
University of Miami
Scholarly Repository

Open Access Dissertations Electronic Theses and Dissertations

2010-01-13

DS-ARM: An Association Rule Based Predictor
that Can Learn from Imperfect Data
Kasun Jayamal Sooriyaarachchi Wickramaratna
University of Miami, k.wickramaratna@umiami.edu

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_dissertations

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Sooriyaarachchi Wickramaratna, Kasun Jayamal, "DS-ARM: An Association Rule Based Predictor that Can Learn from Imperfect
Data" (2010). Open Access Dissertations. 159.
https://scholarlyrepository.miami.edu/oa_dissertations/159

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations/159?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

UNIVERSITY OF MIAMI

DS-ARM: AN ASSOCIATION RULE BASED PREDICTOR THAT CAN LEARN
FROM IMPERFECT DATA

By

Kasun J. S. Wickramaratna

A DISSERTATION

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Coral Gables, Florida

May 2010

c©2010
Kasun J. S. Wickramaratna

All Rights Reserved

UNIVERSITY OF MIAMI

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

DS-ARM: AN ASSOCIATION RULE BASED PREDICTOR THAT CAN LEARN
FROM IMPERFECT DATA

Kasun J. S. Wickramaratna

Approved:

Kubat Miroslav, Ph.D.
Associate Professor of Electrical
and Computer Engineering

Terri A. Scandura, Ph.D.
Dean of the Graduate School

Kamal Premaratne, Ph.D.
Professor of Electrical and Computer
Engineering

Akmal Younis, Ph.D.
Associate Professor of Electrical and
Computer Engineering

Nigel John, Ph.D.
Lecturer of Electrical and Com-
puter Engineering

Dushyantha T. Jayaweera , M.D.,
M.R.C.O.G. (UK), F.A.C.P.
Professor of Clinical Medicine

S. WICKRAMARATNA, KASUN J. (Ph.D., Electrical and Computer
Engineering)

DS-ARM: An Association Rule Based Predictor that Can
Learn from Imperfect Data

(May 2010)

Abstract of a dissertation at the University of Miami.

Dissertation supervised by Professor Kubat Miroslav.
No. of pages in text. (118)

Over the past decades, many industries have heavily spent on computerizing their

work environments with the intention to simplify and expedite access to information

and its processing. Typical of real-world data are various types of imperfections,

uncertainties, ambiguities, that have complicated attempts at automated knowledge

discovery. Indeed, it soon became obvious that adequate methods to deal with these

problems were critically needed. Simple methods such as “interpolating” or just ig-

noring data imperfections being found often to lead to inferences of dubious practical

value, the search for appropriate modification of knowledge-induction techniques be-

gan. Sometimes, rather non-standard approaches turned out to be necessary. For

instance, the probabilistic approaches by earlier works are not sufficiently capable of

handling the wider range of data imperfections that appear in many new applications

(e.g., medical data). Dempster-Shafer theory provides a much stronger framework,

and this is why it has been chosen as the fundamental paradigm exploited in this

dissertation.

The task of association rule mining is to detect frequently co-occurring groups of

items in transactional databases. The majority of the papers in this field concentrate

on how to expedite the search. Less attention has been devoted to how to employ

the identified frequent itemsets for prediction purposes; worse still, methods to tailor

association-mining techniques so that they can handle data imperfections are virtually

nonexistent.

This dissertation proposes a technique referred to by the acronym DS-ARM (Demp-

ster-Shafer based Association Rule Mining) where the DS-theoretic framework is used

to enhance a more traditional association-mining mechanism. Of particular interest

is here a method to employ the knowledge of partial contents of a “shopping cart”

for the prediction of what else the customer is likely to add to it. This formalized

problem has many applications in the analysis of medical databases.

A recently-proposed data structure, an itemset tree (IT-tree), is used to extract as-

sociation rules in a computationally efficient manner, thus addressing the scalability

problem that has disqualified more traditional techniques from real-world applica-

tions. The proposed algorithm is based on the Dempster-Shafer theory of evidence

combination. Extensive experiments explore the algorithm’s behavior; some of them

use synthetically generated data, others relied on data obtained from a machine-

learning repository, yet others use a movie ratings dataset or a HIV/AIDS patient

dataset.

v

To my wife & parents

iii

Acknowledgements

I extend my sincere gratitude and appreciation to my dissertation advisor and

chairman of the committee, Professor Miroslav Kubat, for his guidance, support, sug-

gestions and encouragement throughout the period this research was being conducted.

I am also thankful to Professors Kamal Premaratne, Akmal Younis, Nigel John of

the Department of Electrical and Computer Engineering, and Professor Dushyantha

T. Jayaweera of the Department of Medicine, for accepting the appointment to the

dissertation committee and for their suggestions and support.

The financial assistance through U.S. National Science Foundation (NSF) Grants

IIS-0513702 is gratefully acknowledged. The financial assistance from the Department

of Electrical and Computer Engineering, and Professor Peter Minnett, UM Rosenstiel

Schools Division of Meteorology and Physical Oceanography is also acknowledged.

This dissertation would not have been possible without the help of many people in

so many ways. I would like to thank my many friends and colleagues at the University

of Miami with whom I have had the pleasure of working over the years. My special

thanks goes to Rohitha, Chamara, Shaminda and Indika for always being a helpful

and encouraging backstage presence. I would like to extend my utmost gratitude to

my parents for providing moral and material support during the long years of my

education, and also for their faith in me and allowing me to be as ambitious as I

wanted. Finally, and most importantly, I would like to thank my wife Bhagya for her

support, encouragement, quiet patience and unwavering love, which made this work

possible. Over the course of this four-year journey that has now culminated, she has

been my enduring source of strength.
Kasun J. S. Wickramaratna

University of Miami

May 2010

iv

Table of Contents

LIST OF FIGURES vii

LIST OF TABLES x

1 INTRODUCTION 1

1.1 Motivation . 4

1.2 Related Work . 6

1.3 Proposed Work . 18

1.4 Formal Problem Statement . 20

2 PRELIMINARIES 23

2.1 DS Theory . 24

2.2 IT-tree . 28

3 BUILDING THE PREDICTOR 32

3.1 Bayesian Approach . 35

3.2 DS-ARM Predictor . 37

3.3 Employing Dempster-Shafer Theory 47

3.4 Space and Time Complexity . 52

v

4 EMPIRICAL EVALUATION OF DS-ARM ON “CRISP” DATA 55

4.1 Performance Criteria . 57

4.2 Experiments . 59

5 REPRESENTATION OF IMPERFECT DATA 75

5.1 Attribute Value Ambiguities . 76

5.2 Formal Problem Statement . 82

5.3 Making Predictions . 85

5.4 Performance Criteria for “Soft” Predictions 87

5.5 Experiments . 88

6 USING TAXONOMY INFORMATION TO IMPROVE THE PRE-

DICTIONS 104

6.1 Taxonomy Lattice . 105

6.2 Experiments . 109

7 CONCLUSIONS 110

BIBLIOGRAPHY 114

vi

List of Figures

1.1 Building an association-rule based classifier 8

2.1 Itemset-tree constructed from the database, D={[1,5], [2,3], [1,2,3,4],

[1,2,4], [2,3], [2,4]}. 30

2.2 Flagged Itemset-tree constructed from the database, D={[1,5], [2,3],

[1,2,3,4], [1,2,4], [2,3], [2,4]}. 31

3.1 Flowchart of the predictor . 38

3.2 The Rule Graph, G. f(r
(a)
i)= frequency count of antecedent, f(`i,j)=support

count of rule r
(a)
i ⇒ Ij . 40

3.3 Rule graph construction for the testing itemset [2,3] using IT-tree in

Fig. 2.1 (Testing itemset possesses non-empty intersections with only

four nodes of the tree). 3.3(d) shows the final rule graph, G. 45

3.4 The Modified Rule Graph, G. Dotted links make it easy to find su-

per/sub sets of items set r
(a)
i s . 47

3.5 The itemset tree for the dataset in table 3.6 51

3.6 The rule graph for the partially observer shopping cart {2,4} and train-

ing dataset in table 3.6 . 52

vii

4.1 Macro F-value, macro recall, and macro precision of missing-item pre-

diction in the synthetic domains. 60

4.2 “Macro” performance in the congressional-vote domain. 62

4.3 “Micro” performance in the congressional-vote domain. 63

4.4 “Macro” performance in the SPECT Heart domain. 64

4.5 “Micro” performance in the SPECT Heart domain. 65

4.6 ROC curves of DS-ARM and Bayes predictors on congressional voting

dataset . 67

4.7 Execution time vs. minimum support: Even though the rule gener-

ation algorithm is not sensitive to minimum support threshold, rule

combination costs reduce with increasing minimum support due to re-

duction in number of rules . 71

4.8 Average time per prediction vs. average transaction length 72

4.9 Average time per prediction vs. the number of items in three synthetic

domains. 73

4.10 Average time per prediction of Bayes predictor vs. the number of items

dataset. 74

5.1 Arbitrary viral load traces . 78

5.2 Viral load variation profiles . 79

5.3 Rating assignment in the face of lack of information 81

5.4 Partial probability models of user profiles. 90

5.5 Behavior of DS-ARM . 92

5.6 Variation of DS PE1 distance . 97

5.7 Quality of prediction of DS ARM on MovieLens dataset in terms of

DS PE1 metric . 98

viii

5.8 Quality of DS ARM prediction on HAART regimen virological re-

sponsiveness dataset in terms of DS PE1 metric 101

5.9 Quality of DS ARM prediction on HAART regimen virological re-

sponsiveness dataset in terms of DS PE2 metric 102

6.1 A taxonomy for market basket dataset. (non-overlapping categoriza-

tion of items) . 106

6.2 A generalization lattice for movies dataset (first level shows the genre

information) . 106

6.3 A generalization lattice . 107

ix

List of Tables

2.1 Notations . 25

3.1 An Illustrative Data set of five persons 33

3.2 Integer notation for 〈attribute, value〉 pairs, considering each pair as

an item . 33

3.3 The dataset in the table 3.1 as a transaction dataset using the integer

notation . 33

3.4 The ruleset that resides in rule graph G (figure 3.3(d)) 45

3.5 The training dataset(illustrative) . 50

3.6 The dataset in the table 3.5 using integer notation 51

3.7 Frequency count for each item in data set in table 3.5 52

3.8 Rule Set that Resides in the Rule Graph G in Fig. 3.6 53

3.9 Rule Set after pruning the overlapping rules in table 3.8 53

4.1 IBM-Generator Parameters . 56

4.2 Macro averaging and micro averaging of precision and recall. N denotes

the number of different classes (items). 59

4.3 Classification Accuracy on SPECT Dataset 69

4.4 Parameter Settings . 70

x

4.5 Comparison of computation time between Bayes and DS-ARM: Aver-

age time take per prediction (values are given in seconds) 74

5.1 Types Of Imperfections That Can Be Captured By An Intra-BBA . . 84

5.2 Intra-BBAs of Two Data Records . 85

5.3 DR-BBAs of the Data Records in Table 5.2 86

5.4 Performance Comparison: Hard Decisions 94

5.5 Performance Comparison: Soft Data 96

5.6 Performance comparison of DS ARM with a random predictor on the

HAART regimen virological responsiveness prediction. 100

6.1 Performance Comparison: Soft Data 109

xi

CHAPTER 1

Introduction

Advances in computational power and storage capabilities have led to computer-

ization of working environments, resulting in huge collections of data. These data

collections are analyzed with the intention to discover or induce valuable new infor-

mation or knowledge. From the many techniques developed to this end, the work

reported in this introduction focusses on the detection of association rules from fre-

quently co-occurring groups of items in transactional databases.

The knowledge of itemsets frequently co-occurring in a transactional database can

be exploited for prediction. For instance, if bread, butter, and milk often appear in

the same transactions, the presence of butter and milk in a shopping cart suggests

the customer may also buy bread. More generally, knowing which items a shopping

cart contains, we want to predict other items that the customer is likely to add before

proceeding to the checkout counter.

Although this motivation behind association mining was mentioned as early as

in the pioneering paper by Agrawal et al [AIS93], the prediction task has not been

investigated as deeply as it could. This is partly due to the extremely high com-

putational costs of itemset discovery in large databases. The scientific community

simply felt that the attempts to expedite this search have much more urgency than

the ways to exploit its results (see the survey in [KHR+03b]). Other authors found it

1

2

important to investigate such special aspects of association mining as the discovery

of time-varying patterns [GGR99, GGR00, RK05] or the identification of localized

patterns [RH00, APY02].

This does not mean that no work has been done on the classification front at all.

One of the earliest attempts to convert frequent itemsets to rules was reported in

[BA99]. And some scientists looked into what would happen if one of the items is

treated as a binary class whose value (absence = 0; presence = 1) is to be predicted.

For instance, they asked: based on the current contents of the customer’s shopping

cart, can we predict whether or not the customer will buy bread? If yes, with

what reliability? The results of early attempts were encouraging to the degree where

some scientists even observed that the classification performance of association-mining

systems may compare favorably with the more traditional machine learning techniques

[ZSP+04a, LHM98, LHP01, LSW97].

The work reported here wanted to go one step further, assuming that any item

in the shopping cart (not just bread) can be the treated as the “class label.” The

question is: given an incomplete list of the items in the shopping cart, can we guess

the remaining items? An example will clarify the point. Suppose the shopping cart

of a customer at the checkout counter contains bread, butter, milk, cheese and

pudding. Can someone who met the same customer ten minutes ago, while the

cart contained only bread, butter and milk, predict that the person will add also

cheese and pudding? Let us remind the reader that—implicitly or explicitly—this

task stood at the cradle of this field in the 1990s.

Although the basic association mining task is for historical reasons cast in the

department-store paradigm (and the vast majority of papers rely on synthetic data

with controllable parameters), the problem is typical of many real-world domains.

3

Thus in the application domain discussed in [NRC01], each “shopping cart” con-

tained a set of hyperlinks that pointed to a given web page [NRC01]; in a medical

domain, the shopping cart may contain a patient’s symptoms and diagnoses; and in a

financial domain it may contain companies held in the same portfolio. One study even

suggested a framework for using frequent itemsets in information retrieval [BSHR01].

In all these domains, the prediction of currently missing items can be of great

importance. For instance, medical doctors know that a patient’s symptoms are rarely

due to just a single cause; two or more diseases usually conspire. Having identified one

of them, the physician tends to focus on how to treat this single disorder, ignoring

the others that he or she is not aware of. This unintentional negligence can have

unfortunate consequences, and yet, the situation is in a sense inevitable: the number

of laboratory tests that a patient is to undergo is limited by many practical (e.g.,

economical) factors. Under these circumstances, a decision support system advising

the physician of what other diseases usually accompany the one already diagnosed

can help the physician decide which other tests should be prescribed.

In practice, however, this is not so simple. Knowing the presence or absence of a

disease is not enough. What matters is also the severity as quantified, say, by a value

from Θ = {Critical,Medium,Normal}. When assigning the value, a physician relies

on his/her experience and/or the experience of colleagues. Such ratings are inevitably

ambiguous and not easily expressed in terms of probabilities—for instance, it would

be mistaken to assume that the statement, “the symptom is Critical with a 70%

confidence” implies a 30% confidence in the complement of Critical. On top of

that, different experts’ opinion on the same matter could be contrastingly different.

The lack of mechanisms to accommodate such subjectivity often necessitates various

4

unwarranted “interpolations.” Their inadequacy motivates our research: knowing

some (ambiguous) ratings a user has given, we want to predict his or her other

ratings.

The scope of applications of such a framework is broader than it seems. Suppose

we have a database of customer ratings of a line of products. If a group of users tend

to rate products {p1, p2, p3} in a similar way, {〈p1, r1〉, 〈p2, r2〉, 〈p3, r3〉}, then a new

user’s ratings {〈p1, r1〉, 〈p2, r2〉} lead us to expect that this user, too, will rate p3 as

r3. By considering a 〈product, rating〉 pair as an item, we can convert the problem

to the department-store paradigm and ultimately predict the user rating.

1.1 Motivation

The idea of knowledge discovery from health-care databases is not novel to the

data mining community. However, it has turned out to be much more complicated

than originally thought, mainly due to data imperfections, to typical of medical

databases. The author of this dissertation believes that the knowledge discovery from

data sources of this kind is not feasible without adequate methods to accommodate

and/or account for such data imperfections, and the need for such algorithms and

techniques was actually one of the original motivations for the research reported here.

Subjective information plays such a critical role in medical domains that simplistic

methods such as “interpolating” or simply ignoring data imperfections often lead to

inferences of dubious practical value. In this sense, it is crucial to modify existing

knowledge induction techniques by effective strategies so as to reflect data imperfec-

tions and to better quantify the uncertainty implicit in the induced knowledge.

5

Specific Problem

The World Health Organization (WHO) estimates that 40 million people world-

wide have been infected with the human immunodeficiency virus (HIV), with millions

of new infections being added to this count each year. Treatment of HIV with highly

active antiretroviral therapy (HAART) can effectively control HIV infection; however,

non-adherence to the medication significantly limits the success outside clinical re-

search settings. Once the effectiveness of the prescribed HAART regime is diminished,

a new regime has to be prescribed after a careful study of the patient’s HARRT regime

response history and other related factors. This is one place where the physician’s

own experience really matters.

HIV damages the immune system, and thus makes the patients vulnerable to

opportunistic infections and tumors. Opportunistic diseases usually tend to conspire

with one another. Having identified one disease, the physician has to anticipate other

diseases yet to come. In doing so, the physician relies on his or her own experience and

on published data from controlled clinical trials. Hence, the decision making would

be greatly enhanced by tools that extract information from databases and provide

information to resolve some of the involved uncertainties.

Unfortunately, existing databases are marred with imperfections ranging from

missing information to data entry errors and subjective evaluations. In machine

learning, data imperfections have received inadequate attention, which is surprising

in view of the abundance of mathematical frameworks developed by the decades of

research in the field of uncertainty processing.

In the proposed work, we try to address the aforementioned issues. In particular,

we explore the use of frequently co-occurring patterns, for prediction purposes. We

emphasize association mining in domains with ambiguities and uncertainties.

6

1.2 Related Work

Most of the earlier association-mining systems were proposed with the focus of

building a classifier. Given a set of data instances together with their corresponding

class-labels, the task was to induce a “classifier.” The given data set is called a

training set and a data instance is identified by a set of attribute value pairs. The

purpose of the classifier is to predict the class label (i.e., value of the class-attribute)

of future data instances of which the class label is unknown. The approach used to

build the classifier is often dubbed as classification rule mining. Classification rule

mining aims to discover a small set of rules in the database that forms an accurate

classifier. Unlike in association rule mining where the target of discovery is not pre-

determined, classification rule mining is done with one and only one predetermined

target (the class label).

We believe that it is worth spending some time here to emphasize the differences

in the “classification” task and the task at our hands. Let us formulate the notions

for our discussion. We call each 〈attribute, value〉 pair an item. Each data instance

is called a transaction. Thus, a transaction is identified by a set of items. Given a

partially observed transaction, our task is to predict the rest of the items that might

appear in the transaction. One may perceive this as a shopping cart completion task.

Unlike in the above classification task, we cannot identify an explicit single class-label.

In fact, any attribute (one or many) could take the place of class attribute depending

on the given testing instance. In fact, the previous classification task can be seen as

a special (and more simpler) case of this general task.

In principle, at least, we could adopt any of the classification methodologies to

our paradigm; however, the problem is that they were designed primarily for the

classification task, and not for the shopping cart completion task described earlier.

7

Specifically, the number of times such classifiers have to be invoked to address the

issue at hand would be equal to the number of all distinct items in the database (i.e.,

n) minus the number of those already present in the shopping cart. For instance, we

can use the training data set to build as many classifiers as the number of attributes,

each time considering a different attribute as the class-attribute. Once a partially

observed transaction is presented, we can select a subset of classifiers, such that

each selected classifier predicts the value of one unobserved attribute. The subset of

classifiers, thus, collectively predicts all the unobserved attribute values (or missing

items). It should be noted that this is viable only if the classifiers are capable of

accommodating total ‘missingness’ of attribute values. Obviously, this rather naive

approach is feasible for situations where the number of attributes is limited to few

(usually one or two) dozens. Classifiers proposed in previous studies thus lack the

predictive abilities we look for in our paradigm. We would rather look for an efficient

predictor which can predict all the items that would be added to the transaction.

This is why we have sought to develop an efficient predictor that would predict all

‘missing’ items in the course of a single procedure.

With this being said, we shall review the earlier researches on building association-

rule based classifiers, as the challenges faced in our paradigm is just an extension of

the challenges faced by those researchers.

