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In sensor networks, adaptive algorithms such as diffusion adaptation LMS and

RLS are commonly used to learn and track non-stationary signals. When such sig-

nals have similarities across certain nodes as captured by a graph, then Laplacian

Regularized (LR) LMS and diffusion adaptation LR LMS can be utilized for the

respective centralized and distributed estimation cases. What if the ground truth

signal’s time-varying co-variance structure is related to a time-varying graph? And

what if there exists outlier/anomaly nodes trying to influence the graph signal?

In order to answer these questions, we first re-examine the existing adaptive meth-

ods, and use graph signal processing notions to augment the algorithms with an ad-

ditional graph filtering step for regularization. We also study a distributed adaptive

algorithm based on message passing that does not require any global information and

scales to large time-varying graphs. In particular, each node augments adaptive fil-

tering steps with an additional local filtering steps based on a Local Graph Transform

(LGT) defined by the particular node’s local graph Laplaican.

Moreover, we demonstrate how to design these graph filters, leading to perfor-

mance improvements over existing methods. We also analyze the stability and con-

vergence of our methods and illustrate how the empirical performance is captured by

the theoretical results which unveil the bias and variance trade-off.



Finally, we examine the problem of estimating and tracking non-stationary sig-

nals and outliers in noisy streaming data emanating from both static and time-varying

graphs. In conjunction with adaptive algorithms and optimization methods, we in-

corporate the LGT approach and outlier estimation. Through simulations and theo-

retical performance analysis we demonstrate the efficacy of this LGT-based approach,

which is scalable and suitable for handling large time-varying graphs.
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CHAPTER 1

Introduction

Making sense of large amounts of data is a core challenge of signal processing.

Distributed adaptive estimation, e.g., Least Mean Squares (LMS) [1–4] and Recur-

sive Least Square (RLS) [5–8] principles, offers a potential approach to tackling this

challenge. Distributed estimation relies only on local information and collaboration

with the neighbors to attain the centralized performance while reducing the com-

plexity. Moreover, due to its scalability and robustness, distributed estimation has

been greatly used in many fields, e.g., sensor networks [9], social networks [10], brain

response modelling [11] and biological networks [12], etc.

When the signals being estimated can be interpreted as emanating from an under-

lying graph structure, then graph signal processing (GSP) methods offer additional

tools for analysis and design [13–17]. The Graph Fourier Transform (GFT) has re-

cently emerged as a promising method for processing graph-based signals [18–21]. Re-

searchers have exploited GSP in many applications such as sensor networks [22], big

data analysis [23], brian imaging [24,25], image processing [26–29], signal classification

[30], denoising [31–34], signal reconstruction and sampling [35–39] and anomaly de-

tection [40]. The fundamental tools of GSP such as graph sampling [15,32,37,41–44],

1



2

graph filtering [45–47], graph frequency analysis [48, 49] and optimal graph filter de-

sign [45–47,50–53] have been developed in recent years.

How does one design systems to estimate and track non-stationary signals emanat-

ing from graph/network structures, and buried in noise? How does one simultaneously

estimate possible additional outliers signals that might be of interest, e.g., outliers

injected maliciously into some of the graph nodes. What if the graph is not fixed,

but is time-varying, e.g., the edge weights describing the graph Laplacian are chang-

ing? And how does one tackle these issues with computationally efficient and scalable

solutions whose performance can be analytically characterized prior to deployment?

To address these challenges, researchers have proposed a number of solutions that

contain various mixes of adaptation and learning, distributed computation, optimiza-

tion, and graph theory. For example several variations of adaptive filters have been

proposed for tracking non-stationary signals with noise and outliers, with distributed

solutions proposed to handle either sensor network applications, or effect efficient

parallel computations [3, 54–57]. When one can interpret the multiple streams as

having emanated from a graph/network structure that captures similarities between

streams, then additional methods such as graph-based total variation penalization

can be incorporated into adaptation and learning methods [18,58].

However, these approaches have limitations when one wants to scale to large

numbers of streams (and hence large graphs), and time-varying graphs in which the

relations between streams are changing, or nodes are added/removed to/from the

graph. For example, GSP methods often rely upon eigen-decomposition which be-

come computationally expensive for very large graphs, and for time-varying graphs.

Clearly methods that can handle large time-varying graphs are welcome. What about
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identifying the outliers? While robust PCA methods explicitly identify the outlier

components in data , it is not clear how to efficiently update such models for streaming

data.

1.1 Our Approaches and Contributions

We first examine adaptive estimation methods such as Least-Mean-Square (LMS)

and Recursive Least-Square (RLS) within the framework of graph signal processing.

Such methods are popular for learning and tracking non-stationary signals in sensor

networks, e.g., weather stations exchanging data and tracking environmental condi-

tions. When a graph Laplacian matrix captures the similarities of the signal being

sensed across nodes, then Laplacian Regularized (LR) LMS and LR RLS can provide

estimation and tracking performance improvements. A natural question is whether

GSP can be utilized to obtain additional performance improvements. We affirma-

tively answer this question by first interpreting the centralized algorithm LR LMS

within GSP, with the regularization step viewed as a certain graph filtering operation.

Then we demonstrate how to design optimal graph filters for this task with the caveat

that the practitioner needs to know a signal of interest’s maximum possible energy

at each graph frequency.

Furthermore, we are interested in solutions that can scale to large time-varying

network. We re-examine the distributed estimation of non-stationary signals with

a penalty term now based on a time-varying graph Laplacian. We decompose the

centralized cost into a sum of local costs at each node k, with node k’s cost based

on its local time-varying Laplacian. We introduce a Local Graph Transform (LGT)

approach to designing local filters within the diffusion adaptation LMS and RLS
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paradigm. This leads to a solution in which each node k only requires local infor-

mation collected from its neighbors, and no global knowledge, meaning that our new

method can scale to large time-varying graphs. We provide simulation and analytical

performance bounds that demonstrate that this purely distributed solution is better

than a centralized solution.

For both the centralized and distributed cases, we study the analytical stability

and convergence, obtaining the theoretical mean squared deviation which illuminates

how our graph filter-endowed methods achieve performance gains by trading off bias

and variance. Simulation results confirm the attainment of the theoretical perfor-

mance measures, and also illustrate the performance advantage of our methods over

existing methods.

We further examine the fundamental challenge of estimating and tracking both

non-stationary signals defined over time-varying graphs and outliers. We assume

that the non-stationary ground truth signal follows a random walk model in which

the correlated random step is connected to the time-varying graph structure and a

random subset of nodes is perturbed by outliers signals that must be estimated as

well. To address this challenge, we incorporate the LGT filters into an optimization-

based adaptation and learning method. We provide a theoretical performance analysis

regarding both stability and mean squared deviation that provide useful bounds and

guidance to the practitioner. Through simulations, we demonstrate the efficacy of

this approach in estimating and tracking both non-stationary ground truth signals

and outliers signals in noise.
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1.2 Organization of This Dissertation Proposal

The remainder of this proposal is organized as follows. In Chapter 2, we review the

LR LMS and provides global/centralized graph filters for LR LMS with performance

analysis. We also provide the global/centralized graph filter endowed distributed dif-

fusion adaptation implementation with performance analysis and simulation results.

In Chapter 3, we decompose the centralized Laplacian regularization LMS and

RLS cost into the sum of local costs. We introduce for each node k, an LGT-based

local filters and study the diffusion adaptation LMS and RLS strategies incorporating

the LGT filters in the estimation of the graph based signal. We provide performance

analysis and simulations that demonstrate that this purely distributed solution is

better than distributed LMS and RLS with traditional penalty based methods.

Chapter 4 examine the fundamental challenge of estimating and tracking both

non-stationary signals and outlier signals from noisy data from time-varying graphs.

Through simulations, we demonstrate the efficacy of this approach in estimating

and tracking both non-stationary ground truth signals and outlier signals in noise.

Furthermore, we provide a theoretical performance analysis regarding both stability

and mean squared deviation.

Chapter 5 explains the future direction of this research work followed by the

conclusion of this dissertation.



CHAPTER 2

Graph Signal Estimation

2.1 Centralized Graph Signal Estimation

Consider a sensor network with N nodes. At time i, node k has the measurement

data {yk(i), uk(i)} such that

yk(i) = uk(i)x
o
k + ek(i) (2.1)

in which xok is the node k’s true signal and ek(i) is node k’s measurement noise.

For simplicity, we consider yk(i) and uk(i) to be a scalars, though the extension to

multivariate/vector data is straightfoward. Suppose we consider the streams simul-

taneously by defining stacked vectors {yi, Ui} in which yi = {y1(i); . . . ; yN(i)}N×1,

Ui = diag{u1(i); . . . ;uN(i)}N×N . Then network aggregate measurement is

yi = Uix
o + ei (2.2)

where ei = {e1(i); . . . ; eN(i)}N×1 and xo is the ground truth network signal, xo =

{xo1; . . . ;xoN}N×1. The goal of the network is to estimate xo. The network cost function

becomes

Jglob(x) = E∥yi −Uix∥
2 (2.3)

6
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where x is the estimate of xo. Eq.(2.3) can be solved using straightforward Least

Squares. LMS achieves the solution in an iterative manner for the centralized case

and via pareto diffusion adaptation [59] in a distributed manner. These adaptive

methods are more suitable for tracking non-stationary xoi . Now let assume that

the normalized graph Laplacian matrix describing the similarities among the ground

truth signal at different nodes/streams is given by L = IN −D− 1
2WD− 1

2 where D is

a diagonal matrix, [D]k,k = ∑
N
l=1[W ]k,l and W is a weighted adjacency matrix. We

assume that the ground truth is a non-stationary signal that evolves according to a

random walk model with the initial ground truth signal xo0, and that the random step

qi is a random perturbation:

xoi = xoi−1 + qi. (2.4a)

Here qi is a zero mean Gaussian random vector with covariance matrix cL† where

c is a non negative constant. Such random walk models are useful for studying the

theoretical tracking ability of learning and adaptation algorithms [1], [4]. In this case,

this model captures the fact that the ground truth signal’s evolution is connected to

a graph. We define the convex Laplacian regularization function as,

h(xoi ) =
N

∑
k=1

∑
`∈Nk

[W ]`,k

2
∣
xok(i)√
dk

−
xo`(i)√
d`

∣2,∀i. (2.5)

where Nk is a set of node k’s neighbors. Using (2.5), we modify the network cost

function from (2.3) as follows,

JRglob(xi) = E∥yi −Uixi∥
2 + βh(xi) (2.6)

in which β is a non-negative regularization parameter. We add the Laplacian reg-

ularizer to the LMS cost in (2.3) to minimize the total variation across the net-
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work, [18], [48], [31] and [32] etc. Using stochastic gradient methods, we get the

solution for (2.6) as,

ψi = xi−1 + µU
∗
i (yi −Uixi−1) (2.7a)

xi = (IN − βL)ψi (2.7b)

where µ is a non-negative step-size, ψi is an intermediate estimate of xoi and xi is the

estimate of xoi at time i. Using the Graph Fourier Transform, we interpret (2.7b) as

a graph filter. Then we will show how to design an optimal graph filter to achieve

better performance.

2.1.1 Graph Frequency Response Design and Global Graph

Filtering

The Laplacian of the unidrected network can be written as L = V ΛV T where

V is the eigenvector matrix of L and V T is denoted as a Graph Fourier Transform

(GFT) matrix and Λ is the diagonal eigenvalue matrix with 0 = λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ ≤ λN . In

GFT domain, the eigenvalues are denoted as GFT frequencies with λ1 and λN as the

lowest and highest frequencies, respectively. From [60] and [57], the regularization

parameter β can be designed adaptively by minimizing the following cost function

min
β

E∥xoi − (IN − βL)ψi∥
2. (2.8)

From (2.8), we can write

E∥xoi − (IN − βL)ψi∥
2 = E∥xoi − (IN − βV ΛV T )ψi∥

2

= E∥V Txoi − (IN − βΛ)V Tψi∥
2. (2.9)
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Let foi and Ψi be the GFT frequency representation of xoi and ψi, respectively, i.e.,

foi = V Txoi and Ψi = V Tψi. We denote foi (λn) and Ψi(λn) are the frequency repre-

sentations of xoi and ψi at frequency λn. Hence, the cost function in (2.8) can be

rewritten as

min
β

N

∑
n=1

E∣foi (λn) − (1 − βλn)Ψi(λn)∣
2 (2.10)

From [60] and [57], the solution to Eq. (2.10) is

β(i) = max{
2(∑

N
n=1 λnΨi(λn)2 − η)

∑
N
n=1 λ

2
nΨi(λn)2

,0} (2.11)

where η is a threshold for the regularization function. Now we modify (2.7b) as

xi = (IN −Gi)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Global graph filter.

ψi (2.12)

in whichGi is a graph operator withGi = VΘiV T in which Θi = diag{θ1(i), . . . , θN(i)}.

We denote θn(i) as the frequency response of the graph filter Gi at the frequency λn.

Since λ1 = 0, we use θ1(i) = 0. Then (2.8) can be rewritten as

min
θn

E∣foi (λn) − (1 − θn)Ψi(λn)∣
2, n ∈ {2, . . .N}. (2.13)

Let ηn be the maximum energy ∣foi (λn)∣
2 of xoi , ∀i at frequency λn. Assume the

network has ηn for n ∈ {2, . . .N} and for a given Ψi(λn), θn(i) can be calculated as

θn(i) = max{1 −
ηn

Ψi(λn)2
,0} ≤ θmax (2.14)

in which θmax is the maximum frequency response derived in Section 2.2.2.

Theorem 1 For a given intermediate estimates ψi of xoi at time i > 0, the graph

filter frequency response design using (2.14) can achieve the estimator performance

gain over calculating the regularization parameter β(i) from (2.11).

E∥xoi − (IN −Gi)ψi∥
2 ≤ E∥xoi − (IN − β(i)L)ψi∥

2 (2.15)
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in which β(i) and Gi are calculated using (2.11) and (2.14), respectively.

proof: 1 From (2.10), we can rewrite

N

∑
n=1

E ∣foi (λn) − (1 − βλn)Ψi(λn)∣
2
=

N

∑
n=1

E ∣foi (λn) −Ψi(λn)∣
2
+ β2

N

∑
n=1

λ2
nEΨi(λn)

2

+ β
N

∑
n=1

λnE (foi (λn) −Ψi(λn))Ψi(λn) (2.16)

and Eq. (2.11) calculates β such that

β(i)
N

∑
n=1

λ2
nΨi(λn)

2 +
N

∑
n=1

λnE (foi (λn) −Ψi(λn))Ψi(λn) ≤ 0. (2.17)

However, from Eq. (2.17), it can be seen that for some n,

β(i)λ2
nΨi(λn)

2 + λnE (foi (λn) −Ψi(λn))Ψi(λn) ≰ 0. (2.18)

However, from (2.13) and (2.14), we have

θn(i)Ψi(λn)
2 +E (foi (λn) −Ψi(λn))Ψi(λn) ≤ 0, ∀n. (2.19)

Therefore, using (2.17), (2.18) and (2.19), it can be written as

N

∑
n=1

(θn(i)Ψi(λn)
2 +E (foi (λn) −Ψi(λn))Ψi(λn))

≤ β(i)
N

∑
n=1

(λ2
nΨi(λn)

2 + λnE (foi (λn) −Φi(λn))Ψi(λn)) . (2.20)

Therefore, we conclude that with the proposed the frequency response θn(i) using

(2.14), the estimator can achieve a better performance than using the existing method

(2.11). We complete the proof for Theorem 1. ◻

We denote (2.7) using the frequency response design from (2.14) as the Global Graph

Filtering GGF algorithm which is given in Algorithm 1.
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Algorithm 1 Global Graph Filtering (GGF)

Initialize x−1 = 0. The network has the eigenvector V of L and has η̄ = {η1, . . . , ηN}.
For i ≥ 0 do

1. The network has {yi, Ui}.

2. Perform ψi = xi−1 + µU∗
i (yi −Uixi−1) .

3. Find the filter responses. Ψi = V Tψi.
For n = 2 to N do

θn(i) = max{1 − ηn
Ψi(λn)2 ,0} ≤ θmax.

End.

4. xi = (IN −Gi)ψi where Gi = VΘiV T and Θi = diag{0, θ2(i), . . . , θN(i)}.

End.

2.2 Performance of Global Graph Filtering

2.2.1 Stability and Mean Convergence

Before we analyze the mean and the mean square performance of the GGF al-

gorithm, we examine the steady state behavior of the network estimator xi. Using

(2.7a) and (2.12), we write the GGF algorithm in a recursion as

xi = (IN −Gi) (IN − µU∗
i Ui)xi−1 + µ (IN −Gi)U

∗
i yi

= (IN −Gi) (IN − µU∗
i Ui)xi−1 + µ (IN −Gi)U

∗
i Uix

o
i + µ (IN −Gi)U

∗
i ei (2.21)

For simplicity, we assume EGi = G. Let Ru,i = EU∗
i Ui and ERu,i = Ru. Taking

expectation to the both side of (2.21), we arrive at,

Exi = (IN −G) (IN − µRu)Exi−1 + µ (IN −G)RuExoi (2.22)

We limit

∥ (IN −Gi) (IN − µRu) ∥ < 1,∀i (2.23)
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and select the maximum filter response such that

θmax <
1 + ρ (IN − µRu)

ρ (IN − µRu)
(2.24)

where ρ(.) is the spectral radius of a matrix. From (2.4), we have Eqi = 0 and

Exoi = Exoi−1. Let x̄o is the mean of the non-stationary true network signal where

Exoi = x̄o for all i. Then using (2.23), we obtain the convergence in (2.22) as follows,

Ex∞ = lim
i→∞

Exi

= x̄o − (IN − (IN −G) (IN − µRu))
−1
Gx̄o.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
True signal rejected by GGF.

