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Biometrics attracted the attention of researchers in computer vision and machine

learning for its use in many applications. We propose systems for face and ear recog-

nition, gender classification and object tracking. First, we present a fully automated

system for recognition from ear images based upon sparse representation. In sparse

representation, extracted features from the training data is used to develop a dictio-

nary. Classification is achieved by representing the extracted features of the test data

as a linear combination of entries in the dictionary. In fact, there are many solutions

for this problem and the goal is to find the sparsest solution. We use a relatively new

algorithm named smoothed l0 norm to find the sparsest solution and Gabor Wavelet

features are used for building the dictionary. Experimental results conducted on the

University of Notre Dame (UND) collection J data set, containing large appearance,

pose, and lighting variations, resulted in a gender classification rate of 89.49%. Fur-

thermore, the proposed method is evaluated on the WVU data set and classification

rates for different view angles are presented. Results show improvement and great

robustness in gender classification over existing methods.

Furthermore, we present an approach for gender classification using facial images

based upon sparse representation and Basis Pursuit. In sparse representation, the

training data is used to develop a dictionary based on extracted features. Basis pursuit



is used to find the best representation by minimizing the l1 norm. Experimental

results are conducted on the FERET data set and obtained results are compared

with other works in this area. The results show improvement in gender classification

over existing methods.

We present a novel classification technique based on sparse representation. Cur-

rently, most of the methods for sparse representation classification do not apply con-

straints to the coefficients that form the linear combination of the atoms, which leads

to having coefficients that can be positive or negative. In addition, all the training

samples are treated uniformly without differentiating between the training samples

in the dictionary. In this technique, we impose non-negative constraint on the com-

ponents of the coefficient vector to ensure that the coefficient vector represents the

contributions of the training samples towards the query, which is more natural for

classification purposes. We also use the mutual information between the query sam-

ple and each of the training samples to obtain a weight for each of the atoms in the

dictionary. These weights have the effect of reducing the search space and speeding

the convergence of the algorithm in finding the coefficient vector. Experiments con-

ducted on the Extended Yale B database for face recognition and on the University

of Notre Dame (UND) database for ear recognition show that the proposed non-

negative weighted sparse representation obtained by smoothed l0 norm outperforms

other state-of-the-art classifiers.

Finally, a general tracking system is developed based upon sparse representation.

Developing an effective and complete tracking algorithm is a challenging task be-

cause of factors such as illumination, occlusion and pose variations. Most of the

tracking algorithms do not consider the situation when the tracked object or disap-



pears temporarily from the video sequence or becomes temporarily fully occluded.

Here, our goal is to develop an automatic object tracking system that can handle

pose variations, scale variations and temporary disappearance of the object from the

scene. We present a robust tracking system based on adaptive sparse representation

and feedback. We focus on automatic tracking with no prior knowledge other than

the location of the region to be tracked in the first frame, which can either be lo-

cated manually or using a detector that finds the region of interest (ROI). The visual

tracking is a binary classification problem. The positive samples are bounding boxes

that have high overlap with current position of the target while negative samples are

drawn from regions outside the ROI to model background close to the target. The

tracking algorithm uses the dictionary to locate the ROI in the following frames via

adaptive sparse representation. One of the main issues in tracking systems is false

tracking when the object disappears from the scene. Motivated by the concept of

feedback in control systems, we overcome the problem of false tracking when the

object disappears by comparing the newly tracked region with previous regions to

confirm that the object is still in the frame. A structural similarity measure is used

to measure similarity between a newly tracked ROI and the previously tracked ROIs

and if the similarity is below a certain threshold, the object is assumed to be out of

the scene. In fact, this similarity evaluation is like a feedback loop in our tracking

algorithm which makes our method robust, reliable and accurate when compared to

the state-of-the-art methods on challenging sequences. If the object is not located

in the current frame, the algorithm stops tracking and starts searching for the ob-

ject in the following frames. The searching is achieved by using a detector based on



sparse representation and an adaptive dictionary to efficiently locate the object when

it reappears in the scene.



to my parents

iii



Acknowledgements

I would like to express my special appreciation to my advisor, Professor Dr. Mo-

hamed Abdel−Mottaleb, you have been a tremendous mentor for me. I would like

to thank you for encouraging my research and for allowing me to grow as a research

scientist. I would also like to thank my committee members, Dr. Shahriar Negah-

daripour, Dr. Kamal Premaratne, Dr. Mei-Ling Shyu and Dr. Aron Ross for serving

as my committee members.

Rahman Khorsandi

University of Miami

December 2015

iv



Table of Contents

LIST OF FIGURES x

LIST OF TABLES xiii

1 INTRODUCTION 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 SPARSE REPRESENTATION 8

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Building the Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Sparse Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 l0 Norm Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Smoothed l0 Norm (SL0) Algorithm . . . . . . . . . . . . . . . . . . . 14

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 EAR RECOGNITION AND GENDER CLASSIFICATION BASED

UPON SPARSE REPRESENTATION 17

v



3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Gabor Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Feature Extraction using Gabor Wavelets . . . . . . . . . . . . 24

3.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.2 Ear Recognition Experiments . . . . . . . . . . . . . . . . . . 26

3.5.3 Gender Classification Experiments . . . . . . . . . . . . . . . 28

3.5.3.1 The First Experiment Using UND data set . . . . . . 28

3.5.3.2 The Second Experiment Using WVU data set . . . . 31

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 GENDER CLASSIFICATION USING FACIAL IMAGES AND

BASIS PURSUIT 40

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Classification based on Sparse Representation . . . . . . . . . . . . . 41

4.2.1 Sparse Solution Based on Basis Pursuit . . . . . . . . . . . . . 42

4.2.2 Using Sparse Representation for Classification . . . . . . . . . 43

4.3 Gabor Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vi



5 CLASSIFICATION BASED ON WEIGHTED SPARSE REPRE-

SENTATIONUSING SMOOTHED L0 NORM WITH NON-NEGATIVE

COEFFICIENTS 49

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.2 The Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . 52

5.3 Feature Extraction and Dimensionality Reduction . . . . . . . . . . . 54

5.3.1 Histogram of Oriented Gradients . . . . . . . . . . . . . . . . 54

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4.1 Face Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.2 Ear Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 ROBUST BIOMETRICS RECOGNITION USING JOINT WEIGHTED

DICTIONARY LEARNING AND SMOOTHED L0 NORM 69

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Classification based on Sparse Representation . . . . . . . . . . . . . 73

6.2.1 Building the Dictionary . . . . . . . . . . . . . . . . . . . . . 73

6.2.2 Sparse Solution Based on Smoothed l0 norm Minimization . . 74

6.2.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vii



6.2.4 Joint Weighted Dictionary Learning . . . . . . . . . . . . . . . 76

6.2.5 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 ROBUST OBJECT TRACKING VIA ADAPTIVE SPARSE REP-

RESENTATION AND FEEDBACK 85

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Sparse Representation based Tracking . . . . . . . . . . . . . . . . . . 95

7.3.1 Adaptive Sparse Representation . . . . . . . . . . . . . . . . . 96

7.3.2 Non-negative Coefficients . . . . . . . . . . . . . . . . . . . . . 98

7.3.3 Finding sparse coefficients using SL0 algorithm . . . . . . . . 99

7.3.4 Similarity Measure . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3.5 Object Detection using Sparse Representation . . . . . . . . . 102

7.3.6 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4.1 Tracking Experiments . . . . . . . . . . . . . . . . . . . . . . 106

7.4.2 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . 107

7.4.3 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . 108

7.4.3.1 Disappearance . . . . . . . . . . . . . . . . . . . . . 108

7.4.3.2 Illumination and pose changes . . . . . . . . . . . . . 109

viii



7.4.3.3 Rotation and abrupt motion . . . . . . . . . . . . . . 111

7.4.3.4 Occlusion . . . . . . . . . . . . . . . . . . . . . . . . 112

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8 CONCLUSION AND FUTURE WORK 115

BIBLIOGRAPHY 119

ix



List of Figures

3.1 System Block Diagram: Gender Classification Using Ear Images . . . 22

3.2 Ear Samples frome UND database: Up) Males, Down) Females . . . 23

3.3 The Uniform Down-Sampling of Gabor wavelets [1] . . . . . . . . . . 25

3.4 Gabor Features for 5 scales and 8 orientations . . . . . . . . . . . . . 26

3.5 Ear Recognition Rate on UND data set. A comparison of classifiers

for different feature dimension . . . . . . . . . . . . . . . . . . . . . 27

3.6 A few samples of extracted frames for one subject for different viewing

angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 classification Rate on UND data set. A comparison of classifiers for

different feature dimension . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 classification Rate for WVU database . . . . . . . . . . . . . . . . . . 33

3.9 Male Subjects classification Rate . . . . . . . . . . . . . . . . . . . . 34

3.10 Female Subjects classification Rate . . . . . . . . . . . . . . . . . . . 35

3.11 Classification Rate For Different Viewing Angle . . . . . . . . . . . . 36

3.12 Male Subjects Classification Rate (zero degree frames are used for train-

ing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

x



3.13 Female Subjects Classification Rate (zero degree frames are used for

training) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.14 Classification Rate For Different Viewing Angle (zero degree frames

are used for training) . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Sample images for both males and females in FERET database . . . . 46

5.1 Our Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Sample Frontal Face Images for One Subject in Extended Yale B Database

58

5.3 Face Recognition Rates on Extended Yale B database. 25 images per

subject are used for training and the rest for testing. . . . . . . . . . . 61

5.4 Face Recognition Rates on Extended Yale B database. 20 images per

subject are used for training and the rest for testing. . . . . . . . . . . 62

5.5 Profile Image Samples From UND Database . . . . . . . . . . . . . . 63

5.6 Ear Recognition Rates on UND database Using Gabor Wavelets for

Feature Extraction (10 images per subject are used for training) . . . 64

5.7 Ear Recognition Rates on UND database Using Gabor Wavelets for

Feature Extraction (5 images per subject are used for training) . . . . 65

5.8 Ear Recognition Rates on UND database Using HOG for Feature Ex-

traction (10 images per subject are used for training) . . . . . . . . . 66

6.1 The components of the weight vector associated with an atom represent

the relationship between the atom and each of the classes . . . . . . . 78

xi



6.2 Ear Recognition Rates on UND database (10 images per subject are

used for training) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 A few samples of extracted frames for one subject for different viewing

angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1 The flowchart for the proposed tracking system. . . . . . . . . . . . . 88

7.2 Sample set in frame t, Left: Negative Samples, Right: Positive Samples 90

7.3 Closed-loop feedback control system . . . . . . . . . . . . . . . . . . . 95

7.4 Representation of a query sample in frame (t+1) using example samples

and trivial samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.5 Structure Similarity Index Measurement (SSIM) Block Diagram [2] . 102

7.6 Tracking Results of The Ball Sequence; red: our proposed method, blue:

FCT, black: OAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.7 Tracking Results on sample frames from Dark Car, David, FaceOcc2,

Football, Sylvester and Tiger video sequences. . . . . . . . . . . . . . 110

xii



List of Tables

3.1 Comparison Between l1-Norm [3] and SL0 . . . . . . . . . . . . . . . 28

4.1 Performance comparison to other gender classification systems based

on facial images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Face Recognition Rates on Extended Yale B database (50% for train-

ing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Face Recognition Rates on Extended Yale B database (The number of

features is 56) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Time (in Seconds) for recognition of one query sample (The number of

features is 56) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 Ear Recognition Rates on WVU database (feature vector size is 32) . 83

6.2 Ear Recognition Rates on WVU database (feature vector size is 16) . 84

7.1 Success Rate (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Center Location Error (CLE) . . . . . . . . . . . . . . . . . . . . . . 112

xiii



CHAPTER 1

Introduction

Sparse representation has received widespread attention because of its robust per-

formance and wide range of applications. During the last decade, the theory of sparse

representation has been used in various practical applications in signal processing and

pattern recognition [4–11] It has also been used for compression [12], denoising [13],

and audio and image analysis [14]. In addition, dictionary learning and sparse repre-

sentation have been used as powerful tools for recognition, classification and analysis

of image and video data [15], [16], [17].

Generally, sparse representation is a technique for reconstructing a signal or im-

age using the fact that signals can be presented by a set of basis elements [18]. To

build a robust and efficient recognition system, the number of training samples per

subject (or object) is one of the main challenges. Recognition with a single training

sample per subject (or object) , unless it is used along with a model, lacks informa-

tion to predict the variations among different instances of the object. Furthermore,

in many applications, several training samples per subject might be available, span-

ning different variations in illumination, pose or occlusion. In these cases, the features

from each sample are extracted and used for the representation and classification of

1



2

a query sample. Methods such as the k Nearest Neighbour (kNN) approach, utilize

only a subset of the training samples, i. e., the k nearest neighbors, in classifica-

tion and a query object is assigned a class-label according to the most common class

among its k nearest neighbours [19] and kNN places equal weights on all the selected

neighbours. However, methods such as Sparse Representation Classification (SRC),

that employ the entire training set for decision making have recently shown to signif-

icantly outperform the aforementioned methods [20, 21]. Sparse representation uses

all the data samples for the decision making and represents the test data as a linear

combination of the training data. The assumption is that the set of coefficients of the

linear representation can only be represented correctly by the data of one subject.

Therefore, ideally the coefficient vector is sparse and the sparseness is used to find

the right subject for recognition.

The main approach for obtaining the sparsest solution is based on l1 norm min-

imization of the coefficient vector. However, a relatively new approach to find the

sparsest solution based on l0 norm is named SL0, which has been developed mathe-

matically by Mohimani et al. [22]. SL0 is a fast algorithm for over complete sparse de-

composition. In fact, this method finds sparse solutions for under determined systems

of linear equations. Previous methods usually solve sparse problems by minimizing

l1 norm using linear programming (LP) algorithms. However, SL0 algorithm directly

minimizes the l0 norm. SL0 is a fast method which is about two to three orders of

magnitude faster than state-of-the-art LP algorithms.

Recently, the sparse representation based classification (SRC) has been success-

fully used in face recognition. In practical applications, robust face recognition is a

challenging task due to the significant variations that can be encountered in face



3

images. Wright et. al. [20] proposed a face recognition algorithm, based on sparse

representation and l1 norm minimization, which is robust towards variations in light-

ing conditions, facial expressions and partial occlusions. In fact, the sparse non-zero

coefficients should concentrate on the training samples with the same class label as

the query sample. On the other hand, due to the rich information contained in ear im-

ages, the ear is becoming an important biometrics for recognition and identification.

Motivated by the success of sparse representation and reported results in face recog-

nition, in [23] and [24] we presented sparse representation methods for ear recognition

and gender classification.

The objective of this thesis is to propose novel systems for face and ear recognition

based upon sparse representation. In chapter 2, we describe the sparse representation

and feature extraction methods. In chapter 3, a novel approach for ear recognition

and gender classification using 2D ear images is proposed. In chapter 4, we present a

new system based on sparse representation for gender classification using face images.

In chapter 5, Classification based on Weighted Sparse Representation using Smoothed

l0 Norm with Non-negative Coefficients is proposed for face and ear recognition. In

chapter 6, we present a robust biometrics recognition system using joint weighted

dictionary learning and smoothed L0 norm. In chapter 7, Robust Object Tracking

system is presented via adaptive sparse representation and feedback

1.1 Related Work

In recent years, the sparse representation has been widely studied to solve prob-

lems in various applications, partially due to the progress of l0 norm and l1 norm
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minimization techniques [25]. Due to the fact that signals such as audio and images

have naturally sparse representations, sparse representation has proven to be a pow-

erful tool for acquiring, representing and compressing signals. In fact, the signals are

downsampled using a lower sampling frequency than Shannon-Nyquist rate which

leads to efficient estimation, compression and modeling [26], [27], [28]. The idea of

sparse representation classification (SRC) for face recognition [20] is to linearly repre-

sent a query in terms of all training samples, where most of the coefficients associated

with the training samples are zeros as the query sample belongs to only one class.

Huang et al. [29] sparsely coded a signal on a group of redundant bases and the classi-

fication of the signal was performed using the obtained coding vector. Their proposed

algorithm includes two terms,the first term measures the signal reconstruction error

and the second term measures the sparsity. Geo et al. [30] proposed kernel sparse

representation for image classification and face recognition. They believed that the

use of the kernel trick can capture the non-linear representation of features, which

may reduce the feature quantization error and boost the sparse coding performance.

Yang et al. [9] used Gabor features for SRC with a learned Gabor occlusion dictionary

to reduce the computational cost. The number of dictionary columns is reduced in

the learned Gabor dictionary. Cheng et al. [31] proposed a process to build a directed

l1-graph, in which each sample is represented by a vertex and the ingoing edge weights

to each vertex describe its l1 norm reconstruction from the remaining samples. Yang

et al. [32] developed an extension of the spatial pyramid matching (SPM) method,

by generalizing vector quantization to sparse coding followed by multi-scale spatial

max pooling, and proposed a linear SPM kernel based on sparse coding of SIFT de-

scriptors. Patal et al. [33] proposed a face recognition algorithm based on dictionary
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learning and sparse representation. A dictionary is learned for each class based on the

training samples. The representation error is minimized using sparseness constraint

and the query sample is projected onto the span of the training data in each learned

dictionary. It happens that the generated dictionary has a huge size, which is time

consuming. To overcome this disadvantage, Yang et al. [34] proposed an unsupervised

dictionary learning algorithm to obtain atoms for each class. Lu et al. [35] proposed

a locality weighted sparse representation based classification method which utilizes

both data locality and linearity. Xu and Yang [19] presented a technique that combines

sparse representation with the theory of fuzzy sets. They imposed the constraint of

non-negative coefficients on the sparse representation and then constructed the fuzzy

class membership matrix to assign the membership of the query sample to each class.