1.2.1 Association-Rule Based Classifiers

Association rules explore highly confident associations among multiple variables.

Some researchers [LHP01] have suggested that this may overcome some constraints

induced by a decision-tree induction methods which examine one attribute at a time.

Effective classifiers have been built by careful selection of association rules [LHM98,

8

�����

��������

	
��
��������

����������
������
������

	
�����������

����������
����������
��������

�����������

	
�����
��

	
��
����������
�������������

Figure 1.1: Building an association-rule based classifier

LHP01, HL05, ZSP+04a]. Extensive performance studies in above-cited papers have

shown that association rule based classification may have better accuracy in general.

Building an association-rule based classifier usually entails four stepped procedure.

1.) Rule Generation, 2.) Rule Pruning, 3.) Rule Selection, and 4.) Reaching the

Decision. Basic flowchart of the procedure is given in the Figure 1.1.

9

1. Rule Generation

The focus of rule generation is on a special subset of association rules whose right-

hand-side is restricted to the classification class attribute. This might be challenging

mainly due to the requirement of lower minimum support thresholds in order to ex-

tract rules from the rare class and the huge number of associations that result from

this setting. The famous apriori algorithm [AIS93] could fail under these circum-

stances due to combinatorial explosion. Many researchers, thus, have adapted apriori

algorithm to develop “apriori-like” algorithms [LHM98, ZSP+04a, HPS07] whereas

some others have developed different methodologies such as FP-tree [HPY00].

Apriori-like methods are based on Apriori heuristic: if a k length pattern is not

frequent in a database, then any of its super-patterns of (k + 1) length can never be

frequent. The idea is to iteratively generate candidate frequent item sets of higher

length thus reducing the size of candidate set. Apriori-like algorithms, however, are

also known to suffer form performance deterioration when the “size” of the mining

problem is large. The mining problem “size” could be determined by four param-

eters: number of transactions, number of distinct items, average transaction length

and the minimum support threshold. For example, the problem size increases when

the number of distinct frequent items in the dataset is increased (i.e., when a lower

minimum support threshold is used). This is mainly due to the costs associated with

handling a large number of candidate item sets generated under the above conditions

that result in combinatorial explosion and repeated parses across the database.

Raising the minimum support threshold to reduce the computational costs could

result in losing very important rules from the rare class. Studies suggest many “tricks”

to limit the number of rules, yet, extracting rules from the rare class. In one such trick,

a data set is partitioned according to the class label so that each partition contains

10

data instances from only one class. Association rule mining is then employed on each

partition separately to extract rules. This can avoid the domination of a majority

class in the generated rule set and ensure extraction of rules from a rare class. This

approach is used for rule generation in [ZSP+04a].

The use of multiple minimum support thresholds, instead of a single minimum

support threshold, is suggested in [LMW00]. The idea is to assign each class, ci, a

different minimum support threshold. The user only gives a total minimum support

value, denoted by t minsup, which is distributed to each class by:

minsupi = t minsup× sup (ci)

The formula gives frequent classes higher minimum supports and infrequent classes

lower minimum supports. This ensures that it will generate sufficient rules for infre-

quent classes and also it will not produce too many over-fitting rules for frequent

classes.

We propose an alternative selective rule generation approach to overcome these

difficulties.

2. Rule Pruning

As discussed above, many studies have emphasized the requirement of using a

lower support threshold to include cases from the rare class. This requirement has

led to the generation of huge numbers of frequent itemsets and hence even larger

number of association rules[AS94]. Thus, to achieve high accuracy, a classifier may

have to ‘handle’ a large number of rules, which includes storing the generated rules,

retrieving the matching rules and sorting the retrieved rules. It is challenging to store,

and effectively identify most effective rule(s) to classify a new instance. Thus, the

generated rule set is often pruned using some criteria, aiming to retain a smaller set

of rules that is still capable of forming an accurate classifier.

11

Studies have proposed several approaches to prune the rule set. We classify them

under three categories— 1) threshold based pruning, 2) coverage Based Pruning, and

3) coverage with redundancy.

• Threshold Based Pruning

Researchers have come-up with many metrics to measure the “quality” (or “good-

ness” or “interestingness”) of the rules. Those rules that do not satisfy the “quality”

requirements are then pruned out. Only those “high-quality” rules are retained to

form the classifier.

Most widely used quality metrics are support and confidence [AIS93]. The support

of an item set A is equal to the fraction of the records in the data set that contains A.

We shall denote this by sup(A). Support of a rule A⇒ C is equal to sup(A∪C). The

confidence of a rule is usually defined with the help of supports (relative frequencies)

of the antecedent and consequent. More specifically, the confidence in A ⇒ C is

defined as the percentage of transactions that contain C among those transactions

that contain A:

confidence =
sup(A ∪ C)

sup(A)
. (1.1)

The confidence, thus, can be considered as a measure of the “correctness” of a rule

as well. Only those rules that have support and confidence values above certain

thresholds are kept to form the classifier. These thresholds are often called minsup

and minconf respectively [AIS93].

Among many other metrics used to measure the “quality” of a rule are gain

[FMMT96], variance and chi-squared value [Mor98], entropy gain [MFM+98], gini

index [MFM+98], and Laplace accuracy [HL05]. It is not our interest to discuss all

these approaches here.

12

• Coverage Based Pruning

Coverage is used to further prune out the rule set. In this method the discovered

rule set is sorted in accordance with their corresponding “priority”. The best rule is

then taken out from this collection. The training records “covered” by this rule are

also taken out from the training set. Then the second best rule is selected from the

rule collection, and data instances covered by this rule are removed from the training

data set. This procedure is carried out until no data instances are left in the training

data set. The selected rule set is then used to form the classifier and rest of the rules

are pruned out.

A classical example of this approach can be found in [LHM98], CBA classifier.

Priority of the rules is assessed in the course of a three-set process. Suppose we want

to compare two rules, ri and rj. We will say that ri precedes rj, and write ri > rj, if

(a) the confidence of ri is greater than the confidence of rj; or (b) their confidences

are the same, but the support of ri is greater than the support of rj; or (c) both the

confidence and support have the same values for both rules, but ri has been generated

earlier than rj. The rule set is then pruned to select the minimal set of high priority

rules that covers the training set.

The set of generated rules R is then sorted according to the priority. Rules for

the classifier are then selected from R following the sorted sequence. This will ensure

that the highest precedence rules are selected for the classifier C. For each rule r, we

go through D to find those cases covered by r (they satisfy the conditions of r). We

mark r if it correctly classifies a case d ∈ D. If r can correctly classify at least one

case (i.e., if r is marked), it will be a potential rule in the classifier. Those cases it

covers are then removed from D. A default class is also selected (the majority class

in the remaining data). After selection of each rule, the number of total errors made

13

by the current classifier C, on the training data is recorded. Rules are added to the

classifier until no rules are left or no data instances are left. Finally, those rules that

do not improve the accuracy of the classifier are discarded. The first rule at which

there is the least number of errors recorded on D is the cut-off rule. Hence, all the

rules below that point will be discarded. Finally, the selected rule set and the default

class label make up the CBA classifier.

• Coverage with Redundancy

Some researchers argue [LHM98] that the use of a smaller rule set helps improve the

“understandability” as opposed to classification systems having many rules. However,

others argue [HL05] that smaller classifiers are too sensitive to the missing values in

unseen test data. The latter group proposes to add redundant rules to the classifier

to make it more robust. The idea is to make use of alternative (redundant) rules,

when some rules are paralyzed by missing values. An example would clarify this

point further. Assume two rules (TestA = positive ⇒ diabets) and (Test B =

positive and Symptom = C ⇒ diabetes), account for a group of patients. Assume

that the covering algorithm used to prune the rule set discards the second rule. Now,

a patient who has not taken the Test A but has tested positive on Test B and

symptom C will miss the matching of the first rule, and may be miss-classified as

normal by the default prediction. This could be crucial in medical applications as

there is common case of “missingness” in test data, often due to new patients coming

in with low medical history.

The classifier proposed in [HL05] addresses this issue by adding at least two rules

to the classifier for every record in the training data. In this process, [HL05] also

make sure that the redundant rule added does not have a complete overlap with a

14

previous rule. For instance, if the first selected rule is a, b ⇒ z the second rule will

never include both a and b in the antecedent. Experiment results have shown the

approach is more robust and accurate.

We propose a completely different and novel approach firstly to avoid the situation

of having no applicable rules for a given test case.

3. Rule Selection

Once a test case is presented to the classifier, the classifier has to select the

“matching” rule(s) to classify the given instance. Numerous different approaches

have been proposed in the literature for the “matching” rule selection. Selection of

“Best” Rule, selection of K-nearest rules, selection of all rules that are “close” to the

test case etc., are few prevalent techniques.

• “Best” Rule:

Some approaches use the “best” rule that covers the test case to classify the in-

stance (e.g [LHM98, DZWL99, HL05]). The best rule is selected based on some

evaluation metric discussed above. Such a simple pick may, however, adversely af-

fect the accuracy of the classification since it predicts the consequent based on the

“testimony” provided by a single rule, ignoring the simple fact that many rules can

have “matching” antecedents (or even the same antecedent), while implying different

consequents. The system may also be sensitive to the rather subjective value of the

user-specified cut-off thresholds. Hence, collective decision of a set of rules is preferred

by many researchers. The CMAR classifier proposed in [LHP01] makes use of all the

“matching” rules (selected from the pruned rule set) to make the classification. Most

of the others use a selected subset of the matching rules.

15

• KNN Method:

Presented a test instance, the KNN method selects the “nearest” or “best” k rules

to make the classification. The “closeness” is measured by some distance metric. This

approach is used in [ZSP+04a].

• Distance Threshold:

This is the approach used in [HPS07]. In this approach, all the rules that are

“closer” than a user defined “distance threshold” participate in the classification of a

given test case.

4. Reaching a Decision

Once the subset of rules that matches the incoming test case is selected, they

collectively reach the final decision. If all the selected rules suggest the same class

label, we can simply assign that label to the test case. However, often, this is not the

case.

• “Best” rule’s decision:

The classifiers that select only the best rule obviously assign the test case to the

class suggested by the selected rule.

• Majority Voting:

When rules are not consistent in class label, some studies suggest the use of majority

voting. Weighted majority makes more sense in this case. CMAR [LHP01] proposes

a weighted majority system. When the rules are not consistent in class labels, CMAR

divides the rules into groups according to class labels. All rules in a group share the

same class label and each group has a distinct label. CMAR compares the strengths

16

of the groups and yields to the strongest group. Strength of the group is measured

in terms of a measure called, weighted X2. Support values of the rules in the groups

are used to compute this measure. Main weakness of this approach is that it ignores

the possibility of having many overlapping rules in a group.

• Evidence Combination:

Evidence provided by multiple rules can be combined to get the final decision.

Dempster’s combination rule (DCR) [Sha76] is used to combine the selected rule set

in [HPS07, ZSP+04a]. In combining the rules, above-cited papers devise a method

to account for confidence and uncertainties associated with rule’s opinion. The most

attractive aspect about this approach is that the classifier can present the result/

decision as a fused BBA (basic belief assignment) showing how much belief it places

on each proposition. A knowledgeable expert may look at this result and make an

informed decision rather than accepting a hard decision given by a classifier. We prefer

this approach because of the many more reasons to be discussed in later sections.

1.2.2 Accommodating Data Imperfections

Data collected from real world applications such as medical databases are rarely

perfect and often consist of missing, inaccurate or inconsistent data. To make better

inferences from imperfect data we strongly believe that it is required to develop

methods which are capable of accommodating imperfections, and then propagating

these throughout the decision-making process. Even though, many association rule

based classifiers have been developed, surprisingly few studies have addressed this

issue.

17

A problem we often come across is class label ambiguities. Class label ambiguities

are typically generated due to inability of an expert to decide between class labels

that are ‘close’ to each other. For instance, in HIV therapy HAART (highly active

antiretroviral therapy) regimes can effectively control the infection. If the prescribed

HAART regime has reduced plasma HIV-1 RNA levels of a patient to less than 50

copies/mL it is believed to be a “highly-effective” regime. How about if the regime has

reduced the plasma HIV-1 RNA level to 51 or 52 copies/mL? Do you still categorize

the regime as “highly-effective”? How far can you vary this boundary? Experts may

waver in their decision between “highly-effective” and “effective”.

Accommodating such class label ambiguities in an association rule based classifier

has been discussed in [ZSP+04a]. They adopt a classifier that is based on belief the-

oretic notions. Hence, in addition to the improvement in classification performance

when class label ambiguities are present, the classifier is also able to provide quantita-

tive confidence information regarding the classification decision it makes. This study,

however, did not address the issue of ambiguities associated with other attributes.

A belief theoretic based association rule mining framework, in which the rules can

accommodate general imperfections (both in class label and attributes) in data has

been proposed in [HPS07]. They developed a probabilistic relational data model that

allows probabilistic information to be associated with attributes. We strongly, believe

that such a framework is essential for knowledge discovery from medical databases

which often are rife with data imperfections. Authors in [HPS07], however, came

across a major difficulty: the over whelming computational burden. To reduce the

computational burden, a data structure referred to as the belief itemset tree is used.

Yet, they observed that the cost of their association rule mining algorithm is 2 to 3

times higher than the regular apriori algorithm.

18

1.3 Proposed Work

Our task is made even more complicated by the fact that any (one or more)

attribute can take the place of class-attribute. To the best of our knowledge this

problem has not been studied in earlier work. In the previous sections we learned that

even if we focused on predicting a single class label it could generate a huge number

of rules. It becomes even worse when the classifier has to be capable of predicting any

attribute. Hence, we have to devise a novel rule generation methodology to limit the

number of generated rules, while still ensuring that all interesting rules are discovered.

As discussed in [HL05], the weakness of classifiers with small rule sets is that they

rely significantly on the default prediction. Default prediction is used when there

is no matching rule in the classifier’s rule collection to classify a new incoming test

case. Predictions based on the default prediction may be misleading. For example,

consider a patient data base having 5% of patients suffering from diabetes and 95%

patients testing negative on diabetes. Say, we use the default class label, in an effort

to classify diabetics. Even though this classifier would pick up 95% accuracy it is

meaningless for a doctor. Thus, in the effort to reduce the number of rules used in

the classifier we have to avoid the situation of having to use the default class label to

classify a new test case.

The usual approach to building a classifier is to discover all possible rules from

the test database that passes some thresholds, and then to retrieve “matching” rules

from this collection to classify a test case. The proposed selective rule generation

methodology limits the generated rule set using simple guidelines, and it also avoids

the situation of having no applicable rules for a given test case. In the proposed

approach, we query the database to extract rules only after a test case is given. We

are not interested in a complete list of itemsets, but prefer to constrain the search for

19

“matching” rules. Thus, we avoid the need of searching and storing “all” rules. Unlike

apriori-like algorithms which need repeated searches over the database our algorithm

requires just one parse over the database to generate the rule set. Querying the

database is made even faster by rearranging the database using the IT-tree data

structure proposed in [KHR+03a]. This becomes handy especially in the batch mode

prediction (i.e., when you have to predict ‘missing items’ for several ‘shopping carts’).

Another fact that is evident in all of above approaches is the enormous amount

of effort/cost it takes to obtain a tangible and meaningful set of rules. Costs asso-

ciated with rule pruning and rule selection can be effectively minimized by better

organization of rules. We propose a novel data structure to facilitate the storing and

retrieval(selection) of relevant rules.

We also present a novel rule combination methodology based on Dempster’s com-

bination rule. The method uses the support, confidence and ‘detailedness’ (i.e., how

specific the rule is) of the rules to assess the strength of the rules.

As discussed in the previous section, it is very important to develop methods

capable of accommodating data imperfections and then propagating them throughout

the decision making process. Computational burdens associated with such approaches

have made it difficult to use them in situations with a large number of attributes.

We believe that this novel rule generation and rule organization methodology will be

the first step of removing that impediment. With the encouraging results observed

on “crisp” databases in the experimental evaluations, we extend this methodology

to Dempster-Shafer belief theoretic relational databases (DS-DB)[HPS07] that can

conveniently represent a wider class of data imperfections.

20

1.4 Formal Problem Statement

Let I = {i1, . . . , in} be a set of distinct items and let a database consist of trans-

actions T1, . . . , TN , such that Ti ⊆ I, ∀i. An itemset, X, is a group of items, i.e.,

X ⊆ I. The support of itemset X is the number, or the percentage, of transactions

that subsume X. An itemset that satisfies a user-specified minimum support value is

referred to as a frequent itemset or a high support itemset.

An association rule has the form r(a) ⇒ r(c), where r(a) and r(c) are itemsets. The

former, r(a), is the rule’s antecedent, and the latter, r(c), is its consequent. The rule

reads: if all items from r(a) are present in a transaction, then all items from r(c) are

also present in the same transaction. The rule does not have to be absolutely reliable.

The probabilistic confidence in the rule r(a) ⇒ r(c) can be defined with the help of

supports (relative frequencies) of the antecedent and consequent as the percentage of

transactions that contain r(c) among those transactions that contain r(a):

conf =
support (r(a) ∪ r(c))

support (r(a))
. (1.2)

Let us assume that an association mining program has already discovered all high

support itemsets. For each such itemset, X, any pair of subsets, r(a) and r(c), such

that r(a)∪r(c) = X and r(a)∩r(c) = ∅, we can define an association rule: r : r(a) ⇒ r(c).

The number of such rules generated grows exponentially in the number of items in

X, but we usually consider only rules derived from high support itemsets and with

confidence satisfying a user-specified minimum.

Given an itemset s, an algorithm developed by [KHR+03a] generates, in a com-

putationally feasible manner, all rules s⇒ ` that satisfy the user-supplied minimum

support and confidence values θs and θc, respectively. Of course, if no frequent itemset

subsumes s, no rules will be generated.

21

However, we are also interested in rules with antecedents that are subsumed by

s. As an example, suppose no frequent item set subsumes s = (wine, milk, bread).

To claim that s does not imply any items, as one may infer from the algorithm

in [KHR+03a], would mean to ignore associations implied by subsets of s. For in-

stance, the antecedent of (milk, bread) ⇒ butter is subsumed by s; we will say

that (milk, bread)⇒ butter “matches” s. If we have other such matching rules, for

instance, (wine, bread) ⇒ egg or wine ⇒ beer, we would like to consider them as

well. We thus need a mechanism that not only generates, but also combines, rules

that match s.

Furthermore, we need to be aware of the circumstance that the presence of an

item might suggest the absence of other items. For instance, if the shopping cart

contains chips, cookies, cashews, the customer may not buy nuts. We are therefore

interested in rules such as (chips, cookies, cashews) ⇒ ¬nut, where ¬nuts means

that no nuts will be added to the cart. Classical association mining usually ignores

this aspect, perhaps because negated items tend to increase significantly the total

number of rules to be considered; another reason can be that rules with mutually

contradicting consequents are not so easy to combine.

With the issues discussed above in mind, we narrow down the space of association

rules by using following guidelines:

(1) For a given itemset s, rule antecedents should be subsumed by s.

(2) The rule consequent is limited to only one ‘unseen’ item (presence or absence

of the unseen item).

In essence, the tasks being addressed in this paper are the following: Given a

transaction with the itemset s ⊆ I, find the set of matching rules that exist in the

training dataset that are of the form r(a) ⇒ ij, j = 1, n, such that r(a) ⊆ s and

22

ij /∈ s, and pass the user-supplied minimum support, θs, and minimum confidence,

θc, thresholds. Then, devise a method to combine the matching rules with mutually

contradicting consequents and reach a decision on what other items would be added

to the transaction.

CHAPTER 2

Preliminaries

Probability theory does not provide a satisfactory way to model ignorance or

lack of information. This is often illustrated using the famous coin tossing example.

Consider two pieces of evidence provided by two players tossing a coin.

• Payer A – knows that the coin being tossed is fair.

• Player B – does not know the coin being tossed is fair.

In either case, a probability theory based model would assign P (heads) = P (tails) =

0.5. This assignment may be satisfactory as far as the player A is concerned; but, as

far as B is concerned, it is based on lack of knowledge and the coin may have a bias

towards heads or tails.

To address such situations, one typically relaxes the additivity axiom of probability

theory, i.e., we do not impose the condition P (X) + P (X) = 1. One approach that

uses this strategy is Dempster-Shafer (DS) belief theory [Sha76].