(2.25)

<∞. (2.26)

Observe that the estimator xi converges to the weighted sum of the true signal filtered

through the global graph filter. Therefore, when the graph filter response can repre-

sent the GFT frequency representation of the true signal V T x̄o then (IN −G) x̄o ≈ x̄o.

For example, the energy of V T x̄o lies only in the low frequencies and the graph filter

we use is a the low pass graph filter then we can achieve

Ex∞ ≈ x̄o (2.27)

and the estimator becomes asymptotic unbiased.

2.2.2 Error Recursion and Bias

From previous analysis, the GGF algorithm some bias. Here we will study the

steady state behavior of the network estimation error. Introduce the network’s esti-

mation error, x̃ = xoi − xi. Using the expression in (2.21), the estimation error can be
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expressed in a recursion form,

x̃i = xoi − (IN −Gi) (IN − µRu,i)xi−1 − µ (IN −Gi)Ru,ix
o
i − µ (IN −Gi)U

T
i ei

= (IN −Gi) (IN − µRu,i) x̃i−1 − (IN −Gi) (IN − µRu,i)xoi−1

+ (IN − µ (IN −Gi)Ru,i)xoi − µ (IN −Gi)U
T
i ei

= (IN −Gi) (IN − µRu,i) x̃i−1 +Gix
o
i + (IN −Gi) (IN − µRu,i)qi − µ (IN −Gi)U

T
i ei

(2.28)

Taking expectation to the both side (2.28), the expected error recursion becomes

Ex̃i = (IN −G) (IN − µRu)Ex̃i−1 +Gx̄o. (2.29)

With the stability condition in (2.23), the expected estimation error of the GGF

algorithm can be written as,

Ex̃∞ = lim
i→∞

Ex̃i

≈ (IN − (IN −G) (IN − µRu))
−1
Gx̄o

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Weighted sum of true signal rejected by GGF.

<∞. (2.30)

Note that the bias of the estimator is the weighted sum of the true signal components

rejected by the global graph filter. Therefore, one can select an appropriate graph

filter which represents the true underlying structure of the graph signal, thereby,

reducing the estimator’s bias.

2.2.3 Mean-Square Stability

Now, we study the steady state mean square behaviour of the GGF algorithm.

Let ∥x̃i∥2 be the squared deviation of the network’s estimation error at time i. From
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(2.28), the squared deviation can be expressed as

E∥x̃i∥
2 = E∥ (IN −Gi) (IN − µRu,i) x̃i−1∥

2 + 2E tr ((IN −Gi) (IN − µRu,i) x̃i−1x
oT

i Gi)

+E∥Gix
o
i ∥

2 + µ2E∥ (IN −Gi)U
T
i ei∥

2 +E∥ (IN −Gi) (IN − µRu,i)qi∥
2 (2.31)

where tr(.) is the trace of a matrix. Let B = (IN −G) (IN − µRu). From (2.29), we

find the square of the expected error as,

∥Ex̃i∥
2 = tr (B (Ex̃i−1) (Ex̃i−1)

T
BT +Gx̄ox̄o

T

GT + 2BEx̃i−1x̄
oTGT) . (2.32)

Let EeieTi = Σ and EqiqTi = c L†. By comparing (2.32) with (2.31), we get

E∥x̃i∥
2 = tr

⎛

⎝
BE (x̃i−1x̃

T
i−1)B

T + (Ex̃i) (Ex̃i)
T
−B (Ex̃i−1) (Ex̃i−1)

T
BT + c BL†BT

+ µ2 (IN −G)RuΣ (IN −G)
T
+E(Gi (x

o
i − x̄o) (xo

T

i − x̄o)
T
Gi)

⎞

⎠
. (2.33)

From (2.4), the true signal xoi can be written as,

xoi = xo0 +
i

∑
j=0

qj. (2.34)

We assume E (Giqj) = 0 for i ≠ j. Therefore,

E (Gi (x
o
i − x̄o) (xo

T

i − x̄o)
T
Gi) = G(E (qiq

T
i )G. (2.35)

Then, we conclude the mean square error in the steady state as,

E∥x̃∞∥2 ≈ ∥Ex̃∞∥2

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
bias squared.

+µ2
∞
∑
j=0

tr(Bj(IN −G)RuΣ(IN −G)BjT )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error due to the measurement noise.

+c
∞
∑
j=0

tr(Bj(I − µ(I −G)Ru)L
†(I − µ(I −G)Ru)

TBjT ).

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error due to the non-stationary data model.

(2.36)

Let MSDg be the network mean-sqaure deviation of the GGF algorithm defined as,

MSDg =
1

N
E∥x̃∞∥2 <∞. (2.37)
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2.3 Distributed Global Graph Filtering

In this section, we are interested in to find the distributed implementation of the

centralized graph signal estimation in (2.7). We add the graph filtering step at each

node in the diffusion adaptation algorithm [3]. Each node k has the kth row of the

eigenvector matrix V and with extra message passing, each node k performs GGF in

a distributed manner. At time i, each node k has {yk,i, Uk,i} where yk,i is an N × 1

vector with yk(i) at the kth element and zero elsewhere. One can see that the network

measurement signal yi = ∑
N
k=1 yk,i. Let Uk,i be an N × N matrix with uk(i) at the

kth diagonal element and zero elsewhere, Ui = ∑
N
k=1Uk,i. Node k is trying to learn the

entire graph signal xoi . Let xk,i be node k’s estimate of xoi and fk,i = V Txk,i. Rewrite

(2.6) as the sum of local costs in a GFT domain as

min
fk,i,∀k

∑
l∈Nk

a
(1)
`k E∥y`i −U`iV fk,i∥

2 + ∑
`∈Nk∖{k}

a
(2)
`k ∥fk,i − f`i∥

2 + fTk,iΘfk,i (2.38)

in which a
(1)
`k and a

(2)
`k are non-negative coefficients. Let Vk be an N ×N matrix whose

the kth row contains the kth row of V and zero elsewhere, V = ∑
N
k=1 Vk. We denote Vk

as node k’s GFT coefficient matrix. As Uk,i has a non-zero element only at the kth

diagonal, one can easily verify that Uk,iV = Uk,iVk. We find the solution for (2.38) as,

Ψ k,i = fk,i−1 + µk ∑
`∈Nk

a
(1)
`k V

T
` U

T
`i(y`i −U`iV`fk,i−1) (2.39a)

Φk,i = ∑
`∈Nk

a
(2)
`k Ψ `i (2.39b)

fk,i = (IN −Θk,i)Φk,i (2.39c)

in which µk is a non-negative step size and Ψ k,i and Φk,i are node k’s intermediate

estimates of foi . Each node designs its frequency response Θk,i using (2.14). Now we
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need to transform fk,i in the frequency domain back to xk,i to a vertex domain. Since

each node k does not have complete knowledge of the GFT transform matrix V T ,

instead each node k has the kth row of V , using the message passing, each node k

find xk,i. Let us introduce the cost function

min
xk,i,∀k

E∥xk,i − ∑
`∈Nk

a
(3)
`k V`fk,i∥

2 + ∑
`∈Nk∖{k}

a
(4)
`k ∥xk,i − x`i∥

2 (2.40)

where a
(3)
`k and a

(4)
`k are non-negative coefficients. We get

ψk,i = x`i−1 −Mk(x`i−1 − ∑
`∈Nk

a
(3)
`k V`f`i) (2.41a)

xk,i = ∑
`∈Nk

a
(4)
`k ψ`i. (2.41b)

Since ∑`∈Nk
V`f`i returns non-zero elements at the ` ∈ Nk elements, we use a diagonal

matrix, Mk with a non-negative step size µ̃k at the ` ∈ Nk diagonal elements and zeros

elsewhere. ψk,i is node k’s intermediate estimate. In (2.41a), each node k exchanges

fk,i and Vk with its neighbors and update ψk,i. Then, exchange ψk,i with its neighbors

to update xk,i. We denote (2.39) and (2.41) as the Distributed Global Graph Filtering

(DGGF) detailed in Algorithm 2.

2.4 Performance of Distributed Global Graph Fil-

tering

2.4.1 Stability and Bias

In this section, we analyze the stability conditions for the DGGF algorithm. Let

A1, A2 andA3 are weighted adjacency matrices, where [A]l,k = al,k, ∑
N
l=1 al,k = 1, al,k =

0,∀l ∉ Nk. Let Qi = diag{Θ1,i; . . . ; ΘN,i}N2×N2 ,

Si = diag{V T
1 U

T
1,i; . . . ;V

T
N U

T
N,i}N2×N2 ,
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Algorithm 2 Distributed Global Graph Filtering (DGGF) Alg.

Initialize xk,−1 = 0 and fk,−1 = 0 for all k ∈ N . Each node k has a set of neighbors Nk
and access to V` ` ∈ Nk. Each node has ηn for n ∈ {2, . . . ,N}.
For i ≥ 0 and k = 1 to N do

1. Each node k has {yk,i, Uk,i}.

2. Exchange {yk,i, Uk,i} with the neighbors.

3. Ψk,i = fk,i−1 + µk∑`∈Nk
a
(1)
`,kV

T
` U

T
`i(y`,i −U`,iV`fk,i−1).

4. Exchange Ψk,i with the neighbors.

5. Φk,i = ∑`∈Nk
a
(2)
`k Ψ`,i.

6. Find the filter responses.

For n = 2 to N do

θk,n(i) = max{1 − 1ηn
Φk,i(λn)2 ,0} ≤ θk,max.

End.

7. fk,i = (IN −Θk,i)Φk,i, Θk,i = {0, θk,2(i), . . . , θk,N(i)}.

8. %k,i = xk,i−1 − µ̃k(xk,i−1 −∑`∈Nk
V`fk,i).

9. Exchange %k,i with the neighbors.

10. xk,i = ∑`∈Nk
a
(3)
`k %`i.

End.
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Ṽ = diag{∑l∈N1
Vl; . . . ;∑l∈NN

Vl}N2×N2 , µ = µk for all k and M1 = µIN2 .

M2 = diag{M1; . . . ;MN}N2×N2 . Let f̃di and x̃di be the network estimation error of

DGGF algorithm in the GFT domain and the vertex domain, respectively, at time i,

i.e.,

f̃di = {foi − f1,i; . . . ; f
o
i − fN,i}N2×1, x̃di = {xoi − x1,i; . . . ;x

o
i − xN,i}N2×1 (2.42)

where foi = V
Txoi . From Eq. (2.39) and (2.41), we can write

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f̃di

x̃di

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(IN2 −Qi)A
T
2 (IN2 −M1SiS

T
i ) Ø

M2A
T
3 Ṽ AT4 (IN2 −M2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f̃di−1

x̃di−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Qi(1N ⊗ foi )

0N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(IN2 −Qi)A
T
2 (IN2 −M1SiS

T
i ) (IN2 −Qi)A

T
2 Si)

Ø Ø

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1N ⊗ qi)

(1N ⊗ ei)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.43)

where Ø is an N ×N all zero matrix, 0N and 1N are an N ×N all-zero matrix, an N ×1

all-zero vector and an N × 1 all-one vector, respectively. Let ESi = Si. Since Eei = 0N

and Eqi = oN and Efoi = f̄o = V T x̄o, the expected value of Eq. (2.43) becomes

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ef̃di

Ex̃di

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(IN2 −Qi)A
T
2 (IN2 −M1SS

T ) Ø

M2A
T
3 Ṽ AT4 (IN2 −M2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ef̃di−1

Ex̃di−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Qi(1N ⊗ f̄o)

0N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(2.44)

In Eq. (2.44), we select

∥ (IN2 −Qi)A
T
2 (IN2 −M1SS

T ) ∥ < 1; ∥M2A
T
3 Ṽ∥ < 1; ∥AT4 (IN2 −M2)∥ < 1, ∀i.

(2.45)
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and hence, we have Eq.(2.44) converges in the steady state. From (2.44), we conclude

that,

Ef̃d∞ = lim
i→∞

Ef̃di

≈
∞
∑
j=0

(
∞
∏
t=j+1

((IN2 −Qt)A
T
2 (IN2 −M1SS

T ))Qj (1N ⊗ f̄o)) <∞. (2.46)

Ex̃d∞ = lim
i→∞

Ex̃di

≈ (IN2 −AT4 (IN2 −M2))
−1
M2A

T
3 Ṽ Ef̃d∞ <∞. (2.47)

2.4.2 Mean-Square Stability

Let Bi = (IN2 −Qi)A
T
2 (IN2 −M1SS

T ). From Eq. (2.43), we obtain the steady

state mean-squared deviation of the DGGF algorithm as follows;

E∥f̃d∞∥2 = lim
i→∞

E∥f̃di ∥
2

= ∥Ef̃∞∥2

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
bias squared.

+ c
∞
∑
j=0

tr (
∞
∏
t=j+1

Bt ((Bj +Qj) (1N1TN ⊗L†
j) (Bj +Qj)

T
)

i

∏
t=j+1

BTt )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error due to the non-stationary data model.

+
∞
∑
j=0

tr (
∞
∏
t=j+1

Bt (IN2 −Qj)A
T
2 S (1N1TN ⊗Σ)STA2 (IN2 −Qj)

i

∏
t=j+1

BTt )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error due to the measurement noise.

(2.48)

Using the above expression, we can express the network mean-square deviation in

steady state, MSDd as,

MSDd =
1

N2
E∥f̃d∞∥2 <∞. (2.49)

2.5 Experiment

To evaluate the performance of the proposed algorithm, we consider an undirected

network with 30 nodes randomly distributed over a plane. The network Laplacian L
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is formed from the weighted Euclidean distances between the nodes. We generate the

initial true network signal xo0 is drawn from a Gaussian distribution with N (10, L†).

We use the non-stationary data model in (2.4) with qi as a zero mean Gaussian

with the variance of 0.001L†. We set µk = 0.7, µ̃k = 1 for all k, µ =
µk
N , θmax = 1.

a
(1)
l,k = δl,k where δ is the Kronecker delta function. a

(2)
l,k = a

(3)
l,k = 1

Nk
. Each node k has a

maximum 6 neighbors within the radius of 0.3. We assume Ui = IN and at each time i,

the network observes yi = xoi+ei. We compare the MSD results of our methods; Global

Graph Filtering Algorithm (GGF) in Alg.1 and Distributed Global Graph Filtering

Algorithm (DGGF) in Alg.2 with the traditional LMS and Laplacian Regularized

LMS with the regularized parameter design from [60] and [57] denoted as LR-LMS.

The simulation results are averaged over 100 runs. Figure 2.1 (a) and (b) show the

network topology and the MSD comparisons between the mentioned algorithms. Note

that our methods; GGF and DGGF achieve the theoretical MSD values in (2.37) and

(2.49), respectively. As we can see the convergence rate of the DGGF algorithm is

slower than the global algorithms. However, after an efficient information exchange,

the DGGF can be viewed as N parallel graph filters that are less sensitive to noise

and hence, its MSD value outperforms the centralized algorithms.

2.6 Conclusion

In this chapter, we examine Regularized LMS in both centralized and distributed

settings, and use GSP notions to design the improved adaptive algorithms. Simulation

results show the benefits of the design and the achievement of analytical performance

values. In the following chapters, we focus on graph signal estimation on time-varying

graphs.
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Figure 2.1: (a) Network Topology. The nodes’ color represent the distribution of the
true graph signal. (b) MSD comparison on traditional Least-Mean-Square (LMS),
Laplacian-Regularized LMS with traditional regularized parameter design from [60]
and [57] (LR-LMS), Global Graph Filtering (GGF in Alg.1) and Distributed Global
Graph Filtering (DGGF in Alg.2). The dashed and dotted lines represent the corre-
sponding theoretical MSD values calculated using Eq. (2.37) and (2.49), respectively.
(µ = 0.7, SNR = −15.25dB and the graph signal are generated using (2.4) and qi as
a zero mean Gaussian random vector with the covariance matrix of 0.001L†.



CHAPTER 3

Graph Signal Estimation and Local Graph

In previous chapter, we examined such a Laplacian Regularized LMS (LR-LMS)

scenario within the GSP framework, connecting the penalty term to graph filtering.

However, when the graph is time varying, repeatedly computing the eigenbasis of a

large graph is computationally expensive. We are interested in solutions that can

scale to large numbers of nodes.

We start by re-examining the distributed estimation of non-stationary signals with

a penalty term now based on a time-varying graph Laplacian. We decompose the

centralized cost into a sum of local costs at each node k, with node k’s cost based

on its local time-varying Laplacian. We introduce a Local Graph Transform (LGT)

approach to designing local filters within the diffusion adaptation paradigm. This

leads to a solution in which each node k only requires local information collected

from its neighbors, and no global knowledge, meaning that our new method can scale

to large time-varying graphs.

22
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3.1 Signal Estimation in Local Graph with LMS

Strategy

First, let us rewrite the global regularization function (2.5) in a local form such

that h(xoi ) = ∑
N
k=1 hk(x

o
i ). Each hk is a local node k penalty function given by

hk(x
o
i ) = ∑

`∈Nk

[W ]`,k

2
∣
xok(i)√
dk

−
xo`(i)√
d`

∣2 (3.1)

in which dk = [D]k,k and w`,k = [W ]`,k and Nk is a set of node k’s neighbors. We

Algorithm 3 Local qausi-Laplacian from Normalized Global Laplacian

Node k knows its neighbors global ID.
For i > 0 and k = 1 to N do

1) Each node k knows w`,k for all l ∈ Nk.
2) Calculate dk = ∑`∈Nk

w`,k.
3) Form local weighted adjacency matrix, [Alk]`,k = [Alk]k,` =

w`,k

2 .

4) Find the local weighted degree matrix, Dl
k = diag (A

l
k1N).

5) Each node k exchanges dk with neighbors.
6) Form [Dk]`,` = d` for ` ∈ Nk.

