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Organic field effect transistors (OFETs) have several advantages over the 

conventional inorganic field effect transistor such as easy fabrication process, low-cost 

mass production capability and low temperature process that enables flexible substrate 

based device. Many applications using polymer based transistor devices are demonstrated. 

Successful demonstrations of Logic-gate operation, visible-IR detection and various 

sensor operations and the advantages discussed above show its great potential as a next 

generation device technology and attract many researchers to delve to improve the device 

properties. However, there are several disadvantages on the organic materials such as 

short lifetime, disability to operate under severe conditions and low carrier mobility. 

Among those the low carrier mobility is a critical hurdle to develop high performance 

device operation. Its low mobility limits the operation speed of the device, efficient 

amplification and carrier transport in a detector device.  

In this thesis, hybrid organic transistors using Poly(3-hexylthiophene-2,5-diyl)(P3HT) 

and metal nanostructure are introduced. The metal nanostructure has a unique localized 

surface plasmon resonance property that can be tailored by adjusting the shape and size 

of the metal structures. Therefore, the hybridization using polymer semiconducting 

materials and metal nanoparticles can provide plasmon based optical response and 



improved mobility due to the free electron concentration in the metal nanostructure. We 

fabricated organic thin film transistor on a highly doped silicon substrate and 

characterized its electrical properties as a transistor operation and optical detection 

properties as a field effect transistor based detector. Then, metal nanoparticles have been 

deposited by vacuum evaporation of small molecules on the surface of the OFETs. The 

electrical and optical properties have been investigated to compare with a device without 

plasmonic nanostructure. We successfully demonstrated the improved optical properties 

of the OFETs are due to surface plasmon resonance of the metal nanoparticles. The metal 

nanoparticles incorporated in organic transistor shows improved drain current due to the 

increased conductivity assisted by the free electrons in the metal nanoparticles. In 

addition, we observed enhanced photo responsivity (A/W) in its optical detector 

operation. A slight change of the spectral response was observed and we believe that this 

is originated from the contribution of the plasmon induced hot electrons in the metal 

nanoparticles. Further studies to have better understandings on metal nanoparticle 

incorporated in organic transistor were discussed in this thesis.  
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Chapter 1: Introduction 

Transistors operate same as vacuum tubes, but are smaller, cheaper, require less 

power, and obtain faster switching times. This small device makes alternating current to 

direct current. It receives and filters out radio waves. The received radio wave is 

converted into amplified sound and image. Currently, no one can deny the fact that this 

small device has developed the computer, radio, television and consumer products and 

has brought about technological innovation.  

Transistor was invented for the first time by William Shockley, John Bardeen, and 

Walter Brattain at Bell Labs in 1947. The invention of the transistor was the result of 

efforts to create an amplifier by using semiconductor crystals instead of a vacuum tube. 

The amplification phenomenon was observed in the structure of two erected metal 

needles very close to the surface of the germanium crystal. In 1948, Shockley completely 

interpreted the amplification phenomena using the theory of p-n junction. The ideal form 

of junction transistor was invented. Shockley's transistor was the transistor based on the 

principle of the current flowing through crystal. It was quite different from the theory of 

Bardeen and Brattain that electrons moved in the surface a semiconductor crystal.  

Shockley has made a field effect transistor by another principle in 1952. Because of 

this, the two strains, unipolar transistor (field effect transistor) and bipolar transistor 

(bipolar junction transistor) were presented as an active semiconductor components. 

Typically a transistor consists of semiconductor component with three terminals to 

connect an external circuit. Voltage (field effect transistor) or current (bipolar junction 

transistor) applied to one pair of the terminals controls the current through another pair of 

terminals. The three men were awarded the Nobel Prize in 1956. Field effect transistor 
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was completed as metal oxide semiconductor field effect transistor (MOSFET) in the 

1960s. MOSFET is being used to create a number of great products. 

   Transistor may be used for switch or amplifier. It is also suitable to achieve the 

miniaturization of the device. In addition, low-cost production is possible due to its low 

temperature properties. MOSFET has all the necessary elements as a standard component 

of integrated circuits used in modern computers. FET is commonly used for weak-signal 

amplification. The active material's resistance between drain and source electrodes is 

controlled by a gate voltage. Thus, the current of FET can be modulated by using small 

voltage. This is originated from the contribution of its electrical properties as a transistor 

operation.  

It also has optical detection properties as a field effect transistor based detector. A 

common type of a light-sensitive transistor is called a phototransistor. The phototransistor 

is a semiconductor light sensor formed from a basic transistor with a transparent cover. It 

was invented by Dr. John N. Shive (more famous for his wave machine) at Bell Labs in 

1948. [1] However, it wasn't announced until 1950. [2] The electrons generated by 

photons are transferred to the drain, and the drain-source current is amplified by the gate 

voltage.  

Another kind of field effect transistor is thin film transistor (TFT). In the MOSFET, 

the substrate and the active material are identical. However, in the TFT the active 

material, the other components of the FET, are deposited on a substrate in form of thin 

film. The TFT used CdSe as semiconductor active material was released for the solid-

state image sensing device in 1949. In 1973, the examples applied to liquid crystal 

display (LCD) were presented. Use of the silicon in the semiconductor is in form of 
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amorphous and polycrystalline films. The amorphous films were developed at the 

University of Dundee in the UK in 1979 and the liquid crystal display applications were 

researched and developed mainly in Japan. TFT of amorphous silicon and polycrystalline 

silicon has been widely applied to a color TFT-LCD. 

From the late 1970s, it is known that certain organic material through a suitable 

doping can be reached nearly close to the electrical conductivity of copper. [3] So far, all 

parts of the material from the top insulator (polystyrene) to the best superconductor 

((TMTSF) 2PF6, perchlorate etc.) including a semiconductor and a conductor (doped 

polyacetylene) were able to be obtained by using organics.  

In addition, the study about the use of organic semiconductor, organic field effect 

transistor (OFET), instead of the inorganic semiconductor in the active layer of the thin-

film transistor was started since 1980. [4] OFET can be useful in case of the device 

fabricated over a large area, the need for a low temperature process, the bendable device, 

and in particular the low-cost process. The researchers in Philips surprised the world 

when they produced programmable code generator with 326 transistors by only using the 

polymer substrate, electrode, insulator, and semiconductor. [5] 

The organic materials with semiconductor properties have been developed and 

applied to various categories over recent years. The area of the applied research using 

organic semiconductor, such as the organic light emitting diodes (OLED) displays, 

organic thin film transistors (OFET), solar cells, organic semiconductor memory devices 

using the multi-photon absorption phenomenon, continues expanding. [6] However, the 

most of the researches are limited to the organic light emitting diode. Although various 
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possibilities are open to this area, it has been studied only in a limited portion due to 

process complexity and cost issues. [7] 

Especially, OLED displays in this field has already been commercialized and played 

important roles in activating the applied research using organics. Beginning with the 

active circuit for driving an OLED, organic field effect transistors, which are also 

expected as the next-generation smart card applications, are making a meteoric rise. 