There are several possibilities to improve the sparse representation through the

dictionary learning, feature extraction, feature fusion and the optimization proce-

dure. In this thesis, we use a fast optimization algorithm to find the l0 norm. Direct

minimization of l0 norm is difficult because of the fact that the l0 norm of a vec-

tor is a discontinuous function of that vector. An efficient algorithm was proposed

in [22] for sparse decomposition based on the smoothed l0 norm, which is about two

to three orders of magnitude faster than the interior-point Linear Programming (LP)

solvers, without sacrificing the accuracy. The basic idea of SL0 is to approximate the

discontinuous l0 norm by a continuous function before optimization. The SL0 algo-

rithm can avoid being early trapped at a local extremum. This algorithm was used

in various applications such as blind source separation [36], ear recognition [23], [37],

decomposition of EEG signals [38] and image super-resolution [39].
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Over the past decades, biometrics technologies, such as face or fingerprint recog-

nition, have been used in different applications including security, psychology and

human-computer interaction. However, ear biometrics is a relatively new area of re-

search. Similar to face recognition, ear recognition is passive, i.e., an individual can

be scanned and their identity confirmed, without the subject actively engaging the

device, compared to fingerprints. In addition, ears may be more reliable than faces,

since subjects can change their facial expression or manipulate their visage. However,

it is not easy to change the ear shape. One of the first approaches in ear biometrics

was proposed by Burge and Burger [40]. They used graph-matching techniques on

a Voronoi diagram of curve segments extracted from a Canny edge map. Another

method was presented by Hurley et al. [41] for performing ear recognition, where they

represented each ear image by a set of wells and channels. They assumed that for each

subject, the ear image contains a set of unique wells and channels which can be used

for subject recognition. Abdel-Mottaleb and Zhou [42] proposed an approach for ear

recognition from profile images of the face. In their method, ridges and ravines are

extracted for ear representation. Alignment between a probe and a gallery model is

performed using Partial Hausdorff Distance. The reported results for face recognition

via sparse representation are encouraging enough to extend the sparse representation

algorithm to other biometrics such as ear biometrics and further evaluate their per-

formance under the most challenging practical conditions such as pose variations and

occlusion. One of first approaches for ear biometrics using sparse representation was

proposed by Naseem et al. [3]. They used l1 norm minimization to find the sparsest

solution. They conducted several experiments using the University of Notre Dame

(UND) database. Kumar and Chan [43] proposed an approach for ear recognition and
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verification using sparse representation of local gray-level orientations. The aforemen-

tioned methods and papers motivated us to explore a more robust approach for face

and ear recognition.



CHAPTER 2

Sparse Representation

2.1 Overview

Theoretical developments of sparse signal representation have been interesting

for researchers to use this powerful tool for computer vision and machine learning

applications. Over the past decades, there have been many fundamental progress in

the field of machine learning. However, there are problems in dealing and processing

of the high-dimensional data. During the last decade, a significant research effort

has been devoted to find the compact or sparse representation for signals in order

to process the large-scale data. Based on sparse representation theory, a signal can

be decomposed into a linear combination of a few basic signals which is capable of

representing the majority information conveyed by the target signal.

In fact, a sparse signal can be represented as a linear combination of a relatively few

base elements in an over complete dictionary. To find sparse representations, we need

to solve an under determined system of linear equations for sparsest solution. Sparse

representation has recently found various applications in practical areas of signal

8
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processing and pattern recognition [8], [5], [6], [7], [9]. Sparse signal representation

has been used for compression, denoising and analysis of audio and image data.

This thesis proposes an investigation into biometrics which exploits sparse rep-

resentation for improving face and ear recognition algorithms. In this chapter, we

review the theories and algorithms that form the basis of sparse representation. It

gives an overview of sparse representation and its mathematical development. First,

we explain how to build a dictionary. Then sparse representation is formulated and

l0 norm minimization is described. Finally, we introduce the concept of the smooth

l0 norm and explain the SL0 algorithm.

2.2 Building the Dictionary

Sparse representation has been interesting for researchers in signal and image

processing since many natural signals have a sparse or compressible representation in

a variety of domains, such as Wavelet, discrete Sine transform (DST), discrete cosine

transform (DCT) or Fourier domain. A sparse signal refers to a signal which admits

a transform domain representation and most coefficients are zero. In other words,

a sparse signal can be represented as a linear combination of a relatively few base

elements in an over complete dictionary. As a matter of fact, sparse representation

introduces a precise mathematical framework to process high-dimensional data that

a few coefficients can represent the majority information from the target signals.

The first step in using sparse representation is to build a dictionary using the

training data. The dictionary is a matrix in which each column is the feature vector

of one of the training samples. Suppose we have a signal vector (or extracted feature
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vector from an image) v which for simplicity assumed to be real, i.e. v ∈ Rm. Assume

that there are ni training data samples for the ith class, where each data sample is

represented by a vector of m elements. These vectors are then used to construct the

columns of matrix Ai:

Ai = [vi,1,vi,2, ...,vi,ni
] ∈ Rm×ni (2.1)

vi,j, where j = 1, ..., ni, is a column vector that represents the features extracted from

the training data sample j of subject i. Concatenating the matrices Ai, i = 1, 2, ..., k

yields:

A = [A1,A2, ...,Ak] ∈ Rm×n (2.2)

where k is the number of subjects and n =
∑k

i=1 ni. In fact, A is the main dictionary

which obtained using all training samples from database.

2.3 Sparse Representation

In the theory of sparse representation, it is assumed that a feature vector of a test

data from class i can be represented as a linear combination of the feature vectors of

the training data from that class [20]:

y = αi,1vi,1 + αi,2vi,2 + ...+ αi,ni
vi,ni

(2.3)

where y ∈ Rm is the feature vector of the test data and the αi,j values are the coeffi-

cients corresponding to the training data samples of subject i. A linear representation

for the feature vector of the test data, y, can then be given as:

y = Ax ∈ Rm (2.4)
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where x is the coefficient vector. Any x solving this system of equations gives a

representation of y. Since A is a m by n, with m is more than 1, there are infinitely

many such bfx’s as the above system is under determined. By solving this equation

for x, the class of the test data y can be identified. Note that in equation all the

training data samples of a given subject are used to form a representation of the test

data.

2.4 l0 Norm Minimization

To solve the system of equations y = Ax, the number of equations, m, and

unknown parameters, n, are important. If m = n, the system of equations will be

complete and the solution will be unique. However, in recognition and classification,

usually there are many subjects or classes, where the test image belongs to only one

of the classes and does not belong to the other classes. In addition, the number of

extracted features are much less than the training samples. Therefore, the number

of equations is less than the number of unknown parameters (m < n) and there is no

unique solution for the system y = Ax.

In this approach, the matrix A is the dictionary that contains the representations

of n samples or atoms, where each sample is represented by a feature vector of

length m. Since m < n, it is an over complete matrix. Since dictionary A contains

redundancies, it is possible to find x in an infinite number of ways. Therefore, it is

important to introduce a criterion in order to find the best representation. When the

system y = Ax is under determined (i.e., m < n), usually the l2 norm is used and



12

the estimate is expressed as follows:

(l2) : x̂2 = argmin‖x‖2 Subject to y = Ax (2.5)

where x̂2 is the solution, which can be obtained simply by computing the pseudo-

inverse of A. However, this solution is not useful in all applications. A fresh point of

view have been suggested for these under determined systems to solve the problem of

indeterminacy. In fact, we should look for the sparsest solution of all the solutions.

To measure the sparsity, the l0 norm is defined as the number of nonzero elements of

a vector,

‖x‖0 = #{j|xj �= 0} (2.6)

Vector x is called sparse when ‖x‖0 � n for x ∈ Rn.

In classification, the test data can only belong to one of the classes represented in

the dictionary. Therefore, the obtained answer should be sparse (only a few elements

are not zero). The sparsest solution of y = Ax can be obtained by minimizing l0

norm. For this solution, the number of non-zero elements should be minimized as

follows [20]:

(l0) : x̂0 = argmin‖x‖0 Subject to y = Ax (2.7)

where ‖.‖0 is the zero norm, which counts the number of non zero elements of x.

In general, this optimization problem is known as NP-hard. In fact, we are trying

to find the solution with least number of nonzero, among all solutions for an under

determined system. However, finding the minimum l0 norm is not an easy task and

does not have a practical procedure for finding the sparsest solution since it is a

discontinuous function and we can not use normal optimization algorithms.
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In addition, it will be harder as the feature space dimension or number of training

samples increase since we need to use combinatorial search. Furthermore, noise affects

the solution because noise magnitude can significantly change the l0 norm of a vector.

Because of all those obstacles, a huge work is dedicated by researchers to find a

reasonable method for solving NP-hard problems. There are methods to obtain the

sparsest solution of the equation y = Ax without dealing with l0 norm. In this thesis,

we use l1 norm minimization to find the sparsest solution. Furthermore, we use the

smoothed l0 (SL0) algorithm which approximates the l0 by a continuous function and

uses convex optimization to obtain the optimal solution. To best of our knowledge,

it is the first work which uses the SL0 algorithm for classification and recognition.

To obtain the sparsest solution and address the computational issue, the l1 norm

optimization is introduced as:

(l1) : x̂1 = argmin‖x‖1 Subject to y = Ax (2.8)

where ‖x‖1 denotes the l1 norm of x. The optimization of this equation is not NP-

hard problem and and the solution can be found in linear time. It is proven that if

the solution of l0 is sufficiently sparse, it is identical with the solution of l1 norm [44].

In order to deal with noise, l1 minimization problem can be extended to the

following problem:

(l1) : x̂1 = argmin‖x‖1 Subject to | y −Ax |≤ ε (2.9)

where ε > 0 is a given tolerance.
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2.5 Smoothed l0 Norm (SL0) Algorithm

In order to find the sparsest solution, we use an approach to solve the system

y = Ax based on the smoothed l0 norm (SL0) [22]. This algorithm is used to obtain

sparse solutions of under determined systems for linear equations by minimizing the l0

norm. SL0 method is more efficient than the l0 and l1-norms in term of computational

complexity [22].

The l0 norm of a vector is a discontinuous function and therefore it is highly sen-

sitive to noise. In addition, combinatorial search is needed for minimizing l0 which is

time consuming. The idea of SL0 is based on the approximation of the discontinu-

ous l0 norm function using a continuous one such as Gaussian. This approximation

is performed using a parameter (σ) which determines the quality of the approxima-

tion. Once we obtain a continuous function, it is possible to use convex optimization

methods, such as LevenbergMarquardt, GaussNewton or gradient descent for mini-

mization [45].

One example for such approximations is as follows:

fσ(x) � exp(
−x2

2σ2
) (2.10)

And approximately:

fσ(x) ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if |x| � σ

0, if |x| 	 σ

Then, the idea is to minimize l0 norm, ‖x‖0, using the following function:

Fσ(x) =
r∑

i=1

fσ(xi) (2.11)



15

In recognition problems, r is the total number of training samples. Hence, it is obvious

that for small values of σ, ‖x‖0 ≈ r−Fσ(x) and to find the minimum l0 norm solution,

Fσ(x) should be maximized.

There is an important issue about the value of σ is in this method. Very small

values of σ will result in a nonsmooth Fσ(x) and many local maxima and the re-

sults will not be accurate. On the other hand, for large values of σ, the results for

maximizing the Fσ(x) will be similar to that of the l2 norm [22].

Briefly, SL0 algorithm tries to maximize Fσ(x) �
∑

i exp(−x2
i /2σ

2) for a given

value of σ subject to y = Ax. A decreasing sequence of σ is defined to improve the

performance and decrease the chances of trapping in local extrema. For the initial

value of σ, Fσ is maximized subject to y = Ax using the steepest ascent approach.

The x that maximizes Fσ will be the starting point to find x that maximizes Fσ for

the next (smaller) σ.

In steepest ascent approach, each iteration moves in the desired direction (x′ ←

x+ η∇Fσ), followed by projection to the feasible set S = {x|y = Ax} [46]:

x̂0 = argmin
x

‖x− x′‖ s.t. y = Ax (2.12)

= x′ −A†(Ax′ − y)

where A† = AT(AAT)−1 is the pseudo-inverse of A. Moreover, x is initialized by

the minimum l2 norm solution of y = Ax, that is, A†y.

SL0 algorithm as discussed in [22] has three main steps:

1. Initialization: Obtain x′
0, the solution that minimizes the l2 norm of y = Ax

using pseudo-inverse of A (A†).
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Also, choose a decreasing sequence for σ, [σ1 . . . σK ].

2. For k = 1, . . . , K:

• Initialization: x = x′
k−1

• For � = 1 . . . L (loop L times):

(a) Let, �xFσ(x) ∝ − [x1exp(−x2
1/2σ

2) ... xnexp(−x2
n/2σ

2)]T

(b) Let x← x− η�xFσ(x) (η is a small positive constant)

(c) Project x back onto the feasible set:

x← x−A†(Ax− y)

• Set x′
k = x.

3. Finally, the sparsest solution is x̂0 = x′
K

2.6 Conclusion

In this chapter, we briefly explained the concept of the sparse representation and

l0 norm minimization. In addition, l1 norm minimization and smoothed l0 norm

are discussed as we use them to obtain the sparsest solution for a system of linear

equations. We will use sparse representation and these solutions for recognition and

classification purposes in our experiments in next chapters.



CHAPTER 3

Ear Recognition and Gender Classification
based upon Sparse Representation

3.1 Overview

Due to the rich information contained in ear images, ear is becoming one of the

most important biometrics for recognition and identification. Despite its potential, the

ear recognition algorithm developed in recent years are premature for deployment in

real-world applications, preforming well only under constrained conditions employing

highly cooperative subjects. This results from the challenges associated with effects

of illumination variability and pose. We will investigate the effect of different viewing

angle on ear recognition and gender classification.

Furthermore, automatic gender identification is useful for applications such as

security surveillance [47] and gathering statistics about customers in places such as

movie theaters, building entrances and restaurants [48]. Gender classification is per-

formed based on human characteristics such as facial features [49], [50], voice [51]

and body movement or gait [52]. Although human face provides information about

the gender and age, it is not robust because it is affected by emotions and facial

17
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expressions [53]. However, the appearance of the ear is relatively constant and it has

distinctive shape properties.

Among the set of physiological traits for viable biometric use, the ear possesses

certain inherent characteristics, such as its stable structure and size, that makes its

use advantageous [54]. Although researchers, in recent years, worked on ear biomet-

rics [55], [53], [56], [57], [58], it is the first time to use ear images for gender classi-

fication using sparse representation and our results show that it is feasible for this

purpose [24].

In this chapter we propose a novel approach for gender classification using ear

images and sparse representation obtained with the SL0 algorithm. Experiments and

results are presented that include the effect of changing the viewing angle and we also

use majority voting as a new method for making the decision in sparse representation.

Our experiments show that the method is robust for the change of the viewing angle

and the results using majority voting are better than results based on other methods

based on sparse representation.

This chapter is organized as follows: Section II presents related work in ear bio-

metrics, sparse representation and gender classification. In Section III, we present a

brief mathematical explanation of the sparse representation concept and the proposed

method to obtain the sparsest solution. Section IV provides details of the feature ex-

traction and dimensionality reduction. Section V presents experimental results to

demonstrate the performance of the proposed method. Conclusions and future re-

search directions are discussed in Section VI.
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3.2 Related Work

Over the past decades, biometrics technologies, such as face ore fingerprint recog-

nition, have been used in different applications including security, psychology and

human-computer interaction. However, ear biometrics is a relatively new area of re-

search. Same as face, ear biometric is passive, meaning an individual can be scanned

and their identity confirmed, without the subject actively engaging the device, as is

required for fingerprints. In addition, ears may be much more reliable than a face,

which is prone to erroneous identification because of ability of a subject to change

their facial expression or otherwise manipulate their visage. On the other hand, in

many social interactions, it is important to recognize the gender. Although, there

are several studies in gender classification based on facial images, to the best of our

knowledge, the proposed approach. In this section, we review the literature on gender

classification, ear biometrics and classification based upon sparse representation.

Most of the published papers in gender classification are based on facial images, yet

there are some studies based on voice [51] and Gait [52]. Moghaddam et al. [59] used

Support Vector Machines (SVMs) for gender classification from facial images. They

used low resolution thumbnail face images (21 × 12 pixels) obtained from FERET1

database. Wu et. al. [60] presented a real time gender classification system using

Look-Up-Table Adaboost algorithm. They extracted demographic information from

human faces. Gollomb et al. [3] developed a neural network based gender identification

system [49]. They used face images with resolution of 30x30 pixels from 45 males

and 45 females to train a fully connected two-layer neural network, SEXNET. Also,

1http://www.nist.gov/humanid/colorferet/home.html
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Cottrell and Metcalfe [61] used neural networks for the classification of emotions

and gender from facial images. Gutta and Wechsler [62] used hybrid classifiers for

gender identification from facial images. The authors proposed a hybrid approach

that consists of an ensemble of RBF neural networks and inductive decision trees.

Yu et al. [52] presented a study and analysis of gender classification based on human

gait. They also used psychological experiments to improve classification accuracy.

They used model-based gait features such as height, frequency and angle between the

thighs. Gnanasivam et al. [63] compared several classifiers such as Bayes classifier, K-

Nearest Neighbour and neural network for gender classification using ear images and

the best result was obtained using KNN. In their experiments, they used their own

data which is not publicity available. Because of not enough information about their

method, specially preprocessing method, it is not possible to compare our results with

their method. Instead, we compare our method based on sparse representation with

KNN classifier.

