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Alternative splicing of precursor mRNA (pre-mRNA) provides an important means

of regulating gene expression and generating transcriptomic and proteomic diversity

in most eukaryotes. A number of special proteins, named splicing factors, can reg-

ulate the alternative splicing process by binding to certain short subsequences on

pre-mRNA, named splicing regulatory elements (SREs). Therefore, identification of

these SREs and prediction of their combinatorial effects are very important to the

understanding of the mechanisms that regulate splicing.

In this dissertation, we develop two methods for identifying SREs and their in-

teractions. In the first method, we use the traditional enrichment-based approach,

which identifies SREs by comparing frequencies of all hexamers in two discriminative

data sets generated from mouse RNA-Seq data. The SREs are identified as hexamers

that are enriched in the positive data set but under-represented in the negative data

set. We also analyze the position preference of the identified SREs and compare their

frequencies in constitutive exons and alternatively spliced exons.

In the second method, we first derive a mathematical model for splicing regulation

based on the principles of thermodynamics. We include the effects of both SREs and

interactions between two SREs in the model. We then apply the model to identify



SREs and SRE interactions with linear regression. Since the linear regression model

contains a very large number of variables, the traditional inference method does not

perform well. To overcome this problem, we develop a novel framework for inferring

the high-dimensional linear model.

Finally, we systematically study the alternative regions, arising from alternative

splicing, alternative first exon or alternative last exon events in 105 breast cancer

patients using RNA-Seq data. The identified aberrant alternative regions show very

interesting associations with cancer development and provide important candidates

for cancer diagnosis and cancer therapies.
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CHAPTER 1

Introduction

1.1 Biological Background

1.1.1 DNA, Gene and RNA

The functionalities of living cells in any organism are determined by many dif-

ferent types of molecules, particularly proteins. All the genetic information needed

to synthesize protein molecules, which can be passed from generation to generation,

is encoded in deoxyribonucleic acid (DNA) molecules [3]. There are four types of

nucleotides in DNA including adenine (A), cytosine (C), guanine (G) and thymine

(T) nucleotides. A DNA molecule consists of two chains of nucleotides forming base

pairs (bp) between A and T, or C and G. All the DNA molecules in a cell form the

genome of the cell or the organism. The process of producing proteins or ribonu-

cleic acid (RNA) molecules from the information in a gene which is a segment of the

genome is called gene expression. Gene expression in eukaryotes typically consists of

three steps: transcription, splicing and translation as illustrated in Figure 1.1. First,

the information in the gene to be expressed is transcribed to produce precursors of

messenger RNA (pre-mRNA) molecules, which are then spliced to give rise to mature

messenger RNA (mRNA) molecules. Finally, mRNAs are translated to yield proteins.

1
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Figure 1.1: A sketch of gene expression that is proceeded in three steps: transcription,
splicing and translation. Three genes are contained in this DNA segment. The last
gene is roomed in to show the details of its three exons and two introns. This gene
can produce two different mRNAs due to alternative splicing.

The set of all mRNA molecules that are produced in one or a population of the same

type of cells is called transcriptome.

1.1.2 Alternative Splicing

In higher eukaryotes, protein coding genes are first transcribed to produce pre-

mRNAs that need to be spliced out to produce mRNAs before being translated into

proteins. The nucleotide sequence within a pre-mRNA that is removed by the splicing

process forms introns and the remaining portion of the mRNA forms exons. The

upstream margin of an intron is called 5’ splice site (5’ SS) or donor site, and the

downstream margin of an intron is called 3’ splice site (3’ SS) or acceptor site.

In the human or mouse genome, there are about 30,000 protein-coding genes
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Figure 1.2: The alternative splicing process. The spliceosome assembly and alterna-
tive splicing regulation for an ASE is shown. The middle exon in the pre-mRNA is
the alternative spliced exon. The other two exons are constitutive exons. 5’ (3’) ss
stands for 5’ (3’) splice site.

[4] and about twice of different proteins encoded by these genes [5]. The process

responsible for this discrepancy is alternative splicing (AS) that generates more than

one proteins by selectively including different combinations of exons into the mRNA.

Different mRNAs generated from one pre-mRNA are called isoforms. For example, in

Figure 1.1, there are two isoforms for the third gene, which could be used to encode

two similar but distinct proteins. The exon that is selectively included in an mRNA

is called alternative spliced exon (ASE) or cassette exon, the other two exons that

are included in all isoforms are called constitutive exons. ASE is the most common

type of alternative splicing events. Other splicing events include alternative 5’ splice

site usage, alternative 3’ splice site usage, intron retention, mutually exclusive exons,

alternative first exon and alternative last exon.
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The basal machinery of splicing is known as spliceosome, a large multicomponent

ribonucleoprotein complex having U1, U2, U4, U5 and U6 small nuclear ribonucleo-

proteins (snRNPs) as its main building blocks [6]. Splicing begins with a multi-step

process of spliceosome assembly around the splice sites (Figure 1.2). The accurate

recognition of splice sites by the subunits of the spliceosome and the consequent

assembly of the spliceosome are influenced by two factors.

The first factor is the splice site strength. The nucleotide sequences around the

splice sites are far from random so that the spliceosome can recognize and bind to

them. However, there is still small difference among each splice site which can affect

the spliceosome binding probability or binding strength. This strength generally

correlates with a “consensus value” which evaluates the conservation level of the

splice site sequence. For example, Figure 1.3 illustrates the 5’ splice site consensus

that are constructed from 49,778 human 5’ splice site [7]. The hight of A, T, C or G

at each position represents the probability of the nucleotide presence at that position.

The definition of “strong” and “weak” splice site usually refer to the consensus value.

Thus the sequence CAG/GTAAGT has a high consensus value (strong splice site) and

sequence GTG/GTGGGG has a lower consensus value (weak splice site). Generally

speaking, alternative splice sites are slightly weaker than constitutive splice sites [8].

The second factor is a class of RNA binding proteins named splicing factors (SFs)

that can bind to the cis-acting splicing regulatory elements (SREs) on the pre-mRNA.

SFs can regulate splicing by facilitating or inhibiting the subunits of spliceosome

to recognize the splice sites [9–11]. They can also regulate splicing through other

mechanisms such as regulation of the transition from exon definition to intron defini-

tion [12, 13]. Moreover, multiple SFs and the spliceosome can interact cooperatively

or antagonistically to affect the splicing process. According to the effects of SFs and
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Figure 1.3: 5’ splice site profile constructed from 49,778 human 5’ss.

their binding positions, SREs can be classified as exonic splicing enhancers (ESEs)

or silencers (ESSs) if they promote or inhibit the inclusion of the exon where they

reside, and as intronic splicing enhancers (ISEs) or silencers (ISSs) if they enhance or

inhibit the inclusion of the exon and reside in adjacent introns [9].

1.1.3 Next-generation Sequencing and RNA-Seq

AS can produce different isoforms from one gene, and different splicing levels

determines different proportions of isoforms. Thus, to study splicing, we need a

reliable method to measure the relative expression level of each isoform of a gene.

RNA-Seq, also called whole transcriptome shotgun sequencing, is a revolutionary

approach recently developed for this purpose [14].

The characterization of gene or isoform expression levels has long been of interest

to many researchers. Before the advent of RNA-Seq, microarrays were the first choice

of experiment for high-throughput transcriptome analysis [15]. However, microarrays
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Figure 1.4: Overview of a typical RNA-Seq experiment and estimation of isoform
expression levels. The schematic gene has two constitutive exons and one ASE. (A)
All the mRNAs in a sample or cell is initially fragmented into small segments. (B)
By random priming, the fragments are converted into cDNA fragments suitable for
sequencing. A high-throughput sequencing technology is then applied to sequence
these fragments to get millions of short reads. (C) Sequenced reads are mapped back
to the genome to estimate the expression levels of the gene and its isoforms.

have several limitations compared to RNA-Seq. First, design of microarrays relies

on existing knowledge about genome sequence. Second, microarray experiments have

limited dynamic range of detection owing to background noise and saturation of

signals [14]. Due to these limitations, more and more biologists choose RNA-Seq as

their major tools instead of microarrays for their studies since the first generation

of RNA-Seq studies published in 2008 [16, 17]. A simple illustration of RNA-Seq is

shown in Figure 1.4.

RNA-Seq provides a powerful way to measure gene expression levels. In an RNA-
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Seq experiment, the sequencing machine can output millions of short nucleotide se-

quences, named sequencing reads. The total number of reads produced from an

experiment depends on the sequence depth, which is the average number of reads

containing a given nucleotide in the transcriptome. Since each read is a specific com-

bination of nucleotides, we can infer the location of each read in the genome using a

sequence mapping algorithm. After mapping these short reads back to the genome,

we can count the number of reads that are mapped to each gene to estimate the

relative numbers of mRNA molecules, i.e., the gene expression level of the gene. The

simplest estimation algorithm is based on a reasonable uniform sampling assumptions,

i.e., the number of reads that can be mapped to a gene is approximately proportional

to the total length of all the mRNA molecules of that gene and the sequencing depth.

Therefore, the expression level of a gene can be measured in the unit of reads per

kilobase of the transcript per million mapped reads (RPKM) [16].

RNA-Seq can also be used to estimate the expression levels of different isoforms.

The simplest way is to count the reads that can be only mapped to a specific isoform,

for example, the reads mapped to the different splice junctions and the reads mapped

to the ASE in Figure 1.4. A better algorithm can also incorporate information from

the reads that mapped to constitutive exons to increase estimation accuracy [18].

1.2 Motivation and Objectives

AS is a crucial step in the expression of most eukaryotic genes. It provides an

important means of regulating gene expression and generating transcriptomic and

proteomic diversity. Recent studies have found that ∼95% of human genes undergo

AS [17, 19]. The importance of AS is highlighted recently by the findings that AS
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related mutations can cause many human diseases including cancer [20,21]. Therefore,

Understanding of how splicing is regulated has draw much attention in the past

decades, especially after the advent of RNA-Seq technology.

Several elements in pre-mRNA are important in splicing regulation. In addition to

the core splicing signals at the 5’ splice site, the 3’ splice site and the branch point (A

short nucleotide sequence required for splice site recognition), other splicing regula-

tory elements (SREs) including ESEs, ESSs, ISEs, and ISSs, are pivotal to ensure that

splicing events occur accurately and efficiently [9, 10]. Identification of these SREs

is of fundamental importance. Several experimental approaches such as systematic

evolution of ligands by exponential enrichment (SELEX) [22], UV crosslinking and

immunoprecipitation (CLIP) [23] and splicing reporter system [24], have been em-

ployed to identify SREs. However, experimental approaches can only identify SREs

in a relatively small scale, and is labor-intensive. On the contrary, computational

approaches provide a large-scale and efficient means to identify putative SREs that

can be validated experimentally. Thus, the first objective of this research is to develop

a reliable computational approach to identify SREs that are responsible for splicing

regulation.

In addition to single SREs, cooperative interactions between multiple SREs is

also important to splicing regulation. Interaction between different molecules is very

common in biological systems. Many experimental results have suggested cooperative

bindings or antagonistic effects between multiple SFs [25]. These interactions can

cause their binding to SREs with some specific features that can be captured by

computational approaches. For this reason, the second objective of this research is

to derive a model for splicing regulation and develop a computational approach to

identify the interactions between SREs.
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Our last objective of this research is to identify aberrant splicing events that

contribute to tumorigenesis. A large number of somatic mutations accumulate during

the process of tumorigenesis. Many of them can cause aberrant gene expression level

or generate aberrant proteins in tumor cells. However, more and more evidences show

that aberrant splicing events are also prevalent in tumor cells [21]. The availability

of RNA-Seq data for hundreds of individuals generated by The Cancer Genome Atlas

(TCGA) [26] provides opportunities to investigate aberrant splicing events in tumors.

Moreover, distinguishing the potential driver splicing events (contributing to tumor

progression) to passenger splicing event (being effectively neutral) is also an important

problem in tumorigenesis.

1.3 Contributions

The major contributions of this dissertation are listed in the following:

1. Computational Identification of Tissue-Specific Alternative Splicing Elements

in Mouse Genes From RNA-Seq.

• Developed a novel strategy that applied a powerful discriminative approach to

identify tissue-specific SREs using mouse RNA-Seq data.

• Analyzed the position distribution of SREs and found that a dozen of SREs

were biased to a specific region.

2. A Thermodynamics-Based Model for Identifying Splicing Regulatory Elements

and Their Interactions.
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• Derived for the first time a thermodynamics-based model for AS regulation and

applied it to identify SREs and their interactions in regulating AS.

• Developed a systematic and effective framework to identify SREs and SRE

interactions from a large number of candidates, by incorporating the state-of-

the-art techniques, and applied the framework to human RNA-Seq data.

• Identified a number of SREs and SRE pairs that are consistent with previous

experimental and computational results.

3. Aberrant Isoform Expression in Cancer.

• Identified aberrant splicing, aberrant alternative first exon and aberrant last

exon in cancer by comparing the RNA-Seq data in tumor cells with those in

matched normal cells.

• Identified important genes with aberrant alternative regions that are associated

with cancer development.

1.4 Dissertation Outline

The rest of this dissertation is organized as follows. In Chapter 2, we first give an

overview of several existing SRE detection approaches. We then develop a discrim-

inative approach to identify putative SREs in tissue-specific alternative splicing in

three mouse tissues. After studying the position preference of the identified SREs in
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intron and exons, we compare our findings with previous computational results and

experimental evidence.

In Chapter 3, we first propose a thermodynamics-based model for AS regulation,

and show that our linear model is directly derived from the principles of thermo-

dynamics, whereas inference of previous nonlinear thermodynamic model for gene

transcription needs linear or nonlinear approximations. Since we need to consider a

large number of candidate SREs and their interaction pairs, model inference is chal-

lenging. To overcome this challenge, we then develop a model inference framework

that can effectively identify SREs and SRE pairs without overfitting the model to give

a large false positive rate. Finally, we compare the performance of our model with

previous transcription model and discuss several examples that are well-supported by

previous computational and experimental result.

In Chapter 4, we first introduce current efforts and discoveries in cancer biology,

then a new concept of alternative region is introduced and a new framework are

proposed based on publicly available RNA-Seq data to identify the alternative regions

that are aberrantly regulated in tumor cells compared to matched normal cells. The

significantly aberrant genes and their functional enrichment are discussed to highlight

the discovery of this framework.

In Chapter 5, we summarize our findings in the current work, and discuss possible

future work.



CHAPTER 2

Identification of Tissue-Specific
Alternative Splicing Elements in Mouse
Genes

2.1 Motivation

Computational approaches provide an effective means of identifying putative SREs

that can be validated experimentally. According to the regulatory pattern of splicing

factors, we can classify the SREs into constitutive SREs and tissue-specific SREs,

which are bound by constitutive and tissue-specific splicing factors, respectively.

A number of constitutive SREs have been identified from constitutively spliced

exons using computational methods and some of them have been demonstrated in

experiments to function as predicted. Fairbrother et. al. [27] searched for ESEs as

hexamers that are more abundant in exons with weak splice sites than in exons with

strong splice sites based on the assumption that ESEs should be over-present in exons

with weak splice sites. They also assumed that the hexamers are more abundant in

exons compared to flanking intronic regions. The identified ESEs by Fairbrother et.

al. are known as “RESCUE-ESEs”. Zhang et. al. [28] used a similar approach. The

octamers were detected as ESEs (ESSs) if they were present more (less) frequently

in the noncoding exons compared to both the pseudo exons and the 5’ untranslated

12



13

regions (UTRs) of intronless genes. Several other methods were also developed by

comparing the frequencies of short nucleotide sequences in different data sets [8, 29].

Alternative splicing plays an important role in generating tissue specificity. Re-

cent high-throughput studies based on microarray have shown that 42% cassette

exons examined are differently expressed in at least one of 48 human tissues [30].

This percentage even reaches 72% in a recent RNA-Seq study [17]. Tissue-specific

alternative splicing is thought to be largely regulated by tissue-specific splicing factors

and tissue-specific expression of constitutive splicing factors [12, 31]. Therefore, it is

important to identify SREs that are targets of these splicing factors.

Several studies for identification of SREs related to alternative splicing have been

performed. Brudno et al. [32] identified brain-specific intronic SRE from a relatively

small data set that includes 25 brain-specific cassette exons. More recently, Castle

et al. [30] measured the expression level of a large number of exons and exon-exon

junctions in 48 human tissues using microarray, and then determined up- and down-

regulated cassette exons in each tissue. From these cassette exons, they identified

143 tissue-specific motifs. Wang et al. [33] determined the ratio of expression level of

cassette exons in different pairs of human tissues from exon arrays and used a linear

regression model to identify tissue-specific SREs.

The key technique used in most computational methods for identifying SREs is

to find short nucleotide sequences (typically hexamers or octamers) that are over-

represented in a positive data set relative to a background data set. For example,

constitutive RESCUE-ESEs [27] are hexamers that are over-represented in constitu-

tive exons with weak splice sites comparing to introns and constitutive exons with

strong splice sites. In another example [30,32], tissue-specific SREs were identified by

contrasting the frequencies of hexamers in a positive data set including cassette exons
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and their flanking intronic region to the frequencies of hexamers in a background set

including sequences neighboring to the cassette exons. However, if a more reliable

negative data set, where SREs over-represented in the positive data are most unlikely

present, is used, such a discriminative approach will significantly improve the power of

detecting SREs as already demonstrated in identifying transcriptional factor binding

sites [34–36].

In this chapter, we used mouse RNA-Seq data [16] to determine a positive and a

negative data set for each type of SREs in a specific tissue. For example, the positive

data set for ESEs contains cassette exons that are included in the dominant isoforms

of genes, while the negative data set consists of the cassette exons that are excluded

in the dominant isoforms of genes. We then employed a discriminative approach to

identify putative SREs. Since the expression level of each mRNA isoform can be

calculated from the RNA-Seq data more accurately than from exon microarray data

used in previous work [14, 15], our method can reliably determine the positive and

the negative data sets, which enables our discriminative approach to identify SREs

more reliably.

2.2 Materials and Methods

2.2.1 Overview of Our Method

Our goal is to identify short motifs that are over-represented in the region flank-

ing alternative splicing sites in a specific tissue. Alternative splicing usually occurs

at weak splicing sites with highly conservative flanking sequences [37]. So these

over-represented motifs most likely function as enhancers or silencers to assist the

spliceosome to make a splicing decision.
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Figure 2.1: (a) Schematic flow chart for the identification of tissue-specific SREs. (b)
Example of genes with more than two isoforms which were selected or excluded in
our analysis. The left one was selected for further analysis since the ASE was either
included or skipped in each isoform. The right one was not selected in our analysis
because isoform 3 does not strictly skip the ASE.
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Our approach could be divided into several steps depicted in Figure 2.1(a). We

first identified cassette exons which are also referred to as alternatively spliced exons

(ASEs) from the UCSC mouse KnownGene table. For a specific tissue, we then

divided the set of ASEs into an inclusion set and an exclusion set as follows. Using

the RNA-Seq data, we calculated the expression level of each isoform of genes that

contain ASE(s). If a majority (≥ 90%) of the isoforms of a gene include an ASE,

then the ASE is in the inclusion set; on the other hand, if only a minority (≤ 10%)

of the isoforms of a gene include an ASE, then the ASE belongs to the exclusion

set. The inclusion and exclusion sets also include 400 intronic nucleotides upstream

and 400 intronic nucleotides downstream of the selected ASEs. For each tissue, we

compared the frequency of each hexamer in the inclusion set with the frequency of the

same hexamer in the exclusion set to determine if the hexamer is over-represented.

The hexamers that are over-represented in one tissue but not over-represented in the

other tissue are identified as putative tissue-specific SREs, while the hexamers over-

represented in both tissues are identified as SREs common in both tissues. Finally,

annotations in three tissues were integrated and similar putative SREs were clustered

to form a motif. The selection of parameters used to construct the inclusion and

exclusion set are determined by empirical research by comparing the result with

experimental validated database.

2.2.2 Data Sets

Mouse RNA-Seq data of Mortazavi et al. [16] for 3 tissues (brain, liver and skeletal

muscle) were selected in our study. The mouse genome and the KnownGene table

were also downloaded from the University of California Santa Cruz genome database

(UCSC) Mouse July 2007 (mm9). The mouse RNA-Seq data set contains 140 millions
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reads of 25 nucleotides (nt). Mortazavi et al. have mapped these reads against the

expanded mouse genome which consists of the standard UCSC mm9 genome and

the 42 nt splice-crossing sequence for each exon junction documented in the UCSC

KnownGene table. Reads that could be mapped to multiple loci of the genome

were excluded, and 30∼40 million uniquely mapped reads for each tissue from two

replicates were used in our analysis.

We also selected 922 distinct hexamers from the database SpliceAid [38] as exper-

imentally validated SREs for comparison purpose. SpliceAid is the latest database

that collects experimentally assessed target RNA sequences bound by splicing pro-

teins in humans. However, some sequences in SpliceAid are relatively long, and thus

part of such long sequences may not be core splicing motifs. In fact, if we take

hexamers from all the sequences in SpliceAid, we can get a total of 2321 distinct

hexamers which may contain many false SREs. To get more reliable SREs, we only

took all sequences assessed by SELEX from the SpliceAid. Since the length of the

randomized sequences used in SELEX was usually larger than the length of a protein

binding site, multiple alignment of the selected sequences was performed to locate

the imbedded consensus sequences [22]. These consensus sequences were manually

checked and extracted, which gave 922 distinct hexamers.

2.2.3 ASE Selection

We selected ASEs and some intronic nucleotides flanking the ASEs to identify

SREs for the following reasons. First, AS predominantly generates ASE events in

both human and mouse [16,17]. Second, other AS events may not generate sequence

data compatible to those generated by ASE events. For example, alternative 5’ or 3’

splice site usage lacks an alternative 3’ or 5’ splice site [39]. ASEs were selected from
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the KnownGene table with a strict criterion. An ASE was selected if at least one

isoform include the ASE and at least one other isoform do not include any part of the

ASE and only these two types of isoforms exist. For example, the right AS event in

Figure 2.1(b) was not selected in our analysis because although an ASE was included

in isoform 1 and skipped in isoform 2, this exon and its flanking regions might also

contain SREs governing alternative 3’ splice site since isoform 3 included this ASE

partially. Different genes with overlapped open reading frame were also excluded for

the simplicity and accuracy of calculating gene expression levels.

2.2.4 Calculation of Expression Level and Inclusion Ratio

Expression level for each transcript isoform of a gene was calculated with the

algorithm of Jiang et al. [18]. This algorithm modeled the count of RNA-Seq reads

falling into a region of each gene as a Poisson variable with a mean proportional to

the length of the region. For an exon of length l, Jiang et al. used the effective

exon length l − r in the mean of the Poisson random variable, where r is the read

length, since l − r is the number of possible loci of the exon that a read could be

mapped to. However, since we only kept uniquely mapped reads and excluded the

ambiguous reads that could be mapped to multiple places of the genome, we used an

effective exon length l − r −m, where m is the number of 25-nt subsequences of the

exon mapped by multiple-mapped reads. To find out these multi-mappable regions,

we re-mapped all possible 25-nt subsequences of candidate ASEs and splice junctions

against the same expanded genome described above using Bowtie (version 0.9.9.3),

an ultrafast and memory-efficient program for the alignment of short DNA sequences

to a large genome [40].

After the expression level of each isoform of genes with ASEs were calculated,
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the inclusion ratio of an ASE in a specific tissue was calculated as the ratio of the

expression level of the isoform with the ASE to the total expression level of all isoforms

of the gene.

2.2.5 SRE Searching

For each tissue, all ASEs with an inclusion ratio ≥0.9 were put together as the

exonic inclusion set, and 400 intronic nucleotides upstream or downstream of the

ASEs were put together as the intronic inclusion set. All ASEs with inclusion ratio

≤ 0.1 were selected as the exonic exclusion set, and 400 intronic nucleotides upstream

or downstream of the ASEs were selected as the intronic exclusion set. The 15 nt

long splicing acceptor site consensus Y10NCAG/G and the 9 nt long donor site con-

sensus MAG/GURAGU [41] were not included in corresponding exonic and intronic

sequences.

To identify ESEs and ESSs, we calculated the frequencies of each of 4096 possible

hexanucleotides, fTI and fTS, in the exonic inclusion set and exclusion set of tissue

T . The z-score [27, 28] of the hexamer in tissue T was then given by

ZT =
fTI − fTS√

( 1
NTI

+ 1
NTS

)p (1− p)

where NTI and NTS are the total number of hexamers in the inclusion and exclusion

sets, respectively, and p = (NTIfTI + NTSfTS)/(NTI +NTS). Tissue-specific ESEs

were identified as over-represented hexamers in the exonic inclusion set of tissue T1

but not over-represented in the exonic inclusion set of tissue T2. To test the statistical

significance of over-representation under the null hypothesis of fT1I − fT1S = 0, we

considered hexamers with ZT1 > 2.1701 (p-value< 0.03, two-tail test) as being over-

represented. The 0.03 cutoff value for the p-value was selected based on the distribu-
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tion of p-values as will be described in Discussion. To test the statistical significance

of non-over-representation, we assumed the null hypothesis of over-representation as

ZT2 = 2.1701 and considered hexamers with ZT2 < −1.8808 + 2.1701 = 0.2893 (p-

value< 0.03, one-tail test) as non-over-represented hexamers.

For each pair of tissues (3 pairs in total), we compared the z-score of each hexamer

as shown in Figure 2.2. Hexamers with ZT1 ≥ 2.1701 in tissue T1 but ZT2 ≤ 0.2893

in tissue T2 were considered as tissue T1-specific ESEs (p-value< 0.032). Hexamers

with both ZT1 and ZT2 ≥ 2.1701 (p-value< 0.032) were identified as ESEs common

to both tissues. The interval (0.2893, 2.1701) of a z-score corresponds to the unsure

region where we do not have statistical evidence to decide whether a hexamer is

over-represented or not.

Similarly, tissue-specific ESSs were identified as hexamers over-represented in the

exonic exclusion set of tissue T1, but not over-represented in the exonic exclusion set

of tissue T2. Therefore, hexamers with ZT1 ≤ −2.1701 in tissue T1 but ZT2 ≥ −0.2893

in tissue T2 were considered as tissue T1-specific ESSs (p-value< 0.032). Hexamers

with both ZT1 and ZT2 ≤ −2.1701 (p-value< 0.032) were identified as ESSs common

to both tissues.

This searching process was repeated for upstream intronic sequences of 400 nt

long and downstream intronic sequences of 400 nt long. The z-score of each hexamer

was computed for each pair of tissues as depicted in Figure 2.2. Tissue-specific and

common ISEs and ISSs in upstream and downstream introns were then identified

based on the z-scores in the same way as ESEs and ESSs were identified.
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2.2.6 Integration and Clustering

After implementing the above steps, we got 6 classes of SREs which include ESE,

ESS, us’ ISE, us’ ISS, ds’ ISE and ds’ ISS, where us’ and ds’ stand for upstream and

downstream, respectively. We integrated all of them into one table (Appendix table

A.1) to make their relationship more clear with the following annotation rule. Every

SRE is associated with three characters to indicate its role in brain, liver and muscle.

The first character can be “B”, “−” or “?” to indicate that the SRE is present, absent

or unsure in brain. Similarly, the second character can be “L”, “−” or “?” and the

third character can be “M”, “−” or “?”. Note that tissue specificity is a relative

concept. For example, an ESE can be present in brain but not in other tissues. We

annotated this type of ESE as ESEB−−. An ESE can also be present in both brain

and liver but not in muscle. We represented this type of ESE as ESEBL−. If an SRE

was present in all three tissues, we referred to it as a common SRE.