The organic semiconductor transistor can be produced in the same processing 

conditions of OLED such as organic semiconductor deposition method because the 

organic material for the OFET is same as the organic semiconductor of OLED in the 

nature of the material and physical and chemical properties are similar to each other. In 

addition, because both of them can be processed at room and low temperatures (less than 

100 degrees Celsius), it is possible to manufacture an organic electroluminescence device 

based on plastic using the organic transistor. In the same vein, OFET can be used to 

implement the bendable liquid crystal display device based on the plastic substrate. 

Transistors using organic materials, unlike the traditional silicon-based transistors, are 

small size, lightweight, and simple for fabrication. Therefore, it is in the spotlight as the 

next generation transistor to be applied to the future display. One of the advantages of the 

organic materials is its tunable electrical and optical properties. By changing its 

molecular structure or modified elements, the organic materials can be easily changed 

their material properties. However, the organic transistor has a characteristic of the low 

charge mobility compared with silicon and germanium. Thus, it cannot be used in the 

device that requires a high speed. In other words, low carrier mobility is a critical hurdle 
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to develop high performance device operation. Its low mobility limits the operation speed 

of the device, efficient amplification and carrier transport in a detector device.  

The aim of this thesis is to increase the optical and electrical properties of organic 

field effect transistors by using metal nanostructure. Typically, metals such as gold and 

silver have abundant free electrons that can possibly increase conductivity of the device. 

In addition, a fascinating nanophotonics property, called surface plasmon resonance, can 

enable tunable optical response from visible to IR spectral range. [8] Therefore, the 

emergence of metal nanostructure has realized the enhanced optical and electrical 

properties of the organic materials that are applied to organic field effect transistors, 

organic light-emitting diodes, and organic photo-voltaic cells. [6] In this thesis, we have 

incorporated metal nanostructure into an organic semiconductor based device to increase 

its conductivity and to tailor its optical response. 

Therefore, in chapter 2 the fundamentals of organic semiconductor, organic field 

effect transistor and surface plasmon resonance will be introduced. In the literature, 

surface plasmon resonance (SPR) has been studied by many scientists because various 

disciplines are related with it. [9] SPR presents the solution to deal with electromagnetic 

waves including light. [10] Particularly, optical properties of the luminescence such as 

fluorescence and phosphorescence can be obtained with improved efficiency by the 

surface plasmon resonance. [11] Metal nanoparticles contribute the intensity of light-

emitting diodes to be enhanced by absorbing light and transferring energy. [12] The 

enhanced optical properties of organic light-emitting diodes are being announced by 

applying the surface plasmon resonance. [13] The reason for these increased optical 
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properties is explained by free electrons and energy transfer from the metal surface to the 

organic material. [14] 

In chapters 3 and 4 one approach to fabricate gold nanoparticle incorporated in 

organic transistor is presented. Poly[3-hexylthiophene-2,5-diyl] (P3HT) as the active 

material in the organic transistor, was utilized. Organic semiconductor of the OFET, 

which is bottom gate with top drain and source electrodes, has been deposited by spin 

coating at room temperature. Metal nanoparticles have been deposited by vacuum 

evaporation of small molecules on the surface of the OFETs. Among metals, gold has 

excellent surface stability, thus gold has been used in this experiment. The spectral 

response and absorption spectra of OFET were measured to investigate the optical 

property. The electrical properties of the OFET have been measured by source meters. 

The absorption spectra of gold nanoparticles were measured in chapter 4.  

The enhanced optical and electrical properties of the hybridization using polymer 

semiconducting materials and gold nanoparticles were observed and discussed in chapter 

5. The last chapter deals with important consideration and future work about metal 

nanoparticles incorporated in organic field effect transistor. 
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Chapter 2: Background 

In this thesis, we focus on enhanced optical and electrical properties for an organic 

transistor for a light detection application. The function of the organic semiconductor 

materials somewhat similar to the inorganic semiconductor materials, but there are 

significant difference in the working mechanism and basic properties. In this chapter, we 

will review basic optical and electrical properties of organic semiconductor materials. 

Also, we will review on surface plasmon resonance which is a proposed approach for 

tailored optical response and improved electrical properties for an organic thin film 

transistor.  

Organic Semiconductor 

Organic materials mainly consist of carbon, hydrogen and oxygen compounds. [15] 

Semiconductors have electrical conductivity properties between insulators and metals. 

Organic semiconductors mean the organic materials with semiconductor properties. The 

semiconductor properties of organic materials are originated by the special characteristic of 

pi electrons. Pi electrons are in the middle of free-electrons and bound-electrons. When 

single bond and double bond alternately appear between carbons, electrons are away from the 

nucleus. This enables the electrons to move easily by an applied electric field. Therefore, the 

polymer structure become conductive and flow currents when voltage is applied. [16] 

In order to better understand the pi electron and organic semiconductor, orbital theory 

will be introduced. According to the orbital theory, the probability that electrons will be 

found can be only known in certain 3-dimensional space. [16] The orbital is a 

mathematical function of the probability. Orbitals are divided into several types such as s-

orbital, p-orbital, and d-orbital according to the shape of the orbital as shown in Figure 
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2.1. These orbitals can be broken down into several types in accordance with three-

dimensional structure, with the exception of spherical-shaped s-orbital. For example, p-

orbital is dumbbell-shaped, being centered on the nucleus which is separated into px, py, 

pz with subscripts x, y and z depending on the symmetrical axis of rotation in three-

dimensional space as shown in Figure 2.1 (b)  

a                             b 

 
Figure 2.1 The shapes of orbitals depending on the symmetrical axis of rotation in three-

dimensional space. (a), s orbital. (b), px orbital, py orbital and pz orbital. [15] 

Arranged in order in accordance with energy levels of electrons contained within 

orbitals, the orbitals which have similar energy levels can be found. These orbitals are in 

a group and a number can be given in front of each name. For example, the lowest energy 

level group, which is the first group, has only one s-orbital. The s-orbital can be named as 

1s with the number one prefixed. In the following group, there are a total of four types of 

orbitals, s, px, py and pz. They have a number 2 in front of the tags. That can be named as 

2s, 2px, 2py and 2pz as shown in Figure 2.2.   

 

Figure 2.2 Energy diagram for 1s, 2s, 2px, 2py and 2pz orbitals. [17] 
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Each orbital can contain up to two electrons. The number of electrons contained 

within an orbital does not change its appearance. The outermost of these atomic orbitals 

are combined into a single molecular orbital to form a covalent bond. The shared electron 

pair is then free to move the entire giant molecular orbitals.  