Using ear data is relatively a new area in identification and recognition. One of the

first approaches in ear biometrics was proposed by Burge and Burger [40]. They used

graph-matching techniques on a Voronoi diagram of curve segments extracted from

a Canny edge map. Yan and Bowyer [64] proposed two recognition systems based on

PCA (eigen-ear) and ICP matching. They used manually labelled ear landmarks to

crop the ear region in each range image. Then, located landmarks on the Triangular

Fossa and Incisure Intertragica were used for alignment of the ear images. Also, land-

marks were used to align the range images for the ICP-based method. Recently, Zhou

et al. [65] proposed a recognition system using local and global features, i.e., SPHIS

for local key point representation and fixed voxelization for global representation.
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Also, Bustard and Nixon [66] proposed an approach which focuses on ear images,

where the ear region is treated as a planar surface that is registered to a gallery using

a homography transform. In fact, the ear is registered to a gallery using a homography

transform calculated using scale-invariant feature-transform (SIFT). They claim that

the feature matches reduce the gallery size and enable a precise ranking using a simple

distance algorithm. Kumar et al. [43] used local Radon transform for representing the

shape of the ear. Also, they investigated the effectiveness of local curvature encoding

using Hessian based feature representation. Patal et al. [33] proposed a face recogni-

tion algorithm based on dictionary learning and sparse representation. A dictionary

is learned for each class based on given training samples. The representation error is

minimized using sparseness constraint. The test sample is projected onto the span of

the training data in each learned dictionary.

The main idea of using sparse representation for recognition is to represent the

test data as a linear combination of training data. The set of coefficients of the linear

representation is called coefficient vector. If we assume that there are many subjects

in database, the test data will only be related to one of the subjects. Therefore,

ideally the coefficient vector should be sparse and it is important to find the sparsest

solution. In this chapter , we use SL0 algorithm to find the sparsest solution for

classification. SL0 is a fast algorithm for over complete sparse decomposition. In fact,

this method finds sparse solutions for under determined systems of linear equations.

Previous methods usually solve sparse problems by minimizing l1 norm using linear

programming (LP) algorithms.
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Figure 3.1: System Block Diagram: Gender Classification Using Ear Images

3.3 Proposed Algorithm

In this chapter, we present a system for gender classification from 2-D ear images

using sparse representation. Fig. 7.1 shows the block diagram of the proposed system.

During training, training samples are used to build a dictionary. Some steps are

common between the training and the classification procedures such as ear detection,

feature extraction and feature dimension reduction.

Following is a brief explanation of the different steps:

• Ear Detection: given a profile view image, the ear part of the image is localized

and a rectangular boundary around the ear region is output using our method

described in [57]. A few samples of detected ears are shown in Fig. 3.2.

• Feature Extraction: for each detected ear region, a feature vector is extracted

using Gabor wavelets.
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Figure 3.2: Ear Samples frome UND database: Up) Males, Down) Females

• Feature dimensionality reduction: in order to decrease the computational com-

plexity, the dimensionality of the feature vector is reduced to a lower dimension

using Principal Component Analysis (PCA).

• Sparse representation: the basic idea is to represent a test image as a sparse

linear combination of the entire training set. Sparse representation will be dis-

cussed in the next section.

• Majority Voting: the coefficients obtained using sparse representation are used

to perform gender classification. In this part, instead of using the conventional

classification using obtained coefficients (sparsest solution), we proposed a new

method for classification based on majority voting.



24

3.4 Gabor Wavelets

The Gabor wavelets (kernels) with orientation μ and scale ν are defined as [1]

ψμ,ν =
‖ kμ,ν ‖2

s2
e(

−‖kμ,ν‖2‖z‖2
2s2

)
[
eikμ,νz − e−s2/2

]
(3.1)

where z = (x, y) is the pixel position, and the wave vector kμ,ν is defined as

kμ,ν = kνe
iφμ with kν = kmax/f

ν and Φμ = πμ/8. kmax is the maximum frequency,

and f is the spacing factor between kernels in the frequency domain. The ratio of

the Gaussian window width to wavelength is determined by s. Considering Eq. 3.1,

the Gabor kernels can be generated from one wavelet, i.e., the mother wavelet, by

scaling and rotation via the wave vector kμ,ν [67]. In this work, we used five scales,

ν ∈ 0, ..., 4 and eight orientations μ ∈ 0, ..., 7. We also used s = 2π, kmax = π/2 and

f =
√
2.

3.4.1 Feature Extraction using Gabor Wavelets

Image features are extracted using Gabor wavelets by the convolution of a 2-D

image with a family of Gabor wavelets as follows [67]:

Cμ,ν(z) = I(z) ∗ ψμ,ν(z) (3.2)

Where z = (x, y), I(z) is the 2-D image, and Cμ,ν(z) is the convolution output at

orientation μ and scale ν.

The feature vector ϕ is constructed out of the Cμ,ν(z) by concatenating its rows

(or columns). Let Cβ
μ,ν be the normalized and down sampled (by a constant value β)

vectors constructed from Cμ,ν(z). The Gabor feature vector ϕ is as follows:

ϕ =
(
Cβt

0,0 Cβt

0,1 ... Cβt

4,7

)t

(3.3)
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Figure 3.3: The Uniform Down-Sampling of Gabor wavelets [1]

where t is the transpose operator.

ϕ is used as the feature vector in the dictionary matrix used for the sparse rep-

resentation. Uniform down-sampling by a constant value β to select Gabor feature

vector ϕ is shown in Fig. 3.3 [1]. Red circles show the selected features. Also, one

example of extracted features of one image for 8 orientations and 5 spatial frequencies

is shown in Fig. 3.4.

3.5 Experiments and Results

In this section, we describe the experiments that we performed in order to evalu-

ate the proposed approach and present the results. We also present comparisons of

our classification approach with the well known NN and NS classifiers. We present

experiments for recognition and gender classification using two different databases as

described in the following sections.
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Figure 3.4: Gabor Features for 5 scales and 8 orientations

3.5.1 Databases

Experiments are performed on two different data sets. The first data set is the

University of Notre Dame (UND) data set collection J2 for 415 subjects which contains

profile face images. A few sample ear images for both male and female subjects are

shown in Fig. 3.2. The ear region is extracted in each image automatically using

our algorithm in [57] which uses a shape based feature set, termed the Histogram of

Indexed Shapes (HIS), to localize a rectangular region that contains the ear region.

The second data set is the WVU data set, which consists of video sequences captured

by a rotating camera around the head of different subjects.

3.5.2 Ear Recognition Experiments

The University of Notre Dame (UND) data set is used to validate the proposed

method. A shape-based feature set, termed the Histograms of Indexed Shapes (HIS)

is used to localize a rectangular region that contains the ear [65], [54]. As previously
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Figure 3.5: Ear Recognition Rate on UND data set. A comparison of classifiers for
different feature dimension

stated, in sparse classification, the training samples are used to build the dictionary.

In this database, some subjects only have a few images (e.g. 2 or 4 images), which

is not suitable for sparse classification. Therefore, we selected 39 subjects that have

more than 16 images . We used an equal number of images (10 images per subject)

from each subject for training and the remaining images were used for testing. The

results are shown in Fig. 3.5. The obtained results using proposed method (SL0)

show that our method improves the overall recognition accuracy and just in one case

(for 128 feature dimension) the recognition rate obtained by SRC is slightly better

than results provided by our method.

In addition, The proposed method is compared to the state-of-the-art ear recog-

nition algorithm employing sparse representation. In Table 3.1, the results based on
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Table 3.1: Comparison Between l1-Norm [3] and SL0

Method TR4V2 TR3V3
l1-Norm [3] 96.88% 91.67%

SL0 98.46% 93.66%

the SL0 algorithm are compared with the results of [3] that were obtained for the

same database. Two protocols are proposed in [3] to evaluate the l1-norm algorithm.

The first protocol, termed TR4V2, uses 4 images for training and 2 images for test-

ing. The second protocol, termed TR3V3, uses 3 images for training and 3 images

for testing. In both protocols, the recognition rates of the SL0 algorithm are higher

than those of the l1-norm algorithm. It is obvious that the amount of training data is

important since the testing data is represented by a linear combination of the training

data. Hence, it is expected that the results will improve as the amount of training

data increases.

3.5.3 Gender Classification Experiments

To evaluate our proposed method for the purpose of gender classification, two

experiments were conducted on the UND and WVU data sets. In the experiments

on WVU data set, the effect of different viewing angles on gender recognition is

investigated. To our best knowledge, the effect of different viewing angles on ear

classification was not studied before.

3.5.3.1 The First Experiment Using UND data set

The first gender classification experiment was performed on the UND data set.

In this database, there are images for 241 male subjects and 174 female subjects.
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Figure 3.6: A few samples of extracted frames for one subject for different viewing
angles

As previously stated, in sparse classification, the training samples are used to build

a dictionary, which is used during the recognition to represent a test sample as a

linear combination of the training data samples. Since we are using majority voting

for making a decision between the two categories, the number of training samples

for males and females should be equal. However, in the UND data set, the number

of images per subject are different. For example, for subject number one, who is a

male, there are 22 images but for subject number eight who is a female, there are

12 images. We used all the images for each subject either for training or for testing.

The reason is to avoid using test images for subjects that were used for training in

order to make sure that the results are not biased. Therefore, in order to have equal

number of training images for males and for females, the number of male and female

subjects used for training were not the same. In this experiment, we have 60-40 split

of the data set for training and testing.
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Initially, the ear region is localized using our method described in [57]. Actually,

a rectangular boundary around the ear region is extracted where the size of this

boundary varies from subject to subject. Then ear regions are normalized such that

all the rectangular boundaries have the size 140× 90. In the feature extraction step,

Gabor wavelets were extracted. Also, a uniform down-sampling by a constant value β

was used to obtain a Gabor feature vector ϕ as shown by the red circles in Fig. 3.3 [1].

Gabor wavelets are extracted for 8 orientations and 5 spatial frequencies; one example

of extracted features for one image is shown in Fig. 3.4. Given the size of the ear

regions, 140×90 pixels, the Gabor wavelets coefficients are 140×90×8×5 = 504000.

This feature vector is uniformly down sampled by a factor of 64 and a feature vector

of size 7875 is obtained. Finally, using PCA, the number of features is reduced to 16,

32, 64, 128, 256 and 512. For each of these different feature sizes, the classification is

performed using sparse representation.

In the proposed approach, for each test data, the sparsest coefficient vector x̂0

was obtained using the SL0 algorithm. Majority voting was then used to recognize

the gender of the test subject. Fig. 3.7 shows the classification rates for the different

feature dimensions: 16, 32, 64, 128, 256 and 512. In the same figure, results based

on SL0 and majority voting are compared with Sparse Representation Classification

(SRC), Adaboost, Nearest neighbour (NN) and Nearest Subspace (NS). For example,

for feature size 512, the classification rates are 89.5, 88.5, 83.6, 64.1 and 59.2 for our

method based on SL0, SRC, NN, Adaboost and NS, respectively. It is clear from the

figure that the results based on sparse representation are far more robust than the

results obtained from the other classifiers.
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Figure 3.7: classification Rate on UND data set. A comparison of classifiers for
different feature dimension

3.5.3.2 The Second Experiment Using WVU data set

The goal of this experiment was to examine the effect of the pose variations on the

accuracy of the gender classification algorithm. For this purpose, we conducted two

parts in this experiments. The WVU data set contains one video sequence for each

subject. The video sequences start from the left profile of each subject (0 degrees) and

terminate at the right profile (180 degrees) [68]. The length of each video sequence

is about two minutes. A few subjects in the data set have eyeglass, earrings or part

of the ear is occluded by hair. There are three subjects that have their ear fully

occluded and these subjects were not used in the experiment. In the first part of the

experiment, we perform an experiment using frames from different viewing angles for
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training. However, in the second part, only zero degree frames are used for training

and the rest of the data for testing.

In the first part of the experiment, 45 frames, which approximately cover the

range of the camera positions from 0 to 44 degrees (i.e., one frame for each degree),

are extracted. Fig. 6.3 shows a few samples from a video sequence for one of the

subjects. After extracting the frames, the ear region is detected and a bounding

box around the ear is extracted. The ear detection is performed automatically based

on our algorithm in [65]. Since the sizes of the extracted bounding boxes vary, we

normalized the size to 120x80. The WVU database contains video clips for 402

subjects where 57 subjects are females and the rest are males. Since our algorithm

requires an equal number of images in each class, all the female subjects (57 subjects)

were used and 57 male subjects were chosen randomly. To build the dictionary, all

the images for 34 male subjects and 34 female subjects were used. This means that

all the images for one subject are used either for the training or testing and there

is no overlap between the training and the test data. For each image, the feature

vector is extracted using Gabor wavelets and is reduced in size to 16, 32, 64, 128,

256 and 512 using PCA. For instance, the size of the dictionary for feature vectors

of size 32 is 32x3060 (3060 = 45 × 68, where 68 is the number of subjects used

for the training, 34 male and 34 female subjects, and 45 images were used for each

subject). The classification rates for the different feature vector sizes are shown in

Fig. 3.8. It is obvious that as the number of features increases, the classification rate

increases as well. However, the complexity increases exponentially. In Figures 3.9

and 3.10 the classification rates for every test subject (male or female) are shown.

For instance, in Fig. 3.9, all the images of the first test subject are correctly classified
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Figure 3.8: classification Rate for WVU database

as male. However, for subject 4, the classification rate is 91.11% which indicates 41

images out of total 45 images for this subject are classified as male and 4 images are

wrongly classified as female. Furthermore, for the second test subject, in Fig. 3.10,

the classification rate is close to zero which indicates that for this subject all the

images are wrongly classified as male. In addition, to analyze the effect of the change

in the viewing angle on the classification rate, the results of classification for different

angles are observed. As mentioned, for each subject, there are 45 images associated

to the different degrees from 0 to 44. In Fig. 3.11 the classification rates for the

viewing angles from 0 degree to 44 degrees are shown. For example, the figure shows

that for a viewing angle of 5 degrees, the classification rate is around 91%. As can

be seen in Fig. 3.11, the classification rate is between 85% and 96%, which indicates

that gender classification from different viewing angles is reliable.
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Figure 3.9: Male Subjects classification Rate

In the second part, the experiment is performed again on the WVU data set.

Frame extraction and ear detection are the same as in the previous part. In this ex-

periment, only extracted frames at zero degree are used for training and the extracted

frames for subjects that were not used for the training are used for testing. Here,

we use 34 female subjects and 34 male subjects (randomly chosen) and zero degree

frames of the 68 subjects are used for training. On the other hand, the extracted

frames from the rest of the subjects (from 0 degree to 44 degree) are used for testing.

Fig. 3.12 and Fig. 3.13 show the classification rates for male and female subjects.

The classification rate is 89.08% for male subjects and 84. 54% for female subjects.

Actually, the recognition rate for female subjects is less as the ear part of female

subjects is more occluded by hair or earrings which can affect the classification rate.

In addition, in Fig. 3.14 the classification rates for different viewing angles are shown.
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Figure 3.10: Female Subjects classification Rate

It is noticeable that as the difference in the viewing angle increases, the classification

rate decreases. However, the classification rate is at least 81% which indicate that

our proposed method has reliable gender classification performance from ear data for

different viewing angles.

3.6 Conclusion

In this chapter, we presented a fully automated system for ear recognition and

gender classification using sparse representation. The proposed method was evaluated

on two data sets. The first experiment is performed on the UND collection J ear data

set. Features were extracted using Gabor wavelets and a dictionary was constructed
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Figure 3.11: Classification Rate For Different Viewing Angle

using the extracted features from training subjects. The rest of the data set was

used for testing. When 128 features were used, a classification rate of 89.49% was

obtained using the SL0 algorithm for classification which is far better than other

classifiers such as SRC, NN or NS. In the second experiment, the WVU data set,

which contains a video sequence for each subject, was used. The video sequence

starts from the left profile of the face and terminates at the right profile. In the first

part of the experiment, 45 frames were extracted from 0 degree to 44 degrees for each

subject and 60% of the subjects were used for training to build the dictionary. The

rest of the subjects were used for testing and the best classification rate obtained

by the proposed method is around 92%. In the second part of the experiment, only

zero degree frames extracted from the training set were used for training. The test

frames was extracted from video clips of other subjects for all the 45 degrees. These
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Figure 3.12: Male Subjects Classification Rate (zero degree frames are used for train-
ing)

results show that there is a graceful degradation of the results with the increase in

the difference of the viewing angle. The obtained results using the proposed method

were far more robust than the results obtained from the other classifiers that were

used for comparison. In the future, we plan to fuse facial and ear features for the

purpose of gender classification.
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Figure 3.13: Female Subjects Classification Rate (zero degree frames are used for
training)
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used for training)



CHAPTER 4

Gender Classification Using Facial Images
and Basis Pursuit

4.1 Overview

Gender classification is an important task in social activities and communications.

In fact, automatically identifying gender is useful for many applications, e.g. security

surveillance [47] and statistics about customers in places such as movie theaters,

building entrances and restaurants [48]. Automatic gender classification is performed

based on facial features [49], voice [51], body movement or gait [52].

Most of the published work in gender classification is based on facial images.

Moghaddam et al. [59] used Support Vector Machines (SVMs) for gender classification

from facial images. They used low resolution thumbnail face images (21× 12 pixels).

Wu et al. [60] presented a real time gender classification system using a Look-Up-Table

Adaboost algorithm. They extracted demographic information from human faces.

Gollomb et al. [49] developed a neural network based gender identification system.

They used face images with resolution of 30x30 pixels from 45 males and 45 females to

train a fully connected two-layer neural network, SEXNET. Cottrell and Metcalfe [61]

used neural networks for face emotion and gender classification from facial images.