Belief or evidence theory was first introduced by Dempster [Dem67] and further

developed by Shafer [Sha76]. Since then it has become a very popular research topic

and many developments and implementations have taken place. Apart from the

obvious advantage of having a method for representing a wider class of imperfections,

Dempster-Shafer (DS) evidence theory has other advantages as well. In the Bayesian

23

24

model, probabilities have to be assigned to all the propositions of interest, and as

new information is obtained these measures are updated. In DS theory, depending on

the evidence that is available, masses are assigned to only those propositions that are

supported by the evidence. As new evidence becomes available, masses are assigned to

another set of propositions that are supported by the new evidence and these two sets

of masses can be combined to give a new set of propositions that are supported by the

combined evidence. After masses have been assigned to the propositions supported

by the evidence, the surplus mass is associated with ignorance. As more evidence is

received this belief is spread out into different propositions, reducing the ignorance.

DS theory is a powerful tool in handling imperfections in databases. Therefore, we

will base our discussion on this formalism from here onwards.

2.1 DS Theory

Consider a set of mutually exclusive and exhaustive propositions, Θ = {θ1, . . . , θK},

referred to as the frame of discernment (FoD). A proposition θi, referred to as a sin-

gleton, represents the lowest level of discernible information. In our context, θi states

that the “value of attribute is equal to θi.” Elements in 2Θ, the power set of Θ, form

all propositions of interest. Any proposition that is not a singleton, e.g. (θ1, θ2), is

referred to as composite. Table 2.1 summarizes the commonly used terminology in

DS-theory. To keep the discussion simple we assume that |Θ| is finite.

DS theory assigns to any set, A ⊆ Θ, a numeric value m(A) ∈ [0, 1], called a basic

belief assignment (BBA) or mass that quantifies the evidence one has towards the

proposition that the given attribute value is A and only A. The mass function has to

25

Table 2.1: Notations
Θ = {θi} Frame of discernment (FoD) or frame or sample space;

set of all possible mutually exclusive and exhaustive objects.

θi Singletons or elements of Θ;

represents the lowest level of discernible information.

2Θ Powerset of Θ;

its elements form all the propositions of interest in DS theory.

satisfy the following conditions [Sha76]:

i.) m(∅) = 0;

ii.)
∑
A⊆Θ

m(A) = 1. (2.1)

Note that, if Ā is the complement of A, then m(A) +m(Ā) ≤ 1.

Objects for which there is no information are not assigned an a-priori mass. Hence

committing support for an event does not necessarily imply that the remaining sup-

port is committed to its negation; the lack of support for any particular event simply

implies support for all other events. In this manner, the additivity axiom in the

probability formalism is relaxed in DS theory.

Any proposition A that possesses a non-zero mass, i.e., m(A) > 0, is called a focal

element; the set of focal elements, F, is referred to as the core.

F(Θ) = {A ⊆ Θ : m(A) > 0}.

The triple {Θ,F,m(•)} is called the body of evidence (BoE).

Complete ignorance of the state of nature can be modeled via the vacuous bba:

m(A) =

1, for A = Θ;

0, for A ⊂ Θ.

(2.2)

26

An indication of the evidence one has towards all propositions that may themselves

imply a given proposition A ⊆ Θ is quantified via the belief, Bel(A) ∈ [0, 1], defined

as:

Bel(A) =
∑
B⊆A

m(B). (2.3)

Note that Bel(A) = m(A) if A is a singleton. Plausibility of A is defined as

Pl(A) = 1−Bel(A); it represents the extent to which one finds A plausible.

2.1.1 Belief to Probability Transformation

Many techniques have been developed for converting DS theoretic information

into the probabilistic domain; see [CS03] for a detailed discussion on various belief to

probability transformations. The most commonly used transformation method is the

pignistic transformation [Sme90].

A probability distribution Pr(·) satisfying Bel(A) ≤ Pr(A) ≤ Pl(A), ∀A ⊆ Θ, is

said to be compatible with the underlying BBA m(•). As mentioned before, an exam-

ple of such a probability distribution is the pignistic probability distribution BetP (•)

defined for each singleton θi ∈ Θ as follows [Sme99]:

BetP (θ(i)) =
∑

θi∈A⊆Θ

m(A)

|A|
. (2.4)

Here |A| denotes the cardinality of set A.

2.1.2 Belief Combination

Dempster’s rule of combination (DRC) makes it possible to arrive at a new BoE

by fusing the information from several BoEs that span the same FoD. Consider the

two BoEs, {Θ,F1,m1(•)} and {Θ,F2,m2(•)}. Then,

K12 =
∑

Bi∩Cj=∅

m1(Bi)m2(Cj) (2.5)

27

is referred to as the conflict because it indicates how much the evidence of the two

BoEs are in conflict. If K12 < 1, then the two BoEs are compatible, and the two BoEs

can be combined to obtain the overall BoE {Θ,F,m(•)} as follows: for all A ⊆ Θ,

m(A) ≡ (m1 ⊕m2)(A)

=

∑
Bi∩Cj=A

m1(Bi)m2(Cj)

1−K12

. (2.6)

A variation of the DRC that can be used to address the reliability of the evidence

provided by each contributing BoE is to incorporate a discounting factor di, di ≤ 1,

to each BoE [Sha76]. The BBA thus generated is

m(A) = (m̂1 ⊕ m̂2)(A), where, for i = 1, 2,

m̂i(A) =

dimi, for A ⊂ Θ;

(1− di) + dimi(Θ), for A = Θ.

(2.7)

2.1.3 Decision making

In our context, an attribute can take one out of many (finite) values. One sin-

gleton denotes the true value associated with an attribute x. In the effort to predict

the value of attribute x, our predictor presents the decision in the form of a BoE,

{ΘL,x,FL,x,mL,x} where ΘL,x is the set of values x shall take. If we want a ‘hard’

decision on a singleton value, one may use the pignistic probability, BetP, to pick a

singleton.

Now that we established the basic notions of DS-theory, it is time to establish the

basic notions of the IT-tree concept. The rest of this chapter will present the basics

if IT-trees.

28

2.2 IT-tree

The Itemset-tree or IT-tree is developed by Kubat et. al. [KHR+03a] in 2003

with the intention of expediting targeted queries in market basket type transactional

datasets. IT-tree is a compact and easily updatable representation of the transactional

dataset. Experiments in [KHR+03a] indicate that the targeted queries are answered

in a time that is roughly linear in the number of market baskets, N . Also, the

construction of the itemset tree has O(N) space and time requirements. We use this

data structure to speed up the proposed predictor.

As outlined in section 1.4 we formulate our problem as a selective rule generation

problem, where we examine the database by submitting specialized queries. Specifi-

cally, we want to search for rules having matching antecedents for a given test case.

An example taken from the department-store paradigm would illustrate it further.

Say a partially observed market basket contains bread, milk. We want to predict

all items that can be added to the market basket. Query of this kind seek for rule of

the form [bread, milk]⇒ i, [milk]⇒ i or [bread]⇒ i(where i is an item). Search for

all rules would waste computational resources.

2.2.1 Building itemset trees

Let D be the dataset and p be the number of distinct items in the dataset.

Each item is identified with an integer from [1, p], so that the items in an item-

set {I1, I2, . . . , Im} can be ordered according to their corresponding integer value —

Ii < Ij for i < j, where Ii and Ij are integers identifying ith and jth items, respec-

tively.

Let us first establish the relationships between nodes in the tree–ancestor, largest

common ancestor, and child; each represents an itemset.

29

Definition 1 (Ancestor, Largest common ancestor, Child) Let the symbols s, c

and l denote itemsets.

(1) s is an ancestor of c and write s v c, iff s = {I1, I2, . . . , Im}, c = {I1, I2, . . . , In},

andm ≤ n.

(2) l is the largest common ancestor of s and write l = s u c, iff l v s, l v c, and

there is no l′ such that l′ v s, l′ v c, and l v l′, l 6= l′.

(3) c is a child of s iff s v c and there is no l, different from s and c, such that

s v l v c.

Note that an ancestor of c is an uninterrupted sequence of the smallest items in c.

For instance, [1, 2] is an ancestor of [1, 2, 3, 4]. Itemsets [1, 2] and [2, 5] cannot have a

common ancestor because any ancestor of [1, 2] has to begin with item 1 that is not

contained in [2, 5]. This case is dealt with by having a root node whose itemset is

empty. By definition, an empty set is a (trivial) ancestor of any nonempty itemset.

Note that, if s is an ancestor of c, then s is also the largest common ancestor of s and

c.

Definition 2 (Itemset-Tree) An itemset tree, T , consists of a root and a (possibly

empty) set, {T1, . . . , Tk}, each element of which is an itemset tree. The root is a pair

[s, f(s)], where s is an itemset and f(s) is a frequency. If si denotes the itemset

associated with the root of the ith subtree, then s v si, s 6= si, must be satisfied for all

i.

An IT-tree is a partially ordered set of pairs, [itemset, f], where the f-value tells us

how many occurrences of the itemset the node represents. An algorithm that builds

the IT-tree in the course of a single pass through the database is also presented in

[KHR+03a]. The paper also proves some properties of the algorithm. The number

30

of nodes in the IT-tree is upper-bounded by twice the number of transactions in the

original database (experiments indicate that, in practical applications, the size of the

IT-tree rarely exceeds the size of the database). Moreover, each distinct transac-

tion database is represented by one and only one distinct IT-tree and the original

transaction can be reproduced from the IT-tree.

Example 1 (An IT-tree) Figure 2.1 shows an itemset tree created from the dataset

D={[1,5], [2,3], [1,2,3,4], [1,2,4], [2,3], [2,4]}.

Figure 2.1: Itemset-tree constructed from the database, D={[1,5], [2,3], [1,2,3,4],
[1,2,4], [2,3], [2,4]}.

2.2.2 Flagged IT-trees

In [LK06], Li, et al, made a useful modification to the algorithm. Note that some

of the itemsets in IT-tree (e.g., [1, 2, 4] in Fig. 2.1) are identical to at least one of

the transactions contained in the original database, whereas others (e.g., [1, 2]) were

created during the process of tree building where they came into being as common

ancestors of transactions from lower levels. [LK06] modified the original tree-building

algorithm so that it flags each node that is identical to at least one transaction. In

Fig. 2.2, the flags are indicated by black dots. We use this flagged tree as the base of

our rule generation algorithm.

31

Example 2 (A Flagged IT-tree) Consider the database D={[1,5], [2,3], [1,2,3,4],

[1,2,4], [2,3], [2,4]}. Fig. 2.2 shows the flagged IT-tree created for this dataset.

Figure 2.2: Flagged Itemset-tree constructed from the database, D={[1,5], [2,3],
[1,2,3,4], [1,2,4], [2,3], [2,4]}.

CHAPTER 3

Building the Predictor

As explained in the section 1.4, association rule mining is defined in the domain

of binary attributes I = {i1, . . . , in}, called items. Binary attributes themselves are

a special case of ‘categorical’ attributes. The domain of categorical attributes is not

limited to simply True and False values, but could be any arbitrary finite set of

values. An example of a categorical attribute is color whose domain, for instance,

may include the values brown, black, and white. To generate association rules in case

of categorical attributes, common practice is to consider 〈attribute, value〉 pair as an

item. For instance, {〈color, brown〉, 〈color, black〉, 〈color, white〉} are considered as

three items, each could be True or False for a given data instance.

In the prediction phase, if we are to predict the value of the attribute color,

we consider all the rules having any one of the above three items, {〈color, brown〉,

〈color, black〉, 〈color, white〉}, as the rule consequent. The final decision on the value

of the color attribute is reached via an evidence combination approach which treats

the each rule as a piece of evidence. The following example will further clarify this

approach.

Example 3 (A prediction example) Let T be a small training set (see table 3.1).

It is composed of five objects (persons) characterized by four attributes defined as

follows: Eyes ={Brown, Blue, Black}; Hair = {Dark, Blond}; Skin = {Black, Brown,

Fair}, Race={Asian, African, Indian, White}.
32

33

Table 3.1: An Illustrative Data set of five persons
Eyes Hair Skin Race

1 Blue Blond Fair White
2 Black Dark Fair Asian
3 Black Dark Black African
4 Brown Dark Brown Indian
5 Brown Dark Fair White

This dataset can be converted from the above table format to a transactional

format by considering each 〈attribute, value〉 pair as an item. Each item can be

identified with an integer as shown in Table 3.2. Finally, the dataset in table 3.1, is

converted to the transaction dataset shown in table 3.3.

Table 3.2: Integer notation for 〈attribute, value〉 pairs, considering each pair as an
item

Item–value pair Identifying Integer
(Eyes, Brown) 1
(Eyes, Blue) 2
(Eyes, Black) 3
(Hair,Dark) 4

(Hair, Blond) 5
(Skin, Black) 6

Item–value pair Identifying Integer
(Skin, Brown) 7

(Skin,Fair) 8
(Race, Asian) 9
(Race,African) 10
(Race,Indian) 11
(Race,White) 12

Table 3.3: The dataset in the table 3.1 as a transaction dataset using the integer
notation

Tx. # Item set

1 2,5,8,12
2 3,4,8,9
3 3,4,6,10
4 1,4,7,11
5 1,4,8,12

Given a test case: {(Eyes=Blue), (Hair=Blonde)}, we want to predict the race

and skin-complexion. We are now interested in rules having (Eyes=Blue) and/or

(Hair=Blonde) in the antecedent and race or skin-complexion in the consequent. In

34

other words, we want those rules having item(s) 2 and/or 5 in the antecedent and

one of the items from {6,7,8,9,10,11,12} in the consequent. To reach a decision on

the skin-complexion, for instance, we will apply evidence combination to those rules

having item 6, 7, or 8 as the consequent. Final decision of the predictor will be

presented as a ‘soft’ label in the form of a BoE, which shows the predictor’s belief on

each proposition 6, 7 or 8.

For instance, the output could be:(all values are illustrative)

m(6) = 0.01 ⇒ m(Skin = Black) = 0.01
m(7) = 0.14 ⇒ m(Skin = Brown) = 0.14
m(8) = 0.80 ⇒ m(Skin = Fair) = 0.80
m(Θ) = 0.05 ⇒ m(Θ) = 0.05

If a ‘hard’ decision is required we can pick the proposition having the highest

pignistic probability as the correct label. In the above case: (Skin=Fair).

Even though the attribute values in the above example are all “crisp”, it is worth

mentioning here that the DS-ARM predictor is capable of accommodating proba-

bilistic, possibilistic or ambiguous values. A detailed discussion is given in Chapter

5.

For the sake of easy understanding we will ignore the notion of attributes, values in

this chapter and only consider items which take only two values 1(True) or 0(False).

Under this formulation, our task is to predict the missing items in a partially observed

transaction.

Although we are not aware of any other study that applies to our task of “predict-

ing missing items in a shopping cart,” the Bayesian approach that has been around

since before World War II [NP28, Fis36] can be adopted to serve the purpose, as

explained below.

35

3.1 Bayesian Approach

The mathematically “clean” version is known to be computationally expensive in

domains where many independent variables are involved. Fortunately, this difficulty

can be side-stepped by the so-called Naive Bayes assumption that assumes that all

variables are mutually pairwise conditionally independent [Goo65]. Although this as-

sumption is rarely strictly satisfied, decades of machine learning research have shown

that, most of the time, the Naive Bayes assumption can be invoked nevertheless—

conditional interdependence of variables affects classification behavior of the resulting

formulas only marginally.

Suppose we want to establish whether the presence of item set s = {i(s)1 , . . . , i
(s)
k }

increases the chance that item ij /∈ s is also present. Bayes’ rule yields

P (ij|i(s)1 , . . . , i
(s)
k) =

P (i
(s)
1 , . . . , i

(s)
k |ij)P (ij)

P (i
(s)
1 , . . . , i

(s)
k)

. (3.1)

The item that yields the highest value for this probability is then selected. Since the

denominator is the same for any index k, it is enough if the classifier chooses the item

that leads to the highest value of the numerator.

With the Naive Bayes assumption, pairwise independence of i
(s)
1 , . . . , i

(s)
k condi-

tional to ij yields the following expression for the numerator of (3.1):

P (i
(s)
1 , . . . , i

(s)
k |ij) =

∏
j

P (i
(s)
j |ij). (3.2)

So, ij is chosen if it maximizes P (ij)
∏

j P (i
(s)
j |ij).

One practical problem with this formula is that its value is zero if P (i
(s)
` |ij) = 0 for

some ` = 1, k, a situation that will occur quite often, given the sparseness of the data

in association mining applications. This difficulty is easily rectified if we estimate the

conditional probabilities by the m-estimate (originally proposed for machine learning

36

applications by [CB91]) that makes it possible to bias the probabilities toward user-

set a priori values as follows. Let us constrain ourselves to a binary domain where a

set of trials has resulted either in ⊕ or 	. Let us denote by ℵ⊕ and ℵ	 the number

of occurrences of the respective outcomes, and let ℵall = ℵ⊕ + ℵ	. If, before the

trials, the user’s prior expectation of the probability of ⊕ was p⊕, after the trials, the

probability of ⊕ is estimated as

P⊕ =
ℵ⊕ + m p⊕
ℵall + m

. (3.3)

The parameter m quantifies the experimenter’s confidence in this estimate. Note

that, for ℵall = 0 (which implies ℵ⊕ = 0), (3.3) degenerates to the prior expectation,

p⊕. Conversely, the equation converges to relative frequency if ℵall, is so large that

the terms mp⊕ and m can be neglected. Generally speaking, for low values of m,

even small evidence will affect the prior estimate; the higher the value of m, the more

evidence is needed to overturn the prior estimate.

In the prediction context, we want to compare the probability estimates of the

presence/absence of one item based on another item. For m = 2, the m-estimate will

be calculated as

P (i
(s)
` |ij) =

count(i
(s)
` |ij) + 1

count(ij) + 2
. (3.4)

For a given ij, this formula is used to calculate the values P (i
(s)
` |ij) for all items in

the antecedent. This makes it possible to evaluate the probabilities in (3.2), which in

turn are used to calculate the posteriors in (3.1). The following rule is then used to

predict the “missing items”:

Finding s = {i(s)1 , . . . , i
(s)
k } in the shopping cart, predict all ij such that

P (ij|i(s)1 , . . . , i
(s)
k) > P (¬ij|i(s)1 , . . . , i

(s)
k).

37

Returning back to the notion of attributes and values, if ak is a categorical

attribute that can take any value from {yj| j = 1 . . . p}, we predict ak = yc if

P (ak = yc|i1, . . . , in) >= P (ak = yj|i1, . . . , in), ∀ j. Value of all such “unknown”

ak’ are to be predicted.

3.2 DS-ARM Predictor

Association rule mining in its original form finds all the rules existing in the

data base that satisfy some minimum support and minimum confidence constraints.

The target of discovery is not pre-determined. Many later works tried to integrate

classification and association rule mining. The objective was to build a classifier using

a special set of association rules, so-called class association rules. The difference in

classification rule mining is that there is one and only one pre-determined target,

the class label. Classification rule mining, most of the time, is applied to databases

in table format, where you have a set of attributes and a class label. Even though

missing values are allowed for attributes, they usually, take a value out of a finite set

of values.

Some previous work, including [HPS07] and [ZSP+04b], has shown encouraging

results by incorporation of DS theoretic notions with class association rules. However,

most of these methods are designed for datasets with limited number of attributes

(or datasets with small number of distinct items) and one class label. We propose a

novel approach to predict all missing items in a shopping cart. The algorithm uses

the strengths of IT-trees to speed up the rule generation in batch mode predictions.

It uses DS theoretic notions to combine the generated rules and present the prediction

decision. Figure 3.1 shows a basic flowchart of DS-ARM predictor.

38

����� ��������

	
�����
��������������

����������
������
�������

�
��
����������
��������� �!�"���

��#� ���
��� $��

�
���$��

�
�������#�����"
%� &�������
�		��"��� '$���($
#� &��������

 ��)�$
')
 ��)�#���)

*���#����

�
Figure 3.1: Flowchart of the predictor

3.2.1 Rule Generation

Let I = {I1, . . . , In} be the set of items in the dataset. Given a record with item

set s our objective is to find all rules of the form r
(a)
i ⇒ Ij, j = 1, p, where r

(a)
i ⊆ s

and Ij /∈ s, that pass minimum support and minimum confidence thresholds.

It should be noticed that the consequent is always a single unseen item for the given

shopping cart. Also, note that the prediction (consequent) could be 〈item = present〉

or 〈item = absent〉. Then, for each of the unseen item, the corresponding rule set

is selected and a DS theoretic approach is used to combine the rules. Prediction is

given as a mass structure, with focal elements being Ij = present and Ij = absent.

