 0.009 0.427± 0.008↑ 0.428± 0.010↑

nus-wide 0.511± 0.001 0.528± 0.001↑ 0.527± 0.001↑

imdb 0.344± 0.003 0.379± 0.003↑ 0.387± 0.003↑

Table 5.2: The micro-f1 results when using the new formulas for the p and m parameters.
The ↑ and ↓ indicate that the result of the respective algorithm is significantly higher, or
lower than the original PruDent respectively. The result of the highest performing algorithm
for a given dataset is boldfaced.

5.1.4 Results

The obtained macro-f1 and micro-f1 results are provided in Tables 5.1 and 5.2

respectively. Let us begin by comparing the results of the error based m version

with the non-error based one. In this regard, the algorithm seems to show no actual

benefit from basing the m value on errors; since it was able to achieve improved results

regardless of whether m is based on the error, or not. This leads us to believe that

the confidence estimates are more sensitive to the p parameter than they are to the

m parameter, which conforms with the results previously reported by [93] and [94].
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When comparing the new heuristic-based versions of PruDent with the origi-

nal one, a clear performance increase is achieved especially in terms of the targeted

micro-f1 criterion. Thus, classes with a large presence in the data experienced most

of the improvements. However, the same cannot be said about macro-f1 where

the results are not as clear-cut; the original PruDent version was able to keep its

advantage in some of the datasets. This means that macro-f1 suffers less from over-

biasing the p value (since p is always set to 0.66 in original version) than micro-f1,

which can perhaps be attributed to the following. On the one hand, when classes

constitute a majority, their recall rates contribute more to micro-recall than to

macro-recall. This is because positive examples have a greater presence in major

classes. On the other hand, when classes rarely occur, their precision contributes

more to micro-precision than to macro-precision; since minor classes contain

more negative examples in their respective training and testing sets. Thus, in rare

classes, over-biasing the p value towards the positive class can lead to a decrease in

micro-precision with an eventual decrease in micro-f1 as well.

To verify whether over-biasing the classifier with a high p value indeed reduces

micro-f1, an additional experiment was conducted which records the macro- and

micro-f1 criteria with respect to varying the p value in the range (0.5− 1.0). Here,

the m value was set in the same way as the non-error based PruDent-A and all class-

correlations were left intact (no pruning). The results of this experiment, using a

representative subset of the datasets, are illustrated by Figures 5.1a and 5.1b. It

becomes clear from the obtained results that the earlier suspicion holds true; having

a high p value may increase macro-f1 at the cost of a decrease in micro-f1. Note

that the scene dataset experienced a decrease in both metrics when a high p value is
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Figure 5.1: The difference in macro-f1 and micro-f1 with respect to BR when varying the
p value in PruDent.

used, because the classes in this dataset never occupy more than 22% of the examples.

Also, this dataset has the lowest average number of classes per example (see LC in

Table 4.1).

To conclude this section, although the performance improvements in terms of the

targeted micro-f1 criterion were statistically significant more often than not, the

differences were too small to be considered as major improvements over the original

PruDent algorithm. However, despite being small, in some datasets (such as cal500 ,

yeast, and imdb), these differences would have made PruDent the winning algorithm

when compared to existing competing methods; an outcome that is apparent when

these results are compared to the previous ones in Tables 4.4 and 4.101. In general,

the PruDent-A version provided the best trade-off between micro- and macro-f1,

especially considering that it does not require calibrating the m parameter to the

individual classifier errors. Ultimately, the best configuration of the p and m param-

1Note that PruDent won in the other domains even without modifying the p and m parameters
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eters is a subjective aspect that will depend on the end-user’s needs; a higher bias

(higher p) tends to increase recall and decrease precision, and vice versa. Addi-

tionally, having a high p value may increase macro-f1 in some datasets at the cost

of a possible decrease in micro-f1.

5.2 Applying PruDent to Other Base Classifiers

The PruDent algorithm was implemented by using the C4.5 decision tree learner

for the binary classification subproblems in Stacking. As introduced by the previous

chapter, PruDent relies on the prediction confidences of the first and second layer

classifiers (for each class) in order to choose the more confident class prediction. We

know from Section 3.1.2 that decision trees can readily provide probabilistic confi-

dence values by counting the training examples observed in the leaf nodes of the tree.

In contrast to decision trees, many base learning algorithms induce classifiers that

do not provide probabilistic confidence values associated with their class predictions.

For base learning algorithms that rely on frequency counts, such as the K-Nearest-

Neighbors from Section 3.1.5 , inferring probabilistic confidence values can be done in

a fashion similar to that in decision trees. For example, one can consider the neigh-

boring examples in KNN in the same way as examples observed in the leaf node.

From a probabilistic standpoint, considering the nearest neighbors to a test example

is similar to modeling the conditional probability that defines a leaf node in the tree,

P (y|x).

Unlike the above mentioned classifier types, inferring confidence estimates in con-

tinuous valued classifiers (i.e. regression-based) may require a more sophisticated

approach. For the sake of illustration, the remainder of this section will suggest
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some possible methods on how to adapt PruDent to one such classifier—namely, the

non-probabilistic Support Vector Machines (SVM) described by Section 3.1.4.

