
University of Miami
Scholarly Repository

Open Access Dissertations Electronic Theses and Dissertations

2007-12-21

Induction of Classifiers from Multi-labeled
Examples: an Information-retrieval Point of View
Kanoksri Sarinnapakorn
University of Miami, ksarin@miami.edu

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_dissertations

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Sarinnapakorn, Kanoksri, "Induction of Classifiers from Multi-labeled Examples: an Information-retrieval Point of View" (2007).
Open Access Dissertations. 16.
https://scholarlyrepository.miami.edu/oa_dissertations/16

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations/16?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu


UNIVERSITY OF MIAMI

INDUCTION OF CLASSIFIERS FROM MULTI-LABELED EXAMPLES:

AN INFORMATION-RETRIEVAL POINT OF VIEW

By

Kanoksri Sarinnapakorn

A DISSERTATION

Submitted to the Faculty

of the University of Miami

in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

Coral Gables, Florida

December 2007



UNIVERSITY OF MIAMI

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

INDUCTION OF CLASSIFIERS FROM MULTI-LABELED EXAMPLES:
AN INFORMATION-RETRIEVAL POINT OF VIEW

Kanoksri Sarinnapakorn

Approved:

Dr. Miroslav Kubat
Associate Professor of Electrical and
Computer Engineering

Dr. Terri A. Scandura
Dean of the Graduate School

Dr. Nigel M. John
Lecturer of Electrical and
Computer Engineering

Dr. Moiez A. Tapia
Professor of Electrical and
Computer Engineering

Dr. Akmal A. Younis
Assistant Professor of Electrical and
Computer Engineering

Dr. Maria M. Llabre
Professor of Psychology



SARINNAPAKORN, KANOKSRI
Induction of Classifiers from
Multi-labeled Examples:
an Information-retrieval Point of View

(Ph.D., Electrical and Computer Engineering)

(December 2007)

Abstract of a dissertation at the University of Miami.

Dissertation supervised by Professor Miroslav Kubat.
No. of pages in text. (168)

An important task of information retrieval is to induce classifiers capable of cate-

gorizing text documents. The fact that the same document can simultaneously belong

to two or more categories is referred by the term multi-label classification (or catego-

rization). Domains of this kind have been encountered in diverse fields even outside

information retrieval. This dissertation discusses one challenging aspect of text cate-

gorization: the documents (i.e., training examples) are characterized by an extremely

large number of features. As a result, many existing machine learning techniques are

in such domains prohibitively expensive. This dissertation seeks to reduce these costs

significantly.

The proposed scheme consists of two steps. The first runs a so-called baseline

induction algorithm (BIA) separately on different versions of the data, each time

inducing a different subclassifier—more specifically, BIA is run always on the same

training documents that are each time described by a different subset of the fea-

tures. The second step then combines the subclassifiers by a fusion algorithm: when

a document is to be classified, each subclassifier outputs a set of class labels accom-

panied by its confidence in these labels; these outputs are then combined into a single

multi-label recommendation. The dissertation investigates a few alternative fusion

techniques, including an original one, inspired by the Dempster-Shafer Theory. The

main contribution is a mechanism for assigning the mass function to individual labels

from subclassifiers.



The system’s behavior is illustrated on two real-world data sets. As indicated, in

each of them the examples are described by thousands of features, and each example

is labeled with a subset of classes. Experimental evidence indicates that the method

can scale up well and achieves impressive computational savings in exchange for only

a modest loss in the classification performance. The fusion method proposed is also

shown to be more accurate than other more traditional fusion mechanisms.

For a very large multi-label data set, the proposed mechanism not only speeds

up the total induction time, but also facilitates the execution of the task on a small

computer. The fact that subclassifiers can be constructed independently and more

conveniently from small subsets of features provides an avenue for parallel processing

that might offer further increase in computational efficiency.



To my beloved parents

iii



ACKNOWLEDGMENTS

I would like to express my gratitude to all those who gave me the possibility to

complete this dissertation. First, thanks in large part to the kindness and considerable

mentoring provided by Prof. Miroslav Kubat, my dissertation advisor. His help,

advice, and encouragement guided the way for this long journey. He has absolutely

been a pleasure to work with. I want to offer my heartfelt thanks to committee

members, Prof. Moiez A. Tapia, Prof. Akmal A. Younis, Prof. Nigel M. John, and

Prof. Maria M. Llabre who gave insightful comments and invaluable suggestions to

improve this research.

This work would not have been possible without the financial support of the

Behavioral Medicine Research Center (BMRC) and the Department of Psychology.

I am especially indebted to Prof. Barry E. Hurwitz, Prof. Philip M. McCabe, Prof.

A. Rodney Wellens, and particularly Prof. Maria M. Llabre. Prof. Llabre’s patience,

and wisdom are truly remarkable. I thank her for sharing them so generously with

me along the way.

Special appreciation is due Prof. Kamal Premaratne, for it was his class that

introduced me to data fusion and led to an important part of work described in this

dissertation. He has given me kind advices and suggestions throughout my Ph.D.

study. Prof. Mei-Ling Shyu also deserves a great deal of thanks. Through her a new

chapter in life was opened to me.

I am grateful to Dr. Jan Zizka from Masaryk University, Brno, Czech Republic,

and to Dr. Ralf Steinberger and Dr. Bruno Pouliquen from the European Commission

Joint Research Centre (JRC), Ispra site, Language Technology Group for providing

the EUROVOC data.

iv



I thank my colleagues at BMRC and friends at UM Thai Student Organization,

the Department of Electrical and Computer Engineering, and the Department of

Psychology (You know who you are!) for their support and encouragement. In

particular, special thanks go to Omaima Nomir, my best friend and Dr. Feng Zhao,

my former supervisor at BMRC.

Nobody has been more important to me in the pursuit of this project than the

members of my family. I would like to thank my parents whose love and guidance are

with me in whatever I pursue, my brothers and their families who have taken good

care of parents during these years, and my sister who gives me continuing support

and is always with me whenever I need help.

v



Contents

Notation ix

List of Figures xii

List of Tables xv

CHAPTER 1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Challenges and Research Objective . . . . . . . . . . . . . . . . . . . 5

1.3 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 11

CHAPTER 2 Multi-label Classification 12

2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Solving Multi-label Problems . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Performance Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

CHAPTER 3 Literature Review 27

3.1 Related Work on Multi-label Classification . . . . . . . . . . . . . . . 27

3.2 Boosting Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 AdaBoost.MH algorithm . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 ADTree algorithm . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 C4.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 k-Nearest Neighbor Algorithm . . . . . . . . . . . . . . . . . . . . . . 40

CHAPTER 4 Classifier Induction for a Large Feature Set 43

4.1 EUROVOC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 A Solution - Fusion of Multiple Classifiers . . . . . . . . . . . . . . . 46

vi



4.3 Choosing a Baseline Induction Algorithm . . . . . . . . . . . . . . . . 52

4.3.1 Two multi-label algorithms: AdaBoost.MH vs. ADTree . . . . 52

4.3.2 Comparing AdaBoost.MH to k-NN and C4.5 . . . . . . . . . . 54

CHAPTER 5 Fusion of Multi-label Subclassifiers 62

5.1 Review of Classifier Fusion Methods . . . . . . . . . . . . . . . . . . . 63

5.2 Dempster-Shafer’s Evidence Combination . . . . . . . . . . . . . . . . 68

5.3 Dempster-Shafer Fusion for Multi-label Case . . . . . . . . . . . . . . 71

5.3.1 Basic belief assignment in multi-label case . . . . . . . . . . . 73

5.3.2 Combining evidence from multiple classifiers . . . . . . . . . . 80

CHAPTER 6 Performance of Multi-label Dempster-Shafer Fusion 83

6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Experiments with EUROVOC Data . . . . . . . . . . . . . . . . . . . 86

6.2.1 Effect of number of features . . . . . . . . . . . . . . . . . . . 87

6.2.2 Effect of number of subclassifiers . . . . . . . . . . . . . . . . 93

6.2.3 Effect of number of boosting rounds . . . . . . . . . . . . . . . 97

6.2.4 Classifying EUROVOC subtree data . . . . . . . . . . . . . . 100

6.3 Experiments with RCV1-v2 Data . . . . . . . . . . . . . . . . . . . . 107

6.4 Benefits of Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

CHAPTER 7 Comparison of Fusion Methods 119

7.1 Voting Methods and Weighted Sum for Multi-label Problems . . . . . 120

7.2 Comparing Four Fusion Methods . . . . . . . . . . . . . . . . . . . . 123

7.3 Detailed Analysis of DST-Fusion and Weighted Sum . . . . . . . . . . 128

CHAPTER 8 Partitioning a Feature Space 133

8.1 Common Features in Feature Subsets . . . . . . . . . . . . . . . . . . 134

8.2 Mutual Relations among Features . . . . . . . . . . . . . . . . . . . . 136

CHAPTER 9 Conclusion and Future Work 142

9.1 Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . 142

9.2 Future Research Direction . . . . . . . . . . . . . . . . . . . . . . . . 145

APPENDIX A Validity of the Proposed BBA Calculation 147

APPENDIX B Performance of DST-Fusion vs. NoFusion 149

vii



APPENDIX C Number of Boosting Rounds in Experiments 151

APPENDIX D Profile of RCV1-v2 Data 153

APPENDIX E Linear Relationship Between Features 156

Bibliography 159

viii



Notation

Θ frame of discernment

Acc(c) accuracy of a classifier in classifying class c

Bel(.) belief function, Bel(.) ∈ [0, 1]

C total number of categories

f(., .) ranking function or confidence measure, f : X × Y → R

f ∗(., .) normalized confidence measure, f ∗(., .) ∈ [0, 1]

F(Θ) set of focal elements of Θ, F(Θ) = {A ⊆ Θ : m(A) > 0}
g(.) multi-label classifier, g : X → 2Y

m(.) mass function or basic belief assignment, m(.) ∈ [0, 1]

n total number of examples in training data set S

N number of subclassifiers

P (c) prior probability of class c example

P (c|c′) conditional probability of assigning label c to a class c′ example

R set of all real numbers

rankf (x, .) rank of f(x, .), one-to-one mapping from Y on to {1, . . . , C}
S set of training examples

x an instance, x ∈ X
X instance space of p-dimensional features

Y set of class labels of the instance x, Y ⊆ Y

ix



Y finite set of labels or classes

|Y | cardinality or “size” of a set Y

Y (c) Y (c) = 1 if c ∈ Y ; Y (c) = 0 otherwise

‖ a ‖ ‖ a ‖= 1 if a is true; ‖ a ‖= 0 if a is false

2Y power set of Y

Avg PrecS(f) average precision

BBA basic belief assignment

BEP break-even point

BIA baseline induction algorithm

BoE body of evidence

CoverageS(f) coverage

CV cross validation

DECF Dempster’s evidence combination function

DST Dempster-Shafer theory of evidence

Fβ Fβ-measure

FN false negatives, number of positive examples misclassified as negative

FoD frame of discernment

FP false positives, number of negative examples misclassified as positive

HLS(g) Hamming loss

k-NN k-nearest neighbor algorithm

x



One ErrS(f) one-error

PCA principal component analysis

Pr precision, Pr = TP/(TP + FP )

Re recall, Re = TP/(TP + FN)

RLS(f) ranking loss

SV M support vector machine

TN true negatives, number of correctly classified negative examples

TP true positives, number of correctly classified positive examples

xi



List of Figures

3.1 AdaBoost.MH algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 An example of ADTree. (Source: Freund and Mason (1999)) . . . . . 38

4.1 Class distribution of 10,000 documents in experimental data, non-

disjoint classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Number of documents in the experimental data having different num-

ber of class labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 The CPU time in minutes of AdaBoost.MH for varying number of

features, 5-fold CV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Schematic of induction process for training data with large feature set 51

4.5 Macro-average recall, precision, and F1 of the k-nearest neighbor algo-

rithm. The smooth curves are the averages of the 5-fold CV. . . . . . 57

4.6 Micro-average recall, precision, and F1 of the k-nearest neighbor algo-

rithm. The smooth curves are the averages of the 5-fold CV. . . . . . 58

4.7 Hamming loss of the k-nearest neighbor algorithm. . . . . . . . . . . 59

5.1 Classifier induction system where a baseline induction algorithm is

run on different feature subsets to generate subclassifiers and a master

algorithm uses the Dempster-Shafer theory to combine subclassifiers’

evidence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Classification of an example where a master classifier uses the Dempster-

Shafer theory to combine the “testimonies” of a group of subclassifiers. 75

5.3 Computing basic belief assignments in multi-label problems . . . . . . 81

6.1 Micro-averaging of precision, recall, and F1 measure of DST-Fusion

and NoFusion when varying number of features. ♦ indicates F1 of

each subclassifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xii



6.2 Macro-averaging of precision, recall, and F1 measure of DST-Fusion

and NoFusion when varying number of features. ♦ indicates F1 of

each subclassifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Multi-label performance measures of DST-Fusion and the NoFusion,

when varying number of features. . . . . . . . . . . . . . . . . . . . . 90

6.4 Total CPU time and average precision of DST-Fusion and NoFusion

when varying number of features, 5-fold CV. . . . . . . . . . . . . . . 92

6.5 Micro-average and macro-average F1 from 5-fold CV of DST-Fusion

when varying number of subclassifiers. No-Fusion is simply DST-

Fusion of one subclassifier and is included for comparison. ♦ indicates

F1 of each subclassifier. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Total CPU time and average precision of DST-Fusion when varying

number of subclassifiers, 5-fold CV. . . . . . . . . . . . . . . . . . . . 96

6.7 Average precision of AdaBoost.MH when using different numbers of

boosting rounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.8 Total CPU time, average precision, micro-average and macro-average

F1 of DST-Fusion when varying number of boosting rounds, 5-fold CV.