We also clustered similar SREs using the hierarchical clustering algorithm [27] for

each of 6 classes of SREs to determine splicing motifs. The Hamming distance was

used in the clustering algorithm as the dissimilarity metric between any two SREs.

We say that two SREs have incompatible annotations if any character associated with

the SREs is a letter (B, L or M) in one SRE but a “−” in the other SRE. For example,

two SREs, annotated as “BL-” and “BLM”, respectively, are incompatible for their

annotation in muscle, but two SREs annotated as “BL-” or “BL?” are compatible.

Since we do not want to put those incompatible SREs into the same cluster, we

add a sufficiently large value (> 6) to the dissimilarity distance between any two

incompatible SREs. Therefore, each cluster only contains compatible SREs including

SREs annotated with “?”. The dissimilarity cutoff for each cluster was chosen to be

2.0, which was relatively small to make the clustering result more reliable.
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2.2.7 Position Bias Test

The chi-square goodness of fit test was adopted to determine if an SRE is uni-

formly distributed in a selected region or is biased toward certain specific locations.

The selected region includes introns or exons in which the SRE was predicted. For

example, for SREs annotated as ESS−LM, the exonic exclusion sets of liver and mus-

cle were used to test position bias. Since the exons have different lengths, we only

chose exons of ≥110 nucleotides, and took 55 nucleotides from each end of the exon.

For introns, we took first 395 nucleotides upstream or downstream of the exon. An

SRE which is a hexamer can be mapped to 390 positions of an intronic sequence or

100 positions of an exonic sequence. We therefore divided each exonic or intronic

sequence into 10 or 39 intervals, each with 10 nucleotides. A significance level of 0.01

was used to reject the null hypothesis that an SRE uniformly appears in all intervals.

Since for a uniform distribution, the χ2 test is robust when the average number of

the SREs falling into an interval is ≥2 for a significance level as small as 0.01 [42],

only SREs with ≥78 counts in intronic sequences or ≥20 counts in exonic sequences

were chosen in the analysis.

2.2.8 Comparison with Constitutive Data

We collected two sets of sequences from the KnownGene table and put them to-

gether as the data set for constitutive exons. We took 49,649 internal exons of genes

with only one isoform as the first data set. The second set consists of 34,403 exons

locating in alternatively spliced genes but included by all isoforms. In addition to

exons, intronic sequences of 400 nucleotides upstream or downstream of the consti-

tutive exons were also collected as the intronic constitutive data set. Note that these

data sets from constitutive exons and their flanking intronic regions are similar to the
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inclusion set of ASEs, since all exons in the data sets are constitutively included in

the mature mRNA. We compared the frequency of an SRE in the constitutive data

with the frequency in its corresponding positive data. The frequency of an SRE in

the negative data was also compared with that in the positive data. For example,

when we examined ESEBLM, the constitutive data were constitutive exons; the posi-

tive data were exonic inclusion set of brain, liver and muscle; and the negative data

were the exclusion sets of these three tissues. If we examined ds’ ISS−L−, the consti-

tutive data were constitutive downstream intronic sequences; the positive data were

downstream intronic exclusion set of liver; and the negative data were downstream

intronic inclusion set of liver. Frequency comparison was only performed for clusters

annotated without “?” (369 SREs in total).

2.3 Results

2.3.1 Putative Enhancers and Silencers

As shown in Table 2.1, we got 300∼400 ASEs in the inclusion and exclusion sets of

three tissues. The average length of ASEs is 123 nucleotides, and the average length

of upstream and downstream introns is 5900 and 6116 nucleotides, respectively. This

is consistent with the observation that ASEs are generally short and flanked by long

introns [37].

Table 2.1: Number of ASEs used in SRE searching.

brain liver muscle
inclusion set 399 369 411
exclusion set 372 454 408

The z-scores for hexamers in liver and muscle data sets and the regions defining
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each type of the SREs are plotted in Figure 2.2. The z-scores for hexamers in other two

pairs of tissues (brain versus liver and brain versus muscle) are included in Appendix

figure A.1 and A.2. It is seen from these figures that most hexamers are not over-

represented in any tissue and thus are not an SRE, as expected.

After integrating all the SREs identified in these figures, we predicted 456 putative

enhancers and silencers which are listed in Appendix table A.1. The statistics of these

456 SREs are summarized in Table 2.2. The second row annotated with “BLM”

contains 45 SREs common to all three tissues. The next three rows consist of SREs

annotated with “BL?”, “B?M” and “?LM”, which are common to two tissues but

may or may not be an SRE in the third tissue. The next 12 rows contain a total of

221 tissue specific SREs. Note that only 18, 8 and 15 SREs are unique to brain, liver

and muscle, respectively.

Table 2.2: Number of common and tissue-specific SREs.

Anno. ESE ESS us’ ISE us’ ISS ds’ ISE ds’ ISS Total
B L M 15 11 6 3 4 6 45
B L ? 17 15 7 11 13 13 76
B ? M 12 14 9 9 9 11 64
? L M 21 10 10 13 6 7 67
B – ? 2 2 5 6 7 4 26
B ? – 6 1 2 8 6 4 27
– L ? 3 2 10 8 4 4 31
? L – 10 3 2 4 8 8 35
– ? M 6 4 6 5 2 4 27
? – M 6 2 4 2 5 7 26
B L – 0 0 1 0 1 0 2
B – M 0 1 0 1 1 0 3
– L M 0 0 0 2 0 1 3
B – – 8 1 4 2 3 0 18
– L – 0 0 1 1 2 4 8
– – M 2 2 2 2 2 5 15
TSSE 43 18 37 41 41 41 221

∗The last row contains the total number of tissue-specific splicing elements for each
type of SREs which equals to the sum of rows with annotation ‘–’.
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To systematically examine the quality of our SREs and choose reliable candidate

SREs for further analysis, we ranked all the SREs without “?” in their annotations

by their final p-values (product of p-values in three tissues). The top 15 SREs and

the relevant experimental evidence reported in the literature are listed in Table 2.3.

Some of the 15 SREs may actually come from the same motif; for example, CCUGCC,

CUGCCU and GCCUGC may come from the CCUG repeat. We examined some well

studied SREs by comparing studies in the literature and their annotations in our

result. Some of our annotations match previous studies very well. For example,

UCUCUC and CUCUCU are both identified as us’ ISS−LM in our analysis. Previous

experimental study has identified the conserved CUCUCU sequence within intron

regions as splicing silencer in nonneuronal cells, since it is responsible for repressing

splicing of neuron-specific N1 exon of mouse c-src transcript in nonneuronal cells [43],

possibly by interacting with PTB proteins [44]. We will discuss several interesting

SREs in the following sections.

2.3.2 Comparison with SREs identified in previous methods

We compared our results with constitutive exonic splicing enhancers RESCUE-

ESE in mouse [56,57]. Among 508 mouse RESCUE-ESEs, only 43 (8%) are included

in the SREs we identified, 20 of which are also ESEs in our analysis. Note that our

SREs include 108 ESEs and less than 20% (20/108) are also RESCUE-ESE. This

shows that most of our SREs are different from RESCUE-ESEs possibly due to their

tissue-specificity.

In addition, we compared our results with tissue-specific SREs in human identified

recently by other two groups [17,30], as shown in Figure 2.3. Using human RNA-Seq

data, Wang et al. [17] identified 362 SREs in 15 tissues and cell lines, of which 51
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Table 2.3: 15 SREs with most significant p-values.

SREs Annotation p-value Ref. Related experimental results
CCUGCC ESSBLM 2.43e-18 [45] CCUG repeats specifically interact

with MBNL1.
UCUAUC ds’ ISS−−M 7.53e-13 [46] Downstream ISE UCUAUC, bound

[47] by protein HRP-2, regulates
alternative splicing of exon 16 in
unc-52 gene of C. elegans.

CUCUCU us’ ISS−LM 1.23e-12 [43] Within polypyrimidine tract,
[48] interact with PTB, responsible for
[49] the skipping of N1 exon of mouse.

c-src.
CUGCCU ESSBLM 1.51e-10 Same as CCUGCC.
CUAUCU ds’ ISS−−M 1.64e-10 May be from the same motif as

UCUAUC.
GCGCGC ds’ ISS−−M 2.20e-10
GCCUGC ESSBLM 2.78e-10 Same as CCUGCC.
AAAUAA ESSBLM 3.16e-10
UGCAUG ds’ ISE−−M 3.95e-10 [50] When bound by tissue-specific

[51] factor, Fox-1 Protein family,
[52] it acts as splicing enhancer.

UGCAUG ds’ ISS−L− 1.15e-09
ACACAC us’ ISS−−M 1.58e-09 [53] Intronic CA repeat could function

as enhancers or silencers, depending
on its proximity to the 5’ ss.

UGGAGC ESEBLM 2.79e-09
UUCUUC ds’ ISSBLM 2.94e-09 [54] It is the second pyrimidine-rich(PY)

elements in the three PY elements
downstream of CFTR exon 9.

AUCUAU ds’ ISEBL− 7.24e-09
GCAGCA us’ ISEBLM 7.40e-09 [55] splicing factor CUGBP1 interacts

with GCA repeats located within
the MEF2A mRNA.
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Figure 2.3: Venn diagram for the number of SREs identified in three studies.

distinct elements were identified as SREs specific to brain, liver and muscle. Among

these 51 SREs, 13 (25.5%) are also included in the SREs we identified. To compare our

SREs with the results of Castle et al. [30], we extracted all the hexamers significantly

over-represented (p-value< 10−3) in up-regulated or down-regulated cassette exons in

samples related to brain, liver and muscle. This gave 783 distinct hexamers in total,

of which 89 (11.4%) are also included in the SREs we identified. As shown in Figure

2.3, the number of SREs identified by any two studies is relatively small. Overall,

20% (93/456) of our SREs are in the SREs of Wang et al. and/or Castle et al.

We also compared our results with two tissue-specific motifs in mouse identified by

Sugnet et al. [58] from their microarray data. The first CU-rich motif with consensus

sequence UGYUUUC was identified by Sugnet et al. in upstream of brain-included ex-

ons. The most similar SREs in our results are UGAUUU (us’ ISE?LM) and UGAUUG

(us’ ISEBL?). The second motif with consensus sequence UACUAAC was identified

by Sugnet et al. in downstream intron of muscle-included exons. We can find two
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hexamers in our ds’ ISE consistent with this motif, which are CCAAAC (ds’ ISEB?M)

and CGCUAA (ds’ ISEB?M).

2.3.3 Comparison with experimental validated SREs

We further compared our results with 992 hexamers selected from the SpliceAid

databases [38] (See Methods for the selection of 992 hexamers). About 26% (118/456)

of our SREs are among these 992 hexamers (see Appendix table A.1 for details). On

the other hand, 20% (10/51) of the SREs identified by Wang et al. [17] and 22%

(173/783) of the SREs of Castle et al. [30] are also included in the 992 hexamers.

This shows that our study gives slightly higher portion of experimentally validated

SREs than other two studies.

2.3.4 Position Bias of SREs

Since splicing factors function primarily in the vicinity of a splice site [59], it

is possible that positions of some SREs are biased towards certain locations, while

nonfunctional sequences may tend to locate more randomly. To test if SREs have

position bias, we adopted χ2 goodness of fit test as described in Methods. Under

the selection criterion described in Methods, 156 SREs were selected for position bias

test (Appendix table A.2). About 46% (71/156) of SREs show significant position

bias at a significance level of 0.01. We ranked these SREs according to their p-values,

and visually examined the position distribution of top 30 SREs with most significant

p-values. We found that 12 SREs’ positions show significant position bias, eight of

which were depicted in Figure 2.4. It is interesting to see that not all the SREs are

biased towards a splice site. The common us’ ISS AAGAUU and the common us’

ISE UUGUAC occupy the position near 200 nt upstream of the acceptor site as their
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Figure 2.4: Position distribution of top 8 SREs with smallest p-values in the position
bias test. Each bar represents the average number of SREs falling into a region of 10
nt divided by the number of intron or exon sequences used in analysis.

preferred location. The common ds’ ISS UUCUUC is abundant almost evenly in the

region <170 nt downstream of the ASE but is less abundant in the region further away

from the splice site. The common ESS UUAAAG prefers the interval between 22 and

31 nt downstream of the 5’ end of the ASE. We also checked position distributions

of other SREs with p-values ≤ 0.01, but did not find any general pattern for position

bias.

Two tissue-specific SREs, CUCUCU (p-value=1.33e-16) and UCUCUC (p-value

=2.59e-14), which were identified as upstream ISS−LM, showed most significant p-

values. They were clustered with other two SREs UCUCUU (us’ ISS?LM, p-value=1.58e-

10) and CUCUUU (us’ ISS?LM, p-value=3.50E-06) in the clustering result described
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represents the average number of SREs falling into a region of 10 nt normalized by
the number of intronic sequences used in analysis.

later. The position distributions of CUCUCU, UCUCUC and UCUCUU were shown

in Figure 2.4. We also compared the distribution of CUCUCU in three tissues’ exclu-

sion sets with that in inclusion sets as shown in Figure 2.5. The SRE UCUCUC has

a very similar position distribution that is not shown here. We can see from Figure

2.5 that in the exclusion set of liver and muscle, CUCUCU is not only abundant,

but also shows a significant position bias towards the acceptor site while in the inclu-

sion set, it is less abundant and almost evenly distributed. Since the region between

15 and 30 nucleotides upstream of a 3’ splice site coincides with the location of the

polypyrimidine tract, it is highly possible that CUCUCU and UCUCUC are part of
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the polypyrimidine tract. Note that Castle et al. [30] found that UCUCU is enriched

in the region from 35 to 110 nt upstream of tissue-regulated ASEs in human tissues.

This result may imply the main position where this SRE takes effect, since it

is consistent with the finding that polypyrimidine-tract binding protein (PTB; also

known as hnRNP I) silence splicing by binding to the polypyrimidine tract and blocks

the binding of U2AF [48, 49]. Interestingly, this SRE was annotated as us’ ISS−LM

which implies that it is specific to liver and muscle but not a us’ ISS in brain. We also

checked its position distribution in the brain data set, but no position bias was found

as shown in Figure 2.5. Our annotation is consistent with the experimental evidence

showing that skipping of neuron-specific N1 exon of mouse c-src in nonneuronal cells

requires conserved CUCUCU elements within polypyrimidine tract and downstream

intron [43].

Comparing with the results of Castle et al. [30] and Wang et al. [17], we got some

identical and some different findings for the SRE CUCUCU. Both our result and

the result of Castle et al. [30] indicate that CUCUCU is an upstream ISS in liver,

but Wang et al. [17] did not identify it as an SRE in liver. In muscle, we identify

CUCUCU as an upstream ISS, but the data of Castle et al. [30]indicate that it is

an upstream ISE, and Wang et al. [17] did not identify it as an SRE. In brain, the

data of Castle et al. [30] show that CUCUCU is over-represented in the upstream of

up-regulated ASEs (which is equivalent to our upstream intronic inclusion set) but

not in the upstream of down-regulated ASEs (which is equivalent to our upstream

intronic exclusion set). Based on this observation, we may identify CUCUCU as

an upstream ISE in brain. However, data of Castle et al. [30] also show that the

expression of PTBP1, whose target motif is CUCUCU, is down-regulated in brain.

Hence, if CUCUCU is an ISE, there must be another unknown SF that binds to it.
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Another possibility is that PTBP1 is the only SF that can bind to CUCUCU, and

CUCUCU is always a silencer; however, its silencing function is lost in brain due to

the low level of PTBP1. The RNA-Seq data of both Mortazavi et al. [16] that are used

in our study and Wang et al. [17] indicate that CUCUCU is over-represented in both

upstream intronic inclusion and exclusion sets of brain. This is in conflict with the

microarray data of Castle et al. [30]. Nevertheless, combining the RNA-Seq data of

Wang et al. [17] and Mortazavi et al. [16] and the expression level of PTBP1 reported

by Castle et al. [30], we can eliminate the possibility that CUCUCU is an ISE, but

predict it to be an upstream ISS with lost silencing function in brain. Note that if

we only use the information of CUCUCU without using the information about the

expression level of PTBP1, the data of Castle et al. [30] will predict CUCUCU to be

an ISE which is likely wrong; the non-discriminative method will predict CUCUCU

to be both upstream ISS and ISE which conflict with each other; on the other hand,

our discriminative method does not identify CUCUCU to be an SRE in brain. Our

result in this complicated case seems most reasonable, because the most reasonable

prediction is that CUCUCU is an ISS generally but not function in brain, as we

discussed earlier. These studies indicate that CUCUCU may play an important and

complicated role in tissue-specific splicing particularly in brain and worth further

experimental investigation.

2.3.5 Clustering Results

Some of the 456 SREs are very similar to each other. These similar SREs may come

from the same motif that is bound by the same splicing factor. Our clustering process

resulted in 247 clusters as shown in Table 2.4 and Appendix table A.3. Relatively

large number of clusters is due to the fact that we used a relatively small cutoff value
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Table 2.4: Number of common and tissue-specific splicing motifs.

Anno. ESE ESS us’ISE us’ISS ds’ISE ds’ISS Total
B L M 15(44) 13(36) 9(18) 7(14) 9(25) 10(23) 63(160)
B L ? 2(3) 3(3) 3(3) 2(3) 4(4) 3(3) 17(19)
B ? M 0(0) 3(4) 1(1) 2(2) 0(0) 1(1) 7(8)
? L M 3(4) 2(3) 0(0) 1(2) 1(1) 1(1) 8(11)
B – ? 0(0) 1(1) 2(2) 3(4) 3(4) 2(4) 11(15)
B ? – 2(2) 0(0) 0(0) 4(5) 3(3) 2(2) 11(12)
– L ? 2(2) 1(1) 4(4) 2(2) 1(1) 2(2) 12(12)
? L – 4(5) 1(2) 1(1) 0(0) 1(1) 3(4) 10(13)
– ? M 0(0) 1(1) 1(1) 1(1) 1(1) 1(2) 5(6)
? – M 1(1) 1(1) 1(3) 0(0) 2(3) 1(2) 6(10)
B L – 5(11) 1(3) 2(5) 3(7) 4(10) 2(6) 17(42)
B – M 4(8) 2(4) 3(7) 4(9) 2(3) 3(8) 18(39)
– L M 4(10) 1(2) 5(13) 8(20) 0(0) 2(4) 20(49)
B – – 7(12) 1(1) 4(5) 2(4) 3(7) 0(0) 17(29)
– L – 0(0) 0(0) 1(2) 1(2) 3(7) 3(8) 8(19)
– – M 3(6) 3(6) 3(5) 1(2) 3(4) 4(8) 17(31)
TSSM 32(57) 13(22) 27(48) 29(56) 26(44) 25(50) 152(277)

∗The last row contains the total number of each type of tissue-specific splicing motifs
(TSSM). The number of hexamers in each type of motifs is shown in parenthesis.

(2.0) for the dissimilarity distance between any two SREs in the same cluster.

After the clustering process, we re-annotated each cluster to eliminate some “?”

annotation. For example, one cluster consists of sequences with annotation “BL?” and

“BL-”, then we re-annotate all the elements in the cluster as “BL-”. The high ratio

between the number of tissue-specific SREs and common SREs (221/45) observed

in Table 2.2 was decreased to 152/63 in Table 2.4, but the ratio is still significantly

large, implying that tissue-specific motifs may play a very important role in splicing

regulation. The average number of SREs per cluster is 160/63 = 2.54 for common

SREs and 277/152 = 1.82 for tissue-specific SREs, which implies that tissue-specific

motifs may be more conservative than common motifs.
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2.3.6 Frequencies of Identified SREs in Constitutive Exons

The 456 SREs were identified based on their frequencies in the inclusion and

exclusion sets of the ASEs. We also wished to know the frequencies of these SREs

in the constitutively spliced exons and their flanking intronic regions to gain more

insight of the role of these SREs. Using the constitutive data described in Materials

and Methods, we compared the frequency of SREs in different data sets, as depicted

in Figure 2.6. For the clarity of comparison, frequencies in the constitutive data and

the negative data have been normalized by the frequencies in the positive data.

First, let us look at the frequencies of the enhancers. We would expect the con-

stitutive exon data set to have abundant enhancers to assist splicing. However, it
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is seen from Figure 2.6 that enhancers we identified have lower frequencies in the

constitutive exon data set than in the inclusion set of ASEs. This may be due to the

following two reasons. First, most of the tissue-specific enhancers may be different

from the enhancers present in the constitutively spliced exons and flanking introns.

This may also explain why most of enhancers we identified are not RESCUE-ESEs.

Second, tissue-specific enhancers are more abundant in ASEs than in constitutively

spliced exons. We also compared the frequencies of constitutive RESCUE-ESEs in

constitutive exons and our inclusion sets of brain, liver and muscle, but no frequency

difference was found.

The frequencies of silencers are expected to be lower in the constitutive data

set than in the exclusion set of the ASEs. Indeed, this is observed in Figure 2.6.

Comparing the relative frequencies of ESS with frequencies of other silencers and

enhancers, we see that the relative frequencies of ESS are generally the lowest. This

may imply that ESSs play a stronger role in AS than ISSs and ISEs.

Another observation from Figure 2.6 is that the frequencies of all SREs in the

constitutive data set are higher than the frequency in the corresponding negative data

set (exclusion set for enhancers and inclusion set for silencers) of ASEs. Therefore,

if we use the constitutive data as the negative control data as did in [27, 29, 32, 60]

to identify SREs, we would lose some detection power. To verify this, we calculated

the z-score and the corresponding p-value of each of the 369 SREs by replacing the

negative data set used in the previous analysis with the constitutive data set. We

found that 179 SREs have a p-value ≥ 0.03, implying that 48.5% (179/369) of these

SREs would not be identified if we have used constitutive data set as the negative data

set. Among these 179 SREs, 34% (60/179) SREs could be found in the 992 hexamers

selected from SpliceAid; whereas among the remaining 190 SREs, only 22% (42/190)
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can be found in the 992 hexamers. This indicates that more percentage of true positive

SREs can be lost if the non-discriminative approach is employed.

2.3.7 Special SREs That Can Be Both Enhancer and Silencer

Among 456 SREs we identified, two SREs are special because they were identified

as an enhancer in one tissue but a silencer in another tissue. These two SREs are

UGCAUG and UCUAUC, whose z-score are shown in Figure 2.2(c).

UGCAUG was annotated as a downstream ISE−−M and downstream ISS−L−. Our

annotation ISE−−M (muscle-specific ISE) of UGCAUG is consistent with the compu-

tational result [32] and experimental observation [50, 51], as well as with the results

of Wang et al. [17] and Castle et al. [30]. Our annotation ds’ ISS−L− is also consistent

with the result of Castle et al. [30], but Wang et al. [17] did not predict UGCAUG to

be an SRE in liver. To the best of our knowledge, this putative role of downstream

ISS in liver has not been reported in any experimental results, although it was ex-

perimentally verified to be an upstream ISS [61]. Further experimental investigations

worth being carried out to see if it is a liver-specific ISS as Castle et al. and we pre-

dicted. If this is true, new splicing factors binding to this hexamer may be identified,

given the fact that Fox-1 is not expressed in liver [61].

We did not identify UGCAUG to be an upstream ISE in brain as previous compu-

tational work did [32, 50]. The data of Wang et al. [17] also indicate that UGCAUG

is an ISE in brain, but enrichment in brain is not so significant as in heart and

muscle. The data of Castle et al. [30] are more complicated, because UGCAUG is

over-represented in the downstream intronic region of both up- and down-regulated

ASEs in several brain cells including medulla oblongata, thalamus and in fetal brain,

but is over-represented in the downstream intronic region of only up-regulated ASEs
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in other brain cells including cerebellum and hippocampus. Hence, if we use the

non-discriminative method, we would predict UGCAUG to be both ISE and ISS in

the same downstream region and in the same type of cell, which is obviously a con-

flictive result. To find out why our method using the data of Mortazavi et al. [16] did

not predict UGCAUG to be an ISE in brain, we rechecked the data and found that

UGCAUG is moderately abundant in both the inclusion and exclusion sets of brain.

The z-score of our discriminate approach is lower than the critical value at the 0.03

significance level. Generally, for those sequences that are abundant in both inclusion

and exclusion sets, our discriminative approach will not predict them to be an SRE,

but the non-discriminative will give a conflictive prediction: such sequences are both

an enhancer and a silencer. Given the different results in different studies and the

fact that UGCAUG is a binding target of Fox-1 protein family specifically expressed

in brain [61,62], more carefully designed experiment is needed to investigate the role

of UGCAUG in brain, especially in different brain cell types.

2.4 Discussion

Reads from RNA-Seq give information about how exons are connected which

can be explored in the investigation of AS. RNA-Seq also provides more accurate

measurement of expression levels of transcripts and their isoforms across a very broad

dynamic range than other methods such as microarray [14]. Capitalizing on these two

advantages of RNA-Seq, we identified ASEs from the mouse RNA-Seq data set [16]

and calculated the expression levels of isoforms of the genes containing the selected

ASEs. This enabled us to determine reliable positive and negative data sets for SREs

and then to employ a powerful discriminative approach to identify enhancers and



39

silencers regulating alternative splicing. We chose the RNA-Seq data for three mouse

tissues [16] rather than more comprehensive RNA-Seq data for 15 human tissues and

cell lines [17] due to the following two reasons. First, unlike the human RNA-Seq

data [17], the mouse RNA-Seq data [16] have not been explored to predict any SREs.

Second, as demonstrated in [16], the RNA-Seq reads generated from the protocol

using RNA fragmentation provide more uniform coverage along the transcripts than

those generated from the protocol using cDNA fragmentation [17], and thus, the

mouse RNA-Seq data can be used to calculate the expression level of each isoform of

each gene more accurately.

As shown in [34–36], a discriminative approach using reliable positive and neg-

ative data can significantly increase the power of detecting motifs that are over-

represented in the positive data set relative to the negative data, without increasing

the false positive rate. However, most computational methods for identifying SREs

do not employ the discriminative approach. These include the ones used to identify

RESCUE-ESEs from constitutively spliced exons [27] and tissue-specific SREs from

microarray data [30] as we discussed in Introduction. Similar to the method used to

identify RESCUE-ESEs, intronic sequences flanking constitutively spliced exons were

used as background data to identify brain-specific SREs [32]. The putative ESEs

and ESSs (PESEs/PESSs) were identified by comparing the frequencies of octamers

in constitutively spliced non-protein-coding exons with those in a negative control

set including the pseudo exons and 5’ untranslated regions of intronless gene [28].

Although this negative set may be more reliable than the one used in identifying

RESCUE-ESEs, it may not be as reliable as the negative data in our method due to

the following arguments. Pseudo exons are good negative sequences for identifying

ESEs because they are never spliced. However, although the ASEs in our exclusion
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set are also not spliced in a tissue or under certain condition, they are spliced in other

tissue(s) or under other conditions. This is a stronger indication that these ASEs in

our exclusion set may lack the ESEs that assist the splicing of ASEs in the positive

data. Similar arguments hold for other enhancers or silencers. In the identification of

ESS from pseudo exons [29], constitutively spliced exons and their flanking intronic

regions were used as the negative data set, which is again not as reliable as the ASEs

and their flanking intronic regions in our inclusion set because these ASEs can also

be skipped under different conditions.