Recall that SVM aims to separate a dichotomy of examples by finding the maximum-

margin hyperplane which minimizes classification error. A depiction of such a hyper-

plane is in Figure 5.2 below. Once an optimal hyperplane is found, classifying unseen

instances is achieved by multiplying the features of test examples by the set of weights

that orient the hyperplane. As a result of this dot product, each test example is then

mapped to a single dimensional output z that lies along the normal of the hyperplane.

Based on which side of the hyperplane the test example lies, it is then classified to

one of the two categories accordingly. More specifically, the test example is labeled

as a positive class instance if the sign of the output is positive, z > 0. Otherwise, the

example is deemed negative.

Figure 5.2: A linear SVM hyperplane separating a 2-dimensional dichotomy. Positive and
negative examples are indicated using white and gray circles respectively. The distances of
examples from the hyperplane are indicated with the dashed lines.

Per the classification process described in the previous paragraph, the SVM clas-

sifier does not provide a probabilistic confidence value associated with its class pre-

dictions; aside from the predicted class label, the only other output that is provided
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is the signed distance to the separating hyperplane, z (see Figure 5.2). Since the

prediction confidences play a crucial role in the PruDent algorithm, applying this

technique to the SVM classifier will require a method to convert these hyperplane

distances (z) into probabilistic values P (y|z).

One of the earliest approaches to obtain probabilistic confidences from SVM sug-

gested estimating the posterior probabilities P (y|z) by treating the examples’ hy-

perplane distances as a group of Gaussian distributions, one per class [95]. The

parameters of the distributions are then estimated using the locations of training ex-

amples relative to the induced hyperplane. This approach was later criticized by [88]

for assuming that the distances follow a Gaussian distribution. In his paper, the

author showcased an example where this assumption does not hold. Instead, the

author suggested fitting a sigmoid function which guarantees a monotonicaly increas-

ing probability estimate with respect to the distance z; as typically desired from an

estimation technique. Equation 5.4 below shows the employed sigmoid function, and

an illustration of an example sigmoid is provided in Figure 5.3.

P (yi = 1|z) =
1

1 + exp(A+Bz)

P (yi = 0|z) = 1− P (yi = 1|z)

(5.4)

In the above formulation, yi is the label of class i, where yi = {0, 1} per the

notation in Section 2.1. Note that the parameters A and B can be determined

with the help of maximum likelihood estimation from the training set [88]. The

underlying idea of the sigmoid approach is the following: as examples lie farther

from the hyperplane, they are likely to be classified correctly (because of the error
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Figure 5.3: An example sigmoid function using the parameters A = −0.2 and B = −2.2.

minimization function of SVM ). In contrast, when examples lie along the boundary,

they are expected to be harder to classify since they become closer to the examples of

the other respective class. In addition to showing more accurate probability estimates

than previous methods, the above sigmoid function seems to be the method of choice

currently adopted by recent versions of common machine learning software packages

(e.g. WEKA [31] and LIBSVM [96]).

Although the sigmoid function detailed above is the most frequently used ap-

proach, one must be cautious about using this method when the inputs to the classi-

fier are themselves prone to errors; a circumstance that is unavoidable in the stacking

framework. One way to overcome this hurdle is to use an internal cross-validation

process when optimizing the A and B sigmoid parameters. Specifically, the outputs

of the first layer classifiers should be used during the optimization instead of the cor-

rect labels from the training set. This enables the optimization function to capture

the possible errors introduced to the attributes by the additional class-features. Nev-
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ertheless, this process may render PruDent with a high computational complexity

similar to that of the 2BR algorithm (see Section 4.3.1).

Another approach to estimate SVM ’s prediction confidences is perhaps to obtain

frequency counts of examples based on their relative locations to the induced hyper-

plane. This can be done by constructing a histogram following one of the different

discretization methods detailed recently in [97]. After that, when a test example is

submitted to the SVM classifier, a count of previously seen examples in the vicinity of

the test example is provided along with the predicted class label. In turn, this infor-

mation can be used in a similar way to the leaf-node example counts in decision trees.

Specifically, one can apply the Laplace (Section 3.1.2) and m-estimate (Section 4.4.3)

smoothing techniques whenever a test example falls within a region with few training

examples. Perhaps class vector anomalies can then be avoided by preferring the pre-

dictions that have a similar output (distance-to-hyperplane) to those observed in the

training set. Determining which estimation technique provides the best classification

accuracy when PruDent is applied to SVM is a topic worth investigating in future

research efforts.



CHAPTER 6

Conclusions and Future Directions

Targeting the domains where examples can be labeled with two or more classes at

the same time, a new technique that belongs to the broader category of Binary Rel-

evance methods, is presented. Relying on a stacking-based approach, the technique,

called PruDent, addresses two drawbacks that negatively affect earlier methods: un-

necessary label dependencies and error-propagation. Experimental results show that

this indeed improves classification performance, and does so at a reasonable cost. The

following conclusions can be drawn from the results of this work:

• Not all class correlations are necessary: while using all class correlations yields

improved classification performance in some domains, others experienced im-

provements only when weak class relationships were removed.