Total CPU time and corresponding performance measures of NoFusion

are shown as reference. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.9 Class distribution of a EUROVOC subtree . . . . . . . . . . . . . . . 103

6.10 Number of documents in a EUROVOC subtree having different number

of class labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.11 Performance of DST-Fusion and NoFusion on EUROVOC subtree data

when varying number of features. ♦ indicates measurement of each

subclassifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.12 CPU time and average precision of DST-Fusion and NoFusion on EU-

ROVOC subtree data when varying number of features. . . . . . . . . 106

6.13 Class distributions of documents in RCV1-v2 experimental training

data and test data, non-disjoint classes. 3,000 documents in each set. 109

6.14 Number of documents in RCV1-v2 experimental training data and test

data having different numbers of class labels. . . . . . . . . . . . . . . 110

6.15 Micro-average recall, precision, and F1 of DST-Fusion and NoFusion

for RCV1-v2 data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.16 Macro-average recall, precision, and F1 of DST-Fusion and NoFusion

for RCV1-v2 data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xiii



6.17 Performance of DST-Fusion and NoFusion for RCV1-v2 data as mea-

sured by multi-label evaluation criteria. . . . . . . . . . . . . . . . . . 113

6.18 Total CPU time and average precision of DST-Fusion and NoFusion

for RCV1-v2 data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.19 Real time and average precision of NoFusion and DST-Fusion when

subclassifiers are processed in parallel, EUROVOC data . . . . . . . . 117

6.20 Real time and average precision of NoFusion and DST-Fusion when

subclassifiers are processed in parallel, RCV1-v2 data . . . . . . . . . 118

7.1 Micro-averaging of precision, recall, and F1 for “NoFusion” and three

fusion methods when varying number of features. ♦ indicates F1 of

each subclassifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Macro-averaging of precision, recall, and F1 for “NoFusion” and three

fusion methods when varying number of features. ♦ indicates F1 of

each subclassifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 Multi-label performance measures of three fusion methods and the

“NoFusion”, when varying number of features. . . . . . . . . . . . . . 127

7.4 Micro- and macro-average F1 from 5-fold CV of three fusion methods:

DST-Fusion, weighted majority voting, and weighted sum, when vary-

ing number of subclassifiers. NoFusion results are shown for comparison.129

8.1 Total CPU time and average precision of two DST-Fusion cases, over-

lap and non-overlap, and NoFusion when varying number of features,

EUROVOC data and 5-fold CV. . . . . . . . . . . . . . . . . . . . . . 137

D.1 Class distributions of documents in each of five RCV1-v2 experimental

training data sets and five test data sets, non-disjoint classes. 3,000

documents in each set. . . . . . . . . . . . . . . . . . . . . . . . . . . 154

D.2 Number of documents in each of five RCV1-v2 experimental training

data sets and five test data sets having different numbers of class labels.155

xiv



List of Tables

2.1 A contingency table showing classification results for a category c . . 19

2.2 Contingency table for a category c . . . . . . . . . . . . . . . . . . . . 22

2.3 Global contingency table . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Macro-averaging and micro-averaging versions of precision, recall, and

F1-measure for domains with multi-labeled examples. . . . . . . . . . 23

4.1 Mean/Standard deviation (5-fold CV) of 4 evaluation measures for

AdaBoost.MH and ADTree. Bold items indicate that AdaBoost.MH

is significantly better at 0.05 level over ADTree. . . . . . . . . . . . . 53

4.2 Total CPU time (5-fold CV) in minutes required by AdaBoost.MH and

ADTree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Time consumed by three machine learning techniques. . . . . . . . . . 60

4.4 Classification performance of three machine learning techniques on in-

dependent testing data, estimated by 5-fold CV. (The same number in

the circle indicates the methods are not different at 0.05 significance

level. The smaller number means the better performance.) . . . . . . 61

6.1 Performance of NoFusion and DST-Fusion for different numbers of sub-

classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Mean and standard deviation from 5-fold CV of 5 evaluation measures

for DST-Fusion of 5 subclassifiers using 1,000 features each. . . . . . 99

8.1 Performance of NoFusion vs. DST-Fusion when features in feature

subsets are (1) randomly selected and (2) from PCA, EUROVOC data.

Bold items indicate significant difference from others at 0.05 level. . . 139

xv



8.2 Performance of NoFusion vs. DST-Fusion when features in feature

subsets are (1) randomly selected and (2) from PCA, RCV1-v2 data.

Bold items indicate the method is significantly better at 0.05 level. . . 139

8.3 Performance of NoFusion vs. DST-Fusion when feature subsets are

from (1) random selection, (2) PCA, and (3) negative correlation,

RCV1-v2 data. Bold items indicate the method is significantly bet-

ter at 0.05 level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.1 Multi-label performance measurements for DST-Fusion of 5 subclassi-

fiers and NoFusion compared to individual subclassifiers. (Estimated

from 5-fold CV. Bold items indicate that NoFusion is significantly bet-

ter at 0.05 level.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.1 Performance of NoFusion and DST-Fusion of 5 subclassifiers from over-

lapping and non-overlapping feature subsets. Both methods use the

same number of boosting rounds. . . . . . . . . . . . . . . . . . . . . 152

xvi



CHAPTER 1

Introduction

Machine learning is a subfield of artificial intelligence that is concerned with the de-

velopment of algorithms and techniques that make computers capable of acquiring

skill and integrating knowledge from data or experience, with the objective of solving

a given problem in a way analogical to human learning (Michalski et al. 1998). It

can be viewed as a general inductive process that discovers the inherent structure

in large bodies of data and builds a model in order to make useful decisions. An

algorithm that automatically improves its performance through experience is said to

have learned. Machine learning usually refers to the changes in systems that perform

tasks involving recognition, diagnosis, planning, robot control, prediction, etc. If a

system’s task involves prediction, then improving performance means improving its

ability to predict key elements of the task. The capacity to learn from experience or

examples results in a system that can continuously self-improve and thereby offer in-

creased efficiency and effectiveness. Machine learning is a rapidly expanding field with

many successful applications in diverse disciplines such as bioinformatics, security in-

formatics, Internet traffic routing, Internet search engines, information retrieval, data

mining, signal and image processing, robot locomotion, autonomous driving, finance,

economy, and business to name a few.

1



2

A particular task requiring machine learning technology that is of interest is clas-

sification. Classification has a broad spectrum of applications which includes medical

diagnosis, biometric identification, speech and handwriting recognition, optical char-

acter recognition, object recognition in computer vision, credit scoring, detecting

credit card fraud, automated stock trading, classifying DNA sequences, predicting

protein structure, image classification, and natural language processing. The term

“classification” sometimes is used to describe the learning process by which a clas-

sification system is constructed, but often it describes the result of such a process.

Induction of classifiers is a common machine learning task. Classifiers are classifica-

tion schemes or rules that are extracted from a set of training data that consists of

examples described by attribute or feature vectors and class labels. The classification

rules relate the class labels to some features. This work considers supervised learning

where the features of examples are observable and classes of examples are pre-defined

and known in the training set. Given a new instance or object whose features’ values

are observed, the typical classification problem is to determine the class of which the

new instance is a member according to the classification scheme.

Traditionally the classification is concerned with assigning an object to exactly one

class, which is called multi-class, single-label classification problem. However, many

real applications are involved with the situation where each example can belong to

several classes simultaneously. In other words, the sets of examples belonging to

different classes are not disjoint. This is called multi-class, multi-label classification.

The problem has been encountered in many areas, e.g., medical diagnosis where a

patient may be suffering from more than one health condition: diabetes, high blood

pressure, high cholesterol; book classification where a book is cataloged into multiple

categories: engineering, technology, science, computers; film classification where a

movie straddles several film genres: science fiction, horror, action, and adventure;



3

and scene analysis where an image belongs to many semantic classes: beach, ocean,

sky, sunset, and mountain. The classification of text documents under multi-label

setting is the problem that is contemplated in this dissertation.

1.1 Motivation

Information retrieval is the process of searching, sorting, recovering, and interpreting

information from large amounts of stored data, which is crucial to documentation

and organization of knowledge. Most information nowadays is generated and stored

digitally. Business and personal correspondence, scientific and entertaining articles,

conference proceedings, electronic journals and text archives, medical literature, pa-

tient data are just a few examples of electronic text collections. With the advent of

World Wide Web (WWW) another massive repository of text information was cre-

ated. The Internet has become the world’s largest source of information, e.g., books

and periodicals, dictionaries, thesauri, digital documents collected in a wide range of

subject domains can now be found online. These huge text data demand automatic

means of efficient and effective storage and retrieval. Classification is an important

task of information retrieval systems. Given a collection of documents, one purpose

of the system is to find and retrieve categories of relevant documents, and this can

be provided through text categorization.

Text categorization is a necessity in information retrieval. It offers tools for con-

verting unstructured text collections into structured one such that storage and search

get easier and faster. For instance, text categorization techniques can be applied to

unstructured documents such as call center logs or email messages that an enterprise

receives to help them understand issues/complaints that their customers are having

with their products or services. This will enhance and provide more intelligence to



4

their enterprise’s search capabilities. Specifically, text categorization handles and

organizes text data with the goal of assigning one or more category labels from a

pre-defined set to a document. Several applications of this document processing task

include cataloging of new books following library of congress subject headings, in-

dexing of scientific articles according to thesauri of technical terms, keyword tagging,

authorship identification, automatic content management, and information filtering

and routing such as filing patents into patent directories. The tremendous volume of

information available online and its rapidly continuing growth also make it necessary

to use text categorization techniques in Web mining and email management. Some

examples are the classification of new stories or Web resources, the identification of

document genre, personalized routing of news articles, the search of information on

the WWW through the hypertext, filtering of unwanted content for Internet browsers,

email archiving, spam filtering in email messages, and many others.

Application domains of multi-label classification, particularly text categorization,

are numerous and important, and they are bound to increase dramatically in both

number and importance due to advances in computer technology allowing the pro-

liferation and acquisition of documents in digital form. One example of a real-life

document collection is PubMed, an online service of the U.S. National Library of

Medicine, which includes over 17 million citations from MEDLINE and other life

science journals for biomedical articles back to the 1950s 1. There are an estimated

40,000 new biomedical abstracts being added monthly to this collection (Feldman and

Sanger 2007). Thus one can anticipate an immense potential of multi-label classifi-

cation techniques in the future. Some neighboring fields of text categorization where

methods and techniques of multi-label classification are relevant and can be extended

to are the classification of very noisy text resulting from optical character recognition

1from http://www.pubmed.gov, accessed on 07-29-2007



5

(Ittner et al. 1995), the classification of speech transcripts (Schapire and Singer 2000),

image annotation and labeling (Johnson and Cipolla 2005), and retrieval of content-

specific and high quality articles in internal medicine for the purpose of providing

patients the best customized care (Aphinyanaphongs et al. 2005). Other applications

include emotion detection in music (Li and Ogihara 2003), semantic scene classifica-

tion (Shen et al. 2004), prediction of genes’ functional classes (Clare and King 2001;

Zhang and Zhou 2006), and protein subcellular localization identification (Su et al.

2005).

The categorization process is usually time-consuming and costly. Due to the ever-

increasing number of documents, it is beyond human’s ability to manually organize

vast amounts of material in a reasonable time frame with a fair amount of effort,

even by trained professionals. As a result, there is a growing need for tools to solve

multi-label classification problems in order to help people better manage resources

and improve the accuracy and efficiency of categorization. However, so far the subject

has received insufficient attention.

1.2 Challenges and Research Objective

The task of inducing multi-label or text classifiers poses a number of challenges and

difficulties which arise from some intrinsic complexity of the problems:

• Input data space of potential examples is extremely large. This is often the case

for text classification problems where data sets consist of hundreds of thou-

sands of documents that are characterized by tens of thousands of terms or

features and are to be categorized into one or more of thousand categories.

Machine learning methods are computation intensive. Training classifiers in

a high-dimensional feature space with several thousands of training examples



6

will be a major computational burden for conventional learning techniques; the

work undertaken could exceed the capacity of available computing resources.

• It is not unusual to find that many of the available features are not informative

and have little discriminative power to predict category membership. These

features are considered redundant or irrelevant to the problem. Yet each feature

used still adds to the running time and costs of a classification system. So,

for interpretability and economical reason, decision rules that rely on a small

subset of features are desirable. In addition, it has been shown that including

irrelevant features often reduces a classifier’s accuracy, thus more is not always

better. Using too many features can yield inaccurate classification just as bad

as using an insufficient number of features. Lewis (1992b) examined the effect

of feature set size on text categorization effectiveness and observed the decrease

in effectiveness with increasing feature set size; for word-based indexing, the

small number of features (about 10 to 15 features) was found to be optimal.

Yang and Pedersen (1997) discussed feature space reduction and evaluated some

feature selection methods. It is critical to select features that are necessary and

sufficient to represent a problem space; each individual feature should clearly

capture some aspects of the problem space (Blake and Pratt 2001).

• The dimension of the feature space is highly likely to be much larger than

the number of training examples. This is known as curse of dimensionality,

which is a significant obstacle in machine learning problems that involve learning

from a low number of examples in a high-dimensional feature space. It causes

difficulties when fitting a model or performing some numerical computations.

• The data space is very sparse. Typically, most documents contain fewer words

in comparison to the total number of words in the entire document collection.



7

Therefore, when using words as features, text documents are usually represented

as high dimensional and sparse vectors. Because of sparsity, certain patterns

would happen infrequently in data making it difficult to learn or extract any

rules from them to make intelligent decisions. Learning in high dimensions with

sparse problem space was explored by Lafferty and Wasserman (2006).

• Multi-label examples are often highly imbalanced; some of the classes are heavily

populated while some of the classes only contain a few examples. Studies have

shown that imbalanced training data can adversely affect classification accuracy

of a classifier (Liu and Motoda 2002).

• The process of generating document data sometimes creates mislabeled and

noisy examples. Typographical errors, spelling errors, abbreviations, and vari-

ations in the words/terms used in documents are some sources of noise in data.

Noisy information and incorrect labeling in the training examples would mis-

lead the classifier induction and prevent it from discovering important inherent

patterns.

Among the many challenges of multi-label classification problems mentioned above,

the dissertation aims to address one particular facet which is the induction of classi-

fiers when the input data space is large. To be specific, the author seeks to develop an

algorithm to learn from multi-labeled examples that are described by a large number

of features and to generate classification rules for future categorization. Although the

focus is on solving multi-label problems with a massive data space, the data sets that

are used in the experiments to study the performance of the proposed method are of

typical real-world, large-scale data sets which also posses other interesting character-

istics such as sparsity, considerably more features than the total number of examples,

imbalanced examples, and uninformative features.



8

Numerous classification methods exist in literature. However, some methods are

not appropriate for practical use, e.g., they require the knowledge of the number of

labels of a new example in order to categorize, which is often unrealistic. Some of

them perform better than others in terms of having higher predictive accuracy, and

some may have other nicer qualities such as robustness, computational simplicity,

interpretable classification models, and the potential to handle feature spaces of high

dimensions. Though, frequently a practical consideration in choosing one method over

the others is the computational cost which includes the training time and classification

time. For an extremely large training corpus, this cost becomes a big obstacle that

may not be overlooked, e.g., training is excessively time consuming. Importantly,

conventional classification methods applied to a large data set can take several days

to complete the classification task, which would be formidable.