Another advantage of our discriminative approach is that it can identify both

common and tissue-specific SREs. This is an important feature because both tissue-

specific splicing factors and tissue-specific expression of constitutive splicing factors

may play a role in regulating alternative splicing. If we use constitutively spliced exons

as the negative data as used in [27,29,32,60], we would not only lose detection power

as shown in the Results, but also miss those common SREs present in constitutively

splice exons. As a side note, similar to the method used to identify PESE/PESS [28],

our method do not have problem of sequence bias such as codon or CpG bias, since

our positive and negative data sets have similar sequence composition. If a sequence is

abundant in both inclusion and exclusion sets, our discriminative approach generally

will not predict it as an SRE, but the non-discriminative approach will likely predict

it to be both an enhancer and a silencer, which obviously is a conflictive and confusing

result. On the other hand, if an SRE is abundant in both the data set from which we

try to identify the SRE and the background data set, non-discriminative approach

can not identify such an SRE, but our discriminative approach using negative data

set is very likely able to identify it.

In order to reduce the false positive rate without losing detection power, we used
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Figure 2.7: Probability density of p-values of the SREs with or without experimental
validation. SREs are computationally identified at a significance level of 0.05.

a validating process to determine the cutoff p-value which was chosen to be 0.03.

Specifically, we first used a cutoff p-value equal to 0.05. This gave 799 SREs, 200 of

which could be found at least one match in the 992 hexamers selected from SpliceAid

[38] containing experimentally identified SREs. We plotted the distribution of the

p-values of these 200 SREs and of the remaining 599 SREs, as shown in Figure 2.7.

It is seen that at a p-value< 0.03, the probability of experimentally validated SREs is

generally higher than the probability of SREs without experimental validation, and

that this trend is reversed at p-value> 0.03. Therefore, we selected 0.03 to be the

cutoff p-value.

About 26% (118/456) of 456 SREs we identified can be found in database with

experimentally validated SREs. This percentage is slightly higher than that for the

SREs identified by Wang et al. [17] and Castle et al. [30] from human tissues. About
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48% (221/456) of our SREs are tissue-specific, which shows that tissue-specific SREs

play an important role in regulating alternative splicing as observed early. Although

only 10% (45/456) SREs are common to all three tissues in this study, it does not

imply that common SREs are less important, because 45% (207/456) SREs were

common to two tissues but unsure to the other tissue. If more data are available, we

may identity these SREs as common or tissue-specific SREs. Only 18% (20/108) of

our ESEs are included in RESCUE-ESE identified from constitutively splice exons,

and only 14% (15/108) of our ESEs are annotated as common to three tissues. This

shows that much more tissue-specific ESEs are involved in regulating tissue-specific

splicing than constitutive ESEs.

It worths some discussions on three SREs: CUCUCU (us’ ISS−LM), UGCAUG (ds’

ISE−−M and ds’ ISS−L−) and UCUAUC (ds’ ISS−−M and ds’ ISE?L−). The first two

have been repeatedly identified as an SRE in both experimental and computational

approaches [30, 43, 48–52], but our study reveal some new information. Specifically,

our position analysis showed that CUCUCU appears at 15 nt to 30 nt upstream of

the ASE skipped in liver and muscle but not brain with much higher frequency than

any other locations. Since these locations are in the polypyrimidine tract, CUCUCU

most likely functions in the polypyrimidine tract as a tissue-specific silencer. While

previous results showed that an SRE can be an enhancer or silencer depending on

its location. For example, UGCAUG can be a ds’ ISE or a us’ ISS. Our analysis

showed that UGCAUG and UCUAUC can function as an enhancer in one tissue but

a silencer in another tissue from the same intronic region downstream of the ASE,

which calls further investigation about the mechanism that these two SREs function.
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2.5 Concluding Remarks

Tissue-specific alternative splicing is a key mechanism for generating tissue-specific

proteomic diversity in eukaryotes. Splicing regulatory elements (SREs) in pre-mature

messenger RNA play a very important role in regulating alternative splicing. In this

chapter, we use mouse RNA-Seq data to determine a positive data set where SREs

are over-represented and a reliable negative data set where the same SREs are most

likely under-represented for a specific tissue and then employ a powerful discriminative

approach to identify SREs. We identified 456 putative splicing enhancers or silencers,

of which 221 were predicted to be tissue-specific. Most of our tissue-specific SREs

are likely different from constitutive SREs, since only 18% of our exonic splicing

enhancers (ESEs) are contained in constitutive RESCUE-ESEs. A relatively small

portion (20%) of our SREs is included in tissue-specific SREs in human identified in

two recent studies. In the analysis of position distribution of SREs, we found that a

dozen of SREs were biased to a specific region. These findings provide insight into the

mechanism of tissue-specific alternative splicing and give a set of valuable putative

SREs for further experimental investigations.



CHAPTER 3

A Thermodynamics Model for Identifying
Splicing Regulatory Elements and Their
Interactions

3.1 Motivation

Current computational methods for the detection of SREs can be largely catego-

rized into three approaches. The first enrichment-based approach is to identify SREs

as short nucleotide sequences (typically hexamers or octamers) that are statistically

enriched in a carefully selected set of introns and exons against a background or neg-

ative dataset. A large part of the current methods developed in [8,27,28,30] and our

method presented in Chapter 2 belong to this category. The second conservation-

based approach utilizes comparative genomic methods to identify evolutionarily con-

served motifs in introns and exons, which can also be combined with the enrichment-

based approach to identify SREs [46,63,64]. The third regression-based approach ex-

ploits both sequence information and expression levels of different isoforms in a unified

framework [33, 65]. Comparing with the other two approaches, the regression-based

approach offers flexibility of identifying combinatorial regulatory effects of multiple

SREs. However, the current regression methods were not developed systematically

from a theoretical base, which may limit their performance.

44
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Multiple SFs could act cooperatively to promote or repress splicing by regulating

exon or intron definition [25]. These interactions will cause their binding SREs have

specific features that can be captured by computational approaches. Several recent

computational works have studied cooperative SRE pairs in AS regulation. Ke et

al. [66] searched for frequently co-occurred SRE pairs from two ends of exons that

mediate exon definition. Friedman et al. [67] identified cooperative SRE pairs from

two ends of human and mouse introns possibly mediating intron definition. Suyama

et al. [68] analyzed conserved pentamers that often co-occur in the same region of

upstream or downstream introns, which may arise from cooperative binding of differ-

ent SFs or actually from a single long motif. These different types of SRE pairs from

different regions reveal that cooperative interaction between SREs may be a common

mechanism in AS regulation. However, these SRE pair detection methods did not

incorporate expression data into the analysis, and like the enrichment-based approach

to the detection of single SRE, they could not exploit sequence and expression data

in a systematic way, which may limit their detection power.

In this chapter, we employ the principles of thermodynamics to overcome the

shortcomings of enrichment-based approach and other existing methods by introduc-

ing a rigorous linear regression model for AS regulation. The regression-based model

has been used to identify transcription factor binding site (TFBS) for a long time

[69–72]. However, this model is an approximation of a nonlinear thermodynamics-

based model as shown in [71, 73–75], and applying it directly to TFBS interaction

detection [76] is skeptical. Specifically, we first derive a novel thermodynamics-based

regression model for AS regulation of alternatively spliced exons (ASEs) which can

capture both main effects of individual SREs and combinatorial effects of multiple

SREs. We then develop a systematic framework to infer the regression model, which
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in turn identifies both single SREs and different types of cooperative SRE pairs. The

key feature of our model inference framework is that we employ the shrinkage tech-

nique [77] to identify a small number of SREs and SRE pairs from a huge number

of all possible SREs and their pairs. Our numerical results show that our model can

explain a significant portion of the variance in the data comparable to the best re-

sult for transcription achieved by a non-linear thermodynamic model [73]. Using an

RNA-Seq data set [17], we identify 619 SREs and 196 SRE pairs, some of which are

verified with previous experimental results.

The remaining part of this chapter is organized as follows: In Section 3.2 we

derive the thermodynamic model for splicing regulation. In Section 3.3, we discuss

the methods used to determine the regulatory effects. In Section 3.4, we develop the

framework for model inference, and apply the model and inference framework to a

human RNA-Seq data set. In Section 3.5, the performance of our model is evaluated

and the identified SREs and SRE pairs are presented. In Section 3.6, we discuss the

merits of our thermodynamics-based model by comparing it with previous models

and other SRE pair detection algorithms. Finally, conclusions are drawn in Section

3.7.

3.2 The Thermodynamic Model for AS Regulation

3.2.1 The Model of Spliceosome Assembly

Consider a gene containing an ASE that can generate two isoforms I1 and I2,

either with or without the ASE. Since splicing is coupled with transcription and the

product emerging from this coupled process is either I1 or I2, we can consider the

splicing of each pre-mRNA independently. Splicing begins with a multi-step process
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of spliceosome assembly around the splice sites and the branch point. We model the

assembly of spliceosome S to the splice sites of ASE on each individual pre-mRNA

as a single chemical reaction:

S +RNA � RNA·S, (3.1)

↓ ↓

I2 I1

where RNA denotes the state in which S is not fully assembled, and RNA·S repre-

sents the state in which S is fully assembled around the ASE. This simplification is

similar to the one used in the derivation of a thermodynamics-based model [73–75] for

transcription where assembly of the RNA polymerase (RNAP) complex is simplified

to one reaction. We assume that I1 is produced from the RNA·S state and I2 is

produced from the RNA state. The probability of having a spliceosome assembled

around the ASE is equal to the probability of the RNA·S state in reaction (3.1),

which can be expressed as Ps =
[RNA·S]

[RNA]+[RNA·S] , where [RNA·S], [RNA] and [S] stand

for the concentrations of RNA·S, RNA and S, respectively. Since the equilibrium

constant of reaction (3.1) is given by ks =
[RNA·S]
[RNA][S]

, we can write Ps as follows:

Ps =
[RNA·S]

[RNA] + [RNA·S] =
ks[S]

1 + ks[S]
=

qs
1 + qs

, (3.2)

where qs = ks[S]. Similar to the gene expression model [71, 76], the dynamic

changes of the concentration of I1 denoted as EI1 can be written as:

dEI1

dt
= kgPs − kdEI1 , (3.3)

where kg and kd are constants related to synthesis and degradation rates, respec-

tively. In the steady state where dEI1/dt = 0, we have EI1 = kg
kd
Ps = αPs, where
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α = kg/kd. Likewise, concentration of the second isoform EI2 = γ(1−Ps), where γ is

another constant. Thus, the ratio of EI1 and EI2 can be written as:

EI1

EI2

=
α

γ

Ps

1− Ps

= c · qs, (3.4)

where constant c = α/γ. Therefore, the probability of producing I1 is equal to

the probability that the pre-mRNA is bound by the spliceosome.

3.2.2 The Regulatory Model of One SF

Now we consider an SF that can bind to an SRE around the ASE and influence the

assembly of the spliceosome. The pre-mRNA can have four possible states: 1) bound

by both S and SF (RNA·S·SF ), 2) bound by S only (RNA·S), 3) bound by SF only

(RNA·SF ), and 4) bound by neither of them (RNA). Then the probability Ps of

having a spliceosome assembled around the ASE is equal to the probability of states

1) and 2). Following [73–75], we can write Ps as Ps = (z1+z2)/(z1+z2+z3+z4), where

zi is the Boltzmann weight for state i. Let w be the cooperative factor reflecting the

interaction between SF and S, qsf = ksf [SF ] where ksf = [RNA·SF ]
[RNA][SF ]

, then it is not

difficult to find that z1 = wqsqsf , z2 = qs, z3 = qsf and z4 = 1, which yields:

Ps =
qs + wqsqsf

1 + qsf + qs + wqsqsf
. (3.5)

If w = 1, SF and S bind to the transcript independently and Ps in (3.5) is simplified

to that in (3.2). If w > 1, the binding of SF to SRE increases the probability of

spliceosome assembly, which implies that the SF is an enhancer. If w < 1, binding of

the SF has a negative effect on spliceosome assembly and the SF is a repressor. The

ratio of the expression levels of I1 and I2 can be written as:
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EI1

EI2

=
α

γ

Ps

1− Ps

= c · qs1 + wqsf
1 + qsf

. (3.6)

3.2.3 The Interacting Model of Two SFs

Multiple SFs and the spliceosome can also interact cooperatively or antagonisti-

cally to affect the splicing process. If two SFs can cooperatively bind to their SREs

around the ASE and interact with the spliceosome, it is not difficult to derive the

following ratio:

EI1

EI2

= c · qs1 + w1qsf1 + w2qsf2 + w12w1w2qsf1qsf2
1 + qsf1 + qsf2 + w12qsf1qsf2

, (3.7)

where qsf1 = ksf1 [SF1] with ksf1 = [RNA·SF1]
[RNA][SF1]

, qsf2 and ksf2 are defined similarly

for SF2, wi, i = 1, 2, is the cooperativity factor between SFi and S, and w12 is the

cooperativity factor between two SFs. If w12 = 1, there is no cooperative interaction

between two SFs, and they enhance or repress spliceosome assembly independently.

In this case, (3.7) can be simplified as

EI1

EI2

= c · qs1 + w1qsf1
1 + qsf1

1 + w2qsf2
1 + qsf2

. (3.8)

If w12 �= 1, we can express (3.7) as:

EI1

EI2

= c · qs1 + w1qsf1
1 + qsf1

1 + w2qsf2
1 + qsf2

φ, (3.9)

where φ = (
1+w1qsf1+w2qsf2+w12w1w2qsf1qsf2

1+qsf1+qsf2+w12qsf1qsf2
)/(

1+w1qsf1
1+qsf1

1+w2qsf2
1+qsf2

). If we define b1 = log(
1+w1qsf1
1+qsf1

),

b2 = log(
1+w2qsf2
1+qsf2

) and b12 = log(φ), we can write (3.9) as:

log(
EI1

EI2

) = log(c · qs) + b1 + b2 + b12. (3.10)
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The first term reflects the basal level of splicing determined by the spliceosome

alone, the second and third terms are the effects of interactions between the spliceo-

some and each individual SF, while the last term is the effect of the interaction

between two SFs. This can be seen from the fact that bi = 0 if wi = 1 and b12 = 0

if w12 = 1. In other words, if the ith SRE affects splicing, then bi �= 0; otherwise

bi = 0; Similarly, if two SREs interact with each other and affect splicing jointly, then

b12 �= 0; otherwise b12 = 0.

3.2.4 Removal of Exon-Specific Effects

Note that bi, i = 1, 2, is determined by ksfi , [SFi] and wi. Since an SF can bind to

the same set of SREs around different ASEs, we assume that ksfi and wi are the same

for different ASEs. Therefore, if we consider a set of ASEs in the same tissue or under

the same condition, where [SFi] is fixed, bi is identical for these ASEs. Similarly, we

assume that b12 is a constant for different ASEs in the same tissue. On the other

hand, since different exons may have strong or weak splice sites and different genes

may have different degradation rates, the first term log(c·qs) in (3.10) may be different

for different exons even in the same tissue or under the same condition. Since our

goal is to infer b1, b2 and b12 from data of multiple ASEs in the same tissue, we need

to remove the exon-specific effects from the model.

If expression levels of isoforms in two tissues t1 and t2 are available, the first term

in (3.10) is identical in these two tissues, and can be removed by forming the following

model:

log(
Et1

I1

Et1
I2

)− log(
Et2

I1

Et2
I2

) = (bt11 − bt21 ) + (bt12 − bt22 ) + (bt112 − bt212), (3.11)

The data of tissue t2 can be regarded as a reference. Subtraction of the reference
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data from the data of tissue t1 removes the exon-specific effects. When data of multiple

tissues are available, we can arbitrarily choose a tissue as the reference. However,

since the expression level of each isoform is estimated from the noisy measurements,

a better reference can be obtained by averaging the data of multiple tissues, which

is similar to the strategy used in [65]. Specifically, suppose we have a set of data

Et
I1
, Et

I2
for tissue t = 1, ..., T , we can remove the first term in (3.10) by forming the

following model:

log(
Et1

I1

Et1
I2

)− 1

T − 1

T∑
t=1
t �=t1

log(
Et

I1

Et
I2

)

= (bt11 − 1

T − 1

T∑
t=1
t �=t1

bt1) + (bt12 − 1

T − 1

T∑
t=1
t �=t1

bt2) + (bt112 −
1

T − 1

T∑
t=1
t �=t1

bt12). (3.12)

If we define y = log(
E

t1
I1

E
t1
I2

)− 1
T−1

T∑
t=1
t �=t1

log(
Et

I1

Et
I2

), β1 = bt11 − 1
T−1

T∑
t=1
t �=t1

bt1, β2 = bt12 − 1
T−1

T∑
t=1
t �=t1

bt2,

and β12 = bt112 − 1
T−1

T∑
t=1
t �=t1

bt12, then (3.12) can be simplified as:

y = β1 + β2 + β12. (3.13)

3.2.5 The Final Model Used for Inference

So far, we have assumed that y can be measured without any error. If the mea-

surement error is taken into account, equation (3.13) becomes:

y = β1 + β2 + β12 + ε, (3.14)

where ε is the measurement error modeled as a Gaussian random variable with

zero mean. Model (3.14) is derived under the assumption that two SREs are present
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to regulate splicing. Since we do not know which SRE or SRE pair contributes to

splicing, we can include all potential SREs and their pairwise interaction in the model

by adding a parameter to the model for each potential SRE and SRE pairs. Moreover,

when we use this model to identify SREs and their interactions, we need to apply it

to a set of ASEs. However, different ASEs may have different SREs. To overcome

this problem, we include all possible SREs (typically hexamers) and their pairwise

interactions in the model, but multiply βi by a binary variable xi ∈ {0, 1} that

indicates if the corresponding SRE is present in the ith ASE, and similarly multiply

βij by xixj. This gives rise to the following model:

y = β0 +
∑
i∈M

xiβi +
∑

(i,j)∈I
xixjβij + ε, (3.15)

where y = log(f t)− 1
N−1

N∑
t′=1,t′ �=t

log(f t′), f t = Et
I1
/Et

I2
in tissue t, and N is the total

number of tissues; M and I are the set of potential SREs and the set of potential SRE

pairs, respectively; xi is a binary variable to indicate presence (xi = 1) or absence

(xi = 0) of the ith SRE; βi reflects the contribution of the ith SRE to the splicing of

the ASE, and βij indicates the cooperative contribution of the ith SRE and the jth

SRE; ε is the measurement error, which is modeled as a Gaussian random variable

with zero mean. Thus, given the splicing profile y of a set of ASEs and a set of

candidate SREs, we can identify SREs or SRE pairs that have regulatory effect by

finding βi or βij that are not equal to zero with certain statistical significance.

We can also include interactions involving more than two SREs, but this will

dramatically increase the number of unknowns that is already very large, which will

make model inference extremely difficult if not impossible. For this reason, we only

include pairwise interactions in our model.
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3.3 Inference of Regulatory Effects

Our model inference framework described later in the next section will infer βi and

βij in the linear regression model (3.15). If βi or βij is not equal to zero with certain

statistical significance, then we determine that the ith element or the pair involving

the ith and jth elements has regulatory effect. However, it is unclear whether it is

an enhancer or silencer, since it is the sign of wi − 1 or wij − 1, not the sign of βi or

βij that determines an enhancing or inhibitory effect. We will next show that we can

infer the regulatory effect of the ith SRE from βi and [SFi] that is the concentration

of the SF that can bind to the SRE. The enhancing or inhibitory effect of an SRE

pair however is difficult to infer.

Let us first consider the situation where only one reference sample is used as in

(3.11). In this case, βi = bt1i −bt2i = f([SF t1
i ];wi)−f([SF t2

i ];wi), where f([SF t
i ];wi) =

log(
1+wiksfi [SF

t
i ]

1+ksfi [SF
t
i ]

). Then it can be easily shown that the sign of βi is the same as the

sign of (wi − 1)([SF t1
i ] − [SF t2

i ]). Therefore, if ([SF t1
i ] − [SF t2

i ])βi > 0, then wi > 1

and SRE i is an enhancer; otherwise, wi < 1 and SRE i is a silencer.

For model (3.13) or (3.15) where multiple tissues are used as the reference, the

following proposition can be used to infer the regulatory effect of an SRE:

Proposition 1 Given the condition

[SF t1
i ] >

1

T − 1

∑
t �=t1

[SF t
i ], (3.16)

we have wi > 1 if βi > 0, or wi < 1 if βi < 0. Given the condition

[SF t1
i ] <

[
1

T − 1

∑
t�=t1

1

[SF t
i ]

]−1

, (3.17)

we have wi > 1 if βi < 0, or wi < 1 if βi > 0.
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Proof: For simplicity, we will omit subscript i throughout the proof. Define b =

f(qt) = log(1+wqt

1+qt
), where qt = ksf [SF

t] as defined earlier. Then df(qt)
dqt

= (w−1)
(1+wqt)(1+qt)

.

If w > 1, f(qt) is a monotonically increasing function; otherwise, f(qt) is a monoton-

ically decreasing function (Figure 3.1).

Define qw such that f(qw) =
1

T−1

∑
t �=t1

f(qt), which gives:

qw =

1− ∏
t �=t1

(1+wqt

1+qt
)

1
T−1

∏
t �=t1

(1+wqt

1+qt
)

1
T−1 − w

, (3.18)

where 0 < w < 1 or w > 1. From (3.18), we obtain the following result:

q0 = lim
w→0+

qw =
∏
t �=t1

(1 + qt)
1

T−1 − 1 <
1

T − 1

∑
t �=t1

qt,

q∞ = lim
w→∞

qw =
1∏

t �=t1

(1+qt

qt
)

1
T−1 − 1

>
1

1
T−1

∑
t �=t1

(1+qt

qt
)− 1

=
T − 1∑
t�=t1

1
qt

,

Define qa = qw for w > 1 and qb = qw for 0 < w < 1. In Lemma 1 given later at

the end of this section, we prove that qw is a monotonically decreasing function of w.

Therefore, we have the following inequalities:

T − 1∑
t �=t1

1
qt

< qa < qb <
1

T − 1

∑
t �=t1

qt. (3.19)

From (3.12) and (3.13), we have β = f(qt1)− 1
T−1

∑
t �=t1

f(qt) = f(qt1)−f(qw). When

w > 1, due to the fact that f(qt) is an increasing function, we have β > 0 if qt1 > qa

or β < 0 if qt1 < qa. Similarly, when w < 1, we have β < 0 if qt1 > qb or β > 0 if

qt1 < qb. This is illustrated in Figure 3.1. Now suppose that [SF t1 ] > 1
T−1

∑
t�=t1

[SF t],

since qt = ksf [SF
t], we have qt1 > 1

T−1

∑
t �=t1

qt. Using (3.19), we have qt1 > qb > qa.

Therefore, we can infer that w > 1 if β > 0, or w < 1 if β < 0 as illustrated in

Figure 3.1. Similarly, if [SF t1 ] < [ 1
T−1

∑
t �=t1

1
[SF t]

]−1, we have qt1 < T−1∑

t �=t1

1
qt
, and thus,
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qt1 < qa < qb. We can infer that w > 1 if β < 0, or w < 1 if β > 0, again as illustrated

in Figure 3.1. Note that qa and qb are determined by unknown parameter w and they

can be anywhere in between q∞ and q0. Therefore, if [ 1
T−1

∑
t�=t1

1
[SF t]

]−1 < [SF t1 ] <

1
T−1

∑
t �=t1

[SF t], we can not determine whether w > 1 or w < 1.

q0 q∞qa qb

b

w>1 ⇒ β<0

w<1 ⇒ β>0

w>1 ⇒ β>0

w<1 ⇒ β<0

β<0 ⇒ w>1

w>1 or w<1 cannot be determined.

β>0 ⇒ w>1

β<0 ⇒ w<1β>0 ⇒ w<1

Figure 3.1: Illustration of Proposition 1. The dashed curve is b = f(q) = log(1+wq
1+q

)
for w > 1 and the dashed lines with arrows define the region where β < 0 or β > 0.
The dash-dot curve is b = f(q) = log(1+wq

1+q
) for w < 1 and the dash-dot lines with

arrows define the region where β > 0 or β < 0. The solid lines define the decision
region of w described in Proposition 1.

Lemma 1

h(x) =

1−
N∏
i=1

(1+xqi
1+qi

)
1
N

N∏
t=1

(1+xqi
1+qi

)
1
N − x

. (3.20)

is a monotonically decreasing function for x ∈ (0, 1)
⋃
(1,∞), when qi, i = 1, ..., N

are positive.

Proof: Define g(x) =
∏
(1+xqi

1+qi
)

1
N . Then dh(x)

dx
= g′(x)(x−1)−g(x)+1

[g(x)−x]2
, where g′(x) =

dg(x)
dx

. Let us define the numerator of h(x) as J(x), since the denominator is positive,
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we next prove that J(x) ≤ 0, which implies that dh(x)
dx

≤ 0 and therefore h(x) is a

decreasing function.

J(x) = g′(x)(x− 1)− g(x) + 1

=
1

N

N∑
i=1

qi
1 + xqi

g(x)(x− 1)− g(x) + 1

=

[
1

N

N∑
i=1

qi
1 + xqi

(x− 1)− 1 +
1

g(x)

]
g(x)

=

[
1

N

N∑
i=1

qi
1 + xqi

(x− 1)− 1 +
N∏
i=1

(
1 + qi
1 + xqi

)
1
N

]
g(x)

≤
[
1

N

N∑
i=1

1 + xqi
1 + xqi

− 1

]
g(x)

= 0,

where the first inequality is due to the facts that g(x) > 0 and that
N∏
i=1

( 1+qi
1+xqi

)
1
N ≤

1
N

N∑
i=1

( 1+qi
1+xqi

), since x > 0 and qi > 0, i = 1, ..., N . Thus, h(x) is monotonically

decreasing in (0, 1) and (1,∞). Moreover, since we have:

lim
x→1−

h(x) = lim
x→1+

h(x) =

N∑
i=1

qi
1+qi

N −
N∑
i=1

qi
1+qi

,

h(x) is a monotonically decreasing function for x ∈ (0, 1)
⋃
(1,∞), and dh(x)

dx
= 0 if

and only if q1 = q2 = ... = qN .

3.4 Framework for Model Inference

We applied the thermodynamic model (3.15) derived in Section 3.2,

y = β0 +
∑
i∈M

xiβi +
∑

(i,j)∈I
xixjβij + ε,
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to the identification of SREs and SRE pairs involved in alternative splicing, where y,

M, I, xi, βi and βij are described in Section 3.2.5.

We first determined a set of ASEs from the UCSC KnownGene table [78]. We

extracted all the hexamers in five regions around ASEs as candidate SREs (Figure

3.2A), and obtained y for this set of ASEs. Then, model inference was carried out

using four components described in Figure 3.2B. Since we considered all 6-mers and

their interactions, the regression model (3.15) contained 5× 46 variables for the main

effects and > 108 variables for the interactions. The huge number of variables not only

requires huge computation for model inference, but also may yield a large number of

false SREs. To overcome these problems, we developed the four-component framework

in Figure 3.2B to select reliable SREs without overfitting the model. We will describe

each of these steps in detail in this section.