40
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Gutta and Wechsler [62] used hybrid classifiers for gender identification from facial

images. The authors proposed a hybrid approach that consists of an ensemble of

RBF neural networks and inductive decision trees. Yu et al. [52] presented a study of

gender classification based on human gait. They used model-based gait features such

as height, frequency and angle between the thighs. Face-based gender classification

is still an atractive research area and there is room for developing novel algorithms

that are more roubst, more accurate and fast.

In this chapter, we present a gender classification system based on 2-D facial

images and sparse representation. This chapter is organized as follows: In Section

II, we present a brief mathematical explanation of the sparse representation concept

and the proposed method based on basis pursuit to obtain the sparsest solution.

Section III presents experimental results that demonstrate the performance of the

proposed method in terms of recognition. Conclusions and future research directions

are discussed in Section IV.

4.2 Classification based on Sparse Representation

Underdetermined systems appear in different important areas such as signal pro-

cessing, statistics, pattern recognition and image processing. Sparse representation is

a relatively new approach to solve underdetermind systems. In this section, we briefly

explain the concept of sparse representation based on Basis Pursuit. The proposed

approach for finding the sparsest solution based on basis pursuit is described, and

Gabor wavelets, which we used for extracting the feature vectors, are discussed.
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4.2.1 Sparse Solution Based on Basis Pursuit

Basis pursuit was introduced in the 1970s, and then studied mathematically in the

1990s by Chen and Donoho [69]. To solve the underdetermined system of equations

y = Ax, l2 minimization is easy to compute, but not useful in recognition. In fact,

for recognition purposes, minimizing the l0 norm provides the best solution since the

test data is related to only one of the subjects in the training set. In fact, most

of the components of x should be zero or close to zero. However, the l0 norm is

not a continous function. Since l0 norm minimization is not a convex optimization

problem, it is not easy to obtaine the solution. On the other hand, we can use l1

norm minization, which is convex, to find x. In the l1 norm minimization, a cost is

assigned to each atom that we use in our representation. Actually, there is no charge

for the norm when it gives a zero coefficient. The BP finds the best solution of x by

minimizing the l1 norm of the x as follows:

x̂1 = argmin ‖x‖1 subject to y = Ax (4.1)

Where ‖x‖1 is the l1 norm. To find x̂1, since the nonzero coefficients correspond to

columns of the dictionary, it is possible to use the indices of the nonzero components

of x̂1 to identify the columns of A that are necessary to represent the test image. l1

norm assigns a cost to each atom that is used in representation. For example, the

norm will not be penalized when it gives a zero coefficient, but it should be charged

proportionally for small and large coefficients.

Since ‖x‖1 = |x1|+ ...+ |xn| and we can rewrite equation 7.2 as:

minimize‖x‖1 = |x1|+ ...+ |xn| subject to y = Ax (4.2)
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Because |x1|+ ...+ |xn| is a nonlinear function, the optimization problem can not be

solved using linear programming methods. To make this function linear, nonlinearities

should change to constraints by adding new variables as follow:

minimize t1 + t2 + ....+ tn subject to (4.3)

|x1| ≤ t1, .... , |xn| ≤ tn and y = Ax

Where, t1, ..., tn are non-negative constants. In this formulation, the objective func-

tion is linear and it is possible to solve this problem using linear programming.

4.2.2 Using Sparse Representation for Classification

For a test data, y, belonging to the ith class, it is assumed that the non-zero ele-

ments of x̂1 will correspond to the training data samples from the ith class. However,

due to noise and representation errors, there will be extraneous non-zero elements

corresponding to training samples from other classes.

In [20], they presented an approach for the decision making step based upon

the obtained x̂1 by computing the error between y, the original data, and ŷi, the

approximation obtained through the sparse representation. For each class i and x ∈

Rn, vector δi(x) ∈ Rn represents the coefficients that are associated with class i.

Using this definition, approximated test data ŷi is given as:

ŷi = Aδi(x̂1) (4.4)

Recognition was performed by assigning the test data to the class that minimizes the

residual between y and ŷi as follows:

min︸︷︷︸
i

ri(y) = ‖y −Aδi(x̂1)‖2 (4.5)
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where ri(y) is the residual distance for class i. This signifies that the classification is

performed based on the best approximation and least error [20].

Here, we propose a new approach to perform classification using x̂1. In gender

classification, there are only two classes and the dictionary contains training face

images for males and females as representatives of these two classes. The obtained

elements of x̂1 are the coefficients associated with each training face image and we can

divide x̂1 into two vectors, x1 and x2, where x1 contains the coefficients associated

with males and x2 contains the coefficients associated with females. x̂1 can be written

as follows:

x̂1 =

⎡
⎢⎣ x1

x2

⎤
⎥⎦

The length of the x̂1 is m and the number of training samples for males and females

are equal. Hence, the length of x1 and the length of x2 is m/2.

Let xmax be the maximum value of the x̂1 elements (xmax = max(x̂1)). Then, a

threshold xmax/τ , where (τ ≥ 1) is defined. The elements in x1 and x2 whose values

are more than the threshold are counted. The classification is performed based on

the majority vote of the coefficients.

4.3 Gabor Wavelets

The Gabor filters (kernels) with orientation μ and scale ν are defined as [1]

ψμ,ν =
‖ kμ,ν ‖2

σ2
e(

−‖kμ,ν‖2‖z‖2
2σ2 )

[
eikμ,νz − e−σ2/2

]
(4.6)

where z = (x, y) is the pixel position, and the wave vector kμ,ν is defined as

kμ,ν = kνe
iφμ with kν = kmax/f

ν and Φμ = πμ/8. kmax is the maximum frequency,
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and f is the spacing factor between kernels in the frequency domain. The ratio of

the Gaussian window width to wavelength is determined by σ. Considering Eq. 4.6,

the Gabor kernels can be generated from one wavelet, i.e., the mother wavelet, by

scaling and rotation via the wave vector kμ,ν [67]. In this work, we used five scales,

ν ∈ {0, ..., 4} and eight orientations μ ∈ {0, ..., 7}. We also used σ = 2π, kmax = π/2

and f =
√
2.

4.4 Experiments and Results

The FERET database [70] is used to validate the proposed method. Images are

frontal faces at a resolution of 256x384 with 256 gray levels. All the images are pre-

processed before applying the algorithm. First, the automatic eye-detection method

is applied based on the [71] and the distance, d, between the 2 eye corners is mea-

sured. Then, the middle point between the 2 eye corners is found and the image

is cropped by the size of 2d × 2d. Then all images are resized to 128x128. A few

sample face images for both male and female subjects are shown in Fig. 4.1. In this

database, there are 250 male subjects and 250 female subjects. As previously stated,

in sparse classification, the training samples are used to build a dictionary, which is

used during the classification to represent a test sample as a linear combination of the

training samples. Since we are using majority voting for making a decision between

the two categories, the number of training samples for males and females should be

equal. In addition, to compare our results with other methods, especially [72], four

experiments are conducted with different number of subjects used for training in each

experiment, sizes of: 50, 100, 150 and 200 subjects were used for training. In each
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Figure 4.1: Sample images for both males and females in FERET database

experiment, the remaining subjects are used for testing. For instance, when using

200 subjects for training (100 male subjects and 100 female subjects), the other 300

subjects are used for testing.

In the feature extraction step, Gabor wavelets are extracted for 8 orientations and

5 spatial frequencies. Finally, using PCA, the number of features used to represent

each image is reduced to 128. In the proposed approach, for each test data, the

sparsest coefficient vector x̂1 is obtained based on the basis pursuit. Majority voting

is then used to recognize the gender of the test subject. We provide a comparison of

the experimental results with other gender classification systems applied to the same

dataset. Table. 4.1 shows the classification rates for 4 different training set sizes. The

results of our proposed method (PCA + BP) are compared with the results of the

methods proposed by Jain et al. [72], in which the authors evaluated their method

on the FERET database. They used Independent Component Analysis (ICA) to

represent each image as feature vector in a low dimensional subspace. In addition,

they used different classifiers such as cosine classifier (COS), linear discriminant clas-

sifier (LDA) and the support vector machine (SVM). The best result reported in [72]
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Table 4.1: Performance comparison to other gender classification systems based on
facial images

Training Set Size COS LDA SVM SRC PCA+BP (Proposed Method)

50 60.67% 64.67% 68.30% 68.88% 68.88%
100 71.67% 73.67% 76.00% 76.00% 76.25%
150 80.33% 83.00% 86.67% 86.85% 88.57%
200 85.33% 93.33% 95.67% 96.33% 97.66%

is 95.67% accuracy using SVM with ICA. Furthermore, the results for conventional

sparse representation based classification (SRC) [20] are reported in Table. 4.1 which

show our modification was helpful in gender recognition. The experimental results

in this chapter indicate that our proposed method using sparse representation and

PCA obtained higher performance of correct classification rate on the same data set.

To our best knowledge, better results for gender classification on FERET database

is not reported since 2005. Moreover, in [73], authors used 661 images from FERET

database, for 248 subjects. The best obtained result for gender classification in that

paper is 90% for feature dimension 11,520. However, we obtained a classification rate

of 97% for 512 feature dimension and for 500 subjects.

4.5 Conclusion

In this chapter, we presented a method for gender classification, from facial im-

ages, using sparse representation. Basis pursuit method was used to formulate the

problem in order to find the sparsest solution. The experiments were conducted on

the FERET data set containing 500 subjects (250 male and 250 female subjects). Fea-



48

tures were extracted using Gabor wavelets, and a dictionary was constructed based

on the extracted features from a training set. The rest of the data set was used for

testing. We compared the proposed method with previous methods that used the

same data set, performance of our the presented method is better than the previous

reported methods.



CHAPTER 5

Classification based on Weighted Sparse
Representation using Smoothed l0 Norm
with Non-negative Coefficients

5.1 Overview

Recently, the sparse representation based classification (SRC) has been success-

fully used in face recognition. In practical applications, robust face recognition is a

challenging task due to the significant variations that can be encountered in face

images. Wright et. al. [20] proposed a face recognition algorithm, based on sparse

representation and l1 norm minimization, which is robust towards variations in light-

ing conditions, facial expressions and partial occlusions. In fact, the sparse non-zero

coefficients should concentrate on the training samples with the same class label as

the query sample. On the other hand, due to the rich information contained in ear im-

ages, the ear is becoming an important biometrics for recognition and identification.

In this chapter, we use the smoothed l0 norm algorithm with non-negative constraints

on the coefficient vector. In addition, we obtain weights, using mutual information,

for each training sample. Therefore, the atoms in the dictionary are not treated uni-

formly and the use of weights helps to narrow the search space for the coefficient

49



50

vector. Actually, these weights help in reducing the chances of the algorithm to be

trapped in local extremums because it assigns a small weight to irrelevant subjects.

The proposed method for classification and recognition, Weighted Sparse Representa-

tion using Smoothed l0 Norm with Non-negative Coefficients, is described in the next

section. To the best of our knowledge, our proposed method is the first to use mutual

information for obtaining weights and to use SL0 with weights and non-negative con-

straints. To evaluate the proposed method, several experiments are conducted on face

and ear biometrics. The obtained results for face and ear recognition using standard

databases show that the proposed algorithm has accurate and robust performance.

5.2 The Proposed Method

In this section, we provide a brief overview of Mutual Information and we detail

our proposed method, Classification based on Weighted Sparse Representation using

Smoothed l0 Norm with Non-negative Coefficients.

5.2.1 Mutual Information

In the proposed method, the mutual information between the query sample and

each of the training samples is calculated and the obtained results are used as weights

of the atoms in our proposed method. In fact, the query sample is related to one of

the training classes and the mutual information between the query sample and the

training samples from the same class are expected to be high. The issue that we

are trying to deal with is that the sparse representation may reconstruct the query

sample using training images which are not from the class of the query sample and as
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a consequence might lead to wrong classification. Adding useful information between

the query sample and each of the training samples can reduce the search space and

speed up the convergence to the optimal solution.

In information theory, mutual information (MI) can be applied for evaluating any

arbitrary dependence between random variables such as signals and images. Actually,

the MI between two random variables A and B is a measure of the amount of infor-

mation between them. For example, if A and B are independent, the MI will be close

to zero, whereas if both variables are closely related, the MI value will be large. The

MI of two random variables A and B is defined as:

MI(A,B) = H(A)−H(A|B) = H(A) +H(B)−H(A,B) (5.1)

whereH(A) andH(B) are the entropies for variablesA andB, respectively.H(A|B)

is the conditional entropy and H(A,B) is the joint entropy of A and B. The MI

formulation based on the probability functions is:

MI(A,B) = E{log pA,B(A,B)

pA(A)pB(B)
}

=

∫ ∫
pA,B(A,B)log

pA,B(A,B)

pA(A)pB(B)
(5.2)

where E{.} is the expectation, pA(A) and pB(B) are the marginal probability dis-

tributions, and pA,B(A,B) is the joint probability distribution.

We define the diagonal weight matrix Wi, which contains the weights between

the query and the training samples of subject i, as follows:

wi
j,j = 1/MI(Iy, Ix

i
j) (5.3)
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Wi =

⎡
⎢⎢⎢⎢⎢⎣
w1

1,1 · · · 0

...
. . .

...

0 · · · wi
ni,ni

⎤
⎥⎥⎥⎥⎥⎦ (5.4)

where wi
j,j is the jth diagonal element of the matrix Wi, Iy is the query image and

the Ix
i
j is the jth training image from subject i. The weight matrix W , for all the

training samples, is defined as follow:

W =

⎡
⎢⎢⎢⎢⎢⎣
W1 · · · 0

...
. . .

...

0 · · · Wk

⎤
⎥⎥⎥⎥⎥⎦ (5.5)

where k is the number of subjects.

5.2.2 The Proposed Algorithm

In this section, the proposed method, weighted sparse representation using SL0

with non-negative coefficients, is described. The following l0 norm minimization prob-

lem is considered:

(NW l0) : x̂0 = argmin
x

‖Wx‖0

Subject to y = Axand x ≥ 0 (5.6)

where W is the weight matrix obtained using mutual information. As mentioned

before, the obtained coefficients can be used to reconstruct the query from the training
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samples. With the constraint that the coefficients, i.e., components of X, are either

0 or positive, the coefficients represent the contribution of the individual samples

in constructing the query. Without this constraint on coefficients, the query sam-

ple can be reconstructed by adding and subtracting contributions from the training

samples. This is contradictory to the intuitive notion of combining parts to form a

whole [74], [19]. In fact, using non-negative coefficients can provide insight into the

similarity between the query sample and each of the training samples. Thus, the sam-

ples associated with the nonzero coefficients should have more or less similar features

of the test sample.

On the other hand, in sparse representation, the query sample may be recon-

structed by training samples which are not in the same class and thus produce not

accurate classification results. We use weights in our proposed method to improve

sparse representation results. Information about the similarity between the query

sample and each training sample can be useful into finding more discriminative and

accurate coefficient vector. Hence, using accurate coefficient vector, the reconstruc-

tion of query sample will be more precise and the recognition will be improved. In

fact, if the similarity between the query sample and a training sample is low which

means the query sample and the training sample probably are not related to the same

subject (the weight will be high, w = 1/MI(IX , IY )), the corresponding coefficient

will be small (this training sample will not be effective in reconstruction). Basically,

in SRC, all the atoms in the dictionary are treated uniformly and larger coefficients

will penalized more than smaller one in optimization process. Hence, the weights are

adopted to counteract the influence of the magnitude of coefficients on the penalty
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function. In this method, training samples which are more similar to query sample

are distinguished using mutual information.

5.3 Feature Extraction and Dimensionality Reduc-

tion

One of the transform based methods for feature extraction is the Gabor Wavelets

which is extensively used in many applications of computer vision, including biomet-

rics. A 2-D Gabor wavelet representation is presented in [75] for the classification of

facial images. In this section, we provide a brief explanation of Gabor wavelets and its

formulation. Furthermore, we use Histogram of Oriented Gradients (HOG) descriptor

for ear recognition, which was first proposed and efficiently used for object detection

and image retrieval [76], especially when illumination variations are present. Actually,

it is considered as one of the best features for the dense encoding of 2D image re-

gions, and has been successfully used in pedestrian detection and object classification

tasks [77].

5.3.1 Histogram of Oriented Gradients

We use the HOG feature for ear recognition. It was demonstrated that this fea-

ture achieves excellent performance in image retrieval [76] and 2D object detection

tasks [77]. The HOG feature descriptor is in fact a dense version of the SIFT feature
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• Dictionary: Constructing the over complete dictio-
nary (A) using extracted features from the training
samples.

• Weights: Obtain the weights matrix, W, using mutual
information between the query sample and each of the
training samples.

• Initialization:

Obtain x′
0, the solution that minimizes the l2 norm

of y = Ax using pseudo-inverse of A (A†), x′
0 =

AT(AAT)−1 .

Select a decreasing sequence for σ, [σ1 . . . σK ].

• Iteration: For k = 1, . . . ,K:
1. Let σ = σk.

2. Find x by maximizing the function Fσ(x) =∑
i exp(−x2

i /2σ
2) on the feasible set S =

{x|y = Ax} using L iterations of the steepest
ascent algorithm:

– Initialization: x = x′
k−1.

–For � = 1 . . . L (loop L times):
(a)Let, �xFσ(x) ∝

−[x1exp(−x2
1/2σ

2) ... xnexp(−x2
n/2σ

2)]T

(b)Let x← x− ηW ×�xFσ(x)− λx

(η and λ are small positive constants).

(c)Project x back onto the feasible set:

x← x−A†(Ax− y)

3. Set x′
k = x.

• l0 Norm Solution:, the sparsest solution is x̂0 = x′
K .