Thus, to perform text classification in practice, there is a need for an alternative

learning mechanism that is able to handle a vast amount of data cost-effectively.

The goal here is to devise a technique that performs well and robustly for real world

problems and that is computationally efficient. The author approaches the inductive

learning of text classifiers by means of the fusion of multiple multi-label classifiers.

1.3 Summary of Contributions

The time required for induction of many learning methods grows quickly, sometimes

exponentially, as a function of the number of features (Vafaie and Jong 1994; Koller

and Sahami 1996). The experiments in the early phase of this study reached the

same finding as well. For instance, using 10,000 features incurred much more than

ten times the CPU time that was needed when using 1,000 features. In general, if

there are N feature sets and Tj is the time needed to induce a classifier from the



9

j-th feature set, then the total time to induce N classifiers, one from each of the N

feature sets, is
∑N

j=1 Tj and
∑N

j=1 Tj ¿ T , where T is the time needed to induce a

classifier from all features in the N feature sets combined. This observation suggests

a viable resolution for the induction of classification rules from the training data set

of multi-labeled examples with a very high dimensional feature space. Rather than

working on the whole set of a large number of features, the computational difficulty

is reduced by partitioning the big feature set into many smaller feature subsets where

each small feature subset is used to construct a subclassifier, and then outcomes

of multiple subclassifiers are subsequently combined to produce a final classification

prediction. This approach not only cuts down the overall computation time but also

demands less computing resources during each induction of a subclassifier. Moreover,

the induction of subclassifiers can be carried out concurrently, which will speed up

the classification process even more.

To sum up, the proposed classifier induction system executes two basic tasks, in-

ducing subclassifiers from different feature subsets and fusing subclassifiers’ outputs.

The hypothesis put forth in this dissertation is that the proposed schema reduces

substantially the computational overhead for learning while the final classification

performance does not deteriorate materially. In order to achieve this, the system

must have a good learning method as a baseline algorithm for inducing subclassifiers

and a good fusion technique for combining classification results. There are many

multi-label learning methods that may be selected as candidates for a baseline in-

duction algorithm. For a master algorithm that combines multiple classifiers, several

methods are also available, though they are mostly applied to single-label classifica-

tion and must be modified for multi-label case. The choice of a fusion method has

a central role to play in this classification arrangement since one must make sure

that for an exchange in the savings in time, this scheme gives an acceptable accuracy



10

that is not much worse than the usual classification based on all features. Adopt-

ing the Dempster-Shafer evidence combination method, the author developed a new

algorithm that fuses outputs of a set of subclassifiers for multi-label problems. The

existing weighted sum classifier combination method was also modified such that it

can handle multi-label classifiers. The experiments indicated that these two methods

performed comparably and were better than other voting-based combination meth-

ods. However, fusion always led to a little accuracy loss as compared to no-fusion,

all-features classification, while the processing time was significantly reduced.

Feature selection is a crucial step in successful text categorization. Its objectives

are to provide a better understanding in data, to lower the costs of data management

and processing, and to improve the classification performance. Feature selection has

been extensively researched; some literature includes Lewis (1992b), Yang and Peder-

sen (1997), Guyon and Elisseeff (2003), and Forman (2007). In this work, the issues

regarding how features in the original feature set are selected were left aside. It was

assumed that some feature selection method was implemented before proceeding with

this classification scheme. Nevertheless, the question about how the feature set should

be divided into subsets to obtain the most favorable results was explored briefly.

Specifically, a concern related to the effect of breaking up the mutual relationship

among features when the feature set is partitioned was investigated. Via experiments

it was shown that placing the features that are interdependent in the same feature

subset instead of a random assignation made no difference in categorization accuracy.

In determining the linear dependency structure between features, the author opted

for a multivariate statistical technique called principal component analysis. Further-

more, there was no concrete evidence to support the use of other more complicated

ensemble generation techniques. Results obtained were rather consistent that for the

proposed fusion method, the random assignment of features worked reasonably well.



11

1.4 Outline of the Dissertation

The organization of this dissertation is as follows. Chapter 2 begins with a brief

overview of multi-label classification problems that introduces the problem statement

and general approaches to solving the problems. The performance criteria used in

evaluating this type of problems are reviewed. Chapter 3 surveys related work in

the areas of multi-label classification and text categorization. This includes the dis-

cussion of some multi-label classification methods that are used in the experiments,

two boosting-based algorithms, the AdaBoost.MH and alternating decision tree algo-

rithms, and two other single-label methods that are adapted for multi-label problems,

C4.5 and k-nearest neighbor.

Presented in Chapter 4 are the results from a preliminary study that applied these

classification methods to a large real-world database, EUROVOC thesaurus. These

results led to the search for a better solution to the problem. The proposed method-

ology, the fusion of multiple multi-label classifiers, is explained, and the choice of

a baseline induction algorithm is examined experimentally. Chapter 5 first gives a

short review of various classifier combination techniques and basic concepts of the

Dempster-Shafer theory of evidence that provides the foundation for the master algo-

rithm. It then shows how the proposed Dempster-Shafer fusion method is developed

for multi-label problems.

The performance of the Dempster-Shafer fusion is demonstrated through exper-

iments on two data sets, EUROVOC thesaurus and Reuters corpus. Experimental

results are reported in Chapter 6. Chapter 7 compares Dempster-Shafer fusion to

other classifier combination techniques. After that, Chapter 8 considers how feature

subsets should be created. Lastly, Chapter 9 concludes the dissertation and discusses

possible directions for future research work.



CHAPTER 2

Multi-label Classification

The traditional classification involves the assignment of a particular class in a set

of pre-defined classes to an instance or object as per the classifier that was induced

from a given set of training data. This class membership prediction is single-label

classification and known as multi-class classification or binary classification, if there

are only two classes. In multi-class, multi-label problems, however, each instance

is associated with a set of labels or classes. That is, the event that an instance

belongs to a class A and the event that it also belongs to another class B are not

mutually exclusive as in the single-label problem. Multi-label classification has found

applications in various fields such as bioinformatics, emotion detection in music, film

categorization, semantic scene classification, text mining, and document classification.

For example, in text categorization, a text document may belong to many subjects

or topics; in bioinformatics, one protein may have many effects on a cell; in music

categorization, a piece of music shares many musical genres. The classification task

of these cases is to output a set of labels whose size is not known in advance; this

may vary from the assignment of a single category label to many different labels. One

document may, for instance, talk about business, investment, and finance, although

another one would concern only business and marketing. One image may show a

12



13

beach scene at sunset with a mountain background, while another image shows fall

foliage of a mountain and the blue sky.

This chapter provides a formal statement of a multi-label classification problem

and some relevant basic definitions. Two general approaches in dealing with the

problem and how to measure the performance of a classifier will be discussed.

2.1 Problem Statement

Let X ⊆ Rp be an instance space of p-dimensional features and Y be a finite set of

labels or classes. Each instance x ∈ X has multiple class labels in Y , where Y ⊆ Y .

Given a set of training examples consisting of n instances, S = {(x1, Y1), . . . , (xn, Yn)},
where each instance is independent and identically distributed (i.i.d.) drawn from an

unknown distribution D, xi ∈ X and labels Yi ⊆ Y are known, the goal of multi-

label classification is to learn categories’ properties from labeled examples and find

a multi-label classifier g : X → 2Y that maps an instance x to its label such that

specific performance criteria are optimized. Here, 2Y is the power set of Y , which is

the set of all subsets of Y .

Many machine learning algorithms induce decision rules in the form of ranking

function f : X × Y → R. For a given instance x, the labels in Y can be ordered

according to the scores or values of f(x, .). This ranking function f(x, c) is thus

interpreted as the system’s confidence that x belongs to class c. It is said that label

c1 is ranked higher than c2 if and only if f(x, c1) > f(x, c2). If Y is the set of class

labels of x, then a good learning algorithm will rank labels in Y higher than those not

in Y . A simple classification function, g(x), can be easily obtained from the function

f(x, c) and a threshold, t(x), by labeling x with the classes whose ranking values

exceed t(x):



14

g(x) = {c|f(x, c) > t(x), c ∈ Y}. (2.1)

The threshold t(x) is usually chosen to be a constant function. The most common

threshold is t(x) = 0.

Classifier’s performance depends greatly on the characteristics of the data to be

classified. One factor that has a certain bearing on the behavior of a multi-label

classifier induced from a data set is the number of labels of each example in the

set. In some applications, the number of labels each example has is large compared

to the total number of labels in the entire data set, whereas in others it is small.

Tsoumakas and Katakis (2007) introduced two pertinent concepts, label cardinality

and label density, that can be used to describe a data set. Denote the cardinality or

“size” of a set Y by |Y |. Here are the definitions of these two notions:

• Label cardinality of data set S is the average number of labels of the examples

in S,

LC(S) =
1

n

n∑
i=1

|Yi|. (2.2)

• Label density of data set S is the average proportion of labels of each example,

LD(S) =
1

n

n∑
i=1

|Yi|
|Y| . (2.3)

Both metrics quantify the number of alternative labels that depict the examples

of a multi-label data set. Label cardinality is independent of the total number of

labels in the classification problem, while label density takes the total number into

account. Two data sets having the same label cardinality but different label density

might exhibit different properties that influence the performance of the multi-label

classification methods.



15

2.2 Solving Multi-label Problems

Existing multi-label classification methods may be grouped into two main approaches:

1) problem transformation and 2) algorithm adaptation (Tsoumakas and Katakis

2007). Problem transformation approach comprises those techniques that transform

the multi-label classification problem into one or more conventional single-label clas-

sification problems, and algorithm adaptation approach comprises any methods that

extend specific learning algorithms in order to cope with multi-labeled examples di-

rectly.

There are a number of ways that one could do to follow the problem transformation

avenue.

1. Ignore multi-label information. Two straightforward methods are (Boutell et al.

2004):

• Randomly or subjectively select one of the multiple labels of each multi-

labeled example and dispose of the rest.

• Simply remove every multi-labeled example from the data set.

Obviously these methods have a serious shortcoming of discarding a lot of in-

formation content of the original multi-label data set.

2. Consider each different set of labels that exists in the multi-label data set as a

single label and then learn one single-label classifier (Boutell et al. 2004; Diplaris

et al. 2005). One negative aspect of this method is that it may lead to data sets

with a large number of classes and few examples per class.

3. Learn |Y| binary classifiers, one for each different class label c in Y (Boutell

et al. 2004; Lauser and Hotho 2003). The original data set is transformed into

|Y| data sets such that the cth data set, c = 1, . . . , |Y|, contains all examples of



16

the original data set, but each example is relabeled as c if the original example

has label c, and c̄ (not c) otherwise. When categorizing a new instance x, this

method gathers and assigns to the new instance the labels output by all binary

classifiers. Transforming a multi-label problem into a number of binary classi-

fication problems is the most common method of the problem transformation

approach. However, this method has some disadvantages (Kang et al. 2006).

• It treats each class label independently, and therefore does not exploit any

correlation among class labels.

• It does not scale very well to a large number of classes since a binary

classifier has to be built for every class.

• It suffers severely from the unbalanced data problem, particularly when

the number of classes is large. This is because for the class that has a few

examples, say class c, examples having label c̄ vastly outnumber examples

having label c. Consequently, it is likely that the binary classifier will

output the label c̄ for all instances.

4. Decompose each example (x, Y ) into |Y | examples (x, c) for all c ∈ Y . Then

induce one single-label classifier from the transformed data set using a learning

method that can give to an instance certainty degrees or probabilities for all

labels in Y . A new instance is assigned those labels whose certain degrees

are greater than a set threshold. This method increases the size of training

examples, which is a downside.

Rather than transforming data or changing the nature of multi-label problems,

researchers who take up the algorithm adaptation approach seek to modify single-label

classification methods such that they can handle multi-labeled examples straight out.

There are a number of algorithms in this group. Since our proposed methodology



17

relies on some methods in algorithm adaptation category, a full length discussion on

these methods is deferred to the next chapter.

Apart from the choice of classification methods, there are essentially two different

types of categorization decision that one can make, hard categorization and soft (or

ranking) categorization (Sebastiani 2006; Feldman and Sanger 2007). A hard cate-

gorization decision refers to a binary decision, yes or no, as to whether an instance

x belongs to a category c. A soft categorization decision is the one consisting of at-

tributing a real-valued score or weight to the example-category pair (x, c) indicating

goodness-of-fit between the input document and the category. This score reflects the

degree of confidence of the classifier in the fact that x belongs to category c, which

allows ranking a set of categories in terms of their appropriateness for x, or ranking

a set of instances in terms of their appropriateness for category c. A disadvantage of

soft categorization or a ranking algorithm is that it does not output a set of labels

for the example. A group of top scoring categories or all the categories with the

scores above a chosen threshold may be selected. However, the threshold parameter

will need tuning in each problem. The two classification functions, g(x) and f(x, c),

described in Section 2.1 above are used in hard and soft decisions, respectively. Some

classification methods offer the convenience of making both soft and hard decisions,

but some methods only permit one decision type.

2.3 Performance Criteria

Different classification tasks are needed for different applications since no single clas-

sifier is suitable for all problems. An important issue when doing classification is

measuring the performance of the classification method, so that one knows how good

a classifier is and can make a choice for an appropriate method. Normally one would



18

be interested in the effectiveness and the efficiency of classification methods. The ef-

fectiveness refers to the ability of the classifier to take the right classification decision,

e.g., having high accuracy, and the efficiency refers to the time to perform a task, e.g.,

the training efficiency is the average time it takes to build a classifier from a training

set and the classification efficiency is the average time it takes to classify previously

unseen examples. The evaluation is typically conducted experimentally using some

independent test data sets or via cross validation.

Assigning the label of a class of interest to examples is merely a binary classifi-

cation, which is the simplest classification problem where an example is classified as

either belonging to or not belonging to the category. In particular, for a category

c, examples are organized into two groups: the group of “positive” examples that

are labeled by c, and the group of “negative” examples that are not labeled by c.

The classification outcomes are usually tabulated in a confusion matrix or a two-way

contingency table as shown in Table 2.1. The four quantities displayed in the table

are:

1. TP (true positives), the number of correctly classified positive examples.

2. FN (false negatives), the number of positive examples misclassified as negative

ones.

3. FP (false positives), the number of negative examples misclassified as positive

ones.

