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Effectively combining multiple and complementary sources of information is be-

coming one of the most promising paths for increased accuracy and more detailed

analysis in numerous applications. Neuroscience, business analytics, military intelli-

gence, and sociology are among the areas that could significantly benefit from properly

processing diverse data sources. However, traditional methods for combining multiple

sources of information are based on slow or impractical methods that rely either on

vast amounts of manual processing or on suboptimal representations of data. More-

over, most of the existing methods are not well suited for dealing with the increasing

amount of human-generated data. We introduce an analytical framework that al-

lows automatic and efficient processing of both hard (e.g., physics-based sensors)

and soft (e.g., human-generated) information, leading to enhanced decision-making

in multisource environments. This framework is based on the Dempster-Shafer (DS)

Theory of Evidence as the common language for data representation and inference.

To model and track uncertainties in soft data, our framework introduces Uncertain

Logic, a classically consistent first order logic environment. In addition, our frame-

work defines a filtering and tracking environment for incorporating both hard and

soft data, where the probability posterior can be decomposed into a product of com-

bining functions over subsets of the state and measurement variables. This combining

function approach offers a framework for the development and incorporation of more

sophisticated uncertainty modeling and tracking/estimation models, and at the same

time allows incorporating and enhancing existing Bayesian methods. Future work



is aimed at increasing the computational efficiency of the overall hard and soft data

fusion framework.
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CHAPTER 1

Background and Motivation

The focus of traditional data fusion systems is expanding beyond the

use of physical sensors to observe, locate, and characterize physical tar-

gets to the combined use of physical and nonphysical sensors to observe

the human landscape: individuals, groups, populations, organizations, and

their interactions. In addition to refocusing from the physical to the hu-

man landscape, there is increasing interest in the utilization of nonphysical

sensors including humans acting as observers (human as “soft sensors”)

and the use of other types of data available on the Web.

David L. Hall and John M. Jordan

Human-Centered Information Fusion, 2010 [3]

The excerpt above, extracted from Hall and Jordan’s recent book, “Human-

Centered Information Fusion” [3], succinctly summarizes the need for incorporating

soft data (e.g., text from witness statements, blogs, newspapers) into modern data

fusion systems. Successfully incorporating soft data into already existing (and usually

sophisticated) hard data (i.e., generated by physical sensors) methods, could provide

immediate solutions in many problem contexts, and significant improvements in nu-

merous applications. For example, consider a surveillance scenario in which witness

statements about suspicious behavior provide valuable soft data pertinent to the ac-

tivity of criminals that must be combined with hard data from traditional surveillance

1



2

sensors. Or consider a public health scenario in which patient statements, and doctor

opinions must be combined with biomedical sensor hard data to detect and track the

spread of illnesses.

By its nature, soft data in the form of text is more qualitative in nature, inher-

ently possessing uncertainty with regards to semantics. In addition to the semantic

uncertainty, the source (e.g., informant, blogger) of the text may not be reliable, and

the text statement itself may not be credible. The first question that arises is, how

should one parse and represent the soft data? Also, how does one combine inher-

ently uncertain soft data text with hard data in an automated fusion, estimation,

and tracking system? Clearly, there is a growing necessity for the development of

new methods in fusion, estimation, and tracking that can incorporate and suitably

combine heterogeneous forms of both hard and soft data.

1.1 Requirements and Challenges

The study and analysis of human-based information, as well as human interac-

tions, has been traditionally addressed by social sciences, which includes, among

other disciplines, linguistics, psychology, sociology, and political science. Some of

the biggest challenges faced by these disciplines include abstracting relevant informa-

tion to focus the attention to the analysis of the problem at hand, measuring and

characterizing subjective information, understanding and describing reasons behind

human behavior, among many others. Depending on the application, hard and soft

data fusion would inherit most (if not all) of these challenges, making this type of

fusion a heavily interdisciplinary task. In addition, hard and soft data fusion brings

new challenges, such as finding appropriate representations for soft data, combining

non-physical information systems with existing hard data processors, and addressing

computational complexity. This work is focused on providing solutions to these new

challenges, which are further described next.



3

1. Data representation. Soft data is naturally given in the form of speech or

text inputs. However, these data formats are not well suited for an automated

data processing system, as they are not in a standardized form. Computational

linguistics addresses this problem, with the goal of preserving the largest possi-

ble amount of semantic information from natural language expressions. When

building the corresponding representation in soft data fusion systems, our goal

is exactly the same. In linguistics, First Order Logic (FOL) becomes relevant for

addressing this requirement. Considering the advantages of FOL in preserving

more semantic information compared to other soft data representations (e.g.,

RDF graphs) [4], and to the availability of natural language processing systems

that automatically parse text information into logic sentences, we use FOL for

data representation in our fusion solutions.

2. Modeling and tracking uncertainties in soft data. This requirement

refers to the proper modeling of uncertainties in soft data, as well as tracking

their evolution in inference processes. The more qualitative nature of soft data

makes uncertainty management more challenging than in the case of hard data.

Representing uncertainties using intervals, as enabled by Dempster-Shafer (DS)

theory, is an intuitive and advantageous alternative to conventional probabilistic

models for uncertainty management [5, 4].

3. Robustness against conflicting evidence. Note that conflicting evidence

can easily lead to contradictions that make accurate reasoning impossible. This

is actually not an unlikely event in fusion that incorporates soft data, as we can

expected to receive large quantities of information from humans with various

degrees of reliability or even with an intent for deception. The goal is to be able

to process conflicting evidence without relying on drastic solutions (e.g., dis-

carding both correct and incorrect evidence indiscriminately). Fusion operators

within the DS theory framework such as the Conditional Fusion Equation [6]
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provide various degrees of robustness against conflicting evidence. The robust-

ness against conflicting evidence, as well as its strength as an uncertainty mod-

eling system for soft data reasoning, make DS theory our primary mathematical

framework for the new methods introduced in this manuscript.

4. Suitable combination of existing hard data processors with both ex-

isting and new soft data processing systems. While natural language

processing can convert text into uncertainty-augmented first order logic, the

question of how to incorporate such soft data models into estimation and track-

ing remains an important fundamental issue. An important challenge in terms

of the impact that soft data fusion can have in enhancing existing (hard data-

based) fusion systems, is the ability to combine or extend Bayesian filtering

with soft data processing capabilities.

5. Reduced computational complexity. The requirement is critical, as it is

well known that logic reasoning systems are computationally demanding. Then,

alternatives for reducing complexity must be considered. One of these alterna-

tives is to solve a satisfiability problem in which, instead of using inference rules

(e.g., Modus Ponens) to derive conclusions and their associated uncertainties,

we find the logical values (or uncertainties) that are unknown for the propo-

sitions in a set of logic formulas (in our case, this set of formulas is the FOL

representation of the soft data) such that the full set of logic formulas (i.e., our

logic model) is true or satisfiable.

1.2 Application Scenarios

The range of application of soft and hard data fusion methods is vast, involving

virtually every scenario where humans have traditionally played a key role either in

producing or analyzing information. To better illustrate the impact and benefits of
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the work described in this dissertation, we can consider the following sampling of

potential applications.

• Detection and Tracking. A recent trend motivated by irregular/asymmetric

warfare cases considers the problem of incorporating non conventional sources

such as human sources for tracking applications [7]. The emergence of technolo-

gies such as smartphones provides humans with means to rapidly share what

they can see to a centralized system. The fundamental hardware is then already

available for using humans as “soft” sources in detection and tracking systems.

When combined with hard data fusion systems, soft-data enhanced tracking

systems could provide more accurate information in difficult scenarios such as

urban environments. In addition, humans could also provide knowledge (e.g.,

in the form of if-then rules) that can aid in prediction of events in a tracking

scenario. As will be seen later in this manuscript, our new methods could be

directly used in detection and tracking applications.

• Situation Awareness. Situation awareness is the perception of elements in

the environment within a volume of time and space, the comprehension of their

meaning, and the projection of their status in the near future [8]. Incorpora-

tion of automated soft data processing into situation awareness can be valuable

in a wide array of applications, including search and rescue operations, battle-

field reconnaissance, surveillance, politics, etc. For example, Twitter updates

could be used to assess the status after an emergency (e.g., earthquake), as

the inhabitants of a region of interest can provide on-the-ground information,

including expressions of fear, requests for help, and disasters’s impact on the

community [9]. Manually extracting information from social media would be a

daunting task, making the introduction of a reliable system that can accurately

fuse the available soft (and perhaps hard) data an important need.
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• Crowdsourcing. Crowdsourcing is the act of taking a job traditionally per-

formed by a designated agent (usually an employee) and outsourcing it to an

undefined, generally large group of people in the form of an open call [10]. It

allows the power of the crowd to accomplish tasks that were once the province of

just a specialized few. Successful examples of crowdsourcing include Wikipedia,

Waze traffic application, and YouTube, among others. These and new appli-

cations of crowdsourcing could benefit from more efficient ways of categorizing

and processing knowledge that is expressed in natural language, such as the

ones presented in this manuscript.

• Question Answering Systems. Question answering systems aim at auto-

matically answering questions that are posed by humans in natural language.

Unlike existing information retrieval systems (e.g., search engines), which sim-

ply render a list of matching documents, the main objective of question answer-

ing systems is to retrieve answers to questions rather than full documents or

best matching passages, as most information retrieval systems currently do [11].

Existing answering systems such as Wolfram Alpha, as well as IBM Watson,

are already fully functional systems able to parse natural language and either

search or compute answers based on database searches or numerical operations.

However, there is a need for addressing more complex types of questions or, in

general, questions that may extend beyond the scope of what is already avail-

able in a database (e.g., why-questions). In addition, these systems could also

benefit from more accurate tracking of imperfections or uncertainties in both

the input data, as well as uncertainties in the possible answers.

• Human-Robot Interaction. Human-robot interactions require robots to be

capable of dealing with spoken natural language dialogues [12]. In addition

to accounting for imperfections in the speech processing and natural language

parsing, the robot must be able to cope with various types of errors, inaccu-
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racies, and imperfections of human data, as well as indirect speech acts (e.g.,

dealing with expressions like “I would like a coffee” instead of a direct order

“get me a coffee”). A robust soft data processing framework such as the one

being developed in this research work could provide significant improvements

to interfaces and decision systems within the human-robot interaction scope.

• Medical Diagnosis. Medical diagnosis is an important task that should be

performed as accurately and efficiently as possible. As with any human driven

process, it is inherently influenced by biases. If a doctor has an assumed diagno-

sis, she will immediately begin searching for further evidence that her assump-

tion can be validated, missing other potential diagnoses. Additionally, if the

doctor begins searching by symptoms, while these may be accurate, the order

or weight given to any one symptom will give a bias toward related diagnosis

when in fact, there may be a symptom not given any credit and thus not in-

cluded in the analysis [13]. We then need an approach that minimizes human

bias and considers all relevant and irrelevant data in determining a diagnosis.

With an automated medical diagnosis system, doctors could be presented with

multiple potential diagnoses based on all of the patient’s current and past de-

tails. Such a system could be designed using the solutions introduced in this

manuscript.

1.3 Related Research

Two research areas are directly related to our work on hard and soft data fusion.

The first area deals with modeling uncertainty in logic reasoning. This area has

been studied for several decades now, but the challenges introduced by soft data

fusion require further improvements to the existing solutions. The second area can

be named directly as hard and soft data fusion. This is a younger research topic, in

which our efforts are focused on foundational work.
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1.3.1 Modeling Uncertainty in Logic Reasoning

Research on the area has traditionally targeted a number of distinct goals, such as

investigating the source and meaning of uncertainty, enriching of logic systems with

appropriated formalisms for uncertainty management (e.g., semantics, axioms), and

creating appropriate models and operators to quantify the propagation of uncertainty

in reasoning and inference problems. The latter is more related to the uncertain

logic work presented in this manuscript. However, it is necessary to understand

advancements on the other areas to contextualize and properly apply the methods

introduced herein.

Relevant foundational work on analyzing the source and representation of uncer-

tainty in logic systems can be found in [14]. In this work, the author introduces two

different approaches to giving semantics to first-order logics of probability, the first

one incorporating probability in the domain (for problems involving statistical infor-

mation), and the second one assigning probabilities to possible worlds. This work is

extended in [15], where the author further discusses the use of a “possible-worlds”

framework to represent and reason about uncertainty. Then, quantification of the

uncertainty is accomplished by assigning a probability distribution to the possible

worlds. In addition, the author discusses the importance of considering time in the

inference process, i.e., possible words should describe states at each time point of

interest. The work in [16] provides insight on how to process and combine data-

driven (e.g., information obtained from observed events) and knowledge-driven (e.g.,

information provided by domain experts) using different logic systems.

In addition to first-order logic, uncertain representations of logic systems have

been extended to other types of logic. For example, the work in [17] introduces a

multi-agent epistemic logic able to represent and merge partial beliefs of multiple

agents. This logic system is based on possibility theory [18], and enhances epistemic

logic with parametric models to obtain lower bounds on the degree of belief of agents.
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Similarly, an axiomatization of a modal logic using fuzzy sets and DS belief functions

for measuring probabilities of modal necessity is presented in [19].

When addressing quantification and propagation of uncertainty in logic reasoning

systems, one of the most important approaches is probabilistic logic [20]. Probabilistic

logic provides a generalization of logic in which the truth values of sentences are prob-

ability values (between 0 and 1). A related approach, possibilistic logic [21], defines

mechanisms (based on possibility theory) to associate classical logic formulas with

weights. These weights represent lower bounds of necessity degrees. To efficiently ad-

dress the computational complexity of larger problems, two new probability-enhanced

methods have been recently introduced, namely, MLNs [22] and PSL [23]. MLNs com-

bine FOL and Markov networks as undirected graphical models and assign weights

to FOL formulas whose truth values are represented through probability values. PSL

also uses undirected graphical models to represent templates for FOL formulas, and

represents truth values as a number in the interval [0, 1]. PSL restricts FOL formulas

to conjunctive bodies. It relies on the Lukasiewicz t-norm and its corresponding co-

norm to model AND and OR operations. Both MLN and PSL are statistical methods

that attempt to find uncertainty parameters that ensure satisfiability of the logical

models specified by the users. Their definition, however, does not insist on being

consistent with classical logic, as is our goal with ULP, and their accuracy may be

compromised when the amount of training data is small.

Other approaches that extend logic reasoning to address uncertain scenarios are

many-valued and fuzzy logics. Many-valued logics [24] do not restrict the number of

truth values of propositions to two. The interpretation of the truth values depends

on the actual application. Fuzzy logic can be seen as a type of many-valued logic.

Fuzzy logic is based on the theory of fuzzy sets [25]. In fuzzy logic, the imprecision in

probabilities is modeled through membership functions defined on the sets of possible

probabilities and utilities.



10

Regarding the use of intervals as means of representing uncertainty, it appears

in several methods, such as possibility theory [26] and DS theory. The latter, in

addition, incorporates a rigorous methodology for assigning probabilistic measures

based on available evidence [27]. Given the direct relation that exists between DS

theory and probability (DS belief and plausibility measures correspond precisely to

probabilistic inner and outer measures [27]), it is possible to simplify DS models

to probabilistic models. Considering these advantages, a number of researchers have

studied the relation of DS theory and logic. In [28], DS theory is formulated in terms of

propositional logic, enabling certain logic reasoning operations in the DS framework.

Insight into the relationship between DS theory and probabilistic logic is presented

in [28]. A belief-function logic that uses DS models and operations to quantify and

estimate uncertainty of logic formulas is introduced in [29]. This logic system allows

non-zero belief assignments to the empty set, relies on Dempster’s combination rule as

the method for quantifying the propagation of uncertainty, and is used in deduction

systems where the logic formulas are in Skolemized normal conjunctive form. An

application of this system for inference is described in [30]. Further analysis on DS-

based logic is presented in [31]. A detailed study on uncertain implication rules is

in [32]. This latter work, however, is not focused on ensuring consistency with classical

logic, but on modeling causal probabilistic relations.

In spite of existing research to provide logic with uncertainty modeled by DS,

efforts to date can be improved by ensuring consistency with classical logic and re-

ducing the number of assumptions needed for the logic systems to work. For example,

most of the existing methods are based on Dempster’s Combination Rule, which, as

it is shown in this manuscript, is not necessarily well suited for logical reasoning. In

addition, inference processes could benefit from eliminating the condition that logic

formulas need to be expressed in normal conjunctive form or as implication rules, as

well as eliminating the need for allowing non-zero belief assignments to the empty set

in a DS model.
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1.3.2 Hard and Soft Data Fusion

Due to the novelty of the hard and soft data fusion area, existing work is less

abundant and more recent than the above described uncertainty management in logic

systems. The work in [33] used a random set approach to fuse natural language

propositions from a very restricted spatial vocabulary, and demonstrated efficacy in

an experiment involving the detection and location of a fixed target. The work in [7]

focused on tracking, and took a related approach, similarly imposed severe limitations

on the soft data, in this case with regards to semantics. In [34], the authors capture

soft data using probability and First Order Logic (FOL) to model associations between

hard and soft variables, extending the framework of Markov Logic Networks. In [35]

the author introduces a particle filter for tracking in an urban scenario given soft

binary data. The work in [36] focused on fusion architectures, using 2nd-degree

uncertainty models and hybrid Bayesian/fuzzy-logic inference schemes. Our work

in [37, 38, 39, 6, 4] has focused on utilizing Dempster-Shafer (DS) belief theory,

developing new methods for modeling and fusing heterogeneous soft/hard data sources

with pervasive uncertainty, leading to developments in estimating source and evidence

reliability/credibility, sensor consensus estimation, modeling/fusion of imperfect FOL,

and computational efficiency. All of these previous papers have contributed various

attempts at grappling with the nature of soft and hard data fusion and estimation.

In this dissertation we propose an approach that complements these papers, allowing

to efficiently (i.e., scalable solutions) process soft data, and to embed existing (and

usually sophisticated) hard data processors.

1.4 Key Contributions

The academic contributions in this dissertation can be grouped in three main

areas, namely: 1) Uncertain Logic Processing; 2) combining functions for hard and
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soft data fusion; and 3) computational efficiency improvements for hard and soft data

fusion.

1. Uncertain Logic Processing. We introduce Uncertain Logic Processing

(ULP), a DS theoretic approach for first order logic operations. ULP provides

support for handling variables and quantifiers, in addition to fundamental logic

operations (i.e., ¬,∧,∨). This framework allows systematic generation of mass

assignments based on uncertain first order logic formulas. Furthermore, by using

appropriate fusion operators, higher-level applications are possible within this

framework, such as inference and resolution based on uncertain data models.

2. Combining functions for hard and soft data fusion. We propose a frame-

work for Bayesian estimation/tracking with soft and hard data in which the

posterior is decomposed into a product of combining functions that suitably

partition both the tracking state and the measurement variables, as well as their

corresponding soft and hard components. This partition engenders a principled

approach to estimation and prediction, and enables the integration of different

subsystems when results of these subsystems are expressed through probability

distributions. In addition, the proposed framework allows one to dynamically

incorporate domain knowledge into inference/estimation systems. Although our

technology could be used to create completely new fusion systems (potentially

using all the richness of DS theory), our emphasis on combining with Bayesian

frameworks is fed by our interest on allowing an easy integration with exist-

ing solutions. By following this approach, we target a faster acceptance and

integration of our soft data enhanced fusion solutions.

3. Computational efficiency improvements for hard and soft data fusion.

We introduce a computationally efficient algorithm for the processing of soft

data in systems of hard and soft data fusion. To address both complexity

and robustness against conflicting evidence, we aim at solving the satisfiability
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problem associated with an uncertain logic model, and formulate this problem

as a convex optimization problem. This significantly reduces the complexity of

the problem and, by defining a cost function that minimizes the uncertainty of

conflicting evidence, provides an increased level of robustness. Combined with

efficient Bayesian processors for hard data processing, the proposed method can

significantly improve the performance of existing methods for hard and soft data

fusion.

Documentation and dissemination of the contributions in these areas have been

addressed by the following publications:

1. R. C. Núñez, T. Wickramarathne, K. Premaratne, M. N. Murthi, S. Kübler,

M. Scheutz, and M. Pravia, Credibility assessment and inference for fusion of

hard and soft information, in 2nd International Conference on Cross- Cultural

Decision Making: Focus 2012 (also in Advances in Design for Cross- Cultural

Activities, 1, pp. 96-105, Eds: D. D. Schmorrow, D. M. Nicholson, CRC Press,

2013), July 2012.

2. R. C. Núñez, M. Scheutz, K. Premaratne, and M. N. Murthi, Modeling Un-

certainty in First-Order Logic: A Dempster-Shafer Theoretic Approach, in 8th

International Symposium on Imprecise Probability: Theories and Applications,

Compiégne, France, July 2013.

3. R. C. Núñez, R. Dabarera, M. Scheutz, O. Bueno, K. Premaratne, and M.

N. Murthi, DS-Based Uncertain Implication Rules for Inference and Fusion

Applications, in 16th International Conference on Information Fusion, Istanbul,

Turkey, July 2013.

4. R. C. Núñez, B. Samarakoon, K. Premaratne, and M. N. Murthi, Hard and

soft data fusion for joint tracking and classification/intent-detection, in 16th

International Conference on Information Fusion, Istanbul, Turkey, July 2013.
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5. R. Dabarera, R. C. Núñez, K. Premaratne, and M. N. Murthi, Dynamics of

Belief Theoretic Agent Opinions Under Bounded Confidence, in 17th Interna-

tional Conference on Information Fusion, Salamanca, Spain, 2014.

6. R. C. Núñez, M. N. Murthi, and K. Premaratne, Efficient Computation of DS-

Based Uncertain Logic Operations and its Application to Hard and Soft Data

Fusion, in 17th International Conference on Information Fusion, Salamanca,

Spain, 2014.

7. T. Williams, R. C. Núñez, G. Briggs, M. Scheutz, K. Premaratne, and M.

N. Murthi, A Dempster-Shafer Theoretic Approach to Understanding Indirect

Speech Acts, Advances in Artificial Intelligence – IBERAMIA 2014, Santiago de

Chile, Chile, 2014.