7) Form an N ×N local qausi-Laplacian Lk =D
− 1

2

k (Dl
k −A

l
k)D

− 1
2

k .
End

introduce the local Laplacian Lk at node k, an N ×N solely from the vantage point

of node k, i.e., a star network. Each node k constructs its Local Laplacian Lk using

Algorithm 3. Figure 3.1 has the example of forming local graphs from the global

Laplacian. We re-write each node k’s local penalty from (3.1) using its local Laplcain

Lk as,

hk(x
o
i ) = xo

T

i Lkx
o
i . (3.2)

One can verify that the expression in Eq.(3.1) and (3.2) are equivalent. When we

consider time-varying network, Eq.(3.1) becomes

hk,i(x
o
i ) = xo

T

i Lk,ix
o
i (3.3)



24

1

d1

2

d2

3d3 4 d4

5 d5w1,2

w1,3
w2,4

w3,4

w2,5

Undirected Network

L =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−w1,2√
d1

√
d2
− w1,3√

d1

√
d3

0 0−w1,2√
d1

√
d2

1 0
−w2,4√
d2

√
d4

−w2,5√
d2

√
d5− w1,3√

d1

√
d3

0 1
−w3,4√
d3

√
d4

0

0
−w2,4√
d2

√
d4

−w3,4√
d3

√
d4

1 0

0
−w2,5√
d2

√
d5

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦5×5´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Normalized Global Laplacian.

1

d1

2

3d3 4

5

w′
1,3

Weighted Edge Changes in Local Graph

• w1,3 changes to w′
1,3.

• d1 and d3 changes.

• Therefore, L1, L2, L3 and L4 change.

1

d1

2

3d3 4 d4

5
w1,3

w3,4

node 3’s Local Graph

S3 =
⎡⎢⎢⎢⎢⎢⎢⎣

0.5
−w1,3

2
√
d1

√
d3
− w3,4

2
√
d3

√
d4−w1,3

2
√
d1

√
d3

w1,3

2d1
0−w3,4

2
√
d3

√
d4

0
w3,4

2d4

⎤⎥⎥⎥⎥⎥⎥⎦3×3

L3 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1,3

2d1
0

−w1,3

2
√
d1

√
d3

0 0

0 0 0 0 0−w1,3

2
√
d1

√
d3

0 0.5 − w3,4

2
√
d3

√
d4

0

0 0 − w3,4

2
√
d3

√
d4

w3,4

2d4
0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦5×5

1 2

3

6

d3

d6

4

5

w3,6

Add node 6

• Add node 6 to the network.

• d3 changes.

• Therefore, L1, L3 and L4 changes.

1 2

d2

3 4

5 d5

w2,5

node 5’s Local Graph

S5 = ⎡⎢⎢⎢⎣
0.5

−w2,5

2
√
d2

√
d5−w2,5

2
√
d2

√
d5

w2,5

2d2

⎤⎥⎥⎥⎦2×2

L5 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
w2,5

2d2
0 0

−w2,5

2
√
d2

√
d5

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0

−w2,5

2
√
d2

√
d5

0 0 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦5×5

1 2 d2

3

6

4

Delete node 5

• Delete node 5 from the network.

• d2 changes.

• Therefore, L1, L2 and L4 changes.

Figure 3.1: Example of local star graph and local Laplacian from global normalized
Laplacian.
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and the network Laplacian at time i, Li = ∑
N
k=1Lk,i and hk,i(xoi ) is denoted as node

k’s local penalty function at time i. At time i, each node k has {yk,i, Uk,i} where yk,i

is an N ×1 vector with yk(i) at the kth element and zero elsewhere, yi = ∑
N
k=1 yk,i. Let

Uk,i be an N ×N matrix with uk(i) at the kth diagonal element and zero elsewhere,

Ui = ∑
N
k=1Uk,i. Node k is trying to learn the entire graph signal xoi . We define node

k’s local cost as

Jdistk (xk,i) = ∑
`∈Nk,i

a
(1)
`,k (i)E∥y`,i −U`,ixk,i∥

2 + ∑
`∈Nk,i∖{k}

a
(2)
`,k (i)∥xk,i − x`,i∥

2 + βkhk,i(xk,i)

(3.4)

in which Nk,i is a set of node k’s neighbors at time i and Nk,i = ∣Nk,i∣ and xk,i is node

k’s estimate of xoi , βk is node k’s non-negative regularization parameter and a
(1)
`,k (i)

and a
(2)
`,k (i) are non-negative coefficients where ∑`∈Nk,i

a`,k(i) = 1, a`,k(i) = 0, ∀` ∉ Nk,i.

Then, the global cost (2.6) is the sum of local costs in (3.4), i.e.,

JRglob(xi) =
N

∑
k=1

Jdistk (xk,i). (3.5)

We write the solution for (3.4) in three steps; Adapting, Combining and Filtering

(ACF). The steps can be altered.

φk,i = xk,i−1 + µk ∑
`∈Nk,i

a
(1)
`,k (i)U

T
`,i(y`,i −U`,ixk,i−1) (3.6a)

ϕk,i = ∑
`∈Nk,i

a
(2)
`,k (i)φ`,i (3.6b)

xk,i = (IN −Gk,i)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

DLMS-LGT filter.

ϕk,i. (3.6c)

Instead of using the GFT, we introduce a Local Graph Transform (LGT) for each

node k using its local Laplacian, Lk,i. In (3.6c), we denote (I −Gk,i) as a node k’s
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DLMS-LGT filter, with the design of Gk,i = βkLk,i reverting to the ordinary local

penalty. The key is to design Gk,i to improve performance.

3.1.1 Local Laplacian and Local Graph Transform

In Chapter 2, we interpreted a similar equation as a graph filtering step that can

be greatly improved by a graph frequency design. However, with very large time-

varying graphs, repeatedly computing global eigenbases is costly. Therefore, here we

introduce a Local Graph Transform (LGT) approach with the LGT for each node k

based on its local Laplacian At time i, each node k has its local Laplacian Lk,i which

has only Nk,i non-zero rows, columns, and diagonal elements. Let Pk,i be a N ×Nk

suitable permutation matrix of node k at time i and

Lk,i = Pk,iSk,iP
T
k,i (3.7)

where Sk,i is a small-scale local Laplacian matrix of size Nk,i ×Nk,i corresponding to

a star network structure. The eigen decomposition of Sk,i can be written as

Sk,i = Vk,iΛk,iV
T
k,i (3.8)

in which Λk,i = diag{λk,1(i), . . . λk,Nk
(i)} is ascending. We denote V T

k,i as an Nk,i×Nk,i

Local Graph Transform matrix of node k at time i and λk,1(i), . . . , λk,Nk
(i) are denoted

as the LGT eigenvalues of node k. We define Gk,i in (3.6c) as

Gk,i = Pk,iVk,iΘk,iV
T
k,iP

T
k,i (3.9)

where Θk,i = diag{θk,1(i), . . . , θk,Nk
(i)} and θk,n(i) is denoted as an LGT filter re-

sponse with respect to the λk,n(i) eigenvalue. For an ordinary local penalty, θk,n(i) =
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βkλk,n(i). Using (3.9), we can rewrite (3.6c) as

xk,i = (IN − Pk,iVk,iΘk,iV
T
k,iP

T
k,i)ϕk,i. (3.10)

From (3.10), each node k needs to know the Nk,i eigenvectors of its time-varying

local Laplacian Lk,i. We assume each node k knows the change from Lk,i−1 to Lk,i

for all i. Therefore, the eigendecompositions are for small scale square matrices of

dimension Nk,i, and not of dimension N , meaning that the method scales to large

scale time-varying graphs.

3.1.2 Local Graph Transform Filter Response Design

Similar to the GFT frequency response design in Section 2.1.1, node k finds the

LGT filter response by minimizing the following cost,

min
θk,i

E ∥xoi − (IN − Pk,iVk,iΘk,iV
T
k,iP

T
k,i)ϕk,i∥

2
,∀k. (3.11)

Let fok,i and Φk,i be the representation of xoi and ϕk,i in node k’s LGT such that

fok,i = V
T
k,iP

T
k,ix

o
i and Φk,i = V T

k,iP
T
k,iϕk,i. We denote fok,i(λk,n) as the LGT representation

of xoi at the λk,n(i) eigenvalue. Rewrite (3.11) as

min
θk,n(i)

E∣fok,i (λk,n) − (1 −wk,n(i)))Φk,i(λk,n)∣
2. (3.12)

Assume node k has ζk,n, the upper limit for the energy ∣fok,i(λk,n)∣
2 for all n. At time

i, for a given Φk,i node k calculates its LGT filter response as, [60], [57],

θk,n(i) = max{1 −
ζk,n

Φk,i(λk,n)2
,0} ≤ θmax (3.13)

in which θmax is the maximum LGT filter response derived in Section 3.2.2. We

denote (3.6) with the filter response design from (3.13) as Local Graph Transform
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Algorithm 4 Distributed Least Mean Square Strategy with Local Graph Transform
(DLMS-LGT)

Initialize xk,0 = 0,∀k and node k has ζk,n, n ∈ {1, . . .Nk,i}.
For i > 0 and k = 1 to N do

1. Each node finds the neighbors Nk,i and has Lk,i.

2. Each node k has {yk,i, Uk,i}.

3. Exchange {yk,i, Uk,i} with the neighbors.

4. φk,i = xk,i−1 + µk∑`∈Nk,i
a
(1)
`,k (i)U

T
`,i(y`,i −U`,ixk,i−1)

5. Exchange {φk,i} with the neighbors.

6. ϕk,i = ∑`∈Nk,i
a
(2)
`,k (i)φ`,i.

7. If Lk,i ≠ Lk,i−1, Compute Vk,i.

8. Find the local filter response.

For n = 1 to Nk,i do

θk,n(i) = max{1 −
1ζk,n

Φk,i(λk,n)2 ,0} ≤ θmax, where Φk,i = V T
k,iP

T
k,iϕk,i

End.

Θk,i = diag{θk,1(i), . . . , θk,Nk,i
(i)}.

9. xk,i = (IN − Pk,iVk,iΘk,iV T
k,iP

T
k,i)ϕk,i.

End.
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Filtering which is given in Algorithm 4.

Remarks: With LGT, one gains the advantage of a transform domain-based filter for

enforcing local signal smoothness with respect to a local graph within the learning and

adaptation algorithms. The node k LGT is based on a local Lk,i eigendecomposition,

which must be re-computed with each local Laplacian change (edge addition, deletion,

or weight change). This would incur a local cost of O(N3
k ). If N̄k denotes the average

number of nearest neighbors, then the worst case LGT updating cost is O(N ∗ N̄k
3
),

assuming every node has to perform updating, with a lower cost if the graph variations

are more localized at each updating instance. Updating the GFT requires O(N3)

which is much higher, considering that N̄k ≪ N . When a edge weight changes in

the network, LGT can update the local eigen pair with the cost of O(N̄k
4
). For

example, w`,k changes in the network effects changes d` and dk which are used in

node ` and node k’s neighbors local Laplacian. Therefore, we need to recompute

the eigen decomposition of at most 2N̄k nodes’ Laplacian. Also LGT can efficiently

update any adding/removing the node from the network. For example, we add node

m to the network and node m is connected to node k, therefore, dk changes and

since dk is used in node k’s neighbors’ Laplacian. Therefore, adding/removing a node

to the graph will effect changes the node’s neighbors and their neighbors. Hence,

the computation cost becomes O(N̄k
5
). The detail complexity comparison between

the Global Laplacian update and the normalized and un-normlaized LGT update for

time-varying networks is given Table 3.1.

Also note that at initialization, each node k should have some application knowledge

regarding ζk,n, the maximum possible signal energy with respect to each eigenvalue

index, though this curve need not be updated during runtime, as it is assumed that
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Time Varying Centralized Normalized Un-normalized
Network Laplacian LGT LGT

the eigen decomposition
of the network

O(N3) O(N.N̄3
k ) O(N.N̄3

k )
1 edge weight changes. O(N3) O (min (N.N̄3

k , N̄
4
k)) O (N̄3

k)
m edge weights change. O(N3) O (min (N.N̄3

k ,
∗mN̄3

k)) O (mN̄3
k)

1 node added/ removed. O(N3) O (min (N.N̄3
k , N̄

5
k)) O (min (N.N̄3

k , N̄
4
k))

∗m is the total number of nodes effects by the edge weights change.

Table 3.1: Computational complexity comparison of the eigen computation between
the centralized Laplacian , nomarlized LGT and un-normalized LGT in time varying
network. Note that N̄k is the average number of neighbors in the network.

the non-stationary signal is smooth with respect to the graph, even though the graph

is time-varying.

3.2 Performance of DLMS-Local Graph Transform

3.2.1 Stability and Mean Convergence

To study the steady state behavior of the learning in the network using the pro-

posed DLMS-LGT algorithm, let Xi = {x1,i; . . . ,xN,i}N2×1,

Yi = {y1,i; . . . ,yN,i}N2×1,

Ui = diag{U1,i; . . . , UN,i}N2×N2 ,

Ri = diag{UT
1,iU1,i; . . . , UT

N,iUN,i}N2×N2 ,

X o
i = 1N ⊗ xoi , εi = 1N ⊗ ei, Qi = 1N ⊗ qi,

A1,i = A1,i⊗ IN and A2,i = A2,i⊗ IN where ⊗ is the Kronecker product of the matrices

A1,i and A2,i are weighted adjacency matrices where [A]l,k = al,k, ∑
N
l=1 al,k = 1, al,k =
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0,∀l ∉ Nk. Let µ = µk for all k and from (2.4), we have

Yi = UiX
o
i + εi (3.14)

Gi = diag{IN − P1,iV1,iΘ1,iV
T

1,iP
T
1,i, . . . , IN − PN,iVN,iΘN,iV

T
N,iP

T
N,i}.A

T
2,i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Network DLMS-LGT filters.

(3.15)

Note that we refer Gi as the network DLMS-LGT filters in later analysis. Now we

write Eq.(3.6) in a recursion form as,

Xi = Gi(I − µA
T
1,iRu,i)Xi−1 + µGiA

T
1,iRu,iX

o
i + µGiA

T
1,iUiεi (3.16)

where I is an N2 ×N2 identity matrix. Let ERu,i = Ru, EUi = Ui, X̄ o = 1N ⊗ x̄o and

we have EQi = 0, then, we find the expected value of the above recursion as

EXi = Gi (I − µAT1,iRu)EXi−1 + µGiA
T
1,iRuX̄

o

= µ
i

∑
j=0

(
i−1

∏
t=j+1

Gt (I − µA
T
1,tRu))GjA

T
1,jRuX̄

o

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
True signal accepted by the network DLMS-LGT filters.

(3.17)

For stability of (3.17), we need

∣∣Gi (I − µA
T
1,iRu) ∥ < 1,∀i. (3.18)

Therefore, we select µ and each node k’s filter response such that

0 ≤ θmax <
1 − ρ (1 + µRu)

ρ (1 − µRu)
(3.19)

then, we can conclude limi→∞EXi <∞. From (3.17), notice that the LGT base graph

signal estimation is a biased estimator and it converges to the weighted sum of the

true signal after passing through the DLMS-LGT filters. In the next section, we will

study the asymptotic convergence of the bias and the mean square behavior.
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3.2.2 Error Recursion and Bias

Let x̃k,i be the estimation error of node k in the LGT algorithm where

x̃k,i = xoi − xk,i. (3.20)

and we define the network estimation error as X̃i = {x̃1,i; . . . ; x̃N,i}. Using the recursion

in (3.16), we have

X̃i = Gi (I − µA
T
1,iRu,i) X̃i−1 + (I − Gi)X

o
i + Gi (I − µA

T
1,iRu,i)Qi − µGiA

T
1,iUiεi (3.21)

With (3.21), we obtain the expected network estimation error as,

EX̃i = Gi (I − µAT1,iRu)EX̃i−1 + (I − Gi) X̄
o (3.22)

Once again, with ∥Gi (I − µAT1,iRu) ∥ < 1, the steady state expected error is

EX̃∞ = lim
i→∞

EX̃i

=
∞
∑
j=0

(
∞
∏
t=j+1

Gt ((I − µA
T
1,tRu)) (I − Gj) X̄

o.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
True signal rejected by network DLMS-LGT filters.

<∞. (3.23)

Notice that the expected learning error is the weighted sum of any true signal rejected

from the network DLMS-LGT filters.

3.2.3 Mean-Square Stability

Let us explore the mean squared behavior of the LGT based graph signal estima-

tion. Let Bi = Gi (I − µAT1,iRu,i). From (3.21), we can write the mean-squared of the

estimation error as

E∥X̃i∥
2 = E∥BiX̃i−1∥

2 +E∥ (I − Gi)X
o
i ∥

2 +E∥BiQi∥
2 + µ2E∥GiA

T
1,iUiεi∥

2

+ 2tr (Bi (EX̃i−1) X̄
oT (I − Gi)

T
) (3.24)
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From (3.22), the square of the expected estimation error is

(EX̃i) (EX̃i)
T
= Bi (EX̃i−1) (EX̃i−1)

T
BTi

+ (I − Gi) X̄
oX̄ oT (I − Gi)

T
+ 2tr (Bi (EX̃i−1) X̄

oT (I − Gi)
T
) (3.25)

Comparing the two expressions from (3.25) and (3.26) and following from the mean

square derivation of the GGF algorithm in Section 2.2.3, we arrive the steady state

mean square error of the LGT method as

E∥X̃∞∥2 = lim
i→∞

E∥X̃i∥2
≈ ∥EX̃∞∥2´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

bias squared

+ tr⎛⎝
∞∑
j=0

⎛⎝
∞∏

t=j+1

Bt⎞⎠GjAT1,jRu (1N1TN ⊗Σ)AT1,iGTj ⎛⎝
∞∏

t=j+1

BTt ⎞⎠⎞⎠´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error due to the measurement noise.