If no rule consequent in the generated ruleset contains a particular unseen item, no

prediction is made regarding that item (vacuous BoE).

39

Proposed Solution

The proposed algorithm takes an incoming itemset as the input and returns a

graph that illustrates the association rules that would be fired by the given incoming

itemset. The graph structure is used to properly store and efficiently retrieve the

large number of classification rules.

The graph consists of two lists: the antecedents list <(a) and the consequents list

<(c). Each node r
(a)
i in the antecedents list keeps its corresponding frequency count

f(r
(a)
i). As shown in Fig. 3.2, a line `i,j, between the two lists links an antecedent

r
(a)
i with a consequent Ij. The cardinality of the link, f(`i,j) represents the support

count of the rule r
(a)
i ⇒ Ij. The frequency counts denoted by fo(•) are used in the

building of the graph. If the incoming itemset is s and Ti represents a transaction

in the database, fo(r
(a)) records the number of times s ∩ Ti = r(a). fo(`i,j) records

the number of times where s ∩ Ti = r(a) and Ij ∈ Ti. All the frequency counts are

initialized to zero at the beginning of the algorithm and are updated as we scan

through the database.

We propose a novel rule generation algorithm to generate the matching set of

association rules hidden in the training set and that would be fired by the incoming

itemset. The required rule set can be generated by using algorithm 1, in combination

with algorithm 2 using only a single parse over the data set. Properties of the rule

set will be discussed later.

The basic idea of the Update Graph() algorithm is to update the frequency counts

of all the rules that already exist in the rule graph and of the form r
(a)
i ⇒ Ij where

r
(a)
i ⊆ r(a), for every new candidate rule r(a) ⇒ Ij where Ij ∈ {Ti \ r(a)}. If the new

rule does not exist in the rule graph, it has to be added to the graph and frequency

count has to be updated using all the rules, of the form r
(a)
i ⇒ Ij where r(a) ⊆ r

(a)
i ,

40

<(a) : antecedents <(c) : consequents

Figure 3.2: The Rule Graph, G. f(r
(a)
i)= frequency count of antecedent,

f(`i,j)=support count of rule r
(a)
i ⇒ Ij

Algorithm 1 Algorithm that processes the dataset D and returns the rule graph G
that predicts ‘missing’ items in a partially observed transaction s.

Let Ti denote a transaction in D
To invoke Rule mining use: G = Rule mining(s,D, {}).

1: Rule mining(s,D,G):
2: for all Ti ∈ D do
3: if r(a) ≡ s ∩ Ti 6= ∅ then
4: G← Update Graph(G, r(a), Ti, 1);
5: end if
6: end for
7: return G;

in the graph. A simplified version of the algorithm is given in Algorithm 2. A more

detailed and complete algorithm is given in algorithm 3. Note that this algorithm is

not intended to generate all the rules, but the matching set of rules that truly exist

in the training dataset that would build an effective classifier. We will elaborate on

this in a later example.

41

Algorithm 2 Simplified algorithm to update the rule graph.

Let G denote the current rule graph.
Let ci denote an itemset from a node and fo denote the number of appearances of
ci in the database.
Let r(a) = ci ∩ s where s is the incoming itemset.
To invoke Update Graph use: G = Update Graph(G, r(a), ci, fo).

1: Update Graph(G, r(a), ci, fo):

2: for all r
(a)
i in <(a) do

3: if r
(a)
i ⊆ r(a) then

4: update the frequency count of r
(a)
i , f(r

(a)
i)← f(r

(a)
i) + fo;

5: for all r
(a)
i ⇒ Ij where Ij ∈ (ci \ r(a)) do

6: update frequency count of rule r
(a)
i ⇒ Ij, f(`i,j)← f(`i,j) + fo;

7: end for
8: if r

(a)
i = r(a) then

9: update frequency count record, fo(r
(a)
i)← fo(r

(a)
i) + fo;

10: for all r
(a)
i ⇒ Ij where Ij ∈ (ci \ r(a)) do

11: update frequency count record of rule,fo(`i,j)← fo(`i,j) + fo;
12: end for
13: end if
14: else if r(a) ⊂ r

(a)
i then

15: update the frequency count of new rule antecedent f(r(a)) ← f(r(a)) +

fo(r
(a)
i);

16: for all r
(a)
i ⇒ Ij in G where Ij ∈ (ci \ r(a)) do

17: update the frequency count of new rule r(a) ⇒ Ij, (add fo(`i,j)) ;
18: end for
19: end if
20: end for
21: for all Ij ∈ (ci \ r(a)) do
22: if @(r(a) ⇒ Ij) ∈ G then
23: add the rule to the graph with updated frequency counts;
24: end if
25: end for
26: return G;

42

Algorithm 3 Detailed algorithm to update the rule graph.

Let G denote the current rule graph.
Let ci denote an itemset from a node and fo denote the number of appearances of ci in the
database.
Let r(a) = ci ∩ s where s is the incoming itemset.
To invoke Update Graph use: G = Update Graph(G, r(a), ci, fo).

1: Update Graph(G, r(a), ci, fo):
2: L ≡ [r(a), fo]; . L is a temporary list to hold frequency counts
3: for all Ij ∈ (ci \ r(a)) do
4: L← L ∪ [Ij , fo]; . initialize the list
5: end for
6: for all [r(a)

i , fo(r(a)
i), f(r(a)

i)] in <(a) do
7: if r(a)

i ⊂ r(a) then
8: f(r(a)

i)← f(r(a)
i) + fo;

9: for all Ij ∈ (ci \ r(a)) do
10: if ∃ a link `i,j from r

(a)
i in <(a) to Ij in <(c) then

11: f(`i,j)← f(`i,j) + fo;
12: end if
13: end for
14: else if r(a) ⊂ r(a)

i then
15: f (L)(r(a))← f (L)(r(a)) + fo(r(a)

i); . f (L)(r(a)) is the frequency count of r(a) in L

16: for all `i,j leading from r
(a)
i to Ij in <(c) do

17: f (L)(Ij)← f (L)(Ij) + fo(`i,j);
18: end for
19: end if
20: end for
21: if ∃ r(a)

i ∈ <(a) such that r(a)
i = r(a) then

22: f(r(a)
i)← f(r(a)

i) + fo;
23: fo(r(a)

i)← fo(r(a)
i) + fo;

24: for all Ij ∈ (ci \ r(a)) do
25: if Ij /∈ <(c) then add Ij to <(c);
26: end if
27: if @ a link `i,j from r

(a)
i to Ij in <(c) then

28: add link `i,j and set f(`i,j)← f (L)(Ij);
29: fo(`i,j)← fo;
30: else
31: set f(`i,j)← fo(`i,j) + f (L)(Ij);
32: fo(`i,j)← fo(`i,j) + fo;
33: end if
34: end for
35: else
36: add [r(a), fo, f

(L)(r(a))] to <(a);
37: for all Ij ∈ (ci \ r(a)) do
38: if Ij /∈ <(c) then
39: add Ij to <(c);
40: end if
41: add link `i,j from r(a) ∈ <(a) to Ij ∈ <(c);
42: set f(`i,j)← f (L)(Ij);
43: fo(`i,j)← fo;
44: end for
45: end if
46: return G;

43

3.2.2 Speeding-up the Computations by Itemset-Trees

To expedite the rule generation process in batch mode, we take the assistance

of ‘flagged itemset tree’ concept proposed in [LK06]. It has been shown that it is

much faster to scan the compact data structure, IT-tree, rather than scanning the

actual data set that resides in the disc. The rule generation algorithm proposed in

[KHR+03a] is modified for two reasons. Firstly, the algorithm proposed in [KHR+03a]

addresses a slightly different task. It generates all the rules of the form, s⇒ ` where

s and ` are itemsets and s ∩ ` = ∅. As explained in the beginning of this section,

we are interested in a slightly different set of rules. Secondly, our objective is not

to generate all the association rules, but to build a predictor using a set of effective

association rules.

Algorithm 4 does a depth-first search in the IT-tree to find nodes that possess

non-empty intersections with the incoming itemset s. Steps of the algorithm can be

summarized as below. Let R = [sR, f(sR)] denote the root, let ci denote the children

of R, and let s denote the incoming itemset. If the first item in ci is greater than

the last item in s, it is guaranteed that no node in the tree rooted at ci will contain

items in the incoming itemset s. If ci ∩ s = ∅ and last item in ci is greater than last

item in s, that also guarantees no nodes in the subsequent trees possess non-empty

interactions with s. However, if the first item of ci is less than the last item of s, the

subtree Ti with the root [ci, f(ci)] may contain one or more items in s. The algorithm

thus starts the search for rules in subtrees rooted at the children of ci. If ci ∩ s 6= ∅,

the intersection (say r(a)) is a candidate for a rule antecedent. However, if the node

[ci, f(ci)] is not flagged (i.e. itemset ci does not exist in the actual dataset), the

candidate antecedent loses the candidacy. Now, the nodes in the subtrees starting

from children of ci posses equal or larger intersections with s. The algorithm thus

44

continues the search for rules in subtrees rooted at the children of ci. If ci is flagged,

f(ci)−
∑
frequency of children gives the number of occurrences of ci in the dataset.

r(a) then becomes a rule antecedent and each item in ci \ r(a) becomes a consequent.

These new rules of the form r(a) ⇒ Ij where Ij ∈ (ci \ r(a)) are added to the rule

graph.

Algorithm 4 Algorithm that processes the itemset tree T and returns the rule graph
G that predicts unseen items in a user-specified itemset s.

Let R denote the root of T and let [ci, f(ci)] be R’s children.
Let Ti denote the subtree whose root is [ci, f(ci)].
To invoke Rule mining use: G = Rule mining(s, T, {}).

1: Rule mining(s,T,G):
2: for all ci such that first item(ci) ≤ last item(s) do
3: if s ∩ ci = ∅ and last item(ci) < last tem(s) then
4: G← Rule mining(s, Ti, G);
5: else if r(a) ≡ s ∩ ci 6= ∅ then
6: if ci is not flagged then
7: G← Rule mining(s, Ti, G);
8: else
9: if ci does not have children then fo ← f(ci);

10: else fo ← f(ci)−
∑
f(ci

′s children); . fo is the frequency of ci in
the database

11: end if
12: G← Update Graph(G, r(a), ci, fo);
13: G← Rule mining(s, Ti, G);
14: end if
15: end if
16: end for
17: return G;

Each non-empty intersection of s with a flagged node of the tree generates set

of association rules of the form r(a) ⇒ Ij where r(a) is the intersection of s with the

node, and Ij is an item in node s.t. Ii /∈ r(a). These rules are added to the rule graph

using Algorithm 2(or algorithm 3).

Example 4 (A Rule Generation Example) We consider the same dataset that

was considered in the previous example: D={[1,4], [2,5], [1,2,3,4,5], [1,2,4], [2,5],

45

[2,4]}. Assume the incoming itemset s = [2, 3]. Fig. 3.3 shows the step by step

building of the rule graph, according to the algorithm. The itemset s possesses non-

empty intersections with 4 flagged nodes, [1, 2, 3, 4, 5], [1, 2, 4], [2, 4], and [2, 5]. A set

of rules is added to the rule graph with each non-empty intersection.

Figure 3.3: Rule graph construction for the testing itemset [2,3] using IT-tree in
Fig. 2.1 (Testing itemset possesses non-empty intersections with only four nodes of
the tree). 3.3(d) shows the final rule graph, G.

The ruleset that resides in G (figure 3.3(d)) is given in Table 3.4. The rule [2, 3]⇒

1 suggests that, if the itemset [2, 3] is present in a shopping cart, item 1 is likely to

be added to the cart. Support of this rule is 1/6 and the confidence is 1.

Table 3.4: The ruleset that resides in rule graph G (figure 3.3(d))
Rule support confidence

[2, 3]⇒ 1 1/6 1
[2, 3]⇒ 4 1/6 1
[2, 3]⇒ 5 1/6 1
[2]⇒ 1 2/6 2/5
[2]⇒ 4 3/6 3/5
[2]⇒ 5 3/6 3/5

Note that the ruleset in Table 3.4 consists of only two distinct antecedents, [2]

and [2, 3]. Since no minimum support or confidence threshold is applied yet, one

may expect another ruleset with the antecedent [3]. However, our algorithm does

46

not generate rules having antecedent [3]. This is not unintentional. Note that no

transaction Ti in the dataset D provides an intersection Ti ∩ s ≡ [3], i.e., whenever

item 3 appears in a transaction one or more of other items in s, also, happen to

appear in Ti. So, item 3 alone does not provide us any additional evidence. Our rule

generation algorithm, thus, ignores such rules.

It is important to note here that one might be interested in rules that suggest the

absence of items, e.g., [2, 3] ⇒ 〈1 = absent〉, i.e., when items 2 and 3 are already

present in the cart, item 1 is unlikely to be added to the cart in the future. In such a

case, the IT-tree has to be constructed considering 〈item, value〉 pair as an item. For

instance, 〈1 = present〉 is one item and 〈1 = absent〉 is another item. The generated

ruleset will eventually be composed of rules suggesting both the presence and absence

of items. These rules could, then, be combined to reach a final decision.

Overlapping Rules

We noted that some rules have overlapping antecedents. For instance, a⇒ z and

a, b⇒ z are two overlapping rules (i.e., antecedent of the first rule is a subset of the

second rule). The process of updating the rule graph can be made faster if we can

keep track of subset/superset relationship of the rule antecedent itemsets.

To ease the process of identification of overlapping rules, we made a simple, yet

useful, change to the rule graph. We added a pointer to make each node in the rule

antecedent list Ra point to its super/sub set. Figure 3.4 shows the new rule graph.

47

<(a) : antecedents <(c) : consequents

Figure 3.4: The Modified Rule Graph, G. Dotted links make it easy to find super/sub

sets of items set r
(a)
i s

3.3 Employing Dempster-Shafer Theory

Suppose we want to establish whether the presence of items i1, . . . , in increases the

chance that also iy is present. Many rules containing i1, . . . , in in their antecedents

may differ in their consequents—some of these consequents contain iy, others do not.

The question is how to quantify and combine the evidence behind all these rules.

One way to handle this is to rely on the principles from the Dempster-Shafer theory

of evidence combination. Let us now describe our technique that we refer to by the

acronym DS-ARM predictor (Dempster-Shafer based Association Rule Mining).

Concrete Application to Our Task:

Basic Belief Assignment

In ARM approaches, a minimum support threshold is defined to select the high

support rules. Once the rules are selected, they are all treated the same irrespective

of how high or how low the support count is. Decisions are then made solely based

48

on the confidence value of the rule. A more intuitive approach would be to give a

higher weight to those rules with higher support. Following this intuition, we propose

a novel method to assign masses to the rules. Mass assignment is done considering

both the confidence and support of the rule. However, the support value should have

less impact on the mass.

In most practical situations, the training data set is highly skewed. For instance, in

a supermarket scenario, the percentage of shopping carts containing a specific item,

say canned fish, could be 5%. The remaining 95% of the shopping carts do not

contain this item. Hence, the rules suggesting the presence of canned fish would

have very low support while rules suggesting the absence of canned fish have a

higher support. Unless specifically compensated for, a classifier or a predictor built

from such a skewed training set typically tends to favor the ‘majority’ classes at the

expense of ‘minority’ classes. In many scenarios, especially high risk domains, such a

situation must be avoided at all costs because ignoring the minority class could have

devastating consequences.

To account for this data set skewness, we propose to adopt a modified support

value as follows:

Definition 3 (Partitioned-Support) The partitioned-support p supp of the rule,

r(a) ⇒ r(c) is the percentage of transactions that contain r(a) among those transactions

that contain r(c), i.e.,

p supp =
support(r(a) ∪ r(c))

support(r(c))
.

With Definition 3 in place, we take inspiration from the traditional Fα-measure [vR79]

and use the weighted harmonic mean of support and confidence to assign the following

BBA to the rule r(a) ⇒ ij.

49

m(r(c)|r(a)) =

β, for ij = present;

1− β, for ij = Θ;

0, otherwise,

(3.5)

where

β =
(1 + α2)× conf × p supp
α2 × conf + p supp

; α ∈ [0, 1]. (3.6)

Note that, for the task at hand, |ij| = 1 and hence, Θ = {(ij = present), (ij =

absent)}. Note that, as α decreases, the emphasis placed upon the partitioned-

support measure in m(•) decreases as well.

With this mass allocation, the effectiveness of a rule is essentially tied to both

its confidence and partitioned-support. Moreover, just as the Fα-measure enables

one to ‘trade’ the precision and recall measures of an algorithm, the mass allocation

above allows one to trade the effectiveness of the confidence and partitioned-support

of a rule. Indeed, the parameter α can be thought of as a way to quantify the

user’s willingness to trade an increment in confidence for an equal loss in partitioned-

support.

Discounting Factor

Following the work in [HPS07], the reliability of the evidence provided by each

contributing BoE is addressed by incorporating the following discounting factor:

d = [1 + Ent]−1 [1 + ln (n− |r(a)|)
]−1

, with

Ent = −
∑
ij⊆Θ

m(ij|r(a)) ln [m(ij|r(a))]. (3.7)

Recall that n denotes the number of items in the database. The term 1/(1 + Ent)

accounts for the uncertainty of the rule about its consequent. The term 1/(1+ ln [n−

50

|r(a)|]) accounts for the non-specificity in the rule antecedent. Note that d increases

as Ent decreases and length of rule antecedent increases. As dictated by (2.7), the

BBA then gets accordingly modified. The DRC is then used on the modified BoEs

to combine the evidence.

Example 5 (Workout a Prediction Example) Consider a supermarket dataset

having five distinct items {egg, bread, butter, milk, wheat bread}. The train-

ing data set has details of six historic transactions. Given a partially observed trans-

action with {bread, milk} our task is to predict rest of the items that would be added

to the cart.

The training data set is shown in table 3.5. It is worth mentioning here, that

the given data set is totally illustrative and may not reflect the actual behavior of a

supermarket dataset. Let’s use the integers from 1 – 5 to denote the presence of items

and 6 – 10 to denote absence of items. For instance, (egg = present) ≡ 1, (bread =

present) ≡ 2, (egg = absent) ≡ 6 etc. The converted dataset and the generated

IT-tree are shown in table 3.6 and figure 3.5 respectively. Frequency count of each

item is shown in table 3.7.

Table 3.5: The training dataset(illustrative)
Tx.# Item set

1 bread, butter
2 egg, wheat bread
3 egg, bread, butter, milk
4 egg, break, milk
5 bread, butter
6 bread, milk

The rule graph generated for the incoming itemset {2,4} is given in figure 3.6.

The rule set that resides in this graph is given in table 3.8.

51

Table 3.6: The dataset in the table 3.5 using integer notation
Tx.# Item set

1 2,3,6,9,10
2 1,5,7,8,9
3 1,2,3,4,10
4 1,2,4,8,10
5 2,3,6,9,10
6 2,4,6,8,10

Figure 3.5: The itemset tree for the dataset in table 3.6

In this example (table 3.8, mass assignment is done using 3 times less weight

for support compared to confidence (i.e., α = 0.33). The last two columns show the

computed BBA and d values of the rules. In the next step we eliminate the overlapping

rules. For instance, rules 2 and 3 both suggest ‘no egg’, and the antecedent of

the second rule is a subset of the first rule. However, rule 2 has lower confidence

compared to rule 3. To make this illustration and computations simple, we ignore

the less confident rule to make the rule set small and as independent as possible. If

two overlapping rules have same confidence, the rule that has the lower support is

dropped.

The rule set after pruning overlapping rules, is given in table 3.9. In order to reach

a decision, rules are combined using Dempsters rule of combination. For instance,

to predict if eggs are present or not, the first and second rules are combined. Using

52

Table 3.7: Frequency count for each item in data set in table 3.5
item 1 2 3 4 5 6 7 8 9 10

freq. count 3 5 3 3 5 3 1 3 3 5

Figure 3.6: The rule graph for the partially observer shopping cart {2,4} and training
dataset in table 3.6

pignistic probability, we can finally predict that only egg will be added to the cart (no

butter, no wheat bread). However, the belief of prediction:‘no wheat bread’ is high

(BetP (no wheatbread) = 0.71) compared to the other predictions (BetP (egg) =

BetP (no butter) = 0.52).

3.4 Space and Time Complexity

It is important to analyze the space and time complexity of the proposed frame-

work. Space complexity of the proposed framework is mainly governed by the space

complexity of the itemset tree. Additionally, it takes space to store the rule graph.

