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In automatic speech recognition systems (ASRs), training is a critical phase to the sys-

tem’s success. Communication media, either analog (such as analog landline phones) or

digital (VoIP) distort the speaker’s speech signal often in very complex ways: linear dis-

tortion occurs in all channels, either in the magnitude or phase spectrum. Non-linear but

time-invariant distortion will always appear in all real systems. In digital systems we also

have network effects which will produce packet losses and delays and repeated packets. Fi-

nally, one cannot really assert what path a signal will take, and so having error or distortion

in between is almost a certainty. The channel introduces an acoustical mismatch between

the speaker’s signal and the trained data in the ASR, which results in poor recognition per-

formance. The approach so far, has been to try to undo the havoc produced by the channels,

i.e. compensate for the channel’s behavior. In this thesis, we try to characterize the effects

of different transmission media and use that as an inexpensive and repeatable way to train

ASR systems.



Dedication

This thesis is dedicated to my parents, Miriam and Julio, for their endless love and

support.

iii



Acknowledgments

I would like to thank several people without whom I could not have succeeded. My

family and friends for their support; Dr. Mykel Billups for making it possible for me to

attend the University through an assistantship at the Academic Resource Center. Also,

Professor Reuven Lask and Guy Ravitz for referring me for that position. Special thanks

go to my advisor Dr. Michael Scordilis for his encouragement and guidance. Also, thanks

to Dr. Kamal Premaratne and Dr. Paul Mermelstein for their insights. Last but not least,

I would like to thank IBM for their support by providing funding and equipment for the

fruition of this work.

iv



Contents

List of Tables vii

List of Figures ix

List of Algorithms x

Nomenclature xi

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Motivation and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminary Notions 8
2.1 Lossless Signal Representation . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Lossy Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Speech Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Linear Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 Adaptive Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 Other Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Speech Recognition Tools 63
3.1 Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Voice Activity Detection (VAD) . . . . . . . . . . . . . . . . . . . . . . . 71
3.3 Gender Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4 Prosody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5 Gaussian Mixture Models (GMM) . . . . . . . . . . . . . . . . . . . . . . 73
3.6 Recognition Performance Measures . . . . . . . . . . . . . . . . . . . . . 76
3.7 Distributed Speech Recognition . . . . . . . . . . . . . . . . . . . . . . . 77

4 Theoretical Framework 78
4.1 Filter structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Filter Coefficients and Parameters . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Measure Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Methods and Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

v



4.6 Time- and Frequency-Domain Error Minimization Equivalence . . . . . . 83
4.7 Cepstrum- and Frequency-Domain Error Minimization . . . . . . . . . . . 84
4.8 General Feature Error Minimization . . . . . . . . . . . . . . . . . . . . . 100
4.9 Least Feature-Error Norm Filter . . . . . . . . . . . . . . . . . . . . . . . 104

5 Development 109
5.1 Relation to the IBM Project . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Collection of the Speech Database . . . . . . . . . . . . . . . . . . . . . . 112
5.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4 Difficulties in the Collection Process and Expected Ramifications . . . . . 113
5.5 Subsolution Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.6 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Results 122
6.1 Landline Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2 Stationary Cellphone Estimation . . . . . . . . . . . . . . . . . . . . . . . 139
6.3 Analog Channels’ Objective Evaluation . . . . . . . . . . . . . . . . . . . 149
6.4 Voice Over IP Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7 Conclusions and Future Work 161
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Index 166

Bibliography 168

vi



List of Tables

2.1 MFCC augmentation through its time differentials . . . . . . . . . . . . . . 39

4.1 Cepstrum-error minimizing filter . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 MFCC error variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Landline Impulse response values . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Cellphone Impulse response values . . . . . . . . . . . . . . . . . . . . . . 144
6.3 Average distances among speakers . . . . . . . . . . . . . . . . . . . . . . 153
6.4 Average distances’ gain ratios among speakers . . . . . . . . . . . . . . . . 153

vii



List of Figures

1.1 Venn diagram of the Hypothesis Test’s sets for the ASR system . . . . . . . 2
1.2 High level diagram of a Speech Recognition System . . . . . . . . . . . . . 4

2.1 Continuous signal, sampled version and digital signal . . . . . . . . . . . . 10
2.2 Correlated and uncorrelated data . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Short-time Fourier Transform with different window lengths . . . . . . . . 26
2.4 High-Q and low-Q filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Scaling function φ (t) for the db2 wavelet . . . . . . . . . . . . . . . . . . 32
2.6 Wavelet function ψ (t) for the db2 wavelet . . . . . . . . . . . . . . . . . . 32
2.7 Non-linear scale mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 Mel scale weighting filters . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.9 Vocal tract diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.10 The source filter model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.11 LMS signal-flow graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.12 Impulse response behavior of the filter defined in equation 2.16 . . . . . . . 55
2.13 FIR filter performance surface and contour plot . . . . . . . . . . . . . . . 56
2.14 Contour plot of the IIR error-performance surface . . . . . . . . . . . . . . 57
2.15 ARMA(3,5) parameter evolution . . . . . . . . . . . . . . . . . . . . . . . 59
2.16 Allowable regions for DTW . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 Two equalization structures . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Maximum cepstral distortion in Dynamic CMS . . . . . . . . . . . . . . . 68
3.3 Dissonance curve for two tones of equal volume . . . . . . . . . . . . . . . 71
3.4 A ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5 GMM example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 Geometrical interpretation of equation 4.19 . . . . . . . . . . . . . . . . . 97
4.2 Input and output signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3 Cyclic coordinate search example . . . . . . . . . . . . . . . . . . . . . . 105
4.4 Stalling and acceleration step in Cyclic Coordinate Search . . . . . . . . . 105
4.5 HQ and landline channel signals and their cross-correlation . . . . . . . . . 106
4.6 Magnitude responses of RLS and LFEN estimates . . . . . . . . . . . . . . 107
4.7 Zero pole maps of RLS and LFEN estimates . . . . . . . . . . . . . . . . . 107

5.1 Collection Connection Setup . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Frequency response for a recorded speaker . . . . . . . . . . . . . . . . . . 118

viii



ix

6.1 Magnitude Response for Speaker #1 . . . . . . . . . . . . . . . . . . . . . 125
6.2 Phase Response for Speaker #1 . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3 Magnitude Response for Speaker #2 . . . . . . . . . . . . . . . . . . . . . 126
6.4 Phase Response for Speaker #2 . . . . . . . . . . . . . . . . . . . . . . . . 126
6.5 Magnitude Response for Speaker #3 . . . . . . . . . . . . . . . . . . . . . 127
6.6 Phase Response for Speaker #3 . . . . . . . . . . . . . . . . . . . . . . . . 127
6.7 Magnitude Response for Speaker #5 . . . . . . . . . . . . . . . . . . . . . 128
6.8 Phase Response for Speaker #5 . . . . . . . . . . . . . . . . . . . . . . . . 128
6.9 Impulse Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.10 Magnitude Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.11 Phase Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.12 Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.13 Filter realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.14 Landline simulation Mean opinion score evaluation . . . . . . . . . . . . . 138
6.15 Magnitude Response for Speaker #1 . . . . . . . . . . . . . . . . . . . . . 140
6.16 Phase Response for Speaker #1 . . . . . . . . . . . . . . . . . . . . . . . . 140
6.17 Magnitude Response for Speaker #2 . . . . . . . . . . . . . . . . . . . . . 141
6.18 Phase Response for Speaker #2 . . . . . . . . . . . . . . . . . . . . . . . . 141
6.19 Magnitude Response for Speaker #3 . . . . . . . . . . . . . . . . . . . . . 142
6.20 Phase Response for Speaker #3 . . . . . . . . . . . . . . . . . . . . . . . . 142
6.21 Magnitude Response for Speaker #5 . . . . . . . . . . . . . . . . . . . . . 143
6.22 Phase Response for Speaker #5 . . . . . . . . . . . . . . . . . . . . . . . . 143
6.23 Impulse Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.24 Magnitude Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.25 Phase Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.26 Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.27 RMS distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.28 Kullback-Leibler distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.29 Symmetrized Kullback-Leibler distance . . . . . . . . . . . . . . . . . . . 152
6.30 Jensen-Shannon divergence . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.31 A VoIP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.32 Jitter simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.33 The Gilbert-Elliot model . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.34 Packet error simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.35 Packet concealment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.1 Non-commutativity of non-linearity and LTI filter . . . . . . . . . . . . . . 164



List of Algorithms

1 Formal statement of an adaptive algorithm . . . . . . . . . . . . . . . . . . 43
2 Steepest descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3 Normalized LMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4 Recursive Least-Squares (RLS) . . . . . . . . . . . . . . . . . . . . . . . . 51
5 Expectation Maximization for GMM means . . . . . . . . . . . . . . . . . 75
6 Least-mean cepstrum search . . . . . . . . . . . . . . . . . . . . . . . . . 99
7 Cyclic coordinate search . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8 Recording use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9 Transfer function estimate recombination . . . . . . . . . . . . . . . . . . 117
10 Synchronization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 124
11 Variable delay simulation: stream building . . . . . . . . . . . . . . . . . . 155
12 Variable delay simulation: receiver throttling . . . . . . . . . . . . . . . . 156

x



Nomenclature

x [n] The nth element of a vector or signal x
FFT {x [n]} [k] The Fast Fourier Transform of signal x evaluated at bin k

IFFT {X [k]} [n] The Inverse Fast Fourier Transform of X evaluated at sample n
KLT {x [n]} [k] The Karhunen-Loève transform of signal x evaluated at element k

STFTN {x [m]} [p] The N -point STFT of the signal x from n = m−N + 1
to n = m evaluated at frequency bin p

X = C1

A
≷
B
C2 Decision operator. If C1 > C2, X = A. Otherwise, X = B.

j The imaginary unit (j2 = −1)
O (f (x)) Order of magnitude (Big-O)
�{x} Real part of x
�{x} Imaginary part of x

R The set of real numbers
RN The set of all causal real sequences
C The set of complex numbers
x Complex conjugate of x

〈u, v〉 Internal (dot) product of vectors u and v
AT Matrix transpose
AH Hermitian transpose (AH = AT )
|·| Absolute value (|x| =

√
xx)

∠z, arg z Angle of the complex number z
arg max

x
f (x) The argument x that maximizes f (x)

max f Maximum of f
min f Minimum of f
‖·‖p p-norm. If p is omitted, the 2-norm (‖x‖ =

√
xHx).

WN The N th root of unity
(
WN = e−j 2π

N

)
δ (t) Dirac delta
δ [n] Discrete impulse (Kronecker Delta)
A\B The difference set of B and A equal to A ∩ B′

E {·} The statistical expectation operator

xi



Chapter 1

Introduction

1.1 Background

This thesis is about System Identification and Channel Modeling techniques applied to
the problem of Automatic Speech Recognition engine re-training. The most tedious part of
setting up an Automatic Speech Recognition (ASR) system is the data acquisition phase.
This is the phase where a very large number of signals are to be acquired so that the system
can later be trained based on this data.

1.1.1 Signal Acquisition

Signal acquisition is a very cumbersome process. On one hand, setting up the environ-
ment can be a difficult task in itself. This, depending on the requirements, includes first
coming up with a list of phrases that span the domain of interest. These cannot be just
any phrases but must follow the right distribution of phonemes as well as have a significant
number of words and phrases that are certain to occur in the system in production.
1.1.1.1 Interactive Voice Response (IVR) Systems

IVR systems are used for customer service scenarios. The user is given a number
of options in the form of a spoken menu (i.e. a prerecorded message), and then he is
prompted to select an option by either pressing a number key on his phone, or by speaking
the number. In some cases, he may be required to answer “yes” or “no” to the questions. In
most modern IVR systems, a user will most likely use his voice to interact rather than his
phone’s dialpad, and the system has to be able to be fed a number of possible answers for a
given question. Many of these possible answers will have the same meaning, but different
phrasing. Take for example, the prompt “Do you want to pay now?”. A user might answer:

• “Yes”

1
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• “No”

• “Yeah”

• “Nope”

• “Nah”

• “No, thanks”

• “Thanks, but no, thanks”

• “Umm...okay”

and so on. We can clearly distinguish there are two basic answers, “Yes” and “No”, and
variations thereof. These variations can be small from the phonetic point of view (as in
“Yeah” for “Yes”) or can include redundant information which complicates the task of
the ASR system, since it has to “scan” for the answer (as in “Thanks, but no, thanks” or
“Umm...okay”). It is common for IVR systems to ask the user to confirm what the system
believes he said. This is because the ASR system behind the IVR performs something
analogous to a statistical hypothesis test of the following form:

{
H1

0

)
x ∈ S1

H1
1

)
x /∈ S1

and {
H2

0

)
x ∈ S2

H2
1

)
x /∈ S2

Figure 1.1: Venn diagram of the Hypothesis Test’s sets for the ASR system

In this case, we could identify S1 and S2 as the sets of all acceptable phrases whose
meanings are “Yes” and “No” respectively. Clearly, if an answer belongs to S1, it should
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not belong to S2 and vice versa. However, an answer can pass both hypothesis tests so that
x cannot be determined to exclusively lie in either S1 or S2. Furthermore, an utterance can
fail both tests so that x cannot be determined to lie in neither S1 or S2. In these cases the
system will prompt the user to repeat or restate his answer. Furthermore, the hypothesis
test will render a p-value associated with the chosen hypothesis. If this p-value is not large
enough, we cannot assert with a large enough degree of certainty that the signal belongs to
that set. In that case, the system will prompt the user for confirmation (i.e. it will ask “Did
you say “yes”?”).

The hypothesis test outlined above is for a two-word vocabulary, which is of not much
interest. In general, the test may be stated as the maximization problem

S (x) = arg max
S

P (x ∈ S)

P (x /∈ S)

or equivalently1

S (x) = arg max
S

ln

(
P (x ∈ S)

P (x /∈ S)

)
This is called the log-likelihood maximization problem. We see that in the two-word

vocabulary case, this becomes

S (x) =
P (x ∈ S1)

P (x ∈ S2\S1)

S1

≷
S2

P (x ∈ S2)

P (x ∈ S1\S2)
(1.1)

In the case where the two sets are disjoint, equation 1.1 reduces to the trivial maximiza-
tion problem

S (x) = P (x ∈ S1)
S1

≷
S2

P (x ∈ S2)

= arg max
Si

P (x ∈ Si)

1.1.2 Recording Environment

Once the phrase list is compiled, one has to set up the recording environment. In the
simplest case this consists of a computer recording through a sound card and a computer
program that prompts for a phrase and records the speaker’s utterances. There is a small
subtlety here which could make or break the ASR, and this is the recording conditions. If

1since lnx is a monotonous non-decreasing function
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one was to record the utterances in ideal conditions, that is, infinite signal-to-noise (SNR)
ratio, the resulting signal statistical properties would be different than those of a signal
with broadband noise (thermal noise), narrowband noise (50 or 60 Hz AC current EM
interference, air conditioning hum), babble, etc. The recording conditions have to match
in this sense the conditions under which the user is expected to be. Therefore, as nice as
having a clean recording of a phrase is, it is not very useful since there won’t be much
correlation between the training set and the sentences to be recognized.

As we will show in sections 1.2 and 1.3, the focus until now has been in recording clean
speech, and then trying to clean up the user utterances so that they resemble clean speech.

1.1.3 Speech Recognition

An ASR system consists of a front-end, also called feature extractor, which takes the
speech waveform and outputs a time series of feature vectors, and a back-end or statistical
decoder, which produces a sequence of words from the time series. When we add the
speaker and the communication channel to the ASR, we get the system depicted in figure
1.2.

Figure 1.2: High level diagram of a Speech Recognition System

Thus, the speaker encodes a sequence of words W1, . . . ,WN as an acoustic pressure
wave. This wave is transformed to an electric signal by a microphone, and then is fed
through an A/C converter, which outputs a digital waveform. The channel then distorts and
filters the signal in some a priori unknown way.

1.1.4 The Feature Extractor

The feature extractor processes this signal and outputs sets of “features”, i.e. numbers
that represent some relevant magnitude for recognition purposes. As we know, speech
is only stationary when viewed a few milliseconds at a time, so for the analysis to be
meaningful a feature extractor outputs a feature vector every, say, 10 to 30 milliseconds.
Also, we want the feature extractor to eliminate any redundant information, that is, the
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feature vector elements should be independent of each other or “orthogonal”. This can be
more or less easily achieved by techniques discussed in sections 2.1.2.2 and 2.1.2.3. Some
popular feature choices are described in sections 2.1, 2.2, 2.3 and 2.4.

In addition, we would also like the feature extractor to remove any information that is
irrelevant to the task at hand (if we were doing speaker independent recognition, we would
like the features to be similar for a given utterance, either spoken by a male or female
speaker). As a third requirement, we would like the feature vector to be as simple and
compact a representation as possible. This is because we will then have to work with this
vector by carrying some sort of search algorithm in an M-dimensional space, M being the
length of the feature vector.

All in all, the feature extractor will output a low-dimensionality feature vector {Ok}k=1...M

every τ milliseconds, with τ either being fixed or varying according to the signal statistics,
but always in the 10 to 30 milliseconds order. The reason for this is that the frame can-
not be too long, because the signal statistics generally change with time, and it can not be
too short, because there would not be enough information contained in the frame so as to
provide sensible statistics, i.e. data that is consistent with a longer portion of the signal.

1.1.5 The Statistical Decoder

The sequence of feature vectors is fed to the statistical decoder which will output a se-
quence of words that will hopefully be the same as the ones the speaker spoke. A canonical
statement of the decoding process within the realm of probability is thus

W1 . . .WN = arg max
W ′

1...W ′
N

P (W ′
1 . . .W

′
N |O1 . . . OM)

or
W̃ = arg max

W∈W ∗ P (W | {Ok}) (1.2)

where W ∗ = {W ′
1 . . .W

′
N} is the set of all possible word sequences, {Ok} is the feature

vector and W̃ is the recognized word. Using Bayes’ rule, we get

W̃ = arg max
W∈W ∗

P ({Ok} |W )P (W )

P ({Ok})

Since the feature vector is independent of the maximization problem, we rewrite the
last equation as

W̃ = arg max
W∈W ∗ P ({Ok} |W )P (W ) (1.3)
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1.2 Prior Work
To estimate the probabilityP ({Ok} |W ) in equation 1.3, Hidden Markov Models (HMM)

have been used. The second term P (W ) is estimated using what is referred to as a Lan-
guage Model. A language model is basically a list of valid words in the language and their
relative occurrence in normal speech. The language need not be a full language in itself; it
can be constrained to a domain. This gives rise to domain-specific speech recognition.

Another way to model the language is by the use of a state machine, through which
valid sentences are represented. In this approach, each word represents a node, and each
edge represents a non-zero probability of having the originating word before the destination
word. This state machine represents thus a language grammar, and greatly simplifies the
search space of the words.

1.3 Motivation and Goals
To overcome the disparity in recording conditions, one has to modify the incoming

speech to be recognized to match the signal conditions used for training the system. There
are two possibilities: either train the system with clean speech, or train the system with
“dirty” speech, i.e. a speech signal that has been distorted by the transmission media, gone
through some lossy process, and/or a signal to which noise of some kind has been added.
The notions of noise and “dirty” signals are deeply related, since one considers noise to be
any signal which is not desired for the purpose of the system.

The production conditions will most likely not correspond to clean speech. Thus, if the
system is trained on clean speech, the front-end to the system will have to filter the incom-
ing signal to make it look like clean speech. Usually this consists of a channel equalizer
and/or a noise reduction system.

A channel equalizer is a filter, which tries to undo the effects the channel had on the
signal from a frequency point of view. Put another way, a channel equalizer is a filter
whose magnitude response is close to the inverse of the magnitude response of the channel,
or equivalently, a filter such that the combined magnitude response of the channel and the
equalizer is close to unity. Equalizers can never be perfect, they have several limitations.
For one, they are adaptive systems which must be trained to arrive to an optimal set of co-
efficients. This training has to be done on production-conditions speech. In general, Finite
Impulse Response (FIR) equalizers are used for several reasons. First, the available algo-
rithms for their adaptation are well-behaved2 and well understood. Secondly, FIR filters are
always stable, so there is no question as to whether the output of the equalizer is going to
be usable or not. Finally, since speech can be modeled to some extent as an Autoregressive

2By well-behaved we mean that they can easily be made to converge to the optimal solution.
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(AR) process (section 2.3.3), the inverse process is a Moving Average (MA) process which
is realized by an FIR filter.



Chapter 2

Preliminary Notions

2.1 Lossless Signal Representation
During the conversion of a signal from an analog signal (continuous in time and range,

e.g a sound wave) to a digital signal, two processes take place. First, the time axis is
discretized. This process is known as sampling. Basically, a sampling device takes in-
stantaneous values of the signal at usually regular intervals of time. Note that these values
can vary continuously. If a signal is to be sampled and then reconstructed (i.e. converted
back into an analog signal), then the signal must comply with the Nyquist-Shannon Sam-
pling Theorem: the sampling frequency fs has to be larger than twice the highest frequency
present in the analog signal. Therefore, there will always be an analog lowpass filter before
sampling known as an antialiasing filter, so that this condition is assured. Even if the signal
to be sampled is known to be bandlimited, noise will always be present in every real situa-
tion, and that noise is present at all frequencies. Therefore, not putting an antialiasing filter
will cause aliasing of the higher frequencies’ noise content into the baseband, producing a
distortion which cannot be alleviated.

The second process the signal undergoes is known as quantization. A quantizer is a
device that restricts the range of possible values the signal can take to lie within a finite
set. Since digital binary computers are the only ones in use in actuality1, the set of possible
values is usually a set of points taken in intervals of a power of two. For example, a two-bit
quantizer using values from 0 to 3

4
would output either 0V, 1

4
V, 1

2
V or 3

4
V. Whenever a sig-

nal greater in magnitude than 3
4
V comes, it is clamped at the output at 3

4
V. The behavior for

negative voltages is similar; the behavior for values in between two preset values is a priori

1Ternary computers have been known since 1840, when Thomas Fowler built one entirely out of wood.
The largest ternary computer was built in the 1950s in the Soviet Union and it was called Setun. Despite the
apparent demise of ternary computers, Donald Knuth predicts their comeback in the near future, based on
their superior properties compared to their binary counterparts ([10, 119]).

8
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arbitrary, and gives rise to another degree of freedom in designing quantizers. Two popular
choices are known as truncation (disregarding the fractional part) and rounding (rounding it
towards the closest integer). Following the quantizer, lies yet another device called encoder
which as its name indicates, actually encodes the quantizer’s output into a binary word.
Thus, another degree of freedom is added as to how to assign codewords to values. Popular
choices are Sign-Magnitude, which gives rise to Sign-Magnitude Truncation (SMT) and
Sign-Magnitude Rounding (SMR), and Two’s-complement Truncation (TCT).

We can say, in summation, that digitizing a signal introduces two kinds of errors. First,
the signal has to be bandlimited. If the signal is not bandlimited, then the signal will contain
the information contained only in the baseband, i.e. some information will be lost. This
can be palliated by using a high enough sampling frequency. It is also worth noting that
filters, analog or digital, can not have a brick wall characteristic and be realizable at the
same time. A lowpass filter introduces attenuation at the high frequencies, starting at the
passband frequency, and smoothly reaches a large attenuation at its stopband frequency.
Therefore, either the stopband frequency is made to be half the sampling rate, which forces
the passband frequency to lie within the baseband, or the passband frequency is chosen to
be equal or greater than half the sampling frequency. In the first case, high frequencies in
the baseband will be attenuated. This can be somewhat alleviated by using post-emphasis
digital filters. In the second case, the actual sampling frequency has to be larger, and then
once the signal is in the digital domain, it can be digitally filtered and downsampled to the
necessary rate.

The second kind of error is due to the quantization process and is known as quantization
noise. Different quantizer/encoder models give rise to different quantization noise statistics.
In general, some assumptions are made when modeling this noise:

• The amplitude of the noise is much smaller than that of the signal (conversely, the
quantizer almost never saturates)

• The noise is a sample sequence of a stochastic wide-sense stationary process, uncor-
related with the input signal and itself.

• The noise is distributed uniformly over the range of the quantization error.

• The input signal is a sample sequence of a stationary process.
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(a) Continuous signal and PCM (b) Histograms

Figure 2.1: Continuous signal, sampled version and digital signal

2.1.1 Time Domain (PCM)

The most standard way to represent a signal without any loss of information (apart from
noise introduced in the A/D conversion) is by just using its sample values at regular time
intervals (i.e. uniform sampling). The values are encoded usually using a binary code. This
is known as the waveform or Pulse Code Modulation.

The main disadvantage of using PCM is that is requires a large storage capacity, since
every single value in the signal is represented. Compressed variants of PCM are ubiquitous,
both in degrading (lossy) and non-degrading (lossless) versions.

On the other hand, PCM provides an advantage with respect to other representations in
that it allows tracking of fast time-domain events such as sudden bursts of energy coming
from a plosive, a drum, etc.
2.1.1.1 Differential PCM (DPCM)

In its simplest form, Differential PCM (DPCM, also known as Δ-PCM) will encode
the first sample in a data stream and then the differences between consecutive samples.
This way, the dynamic range of the resulting signal is much smaller than the original one,
allowing for more efficient compression without introducing losses.

A natural extension to this simple approach is the prediction of the next sample’s value
based on the last few values, thus encoding the error in the prediction as well as the coeffi-
cients used for performing the prediction. This is usually achieved using Linear Prediction
(see section 2.4).
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2.1.1.2 Companding

The problem with directly encoding the amplitude of each sample in the time domain is
that the quantization noise maximum magnitude is constant, i.e. independent of the actual
sample value. In other words, for a large sample value, the SNR is high, but for sample
values close to the quantization floor, the SNR is terrible. Because speech is a process with
such a dynamic range, the fine details are lost when quantization is present.

To overcome this problem, one can use what is referred to as a companding scheme.
Companding entails compressing the dynamic range of the signal so as to obtain a uniform
SNR over all of the dynamic range of the signal. In particular, two companding schemes
are widely used. The first is called A-law and is primarily used in Europe. The second one
is called μ-law and is used in North America and Japan.

For 8-bit encoding and an original signal x (t) : R+ → [−1, 1], μ-law compression is
defined as

F (x) = sign x
ln (1 + μ |x|)
ln (1 + μ)

F−1 (y) =
sign y

μ

(
(1 + μ)|y| − 1

)
where μ = 255.

The discrete-time μ-law is defined in the ITU-T Recommendation G.711 ([11]).
Similarly, A-law compression is defined by

F (x) = sign x

⎧⎨
⎩

A|x|
1+ln A

|x| < 1
A

1+ln(A|x|)
1+ln A

1
A
≤ x ≤ 1

F−1 (y) = sign y

⎧⎨
⎩

|y|(1+lnA)
A

|y| < 1
1+ln A

1
A

exp (|y| (1 + lnA) − 1) 1
1+lnA

≤ |y| ≤ 1

with A = 87.7 or A = 87.6.

2.1.2 Frequency Domain Representation

Just as time domain representations show how a signal changes in time, a frequency
domain representation shows how much signal content lies within a certain frequency band.
In this section we present some ways to represent or encode a signal using its frequency
domain information.
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2.1.2.1 Discrete Fourier Transform (DFT)

The Discrete Fourier Transform is a bijective transformation taking a sequence (sig-
nal) of generally complex numbers x [n] and transforming it into a second sequence X [k],
which is referred to as the DFT of the first one. The two are said to form a Fourier Trans-
form pair, and noted as x [n] ↔ X [k], or simply x↔ X .