8. R. C. Núñez, M. N. Murthi, K. Premaratne, M. Scheutz, and O. Bueno

Uncertain Logic Processing: logic-based inference inference and reasoning us-

ing Dempster-Shafer models, International Journal of Approximated Reasoning,

Volume 95, April 2018.

1.5 Organization of this Dissertation

The reminder of this manuscript continues as follows. In Chapter 2 we introduce

Uncertain Logic Processing (ULP), our core reasoning engine for soft data processing.

In Chapter 3 we lay out the foundations of a DS-based graphical model that can be

used for efficient reasoning under the ULP framework. In Chapter 4 we introduce a

new method for hard and soft data fusion, which is based on expressing joint prob-

ability distributions as a product of combining functions. In Chapter 5 we illustrate

the use and application of the proposed methods through several examples. Finally,

Chapter 6 concludes the proposal and discusses avenues for future research.



CHAPTER 2

Reasoning with Soft Data using DS-based
Logic Models

The ability of reasoning in the presence of uncertainty is a requirement whose im-

portance keeps growing in science and engineering. Addressing this requirement for

logic inference and reasoning systems is particularly important given the increasing

number of uncertainty sources in this type of systems. Think, for example, of a logic-

based Artificial Intelligence (AI) system that relies on a human-provided knowledge

base for inference tasks. How certain can we be on the accuracy of the information

present in this knowledge base? How can we account for lack of reliability of people’s

entries in the knowledge base? What about lack of information, or incomplete infor-

mation in the knowledge base? Like this one, multiples scenarios arise in applications

and models that involve the collection of physical data or experts’ knowledge.

Due to its established position as a fundamental and very powerful tool for knowl-

edge representation and reasoning, First Order Logic (FOL) has been gradually en-

riched to handle imperfections in real-life data (see Chapter 1.3.1 above). Some

approaches include fuzzy logic and probabilistic logic [40]. Although useful in some

applications, these approaches are sometimes limited by the way they model un-

certainty, or simply by the complexity of the problem formulation. Extensions of

these approaches could be strengthened by adding more flexibility in assigning prob-

abilities (e.g., through intervals) and a more rigorous method of assigning probabil-

15
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ity/uncertainty measures (e.g., one that does not require defining priors or member-

ship functions).

Originally introduced in [41, 5] and formally described in [42], Uncertain Logic

Processing (ULP) is a suitable solution for addressing these issues. ULP is an ex-

tension of first order logic into Demster-Shafer (DS) theory. Consider, for example,

an expression of the form: ∃x : ϕ(x), with uncertainty [α, β], where ϕ(x) is a logic

predicate that depends on the variable x. The ULP framework allows us to model

this sentence, and to combine it with similar ones in order to solve various inference

problems. When α = β, ULP renders probabilistic results. When α = β ∈ {0, 1},

ULP converges to first order logic. ULP can also be used as an adaptive many-valued

logic system, where the quantization varies depending on the granularity defined by

the input data and/or knowledge models. Unlike existing DS models for logic that, in

general, cannot guarantee logic consistency with classical logic for a plurality of logic

constructs, uncertain logic preserves this consistency, and can grow to incorporate

logic rules and properties without loss of uncertainty measures. By preserving this

consistency, it is possible to seamlessly move between the logic and DS domains, and

to incorporate both the strength of first order logic for information representation,

inference, and resolution, and the strength of DS for representing and manipulating

uncertainty in the data. In this chapter, we describe the fundamentals of ULP, one

of the main contributions of this dissertation work.

2.1 Dempster-Shafer Theory

DS Theory is defined for a discrete set of elementary events related to a given

problem. This set is called the Frame of Discernment (FoD). In general, a FoD is

defined as Θ = {θ1, θ2, . . . , θN}, and has a finite cardinality N = |Θ|. Elements (or

singletons) θi ∈ Θ represent the lowest level of discernible information. The power set

of Θ is defined as a set containing all the possible subsets of Θ, i.e., 2Θ = {A : A ⊆ Θ}.

The cardinality of the power set of Θ is 2N . Next we introduce some basic definitions
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of DS Theory, as required for building uncertain logic models. For additional details

on DS Theory, we refer the reader to [40, 43].

2.1.1 Basic Belief Assignment and Focal Sets

A Basic Belief Assignment (BBA) or mass assignment is a mapping mΘ(·) : 2Θ →

[0, 1] such that:
∑

A⊆Θ mΘ(A) = 1 and mΘ(∅) = 0. The BBA measures the support

assigned to A ⊆ Θ.

Masses in DS theory can be assigned to any singleton (e.g., {θ1}, {θN}) or non-

singleton (e.g., {θ1, θ2}, {θ1, θ3}, {θ1, θ2, θ3}) proposition.

The subsets A such that m(A) > 0 are referred to as focal sets of the BBA. A

belief function is called Bayesian if each focal set in Θ is a singleton.

The set of focal elements is the core FΘ. The triple {Θ,FΘ,mΘ(·)} is referred to

as Body of Evidence (BoE).

The state of complete ignorance is represented by the vacuous BBA, which is

defined as:

m(A) = 1Θ ≡

1 if A = Θ;

0 if A ⊂ Θ.

2.1.2 Belief, Plausibility, and Uncertainty

The belief and plausibility functions are associated to a BBA m, and are often

used as a convenient interpretation of belief. When focal elements are constituted of

singletons only, the BBA, belief, and plausibility, all reduce to a probability assign-

ment.

Given a BoE {Θ,F ,m}, the belief function Bel : 2Θ → [0, 1] is defined as:

BelΘ(A) =
∑
B⊆A

mΘ(B).

Bel(A) represents the total belief that is committed toA without also being committed

to its complement AC .
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The plausibility function Pl : 2Θ → [0, 1] is defined as: PlΘ(A) = 1−BelΘ(AC). It

corresponds to the total belief that does not contradict A.

The uncertainty of A is: [BelΘ(A),PlΘ(A)].

2.1.3 Vacuous Extension and Marginalization

A BBA mΘ(·), which is defined on a FoD Θ, can be extended to a larger domain

Θ′ ⊇ Θ via the vacuous extension:

mΘ↑Θ′(B) =

mΘ(A) if B = AΘ↑Θ′ ;

0 otherwise,

where AΘ↑Θ′ is the projection of A into the domain Θ′.

Similarly, a BBA mΘ′(·), which is defined on a FoD Θ′, can be projected into a

coarser domain Θ ⊆ Θ′ via marginalization:

mΘ′↓Θ(A) =
∑

B:B↓Θ′=A

mΘ′(B).

2.1.4 Combination Rules

Information from distinct sources can be fused using combination (or fusion)

rules. One of the most widely used rules is Dempster’s Combination Rule (DCR).

Other combination rules include the Conditional Fusion Equation (CFE) [6], Yager’s

rule [44], and Inagaki’s unified combination rule [45], among many others. Next we

present the first two as they are the more relevant for the presentation of the ULP

models below. Definitions of ULP operators could be easily extend to incorporate

other combination rules.
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2.1.4.1 Dempster’s Combination Rule (DCR)

For two focal sets C ⊆ Θ and D ⊆ Θ such that B = C ∩D, and two BBA’s mj(·)

and mk(·), the combined mjk(B) is given by:

mjk(B) =
1

1−Kjk

∑
C∩D=B;B 6=∅

mj(C)mk(D), (2.1)

where Kjk =
∑

C∩D=∅mj(C)mk(D) 6= 1 is referred to as the conflict between the two

BBAs; Kjk = 1 identifies two totally conflicting BBAs for which DCR-based fusion

cannot be carried out.

2.1.4.2 Conditional Fusion Equation (CFE)

A combination rule that is robust when confronted with conflicting evidence is

based on the Conditional Fusion Equation (CFE) [37]. For two identical FoDs, CFE-

based fusion is defined by [6]:

m(B) =
M∑
i=1

∑
Ai∈Ai

γi(Ai)mi(B|Ai), (2.2)

where
∑M

i=1

∑
Ai∈Ai γi(Ai) = 1. Here Ai = {A ∈ Fi : Beli(A) > 0}, i = 1, . . . ,M.

The conditional masses above are computed using Fagin-Halperns’ Rule of Condi-

tioning [46], which can be summarized as follows. Given a BoE {Θ,F ,m} and A ∈ F̂ ,

with F̂ = {A ⊆ Θ : Bel(A) > 0}, the conditional belief Bel(B|A) : 2Θ → [0, 1] and

conditional plausibility Pl(B|A) : 2Θ → [0, 1] assigned to B ⊆ Θ are:

Bel(B|A) =
Bel(A ∩B)

Bel(A ∩B) + Pl(A \B)
;

Pl(B|A) =
Pl(A ∩B)

Pl(A ∩B) + Bel(A \B)
.

2.1.5 Quantifying the Quality of Fusion Results

To help quantify the degree of degeneracy of BBAs as the fusion models above

are applied, we introduce an ambiguity measure λ of a BBA; 0 ≤ λ ≤ 1; with some
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important characteristics, namely: 1) λ → 0 as the BBA degenerates (i.e., as the

uncertainty grows); 2) λ → 1 as the BBA represents a more exact model (i.e., the

BBA gets close to a “perfect” model where α = β ∈ {1, 0}); and 3) λ → 0 as the

values of α and 1− β get closer to each other.

Definition 1 (Ambiguity measure) Let Θ = {x1, x2, . . . , xn} be a FoD, and let

m be a BBA defined on Θ. Then, an ambiguity measure λ is defined as:

λ = 1 +
∑
x∈Θ

Pm(x) log (Pm(x)) , (2.3)

where Pm(x) is the probability of the event x occurring. Pm(x) is obtained from a

DS-to-probability transformation applied to the BBA m. �

Note that this ambiguity measure is similar to the measure introduced in [47].

However, Definition 1 does not rely on the pignistic transformation. This gives us

flexibility to select the transformation that renders an ambiguity measure that sat-

isfies the characteristics mentioned above. From several probability transformations

available (see, for example, [48], [49], [50], [51], and [52]), we have found that, unlike

the others, the plausibility transformation [52] preserves these characteristics. For

dichotomous mass functions (such as the true/false {x, x} events in ULP models),

the plausibility transformation is defined as:

P Pl(x) = 1
η
Pl(x) and P Pl(x) = 1

η
Pl(x), (2.4)

with η = Pl(x) + Pl(x). Then, the ambiguity measure λ becomes:

λ = 1 + P Pl(x) log2[P Pl(x)] + P Pl(x) log2[P Pl(x)]. (2.5)

Figure 2.1 shows how λ changes as a function of the uncertainty parameters [α, β]

that characterize a dichotomous BBA.
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λ : Ambiguity Measure
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Figure 2.1: Ambiguity measure λ as a function of the uncertainty parameters [α, β] that
characterize a dichotomous BBA. A higher value of λ indicates that the BBA provides
stronger evidence supporting particular focal elements in the corresponding FoD.
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2.2 From Propositional Logic to Uncertain Logic

Processing (ULP)

2.2.1 Propositional and Predicate Logic

To introduce terminology and notation employed in our presentation of uncertain

logic, let us first recall that, from propositional logic, a proposition is statement that

could take a truth-value. Examples of propositions could be “the apple is red” or

“a tall man”. Propositions are typically represented by lower case greek letters (e.g.,

ϕ). A proposition can be either modified or combined with other proposition using

connectives. In this manuscript we only consider the following connectives: ∧ (and),

∨ (or), ¬ (not), and =⇒ (implies).

Through inference, a group of propositions (called premises) are used to derive

conclusions. Inference is typically a multi-step process. Each step in inference must

be sanctioned by an acceptable rule of inference.

Predicate logic allows us to look into the structure of phrases that propositional

logic treats as “black boxes” denoted by letters [53]. All sentences in predicate

logic are strings of characters arranged according to rules of grammar. For exam-

ple, if we want to express the relation a is above b using predicate logic, we can use

Above(a, b). If we want to express this relation using the corresponding proposi-

tional logic expression, we can make ϕ = “Above” and obtain ϕ(a, b) [2].

Note that, in the example above, we are allowing ϕ to have arguments. These

arguments could be either constants or variables. In general, we assume that both

propositions and predicates can have arguments, and that these arguments belong to

sets that are finite.

In general, when referring to propositional and predicate logic, we follow the

conventions and definitions provided in [2] and [53].
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2.2.2 First-Order Logic

First Order Logic introduces, on top of propositional and predicate logic des-

ignations, the use of quantifiers. Quantified sentences provide a more flexible way

of talking about all objects (i.e., elements) in our universe of discourse or asserting

a property of an individual object identifying that object. There are two types of

quantifiers: the universal quantifier (∀) and the existential quantifier (∃).

A universally quantified sentence is formed by combining the universal quantifier ∀,

a variable x, and any simpler sentence ϕ, as follows: ∀x ϕ(x). The intended meaning

is that the sentence ϕ is true, no matter what object the variable x represents.

An existentially quantified sentence is formed by combining the existential quan-

tifier ∃, a variable x, and any simpler sentence ϕ as follows: ∃x ϕ(x). The intended

meaning is that the sentence ϕ is true, for at least one object in the universe of

discourse.

2.2.3 Uncertain Logic Processing

ULP is an extension of FOL that allows one to deal with expressions whose truth

is uncertain. The level of uncertainty is modeled with DS theory, and is bounded in

the range [0, 1]. In our presentation of ULP, we define the basic operators and symbols

enumerated for propositional logic above (i.e., ¬,∧,∨, and =⇒ ), and incorporate

the symbols and quantifiers defined for FOL in Section 2.2.2, namely ∀ and ∃.

As an extension of FOL, we must also define the set of objects that ULP deals with,

i.e., its domain. Furthermore, we need means for specifying exactly which objects are

referred to by constants and variables in ULP expressions. For the purpose of the

description herein, these basic components are defined as follows.

Definition 2 (Domain and Interpretation of a Generic ULP Model) Let D =

{d1, d2, . . . , dn} be a non-empty set of individuals. Then, we define an interpretation

function I as a function that maps an arbitrary variable x into an element d ∈ D.
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Furthermore, the interpretation function I maps uncertainty intervals [α, β] in ULP

expressions into properly defined DS models (i.e., into BBA or mass functions). �

Definition 3 (Uncertain FOL Expressions) Consider a quantifier-free first-order

formula ϕ(x) from a finite set of formulas Φ in some first-order language L, with x

being the only free variable in ϕ.1 Then, an uncertain first-order logic expression

relates the uncertainty associated with the truth of ϕ(x) as:

ϕ(x), with uncertainty [α, β], (2.6)

where [α, β] refers to the corresponding uncertainty interval, 0 ≤ α ≤ β ≤ 1, and x

is interpreted over individuals in D = {d1, . . . , dn}, with n ≥ 1, i.e., I(x) ∈ D. The

uncertain logic expression (2.6) can be abbreviated as ϕ(x)[α,β]. �

The uncertainty interval [α, β] in Definition 3 indicates the support that we have

for the expression ϕ(x) being true or false. In addition, this interval can be used to

characterize the level of ignorance that we have on the event ϕ(x) being either true

or false. In particular, the value of α quantifies the evidence or belief that we have on

ϕ(x) being true; β accounts for the plausibility of ϕ(x) being true; and β−α accounts

for the level of ignorance that we have on the event ϕ(x) being either true or false.

This concept also applies to groundings of ULP expressions, which are defined next.

Definition 4 (Grounded FOL Expressions) Consider an uncertain first-order logic

expression ϕ(x)[α,β] for I(x) ∈ D = {d1, . . . , dn}, n ≥ 1. The grounding of this expres-

sion for an individual di ∈ D, i ∈ {1, . . . , n}, is represented by

(ϕI( I(x) = di ))[α,β]. When no confusion can arise, we may use the alterna-

tive notations (ϕI(I(x) = di))[α,β] ≡ (ϕ(I(x) = di))[α,β] ≡ (ϕ(x/di))[α,β] ≡ (ϕ(di))[α,β].

1We assume a single free variable for ease of description. However, extending the definition
to any number of finite variables in ϕ is straightforward. This extension will be used later in this
manuscript, as new operators are introduced.
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Note that the uncertainty of this grounding can be indicated explicitly (i.e., ϕ(di),

with uncertainty [α, β]), or appended as a subindex of the grounded expression (e.g.,

ϕ(di)[α,β]). �

To properly quantify the support that we have for each of the three possible events

in ϕ(di) (i.e., “true”, “false”, “do not know if either true/false”), we need to build

a DS model for the expression ϕ(di)[α,β]. This model must be defined on a proper

FoD. A proper FoD for the expression ϕ(di)[α,β] is defined next. Its extension for the

expression ϕ(x) is straightforward.

Definition 5 (Basic FoD) Given a grounded logic expression (ϕ(d))[α,β], with d ∈

D, a FoD is defined as:

Θϕ(d) = {ϕ(d), ϕ(d)}, (2.7)

where the first element (i.e., ϕ(d)) represents the event in which ϕ(d) is true, and the

second element (i.e., ϕ(d)) represents the event in which ϕ(d) is false. �

An alternative definition of the basic FoD that may be appropriate for some

applications appears in [41]. This alternative definition creates Θϕ(d) as the cross

product of Θϕ(d) with a true–false set {1,0}, that is to say, Θϕ(d) = ϕ(d)× {1,0} =

{ϕ(d)×1, ϕ(d)×0} = {ϕ(d), ϕ(d)}. Although not formally rigorous like the definitions

in this manuscript, the alternative definition in [41] provides an intuitive way of

generating FoDs and propagating uncertainties through DS-based logic inference.

When considering grounded logic expressions where more than one element of D

becomes relevant, the basic FoD must be extended. An alternative is using Cartesian

products of basic FoDs to obtain proper FoDs for this scenario. As an example, the

comprehensive FoD, which is defined next, considers all the elements of D in a single

FoD.
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Definition 6 (Comprehensive FoD) Given a set of grounded logic expressions

{(ϕ(d1))[α1,β1], (ϕ(d2))[α2,β2], . . . , (ϕ(dn)))[αn,βn]}, we define Θϕ(D) to be the Cartesian

product of all basic frames of discernment Θϕ(di) = {ϕ(di), ϕ(di)},

i = 1, 2, . . . , n, i.e., Θϕ(D) = {{ϕ(d1), ϕ(d1)} × . . .× {ϕ(dn), ϕ(dn)}}. �

Based on the FoDs in Definitions 5 and 6, we can model uncertain FOL expressions

in the DS theoretic framework as follows.

Definition 7 (DS Theoretic Model for Uncertain Logic Expressions) Consider

an uncertain logic expression ϕ(d)[α,β], with d ∈ D. Then, a DS theoretic model that

would capture the uncertain information in this logic expression is the following mass

assignment:

ϕ(d) : m(ϕ(d)) = α;

m(ϕ(d)) = 1− β;

m(Θϕ(d)) = β − α, (2.8)

defined over the basic FoD Θϕ(d) = {ϕ(d), ϕ(d)}. When no confusion can arise, we

may use the following notation, which shortens the parameter of the mass function

by defining ϕ as a subindex of the mass function:

ϕ(d) : mϕ(d) = α;

mϕ(d) = 1− β;

mϕ(Θ) = β − α. (2.9)

�

Note that, since the DS model for uncertain logic expressions is defined over a dichoto-

mous FoD (i.e., the FoD has only two elements), it can be completely characterized
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by an uncertainty interval. Then, in the following, we may use m(ϕ(d)) = [α, β] as a

shorter notation for the DS model in Definition 7.

Based on the structure of the logic propositions, as well as on their arguments,

different cases arise:

1) Case 1 (negation): Recall that the basic uncertain logic expression has the

form: ϕ(d). Its corresponding negation is ¬ϕ(d). A DS model for this negation is

introduced in Section 2.3 below.

2) Case 2 (expressions without variables): We could have expressions of the

form

ϕ(di),with 1 ≤ i ≤ n.

In this case, the argument of the proposition ϕ is a constant. A DS model for

ϕ(di) is introduced in Section 2.3 below. Also, note that this case is representative

of more complex expressions whose only argument is di, such as

ϕ1(di) ∧ ϕ2(di) ∧ . . . ∧ ϕM(di),

or ϕ1(di) ∨ ϕ2(di) ∨ . . . ∨ ϕM(di).

Uncertain logic models for these cases are introduced in Section 2.3.

3) Case 3 (expressions with one variable): We could have logic expressions of

the form:

ϕ1(x) ∧ ϕ2(x) ∧ . . . ∧ ϕM(x),

or ϕ1(x) ∨ ϕ2(x) ∨ . . . ∨ ϕM(x).

Modeling this type of expression in uncertain logic may require the introduction

of quantifiers. This is done in Section 2.5 below.

4) Case 4 (expressions with more than one variable): We could have expres-

sions of the form

ϕ1(xi) ∧ ϕ2(xj),
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with 1 ≤ i ≤ k, 1 ≤ j ≤ k, and i 6= j. In this case, we could have uncertainty

associated with the full expression ϕ1(xi) ∧ ϕ2(xj), as well as with individual

propositions ϕ1(xi) and ϕ2(xj). Uncertain logic for this case is introduced in

Section 2.3. Note that this case is representative of more complex expressions

such as

ϕ1(xi1) ∧ ϕ2(xi2) ∧ . . . ∧ ϕM(xiM ),

or ϕ1(xi1) ∨ ϕ2(xi2) ∨ . . . ∨ ϕM(xiM ),

with 1 ≤ ij ≤ k, and j = 1, 2, . . . ,m. Modeling this type of expression in uncertain

logic may require the introduction of quantifiers. This is done in Section 2.5 below.

5) Other Cases : Although this manuscript emphasizes descriptions of models that

address Cases 1 - 4, it is easy to see that those cases could be easily extended to

incorporate more complex scenarios. For example, consider the expression ϕ1(xi)∧

ϕ2(xi, xj), or the expression ϕ({di, dj}) (non-singletons). These expressions could

be modeled in uncertain logic by extending the models corresponding to Cases 3

and 4.

2.3 Basic Operators: NOT, AND, and OR

The AND and OR operators are, together with the logical negation, the basic

operators in classical logic. This is also the case in ULP, as any other operator can be

defined using combinations of these three basic operators. In this section we introduce

the basic operators for ULP, which are defined using generic DS fusion operations.