+ c tr⎛⎝
∞∑
j=0

⎛⎝
∞∏

t=j+1

Bt⎞⎠(I − µGjAT1,jRu) (1N1TN ⊗L†
j) (I − µGjAT1,jRu)⎛⎝

∞∏
t=j+1

BTt ⎞⎠⎞⎠´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error due to the non-stationary data model.

(3.26)

where E (εiεTi ) = cL
†
i and EQiQT

i = (1N1TN ⊗EqiqTi ) and EqiqTi = Σ. Let MSDl be

the mean square deviation of the network defined as,

MSDl =
1

N2
E∥X̃∞∥2 <∞. (3.27)

Next, we compare the steady state mean square error of the LGT based DLMS method

with the traditional diffusion unbiased DLMS. For the sake of simplicity, we assume

the network is static and from (3.15), we set Ωk,i = 0 for all i and k, thereby, removing

the regularization and Gi = I. Let B = (I − µAT1R). We get the mean squared error
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of the traditional diffusion LMS as

E∥X̃ lms
i ∥2 = tr (

i

∑
j=0

Bi−jAT1Ru (1N1TN ⊗Σ)AT1 B(i−j)
T

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error due to the measurement noise.

+ c tr (
i

∑
j=0

Bi−j+1 (1N1TN ⊗L†
j)B(i−j+1)T ) .

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error due to the non-stationary data model.

(3.28)

Let assume the DLMS-LGT filters in (3.15) are static, G = Gi. Let dn(i) be the

difference between the error components due to the measurement from (3.26) and

(3.28) respectively, i.e.,

dn(i) = tr
⎛

⎝

i

∑
j=0

(B
i−j
t GA

T
1Ru (1N1TN ⊗Σ)AT1 G

TB
(i−j)T
t

−Bi−jAT1Ru (1N1TN ⊗Σ)AT1 B(i−j)
T

)
⎞

⎠

= tr (
i

∑
j=0

(GTB
(i−j)T
t B

i−j
t G −B(i−j)

T

Bi−j)AT1Ru (1N1TN ⊗Σ)AT1 )

≤ tr (
i

∑
j=0

(GTB
(i−j)T
t B

i−j
t G −B(i−j)

T

Bi−j))

= (
i

∑
j=0

((GBi−jG)
T
(GBi−jG) −B(i−j)

T

Bi−j)) (3.29)

where B = GB and we can limit each node k’s filter response wmax to obtain ∥G∥ ≤ 1

and then achieve dn(i) ≤ 0 for all i. Next, we compare the two error components due

to the non-stationary data model from (3.26) and (3.28) as,

dns(i) = ctr (
i

∑
j=0

(I − µGA1Ru)
T
Bj

T

Bi−j (I − µGA1Ru) −B(i−j)
T

Bj)(1N1TN ⊗L†
j)

≤ tr (
i

∑
j=0

(I − µGA1Ru)
T

B(i−j)
T

GTGBi−j (I − µGA1Ru) −B(i−j)
T

Bi−j)

≤ 1, ∀i. (3.30)
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Therefore, we conclude that by allowing biased estimator with non-zero network

DLMS-LGT filters Gi, we can achieve the lower errors due to the measurement noise

and the non-stationary signal model than that of the traditional unbiased estimator.

3.3 Experiments

3.3.1 Experiment using Synthetic Data

Here, we reconsider the undirected network from Section 2.5. We set µ̃k = 1 for all

k, µ =
µk
N , µk = 0.8. We set a

(1)
l,k = a

(4)
l,k = δl,k where δ is the Kronecker delta function.

a
(2)
l,k = a

(3)
l,k = a

(5)
l,k = 1

Nk
. Each node k has a maximum 6 neighbors within the radius of

0.3. We assume Ui = IN and at each time, the network observes yi = xoi + ei with an

SNR of −5dB. We compare the MSD results of the Distributed LMS-Local Graph

Transform (DLMS-LGT) Alg. 4 with the traditional LMS and and the Global Graph

Filtering (GGF) Alg.1 for both the slowly and rapidly varying graph signal model.

Table 3.2 mentions the initials for the compared algorithms used in the figures. We

Algorithm Initials
Traditional Least-Mean-Square LMS
Global Graph Filtering Alg.1 GGF

Distributed Laplacian Reguarlized LMS Dist.LR-LMS
Distributed LMS with Local Graph Transform Alg.4 DLMS-LGT

Table 3.2: Algorithms and Initials used in Figures

generate the slowly varying graph signal using (2.4) with the covariance matrix of qi

as 0.0025L† and use 0.01L† for rapidly varying graph signal. The simulation results

are averaged over 100 runs. Figure 3.2 shows the MSD comparisons between the

LMS, GGF and LGT algorithms. Note that the GGF and DLMS-LGT algorithms
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achieve the theoretical MSD values in (2.37) and (3.27). We also tested the proposed

DLMS-LGT method in time varying graphs. At time Jn, the graph randomly changes

10% of the edges and Jn are drawn from the Poission distribution with the average

of 1 per 100 iteration. Figure 3.3 shows the MSD compariosn between the three

algorithms with time varying graphs. As we learn that the proposed DLMS-LGT

algorithm outperforms the global/centralized algorithms in all the test cases.

3.3.2 Experiment on Real-World Data

We tested the proposed algorithms; Global Graph Filtering (GGF) in Alg. 1,

Distributed Global Graph Filtering (DGGF) in Alg. 2 and the DLMS-Local Graph

Transform in Alg.4 on the average temperature recorded over 50 weather stations

across the Florida, USA between January 1st, 2010 and December 31st, 2010 [61].

From [62], the weather station’s temperature are correlated between the stations with

similar elevation rather than their geographical distance. Therefore, we selected the

weather stations across the Florida since the elevation difference across the Florida

can be ignored. We randomly selected 50 weather stations out of 150 stations from the

dataset, [61]. We form the network by connecting the nearest geographical distance

stations with the maximum neighbors of 5. We set µk = 0.5 and the other parameters

are the same as in synthetic data simulation. We run 100 iteration per each day.

The MSD results are averaged over 100 simulations. The station network topology

and true temperature value are shown in Figure 3.4 (a) and (b), respectively. Figure

3.4 (c) shows the MSD comparisons between the traditional LMS, GGF, DGGF and

DLMS-LGT. Each algorithm’s initial is mentioned in Table 3.2 . Figure 3.5 shows the
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Figure 3.2: MSD Comparison. The algorithm initials are mentioned in Table 3.2. The
dotted and dashed lines are the calculated theoretical MSD values of the respective
algorithms, (2.37) and (3.27). (µ = 0.7, SNR = −5dB and the graph signal are gener-
ated using (2.4) with qi as a zero mean Gaussian random vector with the covariance
matrix of (a): 0.01L† and (b): 0.0025L†.
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Figure 3.3: MSD Comparison on time varying graph. At J1, . . . , J7, the graph changes
10% of the edges and Jn are drawn from the Poission distribution with the average
of 1 per 100 iterations.

tracking abilities of GGF and DLMS-LGT in comparison with the traditional LMS.

We do not show the tracking abilities of DGGF algorithm since it is the distributed

implementation of GGF and the results are similar to GGF. As we expected, the

proposed algorithms, DLMS-LGT and GGF introduced some bias to the temperature

value which however lead to the lower MSD value showed in Figure 3.4 (c).

3.4 Signal Estimation in Local Graph with LS Strat-

egy

In this section, we introduce the graph signal estimation using the weighted least

square strategy with the Local Graph Transform. Consider a network of N nodes

and the network has the measurement data yi where yi = {y1(i), . . . , yN(i)}N×1 and

yk(i) is each node k’s scalar measurement data. The network measurement data are
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Figure 3.4: (a) Network topology of 50 Weather Stations across Florida, [61]. (b)
Daily average temperature between January 1st, 2010 and December 31st, 2010. (c)
MSD Comparisons on the average temperature value of 50 Weather Station across
Florida, [61]. The algorithm initials are mentioned in Table 3.2. The true temperature
values are corrupted with a zero-mean Gaussian noise and all the algorithms run 100
iteration per each day. SNR = −2dB and µk = 0.5.
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represents the days. The true temperature values are corrupted with a zero-mean
Gaussian noise. SNR = −2dB and µk = 0.5.
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defined as,

yi = xoi + ei (3.31)

where xoi is the N × 1 the network’s true signal and ei is the additive noise with the

size of N × 1. Assume the network Laplacian L captures the underlying structure

of the true network signal xoi . The network estimates x by minimizing the sum of

squared differences weighted over the variations of the measurements:

Jgi (x) =
i

∑
j=0

ri−j∥yj − x∥2 + βxTLx (3.32)

where 0 < r < 1 is a weighting parameter. We are interested in the distributed solution

of (3.32). The goal of each node k is to estimate its true signal and its neighbors’

true signal. Let yk,i be the Nk × 1 which contains node k’s and its neighbors’ true

signalWe have yi = ∑
N
k=1Pkyk,i where Pk is an N ×Nk permutation matrix. Let xoi,i

be an Nk × 1 vector contains node k and its neighbors true signal, xok,i = P
T
k xoi . The

goal of each node k is to estimate xok,i. Using the node k’s local Laplacian Sk defined

in Section 3.1, we write each node k’s local cost in (3.32) as,

Jdisti (xk) =
i

∑
j=0

ri−jk ∑
`∈Nk

∥P T
k P`y`,j − xk∥

2 + βkx
T
kLkxk + ∑

`∈Nk

a`,k∥P`x` − Pkxk∥
2 (3.33)

and

Jgi (x1, . . . ,xN) =
N

∑
k=1

Jdisti (xk). (3.34)

We write the solution for (3.33) in two steps; [5],

φk,i = xk,i−1 +
1

1 + rk
( (I + G̈k,i)

−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
DLS-LGT filter.

∑
`∈Nk

P T
k P`y`,i − xk,i−1) (3.35)

xk,i = ∑
`∈Nk

a`,kP
T
k P`φ`,i (3.36)
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where Ik is an identity matrix of size Nk × Nk. Similar to the DLMS-LGT filter

introduced in Section 3.1.1, we denote (I + G̈k,i)
−1

in (3.35) as a DLS-LGT graph filter

where G̈k be node k’s graph operator with G̈k,i = VkΘ̈k,iV T
k where Θ̈k,i is a diagonal

matrix with θ̈k,n for n = {1, . . . ,Nk} denoted as node k’s local graph filter response

and V T
k is node k’s LGT matrix. Let fok,i and Ψk,i are the frequency representation

of xok,i and yk,i respectively where fok,i = V
T
k xok,i and Ψk,i = V T

k yk,i. Similar to DLMS-

LGT filter response design in Section 3.1.2, each node k designs its local graph filter

response by minimizing the following cost as

min
θ̈k,n

∥fok,i(λk,n) − (1 + θ̈k,n)
−1Ψk,i(λk,n)∥

2, n ∈ {1, . . . ,Nk},∀k. (3.37)

where (λk,n) is the node k’s LGT frequency and fok,i(λk,n) and Ψk,i(λk,n) are the nth

element of the vector fok,i and Ψk,i, respectively. From (3.37), we want to calculate

the filter response such that

∥fok,i(λk,n) − (1 + θ̈k,n)−1Ψk,i(λk,n)∥2 = ∥fok,i(λk,n) −Ψk,i(λk,n)∥2 + 2 (fok,i(λk,n) −Ψk,i(λk,n))
. (Ψk,i(λk,n) − (1 + θ̈k,n)−1Ψk,i(λk,n))
+ (Ψk,i(λk,n) − (1 + θ̈k,n)−1Ψk,i(λk,n))2 (3.38)

In (3.38), the first term ∥fok,i(λk,n) − Ψk,i(λk,n)∥2 is as the estimation error without

the penalty. Therefore, we design the LGT filter response θ̈k,n such that

2 (fok,i(λk,n) −Ψk,i(λk,n)) (Ψk,i(λk,n) − (1 + θ̈k,n)
−1Ψk,i(λk,n))

+ (Ψk,i(λk,n) − (1 + θ̈k,n)
−1Ψk,i(λk,n))

2
≤ 0 (3.39)

For any real-valued convex function g(.), from the definition of sub-gradient, we have

(x − y)T∂g(y) ≤ g(x) − g(y) (3.40)
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and let assume g(x) = x2. For the purpose of clarification, let x = fok,i(λk,n) and

y = Ψk,i(λk,n). Then, using (3.40), we rewrite (3.39) as

(x2 − y2) (1 − (1 + θ̈k,n)
−1
) + y2 − 2 (1 + θ̈k,n)

−1
y2 + (1 + θ̈k,n)

−2
y2 ≤ 0

x2 (1 − (1 + θ̈k,n)
−1
) − (1 + θ̈k,n)

−1
y2 + (1 + θ̈k,n)

−2
y2 ≤ 0

x2 − (1 + θ̈k,n)
−1
y2 ≤ 0

θ̈k,n ≤
y2

x2
− 1 (3.41)

Therefore, from the above inequality, we design each node k’s LGT filter response as

follows;

θ̈k,n(i) = max{
Ψk,i(λk,n)2

2ζk,n
−

1

2
,0} ≤ θ̈max. (3.42)

Hence, ζk,n is the maximum possible energy ∣fok,i(λk,n)∣
2, while θ̈max is a maximum

response. The complete distributed least square strategy with the LGT filter is given

in Algorithm 5.

3.5 Performance of DLS-Local Graph Transform

3.5.1 Stability and Mean Convergence

Our aim is to study the steady state performance of the proposed algorithm. For

the ease of the analysis, let us define the non stationary signal model for the network

as, [1],

xoi = ax
o
i−1 + qi (3.43)
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Algorithm 5 Distributed Least Square Strategy with Local Graph Transform (DLS-
LGT)

Initialize xk,0 = yk,0, and node k has ζk,n, n ∈ {1, . . .Nk}.
For i > 0 and k = 1 to N do

1. Each node k has yk(i).

2. Exchange yk(i) with the neighbors and node k has yk,i.

3. Find the DRLS-LGT filter response,

For n = 1 to Nk,i do

θ̈k,n(i) = max{
Ψk,i(λk,n)2

2ζk,n
− 1,0} ≤ ω̈max.

End.
G̈k,i = VkΘ̈k,iV T

k where Θ̈k,i = diag{θ̈k,1(i), . . . , θ̈k,Nk
(i)}.

4. φk,i = xk,i−1 +
1

1+rk ((I + G̈k,i)
−1

yk,i − xk,i−1)

5. Exchange φk,i with the neighbors.

6. xk,i = ∑`∈Nk
a`,kP T

k P`φ`,i.

End.
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where ∣a∣ < 1 and qi is some random perturbation drawn from qi ∼ N (q̄, L†).

Exoi = aExoi−1 + q̄. (3.44)

Hence, in steady state, one can write x̄o = limi→∞Exoi =
1

1−a q̄. From Eq.(3.35) and

(3.36), we rewrite the DLS-LGT algorithm in a recursion form as

xk,i = ∑
`∈Nk

a`,k
1 + r`

P T
k P` ((I` + G̈`,i)

−1
∑
n∈N`

P T
` Pnyn,i + r`x`,i−1) (3.45)

Let P = {P1, . . . , PN}N×∑N
k=1Nk

,

Xi = {x1,i, . . . ,xN,i}∑N
k=1Nk×1, X o

i = P
Txoi , Qi = P

Tqi, Yi = PTyi, εi = PTei, and hence

Yi = X
o
i + εi; X o

i = aX
o
i−1 +Qi (3.46)

G̈i = A
TPTP (diag{(I1 + G̈1,i)

−1, . . . , (IN + G̈N,i)
−1}) .

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Network DLS-LGT Filters.

(3.47)

Let r = rk for all k. Rewrite Eq.(3.45) for the whole network as

Xi =
1

1 + r
G̈iYi +

r

1 + r
Xi−1

=
1

1 + r
G̈iX

o
i +

1

1 + r
G̈iεi +

r

1 + r
Xi−1. (3.48)

Let EGi = G. Then, we obtain the expected value of (3.48)

EXi =
r

1 + r
EXi−1 +

1

1 + r
G̈EX o

i . (3.49)

For r
1+r < 1, Eq.(3.49) can be written in steady state as,

EX∞ = lim
i→∞

EXi

= X̄ o − (I − G̈) X̄ o.
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

True signal rejected

by DLS-LGT filters.

(3.50)
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where X̄ o = PT x̄o and I is an ∑
N
k=1Nk × ∑

N
k=1Nk identity matrix. Again, notice

that the estimator converges to the true signal minus any component of the true

signal rejected by the DLS-LGT filters in the steady state. Therefore, the proposed

DLS-LGT estimators is bias. In the next sections, we will study the bias and its

mean-squared behavior.

3.5.2 Error Recursion and Bias

Introduce the network’s learning error at time i, X̃i defined as,

X̃i = X
o
i −Xi

=
r

1 + r
X̃i−1 −

r

1 + r
X o
i−1 +X

o
i −

1

1 + r
G̈iX

o
i −

1

1 + r
G̈iεi

=
r

1 + r
X̃i−1 + (I −

1

1 + r
G̈i −

r

a(1 + r)
I)X o

i +
r

a(1 + r)
Qi −

1

1 + r
G̈iεi

=
r

1 + r
X̃i−1 + (

r − a(1 + r)

a(1 + r)
I −

1

1 + r
G̈i)X

o
i +

r

a(1 + r)
Qi −

1

1 + r
G̈iεi. (3.51)

Let Q̄ = PT q̄ and Eεi = 0, the expected value of the above learning error becomes,

EX̃i =
r

1 + r
EX̃i−1 + (

a(1 + r) − r

a(1 + r)
I −

1

1 + r
G̈)EX o

i +
r

a(1 + r)
EQi (3.52)

From (3.43), we have EQi = (1 − a)X̄ o. Hence, we conclude the estimator’s bias in

the steady state as

EX̃∞ = lim
i→∞

EX̃i

= (I − G̈)X̄ o

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
True signal rejected

by DLS-LGT filters.