WN = e−j 2π
N

FFT {x [n]} [k] = X [k]

=
N−1∑
n=0

x [n]W nk
N

IFFT {X [k]} [n] = x [n]

=
1

N

N−1∑
k=0

X [k]W−nk
N

The Fast Fourier Transform (FFT) and its inverse, the Inverse Fourier Transform (IFFT),
are efficient ways to implement the evaluation of a DFT. Specifically, while direct compu-
tation of the DFT requires O (N2) operations, the FFT requires O (N log2N), thus being
much faster than direct computation. For a signal 1024 samples long, this represents a
reduction in computations by a factor greater than 100.

Since the transformation is invertible, one can always recover the original signal from
its DFT. As it is widely known, the DFT is but a sampled version of its continuous version,
the Discrete-time Fourier Transform (DTFT):

X
(
ejω
)

=

∞∑
n=−∞

x [n] e−jωn

When the infinite sum converges (either because the signal has finite length or the values
of the signal decrease quickly enough), the DTFT is also called the Frequency Response.
This is because it conveys information on how a sinusoid of a given frequency ω will be
affected when passed through a system with impulse response given by x. Also, the DTFT
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is itself a special case of another, more general transform called the z-transform:

X (z) =

∞∑
n=−∞

x [n] z−n

A very important property of the DFT is Plancherel’s Theorem: given two complex-
valued discrete-time signals x [n], y [n], and their respectiveN-point DFTsX [k] and Y [k],
it holds that

N−1∑
n=0

x [n] y [n] =
1

N

N−1∑
k=0

X [k]Y [k]

This might be also stated as an identity in internal (dot) products:

〈x, y〉 =
1

N
〈X, Y 〉

A fundamental corollary is known as Parseval’s Identity. When one takes y = x, the
identity reduces to

N−1∑
n=0

|x [n]|2 =
1

N

N−1∑
k=0

|X [k]|2

or equivalently

〈x, x〉 =
1

N
〈X,X〉

Since the dot product of a vector with itself is nothing but its squared 2-norm, we may
also write

‖x‖ =
1√
N

‖X‖ (2.1)

In summation, the Fourier transform preserves the norm of a signal, except for a scaling
factor, and changes the cosine of the angles between signals by a factor of 1

N
.

Another important property the DFT has is the shifting property, which can be stated as
follows: if x [n] ↔ X [k], then

1. FFT {x [n]W nm
N } [k] = X [k +m], and

2. FFT {x [n−m]} [k] = X [k]W km
N
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(a) Uncorrelated data and principal axes (b) Highly correlated data and principal axes

Figure 2.2: Correlated and uncorrelated data

For more information, see [3, 6].

2.1.2.2 Principal Component Analysis (PCA)

Principal Component Analysis is a tool in multidimensional signal processing that
changes the coordinate system so as to eliminate interdependence between dimensions.
This interdependence or lack thereof can be shown graphically by plotting dimensions
pairwise, if one gets a set of points with no “preferred” direction as in figure 2.2(a), then
those dimensions are uncorrelated. If on the other hand, the points more or less align in one
direction as in figure 2.2(b), then there is some degree of dependence. The more alignment
there is, the stronger the dependence.

PCA is an orthogonal linear transformation. In other words, it transforms the data it
operates on, to a new coordinate system, where the individual coordinates have decreasing
variances. This is useful in lossy compression, as one may reconstruct the signal to varying
degrees of accuracy by keeping only the first L elements. The more elements one keeps,
the better the reconstruction will be.

Suppose we have N zero-mean stochastic processes xn [m], with n ∈ {0, N − 1} and
m ∈ {0,M − 1}. We will arrange these values in a N ×M matrix X [n,m] = xn [m].
Then, we form the N ×N covariance matrix CX as

CX =
1

N − 1
XXH
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The covariance matrix contains information relating the variances (autocorrelations)
of the N processes (dimensions), as well as the covariances (cross-correlations) between
them. We might then calculate the canonical Jordan decomposition of the covariance ma-
trix.

CX = V HDV

V −1 = V H

V CX V H = D

Because of the special form of the covariance matrix, its eigenvalues will be non-
negative, so we can define a square root matrix

B =
√
CX

def
= V H

√
DV

and define a transformed signal

y = B−1x

=
(
V H

√
DV
)−1

x

= V −1D− 1
2V −Hx

y = V HD− 1
2V x (2.2)

Now, we show that this new signal, is x after being decorrelated. For that purpose, we
calculate y’s covariance matrix:

CY =
1

N − 1
y · yH

=
1

N − 1

(
V HD− 1

2V x
)(

V HD− 1
2V x
)H

=
1

N − 1
V HD− 1

2V xxHV HD− 1
2
HV

=
1

N − 1
V HD− 1

2V (N − 1)CXV
HD− 1

2
HV

= V HD− 1
2V CXV

HD− 1
2
HV

= V HD− 1
2DD− 1

2
HV
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Now, because D is diagonal and non-negative (hence, real), we have that

CY = V HD− 1
2DD− 1

2V

= V HV

= I

Therefore, we have shown that the transformation given in equation 2.2, actually decor-
relates the input signal, i.e., leaves a signal whose covariance is trivial. This procedure
actually removes the interdependence of the different processes, and leaves a new set of
independent processes2. In light of these observations we may reinterpret equation 2.2: we
first take the signal x and transform the coordinate axes to match the principal directions.
Then, we scale (i.e. divide) each component by its associated standard deviation3, and
lastly, convert back to the original coordinate system. More information in [10].

2.1.2.3 Karhunen-Loève Transform (KLT)

The Karhunen-Loève Transform, is an orthogonal linear transformation similar to the
PCA transformation just described. The only difference is that the resulting covariance
matrix turns out to be diagonal instead of being the identity matrix. Thus, different com-
ponents will have different variances, which is a way of choosing which components to
keep in a lossy compression scheme, or also to decide on the number of bits to use when
encoding a component.

The transformation used is y = KLT {x} = V · x. In that case, we have that

CY =
1

N − 1
yyH

=
1

N − 1
V xxHV H

=
N − 1

N − 1
V CXV

H

= D

2In a way, is similar to finding an orthonormal basis in an N -dimensional space.
3In the one-dimensional case, this is equivalent to doing y = x

σ where σ2 is the signal variance.
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According to Riesz’s Representation Theorem, one can write

y =

N∑
j=1

〈x, vj〉 vj

ỹ =

d∑
j=1

〈x, vj〉 vj

i.e., express the resulting vector y as a linear combination of the orthonormal basis’s vectors
{vj}, and define a truncated version considering only the first d basis vectors. Evidently,
there is some error introduced by this truncation. It can be shown that the KLT minimizes
the truncation error. This is proven as follows:

e = E
{
‖y − ỹ‖2}

= E
{

(y − ỹ)H (y − ỹ)
}

= E

⎧⎨
⎩
(

N∑
j=d+1

〈x, vj〉 vj

)H ( N∑
j=d+1

〈x, vj〉 vj

)⎫⎬
⎭

= E

{(
N∑

j=d+1

〈x, vj〉H vH
j

)(
N∑

j=d+1

〈x, vj〉 vj

)}

= E

{
N∑

j=d+1

x2
j

}

Also,

V Hy = x

vH
j y = xj

so

e =

N∑
j=d+1

E
{
vH

j yy
Hvj

}

=
N∑

j=d+1

vH
j CY vj
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To find the optimal orthonormal basis, we minimize (using Lagrange multipliers):

N∑
j=d+1

vH
j CY vj −

N∑
j=d+1

λj

(
vT

j vj − 1
)

Setting the derivative to zero,

2 (CY vj − λvj) = 0

Therefore, vj is an eigenvector of the covariance matrix with associated eigenvalue λj .
Also, the KLT has the property that it minimizes representation entropy, defined as

H = −
d∑

j=1

λ̂j log2 λ̂j

λ̂j =
λj∑d
i=1 λi

and also, the KLT is the optimal among all linear transformations as for energy compaction
within the first d components.

More information can be found in [12, 13, 14, 81].

2.1.2.4 Discrete Cosine Transform (DCT)

As we saw in the previous section, the KLT is the optimal transform for decorrelat-
ing a multidimensional signal. However, it entails computing the covariance matrix of a
possibly very large multidimensional signal, and even worse, we have to find its eigen-
decomposition.

Under the assumption that the signal was generated from a first-order Markov process4,
the DCT performs closely to the KLT as for signal decorrelation, but with the advantage of
not having to compute and diagonalize the covariance matrix. This is achieved by using a
fixed basis, which is derived by using the aforementioned Markov process model.

The DCT is defined as

X [k] =

N−1∑
n=0

x [n] cos

(
2π

2N

(
n+

1

2

)
k

)
4A first-order Markov process is a discrete stochastic process in which the outcome at the current

sample is dependent only on the value of the last sample, i.e. P (X [t] |X [t− 1] , X [t− 2] , . . . ) =
P (X [t] |X (t− 1)). An autoregressive process is a Markov process.
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This can be rewritten in matrix form as

X = D · x

where
Dnk = cos

( π

2N
(2n+ 1) k

)
(2.3)

It can be shown that this DCT is equivalent (up to a scale factor of 1/2) to the DFT of
x [n] upsampled by a factor of 2, and made even-symmetric:

y [2n] = 0 ∀0 ≤ n < N

y [2n+ 1] = x [n] ∀0 ≤ n < N

y [4N − n] = y [n] ∀0 ≤ n < 2N

Some authors define the DCT so that it becomes an orthogonal transformation (i.e.
DTD = DDT = I). In that case, the DCT is defined as

X [k] =

⎧⎨
⎩
√

1
N

∑N−1
n=0 x [n] k = 0√

2
N

∑N−1
n=0 x [n] cos

(
2π
2N

(
n+ 1

2

)
k
)

k �= 0

Next, we investigate if there exists a version of Parseval’s identity for the DCT. For this
purpose, we form the product XHX to produce the 2-norm of X and we will relate it to
the 2-norm of x:

X = Dx

XH = xHDH

Now, per equation 2.3, D is a real matrix, so its Hermitian transpose is really nothing
but DT :

DH
nk = cos

( π

2N
(2k + 1)n

)

XHX = xHDHDx

= xHDTDx
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Now, we have already seen that DCT are usually defined to be orthogonal, so that
DTD = I . Thus we arrive at the following result

XHX = xHx

or more compactly
‖DCT {x}‖2 = ‖x‖2 (2.4)

This is the DCT analogous to Parseval’s identity for DFT.
There are several types of DCT, depending on the boundary conditions: each boundary

can have even or odd symmetry. In addition, the symmetry can be around a data point, or
the “virtual” point between two data points. Therefore, there are actually 2×2×2×2 = 8

types of DCT. The DCT mentioned so far is known as DCT-II and is the most commonly
used. It corresponds to x [n] being even around n = −1

2
and even around n = N− 1

2
. X [k]

is even around k = 0 and odd around k = N .
Another DCT which is worth mentioning, is the DCT-IV:

X [k] =

√
2

N

N−1∑
n=0

x [n] cos

(
2π

2N

(
n+

1

2

)(
k +

1

2

))

This corresponds to x [n] being even around n = −1
2

and odd around n = N − 1
2

and
the same for X [k] .

For more information see [10, 15].

2.1.3 Time-Frequency Representation

Yet another way to represent a signal is by combining information from both time and
frequency domains. Consider a continuous time signal x (t). When the signal is repre-
sented in the time domain, we have infinite precision in that domain, i.e. we have signal
information for each possible value of t. However, the information we extract actually
contains information from every possible frequency for a given t. Similarly, when we take
the Fourier Transform X (f), we have all the possible information we might want from the
frequency domain, i.e. a different datum for each possible frequency f , but in this repre-
sentation, the time variable has been “summed out”, and it contains information from all
times for a given f . This shortcoming in single domain representations and the duality is
stated in what is known as the Uncertainty Principle.
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2.1.3.1 The Heisenberg Uncertainty Principle

We will now show that the resolution one can attain in both time and frequency are
interrelated (in most signals of interest, anyway). The way we will do this is by defining
two signal parameters: effective duration and effective bandwidth. These parameters are
representative of how long the signal is, and how wide its spectrum is.

Assume f (t) and its Fourier transform F (ω) are absolutely integrable, that is the in-
tegrals

∫
R
|f (t)| dt and

∫
R
|F (ω)| dω both converge. The effective duration Δt and the

corresponding effective bandwidth Δω are those which satisfy∫ ∞

−∞
|f (t)| dt =

∣∣f (t)∣∣Δt
and ∫ ∞

−∞
|F (ω)| dω = |F (ω)|Δω

with

t =

∫∞
−∞ t |f (t)| dt∫∞
−∞ |f (t)| dt

and

ω =

∫∞
−∞ ω |F (ω)| dω∫∞
−∞ |F (ω)| dω

If we regard |f (t)| as an unnormalized probability distribution, then t is the mean of
the random variable whose probability distribution is |f (t)|; likewise ω is the mean of the
random variable whose probability distribution is |F (ω)|.

From the definition of the Fourier Transform we have

F (ω) =

∫ ∞

−∞
f (t) e−jωtdt

|F (ω)| ≤
∫ ∞

−∞

∣∣f (t) e−jωt
∣∣ dt ∀ω

=

∫ ∞

−∞
|f (t)| dt
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and

f (t) =
1

2π

∫ ∞

−∞
F (ω) ejωtdω

|f (t)| ≤ 1

2π

∫ ∞

−∞

∣∣F (ω) ejωt
∣∣ dω

=
1

2π

∫ ∞

−∞
|F (ω)| dω

Therefore, evaluating at ω and t we have

|F (ω)| ≤
∫ ∞

−∞
|f (t)| dt

≤
∣∣f (t)∣∣Δt∣∣f (t)∣∣ ≤ 1

2π

∫ ∞

−∞
|F (ω)| dω

=
1

2π
|F (ω)|Δω

1

2π
ΔtΔω |F (ω)|

∣∣f (t)∣∣ ≥
∣∣f (t)∣∣ |F (ω)|

ΔtΔω ≥ 1

2π

Define the signal energy as

E =

∫ ∞

−∞
|f (t)|2 dt

We also have according to Parseval’s Identity that

E =
1

2π

∫ ∞

−∞
|F (ω)|2 dω

Define the effective duration and effective bandwidths as

(Δt)2 =

∫∞
−∞ t2 |f (t)|2 dt

E

(Δω)2 =

∫∞
−∞ ω2 |F (ω)|2 dω

2πE
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If limt→±∞ t |f (t)|2 = 0, then ΔtΔω ≥ 1
2
.

We recall the Cauchy-Schwartz Inequality for the L2 Hilbert space. For any L2 func-
tions z (x) and w (x) defined in the interval [a, b],

∣∣∣∣
∫ b

a

z (x)w (x) dx

∣∣∣∣2 ≤
∫ b

a

|z (x)|2 dx
∫ b

a

|w (x)|2 dx (2.5)

which in vector notation becomes

〈Z,W 〉2 ≤ 〈Z,Z〉 〈W,W 〉

or equivalently
〈Z,W 〉 ≤ ‖Z‖ ‖W‖

We now prove the following

Equation 2.5 implies that

∣∣∣∣
∫

R

t f (t)
df (t)

dt
dt

∣∣∣∣2 ≤
(∫

R

t2f (t)2 dt

)(∫
R

∣∣∣∣df (t)

dt

∣∣∣∣2 dt
)

Let

A =

∫
R

t f (t)
df (t)

dt
dt

=

∫
R

t
d
(

f(t)2

2

)
dt

dt

= t
f (t)2

2

∣∣∣∣∣
∞

−∞
−
∫

R

f (t)2

2
dt

By hypothesis, |t| f (t)2 → 0 ⇒ A = −E
2

.
We now recall that d

dt
f (t) ⇐⇒ jωF (ω), we then have using Parseval’s Identity that

∫
R

∣∣∣∣df (t)

dt

∣∣∣∣2 dt =
1

2π

∫
R

ω2 |F (ω)| dω

Therefore,
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∣∣∣∣−E2
∣∣∣∣2 =

∣∣∣∣
∫

R

t f (t)
df (t)

dt
dt

∣∣∣∣2
≤
∫

R

t2f (t)2 dt · 1

2π

∫
R

ω2 |F (ω)|2 dω

= E (Δt)2 1

2π
· 2π · E (Δω)2

E2

4
≤ E2 (Δt)2 (Δω)2

ΔtΔω ≥ 1

2
As we previously mentioned, when we take the Fourier Transform of a signal and eval-

uate it at any frequency, that value actually counts contributions from every instant in time
when the signal has content. Similarly, at all times, x (t) counts contributions from every
possible frequency. While this might be useful for stationary signals, where the frequency
content is constant over time, in non-stationary environments the Fourier Transform will
represent frequency content “averaged” over all times. The reason for this all-or-nothing
property of the Fourier Transform is that the basis functions over which the decomposition
is performed, are complex exponentials (i.e. sines and cosines). While these functions are
perfectly localized in frequency, they extend from t = −∞ to t = ∞, as illustrated in
equation 2.6.

X (ω) =

∫ ∞

−∞
x (t) e−jωtdt (2.6)

Similarly, the inverse transform ponders each differential contribution of the frequency
content by a basis function which is perfectly localized in time and extends from ω = −∞
to ω = ∞ (equation 2.7).

x (t) =
1

2π

∫ ∞

−∞
X (ω) ejωtdω (2.7)

To overcome this extreme localization, several tools have been developed to have fi-
nite localization in both time and frequency. We will first analyze the Short-Time Fourier
Transform.

2.1.3.2 Short-Time Fourier Transform (STFT)

The Short-time Fourier transform takes finite length blocks of a signal (called frames)
and calculates the Fourier Transform over that block. Usually, frames must have some
amount of overlap in order for the transform to be invertible. In addition, taking a frame
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of finite length, is actually windowing the signal with a rectangular window. So in the
frequency domain, this rectangular window will produce smearing or leakage within the
spectrum. To overcome this smearing, we might use different windows before taking the
transform. The STFT is defined in continuous time as

STFT {x (t)} (τ, ω) = X (τ, ω)

=

∫ ∞

−∞
x (t)w (t− τ) e−jωt

In discrete time we have the continuous frequency variant

STFT {x [n]} [m,ω) = X [m,ω)

=
∞∑

n=−∞
x [n]w [n−m] e−jωn

and the much more frequently appearing discrete-time, discrete-frequency variant, which
stems from using the DFT instead of the DTFT used in the continuous frequency variant:

STFT {x [n]} [m, k] = X [m, k]

=

m∑
n=m−N+1

x [n]w [n−m]W nk
N

For simplicity, we will use this STFT variant and note it as either

STFT {x [m]} [k]

or
STFTN {x [m]} [k]

when the dependence upon the FFT length is non-obvious.
It can be proven that

X (ω) =

∫ ∞

−∞
X (τ, ω)dτ

and also that
x (t)w (t− τ) =

1

2π

∫ ∞

−∞
X (τ, ω) ejωtdω
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In other words, if certain conditions are met on the window w (t), then the STFT is an
invertible transformation. These conditions are

w (t) �= 0 ∀t ∈ I∫ ∞

−∞
w (t) dt = 1

where I is the set of values on which the window actually operates. That is the window
cannot be zero for values “inside” of it.

Because of the Heisenberg Uncertainty Principle we discussed in section 2.1.3.1, the
resolution we can get in the frequency domain for each processed frame, is related to the
length of the frame (and consequently, of the window). The longer the window, the more
accurate our frequency domain information will be (figure 2.3(a)). On the other hand, we
will not be able to accurately pin-point fast time-domain events (our time resolution will
be roughly the size of the window). Similarly, if we take a very short window in the time
domain, we will be able to detect very quickly occurring events in the time domain, but our
frequency resolution will be very poor (figure 2.3(b)).

(a) Long window (b) Short window

Figure 2.3: Short-time Fourier Transform with different window lengths

Because the attainable frequency resolution is mandated by the resolution in the time
domain, the STFT is a constant bandwidth analysis technique, which depending on the
application may or may not be suitable. Constant Q analysis, another technique, is explored
below.
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2.1.3.3 Modified Discrete Cosine Transform (MDCT)

The MDCT is another invertible transform, based on the type IV DCT. However, unlike
the DCT, is a lapped transform, meaning that it is meant to be applied to consecutive blocks
of data, where consecutive blocks have an overlap of at least 50%. Because of this overlap-
ping, and the good energy compaction properties of the DCT, make the MDCT attractive
for audio compression, since artifacts produced by block boundary effects are avoided.

Mathematically, the MDCT is defined as a transform from a 2N-samples long signal
into a N-samples long signal:

X [k] =
2N−1∑
n=0

x [n] cos

(
2π

2N

(
n+

1

2
+
N

2

)(
k +

1

2

))

Because the number of samples in the transform is half the number of samples of the
input, one might wonder if it is invertible. Fortunately, by adding overlapping contiguous
IMDCTs, one can perfectly reconstruct the original signal. This is known as Time Do-
main Aliasing Cancellation (TDAC). The IMDCT transforms the N numbers present in
the MDCT, into a length 2N signal:

y [n] =
1

N

N−1∑
k=0

X [k] cos

(
2π

2N

(
n+

1

2
+
N

2

)(
k +

1

2

))

So, except for a factor of 1
N

the IMDCT is the same as the MDCT.
Because of leakage produced by considering only a small block of the signal in the

time domain, we will usually window the signal so that its frequency domain properties
aren’t affected by the finite duration of the analysis block5. In other words, we want to
avoid block boundary effects, i.e. we want the data to smoothly go to zero at n = 0 and
n = 2N . Hence, the procedure is to window the data before the MDCT and after the
IMDCT. However, for the windowed MDCT to be invertible, the window has to satisfy
certain properties:

1. The window has to be symmetric, i.e. w [n] = w [2N − 1 − n]

5By taking a finite block of data, one is already using a window: the rectangular or “box car” window.
The frequency response of this window is convolved with the frequency response of the signal data. The
rectangular window has the smallest main lobe, but the smallest stopband attenuation among all windows.
Hence, the signal will have leakages at each frequency, from neighboring frequencies.
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2. The window has to satisfy the Princen-Bradley condition:
w [n]2 + w [n+N ]2 = 1 ∀0 ≤ n < N .

Some popular choices for windows are

w [n] = sin

(
π

2N

(
n+

1

2

))

which is used in MP3, and

w [n] = sin

(
π

2
sin2

(
π

2N

(
n+

1

2

)))

which is used in Vorbis.

Claim The windows used in MP3 and Vorbis satisfy the Princen-Bradley condition
Proof
MP3

w [n +N ] = sin

(
π

2N

(
n +

1

2
+N

))

= sin

(
π

2N

(
n +

1

2

)
+
π

2

)

= cos

(
π

2N

(
n+

1

2

))

w [n]2 + w [n +N ]2 = sin2

(
π

2N

(
n+

1

2

))
+ cos2

(
π

2N

(
n+

1

2

))
= 1
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Vorbis

sin2

(
π

2N

(
n +N +

1

2

))
= sin2

(
π

2N

(
n +

1

2

)
+
π

2

)

= cos2

(
π

2N

(
n+

1

2

))

= 1 − sin2

(
π

2N

(
n+

1

2

))

w [n+N ]2 = sin2

(
π

2

(
1 − sin2

(
π

2N

(
n+

1

2

))))

= sin2

(
π

2
− π

2
sin2

(
π

2N

(
n+

1

2

)))

= cos2

(
π

2
sin2

(
π

2N

(
n+

1

2

)))

w [n]2 + w [n +N ]2 = sin2

(
π

2
sin2

(
π

2N

(
n+

1

2

)))

+ cos2

(
π

2
sin2

(
π

2N

(
n+

1

2

)))
= 1

It is worth noting that for even N , the MDCT is similar to a DCT-IV where the input is
shifted by N

2
and two N-length blocks of data are transformed together.

For more information, see [16, 17].

2.1.3.4 Wavelets

Wavelet analysis is sometimes referred to as constant Q analysis. The Q refers to the
quality factor, a parameter which appears when studying resonance systems. It is a measure
of bandwidth of a system but relative to the frequency at which the bandwidth is measured:

Q =
fc

Δf

A high-Q and a low-Q second order filters are shown in figure 2.4.
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Figure 2.4: High-Q and low-Q filters

Wavelets perform an analysis that has a greater bandwidth at high frequencies, and
lower bandwidth at lower frequencies. That way, the resolution is not constant over fre-
quencies. This is very useful since a difference of 10 Hz in resolution at a central frequency
of 30 Hz is 30%, but 10 Hz at a central frequency of 2000 Hz is only 0.5%. In the first case,
the measurement error is so big it renders the analysis unusable, and in the second case the
resolution is an overkill. With wavelets, we can have a resolution that has a constant ratio
with respect to the central frequency, such as having 1 Hz at 200 Hz and 10 Hz at 2000 Hz,
etc.

The Continuous Wavelet Transform is defined as

γ (t, s) =
1√
|s|

∫ ∞

−∞
f (t)ψ

(
t− τ

s

)
dt (2.8)

Several clarifications are in order. First, the Wavelet transform, being a time-frequency
representation, converts a function of one variable (time) into a two-dimensional signal
(time t and scale s). Scale plays a role similar to that of frequency6 We see that equation 2.8,
looks a lot like a decomposition (analysis) equation. Indeed, this equation actually projects
the signal f (t) into the space generated by a set of basis function ψτ,s (t) = ψ

(
t−τ
s

)
. Thus,

the basis functions are called wavelets, in similarity to the sinusoidal waves used in Fourier
Theory7.

6Actually, scale is inversely proportional to frequency, so a more accurate statement would be to identify
scale with period, although for non-periodic signals this identification loses its meaning.

7Actually, the name “wavelet” stems from its first usage in French, “ondelette”, by Morlet and Grossman
in the 1980s ([10]).
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It is worth noting that all the basis functions, ψτ,s (t) originate from a single basic
function ψ by translations and changes of scale. This ψ function is for that reason called
the “mother wavelet”.

One may wonder now, can any function be used as a mother wavelet? The answer is no,
as there are several conditions a function must satisfy in order to be considered a wavelet:

1.
∫∞
−∞ ψ (t) dt = 0 (zero mean condition)

2.
∫∞
−∞

|Ψ(ω)|2
|ω| dω < +∞ (admissibility condition)

The CWT has the problem of squaring the effective size of the representation of the signal,
since it operates on two continuous variables. To overcome this, the Discrete Wavelet
Transform (DWT) was devised:

ψj,k (t) =
1√
|s0|j

ψ

(
t

sj
0

− kτ0

)

It is desirable that the analysis wavelets be orthogonal to each other, for that way we
guarantee a compact invertible representation. Thus, the wavelets must verify∫

ψj,k (t)ψm,n (t)dt = δj−m,k−n

where δa,b is the two-dimensional Kronecker Delta. The inverse DWT is thus

f (t) =
∑

j

∑
k

F [j, k]ψj,k (t)

The DWT may be used for discrete-time signals, which results in a very compact and
useful representation for a variety of areas, from pattern recognition, feature extraction,
signal manipulation, etc. In this case we get

λj−1 [k] =
∑
m

h [m− 2k]λj [m]

γj−1 [k] =
∑
m

g [m− 2k] γj [m]

The coefficients λj and γj are the low-pass and high-pass energies of the signal at
different frequency bands, respectively. The filter h [n] is referred to as the scaling filter



32

and the g [n] as the wavelet filter. In figure we see the Daubechies 4-tap wavelet (db2)
scaling function in the time domain and its frequency response.