4. TN (true negatives), the number of correctly classified negative examples.

Many measures of effectiveness have been proposed; each of which is designed to

evaluate some aspects of the classification performance of a method. The standard

evaluation measures that are of the most widespread use in domains where each



19

Table 2.1: A contingency table showing classification results for a category c

True category

c Not c

Classification outcome
c TP FP

Not c FN TN

example belongs to a single class are error rate, precision (or positive predictive

value), recall (or sensitivity), and F-measure (Aas and Eikvil 1999; Yang 1999). The

followings define the first three measures:

• Error rate (Err) is the rate of incorrect assignments.

Err =
FP + FN

n
(2.4)

Here, n = TP + FP + FN + TN > 0 is the total number of examples.

• Precision (Pr) is the rate of correct assignments when the examples are assigned

to category c.

Pr =
TP

TP + FP
, if TP + FP > 0; otherwise undefined. (2.5)

• Recall (Re) is the rate of correct assignments for examples in category c.

Re =
TP

TP + FN
, if TP + FN > 0; otherwise undefined. (2.6)

Usually error rate is not a good performance measure in text categorization

(Joachims 2003). Due to the number of negative examples being overwhelmingly

larger than the number of positive examples in general, any classifier that always cat-

egorizes an instance as negative regardless of its feature values will have a somewhat

misleading low error rate.



20

Interpreting precision and recall also requires caution. Neither precision nor recall

can effectively measure classification performance on its own; they are often deceptive

when examined alone (Sebastiani 2002; Yang 1999). Generally, a classifier exhibits a

trade-off between these two measures. A higher precision (or recall) can be obtained

by adjusting the internal parameters or changing the decision threshold of the classi-

fier. However, getting a high precision usually means sacrificing recall and vice versa.

If the recall and precision can be tuned to have an equal value, then this value is

the break-even point of the classifier. Break-even point (BEP) was first proposed in

1992 by Lewis (1992a), but, as quoted in (Sebastiani 2002), was criticized by himself

in 1997 that BEP is not a good effectiveness measure. It is possible in some cases

that BEP is not obtainable. For instance, when there are only a few category c test

examples compared to a large number of examples not in category c, the recall value

can be so high that the precision will never reach (Sun and Lim 2001). Furthermore,

to have precision equal recall is not necessarily desirable, and it is not clear that a

classifier that achieves high break-even point will score high on other effectiveness

measures.

While precision and recall are useful measures, it is easier to compare different

learning algorithms by considering one score instead of two scores. Observing that

one usually wants to maximize both precision and recall, at the same time balancing

their values, van Rijsbergen (1979) proposed combining them into a single score, Fβ-

measure, controlled by a user-defined parameter β, β ∈ [0,∞), that quantifies the

relative degree of importance ascribed to either precision or recall:

Fβ =
(β2 + 1)× Pr ×Re

β2 × Pr + Re
(2.7)

It can be computed directly from the contingency table using

Fβ =
(β2 + 1)TP

(β2 + 1)TP + FP + β2FN
(2.8)



21

Fβ is simply the weighted harmonic mean of precision and recall. Value of β controls

the trade-off between the two measures. β > 1 gives more weight to recall and β < 1

gives more weight to precision. Fβ converges to recall when β →∞ and to precision

when β = 0. Normally, β = 1 is used (Yang 1999). When β = 1, precision and recall

are deemed equally important, in which case F1 degenerates to the following form:

F1 =
2× Pr ×Re

Pr + Re
. (2.9)

or

F1 =
2TP

2TP + FP + FN
. (2.10)

Yang (1999) showed that F1’s score is maximized when the values of recall and pre-

cision are equal, i.e., F1 = Pr = Re; otherwise, the smaller of recall and precision

dominates the value of F1.

Two other commonly used Fβ-measures are the F0.5-measure, which weights preci-

sion twice as much as recall, and the F2-measure, which weights recall twice as much

as precision.

As one usually wants to know how well every label can be predicted, it is preferable

to have a single measure that indicates the average performance of a classifier over all

labels. Based on the foregoing preliminaries, Yang and Liu (1999) and Yang (1999)

proposed two alternative ways to generalize these criteria to the needs of induction

from multi-labeled examples: (1) macro-averaging , where precision and recall are

first computed for each category separately, and then averaged over the resulting

performance measures of different categories using arithmetic mean; and (2) micro-

averaging , where precision and recall are computed from the averaged contingency

table or, more conveniently, from the global contingency table obtained by summing

over all individual decisions of every category. The corresponding formulas of both

versions are derived as follows.



22

Suppose there are C categories in the category set Y , i.e., |Y| = C. The classi-

fication outcomes of a category c can be summarized as in Table 2.2. Aggregating

results of all categories renders the global contingency table in Table 2.3.

Table 2.2: Contingency table for a category c

Category c
True category

c Not c

Classification outcome
c TPc FPc

Not c FNc TNc

Table 2.3: Global contingency table

Category set Y= {1, ..., C} True category

Yes No

Classification outcome
Yes

∑C
c=1 TPc

∑C
c=1 FPc

No
∑C

c=1 FNc

∑C
c=1 TNc

From Table 2.2, precision and recall of the classifier as measured on the c-th class

label are computed as

Prc =
TPc

TPc + FPc

(2.11)

Rec =
TPc

TPc + FNc

. (2.12)

Averaging precision and recall of all categories gives macro-average precision, PrM ,

and macro-average recall, ReM , shown in Table 2.4. For micro-averaging method,

Equations 2.5 and 2.6 are applied to the collective classification results in Table 2.3

to give micro-average precision, Prµ, and micro-average recall, Reµ, in Table 2.4.



23

Table 2.4: Macro-averaging and micro-averaging versions of precision, recall, and
F1-measure for domains with multi-labeled examples.

Macro (M) Micro (µ)

Precision PrM =
∑C

c=1 Prc

C
Prµ =

∑C
c=1 TPc∑C

c=1 (TPc+FPc)

Recall ReM =
∑C

c=1 Rec

C
Reµ =

∑C
c=1 TPc∑C

c=1 (TPc+FNc)

F1 FM
1 =

∑C
c=1 F1,c

C
F µ

1 = 2×Prµ×Reµ

Prµ+Reµ

Also shown in Table 2.4 are the macro-average and micro-average F1-measures. The

F1,c in the formula of the macro-average F1, FM
1 , is the F1-measure pertaining to the

classifier for the class c:

F1,c =
2× Prc ×Rec

Prc + Rec

. (2.13)

Macro-averaging weights equally all the categories regardless of how many exam-

ples each category contains, whereas micro-averaging weights equally all the examples.

That is, macro-averaged performance measure is considered a per-category average,

and micro-averaged measure is considered a per-example average. The two methods

may give quite different results, especially if different categories have very different

number of examples or the distribution of training examples across the categories is

highly skewed (Sebastiani 2002). Normally smaller classes tend to be harder to clas-

sify and often there are more of them than larger classes. According to Yang and Liu

(1999), the micro-averaging score is more influenced by the classification performance

on common or large classes and the classification performance on rare or small classes

controls the macro-averaging score. As an example, a good performance of a classifier

on common classes will result in a high micro-average F1 score.

As argued by Shen et al. (2004), allowing each example to belong to more than one

class means that the classification can be either fully correct, or correct to a certain



24

extent, or fully wrong. The classical performance criteria, however, do not reflect

this circumstance. Five more appropriate evaluation measures have been suggested;

most of them are customized to reflect certain aspects of the classifier’s performance

in ranking (Schapire and Singer 2000).

For an example x, assume that a ranking function f returns a value, f(x, c), for

each class label c. Denote the rank of f(x, c) by rankf (x, c). That is, rankf (x, c)

is a one-to-one mapping on to {1, . . . , C} such that if f(x, c1) > f(x, c2), then

rankf (x, c1) < rankf (x, c2). Given the training set denoted by S, the multi-label

performance criteria are defined as follows (Zhang and Zhou 2005):

• One-error measures the probability that the top-ranked label was not in the set

of possible labels. If we will assign a single label to an example, then one-error

measures the probability of not getting even one of the labels correct. It is

computed as the proportion of the number of times that the top-ranked label

fails to appear in the set of correct labels to the total number of examples.

One ErrS(f) =
1

n

n∑
i=1

‖ argmaxc∈Yf(xi, c) /∈ Yi ‖ (2.14)

where

‖ a ‖=





1, if a is true,

0, if a is false.

The smaller the value of One ErrS(f), the higher the performance. In domains

where |Yi| = 1 for each xi, i.e., single-label classification problems, One ErrS(f)

is identical to ordinary classification error.

• Coverage measures how far on average one needs to go down the list of labels

assigned by the classifier in order to detect all the labels of an example.

CoverageS(f) =
1

n

n∑
i=1

max
c∈Yi

rankf (xi, c)− 1 (2.15)



25

The smaller the value of CoverageS(f), the higher the performance. In domains

where |Yi| = 1 for each xi, CoverageS(f) corresponds to the average rank of the

correct labels, and equals zero if the classifier does not commit any classification

errors.

• Average precision measures the effectiveness of the label rankings. It is com-

puted as the average fraction of those labels from Yi that are ranked above a

particular label c ∈ Yi.

Avg PrecS(f) =
1

n

n∑
i=1

1

|Yi|P (xi) (2.16)

where

P (xi) =
∑
c∈Yi

|{c′ ∈ Yi|rankf (xi, c
′) ≤ rankf (xi, c)}|

rankf (xi, c)
(2.17)

The higher the value of Avg PrecS(f), the higher the performance, the maxi-

mum value being Avg PrecS(f) = 1. When Avg PrecS(f) = 1, the classifier

achieves the perfect performance; no instance xi for which a label not in Yi is

ranked higher than a label in Yi.

• Ranking loss is the average fraction of crucial pairs which are misordered. A

crucial pair is the pair of labels c0, c1 for which c0 /∈ Y and c1 ∈ Y . A classifi-

cation rule f misorders a crucial pair c0, c1 if f(x, c1) ≤ f(x, c0), i.e., f fails to

rank c1 above c0.

RLS(f) =
1

n

n∑
i=1

1

|Yi||Y − Yi| |{(c0, c1) ∈ (Y − Yi)× Yi | f(xi, c1) ≤ f(xi, c0)}|
(2.18)

The smaller the value of RLS(f), the better performance.

• Hamming loss is the fraction of samples and labels that are incorrectly identi-

fied.

HLS(g) = 1
Cn

∑
i,c(‖ c ∈ g(xi) ∧ c /∈ Yi ‖+ ‖ c /∈ g(xi) ∧ c ∈ Yi ‖) (2.19)



26

Here, g : X → 2Y is a multi-label classifier as defined by Equation (2.1).

The smaller the value of HLS(g), the higher the performance. When |Yi| = 1

for each xi, Hamming loss is simply 2
C

times the loss of the usual classification

error.



CHAPTER 3

Literature Review

The application of multi-label classification is found mostly in text mining, and as such

the literature in this subject is primarily directed to text categorization. As indicated

in Section 2.2, the two common approaches to multi-label classification problems are

problem transformation and algorithm adaptation. Majority of research work fall

into the former group with a huge bibliography of learning algorithms available, and

much less are the methods in the latter group.

This chapter gives a summary of work related to multi-label classification with

emphasis on methods for text categorization. Details will be provided on four specific

methods that are used in the experiments. Two of them, AdaBoost.MH and ADTree

(alternating decision tree), are multi-label learning algorithms, and the other two,

C4.5 and k-nearest neighbor algorithm, are by and large for single-label learning.

3.1 Related Work on Multi-label Classification

A simple approach to a multi-label classification problem is to formulate the problem

as multiple binary classification problems for which one binary classifier is to be

built for one category (Yang 1999; Joachims 1998; Nigam et al. 2000). That is,

27



28

each category has its own classifier separate from other categories which is used to

determine if an example belongs to that category. Collective decisions made by every

binary classifier produce a set of category labels for the example. This is accomplished

by defining a score function that computes a real-valued score indicating goodness-

of-fit between the input example and the category. A group of top scoring categories

or all the categories with the scores above the given threshold will be selected.

An advantage of this approach is that binary classifiers can be conveniently gener-

ated by applying any available statistical classification methods or machine learning

techniques. One method that has been found to perform favorably is Bayesian classi-

fier (Langley et al. 1992; Friedman et al. 1997; Eyheramendy et al. 2003). McCallum

and Nigam (1998) compared two first-order probabilistic classifiers that adopted the

naive Bayes assumption: the multinomial model and the multivariate Bernoulli model.

In terms of classification performance, the multinomial model was almost uniformly

better than the multivariate Bernoulli model. Vilar et al. (2004) also presented sat-

isfying results on using the multinomial (Naive Bayes) classifier on the Reuters-21578

data set. In spite of producing good outcomes, probabilistic models suffer some crit-

icisms: 1) the exact form of the joint distribution is usually unknown in real-world

problems and 2) the naive Bayes assumption that features must be independent of

one another is unrealistic.

Other methods under this approach include neural networks, k-nearest neighbor

(k-NN) algorithm, and support vector machines (SVM). Ruiz and Srinivasan (1998)

presented the results obtained from a series of experiments in automatic text cate-

gorization of MEDLINE articles. They implemented counterpropagation neural net-

works and trained them to assign categories based on term frequency of single words

from title and abstract. However, they reported that their networks performed worse

than backpropagation network. k-NN is a popular supervised learning algorithm for



29

single-label classification that often achieves very good performance when applying to

text categorization problem. Han et al. (2001) showed that their weight adjusted k-

NN algorithm outperformed Naive-Bayes classification techniques, neural networks,

and decision tree induction algorithm like C4.5. Calvo et al. (2004) implemented

the Naive Bayes classifier for web applications using an object oriented classification

framework, and compared it to k-NN classifier. Both methods were comparable in

terms of accuracy, but k-NN was not suited for applications that required classifica-

tion to be performed at real time. Two main drawbacks of the k-NN technique are its

computational inefficiency and its sensitivity to the choice of parameter k. k-NN is

not a suitable method for highly imbalanced data; the classes with the more frequent

examples tend to dominate the categorization of a new example. Rather than using

a fixed k, Li et al. (2004) proposed a revised k-NN algorithm that uses different k

values for different classes in accordance with their distribution in the training set in

order to reduce the bias toward heavily populated classes.