There are two kinds of method to form a molecular orbital. First, sigma bond (σ bond) 

mechanism is a method in which atomic orbitals are directly put together to form a giant 

molecular orbital as shown in Figure 2.3.  

a 

 

b 

 
 

c 

 

 

Figure 2.3 Formation of a Sigma bond. (a), A covalent bond resulting from the σ(s-s) 

formation of a molecular orbital by the end-to-end overlap of s type atomic orbitals. (b), 

A covalent bond resulting from the σ(p-p) formation of a molecular orbital by the end-to-

end overlap of p type atomic orbitals. (c), A covalent bond resulting from the σ(s-p) 

formation of a molecular orbital by the end-to-end overlap of s and p type orbitals. [17] 

 In the case of many atoms which are combined together such as methane (CH4), one 
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carbon atom and four hydrogen atoms form four single covalent bonds. The appearance 

of a single covalent bond is chemically completely identical as shown in the Figure 2.4.  

 

Figure 2.4 Covalent bonds in methane using electron line diagram.   

However, the state of the atomic orbital of carbon is as shown in the Figure 2.5.  

 

Figure 2.5 Energy diagram for Carbon. [17]  

In fact, the only three existing outermost orbitals are 2s, 2px and 2py. These orbitals 

are not consistent with the Figure 2.4. Furthermore, it seems that only 2px and 2py can be 

combined with other orbitals because 2s orbital already has two electrons. This means 

that at best, only two can be combined with hydrogen. Because of this, one electron of 

the 2s orbital is excited receiving energy to go to 2pz. This process is called promotion of 

electron. The electron is translated from the ground state to the excited state.  Atoms are 

not covalently bonded because they exist around each other at the same time; rather, 

atoms are covalently bonded when constant energy is applied to the two materials. 

Promotion of electron occurs due to the energy that allows both atoms to bond. 
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Figure 2.6 Promotion of electron in the second group of orbitals. [17] 

But the problem still remains. As shown in Figure 2.6, the 2s orbital with only one 

electron is completely different in shape from other orbitals in the second group. Thus, 

four covalent bonds cannot be made in exactly the same shape. After that, four atomic 

orbitals in the second group become completely four new atomic orbitals with the same 

shape impacting to one another. Then, they can make the same shape of four covalent 

bonds. This series of the process is called hybridization.  

The new atomic orbitals made from the orbitals in the second group are called hybrid 

orbitals. The hybrid orbitals are also classified into several types, according to kind of 

orbitals and number of orbitals. One s-orbital and one p-orbital make two sp hybrid 

orbitals. One s-orbital and two p-orbitals become three sp2 hybrid orbitals. One s-orbital 

and three p-orbitals form four sp3 hybrid orbitals. For example, before methane 

molecules are formed, four sp3 hybrid orbitals are generated in the shape of a chicken leg 

as shown in the Figure 2.7. Then, these four hybrid orbitals meet s-orbitals of hydrogen 

respectively to form the following four molecular orbitals.  
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Figure 2.7 Formation of a methane molecular orbital from a carbon atom and four 

hydrogen atoms. [17] 

Second, pi bond (π bond) mechanism is the method in which orbitals are not directly 

combined, but electrons can move between orbitals in the combined method. It is 

unlikely to find electrons in the middle of the space between p-orbitals. The pi bond can 

be found only in multiple covalent bonds such as ethylene (C2H4).  

 

Figure 2.8 The covalent bond in ethylene using electron line diagram.  

Ethylene has two carbon atoms in the center, and a double bond occurs between them 

as shown in Figure 2.8. Each of the two carbons has a single bond with two hydrogens in 

the side branches. The double bond in the middle has one sigma bond and one pi bond. 

From the perspective of each carbon, the carbon needs three hybrid orbitals because 

carbon combines with the three surrounding materials, one carbon and two hydrogens. 

The problem is that the second group of a carbon has four orbitals. Only three of them 

can become hybridized. Hence, because hybridization is not conducted for a single orbital, 

eventually this p-orbital keeps such shape as shown in the Figure 2.9.  
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Figure 2.9 The shape of orbitals in the second group of a carbon after hybridization to 

form ethylene. [17] 

After forming the shape, the carbon combines with surrounding two hydrogens and 

one carbon which makes sigma bond three times as shown in the Figure 2.10.  

  

Figure 2.10 Sigma bond in ethylene molecule. [18] 

Two vertically extending p-orbitals from each do not participate in sigma bonds. 

They make a pi bond in the empty space as shown in the Figure 2.11. 

 

Figure 2.11 Pi bonds in ethylene molecule. [16] 
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Strictly speaking, the two orbitals retain the existing shape as before the pi bond. 

Because of this, they do not overlap each other. Electron may jump out of its own orbital 

region toward other orbital area, which is called delocalization of electron. [19] 

Benzene conducts more complex double bond. Benzene has six carbon ring structure, 

and each of them has hydrogen in the side as shown in Figure 2.12.  

 

Figure 2.12 Covalent bonds in benzene using diagram.  

The biggest feature of the benzene is to appear a double bond and a single bond in the 

center of carbon ring repeatedly. It is called conjugated double covalent bond. The Figure 

2.13 lists a sigma bond and pi bond in order. [20] 

 

Figure 2.13 Sigma bonds and pi bonds in benzene. [17] 
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As can be seen from the right side of the Figure 2.13, the range of pi bonds is very 

broad. Originally, pi bond is supposed to be generated only in double bond areas. But 

benzene, which has conjugated double covalent bond repeatedly, can produce pi bond in 

a single bond existing between double bonds. This means that shared electrons are 

delocalized and can move in much wider area. This is because of resonance. Originally, 

the term comes from physics. As two substances vibrate with the same wavelength, they 

are amplified. This phenomenon also appears in chemistry.  

In case of benzene, pi electrons in three double covalent bonds cause resonance to 

create significant vibration. So, the electrons can move around a single covalent bond. 

Moreover, as the pi electrons pass around the original single bond area, the single bond 

seems to become pi bond and double covalent bond. Each covalent bond becomes a 

double covalent bond and a single covalent bond repeatedly at incredibly fast speed 

within the hexagon area.  

In the compound which has repeated conjugation, pi bond area can be more widened 

as compared with sigma bond area. After all the electrons in the pi bond are very liberal 

and can easily move out of the molecule when they get a little energy. In other words the 

pi electron is delocalized in the repeated conjugation. Organic semiconductor is made of 

conjugated molecules. [21] 

Charges in organic semiconductors can flow by hopping of delocalized pi electrons 

between pi bonds. The formation of pi orbitals can explain the potential energy level of 

organic materials. The highest occupied molecular orbital (HOMO) refers to the orbitals 

at the highest point among orbitals which are filled with electrons in molecular orbital 

diagram. And the lowest unoccupied molecular orbital (LUMO) refers to the orbitals at 
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the lowest point among orbitals which are not filled with electrons. The optical and 

electrical properties of organic semiconductors are determined by the HOMO and LUMO 

levels. The more the number of conjugation of organic materials, the smaller the energy 

gap between LUMO and HOMO. When the difference between HOMO and LUMO 

energy levels gets fewer, electrons are likely to deviate. That means the organic materials 

can absorb a long wavelength such as visible light. [22] 

Organic Field Effect Transistor (OFET) 

A field-effect transistor (FET) is a type of transistor commonly used for weak-signal 

amplification. FET can control large current by using small gate voltage as shown in 

Figure 2.14. There are two kinds of field effect transistors. One is metal oxide 

semiconductor field effect transistor. The other is thin film field effect transistor. 