The “size” of an itemset tree is given by the number of nodes (including the root) and

by the number of layers (root being the first layer). Processing a single transaction

or market-basket will never give rise to more than two new nodes and, thus, cannot

increase the depth of the tree by more than one layer. Let us use T to denote the

itemset tree generated from a database of N distinct market baskets. The number of

nodes in T is upper bounded by 2N . The number of layers in T is upper bounded

53

Table 3.8: Rule Set that Resides in the Rule Graph G in Fig. 3.6

support count p m(•|ra)
rule ante. rule cons. conf. supp. supp proposition BBA d

1 [2, 4]⇒ 1 3 2 3 0.67 0.33 0.67 〈egg〉 0.67 0.29

2 [2, 4]⇒ 6 3 1 3 0.33 0.17 0.33 〈No egg〉 0.33 0.29

3 [2]⇒ 6 5 3 3 0.60 0.50 1.00 〈No egg〉 0.62 0.25

4 [2, 4]⇒ 3 3 1 3 0.33 0.17 0.33 〈butter〉 0.33 0.29

5 [2]⇒ 3 5 3 3 0.60 0.50 1.00 〈butter〉 0.62 0.25

6 [2, 4]⇒ 8 3 2 3 0.67 0.33 0.67 〈No butter〉 0.67 0.29

7 [2, 4]⇒ 10 3 3 5 1.00 0.50 0.60 〈No w.bread〉 0.94 0.39

8 [2]⇒ 10 5 5 5 1.00 0.83 1.00 〈No w.bread〉 1.00 0.42

Table 3.9: Rule Set after pruning the overlapping rules in table 3.8

m̂(•|ra) combined BBA M(•|ra)
rule prediction present absent Θ present absent Θ

1 [2, 4]⇒ 1 egg 0.20 0.00 0.80 0.18 0.14 0.67

2 [2]⇒ 6 0.00 0.16 0.84

3 [2]⇒ 3 butter 0.16 0.00 0.84 0.14 0.18 0.67

4 [2, 4]⇒ 8 0.00 0.20 0.80

5 [2]⇒ 10 w. bread 0.00 0.42 0.58 0.00 0.42 0.58

by N . Thus, the worst case space requirement of the resulting itemset tree is compa-

rable with the size of the original database and has O(N) space requirements. This

is acceptable for many real-world datasets of interest, since, with the advancements

in technology users have the sophistication of using larger memories. However, this

would still be a bottleneck for larger datasets.

Apriory based association rule mining techniques require repeated parses over

the dataset to count the frequent itemsets. If the number of distinct items in the

dataset is m, there are 2m frequent itemsets in worst case. The cost of frequent item

generation for the apriory algorithm is O(2m ×N). Then to generate the association

rules of the form X → Y ;X ∩ Y 6= ∅ for these frequent itemsets, one needs to check

54

supp(X ∪ Y) ≥ suppthreshold and supp(X ∪ Y)/supp(X) ≥ confthreshold for every

frequent itemset pair X and Y . Since, in worst case, there are (2m − 1)2m−1 of such

X, Y pairs, rule generation operation also takes considerable computational power.

DS-ARM significantly reduces these costs by relying on IT-trees; the whole database

is permanently organized in a data structure that makes it possible to obtain relevant

rules in time that does not grow faster than linearly in the number of transactions.

Time complexity analysis, thus, can be divided into two parts—the time taken to

build the itemset tree and time taken to generate the rule graph and to combine the

rules. It has been shown by [KHR+03a] that the IT-tree does not grow prohibitively

fast with size of the shopping carts. Also, the construction of the itemset tree has

O(N) space and time requirements. Maintenance of the IT-tree does not entail any

additional costs compared to the case when the shopping carts are stored in a con-

ventional transactional database. The only additional cost is the need to modify the

IT-tree after the arrival of a new set of data; however, [KHR+03a] shows that this

can be done very efficiently.

Once the IT-tree is generated only one scan of the IT-tree is required to generate

the ‘matching’ ruleset for a given incoming itemset. For every non-empty intersection

of the incoming itemset with an itemset in a ’flagged’ tree-node, one parse over the

rule graph is required to update the frequency counts. The maximum number of

flagged nodes the IT-tree can have is upper bounded by N . Thus, in the worst case it

requires N parses over the rule graph. The rule graph starts to grow from 0 and length

is upper bounded again by N (O(N) space complexity). Even though this results in

a worst case time complexity of O(N2) the average time complexity is much less in

real-world situations.

CHAPTER 4

Empirical Evaluation of DS-ARM on
“Crisp” Data

In our experiments, we relied on two sources of data. First, we followed the

common practice of experimenting with the synthetic data obtained from the IBM-

generator1. This gave us the chance to control critical data parameters and to explore

our programs under diverse circumstances. Moreover, relying on well-known software

available on the web, we made it easy for other scientists to replicate our experiments.

The generator employs various user-set parameters to create an initial set of fre-

quent itemsets whose sizes are obtained by a random sampling of the Poisson distribu-

tion. Then, transactions (“shopping carts”) are created in a manner that guarantees

that they contain these itemsets or their fractions. The lengths of the transactions

are established by a random number generator that follows the Poisson distribution.

For a more detailed description, see [AS94].

Table 4.1 summarizes the user-set parameters. In the data we worked with, we

varied the average transaction length and the average size of the “artificially added”

itemsets. The specific values of these parameters are indicated in the names of the

generated files. For instance, T10.I4 means that the average transaction contained

10 items, and that the artificially implanted itemsets contained 4 items on average.

1http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata.html

55

56

Table 4.1: IBM-Generator Parameters

Parameter Description

|D| Number of transactions

|T | Average size of the transactions

|I| Average size of the maximal potentially large itemsets

|L| Number of maximal potentially large itemsets

N Number of items

Apart from using the IBM generator, we experimented with two benchmark do-

mains from the UCI repository.2 which is popular in machine learning research.

These, too, are broadly known, and their characteristics are well understood by the

community. To be more specific, we used the congressional-vote domain and the

SPECT-Heart domain.

The congressional vote dataset has the form of a table where each row represents

one congressman or congresswoman, and each column represents one bill. The indi-

vidual fields contain “1” if the person voted in favor of the bill, “0” if he or she voted

against, and “?” otherwise. We numbered the bills sequentially as they appear in the

table (from left to right), and then converted the data by creating for each politician

a “shopping cart” that contains the numbers of those (and only those) bills that he

or she voted for. For instance, the shopping cart containing [1, 4, 8] indicates that

the politician has voted for bills represented by the first, fourth, and eighth column

in the table. In our experiments, we ignored the information about party affiliations

(the class label in the original data).

Our research questions can be formulated as follows: being told about a subset of

a politician’s voting history, can we tell (ignoring party affiliation) how he or she has

2http://archive.ics.uci.edu/ml/

57

voted on the other bills? How much does the correctness of these predictions depend

on the number of known voting decisions? How will alternative algorithms handle

this task?

To find out, we removed, in the shopping-cart version of the data, a certain per-

centage of items. For instance, the original cart containing [1, 3, 12, 25, 26] may now

contain only [3, 25, 26]. From this incomplete information, we induced the vote pre-

dictor and measured its accuracy against the known values of the votes. This means

that, in this particular cart, we would ideally want our program to tell us that the

politician has also voted for bills 1 and 12. The evaluation of such predictions of

course calls for appropriate performance criteria—these will be discussed in the next

section.

Apart from the congressional vote, we used another binary dataset, the SPECT

Heart domain, where 267 instances are characterized by 23 boolean attributes. Again,

we converted these data into the shopping-carts paradigm, following the same method-

ology as described above, seeking to predict items that have been hidden.

4.1 Performance Criteria

Literature on traditional classification tasks often measures a classifier’s perfor-

mance in terms of the percentage of correctly predicted classes, or, conversely, as

percentage of incorrect classifications. In our domains, though, this criterion is not

so appropriate. For one thing, we need to evaluate the prediction accuracy in a

situation where several “class attributes” have to be predicted at the same time.

For another, plain error-rate related criteria fail to characterize the predictor’s per-

formance in terms of the two essential types of error: “false negative,” where the

58

predictor incorrectly labels a positive example of the class as negative, and a “false

positive,” where the predictor incorrectly labels a negative example as positive. For

these reasons, we preferred to rely on the precision and recall criteria borrowed from

the information-retrieval literature.

To start with, suppose, for simplicity, that we are interested only in one specific

class. Let us denote by TP the number of true positives (correctly labeled positive

instances); by FN the number of false positives; by FP the number of false positives;

and by TN the number of true negatives (correctly labeled negative instances). These

quantities are used to define precision (Pr) and recall (Re) in the following way:

Pr =
TP

TP + FP
, Re =

TP

TP + FN

For the needs of combining these two in a single metric, [VCS04] proposed a

so-called F1-measure:

F1 =
2× Pr ×Re
Pr +Re

Thus armed, we can now proceed to the multi-class case where each example can

belong to two or more classes at the same time, and we thus need to average the

prediction performance over all classes. To this end, [GS04] proposed two alternative

approaches: 1) macro averaging, where the above metrics are computed for each item

and then averaged; and 2) micro averaging, where they are computed by summing over

all individual decisions. The requisite formulas are summarized by Table 4.2 where

Pri and Rei stand for the precision and recall as measured on item i. TPi, TNi, FPi,

and FNi denote the values of the four basic variables for the item i.

59

Table 4.2: Macro averaging and micro averaging of precision and recall. N denotes
the number of different classes (items).

Macro (M) Micro (µ)

Precision
∑N
i=1 Pri
N

∑N
i=1 TPi∑N

i=1 (TPi+FPi)

Recall
∑N
i=1Rei
N

∑N
i=1 TPi∑N

i=1 (TPi+FNi)

F1
2×PrM×ReM
PrM+ReM

2×Prµ×Reµ
Prµ+Reµ

4.2 Experiments

4.2.1 Experiment 1: Simple Synthetic Data

The first obvious question is how the performance of the technique DS-ARM,

proposed in Section 3.3, compares to that of Bayesian classifiers and to that of the

older techniques from [HPS07, LHM98]. For the sake of fairness, we have to respect

that the older techniques (with the exception of Bayes) were developed for domains

with small numbers of items and with only one “class attribute.” This is why we

generated, for the first round of experiments, synthetic domains with only 10 distinct

items. We used transaction lengths from 4 to 6 and equally sized artificial itemsets:

(T6.I6), (T5.I5), (T5.I4), and (T4.I4). Note that these domains are simple enough

for all the algorithms to be computationally affordable.

In each of these synthetic domains, we prepared the prediction task in the follow-

ing manner. For each item in each shopping cart, we generated a random number

(uniform distribution) from the interval [0, 1]. If the number was greater than 0.7, we

removed the item from the shopping cart. In other words, each item had 30% chance

of being removed. From these incomplete shopping carts, we induced association

rules to be used to “guess” which items we removed. We evaluated the prediction

performance by comparing this prediction with the known lists of removed items.

60

(a) Macro F-value.

(b) Macro recall.

(c) Macro precision.

Figure 4.1: Macro F-value, macro recall, and macro precision of missing-item predic-
tion in the synthetic domains.

61

The results are summarized in Figures 4.1(a), 4.1(b), and 4.1(c) in terms of macro

recall, precision, and F1 (for the micro versions, the results were similar). The reader

can see that, in terms of macro F1, our technique rather convincingly outperformed

the other techniques in each domain. A closer look at the bar charts reveals that its

performance edge is particularly well pronounced in precision, whereas recall is not

much better that of the other techniques. We regarded these results as encouraging

in view of the fact that we used domains that were intentionally made suitable for

the other techniques.

4.2.2 Experiment 2: UCI Benchmark Domains

In the next experiment, we asked whether DS-ARM would fare equally well in

more realistic domains. It should be noted that, here, the shopping carts contained

on average many more items than in the synthetic domains from Experiment 1; this

rendered the older two DST-based techniques computationally so inefficient that we

decided to compare DS-ARM only with the Bayesian classifier. We wanted to ascer-

tain whether the latter would “beat” DS-ARM at least along some criteria; also, we

wanted to know how the prediction performance depended on the amount of available

information (or, conversely, on how many of the items in the shopping carts have been

removed).

For the congressional vote domain, the results are summarized in the graphs in

Figures 4.2 and 4.3, and for the SPECT Heart domain, the results are summarized

Figures 4.4 and 4.5. The graphs show the average values of the three fold cross

validation. In both domains, whether along the macro metrics or the micro metrics,

we always observed the same behavior. First, DS-ARM outperforms the Bayesian

approach along the more general F1 metric. Second, DS-ARM has almost perfect

62

Figure 4.2: “Macro” performance in the congressional-vote domain.

63

Figure 4.3: “Micro” performance in the congressional-vote domain.

64

Figure 4.4: “Macro” performance in the SPECT Heart domain.

65

Figure 4.5: “Micro” performance in the SPECT Heart domain.

66

recall. This means, for instance, that if a politician voted for a certain bill, the

system will almost always correctly predict this vote based on the available voting

record. Third, the Bayesian approach has a slightly better precision—which means,

for instance, that when the system says a politician voted for a bill, the Bayesian

approach is somewhat less frequently mistaken. Fourth, the prediction performance

dropped only very slightly even when as many as 50% of the items in the shopping

carts were removed. Fifth, the behavior was about the same whether the macro

or micro criteria were used (this was perhaps due to the relative balance in the

representation of 1s and 0s in these two domains).

4.2.3 Experiment 3: ROC Curves

In previous experiments, we chose a “cutpoint” above which we considered the

item to be present and below which we considered the item absent. The position of

the cutpoint will determine the number of true positive, true negatives, false positives

and false negatives. We may wish to use different cutpoints for different situations if

we wish to minimize one of the erroneous types of test results.

Receiver operating characteristic (ROC) curves were initially developed in the

1950s for signal detection theory to analyze noisy signals. ROC curves characterize

the trade-off between positive hits and false alarms. ROC curves plot true positive rate

(y-axis) against false positive rate (x-axis). Performance of the predictor/classifier is

represented as a point on the ROC curve. Changing the threshold or the cutpoint

changes the location of the point.

True positive rate is defined by TP/(TP + FN) and the false positive rate by

FP/(FP + TN). A diagonal line in the ROC curve indicates random guessing. The

ROC curve of a good predictor should be well above the diagonal line. In an ideal

case, the area under the curve is equal to 1.

67

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

DS−ARM
Bayes

(a) 5% items hidden.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

DS−ARM
Bayes

(b) 15% items hidden.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

DS−ARM
Bayes

(c) 30% items hidden.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Negative Rate

Tr
ue

 P
os

iti
ve

 R
at

e

DS−ARM
Bayes

(d) 45% items hidden.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

DS−ARM
Bayes

(e) 60% items hidden.

Figure 4.6: ROC curves of DS-ARM and Bayes predictors on congressional voting
dataset

68

Figure 4.6 shows sample ROC curves for the DS-ARM and Bayes predictors on

the congressional voting datasets with different percentages of hidden items. Plots

are done for only one randomly selected cross validation dataset. The DS-ARM ROC

curve lies above the Bayes curve in most cases.

4.2.4 Experiment 4: DS-ARM Predictor for Classification

The predictor can easily be used for classification tasks. In that case, the item

to predict is the class label. We used the SPECT Heart Data Set from the UCI

data repository. The dataset describes diagnosing of cardiac Single Proton Emission

Computed Tomography (SPECT) images. Each of the patients is classified into two

categories: normal and abnormal. The data set has 267 instances that are described

by 23 binary attributes. It is already divided into training and testing. The training

dataset has 80 instances, out of which 40 instances are categorized as abnormal and 40

are normal. The testing dataset has 187 instances out of which 172 instances are from

class 1 and 15 from class 0. Authors in [KCT+01] have reported that their CLIP3

and CLIP4 machine learning algorithms have achieved 84.0% and 86.1% accuracy,

respectively. Table 4.3 shows the comparison of results. We were unable to run

classifiers proposed in [HPS07] and [ZSP+04a] since they were unable to handle the

number of attributes. Our predictor was able to make 170 hard-predictions and 159

of those predictions were correct. The rest of the 17 testing instances were classified

based on the pignistic probability. For the results shown in the table we computed

the pignistic probability of each class, and the testing instance is assigned to the

class that has the higher pignistic probability. Experiment results indicate that the

DS-ARM predictor can comfortably outperform the other classifiers.

69

Table 4.3: Classification Accuracy on SPECT Dataset

CLIP3 CLIP4 Bayes Proposed DS-ARM

Accuracy 84.0% 86.1% 74.9% 89.8%

4.2.5 Experiment 5: Computational Costs on Larger Data

In domains of more realistic size, and more realistic numbers of distinct items, ear-

lier techniques are too expensive due to the costs associated with the need to generate

all association rules with the given antecedents. DS-ARM significantly reduces these

costs by relying on the recently proposed technique of IT-trees; the whole database is

permanently organized in a data structure that makes it possible to obtain relevant

rules in time that do not grow faster than linearly in the number of transactions,

and has been shown by [KHR+03a] not to grow prohibitively fast with size of the

shopping carts. The maintenance of the IT-tree does not entail any additional costs

compared to the case when the shopping carts are stored in a conventional transac-

tional database—the only additional cost is the need to modify the IT-tree after the

arrival of a new set of data. However, [KHR+03a] shows that this can be done very

efficiently and—importantly—off-line.

Our next experiment investigates the computational costs of DS-ARM on a few

synthetic datasets with the same parameter settings as in [AS94]. We considered

|D| = 10, 000 shopping carts, N = 100 distinct items, instructing the data generator

that the number of frequent itemsets should be about |L| = 2, 000. We generated

three datasets differing in the average size of the shopping cart and in the average

length of the frequent itemsets as summarized by Table 4.4.

The earlier algorithms are all very sensitive to the value of the user-set minimum

support—as its value decreases, the number of frequent itemsets from which the

classification rules are obtained grows very fast; this adds to the computations needed

70

Table 4.4: Parameter Settings

Dataset T5.I2 T10.I2 T10.I4

|T | 5 10 10

|I| 2 2 4

to select the matching rules and to combine them. Figure 4.7 illustrates, for three

different synthetic domains, the situation in the case of DS-ARM. Since the same IT-

tree is always used, it is fair to ignore the costs of its building, particularly so because

it can be built off-line. The vertical axis shows the time needed to complete all 1,000

incomplete shopping carts in the case where 20% of the shopping-cart contents were

hidden. The measured time includes the costs of finding all relevant rules for the given

incomplete cart, and of combining them when making the final decision about which

items to predict. The time is plotted against the varying values of the minimum

support. The reader can see that, expectedly, the computation time significantly

drops with growing minimum-support threshold, which implies the obvious trade-off

between completeness and computational demands.

Figure 4.8 then shows how DS-ARM scales up as the average transaction length is

increased. For this experiment, the number of distinct items was 100, and the number

of shopping carts in the dataset was 1,000. When generating the data, we used the

following parameter settings: T5.I2, T10.I2, T15.I2, and T20.I2. The costs grow very

rapidly with transaction lengths. This is to be attributed to the fact that increasing

size of shopping carts means that only a small portion of all shopping carts will have

empty intersections; the number of generated rules then grows exponentially. Still,

we deem the costs affordable in view of the fact that many real-world applications

rarely have more than a few dozen items in each shopping cart.

71

Figure 4.7: Execution time vs. minimum support: Even though the rule generation
algorithm is not sensitive to minimum support threshold, rule combination costs
reduce with increasing minimum support due to reduction in number of rules

72

Figure 4.8: Average time per prediction vs. average transaction length

4.2.6 Experiment 6: Impact of the Number of Distinct Items

Finally, we wanted to know how DS-ARM would react to the growing number

of distinct items. This was the task of the next round of experiments. Here, we

fixed the number of shopping carts at 10,000, and generated synthetic data with the

following parameter settings: T5.I2, T10.I4, and T20.I6. For the relatively low (and,

hence, expensive) minimum support of 1%, and for varying the number of distinct

items from 100 to 1,000, we obtained the results shown in Figure 4.9. The curves

indicate that, as the number of items increases, DS-ARM computational costs grow

exponentially. This tells us that, although this system can handle more “difficult”

domains than the older approaches, much more work remains to be done.

73

Figure 4.9: Average time per prediction vs. the number of items in three synthetic
domains.