Later in this document, we show how to select appropriate fusion operators to obtain

a desired behavior. For example, one may be interested in attaining consistency with

classical logic, or one may want to relax this condition and ensure consistency with

a paraconsistent logic. The first case (i.e., classically consistent logic) is described

in Section 2.4; the latter is out of the scope of this work and is a matter of further

research.
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2.3.1 Uncertain Logic Negation

The negation operation in ULP is based on the definition of set complement as

it applies to DS models (see [54], for example). Using this approach, we define the

complement of a BBA, and then define the logical not of this BBA based on said

complement. This is described next.

Definition 8 (Complementary BBA) Consider a basic FoD Θϕ(d) = {ϕ(d), ϕ(d)},

and a BBA mϕ(·) defined as:

mϕ(d) = α; mϕ(d) = 1− β; mϕ(Θ) = β − α. (2.10)

A complementary BBA for (2.10) is given by [54]:

mc
ϕ(d) = 1− β; mc

ϕ(d) = α; mc
ϕ(Θ) = β − α. (2.11)

�

Based on the complementary BBA, we can define an uncertain logic negation as

follows.

Definition 9 (Logical Not in ULP) Consider an uncertain logic expression ϕ(d)[α,β].

Also, consider its corresponding DS model, which is defined by (2.9). Then, the ULP-

negation of ϕ(d)[α,β] denoted ¬(ϕ(d)[α,β]) is defined as (¬ϕ(d))[1−β,1−α]. We utilize the

complementary BBA corresponding to (2.9) as the DS theoretic model for ¬ϕ(d), i.e.,

¬ϕ(d) : mc
ϕ(d) = 1− β;

mc
ϕ(d) = α;

mc
ϕ(Θ) = β − α. (2.12)

�

It is clear that the complementary BBA associated with ϕ[α,β](x) is ¬ϕ[1−β,1−α](x).
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2.3.2 Uncertain Logic AND/OR

Definition 10 (Logical AND & OR in ULP) Suppose that we have M proposi-

tions (ϕi(d))[αi,βi], i = {1, 2, . . . ,M}. Their corresponding ULP models are

ϕi(d) : mϕi(d) = αi; mϕi(d) = 1 − βi; mϕi(Θϕi(d)) = βi − αi, for i = 1, 2, . . . ,M .

We propose to utilize the following DS theoretic models for the logical AND and OR

of these propositions:

M∧
i=1

ϕi(d) : m(·) =
M⋂
i=1

mϕi(·);

and
M∨
i=1

ϕi(d) : m(·) =

(
M⋂
i=1

mc
ϕi

(·)

)c

, (2.13)

where
⋂

denotes an appropriate fusion operator. �

In the remainder of this manuscript, we may prefer to use the notation
∧M
i=1mi(·)

and
∨M
i=1 mi(·) instead of

∧M
i=1 ϕi(·) and

∨M
i=1 ϕi(·), respectively, to emphasize that

we refer to DS models in uncertain logic and not to conventional propositional logic.

Remarks:

1) The definition of the conjunction in Definition 10 explicitly includes its correspond-

ing BBA. This BBA is obtained from the direct application of the ULP extension

of the definition of conjunction, that is to say, from defining ϕ1(d) ∨ ϕ2(d) ∨ . . . ∨

ϕM(d) ≡ ¬(¬ϕ1(d) ∧ ¬ϕ2(d) ∧ . . . ∧ ¬ϕM(d)).

2) Based on Definition 10, we can define the AND/OR operators for unquantified

expressions ϕi(x), with uncertainty [αi, βi], i = 1, . . . ,M , as:
∧M
i=1 ϕi(x) : m(·) =⋂M

i=1mϕi(·); and
∨M
i=1 ϕi(x) : m(·) =

(⋂M
i=1 m

c
ϕi

(·)
)c
, for the AND and OR oper-

ations, respectively.

3) A model similar to the one in Definition 10 can be obtained for the case of

AND/OR operations of a set of expressions {ϕ(xi)} with uncertainty [αi, βi],
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xi ∈ {x1, x2, . . . , xk}. In this case:
∧k
i=1 ϕ(xi) : m(·) =

⋂k
i=1 mϕ(·), and∨k

i=1 ϕ(xi) : m(·) =
(⋂k

i=1 m
c
ϕ(·)
)c
. This case represents AND/OR models ap-

plied to the truthfulness of elements {xi} satisfying a property ϕ, whereas (2.13)

analyzes the case of x satisfying multiple properties {ϕi}.

4) Definition 10 also extends to AND/OR operations of set of expressions {ϕ(di)}

with uncertainty [αi, βi], di ∈ {d1, d2, . . . , dn}. In this case:∧n
i=1 ϕ(di) : m(·) =

⋂n
i=1 mϕ(·), and

∨n
i=1 ϕ(di) : m(·) =

(⋂n
i=1m

c
ϕ(·)
)c
.

2.3.3 Other Uncertain Logic Operators

It is possible to extend the ULP operators described above and create new oper-

ators. As an example, consider implication rules. An uncertain logic implication can

be defined by extending the (classical) definition for the implication rule based on

AND/OR operators to the uncertain logic framework. The classical logic definition

is: Given two statements ϕ1(·) and ϕ2(·), an implication rule has the property:

ϕ1(di) =⇒ ϕ2(dj) ≡ ¬ϕ1(di) ∨ ϕ2(dj)

≡ ¬ (ϕ1(di) ∧ ¬ϕ2(dj)) ,

where di, dj ∈ D. Now we define an uncertain implication rule as follows.

Definition 11 (Uncertain Implication Rule) Consider an antecedent ϕ1(di) and

a consequent ϕ2(dj), with uncertainty intervals [αϕ1(di), βϕ1(di)] and [αϕ2(dj), βϕ2(dj)],

respectively. Furthermore, suppose that said uncertainty is represented via the DS

theoretic models m1(·) and m2(·) over the FoDs Θϕ1(di) and Θϕ2(dj), respectively. Then,

the implication rule ϕ1(·) =⇒ ϕ2(·) is taken to have the following DS model:

mϕ1→ϕ2(·) = (mc
1 ∨m2)(·) = (m1 ∧mc

2)c(·), (2.14)

over the FoD Θϕ1(di) ×Θϕ2(dj). �
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2.4 Attaining Consistency with Classical Logic

Recall that ULP operators can be tuned to satisfy particular properties. This

can be accomplished by selecting an appropriate fusion operator
⋂

in (2.13). Note

that this operator directly impacts the behavior of logic operations, as many logic

operations are derived from the fundamental AND and OR operators. This fusion

operator must be then selected carefully to obtain the particular properties that we

wish to obtain in an uncertainty measuring and tracking system.

One fundamental configuration that we may wish to attain for ULP is one that

is consistent with classical logic. In this section we analyze the selection of the

appropriate fusion operator for this case. To ensure consistency with classical logic,

we are interested in a fusion operator that allows the logic operators to satisfy the

following properties:

(a) Double negation. Given a proposition ϕ(d), the BBA corresponding to its

double-negation is the same model as the one associated with ϕ(d). By definition

of the negation in ULP (see Definition 9), ULP already satisfies ¬¬ϕ(d) = ϕ(d)).

(b) De Morgan’s Laws. (ϕ1(d)∨ϕ2(d)) and ¬(¬ϕ1(d)∧¬ϕ2(d)) have identical DS

theoretic models. Also, (ϕ1(d) ∧ ϕ2(d)) and ¬(¬ϕ1(d) ∨ ¬ϕ2(d)) have identical

DS theoretic models. By definition of the conjunction and disjunction in ULP

(see Definition 10), ULP already satisfies the De Morgan’s laws.

(c) Idempotency. Uncertain logic AND and OR operators are idempotent, i.e.:

ϕ(d)[α,β] ∧ ϕ(d)[α,β] = ϕ(d)[α,β] ∨ ϕ(d)[α,β] = ϕ(d)[α,β].

(d) Commutativity. Uncertain logic AND and OR operators are commutative, i.e.:

ϕ1(d) ∧ ϕ2(d) = ϕ2(d) ∧ ϕ1(d), and ϕ1(d) ∨ ϕ2(d) = ϕ2(d) ∨ ϕ1(d).

(e) Associativity. Uncertain logic AND and OR operators must be associative. i.e.:

ϕ1(d) ∧ [ϕ2(d) ∧ ϕ3(d)] = [ϕ1(d) ∧ ϕ2(d)] ∧ ϕ3(d), and ϕ1(d) ∨ [ϕ2(d) ∨ ϕ3(d)] =

[ϕ1(d) ∨ ϕ2(d)] ∨ ϕ3(d).
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(f) Distributivity. Uncertain logic AND and OR operators must be distributive,

i.e.: ϕ1(d)∧ [ϕ2(d)∨ϕ3(d)] = [ϕ1(d)∧ϕ2(d)]∨ [ϕ1(d)∧ϕ3(d)], and ϕ1(d)∨ [ϕ2(d)∧

ϕ3(d)] = [ϕ1(d) ∨ ϕ2(d)] ∧ [ϕ1(d) ∨ ϕ3(d)].

(g) Consistent Boolean Models. In the absence of uncertainty, ULP models con-

verge to those of Boolean logic. That is to say, if α, β ∈ {0, 1}, and α = β,

inference results in ULP render intervals that are either [0, 0] or [1, 1], and that

correspond to the false/true truth value assignments that would be obtained using

Boolean logic.

(h) Consistent Probabilistic Models. In probabilistic scenarios (i.e., where α = β

for every uncertainty interval [α, β]), ULP inference renders probabilistic models.

(i) Uniqueness of Model. Given propositions ϕ1(d)[α1,β1] and ϕ2(d)[α2,β2], with

α1 6= α2 and β1 6= β2 the AND and OR operations satisfy ϕ1(d) ∧ ϕ2(d) 6=

ϕ1(d) ∨ ϕ2(d).

Next we show that ULP does not satisfy all these properties when we use DRC.

Then we present the CFE as a better alternative for classically consistent ULP.

2.4.1 DCR-Based Uncertain Logic

Let us consider the two-propositions (i.e., M = 2) case. Table 2.1 contains the

DCR-based logical AND and OR operations for this case. Notice that the mass

assignments for the AND operation (i.e., ϕ1(x) ∧ ϕ2(x)) are exactly the same as the

ones obtained for the OR operation (i.e., ϕ1(x) ∨ ϕ1(x)). Having identical models

for both AND and OR operators suggests that, although DCR may work as a fusion

operator for certain operations, it does not render models that satisfy important

properties for all the logical operations defined above. More particularly, DCR-based

uncertain logic does not satisfy the “uniqueness of the model” property (i) mentioned

earlier at the beginning of this Section. As an alternative, we propose using a more

appropriate fusion strategy, such as the CFE, which is analyzed next.
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Table 2.1: DCR-Based Logical AND and OR. In both cases, the masses should be nor-
malized by 1 − K, with K = 1 −

∑
A∈F m(A) = α1(1 − β2) + (1 − β1)α2. Note that the

DS models for AND and OR are identical, which suggests that DCR is not an appropriate
fusion operator for classically consistent logic operations.

Focal Set ϕ1(x) ∧ ϕ2(x) ϕ1(x) ∨ ϕ2(x)
x α1β2 + (β1 − α1)α2 α1β2 + (β1 − α1)α2

x (1− β1)(1− α2) + (β1 − α1)(1− β2) (1− β1)(1− α2) + (β1 − α1)(1− β2)
Θϕ1,ϕ2,x (β1 − α1)(β2 − α2) (β1 − α1)(β2 − α2)

2.4.2 CFE-Based Uncertain Logic

Recall (from Section 2.1.4.2) that CFE-based fusion requires the definition of a

set of coefficients γi. We define the Logic Consistent (LC) strategy for the definition

of the CFE coefficients as follows.

Definition 12 (Logic Consistent (LC) Strategy) Consider the case M = 2 in (2.13),

and let us define α = min(α1, α2); β = min(β1, β2); α = max(α1, α2); β = max(β1, β2);

δ1 = β1−α1; δ2 = β2−α2; δ = β−α; and δ = β−α. Then select the CFE coefficients

as follows:

γ1(d) = γ2(d) ≡ γ(d); γ1(d) = γ2(d) ≡ γ(d);

and γ1(Θ) = γ2(Θ) ≡ γ(Θ),

where γ(d), γ(d), and γ(Θ) are given by:
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a. Logical AND:

If δ1 + δ2 6= 0 :

γ(d) =
α(β1 + β2)− β(α1 + α2)

2(δ1 + δ2)
;

γ(d) =
1

2
−
β(2− α1 − α2)− α(2− β1 − β2)

2(δ1 + δ2)
;

γ(Θ) =
δ

δ1 + δ2

.

If δ1 + δ2 = 0 :

γ(d) =
α− γ(Θ) (α1 + α2)

2
;

γ(d) =
(1− α)− γ(Θ) (2− α1 − α2)

2
;

γ(Θ) is arbitrary in the interval [0, 1].

b. Logical OR:

If δ1 + δ2 6= 0 :

γ(d) =
1

2
− β(2− α1 − α2)− α(2− β1 − β2)

2(δ1 + δ2)
;

γ(d) =
α(β1 + β2)− β(α1 + α2)

2(δ1 + δ2)
;

γ(Θ) =
δ

δ1 + δ2

.

If δ1 + δ2 = 0 :

γ(d) =
α− γ(Θ) (α1 + α2)

2
;

γ(d) =
(1− α)− γ(Θ) (2− α1 − α2)

2
;

γ(Θ) is arbitrary in the interval [0, 1].

�



36

Based on the LC Strategy, we can define the CFE-based AND/OR operators, as

well as implication rules, as follows.

2.4.2.1 CFE-Based AND and OR Operators

Given two uncertain propositions ϕ1(d)[α1,β1] and ϕ2(d)[α2,β2], the LC strategy

renders the following BBA for the AND operation (see proof in Appendix A):

ϕ1(d) ∧ ϕ2(d) : m(d) = α;

m(d) = 1− β; and

m(Θ(ϕ1∧ϕ2)(d)) = β − α, (2.15)

with α = min(α1, α2) and β = min(β1, β2). Similarly, when used for the OR operation,

the LC strategy renders the following BBA:

ϕ1(d) ∨ ϕ2(d) : m(d) = α;

m(d) = 1− β; and

m(Θ(ϕ1∨ϕ2)(d)) = β − α, (2.16)

with α = max(α1, α2) and β = max(β1, β2).

It can be proven that CFE-based fusion using the LC strategy satisfies the prop-

erties (a)-(g) above. As mentioned above, properties (a) and (b) are satisfied by the

basic definitions of ULP models. Proofs for properties (c)-(f) and (h) can be found

in [41, 42], and are presented in Appendix B. Property (h) can be easily proven as

follows: Consider uncertainty parameters defined as α1 = β1 and α2 = β2. Let us

denote ϕ1(d)[α1,β1] and ϕ2(d)[α2,β2] as ϕ(d)[α1] and ϕ(d)[α2], respectively. We then get

ϕ(d)[α1] ∧ ϕ(d)[α2] = ϕ(d)[α];

ϕ(d)[α1] ∨ ϕ(d)[α2] = ϕ(d)[α], (2.17)

where α = min(α1, α2) and α = max(α1, α2). Property (g) can be easily proved by

building a truth table based on the models for (h). Finally, property (i) is satisfied
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by the models (2.15) and (2.16) above. ULP models for multiple propositions can

be found in Section 2.4.2.3.

2.4.2.2 CFE-Based Implication

In the case of logic implications, the model in Definition 11 renders the following

BBA:

ϕ1(di) =⇒ ϕ2(dj) :

mϕ1→ϕ2(di ×Θϕ2,dj) = 1
2
αR;

mϕ1→ϕ2(Θϕ1,di × dj) = 1
2
αR;

mϕ1→ϕ2(di ×Θϕ2,dj) = 1
2
(1− βR);

mϕ1→ϕ2(Θϕ1,di × dj) = 1
2
(1− βR);

mϕ1→ϕ2(Θϕ1,di ×Θϕ2,dj) = βR − αR, (2.18)

with αR = max(1−β1, α2) and βR = max(1−α1, β2). Note that αR and βR define the

uncertainty interval [αR, βR] of the implication rule. This interval is obtained from

projecting the BBA defined in (2.18) into the true-false components of the original

BoEs, which we label as {1,0}, for ease of notation, as follows:

mϕ1→ϕ2(1) = mϕ1→ϕ2(di ×Θϕ2,dj)

+mϕ1→ϕ2(Θϕ1,di × dj) = αR;

mϕ1→ϕ2(0) = mϕ1→ϕ2(di ×Θϕ2,dj)

+mϕ1→ϕ2(Θϕ1,di × dj) = 1− βR;

mϕ1→ϕ2({1,0}) = mϕ1→ϕ2(Θϕ1,di ×Θϕ2,dj) = βR − αR. (2.19)

The 1 component corresponds to the event “ϕ1 → ϕ2”, and the 0 component corre-

sponds to the event “ ϕ1 → ϕ2 ”. Note that, in the Boolean case (i.e., α1 = β1 ∈ {1,0}

and α2 = β2 ∈ {1,0}), the CFE-based uncertain implication rule converges to the

conventional logic result (see Table 2.2).
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Table 2.2: CFE-Based implication with Boolean arguments. Uncertainty parameters are
defined so that they represent complete certainty on the truth (or falsity) of each proposition.
In this case, there is complete certainty of the truth of the output model (as occurs with
classical logic.)

Parameters Uncertainty of the rule
[α1, β1] [α2, β2] [αR, βR]
[0, 0] [0, 0] [1, 1]
[0, 0] [1, 1] [1, 1]
[1, 1] [0, 0] [0, 0]
[1, 1] [1, 1] [1, 1]

2.4.2.3 Uncertain Logic Operators for Multiple Propositions

The CFE-based uncertain logic AND operator generalizes as follows for the general

case of n propositions:

n∧
i=1

ϕ(di) :

m( θi− × di × θi+ ) = 1
n
α1:n

+ 1
n

(
β

1:n
− α1:n

)
αi,∀i;

m( θi− × di × θi+ ) = 1
n

(
1− β

1:n

)
+ 1

n

(
β

1:n
− α1:n

)
(1− βi),∀i;

m( Θϕ,D ) = 1
n

(
β

1:n
− α1:n

)
(
∑n

i=1(βi − αi)) , (2.20)

with:

θi− = Θϕ,d1 ×Θϕ,d2 × . . .×Θϕ,di−1
;

θi+ = Θϕ,di+1
× . . .×Θϕ,dn−1 ×Θϕ,dn ,

and

α1:n = α1,2,...,n = min(α1, α2, . . . , αN);

β
1:n

= β
1,2,...,n

= min(β1, β2, . . . , βN).
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Similarly, the logical OR operator for n propositions generalizes as follows:

n∨
i=1

ϕ(di) :

m( θi− × di × θi+ ) = 1
n
α1:n

+ 1
n

(
β1:n − α1:n

)
αi,∀i;

m( θi− × di × θi+ ) = 1
n

(
1− β1:n

)
+ 1

n

(
β1:n − α1:n

)
(1− βi),∀i;

m( Θϕ,D ) = 1
n

(
β1:n − α1:n

)
(
∑n

i=1(βi − αi)) , (2.21)

with:

α1:n = α1,2,...,n = max(α1, α2, . . . , αn);

β1:n = β1,2,...,n = max(β1, β2, . . . , βn).

Simpler models are obtained for the expressions
∧M
i=1 ϕi(x) and

∨M
i=1 ϕi(x):

M∧
i=1

ϕi(x) :

m(x) = α1:M + 1
M

(
β

1:M
− α1:M

)(∑M
i=1 αi

)
;

m(x) =
(

1− β
1:M

)
+ 1

M

(
β

1:M
− α1:M

)(∑M
i=1(1− βi)

)
;

m(Θϕ1:M ,x) = 1
M

(
β

1:M
− α1:M

)(∑M
i=1(βi − αi)

)
, (2.22)
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and

M∨
i=1

ϕi(x) :

m(x) = α1:M + 1
M

(
β1:M − α1:M

) (∑M
i=1 αi

)
;

m(x) =
(
1− β1:M

)
+ 1

M

(
β1:M − α1:M

) (∑M
i=1(1− βi)

)
;

m(Θϕ1:M ,x) = 1
M

(
β1:M − α1:M

) (∑M
i=1(βi − αi)

)
. (2.23)

2.4.3 ULP as a Model for Capturing Variable Granularities

of Many-Valued Logics

ULP naturally adapts to different quantizations in the uncertainty of the evidence.

For example, if all the uncertainty intervals [α, β] in the premises are such that α, β ∈

{0, 1}, then the uncertainty results provided by ULP will be also in {0, 1}. In general,

if uncertainties of the premises are quantized in steps of 1/n, with n = 2, 3, . . ., then

the result will also be quantized by this step size.

To illustrate this property, consider an n-ary logic in which we have the proposi-

tions ϕi and ϕj, with i, j ∈ {0, 1, . . . , n} and n ≥ 1, such that the uncertainty of the

premises is probabilistic and modeled as follows:

ϕi, with uncertainty
i

n
; and ϕj, with uncertainty

j

n
. (2.24)

Now consider an uncertain implication rule ϕi =⇒ ϕj. Given (2.24), the uncertainty

of this implication is given by:

ϕi =⇒ ϕj, with uncertainty max(1− i

n
,
j

n
). (2.25)

Note that the resulting uncertainty in the implication rule is a multiple of 1/n. It can

be shown that the same behavior occurs for NOT, AND, and OR operations. Hence,

the ULP framework can be used to model an n-ary (i.e., many-valued) logic, where we

can have from coarse (n = 2, Boolean logic) to infinitely small quantizations (when
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n→∞). Moreover, we can increase the granularity dynamically during an inference

process, right at the moment when new evidence introduces a refined granularity.

That is to say, ULP can be used to adaptively adjust the quantization of the uncertain

models according to the input data.

2.5 Quantifiers in Uncertain Logic

Existential and universal quantifiers extend the propositional logic framework de-

scribed above into a First-Order Logic (FOL) environment. For ULP operations,

these quantifiers are defined as described next.