MOSFET is used for microprocessors and memory chips. TFT is suitable for non-Si 

material such as organic material.  

  

Figure 2.14 The field effect transistor and its operation principle. 
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The field effect transistors using organic materials are referred to organic field effect 

transistors like the Figure 2.15. Applying a voltage to the gate of the transistor, charges in 

the organic materials are pulled toward the gate. However, the insulator between the 

organic materials and the gate prevents the charges from being delivered to the gate. 

Those charges are gathered a lot over the insulator, the gathered charges form a channel, 

in which electrons generated in the source electrode can flow easily to the drain electrode. 

As gate voltage is increased, the channel is formed better and the drain-source current 

flows better. 

 

Figure 2.15 The structure of an organic field effect transistor.  

The operation principle of the device reviewed with the concept of p-type 

semiconductors is that all the charge in the organic semiconductor spread evenly when 

voltage is not applied to source, drain and gate. At this time, voltage is applied between 

the source and the drain, current, which is proportional to voltage, flows. If positive 

voltage is applied to the gate, holes are pushed up because of the electric field. Hence, the 

holes are reduced close to the insulator. In this situation, the current flowing between the 

source and the drain is also reduced.  

Conversely, positive charges between the organic material and the insulator are 

derived as negative voltage is applied to the gate. And thus the amount of charge is 
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formed close to the insulator. This is called accumulation layer. As current was measured 

by applying voltage between the source and the drain, the more current is able to flow.  

There is also an energy barrier between a metal and an organic semiconductor. It 

depends on the work function of the metal and the work function of the organic 

semiconductor. [23] The height of the energy barrier can be adjusted by choosing a metal 

with the work function compared with the HOMO and LUMO energy level of the organic 

material [24]. 

 

Figure 2.16 The band diagram of metal and p-type organic semiconductor contact. [25] 

As shown in Figure 2.16, a small ohmic barrier is between the metal and the HOMO 

of the organic semiconductor, and a larger barrier exists between the metal and the 

LUMO of the organics.  In this case, the organic semiconductor of the organic field effect 

transistor is kind of p-type material. [26]. 

Surface Plasmon Resonance (SPR) 

Materials have band gap as shown in the Figure 2.17. The band gap is the energy 

difference between valence band and conduction band.  
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Figure 2.17 The Band diagram of materials. 

The two bands are overlapped in metal diagram. Thus, metal is a conductor which has 

many free electrons in its conduction band. In other words, there are a lot of free 

electrons in the metal surface. [27]  

The free electrons can be easily sensitized to specific external stimulus because they 

are not tied by the metal atoms. [28] These free electrons can vibrate on the metal surface 

with a certain wavelength and frequency under a particular condition. Plasmon is wave of 

charges on a metal and dielectric interface. This vibration of surface wave is called 

surface plasmon and typically it is observed from gold or silver. This surface plasmon 

refers to the collective oscillation of free electrons which is usually propagated along the 

interface between metal and dielectric. When the surface plasmon wave travels on the 

boundary between metal and dielectric material, the perpendicular filed strength are 

exponentially decreased from the boundary. [29] In other words, the further the surface 

plasmon goes away from the interface between the metal and the dielectric, the further 

the surface plasmon decreases exponentially in a vertical direction. [30]  

http://bsclarified.files.wordpress.com/2012/01/500px-isolator-metal-svg.png
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The oscillation frequency is determined by the dielectric constant of the metal and 

the dielectric. [31] The collective oscillation of the free electrons is increased by incident 

light from outside. As light energy is received by electrons, then the electrons are excited 

more and vibrate with large amplitude. [32] As the surface electrons with a certain 

frequency meet the light with the same frequency, the electrons is resonated and the 

amplitude of the vibrating electrons becomes the maximum as shown in Figure 2.18. This 

is referred to as surface plasmon resonance. [33] Surface plasmon resonance is transverse 

EM wave coupled to a plasmon. 

  

Figure 2.18 The surface plasmon resonance with the same frequency between surface 

electrons and incident light.  

In order to excite SPR, the wave vector along with metal surface and dielectric 

surface should be matched. Typically, when the illuminate light comes from the dielectric 

side, the wave vectors between metal and dielectric cannot be matched as shown in 

Figure 2.19. 
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Figure 2.19 The w-k diagram. 

  In order to solve this problem, a prism can be attached on a metal surface as shown 

in Figure 2.20. This devised technique is called the method of Kretschmann configuration. 

Under this condition, the incident light from glass has larger wave vector than the wave 

vector on the metal surface that facing to air. Because a thin metal layer (typically ~50nm) 

is covered on the glass, the size of wave vector from glass can be maintained until it 

passes through the metal film. By changing the incident angle to the metal film through 

the glass, there should be a specific condition that makes the incident wave vector 

becomes same size of plasmon wave vector. If this occurs the incident electromagnetic 

wave energy can be strongly absorbed to create surface plasmon resonance.      

  

Figure 2.20 The Kretschmann configuration. 
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In particular, Transverse EM wave coupled to metal nanoparticles is called localized 

surface plasmon. [34]  

Another plasmon effect can be observed in a 0 dimensional nanostructure. This is 

called ‘Localized Surface Plasmon Resonance’. Localized surface plasmon is not 

propagated in any direction but aggregated around the metal nanoparticles as shown in 

Figure 2.21. [31]  

  

Figure 2.21 The localized surface plasmon of metal nanoparticle. 

In case of metal nanoparticles, a sufficient level of the free electrons in the surface 

vibrates at a specific frequency, thus light with the specific frequency is strongly 

absorbed and scattered by the metal nanoparticles. [35] The metals which have this 

property are gold, silver, and copper. They release electrons easily by external stimulus 

and have negative dielectric constant. Among them, silver which has the sharpest surface 

plasmon resonance peak and gold which has excellent surface stability are mainly used. 

The metal nanoparticles are extremely strongly resonated in visible region of light. 

Scattering and absorption of light by spherical particles (very small particles compared 

with the wavelength of light) follow the equation as bellow (by Mie’s theory).  

 (VM: particle volume) 
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Figure 2.22 The scattering as a function of wavelength for the different particle volumes. 

The scattering and absorption of light by metal nanoparticles are proportional to the 

volume of the metal nanoparticles as shown in Figure 2.22. Thus, the resonance 

wavelength or frequency of the metal nanoparticles can be changed by regulating the size 

and type of the nanoparticles, hereby suitable size and form of metal nanoparticles for 

desired wavelength range can be selected to obtain surface plasmon effect. [36]  

   In addition, the scattering and absorption of light by metal nanoparticles can be 

controlled by the refractive index of surrounding materials. As the refractive index 

increases, the wavelength of surface plasmon resonance related absorption shifts to 

longer wavelength as shown in Figure 2.23. 