• Recognition: Finding the smallest residual

min︸︷︷︸
i

ri(y) = ‖y −Aδi(x̂0)‖2

Figure 5.1: Our Proposed Method
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descriptor, i.e. SIFT descriptor computed on a dense grid. The HOG has several ad-

vantages as it captures edge or gradient structure which is very characteristic of local

shape. In fact, it does so in a local representation with an easily controllable degree

of invariance to local geometric and photometric transformations [77]. First, HOG

decomposes an image into small rectangular cells. Then, it computes the histogram

of oriented gradients in each cell. Generally, to build a feature vector using HOG, the

cell histogram of each pixel within the cell casts a weighted vote, according to the

gradient l2 norm, for an orientation-based histogram channel. The gradient strengths

were locally normalized over each cell, in order to account for changes in illumination

and contrast [78]. There are two main parameters to compute HOG, the number of

rectangular cells and the number of histogram bins per cell. For example, 10 bins and

9 rectangular cells were then concatenated to make a 90-dimensional feature vector.

5.4 Experiments

In this section, several experiments are performed to demonstrate the effectiveness

of the proposed method in terms of recognition accuracy. We present our experimental

results on two publicly available databases for face and ear recognition. We evaluate

our method using several feature extraction methods and compare it with other clas-

sification algorithms such as Nearest Neighbour (NN) and Nearest Subspace (NS), as

well as the original SRC and SL0.



57

5.4.1 Face Recognition

We selected the Extended Yale B database [79] which contains face images cap-

tured under large illumination variations. This database is commonly used to evaluate

the performance of illumination invariant face recognition methods. The database con-

sists of 64 face images per subject for 38 subjects under different illuminations. Frontal

pose images were selected for our experiment. To simulate the results from [20], im-

ages were cropped and normalized to the size of 192 × 168 and half of the images

were randomly selected for training and the rest for testing. The experiments were

performed with feature space dimensions of 30, 56, 120 and 504 (corresponded to

downsampling the images with ratios of 1/32, 1/24, 1/16 and 1/8). Example images

of one person in frontal pose are shown in Fig. 5.2. The face recognition results with-

out any preprocessing are illustrated in Table 7.1. The proposed method achieves the

best recognition rate compared to other methods when using 56, 120 and 504 features.

Only, when the number of features is 30, the recognition rate of the NS approach is

slightly better than the proposed method. However, the recognition results of the

proposed method when using more features is much better than NS.

Furthermore, in order to evaluate the effect of the number of training samples

on the recognition rate, the number of the features is fixed at 56 and the number of

training images per subject is decreased. We used 30, 25, 20, 15 and 10 images per

subject for training and the rest of the images for testing. The obtained results are

shown in Table 7.2. In this table, the recognition rate of our method is better than
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Figure 5.2: Sample Frontal Face Images for One Subject in Extended Yale B Database

all the other methods, except for NS when the number of training samples is 10; in

this case the NS has a slightly better performance than our method.

We carried a third experiment to demonstrate the robustness of the proposed

method with fewer number of training images per subject and fewer number of fea-

tures, the number of the training samples was decreased from 32 to 25 and 20 images

which correspond to 40% and 30% of the total number of images per subject, respec-

tively, and the rest of the images were used for testing and the number of features
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Table 5.1: Face Recognition Rates on Extended Yale B database (50% for training)

Feature Dimension 30 56 120 504

NN 69.3% 72.8% 78.5% 79.5%

NS 79.6% 84.1% 88.7% 90.8%

SRC 75.7% 84.8% 93.9% 96.8%

SL0 74.1% 82.6% 93.3% 95.5%

The proposed Method 78.5% 86.7% 95.3% 97.9%

were 32, 56, 120 and 512. The obtained results as illustrated in Fig. 5.3 and Fig. 5.4

for different number of features, specially for low number of features, show that the

proposed method is more robust when the number of training samples are reduced.

5.4.2 Ear Recognition

The University of Notre Dame (UND) dataset collection J2 is used to test the

proposed method for 2D ear recognition. The Histograms of Indexed Shapes (HIS),

a shape-based feature set, is used to localize a rectangular region that contains the

ear [65], [54]. A few profile face images from the UND dataset are shown in Fig. 5.5.

As previously stated, in sparse classification, the training samples are used to build

the dictionary. In this dataset, some subjects only have a few images (e.g. 2 or 4
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Table 5.2: Face Recognition Rates on Extended Yale B database (The number of
features is 56)

The Number of Training Images Per Subject 30 25 20 15 10

NN 64.9% 60.0% 56.9% 52.1% 42.7 %

NS 84.7% 84.8% 83.1% 80.2% 73.0 %

SRC 84.3% 82.6% 81.0% 78.5% 69.8 %

SL0 81.3% 79.7% 77.6% 74.3% 66.6%

The Proposed Method 85.7% 85.5% 84.5% 81.1% 72.5 %

images), which is not suitable for sparse representation classification. Therefore, we

selected 39 subjects that have more than 16 images each. We used an equal number

of images (10 images per subject) from each subject for training and the remaining

images were used for testing. Gabor Wavelets were used for feature extraction and the

number of features were reduced using PCA. As mentioned previously, the equation

y = Ax should be under determined and the number of columns in the dictionary

should be more than the number of rows. Since, we used 10 images per subject for

training, the number of columns in the dictionary is 390 and the number of features

should be less than this number. Using PCA we reduced the number of features to

16, 32, 64, 128 and 256. Fig. 6.2 shows a comparison of the recognition results of

our algorithm, SRC and SL0 when using different number of features. The obtained

results using our proposed method show significant improvement in the recognition

accuracy.

To evaluate the robustness of the proposed method for ear recognition, the number

of training samples is decreased from 10 samples to 5 samples. Since there are 39
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Figure 5.3: Face Recognition Rates on Extended Yale B database. 25 images per
subject are used for training and the rest for testing.

subjects and 5 sample images per subject are used for training, there are 195 atoms

(columns) in the dictionary. Therefore we obtained results for 16, 32, 64 and 128

features, as shown in Fig. 5.7. The results obtained using our method are more robust

than SRC and SL0. For example, for lower dimension feature vectors, e.g., 16 features,

the results from our method are far better than the results for SL0 and are slightly

better than those of SRC. However, for higher number of features, e.g., 128 features,

the SRC results are not as good as SL0 and our method. In order to check the

performance of our algorithm with other types of features, we used histogram of

oriented gradients (HOG) for feature extraction. The number of rectangular cells are

fixed to 9 (3× 3) and the number of histogram bins per cell are 4, 6, 8, 10, 12, 14 and

16. The extracted feature vectors corresponding to the different numbers of histogram
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Figure 5.4: Face Recognition Rates on Extended Yale B database. 20 images per
subject are used for training and the rest for testing.

bins per cell are 36, 54, 72, 90, 108, 126 and 144. The recognition rates for SRC, SL0

and our method are shown in Fig. 5.8 for different numbers of features. These results

still show that the performance of the proposed method is better thank SRC and SL0

for HOG features.

5.5 Discussion

In this chapter, three recognition methods based on sparse representation: SRC,

SL0 and our proposed method, were compared. SRC uses the l1 norm optimization

solver (l1 solver) and the two other methods use the smoothed l0 norm optimization

solver (l0 solver). Based on the experiments and results obtained from the Extended
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Figure 5.5: Profile Image Samples From UND Database

Yale B database and the UND database, we discuss several observations and issues

in this section.

In the proposed method, we used weights for different atoms which were obtained

by calculating mutual information between the query sample and each of the training

samples. However, the process of calculating the mutual information is time consum-

ing. In order to reduce the time required, images were reduced in size which allowed

the mutual information to be calculated faster. As previously mentioned, the l0 solver,

is much faster than l1 solver in finding the sparsest solution. Without considering the

calculation time for mutual information, our method is the fastest method for recog-

nition among these methods as shown in Table 5.3 . However, the SL0 and SRC

methods do have an advantage since there is no need to calculate mutual informa-

tion. Based on these facts, We believe that by using mutual information as weights in

the optimization process, the algorithm converged faster to find the global extermum,

as some of the non-relevant gallery samples were discarded because of the small value

of mutual information.
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Figure 5.6: Ear Recognition Rates on UND database Using Gabor Wavelets for Fea-
ture Extraction (10 images per subject are used for training)

Observing the results obtained from the Extended Yale B and UND databases, our

algorithm had robust results when using fewer training samples. The first experiment

was conducted on the Extended Yale B database for face recognition. Our proposed

method outperformed the-state-of-the-art methods for different numbers of features.

In addition, to show the robustness of the proposed method with respect to the

number of the training images, we varied the number of the training images from 50%

to 40% and to 30% of the total number of images per subject. The results obtained

by using the proposed method were far more robust than the results obtained from

the other classifiers. In addition, for lower dimensional features, the recognition rate

obtained by the proposed method was significantly more accurate than the other

methods.
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Figure 5.7: Ear Recognition Rates on UND database Using Gabor Wavelets for Fea-
ture Extraction (5 images per subject are used for training)

The second experiment was performed on the UND collection J2 ear database.

Features were extracted using Gabor wavelets and a dictionary was constructed using

the extracted features from training subjects. The subjects with 16 or more images

were selected for the experiments since we needed to build a dictionary for sparse

representation. Ten images per selected objects were used for training and the rest of

the images were used for testing. A classification rate of 98.3% was obtained using the

proposed algorithm for ear recognition, which was more precise than other classifiers.

Furthermore, HOG features were used for ear recognition with different numbers

of histogram bins. Experimental results showed that our proposed method, when

compared to SRC, not only had a lower computation load, but also resulted in a

better recognition rate.
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Figure 5.8: Ear Recognition Rates on UND database Using HOG for Feature Extrac-
tion (10 images per subject are used for training)

Finally, there is an important observation, i.e., if the values of ‖x‖0 and ‖Wx‖0
are the same, how can the weights be useful? The answer is that the SL0 algorithm

uses a Gaussian function to approximate the l0 norm, which is not the same as the

exact l0 norm. Using this approximation, the weights become significant and useful

in guiding the algorithm quickly towards the solution.
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Table 5.3: Time (in Seconds) for recognition of one query sample (The number of
features is 56)

The Number of Training

Images Per Subject 30 20 10

SRC 0.245 0.224 0.181

SL0 0.117 0.108 0.095

The Proposed Method 0.105 0.094 0.089

5.6 Conclusion

In this chapter, we presented a method for classification based on weighted sparse

representation using Smoothed l0 Norm with Non-negative Coefficients. In sparse rep-

resentation classification, there is no constraint on the coefficients and all the atoms

in the dictionary are treated uniformly. This means that the optimization algorithm

has to search all possible solutions to converge and find the global extremum. While

the SRC algorithm does not differentiate between the atoms in the dictionary, our

algorithm uses mutual information to find the similarity between the query sample

and samples in the gallery, which provides useful weights for more accurate clas-

sification. In fact, the obtained weights affect the significance of the atoms in the

gallery during the search process. As a result, the weights narrow the search space

for the algorithm and help the algorithm to converge faster without being trapped

in local extremums. Furthermore, for a robust and discriminative representation, a

non-negative constraint is applied on the sparse coefficient vector. By adding the non-

negative constraint, components of this coefficient vector indicate the contributions
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of the gallery samples towards the representation of a given query sample. We eval-

uated the proposed method on two publicly available databases, the Extended Yale

B database for face recognition and UND database for ear recognition. Experimental

results obtained for our proposed method are not only faster, but also result in a

better recognition rate even with a smaller number of training samples.



CHAPTER 6

Robust Biometrics Recognition using
Joint Weighted Dictionary Learning and
Smoothed L0 Norm

In this chapter, we present an automated system for robust biometric recognition

based upon sparse representation and dictionary learning. In sparse representation,

extracted features from the training data are used to develop a dictionary. Classifi-

cation is achieved by representing the extracted features of the test data as a linear

combination of entries in the dictionary. Dictionary learning for sparse representa-

tion has shown to improve the results in classification and recognition tasks since

class labels can be used in obtaining the atoms of learnt dictionary. We propose a

joint weighted dictionary learning which simultaneously learns from a set of training

samples an over complete dictionary along with weight vectors that correspond to the

atoms in the learnt dictionary. The components of the weight vector associated with

an atom represent the relationship between the atom and each of the classes. The

weight vectors and atoms are jointly obtained during the dictionary learning. In the

proposed method, a constraint is imposed on the correlation between the obtained

atoms that represent different classes to decrease the similarity between these atoms.

In addition, we use smoothed L0 norm which is a fast algorithm to find the sparsest

69
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solution. Experiments conducted on the West Virginia University (WVU) and the

University of Notre Dame (UND) datasets for ear recognition show that the proposed

method outperforms other state-of-the-art classifiers.

6.1 Overview

Over the past few years, the theory of sparse representation has been used in var-

ious practical applications in signal processing and pattern recognition [4]. A sparse

signal can be represented as a linear combination of a relatively few base elements

in an over complete dictionary [80]. Sparse representation has been used for com-

pression [12], denoising [13], and audio and image analysis [14]. Wright et. al. [20]

proposed a classification algorithm for face recognition based on a sparse represen-

tation (SRC). The reported results for face recognition are encouraging enough to

extend this concept to other areas such as biometrics [23]. Naseem et al. [3] ad-

dressed the problem of human identification using ear biometrics in the context of

sparse representation. They used l1 norm minimization to find the sparsest solution

for ear representation. They cropped the ear portion from each image and normal-

ized the ear region. They conducted several experiments using the University of Notre

Dame (UND) database [58]. In this chapter, we use SL0 algorithm to find the sparsest

solution for classification. SL0 is a fast algorithm for over complete sparse decompo-

sition. In fact, this method finds sparse solutions for under determined systems of

linear equations. Previous methods usually solve sparse problems by minimizing l1

norm using linear programming (LP) algorithms. However, SL0 algorithm directly



71

minimizes the l0 norm and it is about two to three orders of magnitude faster than

state-of-the-art LP algorithms [22].

The obtained dictionary using training samples should be able to span the sub-

space of all samples from one subject to give a discriminative reconstruction. The

basic approach to build a dictionary is to extract a feature vector for each training

sample and use it as a column or atom in the dictionary. This approach is straight

forward and have several disadvantage. The main disadvantage is the huge size of the

dictionary. For a small database with a few number of training samples per subject,

it is not a big problem. However, for a large database with thousands of subjects

and many training samples per subject, the size of the dictionary becomes a serious

problem. Not only there is a need for large memory to save the dictionary, but also

the recognition process will be slow and not appropriate for practical applications. In

addition, all the training samples may not be useful for spanning the subspace, for

example if some of the training samples for a subject are similar to each other, there

is no need to use all of them in the dictionary. Manual selection of a subset of training

samples to construct the dictionary can not provide an optimal solution. Recently,

discriminative dictionary learning has been studied in various pattern recognition and

classification problems and algorithms for learning a dictionary and using less number

of atoms have been developed [81], [82], [83]. One of the main methods for dictio-

nary learning is the K-SVD method [12] which learns an over-complete dictionary

and decreases the number of atoms in the dictionary. Inspired by K-SVD, many un-

supervised dictionary learning algorithms have been developed and well adapted for

reconstruction tasks such as restoring a noisy signal. Recent works have shown that

good performance can be achieved when the dictionary is tuned to the specific task it
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is intended for. Duarte et al. [84] proposed a dictionary learning method for compres-

sive sensing, and in [85], dictionaries are developed for signal and image classification.

This type of approach for dictionary learning are called task-driven algorithms [86].

In this chapter, we propose a robust recognition algorithm using sparse represen-

tation and dictionary learning which is fast and practical for real world applications

and because of that we use a few atoms in the dictionary. We use a dictionary learning

method to find a few representative atoms from many training samples. In fact, we

try to reduce the number of atoms in the dictionary in order to decrease the process-

ing time. WVU is used to show the effectiveness of our proposed method since it has

different viewing angles for the ear and we could extract separate training and testing

sets based on the viewing angles. 35 frames per subject, which approximately cover

the range of the camera positions from 0 to 34 degrees, are extracted. A dictionary

is obtained using Joint Weighted dictionary Learning (HWDL) which is developed

with a few atoms (5, 7 or 9) for each subject to build a fast and accurate system

for ear recognition. The proposed method is developed to be practical in real world

applications.

This chapter is organized as follows: In Section II, we provide a brief mathematical

explanation of the sparse representation concept, the proposed dictionary learning

algorithm, and Smoothed L0 algorithm. In Section III, we present the experimental

results to demonstrate the performance of the proposed method. Conclusions and

future research directions are discussed in Section IV.
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6.2 Classification based on Sparse Representation

Under determined systems of equations are important in variety of application

such as signal processing, statistics, pattern recognition and image processing. Sparse

representation is a relatively new approach to solve these systems. In this section, we

explain the concept of sparse representation and introduce the approach for building

and learning the dictionary. Finally, a brief explanation of smoothed l0 norm (SL0)

algorithm is provided.

6.2.1 Building the Dictionary

In the proposed method, a dictionary is built using the training data. The dic-

tionary is a matrix in which each column is the feature vector of one of the training

samples. Assume that there are ni training data samples for the ith class, where each

data sample is represented by a vector of m elements. The matrix (dictionary) A is

built of all the training samples from all classes as:

A = [A1,A2, ...,Ak] ∈ Rm×n (6.1)

where k is the number of classes, Ai is the dictionary for class i and n =
∑k

i=1 ni

and matrix A contains dictionaries for all the classes. A linear representation for the

feature vector of the test data, y, can then be given as:

y = Ax0 ∈ Rm (6.2)

where x0 is the sparse coefficient vector. For a test data, y, belonging to the ith class,

it is assumed that the non-zero elements of x0 will correspond to the training data
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samples from the ith class. However, due to noise and representation errors, there

will be extraneous non-zero elements corresponding to other classes. To obtain x0,

the equation y = Ax0 should be solved such that x0 is sparse.