• Using the Information Gain heuristic is a viable option to identify weak depen-

dencies. Moreover, removing these dependencies leads to performance improve-

ments when incorporating class correlations in BR.

• Adding the outputs of other classifiers to the vector of example-features can

introduce noise in the examples because these outputs are not guaranteed to be
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correct. Consequently, these errors lead to a significant degradation in classifi-

cation performance.

• Classification confidence may provide a guideline to select which classifier is less

likely to produce an error. Applying this concept in stacking is an essential step

to reduce its associated error-propagation drawback.

• Since BR suffers from the imbalanced class representation phenomenon, biasing

classifications towards the minority class may provide a more balanced distri-

bution of predicted classes.

Let us discuss other observations made during the experiments. In particular,

PruDent was able to reduce hamming-loss (Section 2.3), a criterion that measures

partially correct classifications, even though hamming-loss can, in principle, be min-

imized without incorporating class dependencies [12]. Additionally, the experiments

in [6] show that BR is hard to beat along this measure. Still, PruDent was able to

improve hamming-loss because of the system’s hybrid nature: based on classifica-

tion confidence, dependent models are used in conjunction with independent ones.

Reducing hamming-loss is crucial in applications that rely on partial label matches,

such as keyword-based searches. It is also worth noting that although the pruning

threshold was based on micro-f1, other measures may yield different outcomes—it is

possible to optimize PruDent based on different performance criteria using the same

validation-set technique used in the presented experiments.

Experimental evidence also indicates that the proposed system outperforms state-

of-the-art algorithms, especially on majority classes (those most frequently repre-
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sented in the training set). This is useful in applications where commonly occurring

classes are more important than rare ones.

In terms of computational complexity, PruDent is quite efficient because it does

not construct a second-layer classifier for a class that is independent of others. This

is particularly beneficial in domains with large training sets.

One drawback in PruDent is the technique’s reliance on confidence scores. The

experiments in this dissertation employed the decision tree algorithm which provides

probabilistic confidence values automatically. For classifiers with real-valued outputs

however, a more complex method may be required. Here, one can use probabilistic

fitting models, or the uncertainty methods from the field of active learning. Nev-

ertheless, care must be taken when fitting the probabilistic models since the second

layer incorporates class-features that are prone to errors. Alternatively, it is possible

to discretize the continuous outputs of the classifier using arbitrary regions in the

output space. Thus, every region becomes associated with a sample of training ex-

amples that can generate a confidence value similar to leaf nodes in decision trees.

The latter approach can perhaps pave the way to using different classifier types in the

two layers of stacking. The reader is referred to the work in [98] for a better insight

into the problems encountered in this research direction.

Another aspect that may be worth future investigation is the modification of the

confidence comparison method used in PruDent. Recall that PruDent chooses the

final prediction by simply comparing the confidences of the pair of classifiers assigned

to each class. Here, one might prefer to reuse the classification of the independent

classifier only if it is substantially more confident than its dependent counterpart.

Implementation of this idea might be accomplished by imposing a threshold on the
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difference between the prediction confidence values—to detremine whether one clas-

sifier is indeed more confident than the other.
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sification via calibrated label ranking,” Machine Learning, vol. 73, no. 2, pp.
133–153, 2008.

[68] D. Gjorgjevikj and G. Madjarov, “Two stage classifier chain architecture for effi-
cient pair-wise multi-label learning,” in Machine Learning for Signal Processing
(MLSP), 2011 IEEE International Workshop on. IEEE, 2011, pp. 1–6.

[69] G. Madjarov, D. Gjorgjevikj, and T. Delev, “Efficient two stage voting architec-
ture for pairwise multi-label classification,” in AI 2010: Advances in Artificial
Intelligence. Springer, 2011, pp. 164–173.

[70] G. Tsoumakas, I. Katakis, and L. Vlahavas, “Random k-labelsets for multilabel
classification,” Knowledge and Data Engineering, IEEE Transactions on, vol. 23,
no. 7, pp. 1079–1089, July 2011.

[71] J. Read, B. Pfahringer, and G. Holmes, “Multi-label classification using ensem-
bles of pruned sets,” in Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on. IEEE, 2008, pp. 995–1000.

[72] L. Tenenboim-Chekina, L. Rokach, and B. Shapira, “Identification of label de-
pendencies for multi-label classification,” in Working Notes of the Second Inter-
national Workshop on Learning from Multi-Label Data, 2010, pp. 53–60.

[73] L. Chekina, D. Gutfreund, A. Kontorovich, L. Rokach, and B. Shapira, “Ex-
ploiting label dependencies for improved sample complexity,” Machine learning,
vol. 91, no. 1, pp. 1–42, 2013.

[74] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for multi-
label classification,” in Proceedings of the European Conference on Machine
Learning and Knowledge Discovery in Databases: Part II. Springer-Verlag,
2009, pp. 254–269.



127

[75] K. Dembczyński, W. Waegeman, and E. Hüllermeier, “An analysis of chaining in
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