 

Figure 2.23 The scattering of light by metal nanoparticle as a function of the wavelength 

depending on the refractive index of its surrounding materials. 



24 

 

Chapter 3: FABRICATION and CHARACTERISTICS of OFET 

   In previous chapter, we have discussed about the background of organic semiconductor 

and surface plasmon resonance. Organic materials provide easy and low cost fabrication 

process and localized surface plasmon resonance (LSPR) in metal nanostructures can 

produce fascinating optical properties depending on its structural modifications. For the 

utilization of these properties and improved optical electrical properties, we will discuss 

about a prototype hybrid device using semiconducting polymer and metal plasmonic 

nanostructure. An all solution processed hybrid thin film transistor, consisting of an 

organic thin film transistor structure and self-assembled gold nanostructures that has 

plasmonic absorption in visible, was fabricated. 

Fabrication of OFET 

For the fabrication of OFET, ttwo configurations are typically used; bottom gate 

configuration and top gate configuration. The bottom gate configuration is used in this 

experiment as shown in Figure 3.1. 

  

Figure 3.1 The bottom gate structure with top drain and source electrodes of OFET for 

the experiment.  

For the bottom gate structure, as a gate, a highly doped silicon wafer has been used. 

Wafer was purchased from the University wafer and the initial Silicon wafer structure is 

shown in Figure 3.2. 
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Figure 3.2 The structure of the wafer. 

The thickness of the heavily doped silicon wafer is 500 micrometers. A thin layer of 

oxide (silicon dioxide) (300 nanometers thick) on top of the Silicon was produced as an 

insulator by thermal oxidation.  

A mask for the electrode pattern was designed by commercial software (Layout 

Editor 2009) and the pattern was generated on a Cr coated glass photomask. Since the 

low mobility of the organic materials the device size was relatively larger than 

conventional solid state based thin film transistor. Various channel length and width for 

the thin film transistor was designed and the electrode patterns for the organic field effect 

transistor are presented in Figure 3.3 

  

Figure 3.3 The electrode patterns for the organic field effect transistor; the channel width 

of electrodes: 1000μm, 2000μm, 3000μm, and 5000μm, the channel length: 10μm, 20μm, 

and 70μm. 
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   Drain-source current is proportional to the channel width of electrodes and inversely 

proportional to the channel length between drain electrode and source electrode as bellow. 

 (μ= mobility, C= capacitance) 

The electrode pattern was transferred to a wafer by using a photo lithography process. 

Then gold film was deposited on the wafer to a thickness of 100 nanometers by 

evaporation in a vacuum chamber and a lift-off process was followed. The final structure 

after lift-off process is shown in Figure 3.4. 

   

Figure 3.4 The structure of the wafer with two gold electrodes. 

For an organic semiconducting material, P3HT (Poly(3-hexylthiophene-2,5-diyl)) 

was purchased from Sigma-Aldrich as an organic material. The P3HT has 5eV of the 

HOMO energy level and 3.1eV of the LUMO energy level. Thus, the energy difference 

between the HOMO and the LUMO is 1.9eV. The wavelength above which the P3HT 

cannot absorb the light is calculated by using equation 1.24/1.9eV=0.652µm=652nm. The 

wavelength of the absorption spectra peak and the spectral response peak of the P3HT 

were 550nm. Organic material was spin-coated (1200rpm, 30sec) on the silicon wafer 

patterned with gold. After spin coating, the device was annealed at 150 °C for 10 minutes 

inside glove box to increase the charge mobility by crystallization of the organic 

semiconductor. The band diagrams of OFET are as shown in Figure 3.5.  
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Figure 3.5 Schematic band diagrams of the interfaces between P3HT and gold; (a) as-

prepared P3HT, (b) thermally annealed P3HT. [37] 

Optical Properties of OFET 

Optical properties are measured by spectral response and absorption spectra. A 

material's absorption spectrum is the fraction of incident radiation absorbed by the 

material over a range of wavelengths or frequencies. Organic semiconductors have many 

pi electrons. Pi electrons have energy between free electrons and bound electrons. They 

can be excited with a little energy to become free electrons. Even though the electron is 

excited in organic semiconductors, the electron is combined with a hole by coulomb 

attraction as shown in Figure 3.6. The free electron combined with the hole is called an 

exciton. 

  

Figure 3.6 The principle of absorption spectra measurement in organic semiconductor.  
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As organic semiconductor receives energy greater than the energy difference between 

its HOMO and LUMO energy level, excitons are generated. The energy used to generate 

excitons is the same as the amount of light absorbed by the organic semiconductor. The 

result of measuring the amount of light is referred to as absorption spectra.     

A BLACK-Comet UV-VIS spectrometer and a halogen lamp were used for the 

absorption spectra measurement. A spectrometer classifies light wavelength by using a 

40mm diameter concave grating and measures the intensity of each wavelength. 

SpectroPro calculates and shows the absorption spectra as shown in Figure 3.7. 

 

Figure 3.7 The absorption spectra measurement using a spectrometer and a halogen lamp. 

The grating inside the spectrometer is used to produce spectral lines and the 

spectrometer measures their wavelengths and intensities as shown in Figure 3.8. 

  

Figure 3.8 The operating principle of grating. 

As one kind of incandescent lamps, a halogen lamp is the lamp to further suppress the 

vaporization of tungsten by injecting halogen materials in the glass sphere. The halogen 

lamp is brighter than incandescent bulbs and lasts longer. The halogen spectrum after 



29 

 

 

 

pass through a monochromator is obtained by recording the halogen light with a 

spectrometer as shown in Figure 3.9. 

  

Figure 3.9 Halogen lamp spectrum as light source.  

First, P3HT was spin coated on the surface of a glass. The absorption spectra of the 

organic material, P3HT, are gained by comparing the light passed through the glass 

before the spectrometer with the halogen lamp spectrum as shown in Figure 3.10.   

  

Figure 3.10 The absorption spectrum of P3HT. 

The Difference of the energy level between the HOMO and the LUMO of P3HT is 

1.9eV. The photon energy is inversely proportional to the wavelength of the light. Thus, 

the minimum wavelength of the light that P3HT can absorb is 652nm. The absorption 
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property of P3HT is consistent with the energy level gap of P3HT. The wavelength of the 

absorption spectra peak of the P3HT is 550nm. 

Another optical property for OFET is spectral response. Spectral response, which is a 

function of wavelength, is the ratio of the current generated by a device to the power 

incident on the device. The process by which the exciton is generated in organic field 

effect transistors is the same as the process of the absorption spectra measurement. 

Excitons are separated by drain-source voltage of the organic field effect transistor as 

shown in Figure 3.11. The electrical field generated by the drain-source voltage should be 

bigger than the coulomb force of the exciton. As the drain-source voltage increases or the 

resistance of organic material decreases, the current generated by the excitons is 

increasesd more. Excitons are created in organic field effect transistors by light energy; 

the amount of current generated by the excitons is called spectral response.  

  

Figure 3.11 The principle of spectral response measurement in organic semiconductor.  