<∞. (3.53)
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3.5.3 Mean-Square Stability

In this section, we will examine the variation of the learning error and its steady

state behaviour. Using the learning error recursion from (3.51), we get the expected

square of the network learning error E∥X̃i∥
2 as follows;

E∥X̃i∥
2 =

r2

(1 + r)2
E∥X̃i−1∥

2 + tr
⎛

⎝

1

(1 + r)2
G̈ (EεiεTi ) G̈T +

r2

a2(1 + r)2
E (QiQ

T
i )

+ (
a(1 + r) − r

a(1 + r)
I −

1

1 + r
G̈)E (X o

i X
oT

i )(
a(1 + r) − r

a(1 + r)
I −

1

1 + r
G̈)

T

+
2r

a(1 + r)
E (QiX

oT

i )(
a(1 + r) − r

a(1 + r)
I −

1

1 + r
G̈)

T

+
2r

1 + r
EX̃i−1 (EX oT

i (
a(1 + r) − r

a(1 + r)
I −

1

1 + r
G̈) +

r

a(1 + r)
EQT

i )
⎞

⎠
(3.54)

We assume X o
i−1 and Qi are uncorrelated and E (QiX

oT

i ) = E (QiQT
i ). For the ease of

the analysis,we assume

(EX o
i ) (EQi)

T
= (EQi) (EQT

i ) ;

E ((X o
i −EX o

i ) (X
o
i −EX o

i )
T
) = E ((Qi −EQi) (Qi −EQi)

T
)

From (3.52), we have the squared of the expected learning error as

(EX̃i) (EX̃i)
T
=

r2

(1 + r)2
(EX̃i) (EX̃i)

T
+

r2

(1 + r)2
(EQi) (EQi)

T

+ (
a(1 + r) − r

a(1 + r)
I −

1

1 + r
G̈)(EX o

i ) (EX o
i )

T
(
a(1 + r) − r

a(1 + r)
I −

1

1 + r
G̈)

T

+
2r

1 + r
(
a(1 + r) − r

a(1 + r)
I −

1

1 + r
G̈)(EX o

i ) (EQi)
T

+
2r

1 + r
EX̃i

⎛

⎝

r

a(1 + r)
EQT

i +EX oT

i (
a(1 + r) − r

a(1 + r)
I −

1

1 + r
G̈)

T
⎞

⎠
.

(3.55)
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Comparing the expressions in (3.55) and (3.54), we can rewrite (3.54) as

E∥X̃i∥
2 =

r2

(1 + r)2
E∥X̃i−1∥

2 + tr(
1

(1 + r)2
G̈PTΣPG̈T

+
r2

a2(1 + r)2
E ((Qi −EQi) (Qi −EQi)

T
)

+ (
a(1 + r) − r

a(1 + r)
I −

1

1 + r
G̈)E ((Qi −EQi) (Qi −EQi)

T
)

.(
a(1 + r) − r

a(1 + r)
I −

1

1 + r
G̈)

T

+
2r

1 + r
(
a(1 + r) − r

a(1 + r)
I −

1

1 + r
G̈)E ((Qi −EQi) (Qi −EQi)

T
)

+ (EX̃i) (EX̃i)
T
−

r2

(1 + r)2
(EX̃i−1) (EX̃i−1)

T
) (3.56)

Hence, from (3.56), we write the steady state mean squared error as

E∥X̃∞∥2 = lim
i→∞

E∥X̃i∥
2

≈ ∥EX̃∞∥2

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
bias squared.

+
1

1 + 2r
tr(G̈PTΣPG̈T)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
errors due to the

measurement noise.

+ tr
⎛

⎝
((1 + r)I − G̈)PTL†P((1 + r)I − G̈)

T⎞

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
errors due to non-stationary signal model.

(3.57)

Let MSDr be the mean square deviation of the network with DLS-LGT algorithm.

Then from (3.57), we conclude that,

MSDr =
1

∑
N
k=1Nk

E∥X̃∞∥2 <∞. (3.58)
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3.6 Experiments

3.6.1 Experiment on Synthetic Data

Consider a network with 100 nodes randomly distributed over a 2D plane. The

network undirected Laplacian L is formed based on the Euclidean distance between

the nodes with the maximum number of neighbors of 6. We set a`,k = 1
Nk

. The

true graph signal is generated using (3.43) and xo and qi is drawn from a Gaussian

distribution with mean of 10 and the variance of 0.001L†. We tested the proposed LS-

LGT algorithms for both slowing and rapidly varying signal for a = 0.2 and a = 0.8 in

(3.43), respectively. We evaluated the proposed algorithm for time-varying network

with both slowly and rapidly varying graph signal. We generated the graph signal

using Eq.(3.43) with a = 0.5 and qi is drawn from 0.01L† abd L† for slowly and rapidly

varying signal, respectively. We changed 10% of the edges at iteration, i = 130 and 280,

respectively. We compared the MSD between the transitional dist.-RLS (DLS) [5] and

the proposed DLS-LGT solution. Figure 3.6 (a) and (b) have the MSD comparisons

between the proposed distributed least square strategy with local graph transform

(DLS-LGT) and DLS for different r values.

3.6.2 Experiment on Real-World Data

Similar to the experiment on Florida weather data in Section (3.3.2), we tested

the LS-LGT algorithm on tracking the daily average temperature value from Section

(3.3.2). We corrupted the temperature value with a zero-mean Gaussian noise for

SNR = −2dB. We run the test for different r values and the results are average over
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Figure 3.6: MSD Comparison of time varying graph with DLS-LGT Alg. (5) and
the traditional dist. LS for different value of r. The dashdotted, dashed and dotted
lines are the theoritical MSD value of DLS-LGT Alg. for r = 0.38, 0.58 and 0.98,
respectively. The time varying true signal is generated using (3.43) with a = 0.5,
q̄ = 10 and the covariance of qi are (a) 0.01L† and (b) L†, respectively. The graph
changes 10% of the total edges at iteration, i = 130 and 280.
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Figure 3.7: MSD Comparison of DLS-LGT Alg. (5) and traditional Dist. LS for
different value of r on Weather Data. The true temperature values are shown in 3.4
(b). We corrupted the true temperature with a zero-mean Gaussian noise. SNR =

−2dB.

100 simulation. Figure 3.7 shows the MSD comparison for different value of r. The

tracking performance of the LS-LGT Alg.5 is shown in Figure 3.8.

3.7 Conclusion

We examine the distributed estimation in LR-LS and LR-LMS for non-stationary

signal in the time varying environment. We introduce the LGT notion to each node k

and design the LGT filter response without the global/centralized knowledge resulting

the performance gain over the centralized solution. Next, we will study the LGT filter

in estimation and tracking of graph signal in the present of outlier signal.
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Figure 3.8: Tracking performance comparison of the average temperature recorded
between Jan 1st, 2010 and Dec 31st, 2010 for different value of r. The Y-axis rep-
resents the average temperature value and the X-axis represents the days. The true
temperature values are corrupted with a zero-mean Gaussian noise. SNR = −2dB.



CHAPTER 4

Signal and Outliers Estimation in Local
Graph

4.1 Graph Signal and Outliers Estimation

In this chapter, we examine the fundamental challenge of estimating and track-

ing both non-stationary signals and outliers from noisy measurement in time-varying

graphs. We assume that the non-stationary ground truth signal follows a random

walk model in which the correlated random step is connected to the time-varying

graph structure. We further assume that a random subset of nodes is perturbed by

outlier signals that must be estimated as well. To address this challenge, we use the

Local Graph Transform (LGT) and associated LGT-filters and incorporate it into an

optimization-based adaptation and learning method.

Consider a sensor network with nodes N and at time i, each node k has the measure-

ments {yk(i), uk(i)}, k = 1, . . . ,N . We assume that the measurement process at time

i is given by

yk(i) = uk(i)x
o
k(i) + o

o
k(i) + ek(i). (4.1)
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where xok(i) is the node k’s ground truth signal at time i to be estimated. Let

ook(i) be a possibly present outlier/anomaly signal in node k’s measurement, and

ek(i) is node k’s measurement noise. Suppose we consider the streams simulta-

neously by defining stacked vectors {yi, Ui} in which yi = {y1(i); . . . ; yN(i)}N×1,

Ui = diag{u1(i); . . . ;uN(i)}N×N . Then network aggregate measurment is

yi = Uix
o
i + ooi + ei, (4.2)

where ei = {e1(i); . . . ; eN(i)}N×1, xoi = {xo1(i); . . . ;x
o
N(i)}N×1 and ooi = {oo1(i); . . . ; o

o
N(i)}.

We assume that at time i that the normalized graph Laplacian matrix Li describes

the similarities among the ground truth signal at different nodes and the ground

truth is a non-stationary signal that evolves according to a random walk model from

(2.4). We consider ooi to be a sparse vector in that at any point in time, only a

subset of random nodes have outlier contamination signals. The goal of the network

is to recover and track both the true network signal xoi and the sparse outliers ooi ,

with the recovered outlier signal of interst for subsequent processing, e.g., detection

generalized likelihood ratio tests. So, the centralized cost to be minimized over the

estimates xi and oi is

Jg(xi,oi) = E∥yi −Uixi − oi∥
2 + βh(xi) + α∥oi∥1

subject to Eyi = E[Uixi + oi], (4.3)

where β and α are non-negative parameter and ∣∣.∣∣1 is the `1 norm. The convex cost

h(xi) in (4.3) penalizes the total variation across the network, i.e.,

h(xi) = xTi Lixi. (4.4)
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4.2 Signal and Outliers Estimation in Local Graph

with LMS Strategy

We are interested in the distributed solution for the global cost in (4.3) where

each node k estimates its true signal xok(i) and the possible outlier/anomaly signal

ook(i) with the aid of message passing with its set of neighbors Nk(i) at time i. Note

that node k is itself in this set and let Nk(i) = ∣Nk(i)∣. For readability, we will derive

the distributed algorithm assuming a fixed graph Laplacian, and suppress the time

index i in the graph/network terms in the following discussion.

Before proceeding, note that if the global estimate xi is needed, then we assume

that a separate collating and forwarding protocol is used. Note that each node in

the network has a unique global ID and we use k and ` to refer to the global IDs for

nodes in the network. We assume each node k does not have information about its

neighbors’ global IDs and so node k has assigned its neighbors its own local numbering

system, i.e., as k1, . . . , kNk−1 where Nk is the total number of node k’s neighbors (note

that node k is listed first in the set Nk). Let xk,i = {xk(i);xk1(i); . . . ;xkNk−1
(i)}Nk×1

be the Nk × 1 vector of node k’s estimates of its own signal and the signals of its

neighbors. We define each node k’s local penalty function as

hk (xk,i) = xTk,iSkxk,i (4.5)

where Sk is an Nk ×Nk local Laplacian network of node k, i.e., the graph Laplacian

solely from the vantage point of node k, meaning a star network. This local penalty
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measures the similarity of the signal estimates in Nk. One can verify that

h(xoi ) =
N

∑
k=1

hk (x
o
k,i)

=
N

∑
k=1

xo
T

k,iSkx
o
k,i

= xo
T

i (
N

∑
k=1

PkSkP
T
k )xoi (4.6)

where Pk is an N ×Nk corresponding permutation matrix. We write the global cost

in (4.3) as a sum of local costs as

Jg(xi,oi) =
N

∑
k=1

Jk(xk(i), ok(i)) (4.7)

where

Jk(xk(i), ok(i)) = E∣yk(i) − uk(i)xk(i) − ok(i)∣
2 + ∑

l∈Nk

a`,kβ`h`(x`,i) + αk∣ok(i)∣

subject to Eyk(i) = E[uk(i)xk(i) + ok(i)], (4.8)

where β`, αk and b`,k are non-negative coefficients and b`,k = 0 for ` ∉ Nk and∑`∈N`
b`,k =

1 and xk(i) and ok(i) are the estimates of xok(i) and ook(i) respectively. Note that for

` ∈ Nk, the vector x`,i contains xk(i). Using the auxiliary variable zk, we write the

constrained cost in (4.8) as

Jk(xk(i), ok(i), zk) = E∣yk(i) − uk(i)xk(i) − ok(i)∣
2 + ∑

`∈Nk

a`,kβ`h`(x`,i) + αk∣ok(i)∣

+ γkzk(Eyi −Euk(i)xk(i) −Eok(i)). (4.9)
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where γk is non negative coefficient. Each node k solves (4.9) as [63,64],

xk(i) = argmin
xk(i)

Jk(xk(i), ok(i − 1), zk(i − 1)) (4.10)

ok(i) = argmin
ok(i)

Jk(xk(i), ok(i), zk(i − 1)) (4.11)

zk(i) = argmin
zk

Jk(xk(i), ok(i), zk). (4.12)

Guided by [4], we solve (4.10) as

xk(i) = xk(i − 1) + µku
∗
k(i) (yk(i) − uk(i)xk(i − 1) − ok(i − 1) + γkzk(i − 1))

+ µk ∑
l∈Nk

a`,kβ`∇xk(i)h` (x`,i−1) . (4.13)

where ∗ denotes the complex conjugate. Note that

β`∇xk(i)h`(x`,i) = pT`,k(β`L`x`,i−1). (4.14)

Without loss of generality, say that node ` assigns node k as its second neighbor, then

p`,k is an N` × 1 vector with all zeros and one at the second element. Let ψk(i) be

the intermediate estimate of node k. Then

φk(i) = xk(i − 1) + µku
∗
k(i) (yk(i) − uk(i)xk(i − 1) − ok(i − 1) + γkzk(i − 1)) . (4.15)

Since φk(i) contains more information about xok(i) than xk(i − 1), with

φ`,i = {φ`1(i); . . . ;φ`N`
(i)}N`×1 and from (3.10),

xk(i) = φk(i) − µk ∑
`∈Nk

a`,kp
T
`,k (β`L`φ`,i)

= µk ∑
`∈Nk

a`,kp
T
`,k (IN`

− Vk,iΘ̆k,iV
T
k,i)φ`,i. (4.16)

where Θ̆k,i = diag{θ̆k,1(i), . . . , θ̆k,Nk
(i)} and θk,n(i) is denoted as an LGT filter response

and From Section 3.1.2, here we design the LGT filter response wk,n(i) as

θ̆k,n(i) = max{1 −
ζk,n

Φk,i(λk,n)2
,0} ≤ θ̆max (4.17)
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where Φk,i = V T
k φk,i. Let Ğk,i = Vk,iΘ̆k,iV T

k,i. Note that Ğk,i is an Nk ×Nk is each node

k’s local graph operator. We express (4.16) in two steps as

ϕk,i = (Ik − Ğk,i)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
DLMS-LGT filter.

φk,i (4.18)

xk(i) = ∑
`∈Nk

a`,kp
T
`,kϕ`,i (4.19)

where a`,k = µkb`,k and φ`,i = {φ`1(i), . . . , φ`N`
(i)}N`×1 and Ik is an Nk ×Nk identity

matrix. If Ğk = βkSk then the method reverts back to the standard local penalty. We

now solve (4.11) as in [56], i.e.,

ok(i) = ok(i − 1) + µ′k (yk(i) − uk(i)xk(i) − ok(i − 1) + γkzk(i − 1)) − α′ksgn{ok(i − 1)}

(4.20)

where µ′k is a positive step size and α′k = µ′kαk and sgn{.} returns the sign of the

argument variable. One can interpret the outlier estimator as processing the compo-

nents rejected by each node k’s DLMS-LGT filter, i.e., the residual mix of noise and

possible outliers. Then, we update the auxiliary variable zk(i) from (4.12) as

zk(i) = zk,i−1 + γk(yk(i) − uk(i)xk(i) − ok(i)), (4.21)

where γk is a non-negative coefficient. Algorithm 6 gives the complete algorithm for

distributed graph signal and outlier estimation.

4.3 Performance of DLMS-LGT outlier

4.3.1 Stability and Mean Convergence

Our objective is to study the steady state behavior of the proposed LGT method in

graph signal and outlier estimation. For the sake of the simplicity of the analysis, we
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Algorithm 6 DLMS-LGT and Outliers Estimation

Initialize xk(0) = yk(0), ok(0) = 0 and zk(0) = 0,∀k and node k has ζk,n, n ∈ {1, . . .Nk}.
For i > 0 and k = 1 to N do

1. Each node k has {yk(i), uk(i)}.

2. φk(i) = xk(i − 1) + µku∗k(i) (yk(i) − uk(i)xk(i − 1) − ok(i − 1) + γkzk(i − 1)) .

3. Exchange {φk(i)} with the neighbors.

4. φk,i = {φk1(i); . . . ;φkNk
(i)}

5. Find the LGT filter responses.

For n = 1 to Nk do

θ̆k,n(i) = max{1 − 1ζn
Φk,i(αn)2 ,0} ≤ θ̆max,where Φk,i = V T

k φk,i

End.

Θ̆k,i = diag{θ̆k,1(i), . . . , θ̆k,Nk,i
(i)}.

6. ϕk,i = (INk
− Ğk,i)φk,i where Ğk,i = VkΘ̆k,iV T

k .

7. Exchange ϕ`,k(i) = pT`,kϕk,i with the neighbors.

8. xk(i) = ∑`∈Nk
a`,kpT`,kϕ`,i.

9. ok(i) = ok(i − 1) + µ′k (yk(i) − uk(i)xk(i) − ok(i − 1) + γkzk(i − 1)) − α′ksgn{ok(i −
1)}.

10. zk(i) = zk,i−1 + γk(yk(i) − uk(i)xk(i) − ok(i)).