The sparsest solution of y = Ax0 can be obtained by minimizing l0 norm.

x̂0 = argmin‖x0‖0 Subject to y = Ax0 (6.3)

where ‖.‖0 is the zero norm.

6.2.2 Sparse Solution Based on Smoothed l0 norm Minimiza-

tion

The l0 norm of a vector is a discontinuous function and therefore it is highly

sensitive to noise. In addition, combinatorial search is needed for minimizing l0.

The idea of SL0 is based on the approximation of the discontinuous function by

a continuous one. This approximation is performed using a parameter (σ) which

determines the quality of the approximation. Once we obtain a continuous function,

we can use an optimization method, such as LevenbergMarquardt, GaussNewton or

gradient descent for minimization [45].

One example for such approximations is as follows [22]:

fσ(x) � exp(
−x2

2σ2
) (6.4)

And approximately:

fσ(x) ≈

⎧⎪⎨
⎪⎩

1, if |x| � σ

0, if |x| 	 σ
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Then, the idea is to minimize l0 norm, ‖x‖0, using the following function:

Fσ(x) =
r∑

i=1

fσ(xi) (6.5)

In recognition problems, r is the number of training data. Hence, we can conclude

that for small values of σ, ‖x‖0 ≈ r−Fσ(x) and to find the minimum l0 norm solution,

Fσ(x) should be maximized.

Briefly, in SL0 algorithm, Fσ(x) �
∑

i exp(−x2
i /2σ

2) should be maximized for a

given value σ subject to y = Ax. A decreasing sequence of σ is used to decrease

the chances of obtaining local extrema. For the initial value of σ, Fσ is maximized

subject to y = Ax using the steepest ascent approach. The x that maximizes Fσ will

be the starting point to find x that maximizes Fσ for the next (smaller) σ.

In steepest ascent approach, each iteration moves in the desired direction (x′ ←

x+ η∇Fσ), followed by projection to the feasible set S = {x|y = Ax} [46]:

x̂0 = argminx ‖ x− x′ ‖ s.t. y = Ax (6.6)

= x′ −A†(Ax′ − y)

where A† = AT(AAT)−1 is the pseudo-inverse of A. Moreover, the initial value

for x is provided by the minimum l2 norm solution of y = Ax, that is, A†y.

6.2.3 Classification

In SRC, classification is based upon the obtained x by computing the error between

y, the original test data, and ŷi, the approximation obtained through the sparse

representation. For each class i and xi ∈ Rn, the vector δi(xi) ∈ Rn contains only the

coefficients that are associated with class i and zeros for the coefficients associated
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with the other classes. Using this definition, approximated test data ŷi is computed

as follows:

ŷi = Aδi(xi) (6.7)

classification can subsequently be performed by assigning the test data to the class

that minimizes the residual between y and ŷi as follows:

min︸︷︷︸
i

ri(y) = ‖y −Aδi(xi)‖2 (6.8)

where ri(y) is the residual distance for class i.

6.2.4 Joint Weighted Dictionary Learning

As previously mentioned, the matrix A may have a huge size which makes the

recognition process time consuming. K-SVD method [12] has been used for dictionary

learning, which is an iterative approach that alternates between sparse coding of the

atoms in the current dictionary and updating the dictionary for more discriminative

representation. Most of dictionary learning techniques and data driven methods such

as the K-SVD consider a finite training set of samples and minimize the empirical

cost function. The K-SVD algorithm finds the solution for the following problem:

argmin︸ ︷︷ ︸
D,Y

‖A−DY‖2F subject to ∀i, ‖yi‖0 ≤ P (6.9)

where P is a parameter that defines the required sparsity, and D is the learned

dictionary with a smaller number of atoms than A. The non-convex optimization

problem of Eq.6.9 can be iteratively solved by fixing one parameter such as D that

makes it a convex optimization problem with the other parameter as Y. After finding

the Y, it will be the fixed parameter and we solve the problem to obtain the D.
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The optimization of Eq.6.9 is unsupervised in the sense that it does not require the

use of the labels for the atoms. However, in this paper, we introduce a dictionary

learning method which is developed for specific supervised tasks, e.g., classification or

recognition, as opposed to the unsupervised formulation of the data driven methods.

In classification applications, a good data representation can lead to an accurate

performance and our method improves the representation by learning more efficient

and discriminative atoms for sparse representation. In the proposed method, instead

of learning the dictionary without considering the labels, we use the training samples

of each class for learning the atoms of the dictionary and finding the related weights.

In fact, this method helps to learn a discriminative dictionary D = [d1,d2, ...,dN],

where N is the number of atoms in the learned dictionary, and obtains atom weights

that can be included in a weight matrix W = [w1,w2, ...,wk], which indicate the

relationship between atoms and the classes. The wi = [wi,1, wi,2, ..., wi,N ]
T indicates

the weight vector between each atom of learned dictionary D and the ith class as

shown if Fig 6.1. The goal is to find D,wi and Yi for Ai ≈ Ddiag(wi)Yi, that

can well represent the class i dictionary, Ai. It is worth mentioning that the weight

vector helps the learnt dictionary to well represent all training samples in ith class.

Non-negativity constraint is imposed on the weights elements, wi,m � 0, ∀m as there

is no negative relation between an atom and class. If one atom can not represent a

class or there is no relation between that atom and the class, the associated weight to

that class will be zero. The sum of all weight elements for one atom is normalized to

one as
∑

m wi,m = 1, ∀m. Thus, we arrive at the following joint weighted dictionary
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Figure 6.1: The components of the weight vector associated with an atom represent
the relationship between the atom and each of the classes

leaning model:

argmin︸ ︷︷ ︸
D,W,Y

k∑
i=1

‖ Ai −Ddiag(wi)Yi ‖2F +λ1 ‖ Yi ‖1

+λ2

k∑
i=1

∑
l �=i

N∑
n=1

∑
m �=n

wi,m(d
T
mdn)

2wl,n (6.10)

s.t. wi,m � 0 and
∑
m

wi,m = 1, ∀m

where k is the number of classes, Yi is the sub-matrix which has the sparse

coefficients of Ai over D. In this equation, the discrimination is exploited using the

dictionary itself and the sparse coefficients associated to D. The term (dT
mdn) in

k∑
i=1

∑
l �=i

N∑
n=1

∑
m �=n

wi,m(d
T
mdn)

2wl,n

in Eq.6.10 is the correlation between two atoms. In fact, this term is added so that if

two atoms (dm and dn) in the dictionary are very similar to each other, the weights

(wi,m and wl,n) will become smaller. It is obvious that we need more discriminative

atoms instead of similar atoms in the learned dictionary in order to represent a query

sample. The obtained dictionary D and the weight matrix W can more accurately
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represent a query sample as the atoms are learned optimally to well represent each

class individually.

6.2.5 Feature Extraction

We use Histogram of Oriented Gradients (HOG) descriptor for ear recognition,

which was first presented and efficiently used for object detection and image re-

trieval [76], especially when illumination variations are present. Actually, it is con-

sidered as one of the best features for the dense encoding of 2D image regions, and

has been successfully used in pedestrian detection and object classification tasks [77].

HOG feature extraction is used for ear recognition since the research has shown that

the HOG is one of the best features to capture the local shape information. It was

also demonstrated that it achieves excellent performance in image retrieval [76] and

2D object detection tasks [77]. The HOG feature descriptor is in fact a dense version

of the SIFT feature descriptor, i.e., SIFT descriptor computed on a dense grid. For

building a feature vector using HOG, the cell histogram of each pixel within the cell

casts a weighted vote based on the gradient l2 norm, for an orientation-based his-

togram channel. The gradient strength was locally normalized in order to account

for changes in illumination and contrast [78].

6.3 Experiments

In this section, several experiments are performed to demonstrate the effectiveness

of the proposed method in terms of recognition accuracy. We present our experimen-

tal results on two publicly available databases for ear recognition. We evaluate our
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method using HOG features and compare it with other classification algorithms such

as Nearest Neighbour (NN) and Nearest Subspace (NS), as well as the original SRC

and SL0. In addition, two other classification algorithms based on sparse representa-

tion, IRL1 [87] and SWSR-COS [88], are used for comparing results.

The University of Notre Dame (UND) dataset collection J2 is used to test the

proposed method for 2D ear recognition. The Histograms of Indexed Shapes (HIS),

a shape-based feature set, is used to localize a rectangular region that contains the

ear [65], [54].

We used an equal number of images (10 images per subject) from each subject

for training and the remaining images were used for testing. HOG was used for

feature extraction and the number of features were reduced using PCA. As mentioned

previously, the equation y = Ax should be under determined and the number of

columns in the dictionary should be more than the number of rows.

The number of features are reduced to 16, 32, 64, 128 and 256 using PCA. Fig. 6.2

shows the comparison of the recognition results of our algorithm with SRC, SL0 and

SL0+KSVD when using different number of features. The obtained results using our

proposed method show significant improvement in the recognition accuracy.

Here, we describe the second experiment that we performed in order to evalu-

ate the proposed approach and present the results. We present experiments for ear

recognition using the WVU data set, which consists of video sequences captured by a

rotating camera around the head of different subjects. The ear region is extracted in

each image automatically using proposed algorithm in [57] which uses a shape based

feature set, termed the Histogram of Indexed Shapes (HIS), to localize a rectangular

region that contains the ear region. The video sequences start from the left profile
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Figure 6.2: Ear Recognition Rates on UND database (10 images per subject are used
for training)

Figure 6.3: A few samples of extracted frames for one subject for different viewing
angles

of each subject (0 degrees) and terminate at the right profile (180 degrees) [68]. The

length of each video sequence is about two minutes. A few subjects in the data set

have eyeglass, earrings or part of the ear is occluded by hair. There are three subjects

that have their ear fully occluded and these subjects were not used in the experiment.

In this experiment, 35 frames, which approximately cover the range of the camera

positions from 0 to 34 degrees (i.e., one frame for each degree) from 100 subjects,

are extracted. Fig. 6.3 shows a few samples from a video sequence for one of the

subjects. After extracting the frames, the ear region is detected and a bounding box
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around the ear is extracted. The ear detection is performed automatically based on

the algorithm in [57]. Since the sizes of the extracted bounding boxes vary, we nor-

malized the size to 120x80. We use 20 frames for training and 15 frames for testing

from each subject. The joint weights dictionary learning is used to learn a dictionary

with 5, 7 and 9 atoms for each subject and for SRC and NN, 5, 7 and 9 images of each

subject are selected randomly. The length of the feature vector is 32. The experiment

is performed 10 times and average results are shown in Table7.1. It is obvious from

obtained results that the proposed method outperforms other approaches. For exam-

ple, for 9 atoms in the dictionary, NN performs good by 79% better than SVM and

Adaboost. However, dictionary learning methods, K-SVD and JWDL, outperform

other classifiers by 82% and 85% accuracy. It shows that our proposed method is

far better than other approaches. Furthermore, we decreased the number of features

from 32 to 16, and and repeated the experiment. Similar to the previous experiment,

the dictionary is learned for 5, 7 and 9 atoms and for SRC and NN the same number

of images were selected randomly. The obtained results are shown in Table7.2 , and

again are consistent with the results shown in Table 1.

6.4 Conclusion

In this paper, we presented a new method for biometrics recognition based on

sparse representation using Smoothed l0 Norm and joint weighted dictionary learning.

Classification is achieved by representing the query sample as linear combination of

the training samples. Joint weighted dictionary learning simultaneously learns from

a set of training samples of overcomplete dictionary along with weight vectors that
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Table 6.1: Ear Recognition Rates on WVU database (feature vector size is 32)

Number of Atoms in Dictionary 5 7 9

NN 74.1% 77.3% 79.8%

SVM 72.8% 74.1% 76.5%

Adaboost 68.9% 72.3% 75.5%

SRC 65.1% 66.0% 68.2%

K-SVD + SL0 77.5% 78.1% 82.1%

JWDL + SL0 78.8% 81.1% 85.5%

associated to the atoms in the learnt dictionary. In fact, we define the relationship

between each atom and all the classes by weight vector. The weight vectors and

atoms are jointly obtained during the dictionary learning. Smoothed L0 norm is

used to obtain the sparsest solution. We evaluated the proposed method on two

databases, UND and WVU databases. Usually in practical problems, the training

images of the subject are captured at certain angles, which are different from the

angles for the test images. In this paper, we trained and tested the system with images

captured at different viewing angles to mimic what happens in practical applications.

Experimental results show that the proposed method is not only faster than previous

methods, but also has a better recognition rate even with a smaller number of training

samples.
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Table 6.2: Ear Recognition Rates on WVU database (feature vector size is 16)

Number of Atoms in Dictionary 5 7 9

NN 74.5% 76.6% 78.1%

SVM 71.5% 73.8% 74.3%

Adaboost 68.9% 70.3% 71.5%

SRC 66.2% 66.6% 68.8%

K-SVD + SL0 76.8% 76.6% 80.5%

JWDL + SL0 77.5% 78.9% 83.1%



CHAPTER 7

Robust Object Tracking via Adaptive
Sparse Representation and Feedback

We are going to present a tracking system based upon adaptive sparse representa-

tion and dictionary learning. Developing an effective and complete tracking algorithm

is a challenging task because of factors such as illumination, occlusion and pose varia-

tions. Most of the tracking algorithms do not consider the situation when the tracked

object or disappears temporarily from the video sequence or becomes temporarily

fully occluded. In this chapter, our goal is to develop an automatic object tracking

system that can handle pose variations, scale variations and temporary disappear-

ance of the object from the scene. We present a robust tracking system based on

adaptive sparse representation and feedback. We focus on automatic tracking with

no prior knowledge other than the location of the region to be tracked in the first

frame, which can either be located manually or using a detector that finds the re-

gion of interest (ROI). The visual tracking is a binary classification problem. The

positive samples are bounding boxes that have high overlap with current position of

the target while negative samples are drawn from regions outside the ROI to model

background close to the target. The tracking algorithm uses the dictionary to locate

85
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the ROI in the following frames via adaptive sparse representation. One of the main

issues in tracking systems is false tracking when the object disappears from the scene.

Motivated by the concept of feedback in control systems, we overcome the problem

of false tracking when the object disappears by comparing the newly tracked region

with previous regions to confirm that the object is still in the frame. A structural

similarity measure is used to measure similarity between a newly tracked ROI and

the previously tracked ROIs and if the similarity is below a certain threshold, the

object is assumed to be out of the scene. In fact, this similarity evaluation is like a

feedback loop in our tracking algorithm which makes our method robust, reliable and

accurate when compared to the state-of-the-art methods on challenging sequences. If

the object is not located in the current frame, the algorithm stops tracking and starts

searching for the object in the following frames. The searching is achieved by using

a detector based on sparse representation and an adaptive dictionary to efficiently

locate the object when it reappears in the scene. Experiments on video sequences,

for both quantitative and qualitative evaluations, demonstrate the effectiveness and

robustness of the proposed tracking system.

7.1 Overview

Object tracking is a well studied problem in computer vision and it has many

practical applications [89], [90], [91]. Tracking is a very challenging task since geo-

metric and photometric factors, e.g., occlusion, pose and illumination vary that can

lead to change the appearance of the object [92], [93], [94] and therefore could cause

tracking errors. Furthermore, severe motion blur usually occur when a video has a
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low frame rate or when an object moves abruptly. Although there has been some

success with tracking methods for specific object classes, e.g., faces [95], humans [96],

rigid objects [97], tracking generic objects is still a challenging and interesting prob-

lem for researchers. A typical tracking system has three main components [98]: 1)

an appearance model or object representation which measures the likelihood of the

object to be at a certain location in the frame, 2) a motion model, which relates the

location of the target through the video sequence, and 3) a search method to find

the most likely location of the ROI in the current frame. During the last decade,

supervised methods have been proposed to solve these problems [99], [100]. Most

of these methods either use a pre trainned classifier for a specific object or train a

classifier using the selected bounding box in the first frame. The classifier is used and

updated for object tracking in the following frames. However, when object is occluded

or moves out of the field of view may drift these trackers. If the object disappears,

some negative samples may falsely be classified as positive samples, which mislead

the classifier and gradually undermine the model [101].

It is well established that sparse signal models are well suited for recognition and

classification tasks and can be effectively learned from audio and image data. Sparse

representation has received a widespread attention because of its robust performance

and wide range of applications. During the last decade, the theory of sparse repre-

sentation has been used in various practical applications in signal processing, pattern

recognition, and video analysis [4], [8], [7], [9]. It has also been used for compres-

sion [12], denoising [13], and audio and image analysis [14]. In addition, dictionary

learning and sparse representation have been used as powerful tools for classification

and analysis of image and video data [102], [103]. Generally, sparse representation
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Figure 7.1: The flowchart for the proposed tracking system.

is a technique for reconstructing a signal or image using the fact that signals can be

represented by a set of basis elements [18]. Sparse representation uses all the data

samples for the decision making and represents the test data as a linear combination

of the training data. Mei and Ling [104] proposed a visual tracking method by formu-

lating the problem as a sparse approximation problem in a particle filter framework.

Chen et al. [105] presented an appearance based tracking method using sparse rep-

resentation. In their method, the appearance of an object is modelled by multiple

linear subspaces.

In this paper, we propose a robust tracking system based on sparse representation

by posing the tracking as a classification problem. The main idea of our method

is to utilize sparse representation and similarity measure to efficiently construct a

robust tracking algorithm which can detect the object after it temporarily disappears

or becomes temporarily occluded. The flowchart of the proposed system is shown in

Fig. 7.1. The First step is initialization, i.e., choosing the tracked target or region of
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interest (ROI) either manually or using an automatic detector. To build and update

the dictionary for sparse representation, we need positive and negative samples in

each frame. Positive and negative samples for one frame are shown in Fig. 7.2. For

object representation, we need an over complete dictionary with labeled data from

the first frame. Both positive and negative samples are used to build the dictionary.