����	 ���	

3
��4

����	

Figure 3.2: Five regions around ASEs used to extract SREs and the model inference
framework. (A) All hexamers in the five regions around ASEs are considered as
candidate SREs. UU (upstream/upstream) stands for the 5’ end of the upstream
intron. UD (upstream/downstream) denotes the 3’ end of the upstream intron. DU
and DD are defined in a similar way. EXON stands for the ASE region. (B) The
inference framework for detecting active SREs and SRE pairs.
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3.4.1 ASE selection

The KnownGene table of human February 2009 assembly (hg19) was downloaded

from the University of California Santa Cruz (UCSC) genome database [78]. We

chose UCSC Known Genes as the reference gene annotation, since they contain a

comprehensive gene set that is constructed mostly from experimental data in Genbank

and Uniprot [79]. For each gene, the KnownGene table gives all known isoforms of its

mRNA transcripts. An exon was selected as an ASE in our dataset if the following

five criteria were satisfied: 1) at least one isoform includes the exon, 2) at least one

isoform does not include the exon, 3) the upstream 5’ splice site is the same in all

isoforms, and similarly the downstream 3’ splice site is the same in all isoforms, as

illustrated in Figure 3.3A, 4) the upstream 3’ splice site is the same in all isoforms with

the ASE, and similarly the downstream 5’ splice site is the same in all isoforms with

the ASE, as illustrated in Figure 3.3A, and 5) both the upstream and downstream

introns are of ≥ 400 nts. With these strict criteria, the five regions of the ASE shown

in Figure 3.2A are defined without ambiguity. Note that isoforms in Figure 3.3B do

not satisfy criterion 3), and thus ASEs with isoforms in Figure 3.3A and 3.3B are not

included in our data set. Similarly, isoforms in Figure 3.3C do not satisfy criterion

4), and ASEs with isoform in Figure 3.3A and 3.3C are not included in our data

set. To ensure a reliable estimate of the expression ratio, we only kept ASEs with

gene expression level greater than 3 RPKM (reads per kilobases per million mapped

reads). This gave a set of ASEs for each tissue. The number of ASEs for each tissue is

given in Table 3.1 and more detailed description of the ASEs including their genomic

coordinates are given in Table S2 of [2]. Most ASEs were used for model inference in

almost all tissues. Some ASEs were not used in a specific tissue because they did not

pass the minimum expression requirement in that tissue. Note that although almost
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the same set of ASEs were used, the splicing response variable y of the same ASE

was different in different tissues, and thus the data used for model inference were in

fact different for different tissues.
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Figure 3.3: Illustration of ASE selection criteria 3 and 4. (A) ASEs that satisfy both
criteria 3 and 4. (B) ASEs that do not satisfy criterion 3. ASEs with isoforms in (A)
and (B) are not included in our ASE data set. (C) ASEs that do not satisfy criterion
4. ASEs with isoforms in (A) and (C) are not included in our ASE data set.

3.4.2 RNA-Seq Data

The data set in [17] includes RNA-Seq reads from 9 tissues: adipose, whole brain,

breast, colon, heart, liver, lymph node, skeletal muscle and testes, as well as several

cerebellar cortex samples and cell lines. We only used RNA-Seq data of 9 tissues,

which contains over 200 million reads of 32 nts, to detect SREs and cooperative SRE

pairs.
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3.4.3 Estimation of Expression Level and Inclusion Ratio

We started by mapping the RNA-Seq reads against an expanded human genome

(hg19) downloaded from the UCSC genome database, allowing up to two mismatches,

using Bowtie (version 0.12.7) [40]. The expanded human genome consists of the UCSC

hg19 whole genome reference sequence and the 56 nt long splice-crossing sequences

for each exon junction documented in the UCSC KnownGene table. Reads that could

be mapped to multiple loci of the genome were excluded, and 140 million uniquely

mapped reads were kept for the following analysis.

We next calculated the expression level of each isoform including or excluding

a selected ASE in 9 tissues using the algorithm of Jiang et al. [18]. Since we only

kept uniquely mapped reads, for an exon of length l, we used an effective exon length

l−r−m, where r is the read length and m is the number of multi-mappable positions

of the exon. To find out m, we re-mapped all possible 32-nt subsequences of candidate

ASEs and splice junctions against the same expanded genome described above using

Bowtie [40]. Moreover, to minimize the effect of non-uniformity of read distribution

[14], we only used three exons, including the ASE itself, the adjacent upstream and

downstream exons to estimate the expression level of each isoform.

After the expression level of each isoform of the selected gene was calculated,

the inclusion ratio (IR) of an ASE in a specific tissue was calculated as the ratio of

the expression level of the isoforms with the ASE to the total expression level of all

isoforms of the gene, i.e., IR =
EI1

EI1
+EI2

, where EI1 is the total expression level of

isoforms including the ASE and EI2 is the total expression level of isoforms excluding

the ASE.
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3.4.4 RNA Sequence Elements

For each tissue and each ASE, we extracted all hexamers in five regions around

the ASE, including the 200 nts intronic region adjacent to the upstream 5’ splice site

(UU in Figure 3.2A), the 200 nts intronic region adjacent to the upstream 3’ splice

site (UD in Figure 3.2A), the ASE region (EXON in Figure 3.2A), the 200 nts intronic

region adjacent to the downstream 5’ splice site (DU in Figure 3.2A) and the 200 nts

intronic region adjacent to the downstream 3’ splice site (DD in Figure 3.2A). The

EXON region is the ASE itself if the ASE is less than 200 nts; otherwise, it is the

combination of the first and last 100 nts of the ASE. Since the 5’ and 3’ splice sites

have the consensus sequences MAG/GURAGU and Y10NCAG/G [8,41], respectively,

we excluded the sequences in the window from -3 to 6 around the 5’ splice site and

in the window from -14 to 1 around the 3’ splice site in our analysis.

3.4.5 Variable Screening

In the first variable screening component in Figure 3.2B, we used a strategy sim-

ilar to the sure independence screening method [80] to reduce the dimensionality of

the feature space, thereby improving variable selection in terms of both speed and

accuracy. Specifically, for the ith hexamer, i ∈ (1, ..., 46), we used the following simple

linear regression to test the correlation between its presence in one of the five regions

of ASEs with the response variable:

ye = β0 + xeiβi + εe, (3.21)

where xei, e = 1, ..., n is a binary variable to indicate if the ith hexamer is present

(xei = 1) or absent (xei = 0) in one of the five regions of the eth ASE, and ye
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is the splicing response of the eth ASE as defined earlier, and εe, e = 1, ..., n are

independent and identically distributed normal random variables. In some samples,

we have inclusion ratio IRe = 1 or IRe = 0, usually due to the low read abundance

of the minor isoform. For these samples, we set log(
Ee,I1

Ee,I2
) = 10 for IRe = 1 or set

log(
Ee,I1

Ee,I2
) = −10 for IRe = 0, which is equivalent to IRe ≈ 0.9999 or IRe ≈ 1e−5.

Hexamers having a significant correlation with a p-value < 0.05 were kept in set M

for further analysis with the Lasso and the adaptive Lasso.

In the next step, for each pair of the retained hexamers, their interaction was

tested using the model:

ye = β0 + xeiβi + xejβj + xeixejβij + εe. (3.22)

Interaction terms with a p-value < 0.05 were also kept in set I for further analysis.

To reduce the possible false positive effects, we also required that the co-occurrence

frequency of the two hexamers in an interaction pair was significant (p-value < 0.05

from a hypergeometric test based on the null hypothesis that the presence of the first

hexamer is independent of the presence of the second hexamer) in the five regions

of the selected ASEs defined earlier, and that any hexamer or hexamer-pair must be

present in at least 1% of the ASEs.

3.4.6 The Lasso and The Adaptive Lasso

In the second component, we adopted the Lasso [81] and the adaptive Lasso [82]

to perform penalized multiple regression to select variables. The Lasso is known

to shrink many variables with no or small correlation with the response variable

to zero [81], and thus yields a sparse model that only contains a small number of

variables. The shrinkage techniques has been widely applied to various problems to
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solve the biological complexity [83–85]. Using both the Lasso and the adaptive Lasso

was to ensure more reliable variable selection as suggested in [86].

We define y = (y1, y2, ..., ye, ..., yn)
T and xi = (x1i, x2i, ..., xei, ..., xni)

T , where ye

and xei are defined earlier. We also define xi.∗xj as element-wise multiplication of two

vectors. The Lasso procedure was performed by solving the following problem [81]:

{β̂0, β̂i, β̂ij} =

argmax
β0,βi,βij

{∥∥∥∥y − β0 −
∑
i∈M

xiβi −
∑

(i,j)∈I
xi.∗xjβij

∥∥∥∥
2

+λ
(∑
i∈M

|βi|+
∑

(i,j)∈I
|βij|

)}
. (3.23)

The optimal value of parameter λ was obtained using 100-fold cross-validation

based on the mean squared prediction error. Then we chose ŵi = 1/|β̂i| and ŵij =

1/|β̂ij| and solved the following adaptive Lasso problem [82]:

{β̂′
0, β̂

′
i, β̂

′
ij} =

argmax
β′
0,β

′
i,β

′
ij

{∥∥∥∥y − β′
0 −

∑
i∈M

xiβ
′
i −

∑
(i,j)∈I

xi.∗xjβ
′
ij

∥∥∥∥
2

+λ
(∑
i∈M

ŵj|β′
i|+

∑
(i,j)∈I

ŵij|β′
ij|
)}

.

(3.24)

The optimal value of λ was also obtained using 100-fold cross-validation. We

solved these problems using the coordinate descent algorithm of Friedman et al. [87]

implemented in the ‘glmnet’ package.

3.4.7 Refitted Cross-validation

Although the Lasso and the adaptive Lasso only retained a small number of vari-

ables in the model, we wanted to ensure that the overfitting problem did not occur. To
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this end, we added the third component named refitted cross-validation (RCV) [88]

to the inference procedure.

RCV is a technique to estimate residual variance in linear regression models of

ultrahigh dimension [88]. In our case, the n samples were randomly split into two even

datasets. We applied the Lasso to the first dataset to select a set V of variables from

the variables in M and I resulted from the variable screening procedure. We then

again used the Lasso to refit the model with the variable set V to the second dataset.

The refitting process selected a set V ′ of variables from V . Finally, the variance of

the residual error σ̂2
1 is estimated from the second dataset with variables in V ′ using

the OLS method. We reversed the role of the two datasets, and obtained another

estimate of the variance of the residual error, σ̂2
2. The final estimate is then defined

as σ̂2 = (σ̂2
1 + σ̂2

2)/2. We repeat this process 100 times by randomly splitting the

dataset, and the average variance σ2
RCV of the 100 estimates was the final estimate of

the residual variance.

We then used σ2
RCV to select the final optimal model. The adaptive Lasso pro-

cedure in the second component produced a sequence of models for different values

of λ. For each λ, we extracted the variables of the model and estimated the residual

variance σ2 with these selected variables using the OLS method. We then compared

the minimum value of the residual variance, σ2
min, with σ2

RCV . If σ2
min > σ2

RCV , we

selected the model (variables) that gave σ2
min; otherwise, we identified the value of

λ that yielded a residual variance equal to σ2
RCV and selected the model (variables)

with this λ.
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3.4.8 Correction for Multiple Testing

The adaptive Lasso together with RCV selected selected a set of variable in the

final model, but it did not give p-value for each variable. In the last component, we

used OLS method to refit the model and calculated the p-value for each variable.

Based on these p-values, we chose the variables at an FDR ≤0.01 [89]. The final

model contained these variables and the percentage of the variance explained (R2) by

this final model was calculated as:

R2 = 1−
n∑

e=1

(ye − ŷe)
2/

n∑
e=1

(ye − ȳ)2, (3.25)

where ŷe is the predicted value of ye from the final model, and ȳ is the sample mean

of ye. Note that R
2 was also used in [69,73,76] as the figure of merit for performance

evaluation, which will be used for comparison in the following Section.

3.5 Results

3.5.1 Performance of the model and the regression frame-

work

As described in Section 3.2 and 3.4, we selected a set of ASEs for each tissue from

the KnownGene table and calculated the inclusion ratio EI1/(EI1 + EI2) from the

RNA-Seq data [17] for each ASE, which was then used to calculate the response y

in model (3.15). We applied our thermodynamic model and inference framework to

this data set to detect SREs and SRE pairs. The number of ASEs used in model

inference, the number of SREs and SRE pairs in the final model and the percentage

variance explained by the final model are given in Table 3.1. In each tissue, our

thermodynamic model explained 49.1%-66.5% of the variance in the data (see R2 in
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Table 3.1), which was comparable to that achieved by the best model for transcription

reported in [73]. More specifically, the linear model for gene transcription in [69]

explained 9.6% of the variance on average, while the regression spline model for

gene expression that incorporated interaction terms explained 13.9% to 32.9% of the

variance [76]. Most recent work by Gertz et al. [73] fitted a nonlinear thermodynamic

model to the expression data of synthetic genes. Their models explained 44-59% of

the variance in gene expression. Thus, considering the non-synthetic genes we used,

our model has captured a large fraction of the variance in the splicing response.

Overall, 619 different SREs and 196 SRE pairs were detected from different tissues

(Table 3.1, Table S1 in [2] and Appendix table B.1). These SREs and SRE pairs

consist of 854 different hexamers. Many SREs are very similar to each other, which

may arise from an SRE longer than 6 nucleotides (nts) or from a degenerated motif.

Note that although they were detected in different tissues, the SRE and SRE pairs

per se do not give rise to tissue-specific isoforms, because they are always there in

pre-mRNA sequences in different tissues. It is the tissue-specific expression of SFs

(e.g., Figure 3.4) that regulates tissue-specific splicing through SREs.

Table 3.1: Summary of the final selected models in each tissue

Tissue No. of ASEs No. of SREs No. of SRE pairs R2 (%)
Adipose 1345 60 30 52.9
Brain 1411 65 19 49.1
Breast 1399 82 24 58.3
Colon 1236 64 13 49.4
Heart 1302 84 21 60.5
Liver 995 76 19 66.5
Lymph node 1405 77 24 55.7
Skeletal muscle 1174 85 18 63.2
Testes 1601 79 28 51.0
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3.5.2 Comparison with experimental validated SREs

We compared our 854 SREs with the results of Castle et al. [30], who per-

formed a systematic screening of all 4 to 7-mers for cis-regulatory motifs enriched

near ASEs using microarray. We only kept 5 to 7-mers with a p-value smaller than

10−3 (Bonferroni-corrected p-values as described in [30]) for the comparison. In total,

137 non-redundant 5 to 7-mers were left (91 5-mers, 28 6-mers and 18 7-mers). We

considered it as a match if a 7-mer contains one of our SREs, a 5-mer is part of

our SREs, or a 6-mer exactly matches one of our SREs. This yielded 103 k-mers,

k = 5, 6, 7, that could find at least one match in our SREs. In order to evaluate the

significance of the overlap, we generated a list of 6-mers from the 137 k-mers of Castle

et al. with the following procedure. For each 5-mer, 8 different 6-mers containing

the 5-mer were obtained by padding a nucleotide to the beginning or the end of the

5-mer. For each 7-mer, 2 different 6-mers were obtained by extracting the first or

the last 6 nts. In total, 639 different 6-mers were extracted from Castle’s k-mers,

k = 5, 6, 7. A significant number of 6-mer (180) were found in both our 854 SREs

and the 639 6-mers obtained from 137 k-mers of Castle et al. (p-value=9.37e-7 from

Fisher’s exact test).

We also compared our 854 SREs with the binding sites of 25 SFs experimentally

identified with SELEX [51, 90–108] or RNAcompete [109]. Each of [51, 90–108] at-

tempted to determine the binding sites of 1 to 3 SFs using SELEX, and [51, 90–108]

reported SELEX results for a total of 25 SFs. For each of 25 SFs, we obtained a

set of RNA sequences selected with SELEX from one of [51, 90–108]. If there are

more than one SELEX results for an SF, we used the most recent SELEX result. We

then extracted the consensus sequences embedded in this set of RNA sequences as

the binding sites of the SF. If a consensus binding site is 4 or 5 nt long, one more nu-
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cleotide was also extracted from each side of the original selected sequence to obtain

hexamers. If a consensus binding site is longer than 6 nts, all the hexamers included in

the consensus were extracted. For RNAcompete, the 7-mers listed in Figure 2 of [109]

were used as consensus binding sites, and two hexamers were taken from each 7-mer.

In total, 709 different hexamers were obtained from the consensus binding sites. A

significant number (175) of hexamers were found in both our 854 SREs and the 709

hexamers obtained from SELEX or RNAcompete (p-value=0.004 from Fisher’s exact

test). In Table S1 of [2], we gave the SF that was identified in [51, 90–109] to bind

to one of the 175 hexamers. Although the overlap between our predicted SREs and

the binding sites of SFs determined with SELEX and RNAcompete is statistically

significant, a relative large number (679) of our predicted SREs are not included in

these experimental results, which implies that our result contains some novel SREs.

3.5.3 Experimental Evidence of SREs

Several well-defined SREs involved in tissue-specific AS have been detected in

our work. We will take SREs bound by Fox-1 protein, polypyrimidine tract binding

protein (PTB), quaking protein (QKI), muscleblind-like protein (MBNL) as examples

(listed in Table 3.2) to illustrate how to understand the results and compare them

with the available experimental evidences.

Table 3.2: Selected examples of the detected SREs

SF SRE(region) p-value Tissue Effect
Fox-1 UGCAUG(DU) 7.02E-13 muscle enhancer
Fox-1 UGCAUG(UU)-GCAUGU(UU) 1.34E-3 heart unknown
PTB CUCUCU(UD) 9.76E-6 lymph node silencer
PTB UUCUCU(UD) 9.33E-4 adipose silencer
QKI ACUAAC(UD) 3.36E-8 muscle silencer

MBNL UGCUGC(UU) 1.22E-6 lymph node unknown
MBNL UGCUGC(EXON) 2.61E-3 muscle unknown
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Figure 3.4: Expression level of several splicing factors in 9 tissues. The expression
levels are calculated from the RNA-Seq data as reads per kilobases per million mapped
reads (RPKM).

Fox-1

Fox protein recognizes [U]GCAUG as its SRE and it has been shown to be one of

the most conserved regulators of tissue-specific AS in metazoans. Fox-1 is exclusively

expressed in brain, heart, and skeletal muscle as reported in [61], which is consistent

with the RNA-Seq data we used as shown in Figure 3.4. Its paralog Fox-2 has

relatively low expression level in all tissues. In our results, we detected two SREs

containing UGCAUG as summarized in Table 3.2. These 2 SREs were detected in

heart or muscle, which is consistent with the tissues where Fox-1 is expressed. Note

that the second SRE UGCAUG(UU)-GCAUGU(UU) detected in upstream region

in heart is actually an interaction term in the regression model. Since our model

includes interaction between SREs in the same region or from different regions, it

is possible that an SRE longer than 6 nts is detected as an interaction term. This
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interaction term actually arises from a 7-mer SRE UGCAUGU(UU) [110] (Among the

28 UGCAUG(UU)-GCAUGU(UU) pairs used for inference in heart, 27 are derived

from UGCAUGU(UU)). Using the inference method for regulatory effects described

in Materials and Methods, we found that the SRE that we identified from muscle are

enhancers in the downstream region (DU) (Table 3.2), which is consistent with the

computational analysis [17] and the experimental evidence [61, 111].

PTB

Another well-defined SF is PTB which binds to UC-rich SREs and has high binding

affinity to UCUU and/or UCUCU [49, 112]. Two SREs we identified are possible

binding sites of PTB (Table 3.2). They are found in the upstream region in adipose

and lymph node. Both SREs are detected from the tissues where PTB are over-

expressed as shown in Figure 3.4. Using Proposition 1 in Materials and Methods,

These two SREs were determined to be a silencer in the upstream of ASEs. This

result coincides with position-dependent alternative splicing activity of the PTB as

identified using microarrays [113].

QKI

One of QKI’s binding site ACUAAY [103,114] was detected in the upstream intron

of the ASE in muscle (Table 3.2). The SRE ACUAAC was previously reported as an

over-represented motif in the downstream region of ASEs in muscle [65] and was also

predicted as an upstream intronic SRE specific to the central nervous system [115].

Our result indicates that this upstream SRE detected in muscle is a silencer, which

is consistent with the experimental result [116].
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MBNL

The MBNL family protein can bind to the motif YGCU(U/G)Y [117]. Two se-

quences of this motif can be found in our SREs (Table 3.2). However, the function of

this motif is complicated. First, both MBNL and CELF family proteins can bind to

similar motifs [118,119], although different protein isoforms may have different bind-

ing specificities [45]. Second, MBNL can either promote or repress splicing of specific

ASEs on different pre-mRNAs by antagonizing the activity of CELF proteins [117].

Thus, although our result indicates that this SRE is related to AS regulation in mus-

cle and lymph node, it is difficult to interpret its regulatory effect based on current

result.

3.5.4 Experimental Evidence of SRE pairs

We also identified 196 different cooperative SRE pairs (Table S1 in [2] and Ap-

pendix table B.1). Thirty-nine percent (77 SRE pairs) of them are interactions of

SREs in the same region. As discussed in the previous section, a part of this kind

of interaction may come from a single SRE longer than 6 nts. Among the remaining

interactions between different regions (119 SRE pairs), the most frequent interactions

are SREs in region pairs UD-DU, UU-UD and UD-DD. Region pair UD-DU may

reflect the effect in the exon definition stage of spliceosome assembly, and region pair

UU-UD may reflect the effect in the intron definition stage. A summary of interaction

between SRE pairs in different regions is given in Figure 3.5. Several detected SRE

pairs are listed in Table 3.3.

Interestingly, Several previously identified SREs were detected in our interaction

results. They either cooperate with their own or other different SREs in a different

region or in the same region.



72

�����
'8;

�����
<;

�����
	;

�����
6;

�����
'#;

�����
'';

����=>�
8�	;

����=>�
';

�=>����
3;

�=>����
8�	;

�����
'�;

�����
'';

�=>���=>�
';

�����
<;

�����
$;

Figure 3.5: Percentage of different types of SRE pairs. Two hundred and forty-one
SRE pairs are detected in different or same regions. This figure shows breakdown of
the SRE pairs in different regions.

Interaction Between PTBs

Two SRE pairs bound by PTB [49,112] were identified in our result. All the four

SREs located at the upstream region of the 3’ splice site which can also be a part

of an extended polypyrimidine tract, although the 3’ splice site consensus of 15 nts

containing the classical polypyrimidine tract [8, 9] has been removed in our analysis.

One SRE pair UUCUCU-UCCUCU was identified in the upstream intron in brain.

The other interaction detected involves PTB’s binding site UCUUCC in the UD region

and CCUUCU in the DD region (Table 3.3). The downstream CCUUCU resembles
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Table 3.3: Selected examples of the detected cooperative SRE pairs

SF1 SRE1(region) SF2 SRE2(region) p-value Tissue
PTB UUCUCU(UD) PTB UCCUCU(UD) 2.02E-4 brain
PTB UCUUCC(UD) PTB CCUUCU(DD) 1.02E-6 brain
F/H GGGGCA(DU) F/H UGGGGA(DD) 1.31E-3 liver
E/K CCCCAG(UU) E/K CCGCCC(UU) 8.02E-8 lymph node
E/K ACCCCU(DU) E/K CCCCUC(DU) 8.70E-4 adipose

T/H/S AUUUAU(UU) T/H/S UAAAUG(UD) 2.33E-10 brain
T/H/S AUUUAC(DU) T/H/S AAUAAA(DD) 3.04E-9 lymph node
T/H/S AAAUUU(UD) T/H/S UUUUUU(DU) 3.71E-7 lymph node
T/H/S AAUAUG(UU) T/H/S AAAAAU(UD) 3.75E-5 heart
T/H/S AUUUAG(UD) T/H/S UUAUAU(DU) 1.02E-4 testes
T/H/S UUUAAU(UD) T/H/S UUUUAU(DD) 1.45E-4 adipose
T/H/S AAAUUC(UU) T/H/S AAAUUU(DU) 6.08E-4 lymph node
T/H/S UUUUAA(UD) T/H/S CAUUAU(DU) 8.93E-4 adipose
T/H/S UUUAAU(UU) T/H/S AAAAUA(UD) 1.09E-3 heart
T/H/S GUUUUA(UD) T/H/S UUUUAU(DD) 1.90E-3 adipose
T/H/S AAUAUU(UD) T/H/S AUUUUG(DD) 3.06E-3 breast
T/H/S UAUUUA(UD) QKI AACUAA(DU) 2.47E-6 liver
T/H/S AUUUAA(UU) PTB CUUUUC(UD) 6.12E-4 heart

∗F/H represent splicing factor hnRNP F or hnRNP H.
∗E/K represent splicing factor hnRNP E or hnRNP K.
∗T/H/S represent TIA-1/TIAR, Hu family or Sam68 proteins.

the PTB binding sites and might also be bound by PTB. In a cooperative model

for the regulatory mechanism of PTB, it was proposed that a single PTB or a PTB

dimer could loop out the branch point upstream of 3’ splice site or the ASE by binding

to several pyrimidine tracts upstream and downstream to repress splicing [120]. A

single PTB-binding element had weak silencing activity, while multiple PTB-binding

sites at both upstream and downstream of the ASE or of a branch point could have

strong inhibitory effect [121]. This model and the experimental results in [120, 121]

are consistent with the interaction pairs we identified.
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Interaction Between hnRNP F/H

hnRNP F/H can bind to GGGA and G-rich SREs [12,122]. The proposed mech-

anism underlying the splicing regulation of hnRNP F/H involves an interaction be-

tween proteins bound at both ends of an intron that loops out the intron and brings

distantly separated exons into closer proximity [123]. Consistent with this model, one

pair of SREs GGGGCA(DU)/UGGGGA(DD) (Table 3.3) putatively bound by the

hnRNP F/H was detected in two ends of the downstream intron.

Interaction in hnRNP E/K

Both hnRNP E and hnRNP K proteins contain three copies of the KH domain

arranged in a very similar manner, and they are the major poly-C binding proteins

in mammalian cells [99, 124]. We extracted all the SRE pairs in our result that

contain at least 4 Cs. Two such SRE pairs (Table 3.3) were found to resemble

the binding motif of the hnRNP E/K [99]. One SRE pair is due to a longer motif

ACCCCUC at downstream intron. The other SRE pair was detected as interaction

in the same region. This result may reflect the fact that the three KH domains bind

RNA synergistically while a single KH domain appears to have very low level of RNA

binding activity [125].

Interaction Between AU-rich Elements

An interesting outcome of this work was the identification of many AU-rich ele-

ments in SREs and SRE pairs. The AU-rich elements have been identified previously

by comparative analysis as a large class of conserved mammalian ISEs [64]. In plant

splicing system, the AU-rich sequences in upstream and downstream introns appear to

be involved in early intron recognition and stabilization of spliceosomal complex [126];
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and multiple short AU-rich SREs could cooperatively modulate splice site usage [127].

However, the interaction between AU-rich SREs has not been reported in mammals.

In our result, The SRE pairs involved in two AU-rich SREs from different regions are

listed in Table 3.3. Among these SRE pairs, 7 pairs were detected in upstream and

downstream introns, and 4 were detected at two ends of the same intron. These AU-

rich SREs resemble the binding sites of TIA-1/TIAR, Hu protein and Sam68 [93,128].

Hu proteins can bind to both upstream and downstream SREs. It has been specu-

lated that binding of Hu protein to multiple sites both upstream and downstream of

an ASE could loop out the ASE and as a result block exon definition to repress splic-

ing [128]. Moreover, Hu proteins can promote exon inclusion by binding to AU-rich

sequences that are conserved at both upstream and downstream of ASE [129]. The

intricate experimental results stress the importance of further mutation analysis to

study the cooperative interactions of AU-rich binding proteins.