(a) Impulse response sampled at 1
16 and 1

32 intervals (b) Magnitude response

Figure 2.5: Scaling function φ (t) for the db2 wavelet

(a) Impulse response sampled at 1
16 and 1

32 intervals (b) Magnitude response

Figure 2.6: Wavelet function ψ (t) for the db2 wavelet

The scaling function satisfies Φ (0) = 1 while the wavelet function satisfies Ψ (0) = 0.
This means that while the scaling function represents “averages”, the wavelet represents
“differences” in the analyzed signal.

The theory of Wavelets and the transforms associated with them is both recent and
involved. Vaidyanathan ([18]) as well as Daubechies ([19]) have thoroughly approached the
subject. A study on the use of wavelet coefficients as features for phoneme recognition is
found in [21] where it is shown that the sampled continuous wavelet transform coefficients
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(SCWT, also known as a scalogram) perform similarly to MFCCs in recognition tasks.
More information on the Uncertainty Principle as well as on the STFT can be found in
[8, 10].

2.1.4 Cepstrum

The Cepstrum is defined as the the FT of the log-spectrum of a signal, i.e.

X̂ = FFT {log FFT {x}}

If we denote x↔ X , we have that

X̂ [k] =

N−1∑
p=0

log (X [p]) e−jpωk

The Cepstrum thus takes advantage of the periodicity in the spectrum. It is an invertible
representation8:

X [p] = exp

(
1

N

N−1∑
k=0

X̂ [k] ejkωp

)

= N

√√√√N−1∏
k=0

X̂ [k] ejkωp (2.9)

Just as in the time domain we have the index n and in the frequency domain the fre-
quency bin index p, in the cepstral domain we use the index k. This index corresponds to the
“quefrency” magnitude: low quefrency represents frequency components in the spectrum
that vary at a low quefrency, that is, slowly varying components. Similarly, high-quefrency
components are signal components which vary quickly. The cepstral representation has
been proven to be a powerful tool in several applications. For example, in speech modeling,
an approximation of the glottal filter might be obtained by removing the high-quefrency
components of the signal. This is an application of homomorphic filtering theory, and
specifically corresponds to a filter in the frequency domain, where the operation is known
as “liftering”. More information on cepstrum can be found in [8].

8Note, in formula 2.9, that the introduction of a radical in the process complicates matters, since in general
the radicand will be a complex number. Therefore, we must be careful which of the N roots we choose for
each of the vector components. For that purpose one usually unwraps the phase and chooses the root that
makes the phase look most continuous.
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2.2 Lossy Representations
When the ultimate goal of the application is analyzing the signal such as for classifica-

tion, detection etc., some more compact representations can be used. These representations
do not preserve all of the signal information, but for the purposes of that application might
be sufficient. Furthermore, since synthesis is not a concern, the representation can be tai-
lored to describe only the features of the signal that are relevant. For example, a very
simple activity detector might use the average signal energy within a frame to discern be-
tween speech and silence. Therefore, instead of using a number of values equal to the
frame length, it uses just one value (the RMS energy). It is obvious that the samples can
not be recovered from this feature, but for the purposes of this very simple VAD, it might
be enough.

In summation, lossy representations are useful in analysis scenarios: the usefulness
usually arising from the compactness of the representation. To arrive at a representation
suitable for a given application, we must have some criteria that drives our choice.

2.2.1 Optimality Criteria

The classic criteria for measuring the goodness of a representation for a signal, is to use
some form of distance between the representation and the signal itself. If we call the signal
x and its representation s using some vector space S, we have that

s = arg min
si∈S

‖x− si‖

In general, the search (and factibility thereof) for this optimum depends heavily on two
factors:

1. The cardinality (size) of the search space S

2. The tractability of the norm used to measure distances

For example, the search space might be finite-dimensional (Rn) or infinite-dimensional
(L2, R

N). A mathematical procedure to obtain the optimum would be to evaluate

s = sol
d

dsi
‖x− si‖

when the norm in question is a function of class C1 with the typical norm properties:
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1. ‖v‖ ≥ 0 ∀v ∈ S (non-negativity)

2. ‖v‖ = 0 ⇐⇒ v = 0 (discernibility)

3. ‖v1 + v2‖ ≤ ‖v1‖ + ‖v2‖ ∀v1, v2 ∈ S (triangle inequality)

4. ‖a · v‖ = |a| ‖v‖ ∀a ∈ C, v ∈ S (positive homogeneity)

The classical choice for a norm to make derivations mathematically tractable, is the 2-norm.
In Rn the 2-norm is defined as

‖x‖2 =

√√√√ n∑
i=1

|xi|2

and for functions in L2

‖f‖2 =

√∫
dom f

|f (x)|2 dx

2.2.2 Partial Correlation Coefficients (PARCOR)

Partial correlation coefficients or PARCOR, are a useful tool to model close-to-autoregressive
processes, since they are derived from the autoregression coefficients. Given a process/signal
{s [0] . . . s [t− 1]}, its forward AR model of order m is given by

s [l] =
m∑

i=1

am [i] s [l − i] + efwd
m [l] (2.10)

where {am [i]}m
i=1 are the forward AR coefficients and efwd

m [l] are the forward prediction
errors.

In an analogous manner, the backwards AR model is given by

s [l −m− 1] =

m∑
i=1

bm [l] s [l − i] + eback
m [l] (2.11)

which “predicts” past samples in terms of future samples.
As will be explained in section 2.3.3, the AR coefficients am and bm are determined so

as to minimize the mean square total forward and backward prediction error respectively.
This minimizes the energy contained in that error: though the error might have large val-
ues, it can only have them for short periods of time, lest the 2-norm would greatly increase.
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Compare this with using for instance the ∞-norm, where we minimize the maximum error.
Although this usually is more desirable, it is much more difficult to attain because of the
intractability of the max operator, especially the inability to take its derivative. The charac-
teristic effect of minimizing the ∞-norm is to obtain errors which are fairly constant with
a sinusoid-like behavior. This is called maximum ripple and is used in the design of FIR
filters (Remez exchange and Parks-McClellan Algorithm).

In perfectly AR signals, the backwards coefficients bm are the same as am only reversed.
However, in reality there will always be some degree of non-autoregressivity, be it from the
process source itself, or ambient noise. Thus, the PARCOR provide a unified forward-
backward representation of a signal. The forward and backwards prediction coefficients, as
well as the PARCOR can be estimated using the Levinson-Durbin recursion.

It is interesting to note that the partial correlation coefficients are closely related to the
reflection coefficients of an acoustic tube, which measure the amount of energy reflected
at each discontinuity inside an acoustic tube. Another interesting feature of PARCORs
is that they always lie in the range [−1, 1]. Moreover, they have been shown to possess
quantization properties very superior to the prediction coefficients, which when quantized,
can render a stable filter unstable. Lastly, the PARCORs of a filter allows one to construct
a very efficient filter structure known as a (reflection) lattice, analogous in structure to an
electrical transmission line. More information can be found in [5, 8].

2.2.3 Real Cepstrum

In general, the spectrum of a signal will be a complex number, consisting of a magnitude
and phase

X [p] = |X [p]| exp (j (∠X [p] + 2πm)) ∀m ∈ Z

Therefore, the logarithm of that will be

logX [p] = log |X [p]| + j (∠X [p] + 2πm)

which is not unique (note the dependency on m). The phase is a continuous quantity so
phase jumps must be taken care of by adding/subtracting multiples of 2π. This process is
known as phase unwrapping.

The problem of phase unwrapping along with taking the logarithm of a potentially small
quantity, poses several computational/numerical problems. Since usually the phase is of
little interest in analysis applications (though we still need the phase for reconstruction),



37

the real cepstrum is defined as

X̂ [k] =

N−1∑
p=0

log |X [p]| e−jkωp

As we said, this representation exploits the periodicity of the spectrum while discarding
the phase. More information can be found in [8].

2.2.4 Linear-Scale Energies

One way to characterize a signal is by using the energy contained within a certain set
of non-overlapping frequency bands. A particular choice for that set is to use M bands of
equal width. This is known as a linear-scale energy representation. When one takes the
N-point FFT, one actually is calculating the energy within each of the N frequency bands,
each of which has width 2π

N
. Therefore, the energies are nothing but

Ep =

∣∣∣∣∣
N−1∑
n=0

x [n] e−jpωn

∣∣∣∣∣
Furthermore, we might take the logarithm of the magnitude of the energies to reduce

the dynamic range of the representation.

2.2.5 Non-Linear Scale Energies

When dealing with perceptual applications, i.e. those which try to simulate or model
our auditory system, we often resort to using energies on a non-linear scale. One such scale
is the Bark scale proposed by E. Zwicker ([30]). The Bark scale is composed of 24 Barks,
and each Bark spans a critical band bandwidth. A critical band is the area in the basilar
membrane that resonates in response to a sine wave. Tones that lie on the same Bark will
produce psychoacoustical phenomena such as beating, roughness, and auditory masking.

The mapping from linear frequency to Barks is given by

B = 13 arctan (0.00076f) + 3.5 arctan

(
f 2

75002

)

Another scale used in psychoacoustics and perceptual analysis is the mel scale. It is
comprised of tones which are judged to be equidistant from one another. The conversion is
shown in figure 2.7 and is given by

m = 1127.01048 ln

(
1 +

f

700

)
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Figure 2.7: Non-linear scale mapping
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Figure 2.8: Mel scale weighting filters

The mel scale is roughly linear until 1000 Hz and logarithmic from then on.
Just as we used linear scale energies, and driven by perceptually-based motivation, we

can use the energy within a non-linear scale’s bands as a feature vector. For that matter,
the spectrum of a frame is calculated and then filtered through a number of filters to ren-
der energy values within each critical band. In the mel scale, the filters are triangular in
shape, with bandwidth increasing with frequency, and conversely the gain of each filter is
decreased with increasing frequency so that the energy per unit bandwidth is kept the same
over all frequencies. Figure 2.8 depicts the filters’ gain in the frequency domain.



39

More information can be found on [30, 31, 32].

2.2.6 Mel-Frequency Cepstral Coefficients (MFCC)

Davis and Mermelstein introduced MFCC as a speech recognition feature in [97].
MFCC can be viewed as a decorrelated version of the energies on each frequency bin,
measured in a mel scale. Indeed, MFCC are defined as

Mx = DCT {Hz2Mel {log |FFT {x}|}}

Because of the Hertz-to-mel warping, MFCCs are usually a vector of about 13 real
numbers, which usually exhibit a decaying trend. In [97], MFCC are computed on a frame-
by-frame basis, so that a 13-dimensional vector is obtained every 30 ms or so. This turns
out to be a powerful method to recognize voiced sounds, especially vowels, since different
sounds will lie in mostly separable regions in this R13 space.

2.2.7 MFCC Differentials

To capture dynamic effects and artifacts in speech, such as articulation and speech
modulation effects as well as to improve the recognition success, we can augment the
13-dimensional vector by appending the difference between consecutive MFCC vectors.
Moreover, one may also include the different between consecutive MFCC differentials,
which are called second-order differentials. Thus, we are left with a 39-dimensional vector
for each frame.

Table 2.1: MFCC augmentation through its time differentials⎧⎪⎪⎨
⎪⎪⎩

M0 [n] = vector of MFCCs for time-frame n
M1 [n] = M0 [n] −M0 [n− 1]
M2 [n] = M1 [n] −M1 [n− 1]

= M0 [n] − 2M0 [n− 1] +M0 [n− 2]

2.3 Speech Modeling
In order to gain some understanding of the problem at hand, we need to study to some

extent the sound production mechanism and useful ways to mathematically model the pro-
cesses that take place in speech.

2.3.1 The Vocal Tract

Speech sounds can be classified in many ways. One such classification pertains to
whether the air flow through the vocal tract makes the vocal cords vibrate. If it does, we
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say the sound it produces is voiced; otherwise, it is unvoiced. Voiced sounds have pitch,
which is the frequency at which the folds vibrate, whereas unvoiced sounds are noise-like.
Thus, voiced sounds are quasi-periodic. A vocal tract model is depicted in figure 2.9.

Figure 2.9: Vocal tract diagram (taken from [34])

2.3.2 Source-Filter Model

A useful model for the vocal tract is called the source-filter. In the source-filter model,
the vocal tract is modeled as a system with two component: a source which can either
be periodic (thus creating voiced sounds) or noisy (creating unvoiced sounds), and a filter
which expresses the frequency response of the vocal tract. Therefore, it separates the exci-
tation (airflow pressure) from the cavity resonant characteristics. This separation allows for
speech processing techniques such as the vocoder, which changes the excitation and filter
independently, thus rendering such effects as the well-known “singing-guitar”.
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Figure 2.10: The source filter model

2.3.3 Autoregressive Processes

As already shown by equations 2.10 and 2.11, one can define coefficients am [n] and
bm [n] so that the mth-order prediction residual is minimized in the mean square sense.
This means that we choose am [n] in

s [n] =

m∑
i=1

am [i] s [n− i] + efwd
m [n]

so that ∞∑
n=0

∣∣∣efwd
m [n]

∣∣∣2
is minimized. The problem of solving for the optimal autoregression coefficients is called
Linear Prediction and reduces to solving a special kind of linear system of equations, which
entails inverting a Toeplitz matrix. It is extensively studied in [5], where a procedure known
as the Levinson-Durbin Recursion is used to efficiently and recursively calculate the coef-
ficients. As stated in section 2.2.2, this procedure can also be used to extract the partial
correlation coefficients.

Autoregressive filters are identifiable with all-pole IIR filters. This means that signals
or filters with one or more zeros in the z-plane, will never be perfectly represented by an
AR process. Nasalized sounds, such as /m/, /n/ or /N/ exhibit zeros, arising from the
coupling between the vocal tract and the nasal cavity: the nasal cavity acts as an energy
trap for certain frequencies, at which the zeros occur. In addition to this, a shunting effect
in the sinuses contribute to this energy trapping mechanism (see [40]).

2.3.4 Moving Average Processes

MA processes are processes where the output at a given time depends only on the cur-
rent and previous value of the input. The past outputs are never fed back to the process,
only the input gets processed as it moves forward in time, hence the name “moving aver-
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age”. MA filters are identifiable as FIR filters. These filters have a finite length impulse
response and conversely their z-transform is a finite-order polynomial in z−1. Therefore,
the only poles are at z = 0, hence making these filters unconditionally stable. MA pro-
cesses can try to approximate AR processes as the latter can try to approximate the former,
but always with similar limitations. In this case, we can never successfully approximate
a resonance. When trying to approximate a damped peak, the MA estimate will exhibit
ripples and deviations from the AR response. More information in [5].

2.3.5 ARMA Processes

ARMA processes are processes which combine both past inputs and past outputs to
produce the current sample’s output. They are more general processes than MA and AR in
the sense that they usually need less coefficients to fit a certain given response than their
MA or AR counterparts.

2.4 Linear Prediction
Linear prediction is the process of estimating the future behavior of a signal based on

a number of past values. The process can be stated as follows: given a signal x = {x [n]}
and a positive integer N , calculate the numbers ak ∀ k = 1, . . . N so that the prediction
error defined as

e [n] = x [n] −
N∑

k=1

akx [n− k]

has minimal energy

{ak} = arg min

(
x [n] −

N∑
k=1

akx [n− k]

)2

= arg min

⎛
⎝x [n]2 +

(
N∑

k=1

akx [n− k]

)2

− 2

N∑
k=1

akx [n] x [n− k]

⎞
⎠

= arg min

(
N∑

k=1

akx [n− k]

)2

− 2

N∑
k=1

akx [n] x [n− k]
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For this purpose we can set the derivative of the error energy with respect to ak to zero:

{ak} = sol

{
2

(
N∑

k=1

akx [n− k]

)
x [n− k] − 2x [n] x [n− k]

}

= sol

{
N∑

k=1

akx [n− k] − x [n]

}

which is a self-referential equation. The linear prediction parameters are known as LPC
and efficient algorithms to solve the problem such as the Levinson-Durbin recursion exist.

The set of LPC and even the cepstrum resulting from the LPC can successfully be used
as features in a speech recognition system. More information in [5, 8].

2.5 Adaptive Filters
Adaptive filters are a class of iterative algorithms which try to estimate a set of optimal

coefficients so that a certain objective function, whose arguments are those coefficients as
well as input-output data, is minimized. Formally, the problem is as follows

Algorithm 1 Formal statement of an adaptive algorithm
Given data D, and a criterion function J , find coefficients w0 so that

w0 = arg min
w
Jw (D)

1. Start with an initial guess w0
0.

2. Based on the current estimate wn
0 , calculate wn+1

0

wn+1
0 = F (wn

0 , D
n, . . . )

so that
Jwn+1

0
(D) ≤ Jwn

0
(D)

3. If the estimates have been within a certain tolerance for a sufficient number of itera-
tions or after a certain number of iterations, stop. Otherwise go to step 2.

From this statement, it is clear that adaptive algorithms search for the solution to an op-
timization problem, namely the minimization of an objective function, sometimes referred
to as the cost function.

In the following sections we examine a few adaptive filters and their properties. They
will be a crucial part of our solution to approach the simulation problem. More information
about the topics in this section can be found in [5].
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2.5.1 Adaptive Filters In Our Context

For our purposes, we will restate the adaptive filter problem within the bounds of our
context. Given an input signal x = {x [n]}, and a desired output signal d = {d [n]}, an
FIR adaptive filter finds coefficients h so that the error signal e [n] is minimized in the
mean-square sense. Formally speaking, we have that

y [n] = (h ∗ x) [n]

e [n] = y [n] − d [n]

h = arg min E
{
e2 [n]

}
where E {·} is the statistical expectation operator.
2.5.1.1 The Wiener Filter

Expanding the previous equation we get

E
{
e2 [n]

}
= E

{
(y [n] − d [n])2}

= E
{
y2 [n] + d2 [n] − 2y [n] d [n]

}
= E

⎧⎨
⎩
(

N∑
i=0

hix [n− i]

)2
⎫⎬
⎭+ E

{
d2 [n]

}
− 2E

{
N∑

i=0

hix [n− i] d [n]

}

If the input and output sequences are wide-sense stationary processes9, we can write

Rx [m] = E {x [n] x [n +m]}
Rxd [m] = E {x [n] d [n +m]}

In order to obtain the optimal hi, we must solve ∂
∂hi

E {e2 [n]} = 0. Carrying on with
our manipulations we have

∂

∂hi

E
{
e2 [n]

}
= 2

N∑
j=0

Rx [j − i] hj − 2Rdx [i] ∀i = 0 . . . N

N∑
j=0

Rx [j − i] hj = Rdx [i]

9This assumption is a bit strong for speech signals, since they tend to be stationary only for very short
periods of time. Nevertheless, we will later develop algorithms that do not make such strong assumptions.
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This last equation can be rewritten more compactly in matrix form as

⎡
⎢⎢⎢⎢⎣

Rx [0] Rx [1] Rx [2] . . . Rx [N ]

Rx [1] Rx [0] Rx [1] . . . Rx [N − 1]
...

... . . . . . . ...
Rx [N ] Rx [N − 1] . . . Rx [1] Rx [0]

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h0

h1

...
hN−1

hN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Rdx [0]

Rdx [1]
...

Rdx [N − 1]

Rdx [N ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

These are called the Wiener-Hopf equations.

Rh = c (2.12)

If the autocorrelation matrix R is nonsingular, the Wiener filter is then

h = R−1c (2.13)

and it is optimal in the sense that it minimizes the expectation of the energy of the error
(i.e. the mean-square error). Note that the Wiener filter is not an iterative algorithm in
the sense that it needs complete knowledge of the input and output data to produce the
filter coefficients estimate, and it is a one step process. In the following sections we derive
algorithms to perform such estimates iteratively, adapting to the incoming data (hence the
term “adaptive filter”).

2.5.2 Steepest Descent (SD) Method

The steepest descent method is a very well-known method to find numerical solutions
to a wide range of mathematical problems. It can be summarized as follows
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Algorithm 2 Steepest descent

1. Start with an initial filter coefficient vector guess h0

2. Calculate the gradient vector of the cost function with respect to the filter coefficients
at the current guess hn

vn = ∇hJ (D, hn)

3. Advance a small distance in the direction of maximum decrease in cost function
value

hn+1 = hn − 1

2
μvn

4. If cost function is close to final desired value |J (D, hn+1)| ≤ ε, stop. Otherwise go
to step 2.

Since the gradient vector always points in the direction of maximum increase in value,
its negative points in the direction of maximum decrease, hence the name “steepest de-
scent”. It is as if we want to climb down a mountain by always going through the steepest
paths downhill.

To convert the Wiener filter into a steepest descent algorithm, one can note that the
gradient of the cost function is

∂J

∂hn
i

= −2c [i− 1] + 2
N∑

j=1

hn
jRx [j − i]

= −2E {e [n] x [n− k]}
∇J = −2E {e [n] x [n]}

where x [n] is the column vector [x [n] , x [n− 1] , . . . , x [n−N + 1]]

hn+1 = hn − μ

2
∇J (n)

= hn + μE {e [n] x [n]}

e [n] = d [n] − xT [n] hn

hn+1 = hn + μE
{

x [n]
(
d [n] − xT [n] hn

)}
= hn + μE {x [n] d [n]} − μE

{
x [n] xT [n]

}
hn

= (I − μR) hn + μc
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∇hJ (D, hn) = Rhn − c

Note that whenever we will have ∇J = 0, it will mean that Rhn − c = 0, therefore
Rhn = c, which is the condition for the Wiener filter.

The μvalue controls how far we go at each iteration. A large μmeans long steps and
quicker initial convergence. Small μvalues result in slower but safer convergence. Note
that unless we carefully control the value of the advance step μ, we might end up with an
unstable algorithm. The necessary conditions for stability in this case boil down to

μ > 0

and
|1 − μλk| < 1 ∀k

where λk are the eigenvalues of the autocorrelation matrix. Therefore,

0 < μ <
2

λmax

Although the steepest descent algorithm converges to the Wiener filter under the stabil-
ity conditions outlined above, it requires the exact calculation of the gradient vector at each
iteration, which is impossible to perform in real time.

2.5.3 Least Mean-Squares (LMS) Filters

In order to palliate the stringent requirements of the SD method as to gradient calcula-
tion, the LMS filter was devised. The LMS filter uses an instantaneous unbiased estimate
of the gradient value at each iteration step, viz.

∇̂ (n) = −2e [n] x [n]

Therefore, the actual update rule becomes

hn+1 = hn − 1

2
μ∇̂ (n)

= hn + μe [n] x [n]

where the error signal is defined as e [n] = d [n] − xT [n] hn. An LMS filter’s signal flow
graph is depicted in figure 2.11.
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Figure 2.11: LMS signal-flow graph

To do away with the dependence on the step value μ and signal scales, we normalize
the step value by the energy of the input frame x [n] to render the Normalized Least mean
square variant:

μNLMS =
μ

‖x [n]‖2 + δ

The introduction of δ is due to the fact that if the frame contains little energy, the step
size would exceed acceptable limits. Thus δ acts as a damping coefficient and is usually set
to a very small number. μ is usually 1

2
. In this case the algorithm becomes

Algorithm 3 Normalized LMS

1. Choose h0

2. e [n] = d [n] − xHhn

3. hn+1 = hn + 1
xH [n]x[n]

e [n] x [n]

The NLMS algorithm converges much faster than its simple LMS counterpart at little
extra cost.

More information can be found in [5, 7, 39].

Property 1. The least-squares estimate of the coefficient vector approaches the optimum
Wiener solution as the data length n approaches infinity, if the filter input and
the desired response are jointly stationary ergodic processes.

Property 2. The least-squares estimate of the coefficient vector is unbiased if the error
signal e [n] has zero mean ∀n.
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Property 3. The covariance matrix of the least-squares estimate hn equals R−1, except for
a scaling factor, if the error vector e [n] has zero mean and its elements are
uncorrelated (e.g. white noise).

Property 4. If the elements of the error vector e [n] are statistically independent and Gaussian-
distributed, then the least-squares estimate is the same as the maximum-likelihood
estimate.

2.5.4 Recursive Least Squares (RLS) Filters

In the LMS and NLMS, we are only using information from the current input frame
x [n]. RLS filters use information of all the input seen up until now, therefore rendering
much faster convergence and accuracy, at the cost of extra computations. We now introduce
an important lemma which is central to the derivation of the RLS filter.

2.5.4.1 The Matrix Inversion Lemma

Let A and B be two M ×M positive definite matrices, C is an M ×N matrix and D a
positive definite N ×N matrix such that

A = B + CDCT

Then, we can express the inverse matrix as

A−1 = B−1 −B−1C
(
D−1 + CTB−1C

)−1
CTB−1

We now modify the autocorrelation matrix by adding a small damping constant ε to the
diagonal. This step is necessary to insure positive-definiteness:

R′
n [k,m] =

n∑
i=1

x [i−m] x [i− k] + εδkm

where δkmis the Kronecker delta at [k,m]. This can be rewritten as

R′
n [k,m] = x [n−m] x [n− k] +

(
n−1∑
i=1

x [i−m] x [i− k] + εδkm

)
= x [n−m] x [n− k] + R′

n−1 [k,m]
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Now we let

A = R′
n

B = R′
n−1

C = x [n]

D = 1

so that when we use the matrix inversion lemma we get

(R′
n)

−1
=
(
R′

n−1

)−1 −
(
R′

n−1

)−1 x [n] xT [n]
(
R′

n−1

)−1

1 + xT [n]
(
R′

n−1

)−1 x [n]

This is a recursive way to calculate the inverse correlation matrix (R′
n)−1 in terms of

the previous step correlation matrix estimate
(
R′

n−1

)−1 and the current input data frame.
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Algorithm 4 Recursive Least-Squares (RLS)

p filter order

λ forgetting factor (→ 1)

δ damping constant (→ 0)

• h0 = 0

• P [0] = δ−1I

1. x [n] = (x [n] , . . . , x [n− p])

2. Calculate the gain vector

k [n] =
P [n− 1] x [n]

λ+ xT [n]P [n− 1] x [n]

3. Calculate the estimation error

η [n] = d [n] − xT [n] hn−1

4. Update the coefficient estimation

hn = hn−1 + k [n] η [n]

5. Update the inverse correlation matrix estimate

P [n] = λ−1
(
P [n− 1] − k [n] xT [n]P [n− 1]

)
6. Go to step 1
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1. In the LMS algorithm, the correction that is applied in updating the old estimate
of the coefficient vector is based on the instantaneous sample value of the tap-input
vector and the error signal. On the other hand, in the RLS algorithm the computation
of this correction utilizes all the past available information, because of its recursive
nature.

2. In the LMS algorithms, the correction applied to the previous estimate consists of the
product of three factors: the (scalar) step-size parameter μ, the error signal e [n− 1],
and the tap-input vector x [n− 1]. On the other hand, in the RLS algorithm this cor-
rection consists of the product of two factors: the true estimation error η [n] and the
gain vector k [n]. The gain vector itself consists of

(
R′

n−1

)−1, the inverse of the de-
terministic correlation matrix, multiplied by the tap-input vector x [n]. The major dif-
ference between the LMS and RLS algorithms is therefore the presence of

(
R′

n−1

)−1

in the correction term of the RLS algorithm that has the effect of decorrelating the
successive tap inputs, thereby making the RLS algorithm self-orthogonalizing. Be-
cause of this property, the RLS algorithm is essentially independent of the eigenvalue
spread of the correlation matrix of the filter input.