Joachims (1998) and Kwok (1998) showed that SVM is appropriate for learning

text classifiers with many nice properties. SVM is good at handling domains where

the number of features exceeds the number of training examples. It eliminates the

need for feature selection, saving a complicated preprocessing step. It is well suited

for problems with few irrelevant features and sparse example vectors, and it behaves

robustly without the need for manual parameter tuning. Ease in incorporating new

examples, when available, into an existing trained system is also a plus. In their ex-

periments, SVM substantially and significantly outperformed other text classification

methods. On the downside, SVM induction is computationally more expensive than

that of naive Bayes and k-NN, but roughly comparable to the C4.5 decision tree al-

gorithm. At classification time, SVM is faster than k-NN, however. An improvement

to standard SVM proposed by Joachims (2006) is a Cutting-Plane Algorithm called



30

SVM-Perf. Compared to existing methods, SVM-Perf is simple and easy to imple-

ment. It is faster than SVM that uses decomposition methods, and in his experiments

there was no indication that SVM-Perf was less accurate.

There are two questions related to the use of multiple binary classification ap-

proach: how many labels to be assigned to a document and how to select the values

of thresholds. Nevertheless, another important issue which should be of more concern

is the fact that approaches that induce each binary classifier independently tacitly

ignore the mutual relations among different classes. When one label provides infor-

mation about another, binary classifiers fail to capture this. One simple way to take

the correlations into consideration is to treat each possible combination of classes as

a new class, and transform the multi-label problem into a usual single-label classifi-

cation problem. Yet this may not be possible to do when there are a large number of

classes. Moreover this causes the data space to become too sparse.

Instead of training binary classifiers independently, McCallum (1999) employed

Bayesian classification approach in which the multiple classes that comprise a docu-

ment are characterized by a probabilistic generative model that represents the corre-

lations between class labels. Each different set of labels is considered independently

as a new class, and the parameters of the model are learned by maximum a posteriori

estimation from labeled training documents. Given a new document, the label set

that is most likely is selected with Bayes rule. There are no thresholds to be tuned or

learned. McCallum found that the mixture model significantly reduced classification

error compared to the approach based on a group of binary classifiers.

BoosTexter by Schapire and Singer (2000) is a collection of enhancements to Ad-

aBoost (Freund and Schapire 1997) that enables its application to multi-class, multi-

label document classification problems. BoosTexter aims to predict all the correct

labels by ranking them so that the correct labels receive the highest rank. To decide



31

which labels to assign to a document, a threshold must be specified for the ranking

function, and it is typically set as 0. Schapire and Singer did not evaluate any method

of tuning the threshold on the ranks. Although BoosTexter can be seen as an algo-

rithm adaptation method, at its core, it actually takes on the problem transformation

approach where each example (x, Y ) is decomposed into |Y| examples, (x, c, Y (c)),

for all c ∈ Y , where

Y (c) =





1, if c ∈ Y ,

−1, otherwise.

Esuli et al. (2006) proposed an improved version of AdaBoost.MH, called Ad-

aBoost.MH with multiple pivot terms or MP-Boost. The multiple pivot terms, one

for each category, are selected at each boosting iteration to give the best possible de-

cision stumps. The final result is a set of classifier committees, one for each category.

The method was shown to be a good alternative to AdaBoost.MH at the price of

some decrease in classification efficiency. In other words, MP-Boost is more accurate

than AdaBoost.MH, but on the computational complexity issue, MP-Boost incurs

higher cost of storing the final hypothesis than AdaBoost.MH, and it is slower than

AdaBoost.MH on both training and testing.

Clare and King (2001) adapted the C4.5 algorithm for multi-label data by modi-

fying the entropy formula and allowing multiple labels in the leaves of the tree. Gao

et al. (2004) extended their binary maximal figure-of-merit learning algorithm to

multi-label problems. The method trains all classifiers simultaneously and optimizes

performance metrics such as precision and recall. Nonetheless, their discriminant

function for classification is still based on individual categories.

Godbole and Sarawagi (2004) presented a technique for combining text features

and information about relationships between categories that can be used with any

discriminative algorithm. The method has the characteristic of both problem trans-



32

formation and algorithm adaptation approaches. It stacks two levels of SVM’s with

heterogeneous features. Each lower level SVM is a single-label, one-against-rest classi-

fier with the original text features as the input. Combining the original text features,

the outputs of the lower level SVM’s are used as the input of the higher level SVM’s

which determine the final category label for each document. Zhu et al. (2005) pro-

posed a maximum entropy method in which the correlations among category labels

are explicitly considered in the model. Their experiments showed that the method

outperforms the combination of single label approach and the technique by Godbole

and Sarawagi. Some weaknesses of the method are the computation difficulty and the

possibility that the assumption of estimate errors being mutually independent may

not be satisfied.

Zhang and Zhou (2005) adapted the k-NN lazy learning algorithm for multi-

label data, called ML-kNN. In essence, ML-kNN is a problem transformation method

applying the usual k-NN algorithm to learn |Y| binary classification problems inde-

pendently, one for each different label c in Y . When consider a label c, examples

with label c are positive and the rest are negative. The algorithm finds the k nearest

examples of the test example and the label sets of neighboring examples, and then

determines whether the test example should be labeled as c or not. ML-kNN is con-

sidered an algorithm adaptation because it utilizes prior probabilities and employs

the maximum a posteriori (MAP) principle to predict the set of labels of the test

example. Additionally, it has the capability of producing a ranking of labels as an

output.

Finally, having compiled the results of many research work, Feldman and Sanger

(2007) provided general conclusions about the performance of these methods. SVM,

AdaBoost, and k-NN were the top performers, but there was insufficient evidence

to determine which was the best. Naive-Bayes was the worst among all. For neural



33

network and decision tree classifiers, the results were mixed; they performed poorly

in some experiments, and nearly as well as SVM in other experiments.

3.2 Boosting Algorithms

The idea of boosting is to improve the quality of categorization by combining decisions

on labels from many classifiers, each obtained by sequentially running a learning

algorithm on a different set of examples. Intuitively, if the classifier wrongly classifies

an example, the example should be used more often so that the classifier can learn

to correctly classify it. Hence, to focus on hard to learn examples, examples in the

set are reweighted with greater weight given to those that were misclassified by the

previous classifiers.

The first boosting algorithm was presented by Schapire (1990). More efficient

variations followed, including Adaptive Boosting, AdaBoost (Freund and Schapire

1996; Freund and Schapire 1997), that removed the original algorithm’s reliance on

unrealistically large training sets. Schapire and Singer (1999) then introduced two

extensions, AdaBoost.MH and AdaBoost.MR. The former induces a classifier that

minimizes the Hamming distance between the example’s correct class labels and those

proposed by the classifier; the latter provides label ranking, seeking to output higher

rankings for correct class labels. This lays the foundations for BoosTexter that in-

cludes four earlier versions of AdaBoost.MH and AdaBoost.MR.

Several papers have reported successful application of boosting algorithms to text

categorization. Schapire and Singer (2000) experimented with Reuters-21578 collec-

tion that contains documents from the 1987 Reuters newswire. Diao et al. (2002)

applied boosting to decision trees to categorize Yahoo Chinese news. In their ap-

proach, they enhanced the efficiency of boosting by Bayesian learning used to select



34

the best splitting point for a decision tree. Cai and Hofmann (2003) showed consis-

tent improvements in categorizing text documents when using AdaBoost to optimally

combine weak hypotheses based on term-based and concept-based information. And

Chen et al. (2004) sought to categorize Chinese documents from the TCM-MED data

set provided by the China Academy of Traditional Chinese Medicine.

Boosting can be used to combine either decision stumps or decision trees. Deci-

sion stumps are the simplest case of decision trees which consist of a single decision

node and two or more prediction leaves. Boosting decision stumps creates a set of

weak hypotheses to be combined. AdaBoost.MH is an example of algorithm that

boosts decision stumps. On the other hand, boosting decision trees could result in a

final combined classifier with a huge number of nodes, which is difficult to interpret.

Drucker and Cortes (1996) and Quinlan (1996a) used a decision tree induction as

the base learner for boosting and observed that error significantly decreased and the

generalization error did not degrade as more classifiers were combined. Freund and

Mason (1999) described a different type of classification rule called the Alternating

Decision Tree, ADTree, which is robust and relatively easy to interpret. Fern and

Brodley (2003) presented a relevance-based boosting-style algorithm that builds a

lazy decision tree ensemble customized for each test instance. They also introduced

a distance-based pruning strategy that improves the accuracy and comprehensibility

of both single lazy decision trees and boosted ensembles.

Since boosting is a provably effective method to handle multi-label problems,

it is considered as a candidate for the baseline algorithm in the proposed classifier

induction system. A derivative of AdaBoost algorithm, AdaBoost.MH and ADTree

are selected for the experiments. We cover briefly here the two algorithms. For a

complete discussion on AdaBoost.MH , see (Schapire and Singer 1999).



35

3.2.1 AdaBoost.MH algorithm

AdaBoost is a meta-algorithm that improves or boosts an existing weak classifier.

A classifier is viewed as weak if it performs a little better than making random

guesses, or, in other words, the classifier makes close to 50% error. Given a weak

classifier, AdaBoost improves the performance of the classifier so that there are fewer

classification errors. The algorithm progresses iteratively and in each iteration the

classifier is improved.

Let X be a set of examples and Y be a finite set of class labels. Each x ∈ X
is assigned a set of class labels, Y ⊆ Y . AdaBoost.MH outputs a ranking function,

f : X ×Y → R, obtained by combining weak hypotheses from many boosting rounds.

The boosting algorithm maintains a set of example weights as a distribution Dt

over both training examples and labels. This distribution is initially uniform but is

updated on each step t, and then passed to the learner that uses it to select a training

subset from which to induce ht : X × Y → R. Each ht is a “weak hypothesis” that

takes the form

h(x, c) =





b0c, if w ≤ a

b1c, if w > a

where b0c and b1c are real numbers. At each boosting iteration, the “weak learner”

selects a feature w with the threshold a and values of b0c and b1c in a way that

minimizes the Hamming loss. Figure 3.1 gives the details of the algorithm. The end

product of this algorithm is a set of C binary classifiers f(x, c), c = 1, . . . , C, that

are used to decide on the labels. If the sign of f(x, c), which is a linear combination

of the scores from all the weak hypotheses ht(x, c), is positive, then class label c is

assigned to x; otherwise, c is not assigned to x.



36

Given: (x1, Y1),. . . , (xn, Yn) where xi ∈ X , Yi ⊆ Y
Initialize D1(i, c) = 1/(nC), where C is the size of Y .
Do for t = 1, . . . , T , where T is the number of boosting iterations:

• Pass distribution Dt to weak learner.

• Get weak hypothesis ht : X x Y → R.

• Choose αt ∈ R.

• Update:

Dt+1(i, c) =
Dt(i, c) exp(−αtYi(c)ht(xi, c))

Zt

where Zt is a normalization factor (chosen such that Dt+1 will be a
distribution). The parameter αt is typically chosen as a positive value
such that the example-label pairs which are misclassified by ht receive
more weights.

Output the final hypothesis as a weighted vote of the weak hypotheses:

f(x, c) =
T∑

t=1

αtht(x, c).

Figure 3.1: AdaBoost.MH algorithm



37

3.2.2 ADTree algorithm

The Alternating Decision Tree, ADTree, is a combination of decision trees with boost-

ing model suggested by Freund and Mason (1999) for the binary classification prob-

lems. It generates a different representation of classification rules that can be cast

as a weighted majority vote over simple decision trees. The resulting decision trees

are often small and concise making it easier to visualize correlations. The ADTree

structure consists of two components: decision nodes and prediction nodes. Decision

nodes specify a predicate condition, and prediction nodes is associated with a real

valued number. Each decision node can be seen as a conjunction between a precondi-

tion that leads to the decision node and the condition specified in that decision node.

The general idea of the ADTree algorithm is to grow a tree iteratively, where each

decision node is selected by the algorithm based on how well it discriminates between

positive and negative examples. Once a decision node is created, the prediction node

is determined from how good the decision node discriminates. To classify, ADTree

maps from each instance to a real valued prediction which is the sum of the prediction

scores according to all the simple base rules from preconditions and base conditions.

The classification of the instance is based on the sign of the prediction score.

To understand the interaction of decision and prediction nodes, refer to an exam-

ple in Figure 3.2 which is reproduced from Freund and Mason (1999). The problem

domain is heart disease diagnostics for which the goal is to predict whether an in-

dividual is healthy (positive) or sick (negative). This alternating tree consists of six

decision nodes (rectangles) and 13 prediction nodes (ovals). The numbers within the

prediction nodes define contributions to the prediction score. Positive contributions

are evidence of a healthy heart, whereas negative contributions are evidence of a

heart problem. The root of the tree is associated with the fixed or unconditional

contribution of 0.062 meaning that there are slightly more healthy people than sick.



38

Figure 3.2: An example of ADTree. (Source: Freund and Mason (1999))

This implies that without knowledge of any feature values, an individual should be

predicted as healthy, but with low confidence.

To predict the heart health of a particular individual, the conditions given in

the tree are tested serially and evidence for or against the health of the person is

accumulated as we proceed. More explicitly, starting at the root node, follow all of

the dotted arrows that emanate from prediction nodes, but follow only one of the

solid-line arrows emanating from a decision node that corresponds to the answer (yes

or no) of the individual to the condition at that node. The values in all prediction



39

nodes along the multi-path are summed in order to give the final prediction score

whose sign indicates if the person is healthy or not. For example, an individual has

HDL = good, number of vessels colored = 0, chest pain = yes, oldpeak = 3, cholesterol

= 280, and gender = M. The contributions of relevant prediction nodes are 0.062,

0.541, 0.425, -0.536, -1.495, -0.444 which sum to -1.447. The score -1.447 gives a very

confident diagnosis that this individual has a heart problem.

The original formulation of the ADTree restricted attention to binary classifica-

tion problems. Algorithms for decision-tree induction in the multi-class setting were

presented by Holmes et al. (2002), and extensions to the multi-label case with hetero-

geneous input data (discrete and continuous values as well as text data) were proposed

by De Comité et al. (2001, 2003).

3.3 C4.5 Algorithm

Decision trees are one of the most popular methods for classification because they

provide simple and interpretable rules. A decision tree learning creates from data a

predictive model having a tree structure; nodes in the tree represent features, with

branches representing conjunctions of features that lead to leaves or terminal nodes

representing classifications. Thus, a decision tree can be viewed as a partitioning of

the instance space into smaller segments such that each partition, represented by a

leaf, contains the instances that are homogeneous and are expected to belong to the

same class. Determining the class of an instance from the decision tree is then a

matter of tracing the path of nodes and branches starting at the root node of the tree

to the terminating leaf.