We also identified many interactions between AU-rich elements and binding sites

of other known SFs. For example, We found one interactions between upstream AU-

rich SRE and a downstream SRE resembling QKI’s binding site. Another example

is the interactions between upstream AU-rich SRE and a CU-rich SRE resembling

polypyrimidine tract (Table 3.3). These results indicate that AU-rich SREs and

cooperative pairs may play an important regulatory role in mammalian AS and worth

further experimental investigations. In summary, various cooperative mechanisms

could be detected in our result as an interaction, which implies the important role of

interaction in splicing regulation.
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3.6 Discussion

Our regression model for splicing regulation is derived from the same thermo-

dynamic principle regarding protein and nucleic acids interaction as the one used

to derive the model for transcription [73–75, 130]. However, our model uses the ra-

tio of the expression levels of two isoforms or equivalently the ratio of binding and

unbinding probabilities of the spliceosome to the mRNA as the response variable,

whereas the model for transcription uses the gene expression level or equivalently the

binding probability of the RNAP to the promoter as the response variable. For this

reason, our model for splicing is linear with respect to unknown parameters to be

inferred, whereas the model for transcription is nonlinear. While the nonlinear model

for transcription with relatively small number of unknown parameters can be directly

inferred [73], a linear approximation [69–72] and an nonlinear approximation using

splines [65, 76] have been proposed to facilitate model inference. It was shown that

the spline approximation [72, 76] can offer significantly better performance than the

linear approximation in terms of the variance explained by the model. The linear re-

gression model [33] and the spline regression model [65] for splicing regulation use the

expression level of an isoform as the response variable. Therefore these two models are

also approximate models. In contrast, our regression model is directly derived from

the thermodynamic principle and the linearity of our model with respect to unknown

parameters enables efficient model inference even when the number of unknown pa-

rameters is very large. This explains why the variance explained by our model is

comparable to the best result achieved by the nonlinear thermodynamic model for

transcription [73]. Our model may be improved to explain more variance, for exam-

ple, by including interactions involved more than two SREs, by accounting for the

number of occurrences of each SRE, and by including SREs of length not necessarily
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equal to six nucleotides, although this can increase the complexity of model inference.

On the other hand, if we are interested in the identification of SREs interacting with

the binding sites of a specific SF, we can design well-controlled experiments which

measure the splicing profile of all the genes before and after knockdown of a specific

SF, and then apply our model to identify SRE pairs related to the SF.

To the best of our knowledge, this is the first time that the regression-based ap-

proach is employed to systematically identify cooperative SRE pairs. Moreover, our

regression framework can identify SRE pairs without being affected by GC content.

Current methods for identifying cooperative SRE pairs in splicing regulation use hy-

pergeometric test to find the co-occurrence of SRE pairs over-presented in different

regions [66–68]. Since they only use sequence information, some sequence features

that are not related to splicing regulation may increase the FDR. For example, with-

out correction of GC content, the majority of the motif pairs detected in [66, 67]

with high p-values share similar GC contents, being either GC-rich or AU-rich. For

this reason, they corrected the GC content by grouping the ASEs with similar GC

content [66,67]. However, If AU-rich or GC-rich SRE pairs indeed have regulatory ef-

fects, correction for GC content might introduce bias and under- or over-estimate the

statistical significance of the SRE pairs. In fact, it has been shown that the AU-rich

motif is conserved in mammalian introns [64] and could be bound by TIA-1/TIAR,

Hu protein or Sam68 [93,128]. In our work, since our model uses the isoform expres-

sion information in addition to the sequence information, it can automatically handle

the GC content problem. If there is no correlation between the splicing response and

the GC- or AU-rich SRE pairs, these pairs will not be identified since they are just

sequence features irrelevant to splicing regulation. On the other hand, if they do have

regulatory effect, our method will identify them as SRE pairs.
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Since we want to detect all possible SREs and SRE pairs, our linear regression

model contains a very large number of candidate SREs and their pairs as variables.

The challenging problem in model inference is to select correct variables without over-

fitting the data. We employed four techniques to tackle this problem. First, variable

screening is used to exclude SREs and SRE pairs that are present in less than 1% of

the samples or have no or very small correlation with the response variable. Second,

regularized inference methods, the Lasso and the adaptive Lasso, were employed in

conjunction with cross-validation to select a small number of SREs and SRE pairs.

Third, RCV is used to estimate the residual variance which was further used to pre-

vent the possible overfitting problem. Finally, the FDR was calculated to retain only

the most statistically significant SREs and SRE pairs in the final model. Overall,

these steps combine the state-of-the-art techniques and form an effective framework

to reduce the FDR and prevent model overfitting, without compromising the power

of detection.

The SREs and SRE pairs we identified have a significant overlap with SREs iden-

tified with experiments. The regulatory effects of several well-defined SREs were

correctly inferred from our model. For several different interaction proposed based

on the experimental results, our model successfully identified them as SRE pairs in

the same regions and provided more insight into their interactions. Note that we can

identify SRE pairs at two ends of intron [67], at two ends of exon [66], and in the

same region [68] in one framework, and capture the combinatorial regulatory effects

of multiple SREs more faithfully. We also report AU-rich SRE pairs as a putative

interaction pattern that is important and prevalent in human splicing regulation. In

summary, our thermodynamic regression model provides a useful platform for discov-

ering splicing regulators and unraveling splicing regulatory mechanisms.
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3.7 Concluding Remarks

Although many splicing factors (SFs) and their binding sites have been identified

in the past decades, their combinatorial regulatory effects are yet to be illuminated.

In this chapter, we developed a linear regression model to integrate combinatorial

signals of cis-acting splicing regulatory elements (SREs) and their cooperative effects

based on the thermodynamics of binding and interactions among SFs, spliceosome and

pre-mRNA. We also developed a systematic framework for model inference that can

identify SREs and their interactions from a large number of potential SREs without

overfitting the model. Applying the thermodynamic model to a human RNA-Seq

data set consisting of 9 tissues, we demonstrated that the final selected model can

explain 49.1%-66.5% variance of the data, which is comparable to the best result

achieved by thermodynamic models for transcription [73]. In total, we identified 119

SRE pairs between different regions of cassette exons that may regulate exon or intron

definition in splicing, and 77 SRE pairs from the same region that may arise from

a long motif or two different SREs bound by different SFs. Some SRE pairs are

consistent with the interaction models that have been proposed based on previous

experimental results, and various cooperative mechanisms between SREs could be

identified from our results. These results show that our thermodynamic model and

inference method provide a means of quantitative modeling of splicing regulation and

a useful tool for identifying SREs and their interactions.



CHAPTER 4

Aberrant Isoform Expression in Cancer

4.1 Introduction to Cancer Biology

Cancer is a disease of genome aberration [131]. Somatic mutations play an im-

portant role in transforming normal cells into cancerous cells. The major somatic

mutations known in the cancer genome include nucleotide substitution mutations,

small insertion/deletions (indels), copy number variations, chromosomal rearrange-

ments, and nucleic acids of foreign origin. These somatic mutations can cause either

tumor promotion or tumor suppression by changing the expression level of related

proteins or functions of related molecules. Therefore, to understand the pathogenesis

of cancer, it is very important to identify these somatic mutations from the sequenced

cancer genomes, as well as to find aberrantly expressed genes from the measured gene

expression levels. The advent of next-generation sequencing technologies provide a

revolutionary tool to study cancer genomics. Their applications to cancer studies

have accelerated our understanding of tumorigenesis [132, 133].

Over the past decades, many studies have been performed to learn the molec-

ular architecture in human cancers. It has been shown that various layers of this

architecture contribute to the pathogenesis of most human malignancies, including

variation in gene expression [134], deregulation of miRNAs [135], alternative pro-

80
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moter usage [136], alternative cleavage and polyadenylation [137] and alternative

splicing [21]. Alternative promoter usage produces alternative first exons (AFEs)

and alternative cleavage and polyadenylation produces alternative last exons (ALEs)

which are involved in different mechanisms from alternative splicing. However, due

to restrictions in patients’ samples and the experimental design, the effects and the

importance of these biological process in cancer is yet to be discovered, especially for

alternative splicing.

Several previous studies have tried to profile the alternative splicing and to find

differential splicing between cancer cells and normal cells using microarray [138–140].

However, the design of microarrays needs a reference annotation of human genome.

Cancer cells always include a large number of mutations. If the mutations occur

around the splice site or create new splice sites, they will give rise to new splice iso-

forms, which can not be detected by microarray. Moreover, in experiments that used

tumor samples without matched normal samples that are derived from the normal

cells of the same patient, splicing polymorphisms can be identified as aberrant splicing

events, even though they are irrelevant to cancer pathogenesis.

4.2 Aberrant Alternative Region

According to the exon shuffling theory [141], exons in genes can encode specific

functional modules. Duplication, permutation and rearrangement of these exons

would brought different functional modules together to produce new proteins. It has

also been shown that there is a significant correlation between the borders of exons

and protein domains on genomic scale and this exon-domain correlation is consis-

tently stronger in more complex organisms [142]. In human genes, different isoforms
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usually arise from different combination of a group of building blocks–exons [143].

Thus, the aberrant isoform expression in tumor may only related to loss or gain of

some functional modules or pathogenic domains. Inspired by this notion, we pro-

posed a method to identify “alternative regions” aberrantly included or excluded in

tumor. The concept of alternative region is a natural generalization of alternative

spliced exon, in order to discover aberrant AFE and aberrant ALE in a consistent

framework. Thus the alternative regions can arise from alternative promoter usage,

alternative polyadenylation and all kinds of alternative splicing events. Accordingly,

the problem of differential splicing discovery was generalized to the problem of aber-

rant alternative region (AAR) discovery.

The proposed framework first use RNA-Seq data to assemble patient-specific tran-

scriptome in tumor and matched normal samples independently. Then alternative

region of each gene are identified based on all isoforms in cancer and normal samples

of an individual. Statistical test for differential inclusion of these alternative region

will generate a list of AAR and prevalence of each AAR in patients are evaluated.

The AARs may harbor a pathogenic domain, therefore, if many breast cancer pa-

tients share a same AAR, the AAR and corresponding gene are highly probable to

be associated with cancer pathogenicity.

The proposed method has several advantages compared to previous efforts. First,

statistical test in AAR context is more powerful than inclusion ratio test in isoform

context. Several isoforms may share an identical alternative region and thus may share

similar functional modules in their encoded proteins. The inclusion ratio difference

of the alternative region will be larger than the inclusion ratio difference of each

single isoform and thus are easier to be identified. Second, our method can identify

differential splicing event as well as AFE and ALE event in one framework. Third,
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since patient-specific transcriptome are used, new splice junctions and isoforms, either

patient-specific or ubiquitous, can be detected in addition to the ones documented in

reference annotation. Fourth, since matched normal samples are used for comparison,

splicing polymorphism will not be identified as aberrant splicing which reduces the

false positive rate. Fifth, compared to microarray data, RNA-Seq data overcome

many restrictions originated from experiment design, and thus increase the possibility

of new discoveries. The only challenge of this framework is the much more extensive

requirement of high performance computing for large size of RNA-Seq data.

4.3 Materials

Several large-scale cancer genome characterization efforts have been initiated by

utilizing the next-generation sequencing technologies [144]. For example, The Can-

cer Genome Atlas (TCGA) project has applied microarray and next-generation se-

quencing technologies to profile somatic mutations, gene and microRNA expressions,

DNA methylation and single-nucleotide polymorphism (SNP) in a large number of

stringently qualified tumor samples [26, 145]. Most data generated in TCGA are

made publicly available although the raw sequence and clinical data are subjected to

controlled-access restriction for the protection of patient privacy.

In this chapter, since we focus on the aberrant isoform expression, especially alter-

ative splicing in cancer, the RNA-Seq data are used for analyzing the gene expression

in isoform level. In total, we have used 210 clinical breast cancer RNA-Seq data for

tumor and matched normal samples in 105 breast cancer patients downloaded from

TCGA data portal (Appendix table C.1). The matched normal sample is derived

from the same organ site as the tumor from the same patient. The file size of the



84

raw RNA-Seq data for each sample ranges from 3.2 GB to 12.9 GB, with a median

file size of 6.3 GB.

4.4 Analysis Workflow

The proposed method for identification of aberrant isoform expression can be

separated into several steps, as illustrated in Figure 4.1. Specifically, the first step

is mapping all the RNA-Seq reads to human reference genome. The second step

is to assemble the patient-specific transcriptome based on both the reads that can

be mapped to the genome continuously or to splice junctions. The third step is

traditionally differential gene expression analysis. The forth step is the novel analysis

for differential inclusion of alternative regions.

4.4.1 RNA-Seq Mapping

Since we need to reassemble the patient-specific transcriptome, the reads that can

be mapped to the human genome discontinuously, which arise from mRNA exon-

exon junctions (also named junction read), are of particular interest. To this end,

the paired 75-bp RNA-Seq reads were mapped to human reference genome assembly

(NCBI release GRCh37, UCSC release hg19) using tophat v2.0.4 [40,146], a fast splice

junction mapper for RNA-Seq reads. The RNA-Seq reads for tumor and normal

samples for each individual were mapped to the reference genome separately.

4.4.2 Patient-Specific Transcriptome Assembly

Cancer cells undergo extensive genomic changes and thus the transcriptome may

be different in different patients. Novel isoforms can exist in a patient-specific manner.
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Figure 4.1: Workflow for identification of aberrantly expressed alternative region in
human breast cancer.
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We first assembled the transcriptome for each tumor and normal sample separately

using cufflinks v2.0.2 [147] with RABT option (reference annotation based transcript

assembly) [148]. UCSC human Known Genes annotations [78] were used as the refer-

ence annotation. To test differential gene expression and differential alternative region

inclusion ratio for each pair of tumor and normal samples, the tumor and normal tran-

scriptome were then merged for each patients following the strategy recommended by

cufflinks [149].

4.4.3 Differential Gene Expression in Cancer

Properly normalized RNA-Seq fragment counts can be used as a measure of rela-

tive abundances or expression levels of assembled genes or isoforms. We used cuffdiff

in the cufflinks package [147] to estimate gene and isoform expression levels in unit

of FPKM (Fragments Per Kilobase of exon per Million fragments mapped) for each

pair of tumor and normal samples. Since different RNA-Seq experiments can have

different sequencing depth, the expression levels of 210 samples were normalized by

geometric normalization method [150], which has been shown to perform much better

than the other normalization methods [151]. The log2 transformed gene expression

ratio between 105 tumor and matched normal samples were then tested using SAM

v4.00 [152] to identify differentially expressed genes.

4.4.4 Alternative Region Identification

The alternative region was defined in this work as the mRNA sequence that are

not included in all isoforms of the gene. This is in contrast to constitutive region

which is defined as the region shared by all the isoforms. For example, in Figure 4.2,

the hypothetical gene can express 4 different isoforms by including different blocks



87

into the mRNA. Thus, we defined 5 alternative regions (AR) for this gene. The 1st

and 2nd AR arise from alternative promoter usage and the 3rd-5th ARs arise from

alternative splicing. The 3rd AR is due to alternative splicing of an cassette exon.

The 4th AR is due to alternative 5’ splice site usage. The 5th AR is due to an intron

retention. For each AR, we defined the isoforms including the AR as set Iincl. while

the isoforms excluding the AR as set Iexcl.. The inclusion ratio of the AR was defined

as
∑

i∈Iincl.
Ei/

∑
i∈(Iincl.∪Iexcl.)Ei, where Ei is the expression level of isoform i. Take

AR3 in Figure 4.2 for example, the inclusion ratio the AR3 is equal to the sum of the

expression of isoform 1 and 3 divided by sum of all four isoforms’ expression.
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Figure 4.2: Illustration of alternative regions. Four different isoforms were plotted
along the genomic coordinates. Blocks stand for exons, black lines indicate introns.
Five alternative regions were defined for this hypothetical gene.

4.4.5 Differential Inclusion of Alternative Regions

The alternative regions may have important consequences in cancer development

and thus may serve as markers in cancer patients. Thus, it is very important to

identify such regions. Currently, there are two different kinds of approaches for this

purpose. The first one is the Fisher exact test of isoform-specific read counts [153–

155]. The second one is the Bayesian approach that models read counts as a sampling

process from a mixture of distinct isoforms [156, 157]. The Fisher exact test utilized

the count number of reads mapped to alternative regions and of reads mapped to
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splice junctions in two conditions to construct a contingency table, and test the

differential AR usage [155], and thus, only local information is used in the differential

test. Moreover, since the splice junctions, which are the only distinctive regions

for isoforms without the AR, are usually very short compared to exon regions, the

statistical test may not be stable. On the contrary, Bayesian approach can utilized

all the reads mapped to the entire gene region to estimate the inclusion ratio in

a probabilistic framework. Although possible assembly errors in very complicated

genes may affect the inclusion ratio estimate of each single isoform, the impact will

be mitigated since the test target of Bayesian approach is AR, not specific isoform.

To detect genes with these pathogenic regions, we used a program named MISO

v0.4.3 [156] to test the inclusion ratio difference of alternative regions in 105 patients.

MISO models the generative process of RNA-Seq reads from different isoforms and

uses Markov Chain Monte Carlo Sampling to estimate the distribution of the expres-

sion level of each isoform relative to the total gene expression level of the gene. After

the sampling process, the relative expression level Ψi of isoform i (ranging from 0 to 1)

is estimated from its distribution that is determined by a group of posterior sampling

values. Since we are interested in the inclusion ratio difference of a particular AR,

the distribution of the inclusion ratio of one AR is estimated from Ψ̂AR =
∑

i∈Iincl.
Ψ̂i,

where Ψ̂i is the sampling values of Ψi. To detect differentially expressed AR, the dif-

ference of Ψ̂AR in tumor and normal data, �Ψ̂AR = Ψ̂AR,T − Ψ̂AR,N , can be evaluated

statistically using the Bayes factor (BF), where Ψ̂AR,T and Ψ̂AR,N are the sampling

values of ΨAR in tumor and normal data. The BF, as a measurement of test signifi-

cance, is defined as the ratio of the posterior probability of the alternative hypothesis,

�ΨAR �= 0, to the null hypothesis, �ΨAR = 0 and calculated using MISO “–compare-

samples” option [156].
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The differentially included ARs were then selected at certain significance level

based on the following criteria. First, the absolute value of inclusion ratio difference

�Ψ̂AR must exceed 10%, which is motivated by the fact that change in exon inclusion

level of ∼ 10% can have important consequences in diseases [140]. Second, the BF

must exceed 20, since experimental validation by qRT-PCR has shown that ∼ 100% of

exons with BF≥20 were detected as differentially expressed and show good agreement

on the magnitude of �Ψ̂AR, compared to 21% of exons with BF<20 [156]. ARs

satisfying both criteria were selected in the following analysis and named as aberrant

alternative regions (AARs).

The more individuals possess the AAR, the more likely the AAR to be associated

with cancer development. In the next step, we integrated all the AARs detected in

105 individuals, selected one most aberrant AR for each gene, and sorted the selected

genes according to their occurrence frequency. In total, we have identified 5088 genes

with its AAR identified in at leat 10 patients (see Appendix table C.2 for details).

4.5 Results and Discussions

To systematically examine the quality of our AARs and choose reliable candi-

date for further analysis, we ranked all the AAR by their occurring frequency in 105

patients. The top 25 AARs and the relevant experimental evidence reported in the

literature are listed in Table 4.1. Column “genomic coordinate” is the AAR’s location

in human reference genome; Column “# diff.” is the number of patients where the

AAR was identified from; Column “ave. diff.” is the average inclusion ratio difference

in the identified patients; The last column is the name of the gene where the AAR

resides in. These AARs were found aberrantly included with high significance in at
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leat 75% (79/105) breast cancer patients. In the following sections, we examined 4

top AARs and analyzed their possible pathogenic mechanisms by comparing related

evidences and studies in the literature. The consistency with experimental evidence

and interesting findings show that our method are highly effective to identify impor-

tant genes related to cancer development and provide important insight in cancer

pathogenicity.

Table 4.1: 25 most frequent AARs in 105 breast cancer patients

genomic coordinate # diff. ave. diff. RefGene
chr14:69345175-69345240 103 -0.30 ACTN1
chr3:13663275-13663415 102 -0.49 FBLN2
chr9:124043748-124043840 96 0.53 GSN
chr15:74466087-74466360 92 -0.39 ISLR
chr2:174123427-174123543 92 0.25 ZAK
chr10:93000241-93000337 91 -0.30 PCGF5
chr5:33751303-33751508 91 -0.40 ADAMTS12
chr9:123631853-123632122 90 0.30 PHF19
chr1:207963598-207963690 88 -0.26 CD46
chr6:56507420-56507694 88 -0.36 DST
chr2:238678586-238678635 87 -0.28 LRRFIP1
chr9:117808689-117808961 86 0.38 TNC
chr3:37132958-37133029 84 -0.37 LRRFIP2
chr3:57911572-57911661 84 -0.28 SLMAP
chr14:73745989-73746132 84 0.33 NUMB
chr12:56558153-56558431 84 0.29 SMARCC2
chr2:64069014-64069338 82 -0.28 UGP2
chr5:38445578-38445780 82 -0.37 EGFLAM
chr19:49605431-49605442 81 -0.24 SNRNP70
chr15:89422649-89423841 81 -0.23 HAPLN3
chr15:64429767-64430240 81 -0.33 SNX1
chrX:102942917-102943086 81 -0.23 MORF4L2
chr17:48828003-48828055 81 0.28 LUC7L3
chr8:95470496-95470664 80 0.41 RAD54B
chr11:131240371-131240783 79 -0.49 NTM
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4.5.1 ACTN1

ACTN1 codes for homo sapiens alpha actinins, an actin-binding protein with

multiple roles in different cell types. Figure 4.3 depicts the RNA-Seq read coverage

profile in 5 patients with largest inclusion ratio difference. The AAR is an alterna-

tively spliced exon included in three isoforms. It can be seen from Figure 4.3 that

the isoforms with the AAR are almost not expressed in the 5 Tumor samples, but the

inclusion ratio of this AAR are around 0.5 in 5 Normal samples.

Our result indicated that the inclusion ratio difference of this AAR is greater

than 0.1 in 103 patients, which means that skipping of this ASE is prevalent in breast

cancer. Moreover, the reduced inclusion of the same exon has also been identified

in colon, bladder, and prostate cancer by exon arrays [158]. These results indicate a

general loss of this exon in different cancers. Further examination of expressed iso-

forms indicates that the AAR and upstream alternative exons are generally expressed

in a mutual exclusive manner, which implies that the actual expression level of the

isoform with both exons included is near zero (Figure 4.4).

To study the potential function of this AAR in ACTN1, we further analyzed the

conserved functional domain near the AAR. As shown in Figure 4.4 and documented

in the UniProt protein database [159], ACTN1 contains two calcium-binding domains

known as the EF-hand domain, which is coded by the upstream and downstream exons

of the AAR. In most currently known proteins, the EF-hand domain always occur in

adjacent pairs, and the pairing results in cooperativity as a functional consequence

of Ca2+ binding [160]. Moreover, disruption of each of the two EF-hand doamins in

Dictyostelium ortholog of ACTN1 has distinguishable consequences on its regulatory

activities [161]. Our result indicates that most isoforms of ACTN1 expressed in breast

cancer cells contain both two EF-hands, and thus have higher binding affinities to
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Figure 4.3: RNA-Seq read coverage profile for ACTN1 in 5 patients. UCSC gene
annotation was visualized using UCSC genome browser. Blocks indicates exons. The
AAR is the exon indicated by the arrow.
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Ca2+, while in normal cells, only about half of the ACTN1 isoforms contain both EF-

hand. Since Ca2+ is a crucial regulator of cell migration and tumor metastasis [162],

this AAR may modulate ACTN1’s functions in metastasis by changing its binding

sensitivity.
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Figure 4.4: Two EF-hand domains near the AAR in ACTN1. Since the gene is
on the reverse stand, the upstream (downstream) exon is located at the right-hand
(left-hand) side of the AAR.

4.5.2 FBLN2

FBLN2 is calcium dependent, extracellular matrix protein. Our results indicate

that only two isoforms are expressed in both tumor and normal cells. However, the

composition of the two isoforms are reversed in tumor compared to normal tissues

(Figure 4.5B). This aberrant region was identified in 102 breast cancer patients.

Domain analysis indicate that FBLN2 contains a tandem of epidermal growth

factor-like (EGF) repeat, most of which have a calcium-binding domain (Figure 4.5A).

The AAR codes for one Calcium-binding EGF-like domain (EGF CA), upstream and

downstream exons of the AAR also code for one EGF and one EGF CA domain.

EGF domains in tandem can interact with each other to affect Ca2+ binding affinity

[163]. In nasopharyngeal carcinoma, it has been shown that the short FBLN2 isoform

without AAR (FBLN2S) may be a candidate tumor-suppressor that can inhibit cell

proliferation, migration, invasion and angiogenesis and down-regulated in tumor cells,
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while the long isoform with AAR (FBLN2L) is either not detectable or is expressed

only at low levels in both normal and tumor tissues [164]. This is on contrary to our

breast cancer result, where FBLN2S is up-regulated and FBLN2L is down-regulated in

breast cancer cells. It may indicates that a different function or pathogenic mechanism

of FBLN2 in breast cancer.
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Figure 4.5: (A) Domain analysis near the AAR of FBLN2. (B) Box and scatter plots
for the inclusion ratio of each isoform in tumor and normal samples. The inclusion
ratio is calculated as the expression ratio between the isoform and the whole gene.
Note that only two isoforms are actually expressed.
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4.5.3 ISLR

ISLR (immunoglobulin superfamily containing leucine-rich repeat) gene has alter-

native promoters in human genome. Aberrant usage of the promoters were identified

in our results (Figure 4.6). Note that the alternative first exon do not codes for amino

acids, thus the protein sequences of the two isoforms are identical.

Aberrant usage of promoters has been found to be related to various diseases,

including cancer [136]. It has been found that the protein level of ISLR released

into the extracellular media was down-regulated in a malignant breast-cancer cell

line compared to its matched normal cell line. [165]. However, our result indicates

that the overall gene expression in mRNA level do not show difference in tumor and

normal samples. Thus, it is highly possible that the downstream promoter affects

the stability or translation efficiency of the mRNA variants, and thus down-regulates

the protein level of ISLR, which in turn regulates the tumor cell’s immune system

response.

4.5.4 ZAK

The AAR for ZAK is alternative last exons. There are two kind of isoforms ex-

pressed from this gene (Figure 4.7), one with alternative last several exons (ZAK-α),

the other one without the last several exons (ZAK-β). The encoded proteins also

have distinct C-terminus. Although both isoforms have similar functions in activa-

tion of the ERK, JNK/SAPK, p38, and ERK5 pathways, ZAK-α, but not ZAK-β, in

Swiss 3T3 cells can cause disruption of actin stress fibers and dramatic morphological

changes [166]. Moreover, over-expression of ZAK-α can induce neoplastic cell trans-

formation and tumorigenesis in athymic nude mice [167]. This is consistent with our

result, where inclusion ratio of ZAK-α was significantly up-regulated (uc002uhz.3 in
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Figure 4.6: (A) Domain analysis near the AAR of ISLR. (B) The inclusion ratio of
each isoform in tumor and normal samples.
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Figure 4.7B) in tumor, even though the overall gene expression level is down-regulated

(TotalG Figure 4.7C) in breast cancer cells. However, when comparing the log2 ex-

pression ratio of ZAK-α in tumor and normal samples (uc002uhz.3 in Figure 4.7C),

there is no obvious evidence of over-expression. One possible explanation is that it is

the relative proportion of ZAK-α and ZAK-β, rather than the absolute difference of

ZAK-α, to influence cell transformation and cancer development.