3. The LMS algorithm requires approximately 20M iterations to converge in mean
square, where M is the number of tap coefficients contained in the tapped-delay-
line filter. On the other band, the RLS algorithm converges in mean square within
less than 2M iterations. The rate of convergence of the RLS algorithm is therefore,
in general, faster than that of the LMS algorithm by an order of magnitude.

4. Unlike the LMS algorithm, there are no approximations made in the derivation of
the RLS algorithm. Accordingly, as the number of iterations approaches infinity,
the least-squares estimate of the coefficient vector approaches the optimum Wiener
value, and correspondingly, the mean-square error approaches the minimum value
possible. In other words, the RLS algorithm, in theory, exhibits zero misadjustment.
On the other hand, the LMS algorithm always exhibits a nonzero misadjustment;
however, this misadjustment may be made arbitrarily small by using a sufficiently
small step-size parameter μ.

5. The superior performance of the RLS algorithm compared to the LMS algorithm,
however, is attained at the expense of a large increase in computational complexity.
The complexity of an adaptive algorithm for real-time operation is determined by
two principal factors:
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(a) the number of multiplications (with divisions counted as multiplications) per
iteration, and

(b) the precision required to perform arithmetic operations.

The RLS algorithm requires a total of 3
2
M (3 +M) multiplications, which increases

as M2, the square of the number of filter coefficients. On the other hand, the LMS
algorithm requires 2M+1 multiplications, increasing linearly withM . For example,
for M = 31 the RLS algorithm requires 1581 multiplications, whereas the LMS
algorithm requires only 63.

More information can be found in [4, 5, 7].

2.5.5 ARMA RLS

All of the adaptive filters we have reviewed in the previous sections, estimate the co-
efficients of a tapped delay line filter structure, i.e. an FIR filter. If the filter to estimate
is stable and its impulse response trails off to zero for |n| > N , then the filter might be
approximated by an FIR filter. Namely, the conditions are

1. ∞∑
n=−∞

|h [n]| <∞

2.
∀δ > 0 ∃Nδ > 0/ |h [n]| < δ ∀ |n| > Nδ (2.14)

Condition (2) may be restated in relative terms with respect to the maximum impulse re-
sponse sample value as

∀0 < δ < 1 ∃Nδ > 0/ |h [n]| < δ ‖h‖∞ ∀ |n| > Nδ (2.15)
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Note there may be some filters such that condition (2) is satisfied but not condition (1):

h [n] =

⎧⎨
⎩

1
n

n �= 0

0 n = 0

On the other hand, decaying to zero is a necessary condition for absolute summability;
nevertheless, condition (2) gives an acceptable length Nδ for truncating an infinite impulse
response filter and obtaining an approximately equivalent, length 2Nδ FIR filter.

The disadvantage to use truncated IIR filters (FIR) as opposed to using IIR filters, is the
necessary number of coefficients to represent the filter. Consider the filter

H (z) =
1 − z−1

1 + z−1 + 0.9z−2
(2.16)

This filter can be characterized by four transfer function coefficients (1, -1, 1 and 0.9),
or conversely by the location of its poles and zeros and its gain (1, −1

2
+
√

13
20
j, −1

2
−
√

13
20
j,

1) or some other parametrization; the important thing here is that the minimum number of
coefficients to represent the filter is four. On the other hand, figure 2.12 depicts how the
impulse response of this particular filter behaves.
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(a) Impulse response

(b) Remaining L1 energy after n samples (c) Truncation length Nδ as defined in 2.15

Figure 2.12: Impulse response behavior of the filter defined in equation 2.16

We see how almost 60 samples are necessary to contain all impulse response samples
greater than 10% of the maximum. At the same time, 60 samples leaves out about 5% of
the L1 energy (

∑
|h [n]|). In any case, to achieve successful representation of the filter

characteristic, we need about 15 times more numbers. This ratio gets worse as the poles
of the original transfer function get closer to the unit circle, for its magnitude response
peaks will become sharper, which in turn lengthens the effective impulse response (this is
an application of the Uncertainty Principle discussed in 2.1.3.1)

To overcome the representation inefficiency of which FIR filters suffer, one can try to
fit the a given input-output realization to an ARMA model (an IIR filter). However, the
procedures involved are much more complex than those for FIR estimation:
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1. Since the cost function is quadratic in the error sample values and filter coefficients,
its derivative will be linear in the error sample values. This gives rise to simple and
tractable mathematical expressions.

2. The cost function has a nice physical interpretation as energy

3. The performance surface is smooth and has continuous derivatives

4. The performance surface is a convex n-dimensional paraboloid with a single global
minimum. This means that if we start our iterations relatively near to a minimum,
we will converge towards it. This idea is exploited in the Steepest descent method
(figure 2.13)
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Figure 2.13: FIR filter performance surface and contour plot

On the other hand, IIR filters have associated performance surfaces which exhibit mul-
tiple local minima. Consider the filter given by

H (z) =
0.05 − 0.04z−1

1 − 1.1314z−1 + 0.25z−2

Let’s assume we try to approximate this filter using a first order model, such as

Yo (z)

X (z)
=

b

1 − az−1
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such that we have to identify the optimal parameters a and b. It can be shown that the
mean-square output error for this type of models can be expressed as

MSOE = σ2
d − 2bH

(
a−1
)

+
b2

1 − a2

From this expression we readily see that it is nonlinear in the parameters, and thus
we expect the surface to have several extrema. This is the case indeed, as shown by the
contour plot in figure 2.14, where bluer regions indicate minima. There is a global minima
at a = 0.906, b = −0.311 and several local minima.

a

b

|�J|
2

�1 �0.5 0 0.5 1
�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.14: Contour plot of the IIR error-performance surface

It is clear, that unlike the FIR estimation case, if one starts the adaptive filter with a
parameter vector θ located near a minimum of the error-performance surface, one runs the
risk of being trapped around that minimum for a long time, maybe ad infinitum. Moreover,
an effect called breakdown is exhibited under certain conditions which renders adaptation
non-unique for a given realization set. To illustrate this effect, consider the identification
of an ARMA(3,5) process. There are a total of eight parameters to fit. Figure 2.15 shows
the time evolution of the different parameters {θk}k=1...8 as well as their pairwise evolution
(i.e. the evolution in coefficient space, cut into bidimensional slices10). Notice how the

10Pairing is necessary since the coefficient space is isomorphic to R8 and therefore not representable in
paper.
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parameters tend to form clusters. These clusters are actually the parameter trajectories
being stuck on a local minima for some number of iterations, then going to some other
point until finding another local minima. During this travel to another minima, all the other
parameters must vary to keep the error from increasing.
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Figure 2.15: ARMA(3,5) parameter evolution
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A myriad of ARMA estimation methods exist. One such algorithm is explained in detail
in [35], as well as the the details and reasons behind the Breakdown Effect.

2.5.6 Kalman Filtering

Kalman filtering refers to a technique used to estimate the dynamics of a system given
a set of noisy measurements. For instances, it may be used to track a target in a radar: at
each instant in time, the position, velocity and acceleration of an object can be measured
but these measurements are usually corrupted by noise. On the other hand, there is a known
relationship between the three:

a = v̇

v = ẋ

so that given measurements of the three magnitudes and these relations, one can try to
cancel the noise inherent in the measurements.

Kalman filters are usually written as a state-space representation through two equations.
The first equation governs the system dynamics:

x [k] = F [k]x [k − 1] +B [k] u [k] + w [k]

where x [k] is the state of the system at time k, F [k] is a matrix modeling the dynamics of
the system, which is applied to the previous state x [k − 1], B [k] is the transfer function
between the control input u [k]and the state and w [k] is the process noise. Usually the noise
is assumed to be zero-mean, multivariate Gaussian with a given (possibly time-varying)
covariance matrix

w [k] ∼ N (0, Q [k])

The second equation describes the observable output:

z [k] = H [k] x [k] + v [k]

where z [k] is our measured state, H [k] a mapping from states to outputs, and v [k] is the
measurement noise, also assumed to be zero-mean and Gaussian

v [k] ∼ N (0, R [k])
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Because of the fact that Kalman filters are order-1 recursive (only the current measure-
ment and the immediately previous state are required to compute the current state of the
system), and because of the impossibility to actually get the system state (we only have
access to the system through observations), Kalman filters can be regarded as analogous to
Hidden Markov Models. The only difference is in the fact that the hidden state variables
are continuous in nature (as opposed to discrete in HMM). Also, HMM can represent arbi-
trary distributions for the next state variables, while the Kalman filter’s noises are always
Gaussian, mainly because of tractability issues.

More information can be found in [4, 5, 7, 22].

2.6 Other Techniques
Several methods and techniques can be used to perform non-linear time-variant map-

pings between input and output. One such technique uses neural networks ([41]), which
allows an arbitrary mapping between the trajectories of feature vectors and vectors useful
for the internal representation of data in an ASR.

Dynamic Programming is the name of a family of algorithms which uses a Divide-and-
Conquer approach to solve problems, viz. that solutions to several subproblems can be
combined together to render the solution to the global problem. This usually is connected
with greedy algorithms.

Dynamic Time Warping (DTW) is a Dynamic Programming technique that can be used
to identify a distance between two feature-vector trajectories. In DTW, the problem is
to find the time alignment between two signals so that the distance between the aligned
signals is minimized. In other words, given the two signals a [n] and b [n], one tries to find
monotonously-increasing mappings m1 and m2 such that the distance

d = ‖a [m1 (n)] − b [m2 (n)]‖1 (2.17)

is minimized, while satisfying these constraints

m (0) = 0

m (n) = n

m (n1) ≥ m (n2) ∀n1 ≥ n2

where m is either m1 or m2. The first and second conditions assume that the sequences are
aligned at the start and end: we can usually relax these conditions by not taking into account
the first and last few frames into the calculation of equation 2.17. The third equation, says
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(a) Sakoe-Chuba band (b) Itakura parallelogram

Figure 2.16: Allowable regions for DTW

that time always flows in the “forward” direction, that is, we don’t allow trajectories to go
backwards for the sake of minimizing the distance. While in most cases this will make
sense, we might want to reconsider this in scenarios where the time trajectories of the
feature vectors might not be sequential in time. An example of this is when the feature
vectors are transmitted over a data network that doesn’t guarantee ordered packet arrival,
such as a UDP or a Real-Time Transport Protocol (RTP) network connection.

Since the search space for the DTW algorithm can be quite big, we usually introduce
additional restrictions on the warping function m1 and m2 by only allowing the trajectories
to traverse a certain region, such as the ones shown in figure 2.16. More information on
time warping can be found in [42].



Chapter 3

Speech Recognition Tools

In order to get a better understanding on how to improve the performance of ASR, we
will study some of the tools an ASR uses.

3.1 Front End
The first component a signal encounters in its path through an ASR system is the front

end. The front end’s most important function is the extraction of signal characteristics rel-
evant to recognition. In other words, the front end must transform the input signal into a
representation that is at the same time meaningful for recognition purposes (i.e. similar
content from the semantic point of view maps to a similar front end output), and manage-
able.

Since speech can be considered as having a bandwidth of approximately 4 kHz, and can
be acceptably encoded at 12 bits/sample, it has a bandwidth ofB = 4×103·2·12 = 96 kbps.
While this is certainly manageable for a computer, recognition algorithms involve searching
a large space. If this search is to be performed on a sample-by-sample base, then the
computational complexity becomes too much; if we want to perform recognition at higher
sampling rates and higher bit resolutions, then the requirements are that much greater.

Finally, a time-domain representation is not appropriate for recognition purposes. That
is why front ends usually work on a frame-by-frame basis, and for each of these frames,
output a vector of features, like those described in previous sections.

More information can be found in [43, 44].

3.1.1 Filtering and Equalization

As mentioned, a signal undergoes certain processes throughout its path until it is re-
ceived at the ASR. These processes introduce different kinds of distortion in the signal
which hinder recognition. In order to palliate the effects of the channel, a number of tech-
niques can be applied. In the rest of this discussion we will focus on linear time-invariant
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systems, where the concept of a frequency-domain characterization of the channel makes
sense.

All of these techniques ultimately try to equalize the signal, i.e. if a test signal such
as white noise is fed through the channel, the received signal will have certain frequency-
domain characteristics, viz. the noise will be colored by the spectrum of the channel1. By
filtering the colored signal with an appropriate filter, we can try to whiten the spectrum of
this noise signal to resemble the original spectrum. This filter is called a linear equalizer.
3.1.1.1 Linear Equalization

To obtain the equalizing filter, one probes the channel with a test signal x [n] as just
described, observes the output d [n], and uses some sort of adaptive filter algorithm to adapt
the filter coefficients to match the filtered output y [n] = S {d [n]} to the channel input as
close as possible, thus cancelling the channel distortion as much as possible. The structure
is depicted in figure 3.1(a). In other words, one wishes to find

S = arg min
S

‖y [n] − d [n]‖

FIR filters are usually utilized for equalization, since they are always stable, and the
algorithms used to find the optimal coefficients are well-behaved, mainly because the per-
formance surface arising from the calculation of J (S) = ‖S {x [n]} − d [n]‖ is unimodal
(i.e. it has a unique minimum). Therefore, the mathematical statement of the problem of
finding the optimal equalizer is

ho = arg min
h

‖x [n] − (h ∗ d) [n]‖

Several comments are in order. First, the minimization is done over all filter coefficients
for a given filter order. This filter order determines the lowest possible prediction error2. In
general, a greater filter order for FIR filters will result in the same or lower prediction error.
Secondly, the minimization is parametric in a time delay Δ. This delay is chosen so as to
make the equalizer causal, and generally so that the peak of the impulse response occurs at
the center of the tapped delay line. This way, the filter behaves as non-causal for a short
time frame, because the output at time n will depend upon the input at time n−1, n, n+1,
etc. The unconstrained, non-causal Wiener (optimal) filter for a given input x and output d

1Note that we may use a different test signal, as long as we know the frequency characteristics of this test
signal (note that we need the signal to originate from a stationary process for the spectrum to make sense).

2By prediction error we mean the value of the cost function J (h)
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(a) Inverse System Identification Configuration (b) Direct System Identification Configuration

Figure 3.1: Two equalization structures

satisfies
Ho (z) =

Φxd (z)

Φxx (z)

whereHo (z) is the z-transform of the filter’s impulse response, Φxy (z) is the cross-PSD of
x and d and Φxx (z) is the PSD of x. The filter ho [n] is therefore in general infinitely long,
and non-causal. By truncating the impulse response and padding it, we obtain a causal,
finite-length impulse response.

Another way to equalize the effects of the channel is depicted in figure 3.1(b). This
configuration is known as system identification. When the filter is chosen to be an FIR as
in the equalization configuration (also known as inverse system identification), and since
one estimating the channel behavior rather than compensating for it, one obtains an all-pole
equalizer.

ho = arg min
h

‖(h ∗ x) [n] − d [n− Δ]‖

More information can be found in [7, 39, 111, 112].
3.1.1.2 Cepstral Mean Subtraction (CMS)

Going back to the problem at hand, that is, eliminating the effects of a given channel,
let us assume that the channel can be described as a moving average (FIR) filter:

y [n] = (h ∗ x) [n]

By taking the cepstrum (section 2.1.4) of both sides of the equation we get

Y [k] = H [k] +X [k]

Now, we make the following observation: the channel is stationary, i.e. its charac-
teristics will not change over time, within a certain (small) time frame. Therefore, if we
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consider a frame-by-frame analysis, we get for the ith frame

Yi [k] = H [k] +Xi [k]

where the index k is the quefrency bin. If we average this equation over all L frames, we
get

1

L

∑
i

Yi [k] = H [k] +
1

L

∑
i

Xi [k]

so we now define

Zi [k] = Yi [k] −
1

L

∑
j

Yj [k]

= H [k] +Xi [k] −
(
H [k] +

1

L

∑
j

Xj [k]

)

= Xi [k] −
1

L

∑
j

Xj [k]

Note that removing the mean corresponds to highpass liftering the signal, thus remov-
ing the slowly varying components present in the signal. In particular, we would like
to achieve infinite attenuation to the constant component, namely the channel. By using
CMS, we fully remove the channel effects, but we introduce an artifact arising from the
average cepstrum of the speech signal. In addition, we will always have an additive noise
component so that

y [n] = (h ∗ x) [n] + v [n]

Y [k] = H [k]X [k] + V [k]

log Y [k] = log

(
X [k]

(
H [k] +

V [k]

X [k]

))

= logX [k] + log

(
H [k] +

V [k]

X [k]

)
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If the noise has less energy than the signal itself we can write log (x0 + δ) ≈ log x0+
δ
x0

:

log Y [k] ≈ logX [k] + logH [k] +
V [k]

X [k]

Ŷ [n] ≈ X̂ [n] + Ĥ [n] + FFT

{
V [k]

X [k]

}
〈
Ŷ [n]
〉

≈
〈
X̂ [n]

〉
︸ ︷︷ ︸

signal artifact

+Ĥ [n] +

〈
FFT

{
V [k]

X [k]

}〉
︸ ︷︷ ︸

deconvolved noise artifact

So as a result of CMS, on top of an artificial component from averaging the input
cepstrum, we also have a component arising from averaging the noise deconvolved by
the input. In mid-to-low SNR scenarios, the second foreign component can become large
enough to make the whole channel estimate unreliable.
3.1.1.3 Dynamic CMS

The approach described in section 3.1.1.2 requires averaging the incoming signal over
L frames, whereL is a number of frames large enough to make the speech average cepstrum
vanish. Usually this will make real-time processing impossible. However, by computing
a running average, we can approximate this mean subtraction. This approach is called
dynamic Cepstral mean normalization.

Let α→ 0+ and the average cepstrum and its respective z-transform be

Mi [k] = αXi [k] + (1 − α)Mi−1 [k]

M (z, k] = αX (z, k] + (1 − α) z−1M (z, k]

M (z, k] =
α

1 − (1 − α) z−1
X (z, k]

and so we can calculate a running average

Z (z, k] =

(
1 − α

1 − (1 − α) z−1

)
X (z, k]

= (1 − α)
1 − z−1

1 − (1 − α) z−1
X (z, k]

= β
1 − z−1

1 − βz−1
X (z, k]
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Figure 3.2: Maximum cepstral distortion in Dynamic CMS

where β → 1−. This corresponds to a filter with a zero at ω = 0 and a damped pole at
ω = 0 too.

Note that the running average will not be very accurate at the beginning, because of the
transient arising from this filter. The choice of β determines the time delay after which the
mean subtraction can be considered accurate, and the distortion introduced at frequencies
other than DC. It can be shown that the maximum of the magnitude response is attained at
ω = − ln (β), having a value of

D = 4
(β − 1)2

(β2 − 1)2

=
4

(β + 1)2

DdB = 10 log10

4

(β + 1)2

= 20 log10 2 − 20 log10 (1 + β)

≈ 6 dB − 20 log10 (1 + β)

So, the larger β is, the smaller the maximum distortion will be (figure 3.2).
More information can be found on [79, 80].
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3.1.1.4 Matched Filter

For the purpose of detection, a procedure called matched filtering may be used. This
consists of a linear filter, whose impulse response is convolved with the input. In the
presence of additive white noise at the input, the matched filter achieves the maximum
signal-to-noise ratio at the output. To construct a matched filter, we time-reverse a template
of the signal we are trying to detect. For a given noise covariance matrix Rv and template
signal s, we get that the normalized matched filter is given by

h [n] =
1√

sHR−1
v s

R−1
v sH [N − n]

If we deal with white noise, we get Rv = σ2
vI so that

h =
sBH

σv

√
sHs

=
1

σvσs

sBH

where ·B is the backwards operator. Thus, if we have templates of all the signals of interest
for detection, we might construct a bank of matched filters. Note that this would not be
realizable in practice due to variabilities in one speaker (speed of speech, articulation, etc.)
as well as variations among speakers.

3.1.2 Other Speech Intelligibility Enhancers

Speech enhancers are a wide class of algorithms whose intent is to increase the percep-
tual quality of speech data. Some general common characteristics are:

1. They usually operate on a frame-by-frame basis

2. They usually are non-linear operations, i.e. the filter cannot be expressed as an input-
independent impulse response convolved with the input.

3. They are based on one or more of these models

(a) acoustic (e.g. physical modeling of the vocal production system, noise source
modeling)
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(b) psychoacoustical, i.e. how the human ear perceives sound, how the stimulus
is transmitted through the human hearing system into the brain, why certain
frequencies are amplified, why certain sounds are masked, etc.

(c) statistical: a model that covers either long-term averages (time average), or a
short-time average taken over many realization of the same process (ensemble
average). Processes in which the time average and the ensemble average of a
certain magnitude coincide are called ergodic

4. As the name implies, their objective is to improve the intelligibility of the speech
segment. In order to evaluate their effectiveness, we have two basic options. The
first one is to conduct a subjective test by letting a large enough number of people
rate the intelligibility of the speech segment after being processed, compared to that
of the untreated segment, on a numerical scale and then average the answers. This
process is called Mean Opinion Score (MOS) or we can use a standardized algorithm
such as PESQ ([120, 121]) to evaluate the perceptual quality. These algorithms also
rely on psychoacoustical models, and are suitable for only certain kinds of problems.
For instances, PESQ converts the input audio to a telephone-like intermediate repre-
sentation. Thus, if we are trying to simulate any kind of channel, especially a phone
channel, it would not be accurate to use PESQ as a measure of success of our simu-
lation, since the algorithm is inherently discarding information. Secondly, PESQ is a
perceptual measurement which tries to mimic MOS, while our simulations will not
necessarily measure perceptual qualities (that is, human perception), but rather the
perception of the ASR engine.

To illustrate the idea, consider the algorithm described in [82]. The algorithm’s objective is
basically to estimate the fundamental frequency on each frame, and then lower the magni-
tude of the frequencies that are most dissonant with respect to the fundamental (figure 3.3).
Therefore, we have that the algorithm relies on how the ear perceives sounds as consonant
or dissonant (psychoacoustical model).

It is important to note that while humans may perceive an “enhanced” segment as more
intelligible than an untreated segment, recognition rates for those enhanced segments are
usually not better ([83]). This is mainly because they either discard information from the
signal or introduce artificial information, thus distorting the whole feature-space trajectory
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on which the recognition process is based. Moreover, phase information may be changed
in a way that actually worsens the recognition rate3.
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Figure 3.3: Dissonance curve for two tones of equal volume

More information can be found on [82, 91, 92, 93, 94, 95].

3.1.3 Energy Normalization

For recognition purposes, usually frames are energy normalized so that all incoming
frames to the rest of the system have the same energy. This takes care of inherent volume
variabilities between louder and softer parts of a sentence.

3.2 Voice Activity Detection (VAD)
In many scenarios it is crucial to be able to determine with great accuracy the beginning

and ending of each word in a sentence. For example, in order to avoid feeding the system
with ambient noise to recognize. Another example, which we will see in more detail in
section 5.6.1, is when trying to estimate the filter that gives the closest output to a given
desired output, given an input. For that particular application, it is important that input and
output are synchronized. Otherwise, the estimated filter will either contain unnecessary
delays (if the desired output has silence before the actual data), or fail to capture all of the
channel characteristics if the input has more silence before than the desired output, since

3Of course this statement is true only for ASRs using features that depend on the signal’s phase.
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in that case the filter will have a strong anticausal component which in general is more
difficult to estimate correctly.

A Voice Activity Detector classifies each frame in an audio stream as speech (S) or
silence (N). To be able to synchronize and pinpoint beginnings and endings of words, there
are a many methods being used. VAD systems are usually complex classifying systems,
involving one or more features. The simplest one would be to use an energy threshold
and if the energy within a frame exceeds that threshold, mark it as speech. This method is
clearly faulty in that it doesn’t contemplate differences between softer and louder speakers.
Even with only one speaker, it fails to capture language dynamics which mandate certain
phonemes should be stressed more than others. It also is faulted in that there are some
phonemes which inherently carry less energy than others (vowels are much more energy-
bearing than stops). Apart from these limitations, words tend to last for more than a few
frames. Therefore, after the VAD classifies each frame as S/N, it must do a second pass
eliminating spurious detections: e.g. a frame might have been classified as S because it was
an aspiration before the actual word, which can carry a lot of energy.

Another decision feature might be the energy differential between current and previous
frames. Note that if we start introducing information from previous frames into our deci-
sion, we are inherently introducing delays in the system, which may translate to not being
able to exactly detect the onset of the first and last phonemes in a sentence.

Finally, it is interesting to note that spectral entropy can be used as a successful decision
feature. Spectral entropy is calculated on a frame by frame basis, and it is defined as the
information entropy of a random variable that has a probability density function given by
the amplitude spectrum of the frame, normalized to unity.

Techniques such as GMM have been used as a decision algorithm, where mixtures are
trained for both speech and silence and when a new frame comes in, it is compared against
the mixtures to decide either S or N.

The performance of binary classifiers such as VAD algorithms can be summarized
graphically in a Receiver Operating Characteristic curve. The ROC is a graphical rep-
resentation of the algorithms sensitivity vs. specificity (i.e. a plot of the number of true
positives (TPR) vs. false positives (FPR)). A true positive occurs when the segment was
classified as S and it really is speech, while a false positive occurs when the segment was
classified as S when it really is N. Figure 3.4 shows a typical ROC curve along with the
so called line of no discrimination, which depicts the characteristic of an algorithm which
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Figure 3.4: A ROC curve

assigns values randomly. An ideal perfect classifier would be represented with a point at
(0, 1), which means that we always get 100% true positives and 0% false positives.

3.3 Gender Detection
If the system can detect the speaker’s gender (i.e. male, female, child), then it will most

likely perform better since the features and filters used for recognition can be customized to
each gender. The problem is that it is generally difficult to assert the speaker’s genre based
on a small number of audio frames, and since users usually expect the recognition process
not to need any additional training, this splitting of the system into customized parts might
not be applicable for real-time purposes.

3.4 Prosody
Prosody describes the rhythmic and musical attributes of a language. It includes the

study of intonation, pitch, formant structure and similar attributes. Some languages are
more prosodic than others (cf. Mandarin vs. English). Therefore, depending on the lan-
guage, it may be necessary to include and analyze those pieces of information and incor-
porate them into the detection process.

3.5 Gaussian Mixture Models (GMM)
Gaussian mixture models are a method to “learn” about characteristics and trends within

a data set. They can be used to classify the points in a data set into several categories, a
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(a) Unclustered data (b) Clustered data

Figure 3.5: An example of a data set originating from three independent Gaussian distributions, and
clustered by three Gaussian mixtures

process known as data clustering. Consider the two-dimensional data set in figure 3.5. To
train the mixture model, we are given the green, red and blue points, but we aren’t given
their

To train the model means to find all of the distributions’ parameters, in this case the
gaussian’s means μi and variances σi. To find them, we must choose those parameters
which maximize the likelihood (this approach is called Neyman’s Maximum Likelihood
principle). To do that we have three options:

1. Set ∂
∂μi

logP (x|μ1, . . . μN) = 0 and solve for all the μi. This gives rise to difficult to
solve equations.