Most of the trackers drift from tracking the target when target is occluded for long

time. We propose to solve this issue by comparing the estimated location of the target

from tracker with the obtained template of the target. This way we can make sure

that the target candidate has standard similarity to the target template and it is not

false positive. If the object is not in the frame, the algorithm attempts to detect the

object in the following frames using sparse representation and resumes tracking after

detecting the object.

The remainder of this paper is organized as follows: In Section 2, we review the

current state of the art in tracking systems, sparse representation and detection; In

addition, the concept of feedback in control systems is described. In section 3, we

detail our tracking approach; in Section 4, qualitative and quantitative results of our

tracker and state of the art trackers on video clips that include publicly available

video sequences are presented. Finally, we conclude the paper in Section 5.

7.2 Related Work

This section reviews the related methods for appearance model-based tracking,

compressed sensing, object detection and image similarity measurements.
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Figure 7.2: Sample set in frame t, Left: Negative Samples, Right: Positive Samples

There are studies that treat tracking as a classification or representation problem

where learning techniques are used to locate the object in the sequence of frames [106].

A good representation should provide a strong description to distinguish the target

from the background and other objects. To account for the appearance variations of

the target during tracking, many sophisticated object representation methods have

been developed including, generative, discriminative and sparse representation meth-

ods [107], [108], [102]. The generative model-based approaches describe the visual

observations of a moving object. Hence, tracking is reduced to a search for an opti-

mal state that yields an object appearance most similar to the appearance model. On

the other hand, the discriminative methods use a binary classification, based on an

optimal decision boundary, to distinguish the object from the background [109]. For

generative appearance modeling methods, a tracking method was presented in [110]

based on subspace constancy assumption. A subspace model was constructed offline

from some collected target observations where the model was fixed during tracking.

This is a big drawback as for most tracking applications, it might be difficult to ob-
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tain such target observations in advance. Consequently, their method has limited

application domains and may fail when the target shows at a different view from

the ones used for constructing the model. For discriminative appearance modeling

methods, an online feature selection method was proposed in [111] to select the most

discriminative color spaces for tracking. Unlike the generative models which only

model the target, the discriminative models can model both the target and back-

ground. However, they need correctly labeled samples to train and update classifiers,

which may not be available in many real tracking applications [112]. On the other

hand, sparse representation can recover the appearance subspace when corruption

(noise and occlusion) of the observation is large but sparse. The global appearance

of a target in different conditions can be well represented by a linear combination of

a small number of training images in an over-complete image dictionary. This repre-

sentation has been successfully used in face recognition [113] and ear recognition [23]

applications. In our method, sparse representation is used for tracking an object by

representing a candidate as a linear combination of the previously tracked ROIs of

the object over the previous frames. Basically, the tracking task is formulated as a

classification problem with online update of the dictionary.

Compressed sensing is an efficient data acquisition method whenever the data is

sparse in a high dimensional space. Basically, a signal that is sparse in a known

transform domain can be represented with much fewer samples than usually required

by the dimensions of this domain. In fact, it is shown that if the dimension of the

feature space is sufficiently high, these features can be projected to a randomly chosen

low-dimensional space which contains enough information to represent the original

high-dimension features [80]. From the machine learning point of view, compressed
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sensing can be regarded as efficient universal sparse dimensionality reduction from

the data domain to the measurement domain [114]. There are applications where

compressed sensing is used for feature reduction, for instant face detection [115]and

natural language processing and text classification [116]. In the proposed method, we

use compressed sensing for feature reduction using a very sparse measurement matrix

that asymptotically satisfies the restricted isometry property (RIP) in compressed

sensing theory [117] which provides an efficient projection from the image feature

space to a low-dimensional compressed subspace [118]. This dimensionality reduction

speeds up our method for fast and online tracking.

Visual tracking can be combined with either detection [119], [120] or recogni-

tion [121], [122]. Object detection is the task of finding and locating objects in an

input image or video frame. The definition of an ”object” can be a single instance

or a whole class of objects. In this paper, we define object as a single instance that

may have rotation or scale changes. There are three main components for feature

based approaches: 1) feature detection, 2) feature recognition, and 3) model fitting.

Vacchetti et al. [123] presented a tracking algorithm for rigid objects in 3D using a sin-

gle camera that can handle large camera displacements and partial occlusions. This

tracker combines natural feature matching and the use of key frames to handle cam-

era displacement. Taylor and Drummond [124] proposed a feature matching tracker

which enables seven independent targets to be localized in a video sequence using

histogrammed intensity patches (HIPs). The main draw back for these approaches is

the detection of image features and requirement of knowing the geometry of the ob-

ject in advance. On the other hand, the sliding window-based methods scan the input

image by a window of various sizes and each scanned window is classified as either
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having the object (ROI) or not. Viola and Jones [125] presented an object detection

which used integral image, Adaboost and cascade classification for detection. Sliding

window based detectors can be time consuming. In the cascade architecture of Viola

and Johns, since the background usually has more variations than the object, the

classifier is separated into number of stages to enable quick rejection of background

patches and reducing the number of stages that have to be evaluated on average. For

these detectors, it is necessary to have a large number of training examples and inten-

sive computation in the training stage to accurately represent the decision boundary

between the object and background. In addition, training samples should be labeled.

Image similarity indices are crucial in the development and evaluation of image

processing and pattern recognition algorithms such as image coding, denoising, seg-

mentation, registration and recognition [126]. Each image is a 2-D function, x(i, j),

of intensity. To calculate a similarity index for images, intensity variations and ge-

ometric distortions should be accounted for. Similarity indices algorithms can be

classified according to their approach toward these two properties. Some algorithms

compare images based on the assumption that image are at the same scale and are

perfectly registered. Therefore, their similarity is calculated from a comparison of

the corresponding pixel intensities and are called intensity-based. On the other hand,

geometry-based indices are determined by establishing pixel correspondences between

the images based on the intensity and then similarity is calculated by comparing the

geometric transformations between corresponding pixels. In intensity-based indices,

the similarity evaluation at one pixel is independent of all other pixels in the im-

age. However, we know that the neighboing pixels can be correlated with each other.

Variety of transformed-domain algorithms have been proposed to take advantage of
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this correlation and also to take into account properties of the human visual system

(HVS) [127]. In this paper, we use a similarity index named structural similarity

index measurement (SSIM) [2] to compare the newly tracked ROI with previously

tracked ROIs. In SSIM, the structural information of an image means the attributes

that represent the structure of the object in the visual scene, apart from the inten-

sity and contrast. Therefore, SSIM compares local patterns of pixel intensities which

have been normalized for mean intensity and contrast. SSIM has low computational

complexity and robust performance in image similarity comparisons.

Despite sharing ideas with previous work, as discussed above, to the best of our

knowledge, our tracking system is the first that completely addresses the disappear-

ance of the tracked object from the field of view. We propose the use of feedback,

as in control systems to enhance the performance of our algorithm. The goal of any

control system is to measure, monitor, and control a process. One way in which we

can accurately control the process is by monitoring its output and feeding it back

to compare the actual output with the desired output. In fact, the output of the

system is brought to the original or desired response. The measure of the output is

called the feedback signal and the type of control system which uses feedback signal

to control itself is called a closed-loop system or feedback control system and con-

sists of controller, system and sensor. Just to clarify the concept of feedback, a basic

feedback structure is shown in Fig 7.3. Feedback loop is the most important part of

any self-regulating system. In our algorithm, we use the concept of feedback. After

tracking and finding the new ROI, we calculate the similarity measure between the

newly tracked ROI and the previously tracked ROIs and if the similarity is above a

threshold, we continue tracking. Otherwise, we stop tracking and use the proposed
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Figure 7.3: Closed-loop feedback control system

object detector to find the ROI in the following frames until we find the ROI and

then resume tracking.

7.3 Sparse Representation based Tracking

We propose a visual tracking algorithm using classification based on adaptive

sparse representation. The tracking process starts by constructing a dictionary from

positive and negative samples of the object in the first frame. Then, the tracking

process locates the tracked object in the following frames using sparse representation

and feedback. However, the appearances of both the target and the background are

likely to change because of numerous factors. To successfully track the target over

time with presence of appearance changes, we need to update the observation model,

i.e., dictionary, when new tracking results are obtained. However, we do not update

the whole dictionary since the newly tracking results may contain noise or occlusion

and it can affect the representation power of our model. Instead, we only update the

part of the dictionary that is most similar to the current observation.
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7.3.1 Adaptive Sparse Representation

As Fig. 7.1 shows, the tracking system starts by identifying the region to be

tracked either manually or using an object detector, then starts tracking the selected

region in the following frames. If the region to be tracked is in frame t, the center of

the bounding box, ct, is determined and positive and negative samples are selected to

build the dictionary. Positive samples are obtained in a circular area which satisfies

‖ cp−c(t) ‖< α, and we draw negative samples from an annular area α <‖ cn−c(t) ‖<

β, where cp and cn are the locations of positive and negative samples, respectively,

and α and β are thresholds to determine the circle and annular area, respectively.

The positive samples cover whole or part of the object while the negative samples

should cover the background around the target location. Haar features are extracted

from each sample (positive or negative). A dictionary is built by concatenation of

obtained features. Each feature is a column vector of the dictionary.

The representation of an object under different illumination conditions and view-

ing angles is known to lie approximately in a low-dimensional subspace [128]. We use

k positive samples and k negative samples, where each sample is represented by a

vector of m elements. The vectors that represent the positive samples are then used

to construct the columns of matrix Ap:

Ap(t) = [vp,1(t),vp,2(t), ...,vp,k(t)] ∈ Rm×k (7.1)

where vp,j(t), j = 1, ..., k, is a column vector that represents the features extracted

from training sample j in frame t. Similar to Ap(t), matrix An(t) is built from the

negative samples. The two matrices, Ap(t) and An(t), are concatenated to form

matrix A(t).
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In frame t, the center point of the ROI bounding box is ct. In frame t+1, candidate

windows are selected around center point,ct, as candidate matches for the ROI and

feature vectors are extracted from each of these samples. The goal is to determine

which of these samples is the best match for the tracked ROI.

The feature vector y(t+1) of a sample at frame t+1 can be expressed as a linear

combination of the entries in the dictionary:

y(t+ 1) ≈ A(t)z(t) (7.2)

where z is a coefficient vector and A(t) is the dictionary. In visual tracking,

objects are often corrupted by noise or occluded or both which create unpredicted

errors. This may affect any part of the object and the size may vary. The occlusion

can be either a connected region of pixels or a number of pixels that are scattered

on the object. In our algorithm, all the pixels within the bounding box are treated

equally for simplicity. Therefore, to handle the effect of noise and occlusion, equation

(7.2) is rewritten as:

y(t+ 1) = A(t)z(t) + e (7.3)

where e is the error vector, e = (e1, e2, ..., e2m)
T ∈ R2m and the non-zero entries of

e indicate the pixels in y which are corrupted or occluded. As the occurrence of error

is random and unknown, trivial templates I = [i1, i2, ..., id] ∈ R2m×2m [18], where I is

an identity matrix, are used to capture the occlusion and noise as:
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y(t+ 1) = [A(t), I]

⎡
⎢⎣z(t)

e

⎤
⎥⎦ (7.4)

where a trivial templae ii is a vector with only one nonzero element.

7.3.2 Non-negative Coefficients

The coefficients in z can be any real numbers. Without constraint on the coef-

ficients, the sample at frame t + 1 can be reconstructed by adding and subtracting

contributions from the training samples, as the coefficients can be positive, negative

or zero. This is contradictory to the intuitive notion of combining parts to form a

whole [74], [19]. In fact, using non-negative coefficients can provide insight into the

similarity between the candidate sample and each of the training samples. With the

constraint that the coefficients, i.e., components of z, are non negative, the coefficients

represent the contributions of the individual samples in constructing the candidate

sample. While we enforce the non-negativity constraint on the elements of z, it is

unreasonable to enforce that constraint on the elements of the error vector. Equation

(7.4) is rewritten as:

y(t+ 1) = [A(t), I,−I]

⎡
⎢⎢⎢⎢⎢⎣
z(t)

eP

eN

⎤
⎥⎥⎥⎥⎥⎦

.
= B(t)x(t), s.t. x � 0 (7.5)

where eP and eN are positive and negative trivial vectors, respectively, B(t) =

[A(t), I,−I]; and x(t) = [z(t), eP , eN ]
T is a non-negative coefficient vector with posi-

tive or zero elements. In Fig. 7.4, example samples and trivial samples are shown.
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Figure 7.4: Representation of a query sample in frame (t+1) using example samples
and trivial samples

7.3.3 Finding sparse coefficients using SL0 algorithm

Equation (7.5) is underdetermind and does not have a unique solution for z(t).

Based on sparse representation theory, z(t) should be sparse since the object can be

represented by a linear combination of a few atoms in the dictionary. In addition,

for a good matching object candidate, there are only few non zero coefficients in eP

and eN that account for the noise and occlusion. To obtain z(t), the above equation

should be solved such that z(t) is sparse, where the sparsest solution can be obtained

by minimizing the l0 norm as follows:

x̂0(t) = argmin‖x(t)‖0

s.t. y(t+ 1) = B(t)x(t), x(t) ≥ 0

(7.6)

where ‖.‖0 is the zero norm.

The l0 norm of a vector is the number of non zero elements in the vector, which

is a discontinuous function and therefore is highly sensitive to noise. In addition,

combinatorial search is needed for minimizing l0. Fortunately, the Smoothed l0 (SL0)

algorithm can be used to solve equation 7.6. The SL0 method is more efficient than

the l0 and l1-norm minimization in term of computational complexity [22]. The idea
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of SL0 is based on the approximation of the discontinuous l0 norm function with a

continuous function. This approximation is performed using a parameter (σ) which

determines the quality of the approximation. Once we obtain a continuous function,

it is possible to use convex optimization methods, such as Levenberg-Marquardt,

GaussNewton or gradient descent for minimization [45].

One example of such approximations uses the following function:

fσ(x) � exp(
−x2

2σ2
) (7.7)

where approximately:

fσ(x) ≈ {
1, if |x| � σ

0, if |x| 	 σ

Then, the idea is to minimize l0 norm, ‖x‖0, using the following approximate function:

Fσ(x) =
2m∑
i=1

fσ(xi) (7.8)

In recognition problems, 2m is the total number of training samples. Hence, it is

obvious that for small values of σ, ‖x‖0 ≈ 2m− Fσ(x) and to find the solution that

minimizes l0 norm, Fσ(x) should be maximized. Since Fσ(x) is a continuous function,

we use steepest ascent method. Each candidate sample in frame t + 1 is classified

as either the tracked object or not, based on its sparse representation. If non of

the samples is classified as the tracked object, we use a detector based on sparse

representation to locate the object in the following frames.

7.3.4 Similarity Measure

It is possible that the tracking algorithm loses the tracked region of interest (ROI)

if the object becomes fully occluded or moves out of the field of view of the camera.
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Most of the tracking algorithms continue tracking in these cases which causes drifting

or updating the tracker parameters with false samples. In our algorithm, a fully

occluded object can lead to errors in updating the dictionary with false samples and

cause the tracker to lose object. However, we use feedback to compare the newly

tracked region with the previous ones and decide if the tracked region represents the

object or not. This is achieved by measuring the similarity between the newly tracked

region and previous regions and if it is below a threshold, the tracking stops and our

algorithm uses a detector based on sparse representation to locate the ROI in the

following frames. This prevents the tracking algorithm from following a false positive

instead of the correct ROI.

To measure the similarity between two images, subjective and objective methods

have been presented in the literature. The structural similarity index measure was

developed to compare local patterns of pixel intensities after normalizing for lumi-

nance and contrast [2]. The luminance of the surface of an object is the result of the

illumination and reflectance. However, the structure of the object is independent of

the illumination. Hence, to find the structural information in an image, we have to

separate the influence of the illumination. In fact, the structural information in an im-

age is defined as those attributes that represent the structure of objects in the scene,

independent of the average luminance and contrast. We use the SSIM described by

the system diagram in Fig. 7.5. SupposeX andY are the previously tracked ROI and

the new candidate ROI, respectively. This similarity measure is defined as a function

of three components that compare luminance, contrast and structure, respectively:

S(X,Y) = f(l(X,Y), c(X,Y), s(X,Y)) (7.9)
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Figure 7.5: Structure Similarity Index Measurement (SSIM) Block Diagram [2]

where l(X,Y) is the luminance comparison function, c(X,Y) is the contrast com-

parison function, and s(X,Y) is the structure comparison function. These three

components seem to be the most important aspects for the task of tracking.

7.3.5 Object Detection using Sparse Representation

In this section, we describe a novel object detector based on sparse representation.

Our objective is to build a generic object detector using obtained tracking results in

previous frames without any prior training. This object detector adaptively learns

the object from few frames and then uses the results for detecting the object in the

following frames. Therefore, as mentioned in section II, when the object disappears

at a certain frame in the sequence, the object detector is invoked to search and locate

the object in the following frames. Here, we assume that the object has been tracked

in the previous t frames and at frame t+ 1 it either disappears completely or moves

far from the previous location such that the tracker can not follow it. To handle this

scenario, we search for the object in frame t + 1 using a detector based on sparse



103

representation and the developed dictionary. This is achieved by sliding a window

across the image and deciding whether the window contains the object or not.