Several instruments such as a SpectraPro 275 monochromator, SR540 Optical 

Chopper, a Micromanupulator probe station, two Keithley 2400 Source Meters, a halogen 

lamp, and a SR830 Lock-In Amplifier were used to measure the spectral response.  
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The measurement was carried out as following. First, a monochromator produces 

monochromatic light from a halogen lamp because the optical characteristic of a device is 

dependent on wavelength. Two source meters apply voltage to gate and drain-source of 

OFET respectively.  

  

Figure 3.12 The process of the spectral response measurement by using lock-in amplifier 

and optical chopper. 

In particular, the SR830 Lock-In Amplifier and SR540 Optical Chopper were used to 

detect and measure very small signals as shown in Figure 3.12. The operation principle of 

lock-in amplifier is known as phase sensitive detection technique to pick up the small 

signal obscured by very large noise. They make a reference frequency and reject noise 

with frequencies other than the reference frequency. Hence, noise signals do not affect 

the measurement. Since the device has a large voltage bias across Drain and source 

electrode, the drain current that was collected by the modulated light illumination was 

measured by an indirect method. We used a series resistor to a Drain-Source bias to 

produce the voltage value and it was converted to current value. The measured voltage 

value from the OFET is shown in Figure 3.13. 
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Figure 3.13 Voltage value for spectral response of the OFET. 

To calculate the spectral response of the device the voltage value has to be converted 

to a current value. The voltage value is divided by the inserted resistor (65K ohm) and 

current value is obtained as shown in Figure 3.14. 

 

Figure 3.14 The current value for spectral response of the OFET. 

A NIST calibrated reference photodetector was used to measure the actual power of 

the monochromatic light source. The reference spectral response of the reference solar 

cell was offered for the reference solar cell by the company. The voltage for each 



33 

 

 

 

monochromatic light was measured with its wavelength. The voltage was divided by the 

resistor and current value is obtained. Then, the reference spectral response was divided 

by the current and the power of monochromatic light for the halogen lamp was gained as 

shown in Figure 3.15.  

 

Figure 3.15 The power for each monochromatic light measured with its wavelength from 

the halogen lamp.  

The current value of the OFET was divided by the power of the halogen lamp and the 

spectral response was obtained as shown in Figure 3.16. The wavelength of the spectral 

response peak of the P3HT was around 550nm.  

  

Figure 3.16 The spectral response curve of the OFET.  
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Electrical Properties of OFET 

Figure 3.17 is current voltage characteristic curve of OFET. P3HT was used as an 

organic semiconductor. As gate voltage is increased, the channel is formed better and the 

current is increased. Since the P3HT polymer is p-type material, the majority carrier is a 

hole. Therefore the gate voltage needs to be controlled in negative valued to create a hole 

channel.  

 

Figure 3.17 The current-voltage characteristic curve of the OFET. 

 The current-voltage characteristic curve was measured in a darkroom using two 

Keithley 2400 Source Meters and two probes on a Micromanupulator probe station. The 

OFET device is so tiny. Hence the device can be measured by using probes. Keithley 

2400 Source Meter is an instrument to test tightly coupled sourcing and measurement. In 

other words, the source meter can act as voltage source and current source. At the same 

time, the source meter can act as voltage meter, current meter and ohm meter. 
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Figure 3.18 The process of the current-voltage characteristic curve measurement. 

A source meter applied voltage to the gate and measured leakage current which 

passed through the insulator. The other source meter applied voltage to the drain-source 

and measured drain-source current. In order to measure accurately, delay time of the 

measurement and the voltage were applied automatically by a computer as shown in 

Figure 3.18. When the more voltage is applied to the gate, the channel is filled with holes, 

thus the current is easily transferred between the drain and the source.  

 

Figure 3.19 Current–voltage characteristic curve of a P3HT OFET at different gate 

voltages. [38] 
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Drain-source current is measured as a function of drain-source voltage at different 

gate voltage as shown in Figure 3.19. The drain-source current equation for linear region 

is as follows. 

[39] 

The drain-source current equation for saturation region is as bellow.  

[39] 

In summary, an organic thin film transistor structure using P3HT conjugated 

polymer was successfully fabricated on a Silicon substrate. The electrical property was 

characterized and confirmed its p-type operation. In addition, we have observed transistor 

operation under weak positive gate bias which will be used for plasmon energy collection. 

The optical detection was available since the P3HT has an absorption in visible color. A 

lock-in measurement technique enabled the exact spectral response using drain current 

measurement under high voltage bias condition.    
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Chapter 4: OFET with METAL NANOPATICLES 

In this chapter, a nanoparticle incorporated hybrid organic transistor device will be 

discussed. In the beginning, a brief summary on metal nanoparticles and its plasmonic 

behavior will be summarized. Then, the hybridization methods using gold nanostructures 

and organic thin film transistors are discussed. We have successfully fabricated a gold 

nanoparticle incorporated organic transistor using thermal reflow method after a thin gold 

film deposition on the active region of the organic thin film transistor.  

Metal Nanoparticles 

Nano is a unit representing a billionth of a meter. One nanometer is one hundred 

thousandth of a hair thickness as shown in the Figure 4.1. 

 

Figure 4.1 From meter scale to nanoscale materials.  

Nano technology is the technique to control and identify the nature of substance to the 

nanometer level. In other words, nano technology can physically or chemically control 

substance at the level of atoms or molecules and fetch out the useful structures and 

functions of the substance. This technology makes it possible to build the device which 

has totally different principle from the previous one. Hence, it is expected to take 

advantage of limitless possibilities of nano technology.  



38 

 

 

 

In particular, size of metals is reduced to nanometer scale, the interesting 

phenomenon occurs. Metal nanoparticles, nano-scale metals, have totally different 

physical or chemical properties from conventional bulk metals. For example, the melting 

point is gradually going down in case the size of metal particles is smaller because 

surface area per unit volume increases if the size of the particles is smaller as below and 

thus the small particles of metals can absorb energy better than large particles of the same 

metals. [40] 

  

Figure 4.2 The distribution of surface atoms according to the size of gold nanoparticles. 

In other words, if the size of metal nanoparticles gets smaller, the proportion of 

surface atoms becomes larger. The energy of surface atoms is larger than the energy of 

internal atoms as shown in the Figure 4.2. Thus, when a metal has a large proportion of 

surface atoms with high energy, excellent chemical and physical reactivity of the 

nanomaterial appears. [36] 

Among metals, gold has excellent surface stability, thus gold has been used in this 

experiment. Also, optical and electronic properties of gold nanoparticles are changed by 
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changing size and form of the particles. In particular, gold nanoparticles strongly interact 

with light depending on their size. [41] Oscillating electric fields of light passing through 

between gold nanoparticle and dielectric interact with the oscillating free electrons of 

gold nanoparticle at the same oscillating frequency between the light and the free 

electrons of gold nanoparticles causing a resonated oscillation of electron. This resonant 

oscillation is called surface plasmon resonance. Hence, light with the specific frequency 

is strongly absorbed depending on the resonance frequency of the oscillating free 

electrons of gold nanoparticles. 