2. Use steepest descent or some other method to find the optimum. This is a very slow
approach.

3. Use the Expectation Maximization algorithm. This is the approach used in practice.

3.5.1 Expectation Maximization (EM)

Suppose we already know the probability of each class wj , but we don’t know the μi.
Then the probability of the data given the means μi is
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P
(
x|μ
)

=
N∏

i=1

P
(
xi|μ
)

=
N∏

i=1

k∑
j=1

P
(
xi|wj, μ

)
P (wj)

=
N∏

i=1

k∑
j=1

Kj exp

(
− 1

2σ2
j

(xi − μj)
2

)
P (wj)

after some algebra we get that for maximum likelihood (i.e. solving for the derivative to be
zero),

μj =

∑N
i=1 P

(
wj|xi, μ

)
xi∑N

i=1 P
(
wj|xi, μ

) (3.1)

These are nonlinear equations in μi. If, for each xi we knew the probability that μj was
in class wj, i.e. P

(
wj|xi, μ

)
, for each class wj, then we can straightforwardly compute μj.

On the other hand, if we knew each μj then we can easily compute P
(
wj|xi, μ

)
for each xi

and wj (just use the Gaussian pdf). The alternation of both steps is called the Expectation
Maximization algorithm applied to the estimation of the class’s means and is described in
algorithm 5.

Algorithm 5 Expectation Maximization for GMM means

On the tth iteration our estimates are Mt = {μ1 (t) , . . . , μk (t)}

E-step Compute the expected classes of all data points for each class:

P (wj|xi,Mt) =
P (xi|wj,Mt)

P (xi|Mt)

=
P
(
xi|wj, μj (t) , σ2

j

)
pj (t)∑k

j=1 P
(
xi|wj, μj (t) , σ2

j

)
pj (t)

M-step Compute the maximum-likelihood μgiven the last step membership distribu-
tions:

μj (t+ 1) =

∑N
k=1 P (wj|xk,Mt) xk∑N

k=1 P (wj|xk,Mt)

Alternate between E and M steps
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• Because of the non-linear dependence on the parameters, the EM algorithm can get
stuck in local minima, and empirically it does.

• In the same way we described a very simple algorithm to estimate the mixture’s
means, the algorithm can be applied mutatis mutandis to the estimation of σ2

j .

• Note that EM works for a generic probability distribution. Gaussians are chosen
for several reasons: they appear ubiquitously, mainly because of the Central Limit
Theorem4, and moreover the resulting EM equations are tractable or solvable.

After training (i.e. estimation of the mixture’s parameters), whenever a new data point
arrives, we must decide to which class (Gaussian) we assign the point. For that purpose,
we calculate the likelihood that the point belongs to each class, and then choose the class
that maximizes that likelihood. More information can be found in [107].

3.6 Recognition Performance Measures
We have mentioned the distinction between two sets of data to be used in ASR systems.

On one hand, we have the training data set, which comprises the corpus of speech data
based on which the system parameters (HMM parameters) are to be tuned. On the other
hand, the test data set, or production data set, is the set of data upon which we will perform
the recognition process. The performance of an ASR system can be characterized by the
rate of successful recognition attempts, called the recognition rate, expressed as

R = 100% × # correctly recognized units
# tested units

where units may correspond to several levels of granularity. For example one may measure
the recognition rate at a phrase level, word level, or even at a phoneme level. Because
of articulation effects, and that the algorithms involved in recognition take into account
the time evolution of the data, the recognition rates are generally different for different
granularity levels.

Also, recognition rates may be split between significative groups, i.e. males and fe-
males, native vs. non-native speakers, and so on. This allows the system developer to

4The CLT states that if we average many random variables whose distributions are arbitrary (save for the
fact that they have finite variance), then the resulting random variable will be distributed normally.
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identify possible areas for improvement of the system; e.g. the system’s performance may
benefit from a gender classifier as described in section 3.3.

3.7 Distributed Speech Recognition
The idea behind Distributed Speech Recognition is to decouple the front-end processing

from the rest recognition mechanism by using a client-server model over a data network.
This way one can use the front-end processing on a lightweight device such as a PDA and
access speech information retrieval services using a back-end recognition server. The data
network is not restricted to be wire-line, e.g. GPRS5 data-enables mobile networks making
these services available to GPRS-enabled devices, like tomorrow’s mobile phones. To
accomplish this, the stream of acoustic information transmitted from the client to the server
needs to be compacted as much as possible. Speech coding schemes designed specifically
for recognition purposes can have data rates as low as 2 Kbps. More information can be
found in [108, 109].

5General Packet Radio Service (GPRS) is a mobile data service available to users of Global System for
Mobile Communications (GSM) and IS-136 mobile phones.



Chapter 4

Theoretical Framework

In this chapter we introduce a mathematical definition of the problem at hand. To
generate channel data (i.e. simulated data) from our clean recordings, we will use a certain
digital filter, whose structure and parameters are a priori unknown. Given a certain clean
data set and its corresponding channel data set, we might calculate what the optimal filter
coefficients are, in order to meet a certain criteria. This criteria will be to minimize the
distance in some space between the channel data and the simulated data.

Therefore, we have several free variables:

• filter structure

• filter coefficients/parameters

• space in which the distance is measured

• choice of distance

4.1 Filter structure
For our purposes, and as a first approach, we will be concerned only with linear, time-

invariant filters. For simplicity’s sake, we will concern ourselves with FIR filters, since IIR
filters can almost always be correctly approximated by sufficiently long FIR filters1.

1the case in which this statement is false is when very sharp resonances or unstable poles occur in the IIR
filter, which is of no interest to us anyway.
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4.2 Filter Coefficients and Parameters
Since we have decided to use LTI FIR filters, the only parameters to choose are the

length of the impulse response, and its sample values (or conversely, the magnitude and
phase responses).

4.3 Measure Space
Since our goal ultimately is to feed the ASR system with data that “looks” as if it came

from a channel, the measure space must coincide with the space in which the ASR system
parametrizes its input. Put differently, the ASR sees a certain slice of reality, drawn from its
input information, in a certain feature space. If the ASR system cannot tell the difference
between simulated and actual channel data in that feature space, we will have attained our
goal.

4.4 Norm
There are a number of interesting norms to consider. First, let’s look at the quadratic

norm, also known as the 2-norm. For our purposes, given a vector v in the measure space
with components vi, the squared 2-norm is defined as

‖v‖2
2 =

N∑
i=1

|vi|2

First and foremost, it is a very tractable norm, whose (square’s) derivative renders a linear
equation which facilitates solving for the optimum. Secondly, there already are several
well-established methods to do 2-norm minimization as we have already seen in section
2.5. Performance surfaces are bowl-shaped manifolds, which behave nicely because of
having a unique optima. Finally, we will be heavily using and relying on Parseval’s identity
(equation 2.1) which is an identity relating 2-norms in a primal space and its dual space.

Depending on the choice of features, some features may actually carry more informa-
tion than others. Thus, an error in that feature must contribute more to the error norm. We
borrow the concept of entropy from Information Theory to get a measure of how much
information a feature carries:

4.4.1 Feature Entropy

Consider a feature vector trajectory v [k] = {vi [k]}i=1...N . We treat each of the N
features as distinct random variables, and try to estimate the entropy for each of these
r.v. For that purpose, we have basically two options: try to estimate the r.v. probability
distribution (pdf) by some well-known method (a simple example of how to do this is to
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produce a histogram), or calculate the spectral entropy of the feature. Let

Vi [t] = |FFT {vi [k]} [t]|

In general, features can be complex valued. When a feature is real valued, we can
simplify the calculations by letting

Vi [t] =
∣∣FFT+ {vi [k]} [t]

∣∣
where the plus sign indicates we only consider positive frequency bins (since an FFT is
symmetric for real valued inputs). Define the normalized spectral content as

V N
i [t] =

Vi [t]∑
Vi [t]

such that Vn adds up to unity. We define the spectral entropy as

ηi = −
∑

V N
i log2 V

N
i

which can be made less sensitive to noise and quantization by damping by letting

V N
i [t] =

Vi [t]∑
Vi [t]

+ δ

for a very small δ. Therefore, for each feature in a trajectory, we obtain a measure of how
many bits would be necessary to represent that feature. The more variability a feature’s
spectrum has, the more “random” it is, and therefore, its entropy will be greater. The flatter
the feature’s spectrum (i.e. the feature is very localized), the smaller its entropy. Hence, we
can now compare how much information a feature carries. Based upon this, we may want
to weigh different features differently (give more weight to features that vary less, since a
difference in that feature is more noticeable; put differently, it is not expected for a very
localized feature to move around a lot because of an error in that feature, while features
that vary a lot aren’t as affected by a small error). More information can be found in [110].

For the purpose of weighing different features differently, we can introduce what is
called an anisotropic norm. The standard 2-norm is isotropic, in the sense that every com-
ponent’s energy is multiplied by the same number (one) and then added. An anisotropic
norm can be written as

‖v‖2
2,anisotropic =

N∑
i=1

αi |vi|2
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4.4.2 Anisotropic, Coupled 2-norm

Because of coupling between features (interdependence, as described in 2.1.2.2 and
2.1.2.3), we may want to generalize this notion by introducing a square matrix into the
equation which weighs not only each feature squared by itself but also the mutual products
between features:

‖v‖2
2|M = vHMv (4.1)

The requirements imposed upon the weight matrix M are basically that the matrix be
positive definite, i.e. Hermitian (MH = M) and all its eigenvalues are positive. In light of
the definition in equation 4.1, one can now view the 2-norm as merely ‖v‖2|I . A geometrical
interpretation can be given as follows: because of the Spectral Theorem, every Hermitian
matrix can be diagonalized by a unitary matrix so that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
M = QHDQ

QHQ = I

QQH = I

D = diag {di}

Therefore, the anisotropic 2-norm is rewritten as

‖v‖2
2|M = vHQHDQv

= (Qv)H D (Qv)

= wHDw

So this is basically saying that the anisotropic 2-norm, looks at the vectors in a different
coordinate basis (an orthogonal basis for that matter, corresponding to the eigenvectors of
M), and weighs each component by a number in the diagonal of the matrix D. In other
words, the 2-norm decomposes vectors along its eigenvectors and weighs these decompo-
sitions by the associated eigenvalues.

4.5 Methods and Techniques

4.5.1 Estimation

Adaptive filters represent the best approach to solving our estimation problem. They
don’t need dedicated or special hardware, they can be ran offline on a standard PC, a crucial
characteristic. Also, they provide results which can be controlled and verified.
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As to the objective function the filters try to minimize, there are some points to ad-
dress. LMS filters look to minimize the expected value of the error energy at any time, i.e.
min E

{
|e [n]|2

}
. On the other hand, RLS filters take into account the past history of the

error for the objective function, since they try to perform min
∑n−1

i=0 λ
n−i

E
{
|e [n]|2

}
. RLS

filters converge very rapidly, but as we already said are more computationally expensive.
Notwithstanding, we will pursue an RLS filter for most of our discussion.

A third and crucial point to consider is that RLS filters try to minimize the energy of the
error in the time domain, i.e. the time-domain signal arising from a difference between real
and simulated channels. While this is not what we are looking for, we will show how the
two approaches are related and the advantages and disadvantages one has over the other.

For this purpose, we start by analyzing the difference between minimizing the error in
the time domain as opposed to the frequency domain, and then try to extend that result to
other spaces, especially to the cepstral space. The result, presented in section 4.7, is novel
to the extent of which the author is aware.

4.5.2 Result Combination

Since we will be extracting results from many utterances, we then need to combine
these partial results into one final representation. For that matter, consider the problem
of, given {x1, . . . , xN}, calculate x̂ so that σ2 = 1

N

∑
(xi − x̂)2 is minimized (this is a

condition known as minimum variance)

σ2 =
1

N

N∑
i=1

x2
i − 2xix̂+ x̂2

∂σ2

∂x̂
=

1

N

N∑
i=1

−2xi + 2x̂

= − 2

N

(
N∑

i=1

xi −Nx̂

)

To reach the optimum, we need to set the derivative of the variance with respect to x̂ to
zero. This translates to

N∑
i=1

xi = Nx̂

or

x̂ =
1

N

N∑
i=1

xi
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which is the well-known definition of an average. Therefore, we have proven that the
arithmetic average minimizes the variance of the sample data if the sample data is real
valued. Now that we have this information, we proceed to generalize our result to complex
valued data (since transfer functions will usually be complex). For that purpose we separate
our data {zi}i=1...N in its Cartesian decomposition, real and imaginary parts:

σ2 =
1

N

∑
|xi + jyi − x̂− jŷ|2

=
1

N

∑
(xi − x̂)2 + (yi − ŷ)2

The subtlety here is to notice that x̂and ŷ are independent, so we can treat the estimation
of the averages for both components as independent, and get

x̂ =
1

N

N∑
i=1

xi

ŷ =
1

N

N∑
i=1

yi

or more generally,

ẑ =
1

N

N∑
i=1

zi (4.2)

4.6 Time- and Frequency-Domain Error Minimization Equiv-
alence

In this section, we prove the equivalence between estimating an impulse response and
estimating its transfer function, or what is the same minimizing E

{
|e [n]|2

}
or E
{
|FFT {e [n]} [k]|2

}
Equivalence between impulse response error minimization and frequency response er-

ror minimization is quite straightforward

h∗ = arg min
Sh

‖h− h0‖

H∗ = arg min
SH

‖H −H0‖

We know that
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1. The 2-norm in the frequency domain is the same as in the time domain (save a scaling
factor), i.e.‖·‖f ∼ ‖·‖t

2. Linearity of FFT

So we prove that H∗ = FFT {h∗}

H∗ = arg min
H∈SH

‖H −H0‖

= FFT
{

arg min
h∈Sh

‖FFT {h} − FFT {h0}‖
}

= FFT
{

arg min
h∈Sh

‖FFT {h− h0}‖
}

= FFT
{

arg min
h∈Sh

‖h− h0‖
}

= FFT {h∗}

4.7 Cepstrum- and Frequency-Domain Error Minimiza-
tion

Consider the problem of finding a FIR filter h0 which, when applied to the input, renders
a signal whose feature vector is closest to the feature vector of the output of the system.
In this section we are concerned with the feature map M being just the cepstrum of the
signal. We will try then to generalize the procedure to other features.

Given two N-dimensional vectors (signals) x and y , we define two operations: the dot
product, p = x y as

p [n]
def
= x [n] · y [n]

and the dot quotient as q = x
y

such that

q [n]
def
=
x [n]

y [n]
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when y [n] �= 0, and as a [n] = sign x [n]∞ when y [n] = 0. Then, we try to find the
optimal filter given by

ho = arg min
h

‖M{(h ∗ x) [n]} −M{d [n]}‖2

M{f [n]} = IFFT {log FFT {f [n]}}
M{f [n]} −M{d [n]} = IFFT {log FFT {f [n]}} − IFFT {log FFT {d [n]}}

= IFFT {log FFT {f [n]} − log FFT {d [n]}}

= IFFT

{
log

FFT {f [n]}
FFT {d [n]}

}

Applying Parseval’s identity we have that

N−1∑
i=0

|f [i]|2 =
1

N

N−1∑
k=0

|FFT {f [i]} [k]|2 (4.3)

or equivalently

‖f‖2
2 =

1

N
‖FFT {f}‖2

2 (4.4)

Note that while equation 4.3 expresses the equality in terms of the sample values, equa-
tion 4.4 is an equation in norms (2-norm in this case).

Next, we form the feature error vector as

M{f [n]} −M{d [n]} = IFFT

{
log

FFT {f [n]}
FFT {d [n]}

}

FFT {M{f [n]}} − FFT {M{d [n]}} = log
FFT {f [n]}
FFT {d [n]}

‖FFT {M{f [n]} −M{d [n]}}‖2
2 = N ‖M{f [n]} −M{d [n]}‖2

2

=

∥∥∥∥log
FFT {f [n]}
FFT {d [n]}

∥∥∥∥2

2

‖M{f [n]} −M{d [n]}‖2
2 =

1

N

∥∥∥∥log
FFT {f [n]}
FFT {d [n]}

∥∥∥∥2
2

‖M{f [n]} −M{d [n]}‖2 =
1√
N

∥∥∥∥log
FFT {f [n]}
FFT {d [n]}

∥∥∥∥
2
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f [n]
def
= (h ∗ x) [n]

‖M{f [n]} −M{d [n]}‖2 =
1√
N

∥∥∥∥log
FFT {h [n]}FFT {x [n]}

FFT {d [n]}

∥∥∥∥
2

ε
def
= ‖M{f [n]} −M{d [n]}‖2

X [k]
def
= FFT {x [n]} [k]

D [k]
def
= FFT {d [n]} [k]

H [k]
def
= FFT {h [n]} [k]

∂ε2

∂hi

=
1

N

∂

∂hi

∥∥∥∥log
H [k]X [k]

D [k]

∥∥∥∥2

2

=
1

N

∂

∂hi

N−1∑
k=0

(
log

H [k]X [k]

D [k]

)2

=
1

N

N−1∑
k=0

2 log
H [k]X [k]

D [k]

∂

∂hi

(
log

H [k]X [k]

D [k]

)

Ei [k]
def
=

∂

∂hi
log

H [k]X [k]

D [k]

=
∂

∂hi

log

(
N−1∑
n=0

h [n]W nk
N

X [k]

D [k]

)

=
∂

∂hi

(
log

(
N−1∑
n=0

h [n]W nk
N

)
+ log

X [k]

D [k]

)

=
∂

∂hi

log

(
N−1∑
n=0

h [n]W nk
N

)

=
W ik

N∑N−1
n=0 h [n]W nk

N

Ei [k] =
W ik

N∑N−1
n=0 h [n]W nk

N
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∂ε2

∂hi
=

2

N

N−1∑
k=0

log
H [k]X [k]

D [k]
· Ei [k]

The optimum is achieved by setting

∂ε2

∂hi

= 0 ∀i = 0 . . .N − 1

2

N

N−1∑
k=0

log

(
H [k]X [k]

D [k]

)
· W ik

N∑N−1
n=0 h [n]W nk

N

= 0 ∀i = 0 . . . N − 1

2

N

N−1∑
k=0

log

(
H [k]X [k]

D [k]

)
· W

ik
N

H [k]
= 0 ∀i = 0 . . . N − 1

Then, it holds that ∀i = 0, . . . , N − 1 the optimal filter satisfies

2

N

N−1∑
k=0

(
log (H [k]) − log

(
D [k]

X [k]

))
· W

ik
N

H [k]
= 0

N−1∑
k=0

log (H [k])

H [k]
·W ik

N =
N−1∑
k=0

log
(

D[k]
X[k]

)
H [k]

W ik
N

We now identify this as an equation in a “double-transform” domain, i.e.

H [i]
def
= FFT

{
logH [k]

H [k]

}
[i]

T [i]
def
= FFT

⎧⎨
⎩

log
(

D[k]
X[k]

)
H [k]

⎫⎬
⎭ [i]

so that
H [i] = T [i]

From the uniqueness property of the FFT, if H ↔ log H
H

and T ↔ log(D
X )

H
and H = T ,

then
logH

H
=

log
(

D
X

)
H

(4.5)
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Table 4.1: Cepstrum-error minimizing filter

H [k] D [k] = 0 D [k] �= 0

X [k] = 0 1 ∞
X [k] �= 0 0 D[k]

X[k]

4.7.1 Interpretation of the Result

If we enforce H [k] �= 0, X [k] �= 0 and D [k] �= 0 then the optimum is attained at

H [k] =
D [k]

X [k]
(4.6)

Therefore, in this case, the optimal FIR filter for cepstrum-error minimization is the em-
pirical input-to-output transfer function which can be estimated by the methods described
so far (especially adaptive filters).

If X [k] ≡ 0 for some k, and D [k] �= 0, the filter is unstable, because we would have to
set H [k] = ∞ for that k, to satisfy equation 4.5. This makes sense, because it means that
for that particular frequency bin, the system output has nonzero energy while the input has
zero energy. In other words, the system has infinite gain at that frequency, or put differently,
a pole on the unit circle, located at that frequency, and therefore, is unstable.

If both X [k] and D [k] are zero for the same k, then we can set H [k] = 1. That way,
the system has unit gain at that frequency.

Finally, if D [k] = 0 but X [k] �= 0, then we will set H [k] = 0. The results are
summarized in table 4.1.

In summation we can choose a small damping constant ε > 0 so that we set

H [k] =
D [k] + ε

X [k] + ε
(4.7)

While the result in section 4.7 is very powerful, linking the complicated problem of
cepstrum minimization to the well-known problem of transfer function estimation, it relies
upon several assumptions. The main assumption is that we estimate the transfer function
from the whole data set, i.e. considering the whole length of the signal. While this is almost
always impossible to do in practice, it is fortunately unnecessary. In practice, we perform
our estimations on a frame by frame basis, updating a given-length impulse response.

Nevertheless, we may attempt to obtain a filter which minimizes the mean square cep-
stral error, in hopes of gaining some insight as how to extend the result to our ultimate
features, MFCCs.
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4.7.1.1 Equivalence Between Cepstral- and Frequency-Domain Minimization

As already suggested in 4.7, a filter is optimal in the cepstral domain if and only if it
is optimal in the frequency domain. Since calculations are sometimes less cumbersome in
one domain or the other, we can resort to the domain where manipulation is easier.

4.7.2 The Least Mean Square Cepstrum (LMSC) Filter

In this section we introduce a new kind of filter which minimizes the cepstral error in
the mean sense, on a block by block basis. We start by defining some notation

N = block length

L = block skip

W = exp

(
−2πj

N

)
x [n] = input signal of length Nx � N

d [n] = desired signal of length Nd � N

h [n] = hn

hn = optimal filter of length Nh = N

Let

Xn [p]
def
=

n∑
k=n−N+1

x [k]W kp

Dn [p]
def
=

n∑
k=n−N+1

d [k]W kp

Our output at time n is given by
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y [n] = (h ∗ x) [n]

=

∞∑
r=−∞

h [r]x [n− r]

=

Nh∑
r=0

h [r]x [n− r] ∀n ≥ r ∧ n ≤ Nx + r

=

min(Nh,n)∑
r=0

h [r]x [n− r]

One fundamental observation is that minimizing the norm of the error in the cepstral
domain, is the same as minimizing it in the log-frequency domain. This is because of
Parseval’s theorem and the linearity of the FT and IFT.

Yn [p]
def
=

n∑
k=n−N+1

y [k]W kp

=

n∑
k=n−N+1

min(Nh,k)∑
r=0

h [r]x [k − r]W kp

εn [p] = logDn [p] − log Yn [p]

J (n) = ‖εn‖2
2

=
N∑

p=0

|εn [p]|2

As we already saw in section 2.5.3, the LMS filter update equation is given by

hk (n + 1) = hk (n) − μ
∂J (n)

∂hk
(4.8)

which in this case will be rewritten as

b =
⌊n
L

⌋
hk (b) = hk (b− 1) − μ

∂J (n)

∂hk

where b is the frame number. Now we calculate the value of the gradient as follows:
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∂J (n)

∂hk

=
∂

∂hk

N∑
p=0

|εn [p]|2

=

N∑
p=0

∂

∂hk
|εn [p]|2

=
N∑

p=0

∂

∂hk

∣∣∣∣log
Dn [p]

Yn [p]

∣∣∣∣2

∂J (n)

∂hk
=

N∑
p=0

2

∣∣∣∣log
Dn [p]

Yn [p]

∣∣∣∣ ∂

∂hk

∣∣∣∣log
Dn [p]

Yn [p]

∣∣∣∣
To simplify the notation, define An [p]

def
= Dn[p]

Yn[p]
and

Dn [p]
def
= x1 + jy1

def
= z1

Yn [p]
def
= x2 + jy2

def
= z2

J (n)
def
=

N∑
p=0

ϕp (n)

so that

∂ϕp (n)

∂hk
=

∂

∂hk
|logAn [p]|2

=
∂

∂hk

∣∣log |An [p]| ejφA
∣∣2

=
∂

∂hk
|log |An [p]| + j (φA + 2πm)|2

=
∂

∂hk

(
log2 |An [p]| + (φA + 2πm)2)

= 2 log |An [p]| ∂

∂hk

|An [p]| + 2 (φA + 2πm)
∂

∂hk

(φA + 2πm)

So we now need to calculate the derivatives of the absolute value and phase of An [p].
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φA = ∠An [p]

tan ∠Dn [p]

Yn [p]
=

�Dn[p]
Yn[p]

�Dn[p]
Yn[p]

We calculate the real and imaginary parts of the quotient in terms of the real and imag-
inary parts of Dn [p] and Yn [p]:

�z1
z2

= �x1 + jy1

x2 + jy2

= �(x1 + jy1) (x2 − jy2)

x2
2 + y2

2

=
x1x2 + y1y2

x2
2 + y2

2

�z1
z2

= �x1 + jy1

x2 + jy2

= �(x1 + jy1) (x2 − jy2)

x2
2 + y2

2

=
x2y1 − x1y2

x2
2 + y2

2

� z1

z2

� z1

z2

=
x2y1 − x1y2

x1x2 + y1y2

So now we have

ϕ′
p (n)

2
= log |An [p]| ∂

∂hk

|An [p]| + (φA + 2πm)
∂

∂hk

(φA + 2πm)

= log |An [p]| ∂

∂hk

|An [p]| + (φA + 2πm)
∂

∂hk

(
arctan

x2y1 − x1y2

x1x2 + y1y2

+ 2πm

)

The calculation of the derivative of the absolute value is straightforward and can be
written as
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∂

∂hk

|An [p]| =
∂

∂hk

|Dn [p]|
|Yn [p]|

= − |Dn [p]|
|Yn [p]|2

∂

∂hk
|Yn [p]|

= − |Dn [p]|
|Yn [p]|2

∂

∂hk

√
x2

2 + y2
2

= − |Dn [p]|
|Yn [p]|2

1

2
√
x2

2 + y2
2

∂

∂hk

(
x2

2 + y2
2

)
so

∂

∂hk
|An [p]| = − |z1|

|z2|3
(x2x

′
2 + y2y

′
2) (4.9)

The phase derivative is much more cumbersome to calculate (yet the result is quite
simple). We start off by writing

∂

∂hk
(φA + 2πm) =

∂

∂hk

(
arctan tan ∠Dn [p]

Yn [p]
+ 2πm

)
(4.10)

=
1

1 +
(
tan∠Dn[p]

Yn[p]

)2

∂

∂hk
tan∠Dn [p]

Yn [p]︸ ︷︷ ︸
term

+2π
∂m

∂hk
(4.11)

the denominator of which becomes

1 +

(
tan∠Dn [p]

Yn [p]

)2

= 1 +

(
x2y1 − x1y2

x1x2 + y1y2

)2

= 1 +
x2

2y
2
1 + x2

1y
2
2 − 2x1x2y1y2

x2
1x

2
2 + y2

1y
2
2 + 2x1x2y1y2

=
x2

1x
2
2 + y2

1y
2
2 + 2x1x2y1y2 + x2

2y
2
1 + x2

1y
2
2 − 2x1x2y1y2

x2
1x

2
2 + y2

1y
2
2 + 2x1x2y1y2

=
(x2

1 + y2
1) (x2

2 + y2
2)

x2
1x

2
2 + y2

1y
2
2 + 2x1x2y1y2

In what follows we will assume that the value of hk does not affect our decision of the
phase turn value m so that ∂m