4.5.5 Comparison with results using microarray profiling

Before the advent of RNA-Seq, Microarray is the major tool for large-scale genomic

study. However, it is not the best platform for splicing analysis since it is confined by

the experimental design and detection sensitivity. We compared our result with two

microarray based analysis in breast cancer to show the higher sensitivity of RNA-Seq

data and our method.

Misquitta-Ali et al. [140] surveyed 5183 alternative exons in lung and breast can-

cers, using patient-matched normal as controls. Four genes (VEGFA, MACF1, APP,

and NUMB genes) were identified aberrantly spliced in at least 5 lung cancer pa-

tients (50% of profiled patients) with at least 10% inclusion ratio difference, and

similar aberrant splicing in NUMB and APP were also identified in breast cancers.

The function of the most frequent aberrant gene NUMB was further analyzed to show

that the inclusion of alternative region is capable of promoting cell proliferation. The

exact same exon in NUMB was also identified as an AAR in our RNA-Seq result with

same inclusion ratio change direction. In our dataset, 84 out of 105 (80%) patients

have the NUMB AAR whose inclusion ratio is at least 10% higher in breast cancer

samples than that in matched normal samples. This AAR was ranked as the 15th

most aberrant regions in our AAR list. Gene VEGFA, MACF1, APP were also iden-
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Figure 4.7: (A) Gene structure of ZAK. (B) The inclusion ratio of each isoform in
tumor and normal samples. (C) The expression ratio of each isoform in tumor and
normal samples. The ratio is calculated as the expression level in tumor divided by
the expression level in its matched normal samples. “TotalG” indicates the overall
gene expression ratio.
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tified aberrantly spliced in 41, 49, 71 patients with same alternative regions except

MACF1, where a different alternative region was identified as the most aberrant one

for this gene. Since Misquitta-Ali et al.’s work used different patients’s data and

micro-array analysis, the consistency with their results indicate the robustness of our

AAR based method. In addition, since we have used RNA-Seq data of more patients,

our results have higher sensitivity and power. Thus the best hit in Misquitta-Ali et

al.’s work (NUMB), although identified with high frequency, only ranked 15 in our

result.

Venables et al. [168] studied the alternative splicing profiles of 600 cancer-associated

genes in 21 normal and 26 cancerous breast tissues and identified 41 ASEs in 40 genes

that significantly differed in breast tumors relative to normal breast tissues. Among

the 40 genes, 30 were also identified in our 5088 gene list. The significant overlap

between these two results (fisher exact test p-value=1.3e-17) indicates the validity

of our result. Note that the tumor and normal samples used in this study are not

always from the same patient, and thus pairwise test are not applicable. The result

may be affected by high gene expression variation in tumor and polymorphism among

individuals. None of the 30 genes are ranked top 25 in our gene list 4.1.

4.5.6 Functional Enrichment Analysis

We have analyzed top AARs identified with our methods and found that they

always have specific cellular functions or are related to specific pathways. To system-

atically evaluate general functions of all the identified AARs, we applied functional

enrichment analysis using the Gene Ontology (GO) database. The GO project [169] is

a collaborative effort to describe gene product attributes across species and databases.

GO consists of three hierarchically structured annotations that describe gene products
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in terms of their associated biological processes, cellular components and molecular

functions and can be represented by a directed acyclic graph.

The functional enrichment analysis was perform using GOrilla [170] with default

parameters, a web-based application that identifies enriched GO (Gene Ontology)

terms. Specifically, we used our 5088 genes as target gene set, and all the other genes

as the background gene set. GOrilla calculated the significance of the overlap between

the target gene set and the gene members in each GO term by hypergeometric test.

The output of GOrilla consists of a hierarchical tree graph to indicate the relationship

between each enriched GO term (p-value<1e-3). Since nodes of the tree near the root

level, such as cellular process, are a very broad biological concept, and contain little

information about cancer development, we extracted all the leaf nodes, and sorted

them based on their p-values. The top 10 GO terms are listed in Table 4.2.

The GO enrichment analysis implies that AAR occurs frequently in several im-

portant pathways. The nerve growth factor (NGF) is known to play a major role in

cancer development and metastasis [171] and has been proposed as a potential thera-

peutic target in breast cancer recently [172]. Its signalling pathway has been shown to

regulate cell proliferation in rat chromaffin cells [173]. Axon guidance molecules con-

trol neuronal migration and neuronal survival, and their expression are not confined

to the nervous system. Recently, several studies have suggested that they regulate

key pathways involved in cell proliferation and migration [174], and are gaining more

and more attention in many pathological processes, particularly in cancers [175–177].

Epidermal growth factor receptor (EGFR), as the first receptor targeted for cancer

therapy [178], its signalling pathway has been studied extensively in cancer biol-

ogy [179, 180]. These results indicate that mutations or gene expression changes in

these pathways are associated with cancer development, however, to the best of our
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knowledge, this is the first time that these pathways are also found enriched with

aberrant isoform level expression.

Table 4.2: Top 10 enriched biological process

GO term Description p-value
GO:0048011 nerve growth factor receptor signaling pathway 2.02E-17
GO:0007411 axon guidance 2.99E-15
GO:0007173 epidermal growth factor receptor signaling pathway 1.40E-12
GO:0035023 regulation of Rho protein signal transduction 8.79E-10
GO:0051017 actin filament bundle assembly 1.46E-09
GO:0006915 apoptotic process 9.49E-09
GO:0007507 heart development 1.22E-08
GO:0006281 DNA repair 3.31E-08
GO:0019048 virus-host interaction 3.79E-08
GO:0042787 protein ubiquitination involved in ubiquitin- 4.85E-08

dependent protein catabolic process

4.6 Concluding Remarks

Alternative splicing, alternative promoter usage and alternative polyadenylation

have been shown important to cancer development. However, due to restrictions in

experimental platform, only aberrant gene expression is extensively studied. Recent

advances in sequencing technology have provided new opportunity for cancer research

and therapies. In this chapter, we applied state-of-the-art algorithms to the RNA-

Seq data of 105 breast cancer patients. We have identified several important genes

that are highly possible to be correlated to breast cancer development with strong

experimental evidence. Special attention has not been paid to most of the identified

AARs in breast cancer. For the first time, we also reported that several cancer

related pathway are significantly enriched with AARs. These exciting results will

provide more insight to cancer biology and new directions for cancer therapies.



CHAPTER 5

Summary and Future Work

5.1 Summary

Alternative splicing (AS) of precursor mRNA (pre-mRNA) is a crucial step in the

expression of most eukaryotic genes. It provides an important means of regulating

gene expression and generating transcriptomic and proteomic diversity. Disruption of

AS regulation can lead to diseases such as cancer. A key mechanism of AS regulation

is to influence the spliceosome to recognize splice sites via binding or unbinding of

splicing factors to SREs. It is therefore important to identify these SREs and their

combinatorial effects on regulating AS. Toward this end, we developed two different

methods from different points of view in Chapter 2 and 3 to search for SREs. In

Chapter 2, we employed a traditional enrichment-based approach but incorporated

expression data into the search process and used a discriminative method that com-

pared a positive data set with a more reliable negative data set to increase the detec-

tion power. We also did some in-depth analysis on the position bias of the identified

SREs to reveal their regulatory mechanisms. However, the results found in Chapter 2

did not uncover the mechanisms of tissue-specific alternative splicing. To understand

tissue-specific alternative splicing, we employed principles of thermodynamics to de-

rive a theoretical model in Chapter 3. In this study, we included both combinatorial

102
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regulation of different SREs and interactions between two SREs to model the splicing

system. We also developed a framework to identify the regulatory SREs and SRE

pairs, whose performance was comparable to the best nonlinear model for transcrip-

tion. We demonstrated that our model could reveal various cooperative mechanisms

between SREs for AS regulation. In Chapter 4, we explored the alternative splicing in

human invasive breast cancer. In order to study the alternative first exon (AFE) and

alternative last exon (ALE) at the same time, we generalized the aberrant alternative

splicing problem into an aberrant alternative region (AAR) problem. The proposed

AAR concept is helpful in designing a systematic and robust framework or workflow

to study alternative splicing. The identified aberrant regions not only provided good

candidates for cancer therapy, but also provided more insight into the pathological

mechanisms.

There are several major differences between the methods and results in Chapter

2 and 3. First, the thermodynamics-based method used in Chapter 3 integrated

all the candidate SREs into the multiple regression model, thus it could study the

combinatorial effects of the SREs in one framework, whereas the enrichment-based

method used in Chapter 2 tested the effect of each SRE separately. Second, the

interpretation of the results are different. In Chapter 2, we only considered SREs

that are effective (enhancer or silencer) in one tissue. If an SRE is effective in one

tissue but not in another tissue, it is recognized as a tissue-specific SRE. In Chapter

3, we explained the tissue specific splicing more explicitly. It is the tissue-specific

expression of the SF, not the SRE that causes tissue-specific splicing or differential

splicing. Without the expression level of the SF, we can only conclude that an SRE

is responsible for different splicing levels in different tissues, but we do not know if it

is an enhancer of silencer.
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There are also relationships between these two methods. In the thermodynamics

model used in Chapter 3, we identified SREs by testing the correlations between the

presence of SREs and the splicing changes in different tissues. This is based on the

model that tissue-specific expression of the SFs is in essence the reason of differential

splicing, rather than SRE. For example, if an enhancing SF is expressed in tissue

1 but not expressed in tissue 2, every gene transcribed in tissue 1 with the SF’s

binding site (SRE) will tend to have higher inclusion ratio, but this tendency should

not exist in tissue 2 since the SRE do not work in tissue 2. From another point of

view, the presence of the SRE tend to correlate to the higher splicing level in tissue

1, whereas the presence of the SRE is irrelevant to the splicing result in tissue 2. The

discriminative method used in Chapter 2 is designed for capturing such correlation

and identify this SRE as an enhancer in tissue 1 and will not identify it as an SRE

in tissue 2.

In chapter 4, we focused on the differential region usage (generalization of dif-

ferential splicing) and their consequences in cancer development. Although splicing

regulation is not the emphasis of chapter 4, it is natural to integrate the efforts in 2

and 3 into cancer biology to study the aberrant splicing regulation in cancer. Com-

bining with the regulation information, we can gain more insight into the complexity

of cancer development.

5.2 Future Work

5.2.1 Identification of Cancer Driver Genes

Cancer is a disease of genome aberration [131]. Although cancers arise as a result of

alteration in DNA sequences, not all the somatic mutations present in a cancer genome
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are involved in the development of the cancer [131]. Therefore, the somatic mutations

can be classed into two categories, namely driver and passenger mutations [181]. A

driver mutation can cause cancer or confer growth advantage on the cancer cells,

whereas a passenger mutation refers to a mutation in the cancer genome but without

obvious growth advantage to the cancerous cells. The driver mutations reside, by

definition, in the subset of genes known as cancer or driver genes. A central objective

of cancer genome analysis is to distinguish driver mutations from passenger mutations

and to identify driver genes.

Two strategies have been developed to search for driver genes. The first enrichment-

based strategy assumes that driver mutations are enriched in driver genes whereas

passenger mutations are more or less randomly distributed. This strategy has been

successfully applied in the past to identify most driver genes that have altered pro-

tein sequence in cancer. For example, Greenman et. al. [182] identified driver genes

as those for which the ratio of non-synonymous vs synonymous mutations is signifi-

cantly higher than expected, where a non-synonymous mutation alters the amino acid

sequence of a protein and a synonymous mutation does not change the amino acid.

Several methods have been proposed to estimate the background silent mutation rate.

Youn et. al. [183] reviewed these methods and developed a new method to identify

driver genes by improving the accuracy of the estimation of the background mutation

rate.

The second strategy combined gene expression profiles and somatic copy number

alterations (CNA) information of the same patient to identify driver genes. The

somatic copy number alterations can promote tumorigenesis without changing the

protein sequence, but by increasing the expression level of oncogenes or decreasing the

expression level of tumor suppressor genes. For example, CONEXIC [184] integrates
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tumor gene expression and copy number data into a single framework to identify

likely drivers in cancer. For a recent review of this strategy, see [185].

It has been indicated that aberrant splicing contributes to all aspects of tumor

biology [21,186]. Driver mutations can occur near splice sites and it has been shown

that the selection pressure for nonsense mutations (change an amino acid to a stop

codon) and mutations around splice sites are much stronger than that for missense

mutations (change an amino acid to another amino acid) in breast cancer [187].

Moreover, synonymous mutations or intronic mutations not considered in previous

algorithms for the detection of driver mutations may be also pathogenic, because

they can disrupt splicing enhancers or silencers [188, 189]. Therefore, some driver

mutations are pathogenic since they alter the isoform expression patterns in cancer

cells, rather than change amino acids or overall gene expression levels. However,

currently there is no systematic computational method to search for this kind of

driver genes in large scale.

The introduction of the concept of aberrant alternative region and frequently

identified AAR in breast cancer make the exploration of driver genes in AAR context

possible. Although we have identified a group of genes with AAR in chapter 4, we

do not know what is the cause of the AAR. According to the models in Chapter 3,

it can either result from mutations of the cis-regulatory elements on the pre-mRNA,

or from the change of the expression levels or amino acid mutations of trans-acting

splicing factors. In the former case, we can easily identify putative driver genes in

AAR context by integrating the mutation information (considering both exon and

intron) around the identified AAR.
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5.2.2 AAR regulation

There are two kinds of possible regulatory networks in cancer under AAR context.

First, aberrant inclusion of one alternative region may be a key regulatory step in

biological pathways. In this case, the existence of a small subset of AARs may be used

to explain a large group of aberrantly expressed genes, and they are good candidates

for cancer therapy.

On the other hand, several AARs may be regulated by a single regulator (such

as splicing factor or transcription factor). Aberrant expression or mutation of the

regulator may cause a comprehensive aberrant inclusion of the downstream genes it

regulates. In this case, the different inclusion ratio of a large set of AARs may be

explained by only a small subset of regulators, and these regulators should be better

targets for cancer therapy than individual AARs. Correlation or regression analysis

by incorporating cis-acting binding sites will provide more exiting insights to the

regulatory network in cancer.

5.2.3 Tumor Classification

Tumor classification methods that distinguish tumor and normal tissues or differ-

ent tumor subtypes are important in cancer diagnosis, and are usually designed to

help identify patient groups that may have similar prognosis or response to treatment.

Many works in tumor classification used microarry as the gene expression profiling

tool and classified tumor samples by clustering genes based on their expression lev-

els [190,191].

Although the change of gene expression levels change is an important signature

in cancer, a larger study in prostate cancer found that 30% of the genes studied

on the microarray show significant differential splicing in the absence of detectable
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changes in overall gene expression [192]. The difference of splicing ratio may be also

a good signature for classification. Therefore, we can develop a systematic method to

combine the gene expression and splicing profiles to search for a more robust signature

that could be used to classify tumor and normal tissues or tumor subtypes.
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Figure A.1: z-scores for all hexamers in brain and liver. (a) z-scores in exons. ESEC ,
ESEB and ESEL stand for common ESE, brain-specific ESE and liver-specific ESE,
respectively. (b) z-scores in 400 nt intronic sequences upstream of the exons. (c)
z-scores in 400 nt intronic sequences downstream of the exons.
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Figure A.2: z-scores for all hexamers in brain and muscle. (a) z-scores in exons.
ESEC , ESEB and ESEM stand for common ESE, brain-specific ESE and muscle-
specific ESE, respectively. (b) z-scores in 400 nt intronic sequences upstream of the
exons. (c) z-scores in 400 nt intronic sequences downstream of the exons.
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Table A.1: First page of the list of 456 common and tissue-specific SREs and com-
parison with existing results (see supplementary table 1 in [1] for the full version of
the table). Columns 2 to 6 specify the type of the SREs. Column 7 indicates whether
an SRE is also a RESCUE-ESE. Last column contains the information of an SRE
in SpliceAid database, which includes the binding factors, PMID reference and the
number of the sequences (in parentheses) that our SRE can match to. If more than
two records can be found in SpliceAid, only first two are kept.

Motif ESE ESS 5’ISE 5’ISS 3’ISE 3’ISS RescueESE Selected SpliceAid

AACUGC BL? . . . . . -
AAGAAG BLM . . . . . AAGAAG HTra2α,9546399(2);HTra2β1,9546399(2);
AAGCAG BLM . . . . . AAGCAG SC35,10094314(2);
AUCUAU BL? . . . BL- . -
ACUUCG BL? . . . . . - 9G8,10094314(1);SRp20,10094314(1);
ACGGCA BLM . . . . . -
AGAAGC BLM . . . . . AGAAGC SC35,7543047(1);
AGCAGC BL? . . . . . AGCAGC FMRP,15805463(1);
AGCUGC BLM . . . . . -
AGGAAC BLM . . . . . AGGAAC SF2/ASF,7543047(2);FMRP,15805463(1);
UAUGAC BLM . . . . . -
UCGACU BL? . . . . . - SRp20,10094314(4);
UGUUAG BLM . . . . . -
UGGAGC BLM . . . . . -
UGGUGU BL? . . . . . -
UGGGCA BL? . . . . . -
CACGGC BLM . . . . . -
CAGCAA BL? . . . . . -
CUCAUA BL? . . . . . -
CUGGUG BL? . . . . . - FMRP,15805463(1);
CGACUG BL? . . . -L- . - FMRP,15805463(4);
CGGCAC BLM . . . . . - SF2/ASF,16825284(1);
CGGCCA BL? . . . . . -
GACUAU BLM . . . . . -
GUGAUA BLM . . . . . -
GUGGCU BLM . . . . . - FMRP,15805463(1);
GCAGAA BL? . . . . . GCAGAA
GCCAAC BL? . . . . . -
GGAUUU BL? . . . . . -
GGAUGA BL? . . . . . GGATGA SF2/ASF,7543047(1);
GGAGCA BLM . . . . . - SRp40,9037021(4);
GGUCAG BL? . . . . . - SC35,10629063(1);
AUGAGC B-- . . . . . -
ACGCGC B-- . . . . . - SF2/ASF,7543047(4);
AGCCUG B-- . . . . . -
UCUUGC B-? . . . . . -
CUGAAA B-- . . . . . CTGAAA
CGCUGC B-- . . . . . - SC35,10629063(1);
GCAUUC B-- . . . . . -
GCGCGC B-- . . . . --M - SF2/ASF,7543047(1);
GGGGAC B-? . . . . . -
GGGGCC B-- . . B?M . . -
AAAUCA -L? . . . . . -
AUGUAC -L? . . . . . -
UCAGGC -L? . . . . . -
AGGGUG B?M . . . . . -
UUUUGG B?M . . . . . -
UUCGAG B?M . . . . . - SC35,7543047(3);SC35,10094314(3);et al.
CAAUGA B?M . . . . . -
CAACCA B?M . . . . . -

Continued in supplementary table 1 of reference [1]
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Table A.2: List of 71 SREs with p-value < 0.01 in the position bias test. Column
2 and 3 represent the annotation of the SRE. Column 4 gives the total number of
occurrence of the SRE in the data analyzed. Column 5 gives the total number of
intronic or exonic sequences used in analyses. The last three columns list p-value,
chi-square statistic and degree of freedom, respectively.

Elements Anno. Anno. No.Occu. No.Seq. p-value statistic DF

CTCTCT 5ISS -LM 301 721 1.33E-16 158.1739 38
TCTCTC 5ISS -LM 279 721 2.59E-14 144.3971 38
ATGGAG 3ISE BLM 142 994 1.83E-13 139.1915 38
AAGATT 5ISS BLM 168 1030 4.69E-12 130.4024 38
TTGTAC 5ISE BLM 93 964 6.85E-11 122.9677 38
TCTCTT 5ISS ?LM 263 721 1.58E-10 120.6236 38
TTCTTC 3ISS BLM 316 1044 1.61E-09 113.9873 38
AGATAA 3ISS B?M 101 658 4.69E-08 104.0396 38
CTGCCT ESS BLM 43 454 5.26E-08 51.65116 9
CCTAAA 5ISE BLM 116 964 1.20E-07 101.1897 38
TGATTT 5ISE ?LM 196 639 1.51E-07 100.4796 38
TTACTG 3ISE BLM 177 994 2.83E-07 98.55172 38
CTTGGG 5ISE BLM 202 964 5.63E-07 96.4 38
CTAAAA 3ISS BLM 189 1044 1.41E-06 93.49206 38
TTAAAG ESS BLM 33 454 1.63E-06 43.66667 9
GTGATT 5ISE B?M 113 663 2.21E-06 92.05556 38
TTCATG 5ISE B?M 136 663 2.41E-06 91.77778 38
AGGAAC ESE BLM 38 483 2.63E-06 42.52632 9
CTCTTT 5ISS ?LM 226 721 3.50E-06 90.57399 38
AGTTTC 3ISS BL? 136 702 4.21E-06 89.97059 38
TATGCA 5ISE BL? 90 626 6.83E-06 88.38636 38
GGGAAA 5ISS BL? 151 686 1.08E-05 86.87417 38
TGTCAC 5ISE ?LM 88 639 1.58E-05 85.58621 38
AGATAT 5ISE BL? 89 626 1.97E-05 84.84091 38
GAGGGA 3ISE BL? 144 643 2.81E-05 83.63636 38
GTTTGG 3ISS BL? 134 702 3.27E-05 83.1194 38
TTGATT 3ISE BL? 120 643 4.17E-05 82.28814 38
CTCTGT 3ISE ?LM 239 663 4.97E-05 81.68103 38
TAAAAG 3ISS B?M 135 658 5.42E-05 81.37778 38
TCATCA 3ISS BLM 142 1044 5.43E-05 81.36765 38
GAATAT 3ISS BL? 107 702 8.62E-05 79.75 38
TCCTGC 5ISE B?M 134 663 1.06E-04 79.00752 38
CTGGAG 3ISS BLM 245 1044 1.11E-04 78.86885 38
AGACAC 5ISE ?LM 90 639 1.51E-04 77.75 38
GGGGGA 3ISE B?M 117 682 1.78E-04 77.16814 38
GCAGCA 5ISE BLM 163 964 1.87E-04 76.9816 38
CACTTA 5ISE B?M 86 663 2.23E-04 76.34884 38
GGCCCT 3ISS ?LM 99 728 2.25E-04 76.30612 38
TAGAAC 3ISS B?M 96 658 2.29E-04 76.25 38
TTGTAG 3ISE B?M 118 682 2.94E-04 75.33333 38
TCCTCA 5ISS B?M 135 653 2.95E-04 75.31298 38
GGAGGG 3ISE BL? 189 643 3.28E-04 74.92064 38

Continued on next page
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Table A.2 -- Continued from previous page

Elements Anno. Anno. No.Occu. No.Seq. p-value statistic DF

GCAGAA ESE BL? 25 320 3.47E-04 30.6 9
CCTTCT 3ISS BL? 163 702 4.21E-04 74 38
TGATTG 5ISE BL? 89 626 5.04E-04 73.31818 38
CACTTG 5ISE ?LM 109 639 5.32E-04 73.11927 38
CTAGAA 5ISS BLM 177 1030 5.37E-04 73.08475 38
CTTTCT 5ISS BL? 223 686 6.37E-04 72.43243 38
ATTACT 3ISE B?M 100 682 7.93E-04 71.6 38
TATAAA 5ISE ?LM 150 639 8.70E-04 71.24324 38
TGAGAA 5ISS B?M 151 653 1.03E-03 70.60403 38
CATGGG 3ISS ?LM 161 728 1.10E-03 70.3354 38
GAGATT 5ISE BL? 89 626 1.51E-03 69.09302 38
TAGAAG 3ISS ?LM 100 728 1.78E-03 68.42424 38
AAAAGC 3ISS B?M 108 658 1.88E-03 68.22222 38
GATGGC ESE ?LM 21 306 1.94E-03 26.14286 9
CCCACC 5ISS BL? 123 686 2.21E-03 67.56098 38
GTTAAA 3ISE B?M 109 682 2.30E-03 67.3945 38
ACTTAG 5ISE B?M 95 663 2.99E-03 66.33684 38
AGCCAT 3ISS B?M 102 658 3.13E-03 66.14 38
GGAAAC 5ISS ?LM 100 721 3.13E-03 66.14 38
ACTCAA 3ISS ?LM 85 728 3.28E-03 65.95294 38
ATTTTG 3ISS BL? 207 702 3.47E-03 65.71707 38
GCATGG 3ISS BL? 136 702 3.52E-03 65.65672 38
CTTCCT 5ISS ?LM 290 721 4.32E-03 64.80282 38
GACTCA ESS B?M 26 294 5.70E-03 23.23077 9
CATTTT 5ISS BL? 256 686 6.19E-03 63.27059 38
TCAGCT 5ISE ?LM 102 639 6.55E-03 63.02 38
AAGAAG ESE BLM 45 478 6.72E-03 22.77778 9
CTAAAG 5ISE BLM 131 964 6.88E-03 62.80916 38
CTTCTC 3ISS BL? 169 702 8.49E-03 61.89157 38
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Table A.3: List of clustering result for 6 types of SREs (ESE, ESS, upstream ISE,
upstream ISS, downstream ISE and downstream ISS). Three columns give cluster
ID, cluster annotation, and the SREs in a cluster and their original annotations,
respectively.

�������	�
�	�
1 ?LM 

AGCGAG ?LM 26 -L? AAATCA -L?
39 BL- 

CCGACG B?-
GAGCGA ?LM

27 B-- 
GGGGAC B-? ACCGCC ?L-

2 ?LM CAGACT ?LM GGGGCC B--
40 BLM 

GTGATA BLM
3 BLM AGGAAC BLM

28 BLM 
TGTTAG BLM TCGATA ?LM

4 BLM 
AGCTGC BLM GGTCAG BL? CGATAT ?LM
GAGCTG ?LM

29 -LM 
GCAACA -?M

41 B-M 
GGTACC B?M

5 BLM 
CAATGA B?M TGCAAC ?LM GATGCC ?-M
CCAATG ?LM

30 B-M 
TCTTGC B-?

42 B-M 
GGTGGA B?M

6 B?- CCCTTA B?- TTTTGG B?M GAGGAG ?-M

7 --M 
AGAGCG -?M

31 BLM 
CAACCA B?M 43 ?L- GGCGTA ?L-

GAGCGG ?-M AACGAG ?LM
44 BL- 

TGGGCA BL?
8 ?LM CTCGGT ?LM CAACGA ?LM TTGGGA ?L-

9 BL- 
CAGCAA BL?

32 BLM 

TCGACT BL?
45 B-- 

ATGAGC B--
CGGCCA BL? CGACTG BL? GATGAG B?-
CCGCAA ?L- GACTAT BLM

46 BLM 
TGGTGT BL?

10 BL? 
GGATTT BL? CGAGTA ?LM CTGGTG BL?
GGATGA BL?

33 BLM 

TGGAGC BLM AGGGTG B?M

11 B-M 
CCTGCG B?M GGAGCA BLM

47 -LM 
TCAGGC -L?