2.5.1 Existential Quantifiers

Existential quantifiers are used to express that a sentence is true for at least one

object of the universe of discourse. Given a logic predicate ϕ(x), where x can take

any value in D = {d1, d2, . . .}, a corresponding existentially quantified sentence is

defined as: ∃x ϕ(x). We define existential quantifiers in ULP as follows.

Definition 13 (Existential Quantifier in ULP) Consider the statement:

(∃x ϕ(x))[α,β], (2.26)

where [α, β] refers to the corresponding uncertainty interval, 0 ≤ α ≤ β ≤ 1, and x is

interpreted over elements in D = {d1, d2, . . . , dn}, with n ≥ 1. Let us define an FoD

over the domain D as Θϕ,D = Θϕ,d1 × Θϕ,d2 × . . . × Θϕ,dn. Then, we define the DS

theoretic model for (2.26) as:
n∨
i=1

(ϕ(di))[αi,βi], (2.27)
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over the FoD Θϕ,D, subject to the constraint:

m(1) =
∑n

i=1
mϕ(di) = α;

m(0) =
∑n

i=1
mϕ(di) = 1− β;

m(Θϕ,ΘD) = β − α, (2.28)

where we have adopted the notation di and di to represent the sets {. . . × Θϕ,di−2
×

Θϕ,di−1
×ϕ(di)×Θϕ,di+1

×Θϕ,di+2
× . . .}, and {. . .×Θϕ,di−2

×Θϕ,di−1
×ϕ(di)×Θϕ,di+1

×

Θϕ,di+2
× . . .}, respectively. �

Remarks:

1) Definition 13 is based on the substitutional conception of quantifiers, according

to which ∃ is treated as a generalization of the disjunction [24] grounded over the

finite set D = {d1, d2, . . . , dn}.

2) When using the CFE-based ULP model described above, the constraint (2.28)

is satisfied if the uncertainty of at least one of the propositions ϕ(di) in (2.27)

is [α, β], and the uncertainty of every other proposition is [0, 0] (or, in general,

[αj, βj], with αj ≤ α, βj ≤ β, and i 6= j), then the DS model corresponding

to (2.27) is equivalent to the DS model corresponding to (2.26) when the OR

operations are computed as indicated by Definitions 10 and 12.

2.5.2 Universal Quantifiers

Universal quantifiers are used to express that a sentence is true for every object

of the universe of discourse. Given a logic predicate ϕ(x), where x can take any value

in D = {d1, d2, . . .}, a corresponding universally quantified sentence is defined as:

∀x ϕ(x). We define universal quantifiers in ULP as follows.
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Definition 14 (Universal Quantifier in ULP) Consider the statement:

(∀x ϕ(x))[α,β], (2.29)

where [α, β] refers to the corresponding uncertainty interval, 0 ≤ α ≤ β ≤ 1, and x is

interpreted over elements in D = {d1, d2, . . . , dn}, with n ≥ 1. Let us define an FoD

over the domain D as Θϕ,D = Θϕ,d1 × Θϕ,d2 × . . . × Θϕ,dn. Then, we define the DS

theoretic model for (2.29) as:
n∧
i=1

(ϕ(di))[αi,βi], (2.30)

over the FoD Θϕ,D, subject to the constraint:

m(1) =
∑n

i=1
mϕ(di) = α;

m(0) =
∑n

i=1
mϕ(di) = 1− β;

m(ΘΘϕ,ΘD
) = β − α. (2.31)

where we have adopted the notation di and di to represent the sets {. . . × Θϕ,di−2
×

Θϕ,di−1
×ϕ(di)×Θϕ,di+1

×Θϕ,di+2
× . . .}, and {. . .×Θϕ,di−2

×Θϕ,di−1
×ϕ(di)×Θϕ,di+1

×

Θϕ,di+2
× . . .}, respectively. �

Remarks:

1) Definition 14 is based on the substitutional conception of quantifiers, according

to which ∀ is treated as a generalization of the conjunction [24] grounded over

the finite set D = {d1, d2, . . . , dn}. This definition is justified as long as the

conjunction satisfies both associativity and commutativity, as is the case of the

CFE-based ULP disjunction described above.

2) When using the CFE-based ULP model described above, the constraint (2.31) is

satisfied if the uncertainty of every proposition ϕ(di) in (2.30) is [α, β].
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3) Although an infinite number of solutions satisfy (2.31), a useful solution (e.g., for

universal instantiation on inference) is given by mϕ(di) = α; mϕ(di) = 1− β; and

mϕ({di, di}) = β − α, i = 1, 2, . . . , n. This solution can be proven by applying

idempotency to the AND operator.

2.6 Semantics: Encapsulating uncertain informa-

tion in FOL

In classical logic there are two truth-values, “true” and “false”. An expression that

is true for all interpretations is called a tautology (“>”). An expression that is not

true for any interpretation is a contradiction (“⊥”). Two expressions are semantically

equivalent if they take on the same truth value for all interpretations.

In ULP we extend these definitions. The truth value of an expression corresponds

to the support that is projected into the true-false FoD, Θt−f = {1,0}. A BBA (2.8)

defined by [α, β] = [1, 1] corresponds to the classical logical truth. A BBA (2.8)

defined by [α, β] = [0, 0] corresponds to the classical logical falsehood.

The notions of tautology and contradiction in ULP are extended following an

approach similar to that in [55]. In particular, given a generic dichotomous BBA

ψ characterized by the uncertainty interval σ = [α, β], we define a σ-tautology as

>σ ≡ ψ ∨ ¬ψ, and a σ-contradiction as ⊥σ≡ ψ ∧ ¬ψ. It follows that > ≡ >σ=[1,1],

and ⊥≡⊥σ=[0,0].

2.7 Inference in ULP

When using the LC strategy for CFE-based ULP, inference in ULP shares the

fundamental principles of classical logic. Inheriting inference rules and algorithms

from classical logic is possible due to the definition of ULP as an algebra that repro-

duces the core properties of classical logic. Due to the extensive number of methods

for logic inference, the scope of this section is limited to the introduction of some of
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the most fundamental inference rules, along with some basic examples that illustrate

ULP inference. For an extended definition of these rules and their application for

inference in the context of classical logic, we refer the reader to [2].

Inference and resolution using ULP can be done by simply combining a set of

uncertain logic predicates, and extracting information from a consolidated BoE. The

set of uncertain logic predicates to be combined should be enough to describe the

information that should be used for inference. The process for selecting the required

logic predicates could be similar to typical approaches in logic, such as resolution

trees.

2.7.1 Inference Rules in ULP

2.7.1.1 Modus Ponens (MP)

Modus Ponens (MP) rule states that, whenever the sentences ϕ =⇒ ψ and ϕ

have been established, then we can infer the sentence ψ as well. MP extends to ULP

as follows. Consider:

ϕ1(d1), with uncertainty [α1, β1];

ϕ2(d2), with uncertainty [α2, β2]; and

ϕ1(d1) =⇒ ϕ2(d2), with uncertainty [αR, βR]. (2.32)

Then, given the uncertain premises ϕ1(d1) =⇒ ϕ2(d2) and ϕ1(d1), MP allows us to

infer the uncertain expression ϕ2(d2). Note that if the uncertainty parameters [α2, β2]

are unknown, their value should be obtained by using the definition of uncertain

implication rules in Section 2.4.2.2 above. Based on (2.18), if we know a model

mϕ1→ϕ2 for the implication rule, as well as a model mϕ1 for the antecedent, we could
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obtain a model for an unknown consequent m2(·). In this case:

α2 =


αR, if αR > 1− β1;

[0, αR], if αR = 1− β1; and

no solution, otherwise,

(2.33)

and

β2 =


βR, if βR > 1− α1;

[0, βR], if βR = 1− α1; and

no solution, otherwise.

(2.34)

Some important observations:

• Given a pair of uncertainty intervals [α1, β1] and [αR, βR], it is not always pos-

sible to infer anything about a model for the consequent (i.e., m2(·)). This is

consistent with the application of the Modus Ponens (MP) rule, according to

which, if we know ϕ1 =⇒ ϕ2, and also that ϕ1 is true, then we can infer that

ϕ2 is true. However, if we know that ϕ1 is false (i.e., ¬ϕ1 is true), we cannot

say anything about the truth value of ϕ2.

• Furthermore, once we have enough support inm1(·) to infer something regarding

m2(·), the only conclusion that we can provide regarding the uncertainty of

m2(·) is that said uncertainty is mR(·). That is, after we have gathered a certain

amount of evidence regarding the truth of the antecedent, getting more evidence

is not going to affect the confidence we have on the truth of the consequent (i.e.,

α2 is bounded by αR, and β2 is bounded by βR).

• When αR = 1 − β1 and βR = 1 − α1, an infinite number of solutions exist for

[α2, β2]. We could use the minimum commitment criterion to decide α2 = 0 and

β2 = βR.

To better understand MP in ULP, consider an example where α1 = β1 = α2 =

β2 = 1. In this case, we obtain αR = βR = 1. Furthermore, given the ϕ1 =⇒ ϕ2 and
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ϕ1, then we can infer ϕ2 with uncertainty [α2 = β2] = [1, 1]. This case represents a

scenario with no uncertainty.

Now consider a scenario where there is uncertainty in the rule, in such a way that

[αR, βR] = [0.5, 1.0], and assume that we have a model for the uncertainty of ϕ1 such

that α1 = β1 = 1. Then, MP allows us to infer ϕ2, with the uncertainty [α2, β2]

obtained from the equations αR = max(1−β1, α2) and βR = max(1−α1, β2). Solving

these equations we obtain α2 = 0.5 and β2 = 1.

2.7.1.2 Modus Tolens (MT)

This rule states that, if we know that ϕ =⇒ ψ, then we can infer ¬ϕ if we

believe that ψ is false. MT extends to uncertain logic as follows. Assume that the

uncertainty on each of the expressions involved in MP are defined by (2.32). Then,

given the uncertain premises ϕ1(x) =⇒ ϕ2(y) and ¬ϕ2, MT allows us to infer

the uncertain expression ¬ϕ1(y). As with MP above, if the uncertainty parameters

[α2, β2] are unknown, their value should be obtained by applying the methodology

introduced in Section 2.3.

2.7.1.3 Other Rules of Inference

Uncertain logic can be extended by incorporating new rules of inference that al-

ready exist in conventional logic inference. Some examples of new rules of inference

are: AND elimination (AE), AND introduction (AI), universal instantiation (UI), and

existential instantiation (EI). The definition of these rules of inference is straightfor-

ward based on their definition for conventional logic, and is not included in this

manuscript. For a description of these rules of inference, we refer the reader to [2].

2.7.2 Examples

In this Section we illustrate the use and application of the DS-based uncertain

logic framework described above. Additional examples with applications on human-
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robot interaction, tracking, and intent-detection can be found in [5] and [56], and in

Chapter 5 below.

2.7.2.1 Example 1

Consider the following problem, originally introduced in [2]. We know that horses

are faster than dogs and that there is a greyhound that is faster than every rabbit. We

know that Harry is a horse and that Ralph is a rabbit. We also know that greyhounds

are dogs and that our speed relationship is transitive. Then:

∀x ∀y Horse(x) ∧Dog(y)⇒ Faster(x, y) (2.35a)

∃y Greyhound(y) ∧ (∀z Rabbit(z)⇒ Faster(y, z)) (2.35b)

∀y Greyhound(y)⇒ Dog(y) (2.35c)

∀x ∀y ∀z Faster(x, y) ∧ Faster(y, z)⇒ Faster(x, z) (2.35d)

Horse(Harry) (2.35e)

Rabbit(Ralph). (2.35f)

Using these logic statements, it can be inferred that Harry is faster than Ralph (i.e.,

Faster(Harry, Ralph)) [2].

Now, let us introduce uncertain logic operations by assuming that the logic premise

(2.35a) is uncertain, with uncertainty [α1, β1], and that there is no uncertainty in

premises (2.35b)-(2.35f). This represents some uncertainty in the sentence “horses

are faster than dogs”, which may occur if we consider cases such as sick or old horses

compared to healthy dogs. The steps that are used for inferring Faster(Harry, Ralph),

as well as the uncertainty in each of the steps of this process are in Table 2.3. It is

easy to verify that, if α1 = β1 = 1.

The initial steps in the inference process are simply the reproduction of (2.35a)-

(2.35f) as premises 1 to 6. Steps 7 to 13 can be obtained from applying EI, AI, UI, and
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Table 2.3: Steps followed for the inference of the sentence Faster(Harry, Ralph) based on
the premises defined in (2.35). The uncertainty is obtained from applying uncertain logic
definitions and rules to the example described in Section 2.7.2.1.

Logic Formula Premises & Rule Uncertainty

1 ∀x ∀y Horse(x) ∧Dog(y)⇒ Faster(x, y) ∆ [α1, β1]
2 ∃y Greyhound(y) ∧ (∀z Rabbit(z) ⇒

Faster(y, z))
∆ [α2, β2] = [1, 1]

3 ∀y Greyhound(y)⇒ Dog(y) ∆ [α3, β3] = [1, 1]
4 ∀x ∀y ∀z Faster(x, y) ∧ Faster(y, z) ⇒

Faster(x, z)
∆ [α4, β4]

5 Horse(Harry) ∆ [α5, β5]
6 Rabbit(Ralph) ∆ [α6, β6] = [1, 1]
7 Greyhound(Greg) ∧ (∀z Rabbit(z) =⇒

Faster(Greg, z))
2, EI [α7, β7] = [1, 1]

8 Greyhound(Greg) 7, AE [α8, β8] = [1, 1]
9 ∀z Rabbit(z) =⇒ Faster(Greg, z) 7, AE [α9, β9] = [1, 1]
10 Rabbit(Ralph) =⇒ Faster(Greg, Ralph) 9, UI [α10, β10] = [1, 1]
11 Faster(Greg, Ralph) 10, 6, MP [α11, β11] = [1, 1]
12 Greyhound(Greg) =⇒ Dog(Greg) 3, UI [α12, β12] = [1, 1]
13 Dog(Greg) 12, 8, MP [α13, β13] = [1, 1]
14 Horse(Harry) ∧ Dog(Greg) =⇒

Faster(Harry, Greg)
1, UI [α14, β14] = [α1, β1]

15 Horse(Harry) ∧Dog(Greg) 5, 13, AI [α15, β15] = [α5, β5]
16 Faster(Harry, Greg) 14, 15, MP [α16, β16] obtained from solving{

α14 = max(1− β15, α16)

β14 = max(1− α15, β16)

17 Faster(Harry, Greg) ∧
Faster(Greg, Ralph) =⇒
Faster(Harry, Ralph)

4, UI [α17, β17] = [α4, β4]

18 Faster(Harry, Greg)∧Faster(Greg, Ralph) 16, 11, AI [α18, β18] = [α16, β16]
19 Faster(Harry, Ralph) 17, 18, MP [α19, β19] obtained from solving{

α17 = max(1− β18, α19)

β17 = max(1− α18, β19)
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MP rules to premises 2 to 6. In our initial example (only the first premise is uncertain),

the uncertainty in premises 2 to 6 is [αi, βi] = [1, 1], i = 2, 3, . . . , 6. Uncertain logic

operations become relevant in steps 14 to 19. For example, the uncertainty in premise

16 is obtained from solving the system of equations shown in the corresponding row

in Table 2.3. This system of equations is derived from the models (2.33) and (2.34).

As a consequence, any change in the uncertainty [α1, β1] directly affects [α16, β16].

Figure 2.2 illustrates the result in a probabilistic scenario. Note that, for us to be

able to conclude “Faster( Harry, Ralph )” given the initial uncertainty, α4 must be

larger than α1. Similar results can be further verified by modifying uncertainties on

the premises, whose values can be computed as indicated in Table 2.3.

α
1
 = β

1

α
4
 =

 β
4

Uncertainty (α
19

 = β
19

) when premises 1 and 4 are uncertain (probabilistic scenario)
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Figure 2.2: Uncertainty in Premise 19 of Table 2.3.

2.7.2.2 Example 2

Consider the following problem, extracted from [2]. The law says that it is a crime

to sell an unregistered gun. Red has several unregistered guns, and all of them were

purchased from Lefty. Based on these premises, can we derive the conclusion that
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Lefty is a criminal? Moreover, how is this conclusion affected if these premises become

uncertain? Table 2.4 contains the FOL representation of these premises, as well as

a derivation of the desired conclusion. Note that, if all the rules and premises are

true (i.e., Boolean scenario with true clauses, which are represented by an uncertainty

interval [1, 1]), the conclusion effectively shows that Lefty is a criminal. However, an

uncertainty interval starts growing in this conclusion when the premises lose certainty.

We can track such uncertainty used through uncertain logic computations. The fourth

column in Table 2.4 shows how uncertainty is tracked in this problem. Note how in

the Boolean scenario the conclusion matches that of classical logic. Also, Note that,

if the inputs (clauses 1-3) are probabilistic, the result is probabilistic too. Figure 2.3

illustrates a more general uncertain logic scenario, where the lower bound of the

conclusion’s uncertainty (i.e., α10) is a function of the input arguments α1 and β2.

By looking at this figure, we can identify a region (defined by α1 + β2 ≤ 1) for which

we cannot derive the uncertainty of the conclusion. This is expected, given that, as

mentioned above, we cannot always infer anything from a MP rule when we have not

enough evidence for the antecedent. In addition, in the figure we can see how α10

increases as the evidence of the input premises increases (i.e., α1 and β2 increase).

2.8 Satisfiability in ULP

Section 2.7 shows how to use ULP for tracking uncertainties using a traditional

inference approach. This approach, however, may not be well suited for some applica-

tions. For example, applications that rely on large amounts of data are prone to suffer

scalability problems if a traditional inference scheme is followed. Then, alternatives

for reducing complexity must be considered.

One of these alternatives is to solve a satisfiability problem in which, instead of us-

ing inference rules (e.g., MP) to derive conclusions and their associated uncertainties,

we find the logical values (or uncertainties) that are unknown for the propositions in
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Table 2.4: Premises and inference process for the derivation of the conclusion “Is Lefty a
criminal?”. The example and inference process are introduced in [2]. Uncertainty modeling
and tracking is done using Uncertain Logic models.

Logic Expression
Inference

Uncertainty Interval
Rule

1 ∀x∀y∀z (Sold(x, y, z) ∧ Unregistered(y))

=⇒ Criminal(x) ∆ [α1, β1]
2 ∃y Owns(Red, y) ∧ Unregistered(y) ∆ [α2, β2]
3 ∀y (Owns(Red, y) ∧ Unregistered(y))

=⇒ Sold(Lefty, y,Red) ∆ [α3, β3]
4 Owns(Red,Gatling) ∧ Unregistered(Gatling) EI, 2 [α4, β4] = [α2, β2]
5 (Owns(Red,Gatling) ∧ Unregistered(Gatling))

=⇒ Sold(Lefty,Gatling,Red) UI, 3 [α5, β5] = [α3, β3]
6 Sold(Lefty,Gatling,Red) MP, 5, 4 [α6, β6], with:

α6 =


α3, if α3 > 1− β2;

0, if α3 = 1− β2;

no solution, otherwise;

β6 =

{
β3, if β3 ≤ 1− α2;

no solution, otherwise.

7 Unregistered(Gatling) AE, 4 [α7, β7] = [α2, β2]
8 (Sold(Lefty,Gatling,Red)

∧ Unregistered(Gatling))

=⇒ Criminal(Lefty) UI, 1 [α8, β8] = [α1, β1]
9 Sold(Lefty,Gatling,Red) AI, 6, 7 [α9, β9]

∧ Unregistered(Gatling) = [min(α2, α6),min(β2, β6)]

10 Criminal(Lefty) MP, 8, 9 [α10, β10], with:

α10 =


α1, if α1 > 1− β9;

0, if α1 = 1− β9;

no solution, otherwise;

β10 =

{
β1, if β1 ≤ 1− α9;

no solution, otherwise.

a set of logic formulas such that the full set of logic formulas (i.e., our logic model) is

true.

Formally, the satisfiability problem consists in determining whether there exists

a variable assignment such that every formula in a group of logic formulas (i.e., the

model) evaluates to true [57]. This concept can be extended into ULP. In this case,

instead of focusing on true/false variable assignments, we need to find the uncertainty

intervals that satisfy a formula or a set of formulas. This is equivalent to finding a

possible interpretation for the unknown uncertainties in a ULP model. Although this

formulation departs from the traditional satisfiability formulation which identifies
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Figure 2.3: Lower bound of the uncertainty of the conclusion α10 of Table 2.4.

possible variable assignments, equivalent variable assignments in ULP can be found

by identifying those grounded propositions with no uncertainty (i.e., with uncertainty

interval [1, 1]).

It has been demonstrated that the SAT problem is NP complete. However, there

are instances in many diverse areas for which this problem can be reformulated with

simpler and efficient algorithms [57]. As it will become evident later in this section,

this is also true for the case of ULP satisfiability, enabling scalable solutions for

reasoning with ULP.

The satisfiability problem for ULP models can be formulated as an optimization

problem, as follows.
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2.8.1 ULP Satisfiability as an Optimization Problem

Consider a set Φ of uncertain propositions containing:

{ ϕ1(·), with uncertainty [αϕ1 , βϕ1 ],

ϕ2(·), with uncertainty [αϕ2 , βϕ2 ],

. . . , ϕl(·), with uncertainty [αϕl , βϕl ] },

whose uncertainty intervals are known. Let us call these propositions the evidence.