∂hk
. Now, using that
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∂

∂hk

Dn = 0

∂

∂hk

x1 = 0

∂

∂hk
y1 = 0

we get that the term in braces in equation 4.11 becomes

∂

∂hk

(
x2y1 − x1y2

x1x2 + y1y2

)
=

(x1x2 + y1y2)
∂

∂hk
(x2y1 − x1y2) − (x2y1 − x1y2)

∂
∂hk

(x1x2 + y1y2)

(x1x2 + y1y2)
2

=
(x1x2 + y1y2)

(
y1

∂
∂hk

x2 − x1
∂

∂hk
y2

)
(x1x2 + y1y2)

2

−
(x2y1 − x1y2)

(
x1

∂
∂hk

x2 + y1
∂

∂hk
y2

)
(x1x2 + y1y2)

2

=
x1x2y1x

′
2 − x2

1x2y
′
2 + y2

1y2x
′
2 − x1y1y2y

′
2

(x1x2 + y1y2)
2

−x1x2y1x
′
2 + x2y

2
1y

′
2 − x2

1y2x
′
2 − x1y1y2y

′
2

(x1x2 + y1y2)
2

=
−x2

1x2y
′
2 + y2

1y2x
′
2 + x2

1y2x
′
2 − x2y

2
1y

′
2

(x1x2 + y1y2)
2

=
− (x2

1 + y2
1)x2y

′
2 + (y2

1 + x2
1) y2x

′
2

(x1x2 + y1y2)
2

=
|z1|2 (y2x

′
2 − x2y

′
2)

(x1x2 + y1y2)
2

so the phase derivative becomes

∂

∂hk
φA =

x2
1x

2
2 + y2

1y
2
2 + 2x1x2y1y2

|z1|2 |z2|2
|z1|2 (y2x

′
2 − x2y

′
2)

(x1x2 + y1y2)
2

or
∂

∂hk
φA =

y2x
′
2 − x2y

′
2

|z2|2
(4.12)

Now we need to calculate the derivatives of Yn [p] with respect to hk. This is a crucial
step since it is a representation of the variation in the output as a result of varying the filter
tap coefficients:
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∂

∂hk

x2 =
∂

∂hk

�{Yn [p]}

= �
{

∂

∂hk

Yn [p]

}

= �

⎧⎨
⎩ ∂

∂hk

n∑
u=n−N+1

min(Nh,k)∑
r=0

hrx [u− r]W pu

⎫⎬
⎭

= �
{

n∑
u=n−N+1

x [u− k]W pu

}

= �
{

n∑
u=n−N+1

x [u− k]W p(u−k)W pk

}

= �
{
W pk

n∑
u=n−N+1

x [u− k]W p(u−k)

}

= �
{
W pkXn−k [p]

}
Similarly, we get

∂

∂hk

y2 = �
{
W pkXn−k [p]

}
The phase derivative is then

∂φA

∂hk

=
�{Yn [p]}�

{
W pkXn−k [p]

}
− �{Yn [p]}�

{
W pkXn−k [p]

}
|Yn [p]|2

(4.13)

and the absolute value derivative is

∂ |An|
∂hk

= − |Dn [p]|
|Yn [p]|3

(
�{Yn [p]}�

{
W pkXn−k [p]

}
+�{Yn [p]}�

{
W pkXn−k [p]

})
(4.14)

Finally, we write the gradient as

1

2

∂ϕp (n)

∂hk
= log |An [p]| ∂

∂hk
|An [p]| + (φA + 2πm)

∂

∂hk
(φA + 2πm)

=
1

|z2|2

{
−
(

log
|z1|2

|z2|2

)
|z1|
|z2|

(x2x
′
2 + y2y

′
2) +

(
∠z1
z2

+ 2πm

)
(y2x

′
2 − x2y

′
2)

}
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Then

Υ1 =

ΔEdB︷ ︸︸ ︷(
log

|z1|2

|z2|2

) exp

(
ΔEdB

2

)
︷︸︸︷
|z1|
|z2|

(x2x
′
2 + y2y

′
2) (4.15)

Υ2 =

⎛
⎝∠z1 − ∠z2︸ ︷︷ ︸

ΔΦ

+2πm

⎞
⎠ (x2y

′
2 − y2x

′
2) (4.16)

1

2

∂J (x)

∂hk

= −
N∑

p=0

1

|z2|2
{Υ1 + Υ2} (4.17)

where dependence upon p and n of x1, x2, y1, y2, z1, z2,m and Υ1 and Υ2 has been avoided
for notation’s sake.
4.7.2.1 Interpretation

An important interpretation of this result is given by the terms with brackets in the core
terms Υ1 and Υ2, ΔEdB and ΔΦ respectively. The first term is directly the difference
in energy (measured in dB) between the desired output and the output produced by using
h (n) and it itself weighted by exp

(
ΔEdB

2

)
(which is nothing but the ratio of energies �E ,

measured as a linear gain). The second is directly the phase difference between the desired
and produced outputs.
4.7.2.2 Summary

We have arrived at an equation which provides a block-by-block adaptive algorithm
that minimizes the cepstral error. This is yet another novel development to the best of the
author’s knowledge. The update equation is

hk (n) = hk (n−N) + Δhk (n)

Δhk (n) = μ
N∑

p=0

1

|z2|2
{
ΔΦ (x2y

′
2 − y2x

′
2) + �E · ΔEdB (x2x

′
2 + y2y

′
2)
}

(4.18)
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This equation may be more compactly written in matrix notation as

hk (n) = hk (n−N) + μ

N∑
p=0

1

|z2|2
{
x2

(
ΔΦy′2 + �EΔEdBx

′
2

)
+y2

(
−ΔΦx′2 + �EΔEdBy

′
2

)}
= hk (n−N) + μ

N∑
p=0

1

|z2|2
(
x2 y2

)( �EΔEdB ΔΦ

−ΔΦ �EΔEdB

)(
x′2
y′2

)

= hk (n−N) + μ

N∑
p=0

1

|z2|2
(
x2 y2

)
Z

(
cos θ sin θ

− sin θ cos θ

)(
x′2
y′2

)

hk (n) = hk (n−N) + μ
N∑

p=0

(
x2 y2

) Z

|z2|2
· Rθ

(
x′2
y′2

)
(4.19)

where Z =
√(

�EΔEdB
)2

+ (ΔΦ)2 and θ = arctan ΔΦ
	EΔEdB

and Rθ is a rotation matrix

with angle θ. The interpretation of this last expression is that the matrix Z
|z2|2Rθ repre-

sents a rotohomotethy, which is applied to the variation of Yn with respect to the filter tap
coefficients, and that rotated vector is multiplied using the R2 internal product (figure 4.1).
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Figure 4.1: Geometrical interpretation of equation 4.19

So, the procedure for each frame of the input and desired output is as follows:

1. Calculate the Fourier Transform of the desired output ending at time n,Dn [p] ∀p =

0, . . . , N − 1

2. Calculate the output using the previous filter coefficients (hk (n−N)), y [k] ∀k =

n−N+1, . . . , N and its corresponding Fourier Transform Yn [p]. y (k) =
∑

m x [m] hk−m
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3. For each k = 0, . . . , Nh, calculate theN-point FFT of x up to sample n−k, Xn−k [p]

4. Calculate the change in the filter coefficients according to 4.18.

To initialize the algorithm, we can use the following definitions, which correspond to the
equivalence between cepstrum minimization and frequency minimization for a single real-
ization:

1. Hk (0) = DN [k]+δ
XN [k]+δ

where δ � 1 is a very small positive number.

2. Calculate hp (0) = IFFT {H0 [k]} [p]

The overall procedure is summarized in algorithm 6. The main advantage of this algorithm
as compared to plain RLS, is that it is explicitly minimizing the cepstral error, instead of
the energy. Note that the energy is closely related to one of the cepstral coefficients (the
0thcoefficient). It is similar in that the results should be the same, but we are explicitly
using a kind of explicitness on the choice of cepstrum as a feature. This is depicted by the
presence of the log Yn [p] divided by the actual output Yn [p].

While this approach will work, it suffers from the same problems as LMS, namely
slow convergence and dependency upon the input signal gain (this is an unnormalized al-
gorithm). Moreover, the decision of an appropriate value for m in the calculation of Υ2

is a priori arbitrary2; one criterion might be to minimize phase jumps over time, another
might be to minimize them within a frame but between frequency bins. All in all, this is
an extremely complicated algorithm to arrive at, and very computational intensive, while
only considering cepstrum error minimization. The upside to this algorithm is that it is a
block-by-block algorithm as opposed to having to know the whole signal beforehand. Nev-
ertheless, by this thorough algebraic manipulations we arrived at an elegant and sensible
update equation which takes into consideration the energy differences between the desired
signal and the produced signal at each iteration, as well as their phase differences; so we
have a direct link between the magnitude

An alternative approach which will work for any kind of feature choice is to use search
algorithms. These are algorithms borrowed from the area of Operation Research and Op-
timization. We will now briefly expose a method called the cyclic coordinate search, or
spider-web search.

2and for that matter, the assumption that ∂m
∂hk

is arbitrary too.
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Algorithm 6 Least-mean cepstrum search
Input:

• N algorithm block size

• δ a small, positive regularization parameter

• x [n] input signal of length Nx � N

• d [n] desired output of length Nd � N

Output:

• hk, k = 1, . . . , N filter tap coefficients

Definitions

• STFTN {g (m)} [p] =
∑m

n=m−N+1 g (n)W np

• Dk (m) = STFTN {d (m)} [k]

• Xk (m) = STFTN {x (m)} [k]

• Yk (m) = STFTN {(x ∗ h (n)) (m)} [k]

• x1 = �Dk (m), y1 = �Dk (m)

• x2 = �Yk (m), y1 = �Yk (m)

• z1 = x1 + jy1, z2 = x2 + jy2

• x′2 = �
{
W pkXn−k [p]

}
, y′2 = �

{
W pkXn−k [p]

}
1. Υ1 =

(
log |z1|2

|z2|2
)

|z1|
|z2| (x2x

′
2 + y2y

′
2)

2. Υ2 = (∠z1 − ∠z2 + 2πm) (x2y
′
2 − y2x

′
2)

Initialization:

1. Hk (0) = Dk(N)+δ
Xk(N)+δ

2. hk (0) = IFFT {Hk (0)}

Recursion

hk (n) = hk (n−N) + μ
N∑

p=0

1

|z2|2
{Υ1 + Υ2}
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4.8 General Feature Error Minimization
In this section we attempt to provide a review of a very general optimization method

called cyclic coordinate search, applied to the problem of finding a filter’s coefficients such
that the feature error energy is minimized. The only constraint is that the objective function
(and therefore the features) are continuous C0 functions of their input (this will almost
always be the case). Contrast this with LMS, or steepest descent methods in which we use
the gradient of the objective function, therefore requiring the features to be at least C1.

4.8.1 Exhaustive Search

To illustrate our reasoning, let us consider an input signal x1 drawn from a Gaussian
white noise source with zero mean and unit variance (figure 4.2(a)). Suppose this signal
goes through a linear known filter H whose z-transform is H (z) = 1 − 2z−1 + z−2, to
render an output d1 (figure 4.2(b)). Finally, let us deal with MFCCs in his example, so that
our objective is find an h such that

h = arg min ‖M{d1} −M{h ∗ x1}‖

where M is an operator rendering an MFCC vector for each frame.
As already stated, we readily know that the optimum will be attained at h = H; in

this case, the minimum is trivial since the value of the norm is zero by definition. But
let us concern ourselves to evaluating what happens when we change each value of the
impulse response by a small number δ in each direction (i.e. we allow positive and negative
variations).

(a) Input signal (b) Output signal

Figure 4.2: Input and output signal
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A first approach to estimate an impulse response is to choose a grid discretization step
δ, and then exhaustively traverse this grid in tap coefficient space. Table 4.2 summarizes the
MFCC error value around the optimumH (z), by changing the three tap coefficients by −δ,
0 or +δ. Obviously, the optimal is achieved by setting δ1 = δ2 = δ3 = 0, but the variations
in errors are very wide. For example, δ1 = +δ, δ2 = −δ and δ3 = 0 gives an error of
1.2, while the same configuration with δ3 = −δ gives an error of 11.4, an almost tenfold
increase. This illustrates how creased and wrinkled the error performance surface is, full
of saddle points, and therefore how non-uniform the gradient tensor is. Since conventional
derivative-based search methods try to fundamentally invert the gradient tensor (as in the
Newton-Raphson method), we will not be able to confidently use those in our search.

Table 4.2: MFCC error variation with δ = 0.05

(a) δ1 = −δ

δ2\δ3 −δ 0 +δ

−δ 19.9 16.5 11.4
0 16.4 11.2 2.4

+δ 11.1 1.2 10.1

(b) δ1 = 0

δ2\δ3 −δ 0 +δ

−δ 16.5 11.3 1.3
0 11.2 0 10.5

+δ 1.1 10.8 16.1

(c) δ1 = +δ

δ2\δ3 −δ 0 +δ

−δ 11.4 1.2 10.4
0 2.2 10.1 16.4

+δ 9.8 16.3 20.5

Note that for a filter of order M , if we want to do an exhaustive search we need to test
for δi = −δ, 0,+δ for each i = 1 . . .M , so that this needs M3 evaluations of the MFCC
matrix for each iteration step. For a T -second long audio file, we have that

N = T s × 8000
sample
s

= 8T × 103sample

Calculating the MFCC matrix entails calculating the FFT for each block of data. If we
use a standard block size of 200 samples (25 ms) with 50% overlap (12.5 ms), we have
8T×103

100
= 80T data blocks. For each data block we compute a 512 point FFT (256 points in

positive frequencies), which uses 256 log2 512 = 2304 floating point operations. After that,
we also need to apply the mel-scale warping; this is done by multiplying with a constant
matrix, which requires 40 × 256 × 80T = 819200T 3. After that, we calculate the DCT of
the log for each matrix column, which takes approximately the same number of operations
as the DFT.

3Multiplying an M ×N by a N × P matrix requires M ×N × P products and additions. The Hz2Mel
matrix consists of 40 mel frequency bins and 256 columns.
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All in all, one evaluation of the MFCC matrix needs 80T × 2304 + 2 × 819200T =

1822720×T Flops = 1.82T MFlops. An Intel R© Pentium R© M 725 (Centrino R©) processor
running at 1.6 GHz, can perform at about 2.5 MFlops, so each one-second evaluation would
take around 0.7s. This is the main cause why exhaustive algorithms cannot be used: we
have a function to minimize which is prohibitively expensive to calculate. At the same
time, there are no easy ways to calculate gradients to use gradient descents. Additionally,
we want to use small grid values δ to be able to have a good discretization and therefore an
accurate estimate of our impulse response, but this will increase the number of evaluations
the algorithm has to perform since at each step it can advance only δ units4. Hence, we find
that using an exhaustive search is only useful for proof-of-concept and not feasible with the
current state of the art of home computing. Nevertheless, when personal computers will
start achieving even greater computational power, or conversely if and when a compact,
tractable gradient for the MFCC calculation is derived, the algorithm will leverage that
power and render the desired solution in an acceptable time frame.

4.8.2 Line Search

Searching for optima in a given direction is the backbone of many search algorithms.
The problem may be stated as follows: given a point xk and a direction vector dk find λk

such that f (xk + λdk) is minimized (or at least decreases with respect to f (xk). This is a
one-dimensional search problem in the variable λ (note that xk and dk may be vectors of
any dimension). The minimization can furthermore be constrained to real λ, positive λ or
some other restriction.

In general when we want to minimize a function θ (λ), we proceed to calculate its
derivative and solve for the derivative to be zero. There are a number of problems with
this approach. First, the function θ may be defined implicitly in terms of another function
of several variables: θ (λ) = f (x+ λd). Secondly, more often than not θ fails to be
differentiable (this is even more complicated in the case θ needs to be a complex function
of a complex variable, since differentiability is a much stronger concept5 than in the real
line). If f is differentiable, then we need to solve θ′ (λ) = dT∇f (x+ λd) = 0, which
is usually nonlinear in λ. To complicate matters even further, even if we are able to solve
for zero derivative, we might end up with points that are not minima, such as maxima and
saddle points. To get rid of those we need to calculate the value of the second derivative of
θ (λ), which entails calculating the Hessian matrix of f . Therefore, minimization in general
by setting the derivative to zero is not a good (or at least tractable) method. Instead, we

4This can be somewhat alleviated by using a large δ at first and then subsequently switching to smaller δ.
5the concept we refer to is that every differentiable complex function is holomorphic.
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prefer using numerical methods whenever possible (such as when a closed form solution is
no better than a numerical one).
4.8.2.1 Convexity

A function f that satisfies f (λx1 + (1 − λ)x2) ≤ max {f (x1) ; f (x2)} ∀0 ≤ λ ≤ 1

is called quasiconvex; similarly, the function is strictly quasiconvex if the inequality is
strict. A set is called convex if given two points x1 and x2, the line segment described by
l = λx1 + (1 − λ)x2 is entirely contained in the set.

Strict quasiconvex functions play an important role in optimization because when we
find a local minimum or maximum on a convex set, we are guaranteed to have found a
global optimum. In general it is fairly difficult to prove that a function is strictly quasi-
convex, so an approach would be to divide the function domain in small cells in which
the function behaves quasiconvexly, find the minima in each cell and then find the global
minima among all cells. Moreover if one uses methods that assume quasiconvexity and the
function is not quasiconvex, then the methods will converge to local minima.
4.8.2.2 Fibonacci Method

Suppose we try to minimize the function θ (λ) for λ ∈ [a1, b1]. Given these two points
we generate two new points λk and μk defined as

λk = ak +
Fn−k−1

Fn−k+1
(bk − ak)

μk = ak +
Fn−k

Fn−k+1
(bk − ak)

where Ft is the tth Fibonacci number, n is the number of expected function evaluations and
k = 1 . . . n− 1. Then it can be proven that at each iteration the new interval of uncertainty
(i.e. the interval within which the optimum is achieved) is reduced from [ak, bk] to [λk, bk]

if θ (λk) > θ (μk) and to [ak, μk] if θ (λk) ≤ θ (μk). In any case, we get

bk+1 − ak+1 =
Fn−k

Fn−k+1
(bk − ak)

The trick with this method is that it requires two evaluations to start with and then just
one evaluation per iteration, since it can be proven that if θ (λk) > θ (μk) then λk+1 = μk

and similarly if θ (λk) ≤ θ (μk) then μk+1 = λk. The number of iterations n must be
chosen so that b1−a1

Fn
reflects the required accuracy.
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Algorithm 7 Cyclic coordinate search
Initialization Choose ε > 0, a tolerance constant used to terminate the algorithm
Let x1 be an initial point and y1 = x1

Recursion
1. Let λj be an optimal solution to min (yj + λdj) and let yj+1 = yj + λdj

2. If j < n let j = j + 1 and go to step 1. Otherwise, j = n and go to step 3

3. Let xn+1 = yn+1.

4. If ‖xn+1 − xn‖ < ε then stop. Otherwise let y1 = xk+1 and j = 1 and go to step 1.

4.8.3 Cyclic Coordinate Search

The cyclic coordinate search uses the coordinate axis as search directions, i.e. searches
along the directions d1 . . . dN where dj is a vector of zeros with a one in the jth coordinate,
so the search is conducted by going in the direction of d1, finding the minimum, then
going in the direction of d2, and so on. In a variant known as the Aitken Double-sweep
method, after we search along dN , we go back to dN−1, dN−2, up until d1. The algorithm
is exemplified in figure 4.3 and stated in algorithm 7.

If the objective function is non-differentiable, the method may stall at a non-optimum
point, as depicted in figure 4.4, because of the sharp-edged valley in the search space.
The difficulty can be overcome by searching along the direction x2 − x1. A search along
the direction xk+1 − xk is usually introduced every p iterations even if the function is
differentiable, since this modification speeds up convergence. This modification is called
an acceleration step.

It can be proven that a cycle through all the coordinates is equivalent to one iteration of
steepest descent, which goes to show how inefficient searching a non-differentiable func-
tion can be. In-depth information on searching and nonlinear programming as well as a
number of more complicated search methods can be found in [122].

4.9 Least Feature-Error Norm Filter
In this section we describe an estimation procedure which we will call the Least Feature-

error Norm filter. The idea of this filter is to minimize the error energy in the given feature
space. For that purpose, we use a cyclic coordinate search with acceleration steps inter-
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Figure 4.3: Cyclic Coordinate search example (taken from [122])

(a) x2 is a stall point. Despite going along
any of the coordinate axes, we will not find
a better point

(b) Acceleration step speeds up conver-
gence

Figure 4.4: Stalling and acceleration step in Cyclic Coordinate Search
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(a) Waveforms (b) Cross-correlation

Figure 4.5: HQ and landline channel signals and their cross-correlation

leaved whenever a whole cycle does not produce new points. We ran a standard RLS filter
to estimate the input-output transfer function in parallel to compare results.

Figure 4.5 shows the HQ mic and landline signals corresponding to a single test utter-
ance, as well as the cross-correlation and the point at which the maximum absolute value
of the cross-correlation occurs.

The comparative magnitude responses of the 13 tap RLS and the 13 tap LFEN estimates
are shown in figure 4.6. Both filters were design to estimate the landline signal delayed by
6 samples from the high quality signal6. We see that while the DC and high frequency
gains are relatively equal, the middle section of the frequencies present a difference of up
to 25.1 dB at ω = 0.129π.

On the other hand, by looking at the pole-zero map in figure 4.7,we see that the zeros7

(at ω = 0 and ω = π) in both estimates are extremely close, while the mid-frequencies
zeros are not too distant from one another but rather they exhibit a certain “shifting” pat-
tern, i.e. the complex conjugate zeroes pairs pattern of the LFEN can be obtained by a
homotethy. The reason behind the differences in middle frequencies is of course, the mel
scaling that occurs when calculating MFCCs, as well as the different weighting of the fre-
quency components (MFCCs have a logarithmic weighting to them).

For the LFEN, the MFCC error norm8 per unit sample was ϑLFEN
MFCC = 0.0719, while

for the RLS filter was ϑRLS
MFCC = 0.0771. In that respect we see that while the RLS filter

6The delay is necessary as already discussed, to consider anticausal components.
7The RLS zeros have been reflected back into the unit circle (to make the response minimum phase). This

allows to compare the behavior of magnitude responses without concerning ourselves with how the phase is
affected.

8Frobenius norm (2-norm)
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Figure 4.6: Magnitude responses of RLS and LFEN estimates

(a) Original zero-pole map (b) Minimum-phase zero-pole map

Figure 4.7: Zero pole maps of RLS and LFEN estimates
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minimizes the error norm in the time domain, it does not do that in the MFCC space. On the
other hand, if we consider time domain error energy, we get that the error norms per unit
sample were ϑLFEN

t = 9.9× 10−5 and ϑRLS
t = 8.7× 10−5, so the RLS filter outperforms

the LFEN filter as to time domain energy minimization, as expected.
In summation, the LFEN outperforms the RLS in the feature space, while the converse

is true in the time domain. As for computational purposes, even with the stringent RLS
inverse correlation matrix computation, is much more efficient than the LFEN search. To
begin with, the RLS filter converges very quickly, while LFEN has to go through many
iterations to converge to values which is ultimately comparable to that of the RLS. All in
all, while a LFEN filter is better for our purposes, it may not be a feasible option to use
when the audio files are long, are sampled at higher frequencies or when many estimates
have to be averaged (as is our case). Therefore, since estimating the LFEN filters will take
a very long time and we arrive at errors in the same order of magnitude as the RLS filters,
we can proceed by using the latter.



Chapter 5

Development

5.1 Relation to the IBM Project

This thesis was conducted within the framework of the IBM-UM ASR Joint Project.
This Project seeks to eliminate the need for channel-specific data collection to be used in
ASR engine retraining, by obtaining a compact and complete representation of the pro-
cesses a signal undergoes along the channel. As already stated, the motivation for this is
threefold:

1. The availability of collected clean speech

2. The high costs and necessary times resulting from additional data collection pro-
cesses.

3. The need to collect data for each specific channel

Therefore, if we would have to retrain the system with new data, we would incur in exces-
sive costs of both monetary and temporal nature. To remedy this, some of the approaches
presented in the past chapters were implemented to try to simulate channel data from clean
data. This simulation has to have certain characteristics

On one hand, the simulation has to preserve the format of the input data. This means,
that just as the system is already set up to receive its input data from the channel in PCM
format (i.e. time domain), then our simulation must output time-domain data. Thus we are
limited to use the class of analysis techniques which are invertible.

On the other hand, our simulation must be able to simulate the channel characteristics;
in that respect, the simulation must be optimal among all other possible models with the
same ansatz or form. This optimality condition is given by minimizing a measure of the
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“distance” between the actual channel output and the simulated data. We can put these two
statements together in a mathematical form and so that the optimal simulation S satisfies
the optimization problem

S = arg min
S

‖M{S {x [n]}} −M{d [n− Δ]}‖Ψ (5.1)

where

• x [n] clean speech

• d [n] channel output

• y [n] = S {x [n]} simulated data

• Δ a constant delay

• M a transformation which maps time domain into another domain, to be defined

• ‖·‖Ψ a type of norm. The degree of freedom introduced by μ in principle is not
fundamental but we will see its usefulness

The simulation function S is defined as acting on a real-valued time-domain signal, and
outputting another real-valued time-domain signal. Therefore, we may write

S : R
Z → R

Z

or assuming causality
S : R

N → R
N

The domain-mapping functional M takes a time-domain signal and outputs a dual do-
main signal. The definition of the dual domain is a fundamental part of the optimization
process. We want to choose the dual domain so that, as far as the recognizer knows, the
channel output and the optimal simulated data are very close. In other words, we must
choose the functional M to match the features that the ASR front-end extracts.

The norm ‖·‖μ introduces a degree of freedom which allows to induce a metric over the
dual domain. Basically, if we identify the dual domain with the space CNN , i.e. sequences
of N-dimensional complex-valued vectors, then the metric can weigh each component of
the N-dimensional vector differently. Although this weighting could be taken care of by a
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more accurate choice of the domain-mapping functional M, we prefer separating the two
since that way we maintain a more direct relation to the recognition front-end.

In particular, we will be interested in the class of two-norms arising from the following
definition

‖v‖Ψ =
∑
k∈N

v [k]H Ψv [k]

where the matrix Ψ is positive semi-definite. We follow with an intuitive explanation of our
statement. The dual domain will usually consist of a time domain sequence, where each
sequence element is a vector of features. In general we might say that the dual domain
representation will be a feature evolution along frames. In the limiting case, we might have
that the frames skipping length is of one sample, which would yield a feature signal with
the same time resolution as the originating time-domain signal. Since usually this would be
overkill, the lengths and therefore the time resolution of the feature signal and the original
time-domain signal will be different.

Note that another degree of freedom might be included by letting the norm be time-
varying, that is, assign a different weight to the kth feature at different instants in time. To
formalize this, we might write either

‖v‖Ψ =
∑
k∈N

v [k]H Ψ [k] v [k]

or also
‖v‖Ψ =

∑
k∈N

ρ [k] v [k]H Ψ [k] v [k]

where

• Ψ [k] is the time-varying weighting matrix;

• ρ [k] is a time-varying factor; note that this second approach uses a constant feature-
weighting matrix, so the time-weighting is uniform over all features for a given time.