GCTGCG ?-M CGGAGA B?M CAGGCA -?M
12 ?-M CACGTG ?-M GGAGCG B?M TCGGGC ?LM
13 ?L- GTGTCT ?L-

34 BLM 

AAGAAG BLM
48 ?L- 

ACGTTC ?L-
14 --M GGAAGG --M AAGCAG BLM CGCTCC ?L-
15 ?L- TATAGG ?L- AGAAGC BLM

49 B-- 
ACGCGC B--

16 -L? ATGTAC -L? AGCAGC BL? GCGCGC B--
17 B-- CTGAAA B-- GCAGAA BL? CAGCGC B?-

18 BLM 
GTGGCT BLM AAGGAG ?LM

50 BL- 
AACTGC BL?

TGTGGC ?LM AGAAGA ?LM AAACTG ?L-

19 -LM 
ATGGCT -?M AGCAGA ?LM

51 B-- 
AGCCTG B--

GATGGC ?LM
35 BLM 

GCCAAC BL? ATCCCG B?-
20 B?- TACCTC B?- GCTAAT B?M

52 -LM 
TGGAGA -?M

21 B-- CGCTGC B--
36 BL- 

CTCATA BL? GCAGAT ?LM
22 BL? ATCTAT BL? CTCAAT ?L- GGAGAT ?LM

23 BLM 
TATGAC BLM

37 --M 
CGGGCT -?M

ATATGC ?LM GGCGGG --M
24 B-- GCATTC B-- GGGCTG ?-M

25 BLM 
ACTTCG BL?

38 BLM 
ACGGCA BLM

TTCGAG B?M CACGGC BLM
CTTCGA B?M CGGCAC BLM
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�������	�
�	�

1 BLM 

TTTAAA BLM
21 BL- 

TTCTTT BL?
TTTTAA BL? GTTCTG B?-
TTTGAA BL? ATTCTT ?L-
TTGAAA BL? 22 B-- ATGAAT B--

2 BLM 

AAATAA BLM
23 BLM 

TTAAAG BLM
AATTAT BLM CTTAAG B?M
GTATAA BL? GTAAAG ?LM
AATAAT B?M

24 B?M 
TATTTA B?M

TAATAA B?M GATTAA B?M
TTATAA ?LM

25 ?LM 
CACTCT ?LM

3 -LM 
ACCTTT -L? CTCTGT ?LM
ACCTCT ?LM

26 BLM 
GAACTC BL?

4 BLM 
ACTCAC BL? TAACTT ?LM
GACTCA B?M

27 BLM 
TCTTAG BLM

5 B?M CGCTGA B?M TGCTTA BL?
6 B-? AGAGTG B-?

28 B-M 
AATGTT B-?

7 BLM 
GGGTCT B?M ATATTG B?M
GGTCTT ?LM

29 BLM 
GTGTTT BL?

8 B?M AACACT B?M TTGTTT B?M
9 BL? AGATAT BL?

30 BLM 
ACAATA BL?

10 ?LM CAGACC ?LM ATACAA ?LM
11 -?M AAGCCT -?M

31 BLM 
TAAGAT BLM

12 ?-M GGGTTG ?-M TAGGCT BL?
13 -L? ACATCC -L?

32 --M 
TCCTTG --M

14 BLM ACCGTC BLM CCCTGC -?M

15 --M 
CCGCCC -?M

33 BLM 

TGCCTG BLM
CCGCGC -?M CTGCCT BLM
CCGCTC ?-M CCTGCC BLM

16 BL? TGTAGC BL? GCCTGC BLM
17 BL? AGGGGA BL? CCTCCC ?LM

18 B-M 
ATAATA B-M

34 ?L- 
CCCCAG ?L-

ATAAGA B?M CGGCAG ?L-
19 --M AATTCC --M

20 BLM 
CCATGT BL?
CATTTG B?M
CCCATT B?M
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6<�.���,��	��
������������
�'���
�-����	�
�	�
1 BLM CTTGGG BLM

27 -L- 
ACACTG -L?

2 BLM GCAGCA BLM TACACT -L-
3 BL? TATGCA BL?

28 BLM 
ACTTAG B?M

4 -L? CCGAAC -L? CACTTA B?M
5 -L? TTGTAG -L? CACTTG ?LM
6 BLM TAACGT BLM

29 BLM 
AGCTTA B?M

7 ?L- AAGTTT ?L- TCAGCT ?LM
8 -?M AGGCCG -?M

30 BLM 

TGTGCG BL?
9 B-? TTGGTG B-? GTGTGC BL?
10 B?M AAGTGA B?M TGCGTG ?LM
11 BLM TTGTAC BLM GTGCGT ?LM

12 --M 
AGCTGA -?M

31 -LM 
ACCGGA -?M

GCTGAC --M CCAGAG ?LM

13 BL- 
CACATA BL-

32 -LM 
ACTTGA -L?

CAAATG ?L- CTTGAA ?LM
14 B-- AACTCA B--

33 BLM 
CTAAAG BLM

15 B-? TAGTCG B-? CCTAAA BLM
16 BL? GGAGTC BL?

34 BL- 
AGATAT BL?

17 BL? CGACAG BL? GAGATT BL?
18 B-- CATGCA B-- TGAGAT B?-

19 -LM 
CTATAA -L?

35 ?-M 
CAGCCA ?-M

ATAAAT -?M GCAGCC ?-M
TATAAA ?LM GGCAGC ?-M

20 -L? AGGAGA -L?
36 B-M 

TCCTGA B-?

21 B-M 
GGTGCC B-? TTCATG B?M
GCTCCC B?M TCCTGC B?M

22 -LM 
GACACA -L?

37 BLM 
TGATTG BL?

AGACAC ?LM GTGATT B?M
TGTCAC ?LM TGATTT ?LM

23 B-M 
CTGGGC B-? 38 B-- CCTACT B--
CAGGGG B?M

39 B-- 
ATATGT B--

24 -L? GATGGT -L? ATGTGT B?-
25 --M TCCCCT --M

40 -LM 
CGCATG -L?

26 --M 
TAATAA ?-M GCACGC -L?
TAATAT -?M AGCAAG -?M
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������������	��
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1 -LM 

TGTATG -L?
25 B-M 

GGGGCC B?M
GTATAT -?M GGGTCT ?-M
CTATAT ?LM GGGGCG B?M
GTGTAT ?LM

26 B-- 
CAAAAA B--

2 B-M CATCCG B-M CAAGGA B?-
3 -?M AATTGC -?M

27 -L- 
ATTCAT -L-

4 B?- GTTCCG B?- ATCCCT -L?

5 ?LM 
TCTGCA ?LM

28 --M 
ATATAC --M

TCTGCG ?LM ACACAC --M
6 B?M ATATGA B?M

29 -LM 
TATGTG -?M

7 -LM 
CTTCTT -L? CCTATG ?LM
CTTCCT ?LM

30 B-M 
TCCTCA B?M

8 BL- 
CCCACC BL? CATCAA ?-M
CCGACC ?L-

31 -LM 
CTAATT -?M

CGACCC ?L- TCTAAT ?LM
9 B?M CAGGAC B?M

32 B-- 
GTATCG B--

10 BLM 
TTACAA BL? GGTAGC B?-
TGAGAA B?M

33 BLM 
CTAGAA BLM

11 -LM 
CCCCCA -L? CTGCAA BL?
CTCCCG ?LM CTGGAA BL?

12 B?- ATCGTT B?-
34 BLM 

TTATCA BL?
13 -L? TAAGGC -L? GTTATC ?LM

14 BLM 
GCCGAT BLM

35 -LM 

TCTCTC -LM
TGCCGA B?M CTCTCT -LM

15 B-? ACTATT B-? TCTCTT ?LM

16 -LM 
GGATAC -L? CTCTTT ?LM
GGAAAC ?LM

36 BL? 
CCCTTC BL?

17 B-? CTTACA B-? CCCCGC BL?

18 BLM 
CATTTT BL?

37 B-M 
CAGTCA B-?

ATTTAG B?M GTCAGT B-?
19 BL? GGGAAA BL? CAGTCC B?M
20 B?- CATCAC B?-

38 BL- 
CTTTCT BL?

21 -L? GAGAAG -L? GGCTTT ?L-

22 B?- 
ACAGGC B?-

39 BLM 
TCCAAT BL?

CAGGCT B?- CAATAC ?LM
23 BLM AAGATT BLM

40 B-? 
AACCAG B-?

24 BL- 
CAGCGG B?- AACCGT B-?
CTGCGG ?L-

41 -LM 
GCATGC -L?
ATGCAG -?M
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������������
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1 BL? GGATGC BL?

25 BLM 
CGCTAA B?M

2 BLM 
GTTAAA B?M ACGTTA ?LM
TTAAAA ?LM CGTTAT ?LM

3 B?- GGAACT B?-
26 B-- 

GGAATG B-?
4 B-? CTTCCT B-? GGGATG B--
5 BL? CTTGCC BL?

27 B-? 
CACCCT B-?

6 BL? AATCAT BL? CACCGT B-?

7 BLM 
ATTGAT BL?

28 BL- 
CTGCGT BL?

TTGATT BL? TTGCGA ?L-
TTGCTT BLM

29 BL- 
GTCGTC BL?

8 BLM 

TGAGGG BL? TCATCT ?L-
GAGGGA BL?

30 BLM 
TTACTG BLM

GGAGGG BL? CATTAC BL?
GGGGGA B?M ATTACT B?M

9 B-- 
CCGACC B-?

31 BLM 

TTGTAG B?M
CGACAT B?- ATGGAG BLM

10 ?-M AGGGCT ?-M TGTGGA ?LM
11 ?L- CGCGCT ?L- GTGGAG ?LM
12 BLM GAACCG BLM

32 B-- 
ACGCCC B--

13 ?LM CTCTGT ?LM TGCGCC B-?
14 -?M TTTAGT -?M GCGCCT B--
15 B?- CTAGTA B?-

33 --M 
TGGTTT -?M

16 B-? TTGAGG B-? AATGGT ?-M
17 B?- CAGTTA B?-

34 BL- 
AGGGGC B?-

18 -L- 
ATGATC -L? CGGTGC ?L-
TGAACA -L?

35 BLM 
CCGAAG �L?

GATCAG ?L- CCAAAC B?M
19 B-M GAGTTG B-M 36 BL? GCCTTT BL?
20 -L? GCGGAT -L? 37 --M GTCTCG --M
21 --M TGCATG --M

38 BL- 

ATCTAT BL-

22 B-M 
GCGTGC B?M TTCTAT B?-
GCGAAC ?-M TATCTA ?L-

23 -L- 
CGACTG -L- TCTATC ?L-
AACTGG ?L-

39 ?-M 
TGACAT ?-M

24 BLM 
GGCAGC ?LM CTGACA ?-M
GGCAGG B?M

40 -L- 
ATTACA -L-

GGCGGC B?M GCTTAC -L?
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1 BLM 

TCTAAA BL? 24 B?- GGATCC B?-
CTAAAA BLM

25 BLM 
CACATG BL?

2 BL? ATTTTG BL? GCATGG BL?

3 BLM 

CTTCTT BL? CATGGG ?LM
CTTCTC BL?

26 B-M 
CTACCC B?M

CCTTCT BL? TTCCCC ?-M
CCATCT B?M

27 BLM 
CTTCAA B?M

4 BLM 
CGAGAA BLM ACTCAA ?LM
TAGAAC B?M

28 BL- 

AAGTTT BL?
TAGAAG ?LM AGTTTC BL?

5 --M 
TCTATC --M GTTTGG BL?
CTATCT --M GTTTCT B?-
CTAGCC -?M

29 BLM 
TTCTTC BLM

6 B?- ACGATG B?- TCATCA BLM

7 -L- 
TGAAGG -L-

30 BLM 
AAAAGC B?M

TGAACG ?L- TAAAAG B?M
8 B?M TCGTTC B?M ATAAGT ?LM
9 -L? GCTCGG -L?

31 --M 
ACTATT --M

10 ?-M 
TATATT ?-M ACTCTA ?-M
TTTTAT ?-M

32 ?L- 
TATGGC ?L-

11 BLM 
GAATAT BL? GCTATG ?L-
GCATAA B?M

33 -L- 
TGCATG -L-

12 B-M 
AAGCCA B?M GCATGT -L-
AGCCAT B?M GTGCAT ?L-
GCCATG ?-M

34 -L- 
CGCCCC -L-

13 BL? AAACTT BL? GCCCCG -L?
14 -LM CCCCGC -LM CCCCGA ?L-
15 -L? TGGGGA -L?

35 B-M 
AGATAA B?M

16 ?L- TACCTC ?L- AGCTAG ?-M
17 BL? ACTCGG BL? AGGTAG ?-M
18 BLM CTGGAG BLM 36 ?L- CTCTTC ?L-

19 B-? 
GAAGAG B-? 37 ?LM GGCCCT ?LM
GGAAGA B-?

38 -LM 
ACGGCT -L?

20 -?M 
ATCATC -?M TCGGGT ?LM
AGCATT -?M CCGGAT ?LM

21 BL- 
TCCTTA B?-

39 B-? 
CACACA B-?

TTCATT ?L- GCACAG B-?
22 --M GAGGCT --M

40 --M 
GCGCGC --M

23 BLM TACGTA BLM CGCGCC -?M

�
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APPENDIX B

Support Materials for Chapter 3
Table B.1: First two pages of the list of all the SREs and SRE pairs identified in 9
tissues (see Table S1 in [2] for the full version of the table). Column ‘Beta’, ‘p’ are
the regression coefficient and p-value in the final multiple regression model. Column
‘supp.’ (support) is the number of SRE or SRE pair that is present in ASEs used for
inference in each tissue. If an SRE is detected, Column ‘6mer1’ gives the SRE; if SRE
pairs are detected, Columns ‘6mer1’ and ‘6mer2’ give the SREs in the pair. Column
‘tissue’ list the tissues where the SRE or SRE pair identified. The last two columns
give the SF(s) that have been identified with either SELEX or RNAcompete to bind
to the hexmer. References for SELEX or RNAcompete results are listed below the
table.

beta p supp. 6mer1 6mer2 tissues exp.6mer1 exp. 6mer2

1.27 1.58E-03 64 AATTGG UU - adipose - -
0.79 5.98E-03 99 AATGTT UU - adipose - -
0.94 3.90E-03 75 AAGTGG UU - adipose - -
-1.21 6.90E-03 37 ATATAG UU - adipose - -
-1.14 1.88E-03 57 ATTTAC UU - adipose - -
1.29 9.07E-04 50 ACAAGA UU - adipose - -
1.00 2.45E-03 74 ACCCCA UU - adipose hnRNPK; -
0.71 1.27E-03 173 TTTGGG UU - adipose - -
0.77 1.87E-03 137 TTGAAA UU - adipose - -
1.52 3.16E-05 59 CAAGGC UU - adipose - -
-1.71 6.27E-04 31 GATCCA UU - adipose - -
1.39 4.03E-03 32 GACATC UU - adipose - -
-1.02 2.57E-03 67 GACTGA UU - adipose - -
-1.56 9.89E-09 110 GAGTGG UU - adipose - -
0.64 7.65E-03 142 GAGGAG UU - adipose - -
-1.01 7.51E-04 90 GGAAAT UU - adipose - -
1.32 1.48E-04 62 AACAAG UD - adipose - -
-1.08 1.19E-03 68 ATCCAG UD - adipose - -
-1.46 1.65E-05 68 ACTCAT UD - adipose - -
-0.70 9.33E-04 201 TTCTCT UD - adipose - -
-1.16 2.22E-04 80 TCTGCA UD - adipose - -
-1.17 1.66E-05 113 TCCCTC UD - adipose - -
-1.05 1.37E-05 160 CTTCCT UD - adipose - -
-1.30 7.55E-04 52 CTCTAG UD - adipose - -
1.31 1.90E-03 43 CCAAGC UD - adipose - -
0.75 5.59E-03 128 CCTTCC UD - adipose - -
1.15 6.93E-04 67 CCTCAA UD - adipose - -
1.84 3.48E-03 19 GCACGG UD - adipose - -
-1.34 1.63E-03 41 AGATCT EXON - adipose 9G8; -
-1.41 5.70E-03 28 AGGTCC EXON - adipose - -
-0.88 5.88E-03 79 TGCAGG EXON - adipose PSF;SRp40; -
1.09 9.44E-05 119 CTGGGA EXON - adipose PSF; -
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beta p supp. 6mer1 6mer2 tissues exp.6mer1 exp. 6mer2

-1.90 5.45E-03 16 GGCATA EXON - adipose - -
1.14 2.74E-05 107 AAATTG DU - adipose - -
-1.52 1.01E-06 82 AAGCTT DU - adipose - -
0.99 1.24E-03 84 ATCTGT DU - adipose - -
0.90 6.02E-03 75 ACATCT DU - adipose - -
1.16 2.49E-03 52 TATGGA DU - adipose - -
-1.51 5.15E-06 98 TTAAGT DU - adipose - -
0.89 2.65E-03 88 TTGGTG DU - adipose - -
1.45 4.50E-08 136 TCTCTG DU - adipose - -
1.52 4.20E-05 56 TCCTAA DU - adipose - -
-1.03 8.13E-05 122 TCCCTT DU - adipose hnRNPK; -
-1.34 1.02E-04 65 CACTCC DU - adipose - -
1.47 3.79E-04 45 CCGGGC DU - adipose - -
-2.32 6.66E-05 22 CGTCTT DU - adipose - -
0.91 2.47E-03 89 GAAAGG DU - adipose - -
1.51 6.61E-05 53 GATTCA DU - adipose - -
-1.26 1.15E-03 50 AAGAGC DD - adipose PSF; -
1.16 1.66E-04 83 ATAACT DD - adipose - -
1.02 4.21E-04 92 ATTCCT DD - adipose - -
3.15 7.02E-06 15 ATTGCG DD - adipose - -
-1.00 4.13E-04 98 TAATTG DD - adipose - -
1.51 9.06E-05 51 TAAGAG DD - adipose PSF; -
-1.13 8.17E-04 67 TACAGT DD - adipose - -
-1.04 6.27E-03 52 TAGGTT DD - adipose - -
0.97 5.22E-04 105 TCTTGA DD - adipose - -
-0.95 1.05E-03 92 TGCCAC DD - adipose - -
0.80 2.76E-03 110 CTTGTT DD - adipose - -
-1.63 8.90E-08 85 GAGGGG DD - adipose - -
-3.45 7.43E-08 21 AAAATG UU TCTCTG DU adipose SAM68; -
-3.00 1.09E-04 17 AATTGG UU TTTTCT UU adipose - TIA1/TIAR;PTB;
3.55 1.50E-07 17 ATTACA UU ATATTT UD adipose - SAM68;
2.78 5.58E-06 28 TTTTCT UU TTAAGT DU adipose TIA1/TIAR;PTB; -
-1.30 7.87E-05 75 TTTTCT UU TATTTT DD adipose TIA1/TIAR;PTB; TIA1/TIAR;HuR(Rc);

SAM68;
3.04 1.50E-05 15 TCTGTG UU GGGCTT UD adipose - -
2.17 6.15E-05 26 TCCCTG UU CCAGGG UU adipose - -
-2.33 6.38E-04 19 TCCCTG UU CTGGGA EXON adipose - PSF;
-2.04 1.19E-03 20 TCCCTG UU CTGTCC DD adipose - -
2.26 2.76E-05 26 ATATTT UD TAGTTT DU adipose SAM68; -
-3.00 5.79E-06 17 TAGTTT UD TACTTT DD adipose - PTB(Rc);
-2.67 6.26E-06 21 TTAAAT UD TTAAGA DU adipose SAM68; -
-4.20 1.24E-08 14 TTTAAT UD GTATAG UD adipose SAM68; DAZAP1;
-1.46 1.45E-04 57 TTTAAT UD TTTTAT DD adipose SAM68; TIA1/TIAR;
-1.94 8.93E-04 23 TTTTAA UD CATTAT DU adipose SAM68; -
-2.00 2.64E-03 17 TTTTAC UD AGATTT DU adipose - -
-1.66 7.01E-03 20 TTTGTG UD TATGAA DD adipose - -
2.15 1.24E-03 17 TCTCCT UD GGCTGT DU adipose - -
-2.36 4.81E-05 22 CAAAAG UD TTAAAA DD adipose - SAM68;
2.19 3.54E-04 20 CCTGGG UD GGTCTC UD adipose - -
-1.39 1.90E-03 42 GTTTTA UD TTTTAT DD adipose TIA1/TIAR; TIA1/TIAR;
2.61 3.93E-04 14 GGCTGG UD AGTCCT DU adipose - -
1.90 5.65E-03 16 AGCTGG EXON ACCCTG DD adipose - -
1.83 5.10E-04 27 CACTGC EXON CTGCTG EXON adipose - MBNL1;
1.77 7.08E-03 17 ACCAGT DU TTGTTT DU adipose - TIA1/TIAR;HuR(Rc);
1.71 8.70E-04 29 ACCCCT DU CCCCTC DU adipose - -
-2.24 7.46E-04 17 AGATAT DU ATTTGT DD adipose - -
3.31 4.90E-06 14 CAGCTG DU AAGTGC DD adipose - -
-1.21 2.08E-03 52 TTAATT DD TTTTAT DD adipose SAM68; TIA1/TIAR;
-1.27 3.20E-03 41 TGTCCT DD GTCCTT DD adipose - -
-1.07 4.89E-03 90 ATTGAA UU - brain - -
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beta p supp. 6mer1 6mer2 tissues exp.6mer1 exp. 6mer2

-1.48 6.29E-04 67 AGTTGG UU - brain - -
-1.83 4.42E-06 86 AGTGCA UU - brain - -
2.38 1.30E-07 61 TACACA UU - brain - -
1.68 6.41E-05 69 TTGGGC UU - brain - -
-1.21 3.33E-03 76 TCATAT UU - brain - -
1.55 2.24E-05 99 TGCCCC UU - brain - -
2.42 1.11E-04 31 CATACC UU - brain - -
2.28 2.13E-05 42 CACCAA UU - brain - -
-1.15 4.54E-04 127 CTATTT UU - brain - -
1.75 4.06E-04 56 CTAGTT UU - brain - -
-1.05 3.64E-04 153 CTTCCT UU - brain - -
-1.35 1.47E-04 103 CTGCCA UU - brain MBNL1; -
2.76 1.35E-04 23 CCAATG UU - brain SF2; -
1.37 1.14E-03 70 GAAATC UU - brain - -
-2.89 3.40E-04 18 GACGCT UU - brain SC35; -
1.10 2.24E-03 99 GAGGGT UU - brain - -
1.63 3.67E-04 60 GCGGGT UU - brain - -
-1.12 2.41E-03 96 ATAAAG UD - brain - -
1.94 3.40E-03 27 ACAATC UD - brain - -
1.35 1.35E-03 71 AGTTGA UD - brain - -
2.32 4.69E-03 18 TCCGGG UD - brain - -
1.13 4.14E-04 125 TGAAAG UD - brain - -
-1.21 1.32E-03 89 TGTAGT UD - brain DAZAP1; -
-1.72 3.43E-04 53 CAAGGG UD - brain - -
1.74 8.98E-04 45 CTATAG UD - brain - -
1.07 1.41E-03 116 CTTTCC UD - brain - -
-1.73 1.58E-03 40 CCATAG UD - brain - -
-1.99 2.08E-05 56 CCATTG UD - brain - -
2.02 1.20E-08 106 CCTCTG UD - brain - -
-2.19 7.95E-04 28 CGTTTT UD - brain - -
1.12 6.13E-03 74 GATTGT UD - brain - -

References for the last two columns:
SF name # of 6mer in Ref. Reference

hnRNPC 7 [90]
hnRNPA1 8 [91]
TIA1/TIAR 28 [92]
SAM68 47 [93]
NOVA 43 [94]
SRp40 45 [95]
SRp55 16 [95]
TRA2 13 [96]
9G8 98 [97]
SC35 90 [98]
hnRNPK 32 [99]
TLS 12 [100]
PSF 65 [101]
CUGBP2 20 [102]
QKI 2 [103]
DAZAP1 19 [104]
FOX1 2 [51]
SF2 104 [105]
SRp30c 38 [106]
PTB 17 [107]
MBNL1 49 [108]
SLM2(Rc) 9 [109]
RBM4(Rc) 6 [109]
SF2(Rc) 6 [109]
FUSIP1(Rc) 7 [109]
HuR(Rc) 7 [109]
PTB(Rc) 8 [109]

* "Rc" indicates that the binding site is obtained from RNAcompete
experiment, while SF name without (Rc) indicates SELEX experiment



APPENDIX C

Support Materials for Chapter 4
Table C.1: List of samples used in Chapter 4. Each patient has two sample available
for RNA-Seq experiment. One is from the tumor tissue, the other one is derived
from the same organ site as the tumor from the same patient. The first two columns
list the 105 patient id and sample id given in TCGA database. The third column
indicates the sample type. Column ‘size’ is the raw RNA-Seq data file size in unit
of gigabyte. The last column is the number of millions of paired-end reads that can
map to the transcriptome in each sample.