End.
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assume the stationary outliers, i.e, ooi = oo for all i. First, we examine the convergence

of the LGT estimators. Let xi = {x1(i); . . . ;xN(i)}

oi = {o1(i); . . . ; oN(i)}

Ru,i = diag{u∗1(i)u1(i); . . . ;u∗N(i)uN(i)},

µ = µk = µ′k, γ = γk and α′ = αk for all k, zi = {z1(i); . . . ; zn(i)}. Let A = {a`,k} be the

weighted adjacency matrix where [A]`,k = a`,k, ∑
N
`=1 a`,k = 1, a`,k = 0,∀` ∉ Nk. Let P

be the N ×∏
N
k=1Nk suitable permutation matrix and

Ği = A
T (IN −P.diag{Ğ1,i, . . . , ĞN,i}.P

T ) .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Network DLMS-LGT filters.

(4.22)

From (4.15), (4.18) and (4.19), we write the DLMS- LGT method in a matrix recursion

form as,

xi = Ği (IN − µRu,i)xi−1 + µĞi (Ru,ix
o
i +U

∗
i oo +U∗

i ei −U
∗
i oi−1 + γU

∗
i zi−1) . (4.23)

Notice from (4.18), (4.19), (4.20) and (4.21) that oi−1 and zi−1 are the weighted sum

of the rejected signal from the LGT filters, therefore, we ignore ĞiU∗
i (oi−1 + γzi−1) in

(4.23).

xi ≈ Ği(IN − µRu,i)xi−1 + µĞi(Ru,ix
o
i +U

∗
i oo +U∗

i ei). (4.24)

Let EĞi = Ğ, ERu,i = Ru and EUi = U . Taking expectation to the both side of the

above equation we have,

Exi = Ğ (IN − µRu)Exi−1 + µĞ (Rux
o
i +U ∗ oo) . (4.25)

To ensure the stability of the above recursion, we need the following condition of

∥Ğ (IN − µRu) ∥ < 1

ρ(Ğ) ∣1 − µρ(Ru)∣ < 1 (4.26)
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where rho(.) is the spectral radius of a matrix. From (4.18) and (4.22), we have

ρ(Ğ) < ∣1 − θ̆max∣. From (4.26), we limit the LGT filter response as

0 ≤ θ̆max <
1 + ∣1 − µρ(Ru)∣

∣1 − µρ(Ru)∣
(4.27)

We also express each node k’s outlier estimation and auxiliary variable update equa-

tion in (4.20) and (4.21) in a matrix recursion form as

oi = (1 − µ)oi−1 + µ (Uix
o
i + oo + ei −Uixi + γzi−1) − α

′sgn{oi−1}; (4.28)

zi = zi−1 + γµ (Uix
o
i + oo + ei −Uixi + oi) . (4.29)

For simplicity, we assume α′ << 1 and we omit sgn{oi−1} term in (4.28) in later

analysis.

Eoi = (1 − µ)Eoi−1 + µ (UExoi + oo −UExi + γEzi−1) (4.30)

Ezi = cEzi−1 + γµ (UiExoi +Eoo +Eei −UExi −Eoi) . (4.31)

We limit 0 < µ < 2 in (4.30) and introduce a variable ∣c∣ < 1 in (4.31) for the stability

of Eq. (4.30) and (4.31), respectively. We express Eq.(4.25), (4.30) and (4.31) as a

block matrix recursion , i.e.,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Exi

Eoi

Ezi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ğ(IN − µRu) Ø Ø

−µU (1 − µ)IN µγIN

−γU −γIN cIN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Exi−1

Eoi−1

Ezi−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µĞ(RuExoi +U
∗oo)

µ(UExoi + oo)

γ(UExoi + oo)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.32)
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Let Exoi = x̄o Then, in steady state, Eq. (4.32) becomes

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ex∞

Eo∞

Ez∞

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= lim
i→∞

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Exi

Eoi

Ezi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

IN − Ğ(IN − µRu) Ø Ø

µU µIN −µγIN

γU γIN (1 − c)IN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µĞ(Rux̄o +U∗oo)

µ(U x̄o + oo)

γ(U x̄o + oo)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.33)

From block matrix inversion equality, one can write the inverse of a block matrix as,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A B

C D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(A −BD−1C)−1 −(A −BD−1C)−1BD−1

−(D −CA−1B)−1CA−1 (D −CA−1B)−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.34)

Using the block matrix inversion from above, we find the matrix inverse from (4.33).

Let A = IN − Ğ(IN − µRu), B = {Ø Ø}, C = {µU ;γU} and

D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µIN −µγIN

γIN (1 − c)IN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; D−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1−c
µ(1−c+γ2)IN

γ
1−c+γ2 IN

−γ
µ(1−c+γ2)IN

1
1−c+γ2 IN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.35)

From the expression in (4.34), we have

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IN − Ğ(IN − µRu) Ø Ø

µU µIN −µγIN
γU γIN (1 − c)IN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(IN − Ğ(IN − µRu))−1
Ø Ø

−U(IN − Ğ(IN − µRu))−1
1−c

µ(1−c+γ2)IN
γ

1−c+γ2 IN

Ø −γ
µ(1−c+γ2)IN

1
1−c+γ2 IN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.36)
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Now, using (4.33) and (4.36), as c→ 1, we conclude that

Ex∞ = x̄o − (IN − Ğ (IN − µRu))
−1

(IN − Ğ) x̄o

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
True graph signal rejected by DLMS-LGT filters

+µ (IN − Ğ (IN − µRu))
−1
ĞU∗oo

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Outlier accepted by DLMS-LGT filters

(4.37)

Eo∞ = oo − µ (IN − Ğ (IN − µRu))
−1
ĞU∗oo

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Outlier accepted by DLMS-LGT filters

+ U (I − Ğ (IN − µRu))
−1

(IN − Ğ)x̄o.
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
True graph signal rejected by DLMS-LGT filters

(4.38)

and Ez∞ = 0. Notice that Ex∞ converges to the sum of the true graph signal and

outliers filtered by the DLMS-LGT filters and Eo∞ converges to the sum of the true

outliers and the other two extra terms; the outliers filtered by the DLMS-LGT filters

and the rejected component of the true graph signal from the DLMS-LGT filters.

When the filters can differentiate between the energy of the frequency representation

of the true graph signal and the outliers,i.e.,

(IN − Ğ (IN − µRu))
−1

(IN − Ğ) x̄o ≈ 0; (IN − Ğ (IN − µRu))
−1
ĞU∗oo ≈ 0. (4.39)

then, we can conclude that

Ex∞ → x̄o; Eo∞ → oo. (4.40)

For example, the energy of the frequency representation of the true graph signal and

outliers lie in the lower and higher frequencies of the LGT, respectively and we use the

low pass LGT filters, then, the proposed LGT-based distributed estimators become

asymptotically unbiased. Figure 4.1 has the example of band-limited graph signal

and outliers which resides in the different node k’s LGT frequencies. Then we can

use the low pass LGT filter as in Figure 4.2 to achieve the unbiased estimators.
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Figure 4.1: Band Limited Graph Signal and Outliers.
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Figure 4.2: Node k’s LGT low-pass filter.
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4.3.2 Error Recursion and Bias

Introduce x̃k(i) and õk(i) as the signal and outlier estimation errors of node k at

time i respectively, i.e.,

x̃k(i) = x
o
k(i) − xk(i), õk(i) = o

o
k(i) − ok(i). (4.41)

Let x̃i = {x̃1(i), . . . , x̃N(i)},

õi = {õ1(i), . . . , õN(i)},

Here, we explore the condition for the stability of the these network error vectors.

With (4.24) and (4.28), the error vectors become

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̃i

õi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ği (IN − µRu,i) Ø

−µUi (1 − µ)IN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̃i−1

õi−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(IN − Ği)xoi − µĞiU∗
i oo

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ği(IN − µRu,i)qi

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µĞiU∗
i ei

µei

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.42)

where 0 is an N × 1 all zero vector. We assume Eei and Eqi = 0. We can express the

expected value of (4.42) as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ex̃i

Eõi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ğ (IN − µRu) Ø

−µU (1 − µ) IN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ex̃i−1

Eõi−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(IN − Ğ) x̄o − µĞU∗oo

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.43)
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As i→∞, Eq.(4.43) becomes

⎡
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⎢
⎢
⎢
⎢
⎢
⎣
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Eõ∞

⎤
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i→∞

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ex̃i

Eõi
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IN − Ğ (IN − µRu) Ø

µU µIN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1 ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(IN − Ğ) x̄o − µĞU∗oo
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(4.44)

Notice that

Ex̃∞ = (IN − Ğ(IN − µRu))
−1

(IN − Ğ) x̄o

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
True graph signal rejected by DLMS-LGT filters.

−µ (IN − Ğ (IN − µRu))
−1
ĞU∗oo

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Outliers accepted by DLMS-LGT filters.

<∞

(4.45)

and Eõ∞ = −UEx̃∞.

4.3.3 Mean-Square Stability

Now, let us evaluate the mean square stability of the error vectors in (4.42). Let

B̆i = Ği (IN − µRu,i). Using (4.42), we obtain the recursion for the mean square of the

error vectors as follows;

E∥x̃i∥
2 = E∥B̆ix̃i−1∥

2 + tr (µ2ĞU∗E (eie
T
i )UĞ

T +BE (qiq
T
i )B

T + µ2ĞU∗oooo
T

UĞT)

+ tr ((IN − Ğ)E (xoix
oT

i ) (IN − Ğ)
T
+ 2µĞU∗oox̄o

T
(IN − Ğ)

T
)

+ 2 tr (B̆Ex̃i−1 ((IN − Ğ) x̄o − µĞU∗oo)
T
) (4.46)

E∥õi∥
2 = (1 − µ)

2 E∥õi−1∥
2 + µ2tr (RuE (x̃i−1x̃

T
i−1)) + µ

2Σ − 2(1 − µ)tr ((Eõi−1) (Ex̃Ti−1)) .

(4.47)
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Let EB̆i = B̆. From 4.43, we write the squared of the expected error Ex̃i as

∥Ex̃i∥
2 = ∥B̆Ex̃i−1∥

2 + ∥ (IN − Ğ) x̄o∥2 + µ2∥ĞU∗oo∥2 + 2µtr (ĞU∗oox̄o
T
(IN − Ğ))

+ 2tr (B̆Ex̃i−1 ((IN − Ğ) x̄o − µĞU∗oo)) (4.48)

Comparing the expressions in (4.48) and (4.46), we rewrite Eq.(4.46) as

E∥x̃i∥
2 = E∥B̆ix̃i−1∥

2 + ∥Ex̃i∥
2 + ∥B̆Ex̃i∥

2 + tr (B̆E (qiq
T
i ) B̆

T ) + µ2tr (ĞRuE (eie
T
i ) Ğ)

+ tr ((IN − Ğ)E ((xoi − x̄o) (xoi − x̄o)
T
) (IN − Ğ)

T
) (4.49)

We assume EĞiqj = 0 for any i ≠ j and from the true signal model in (2.34), we have

(IN − Ğ)E ((xoi − x̄o) (xoi − x̄o)
T
) (IN − Ğ) = (IN − Ğ)E (qiq

T
i ) (IN − Ğ) (4.50)

Then, we get the steady state the mean-square error from (4.46) and (4.47) as,

E∥x̃∞∥2 = lim
i→∞

E∥x̃i∥
2

≈ ∥Ex̃∞∥2

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
bias squared.

+ c tr (
∞
∑
j=0

B̆j (IN − µĞRu)L
† (IN − µĞRu)

T
B̆jT )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error due to the non-stationary data model.

+ µ2tr (
∞
∑
j=0

B̆jĞRuΣĞ
T B̆jT ) ,

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error due to the measurement noise.

(4.51)

To find the mean-squared error of õi, first, we write the square of Eõi as

∥Eõi∥
2 = (1 − µ)2∥Eõi−1∥

2 + µ2tr (Ru (Ex̃i−1) (Ex̃i−1)
T
) − 2(1 − µ)µtr (UEx̃i−1EõTi−1)

(4.52)

Comparing the expressions in (4.47) and (4.52), we rewrite (4.47) as

E∥õi∥
2 = (1 − µ)2E∥õi−1∥

2 + µ2tr (Σ) + ∥Eõi∥
2 − (1 − µ)2∥Eõi−1∥

2

+ µtr (RuE (x̃i−1x̃
T
i−1) −U (Ex̃i−1) (Ex̃Ti−1)U

∗) (4.53)
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Then in steady state,

E∥õ∞∥2 = lim
i→∞

E∥õi∥
2

≈ ∥Eõ∞∥2 +
µ2

1 − (1 − µ)2
tr (Σ)

+
1

1 − (1 − µ)2
tr (RuE (x̃∞x̃T∞) −U (Ex̃∞) (Ex̃T∞)U∗) (4.54)

Let MSDl
x and MSDl

o be the network mean square deviation for the estimator x and

o, respectively. Then from (4.51) and (4.54), we conclude that

MSDl
x =

1

N
E∥x∞∥2 <∞, (4.55)

MSDl
o =

1

N
E∥o∞∥2 <∞. (4.56)

4.4 Experiments

4.4.1 Experiment on Synthetic Data

We consider an undirected network with 100 nodes randomly distributed over a

plane. We form a network Laplacian L based on the Euclidean distance between the

nodes. First, we generate the initial network signal xoi from a Gaussian of mean 10

and the covariance L†. We generate the non-stationary ground truth xoi using (2.4).

Each node k has the maximum Nk of 6. All the experiments are run with the Signal-

to-Noise ration of 0 dB and the injected outlier values are randomly selected within

the variance of the measurement noise. We set al,k(i) = 1
Nk

and µk = µ′k = 0.1 and

{α′k, γk} are set to 0.5. We analyze the performance of the proposed algorithm under

three scenarios; a growing cluster outlier in a static network, randomly distributed

burst outliers in a static network and time-varying network. In all cases, we compare
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the MSD performances between the DLMS-LGT and outliers estimation in Alg.6 and

the distributed Laplacian regularized LMS with the traditional local penalty function

where the regularized parameter are designed using [60] and [57] denoted as Dist.LR-

LMS. All the simulations are averaged over 100 run.

Static Network with Growing Cluster Outliers

In this experiment, we test the performance of the proposed algorithm in a static

network with growing outlier neighborhood at time i = 0,800,1600, respectively. We

randomly select one node k and initially add the random constant outlier signals to

node k and its 3-hop neighbors. At i = 800, we inject the random constant outlier

signal to node k and its 4-hop neighbors and at i = 1600 to 5-hop neighbors as shown

in Figure 4.3. The non-stationary true network signal are generated as mentioned

above. Figure 4.4 shows the MSDs comparison for the estimated graph signal and

outlier signal. As we can see, the proposed LGT algorithm is less sensitive to the

cluster outliers in the network and converges to the theoretical MSD. However, the

global/centralized algorithm (GGF) is sensitive to the cluster outliers and its perfor-

mance declines as the size of outlier neighborhood increases.

Static Network with Non-Stationary Signal and Outliers

Here, we test the proposed LGT and outlier estimation algorithm for randomly

selected burst outliers in a static network. We randomly select 5 nodes and inject

the burst outlier signals throughout the simulation. The magnitude of each burst are

randomly selected for the value less than the variance of the measurement noise. Each

burst arrival time is drawn from the Poisson distribution with the average rate of 1 per
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node k

Outliers

(a) Iteration i = 0

(b) Iteration i = 800

(c) Iteration i = 1600

Figure 4.3: Network topology with growing cluster outliers. The color on nodes rep-
resented by the square marker represent the true graph signal. The random constant
outliers are injected to node k and (a) its 3-hop neighbors, (b) 4-hop neighbors and
(c) 5-hop neighbors at time i = 0,800 and 1600, respectively.
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Figure 4.4: MSD comparison of (a) graph signal and (b) outlier with growing cluster
outliers in a static network shown in Figure 4.3. The dashed line represents the
theoritical MSD value of DLMS-LGT-outlier calculated using (4.55)

.
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Figure 4.5: MSD comparison of the estimated graph signal (a) and the outliers (b) in
a static network with the bursh outliers. The dashed line represents the theoretical
MSD value of the DLMS-LGT algorithm calculated using Eq.(4.55) conditioning on
the perfect information of the outlier.
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every 100 iterations and the burst length is also drawn from the Poisson distribution

with the average length of 50 iterations. Figure 4.6 shows the outlier tracking ability

of the DLMS-LGT Alg.6. Figure 4.5 have the MSD comparison between DLMS-LGT

and Dist.LR-LMS. As we can see the DLMS-LGT approach performs well in tracking

the non-stationary signal and estimating the outliers, with the LGT-based estimation

providing the lowest MSD for both tasks. Moreover, we see that the DLMS-LGT

empirical MSD for tracking the non-stationary signal roughly follows the theoretical

MSD, whose plot is obtained by conditioning on perfect knowledge of the outliers.

Time-Varying Network

Now, we simulate the proposed algorithm in time-varying networks. As before,

we randomly select 5 nodes and generate the sequences of burst outliers as mentioned

above. For the time-varying network, we change 10% of the total edges at iteration

330 and 690, and so after each change qi in Eq.(2.4) is drawn from the new L†.

Figure 4.7 (a) and (b) show the MSD comparison between the three algorithms for the

graph signal and the outlier estimation, respectively. As we can see the DLMS-LGT

method follows the theoretical MSD using Eq.(4.55) that are once again conditioned

on perfect knowledge of the outliers, and calculated as though there will be no network

changes. As we can see the LGT-based method outperforms the other two algorithms

in estimating the outliers signal as well. We also compare the detection rate of the

algorithms. The Generalized Log- Likelihood Ratio Test (GLRT) is performed on

every 25 iterations. Figure 4.8 shows the ROC comparison of the burst outliers

detection in time-varying network between the three algorithms.
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Figure 4.6: Tracking Performance of DLMS-LGT-Outliers Alg.6 for non-stationary
signal and the burst outliers.
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Figure 4.7: MSD comparison of the estimated graph signal (a) and the outliers (b),
respectively.The dashed line represents the theoretical MSD value of the DLMS-LGT-
outlier algorithm calculated using Eq.(4.55) conditioning on the perfect information
of the outliers.
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Figure 4.8: ROC comparison of the non-stationary burst outliers detection in time-
varying networks.