C4.5 is a decision tree generating algorithm developed by Quinlan (1993) and

modified further later by Quinlan (1996b). It is an extension of Quinlan’s earlier



40

ID3 induction algorithm (Quinlan et al. 1986) with a number of improvements to

account for unknown attribute values, attributes with differing costs, and bias towards

continuous attributes with numerous distinct values. In addition, it has several new

and interesting features including a new criterion for determining the best partitioning

of the examples at each decision tree node, “pruned” decision trees to avoid overfitting

the data, and the ability to derive classification rules from the unpruned decision tree.

C4.5 builds decision trees from training data using the information entropy con-

cept to measure how informative a node is. It examines the information gain, which

is the effective decrease in entropy, that results from choosing a feature to split the

data at a particular node in the tree. The feature having the highest information gain

is the best for discriminating among cases at that node, so it will be chosen to make

the decision.

C4.5 is a good choice for practical classification due to the ease of its interpretabil-

ity as well as its ability to deal with numeric attributes, missing values, and noisy

data. Quinlan (1996b) showed that the new version of C4.5 gave smaller decision

trees with higher predictive accuracies. In their IP traffic flow classification study,

Williams et al. (2006) compared four different machine learning algorithms, Bayesian

network, naive Bayes, naive Bayes tree, and C4.5 decision tree, and concluded that

C4.5 was the best suited for real-time classification tasks. All algorithms provided

very similar classification accuracy, however, the C4.5 algorithm was significantly

faster than other methods in terms of classification speed.

3.4 k-Nearest Neighbor Algorithm

Behind the idea of k-NN lies an assumption that the class of an object is similar to the

class of other objects that are nearby in the feature space. To classify a test example,



41

the algorithm finds the k nearest or most similar neighbors of this new example from

a given set of training examples. Similarity is measured by the Euclidean distance or

the cosine similarity measure between two example vectors.

The Euclidean distance between 2 examples x1 = (x11, x12, . . . , x1p) and

x2 = (x21, x22, . . . , x2p) is

dist(x1, x2) =

√√√√
p∑

j=1

(x1j − x2j)2

and the cosine similarity between x1 and x2 is

sim(x1, x2) =

p∑
j=1

x1jx2j

√
p∑

j=1

x2
1j

√
p∑

j=1

x2
2j

The traditional k-NN method deals with single label classification problems. Nor-

mally the classification uses majority vote among the classification of these neighbors,

i.e., the most frequent class label among the k closest training examples is assigned

to the new instance. Some researchers prefer predicting the category of an instance

using other alternative criteria such as the class that has maximal sum of similarity

(Li et al. 2003) or the class that has highest confidence score (Joachims 1998). k-NN

is often a good choice for classification task when simplicity and accuracy are the pre-

dominant issues. The algorithm is easy to implement, but it is very computationally

intensive and requires training examples to always be retained. Many optimizations

for k-NN have been proposed over the years (see, e.g., Zhang and Srihari (2004) and

Ramasubramanian and Paliwal (2000)); these methods generally seek to reduce the

number of distances actually computed.

The simple k-NN method needs modification so that it can assign multiple cate-

gories to any document. Some variants of k-NN to handle multi-label problems have

been derived. Yang and Liu (1999) and Lewis et al. (2004) studied the weighted k-NN



42

method where the similarity score of each neighbor document is used as the weight of

the categories of the neighbor document. For each category, the sum of all the weights

from k neighbors is taken as the likelihood score of that category with respect to the

test document. The scores of candidate categories can be sorted to provide a ranked

list of categories. Alternatively, thresholding on these scores will give decision rules

that produce binary category assignments.



CHAPTER 4

Classifier Induction for a Large
Feature Set

Our research interest is in the induction of multi-label classifiers in the situation

where the information set is exceptionally large with a very high dimensional feature

space and a large number of classes. Inauspiciously the application of many machine

learning methods could be restricted on a large-scale database because of limited

computational resources, such as CPU time, memory, and storage. The processing of

data in the whole data set may be impractical or not feasible owing to computational

and time complexities, even with the use of highly efficient learning algorithms. This

circumstance leads us to explore an alternative solution to the handling and modeling

of a huge amount of data.

This chapter begins with the introduction to the EUROVOC thesaurus, a large-

scale database used in testing the proposed solution. The size of this database was a

real challenge we confronted when trying to apply some existing learning algorithms to

the data. An ensemble method to handle the problem is explored, which leads to the

proposed classifier induction system. The system is the fusion of multiple multi-label

classifiers consisting of 2 steps, inducing subclassifiers and combining subclassifiers.

We describe how a baseline algorithm for subclassifier induction is selected. The

discussion of the subclassifier combination methods is postponed till the next chapter.

43



44

4.1 EUROVOC Data

One example of a massive real-world document collection is the EUROVOC classifi-

cation data. EUROVOC 1 is a multilingual, polythematic thesaurus developed in the

course of close cooperation between the European Parliament, the European Com-

missions Publications Office, and the national organizations of the European Union

(EU) member states. The EUROVOC thesaurus focuses on many different fields of

interest to EU such as law and legislation, economics, trade, education and com-

munications, science, employment, transport, environment, agriculture, forestry and

fisheries, foodstuffs, production, technology and research, energy, international orga-

nizations, industry, employment and working conditions, business and competition,

and many others. The thesaurus provides indexing of the documents available in

the documentation systems of the European institutions, and is used in libraries and

document centers of national parliaments as well as other governmental and private

organizations of member and non-member countries of the EU.

We were given access to a part of EUROVOC classification system consisting of

78,599 documents with over 5,000 descriptor terms (class labels) organized hierarchi-

cally into eight levels, the top-most level having 30 different classes. Among 78,599

documents, 10,868 documents are not assigned any descriptors. Excluding those un-

labeled documents leaves us with 67,731 documents in 5,452 fields or classes. Each

document can belong to more than one field, with some documents belonging to as

many as 30 fields. Each document is described by 105,355 features representing the

frequency of prespecified words in the document. The file size of unprocessed data

where all data with value 0 are omitted is about 3GB. After filling necessary data

values, the total size of data files becomes more than 16GB.

1http://europa.eu/eurovoc/ and http://langtech.jrc.it/Eurovoc.html



45

For information retrieval purpose, it is desirable to have decision rules that enable

the classification of a document into areas or categories where it belongs to. But

because of a huge number of classes and features that EUROVOC contains, it is

exceedingly difficult to do text categorization of these data using currently available

methods. Computer time and resource requirements to process this vast amount of

data would hamper the task of finding good classifiers. For instance, it took 38 hours

to train a small subset of EUROVOC classification data that has 19,095 documents,

4,004 classes, and 100 features using ADTree learning algorithm with 10 rounds of

boosting on an AMD 64 bits Dual Core X2 3800+, 2GB memory. Thus for more than

100,000 features that the whole EUROVOC database has, the situation is far worse.

Upon proposing the new classifier induction technique for the problem with a

large feature set, the primary concern is whether the technique has any computa-

tional advantage over traditional methods. Unfortunately, the large data volume of

this database virtually excludes the possibility of performing comparison studies on

a personal computer using the entire database. The fact that each experimental

run takes many days makes it impossible to go through the hundreds of experiments

needed for statistically justified conclusions. To this end the decision is to experiment

with a small portion of the entire EUROVOC database. This simplified version of the

EUROVOC database contains 10,000 documents described by a set of 4,000 features

and classified into 30 major classes at the top-level of the classification hierarchy.

The features were extracted on the basis of Document Frequency criterion, which is

a simple unsupervised feature selection method found to be effective for text cate-

gorization and have low computational cost (Yang and Pedersen 1997; Calvo et al.

2004). Document frequency is the number of documents in which a term occurs in

a data set, and for our study, the 4,000 features were randomly selected from those

having document frequency larger than 50.



46

The data are summarized in Figure 4.1 that gives the number of documents in each

of the 30 classes. One can see that this database is very highly imbalanced. Figure 4.2

shows how many documents belong to one class, how many of them belong to two

classes, and so on—the highest number of class labels for a single document is, in this

sample, 15. Near 90% of the documents have 2 to 5 labels and only a few, 2.38%, are

single-labeled. The label cardinality of this experimental data set is 3.6, and the label

density is 0.12. In other words, in average each document has 3.6 labels, or about

12% of the total number of labels.

4.2 A Solution - Fusion of Multiple Classifiers

The amount of data was a pressing issue when working on EUROVOC data set.

The early attempts to train a small fraction of EUROVOC data revealed a potential

problem about the tremendous time it took to induce a classifier. Some learning

methods even failed to complete their jobs after running continuously for a few days

on a PC. At last we were able to gather useful information from the experiments with

AdaBoost.MH algorithm, which is a subsystem of BoosTexter 2, a program written

by Allwein, Schapire, and Singer. The experiments were carried out for feature sets

of different sizes, 100, 200, 500, 1,000, 2,000, and 4,000 features. There were 10,000

documents and 30 classes. The number of boosting rounds was set to 10% of the

number of features used (i.e., 10, 20, 50, 100, 200, and 400 boosting rounds for 100,

200, 500, 1,000, 2,000, and 4,000 features, respectively). 5-fold cross validation (CV)

was used to assess the performance of the method, although its accuracy will not be

discussed at this time.

2available for free for non-commercial research or educational purposes at
http://www.cs.princeton.edu/∼schapire/boostexter.html



47

Figure 4.1: Class distribution of 10,000 documents in experimental data, non-disjoint
classes.



48

Figure 4.2: Number of documents in the experimental data having different number
of class labels.



49

Figure 4.3: The CPU time in minutes of AdaBoost.MH for varying number of features,
5-fold CV.

Figure 4.3 shows the total CPU time required by AdaBoost.MH to learn from

the experimental data set. It is clearly seen that the run time for induction increases

very fast, faster than the linear growth rate, with the increasing number of features.

From the graph one may project that it will take many days to induce a classifier if

one is to use, for example, 10,000 features which amounts to only 10% of the total

number of features in the EUROVOC data, and this is quite discouraging.



50

However, this preliminary study points us to a possible alternative solution to

handling a large feature set. One can observe in Figure 4.1 that the induction time

for 1,000 features is more than twice the induction time for 500 features. Similarly,

the induction time for 4,000 features is also more than twice the time for 2,000 fea-

tures, and much more than 4 times the time for 1,000 features, and so on. That is,

in general, if a large feature set is partition into small feature subsets, the total time

for induction of all small feature subsets is far less than the induction time of one

large feature set. To be more concrete, suppose a feature set X is partitioned into N

disjoint feature subsets, X 1,X 2, . . . ,XN ,
⋃N

j=1 X j = X . Let Tj be the time needed

to induce a classifier from the j-th feature subset X j and T is the time needed to

induce a classifier from all features X . Then the total time to induce N classifiers,

one from each of X 1, X 2, . . . ,XN is
∑N

j=1 Tj, and
∑N

j=1 Tj ¿ T . Even in the case

that some feature subsets are overlapping, i.e., X j∩X k 6= ∅ for some j 6= k, the total

induction time of classifiers from many small feature subsets is still much less than

the induction time needed when all features are used at once. This will be seen from

the experiments in the following chapters.

Therefore, within the current context, a feasible and efficient procedure for rule

induction on a large data set would be to divide the large data set into smaller

sets so that each small portion of data can be managed more easily. First, features

are separated into subsets and then the large data set is split accordingly. Some

good learning algorithm can now be applied to each feature subset. Later, after all

small data sets are processed, their results will be combined by some data fusion

technique to obtain the final classification result. This strategy will not require a

high performance computer, e.g., memory requirements would be less; indeed, the

smaller data sets can even be processed concurrently on multiple computers to finish

the whole classification task faster.



51

Figure 4.4: Schematic of induction process for training data with large feature set

The conceptual framework of the proposed method for multi-label classifier induc-

tion is shown in Figure 4.4. The system is composed of two components, learning

method to induce subclassifiers from different feature subsets and fusion algorithm to

combine subclassifiers’ decisions. Specifically, in this approach, a multi-label learning

method is selected as a baseline algorithm for rule induction. Once the original fea-

ture set is decomposed into N feature subsets, run the “baseline induction algorithm”

(BIA) independently on different feature subsets to obtain several subclassifiers, one

for each feature subset. After that, combine outputs of these subclassifiers by exploit-

ing a “master algorithm” that creates the final set of class labels to be returned to

the user.



52

4.3 Choosing a Baseline Induction Algorithm

An important element of the proposed mechanism is the baseline algorithm used to

induce multi-label subclassifiers. Every subclassifier has to decide on the plausibility

of each label such that decisions of all subclassifiers are fused by a master algorithm

afterward. In principle, any learning algorithm that is able to produce ranked labels

result can be used as a baseline learner. However, for practical applications, it is

natural to choose an induction algorithm that is both fast and accurate in order

to ensure good final classification result. Therefore, during this initial stage, some

experiments were conducted in search of a good choice for the baseline algorithm.

There are two existing programs available from the web that can induce from

data the information needed for fusion: ADTree 3 and BoosTexter . For BoosTex-

ter program, we worked specifically with AdaBoost.MH subsystem. The selection

between these two candidates were based on two criteria: classification performance

and computational costs. AdaBoost.MH beats ADTree on both criteria, and thus is

a good choice as BIA. To develop a thorough understanding of the behavior of Ad-

aBoost.MH , we explored AdaBoost.MH further by comparing it to two other learning

methods, k-NN and C4.5 . These two methods were modified so that they can work on

multi-labeled examples. All the experiments and results are detailed in the following

sections.

4.3.1 Two multi-label algorithms: AdaBoost.MH vs. ADTree

It was expected that the baseline algorithm would have to operate with feature sub-

sets consisting at least of 100 features, but probably not more than 500 features.

Therefore, we ran a simple experiment for the following numbers of features: 100,

3written by De Comité and Devigne and available from
http://www.grappa.univ-lille3.fr/grappa/en index.php3?info=software



53

200, and 500. The number of boosting rounds for both AdaBoost.MH and ADTree

was set to 10% of the number of features used. For the sake of statistical credibility,

all results were averaged over 5-fold cross validation—the training set then always

contained 8,000 documents and the testing set 2,000 documents. Table 4.1 summa-

rizes the results for four multi-label performance criteria from Section 2.3, giving

the average values and the standard deviations obtained from 5-fold CV. The per-

formance of both algorithms improves slightly with more features. Boldfaced font

highlights the cases where one of the candidates is significantly better than the other

when they are subject to paired t-tests. One can see that AdaBoost.MH has sys-

tematically outperformed ADTree on three out of the four criteria, albeit only by a

narrow margin.