There are various definitions of object localization in the literature and they dif-

fer in how the location of an object in the image is represented, e.g., center point,

contour, a bounding box, or by a pixel-wise segmentation [129], [130]. The goal of

our detector is to find a bounding box around the object. Object detection using

sliding window rely on evaluating a quality function f , e.g., a classification method,

over many rectangular subregions of the image and selecting the window with the

maximum score as the object’s location follows:

Robj = argmaxR⊆imagef(R) (7.10)

where R ranges over all rectangular regions in the image. This maximization can

not be done exhaustively since it is time consuming. In fact, there are heuristic

methods that have been proposed to speed up the search. Most of these methods

reduce the number of necessary function evaluations by searching over a coarse gird of

possible rectangle locations and by using certain fixed window sizes. In addition, local

optimization methods can be used instead of global methods using prior information

about background and identifying promising areas where the probability of finding

the target is not low. We use Efficient subwindow search method [129] in order to

find promising windows in the image. Then, each window is classified either as the

tracked object or not using sparse representation with the constructed dictionary

as explained in section III. If we find more than one window as candidates for the

object, the one with the smallest difference with previous samples is selected and the
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algorithm resumes tracking. If the object is not detected in the current frame, we

keep looking for it in the following frames.

7.3.6 Feature Extraction

In this section, we describe in detail the features that we use for representing the

tracked object as well as the positive and negative samples that are used to build the

dictionary.

For feature extraction, we need to address changes that can happen to the ap-

pearance of the tracked object (to address challenges in appearance modeling of the

target in visual tracking). Scale is one of the main changes that affect the appearance

of the object. To address this issue, a multiscale image representation is formed by

convolving the input image with a Gaussian filter of different spatial variances [131].

In this representation, the scale space of an image (or sample) is defined as a func-

tion, L(x, y, σ), that is produced from the convolution of a variable-scale Gaussian,

G(x, y, σ), with an input image (sample), I(x, y):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (7.11)

The Gaussian filters have to be truncated in the experiments and replaced by rectangle

filters. Using rectangle filters can significantly improve the speed of the algorithm

without affecting the performance [125]. Therefore, for each sample, its multiscale

representation is constructed by convolving the sample with a set of rectangle filters
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at multiple scalesF1,1, ..., Fw,h as:

Fw,h(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

wh
1 ≤ x ≤ w, 1 ≤ y ≤ h

0 otherwise

(7.12)

where w and h are the width and height of the rectangle filter. After this step,

each filtered image is used for extracting Haar-like features. The extracted Haar-

like feature vector for each sample has a high dimension which leads to a heavy

computation burden, and tracking can not be performed in real-time. In addition, a

lower dimension feature vector can be discriminative enough for tracking applications

as there are only two classes, i.e., object and background. To lower the computational

complexity, compressive sensing is used to reduce the dimensionality of the extracted

feature vector. Assume, a matrix Φ ∈ Rm×n(m� n) satisfies the restricted isometry

property of order k < m and isometry constant 0 ≤ δ < 1 if for all k-sparse signal

u ∈ Sk = {α ∈ Rn :‖ α ‖0= k} [117]:

(1− δ) ‖ u ‖22≤‖ Φu ‖22≤ (1 + δ) ‖ u ‖22 (7.13)

In the theory of compressive sensing, if the matrix Φ follows the restricted isometry

property, a sparse signal or extracted feature vector, v, can be exactly recovered with

an overwhelming probability by using few elements:

z = Φv (7.14)

where zm×1 is the reduced dimension feature vector.

The compressive sensing theory demonstrates that for a sufficiently high dimension

feature space, the features can be projected to a randomly chosen low dimensional
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space which contains enough information to reconstruct the original high-dimensional

features. This feature reduction method is data-independent and information-preserving.

7.4 Experiments

7.4.1 Tracking Experiments

In this section, we present our experiments for evaluating the proposed approach

and present the results on various publicly available video sequences and our own

collected video clips. The challenging factors include large pose variation, full and

partial occlusion, large scale change, scene blur, significant lighting condition vari-

ations and disappearance. The proposed method is implemented in MATLAB (on

machine with 3GB) and compared with the well known state-of-the-art tracking sys-

tems. In all the experiments, the ground truth center of the object is labled every

five frames and the location is interpolated for the other frames. In frames where the

object does not show up, the location is labeled NA. The similarity (SSIM) threshold

is set to be 0.5. In SL0 algorithm, parameter η is set to 0.1. To balance between

the computational complexity and efficiency of ROI modeling, the number of positive

and negative samples are assumed to be 50. The initial location of the target is given

in all the experiments. We compared our tracker with eight state-of-the-art trackers:

fast compressive tracking (FCT) [132], compressive tracking (CT) [133] compressive

sensing (CS) tracker [134], Frag [135], OAB [136], MIL tracker [98], multi-task tracker

(MTT) [137], and ASLA [138].
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7.4.2 Quantitative Evaluation

Nine algorithms including our proposed algorithm were compared using the twelve

video sequences. Two evaluation criteria were used to quantitatively assess the perfor-

mance of the tracking algorithms. The first evaluation criteria is the tracking success

rate which is defined in [139] as:

score =
area(ROIT ∩ROIG)

area(ROIT ∪ROIG)
(7.15)

where ROIT is the tracking bounding box and ROIG is the ground truth bounding

box. The score is evaluated for each frame and if the value is larger than 0.5, the

tracking result is acceptable. The success rate for the different tracking algorithms

on several video sequences are presented in Table 7.1.

The second criteria is the center location error (CLE) which measures the Eu-

clidean distance between the center of the tracking bounding box and the center of

the ground truth bounding box. The results of CLE are summarized in Table 7.2.

Quantitative evaluations show that the proposed method compares favourably against

the state-of-the-art methods. The proposed method has excellent performance with

87% success rate on the Ball sequence, where the ball temporarily leaves the scene

and returns after a few frames. The second best method is FCT with only 21% success

rate.



108

Figure 7.6: Tracking Results of The Ball Sequence; red: our proposed method, blue:
FCT, black: OAB

7.4.3 Qualitative Evaluation

7.4.3.1 Disappearance

the proposed tracking algorithm is evaluated on a simple video clip which was

recorded by the authors. In this video clip, a ball moves on a surface and then moves

out of the field of view of the camera for few frames and returns back into the field of

view. The exiting and returning locations for the ball can be the same or different.

The results on this video clip simply show that most of the tracking algorithms fail

to track this simple object under the described scenario when the object temporarily

disappears or becomes fully occluded and then reappears. Few sample frames from

this video clip are shown in Fig. 7.6. In this sequence, the ball in the middle of the

first frame is selected manually. The tracking results for only three tracking systems
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are shown in Figure 7.6, where the red colored squares show the results of our tracking

system, the blue colored squares show the results of FCT and the black ones show

the results of OAB. The success rate (SR) and center location error (CLE) results

for all the tracking systems are shown in Table I and Table II. In frames #5 and

#10, the ball is moving up and the three trackers work fine and they track the ball

accurately. In frame #15, the ball is leaving the scene and half of the ball appears

in the frame. Our tracker stops tracking and does not show any results, i.e., there is

no red box in the frame. However, all the other tracking systems continue tracking

and the results are false tracking in frames #20 and #25. In addition, they can

not find the ball after it reappears and they lose track of the target in the following

frames (#35, #40, #45). On the other hand, our tracking method detects the ball in

frame #35 and continues tracking correctly in frames #40 and #45. Again, in frame

#50 our method stops tracking and there are no red boxes in those frames. We note

that the locations where the ball leaves in frame #50 and returns in frame #65 are

different, which shows that our method is robust and the detection is not dependent

on the location. Overall, our algorithm outperforms the state-of-the-art methods on

this synthetic video sequence.

7.4.3.2 Illumination and pose changes

few sampled tracking results, of different tracking algorithms, on several video

sequences are shown in Fig. 7.7. In the David sequence, the person walks from a

dark region to a bright region while changing his head pose. The tracking results

for the David sequence show that our tracker can handle well both illumination and

pose variations as the appearance changes gradually when the person walks out of the
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Tracking Results of the Dark Car Sequence which has difficult illumination
conditions and background clutters

Tracking Results of the David Sequence which has large illumination variation,
partial occlusion and pose change

Tracking Results of the Faceocc2 Sequence which has significant and long duration
occlusion and in plane rotation

Tracking Results of the Football Sequence which has occlusion, in plane rotation,
out of plane rotation and background clutters

Tracking Results of the Sylvester Sequence which pose change, fast motion and
illumination change

Tracking Results of the Tiger Sequence which has non-rigid object deformation,
motion blur, fast motion and in plane rotation

Figure 7.7: Tracking Results on sample frames from Dark Car, David, FaceOcc2,
Football, Sylvester and Tiger video sequences.
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Table 7.1: Success Rate (%)

Sequence FCT CT CS Frag OAB MIL MTT ASLA Proposed Method

Ball 21 18 15 17 20 16 18 15 87
Biker 35 84 5 3 66 1 9 10 75
Tiger 52 50 62 19 24 34 24 14 68

Chasing 79 47 67 21 71 65 96 63 81
David 98 94 8 8 32 71 41 34 97

Sylvester 77 69 57 34 65 77 67 82 79
Shaking II 88 55 12 34 74 41 93 82 84

Panda 84 90 1 9 83 80 11 71 75
Football 76 74 35 26 31 77 67 7 69
Dark Car 36 53 6 0 14 48 59 57 55
FaceOcc2 99 99 39 54 49 97 88 93 98

Goat 77 26 26 14 46 27 39 37 71

Average SR 68.5 63.2 27.7 19.9 47.9 52.8 51 47.0 78.5

dark room. Other trackers such as FCT and CT also preform well on this sequence.

However, CS and Frag trackers can not track properly, for example the Frag tracker

loses the target from frame 380 and up, which shows that these methods are not

robust for pose and illumination changes. In the Sylvester sequence, the object has

pose and illumination changes. ASLA, MIL and our method perform well on most

frames of this sequence. However, MTT can not track the target accurately because

of using holistic features that are less effective for large pose variations.

7.4.3.3 Rotation and abrupt motion

in the Shaking sequence, the person moves his head unpredictably and the head

undergoes large appearance variation because of drastic illumination change and un-

predictable motion. The FCT method has the best tracking results and our method

shows good performance on this sequence because of the use of the detector. When-
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Table 7.2: Center Location Error (CLE)

Sequence FCT CT CS Frag OAB MIL MTT ASLA Proposed Method

Ball 45 48 55 52 48 52 50 58 18
Biker 12 6 176 107 10 44 68 109 6
Tiger 23 25 48 39 42 27 61 49 8

Chasing 10 12 9 56 9 13 4 47 8
David 11 14 72 73 57 19 125 57 13

Sylvester 9 14 84 47 12 9 18 9 15
Shaking II 15 46 255 119 18 58 16 27 18

Panda 6 10 157 56 8 7 47 9 10
Football 13 14 43 144 37 13 9 207 24
Dark Car 9 10 89 116 11 9 7 8 8
FaceOcc2 12 16 29 57 36 17 19 20 13

Goat 18 103 137 140 71 109 99 95 25

Average CLE 15.2 26.5 96.1 83.8 29.9 31.4 43.5 57.9 13.1

ever the head movement is large, our method uses the detector and searches for the

face in the frame.

One of the challenging sequences is the Tiger sequence, where the target experi-

ences changes in appearance such as out of plane rotation with occlusion. Our method

performs very well on this sequence since in some frames the target is mostly occluded

and other trackers can not find it after reappearing. In frame #346, our method does

not show any results as the tiger is mostly occluded but after reappearing in the

following frames, the tiger was detected and tracking resumes.

7.4.3.4 Occlusion

In the goat sequence there are pose variations, partial occlusion and shape defor-

mation. Most of the trackers can not handle all these changes and the success rate is



113

less than 50% for CT, CS and Frag. However, FCT has the best performance with

77% success rate and our method is the second with 71% success rate.

In the Panda sequence, there are in-plane rotation and partial occlusion. Most of

the tracking methods drift after the object undergoes large rotation in frame #103,

but FCT, ASLSA and our tracking method perform well on this sequence.

To summarize, the average success rate and center location error are calculated

at the end of Table 7.1 and 7.2. Our method obtained 79% success rate which is far

better than the other trackers. In addition, the CLE for our method is the lowest

and outperforms the other methods.

7.5 Conclusion

In this paper, we presented a robust tracking algorithm using adaptive sparse rep-

resentation and feedback. The adaptive sparse representation allows for modeling the

appearance of the tracked object and handling occlusion and noise. For further ro-

bustness, after finding the newly tracked ROI , the similarity measure, SSIM, between

the previously tracked ROIs and the newly tracked ROI is measured and if the SSIM

is above a threshold, the newly tracked region is similar to the previously tracked

ROIs corresponding to the object in the sequence of frames and is used to update

the dictionary. On the other hand, if the SSIM is less than the threshold, the newly

tracked region is not accepted and the algorithm stops tracking and starts detection

using the dictionary. The algorithm does not update the dictionary in this case.

Measuring SSIM between the newly tracked ROI and the previous ones is inspired

by feedback control systems and leads to significant improvement in the efficiency
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of the tracking algorithm. We compared the performance of our method with the

state-of-the-art trackers on publicly available video sequences. The obtained results

show the accuracy and robustness of our tracking algorithm especially in cases when

the tracked object becomes fully occluded or temporarily disappears from the scene.

In these cases, our proposed algorithm stops tracking till the object reappears and

then resumes tracking. The obtained results using the proposed method outperform

the results obtained with the state-of-the-art methods.



CHAPTER 8

Conclusion and Future Work

In this dissertation, we presented sparse representation, l0 and l1 norm minimiza-

tion. In addition, smoothed l0 norm is used as new algorithm to find the sparsest

solution for a system of linear equations. Then we used sparse representation and

smoothed l0 for recognition and classification purposes in the experiments.

In chapter 3, we presented a fully automated system for ear recognition and gen-

der classification using sparse representation. The proposed method was evaluated

publicly available data sets, UND collection J ear data set and WVU data set. The

obtained results using the SL0 algorithm for classification is far better than other

classifiers such as SRC, NN or NS. To improve the proposed algorithm, we plan to

fuse facial and ear features for purpose of gender classification in future work.

In chapter 4, a new method for gender classification was presented from facial

images using sparse representation. Basis pursuit method was used to formulate the

problem in order to find the sparsest solution. The experiments were conducted on

the FERET data set and extracting features using Gabor Wavelets. We compared

the obtained results from the proposed method with previous methods that used the

same data set and our results are more robust that other methods.

115
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In chapter 5, we presented a method for classification based on weighted sparse

representation using smoothed l0 norm with non-negative coefficients. In previous

methods, there was no constraint on the coefficients and all the atoms in the dictionary

are treated uniformly. While the SRC algorithm does not differentiate between the

atoms in the dictionary, our algorithm uses mutual information to find the similarity

between the query sample and samples in the gallery, which provides useful weights

for more accurate classification. As a result, the weights narrow the search space for

the algorithm and help the algorithm to converge faster without being trapped in

local extremums. In addition, by adding the non-negative constraint, components of

this coefficients vector indicate the contribution of the gallery samples towards the

representation of a given query sample. The proposed algorithm was evaluated on

two publicly available data sets, the Extended Yale B data set for face recognition

and UND data set for ear recognition. Experimental results obtained for our proposed

method are not only faster, but also result in a better recognition rate even with a

smaller number of training samples. In our future work, we will investigate the use

of other similarity measures to enhance the results.

In chapter 6, a robust biometrics recognition system was proposed using joint

weighted dictionary learning and smoothed L0 norm. Dictionary learning for sparse

representation has shown to improve the results in classification and recognition tasks

since class labels can be used in obtaining the atoms of learnt dictionary. We proposed

a joint weighted dictionary learning which simultaneously learns from a set of training

samples an over complete dictionary along with weight vectors that correspond to the

atoms in the learnt dictionary. The components of the weight vector associated with

an atom represent the relationship between the atom and each of the classes. The
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weight vectors and atoms are jointly obtained during the dictionary learning. In the

proposed method, a constraint is imposed on the correlation between the obtained

atoms that represent different classes to decrease the similarity between these atoms.

In addition, we use smoothed L0 norm which is a fast algorithm to find the sparsest

solution. Experiments conducted on the West Virginia University (WVU) and the

University of Notre Dame (UND) datasets for ear recognition show that the proposed

method outperforms other state-of-the-art classifiers.

In chapter 7, we proposed robust object tracking using adaptive sparse represen-

tation and feedback and an automatic object tracking system is developed that can

handle pose variations, scale variations and temporary disappearance of the object

from the scene. We focus on automatic tracking with no prior knowledge other than

the location of the region to be tracked in the first frame, which can either be lo-

cated manually or using a detector that finds the region of interest (ROI). The visual

tracking is a binary classification problem. The positive samples are bounding boxes

that have high overlap with current position of the target while negative samples are

drawn from regions outside the ROI to model background close to the target. The

tracking algorithm uses the dictionary to locate the ROI in the following frames via

adaptive sparse representation. One of the main issues in tracking systems is false

tracking when the object disappears from the scene. Motivated by the concept of

feedback in control systems, we overcome the problem of false tracking when the

object disappears by comparing the newly tracked region with previous regions to

confirm that the object is still in the frame. A structural similarity measure is used

to measure similarity between a newly tracked ROI and the previously tracked ROIs

and if the similarity is below a certain threshold, the object is assumed to be out of
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the scene. In fact, this similarity evaluation is like a feedback loop in our tracking

algorithm which makes our method robust, reliable and accurate when compared to

the state-of-the-art methods on challenging sequences. If the object is not located

in the current frame, the algorithm stops tracking and starts searching for the ob-

ject in the following frames. The searching is achieved by using a detector based on

sparse representation and an adaptive dictionary to efficiently locate the object when

it reappears in the scene. Experiments on video sequences, for both quantitative and

qualitative evaluations, demonstrate the effectiveness and robustness of the proposed

tracking system.
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