Also consider a set Ψ of uncertain propositions containing the elements:

{ ψ1(·), with uncertainty [αψ1 , βψ1 ],

ψ2(·), with uncertainty [αψ2 , βψ2 ],

. . . , ψm(·), with uncertainty [αψm , βψm ] },

whose uncertainty intervals are unknown. Both evidence and unknown propositions

are components of a ULP model made of n logic expressions:

F1 : f1(Φ,Ψ), with uncertainty [αF1 , βF1 ],

F2 : f2(Φ,Ψ), with uncertainty [αF2 , βF2 ], . . . ,

Fn : fn(Φ,Ψ), with uncertainty [αFn , βFn ],

where f1, f2, . . . , fn are logic formulas. Without loss of generality, assume that these

formulas are disjunctions of a subset of propositions in Φ and Ψ. For example, a ULP

model could be defined as:

F1 : ϕ1 ∨ ψ1, with uncertainty [αF1 , βF1 ],

F2 : ϕ2 ∨ ϕ3 ∨ ψ1, with uncertainty [αF2 , βF2 ], and

F3 : ϕ3 ∨ ψ2, with uncertainty [αF3 , βF3 ]. (2.36)

Furthermore, let us denote as αΦ∈Fj and αΨ∈Fj the set of beliefs (i.e., lower bound of

the uncertainty intervals) of the propositions in Φ and Ψ, respectively, that are part
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of the formula Fj, j = 1, 2, . . . , n. Similarly, let us denote as βΦ∈Fj and βΨ∈Fj the set

of plausibilities (i.e., upper bound of the uncertainty intervals) of the propositions in

Φ and Ψ, respectively, that are part of the formula Fj. For example, in the model

defined by (2.36), the sets αΦ∈Fj , βΦ∈Fj , αΨ∈Fj , βΨ∈Fj , with j = 1, 2, 3, are:

αΦ∈F1 = {αϕ1}, βΦ∈F1 = {βϕ1},

αΦ∈F2 = {αϕ2 , αϕ3}, βΦ∈F2 = {βϕ2 , βϕ3},

αΦ∈F3 = {αϕ3}, βΦ∈F3 = {βϕ3},

αΨ∈F1 = {αψ1}, βΨ∈F1 = {βψ1},

αΨ∈F2 = {αψ1}, βΨ∈F2 = {βψ1},

αΨ∈F3 = {αψ2}, and βΨ∈F3 = {βψ2}.

Then, the satisfiability problem in ULP can be defined as finding the uncertainty

intervals [αψi , βψi ] that solve the following optimization problem:

minimize
{[αψi ,βψi ]}

n∑
j=1

(αFj − α̂Fj)2 + (βFj − β̂Fj)2 (2.37a)

subject to

for all j ∈ {1, 2, . . . , n} :

α̂Fj = max(αΦ∈Fj , αΨ∈Fj); (2.37b)

β̂Fj = max(βΦ∈Fj , βΨ∈Fj); (2.37c)

0 ≤ α̂Fj ≤ β̂Fj ≤ 1; and (2.37d)

0 ≤ αψi ≤ βψi ≤ 1; i ∈ {1, . . . ,m}. (2.37e)

It is important to note the following:

• The cost function in (2.37a) is based on an l2 norm. However, the definition of

the cost function should not be considered restricted to l2 norms. Other norms

could be used to enforce particular properties of the solution.
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• The constraints (2.37b) and (2.37c) model the uncertainty of an OR operation

in CFE-based ULP, as defined in Section 2.4.2 above. The use of a disjunctive

model simplifies the formulation of the optimization problem. Similar con-

straints could be constructed to model logic formulas that involve other logic

operators, or, alternatively, any other logic expression could be converted into

a disjunctive model. Constraints (2.37d) and (2.37e) condition the uncertainty

intervals to be defined as closed sets, consistent with DS theory definitions.

• When the solution of the optimization problem renders a cost function equal

to zero, the logic model is satisfiable. In this case, there may be an infinite

number of solutions to the optimization problem, and an additional step should

be added to the reasoning process for enforcing minimal commitment in the

output intervals (i.e., delivering the most conservative interval allocation).

When the cost function in the solution does not evaluate to zero, the model is not

satisfiable. In this case it is possible, however, to identify particular formulas that are

making the problem unsatisfiable (by identifying the non-zero components in the cost

function), and either discard them from the model, or properly weight the evidence

to ensure satisfiability.

Also note that the optimization problem (2.37) is nonlinear. This problem, how-

ever, can be converted into a convex optimization problem if in each of the logic

expressions F1, F2, . . . , Fn there is at most one proposition whose uncertainty is un-

known. Under this assumption, the optimization problem (2.37) can be reformulated
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as:

minimize
{[αψi ,βψi ]}

n∑
j=1

(αFj − α̂Fj)2 + (βFj − β̂Fj)2 (2.38a)

subject to

for all j ∈ {1, 2, . . . , n} :

0 ≤ α̂Fj ≤ β̂Fj ≤ 1; (2.38b)

α̂Fj = αΨ∈Fj ; β̂Fj = βΨ∈Fj ; (2.38c)

α̂Fk ≥ αΦ∈Fj ; β̂Fk ≥ βΦ∈Fj ; (2.38d)

0 ≤ αψi ≤ βψi ≤ 1; i ∈ {1, . . . ,m}. (2.38e)

As a convex optimization problem, the complexity of this algorithm is significantly

less than that of its corresponding nonlinear problem. This makes this approach

valuable in scenarios with hundreds to thousands of logic formulas.

2.8.2 Example: MLNs and Optimization-based ULP

Consider the scenario described in [58], in which a knowledge base contains the

following three rules:

1. “Friends of friends are friends”;

2. “Smoking causes cancer”; and

3. “If two people are friends and one smokes, then so does the other”.

As defined in [58], these rules could be expressed in first order logic as:

1. ∀x∀y∀z Friends(x, y) ∧ Friends(y, z) =⇒ Friends(x, z);

2. ∀x Smokes(x) =⇒ Cancer(x); and

3. ∀x∀y Friends(x, y) ∧ Smokes(x) =⇒ Smokes(y),
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respectively. Note that these types of rules would be rarely completely true (or false)

in real-life problems [58]. However, if we are able to quantify and attach uncertainty

measures to these rules, then we would have a valuable set of rules able to support

meaningful automated reasoning. When using probabilities as the uncertainty mea-

sure, problems like the one in this example can be modeled (and solved) using MLNs.

They could also be solved using ULP to take advantage of the increased degree of

freedom and logic-consistency properties introduced in this paper.

Let us enhance this set of rules with a set of uncertain logic expressions and

rules, as shown in Table 2.5. This set of logic expressions is applied on a domain

of people defined as Θp = {Ivan, John,Katherine,Lars,Michael,Nick}. For ease of

explanation, friendship relations have been assumed to be perfectly known (i.e., with

no uncertainty), with uncertainty intervals [1, 1]. The knowledge base and set of

evidence are propotitionalized (i.e., grounded) over the domain Θp, along with the

grounded propositions Smokes( · ) and Cancer( · ). The propotitionalized knowledge

base and evidence sets are further processed to convert them into conjunctive normal

form, rendering a total of 438 propositions. Then, we automatically formulate the

ULP convex optimization model (2.38) for this example and use it for answering

questions regarding the uncertainty of particular logic propositions.

Let us consider first the effect that changing the uncertainty of rule F3 has in

the uncertainty of the proposition Smokes(). Figure 2.4 shows the uncertainty of

this proposition as it applies to Katherine when the uncertainty of F3 changes. In

the figure, nine uncertainty intervals are considered for F3, namely [αF3, βF3 ∈

{[1.00, 1.00], [0.75, 1.00], [0.50, 1.00], [0.50, 0.75], [0.50, 0.50], [0.25, 0.50], [0.00, 0.50],

[0.00, 0.25], [0.00, 0.00]}. These uncertainty intervals represent various uncertainty

conditions, including F3 being completely true to completely false, as well as the

uncertainty of F3 being modeled with both probabilistic and DS models. This fig-

ure also shows the corresponding probabilities computed with MLNs (using Alchemy

1.0 [59]). Since MLNs rules require setting a weight for each logic expression, we set
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Table 2.5: Set of logic formulas (i.e., rules) and evidence for the example of Section 2.8.2.
For simplicity, the duals of evidence expressions to E1, E2, E3, and E4 are not shown in the
table. These duals enforce an assumption of symmetry of a friendship relation (i.e., for two
subjects d1, d2, the uncertainty of Friends(d1, d2) is the same of Friends(d2, d1).

Knowledge base of uncertain formulas/rules
Logic Expression Uncertainty

F1 ∀x∀y∀z Friends(x, y) [αF1, βF1] = [1, 1]
∧Friends(y, z) =⇒ Friends(x, z)

F2 ∀x Smokes(x) =⇒ Cancer(x) [αF2, βF2]
F3 ∀x∀y Friends(x, y) ∧ Smokes(x) [αF3, βF3]

=⇒ Smokes(y)

Evidence
Logic Expression Uncertainty

E1 Friends( Ivan, John ) [αE1, βE1] = [1, 1]
E2 Friends( Katherine, Lars ) [αE2, βE2] = [1, 1]
E3 Friends( Michael, Nick ) [αE3, βE3] = [1, 1]
E4 Friends( Ivan, Michael ) [αE4, βE4] = [1, 1]
E5 Smokes( Ivan ) [αE5, βE5]
E6 Smokes( Nick ) [αE6, βE6]
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the weights of each proposition using the pignistic probability of its corresponding

uncertainty interval. We can observe the following:

• The uncertainty interval of the proposition Smokes(Katherine) resembles the

uncertainty interval of rule F3. This is expected given that, as described in

Section 2.7 above, the uncertain model of implication rules (as the one in F3)

is bounded by the uncertainty of the rule.

• The pignistic probability (BetP curve in the figure) provides a probabilistic

solution based on the ULP models.

• Unless there is complete certainty of the truthfulness of F3, the probabilistic re-

sult rendered by an MLN model quickly drops to a value close to 0.4. Although

for most of the intervals considered in the figure this probability value falls out-

side of the uncertainty interval provided by ULP, this result is the best an MLN

can provide given its underlying probabilistic model. Recall that, unlike ULP,

the probabilistic model of MLNs cannot naturally model the uncertainty of the

negation of F3. In addition, by definition, the MLN model does not ensure

consistency with a classical logic model and there is no direct correspondence

between a weight in a logic formula and a probability value. With these limita-

tions, the best solution that the MLN can provide for the proposition F3 is close

to 0.5 (i.e., both events “Katherine smokes” and “Katherine does not smoke”

are almost equally likely).

Let us now focus on the effect of changing the uncertainty of the rule F2, and as-

sume that F3 is always true (with uncertainty [1, 1]). Figure 2.5) shows the uncertainty

of the proposition Cancer(Ivan) as a function of the uncertainty interval [αF2, βF2].

As in the analysis of the rule F3, the following nine uncertainty intervals are consid-

ered for F3: [αF2, βF2] ∈ {[1.00, 1.00], [0.75, 1.00], [0.50, 1.00], [0.50, 0.75], [0.50, 0.50],

[0.25, 0.50], [0.00, 0.50], [0.00, 0.25], [0.00, 0.00]}. Note how, from interval [1.00, 1.00]

down to interval [0.50, 0.50] the uncertainty of Cancer(Ivan) follows the uncertainty
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Figure 2.4: Uncertainty of the proposition Smokes(Kate) as a function of the uncertainty
interval [αF3, βF3], which indicates the uncertainty of the logic formula F3 in the example of
Section 2.8.2. The figure shows the belief and plausibility of Smokes(Kate) using ULP. In
addition, the figure shows a mapping of the resulting ULP model into a probabilistic model
using the pignistic transformation (labeled as BetP in the figure), as well as a probabilistic
estimate rendered by an MLN model. Note how the uncertainty of Smokes(Kate) rendered
by ULP follows the behavior of the uncertainty of F3, and provides information even if the
uncertainty of the rule indicates that F3 is false.
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of the rule F2. However, when there is insufficient evidence to support a satisfiable

model a conclusion cannot be made on the uncertainty interval of Cancer(Ivan) in

ULP. In this case, the uncertainty interval becomes [0, 1] which indicates complete

ignorance on the event Cancer(Ivan) being true or false. Note that rendering an

uncertainty interval [0, 1] in this case is consistent with the MP model (2.33) and

(2.34): In the case of insufficient evidence to support a conclusion, the model is not

satisfiable and a conservative solution [0, 1] is output. Finally, the figure shows that

the pignistic probabilistic transformation (i.e., BetP in the figure) renders results that

are close to the output delivered by MLNs in this scenario.

Figure 2.5: Uncertainty of the proposition Cancer(Ivan) as a function of the uncertainty
interval [αF2, βF2], which indicates the uncertainty of the logic formula F2 in the example of
Section 2.8.2. The figure shows the belief and plausibility of Smokes(Kate) using ULP. In
addition, the figure shows a mapping of the resulting ULP model into a probabilistic model
using the pignistic transformation (labeled as BetP in the figure), as well as a probabilistic
estimate rendered by an MLN model. Note how the uncertainty of Cancer(Ivan) rendered
by ULP follows the behavior of the uncertainty of F2. When there is not enough evidence to
support an assignment of an uncertainty interval of Cancer(Ivan), the ULP model renders
as a result the interval that represents complete ignorance, namely [0, 1].



CHAPTER 3

DS-Based Undirected Graphical Models

Graphical models are a popular framework for compact representation of a joint

probability distribution over a large number of interdependent variables, and for ef-

ficient reasoning about such a distribution [60]. Graphical models define probability

distributions in terms of a directed or undirected graph. The nodes in the graph are

identified with random variables, and joint probability distributions are defined by

taking products over functions defined on connected subsets of nodes. By exploit-

ing the graph-theoretic representation, the formalism provides general algorithms

for computing marginal and conditional probabilities of interest. Moreover, the for-

malism provides control over the computational complexity associated with these

operations [61].

In this chapter we extend the concept of graphical models to the Demspter-Shafer

domain. In particular, we lay up the foundations of a DS-based graphical model

framework which is compatible with ULP reasoning. This framework inherits the

advantages of traditional probabilistic graphical models. Furthermore, it enhances

them by providing the ability for reasoning with uncertainty intervals. The graphical

model formalism introduced in this chapter is an initial formulation of a well-founded

DS-based graphical model theory, whose further development is matter of future work.

63
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3.1 Probabilistic Graphical Models

In general, a graphical model has two components: 1) A graph whose nodes are the

random variables and whose edges connect variables that interact directly (variables

that are not directly connected are conditionally independent given some combination

of the other variables); and 2) a set of functions (called factors) defined over a subset

of the random variables [60]. A factor f(x) is a function over a set of random variables

X = {X1, X2, . . . , Xk} such that f(x) ≥ 0,∀x in the domain of X. It is not required

that f(x) ≤ 1, i.e., factors are not required to be probability distributions. Given a

complete joint assignment x to the variables in X, a joint distribution is defined by:

p(x) =
1

Z

∏
i

fi(x), (3.1)

where fi represents all the factors of the form f defined by the graph, and Z =∑
x′
∏

i fi(x
′) is a normalization constant.

Directed graphical models (also known as Bayesian networks), are typically used

to represent causal or asymmetric interactions amongst a set of random variables. A

directed edge from variable Xi to variable Xj in the graph (which must be acyclic) is

used to indicate that Xi directly influences Xj. The probability distribution that a

directed graphical model defines is:

p(x) = p(x1, x2, . . . , xn) =
n∏
i=1

p(xi|xpi ), (3.2)

where xpi represents the set of parents of node Xi. Note that (3.2) is a conditional

probability distribution over a node given its parents in the graph.

Undirected graphical models, or Markov Networks, are useful for representing dis-

tributions over variables where there is no natural directionality to the influence of one

variable over another and where the interactions are more symmetric [61]. Let G be

the undirected graph over the random variables X = {X1, X2, . . . , Xn} corresponding

to a Markov network, and let C denote the set of cliques (i.e., complete subgraphs) of

G. Then, the probability distribution represented by the Markov network factorizes
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as follows:

p(x) = p(x1, x2, . . . , xn) =
1

Z

∏
c∈C

fc(x), (3.3)

where fc(x) are the factors over a complete subgraph of G, and Z =
∑

X

∏
c∈C fc(x)

is the normalization constant.

3.2 Undirected Graphical Models for Probabilistic

Extensions of Logic Reasoning

Undirected graphical models have been recently considered for the creation of

probabilistic extensions of logic reasoning systems. The reason is that the undirected

graph approach is more general when causal structure is unknown. Undirected graphs

are used as the substrate of Markov Logic Networks (MLN) [22] and Probabilistic Soft

Logic (PSL) [23], two recent approaches for providing logic inference with probabilistic

reasoning. These two approaches are briefly described next.

3.2.1 Markov Logic Networks

A Markov Logic Network is a set of weighted first order logic clauses. It defines

a Markov network, with a feature corresponding to each ground clause. The weight

of each feature is the weight of the corresponding first order clause. If x is a possible

assignment of truth values to all ground atoms, then

p(x) =
1

Z
exp

∑
i

wini(x), (3.4)

where wi is the weight of the ith clause, ni(x) is its number of true groundings in

x, and Z =
∑

x exp
∑

iwini(x) is a normalization constant. MLN weights can be

learned generatively using pseudo-likelihood [22] or discriminatively using a variety

of techniques [62]. MLN structure can be learned using a form of inductive logic

programming [63].
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Once the weights are learned, inference in MLN is done based on the function:

p(x) =
1

Z
exp

∑
i

wifi(x), (3.5)

where fi(x) = 1 if the ith clause is true, and 0 otherwise.

Inference in MLNs is carried out using a weighted satisfiability solver, or through

more computationally efficient such as Gibbs sampling or MC-SAT. Recent research

on MLNs has rendered Tractable Markov Logic (TML) [64]. TML defines a subset

of MLNs, and uses probabilistic class and part hierarchies to control complexity. It

relies on sum-product networks [65] for efficient computation of the normalization

constant.

3.2.2 Probabilistic Soft Logic

Probabilistic Soft Logic (PSL) is a framework for probabilistic reasoning in rela-

tional domains [23]. As MLNs, PSL uses first order logic as a template language to

specify undirected graphical models where ground atoms correspond to random vari-

ables and first order formulas encode dependencies among these variables and induce

the features of the graphical mode. A key difference with MLN is, however, that PSL

relaxes the Boolean truth values of MLNs to continuous truth values in the interval

[0, 1]. In addition, PSL restricts the syntax of first order formulas to that of rules

with conjunctive bodies. These two differences allow to solve inference problems in

PSL as convex optimization problems in continuous space, enabling a more efficient

inference that what MLNs can do [23].

Logical operations within the PSL framework are based on the Lukasiewicz t-

norm and its corresponding co-norm for the AND and OR operations, respectively.

Given an interpretation I, the formulas for the AND, OR, and negation in PSL are
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as follows:

ϕ1 ∧̃ ϕ2 = max(0, I(ϕ1) + I(ϕ2)− 1),

ϕ1 ∨̃ ϕ2 = min(I(ϕ1) + I(ϕ2), 1),

¬̃ ϕ1 = 1− I(ϕ1), (3.6)

where the ˜ symbol indicates a relaxation from the Boolean domain.

A PSL program induces a distribution over possible interpretations I. Let R

be the set of all ground rules that are instances of a rule in the program and only

mentions atoms in a set l of interest. The probability density function p(I) is:

p(I) =
1

Z
exp

(
−
∑
r∈R

λr(dr(I))q

)
, (3.7)

where Z =
∫
I

1
Z

exp−
∑

r∈R λ(dr(I))q is a normalization constant, λr is the weight of

the rule r, dr(I) is a distance-to-satisfaction metric, and q ∈ {1, 2} provides a choose

of two different loss functions. dr(I) is defined for an implication rule ϕ1 =⇒ ϕ2 as

dr(I) = max(0, I(ϕ1)− I(ϕ2)). Weight learning in PSL can be done using maximum

likelihood estimation. However, this problem is often intractable and its solution

currently relies on approximated algorithms.

Inference in PSL targets two tasks: 1) Most Probable Explanation (MPE), which

is inferring most likely values for a set of propositions given values of the remaining

propositions as evidence; and 2) computing marginal distributions. MPE inference

can be obtained by maximizing the density function p(I) in (3.7), which is equivalent

to minimizing the summation in the exponent, subject to both the evidence and any

additional constraints. This optimization problem can be solved in polynomial time.

The computation of marginal probabilities refers to calculating the probability that

an atom li takes a value from a given interval [l, u], i.e., finding p(l ≤ I(li) ≤ u).

This second problem is more complex, and to solve it, marginal distributions are

approximated by collecting a histogram of sampled points following Markov Chain

Monte Carlo schemes.
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3.3 Graphical Models for Uncertain Logic Process-

ing

3.3.1 General Framework

We propose the formulation of undirected graphical models in the DS domain

based on the graph model defined for MLNs, which are described in in [58, 66].

A Markov network models the joint distribution of a set of random variables X =

(X1, X2, . . . , Xn) ∈ Ξ as follows:

P (X = x) =
1

Z

∏
j

φj(x{j}), (3.8)

where x{j} is the state of the j-th clique, φk is called a potential function for clique

j, and Z is a normalization constant such that Z =
∑

x∈Ξ

∏
j φj(x{j}). A log-linear

equivalent formulation is described by (3.5), i.e., by: P (X = x) = 1
Z

exp
(∑

j wjfj(x)
)
,

where fj is called a “feature” function of the state j, and wj is a weight. A feature

may be any real-valued function of the state [22].

A Markov Logic Network L (which we use as the general framework for DS-based

graphical models) is defined as a set of pairs (Λj, wj), where Λj is a formula in first

order logic (as defined above) and wj is a real number. Together with any required set

of constraints C, the pairs (Λj, wj) define a Markov network M{L,C} (e.g., models (3.8)

and (3.5) above), as follows:

1) M{L,C} contains one binary node for each possible grounding of each predicate

appearing in L. The value of the node is 1 if the ground predicate is true, and 0

otherwise.

2) M{L,C} contains one feature for each possible grounding of each formula Λj in L.

The value of this feature is 1 if the ground formula is true, and 0 otherwise. The

weight of the feature is the wj associated with Fj in L.

In its original formulation, an MLN can be seen as a template for constructing Markov

networks. Based on models (3.8) and (3.5) as well as on items 1) and 2) above,
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the probability distribution over possible worlds x specified by the ground Markov

network M{L,C} is given by:

P (X = x) =
1

Z
exp

(∑
j

wjnj(x)

)
=

1

Z

∏
j

φj(x{j})
nj(x), (3.9)

where nj(x) is the number of true groundings of Λj in x, x{j} is the state (truth

values) of the predicates appearing in Λj, and φj(x{j}) = exp(wj).