Fabrication of Gold Nanoparticles incorporated in Organic Transistor 

Colloidal gold nanorods were used to check the change of the spectral response of the 

organic field effect transistor. The GNRs in an aqueous solution are produced as shown 

in Figure 4.3.  

  

Figure 4.3 The colloidal gold nano rods with absorption spectra peak at 710nm 

wavelength. 

The GNRs have absorption spectra peak at 710nm wavelength. The GNRs were 

coated on the organic field effect transistor in a variety of ways to make as shown in 

Figure 4.4, but failed. The GNRs are not coated on the surface of the organic material by 

drop casting and spin coating. Because its hydrophilic property , the GNRs are not mixed 

with the organic material.  
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Figure 4.4 The deposition of Gold Nano Rods. 

As an alternative approach, self-assembled gold nanoparticles are incorporated onto 

the organic active layer. To create this nanostructure, a thin gold film (2-6nm) was 

deposited by thermal evaporation on the surface of the OFET as shown in the Figure 4.5. 

Then the device was annealed at 150 °C for 10 minutes inside glove box to make the gold 

structures are melted and created a self-assembled structure.  

  

Figure 4.5 The deposition of gold nanoparticles by vacuum evaporation. 



41 

 

 

 

In order to check the optical properties of gold nanoparticles, an identical gold thin 

film was deposited on a transparent glass in an evaporator at the same time. Typical 

vacuum level was made around 3x10
-6

 torr and deposition rate was controlled between 

0.1 ~ 0.5Å /s. Finally, the gold thin film was deposited to 2nm thickness on the glass then 

a post annealing process was followed to create self-assembled gold nanostructure. The 

absorption spectra of the gold nanoparticles on the glass are as shown in Figure 4.6. 

  

Figure 4.6 The absorption spectra of the gold nanoparticles assembled from 2nm thick 

film coated on a transparent glass by an evaporator. 

From the gold nanoparticles assembled from 2nm thick film, the surface plasmon 

resonance phenomena cause light absorption around 600nm wavelength as shown in the 

Figure 4.6. But the size of the gold nanoparticles assembled from 2nm thick film is not 

2nm in diameter. The 2nm gold nanoparticles should have the surface plasmon resonance 

peak below 520nm wavelength. As particle size decreases, the wavelength of surface 

plasmon resonance related absorption shifts to shorter wavelength as shown in Figure 4.7.  
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Figure 4.7 The absorption spectra depending on the diameter of the colloidal gold 

nanoparticles. [42] [43] 

It can be assumed that the gold nanoparticles assembled from 2nm thick film became 

much bugger. The self-assembled structure has very different shape and sizes depending 

on the substrate and temperatures and so on. [44] 
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Chapter 5: EXPERIMENTAL RESULT  

Enhanced Optical Properties  

In the previous chapters, the optical properties of the organic field effect transistor 

and the gold nanoparticle were mainly investigated. It was confirmed that the absorption 

spectra peak and the spectral response peak of the organic field effect transistor were 

determined by the difference between the HOMO energy level and the LUMO energy 

level of the organic material, P3HT. It was also confirmed that the surface plasmon 

resonance peak and the absorption spectra peak were determined by the size and shape of 

the gold nanoparticles.  

In this chapter, the surface plasmon resonance effect of the gold nanoparticles is 

applied to the optical and electrical properties of the organic field effect transistor. The 

electrical and optical properties have been investigated to compare with a device without 

plasmonic nanostructure. For the spectral response measurement of the organic field 

effect transistor deposited with gold nanoparticles, the SR830 Lock-In Amplifier and the 

SR540 Optical Chopper were used because noise signals had to be removed.  

 

Figure 5.1 The spectral response curve of the OFET at Gate Voltage: 5V, leakage: 

0.00117µA, Drain-Source Voltage: 5V and Drain-Source Current: 0.19µA. 
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Since the localized surface plasmon resonance is electron dominant effect. The 

transistor needs to be operated as an n-type material. Fortunately, we have observed that 

the P3HT transistor is working under weak positive gate bias, even though it has a very 

small drain current. This positive gate bias can create a attracting force to the hot 

electrons generated in the gold nanostructure structure. The spectral response curve of the 

organic field effect transistor was measured at Gate Voltage: 5V, leakage: 0.00117µA, 

Drain-Source Voltage / Current: 5V / 0.19µA. The measurement value at the peak is 

2.02µA/W as shown in Figure 5.1. 

The same condition, Gate Voltage: 5V and Drain-Source Voltage: 5V, was used for 

the spectral response measurement of the organic field effect transistor deposited with 

gold nanoparticles. The measurement value is the voltage as shown in Figure 5.2.  

 

Figure 5.2 Voltage value for spectral response of the organic field effect transistor 

deposited with gold nanoparticles. 

But the spectral response is the current generated per the power incident. Voltage is 

divided by the resistor (65K ohm) and current value is obtained as shown in Figure 5.3.  
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Figure 5.3 The current value for spectral response of the organic field effect transistor 

deposited with gold nanoparticles. 

The power of monochromatic light for the halogen lamp was obtained by using a 

reference solar cell. The current value of the organic field effect transistor deposited by 

gold nanoparticles was divided by the power of the halogen lamp and the spectral 

response was measured as shown in Figure 5.4.   

  

Figure 5.4 The spectral response curve of the organic field effect transistor deposited 

with gold nanoparticles at Gate Voltage: 5V, Drain-Source Voltage/Current: 5V/ 0.73µA.  

The optical properties have been investigated to compare with a device without 
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plasmonic nanostructure. In Figure 5.1, the measurement value of a spectral response 

peak for the organic field effect transistor is 2.02µA/W. In Figure 5.4, the spectral 

response for the organic field effect transistor deposited with gold nanoparticles is 

8.45µA/W at the same gate and drain-source voltage.  

The gold nanoparticles incorporated in organic transistor shows improved drain 

current from 0.19µA to 0.73µA due to the increased conductivity assisted by the free 

electrons in the metal nanoparticles. Drain Voltage was decreased to avoid the electrical 

effect. The enhanced photo-responsivity (A/W) was also observed in its optical detector 

operation.  

  

Figure 5.5 The spectral response curve of the organic field effect transistor deposited 

with gold nanoparticles at Gate Voltage: 5V, Drain-Source Voltage: 1V and Drain-

Source Current: 0.13µA.  

In Figure 5.5, the measurement value of a spectral response peak for the organic field 

effect transistor deposited with gold nanoparticles is 3.28µA/W at drain-source current 

0.13µA. The measurement value with gold nanoparticles is increased by 1.62 times than 

the measurement value without gold nanoparticles as shown in Figure 5.6.  
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Figure 5.6 The spectral responses at 5V gate voltage without gold nanoparticles and at 

5V and 1V gate voltage with gold nanoparticles. 