4.2.7 Experiment 7: Comparison of Computational Costs

with Bayes Method

So far, we were testing the DS-ARM on ‘crisp’ datasets. We expected DS-ARM

results to be at least comparable with other existing methods on ‘crisp’ datasets. Re-

sults were more than promising. However, the main objective of developing DS-ARM

was to come-up with a knowledge discovery framework that is capable of effectively ac-

commodating and accounting for imperfections in data. The DS-theoretic framework

that we used to model the data imperfections, however, resulted in higher compu-

tational costs. The capability of handling data imperfections is, thus, accomplished

at the cost of computational burden. To complete this study, we felt the need to

compare the computational costs of DS-ARM with the Bayes method. Here, we fixed

the number of shopping carts to 10,000, and generated synthetic data with parameter

settings for average transaction length 5 and the average length of maximal poten-

tially large itemsets 4 (T5.I4). The number of distinct items was varied from 100 to

74

Table 4.5: Comparison of computation time between Bayes and DS-ARM: Average
time take per prediction (values are given in seconds)

number of distinct items
Predictor 100 250 500 750 1000

Bayes 0.02 0.06 0.16 0.22 0.30
DS-ARM 1.01 4.21 19.20 38.01 59.61

1000. We employed both Bayes and DS-ARM to make 1000 predictions. A relatively

low minimum support of 1%, was used for DS-ARM. The average time to make a

prediction was computed and the obtained results are shown in Table 4.5 and Fig-

ure 4.10. The computation time taken by both predictors rapidly increases with the

number of distinct items. However, the time taken by Bayes predictor is much less

than the DS-ARM.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 200 400 600 800 1000 1200

Ti
m

e
pe

r p
re

di
ct

io
n

(s
)

Number of items

Figure 4.10: Average time per prediction of Bayes predictor vs. the number of items
dataset.

CHAPTER 5

Representation of Imperfect Data

So far we have been working with “crisp” datasets: the observed data vales are

considered as hundred percent reliable. However, the prime objective of developing

DS-ARM framework is to work with imperfect data sets in which the probabilistic

approaches fail to yield effective results.

The probabilistic approach for modeling data imperfections does not have pro-

visions to address issues like (i) reliability in data where the observed values are

associated with uncertainty factors, e.g., value of the variable X is x1 with a reliabil-

ity of 0.7; and (ii) ambiguity where a single value cannot be discerned for a particular

variable but only a composite value can be allocated, e.g., the value of X could be

one of {x1, x2} with a certainty of 0.7 and no other information is available to discern

between the two values. Probabilistic approaches need to make various assumptions

in such instances to match the data to the probability model. For example, in (i), 0.3

is distributed equally or according to some distribution among other variables; and

in (ii), 0.7 is divided equally (assuming equi-probability) between x1 and x2.

In this chapter, we discuss how we use DS evidence theory to model such situations

giving specific examples from a real-world medical dataset.

75

76

5.1 Attribute Value Ambiguities

Suppose we have a database of customer ratings of a line of products. In most

practical situations users are allowed to pick, say, one out of five rating values. How-

ever, there are certain situations where you simply cannot pick a single value. It may

be due to lack of evidence or other inevitable uncertainties associated with the rating

process. Such difficulties are so common in medical applications such as rating drug

responses, or severity of a disease. If the severity is quantified, say, by a value from

Θ = {Critical,Medium,Normal}, when assigning the value, a physician relies on

his/her experience and/or the experience of colleagues. Such ratings are inevitably

ambiguous and not easily expressed in terms of probabilities. For instance, it would

be mistaken to assume that the statement, “the symptom is Critical with a 70%

confidence” implies a 30% confidence in the complement of Critical.

A Specific Problem: Rating HAART Regime Responses

Highly active antiretroviral therapy (HAART) is used for the treatment of HIV

patients. HAART will not eradicate HIV, and the current goal of therapy is to inhibit

viral replication over a long-term period so that immune responses to most common

pathogens are restored. HAART has dramatically improved the prognosis of patients

with HIV. The initial virological response to HAART, by reducing viral load to below

the limit of detection, is essential for reducing the risk of drug resistance, which in

the longer term may lead to a deterioration in immune function and an increased

risk of clinical disease progression. There are a number of problems associated with

HAART, including the development of drug resistance, the difficulty of maintaining

long-term adherence, and drug-related toxicities, all of which may lead to virological

failure, which in turn leads to immunological failure and clinical progression.

77

In general, patients who start HAART have a rapid decrease in HIV viraemia to

undetectable levels within months of starting HAART and a gradual increase in CD4

cell count to levels approaching those seen among uninfected patients. There are

several factors commonly reported to be associated with initial virological response

to HAART. One of the most important factors related to virological response to

HAART is prior treatment; treatment-experienced patients have a poorer response

to HAART and are less likely to achieve a viral load of below the limit of detection.

Treatment-experienced patients may have accumulated drug resistance, which may

result in a poorer virological response. Adherence also plays a key role in virological

response. Results from both clinical trials and observational studies report an increase

in virological response amongst patients who are more adherent, although it is often

difficult to capture accurate data on adherence. Failure to adhere to HAART results

in low drug levels, which can rapidly lead to the selection of virus with decreased

susceptibility. In addition, as different antiretrovirals within the same drug-class

are cross-resistant, the number of potential regimens rapidly decreases for the non-

adherent patient.

It takes longer for patients with a high viral load when starting HAART to reduce

their viral load to below the limit of detection; some studies also suggest that patients

with a higher viral load when starting HAART are less likely to respond with a viral

load below the limit of detection. Thus, one log10 drop of the viral load count is

considered an excellent response in such cases. Assessing the reasons for a lack of early

response to HAART and addressing problems probably by change in treatment may

improve the clinical outcome. The physician, thus, has to switch the HAART regimen

and pick a proper new regimen to treat the patient. In doing so, the physician assess

the responsiveness of the patient for earlier treatments. Previous treatments have to

78

be deeply analyzed since some of the antiretrovirals are cross-resistant. Under these

circumstances, a decision support system advising the physician of what HAART

regimens might work on this patient would help the physician to make a decision.

Assessing the responsiveness of a HAART regimen can be done by looking at the

viral load or CD4 count of the patient. Figure 5.1 shows arbitrary viral load traces

for three patients. The x-axis shows the number of weeks after the start of HAART

regimen and the y-axis shows the viral load/count. By looking at the viral load trace

an expert may be able to give a rating to the virological response.

Patient 1

Patient 2

Patient 3 75

200

400

100,000

16 24 48 60 Weeks

Viral Load

Figure 5.1: Arbitrary viral load traces

Rating the HAART Responsiveness and Differences in Opinion

Initial virological response, the tail of the viral load trace and how fast the viral

count become undetectable are the main factors to consider in assigning the rating.

Different experts have a different opinion on the relative importance of each of these

factors.

We defined three experts to assign ratings to the virological response. Each indi-

vidual expert assigns a rating based on only one of the above three factors. Rating

values are drawn from the set {Excellent,Good, Fair, Poor}.

79

• Expert 1 (profile expert): Analyze the viral load variation within 60 weeks of

HAART start date.

• Expert 2 (initial gradient): Assign a rating based on the gradient of viral load

drop within the first 16 weeks of treatment.

• Expert 3 (tail of viral load curve): Rating is assigned based on the final viral

load level at the end of 60 weeks of treatment.

The expert one, who analyzes the whole viral load profile, makes the decision

based on the viral load profiles shown in the Figure 5.2.

75

200

400

100,000

16 24 48 60 Weeks

Viral Load

Excellent

Good

Fair

Poor

Expert1: Good?

Figure 5.2: Viral load variation profiles

Lack of Evidence and Rating Assignment

The viral load of the patient is taken from the available lab test results. Even

though HIV patients often check their viral count, it is quite common to find long

periods where no lab tests are done. When the viral counts are not available it

80

becomes difficult to assess the virological response. Thus, “crisp” ratings are not

expected from the experts. Whenever there is lack of evidence or if the available

evidence does not support a specific rating the expert may give a rating as a BBA on

the frame of discernment. Figure 5.3, shows examples for lack of evidence. The red

crosses indicate the observed vial load counts.

Each of the three expert thus assign ratings for HAART regimen based on the

available information regarding the virological response. These individual ratings

may be combined to arrive at a final rating for the HAART regimen.

Given a patient with the ratings for his/her previous HAART regimen treatments,

our task is to suggest what might be the rating for a new HAART regimen. For

better understanding, let us reformulate the problem in more familiar domain–‘movie

ratings’. Companies such as NetFlix let you rate the movies you watched. You are

allowed to pick a one value out of five, five being the best and 1 being the worst.

These ratings are then used to suggest/recommend new movies to you. The principle

behind this is that if many other users with a ‘taste’ similar to your taste have given

a higher rating to, say, ‘sound of music’, then it is possible that you also might like

that movie. The difference in our HAART regimen rating is that the ratings are

not ‘crisp’–they contain many ambiguities. Thus, we need an efficient and effective

framework that is capable of accommodating and propagating those uncertainties to

the decision level without making any unwarranted assumptions.

Recent work has studied this issue in the framework of classifier induction: for

class-label ambiguities [SZP+08] as well as for attribute-value imperfections [HPS07].

But the problem studied here is more general. Whereas classification usually seeks to

predict a single preselected class attribute, we are concerned with the case where any

attribute can be the “class label.” We want to predict all unknown items based on

81

75

200

400

100,000

16 24 48 60 Weeks

Viral Load

Excellent

Good

Fair

Poor X
X

X

X
X

X

m(Good)=0.xx
m(Theta) = 1- 0.xx

(a) Lack of evidence is accounted for by assigning a
mass to the complete ambiguity Θ

75

200

400

100,000

16 24 48 60 Weeks

Viral Load

Excellent

Good

Fair

Poor X

X

X

X
X X

m(Excellent, Good)=0.xx
m(Theta) = 1- 0.xx

(b) The rating could be ‘Excellent’ or ’Good’ de-
pending on the viral load counts in the ‘un-
observed’ period. Belief is assigned to the compos-
ite proposition{Excellent,Good}. Uncertainty is cap-
tured by assigning a mass to Θ.

Figure 5.3: Rating assignment in the face of lack of information

82

the partial knowledge of the presence of other items (note that classification is only

a special case of this task). A collaborative-filtering-based approach to this task has

been recently proposed by [Wic08], but to use association mining to this end is new.

We propose a novel technique, DS-ARM—Dempster-Shafer based Association Rule

Mining and report experiments illustrating its behavior.

5.2 Formal Problem Statement

We use pj, j = 1, Np, to denote products (or attributes) in the dataset. Let

Θ = {θ1, . . . , θK} be the set of mutually exclusive and exhaustive ratings. Rating

values that can be assigned to a product are thus drawn from the power set 2Θ of Θ

and r`, ` = 1, Nr, where Nr = |2Θ|, is used to denote user assigned ratings. We refer

to each pair 〈product, rating〉 or 〈attribute, value〉 as an item and the item vector of

a single user as a transaction. More formally, let I = {ij`|j = 1, Np, ` = 1, Nr} be a

set of distinct items where ij` = 〈pj, r`〉. Let a database consist of N transactions,

T1, . . . , TN , such that Tk ⊆ I, ∀k. An itemset, X, is a group of items, i.e., X ⊆ I.

The support of itemset X is the number, or the percentage, of transactions that sub-

sume X. An itemset that satisfies a user-specified minimum support value is called

a frequent itemset or a high support itemset.

Let us assume that an association mining program has already discovered all high

support itemsets. For each such itemset, X, any pair of subsets, r(a) and r(c), such

that r(a)∪r(c) = X and r(a)∩r(c) = ∅, we can define an association rule: r : r(a) ⇒ r(c);

r(a) is the rule’s antecedent and r(c) is the consequent. The rule reads: if all items

from r(a) are present in a transaction, then all items from r(c) are also present in the

83

same transaction. The rule does not have to be absolutely reliable. The probabilistic

confidence in the rule r(a) ⇒ r(c) can be defined with the help of the support (relative

frequency) of the antecedent and consequent as the percentage of transactions that

contain r(c) among those transactions that contain r(a):

conf = support (r(a) ∪ r(c))/support (r(a)). (5.1)

The number of rules implied by X grows exponentially in the number of items; it

is thus practical to consider only high-confidence rules derived from high-support

itemsets.

Given an itemset s in a transaction, we want to predict the remaining items of

this transaction. The association rules we generate for this purpose must satisfy the

following: (1) The rule antecedents should be sufficiently similar to s. (2) The rule

consequent is limited to any single item 〈pj, •〉 /∈ s.

In summary: Given the itemset s ⊆ I, find the matching rules of the form r(a) ⇒

〈pj, •〉, such that r(a) is “close” (we will formalize this later) to s and 〈pj, •〉 /∈ s,

that exceed the user-set minimum support, θs, and minimum confidence, θc. Then

find a method to combine rules with mutually contradicting consequents to predict

unknown items. In this way, we are ultimately predicting the 〈product, rating〉 values

of unrated products.

Handling Imperfections

The FoD of rating of product pj, is taken to be finite and is denoted by Θpref . For

instance, in a “five-star” rating system Θpref = {1, 2, 3, 4, 5};. The number of possible

singleton values a product rating may assume is |Θpref | and r` ∈ 2Θpref . The “intra-

attribute BBA” or the BBA of rating of product pj is a BBA mj : 2Θpref 7→ [0, 1]

defined on the FoD Θpref ; {Θpref ; Fj;mj} (intra-BoE) [HPS07]. Note that, Fj = ∅

84

denotes that the product pj is “not rated”. We assume that a 〈product, rating〉

vector whose ratings are all “not rated” is non-existent (i.e., in our context, each user

has rated at least one product).

The intra-attribute BBA captures the uncertainty among the ratings each prod-

uct may take. An intra-BBA allows several types of common data imperfections to

be conveniently modeled. For example, for Θpref = {θ1, θ2, θ3}, Table 5.1 shows the

types of data imperfections that the intra-BBAmj(•) can capture. These DS theoretic

notions allow one to represent a wide variety of data imperfections with ease. For ex-

Table 5.1: Types Of Imperfections That Can Be Captured By An Intra-BBA

Type of imperfection
Intra-BBA

Proposition mpj(•)
Hard (perfect) θ2 1.0

Probabilistic
θ1 0.2
θ2 0.3

(focal elements are singletons) θ3 0.5

Possibilistic
θ1 0.7

(θ1, θ3) 0.2
Θpref 0.1

Ambiguous
(θ1, θ2) 1.0

(Unable to discern)
Missing/Unknown Θpref 1.0

Belief theoretic
∑

A⊆Θpref
mpj(A) = 1.0

ample, in our HAART therapy scenario, the BBAs {m(Good);m(Θpref)} = {0.7; 0.3}

and m(Excellent;Good;Fair) = 1.0 would elegantly capture the ratings “Good with

a 70% level of confidence” and “definitely not Poor but more evidence is needed to

discern further,” respectively; an unrated item can be captured via the vacuous BBA

m(Θpref) = 1.0.

85

The “inter-attribute BBA” can capture the interrelationships among different at-

tributes [HPS07]. Clearly, the inter-FoD ΘT of each attribute vector T is the cross-

product of the intra-FoD of each attribute. The inter-BBA of a given record is referred

to as Data Record BBA (DR-BBA).

Table 5.2 shows a toy domain with four distinct products and the ratings (some

ambiguous, others “crisp”) given by two users. An empty field indicates the user has

not rated the product. For instance, the user u1 has given a rating of 4 for the product

p1 and for the product p2, u1 has given a possibilistic rating. The product p4 has not

been rated by u1. DR-BBAs generated from Table 5.2 are shown in Table 5.3. The

user rating vector u1 is converted into four data-records in the cross-product space

(that grows exponentially in the number of ambiguous ratings). So, the proposed

method becomes expensive in highly ambiguous domains. Our toy domain can be

seen as a transaction database where each 〈product, rating〉 represents an item and

each row represents a transaction. This database is then used for frequent-itemset

detection and for association rule generation.

Table 5.2: Intra-BBAs of Two Data Records

product p1 p2 p3 p4

user F1 m1 F2 m2 F3 m3 F4 m4

u1 4 1.0 4 0.8 3 0.6
4,5 0.2 3,4 0.4

u2 1 1.0 5 1.0 3 0.8
2,3 0.2

5.3 Making Predictions

Given a user’s ratings with ambiguities and asked to predict unrated products,

the first step is to get the cross-product of intra-BBAs and find the DR-BBAs of the

given rating vector. For instance, if the given user is u2 (Table 5.2), and we are asked

86

Table 5.3: DR-BBAs of the Data Records in Table 5.2

Data Rec. DR-BBA Itemset

u
(1)
1 0.48 〈p1, 4〉, 〈p2, 4〉, 〈p3, 3〉
u

(2)
1 0.32 〈p1, 4〉, 〈p2, 4〉, 〈p3, (3, 4)〉
u

(3)
1 0.12 〈p1, 4〉, 〈p2, (4, 5)〉, 〈p3, 3〉
u

(4)
1 0.08 〈p1, 4〉, 〈p2, (4, 5)〉, 〈p3, (3, 4)〉
u

(1)
2 0.80 〈p1, 1〉, 〈p2, 5〉, 〈p4, 3〉
u

(2)
2 0.20 〈p1, 1〉, 〈p2, 5〉, 〈p4, (2, 3)〉

to predict the rating for product p3, we get two “data records” u
(1)
2 , u

(2)
2 (Table 5.3).

The matching rule set is generated for each of the records, and the prediction is

made by the combination of the rules. Each prediction is discounted based on the

corresponding DR-BBA; the discounted BBAs are then combined in making the final

prediction.

For a given itemset s ⊆ I, we want to find all rules of the form r(a) ⇒ ij`, where r(a)

“matches” s and 〈pj, •〉 /∈ s, that exceed minimum support and minimum confidence.

Note that the consequent ij` is a single item, i.e., 〈pj, r`〉. For each unrated product

pj, the corresponding ruleset—all the matching rules having a consequent of the

form 〈pj, r`〉; r` ⊆ 2Θpref—is selected and a DS theoretic approach is used to combine

the rules. This prediction is given as a DS theoretic mass structure over the set of

singletons or the frame of discernment. If no rule consequent in the generated ruleset

has 〈pj, •〉, no prediction is made for pj.

5.3.1 Distance Metrics

We define a rule r(a) ⇒ ij` and given itemset s is “matching” iff (a) ∀〈pj, •〉 ∈

r(a) → 〈pj, •〉 ∈ s, and (b) ∀〈pj, r(r(a))
j 〉 ∈ r(a) and 〈pj, r(s)

j 〉 ∈ s: dj ≡ |r
(r(a))
j −r

(s)
j | ≤ dt;

where dt is a user-set distance threshold. r
(r(a))
j and r

(s)
j are the ratings given for the

87

product pj in the rule antecedent r(a) and given itemset s respectively. If the rating

rj is not a singleton we take the mean value to calculate the distance.

The distance between a matching rule antecedent and incoming itemset s is de-

noted by ds,r(a) ; where ds,r(a) =
∑

j dj/|r(a)|.

5.4 Performance Criteria for “Soft” Predictions

When the user preference ratings are soft, we must determine how well the pre-

dicted BoE’s (γ̂j) approximate the ground truths (γj). BetPγj denotes the pignistic

probabilities drawn from the BoE γj. Taking inspiration from [JGB01], we evaluate

the soft result via two metrics DS PE1 and DS PE2. In short, DS PE1 measures

the error or distance between two mass distributions, and DE PE2 measures the

distance between two probability distributions. Hence, in order to compute DS PE2

we convert the mass distribution to a probability distribution via pignistic conversion.

The two metrics DS PE1 and DS PE2 are defined below.

DS PE1:

DS PE1 =

Np∑
j=1

JGB(γj, γ̂j)÷Np (5.2)

where JGB(γj, γ̂j) =
√

0.5(mγj −mγ̂j)D(mγj −mγ̂j)
T . Here, mγj ,mγ̂j are each

a size 2Θpref vectors containing the masses allocated to each subset of Θpref by

γj and γ̂j, respectively; D = {dk,`} is a size 2Θpref × 2Θpref matrix with dk,` =

|A(k) ∩ A(`)|/|A(k) ∪ A(`)|; A(k), A(`) ∈ 2Θpref ; |∅ ∩ ∅|/|∅ ∪ ∅| ≡ 0.

88

DS PE2:

DS PE2 =

Np∑
j=1

1√
2
||BetPγ̂j −BetPγj || ÷Np, (5.3)

where Np is the number of predictions made and ||•|| denotes the Euclidean norm.

Note that DS PE’s are error measures and take values from [0, 1]: DS PE = 0

means the prediction is exactly same as that of the ground truth. We could also have

used the KL-divergence instead of the Euclidean norm, but the error then would

not be bounded by the closed interval [0, 1]. Moreover, KL-divergence requires the

pignistic distributions corresponding to the true and predicted BPAs to have identical

supports.