Table 4.1: Mean/Standard deviation (5-fold CV) of 4 evaluation measures for Ad-
aBoost.MH and ADTree. Bold items indicate that AdaBoost.MH is significantly
better at 0.05 level over ADTree.

# of Features Average Coverage Hamming One Error
Precision Loss

100
AdaBoost.MH 0.523 10.7 0.116 0.47

±0.005 ±0.1 ±0.001 ±0.01

ADTree 0.510 10.9 0.118 0.48
±0.006 ±0.2 ±0.001 ±0.01

200
AdaBoost.MH 0.560 10.2 0.113 0.41

±0.007 ±0.1 ±0.001 ±0.01

ADTree 0.540 10.5 0.115 0.43
±0.007 ±0.1 ±0.001 ±0.02

500
AdaBoost.MH 0.589 9.6 0.109 0.39

±0.007 ±0.1 ±0.001 ±0.02

ADTree 0.565 9.9 0.112 0.42
±0.006 ±0.1 ±0.001 ±0.01



54

The difference in performance of the two algorithms being small, we further ex-

plored the computational costs. Here, the situation was different. Table 4.2 compares

the CPU time consumed by these two programs when run on data described by dif-

ferent numbers of features. The results obtained were the total CPU time from 5-fold

CV. The induction time of ADTree also rose very quickly as the number of features

increased, similar to what has been observed from AdaBoost.MH in Figure 4.1, but

ADTree spent much more time compared to AdaBoost.MH for the same number of

features. Since the time needed by ADTree was one to two orders of magnitude higher

than the time needed by AdaBoost.MH , statistical evaluation would be superfluous.

Hence, on the basis of its performance and processing time requirement, we decided

to choose AdaBoost.MH as the baseline induction algorithm.

Table 4.2: Total CPU time (5-fold CV) in minutes required by AdaBoost.MH and
ADTree.

# of Features AdaBoost.MH ADTree

100 1 15

200 3 116

500 16 1,682

4.3.2 Comparing AdaBoost.MH to k-NN and C4.5

In this section, the experiments were done with three programs on the whole simpli-

fied database with all 4,000 features: (1) the code of AdaBoost.MH , fixing its number

of boosting rounds at 400; (2) Weka’s reimplementation of C4.5 4 (Witten and Frank

2005); and (3) our own implementation of the k-NN classifier for multi-label prob-

lems. Again, the three candidates were evaluated in terms of computational costs

and classification performance.

4Weka is a collection of machine learning algorithms for data mining tasks,
available for download at http://www.cs.waikato.ac.nz/ml/weka/



55

C4.5 is an algorithm that induces classification rules in the form of decision trees

for multi-class, single-label classification problems. In order to run C4.5 under the

multi-label setting, we take the problem transformation approach to decompose the

multi-label problem into multiple, independent binary classification problems. That

is, for the problem having C predefined classes, C binary classifiers are independently

built, one for each class. These separate binary classifiers are then used to predict

whether a document belongs to the corresponding class. The final labels assigned to

the document are obtained by aggregating the label assignments from all the binary

classifiers.

k-NN is amongst the simplest of all machine learning algorithms for single-label

classification problems. We modify the traditional k-NN algorithm for multi-label

problems in the following way. To identify the labels of an example x, first find in

the given training data set the k nearest neighbors of x. Let I be the set of indices

of these k nearest neighbors. Assuming all training examples were correctly labeled,

an easy and straightforward approach to assigning labels to the example x is to give

all labels appearing in at least one of the k nearest neighbors. That is,

“Assign label c to x if c ∈
⋃
i∈I

Yi”.

where Yi is the set of class labels of an example i in the training data set, and
⋃
i∈I

Yi

is the union of the label sets of all k nearest neighbor documents. This assignment

generally yields high recall rate and low precision particularly when k is large. Never-

theless, this rule is used simply to provide a basis for comparison with other methods.

While C4.5 and AdaBoost.MH were run with default settings, the experiment

with k-NN was done with different values of k. The parameter k was varied from

5 to 200. Figures 4.5 and 4.6 show the macro-average and micro-average of three

evaluation measures, precision, recall, and F1, of k-NN method for different k values.



56

Macro-average recall was around 60% when k = 5 and it increased with the k value

reaching about 90% when k was 80, or the number of nearest neighbors equaled

to 1% of the total number of training examples. Micro-average recall exhibited a

similar pattern, but its value was higher and it approached 100% very fast. This

is not surprising since almost all of the labels would be assigned to the documents

when more and more examples are included in the nearest neighbor set. This also

explains the decrease in the precision, both macro-averaging and micro-averaging,

when k increased. The precision was quite low, staying below 25% for all k’s. The F1

measure was dominated by the precision; the two curves show almost identical shape.

F1 monotonically decreased because the percentage of decrease in the precision was

larger than the percentage of increase in the recall. It is clear that k = 5 produced

the best F1 measure. Hamming loss in Figure 4.7 also indicates k = 5 performed the

best. This measure will reach its maximum value when all the labels are assigned to

every document which happens when k is sufficiently large.

In all, k-NN achieved the best results when k = 5. A close look at some of the

results from k = 5 reveals that each of the 5 nearest neighbor documents has 4 to

5 labels. The union of these label sets has about 15 members or half of the total

number of labels in the data set. Therefore the recall rate is high even k is only 5.

It should be noted that the majority of the documents in this data set have 3 or 4

labels (see Figure 4.2).

Next, look at how the three learning algorithms compare on efficiency. Shown in

Table 4.3, the induction time of 8,000 training documents by AdaBoost.MH and C4.5

was roughly 3.5 hours and 25 hours, respectively. So AdaBoost.MH ran seven times

faster than C4.5 . The induction costs of the k-NN were negligible since there is no

training (just storing the training examples), but it places heavy load on classifica-

tion time. The classifier needed on average more than 3 hours to classify the 2,000



57

Figure 4.5: Macro-average recall, precision, and F1 of the k-nearest neighbor algo-
rithm. The smooth curves are the averages of the 5-fold CV.



58

Figure 4.6: Micro-average recall, precision, and F1 of the k-nearest neighbor algo-
rithm. The smooth curves are the averages of the 5-fold CV.



59

Figure 4.7: Hamming loss of the k-nearest neighbor algorithm.



60

Table 4.3: Time consumed by three machine learning techniques.

Algorithm Induction Time (min.) Classification Time (min.)
AdaBoost.MH 1,105 -

C4.5 7,624 -

5-NN - 1,005

testing documents when k = 5 was used. This is almost prohibitive in a domain like

EUROVOC that is ultimately expected to grow to millions of documents.

To study the classification performance of these methods on testing data, the result

of k-NN, when k = 5, is compared to AdaBoost.MH and C4.5 results. Table 4.4 shows

the Hamming losses, macro- and micro-average precisions, recalls, and F1-metrics.

The analysis of variance indicates that the observed differences in the performance

among the three methods are statistically significant. The multiple comparisons by

the Ryan-Einot-Gabriel-Welsch multiple range test (Hsu 1996) suggest the following

conclusions: 1) AdaBoost.MH outperformed the other two methods with regard to

precision, 2) AdaBoost.MH was comparable to C4.5 based on Hamming loss, recall,

and F1, 3) 5-NN had much higher Hamming loss and poorer precision, but better

recall rate compared to AdaBoost.MH and C4.5 , 4) 5-NN had higher values of F1

than others, and 5) C4.5 was the worst performer among the three in almost every

aspect. Therefore, these empirical results obviously support the use as a BIA of

AdaBoost.MH .



61

Table 4.4: Classification performance of three machine learning techniques on in-
dependent testing data, estimated by 5-fold CV. (The same number in the circle
indicates the methods are not different at 0.05 significance level. The smaller number
means the better performance.)

Method Hamming Loss

AdaBoost.MH ¬ 0.1028 ± 0.001

C4.5 ¬ 0.1060 ± 0.002

5-NN ­ 0.2645 ± 0.009

Macro F1 Macro Precision Macro Recall

AdaBoost.MH ­ 0.2817 ± 0.009 ¬ 0.5675 ± 0.016 ­ 0.1874 ± 0.007

C4.5 ­ 0.2829 ± 0.020 ­ 0.4997 ± 0.030 ­ 0.1976 ± 0.017

5-NN ¬ 0.3165 ± 0.012 ® 0.2146 ± 0.012 ¬ 0.6066 ± 0.023

Micro F1 Micro Precision Micro Recall

AdaBoost.MH ­ 0.3850 ± 0.005 ¬ 0.6886 ± 0.009 ­ 0.2672 ± 0.004

C4.5 ¬ ­ 0.3959 ± 0.028 ­ 0.6388 ± 0.009 ­ 0.2880 ± 0.033

5-NN ¬ 0.4149 ± 0.007 ® 0.2829 ± 0.006 ¬ 0.7784 ± 0.018



CHAPTER 5

Fusion of Multi-label Subclassifiers

A key step of the classifier induction system for multi-labeled examples presented in

the previous chapter is the fusion of outputs from multiple multi-label subclassifiers.

In this approach, a master algorithm combines the “testimonies” of an ensemble of

subclassifiers, obtained by a BIA, each time using a different subset of the features.

AdaBoost.MH has been selected as the BIA. What is needed now is a master algorithm

to combine subclassifiers’ decisions in order to generate a consensus about the class

labels. This chapter discusses the development of a master algorithm.

Classifier fusion, also referred to as classifier combination or decision fusion, pro-

vides a way to combine information to help in decision making from many sources,

or, in our case, multiple subclassifiers. First off, a review of some research work on

classifier combination and a number of combination methods that are available are

presented. A short introduction to the Dempster-Shafer theory of evidence (DST)

is given to provide a background for our proposed subclassifier combination method.

Several researchers have used DST to combine classifiers for single-label classification.

Here we describe in detail how this theory can be applied to multi-label problems and

then create a master algorithm that is built around the Dempster-Shafer combination.

62



63

5.1 Review of Classifier Fusion Methods

Combining together multiple classifiers that are individually trained to obtain a single,

high-performance, classification system is a topic that has been extensively researched

in the machine learning communities for several decades. Fusion has been proven

useful when several classification methods are used to construct classifiers from a set

of data. The facts are that different methods can give different results with different

degrees of success, and no single classifier is perfect. Research has shown that an

ensemble of classifiers can produce (though not always) more accurate decisions than

what an individual classifier can provide, depending on the quality and the diversity

of the ensemble members (Bell et al. 2005; Larkey and Croft 1996). An example

of real applications is face recognition by Lu et al. (2003) who used a combination

of different face classifiers to integrate the complementary information that leads to

more accurate face recognition than that made by any one of the individual classifiers.

Ensembles can be implemented in a variety of different ways. An overview of

various classifier fusion techniques was given by Ruta and Gabrys (2000). There are

two general groups of classifier fusion methods. The methods associated with the first

group generally operate on classifiers and find a single best classifier or a selected

group of classifiers. They emphasize on a development of the classifier structure.

The second group of methods operate mainly on classifiers’ outputs, and effectively

calculate the combination of classifiers’ outputs.

Roli and Giacinto (2002) discussed the problem of multiple classifier system (MCS)

development and experimentally assessed six different design methods based on the

overproduce and choose design paradigm. The basic idea of overproduce and choose

is to produce an initial large set of candidate classifier ensembles, and then select the

ensemble that can be combined to achieve highest accuracy. This paradigm provides

a practical and effective solution, however, an optimal MCS design is not guaranteed.



64

Kubat and Cooperson (2001) also employed a similar approach, but with a more

elaborate selection mechanism.

Apart from the system design issue, the choice of strategy used in combining

the results of different classifiers is very important as well. One simple strategy

that is frequently used is majority voting. Rahman et al. (2002) reviewed several

majority voting systems and their variations and found that these techniques can

achieve very robust performance and often compare favorably with many complex

and sophisticated systems. Some variations of majority voting systems are (Fürnkranz

2002; Rahman et al. 2002; Jain et al. 2004):

• Simple majority voting. This technique is to give each classifier one vote, and

predict the class that receives the most votes. Ties are broken in favor of larger

classes, and predictions with 0 confidence score are ignored.

• Weighted majority voting. This voting scheme is identical to the previous tech-

nique except that the accuracy of each classifier is used to weight its vote. When

asked to make a prediction, the votes from all classifiers are combined based

on their associated weights, and the class label with the highest weighted vote

is selected. Weighted majority voting provides a simple and effective method

when one of the classifiers is known to perform well.

• Weighted sum. This voting scheme uses the accuracy of each classifier to weight

confidence scores of possible classes. The weighted sum of confidence scores from

all classifiers provides the overall confidence in the label. The label that receives

the highest sum of weighted confidence score is predicted. With this scheme,

a few predictions with high confidence scores may over-rule a larger number of

predictions with lower scores.



65

• Weighted normalized sum. This voting scheme is identical to the weighted sum,

except that the confidence scores are first normalized in a way that distributes

a total weight of 1 among the different candidate classes for each example.

This is to ensure that the confidence scores associated with each class can be

interpreted as class probability estimates.

• Maximum confidence. This method simply chooses the class prediction that

receives the highest confidence among all members of the ensemble and predicts

that class. This is an attempt to use only the most accurate of all applicable

rules to classify an instance.

• Restricted majority voting. This method selects the best decision delivered by

the best classifier.

A large group of classifier combination methods work on classifiers that perform

soft categorization and produce soft outputs which are real-valued. These soft outputs

are usually referred to as measures of evidence and are used to describe information

uncertainty; more familiar terms would be probability, possibility, belief, or plausi-

bility. Some fusion methods in this group are Bayesian fusion and Dempster-Shafer

fusion (Challa and Koks 2004). Bayesian fusion combines classifiers based on the mul-

tiplicative rule on the posterior probabilities of individual classifiers. Langley et al.

(1992) showed that Bayesian fusion works well in many real world problems despite

the fact that the conditionally independent assumption is violated. As opposed to

well-understood probability of Bayes theory, Dempster-Shafer theory deals with mea-

sures of belief. It allows us to cast doubt on the state of a system as unknown in

addition to true or false as in Bayes theory. Details of Dempster-Shafer fusion will

be presented in the next section.



66

Combining outputs from different classifiers has shown considerable promise in

machine learning generally. However, combining several text categorizers has had

mixed success (Uren and Addis 2002). Some researchers reported improvements with

combined systems, and some reported no improvements. In other words, in text cat-

egorization applications, combinations of multiple classifiers do not always improve

the classification accuracy compared to the best individual categorizer. Below are

some classifier combination methods that are used in text categorization.

Bennett et al. (2005) proposed a probabilistic method for combining classifiers

that hinges on learning the context-sensitive reliability of contributing classifiers.