3.3.2 A Feature Function for DS-based Graphical Models

We can relax the conditions 1) and 2) described in Section 3.3.1 above in such

a way that, for each logic expression Λj, we quantify uncertainty intervals [αj, βj]

instead of groundings of the expression. Furthermore, we can define features as non-

negative real numbers. In this case, we introduce a feature function L that captures

information embedded in the uncertainty intervals. The feature related to Λj as Lj.

Note that, in a traditional MLN (as introduced in [22]), the feature function f is

defined as a count on the number of times logic expression Λj is found to be true in

a knowledge base. This count is assumed to be proportional to the probability of Λj

being true. In our extension to the DS framework, the feature function becomes the

support for Λj being true or not being false.

We can further express the feature Lj as Lj = L{1}j +L{0}j , which emphasizes the

notion that Lj captures a consolidated probabilistic metric for the events “Λj is true”

and “Λj is not false”, respectively. The most natural definition for L{1}j and L{0}j is

obtained directly from the uncertainty interval [αj, βj]. Then, in the following, we let

L{1}j = αj and L{0}j = βj.
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When we consider the use of the new feature function L, (3.5) becomes:

P (X = x) =
1

Z
exp

(∑
j

wjfj(xj)

)

=
1

Z
exp

(∑
j

wjLj(xj)

)

=
1

Z
exp

(∑
j

wj

(
L{1}j (xj) + L{0}j (xj)

))
, (3.10)

where xj = {[α1, β1], [α2, β2], . . . , [αMj
, βMj

]}, the uncertainty intervals of the propo-

sitions that make up Λj. Some important remarks:

• The model described by (3.10) captures uncertainty intervals from propositions

xj and logic expressions Λj, and renders a probability measurement P (X = x).

Hence, this model can be seen as a probabilistic transformation of the DS-based

logic model (the comparison of this transformation with existing probabilistic

transformations for DS models is a matter of future work).

• Equation (3.10) can be also expressed as:

P (X = x) =
1

Z
exp

∑
j

wj

(
L{1}j (xj) + L{0}j (xj)

)
=

1

Z
exp

∑
j

(
wjL{1}j (xj) + wjL{0}j (xj)

)
=

1

Z
exp

∑
j

(
wjL{1}j (xj) + wjL{0}j (xj)

)
=

[
1

Z1

exp

(∑
j

wjL{1}j (xj)

)]
×

[
1

Z2

exp

(∑
j

wjL{0}j (xj)

)]

= P {1}(X = x)× P {0}(X = x), (3.11)

with Z = Z1Z2. In this case, P {1}(X = x) could be seen as quantifying the

event in which all the Λj expressions are true, while P {0}(X = x) quantifies

the event in which the Λj expressions are false. If the condition 0 ≤ P {1}(X =
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x) ≤ 1 − P {1}(X = x) ≤ 1 is maintained, this formulation could lead to an

uncertainty interval on the logic model that is being captured by the graph.

Using the feature function L, the problem of finding the most probable world (or

maximum satisfiability) becomes:

arg max
1

Z
exp

(∑
j

wjLj(x)

)
. (3.12)

Note that this problem is equivalent to:

arg max
∑
j

wjLj(x). (3.13)

Furthermore, given that Lj = L{1}j +L{1}j = αj + βj, the objective function in (3.13)

is maximal when αj = βj = 1,∀j. That is to say, the objective function is maximal

when all the logic expressions Λj hold true. This would lead to P (X = x) = 1

in (3.10). Similarly, the objective function in (3.13) is minimal when αj = βj = 0, ∀j.

In this case, the interpretation is that all the logic expressions Λj are false. This is an

expected behavior for a model that captures probabilities (or uncertainty intervals)

of logic models encoded in graphical models.

3.3.3 Pseudo-likelihood Operators for Building DS-based Fea-

ture Functions

The feature function L introduced in Section 3.3.2 provides a suitable definition

that properly and advantageously captures uncertainty information from logic ex-

pressions Λj for its use within graphical model frameworks. Due to the ability of

this feature function for consistently increasing or decreasing the probability of logic

expressions Λj being true depending on the amount of evidence embedded in the un-

certainty interval, we could see this feature function as a pseudo-likelihood operator

(recall that likelihood operators are used in statistics for estimating parameters or

expected outcomes).
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The problem now becomes the definition of L (as well as functions L{1} and L{0})

as a function of the uncertainty intervals of the propositions that are part of the logic

expressions Λj. A possible definition that is advantageous because it leads to a convex

formulation of a ULP satisfiability problem is described next.

3.3.3.1 Likelihood of an ULP Formula Being True

Consider an uncertain logic expression of the form:

Λ : ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕM , (3.14)

with M being the number of uncertain propositions in the logic conjunction Λ, propo-

sitions ϕi having uncertainty intervals [αi, βi], and i = 1, 2, . . . ,M . When using the

CFE as the fusion operator, the BBA of the conjunction of the M uncertain propo-

sitions above can be computed as:

m(
M∧
i=1

ϕi) = [ Γ{1}a + Γ{1,0}d,

Γ{0}(1− b) + Γ{1,0}d ], (3.15)

where a = [α1, α2, . . . , αM]T is an M × 1 vector containing the beliefs of the ϕi

propositions; b = [β1, β2, . . . , βM]T is an M × 1 vector containing the plausibilities

of the ϕi propositions; 1 is the M × 1 vector [1, 1, . . . , 1]T ; d = [(β1 − α1), (β2 −

α2), . . . , (βM−αM)]T is anM×1 vector containing the uncertainty quantification (βi−

αi) corresponding to each proposition ϕi; Γ{1} = [γϕ1 , γϕ2 , . . . , γϕM ] is a 1×M vector

containing the CFE coefficients corresponding to the events in which ϕi is true; Γ{0} =

[γ¬ϕ1 , γ¬ϕ2 , . . . , γ¬ϕM ] is a 1×M vector containing the CFE coefficients corresponding

to the events in which ϕi is false; and Γ{1,0} = [γϕ1,¬ϕ1 , γϕ2,¬ϕ2 , . . . , γϕM ,¬ϕM ] is a 1×M

vector containing the CFE coefficients corresponding to the events in which ϕi is either

true or false (but unknown). It is worth noting that the CFE coefficients in Γ{1}, Γ{0}

and Γ{1,0} must be defined in such a way that the properties of the conjunction are

maintained (see [42]).
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Let us now define the likelihood function of the DS model that describes the belief

of Λ being true as:

L{1}Λ (mi,Γ) = exp (m(Λ))

= exp
(
Γ{1}a + Γ{1,0}d

)
, (3.16)

where αΛ is the belief of Λ being true and Γ = {Γ{1},Γ{0},Γ{1,0}}.

3.3.3.2 Likelihood of an ULP Formula Being False

Similarly, we can build the likelihood function of the DS model that describes the

belief of Λ not being false as:

L{0}Λ (mi,Γ) = exp (m(¬Λj))

= exp
(
Γ{0}(1− b) + Γ{1,0}d

)
, (3.17)

where the vectors b, d, 1 are defined as indicated in Section 3.3.3.1 above, and

Γ = {Γ{1},Γ{0},Γ{1,0}}.

3.3.3.3 Global Likelihood of an ULP Formula

By combining the concepts behind the definitions in (3.16) and (3.17), we can

define the likelihood of the overall uncertain logic expression Λ as follows:

LΛ(m, a,b,Γ) = exp ( m(Λ) +m(¬Λ) )

= exp{(Γ{1}a + Γ{1,0}d) + (Γ{0}(1− b) + Γ{1,0}d)}. (3.18)
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3.3.3.4 Likelihood of a Set of ULP Formulas

We can further define the likelihood function of the joint belief of all Λj, j =

1, 2, ..., N (i.e., likelihood of the logic model Φ = {Λ1,Λ2, · · · ,ΛN}) as:

LΦ({mj}, {Γj}) =
N∏
j=1

LΛj .

= exp{
N∑
j=1

(
Γ
{1}
j aj + Γ

{1,0}
j dj

)
,+
(

Γ
{0}
j (1− bj) + Γ

{1,0}
j dj

)
}.

(3.19)

Note that, if we incorporate a normalization factor 1
Z

and let wj = 1 for all j in (3.13),

this model becomes the cost function in (3.13), which is our generic formulation of

DS-based graphical models. Given that this model represents a convex function, it

supports the implementation of scalable solvers of (3.13). Furthermore, the CFE

coefficients subsume the effect of the individual weights wj.

3.4 Reasoning with DS-based graphical models

3.4.1 Pseudo-maximum Likelihood for ULP Expressions

The pseudo-likelihood functions introduced in Section 3.3.3 can be used for esti-

mating the CFE coefficients of ULP logic formulas. Based on the pseudo-likelihood

formulation in (3.19), the corresponding pseudo Maximum Likelihood Estimation

(MLE) framework in this case is defined as:

arg max
Γj
LΦ({mj}, {Γj})

= arg max
Γj

exp
N∑
j=1

(
Γ
{1}
j aj + Γ

{1,0}
j dj + Γ

{0}
j (1− bj) + Γ

{1,0}
j dj

)
. (3.20)
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Similarly, given some CFE coefficients, MLE can be used for estimating unknown

beliefs and plausibilities of propositions in a set of formulas Φ, that is:

arg max
aj,bj

LΦ({mj}, {Γj})

= arg max
aj,bj

exp
N∑
j=1

(
Γ
{1}
j aj + Γ

{1,0}
j dj

)
+
(

Γ
{0}
j (1− bj) + Γ

{1,0}
j dj

)
. (3.21)

In both cases, constraints can be added to the MLE problem to enforce satisfying

particular properties of the solution. For example, [42] provides constraints on the

CFE coefficients so that consistency with classical logic is satisfied. If an application

does not demand such consistency, then these constraints may be relaxed and others

more in tune with the application (or none, if that is the case) could be used instead.

Example: Estimating CFE coefficients. Consider the logic conjunction

ϕ1 ∧ ϕ2, where the uncertainty of the propositions ϕ1 and ϕ2 is [α1, β1] and [α2, β2],

respectively. A MLE model that allows us to estimate the CFE coefficients for this

conjunction is given by:

arg max
Γ
LΦ(a = [α1, α2],b = [β1, β2],Γ)

= arg max
Γ

 [
γ
{1}
1 γ

{1}
2

]
×

α1

α2


+
[
γ
{1,0}
1 γ

{1,0}
2

]
×

β1 − α1

β2 − α2

 
+

 [
γ
{0}
1 γ

{0}
2

]
×

1− β1

1− β2


+
[
γ
{1,0}
1 γ

{1,0}
2

]
×

β1 − α1

β2 − α2

  ,
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where Γ = {γ{1}1 , γ
{1}
2 , γ

{0}
1 , γ

{0}
2 , γ

{1,0}
1 , γ

{1,0}
2 }. The following constraints are used for

enforcing conjunction and DS properties:

αϕ1∧ϕ2 ≤ α1, α2;

βϕ1∧ϕ2 ≤ β1, β2;

0 ≤ αϕ1∧ϕ2 ≤ βϕ1∧ϕ2 ≤ 1; and

2∑
i=1

γ
{1}
i + γ

{0}
i + γ

{1,0}
i = 1. (3.22)

Figure 3.1 shows the uncertainties of the formula ϕ1 ∧ ϕ2 that are obtained by

maximizing the CFE coefficients in 4 different scenarios: (a) when the uncertainty

of ϕ2 is [α2, β2] = [0, 0], (b) when [α2, β2] = [1, 1], (c) when [α2, β2] = [0, 1], and

(d) when [α2, β2] = [0.25, 0.80]. The corresponding CFE coefficients obtained when

the uncertainty of ϕ1 is [α1, β1] = [1, 1] are shown in Figure 3.2. Some important

observations:

• The MLE tunes the model for assigning the largest amount of evidence to the

events (ϕ1 ∧ ϕ2) and ¬(ϕ1 ∧ ϕ2).

• The belief of the formula (ϕ1 ∧ ϕ2) is always less than the belief of any of the

propositions ϕ1 and ϕ2. This is consistent with the properties for the AND

operation that we are enforcing through the constraints of the MLE model.

• Similarly, the plausibility of the formula (ϕ1 ∧ ϕ2) is always less than the plau-

sibility of any of the propositions ϕ1 and ϕ2.

• In the extreme cases, the following results are obtained:

– When [α1, β1] = [0, 0] and [α2, β2] = [0, 0] the uncertainty of the formula

ϕ1 ∧ϕ2 is [0, 0]. This is consistent with the classical logic result where the

AND operation is false if both of the input propositions are false.

– When the uncertainty of any of the propositions ϕ1 or ϕ2 is [0, 0], the

uncertainty of the formula ϕ1 ∧ ϕ2 is [0, 0]. This is consistent with the
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Figure 3.1: Uncertainty intervals (i.e., beliefs and plausibilities) obtained for the ϕ1 ∧ ϕ2

operation for different values of [α1, β2] (i.e., uncertainty of ϕ1) when the uncertainty of ϕ2

is: (a) [0, 0], (b) [1, 1], (c) [0, 1], and [0.25, 0.80].

classical logic result where the AND operation is false if any of the input

propositions is false.

– When [α1, β1] = [α2, β2] = [1, 1], the uncertainty of the formula ϕ1 ∧ ϕ2

is [1, 1]. This is consistent with the classical logic result where the AND

operation is true if both of the input propositions are true.

– The MLE model is a convex optimization problem. Hence, its solution

renders a global minimum.
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Figure 3.2: CFE coefficients obtained via pseudo MLE for the operation ϕ1 ∧ ϕ2 when the
uncertainty of ϕ1 is [α1, β1] = [1, 1] and the uncertainty of ϕ2 is: (a) [α2, β2] = [0, 0], (b)
[α2, β2] = [1, 1], (c) [α2, β2] = [0, 1], and (d) [α2, β2] = [0.25, 0.80].

– When the uncertainty of one of the propositions is [0, 1] (i.e., total igno-

rance), the belief of the formula ϕ1∧ϕ2 is 0 and its plausibility is bounded

by the plausibility of the second proposition.

• The MLE strategy easily extends to more general CFE operations. Its use for

the fusion of dichotomous FoDs is straightforward.
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3.4.2 Joint Estimation of CFE Coefficients and Unknown

Uncertainties in ULP Models

An algorithm for joint estimation of CFE coefficients and unknown proposition

uncertainties can be obtained through MM optimization [67]. In the following we

describe an algorithm that is based on a particular class of MM optimization methods,

namely, the Expectation-Maximization (EM) method. Although not directly aiming

at estimating an expected value per se, we refer to this method as an EM algorithm

for ULP.

The EM algorithm for ULP is defined by the following two-step iteration:

1. Solve

arg max
Γj
LΦ({mj},Γj)

to find estimates of Γj.

2. Solve

arg max
mj
LΦ({mj},Γj)

to find estimates of uncertainties defined by mj (and, in particular, defined by

aj and bj).

These iterations are repeated until convergence.

The use of the EM method for ULP has a number of advantages for reasoning un-

der ULP. By relying on the definition of the pseudo-likelihood operator L introduced

above, we ensure that the cost function is convex and its convergence can be proven.

If nonlinear constraints are not introduced, the solution to the EM folder converges

to a global minimum.

Example: Joint estimation of CFE coefficients and unknown uncertain-

ties in Modus Tollens. Consider the following logic model:

Λ1 : ϕ1 =⇒ ϕ2, with uncertainty [αF1, βF1]

Λ2 : ϕ1,with uncertainty [αF2, βF2],
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where the uncertainty of ϕ1 is [α1, β1] and the uncertainty of ϕ2 is [α2, β2]. The

pseudo-likelihood function L corresponding to this model is:

L(a = [α1, α2],b = [β1, β2],Γ) = LΛ1(a,b,Γ) + LΛ2(a,b,Γ)

=

 [
γ
{1}
1,1 γ

{1}
1,2

]
×

α1

α2

+
[
γ
{1,0}
1,1 γ

{1,0}
1,2

]
×

β1 − α1

β2 − α2

 
+

 [
γ
{0}
1,1 γ

{0}
1,2

]
×

1− β1

1− β2

+
[
γ
{1,0}
1,1 γ

{1,0}
1,2

]
×

β1 − α1

β2 − α2

 
+
([
γ
{1}
2,1

]
× [α1] +

[
γ
{1,0}
2,1

]
× [β1 − α1]

)
+
([
γ
{0}
2,1

]
× [1− β1] +

[
γ
{1,0}
2,1

]
× [β1 − α1]

)
,

where Γ = {ΓΛ1 ,ΓΛ2}, ΓΛ1 = {γ{1}1,1 , γ
{1}
1,2 , γ

{0}
1,1 , γ

{0}
1,2 , γ

{1,0}
1,1 , γ

{1,0}
1,2 }, and

ΓΛ2 = {γ{1}2,1 , γ
{0}
2,1 , γ

{1,0}
2,1 }.

Now assume that only the uncertainty interval [α1, β1] is known. We can jointly

estimate [αF1, βF1], the uncertainty of the implication rule ϕ1 =⇒ ϕ2, and the

uncertainty [α2, β2] of proposition ϕ2 using the EM algorithm for ULP. In this case, the

maximization problems associated to the EM algorithm must be properly constrained

to account for the expected behavior of uncertainty intervals (e.g., 0 ≤ αi ≤ βi ≤

1,∀i = 1, 2), CFE coefficients (e.g., the sum of all coefficients ΓΛi must be equal to 1,

for i = 1, 2), and logic rules.

Figure 3.3 illustrates the uncertainty intervals delivered by the EM algorithm

when [α1, β1] = [0, 1]. In this scenario, we are interested on reasoning when we

have complete ignorance regarding the truth value of ϕ1. As expected, the figure

shows that, in this case, we cannot infer anything else regarding the truth value of

ϕ2 (because the resulting uncertainty interval is [0, 1]). Similarly, we cannot infer

anything about the truth value of the implication rule. The uncertainty interval

[αF1, βF1] is symmetric around 0.5. We can also see in the figure how the algorithm

converges to a global maximum. However, there is no guarantee that this maximum

is unique.
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Figure 3.3: Uncertainty [α2, β2] of proposition ϕ2 obtained when there is total ignorance
regarding the truth value of the antecedent ϕ1 in a logic rule ϕ1 =⇒ ϕ2. In this case,
there is also total ignorance regarding the truth value of the consequent ϕ2. The figure also
shows the convergence of the EM algorithm in this case.



82

Figure 3.3 contains the uncertainty intervals delivered by the EM algorithm when

[α1, β1] = [0, 0]. In this case, we know that proposition ϕ1 is false. In classical logic,

we know that if the antecedent of an implication rule is false, then the consequent

could be either true or false. This is replicated by the results shown in the figure, as

the uncertainty interval for the consequent is [0, 1].
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Figure 3.4: Uncertainty [α2, β2] of proposition ϕ2 obtained when the uncertainty of ϕ1 is
[0, 0] in a logic rule ϕ1 =⇒ ϕ2. In this case, and consistent with classical logic results,
there is total ignorance regarding the truth value of the consequent ϕ2.

A more general scenario is illustrated in Figure 3.5, which depicts the uncertainty

of ϕ2 when different uncertainties of ϕ1 are evaluated. Although this scenario con-

siders a particular set of constraints that do not aim at delivering consistency with

classical logic, we can see that the uncertainty of ϕ2 goes to [1, 1] as the uncertainty

of the antecedent ϕ1 goes to [1, 1]. Indeed, only when the uncertainty of ϕ1 gets close
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to [1, 1] the uncertainty of the consequent ϕ2 decreases, and the support to ϕ2 being

true significantly increases.
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Figure 3.5: Uncertainty [α2, β2] of proposition ϕ2 obtained with different uncertainties of
the antecedent ϕ1. In this case, we can see how the uncertainty of ϕ2 decreases (and goes
to [1, 1]) as the uncertainty interval of ϕ1 goes to [1, 1].



CHAPTER 4

Hard and Soft Data Fusion

4.1 General Filtering and Estimation Framework

4.1.1 The Filtering (and Prediction) Problem

Consider a generic (discrete-time) stochastic filtering problem in a dynamic state

space form [1]:

xn = fn−1(xn−1,vn−1), (4.1a)

zn = hn(xn,wn), (4.1b)

where (4.1a) and (4.1b) are called state and measurement equations, respectively;

the index n ∈ N is assigned to a continuous-time instant tn; xn ∈ RNx represents the

state vector at time n, zn ∈ RNz is the measurement vector at time n, vn and wn are

the process and measurement noise, respectively, and f : RNx 7→ RNx and h : RNx 7→

RNz are possibly nonlinear functions. The initial state is assumed to have a known

probability density function (pdf) p(x0) and also to be independent of noise sequences.

The state equation (4.1a) characterizes the transition probability p(xn|xn−1), and the

measurement equation (4.1b) characterizes the probability p(zn|xn).

The objective is to find estimates of xn based on the sequence of all available

measurements Zn , {zi, i = 1, 2, · · · , n}. These estimates can be obtained through a

posterior pdf p(xn|Zn), which, in a Bayesian framework, may be obtained sequentially

in two stages: prediction and update.

84
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Defining z0 as the no measurement set, and assuming that the initial density of

the state vector p(x0|z0) and the pdf p(xn−1|Zn−1) are known, the prediction state at

time n is given by [1]:

p(xn|Zn−1) =

∫
p(xn|xn−1) p(xn−1|Zn−1) dxn−1. (4.2)

The fact that (4.1a) describes a Markov process of order one is used to make

p(xn|xn−1,Zn−1) = p(xn|xn−1) in the derivation of (4.2).

At time n the measurement zn becomes available and the update can be obtained

via the Bayes rule as:

p(xn|Zn) =
p(zn|xn) p(xn|Zn−1)

p(zn|Zn−1)
, (4.3)

with

p(zn|Zn−1) =

∫
p(zn|xn) p(xn|Zn−1) dxn. (4.4)

Note that p(zn|xn) in (4.4) depends on the measurement model (4.1b).