4.4.2 Experiment on Real-World Dataset

Weather Data, [65]

We evaluate the proposed DLMS-LGT and outliers estimation on Weather Data

[65]. We selected 130 stations across the United States and form a graph based on the

geodesic distance between the stations. The average number of neighbors is limited

to 6. The station topology is shown in Figure 4.9 (a). We randomly selected 30% of

the stations and added the burst outliers throughout the experiments. The arrival

time and the length of the outliers are drawn from the Poisson distribution with the

average arrival of 1 arrival per 150 iteration and average burst length of 50. Figure 4.9

(c) and (d) have the MSD comparison of the true temperature and outliers estimation

between the algorithms. In Figure 4.9 (b), we provide the ROC comparison of the

outliers detection. We run the window GLRT on the estimated outliers with the
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window size of 25. As we can see the detection rate of the DLMS-LGT-based method

outperforms the traditional algorithm.

Abilene Backbone Network, [66]

Next, we evaluate our algorithm using the Abilene backbone network traffic dataset

[66]. The backbone network has 30 edges. We consider the edges in the Abilene net-

work as the nodes in our graph and we form the connection between the two nodes

if the two nodes (two edges in Abilene network) are connected. Then, we injected

the burst outliers to the benign traffic. Again the outliers are drawn from Poisson

distribution with the average arrival time of 1 per 500 iteration and average burst

length of 300. Then, we run the window GLRT on the estimated outliers with the

window size of 150 and the ROC results are shown in Figure 4.19. Figure 4.22 shows

the tracking performance of the DLMS-LGT algorithm on benign traffic and outliers

estimation.

UGR’16 Traffic Dataset, [67]

We randomly selected 300 IPs from the traffic data reported from 07/27/2016

to 07/31/2016 from UGR’16 Dataset, [67]. First, we take 50% of the data to learn

the network Laplacian following the graph learning methods from [62, 68–71]. We

injected the outliers to the outgoing packages and we run the DLMS-LGT and outleirs

estimation at each IP which has outgoing packages at the instant i. The outliers are

drawn from Poisson distribution with the average arrival time of 1 per 50 iteration

and average burst length of 60. We also perform the GLRT to the estimated outliers

at each IP with the window size of 30. The ROC comparison between the algorithms
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Figure 4.9: (a) Network Topology of 130 Weather Stations across United States,
[65]. The color represents the temperature distribution across the stations. The true
temperature values are corrupted with the zero-mean Gaussina noise σ = 1 and the
burst outliers. The (b) ROC comparison of the algorithms for detection the burst
outliers of the weather station network. (c) and (d) MSD Comparison of the true
temperature value and the burst outliers estimation of the algorithms.
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Figure 4.10: Tracking Performance of DLMS-LGT-Outlier Alg. 6 of Weather Dataset,
[65].
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Figure 4.11: Tracking Performance of DLMS-LGT-Outlier on Backbone Network
Dataset.
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Figure 4.12: ROC Comparison on Abilene Backbone Network, [66].
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Figure 4.13: ROC Comparison of the burst outliers detection on UGR’16 Dataset,
[67].
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Figure 4.14: Tracking Performance of DLMS-LGT-Outlier on UGR’16 Dataset.
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are shown in Figure 4.13. Figure 4.14 shows the performance of the DLMS-LGT for

tracking the benign traffic and the injected outliers.

4.5 Signal and Outliers Estimation in Local Graph

with LS Strategy

In previous section, we studied the estimating and tracking of non-stationary

signal and outliers in graph with the distributed least-mean square strategy and the

LGT filters. Here, we will explore the graph signal and outliers estimation using

distributed Least Square strategy incorporating with the LGT filters.

Consider each node k has a noisy measurement data yk(i) for the true signal xok(i)

and ook(i) is a possible outlier signal at node k. We define the network measurement

model as

yi = xoi + ooi + ei (4.57)

where ei is a measurement noise and yi = {y1(i), . . . , yN(i)}N×1

xoi = {xo1(i), . . . , x
o
N(i)}N×1 and

ooi = {oo1(i), . . . , o
o
N(i)}N×1.Let the graph signal xoi evolves in time as, [1],

xoi = ax
o
i−1 + qi (4.58)

where ∣a∣ < 1 and qi is some random perturbation such as qi ∼ N (q̄, L†) in which L

is the normalized global Laplacian of the network. With the signal model in (4.58),

we assume the graph signal xoi is defined over graph Laplacian L. The oultiers signal

ooi is assumed to be sparse and varying in time. Hence, we introduce the global cost
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for estimating the graph signal xoi and the outliers ooi as

Jg (ψi,xi,oi,zi) = E∥yi −ψi − oi∥
2 +

i

∑
j=0

ri−j∥ψi − xi∥
2 + βxTi Lxi + α∥oi∥1

+ γzTi (yi −ψi − oi) (4.59)

where ψi and zi are the auxiliary variables and β,α and γ are the non-negative

coefficients. We add the penalty cost xTi Lxi in (4.59) in order to minimize the total

variation of the estimated signal xi across the network. We are interested to find the

distributed solution for the global cost in (4.59). We start by writing the global cost

(4.59) as a sum of each node k’s local cost. To begin, we introduce an Nk ×Nk local

Laplacian at each node k; Sk. We introduce ψk an intermediate variable at each node

k and an Nk × 1 vector ψk contains ψ` for ` ∈ Nk with ψk as the first element in ψk.

Note that node k in inclusive in Nk. Using the local Laplacian Sk from Section 3.1

we introduce each node k’s local cost as

Jdistk (ψk,i,xk,i, ok(i), zk) = E∣yk(i) − ψk,i − ok(i)∣2 + i∑
j=0

ri−j ∑
`∈Nk

∥P Tk P`ψ`,i − xk,i∥2
+ βkx

T
k,iSkxk,i + ∑

`∈Nk

a`,k∥Pkxk,i − P`x`,i∥
2 + α∣ok(i)∣

+ γkzk (yk(i) − ψk(i) − ok(i)) (4.60)

Note that ok(i) is the estimate of ook(i) and xk,i is the estimate of the true signal of

node k and its neighbors; xok,i = Pkx
o
i and Pk is an Nk ×N permutation matrix. Using

the ADMM principle [63, 64], each node k iteratively solves the above cost function
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as follows;

ψk(i) = min
ψk(i)

Jdistk (ψk(i),xk,i−1, ok(i − 1), zk(i − 1)) (4.61)

xk,i = min
xk

Jdistk (ψk(i),xk, ok(i − 1), zk(i − 1)) (4.62)

ok(i) = min
ok(i)

Jdistk (ψk(i),xk,i, ok(i), zk(i − 1)) (4.63)

zk(i) = min
zk

Jdistk (ψk(i),xk,i, ok(i), zk(i − 1)) . (4.64)

We start with finding ψk,i as

ψk(i) =
1

1 + ηk
(yk(i) − ok(i − 1) + γkzk(i − 1) + ηk

i−1

∑
j=0

ri−j−1xk(j)). (4.65)

where xk(j) is the first element of the vector xk,j. Let

ϕk(i) =
i

∑
j=0

ri−jxk(j)

= rϕk(i − 1) + xk(i) (4.66)

Rewrite (4.65) as

ψk(i) =
1

1 + ηk
(yk(i) − ok(i − 1) + γkzk(i − 1) + ηkϕk(i − 1)). (4.67)

Node k exchanges ψk(i) with neighbors and form the vector ψk,i. Then, node k solves

(4.62) as

φk,i =
1

1 + rk
(Ik + G̈k,i)

−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
DLS-LGT filter.

ψk,i +
rk

1 + rk
xk,i−1 (4.68)

xk,i = ∑
`∈Nk

a`,kP
T
k P`φk,i. (4.69)

We denote (Ik + G̈k,i)
−1

as node k’s LGT filter and G̈k,i is node k’s local graph op-

erator; G̈k,i = VkΘ̈k,iV T
k and Θ̈k,i is node k’s filter response matrix where Θ̈k,i =
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diag{θ̈k,1(i), . . . , θ̈k,Nk
(i)}. Let fok,i and Ψk,i be the frequency representation of xok,i

and ψk,i in node k’s LGT, respectively, fok,i = V
T
k xok,i and Ψk,i = V T

k ψk,i.

min
θ̈k,n

∥fok,i(λk,n) − (1 + θ̈k,n)
−1

Ψk,i(λk,n)∥
2,∀λk,n,∀k. (4.70)

where λk,n is the frequency of node k’s LGT and fok,i(λk,n) and Ψk,i(λk,n) are the nth

element of the vector fok,i and Ψk,i, respectively. As in Eq.(3.42), the filter response

θ̈k,n(i) is calculated as in (3.42),

θ̈k,n(i) = max{0,
Ψk,i(λk,n)2

2ζk,n
−

1

2
} ≤ θ̈max. (4.71)

Then, from [56], each node k iteratively estimates ok(i) as follows;

ok(i) = (1 − µk)ok(i − 1) + µk(yk(i) − ψk(i) + γkzk(i − 1) − α′ksgn{ok(i − 1)} (4.72)

where µk is a non-negative step-size and α′k = µkαk. Update the auxiliary variable zk;

zk(i) = zk(i − 1) + γk (yk(i) − ψk(i) − ok(i)) . (4.73)

The complete algorithm of the distributed Least square with the LGT and outliers

estimation is given in Algorithm (7).

4.6 Performance of DLS-LGT Outliers

4.6.1 Stability and Mean Convergence

Now, let us study the behavior of the proposed DLS-LGT algorithm. Let yk,i =

{yk(i),0, . . . ,0}Nk×1,

ok,i = {ok(i),0, . . . ,0}Nk×1, and
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Algorithm 7 DLS-LGT and Outliers Estimation

Initialize α0 = 1, ok(0) = 0, zk(i) = 0, ψk(0) = 0 for all k and node k has ζk,n, n ∈

{1, . . .Nk}.
For i > 0 and k = 1 to N do

1. Each node k has yk(i).

2. ψk(i) =
1

1+ηk (yk(i) − ok(i − 1) + γkzk(i − 1) + ηkϕk(i − 1)) .

3. Exchange ψk(i) with the neighbors and form ψk,i.

4. Find the LGT filter response.

For n = 1 to Nk do

θ̈k,n(i) = max{0,
Ψk,i(λk,n)2

2ζk,n
− 1} ≤ θ̈max

End.
G̈k,i = VkΘ̈k,iV T

k where Θ̈k,i = diag{θ̈k,1(i), . . . , θ̈k,Nk
(i)}.

5. φk,i =
1

1+rk (Ik + G̈k,i)
−1
ψk,i +

rk
1+rk xk,i−1

6. Exchange φk,i with the neighbors.

7. xk,i = ∑`∈Nk
a`,kP T

k P`φk,i.

8. Update ϕk(i) = rϕk(i − 1) + xk(i).

xk(i) is the first element of xk,i.

9. ok(i) = (1 − µk)ok(i − 1) + µk (yk(i) − ψk(i) + γkzk(i)) − α′ksgn{ok(i − 1)}.

10. zk(i) = zk(i − 1) + γk(yk(i) − ψk(i) − ok(i)).

End.
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zk,i = {zk(i),0, . . . ,0}Nk×1. We express Eq.(4.68) and (4.69) in a recursion as,

xk,i = ∑
`∈Nk

a`,k
1 + r`

P T
k P` ((I` + G̈`,i)

−1
ψ`,i + r`x`,i)

= ∑
`∈Nk

a`,k
1 + r`

P T
k P`(

1

1 + η`
(I` + G̈`,i)

−1

. ∑
n∈N`

P T
` Pn (yn,i − on,i−1 + γnzn,i−1 + ηnxn,i−1) + r`x`,i−1). (4.74)

For simplicity, ψk(i) =
1

1+ηk (yk(i) − ok(i − 1) + γkzk(i − 1) + ηkxk(i − 1)) where xk(i−1)

is the first element from the vector xk,i.

Let Xi = {x1,i; . . . ;xN,i}∑N
k=1Nk×1,

Yi = {P T
1 ∑`∈N1

P`y`,i; . . . ;P T
N ∑`∈NN

P`y`,i}∑N
k=1Nk×1,

Oi = {o1,i; . . . ;oN,i}∑N
k=1Nk×1,

Zi = {z1,i; . . . ;zN,i}∑N
k=1Nk×1 and A be the adjacency matrix of the network with

[A]`,k = a`,k and A = A⊗ diag{I1; . . . ; IN}, P = diag{P1; . . . ;PN}N×∑N
k=1Nk

, and

G̈i = A
TPTP (diag{(I1 + G̈1,i)

−1, . . . , (IN + G̈N,i)
−1})

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Network DLS-LGT Filters.

(4.75)

r = rk, µ = µk, α′ = α′k and η = ηk for all k. Then, we express each node k’s recursion

from (4.74) for the whole network as

Xi =
1

(1 + r)(1 + η)
G̈i(Yi −Oi−1 + γZi−1 + ηXi−1) +

r

1 + r
Xi−1

=
1

(1 + r)(1 + η)
G̈i(Yi −Oi−1 + γZi−1) + (

η

(1 + r)(1 + η)
G̈i +

r

(1 + r)
I)Xi−1 (4.76)

Note that Oi and Zi are the iterative weighted summation from the rejected com-

ponents of the local DLS-LGT filters, therefore, we assume GiOi ≈ 0 and GiZi ≈ 0,
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respectively. Thus, Eq. (4.76) becomes

Xi ≈
1

(1 + r)(1 + η)
G̈iYi + (

η

(1 + r)(1 + η)
G̈i +

r

(1 + r)
I)Xi−1

=
1

(1 + r)(1 + η)
G̈i (X

o
i +O

o
i + εi) + (

η

(1 + r)(1 + η)
G̈i +

r

(1 + r)
I)Xi−1 (4.77)

For simplicity of analysis, let EG̈i = G̈i and taking expectation to both side of (4.77),

we get

EXi =
1

(1 + r)(1 + η)
G̈i (EX o

i +EOo
i ) + (

η

(1 + r)(1 + η)
G̈i +

r

(1 + r)
I)EXi−1 (4.78)

Hence, from (4.71), the LGT filter responses are non-negative, therefore, from (4.75),

ρ(G̈i) < 1 for all i. Therefore, we obtain the stability condition of (4.76) as follows;

∥
η

(1 + r)(1 + η)
G̈i +

r

(1 + r)
I∥ < 1. (4.79)

With the above condition, EXi converges in the steady state. We assume α′k << 1 for

all k and we omit sgn{oi−1} term in (4.72) and write (4.72) for the network as

Oi ≈ (1 − µ)Oi−1 + µ(Yi −
1

(1 + η)
Yi +

1

1 + η
Oi−1 −

γ

1 + η
Zi−1 −

η

1 + η
Xi−1 + γZi−1)

= (1 − µ +
µ

1 + η
)Oi−1 + (µ −

µ

1 + η
)Yi + µγ(1 −

1

1 + η
)Zi−1 −

µη

1 + η
Xi

=
1 + (1 − µ)η

1 + η
Oi−1 +

µη

1 + η
Yi −

µη

1 + η
Xi−1 +

µγη

1 + η
Zi−1 (4.80)

Now, We take the expected value to the both side of (4.80),

EOi ≈
1 + (1 − µ)η

1 + η
EOi−1 +

µη

1 + η
(EX o

i +EOi) −
µη

1 + η
EXi−1 +

µγη

1 + η
EZi−1 (4.81)

For the stability of EOi in steady state, we need

∣
1 + (1 − µ)η

1 + η
∣ < 1. (4.82)
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Therefore, we limit the step size as 0 < µ < 2 to achieve the stability of EOi in the

steady state. Now, from Eq.(4.73), we find Zi as

Zi = Zi−1 + γ (Yi −
1

(1 + η)
Yi +

1

1 + η
Oi−1 −

γ

1 + η
Zi−1 −

η

1 + η
Xi−1 −Oi)

= (1 −
γ2

1 + η
)Zi−1 +

γη

1 + η
Yi − γOi +

γ

1 + η
Oi−1 −

γη

1 + η
Xi−1

≈ (1 −
γ2

1 + η
)Zi−1 +

γη

1 + η
Yi −

γη

1 + η
Oi−1 −

γη

1 + η
Xi−1 (4.83)

The expected Zi becomes

EZi = (1 −
γ2

1 + η
)EZi−1 +

γη

1 + η
(EX o

i +EOo
i ) −

γη

1 + η
EOi−1 −

γη

1 + η
EXi−1. (4.84)

Hence, for the stability, we limit

∣1 −
γ2

1 + η
∣ < 1

0 ≤
γ2

1 + η
< 2

0 ≤ γ <
√

2(1 + η) (4.85)

to ensure EZi converges in steady state. As in Section 3.5.2, limi→∞EX o
i = X̄ o and

EOi = Ōo for all i and Ø be the all zero matrix of size ∑
N
k=1Nk ×∑

N
k=1Nk. We stack

(4.78), (4.81) and (4.84) such as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EXi

EOi

EZi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

η
(1+r)(1+η) G̈ +

r
1+rI Ø Ø

−
µη
1+ηI

1+(1−µ)η
1+η I

µηγ
1+ηI

−
γη
1+ηI −

γη
1+ηI (1 − γ2

1+η)I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EXi−1

EOi−1

EZi−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
(1+r)(1+η) G̈(X̄

o + Ōo)

µη
1+η(X̄

o + Ōo)

γη
1+η(X̄

o + Ōo)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(4.86)
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In steady state, we have

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EX∞

EO∞

EZ∞

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= lim
i→∞

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EXi

EOi

EZi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1+rI −

η
(1+r)(1+η) G̈ Ø Ø

µη
1+ηI

µη
1+ηI −

µηγ
1+ηI

γη
1+ηI

γη
1+ηI

γ2

1+ηI

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
(1+r)(1+η) G̈(X̄

o + Ōo)

µη
1+η(X̄

o + Ōo)

γη
1+η(X̄

o + Ōo)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.87)

Using the block matrix inversion expression in (4.34), let A = 1
1+rI −

η
(1+η) G̈, B =

{Ø Ø}, C = {
µη
1+ηI; γη

1+ηI},

D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µη
1+ηI −

µηγ
1+ηI

γη
1+ηI

γ2

1+ηI

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; D−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
µηI

1
γI

− 1
µγI

1
γ2I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.88)

and we arrive the expected value of (4.87) in steady state as,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EX∞

EO∞

EZ∞

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( 1
1+rI −

η
(1+r)(1+η)G)

−1
Ø Ø

− ( 1
1+rI −

η
(1+r)(1+η)G)

−1
1
µηI

1
γI

Ø − 1
µγI

1
γ2I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
(1+r)(1+η) G̈(X̄

o + Ōo)

µη
1+η (X̄

o + Ōo)

γη
1+η (X̄

o + Ōo)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
(1+η) (I −

η
(1+η) G̈)

−1
G̈ (X̄ o + Ōo)

(I −
η

(1+η) G̈)
−1

(I − G̈) (X̄ o + Ōo)

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.89)

where 0 is an all-zero vector. Notice that in (4.89), EX∞ and EO∞ do not converge

to X̄ o and Ōo, respectively. Therefore, we re-write EX∞ and EO∞ from (4.89) as;

EX∞ = X̄ o − (I −
η

1 + η
G)

−1

(I − G) X̄ o

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
True signal rejected by

LGT filters.