Note that the first approach is more general than the second, since one might factor out a
proportionality factor ρ [k] from the matrix Ψ [k] or equivalently define Ψ [k] = ρ [k] · Ψ0.

Despite the generality of these time-varying norms, because of the kinds of features we
will be using and the stationarity of the channels in question, it doesn’t make much sense
to assign different weights at different instants in time. However, it is important to note that
we might want to consider them when trying to simulate non-stationary channels.
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5.2 Collection of the Speech Database
The first step in designing a successful simulation system is obtaining a large set of

utterances processed by the channel to be modeled, and at the same time, clean versions
of those utterances. That way, we process the obtained data starting from a set of initial
model coefficients, and arriving at another set of model coefficients that are optimal for the
just seen data set. This process is known as the training or adaptation phase, because we
iteratively1 change our model so that the adapted model is more likely to have generated
the channel data.

5.3 Setup
In this section we describe the connection setup and architecture of the data collection

process.

5.3.1 Description of the process

The collection process involves two classes of users:

1. Operators or proctors

2. Speakers

For this project, more than 60 speakers were recorded by 6 operators. Operators were also
recorded, so as to get as much data as possible. Each speaker uttered 200 phrases from a
set of 50 scripts. The scripts contained phrases from various typical IVR use-cases: yes/no
responses, access to e-mail over the phone, access to accounts, etc.

Figure 5.1 depicts the connection setup for the speech database collection task. The
recording use case is described in algorithm 8.

5.3.2 Differences Between the Local and Remote Audio File Reposito-
ries

Files in the local laptop (HQ mic and VoIP headset) are saved as raw PCM files at 44.1
kHz 16 bits. On the other hand, files in the server side are saved as NeXT/Sun audio files in

1This iteration is done on two levels: first, inside a given utterance, on a frame-by-frame basis or a sample-
by-sample basis. Then, the iteration goes across utterances.
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Figure 5.1: Collection Connection Setup

the AU format at 8 kHz 16 bits. While on the local laptop each file represents an utterance
(phrase), each file on the server side represents a session. A session is usually composed of
about 25 utterances. Using more than one phrase per session allows a speedier recording
(since going on to the next session involves some waiting for the server to save the file),
while allowing the operator to disregard mistakes made by the speaker in between correct
phrases. On the other hand this introduces the need to segment the server files into phrases.
Thus, while the beginnings and endings of the files on the laptop were triggered by the press
of a key, on the server side there is no ad hoc synchronization to pinpoint those events.

5.3.3 Testing Procedure

Since we have abundant data, we can set aside a big number of utterances to be used to
test the validity of our model. This implies that the test data will not be used to estimate
the model parameters.

5.4 Difficulties in the Collection Process and Expected Ram-
ifications

Because of the complicated nature of the recording setup (multiple microphones, re-
mote telephony server, data network connection), we had to face several difficulties in the
recording process.
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Algorithm 8 Recording use case

1. Operator dials into the WebSphere Voice Server (WVS) using the landline phone

2. Initialize the system for data collection session by entering a speaker ID, and a ses-
sion ID.

3. Operator dials into the WVS Server using the cellular phone

(a) Initialize the system for data collection by entering the same speaker ID and
session ID

4. WVS system prompts the caller to speak the first phrase

(a) The proctor hears the prompt and initiates the appropriate utterance prompting
using the ADAPTS control program

i. The ADAPTS control program displays the appropriate utterance text on
the prompter

ii. The subject speaks the phrase
iii. The ADAPTS control program records/stores the audio from the high qual-

ity input and headset input on the local laptop

(b) Server monitors the audio from the landline and the cellular channels

i. Upon detection of end of speech for both channels, the server saves the
audio in the appropriate session directory/files

5. The server prompts for the next utterance in the series

6. When the operator hangs up, the WVS copies the recorded audio files to a local UM
server through an HTTP connection.

5.4.1 Server Crashes

The first difficulty we had to face had to do with server reliability. Often the server
would not be able to bounce its recorded audio files to our server, either because the files
were too long, the connection would time out, or some transient network error. This would
cause the entire session to be lost . This was especially true at the beginning of the col-
lection process, where some configuration parameters weren’t correctly tuned for optimal
performance (especially HTTP timeouts regarding file transfers).

5.4.2 Recording Conditions

Another difficulty arises in the presence of what appears to be a low amplitude humming
noise in the high-quality microphone channel. This noise is not present in all files, actually
it’s present in only some. The source of this noise could not be successfully traced, since a
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consistent reproduction pattern could not be designed to trigger the noisy behavior. Some
possible sources may be noise induced by the cellphone signal leaking into the HQ mic’s
preamplifier box, or some ground mismatch, but no source candidate has been deemed the
ultimate culprit. Nevertheless, the presence of the noise is scattered throughout the filebase.

Also, especially at the beginning of the process, we had trouble adjusting the volume
gain for the four channels. Speakers start with a certain volume and then usually tend to
lower that volume by the end of their recording session. That made some channels exhibit
very low signal levels, resulting in very low SNRs.

5.4.3 Channel Variabilities

A third difficulty arises because of the nature of switched virtual circuits. In landline
and cellular phones alike, a virtual signal circuit is established at the beginning of the
call. Because of telephone network use and availability, subsequent phone calls may use
slightly different circuits. These circuits will have different physical lengths, attenuation
characteristics, etc., which determine the ultimate transfer function of the spoken audio to
the telephone recording on the server. In summation, different calls to the server will result
in slightly different transfer functions.

5.4.4 Averaging

The good news about all these variabilities, is that if many realizations of the process
are conducted (as is the case), when the time comes to get a final answer as to what the
channel is, one can assume that the variabilities will vanish. Namely, consider the ith-call’s
transfer function (or for that matter the transfer function from HQ to telephone of the ith

phrase):
Ti (ω) = Tavg (ω) + δi (ω)

If we want a model that minimizes the deviation from a certain template transfer func-
tion (however that template Tavg is calculated), we need to choose Tavg (ω) so that a norm
of δi (ω) is minimized, viz.

Tavg (ω) = arg min ‖δi (ω)‖2 (5.2)
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Tavg (ω) = arg min
∥∥Ti (ω) − Tavg (ω)

∥∥2
= arg min

N−1∑
i=0

∣∣Ti (ω) − Tavg (ω)
∣∣2

= sol
∂

∂Tavg (ω)

{
N−1∑
i=0

∣∣Ti (ω) − Tavg (ω)
∣∣2}

What we are saying is that Tavg (ω) is a number (for each ω) so that the distance from
Ti is minimized. Using the result proven in section 4.5.2 expressed in equation 4.2, we
obtain that

Tavg (ω) =
1

N

N−1∑
i=0

Ti (ω)

satisfies equation 5.2.
This in turn implies that

1

N

N−1∑
i=0

δi (ω) = 0

The last condition can be augmented so that in the limit

lim
N→∞

1

N

N−1∑
i=0

δi (ω) = 0

lim
N→∞

1

N

N−1∑
i=0

|δi (ω)|2 = 0

This is a condition known as nullification of the ensemble first and second moments,
and is ubiquitously found in mean-square optimization.

5.5 Subsolution Recombination
In light of our discoveries, we now present a high-level overview of how to obtain a

transfer function estimate, given the TF estimates for each phrase in algorithm 9.
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Algorithm 9 Transfer function estimate recombination

1. Estimate TF for each phrase and speaker Tp,s

2. Average TF over all phrases for a given speaker, Ts (ω) = 1
200

∑200
p=1 Tp,s (ω)

3. Look for outliers, i.e. TFs Tpo,s which deviate from the average Ts more than desired:

po = arg

{
1

2π

∫ π

−π

∣∣∣∣Tpo (ω)

Ts (ω)
− 1

∣∣∣∣2 dω > ε

}

we might use other metrics to make our decision, such as

po = arg

{
1

2π

∫ π

−π

∣∣∣∣log

∣∣∣∣Tpo (ω)

Ts (ω)

∣∣∣∣
∣∣∣∣ dω > ε

}

which may be combined in what is known as the Itakura-Saito (IS) distance

po = arg

{
1

2π

∫ π

−π

∣∣∣∣Tpo (ω)

Ts (ω)
− log

Tpo (ω)

Ts (ω)
− 1

∣∣∣∣2 dω > ε

}

which may be restated as

po = arg

{
1

2π

∫ π

−π

∣∣ev(ω) − v (ω) − 1
∣∣2 dω > ε

}

where
v (ω) =

Tpo (ω)

Ts (ω)

4. Discard those outliers from the calculation of the average, recalculate average and go
to step 3 until deviation is less than desired (ε).

5. Repeat the same procedure on the speakers

The threshold parameter ε has to be small enough so that outliers are successfully de-
tected, but large enough so as not to create false positives, since this would greatly reduce
the number of actual data segments to use, which in turn is counterproductive with our
objective to make N → ∞ so as to get rid of variabilities. In other words, we want
variabilities, but not so much as to disturb the whole estimation, i.e. we allow “small”
disturbances, where how “small” is mandated by the value of ε.

In addition, there are some characteristics that one can look at to note discrepancies
and variabilities. In particular, the phase response (or equivalently the group delay) of a
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(a) Magnitude Response (b) Phase Response

Figure 5.2: Frequency response for a recorded speaker

TF tells us a lot about how different sinusoids get re-aligned at the output. For different
circuit lengths, the electrical signal carrying the sound goes through different delays. So
for example in figure 5.2, we see two clear magnitude response modes (and also several
outliers), and at the same time, we see a very dominant phase response and a secondary
one, less dominant and less delayed.

Because of the linearity of the Fourier Transform, if we have the transfer functions Ti

and their impulse responses ti so that ti ↔ Ti, we readily have that tavg ↔ Tavg where
tavg is the arithmetic mean of the filters’ impulse responses, so that we can average the
impulse responses instead of going to the frequency domain. This will be very useful since
in our case we will be estimating impulse response values and not frequency responses
(though the two are just a transform away, doing this computation for each phrase would
be very expensive).

5.6 Preprocessing
Segmentation refers to the process of dividing a signal containing multiple utterances

into several signals (i.e. files) each one with a single utterance. This is a fundamental
step in training the ASR system, since the system is expecting a single utterance at a time
and not a constant stream of utterances. The segmentation process can be seen as marking
the beginning and ending of each utterance, and in our case is motivated by the accounts
described in section 5.3.2.
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5.6.1 Synchronization

In order to obtain a meaningful model, the channel and clean utterances must be syn-
chronized. This can be achieved because the channels we are interested in working with are
first of all stationary, and secondly and more importantly, the speed at which time advances
is constant. Consider the channel defined by

S {x [n]} = x [2n]

This channel is linear, but time-variant, indeed

S {x [n− Δ]} = x [2n− 2Δ]

Therefore, we can never synchronize x [n] and S {x [n]}. Thus, time-invariance allows
for synchronization of the channel and clean data.

Since the generated files are not synchronized, we need to do some preprocessing to
time-align the channel and clean signals.

The best approach to do this is to calculate the cross-correlation of both signals, and
find the lag at which the absolute value of the cross-correlation is maximized. Depending
on the sign of the lag, we need to delay either the clean or channel data.

Let x be the original clean data and d the channel output. Then, we have that

d = δΔ ∗ h ∗ x+ v

The cross-correlation is thus

C [m] =
∞∑

n=−∞
x [n] d [m+ n]

=

∞∑
n=−∞

x [n] ((δΔ ∗ h ∗ x) [m+ n] + v [m+ n])

=

∞∑
n=−∞

x [n] ((h ∗ x) [m+ n+ Δ]) +

∞∑
n=−∞

x [n] v [m+ n]
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If v is white noise, uncorrelated with x, we get

C [m] =

∞∑
n=−∞

x [n] ((h ∗ x) [m+ n + Δ])

=

∞∑
n=−∞

x [n]

( ∞∑
j=−∞

h [j]x [m+ n+ Δ − j]

)

=
∞∑

n=−∞

∞∑
j=−∞

h [j] x [n] x [m+ n+ Δ − j]

Disregarding for now the effects of the filter h (i.e. inter-symbolic interference (ISI) is
minimal), this last expression becomes

C [m] =

∞∑
n=−∞

x [n] x [m+ n + Δ]

which is the signal auto-correlation, which is maximized when n = m + n + Δ. This is
attained by setting m = −Δ

The problem with using the cross-correlation approach is the computational burden
incurred in calculating the cross-correlation. Remember that for N-samples real signals,
the cross-correlation is defined as

C [k] =

N−1∑
n=0

x [n] d [n + k]

So for each lag value k ∈ [−N,N ], we must calculate x [n] d [n+ k] for N − 1 ≥
n+ k ≥ 0, i.e.

n ≥ max {0,−k}
n ≤ min {N − 1, N − 1 − k}

For positive k, we get

n ≥ 0

n ≤ N − 1 − k

C [k] =

N−1−k∑
n=0

x [n] d [n+ k]



121

For example, for N = 4

C [0] = x [0] d [0] + x [1] d [1] + x [2] d [2] + x [3] d [3]

C [1] = x [0] d [1] + x [1] d [2] + x [2] d [3]

C [2] = x [0] d [2] + x [1] d [3]

C [3] = x [0] d [3]

C [−1] = x [1] d [0] + x [2] d [1] + x [3] d [2]

C [−2] = x [2] d [0] + x [3] d [1]

C [−3] = x [3] d [0]

In summation, the cross-correlation goes from − (N − 1) to N − 1. For each lag k
there are N − |k| products and N − 1 − |k| additions. Therefore, the computation of all
of the cross-correlation values has

∑N−1
k=−N+1N − |k| products and

∑N−1
k=−N+1N − 1− |k|

additions. This corresponds to

N−1∑
k=−N+1

N − |k| = N + 2

N−1∑
k=1

N − k

= N + 2N (N − 1 − 1 + 1) − 2
N−1∑
k=1

k

= 2N2 −N − 2
(N2 −N)

2
= 2N2 −N −N2 +N

= N2

Thus, calculating the cross-correlation of two long signals is very computational in-
tensive. The usual practice is then to restrict the search for a maximum in the absolute
cross-correlation to a couple of seconds.



Chapter 6

Results

Two channels were considered to test the validity of our assumptions: a landline ana-
log telephone line, and a stationary cellular phone. For each of these channels, impulse
responses were estimated from clean and channel data, using utterances from the speech
database described in section 5.2.

6.1 Landline Estimation

This section describes the methodology and results involved in the estimation of the
parameters necessary to build a simulation of an analog landline telephone channel. In the
present section some classical techniques in estimation theory, digital signal processing and
adaptive filtering theory have been used as well as some new proposed ones.

6.1.1 Methodology

A Recursive Least Squares (RLS) estimation was performed independently for each of
the 200 utterances on four different speakers (S1, S2, S3 and S5). This gives a total of
800 training sequences. The RLS algorithm outputs the coefficients of a 40 taps FIR filter.
Asymptotically and quasistationarily, this filter is optimal in the mean-square sense in the
time domain (i.e. it minimizes the energy of the time domain error signal between the
simulated channel and the actual channel).

The input to the estimator is the HQ mic audio, while the reference signal (i.e. de-
sired output) of the estimator are the landline audio files, delayed by 20 samples. This
delay allows the filter to be non-minimum phase. The filter order as well as the delay was
determined satisfactory after thorough experimentation and fine-tuning.

When the recorded files exhibited the undesirable noise that we encountered at times
while recording (which ultimately derived from the HQ mic), the estimations derived from
those noisy recordings constitute the “outliers” in the frequency response of those signals,
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(i.e. magnitude responses which differ too much from the average). However, as was
already mentioned, there were very few noisy recordings.

6.1.2 Ensemble Combination

The impulse response (or conversely, the filter tap coefficients) stemming from each of
the 200 utterances within each speaker were averaged1, rendering h1, h2, h3 and h5. These
in turn, were averaged to render h, the average impulse response over speakers. Several
reasons motivate the averaging of the impulse responses:

• Because different sessions represent different connections to the server, and therefore
a different signal path, the ideal case would be to estimate the impulse response for
each session within a speaker, and then average all the sessions. This takes care
of variations in the signal path. This is the intra-session average. This was not
calculated.

• Since RLS has a very fast convergence time, it may not be beneficial to start the
estimation of one utterance using the estimation for the previous utterance in the
same session. Thus, by averaging all utterances within a speaker, we get an inter-
session ensemble average. This was calculated for each speaker and is the mentioned
h1, h2, h3 and h5.

• Averaging is a consistent way of combining impulse responses estimated from dif-
ferent realizations through the same channel. This is referred to as the ensemble
average, and corresponds to h.

In order for the estimation to make sense, some preprocessing had to be done

1. The naming convention for the files saved locally (HQ mic, VoIP mic) and the
server-side recordings (landline, cellphone) is different. For the former we have
PHRASE32.PCM, and for the latter we have 0005_9_32_1.AU. Therefore, some
pairing up had to be performed.

2. A MATLAB script reads the HQ mic file (saved as 44.1 kHz raw PCM data) and the
landline file (saved as 8 kHz AU).

3. Resampling takes place to have both signals at the same sampling rate.

1In this section, average refers to the procedure described in 5.4.4 and 5.5.
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Algorithm 10 Synchronization algorithm

1. [xc, lags] = xcorr(hq_data, channel_data)

2. [max_corr, max_corr_idx] = max(abs(xc))

3. Calculate the value of the synchronization lag as sync =
lags(max_corr_idx)

4. Depending on the sign of sync, we have to add silence to either hq_data or
channel_data to get the two files to be time aligned

4. It is vital that the signals are synchronized uniformly. In general, the files have some
silence before and after, and this amount of silence is different in the HQ mic file
and the landline file. In order for the estimation to make sense, the delay before the
signal in both files (i.e. within each utterance, with reference to the HQ mic) must be
identical. The optimal way to synchronize the signals is described in the next section.

6.1.3 Synchronization

In order to synchronize both signals, the cross-correlation of the signals is taken up to
two seconds. Then, the maximum of the absolute value of the cross-correlation is the delay
that one must add (or subtract, depending on the sign) from one signal or the other, so that
both are aligned properly. The absolute value is necessary to ignore 180◦ phase changes.

The second step is truncating the longer signal so that it has the same length as the
shorter one.

6.1.4 Results

In the next figures, some characteristic curves are plotted, including the magnitude and
phase response for each utterance, as well as the average within a speaker (in dotted bright
green line). Also, the impulse response, magnitude and phase responses and group delay is
plotted for each of the four speakers as well as their average.
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6.1.4.1 Individual speakers

Figure 6.1: Magnitude Response for Speaker #1

Figure 6.2: Phase Response for Speaker #1
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Figure 6.3: Magnitude Response for Speaker #2

Figure 6.4: Phase Response for Speaker #2
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Figure 6.5: Magnitude Response for Speaker #3

Figure 6.6: Phase Response for Speaker #3
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Figure 6.7: Magnitude Response for Speaker #5

Figure 6.8: Phase Response for Speaker #5
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6.1.4.2 Ensemble average

Figure 6.9: Impulse Responses

The value of the impulse response for samples n = −20 to n = 20 is given in table 6.1,
read from left to right, top to bottom.

Table 6.1: Landline Impulse response values (in units of 10−2)

Sample number

from to h [n]

-20 16 1.1305 −0.8686 0.7354 −0.3506 −0.0024
-15 -11 −0.0254 0.2912 −0.1104 0.7590 −0.6458
-10 -6 0.0396 0.4766 −0.0205 −0.0704 −0.7148
-5 -1 −0.1998 −1.2438 −6.8629 −42.6139 21.5280
0 4 73.6985 −30.4845 −4.5183 −4.4659 2.4641
5 9 3.3840 −4.6331 −1.5656 −1.4442 5.1737

10 14 −2.1328 0.3459 −0.9724 1.2186 −2.0582
15 19 −1.1025 −2.3496 −2.2935 0.2805 1.9251
20 −4.7194
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Figure 6.10: Magnitude Responses

Figure 6.11: Phase Responses
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Figure 6.12: Group Delay

Since the filter is an asymmetric FIR filter the realization is quite straightforward. A
block diagram is shown in figure 6.13.
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Figure 6.13: Filter realization
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6.1.4.3 Subjective Evaluation

In order to evaluate how good the landline telephone channel estimation is, we need to
compare it in some meaningful way to the reference landline signal. For this purpose, an
experiment was devised in which five subjects independently tried to identify three different
versions of sixteen utterances presented to them in random order. The versions in question
were the high-quality mic recording (i.e. clean or original speech), the landline telephone
signal (the channel to simulate) and the high-quality recording passed through the filter
which we estimated to be close in its frequency response to the landline channel.

For each of these versions, the subjects had to assign the played version to what they
thought it actually was. As mentioned before, the three versions of each utterance were
presented in random order. Thus, one guarantees that the responses will not be biased.
The results of the 3 × 16 evaluations are arranged in what is known as a confusion matrix.
Each entry Mij of the matrix is a number which represents the number of times the subject
indicated he though the signal was j, when the signal was i. Since we want our estimation
to be indistinguishable from the actual landline channel, and very distinguishable from the
HQ recording, the ideal confusion matrix will be

I =

⎡
⎢⎣ 16 0 0

0 8 8

0 8 8

⎤
⎥⎦

The first row/column corresponds to the HQ recording, the second to the real landline
channel and the third to the simulation. The row indicates the actual source and the column
what was indicated. This way, one recognizes the signal as broadband if and only if it is
broadband, and with equal probability one confuses the landline and simulation.
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The matrices resulting from the five subjects (L1, L2, L3, L4 and L5) are shown below

L1 =

⎡
⎢⎣ 16 0 0

0 16 0

0 0 16

⎤
⎥⎦

L2 =

⎡
⎢⎣ 15 1 0

0 4 12

0 13 3

⎤
⎥⎦

L3 =

⎡
⎢⎣ 15 1 0

0 10 6

1 5 10

⎤
⎥⎦

L4 =

⎡
⎢⎣ 16 0 0

0 9 7

0 7 9

⎤
⎥⎦

L5 =

⎡
⎢⎣ 15 0 1

1 0 15

0 16 0

⎤
⎥⎦

The next step after the collection of the opinions from the test subjects, is coming up
with a function that will compare the simulation. A way to do this is using matrix norms.
Several options are possible, of which some are noteworthy:

1. Measure m = ‖L1−I‖+‖L2−I‖+‖L3−I‖+‖L4−I‖+‖L5−I‖
5‖I‖ . This averages the percentage

deviation from the ideal confusion matrix. The problem with this approach is that
it doesn’t contemplate the inherent asymmetry between not distinguishing landline
from simulated and separating simulated from HQ. The resulting value was m1 =

0.5920, where m = 0 would be ideal.

2. Use a weighted norm. For this purpose, an auxiliary matrix X is used as a way of
changing the basis of the vector space in which the measurement is done. A sensible
choice might be

X =

⎡
⎢⎣ 1 0 0

0 1
2

1
2

0 1
2

1
2

⎤
⎥⎦ (6.1)
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and the measure would then be

m =

∑5
i=1

∥∥XTLiX − I
∥∥

5 ‖I‖

This measure has the property of weighting the HQ differently than the Landline and
Simulated. But the problem is that it “counts twice” every error between classifying
Landline as Simulated and vice versa. This can be seen from the fact that it has two
identical rows, this leads to a rank-deficient matrix, and it’s traditional consequences
from linear algebra (it’s column space does not span the entire space, it has an with
eigenvalue 0, it has only two independent directions, etc.). The resulting value was
m2 = 0.0528 where m = 0 is the optimum

3. Similarly, one can weight with a matrix such as

X =

⎡
⎢⎣ 1 0

0 1√
2

0 1√
2

⎤
⎥⎦

In this case the ideal confusion matrix is

I2 =

[
16 0

0 16

]

and the measure

m =

∑5
i=1

∥∥XTLiX − I2
∥∥

5 ‖I2‖

In this case the value was also m3 = 0.0528. Note that it is important that the notion of
“ideal confusion matrix” be invariant under the basis change performed by the weighting
matrixX , i.e. XT IX = I . In the Rn → Rm with n �= m case, it is necessary and sufficient
to haveXT IX = I2, i.e. the ideal matrices in two bases are related by the transform matrix
X . Another desirable property of the matrix X is that it has unit norm.

Other choices for the weighting matrix can be derived for example from the following
template

X =

⎡
⎢⎣ 1 0 0

0 α 1 − α

0 1 − α α

⎤
⎥⎦
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The interpretation of this metric is fairly simple: the lower the number (i.e. the closer it
is to 0), the better the simulation performs at emulating the landline channel and separating
itself from the high-quality reference signal. Thus, we find that using reasonable weighting,
the measure is around 95%, which is more than appropriate for our purposes.

All opinion matrices are of the form

Ω =

⎡
⎢⎣ a b 16 − a− b

c d 16 − c− d

e f 16 − e− f

⎤
⎥⎦

with 16 ≥ a, b, c, d ≥ 0 and a + b, c+ d, e+ f ≤ 16

The maximum individual distance is Δ = max
∥∥XTΩX − I

∥∥. By inspection, and
using X as defined in equation 6.1, any matrix of the form

Ωa =

⎡
⎢⎣ 0 a 16 − a

16 0 0

16 0 0

⎤
⎥⎦

The maximum individual matrix distance is Δ = 33.94112 for 16 observations. In
the worst case, we have that all five listeners heard according to matrix Ωa, so that the
maximum metric m2 becomes

mmax
2 =

∑5
i=1 max

∥∥XTLiX − I
∥∥

5 ‖I‖

=
5Δ

5 ‖I‖

=
Δ

‖I‖

By using the largest singular value as the matrix norm we get

mmax
2 = 2.1213

2We must remark that by using either the Frobenius norm (
√∑

tr (XHX)) or the matrix spectral norm
(the matrix’s largest singular value) we get the same result for Δ, since the resulting matrix is of rank one
(there is only one nonzero singular value). In general this is not true, what is true is that the Frobenius norm
is greater or equal to the spectral norm.
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so that our distance in actual percentage is

m2% = 100% × m2

mmax
2

= 100% × 0.0528

2.1213
= 2.489%

A random confusion matrix would be

ρ =
1

3

⎡
⎢⎣ 16 16 16

16 16 16

16 16 16

⎤
⎥⎦

whose distance is

mρ
2 = 1

mρ
2% = 47.141%

These numbers, illustrated in figure 6.14, show that the simulation is very effective from
the point of view of human perception. The next step then is to measure the simulation
performance objectively (i.e. without resorting to listeners).

6.1.5 Conclusions

The channel estimates derived from all the 800 utterances are consistent: the magnitude
responses do not differ in their overall behavior, but rather there are subtle variations at
different frequencies. These variations are expected since the estimates are drawn from
non-stationary, finite-length data, which inherently has noise, etc., so the conditions can
never really be ideal. In addition, the larger the order of the filter, the more ripple the
magnitude response is bound to have.

All in all, the magnitude response exhibits a bandpass characteristic, blocking basically
all DC energy as well as all energy at high frequency (i.e. half the sampling frequency, or in
this case 4 kHz). The frequency response in between the extremes is more or less flat with
a ±3 dB range going from around 0.3π to 0.8π, or about 2000 Hz. Thus, this estimation
corresponds with what is expected from a landline phone channel.