It is possible that the surface plasmon resonance of the gold nanoparticles is 

transferred to the organic materials through the interface between the metal and the 

dielectric. A slight change of the spectral response was observed and we believe that this 

is originated from the contribution of the plasmon induced hot electrons in the metal 

nanoparticles as shown in Figure 5.7.  

  

Figure 5.7 The difference of the normalized spectral response between the OFETs with 

gold nanoparticles and without gold nanoparticles. 
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For the gold nanoparticles assembled from 2nm thick film, the surface plasmon 

resonance phenomena cause absorption of light around 600nm wavelength. At 

550~650nm wavelength, free electrons of the metal surface directly go to organic 

material because of the strong absorption around the wavelength of the surface plasmon 

resonance as shown in Figure 5.8. Thus, increased spectral response can be observed. 

 

Figure 5.8 The process of charge transfer at 550~650nm wavelength. 

  

Figure 5.9 The process of charge transfer below 550nm wavelength. 
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Below 550nm wavelength, free electrons of the metal surface do not go to organic 

material because of the smaller absorption as shown in Figure 5.9. But rather spectral 

response was decreased due to the decreased absorption in P3HT by the absorption of 

gold nanoparticles. It was successfully demonstrated that the improved optical properties 

of the OFETs are due to surface plasmon resonance of the metal nanoparticles.  

Enhanced Electrical Properties 

In addition to the enhanced optical properties, electrical properties were enhanced by 

gold nanoparticles. The resistance of organic field effect transistor is lowered by coating 

gold nanoparticles on the organic material. The core of organic field effect transistors is 

to create organic materials with good electrical characteristics. One of the good 

characteristics is to reduce the leakage by gate voltage and increase drain-source. In order 

to increase the current, if drain-source voltage is increased, the organic material’s 

viability is degraded. However, it is possible to increase the current by coating gold 

nanoparticles without increasing the current drain-source voltage.  

When the gold nanoparticles were produced from 2nm thick gold film, the drain-

source current of the OFET was increased up to 3.84 times at the same gate and drain-

source voltage. The measurement value of drain-source current for the organic field 

effect transistor is 0.19µA and the drain-source current for the organic field effect 

transistor deposited with gold nanoparticles is 0.73µA at 5V gate voltage and 5V drain-

source voltage as shown in Figure 5.10. The hybridization using polymer semiconducting 

materials and metal nanoparticles can provide improved mobility due to the free electron 

concentration in the metal nanostructure. 
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Figure 5.10 The enhanced drain-source current of the OFET up to 3.84 times with gold 

nanoparticles at 5V gate voltage and 5V drain-source voltage. 

The leakage by gate voltage can be minimized by adjusting drain-source voltage. 

Increasing gate voltage, leakage occurs more. But, it was confirmed through the organic 

field effect transistor coated with gold nanoparticles that the condition to minimize 

leakage is determined not only by gate voltage but also by drain-source voltage. The 

leakage is not simply reduced by increasing the drain-source voltage. As the drain-source 

voltage of 5V, 10V, and 20V was applied to the organic field effect transistor 

respectively, the leakage became a minimum value at 10V. The leakage was increased at 

5V or 20V. In case appropriate drain-source voltage is applied to the organic field effect 

transistor, the leakage can be minimized. It can be estimated that the electrons flowing 

between the drain and the source attract the electrons flowing from an electrode into the 

gate. It is a kind of laminar flow. This effect defends on the channel width of the 

electrodes and the channel length between the electrodes.  
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Chapter 6: SUMMARY and FUTURE WORK 

Summary  

We have successfully demonstrated a hybrid organic thin film transistor device with 

enhanced optical detection and electrical properties. An organic field effect transistor 

using P3HT as an active material was prepared for the experiment and gold nanoparticles 

were deposited using a thermal reflow method using a vacuum evaporated thin gold film.  

The gold nanoparticles incorporated in organic transistor shows the enhanced 

electrical property due to the increased conductivity assisted by the free electrons in the 

metal nanoparticles, and the enhanced photo responsivity (A/W) and a slight change of 

the spectral response as shown in Figure 6.1 because of the contribution of the surface 

plasmon resonance induced hot electrons in the metal nanoparticles.  

  

Figure 6.1 The normalized spectral response of the OFET with and without Au NP. 

At 550~650nm wavelength, free electrons of the metal surface have the strong 

absorption. Thus, enhanced spectral response is observed around the wavelength of the 
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surface plasmon resonance. Below 550nm wavelength, the decreased spectral response is 

obtained because free electrons of the metal surface have smaller absorption and the 

amount of light absorption by organic semiconductor is decreased due to the absorption 

of light by the gold nanoparticles on the surface of the OFET. This work showed a 

feasibility for the direct collection of plamon induced hot electrons through organic 

semiconducting material.  

Important Consideration and Future Work 

Organic semiconductor, P3HT, was spin coated on the silicon wafer at the speed of 

1200rpm for 30 seconds. The thickness of the P3HT is more than 100nm with the spin 

speed and time. P3HT was thicker than the thickness of the gold nanoparticles. Thus, 

large portion of light was absorbed by the P3HT compared with gold nanoparticles. 

When the absorption rate is increased by the thickness of the organic material, then the 

recombination rate of electron and hole inside of organics also increases and the 

absorption rate of metal nanoparticles decreases compared with the absortion rate of the 

organic material. Hence, the thickness of the organic semiconductor should be reduced by 

adjusting spin speed and time. 

The Difference between the HOMO energy and the LUMO energy of P3HT is 1.9eV. 

The minimum wavelength of the light absorbed by P3HT is 652nm and the wavelength of 

the absorption spectra peak is 550nm. The absorption property of P3HT is consistent with 

the energy level gap of P3HT. The surface plasmon resonance peak is around 

550nm~600nm. The absorption spectra peak of P3HT overlapped with the surface 

plasmon resonance peak. In this case, it is hard to detect the distinct characteristic of 

surface plasmon resonance. PVK as organic material, HOMO: 5.8eV, LUMO: 2.2eV, the 
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wavelength of the absorption spectra peak: 450~500nm, is better to sense the change of 

the spectral response by plasmonic nanostrucutre.  

N-type organic semiconductors instead of p-type organic materials are suitable for 

checking the charge transfer. The applied drain voltage and gate voltage are positive to 

attract the charge due to the charge is negative. In case of the n-type organic materials 

can make the channel better at the positive gate voltage. 

Through these results, the hybridization using polymer semiconducting materials and 

metal nanoparticles can be applied to the infrared detector. For example, the organic 

semiconductors such as P3HT, the difference between HOMO and LUMO energy level is 

below 1.9eV, do not show any spectral response by infrared light. If the gold nano rods, 

which have the surface plasmon resonance peak of 800nm wavelength, are deposited 

onto the surface of the P3HT organic transistor, the device can absorb infrared light and 

show spectral response around 800nm wavelength. The enhanced optical properties of 

organic material by surface plasmon resonance of metal nanoparticles will contribute to 

make very sensitive with organic materials. 
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