5.5 Experiments

We experimented with MovieLens, a movie recommendation domain widely used

for benchmarking [Res07]. The dataset consists of 100,000 ratings provided by 943

users for 1682 movies. The ratings are integers from the interval [1,5], with 5 being

best and 1 being the worst. Users were allowed to assign crisp ratings. To demonstrate

our technique’s full functionality, we needed soft ratings that were not available in

MovieLens. We thus created the dataset DS-MovieLens by artificially introducing soft

ratings: we relied on different user profiles obtained from “partial probability models,”

a widely used methodology to convert data with diverse types of imperfections into

the DS theoretic framework [BP99], [HPS07].

For generating the DS MovieLens dataset, we take the following viewpoint re-

garding the MovieLens ratings. Suppose the users considered “soft” ratings. Given

that the MovieLens domain only shows hard ratings, the following question nat-

89

urally arises: what soft rating could have generated the observed hard rating (in

MovieLens)? Or, conversely, what mechanism might transform a soft rating from DS

MovieLens into a hard rating in MovieLens?

To be more specific, we used—as in [Wic08]—three user profiles: zero tolerance,

±1 tolerance, and end-weighted ±1 tolerance. The partial probability models for

each profile are shown in Figure 5.4. The horizontal axis (lighter shading) always

represents the user rating as it appears in the DS-MovieLens dataset; the vertical

axis (dark shading) represents the true rating a movie should receive. A power-set

approach enables us to account for user rating imperfections without resorting to

various “assumptions” and “interpolations” that may be hard to justify.

We then built DS-MovieLens by the following steps: (a) Select a user rating that

has been rated as rk. (b) Randomly, with the probabilities {p, (1− p)/2, (1− p)/2},

select one user profile from Figs 5.4(a), 5.4(b), and 5.4(c), respectively. (c) Obtain

the corresponding feasible true ratings and DS theoretic basic probability assignment

(BPA) r
(DS)
k via the procedure in [BP99]. (d) Replace rk with r

(DS)
k . (e) Repeat for

all rated entries in MovieLens dataset.

To see how we use user profiles to generate DS MovieLens dataset, consider a

movie with True Rating = 2. A±1 tolerance user may, with equal probability, allocate

either True Rating = 2 or a rating from the set (1, 2, 3) (see Fig. 5.4(b). One may

also interpret this as follows: if MovieLens would allow it, a ±1 tolerance user may

sometimes rather give the interval valued rating (1, 2, 3) to this same movie instead

of the rating 2 he/she was forced to allocate. We capture these two possibilities by

saying that we are using either the black or gray distribution, the former representing

the hard rating = 2 and the latter representing the interval valued rating (1, 2, 3). In

a similar manner, for the same movie, a zero tolerance user would allocate MovieLens

90

tru
e

ra
tin

g 5

4

3

2

1

1 2 3 4 5

DS-rating

(a) 0 tolerance

tru
e

ra
tin

g 5

4

3

2

1

1 2 3 4 5

DS-rating

(b) ±1 tol.

tru
e

ra
tin

g 5

4

3

2

1

1 2 3 4 5

DS-rating

(c) ±1 tol. end-weight

Figure 5.4: Partial probability models of user profiles.

91

Rating = 2 (see Fig. 5.4(a)); an end-weighted ±1 tolerance user behaves similar to

a ±1 tolerance user (see Fig. 5.4(c)). Clearly, these three user profiles enable us to

represent a relatively broad spectrum of users.

Experiment Setup

For consistency with previous work, we followed the methodology from [HKBR99]:

We randomly selected 10% of users and, for each of them, we withheld 5 randomly

selected ratings, i.e., we “hid” 5 non-empty fields in the ratings matrix and prevented

them from being used for training. We then used these withheld ratings as an inde-

pendent testing set. The remaining ratings represented the training set. We repeated

this process for 10 different random splits into training and testing sets. Results

shown here are the average results obtained from the 10 splits.

Experiment 1. DS-ARM Performance and parameter settings

Let us first investigate DS-ARM’s behavior under diverse parameter settings. The

technique performance is likely to depend on the distance threshold dt, the minimum

p supp threshold, and the parameter α in Eq. (3.6). For the time being, let us focus on

mean absolute error, MAE. Throughout the experiments, we will keep two parameters

fixed at “baseline values,” while varying the third parameter. The baseline values are

p supp = 0.01, α = 10, dt = 1.5.

Figure 5.5(a) shows how the performance varies with growing dt, with the other

parameters fixed. The minimum error was achieved when dt = 1.0. With high dt,

the error increases due to the contributions from too “dissimilar” rules. When the

distance threshold is tight, few rules are involved and the lack of diverse opinions

seems to cause errors. Figure 5.5(b) shows how MAE varies with changing α. The

92

0.980
0.982
0.984
0.986
0.988
0.990
0.992
0.994
0.996
0.998
1.000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

M
A

E

distance threshold, dt

(a) Overall MAE versus dt

0.980
0.990
1.000
1.010
1.020
1.030
1.040
1.050
1.060

1 2 4 8 16 32 64 128 256 512

M
A

E

parameter alpha

(b) Overall MAE versus α

0.0

0.5

1.0

1.5

2.0

2.5

0 0.2 0.4 0.6 0.8 1
p-supp threshold

MAE

Coverage

(c) MAE and Coverage Vs p supp

Figure 5.5: Behavior of DS-ARM

93

minimum is reached around α = 20, which supports our use of the partitioned-

support value in mass allocation. Figure 5.5(c) shows how MAE varies with minimum

partitioned-support threshold of selecting rules. Best performance is obtained by

keeping the threshold very low. We have to remember that the computational costs

of rule combination are high if many rules are combined. We observe that as the

p supp threshold increases, the coverage decreases (i.e., no rules are selected to predict

certain preferences).

Experiment 2. DS-ARM Performance on Hard Data:

Although the main strength of DS-ARM is its ability to deal with ambiguous rat-

ings, we still wanted to see how it compares to older techniques when “crisp” values

are used. To this end, we compared DS-ARM with one of the most widely used mech-

anisms of Automated Collaborative Filtering (ACF): the correlation analysis based

approach from [HKBR99]. We will refer to our re-implementation of this algorithm

by the acronym CORR.

The parameters of both systems were set to maintain at least 95% level of “cov-

erage,” calculated as the percentage of predictions made by the predictor out of the

total number of predictions. Predictors sometimes fail to achieve 100% coverage

due to lack of evidence. The parameter settings are: for DS-ARM, dt = 1.0, α =

20, p supp thres = 0.01; and for CORR, similarity threshold = 0.1.

The mean absolute error (MAE) is the most popular performance criterion to eval-

uate user ratings [HKTR04]. Since our algorithm presents the prediction as a mass

structure over the FoD Θpref = {1, 2, 3, 4, 5}, to compute the MAE, these DS theo-

retic predictions are converted to hard predictions via the pignistic transformation.

Pignistic transformation converts the DS-theoretic “soft” decision to a hard decision.

94

Note that even though we did this transformation to directly compare our results with

other available methods, this approach is somewhat unfair to the proposed DS-ARM

whose strength lies in its ability to generate soft decisions. In addition to MAE, other

standard performance metrics—such as precision, recall, and F1—were used in the

results.

Table 5.4 summarizes the results, with boldface values indicating the best perfor-

mance. Although the difference is on average only marginal, our method consistently

out-performs CORR in predicting high user ratings “3-5”. For ratings “1-2”, CORR

is better. Note that the frequencies of ratings “1-2” are low (the ratings distribution

is “1”: 6%, “2”: 11%, “3”: 27%, “4”: 34%, “5”: 21%). Based on the results, we

conclude that the two methods provide comparable performance even in the case of

“crisp” data.

Table 5.4: Performance Comparison: Hard Decisions

al
go

. True Rating mean
Metric 1 2 3 4 5 MAE

D
S-

A
R

M MAE 2.31 1.62 0.68 0.39 1.06 0.89
Pr 0.38 0.13 0.38 0.39 0.36
Re 0.08 0.04 0.39 0.63 0.23
F1 0.14 0.06 0.39 0.48 0.27

C
O

R
R

MAE 1.80 1.38 0.71 0.57 1.18 0.91
Pr 0.40 0.19 0.33 0.38 0.32
Re 0.16 0.16 0.38 0.51 0.19
F1 0.23 0.18 0.36 0.44 0.24

Experiment 3. DS-ARM Performance on Soft Data:

As we have said, we were not aware of any other system that can predict ratings

based on the “soft” data such as those in DS-MovieLens. Still, we felt that some

comparison with previous work is needed. This is why we decided to use the CORR

approach we worked with in Experiment 2 and to interpret the hard decisions made

95

by CORR predictor as soft decisions. Employing the CORR on the soft data is made

easier by the fact that it can work with real values ratings. In order to apply CORR,

soft ratings in the dataset are converted to probabilistic ratings by applying pignistic

conversion and then a real valued rating is obtained by taking the expected value of

the resulted probability distribution.

The comparison of CORR and DS-ARM is made simpler by the fact that it is in

the nature of correlation analysis that the predictions of CORR are not necessarily

integer-valued. To be able to interpret a CORR prediction, r̂k, as soft, we relied on

the following DS-theoretic BPA:

m̂k(A) =

dr̂k − r̂k, for A = br̂k when r̂k /∈ Θ;

r̂k − br̂k, for A = dr̂k when r̂k /∈ Θ;

1, for A = r̂k when r̂k ∈ Θ;

0, otherwise,

(5.4)

where dr̂k and br̂k denote the lowest integer rating that does not fall below and the

highest integer rating that does not exceed the CORR prediction r̂k, respectively.

For instance, with Θ = {1, 2, 3, 4, 5}, the CORR prediction 3.3 is interpreted as the

Bayesian statement, “The rating is 3 with 70% confidence, and 4 with 30% confi-

dence”; (5.4) corresponds well with this interpretation.

Table 5.5 compares the results of CORR and DS-ARM, using the performance

metric DS PE1 and DS PE2 defined by (5.2 and 5.3). The probability of selecting

the “zero tolerance user” varies from 1 (no ambiguity) to 0.8 (20% ambiguity). The

results indicate that DS-ARM indeed comfortably outperforms CORR on these data.

96Table 5.5: Performance Comparison: Soft Data
algo. metric Zero tolerance user selection probability, p

1.00 0.95 0.90 0.85 0.80

DS-ARM
DS PE1 0.60 0.59 0.58 0.57 0.57
DS PE2 0.57 0.55 0.53 0.52 0.51

CORR
DS PE1 0.62 0.62 0.61 0.59 0.59
DS PE2 0.58 0.57 0.56 0.55 0.54

5.5.1 Interpretation of results

At first glance we can see that the DS PE values decreases with the increasing

ambiguity. This does not mean that the predictions are improving. The quality of

the prediction cannot be determined by simply observing the DS PE values.

For simplicity of understanding, we can explain this by taking an analogy from

mean absolute error (MAE) measure. Assume a 5-star rating system. If the actual

user rating is always 3, the maximum error of any prediction is 2. However, if the

actual user rating is 1 or 5, then the error of a prediction could go up to 4. Thus,

just by looking at the MAE value one cannot judge the quality of prediction: MAE

of 2 and MAE of 4 could be equally bad. It all depends on the actual ratings in

the dataset. In order to get a better grasp of the meaning of the DS PE measures,

the following experiments were carried out. In this experiment, the actual rating

vector (mass distribution or pignistic probability distribution) is modified by adding

a random number (selected from a normal distribution having 0 mean and x standard

deviation) to each mass/probability value in the vector. Then the modified rating

vector is normalized.

For instance, if the rating of an item is 4 with probability 0.8 and 3 with probability

0.2 (probabilities are 0 for other ratings), these probability values are modified by

adding random noise taken from a normal distribution with mean 0 and standard

deviation x. (value of x is varied from 0 to 2)

97

The DS PE measures are then computed to measure the distance between the

actual and the modified rating vectors. The resulting DS PE values are plotted

against the selected standard deviation values of noise. The DS PE distances be-

tween complete ambiguity and the noise added rating vector is also plotted on the

same graph. In figure 5.7, D(actual, noise added actual) is the DS PE1 distance

between actual rating and the noise added rating. D(theta, noise added actual) is

the distance between complete ambiguity and the noise added rating. The ‘satura-

tion’ points of these curves depend on the actual ratings. If the actual ratings are

too ambiguous the curves ‘saturate’ at lower distances. The DS PE2 measure also

showed a similar variation.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

standard deviation of noise

D
S

_P
E

1

D(actual, noise added actual)
D(theta, noise added actual)

Figure 5.6: Variation of DS PE1 distance

In general we expect a lower average DS PE distance between predictions and

actual ratings. The average DS PE distance for complete random predictions would

be close to the saturation points of the curves. If the average DS PE distance

between predictions and actual ratings is below the ‘turning point’ of the curve, it

can be considered as a reasonable prediction.

98

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

standard deviation of noise

D
S

_P
E

1

D(actual, noise added actual)
D(actual, prediction)

(a) DS PE1 curves for p = 1.00.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

standard deviation of noise

D
S

_P
E

1

D(actual, noise added actual)
D(actual, prediction)

(b) DS PE1 curves for p = 0.95.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

standard deviation of noise

D
S

_P
E

1

D(actual, noise added actual)
D(actual, prediction)

(c) DS PE1 curves for p = 0.90.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

standard deviation of noise

D
S

_P
E

1

D(actual, noise added actual)
D(actual, prediction)

(d) DS PE1 curves for p = 0.85.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

standard deviation of noise

D
S

_P
E

1

D(actual, noise added actual)
D(actual, prediction)

(e) DS PE1 curves for p = 0.80.

Figure 5.7: Quality of prediction of DS ARM on MovieLens dataset in terms of
DS PE1 metric

99

Figure 5.7(a) through 5.7(e) may be used to visualize the quality of the DS-ARM

predictions. The dotted line shows the DS PE1 distance between the prediction and

the actual rating. It being well below the ‘saturation’ level of the curve indicates

that the prediction is much better than random guessing. As data become more and

more ambiguous we can see that the ‘saturation’ level continues to decrease. Hence,

the reduction in the DS PE1 distance between the prediction and the actual rating

when the data become more ambiguous does not indicate better prediction accuracy.

Similar observations were made for the DS PE2 measure as well.

5.5.2 Experiments on HIV patient Dataset

Now that DS-ARM has shown its ability to learn from ambiguous data and

make comparably better predictions, we employed the DS-ARM predictor on the

HIV dataset to predict the drug regimen effectiveness on HIV patients. HIV dataset

consisted of 222 patient records, and 49 distinct drug regimens. On average, each

patient is treated with 3 to 4 drug regimens.

As described in the beginning of this chapter, virological responsiveness of the

HAART regimens on patients was rated by three individual experts, initial gradient

expert, profile expert, and the ‘tail’ expert. We tested the DS-ARM’s ability to

predict each individual expert’s ratings.

In order to evaluate the whether the DS-ARM predictor can perform at least better

than a totally random prediction, we developed a random predictor that always gives

a random BoE as the prediction. Table 5.6 shows the DS PE distance between the

prediction and the actual ratings for both the DS-ARM and the random predictor.

Average values of 5-fold cross validation results are shown in the table. The table

indicates that the DS ARM can do better than a random predictor. Even though,

100

the DS ARM always beats the random predictor, in the case of a profile expert and

the combined expert predictions, the performance difference is marginal, especially

in terms of DS PE1 metric.

Table 5.6: Performance comparison of DS ARM with a random predictor on the
HAART regimen virological responsiveness prediction.

Predictor Metric
Expert

Gradient Profile Tail All Combined

DS ARM
DS PE1 0.482 0.369 0.496 0.498
DS PE2 0.421 0.279 0.450 0.439

Random predictor
DS PE1 0.576 0.382 0.574 0.518
DS PE2 0.595 0.390 0.590 0.524

In order to further evaluate the results, the DS PE(actual, noise added actual)

and the DS PE(actual, prediction) were plotted on the same graph as described in

the previous section. As can be seen from the figure 5.8(b) the results for the profile

expert predictions are not that impressive in terms of DS PE1 metric. However, it

performs much better in terms of the DS PE2 metric (Fig. 5.9(b)). This is because

the DS-ARM prediction assigns a considerably high mass to the total ambiguity. In

other words, the predictor is highly uncertain about its decision. This is a result of

the lack of strong (i.e., rules with high confidence and support) association rules to

make a strong prediction.

However, in the case of combined prediction, DS-ARM fails in terms of both

metrics. This is mainly due to the conflict of opinion between the three experts

and the inherent weaknesses of Dempster’s combination to handle the conflict. In

addition, there are many other reasons for this result.

• As opposed to the MovieLens data set where we have 100,000 data records, and

each user has rated at least 20 movies—the patient data set is too small and

the available patient history(only a few regimens) is too short to learn patterns.

101

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

standard deviation of noise

D
S

_P
E

1

D(actual, noise added actual)
D(actual, prediction)

(a) Gradient-expert predictions.

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

standard deviation of noise

D
S

_P
E

1

D(actual, noise added actual)
D(actual, prediction)

(b) Profile-expert predictions.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

standard deviation of noise

D
S

_P
E

1

D(actual, noise added actual)
D(actual, prediction)

(c) Tail-expert predictions.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

standard deviation of noise

D
S

_P
E

1

D(actual, noise added actual)
D(actual, prediction)

(d) Combined (all three experts) predic-
tions.

Figure 5.8: Quality of DS ARM prediction on HAART regimen virological respon-
siveness dataset in terms of DS PE1 metric

102

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

standard deviation of noise

D
S

_P
E

2

D(actual, noise added actual)
D(actual, prediction)

(a) Gradient-expert predictions.

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

standard deviation of noise

D
S

_P
E

2

D(actual, noise added actual)
D(actual, prediction)

(b) Profile-expert predictions.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

standard deviation of noise

D
S

_P
E

2

D(actual, noise added actual)
D(actual, prediction)

(c) Tail-expert predictions.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

standard deviation of noise

D
S

_P
E

2

D(actual, noise added actual)
D(actual, prediction)

(d) Combined (all three experts) pre-
dictions.

Figure 5.9: Quality of DS ARM prediction on HAART regimen virological respon-
siveness dataset in terms of DS PE2 metric

103

• Other background information plays a huge role in the medical domain. For

instance, a HAART regimen’s virological response could be vastly different on

a ‘young-Asian-male’ patient as compared to an ‘old-African-American-female’.

Even the patient’s body-mass-index could play a major role. However, we do

not have that background information in our dataset.

CHAPTER 6

Using Taxonomy Information to Improve
the Predictions

The experimental results of the proposed DS-ARM on the MovieLens data set were

promising, and gave acceptable results on the HAART regimen virological respon-

siveness dataset. We applied the same methodology in an effort to predict possible

opportunistic infection on HIV infected patients.

Opportunistic infections in HIV infected patients usually conspire with other two

or more diseases. Having identified one of them, the physician may want to know

what other diseases could conspire with the one already identified and treat all of

them, rather than focusing on how to treat one single disorder. However, the number

of laboratory tests that a patient is to undergo is limited by many practical (e.g., eco-

nomical, patient’s discomfort) factors. Under these circumstances, a decision support

system advising the physician of what other diseases usually accompany the one al-

ready diagnosed can help the physician decide which other tests should be prescribed.

In practice, however, this is not so simple. Knowing the presence or absence of a dis-

ease is not enough. What matters is also the severity as quantified, say, by a value

from Θ = {Critical,Medium,Normal}. When assigning the value, a physician relies

on his/her experience and/or the experience of colleagues. Such ratings are inevitably

ambiguous and not easily expressed in terms of probabilities—for instance, it would

104

105

be mistaken to assume that the statement, “the symptom is Critical with a 70%

confidence” implies a 30% confidence in the complement of Critical. On top of that,

a different expert’s opinion on the same matter could be contrastingly different.

Since DS-ARM has proven to work well in a such situation, we expected encourag-

ing results in this situation as well. However, it failed to show acceptable performance

on the actual HIV patient dataset, in the case of predicting possible opportunistic

infections. Our first feeling was that these diseases are too specific, so that the asso-

ciations among them are weak. Taking an example from the market basket domain,

besides finding the percentage of people who buy ‘wheat bread’ if they buy ‘2 percent

milk’ it could also be important to see the percentage of people who buy ‘bread’ if

they buy ‘milk’ (i.e., more general rules). Can we improve our results by combining

results from association rules generated at higher level of abstraction? Hereafter, the

discussion is focused on developing an efficient method for mining association rules

at multiple taxonomy levels.