Knowledge of the posterior pdf p(xn|Zn) allows us to compute state estimates

with respect to any criterion. For example, the minimum mean square error estimate

x̂MMSE
n|n = E{xn|Zn}, or the maximum a posteriori estimate x̂MAP

n|n = arg maxxn p(xn|Zn).

4.1.2 Incorporating Hard and Soft Information

When considering fusion of hard and soft data, it is useful to clearly differentiate

hard from soft data (measurements), as well as hard state from “soft” state variables.

We call hard data any measurement provided by a physical sensor, for example, video,

radar, acoustic readings, etc. Soft data is any measurement that is obtained from a

human source, for example, text from blogs, witness reports, etc. Hard states consist

of traditional (discrete/continuous) state variables (e.g., position, velocity), while soft

states consist of more qualitative variables of interest, such as mood and opinions.

We then define: xn = {xhn,xsn} and zn = {zhn, zsn}, where xhn represents the

vector of “hard” states at time n, xsn the vector of “soft” states, zhn the vector of
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hard (i.e., physical) measurements, and zsn is the vector of soft measurements or

observations (in traditional systems, zn = zhn and xn = xhn).

In order to combine soft and hard data models, we propose to represent the joint

pdf p(xn,Zn) as a normalized product of three (potentially decomposable) combining

functions Ψh(·), Ψh,s(·), and Ψs(·) as follows:

p(xn,Zn) = p(xhn,x
s
n,Z

h
n,Z

s
n)

= 1
K

Ψh(x
h
n,Z

h
n) Ψh,s(x

h
n,x

s
n,Z

h
n,Z

s
n) Ψs(x

s
n,Z

s
n), (4.5)

where Ψh(·) models the interactions between hard data and hard states, Ψs(·) models

the interaction between soft data and soft states, Ψh,s(·) is a hybrid function that

represents the interactions between some hard and soft variables, and K is a nor-

malization factor. The posterior pdf p(xn|Zn) could then be obtained using (4.5)

as:

p(xn|Zn) = p(xn,Zn)/p(Zn)

= 1
K′

Ψh(x
h
n,Z

h
n) Ψh,s(x

h
n,x

s
n,Z

h
n,Z

s
n) Ψs(x

s
n,Z

s
n),

where K ′ = K p(Zn).

The advantage of this partition of the joint probability function is that we can

combine different models –the complexity of each of the individual models may be

significantly lower than the complexity of a “global” model. This combination enables

enhancing existing hard-data probabilistic models with soft data methods.

4.2 Incorporating Soft Sources

Let us consider a Bayesian filter, initially designed considering only hard data and

hard states, now enhanced with “soft” observations Zs
n. If only hard data is available,

the Bayesian processor (4.3) becomes:

p(xhn|Zh
n) =

p(zhn|xhn) p(xhn|Zh
n−1)

p(zhn|Zh
n−1)

. (4.6)
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(a) (b)

Figure 4.1: A graphical model of a generic Bayesian processor with only hard states and
(a) hard-data observations; (b) hard and soft-data observations. The new edges enabled by
the soft observations are shown as dashed lines.

This process can be described by a graphical model, as shown in Figure 4.1(a). When

we incorporate a soft measurement vector, we are adding a node to this graph, ren-

dering the model in Figure 4.1(b).

Let us consider how this changes when we add soft-data measurements Zs
n. We

obtain:

p(xhn|Zh
n,Z

s
n) =

p(zhn, z
s
n|xhn) p(xhn|Zh

n−1,Z
s
n−1)

p(zhn, z
s
n|Zh

n−1,Z
s
n−1)

. (4.7)

Given that zhn is conditionally independent of zsn given xhn (i.e., zhn ⊥ zsn|xhn), we can

partition p(zhn, z
s
n|xhn) in (4.7) [68]. It can be shown that (4.7) becomes:

p(xhn|Zh
n,Z

s
n)

=
p(zhn|xhn)p(xhn|Zh

n−1)

p(zhn|Zh
n−1)

·
p(zsn|xhn)p(Zs

n−1|xhn,Zh
n−1)

p(zsn,Z
s
n−1|zhn,Zh

n−1)
.

Defining: Ψh(·) =
(
p(zhn|xhn) p(xhn|Zh

n−1)
)
/(p(zhn|Zh

n−1)),

Ψh,s(·) = p(zsn|xhn)p(Zs
n−1|xhn,Zh

n−1)p(Zh
n), and K = 1,

p(xhn,Z
h
n,Z

s
n) = 1

K
Ψh(x

h
n,Z

h
n) Ψh,s(x

h
n,Z

h
n,Z

s
n), (4.8)

which has the form of (4.5) (with Ψs(·) = 1). Note that, in this case, Ψh(x
h
n,Z

h
n)

is what traditional Bayesian processors compute, i.e., it corresponds to the model

in (4.6). For many applications, a number of solutions already exist to define this

function. The new potential function Ψh,s(x
h
n,Z

h
n,Z

s
n) could be designed based on the

application or the data that is being received and incorporated as an enhancement to
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the hard-data-only model. Through similar arguments, we can obtain the complete

state posterior p(xn|Zh
n,Z

s
n). What is attractive about this decomposition is that one

has freedom to independently design and tailor the combining functions according to

different application scenarios, perhaps even using the flexibility of graphical models

to define the combining functions as products of generalized exponential potential

functions. An alternative for defining combining functions for soft data that is based

on FOL representations and inference is described next.

4.3 Designing Combining Functions using First-

Order Logic Models of Soft Data

In this section we introduce a method for modeling probability in the soft-and-

hard environment based on DS uncertain logic inference. It is worth noting that this is

not the only method for designing combining functions based on FOL. Other methods

could be used (e.g., Hybrid Markov Logic Networks [34] in probabilistic reasoning)

or pursued in subsequent research.

Recall that uncertain logic inference models render results that are expressed

through BBAs. Let us call mj(·), j = 1, 2, . . . , the set of BBAs that model uncertain

relations among hybrid hard and soft data/states, and mk(·), k = 1, 2, . . . , the set of

BBAs that model relations among soft data and soft states. Then, we can define the

corresponding combining functions as:

Ψh,s(x
h
n,x

s
n,Z

h
n,Z

s
n) = BetP(⊕jmj(x

h
n,x

s
n,Z

h
n,Z

s
n)); and

Ψs(x
s
n,Z

s
n) = BetP (⊕kmk(x

s
n,Z

s
n)) , (4.9)

where ⊕ is an appropriate fusion operator, and BetP(·) is a transformation from the

DS-domain to the probability domain defined as [49]: BetP(x) =
∑

A⊆Θ;x∈A
m(A)
|A| , with

|A| denoting the cardinality of the set A. This transformation is called the pignistic

probability function. Other transformations could also be used (e.g., plausibility

transformation [52]). It is also possible to replace the transformation function with
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the belief or plausibility corresponding to the fused BBAs, and obtain lower and upper

bounds of the probability distributions that result from the combining functions. As

an example on how to incorporate these combining functions in the general framework,

consider the model (4.5). Then, using (4.9) we obtain:

p(xn,Zn) = 1
K

pB(xhn,Z
h
n)

· BetP(⊕jmj(x
h
n,x

s
n,Z

h
n,Z

s
n)) · BetP (⊕kmk(x

s
n,Z

s
n)) ,

where the hard data is processed by a conventional Bayesian processor that renders

pB = Ψh(x
h
n,Z

h
n) , j is an index of independent hybrid mass functions, and k is an

index of the independent “soft” mass functions.



CHAPTER 5

Application Examples

5.1 Human-Robot Interaction

In this section we show an application on human-robot interaction. Consider

a human H giving an implicit instruction to robot R with uncertainty boundaries

[α1, β1]. This interval reflects the degree to which R believes that H’s statement is

true. Note that this uncertainty may change depending on the parsing process, as

well as on the actual instruction provided by H. For example, in a real-life scenario,

H may use words (or indicate rules to R) that entail uncertainty, such as usually,

typically, or generally.

In this example, the instruction provided by H is: “Commander Z really needs

a medkit”. The robot then runs an inference process in which R needs to find if

it needs to get the medkit for Z or not. If the conclusion is very precise (i.e., low

uncertainty), then R could simply execute the required action, which could be either

get the medkit for Z or not. However, if the conclusion is highly ambiguous, then the

robot R could respond “Should I get it for him?” and solve the ambiguity problem.

An inference process to solve R’s problem could be as follows. Suppose that the

following rules were given (in natural language) to R:

1. “if x needs y, then x has a goal to have y”, with uncertainty [α2, β2];

2. “Commander Z is likely of higher rank than robot R”, with uncertainty [α3, β3];

90
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3. “usually, if x is of higher rank than y and x has goal g, then y should have the

goal for x to have goal g, with uncertainty [α4, β4]; and

4. “if the robot has a goal for x to have a goal to have y, then the robot should

have the goal to get y for x”, with uncertainty [α5, β5].

Note that all these expressions entail some uncertainty, which may be due uncertain

information already known to the robot, or by imprecise words that were used to

describe the instructions, such as “likely”, “usually”, and “should have”.

These instructions can be expressed in first-order logic as is shown in rows 1 to 5 of

Table 5.1. These rows represent the premises of our inference process. Based on these

premises, an inference process could continue as shown in rows 6 to 9 of Table 5.1.

For simplicity, we assume that the required inference rules carry over from classical

logic to the uncertainty case, an assumption that is true in the case of CFE-based

uncertain logic.

Table 5.1: Inference process for the human-robot interaction problem of the case study
(M = medkit).

Logic Formula Premises Uncertainty
1 Needs(Z,M) ∆ [α1, β1]
2 ∀x ∀y : Needs(x, y)

=⇒ Goal(x, Have(x, y)) ∆ [α2, β2]
3 Rank(Z) > Rank(R) ∆ [α3, β3]
4 ∀x ∀y ∀g : Rank(x) > Rank(y)

)
∧Goal(x, g) =⇒ Goal(y, Goal(x, g) ∆ [α4, β4]

5 ∀x ∀y : Goal
(
R, Goal(x, Have(x, y))

)
=⇒ GetFor(R, y, x) ∆ [α5, β5]

6 Goal(Z, Have(Z,M)) 1, 2, MP [α6, β6]
7 Rank(Z) > Rank(R) ∧ Goal(Z, Have(Z,M)) 3, 6, AI [α7, β7]
8 Goal

(
R, Goal(Z, Have(Z,M))

)
4, 7, MP [α8, β8]

9 GetFor(R,M,Z) 5, 8, MP [α9, β9]

In order to better understand how the uncertainty propagates in this example, we

analyze four cases: 1) Perfect scenario (i.e., no uncertainty); 2) Probabilistic scenario
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(i.e., αi = βi, i = 1, 2, . . . , 5); 3) Probabilistic scenario with insufficient evidence; and

4) General scenario.

5.1.1 Perfect Scenario (i.e., No Uncertainty)

Figure 5.1 illustrates a scenario where all the premises and rules are taken as truth.

This is, the uncertainty intervals [αi, βi], i = 1, 2, . . . , 5, for the premises A1 to A5 is

[1, 1]. In this case, the uncertainty of every step in our reasoning process is defined

by the uncertainty interval [1, 1], which is consistent with classical logic results. Note

that the result is the same for both of the models analyzed, namely, the CFE-based

inference model (top), and the DCR-based inference model (center). The figure also

shows, at the bottom, the output of our ambiguity measure λ, which, as expected,

remains at 1 throughout all the inference process.

5.1.2 Probabilistic Scenario

Figure 5.2 illustrates a scenario where all the premises and rules are probabilistic.

That is, the uncertainty intervals [αi, βi], i = 1, 2, . . . , 5, for the premises A1 to A5

are characterized by αi = βi. In this case, the CFE-based model (top) maintains

the probabilistic behavior throughout the inference process. The DCR-based model

(center), on the contrary, departs from the probabilistic model and, in this case, the

uncertainty increases as the inference process progresses. This is also seen in the

ambiguity measure (bottom), as it is always decreasing for the DCR-based inference

(becoming more ambiguous).

5.1.3 Probabilistic Scenario with Insufficient Evidence

Figure 5.3 illustrates a scenario where all the premises and rules are probabilistic,

but in which the support for the premises makes the inference process stop after a

certain number of steps. Note that, as expected, CFE-based inference (top) stops

rendering results when the evidence is not enough to provide a conclusion. DCR-
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Figure 5.1: DS-based uncertain logic inference on a perfect (i.e., no uncertainty) scenario.
In this case, there is no uncertainty on any of the inferred premises.
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Figure 5.2: DS-based uncertain logic inference on a probabilistic scenario. In this case,
CFE-based inference maintains the probabilistic behavior throughout the inference process,
while DCR-based inference cannot maintain it. The uncertainty of the DCR-based inference
increases as the inference process progresses.
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based inference (center), on the contrary, keeps delivering results without indicating

the risk of making a decision based on the output results. Thus, the ambiguity

measure could be incorporated into decision-making processes.
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Figure 5.3: DS-based uncertain logic inference on a probabilistic scenario with insufficient
evidence. In this case, CFE-based inference stops providing results when there is not enough
evidence to support them. DCR-based inference, on the contrary, keeps providing results
without any indication about the risk of making a decision based on these results.
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5.1.4 General-case Scenario

Figure 5.4 illustrates a general-case scenario where there are no restrictions re-

garding the uncertainty intervals [αi, βi], i = 1, 2, . . . , 5, for the premises A1 to A5.

In this case, the CFE-based model (top) renders more “certain” results than the

DCR-based model (center), as evidenced from the ambiguity measure (bottom).
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Figure 5.4: DS-based inference on a general-case scenario. In this case, although both CFE
and DCR-based inference provide uncertain results, the ambiguity measure on the resulting
BBAs is higher for the CFE-based inference, as indicated by λ.
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5.2 Tracking with Human Observers

Now let us consider an example in which we augment the terrain-aided tracking

example in [1] with soft states and soft measurements. The scenario used for the

example is shown in Figure 5.5. This figure represents a road map with four roads

(AJ, BJ, CJ, and DJ) meeting at J. The road segments represented by solid lines

allow entry to or exit from the roads. The road segments shown by broken lines (TU

and BJ) indicate that targets on the road cannot get off or those off the road cannot

get on the road.
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Figure 5.5: An example of a road network with a target trajectory, as introduced in [1].

A (hard-data) solution for tracking in this type of scenario is the Variable Struc-

ture – Multiple Model Particle Filter (VS-MMPF) [1], with a radar system located

at the origin. This filter outputs a joint probability distribution pVS-MMPF(xhn,Z
h
n).

When the target enters the tunnel, the radar is unable to receive measurements, and

the accuracy of this filter is compromised (see Figure 5.6(a)). This system can be

enhanced with a human observer located inside the tunnel. In this case, we could
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either redesign the VS-MMPF with the new “human sensor”, or we could use the

method introduced in Chapter 4 to easily enhance the existing radar system.

For the latter case, suppose we know a probability mass function p(xh, zs) for the

accuracy of the “human sensor”, which is in Table 5.2. Then, we can combine the

information in this table with the original VS-MMPF by subsituting Ψh(x
h
n,Z

h
n) =

pVS-MMPF(xhn,Z
h
n) and Ψh,s(x

h
n,Z

h
n, ,Z

s
n) = p(xh, zs) into (4.8). We then obtain a

model for the joint probability p(xh, zh, zs), which generates an enhanced tracking

system (see Figures 5.6(b) and 5.7). Although this performance enhancement is

expected due to the addition of a new sensor, the method used to obtain such an

enhancement is simple and makes use of existing components.

Table 5.2: p(xh, zs) for a human observer seeing a target.

Target is in UT Target is not in UT

Human sees the target 0.45 0.05

Human does not see it 0.05 0.45
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Figure 5.6: 100 predicted particles in step 298 (target in tunnel) using: (a) hard measure-
ments, and (b) both hard and soft measurements.
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Figure 5.7: Distance from true target to estimated location (500 trials).

5.3 Joint Tracking and Intent Detection

5.3.1 Expert Knowledge for Intent Detection

Based on the same scenario used in 5.2, consider the case where an expert provides

soft information to estimate an additional (hard) state xd, the intended destination.

Our state vector then becomes xh∗n = {xhn;xd}, where xhn is the state vector of the

example in 5.2. The expert provides the following rules: (R1): “If the target is moving

North on AJ then the destination is A”, and (R2): “If the target is moving South

on AJ then the destination is J”. Furthermore, the expert indicates that each of the

rules is true, with uncertainty being between 70% − 90%. A possible model for R1

and R2 in FOL, as well as the corresponding uncertainty parameters is in Table 5.3,

where clauses 1 and 2 reproduce the information given by R1, and clauses 3 and 4

the information given by R2. Clauses 1 and 3 are incorporated to define a simple

(order 1) direction estimator. If the target is going North then r1 = 1. If target is

going South then r2 = 1. The methods described in Section 4.3-B allows one to do

inference based on the propositions and uncertainty parameters of Table 5.3, which

renders a BBA m(xd,Z
h
n) that models the relations among hard data and intended

destination.

A probabilistic model for this scenario requires that we redefine the combin-

ing function Ψh(x
h
n,Z

h
n) used in 5.2, to account for the new state and its corre-
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Table 5.3: FOL Model and uncertainty parameters for the estimation of the state xd in 5.3.1.

i FOL Clause Uncertainty
1 (x2 {n} > x2 {n−1}) =⇒ (r1 = 1) [1.0, 1.0]
2 ((r1 = 1) ∧ (x ∈ AJ)) =⇒ (d = A) [0.7, 0.9]
3 (x2 {n} < x2 {n−1}) =⇒ (r2 = 1) [1.0, 1.0]
4 ((r2 = 1) ∧ (x ∈ AJ)) =⇒ (d = J) [0.7, 0.9]

sponding inference method. In this case, the combining function can be defined

as Ψh(x
h∗
n ,Z

h
n) = Ψ1(xhn,Z

h
n) · Ψ2(xh∗n ,Z

h
n), with Ψ1(xhn,Z

h
n) = pVS-MMPF(xhn,Z

h
n) and

Ψ2(xhn,Z
h
n) = BetP(m(xd,Z

h
n)).

Using this model on a simulation scenario where the target is equally likely to

take the routes IMA and IMJ, renders an estimator with low error probability when

the target is in AJ, as is shown in Figure 5.8.
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Figure 5.8: Probability of error (MSE) in intention detection when the DS-based model is
used (500 trials). The mean error is a function of the uncertainty intervals in Table 5.3.

5.3.2 Expert Knowledge and FOL Input Data in a Tracking

and Intent-detection Application

Consider the joint tracking and destination detection scenario introduced in [69],

and enhanced into a larger grid, as shown in Figure 5.9. An object moves from an

initial state xht=0 = 1 to a final state xht=T = xhT = k, k = 1, 2, . . . , 25. The value

of xht , t = 1, 2, . . . , is obtained from a tracking system. The problem is to estimate

the intended destination xhT . The method introduced in [69] estimates this final state
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based on Reciprocal Chains (RC) [70]. Assuming that transitions from state xht to

xht+1 are Markovian, the intended destination can be found as described in [71]. This

is summarized as follows. Let us define:

αki (t) = P (xht = i,Zh
t |xhT = k). (5.1)

Also, based on (known) stationary Markov transition probabilities Bk
i,j(t) = P (xht+1 =

j|xht = i,xhT = k), it is possible to define the recursion [69, 71]:

αki (t+ 1) = P (zht+1 = i|xht+1)
N∑
j=1

Bk
j,i(t)α

k
j (t). (5.2)

The values of Bk
j,i(t) can be obtained from A, the transition probability matrix that

models the problem, as:

Bk
j,i(t) =

Ai,j(A
T−t+1)j,k

(AT−t)i,k
. (5.3)

Then, the intended destination state can be estimated as:

x̂hT = argmax
k

N∑
i=1

αki (t)P (xhT = k), (5.4)

where N is the number of states.

Now, assume that this process needs to be enhanced by incorporating (uncer-

tain/imprecise) expert advice that indicates the following: (E1) if the object is mov-

ing East, then the destination is not xhT = 21; (E2) if the object is moving West,

then the destination is not xhT = 5; (E3) if the object is moving South, then the

destination is not xhT = 5; (E4) if the object is moving North, then the destination

is not xhT = 21; (E5) if (d
(t)
x > 2), then the destination is xhT = 5; (E6) if (d

(t)
y > 2),

then the destination is xhT = 21; (E7) if the object is moving South-East, then the

destination is xhT = 13; and (E8) if (d
(t)
x > 1) and (d

(t)
y > 1), then the destination

is xhT = 13. This information can be converted into FOL sentences, as is shown in

Table 5.4, which also contains additional FOL sentences that can be obtained from

measurements and knowledge bases. Based on the premises in Table 5.4, it is possible
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Figure 5.9: Destination detection scenario in 5.3.2. Each block in the grid represents a
possible value xht = i, i = 1, 2, . . . , 25. At time t = 0 an object starts moving from xht=0 = 1
to one of three possible destinations, which are defined by circles. The dotted trajectory
shows an example of a possible path followed by an object to arrive at xhT = 13. dx and dy
represent distances along the horizontal and vertical axes, respectively.

to go through an inference process, as shown in Table 5.5. At the end of this inference

process, we obtain the following BBAs:

I11 : mI11(xhT = 5) = αI11;

mI11(xhT 6= 5) = 1− βI11;

mI11({xhT = 5,xhT 6= 5}) = βI11 − αI11;

I12 : mI12(xhT = 21) = αI12;

mI12(xhT 6= 21) = 1− βI12;

mI12({xhT = 21,xhT 6= 21}) = βI12 − αI12; and

I14 : mI14(xhT = 13) = αI13;

mI14(xhT 6= 13) = 1− βI14;

mI14({xhT = 13,xhT 6= 13}) = βI14 − αI14. (5.5)
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We can then apply CFE fusion (as indicated in Section 4.3). Defining the CFE

coefficients as γi(A) = mi(A), we obtain a fused BBA mI11,I12,I14 = mI12(·)⊕mI12(·)⊕

mI14(·). We transform this fused BBA into a combining function as:

Ψ1(xhT ,x
h
t ,Z

h
t ) = BetP

(
mI11,I12,I14(xhT ,x

h
t ,Z

h
t )
)
/K, (5.6)

where K is a normalization constant. Let Ψ2(xhT ,x
h
t ,Z

h
t ) = αki (t)P (xhT = k). Then

we obtain the enhanced estimator:

x̂h∗T = argmax
k

Ψ1(xhT ,x
h
t ,Z

h
t ) ·Ψ2(xhT ,x

h
t ,Z

h
t )

= argmax
k

BetP
(
mI11,I12,I14(xhT ,x

h
t ,Z

h
t )
)
αki (t)P (xhT = k).