In addition, the phase response is almost linear everywhere, and is only distorted at
the extremes (since they have a large attenuation). When plotting the group delay curve,
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Figure 6.14: Landline simulation Mean opinion score evaluation

one sees that, as expected, the group delay in the middle band is 20 samples. This is the
delay introduced by delaying the desired output signal in order to capture the non-minimum
phase components of the impulse response.

The impulse response presents some energy before its peak (which corresponds to the
zero-th sample). This energy corresponds to anti-causal components (or conversely, maxi-
mum phase components when delayed). Thus, we can not avoid delaying the desired output
since we would not capture these components.

An experiment was executed to determine the validity of the simulation from the per-
ceptual point of view. Several metrics are proposed to measure the performance of the
simulation using the opinions of the test subjects. The results of this evaluation show that
the estimation of the impulse response (or conversely the transfer function of the landline
channel), represents an excellent simulation of the actual channel.

6.1.6 Future Work

Though the synchronization computational effort is not enormous since we are consid-
ering only lags less than two seconds, a better synchronization detection algorithm would
be beneficial to speed up the estimation process. For that purposes, fast VAD algorithms
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could be used. The only requirement is that the VAD has a resolution of one sample, which
is very difficult to achieve since they usually work on a frame-by-frame basis.

Also, since this is a minimization of the error energy in the time domain, we need
to compare the performance of the RLS estimation with that obtained with the algorithms
introduced in sections 4.7.2 and 4.9 (Least Mean-Square Cepstrum and especially the Least
Feature-Error Norm). As for testing purposes, more exhaustive tests may be performed,
either by increasing the number of test subjects or the number of utterances to which they
are exposed.

6.2 Stationary Cellphone Estimation
This section describes the methodology and results involved in the estimation of the

parameters necessary to build a simulation of a stationary cellular telephone channel.

6.2.1 Methodology

The methodology was identical to the one described for the landline telephone channel
estimation in section 6.1, i.e. a Recursive Least Squares (RLS) estimation performed inde-
pendently for each of the 200 utterances on four different speakers (#1, #2, #3 and #5). The
same considerations regarding combination and synchronization as well as implementation
apply here.

6.2.2 Results

In the next figures, some characteristic curves are plotted, including the magnitude and
phase response for each utterance, as well as the average within a speaker (in dotted bright
green line). Also, the impulse response, magnitude and phase responses and group delay is
plotted for each of the four speakers as well as their average.
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6.2.2.1 Individual speakers

Figure 6.15: Magnitude Response for Speaker #1

Figure 6.16: Phase Response for Speaker #1
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Figure 6.17: Magnitude Response for Speaker #2

Figure 6.18: Phase Response for Speaker #2
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Figure 6.19: Magnitude Response for Speaker #3

Figure 6.20: Phase Response for Speaker #3
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Figure 6.21: Magnitude Response for Speaker #5

Figure 6.22: Phase Response for Speaker #5
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Table 6.2: Cellphone Impulse response values (in units of 10−2)

Sample number

from to h [n]

-20 16 0.3277 −0.3686 −0.0389 −0.1160 −0.4203
-15 -11 0.0135 0.6720 0.4505 0.3187 −0.2465
-10 -6 −0.6648 −1.7293 −3.1243 −1.9869 29.9319
-5 -1 13.7597 −57.8452 −12.6489 17.4023 7.0242
0 4 24.1227 −6.4032 −2.7558 2.6351 −1.4223
5 9 −1.2178 −7.1823 1.0425 −3.1873 −0.7353

10 14 0.6184 0.9151 1.8110 0.9509 2.5319
15 19 −3.1872 −0.0161 1.2617 −0.3068 −0.7923
20 −0.3140

6.2.2.2 Ensemble average

Figure 6.23: Impulse Responses
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The value of the impulse response for samples n = −20 to n = 20 is given in table 6.2,
read from left to right, top to bottom.

Figure 6.24: Magnitude Responses

Figure 6.25: Phase Responses
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Figure 6.26: Group Delay

6.2.3 Subjective Evaluation

Just as for the landline telephone channel, a perceptual (subjective) test was performed
for the cellphone simulation. The details are quite similar to those in section 6.1.4.3, the
differences are explained in the following paragraphs.

An experiment was devised in which three subjects independently tried to identify three
different versions of eleven utterances presented to them in random order. The versions in
question were the high-quality mic recording (i.e. clean or original speech), the cellphone
signal (the channel to simulate) and the high-quality recording passed through the filter
which we estimated to be close in its frequency response to the stationary cellular channel.

For each of these versions, the subjects had to assign the played version to what they
thought it actually was. As mentioned before, the three versions of each utterance were
presented in random order. Thus, one guarantees that the responses will not be biased.
The results of the 3 × 11 evaluations are arranged in what is known as a confusion matrix.
Each entry Mij of the matrix is a number which represents the number of times the subject
indicated he though the signal was j, when the signal was i. Since we want our estimation
to be indistinguishable from the actual cellphone channel, and very distinguishable from
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the HQ recording, the ideal confusion matrix will be

I =

⎡
⎢⎣ 11 0 0

0 5.5 5.5

0 5.5 5.5

⎤
⎥⎦

The first row/column corresponds to the HQ recording, the second to the real cellphone
channel and the third to the simulation. The row indicates the actual source and the column
what was indicated. This way, one recognizes the signal as broadband if and only if it is
broadband, and with equal probability one confuses the cellphone and simulation.

The matrices resulting from the three subjects (L1, L2, L3) are shown below

L1 =

⎡
⎢⎣ 11 0 0

0 10 1

0 1 10

⎤
⎥⎦

L2 =

⎡
⎢⎣ 11 0 0

0 2 9

0 9 2

⎤
⎥⎦

L3 =

⎡
⎢⎣ 10 0 1

0 7 4

0 4 7

⎤
⎥⎦

As with the landline estimation, we proceed to evaluate the matrix norms:

1. Measure m = ‖L1−I‖+‖L2−I‖+‖L3−I‖
3‖I‖ . This averages the percentage deviation from

the ideal confusion matrix. The problem with this approach is that it doesn’t contem-
plate the inherent asymmetry between not distinguishing cellphone from simulated
and separating simulated from HQ. The resulting value was m1 = 0.4139 for Frobe-
nius norm and m1 = 0.5787 for maximum singular value.

2. Use a weighted norm. For this purpose, an auxiliary matrix X is used as a way of
changing the basis of the vector space in which the measurement is done. A sensible
choice might be

X =

⎡
⎢⎣ 1 0 0

0 1
2

1
2

0 1
2

1
2

⎤
⎥⎦
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and the measure would then be

m =

∑3
i=1

∥∥XTLiX − I
∥∥

3 ‖I‖

This measure has the property of weighting the HQ differently than the cellphone and
simulated. But the problem is that it “counts twice” every error between classifying
cellphone as Simulated and vice versa. This can be seen from the fact that it has two
identical rows, this leads to a rank-deficient matrix, and it’s traditional consequences
from linear algebra (it’s column space does not span the entire space, it has an eigen-
vector with eigenvalue 0, it has only two independent directions, etc.). The resulting
value was m2 = 0.0262 for Frobenius norm and m2 = 0.0371 for largest singular
value.

The worst case scenario for a matrix would be to look like

Ω =

⎡
⎢⎣ 0 11 0

11 0 0

11 0 0

⎤
⎥⎦

The maximum individual matrix distance is Δ = 23.33453 for 11 observations. In
the worst case, we have that all three listeners heard according to matrix Ω, so that the
maximum metric m2 becomes

mmax
2 =

∑3
i=1 max

∥∥XTLiX − I
∥∥

3 ‖I‖

=
3Δ

3 ‖I‖

=
Δ

‖I‖

By using the largest singular value as the matrix norm we get

mmax
2 = 2.1213

3We must remark that by using either the Frobenius norm (
√∑

tr (XHX)) or the matrix spectral norm
(the matrix’s largest singular value) we get the same result for Δ, since the resulting matrix is of rank one
(there is only one nonzero singular value). In general this is not true, what is true is that the Frobenius norm
is greater or equal to the spectral norm.



149

so that our distance in actual percentage is

m2% = 100% × m2

mmax
2

= 100% × 0.0371

2.1213
= 1.749%

A random confusion matrix would be

ρ =
1

3

⎡
⎢⎣ 11 11 11

11 11 11

11 11 11

⎤
⎥⎦

whose distance is

mρ
2 = 1

mρ
2% = 47.141%

Thus our cellphone simulation performs subjectively better than our landline simulation
(1.7% vs. 2.5% distance).

6.2.4 Conclusions

Similar conclusions to those regarding the landline telephone channel estimation apply
here. The results of this evaluation show that the estimation of the impulse response (or
conversely the transfer function of the landline channel), represents an excellent simulation
of the actual channel.

6.3 Analog Channels’ Objective Evaluation
To perform an objective evaluation, we took several speakers and their the 200 input-

output realizations and the estimated average channels hLL and hCP and calculate several
distances: figures 6.27 through 6.30 depict the value of each distance between the landline
simulation and landline and between the high quality recording and the landline, for com-
parison. Also in the figure a horizontal line depicting the average distance value for both
series is shown.
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1. RMS distance

ϑRMS (h) =
1

N

N−1∑
i=0

1

Li

Li∑
n=0

|(xi ∗ h) [n] − di [n]|2

2. Kullback-Liebler distance (Information divergence). For this we take the spectral pdf
Yi = FFT {(xi ∗ h) [n]} and compare it with that of Di = FFT {di [n]}

D (p, q) =
∑

pi log2

pi

qi

D̄i [n] =
|Di [n]|∑Li−1

i=0 |Di [i]| + δ

ϑKL =
1

N

∑
D
(
D̄i, Ȳi

)
3. Symmetrized Kullback-Leibler distance

DS =
1

2
(D (p, q) +D (q, p))

=
1

2

∑
pi log2

pi

qi
+ qi log2

qi
pi

4. Jensen-Shannon divergence

DJS =
1

2
(D (p,m) +D (q,m))

m =
p+ q

2
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Figure 6.27: RMS distance
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Figure 6.28: Kullback-Leibler distance
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Figure 6.29: Symmetrized Kullback-Leibler distance
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Figure 6.30: Jensen-Shannon divergence

The first measure deals with the differences in the time domain, namely the time-
domain error energy. the subsequent measures deal with the entropy4 or “randomness”
of the signal spectra, more specifically they are different ways to measure joint randomness
e.g. between the simulation and the actual channel.

4This can also be interpreted as the minimum number of bits we would have to use to represent (i.e.
encode) a random variable with a pdf equal to the normalized signal spectrum.
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Table 6.3: Average distances among speakers

Distances RMS5 KLD KLD-Sym JSD

Sim-LL vs. LL 3.97 × 10−5 0.20 0.21 0.12
HQ vs. LL 1.09 × 10−4 0.95 0.82 0.36

Sim-CP vs. CP 9.65 × 10−5 0.59 0.62 0.51
HQ vs. CP 2.15 × 10−4 2.76 2.31 2.18

Table 6.4: Average distances’ gain ratios among speakers

Gain ratio RMS5 KLD KLD-Sym JSD

Sim-LL vs. LL 2.72 4.63 3.90 3.11

Sim-CP vs. CP 2.23 4.65 3.71 4.30

From the graphs we see that both the time-domain distance (i.e. per unit sample RMS
prediction error energy) as well as the information theoretical measures (entropy related
metrics) are extremely low for the simulation vs. landline and high for the high quality
recording vs. the landline. This goes to show the that from an objective point of view, the
simulation is a faithful representation of the actual landline channel.

The figures show the values for the 200 utterances of a single speaker to expose the trend
that appears throughout speakers. The average distances among six speakers are expressed
in table 6.3; several observations are in order. First, we see that the trend presented in
the figures for one speaker is preserved among multiple speakers. Secondly, the distances
between the simulation and the channel is much lower than between the clean recording
and the channel itself. While differences between the landline and cellphone distances
are significant, we must examine the gain ratio of the distance HQ-to-channel over the
distance simulation-to-channel, which are shown in table 6.4. This ratio now shows that
the distances are extremely consistent, i.e. within each metric, the values are very similar
for both the landline and cellphone simulations. Because of all of this, both our estimates
can be said to perform equally well from an objective point of view.

6.4 Voice Over IP Simulation
In VoIP systems, the situation is such that the transfer function from input to output

does not characterize the system. In fact, since the system is nonlinear and time variant, it

5per unit sample.
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doesn’t really makes sense to speak of a transfer function. For that purpose, a stochastic
model is adopted. In VoIP communications, packet losses and out-of-order arrivals are the
primary channel characteristics, so our model consists of three parameters: the network de-
lay, the network delay jitter (variability of the delay) and the receiver buffer length. These
three parameters jointly determine most of the behavior of a VoIP communication. Addi-
tional parameters of lesser influence include the actual codec being used, the voice activity
thresholding mechanism, etc.

A model of a VoIP system is shown in figure 6.31. For our purposes, we separate
the system into independent components: the signal first goes through a LPF to filter out
any information which is not strictly necessary for intelligibility purposes. Then, the au-
dio stream is split into data packets and encoded using some standard (PCM, ADPCM,
etc). Voice activity detection is performed on each packet so that packets which carry little
information aren’t even transmitted over the network. If the frame contains data that is sig-
nificant, then the packet will be transmitted over the network. By going through a physical
network topology, a delay will occur; if this delay were the same for every packet, then at
the other end we would just end up with a delayed version of the input. However, data net-
works shuffle packets so that they may arrive with different delays. A measure of the delay
variance is called the jitter. The network jitter hinders the ability to successfully reproduce
audio on the other end in real time, since the receiver has a finite buffer. In addition to a
variable delay, the network may introduce errors in the packet (at a bit level). The packet
may include some kind of redundancy to either palliate or fix these errors when possible
(such as Hamming codes). The final step entails decoding the packet and constructing a
waveform out of the stream.

Figure 6.31: A VoIP model

The main difference between the approaches for the landline and cellphone simulations
versus the VoIP simulation is that in the former we estimate our model from existing data,
i.e. we fit the model parameters so that the model mimics the actual data as close as possible
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Algorithm 11 Variable delay simulation: stream building
Input: an array of data packets. J , the network jitter.

Output: an array of lists of packets. Each entry in the array is a time slot and represents
the time at which the packets in the corresponding list arrive at the receiving
end.

For each packet number p,

1. Calculate the delay that packet is going to go through Δp = |x| J where x ∼ N (0, 1)
and J is the network jitter

2. Put the packet p into the list at array entry number p+ Δp.

(within the allowable models in the model class), while in the latter we make certain “rea-
sonable” assumptions as to the model parameters. These in turn may be measured from the
actual data (which at the time of this writing is unavailable), and modify the simulation’s
parameters accordingly.

6.4.1 Variable Delay

In our simulation the delay for each packet is drawn from a right-tailed normal distribu-
tion with variance J (the network jitter). As we already stated, the receiver buffer which is
of finite length, will wait to be full before starting to output data. That way the system can
cope with packets arriving in disorder at the beginning. Furthermore, if we get a packet that
is supposed to be played in the future, we can store it and hold off until it is time to play
it. If at any given time we don’t have any data in the buffer to play, we must output some
kind of silence, noise being the more desirable option because of its perceptual “comfort”
advantage over digital silence. Finally, if we get a packet that we should have gotten before,
we will just discard it since the communication must be conducted in real time.

For our simulation we split this network delaying into two separate processes: the first
one builds up a stream of packets arriving at each time instant, while the second one decides
whether there is data in the buffer to output or noise. The pseudocode is illustrated in
algorithms 11 and 12.

The variable delay algorithm was run on a number of audio files producing credible
results to the ear. One such sample along the error introduced by the algorithm is shown in
figure 6.32.
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Algorithm 12 Variable delay simulation: receiver throttling
Input: an array of list of packets such as the output from algorithm 11. bufsize,

the buffer size.

Output: an array of data packets such as the input from algorithm 11. The number of
dropped packets.

Initialization: While the buffer is not full, insert data into the buffer. Set next_packet
= 1.

Once the buffer is full,

1. Insert all the elements at the current time from the input structure into the buffer

2. min_packet = the packet with the minimum number in the buffer.

3. If we have already started outputting data

(a) If min_packet = next_packet

i. Remove and output min_packet from the buffer

(b) Else, if min_packet != next_packet

i. Calculate σ2
n = 1

10
σ2

packet (i.e. 20 dB below the packet level)

ii. Output noise with that variance

(c) In any case, next_packet = next_packet + 1
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Figure 6.32: Variable delay simulation: signal and introduced error by network jitter, drop rate is
4%.

6.4.2 Packet Error Simulation

The simplest approach to packet losses would be to assume that packet losses are inde-
pendent of each other and have a probability of Pe. This is known as the Bernoulli model.
In a data stream of N packets, the expected number of lost packets will be NPe. This
model despite being simple is not realistic since it fails to capture burst losses.

The Gilbert-Elliot model is a discrete-state discrete-time Markov chain as shown in
figure 6.33. This model consists of two states “OK”, where the probability of losing a
packet is eOK � 1 and “LOSS” where it is high (eLOSS → 1−). At the same time,
the system dynamics are governed by transition from the OK state to the LOSS state and
viceversa. Within a given state, errors are assumed to be independent from each other.
Therefore, to fully specify the G-E model we need to give the 2 × 2 probability transition
matrix as well as the packet error rates in each state (so four numbers in total). The mean
soujourn time (average time in a state) measured in time slots (duration of a packet) is given
by

TOK =
1

1 − pOK

TLOSS =
1

1 − pLOSS
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Figure 6.33: The Gilbert-Elliot model

Some standard values are:

• eOK = 10−5, eLOSS = 10−2, pOK = 0.9999918 and pLOSS = 0.999184 ([84])

• eLOSS = 0.8, eOK = 0, TOK = 1 . . . 10s, TLOSS = 50 . . . 500ms @10 Mbps
(Ethernet), 512 byte packet size ([85])

pOK = 1 − 1

TOK

= 1 − 1

5s× 40
= 0.9950

pLOSS = 1 − 1

250ms× 40
= 0.9

The packet size makes sense: we have packets every 25 ms (40 packets per second) at
16 bits per sample at 4 kHz BW, so 1

8kHz = 1 sample every 0.125ms which is equivalent

to
25 ms

packet
0.125 s

sample
= 200

sample
packet . Since each sample is 2 bytes long, we have 400 data bytes

per packet. By adding a packet header we introduce some overhead, arriving at the figure
of 512 bytes per packet.

The same signal as in 6.32 was processed with the G-E model; the signal as well as the
introduced error are shown in figure 6.34.
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Figure 6.34: Packet error simulation: signal and error introduced by G-E model. Packet error rate
is 1.6% (4 × 10−4 BER)

To learn the system parameters (transition and emission probabilities) from a set of

training data, one can use the Baum-Welch algorithm ([10]). A treatment of training

Markov model parameters for channels and especially the Gilbert-Elliot model is given

in [123, 124, 125, 126, 127, 128].

6.4.3 Packet Error Recovery and Concealment

Forward error correction (FEC) is a system of error control for data transmission, where
the sender adds redundant data to its messages, which allows the receiver to detect and
correct errors (within some bound) without the need to ask the sender for additional data.
Often, by using FEC, data retransmission is unnecessary. This nevertheless comes at the
cost of higher bandwidth requirements on average, and is therefore applied in situations
where retransmissions are relatively costly or impossible.

Packet loss concealment is a family of techniques to mask the effect of packet loss in
VoIP communications. There are three types of PLC techniques:

Zero insertion: the lost speech frames are replaced with digital silence (zeros)
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Figure 6.35: Packet concealment using 0 dB SNR white noise to conceal lost packets. Top: orig-
inal and received signal; bottom: packet concealment-induced noise injected into received signal,
spectrogram of the received signal.

Waveform substitution: the missing gap is reconstructed by repeating a portion of already
received speech. The simplest form of this would be to repeat the last received
frame. Other techniques account for fundamental frequency, gap duration etc.
Waveform substitution methods are popular because of their simplicity to un-
derstand and implement. An example of such algorithm is proposed in ITU
recommendation G.711 Appendix I ([11]).

Model-based methods: an increasing number of algorithms that take advantage of speech
models of interpolating and extrapolating speech gaps are being introduced
and developed.

An excellent review on packet error recovery and concealment for audio streams is found
in [90].

Figure 6.35 shows the effects of packet concealment. Note the smooth strips at the
times of noise injection in the spectrogram, indicating the presence of white noise.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

We have reviewed the state of the art in speech recognition tools and have gathered enough
knowledge to reduce the problem of ASR retraining to the simulation of channel data. We
have described all the design choices that are to be made when designing the simulation
(simulation structure, features, norms, estimation algorithms, implementation). Moreover,
we have introduced a result which states that minimization of the cepstral energy is equiv-
alent to minimization of the frequency response deviation, and introduced a novel method
to iteratively pursue a general feature search as well as revisited methods to perform min-
imization by using techniques related to the cyclic-coordinate search. Among our results
we have included the successful estimation of landline and cellphone channels by using a
simple and short RLS FIR filter and the feature-optimal LFEN filter, and then compared
their performance. Performance measures for the RLS simulations, both subjective and
objective, were exposed in the previous chapter.

We also have arrived at the conclusion that, given

1. today’s average PC’s computational power,

2. the excessive computational requirements of the LFEN filter relative to the RLS filter,
and

3. the comparable performance for RLS and LFEN filters as to RMS and MFCC error
norm,

we can use RLS filter estimates without incurring in too great an error; alternatively we
might also benefit on pursuing LFEN estimates by using the RLS estimate as a starting

161
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point for the algorithm iterations. In addition, we have delineated the difficulties arising
from trying to model a VoIP channel and proposed and implemented a modular architecture
for VoIP simulation.

7.2 Future Work
Our results would greatly benefit from an algorithm efficient enough to be comparable

in speed of convergence and computational requirements to the RLS algorithm, while at
the same time being able to accommodate different feature sets, i.e. have the algorithm be
parametric on the features it tries to minimize.

In addition to a more efficient estimation algorithm, we would like to incorporate time-
varying behavior to our channel model. As of now, despite our model being an adaptive
filter (and therefore adapting to slow signal variations), once the estimation is complete we
are left with an impulse response h [n] which is fixed. To be able to model time-variance,
we must incorporate an impulse response of the form h [n,m], that is, a (slowly) varying
impulse response for different time instants. The reason for such a requirement is the
ability to capture such phenomena as network jitter and packet reordering/loss, which is
ubiquitous in data networks which do not guarantee ordered delivery (such as TCP) but
rather are best-effort transport layers (RTP, VoIP, and cellular networks in general), and
mobile cellular phone channels which include handover from one base station to another,
and since the speaker is moving, the channel will exhibit different attenuations at different
times for a given frequency. All of these phenomena are thus time-variant and in the case
of mobile cellular phones, even worse, since they depend on the speakers trajectory, and
the cellular network state at the time (such as availability), as well as the precise cellular
technology, such as the channel access technology (CDMA, TDMA, FDMA) and moreover
the exact cellular standard (GSM, GPRS and such).

Finally, we have made the conscientious decision to use a linear model, for otherwise
it would have made the algorithms incredibly difficult to mathematically tract. Going for-
ward, however, we would like to incorporate nonlinear effects in our models. Such effects
are present in every model, we usually just choose to regard them as small enough and
overlook them. Consider a model Λ (θ) depending on the parameter vector θ. Then under
reasonable regularity conditions we may write

Λ (θ) = Λ (θ0) + (θ − θ0)
T ∇Λ (θ0) +

1

2
(θ − θ0)

T
HΛ (θ0) (θ − θ0) + O

(
|θ − θ0|3

)
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Therefore, when we use a linear model we are saying that

Λ (θ) = Λ (θ0) + (θ − θ0)
T ∇Λ (θ0) + νθ0 (θ − θ0)

or in some cases we might express the model in a basis such that

Λ (θ) = ∇Λ (0) · θ + ν (θ)

In summation, a linear model is one in which the dependence on the model parameters
is of direct proportionality. In addition, we have an extra term ν (θ); this term is usually
considered the “noise” in the model, since noise is considered anything which is undesir-
able, or anything that doesn’t fit our model.

In any case, nonlinearities in our case arise in the form of several effects:

• Large signal non-linearity; i.e. soft saturation or clipping, which introduces notice-
able nonharmonic distortion.

• Small signal non-linearity; we are assuming that the model residuals (terms that de-
pend on the square and higher powers of the parameters) are negligible, even for
small parameter values, which isn’t always the case.

• Time-dependent non-linearity; i.e. hysteresis in physical materials (such as those
arising from ferromagnetic materials) and material degradation over time.

These nonlinearities, even without incorporating time-variance, make the model very com-
plex and almost impossible to estimate. In addition, decomposition of a filter into a non-
linearity and a LTI filter can be extremely difficult, since even the simplest polynomial
non-linearity is usually not commutative with respect to a convolution operation: consider
the filter h {x [n]} = 1

2
(x [n] + x [n− 1]) and the non-linearity p (x) = ax + bx2. If the

signal goes through the non-linearity before going into the LTI filter (see figure 7.1), we
get an output

y1 [n] =
1

2

(
ax [n] + bx [n]2 + ax [n− 1] + bx [n− 1]2

)
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(a) Nonlinearity, then LTI (b) LTI, then nonlinearity

Figure 7.1: Non-commutativity of non-linearity and LTI filter

On the other hand, if we reverse the components the output will be

y2 [n] = a · 1

2
(x [n] + x [n− 1]) + b

(
1

2
(x [n] + x [n− 1])

)2

=
1

2
(ax [n] + ax [n− 1]) +

b

4

(
x [n]2 + x [n− 1]2 + 2x [n] x [n− 1]

)
=

1

2

(
ax [n] +

b

2
x [n]2 + ax [n− 1] +

b

2
x [n− 1]2 + bx [n] x [n− 1]

)

so that apart from the differences in the coefficients which might be adapted from one model
to the other, in y2 we have cross products, which turn the ansatz completely different.

Even in the case of estimating a nonlinear model without any memory (i.e. a filter
in which the output depends only on the current input sample), the parameter estimation
has its own subtleties. Let us consider the following simple example, of estimating the
following model

y [n] = a · x [n] + b · x [n]2 + ν [n]

So the MMSE estimate is derived as follows:

ν [n] = y [n] − ax [n] − bx [n]2

ν [n]2 = y [n]2 + a2x [n]2 + b2x [n]4

−2ax [n] y [n] − 2bx [n]2 y [n] + 2abx [n]3

To minimize
∑
ν [n]2 we set the derivatives with respect to a, b and c to zero:

∂ν [n]2

∂a
= 2ax [n]2 − 2x [n] y [n] + 2bx [n]3

∂ν [n]2

∂b
= 2bx [n]4 − 2x [n]2 y [n] + 2ax [n]3
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so ⎧⎨
⎩
∑

2ax [n]2 − 2x [n] y [n] + 2bx [n]3 = 0∑
2bx [n]4 − 2x [n]2 y [n] + 2ax [n]3 = 0

∑
ax [n]2 − x [n] y [n] + bx [n]3 = 0∑
bx [n]4 − x [n]2 y [n] + ax [n]3 = 0

so that we have a 2 × 2 system of equations which can be solved by well-known meth-
ods. However, depending on the data points and the actual model equation, the system of
equations might be unsolvable (i.e. the associated matrix is not full rank and hence it is not
invertible).

In summation, a comprehensive time-variant and nonlinear model is extremely difficult
to estimate, but will be necessary in order to accurately predict and simulate such effects
which escape the LTI filter model.
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