6.1 Taxonomy Lattice

The necessity for mining multiple level association rules or using taxonomy in-

formation at mining association rules has already been observed by researchers,

e.g.,[AS94]. The most prevailing approach is to create a generalization tree accord-

ing to taxonomy information as shown in figure 6.1 and to mine the associations at

different levels of the tree. This requires non-overlapping categorization of items in

the dataset (i.e. an item in lower level belongs to only one immediately higher layer

category). However, this is not the case for many datasets. Figure 6.2 shows a gen-

eralization lattice from the movies domain, in which one lower level item may belong

106

Figure 6.1: A taxonomy for market basket dataset. (non-overlapping categorization
of items)

to many higher level items. This, in fact, is the case for the HIV patient dataset as

well. If we categorize the opportunistic diseases into more abstract categories, the

lower level, more specific diseases may belong to one or more higher level categories.

For the ease of understanding, we will continue the discussion in the movies domain.

Figure 6.2: A generalization lattice for movies dataset (first level shows the genre
information)

In general, users have a tendency to select the movies from a genre of their prefer-

ence. For instance, certain users like ‘action’ movies, certain other users like ‘drama’

etc. If a user has given higher ratings for ‘action’ movies, he/she is likely to give

higher ratings for new movies from the same genre. Thus, we can get an initial esti-

107

mate or hunch on the rating of a new movie by looking at his/her ratings for other

movies from the same genre. We also can depend on the association rules from higher

level of abstraction. For instance, if most of the users who like both {action} and

{action, romance}, hate {action, comedy} we can expect the same from others.

However, an important thing to notice is that the users do not assign ratings for the

genres. The rating is actually assigned for a movie that belongs to one or more genres.

If a user has given a higher rating for a movie that belongs to {action, romance}

category, that does not necessarily mean that he/she likes both individual genres. We

thus use the ability of evidence theoretic frameworks to assign masses to composite

propositions to model such situations.

6.1.1 Propagating the ratings in the taxonomy lattice

We use p
(`)
i to denote items, where, ` indicates the hierarchical level of the item

and i = 1, n`, n` is the number of distinct items in each level (Fig. 6.3). P(`) =

{p(`)
i ; i = 1, n`} is used to denote the set of items in level `.

Figure 6.3: A generalization lattice

108

Users assign ratings for the items in the lowest level of the hierarchy. When the

ratings are propagated to a higher layer, those ratings may propagate to composite

items. When a user gives a rating of 4 to the ‘Toy Story’ (Fig. 6.2), we consider that

he/she assigns that rating to the composite item {animation, children, comedy}

in the upper level. We use P
(`)
i to denote composite items from level `. Note that

P
(`)
i ∈ 2P(`)

and i = 1, 2n` .

It is common to have many lower level items belonging to the same set of higher

level items. For instance, there are many movies that belong to {romance, drama}

category. When a user has rated two or more lower level items that belong to the

same category, say, P
(j)
k , the rating for P

(j)
k is obtained by combining the user assigned

ratings using Dempster’s rule of combination.

6.1.2 Use of taxonomy information to assigning an initial

estimate for the rating

Assume that you want to predict the rating for item p
(2)
k , and it belongs to the

higher level itemset P
(1)
j . Assignment of the initial rating estimate to p

(2)
k is broken

into three cases.

• If the user has rated one or more item that belongs to P
(1)
j , we propagate those

ratings to P
(1)
j and use the result as an initial estimate to p

(2)
k .

• If no item belongs to P
(1)
j , has been rated before, we generate association rules

at level 1 of the hierarchy and use those rules to make the initial estimate.

• If no matching association rules are found, we use the vacuous BoE as the initial

estimate.

109

Mining association rules at higher level of the hierarchy

Once the user ratings are propagated in the taxonomy lattice, we have 〈item, rating〉

vectors for each user at each level of the hierarchy. These 〈item, rating〉 vectors are

then used to generate association rules at higher levels. Rule generation and combi-

nation are done by using the same procedures discussed in the previous chapters.

6.2 Experiments

The same experimental setup and performance criterion described in Experiment 3

of Section 5.5 is used to evaluate the improvements in predictions. In this experiment,

an initial estimate for the user ratings was obtained using the taxonomy information

and higher level association rules, as described above. These results were compared

with the earlier predictions. The comparison is carried out in Table 6.1 for several

different values of p, the probability with which the zero tolerance user was selected;

the other 3 user profiles were selected with equal probability. The reader can see that

DS-ARM consistently shows better performance when taxonomy information is used

to get an initial estimate.

Table 6.1: Performance Comparison: Soft Data
algo. metric Zero tolerance user selection probability, p

1.00 0.95 0.90 0.85 0.80
DS-ARM(before DS PE1 0.60 0.59 0.58 0.57 0.57

using taxonomy information) DS PE2 0.57 0.55 0.53 0.52 0.51
DS-ARM(after DS PE1 0.59 0.57 0.57 0.56 0.55

using taxonomy information) DS PE2 0.56 0.53 0.52 0.50 0.50

It is not so simple to use taxonomy information in the case of opportunistic in-

fections. First, we need to identify the most effective taxonomy lattice as there are

so many ways to categorize one disease. Further research and heavy involvement of

domain experts is necessary to carry out the work in the medical domain. In addition,

rating the severity of diseases also remains a massive task to tackle.

CHAPTER 7

Conclusions

The technique DS-ARM reported in this work addresses one of the oldest tasks

in association mining: using partial knowledge of a shopping cart contents, can we

predict which other items the shopping cart may contain? Intuitively, the answer is

“yes”: very often, the presence of some items indicates the presence of others that are

known to be frequently associated with the known ones. For instance, the presence

of milk is an indication of milk products.

Although experiments with techniques addressing association mining usually rely

on the “supermarket paradigm,” it is well known that the application scope of the

paradigm is much broader, including medical domains, finance, even web research,

as briefly discussed in the Introduction. The literature survey that follows indicates

that, while some of the recently published systems can, at least in principle, be used

to this end, their practical utility is severely constrained, by the high computational

costs, to domains with limited numbers of distinct items. Bayesian classifiers can be

used, too, but the author is not aware of any systematic study of how this paradigm

might operate under the diverse circumstances commonly encountered in association

mining.

By way of seeking to overcome these limitations, the dissertation proposed a tech-

nique referred to by the acronym DS-ARM (Dempster-Shafer based Association Rule

110

111

Mining). The basic idea is relatively simple: being presented with an incomplete

list, s, of items in a shopping cart, the program first identifies all high-support and

high-confidence rules whose antecedents include subsets of s. A subsequent step then

combines the consequents of all these (sometimes conflicting) rules and generates a

set of items most likely to complete the shopping cart.

During the development of the proposed framework, three major hindrances had

to be overcome. First, how to find all relevant rules in a computationally efficient

manner. DS-ARM’s solution capitalized on the recently proposed data structure of

IT-trees that demonstrably reduced the costs of the attendant calculations to ac-

ceptable levels. The second problem was to find a mechanism to accommodate im-

perfections in data and the third problem was the question how to combine, and

quantify, the evidence of many conflicting rules. Here, some simple ideas from the

Dempster-Shafer theory of evidence fusion were used.

The results of the experiments reported in this dissertation were very promising.

They show that DS-ARM is indeed capable of outperforming an approach based on

Bayesian decision theory; it also outperforms older approaches, and does so even

in domains designed in a manner meant to be “tailored” to these older approaches.

Moreover, DS-ARM can be used in domains where the older approaches incur in-

tractable computational costs (e.g., in domains with more than just a few distinct

items). In this sense, DS-ARM clearly solved some long-standing obstacles precluding

the use of association mining in real-world problems.

In spite of the encouraging results, the experiments have also shown that there

is ample room for further improvements to be addressed by follow-up research. As

indicated by Experiments 5 and 6, the computational costs of DS-ARM still tend to

grow very fast with the average length of the transactions and with the number of

112

distinct items found in the database. These circumstances can become an issue in

certain applications.

In addition to this limitation, it is really important to give more attention to

methods capable of accommodating data imperfections and to way propagating these

imperfections throughout the decision-making process. The computational costs asso-

ciated with the approach addressed here have made the technique somewhat imprac-

tical in domains with large numbers of attributes. However, the author believes that

the proposed ways of rule generation, rule organization, and rule combination method-

ology can go a long way towards mitigating this issue. With the encouraging results

observed on “crisp” databases (in the experimental evaluations), subsequent work

extended the methodology to Dempster-Shafer belief theoretic relational databases

(DS-DB)[HPS07] that represent a much wider class of data imperfections.

Although the experimental results on a synthetically generated domain ‘soft’-

MovieLens and on a real-world HAART regimen virological responsiveness were en-

couraging, preliminary studies on a HIV patients’ opportunistic infections dataset

were less successful—the associations among items turned out to be weaker than ex-

pected. Intensive discussions with field experts led the author to the conclusion that

the items in the dataset (diseases or medications) are too specific. Again, the problem

is perhaps best illustrated using the market-basket paradigm. Apart from identifying

the percentage of cases where a customer buying “2% milk” will also buy “wheat

bread” (rather specific), it might be no less interesting to establish the percentage of

cases where “milk” might imply “‘bread” (more general). The reader will agree that

the more general case can actually prove much more useful. Therefore, rather than

mining association rules at a single concept level, detecting them at multiple levels

and combining the results could ultimately contribute to the utility of the predictions

113

that can be made with them. MovieLens data results corroborate the expectation

that the predictions may indeed improve. However, the effectiveness of the idea in

the HIV domain is yet to be ascertained.

Future research should perhaps also look at the possibilities of grouping the pa-

tients based on background information, such as age, gender, ethnicity and use of

group specific rules to fine-tune the predictions. Experimental results on the HAART

data indicated that the use of DECF (Dempster’s evidence combination function) to

combine conflicting opinions tends to lead to a highly ambiguous rules whose practical

utility was rather limited.

As a final comment, the author believes that existing methods for evidence com-

bination are somewhat suboptimal when it comes to combining conflicting pieces of

evidence. Also some recent paper did attempt to pioneer research in this direction,

much more remains to be done.

Bibliography

[AIS93] R. Agrawal, T. Imielinski, and A. Swami, Mining association rules be-
tween sets of items in large databases, Proceedings of ACM SIGMOD,
1993, pp. 207–216.

[APY02] C.C. Aggarwal, C. Procopius, and P.S. Yu, Finding localized associa-
tions in market basket data, IEEE Transactions on Knowledge and Data
Engineering 14 (2002), 51 – 62.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant, Fast algorithms for mining
association rules, Proc. 20th Int. Conf. Very Large Data Bases, VLDB
(Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, eds.), Morgan Kauf-
mann, 12–15 1994, pp. 487–499.

[BA99] R.J. Bayardo and R. Agrawal, Mining the most interesting rules, Pro-
ceedings of the 5th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (San Diego, California), 1999, pp. 145–
154.

[BP99] S. Blackman and R. Popoli, Design and analysis of modern tracking
systems, Artech House, 1999.

[BSHR01] P. Bollmann-Sdorra, A. Hafez, and V.V. Raghavan, Data warehousing
and knowledge discovery: 3rd international conference, (dawak-01), ch. A
Theoretical Framework for Association Mining based on the Boolean Re-
trieval Model, pp. 21–30, Springer, Munich, Germany, September 2001.

[CB91] B. Cestnik and I Bratko, On estimating probabilities in tree pruning,
Proceedings of the European Workshop on Machine Learning (Porto,
Portugal), 1991, pp. 138–150.

[CS03] B. R. Cobb and P. Shenoy, A comparison of methods for transforming be-
lief function models to probability models, Proc. European Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty
(ECSQARU03) (Berlin, Germany) (T. D. Nielsen and N. L. Zhang, eds.),
Lecture Notes in Computer Science, vol. 2711, Springer-Verlag, 2003,
p. 255266.

114

115

[Dem67] A. P. Dempster, Upper and lower probabilities induced by a multivalued
mapping, Annals of Mathematical Statistics 38 (1967), no. 2, 325339.

[DZWL99] Guozhu Dong, Xiuzhen Zhang, Limsoon Wong, and Jinyan Li, Caep:
Classification by aggregating emerging patterns, DS ’99: Proceedings of
the Second International Conference on Discovery Science (London, UK),
Springer-Verlag, 1999, pp. 30–42.

[Fis36] R.A. Fisher, The use of multiple measurement in taxonomic problems,
Annals of Eugenics 7 (1936), 111–132.

[FMMT96] Takeshi Fukuda, Yasukiko Morimoto, Shinichi Morishita, and Takeshi
Tokuyama, Data mining using two-dimensional optimized association
rules: scheme, algorithms, and visualization, SIGMOD Rec. 25 (1996),
no. 2, 13–23.

[GGR99] V. Ganti, J. Gehrke, and R. Ramakrishnan, Demon: Mining and mon-
itoring evolving data, Proceedings of the 16th International Conference
on Data Engineering (Philadelphia, Pennsylvania), 1999.

[GGR00] J Gehrke, V Ganti, and R Ramakrishnan, Detecting change in categorical
data: Mining contrast sets, Proceedings of the 18th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, 2000,
pp. 126–137.

[Goo65] I.J. Good, The estimation of probabilities: An essay on modern bayesian
methods, MIT Press, 1965.

[GS04] S. Godbole and S. Sarawagi, Discriminative methods for multi-labeled
classification, Proc. Pacific-Asia Conference (PAKDD’04), 2004, pp. 22–
30.

[HKBR99] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl,
An algorithmic framework for performing collaborative filtering, SIGIR
’99: Proceedings of the 22nd annual international ACM SIGIR confer-
ence on Research and development in information retrieval (New York,
NY, USA), ACM, 1999, pp. 230–237.

[HKTR04] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and
John T. Riedl, Evaluating collaborative filtering recommender systems,
ACM Trans. Inf. Syst. 22 (2004), no. 1, 5–53.

[HL05] Hong Hu and Jiuyong Li, Using association rules to make rule-based clas-
sifiers robust, ADC ’05: Proceedings of the 16th Australasian database
conference (Darlinghurst, Australia, Australia), Australian Computer
Society, Inc., 2005, pp. 47–54.

116

[HPS07] K. K. R. G. K. Hewawasam, Kamal Premaratne, and M.-L. Shyu, Rule
mining and classification in a situation assesment application: A belief
theoretic approach for handling data imperfections, IEEE Transactions
on Systems, Man and Cybernetics, Part B Cybernetics 37 (2007), no. 6,
1446–1459.

[HPY00] Jiawei Han, Jian Pei, and Yiwen Yin, Mining frequent patterns without
candidate generation, 2000 ACM SIGMOD Intl. Conference on Manage-
ment of Data, ACM Press, May 2000, pp. 1–12.

[JGB01] A.L. Jousselme, D. Grenier, and E. Bosse, A new distance between two
bodies of evidence, Information Fusion 2 (2001), 91–101.

[KCT+01] L.A. Kurgan, K. J. Cios, R. Tadeusiewicz, M. Ogiela, and L.S. Gooden-
day, Knowledge discovery approach to automated cardiac SPECT diag-
nosis, Artificial Intelligence in Medicine 23 (2001), no. 2, 149–169.

[KHR+03a] M. Kubat, A. Hafez, V. V. Raghavan, J. R. Lekkala, and Wei Kian
Chen, Itemset trees for targeted association querying, IEEE Transactions
on Knowledge and Data Engineering 15 (2003), no. 6, 1522 – 1534.

[KHR+03b] M. Kubat, A. Hafez, V.V. Raghavan, J. Lekkala, and W.K. Chen, Itemset
trees for on-line association mining, IEEE Transactions on Data and
Knowledge Engineering 15 (2003), 1522–1534.

[LHM98] B. Liu, W. Hsu, and Y.M. Ma, Intergraing classification and associa-
tion rule mining, Proceedings ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’98) (New York, NY),
August 1998, pp. 80–86.

[LHP01] W. Li, J. Han, and J. Pei, CMAR: Accurate and efficient classification
based on multiple class-association rules, Proceedings IEEE International
Conference on Data Mining (ICDM’01) (San Jose, CA), Nov./Dec 2001,
pp. 369–376.

[LK06] Yu Li and Miroslav Kubat, Searching for high-support itemsets in itemset
trees, Intell. Data Anal. 10 (2006), no. 2, 105–120.

[LMW00] Bing Liu, Yiming Ma, and Ching Kian Wong, Improving an association
rule based classifier, Principles of Data Mining and Knowledge Discovery,
2000, pp. 504–509.

[LSW97] B. Lent, A. Swami, and J. Widom, Clustering association rules, Pro-
ceedings 13th International Conference on Data Engineering, 1997, April
1997, pp. 220–231.

117

[MFM+98] Yasuhiko Morimoto, Takeshi Fukuda, Hirofumi Matsuzawa, Takeshi
Tokuyama, and Kunikazu Yoda, Algorithms for mining association rules
for binary segmentations of huge categorical databases, VLDB ’98: Pro-
ceedings of the 24rd International Conference on Very Large Data Bases
(San Francisco, CA, USA), Morgan Kaufmann Publishers Inc., 1998,
pp. 380–391.

[Mor98] Shinichi Morishita, On classification and regression, Discovery Science,
1998, pp. 40–57.

[NP28] J. Neyman and E.S. Pearson, On the use and interpretation of certain
test criteria for purposes of statistical inference, Biometrica 20A (1928),
175–240.

[NRC01] S. Noel, V.V. Raghavan, and C.H. Chu, Visualizing association mining
results through hierarchical clusters, Proceedings of the 2001 Interna-
tional Conf. on Data Mining (ICDM-01) (San Jose, CA), Nov. - Dec.
2001, pp. 425–432.

[Res07] GroupLens Research, Movielens data sets, 2007.

[RH00] V.V. Raghavan and A. Hafez, Dynamic data mining, Proceedings 13th
International Conference on Industrial and Engineering Applications
of Artificial Intelligence and Expert Systems, IEA/AIE (New Orleans,
Louisiana), June 2000, pp. 220–229.

[RK05] A. Rozsypal and M. Kubat, Association mining in time-varying domains,
Intelligent Data Analysis 9 (2005), 273–288.

[Sha76] G. Shafer, A mathematical theory of evidence, Princeton University
Press, 1976.

[Sme90] Philippe Smets, Constructing the pignistic probability function in a con-
text of uncertainty, UAI 89: Proceedings of the Fifth Annual Conference
on Uncertainty in Artificial Intelligence (Amsterdam, The Netherlands),
North-Holland Publishing Co., 1990, p. 2940.

[Sme99] P. Smets, Practical uses of belief functions, Proc. Conference on Uncer-
tainty in Artificial Intelligence (UAI’99) (K. B. Laskey and H. Prade,
eds.), Morgan Kaufmann, 1999, pp. 612–621.

[SZP+08] S.P. Subasingha, J. Zhang, K. Premaratne, M.-L. Shyu, M. Kubat, and
K.K.R.G.K. Hewawasam, Using association rules for classification from
databases having class label ambiguities: Belief theoretic method (to ap-
pear), 2008.

[VCS04] D. Vilar, M. J. Castro, and E. Sanchis, Multilabel text classification us-
ing multinomial models, Proc. Espan a for Natural Language Processing
(EsTAL’04) (Alicante, Spain), Oct 2004, pp. 220–230.

118

[vR79] C. J. van Rijsbergen, Information retireval, Butterworths, London, UK,
1979.

[Wic08] T. L. Wickramaratna, A belief theoretic approach for automated collabo-
rative filtering, Master’s thesis, Department of Electrical and Computer
Engineering, University of Miami, Coral Gables, FL, 2008.

[ZSP+04a] J. Zhang., S.P. Subasingha, K. Premaratne, M.-L. Shyu, M. Kubat, and
K.K.R.G.K. Hewawasam, A novel belief theoretic association rule mining
based classifier for handling class label ambiguities, Workshop on Foun-
dations of Data Mining (FDM’04), International Conference on Data
Mining, (ICDM’04) (Brighton, UK), November 2004.

[ZSP+04b] J. Zhang, S.P. Subasingha, K. Premaratne, Mei-Ling Shyu, M. Ku-
bat, and KKRGK Hewawasam, A novel belief theoretic association rule
mining based classifier for handling class label ambiguities, the Third
Workshop in Foundations of Data Mining (FDM04), in conjunction with
the Fourth IEEE International Conference on Data Mining (ICDM04)
(Brighton, UK), November 2004, pp. 213–222.

	University of Miami
	Scholarly Repository
	2010-01-13

	DS-ARM: An Association Rule Based Predictor that Can Learn from Imperfect Data
	Kasun Jayamal Sooriyaarachchi Wickramaratna
	Recommended Citation

	tmp.1297371246.pdf.nO1dE