Patient ID Sample ID Tumor/Normal size(GB) #Reads(M)

TCGA-A7-A0D9 TCGA-A7-A0D9-01A-31R-A056-07 Tumor 6.2 56.5
TCGA-A7-A0D9 TCGA-A7-A0D9-11A-53R-A089-07 Normal 6.6 51.5
TCGA-A7-A0DB TCGA-A7-A0DB-01A-11R-A00Z-07 Tumor 6.3 62.8
TCGA-A7-A0DB TCGA-A7-A0DB-11A-33R-A089-07 Normal 5.9 48.4
TCGA-A7-A0DC TCGA-A7-A0DC-01A-11R-A00Z-07 Tumor 7.4 72.9
TCGA-A7-A0DC TCGA-A7-A0DC-11A-41R-A089-07 Normal 6.3 49.9
TCGA-A7-A13G TCGA-A7-A13G-01A-11R-A13Q-07 Tumor 8.4 80.5
TCGA-A7-A13G TCGA-A7-A13G-11A-51R-A13Q-07 Normal 8.1 65.3
TCGA-AC-A23H TCGA-AC-A23H-01A-11R-A157-07 Tumor 7.8 78.1
TCGA-AC-A23H TCGA-AC-A23H-11A-12R-A157-07 Normal 7.9 70.5
TCGA-AC-A2FB TCGA-AC-A2FB-01A-11R-A17B-07 Tumor 7.5 69.9
TCGA-AC-A2FB TCGA-AC-A2FB-11A-13R-A17B-07 Normal 8.4 78.7
TCGA-AC-A2FF TCGA-AC-A2FF-01A-11R-A17B-07 Tumor 7.7 71.3
TCGA-AC-A2FF TCGA-AC-A2FF-11A-13R-A17B-07 Normal 8.8 80.0
TCGA-BH-A0AY TCGA-BH-A0AY-01A-21R-A00Z-07 Tumor 5.1 52.6
TCGA-BH-A0AY TCGA-BH-A0AY-11A-23R-A089-07 Normal 6.4 52.5
TCGA-BH-A0AZ TCGA-BH-A0AZ-01A-21R-A12P-07 Tumor 4.6 53.3
TCGA-BH-A0AZ TCGA-BH-A0AZ-11A-22R-A12P-07 Normal 7.0 70.2
TCGA-BH-A0B2 TCGA-BH-A0B2-01A-11R-A10J-07 Tumor 4.8 58.0
TCGA-BH-A0B2 TCGA-BH-A0B2-11A-11R-A10J-07 Normal 6.0 58.4
TCGA-BH-A0B3 TCGA-BH-A0B3-01A-11R-A056-07 Tumor 6.2 66.9
TCGA-BH-A0B3 TCGA-BH-A0B3-11B-21R-A089-07 Normal 7.9 62.7
TCGA-BH-A0B5 TCGA-BH-A0B5-01A-11R-A12P-07 Tumor 5.9 62.5
TCGA-BH-A0B5 TCGA-BH-A0B5-11A-23R-A12P-07 Normal 6.9 59.2
TCGA-BH-A0B7 TCGA-BH-A0B7-01A-12R-A115-07 Tumor 6.0 64.0
TCGA-BH-A0B7 TCGA-BH-A0B7-11A-34R-A115-07 Normal 5.3 51.0
TCGA-BH-A0B8 TCGA-BH-A0B8-01A-21R-A056-07 Tumor 4.7 49.3
TCGA-BH-A0B8 TCGA-BH-A0B8-11A-41R-A089-07 Normal 7.1 55.5
TCGA-BH-A0BC TCGA-BH-A0BC-01A-22R-A084-07 Tumor 6.7 75.7
TCGA-BH-A0BC TCGA-BH-A0BC-11A-22R-A089-07 Normal 6.3 52.1
TCGA-BH-A0BJ TCGA-BH-A0BJ-01A-11R-A056-07 Tumor 5.7 61.4
TCGA-BH-A0BJ TCGA-BH-A0BJ-11A-23R-A089-07 Normal 6.6 55.2
TCGA-BH-A0BM TCGA-BH-A0BM-01A-11R-A056-07 Tumor 3.7 37.2
TCGA-BH-A0BM TCGA-BH-A0BM-11A-12R-A089-07 Normal 5.7 54.6
TCGA-BH-A0BQ TCGA-BH-A0BQ-01A-21R-A115-07 Tumor 4.0 50.3
TCGA-BH-A0BQ TCGA-BH-A0BQ-11A-33R-A115-07 Normal 5.0 50.6
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Patient ID Sample ID Tumor/Normal size(GB) #Reads(M)

TCGA-BH-A0BS TCGA-BH-A0BS-01A-11R-A12P-07 Tumor 6.9 68.4
TCGA-BH-A0BS TCGA-BH-A0BS-11A-11R-A12P-07 Normal 6.3 63.8
TCGA-BH-A0BT TCGA-BH-A0BT-01A-11R-A12P-07 Tumor 6.5 59.2
TCGA-BH-A0BT TCGA-BH-A0BT-11A-21R-A12P-07 Normal 5.2 55.6
TCGA-BH-A0BV TCGA-BH-A0BV-01A-11R-A00Z-07 Tumor 5.1 57.0
TCGA-BH-A0BV TCGA-BH-A0BV-11A-31R-A089-07 Normal 8.0 74.2
TCGA-BH-A0BW TCGA-BH-A0BW-01A-11R-A115-07 Tumor 6.1 59.2
TCGA-BH-A0BW TCGA-BH-A0BW-11A-12R-A115-07 Normal 5.8 52.2
TCGA-BH-A0C0 TCGA-BH-A0C0-01A-21R-A056-07 Tumor 4.1 50.1
TCGA-BH-A0C0 TCGA-BH-A0C0-11A-21R-A089-07 Normal 7.8 72.1
TCGA-BH-A0C3 TCGA-BH-A0C3-01A-21R-A12P-07 Tumor 5.1 52.0
TCGA-BH-A0C3 TCGA-BH-A0C3-11A-23R-A12P-07 Normal 5.7 57.5
TCGA-BH-A0DD TCGA-BH-A0DD-01A-31R-A12P-07 Tumor 5.9 60.5
TCGA-BH-A0DD TCGA-BH-A0DD-11A-23R-A12P-07 Normal 5.5 57.2
TCGA-BH-A0DG TCGA-BH-A0DG-01A-21R-A12P-07 Tumor 5.1 55.0
TCGA-BH-A0DG TCGA-BH-A0DG-11A-43R-A12P-07 Normal 7.7 67.9
TCGA-BH-A0DH TCGA-BH-A0DH-01A-11R-A084-07 Tumor 5.6 60.1
TCGA-BH-A0DH TCGA-BH-A0DH-11A-31R-A089-07 Normal 6.2 60.5
TCGA-BH-A0DK TCGA-BH-A0DK-01A-21R-A056-07 Tumor 4.8 53.6
TCGA-BH-A0DK TCGA-BH-A0DK-11A-13R-A089-07 Normal 7.8 76.4
TCGA-BH-A0DO TCGA-BH-A0DO-01B-11R-A12D-07 Tumor 6.2 61.1
TCGA-BH-A0DO TCGA-BH-A0DO-11A-22R-A12D-07 Normal 6.4 60.3
TCGA-BH-A0DP TCGA-BH-A0DP-01A-21R-A056-07 Tumor 4.5 53.6
TCGA-BH-A0DP TCGA-BH-A0DP-11A-12R-A089-07 Normal 6.7 65.7
TCGA-BH-A0DQ TCGA-BH-A0DQ-01A-11R-A084-07 Tumor 5.3 54.9
TCGA-BH-A0DQ TCGA-BH-A0DQ-11A-12R-A089-07 Normal 8.6 79.3
TCGA-BH-A0DT TCGA-BH-A0DT-01A-21R-A12D-07 Tumor 5.6 56.3
TCGA-BH-A0DT TCGA-BH-A0DT-11A-12R-A12D-07 Normal 6.2 58.5
TCGA-BH-A0DV TCGA-BH-A0DV-01A-21R-A12P-07 Tumor 7.0 80.8
TCGA-BH-A0DV TCGA-BH-A0DV-11A-22R-A12P-07 Normal 7.5 66.0
TCGA-BH-A0E0 TCGA-BH-A0E0-01A-11R-A056-07 Tumor 3.5 39.5
TCGA-BH-A0E0 TCGA-BH-A0E0-11A-13R-A089-07 Normal 5.4 53.8
TCGA-BH-A0E1 TCGA-BH-A0E1-01A-11R-A056-07 Tumor 4.6 57.6
TCGA-BH-A0E1 TCGA-BH-A0E1-11A-13R-A089-07 Normal 4.9 49.8
TCGA-BH-A0H7 TCGA-BH-A0H7-01A-13R-A056-07 Tumor 7.5 76.7
TCGA-BH-A0H7 TCGA-BH-A0H7-11A-13R-A089-07 Normal 5.9 59.4
TCGA-BH-A0HA TCGA-BH-A0HA-01A-11R-A12P-07 Tumor 5.5 54.1
TCGA-BH-A0HA TCGA-BH-A0HA-11A-31R-A12P-07 Normal 5.9 56.0
TCGA-BH-A0HK TCGA-BH-A0HK-01A-11R-A056-07 Tumor 4.6 45.9
TCGA-BH-A0HK TCGA-BH-A0HK-11A-11R-A089-07 Normal 6.2 61.8
TCGA-BH-A18J TCGA-BH-A18J-01A-11R-A12D-07 Tumor 6.4 66.0
TCGA-BH-A18J TCGA-BH-A18J-11A-31R-A12D-07 Normal 4.8 47.1
TCGA-BH-A18K TCGA-BH-A18K-01A-11R-A12D-07 Tumor 6.8 63.5
TCGA-BH-A18K TCGA-BH-A18K-11A-13R-A12D-07 Normal 4.8 45.7
TCGA-BH-A18L TCGA-BH-A18L-01A-32R-A12D-07 Tumor 7.1 73.3
TCGA-BH-A18L TCGA-BH-A18L-11A-42R-A12D-07 Normal 5.1 52.3
TCGA-BH-A18M TCGA-BH-A18M-01A-11R-A12D-07 Tumor 5.8 61.2
TCGA-BH-A18M TCGA-BH-A18M-11A-33R-A12D-07 Normal 4.9 49.5
TCGA-BH-A18N TCGA-BH-A18N-01A-11R-A12D-07 Tumor 6.0 61.5
TCGA-BH-A18N TCGA-BH-A18N-11A-43R-A12D-07 Normal 6.8 65.0
TCGA-BH-A18P TCGA-BH-A18P-01A-11R-A12D-07 Tumor 5.1 56.8
TCGA-BH-A18P TCGA-BH-A18P-11A-43R-A12D-07 Normal 6.2 54.7
TCGA-BH-A18Q TCGA-BH-A18Q-01A-12R-A12D-07 Tumor 5.3 52.1
TCGA-BH-A18Q TCGA-BH-A18Q-11A-34R-A12D-07 Normal 7.2 67.7
TCGA-BH-A18R TCGA-BH-A18R-01A-11R-A12D-07 Tumor 8.1 76.2
TCGA-BH-A18R TCGA-BH-A18R-11A-42R-A12D-07 Normal 7.5 70.5
TCGA-BH-A18S TCGA-BH-A18S-01A-11R-A12D-07 Tumor 6.3 66.0
TCGA-BH-A18S TCGA-BH-A18S-11A-43R-A12D-07 Normal 4.6 45.1
TCGA-BH-A18U TCGA-BH-A18U-01A-21R-A12D-07 Tumor 6.4 67.8
TCGA-BH-A18U TCGA-BH-A18U-11A-23R-A12D-07 Normal 4.5 46.0
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TCGA-BH-A18V TCGA-BH-A18V-01A-11R-A12D-07 Tumor 6.7 68.0
TCGA-BH-A18V TCGA-BH-A18V-11A-52R-A12D-07 Normal 5.2 52.2
TCGA-BH-A1EN TCGA-BH-A1EN-01A-11R-A13Q-07 Tumor 7.0 73.1
TCGA-BH-A1EN TCGA-BH-A1EN-11A-23R-A13Q-07 Normal 8.5 79.1
TCGA-BH-A1ET TCGA-BH-A1ET-01A-11R-A137-07 Tumor 10.4 98.8
TCGA-BH-A1ET TCGA-BH-A1ET-11B-23R-A137-07 Normal 9.1 82.4
TCGA-BH-A1EU TCGA-BH-A1EU-01A-11R-A137-07 Tumor 11.9 105.9
TCGA-BH-A1EU TCGA-BH-A1EU-11A-23R-A137-07 Normal 3.7 35.2
TCGA-BH-A1EV TCGA-BH-A1EV-01A-11R-A137-07 Tumor 6.1 61.8
TCGA-BH-A1EV TCGA-BH-A1EV-11A-24R-A137-07 Normal 10.0 90.0
TCGA-BH-A1F0 TCGA-BH-A1F0-01A-11R-A137-07 Tumor 12.0 106.9
TCGA-BH-A1F0 TCGA-BH-A1F0-11B-23R-A137-07 Normal 7.7 73.2
TCGA-BH-A1F2 TCGA-BH-A1F2-01A-31R-A13Q-07 Tumor 8.0 76.6
TCGA-BH-A1F2 TCGA-BH-A1F2-11A-32R-A13Q-07 Normal 9.3 82.3
TCGA-BH-A1F8 TCGA-BH-A1F8-01A-11R-A13Q-07 Tumor 8.5 81.4
TCGA-BH-A1F8 TCGA-BH-A1F8-11B-21R-A13Q-07 Normal 3.6 38.6
TCGA-BH-A1FC TCGA-BH-A1FC-01A-11R-A13Q-07 Tumor 8.4 83.1
TCGA-BH-A1FC TCGA-BH-A1FC-11A-32R-A13Q-07 Normal 3.5 36.8
TCGA-BH-A1FD TCGA-BH-A1FD-01A-11R-A13Q-07 Tumor 8.0 77.0
TCGA-BH-A1FD TCGA-BH-A1FD-11B-21R-A13Q-07 Normal 8.2 67.9
TCGA-BH-A1FE TCGA-BH-A1FE-01A-11R-A13Q-07 Tumor 8.4 83.5
TCGA-BH-A1FE TCGA-BH-A1FE-11B-14R-A13Q-07 Normal 8.5 66.0
TCGA-BH-A1FG TCGA-BH-A1FG-01A-11R-A13Q-07 Tumor 6.5 62.9
TCGA-BH-A1FG TCGA-BH-A1FG-11B-12R-A13Q-07 Normal 7.2 56.4
TCGA-BH-A1FH TCGA-BH-A1FH-01A-12R-A13Q-07 Tumor 8.8 75.5
TCGA-BH-A1FH TCGA-BH-A1FH-11B-42R-A13Q-07 Normal 4.0 44.0
TCGA-BH-A1FJ TCGA-BH-A1FJ-01A-11R-A13Q-07 Tumor 8.7 77.2
TCGA-BH-A1FJ TCGA-BH-A1FJ-11B-42R-A13Q-07 Normal 10.5 87.3
TCGA-BH-A1FM TCGA-BH-A1FM-01A-11R-A13Q-07 Tumor 8.1 67.4
TCGA-BH-A1FM TCGA-BH-A1FM-11B-23R-A13Q-07 Normal 8.0 72.4
TCGA-BH-A1FN TCGA-BH-A1FN-01A-11R-A13Q-07 Tumor 4.9 47.1
TCGA-BH-A1FN TCGA-BH-A1FN-11A-34R-A13Q-07 Normal 8.5 82.0
TCGA-BH-A1FU TCGA-BH-A1FU-01A-11R-A14D-07 Tumor 5.3 52.5
TCGA-BH-A1FU TCGA-BH-A1FU-11A-23R-A14D-07 Normal 4.0 39.6
TCGA-BH-A203 TCGA-BH-A203-01A-12R-A169-07 Tumor 8.0 68.5
TCGA-BH-A203 TCGA-BH-A203-11A-42R-A169-07 Normal 7.9 61.7
TCGA-BH-A204 TCGA-BH-A204-01A-11R-A157-07 Tumor 10.8 101.1
TCGA-BH-A204 TCGA-BH-A204-11A-53R-A157-07 Normal 7.7 66.6
TCGA-BH-A208 TCGA-BH-A208-01A-11R-A157-07 Tumor 6.5 67.1
TCGA-BH-A208 TCGA-BH-A208-11A-51R-A157-07 Normal 7.8 73.2
TCGA-BH-A209 TCGA-BH-A209-01A-11R-A157-07 Tumor 8.6 80.1
TCGA-BH-A209 TCGA-BH-A209-11A-42R-A157-07 Normal 7.6 72.0
TCGA-E2-A153 TCGA-E2-A153-01A-12R-A12D-07 Tumor 4.0 44.7
TCGA-E2-A153 TCGA-E2-A153-11A-31R-A12D-07 Normal 4.9 47.7
TCGA-E2-A15I TCGA-E2-A15I-01A-21R-A137-07 Tumor 6.7 60.2
TCGA-E2-A15I TCGA-E2-A15I-11A-32R-A137-07 Normal 5.3 46.4
TCGA-E2-A1IG TCGA-E2-A1IG-01A-11R-A144-07 Tumor 5.6 56.4
TCGA-E2-A1IG TCGA-E2-A1IG-11A-22R-A144-07 Normal 4.4 44.1
TCGA-E2-A1L7 TCGA-E2-A1L7-01A-11R-A144-07 Tumor 4.4 45.3
TCGA-E2-A1L7 TCGA-E2-A1L7-11A-33R-A144-07 Normal 5.6 54.7
TCGA-E2-A1LB TCGA-E2-A1LB-01A-11R-A144-07 Tumor 5.4 54.3
TCGA-E2-A1LB TCGA-E2-A1LB-11A-22R-A144-07 Normal 5.8 55.5
TCGA-E2-A1LH TCGA-E2-A1LH-01A-11R-A14D-07 Tumor 3.8 34.9
TCGA-E2-A1LH TCGA-E2-A1LH-11A-22R-A14D-07 Normal 4.3 44.1
TCGA-E2-A1LS TCGA-E2-A1LS-01A-12R-A157-07 Tumor 7.8 55.8
TCGA-E2-A1LS TCGA-E2-A1LS-11A-32R-A157-07 Normal 8.2 67.7
TCGA-E9-A1N4 TCGA-E9-A1N4-01A-11R-A14M-07 Tumor 9.6 93.1
TCGA-E9-A1N4 TCGA-E9-A1N4-11A-33R-A14M-07 Normal 8.2 72.4
TCGA-E9-A1N5 TCGA-E9-A1N5-01A-11R-A14D-07 Tumor 4.3 42.9
TCGA-E9-A1N5 TCGA-E9-A1N5-11A-41R-A14D-07 Normal 3.2 32.3

Continued on next page
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Table C.1 -- Continued from previous page

Patient ID Sample ID Tumor/Normal size(GB) #Reads(M)

TCGA-E9-A1N6 TCGA-E9-A1N6-01A-11R-A144-07 Tumor 5.0 50.0
TCGA-E9-A1N6 TCGA-E9-A1N6-11A-32R-A144-07 Normal 5.6 49.2
TCGA-E9-A1N9 TCGA-E9-A1N9-01A-11R-A14D-07 Tumor 5.9 48.8
TCGA-E9-A1N9 TCGA-E9-A1N9-11A-71R-A14D-07 Normal 7.6 58.8
TCGA-E9-A1NA TCGA-E9-A1NA-01A-11R-A144-07 Tumor 7.1 76.3
TCGA-E9-A1NA TCGA-E9-A1NA-11A-33R-A144-07 Normal 5.8 59.4
TCGA-E9-A1ND TCGA-E9-A1ND-01A-11R-A144-07 Tumor 5.0 48.2
TCGA-E9-A1ND TCGA-E9-A1ND-11A-43R-A144-07 Normal 5.0 52.3
TCGA-E9-A1NF TCGA-E9-A1NF-01A-11R-A14D-07 Tumor 5.3 45.1
TCGA-E9-A1NF TCGA-E9-A1NF-11A-73R-A14D-07 Normal 6.5 53.2
TCGA-E9-A1NG TCGA-E9-A1NG-01A-21R-A14M-07 Tumor 7.6 79.9
TCGA-E9-A1NG TCGA-E9-A1NG-11A-52R-A14M-07 Normal 5.2 52.6
TCGA-E9-A1R7 TCGA-E9-A1R7-01A-11R-A14M-07 Tumor 8.1 63.3
TCGA-E9-A1R7 TCGA-E9-A1R7-11A-42R-A14M-07 Normal 8.0 60.7
TCGA-E9-A1RB TCGA-E9-A1RB-01A-11R-A157-07 Tumor 9.0 87.9
TCGA-E9-A1RB TCGA-E9-A1RB-11A-33R-A157-07 Normal 8.3 77.2
TCGA-E9-A1RC TCGA-E9-A1RC-01A-11R-A157-07 Tumor 9.6 92.4
TCGA-E9-A1RC TCGA-E9-A1RC-11A-33R-A157-07 Normal 8.0 73.5
TCGA-E9-A1RD TCGA-E9-A1RD-01A-11R-A157-07 Tumor 9.1 86.7
TCGA-E9-A1RD TCGA-E9-A1RD-11A-33R-A157-07 Normal 8.4 78.4
TCGA-E9-A1RF TCGA-E9-A1RF-01A-11R-A157-07 Tumor 7.6 71.6
TCGA-E9-A1RF TCGA-E9-A1RF-11A-32R-A157-07 Normal 6.7 60.7
TCGA-E9-A1RH TCGA-E9-A1RH-01A-21R-A169-07 Tumor 8.7 77.5
TCGA-E9-A1RH TCGA-E9-A1RH-11A-34R-A169-07 Normal 7.8 59.7
TCGA-E9-A1RI TCGA-E9-A1RI-01A-11R-A169-07 Tumor 8.5 70.3
TCGA-E9-A1RI TCGA-E9-A1RI-11A-41R-A169-07 Normal 8.0 67.9
TCGA-GI-A2C8 TCGA-GI-A2C8-01A-11R-A16F-07 Tumor 7.6 72.2
TCGA-GI-A2C8 TCGA-GI-A2C8-11A-22R-A16F-07 Normal 8.3 81.5
TCGA-A7-A13E TCGA-A7-A13E-01A-11R-A12P-07 Tumor 5.4 50.7
TCGA-A7-A13E TCGA-A7-A13E-11A-61R-A12P-07 Normal 5.4 48.8
TCGA-A7-A13F TCGA-A7-A13F-01A-11R-A12P-07 Tumor 5.5 57.0
TCGA-A7-A13F TCGA-A7-A13F-11A-42R-A12P-07 Normal 5.8 52.4
TCGA-BH-A0AU TCGA-BH-A0AU-01A-11R-A12P-07 Tumor 5.3 52.1
TCGA-BH-A0AU TCGA-BH-A0AU-11A-11R-A12P-07 Normal 5.9 53.6
TCGA-BH-A0BZ TCGA-BH-A0BZ-01A-31R-A12P-07 Tumor 7.0 75.3
TCGA-BH-A0BZ TCGA-BH-A0BZ-11A-61R-A12P-07 Normal 6.2 62.8
TCGA-BH-A0DL TCGA-BH-A0DL-01A-11R-A115-07 Tumor 8.6 78.0
TCGA-BH-A0DL TCGA-BH-A0DL-11A-13R-A115-07 Normal 7.9 71.7
TCGA-BH-A0H5 TCGA-BH-A0H5-01A-21R-A115-07 Tumor 5.9 63.0
TCGA-BH-A0H5 TCGA-BH-A0H5-11A-62R-A115-07 Normal 5.4 52.5
TCGA-BH-A1EO TCGA-BH-A1EO-01A-11R-A137-07 Tumor 3.5 39.8
TCGA-BH-A1EO TCGA-BH-A1EO-11A-31R-A137-07 Normal 10.6 105.2
TCGA-BH-A1EW TCGA-BH-A1EW-01A-11R-A137-07 Tumor 5.5 58.1
TCGA-BH-A1EW TCGA-BH-A1EW-11B-33R-A137-07 Normal 11.0 99.2
TCGA-BH-A1F6 TCGA-BH-A1F6-01A-11R-A13Q-07 Tumor 4.7 48.7
TCGA-BH-A1F6 TCGA-BH-A1F6-11B-94R-A13Q-07 Normal 8.8 78.2
TCGA-BH-A1FB TCGA-BH-A1FB-01A-11R-A13Q-07 Tumor 9.2 76.5
TCGA-BH-A1FB TCGA-BH-A1FB-11A-33R-A13Q-07 Normal 4.6 44.4
TCGA-BH-A1FR TCGA-BH-A1FR-01A-11R-A13Q-07 Tumor 4.0 43.5
TCGA-BH-A1FR TCGA-BH-A1FR-11B-42R-A13Q-07 Normal 4.8 44.1
TCGA-E2-A158 TCGA-E2-A158-01A-11R-A12D-07 Tumor 7.3 67.8
TCGA-E2-A158 TCGA-E2-A158-11A-22R-A12D-07 Normal 4.0 39.0
TCGA-E2-A15M TCGA-E2-A15M-01A-11R-A12D-07 Tumor 12.9 107.7
TCGA-E2-A15M TCGA-E2-A15M-11A-22R-A12D-07 Normal 4.8 49.3
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Table C.2: The first page of the list of 5088 genes with AAR in at least 10 patients
identified in Chapter 4. The 1st column lists the genomic coordinates of AAR, the
2nd (4th) column lists the number of patients with the higher (lower) AAR inclusion
ration in tumor than normal. The 3rd and 5th columns give the average inclusion ratio
difference between tumor and normal samples in the patients. The last column lists
the gene name provided in Refseq database. The table was sorted by the maximum
value of column 2 and 4.

region # IT>IN ave(IT-IN) # IT<IN ave(IT-IN) RefGene name
chr14:69345175-69345240 0 0.00 103 -0.30 ACTN1;
chr3:13663275-13663415 0 0.00 102 -0.49 FBLN2;
chr9:124043748-124043840 96 0.53 2 -0.14 GSN;
chr15:74466087-74466360 2 0.36 92 -0.39 ISLR;
chr2:174123427-174123543 92 0.25 0 0.00 ZAK;
chr10:93000241-93000337 1 0.13 91 -0.30 PCGF5;
chr5:33751303-33751508 0 0.00 91 -0.40 ADAMTS12;
chr9:123631853-123632122 90 0.30 1 -0.15 PHF19;
chr1:207963598-207963690 0 0.00 88 -0.26 CD46;
chr6:56507420-56507694 7 0.21 88 -0.36 DST;
chr2:238678586-238678635 1 0.14 87 -0.28 LRRFIP1;
chr9:117808689-117808961 86 0.38 3 -0.15 TNC;
chr3:37132958-37133029 2 0.16 84 -0.37 LRRFIP2;
chr3:57911572-57911661 2 0.19 84 -0.28 SLMAP;
chr14:73745989-73746132 84 0.33 4 -0.19 NUMB;AX747833;
chr12:56558153-56558431 84 0.29 0 0.00 SMARCC2;
chr2:64069014-64069338 1 0.14 82 -0.28 UGP2;
chr5:38445578-38445780 3 0.24 82 -0.37 EGFLAM;
chr19:49605431-49605442 8 0.15 81 -0.24 SNRNP70;
chr15:89422649-89423841 1 0.16 81 -0.23 HAPLN3;
chr15:64429767-64430240 0 0.00 81 -0.33 SNX1;
chrX:102942917-102943086 0 0.00 81 -0.23 MORF4L2;
chr17:48828003-48828055 81 0.28 4 -0.14 LUC7L3;
chr8:95470496-95470664 80 0.41 0 0.00 RAD54B;
chr11:131240371-131240783 0 0.00 79 -0.49 NTM;
chrX:154124352-154124507 3 0.17 79 -0.22 F8;
chr14:36157665-36157746 3 0.26 78 -0.36 RALGAPA1;
chr2:173366500-173366629 3 0.22 78 -0.27 ITGA6;
chr12:56554410-56554454 9 0.14 77 -0.26 MYL6;
chr6:42016239-42016610 4 0.22 77 -0.37 CCND3;
chr2:120885264-120885427 2 0.23 77 -0.38 EPB41L5;
chr7:138738711-138738841 1 0.22 77 -0.25 ZC3HAV1;
chr10:105770574-105770666 77 0.43 7 -0.16 SLK;
chr1:51435642-51436029 1 0.10 77 -0.22 CDKN2C;
chr3:100549422-100549478 0 0.00 77 -0.27 ABI3BP;
chr5:134686517-134686603 1 0.17 77 -0.23 H2AFY;AX747819;
chr1:25570125-25570715 4 0.23 76 -0.32 C1orf63;
chr2:161993466-161993574 3 0.33 76 -0.43 TANK;
chr5:177635540-177635916 3 0.17 76 -0.25 AGXT2L2;
chr11:47493655-47493742 1 0.13 76 -0.22 CELF1;
chr11:85342189-85342360 0 0.00 76 -0.26 TMEM126B;
chr1:54723742-54723822 76 0.25 1 -0.20 SSBP3;
chr1:155294368-155294378 76 0.24 1 -0.25 RUSC1;
chr3:123401071-123401157 76 0.32 14 -0.22 MYLK;
chrX:15843929-15845495 4 0.16 75 -0.29 AP1S2;
chr10:95152674-95152712 3 0.23 75 -0.29 MYOF;
chr11:1874200-1874427 75 0.43 4 -0.13 LSP1;
chr8:103032465-103032517 75 0.38 2 -0.24 NCALD;
chr13:28891635-28891734 0 0.00 74 -0.20 FLT1;BC048278;
chr9:116353613-116353677 74 0.33 6 -0.19 RGS3;
chr15:63353397-63353472 74 0.31 4 -0.16 TPM1;AK055197;
chr3:37402734-37402796 74 0.27 2 -0.33 GOLGA4;
chr11:111835273-111835402 74 0.33 4 -0.13 DIXDC1;
chr8:15977927-15978115 0 0.00 74 -0.23 MSR1;
chr17:49053224-49053262 2 0.19 73 -0.41 SPAG9;
chr11:82745315-82745606 0 0.00 73 -0.25 RAB30;
chr17:30693684-30693776 0 0.00 73 -0.24 ZNF207;MIR632;
chr19:7150508-7150543 0 0.00 73 -0.34 INSR;
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