Table 5.6 compares the performance of both estimators, x̂hT (Reciprocal Chains,

as in [69]) and x̂h∗T (enhanced by the methods introduced in this manuscript). In

particular, this table contains the error obtained on each of the first three iterations

for a scenario characterized by a final state xhT ∈ {5, 13, 21} with uniformly distributed

prior, transition probability matrices for each state defined based on the parameters

in Table 5.7, and zero-mean Gaussian noise with variance 0.5. In this case, the

uncertainty in expressions E1–E7 is [1, 1], and the uncertainty in E8 is [0.7, 1]. It can

be seen that the performance of the original estimator is improved when the soft data

is incorporated following the approach described in this manuscript. Indeed, unless

the knowledge expert is wrong or deceptive, the estimation of intended destination

can achieve faster convergence than the basic RC-based estimator. The convergence

rate is a function of the uncertainty intervals in the soft data. Note that, when

needed, deception and erroneous soft data can be pre-processed using credibly and/or

reliability estimations such as the ones described in [6, 4]. Furthermore, a thorough

characterization of the sensitivity of the estimators as a function of the uncertainty

intervals would also aid in tuning the performance of the DS-enhanced estimator.

These conditions (i.e., deception, erroneous soft data, and sensitivity study) are not

considered in this study, and are matter of future research.
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Table 5.4: FOL expressions that model the information provided by an expert, as well
as information obtained from complementary knowledge base and measurements, for the
enhanced destination detection scenario in 5.3.2.

FOL Clause Uncertainty

Expert Knowledge
E1 E =⇒ ¬(xh

T = 21) [αR1, βR1]
E2 W =⇒ ¬(xh

T = 5) [αR2, βR2]
E3 S =⇒ ¬(xh

T = 5) [αR3, βR3]
E4 N =⇒ ¬(xh

T = 21) [αR4, βR4]

E5 (d
(t)
x > 2) =⇒ (xh

T = 5) [αR5, βR5]

E6 (d
(t)
y > 2) =⇒ (xh

T = 21) [αR6, βR6]
E7 (S ∧ E) =⇒ (xh

T = 13) [αR7, βR7]

E8 ((d
(t)
x > 1) ∧ (d

(t)
2 > 1))

=⇒ (xh
T = 13) [αR8, βR8]

Knowledge Base

K1 (d
(t)
x > d

(t−1)
x ) =⇒ E [1, 1]

K2 (d
(t)
x < d

(t−1)
x ) =⇒ W [1, 1]

K3 (d
(t)
y > d

(t−1)
y ) =⇒ S [1, 1]

K4 (d
(t)
y < d

(t−1)
y ) =⇒ N [1, 1]

Measurement data

D1 (d
(t)
x > d

(t−1)
x ) [1, 1] if (d

(t)
x > d

(t−1)
x ); [0, 0] o/w.

D2 (d
(t)
x < d

(t−1)
x ) [1, 1] if (d

(t)
x < d

(t−1)
x ); [0, 0] o/w.

D3 (d
(t)
y > d

(t−1)
y ) [1, 1] if (d

(t)
y > d

(t−1)
y ); [0, 0] o/w.

D4 (d
(t)
y < d

(t−1)
y ) [1, 1] if (d

(t)
y < d

(t−1)
y ); [0, 0] o/w.

D5 (d
(t)
x > 2) [1, 1] if (d

(t)
x > 2); [0, 0] o/w.

D6 (d
(t)
y > 2) [1, 1] if (d

(t)
y > 2; [0, 0] o/w.

D7 (d
(t)
x > 1) ∧ (d

(t)
y > 1) [1, 1] if (d

(t)
x , d

(t)
y > 1); [0, 0] o/w.
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Table 5.5: Uncertain logic inference for processing soft information in 5.3.2. MP: Modus
Ponens, as defined in (2.33) and (2.34). OR: Uncertain logic OR, as defined in (2.16).

FOL Clause Uncertainty Uncertain Rule Used
I1 E [αI1, βI1] MP KB1, D1
I2 W [αI2, βI2] MP KB2, D2
I3 S [αI3, βI3] MP KB3, D3
I4 N [αI4, βI4] MP KB4, D4
I5 ¬(xh

T = 21) [αI5, βI5] MP E1, I1
I6 ¬(xh

T = 5) [αI6, βI6] MP E2, I2
I7 ¬(xh

T = 5) [αI7, βI7] MP E3, I3
I8 ¬(xh

T = 21) [αI8, βI8] MP E4, I4
I9 (xh

T = 5) [αI9, βI9] MP E5, D5
I10 (xh

T = 21) [αI10, βI10] MP KB1, D6
I11 (xh

T = 5) [αI11, βI11] OR ¬I6, ¬I7, I9
I12 (xh

T = 21) [αI12, βI12] OR ¬I5, ¬I8, I10
I13 (xh

T = 13) [αI13, βI13] MP E7, K1, K3
I14 (xh

T = 13) [αI14, βI14] OR I13, D7

Table 5.6: Error on the intended destination estimated by the methods of 5.3.2. By combin-
ing an existing Bayesian estimator with an DS-based logic inference method as described in
this paper, it is possible to achieve maximum accuracy (minimum error) faster than using
the Bayesian estimator alone.

Method Time step
t = 1 t = 2 t = 3

Reciprocal Chains [69] 0.690 0.688 0.346
Reciprocal Chains and DS-based combining function 0.690 0.688 0.010
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Table 5.7: Parameters that define the Markov transition probabilities for the problem
in 5.3.2.

From state: To state: with probability:

xhT = 5
1 2, 7 0.7, 0.3
2 3, 8 0.8, 0.2
3 4, 9 0.9, 0.1
4 5 1
7 3, 8 0.8, 0.2
8 4, 9 0.9, 0.1
9 5 1
5 5 1

All other states 1,2,3...25 0.04

xhT = 13
1 2, 6, 7 0.2, 0.1, 0.7
2 7,8 0.8, 0.2
6 7, 12 0.7, 0.3
7 8, 12, 13 0.1, 0.2, 0.7
8 12, 13 0.2, 0.8
12 8, 13 0.1, 0.9
13 13 1

All other states 1,2,3...25 0.04

xhT = 21
1 6 ,7 0.7, 0.3
6 11, 12 0.8, 0.2
7 11, 12 0.8, 0.2
11 16, 17 0.9, 0.1
12 16, 17 0.9, 0.1
16 21, 22 0.9, 0.1
17 21, 22 0.9, 0.1
21 21 1
22 21 1



CHAPTER 6

Conclusions

6.1 Summary

There is a growing necessity for the development of new methods in fusion, esti-

mation, and tracking that can incorporate and suitably combine heterogeneous forms

of both hard (e.g., physics-based sensor data) and soft (e.g., text from witness state-

ments, blogs, newspapers) data. Although hard data fusion is a well understood

problem, reasoning with soft data imposes new challenges to the data fusion problem.

By its nature, soft data in the form of text is more qualitative in nature, inherently

possessing uncertainty and imperfections. The work in this dissertation addresses

hard and soft data fusion needs as follows:

1. We have introduced Uncertain Logic Processing (ULP), a DS theoretic ap-

proach for first order logic operations. ULP provides support for handling vari-

ables and quantifiers, in addition to fundamental logic operations (i.e., ¬,∧,∨,

=⇒ ). ULP enables systematic generation of mass assignments for data fusion

applications. Furthermore, by using appropriate fusion operators, higher-level

applications are possible within this framework, such as inference and resolu-

tion based on uncertain data models. ULP is consistent with classical logic,

rendering the classical logic results when the scenario represents “perfect” (i.e.,

without uncertainty) data/models. The consistency with classical logic gives

107
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the confidence to apply our proposed models as an extension of classical logic

in reasoning.

2. We have developed a filtering and tracking framework for incorporating both

hard and soft data, demonstrating how the probability posterior can be ex-

pressed as a product of combining functions over subsets of the state and mea-

surement variables. This flexible approach engenders the possibility of employ-

ing different approaches to model the interaction of soft and hard states and

variables. Our results for the DS models illustrate the potential for incorporat-

ing natural language in the form of ULP within tracking systems (e.g., particle

filters). This flexible approach has the potential to allow for the incorporation

of more sophisticated forms of uncertainty modeling (e.g., more powerful DS

fusion models, random sets).

3. We have introduced a new method for reducing computational complexity and

increasing robustness against conflicting evidence in ULP reasoning systems.

The new reasoning method is based on a convex optimization formulation of

the satisfiability problem associated with the ULP model.

6.2 Future Work

As mentioned above, this dissertation describes new methods for dealing with hard

and soft data fusion in scenarios characterized by incomplete, inconsistent, and/or

imperfect data. These new methods provide the foundation of a robust data fu-

sion theory that can be further developed and integrated into high-level applications.

Potential avenues for future research include, among others:

• Exploring adaptability of ULP to changing data and applications. The

applications of ULP illustrated in this dissertation are focused on a a set of par-

ticular applications, namely, human-robot interaction, detection, and tracking.

Translating the results that we have obtained in these problems to other types
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of applications may prove challenging. For example, the adaptation of reason-

ing models have proven challenging in machine learning, where researchers and

engineers typically rely on alternatives such as transfer learning or domain adap-

tation to facilitate the adaptation of deep neural networks to other domains.

A future research area then deals with answering the question: How can we

properly and efficiently configure our ULP framework for adapting to other ap-

plications and data? A first alternative to explore in this area is the relaxation

of classical logic requirements in ULP (recall that the first implementation of

ULP focuses on ensuring consistency with classical logic). In particular, we

could explore the configuration of ULP with paraconsistent logic properties.

By allowing paraconsistent logic formulations the ULP framework will be bet-

ter prepared for handling data inconsistencies and changes. Once the use of

paraconsistent logic configurations is analyzed and thoroughly understood, we

could move to the application of other techniques, which could borrow concepts

from the traditional transfer learning theory.

• Approaching causal inference through ULP models. One of the main ob-

stacles that researchers have met when trying to implement systems that exhibit

human-level intelligence is the understanding of cause-effect connections [72].

Surpassing this obstacle means that machines would be able to purposely distort

the data with “acts of imagination” for answering “What if?” questions.

The goal would be then to explore opportunities for addressing causal inference.

To this end, we could exploit the formulation of ULP models as probabilistic

graphical models. For causal inference, the use of graphical models could be very

powerful as they allow encoding of data relations and assumptions as graphs,

which is one of the tools used by researchers for analyzing cause-effect relations.

Once we validate the use of graphical models as proper tools for causal inference,
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we could move to using it for counterfactual analysis, as well as for enhancing

adaptability and reducing model biases.

• Incorporating self-diagnosing capabilities. Dealing with large amounts

of data brings higher chances of being faced with inconsistent data samples.

These samples could occur due to data sampling limitations, incomplete or im-

perfect data/reasoning models, or erroneous data fed to the reasoning system

by adversaries. Humans abilities for introspection allow them to pinpoint data

inconsistencies and to question the quality of both data and reasoning model.

To the best of our knowledge, the incorporation of self-diagnosing capabilities

in modern automated reasoning systems have not been explored yet. We could

explore opportunities in this area by analyzing ways in which philosophic ap-

proaches (represented in a vast literature on the topic) can be translated for

integration of self-diagnosing capabilities into automated reasoning systems.

The work on these areas could provide more robust automated reasoning sys-

tems for multiple applications, such as detection and tracking, situational awareness,

crowdsourcing, human-robot interaction, medical diagnosis, among others (see Sec-

tion 1.2 for a description of the specific needs in these applications).
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Murthi, Sandra Kübler, Matthias Scheutz, and Marco Pravia. Credibility as-
sessment and inference for fusion of hard and soft information. In Proc. 2nd
International Conference on Cross-Cultural Decision Making: Focus 2012 (also
in Advances in Design for Cross-Cultural Activities, 1, pp. 96-105, Eds: D. D.
Schmorrow, D. M. Nicholson, CRC Press, 2013), July 2012.
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APPENDIX A

DS model for CFE-based AND operations
using the Logic-Consistent Parameter
Selection Strategy

Based on the definition of the CFE fusion operator:

m(x) = γ1(x) + γ1(Θ)m1(x) + γ2(x) + γ2(Θ)m2(x). (A.1)

Substituting the CFE coefficients for the AND operation, as indicated by Defini-

tion 12, in (A.1):

m(x) = 2γ(x) + 2γ(Θ)(α1 + α2).

• When δ1 + δ2 6= 0:

m(x) =
α(β1 + β2)− β(α1 + α2)

δ1 + δ2

+
δ(α1 + α2)

δ1 + δ2

= 1
δ1+δ2

(αβ1 + αβ2 − α1β − α2β + δ(α1 + α2)).

Since δ = β − α:

m(x) = 1
δ1+δ2

(αβ1 + αβ2 − α1β − α2β

+ α1β + α2β − α1α− α2α)

= 1
δ1+δ2

(αβ1 + αβ2 − α1α− α2α)

= 1
δ1+δ2

(α(β2 − α2 + β1 − α1)). (A.2)

Substituting δ1 = β1 − α1 and δ2 = β2 − α2 in (A.2): m(x) = α.

118



119

• When δ1 + δ2 = 0, and making γ(Θ) = 0:

m(x) = 2γ(x) = α.

The mass m(x) is given by:

m(x) = γ1(x) + γ1(Θ)m1(x) + γ2(x) + γ2(Θ)m2(x). (A.3)

Substituting the CFE coefficients as indicated by Definition 12 in (C.1):

m(x) = 2γ(x) + 2γ(Θ)(2− β1 − β2).

• When δ1 + δ2 6= 0:

m(x) =
δ1 + δ2 − β(2− α1 − α2) + α(2− β1 − β2)

δ1 + δ2

+
δ(2− β1 − β2)

δ1 + δ2

= 1
δ1+δ2

(δ1 + δ2 − β(2− α1 − α2)

+ α(2− β1 − β2) + δ(2− β1 − β2)).

Since δ = β − α:

m(x) = 1
δ1+δ2

(δ1 + δ2 − β(2− α1 − α2)

+ α(2− β1 − β2) + (β − α)(2− β1 − β2))

= 1
δ1+δ2

(δ1 + δ2 − β(2− α1 − α2 − 2 + β1 + β2))

= 1
δ1+δ2

(δ1 + δ2 − β(β1 − α1 + β2 − α2)).

Substituting δ1 = β1 − α1 and δ2 = β2 − α2 in (C.1):

m(x) = 1− β.

• When δ1 + δ2 = 0, and making γ(Θ) = 0:

m(x) = 2γ(x) = 1− α = 1− β.

Finally, m(Θ) = 1−m(x)−m(x) = β − α.



APPENDIX B

Properties of Classically Consistent
CFE-based Uncertain Logic Operations

Consider logic expressions of the form ϕ(xi),with 1 ≤ i ≤ N. Then, the following

properties are satisfied:

1. Idempotency : This property is defined by: ϕi(x)∧ϕi(x) = ϕi(x)∨ϕi(x) = ϕi(x).

In this case:

m∧(x) = α = min(αi, αi) = αi

= max(αi, αi) = α = m∨(x);

m∧(x) = 1− β = 1−min(βi, βi) = 1− βi

= 1−max(βi, βi) = 1− β = m∨(x);

m∧(Θ) = β − α = βi − αi

= β − α = m∨(Θ).

2. Commutativity : This property refers to satisfying: ϕ1(x) ∧ ϕ2(x) = ϕ2(x) ∧

ϕ1(x),

and ϕ1(x)∨ϕ2(x) = ϕ2(x)∨ϕ1(x). Let us call mϕi∧ϕj(·) the BBA resulting
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from ϕi(x) ∧ ϕj(x), i = {1, 2}. Then, for the AND operation:

mϕ1∧ϕ2(x) = min(α1, α2)

= min(α2, α1) = mϕ2∧ϕ1(x)

mϕ1∧ϕ2(x) = 1−min(β1, β2)

= 1−min(β2, β1) = mϕ2∧ϕ1(x)

mϕ1∧ϕ2(Θ) = min(β1, β2)−min(α1, α2)

= min(β2, β1)−min(α2, α1)

= mϕ2∧ϕ1(Θ).

A proof for commutativity for the logical OR operation is obtained by following

a similar procedure.

3. Associativity : The associative property is defined by: ϕ1(x) ∧ [ ϕ2(x)∧ϕ3(x) ] =

[ϕ1(x)∧ϕ2(x) ] ∧ ϕ3(x), and ϕ1(x) ∨ [ ϕ2(x)∨ϕ3(x) ] = [ ϕ1(x)∨ϕ2(x) ] ∨ ϕ3(x).

Let us call ϕ4(·) the model generated by ϕ2(x) ∧ ϕ3(x), and ϕ5(·) the model

generated by ϕ1(x) ∧ ϕ2(x). Also, let us call mϕi∧ϕj(·) the BBA resulting from

ϕi(x)∧ϕj(x), i = {1, . . . , 5}. Our goal (for the AND operation) is to show that

the model for ϕ1(·) ∧ ϕ4(·) is equivalent to the model for ϕ5(·) ∧ ϕ3(·):

mϕ1∧ϕ4(x) = min(α1,min(α2, α3))

= min(min(α1, α2), α3) = mϕ5∧ϕ3(x)

mϕ1∧ϕ4(x) = 1−min(β1,min(β2, β3))

= 1−min(min(β1, β2), β3)

= mϕ5∧ϕ2(x)

mϕ1∧ϕ4(Θ) = min(β1,min(β2, β3))

−min(α1,min(α2, α3))

= min(min(β1, β2), β3)

−min(min(α1, α2), α3) = mϕ5∧ϕ3(Θ).
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A proof for associativity for the logical OR operation is obtained by following

a similar procedure.

4. Distributivity : Distributive operations satisfy: ϕ1(xi) ∧ [ ϕ2(xj)∨ϕ3(xk) ] = [ ϕ1(xi)∧

ϕ2(xj) ] ∨ [ ϕ1(xi) ∧ ϕ3(xj) ], and ϕ1(xi) ∨ [ ϕ2(xj) ∧ ϕ3(xk) ] = [ ϕ1(xi) ∨

ϕ2(xj) ] ∧ [ ϕ1(xi)∨ϕ3(xj) ]. Let us call ϕ4(·) the model generated by ϕ1(x)∧

[ϕ2(x)∨ϕ3(x)], and ϕ5(·) the model generated by [ϕ1(x)∧ϕ2(x)]∨[ϕ1(x)∧ϕ3(x)].

Our goal is to show that the model for ϕ4(·) is equivalent to the model for ϕ5(·).

In general, these two models are:

mϕ4(x) = min(α1,max(α2, α3));

mϕ4(x) = 1−min(β1,max(β2, β3));

mϕ4(Θ) = min(β1,max(β2, β3));

−min(α1,max(α2, α3)); and

mϕ5(x) = max(min(α1, α2),min(α1, α3));

mϕ5(x) = 1−max(min(β1, β2),min(β1, β3));

mϕ5(Θ) = max(min(β1, β2),min(β1, β3))

−max(min(α1, α2),min(α1, α3)).

Now, consider the focal set x. We have three cases (other possible cases are

equivalent to these three after applying the commutativity rule): (a) α1 ≤ α2 ≤

α3; (b) α2 ≤ α1 ≤ α3; and (c) α2 ≤ α3 ≤ α1. The mass associated to the focal

set x is:

(a) mϕ4(x) = α1 = mϕ5(x);

(b) mϕ4(x) = α1 = mϕ5(x); and

(c) mϕ4(x) = α3 = mϕ5(x);
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i.e., mϕ4(x) = mϕ5(x) in all the cases. For the focal set x we also have three

basic cases: (a) β1 ≤ β2 ≤ β3; (b) β2 ≤ β1 ≤ β3; and (c) β2 ≤ β3 ≤ β1; which

render:

(a) mϕ4(x) = 1− β1 = mϕ5(x);

(b) mϕ4(x) = 1− β1 = mϕ5(x); and

(c) mϕ4(x) = 1− β3 = mϕ5(x);

Based on the cases above, it can be shown that also mϕ4(Θ) = mϕ5(Θ), proving

distributivity for the logical AND operation. A proof for distributivity for the

logical OR operation is obtained by following a similar procedure.



APPENDIX C

Probabilistic Models in Uncertain Logic

Table C.1 illustrates the probabilistic case of CFE-based uncertainty logic. In this

case, uncertainty parameters are defined as α1 = β1 and α2 = β2. Let us denote ϕ1(x)

and ϕ2(x) as ϕ(x)[α1] and ϕ(x)[α2], respectively. For the probabilistic case, we then

get

ϕ(x)[α1] ∧ ϕ(x)[α2] = ϕ(x)[α];

ϕ(x)[α1] ∨ ϕ(x)[α2] = ϕ(x)[α]. (C.1)

Table C.1: CFE-Based Logical AND/OR Operations: Probabilistic Scenario

Parameters Logical AND Logical OR

[α1, β1] = [α1, α1] m(x) = γ1(x) + γ2(x) + γ1(Θ)α1 + γ2(Θ)α2 m(x) = γ1(x) + γ2(x) + γ1(Θ)α1 + γ2(Θ)α2

[α2, β2] = [α2, α2] m(x) = γ1(x) + γ2(x) m(x) = γ1(x) + γ2(x)
+γ1(Θ)(1− α1) + γ2(Θ)(1− α2) +γ1(Θ)(1− α1) + γ2(Θ)(1− α2)

m(Θ) = 0 m(Θ) = 0

LCR m(x) = α m(x) = α
Strategy m(x) = 1− α m(x) = 1− α

m(Θ) = 0 m(Θ) = 0
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