+
1

1 + η
(I −

η

1 + η
G)

−1

G̈Ōo

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Outliers accepted by

LGT filters.

(4.90)
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EO∞ = Ōo −
1

(1 + η)
(I −

η

1 + η
G)

−1

G̈Ōo

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Outliers accepted by

LGT filters.

+(I −
η

(1 + η)
G̈)

−1

(I − G̈) X̄ o.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
True signal rejected from

LGT filters.

(4.91)

Notice that EX∞ converges to the sum of the true signal and outliers filtered by

the LS-LGT filters and notice that EO∞ converges to the sum of the true outliers

and the other two extra terms; the outliers filtered by the DLS-LGT filters and the

rejected component of the true signal from the filters. Hence the estimators have

bias. However, with the careful selection of DLS-LGT filters which can filter out the

outliers from the true signal, then we can achieve asymptotically unbiased estimator,

i.e.,

1

1 + η
(I −

η

1 + η
G)

−1

G̈X̄ o ≈ X̄ o; G̈Ōo ≈ 0 (4.92)

and

EX∞ ≈ X̄ o; EO∞ ≈ Ōo. (4.93)

4.6.2 Error Recursion and Bias

Now, to evaluate the performance of the proposed LS-LGT method, we introduce

the two error vector; X̃i and Õi defined as the network learning errors of X o
i and Ōo
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at time i, respectively, defined as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X̃i

Õi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X o
i

Oo

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xi

Oi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( r
1+rI +

η
(1+r)(1+η) G̈) Ø

−
µη
1+ηI

1+(1−µ)η
1+η I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X̃i−1

Õi−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( a−r
a(1+r)I −

(a+η)
a(1+r)(1+η) G̈i)X

o
i

(1−a)µη
a(1+η) X

o
i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( r
a(1+r)I +

η
a(1+r)(1+η) G̈i)Qi

−
µη

a(1+η)Qi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
(1+r)(1+η) G̈iO

o
i

Ø

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
(1+r)(1+η) G̈iεi

µη
(1+η)εi.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.94)

Taking expectation to both side of (4.94),

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EX̃i

EÕi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( r
1+rI +

η
(1+r)(1+η) G̈) Ø

−µη
1+η I

1+(1−µ)η
1+η I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EX̃i−1

EÕi−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
a(1+r)−r
a(1+r) I −

(a+η)
a(1+r)(1+η) G̈)EX o

i

(1−a)µη
a(1+η) EX o

i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( r
a(1+r)I +

η
a(1+r)(1+η) G̈)EQi

−µη
a(1+η)EQi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
(1+r)(1+η) G̈Ō

o

Ø

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.95)

Since limi→∞EX o
i = X̄ o, Q̄ = (1 − a)X̄ o, we get the steady state expected network’s

learning errors as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EX̃∞

EÕ∞

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= lim
i→∞

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EX̃i

EÕi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( r
1+rI −

η
(1+r)(1+η) G̈) Ø

µη
1+ηI

µη
1+ηI

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1 ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1+r (I − G̈) X̄

o

Ø

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( r
1+rI −

η
(1+r)(1+η) G̈) Ø

µη
1+ηI

µη
1+ηI

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1 ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
(1+r)(1+η) G̈Ō

o

Ø

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.96)
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Using the expression in (4.34), we write the matrix inverse in (4.96) as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( 1
1+rI −

η
(1+r)(1+η) G̈) Ø

µη
1+ηI

µη
1+ηI

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( 1
1+rI −

η
α(1+η) G̈)

−1
Ø

− ( 1
1+rI −

η
α(1+η) G̈)

−1
1+η
µη I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.97)

Then, we have the expected errors in steady state as,

EX̃∞ = (I −
η

(1 + η)
G̈)

−1

(I − G̈) X̄ o

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
True signal rejected by

LGT filters.

− ((1 + η)I − ηG̈)
−1

G̈Ōo

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Outliers accepted by

LGT filters.

<∞;

EX̃∞ = −EÕ∞. (4.98)

4.6.3 Mean-Square Stability

From (4.98), we have the learning errors from (4.94) converge in steady state.

Now, we will study the mean-square behavior of these network errors. Let B̈i =

( r
1+rI +

η
(1+r)(1+η)

¨̈
Gi) and EB̈i = B̈. From (4.94), we find the mean-squared error for

estimating X o
i as

E∥X̃i∥
2 = E∥B̈iX̃i−1∥

2 +
1

(1 + r)2(1 + η)2
G̈E (εiε

T
i ) G̈

T +
1

(1 + r)1(1 + η)2
G̈ŌoŌoG̈T

+ (
r

a(1 + r)
I +

η

a(1 + r)(1 + η)
G̈)E (QiQ

T
i )(

r

a(1 + r)
I +

η

a(1 + r)(1 + η)
G̈)

T

+ (
a(1 + r) − r

a(1 + r)
I −

(a + η)

a(1 + r)(1 + η)
G̈)E (X o

i X
oT

i )

.(
a(1 + r) − r

a(1 + r)
I −

(a + η)

a(1 + r)(1 + η)
G̈)

T

+ 2B̈EX̃i
⎛

⎝
(
a(1 + r) − r

a(1 + r)
I −

a + η

a(1 + r)(1 + η)
G̈)EX o

i

+ (
r

a(1 + r)
I +

η

a(1 + r)(1 + η)
G̈)EQi

⎞

⎠

T

(4.99)
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Using (4.95), we express the mean-squared error for X̃i as

E∥X̃∞∥2 = lim
i→∞

E∥X̃i∥
2

≈ ∥EX̃∞∥2

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
bias squared.

+
∞
∑
j=0

B̈j (I −
1

(1 + r)(1 + η)
G̈)PTL†P (I −

1

(1 + r)(1 + η)
G̈)

T

B̈j
T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error due to non-stationary signal model.

+
1

(1 + r)2(1 + η)2
tr (

∞
∑
j=0

B̈jG̈PTΣPG̈T B̈j
T

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error due to measurement noise.

(4.100)

Similarly, we find the mean-squared error for estimating the outlier Oo
i as

E∥Õi∥
2 =

(1 + (1 − µ)η)
2

(1 + η)2
E∥Õi−1∥

2 +
µ2η2

(1 + η)2
E∥εi∥

2 +
µ2η2

(1 + η)2
E∥X̃i−1∥

2

+
(1 − a)2µ2η2

a2(1 + η)2
E∥X o

i ∥
2 +

µ2η2

a2(1 + η)2
E∥Qi∥

2

+ 2
(1 + (1 − µ)η)µη

(1 + η)2
E (Õi−1X̃

T
i−1) +

2(1 − a)µη

a(1 + η)
E (X o

i Q
T
i )

+ 2(
(1 + (1 − µ)η)

(1 + η)
EÕi−1 +

µη

(1 + η)
EX̃i−1)(

(1 − a)µη

a(1 + η)
EX o

i −
µη

a(1 + η)
EQi)

T

.

(4.101)

With (4.95), we can express (4.101) to a more compact form as

E∥Õi∥
2 ≈

(1 + (1 − µ)η)2

(1 + η)2
E∥Õi−1∥

2 +
µ2η2

(1 + η)2
E∥εi∥

2 +
µ2η2

(1 + η)2
E∥Qi∥

2

+ ∥EÕi∥
2 −

(1 + (1 − µ)η)2

(1 + η)2
∥EÕi−1∥

2 +
µ2η2

(1 + η)2
(E∥X̃i−1∥

2 − ∥EX̃i−1∥
2)

(4.102)

Hence, in steady state, we conclude that

E∥Õ∞∥2 = lim
i→∞

E∥Õi∥
2

≈ ∥EÕ∞∥2 + tr(
µη

2 + 2η − µη
Σ +

µη

2 + 2η − µη
L†)

+
µη

2 + 2η − µη
(E∥X̃∞∥2 − ∥EX̃∞∥2). (4.103)
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Now, let MSDr
x and MSDr

o be the network mean square deviation for estimating X o
i

and Oo
i in steady state, defined as,

MSDr
x =

1

∑
N
k=0Nk

E∥X̃∞∥2 <∞; MSDr
o =

1

∑
N
k=0Nk

E∥Õ∞∥2 <∞. (4.104)

4.7 Experiments

4.7.1 Experiments on Synthetic Data

In this section, we simulate the estimation and tracking performance of the graph

signal and outlier using the proposed DLS-LGT outliers method. We compare the

proposed LGT based methods with the transitional distributed Least Square solution

and outliers estimation by setting the LGT filter coefficients to zero in Alg.7 and

we denote as dist.LS-outliers. We selected 200 nodes randomly distributed over 2D

plane and formed the graph based on the Euclidean distance between the nodes. In

order the effectively evaluate the tracking performance of the algorithm we use the

non-statinary data model mentioned in (2.4) with qi ∼ N (0,0.1L†). We injected the

burst outliers to the ground truth signal and SNR = 0dB. Figure 4.17 shows the MSD

comparison of estimating the graph signal and the outliers between the transitional

distributed LS and the proposed DLS-LGT-outliers algorithm for different r values.

The tracking performance are shown in Figure 4.16. Figure 4.15 have the ROC

comparison of the detection results from the window GLRT on the estimated outliers

for different r and the window size of 30.
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Figure 4.15: ROC comparison of the detection of the burst outliers from the trandition
dist. LS-outliers and the proposed DLS-LGT-ouliters Alg.7 for different value of r.

4.7.2 Experiments on Real-World Dataset

Similar in Section 4.4.2, we evaluated the performance of DLS-LGT-ouliters Alg.6

on the weather dataset, [65], the Abilene Backbone dataset, [66] and the UGR’16

traffic dataset, [67], respectively. The experiment setting are mentioned in Section

4.4.2. We compare the tracking performance of the DLS-LGT oultiers algorithm

for r = 0.18,0.58 and 0.98. We corrupted the true signal with the burst outliers as

mentioned in Section 4.4.2. Then, we generate the ROC comparison by using the

window GLRT on the estimated outliers signal from the DLS-LGT-outliers and the

traditional dist.LS-outliers algorithm without the LGT fliters.

Figure 4.18 and 4.21 show the ROC comparison and the tracking performance of the

DLS-LGT-outliers Alg.7 on the weather dataset, [65].

The results on the Abilene backbone network, [66] are given in Figure 4.19 and 4.22.

We have the ROC comparison for the detection of the burst outliers between the
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Figure 4.16: Tracking performance of the DLS-LGT-outliers Alg.7.

dist.LS-outliers and the DLS-LGT-outliers Alg.7 in Figure 4.19. Figure 4.22 shows

the tracking performance of the estimated traffic and outliers by using DLS-LGT-

outliers for r = 0.18,0.58 and 0.98, respectively.

Figure 4.23 and 4.24 show the tracking performance of the estimated benign traffic and

outliers in UGR’16 traffic, [67], respectively. The ROC comparison between the two

algorithms for different r values is in Figure 4.20. As we can see from the results, we

improves the performance of the signal and outlier estimation with the proposed DLS-

LGT-outliers Alg.7 with the LGT filters in comparison to the traditional algorithms.

4.8 Conclusion

We proposed the distributed solutions based on adaptive filtering and optimization

principles for the tracking of both a non-stationary signal emanating from a time-

varying graph, and sparse outliers , both corrupted by noise. The LGT filtering ensure

local signal estimates are smooth with respect to the local graph, with additional
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Figure 4.17: MSD Comparison of the graph signal and ouliters estimation between
the tradition DLS-outliers and the proposed DLS-LGT-outliers Alg.7. SNR = 0dB.
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benefits for outlier estimation. With less computation complexity, the LGT method

are robust and suitable for time varying graphs.
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

This research examines the problem of the motivation for estimating and tracking

non-stationary signals residing on static/time-varying graphs in the presence of the

anomaly /outlier signals. We presented the optimal graph filter design to achieve

performance gain over the existing methods. We proposed the distributed scheme for

tracking the graph signal and introduce the Local Graph Transform which does not

rely on global/centralized information. The LGT-based methods are scalable to large

graphs with growing numbers of nodes, and edge weight changes. The analytical and

simulation results show the LGT-based estimation achieve the performance gain over

the traditional diffusion methods.

5.2 Future Work

Beyond the research work presented in this thesis, some of the future directions

of the research can be listed as

1. Local Graph Transform for directed-graphs

106



107

2. Efficient updating of LGT for time-varying graphs

3. Learning and updating the graphical structure of non-stationary signals

4. Incorporating LGT in other adaptive algorithms

5. LGT and geometric deep learning.

Local Graph Transform for directed-graph

There are two main approaches for processing a graph signal using GFT: the

Laplacian matrix based approach and weighted adjacency matrix approaches. The

former approach mostly considers the signal lying on an undirected graph struc-

ture and performs the GFT frequency analysis with the eigendecomposition of the

positive semi-definite Laplacian matrix [18]. Therefore, this approach is limited to

unidrected graphs. For directed graphs, one can use the symmetrized Laplacian of

the directed graph. However, it cannot capture the edges’ directivity [72]. When

using the weighted adjacency as a GFT operator, the Jordan Canonical form can

be used as the GFT matrix to transform the graph signal into GFT domain [48].

Although one can use this approach to process signals on a directed graph [73], the

Jordan decomposition becomes computationally unstable even for a moderate size

matrix [74]. In [72], the author proposed an approach to build an orthogonal GFT

basis for directed graphs. While these approaches are based on the global information,

we are interested in local processing which does not require any global information.

Can we form a Local Directed-Graph Transform and incorporate it as a local penalty

function to minimize the total variation in the neighborhood? As one of our subjects
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for future work, one can further explore and analyze our proposed LGT methods on

the directed graph structure.

Efficient updating of LGT for time-varying graphs

Another direction of this research is to explore the efficient updating of the LGT

for time varying graphs. Although the proposed LGT method reduces the computa-

tional complexity in comparison to the centralized GFT method, in the worst scenario,

updating all the eigenvalues and eigenvectors of LGT requires the computation com-

plexity of O(N.N̄3
k ). The computational cost of LGT can become quite expensive if

the average number of neighbors in the network becomes large, especially for time

varying graphs. However, as all the local Laplacians in the network have a star topol-

ogy, one can explore an efficient method for updating the eigendecomposition of the

time-varying local Laplacian in order to reduce the complexity.

Learning and updating the graphical structure of non-stationary signals

One of the fundamental challenges in the GSP is learning the proper graph repre-

sentation of the signal. In many GSP applications, researchers use the graphs which

are known a prior (e.g., social networks) or formed from the prior knowledge of signal

domain (e.g., geodesic distance). However, these graphs may not truly represent the

underlying structure of the signal. Although much research has been proposed in

finding the smooth graph representation of the signal [62,68,69,71,75], it is not clear

how to efficiently update such graph structures for non-stationary signals. It can

be computationally challenging to learn the time-varying graphs frequently from the

non-stationary signals. Therefore, another interesting future direction of our research
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would be exploring an efficient method to learn the underlying local graph (LGT)

structure of the non-stationary signal.

Incorporating LGT in other adaptive algorithms

In Chapter 3 and 4, we studied the adaptive algorithms: diffusion LMS and

RLS with the LGT-filters for graph signal and outliers estimation. However, there

are many different variations of the distributed adaptive algorithms proposed for

different applications such as diffusion normalized LMS for fast convergence with low

steady-state error [76], diffusion leaky LMS in echo cancellation [77] and diffusion

sign-error LMS for impulsive interference [78], etc. Therefore, one can compare the

performance of these variant adaptive algorithms with the LGT filters. In addition,

one can explore approaches that reduce the amount of message passing, or rely on

asynchronous updates, which might be required in certain scenarios.

LGT and geometric deep learning

In recent years, GSP has become a promising tool in statistical signal process-

ing and many researchers have integrated GSP tools into deep learning [79–82]. In

particular, the GFT and graph filters are utilized in neural network architectures.

This GFT-utilization leads to better performance, [80]. However, these methods are

focusing on learning and training on a centralized GFT, one can try exploring on the

effectiveness of neutral networks using the proposed LGT-filters as a continuation of

this research.
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