The method harnesses reliability indicators which are variables that provide signals

about the performance of classifiers in different situations. These variables are used

to weave together multiple classifiers in a coherent probabilistic manner to boost or

improve overall accuracy. The authors presented procedures for building metaclassi-

fiers that take into consideration both reliability indicators and outputs from base-

level classifiers, and reviewed a set of comparative studies undertaken to evaluate

the methodology. The empirical evaluations supported the conclusion that a simple

majority vote in situations where one of the classifiers performs strongly can weaken

the best classifier’s performance. In contrast, their methodology was competitive and

produced the top performer in most instances.

Fürnkranz (2002) introduced hyperlink ensembles for classifying hypertext doc-

uments. Instead of using the text on a target page to derive features for training a

classifier, he suggested to use portions of texts from all pages that have a hyperlink

pointing to the target page. He implemented the technique using a rule-based classi-

fier, which was trained to predict the class labels of all hyperlinks that point to a page.

A hyperlink ensemble was then formed by obtaining one prediction for each hyper-

link. These individual predictions for each hyperlink pointing to the same page were



67

subsequently combined to a final prediction for the class of the target page by looking

for the majority among the individual predictions. He explored four different ways

of combining the individual predictions and four different techniques for identifying

relevant text portions. The best results were achieved by selecting the prediction

with the maximum confidence from the ensemble. His experiments illustrated that

the use of information about the HTML structure of pages and about the structure of

the Web itself can be useful for improving text categorization on the Web. However,

his conclusion was drawn from the off-line experiments on a single domain. How his

techniques would perform in an open domain, i.e., for classifying arbitrary pages with

arbitrary hyperlinks, remains an open question.

Uren and Addis (2002) explored a theoretical approach to predicting the perfor-

mance of combined systems and used its predictions to benchmark the real results of

a number of combined systems. Simple voting system was used in combining. They

found that the actual accuracy achieved by combining text categorizers was consid-

erably less than the accuracy that would be predicted if the errors produced by the

systems were independent of each other. This performance conformed closely to the

coincident errors model which assumes that some records are more likely to cause er-

rors than others. Hence, typical categorization approaches produce predictions which

are too similar for combining them to be effective since they tend to fail on the same

records. The coincident errors could be reduced if a categorizer using a different kind

of information as input was included in the combined system. Further experiments

suggested that combining text categorizers can be successful, provided the essential

element of difference is considered.

Chen and Ho (2000) studied the performance of decision forests where multiple

decision trees are constructed systematically by pseudo-randomly selecting subsets of

components of the feature vector. The classifier maximizes an average of the estimates



68

of posterior probabilities given by individual trees. It was demonstrated that, based on

micro-average recall and F1 measure, the method outperformed single decision trees

by C4.5 and k-NN classifiers that were constructed using all the available features.

5.2 Dempster-Shafer’s Evidence Combination

A popular approach to combining decisions from several sources is the fusion that

uses the cornerstone of the Dempster-Shafer theory known as the Dempster-Shafer

rule of evidence combination (Shafer 1976). Dempster-Shafer theory is a general-

ization of the Bayesian theory of subjective probability. It offers an alternative to

traditional probabilistic theory for representing uncertainties and lack of knowledge.

Many researchers have applied DST to the problem of classifier combination since

there is usually uncertainty associated with the performance of each of the classi-

fiers and DST has the ability to represent this uncertain knowledge and imprecision

embedded in evidence. DST is an effective tool for combining data and knowledge

from heterogeneous sources in the presence of conflicting information and it does not

require any assumption regarding the probability of the individual constituents of the

classifier set. Unlike the Bayesian method, DST allows user to specify a degree of

ignorance when user has limited or unknown information instead of being forced to

supply some probabilities which add to unity.

Consider a finite set of mutually exclusive and exhaustive propositions, Θ =

{θ1, . . . , θk}, referred to as the frame of discernment (FoD). In our context, θi states

that “document x belongs to category θi.” Any subset A ⊆ Θ also represents a propo-

sition. The essence of DST is in the Basic Belief Assignment (BBA) that assigns to

any A ⊆ Θ a numeric value m(A) ∈ [0, 1] that satisfies the following conditions (Shafer

1976):



69

m(∅) = 0 (5.1)

∑
A⊆Θ

m(A) = 1 (5.2)

This so-called mass function, m(A), quantifies the strength of evidence that sup-

ports proposition A. Proposition A such that m(A) > 0 is called a focal element of

Θ, and the set of all focal elements of Θ is F(Θ) = {A ⊆ Θ : m(A) > 0}. This non-

classical idea of “mass” in DST is different from probability in Bayes theory, although

the two measures look very similar. As can be seen from Equation 5.2, if Ā is the

complementary set of A, then m(A) + m(Ā) ≤ 1.

The belief function assigns to every nonempty subset A ⊆ Θ a value Bel(A) ∈ [0, 1]

that is called “degree of belief in A.” It is defined as follows:

Bel(A) =
∑
B⊆A

m(B) (5.3)

This means that the strength of belief in proposition A is the sum of the strengths

of beliefs in all subsets of A. The belief assigned to A thus takes into account the

supports of all proper subsets of A. Note that Bel(A) = m(A) if A is a singleton.

Dempster-Shafer rule of combination makes it possible to arrive at a new BBA

by fusing the information from several BBAs that span the same FoD. Assume there

are two bodies of evidence (BoE) {Θ, F1,m1} and {Θ,F2,m2}. That is, m1 and m2

are BBAs for the same FoD Θ with focal elements F1 and F2, respectively. The

normalization constant,

K12 = 1−
∑

Bi ∈ F1; Cj ∈ F2;

Bi ∩ Cj = ∅

m1(Bi)m2(Cj),



70

measures how much m1 and m2 are conflicting. If K12 > 0, the two BoEs are said

to be compatible, and m1 and m2 can be combined to give m for any A 6= ∅ by

Dempster’s evidence combination function (DECF):

m(A) ≡ (m1 ⊕m2)(A)

=

∑

Bi ∈ F1; Cj ∈ F2;

Bi ∩ Cj = A

m1(Bi)m2(Cj)÷K12.

(5.4)

Among previous attempts to apply DST to classical single-label classification prob-

lems, Bahler and Navarro (2000) compared five ensemble methods (DST, majority

voting, Bayesian classification, behavior-knowledge space, and logistic regression) that

allow the combination of classifiers obtained by different learning paradigms. They

observed an improvement in the performance of DST-based combination when the

members of the ensemble have non-zero rejection rates. Al-Ani and Deriche (2002)

discussed existing methods for computing evidence and described a new classifier com-

bination technique based on DST that adapts to training data so as to minimize the

overall mean square error. The technique outperformed other classifier combination

methods on three different domains.

Bi et al. (2004) investigated the combination of four different classification meth-

ods for text categorization, SVM, k-NN, k-NN model-based approach, and Rocchio

methods. They employed a 2-points focused mass function to represent outputs from

these different classifiers based on the confidence values for labels. The experimental

results showed that the performance of the best combination of the different classi-

fiers on ten benchmark domains slightly outperformed the best individual method.

Another closely related method based on Dempster’s rule for combination of evidence

was described by Bell et al. (2005). They developed and analyzed an evidence struc-

ture for representing outputs from different classifiers using mass functions with a



71

focal element triplet or a focal element quartet. Bi et al. (2005) proposed a boosting-

like technique for generating multiple sets of rules based on rough set theory and

model classification decisions from multiple sets of rules as pieces of evidence which

can be combined by Dempsters rule of combination. Similarly, their experiments with

the 20-newsgroup which is a public benchmark data collection indicated that the per-

formance of the best combination of the multiple sets of rules outperformed the best

single set of rules. Furthermore, the comparative analysis between the Dempster-

Shafer and the majority voting methods confirmed the advantage and the robustness

of their approach.

Altınçay (2005) proposed a dynamic integration of classifier ensembles that in-

volve members trained on heterogeneous input sets. The approach is based on an

evidence-theoretic framework that takes into account the weights and distances of

the neighboring training examples in boosting ensembles.

These DST-approach papers only deal with the single label case where each in-

stance belongs to exactly one category. Combining classifier results when the problem

is multi-label has not received adequate attention.

5.3 Dempster-Shafer Fusion for Multi-label Case

As shown in Figure 4.4 of Chapter 4, the proposed mechanism for multi-label classi-

fier induction requires a master algorithm to fuse the recommendations from several

subclassifiers that are induced by a baseline learning algorithm. A choice of baseline

algorithm has been discussed and AdaBoost.MH is chosen because it runs reason-

ably fast and can produce outputs in the form easy for fusion. Moreover, from the

experiments, it outperformed other candidates. For the master algorithm, a number

of existing classifier fusion methods could be implemented in our classifier induction



72

system after they are modified to handle the multi-label case. The possibility of

employing them will be explored in Chapter 7. This section presents a new fusion

technique that will be used as the master algorithm. Taking on the Dempster-Shafer

belief theoretic framework, the technique is derived to have an added capability of

combining outputs from multi-label classifiers. Specifically, DECF (Equation (5.4))

is used to fuse multi-label outputs generated from subclassifiers resulting from the

application of AdaBoost.MH on data of different feature subsets.

We choose to develop a master combination algorithm based on DST mainly be-

cause: 1) each small data set tends to produce different class labels for an example and

DST is efficacious in combining conflicting information and 2) DST can manage un-

certainty without making any unrealistic probability assumption. It also appears that

DST-approach has a satisfactory performance in single-label classification problems.

There have been some attempts to apply DST to multi-label problems by focusing

on a certain subset of labels and transforming the problems into binary classification

problems. However, no literature on the application of DST to a real multi-label

problem has been found so far.

Evidence from each classifier plays a crucial role in the fusion task since it in-

fluences the performance of the fused result. The issue here is how to properly

quantify the evidence of subclassifiers. Given an example x, the baseline algorithm,

AdaBoost.MH , provides the ranking function f(x, .) along with other classification

results. f(x, .) is a measure of confidence in each label that is obtained from the

application of AdaBoost.MH to each of feature subsets. To exploit the confidence

information from subclassifiers in the fusion process, we develop a method that trans-

forms the confidence measure into belief theoretic information, on which the DECF

will then be applied.



73

Figure 5.1 displays the architecture of the complete multi-label classifier induction

system. It is Figure 4.4 with details of the fusion step inserted. The training data set

goes through usual data preprocessing and feature selection process and the feature

set is divided into N feature subsets. Then apply the baseline learning algorithm to

induce subclassifiers from feature subsets. Outputs of subclassifiers, f(., .) are trans-

formed into basic belief assignment and finally are combined into the overall belief

information m(.) to be used by the master classifier.

Outlined in Figure 5.2 is the classification procedure for a new example x. Each

time an example x is to be categorized, the j-th subclassifier outputs the ranking

function, fj(x, .), that reflects the confidence of the subclassifier in each label for x.

The algorithm will convert fj(x, .) into mj(.) for all j. Then all mj(.)’s are combined

into m(.) from which a set, Y ⊆ Y is output as the example’s class labels .

Next section describes the computation of belief functions from classifier outputs.

A detailed explanation of fusion step is presented with a rigorous derivation of required

formulas.

5.3.1 Basic belief assignment in multi-label case

Learning algorithms that are tailored specially for multi-class, multi-label classifica-

tion problems usually can offer soft decisions about categories in addition to hard

decisions, a boosting algorithm like AdaBoost.MH included. These algorithms give

rise to a set of decision rules which produce classification results of an example x

in the form of a ranking function or confidence measure given to each class label c,

f(x, c). The sign of the prediction f(x, c) indicates whether the label c is assigned

to the example x, while the magnitude of |f(x, c)| signifies the confidence level on

the label. More precisely, the example is categorized as being in category c if f(x, c)

is positive, and not in category c otherwise. The value of |f(x, c)| provides evidence



74

Figure 5.1: Classifier induction system where a baseline induction algorithm is run
on different feature subsets to generate subclassifiers and a master algorithm uses the
Dempster-Shafer theory to combine subclassifiers’ evidence.



75

Figure 5.2: Classification of an example where a master classifier uses the Dempster-
Shafer theory to combine the “testimonies” of a group of subclassifiers.



76

either supporting or against the class label c, the higher value of |f(x, c)| meaning

the more confidence or stronger belief in label c if f(x, c) is positive, and stronger

disbelief in label c if f(x, c) is negative.

The confidence f(., .) on each label is a real number, f(., .) ∈ R, that can be

converted to a degree of belief with values between 0 and 1. It should be noted

that the strong belief in one label of an example does not negate nor enhance the

possibility of the example having other labels. Thus as long as after the conversion

labels are kept in the same order as before, we can attend to just one label at a time

and combine the belief values corresponding to that label from all classifiers.

For each classifier, follow the two major transformation steps detailed below to

assign basic belief to a label c.

1. Normalize the confidence measure f(., .) of labels such that it lies between 0

and 1.

Let f ∗(x, c) be the normalized confidence level of label c for an example x,

f ∗(x, c) ∈ [0, 1]. f ∗(x, c) is treated as a degree of belief. The value of f ∗(x, c)

close to 1 is a strong belief in the label c, the value close to 0 is the strong

disbelief in label c, and the value close to 0.5 is the indecisive stage. Therefore

we distinguish 3 cases in the conversion of f(x, c) to f ∗(x, c).

(a) When f(x, c) ≥ 0 for every label, all f(x, c)’s will be transformed to lie in

the range [0.5, 1] with the minimum of f(x, c) being 0.5 and the maximum

of f(x, c) being 1.

f ∗(x, c) = 0.5 +
f(x, c)−min

c′
f(x, c′)

2× (max
c′

f(x, c′)−min
c′

f(x, c′))
(5.5)

(b) When f(x, c) < 0 for every label, all f(x, c)’s will be transformed to stay

in the range [0, 0.5] with the minimum of f(x, c) being 0 and the maximum

of f(x, c) being 0.5.



77

f ∗(x, c) =
f(x, c)−min

c′
f(x, c′)

2× (max
c′

f(x, c′)−min
c′

f(x, c′))
(5.6)

(c) When some f(x, c) ≥ 0 and some f(x, c) < 0, the transformation will be

asymmetric. All negative f(x, c)’s are transformed to the range [0, 0.5)

with the minimum of f(x, c) being 0. All non-negative f(x, c)’s are trans-

formed to the range [0.5, 1] with the maximum of f(x, c) being 1. This is

to keep the interpretation of the values of f ∗(x, c) similar to that of f(x, c);

f(x, c) ≥ 0 or equivalently, f ∗(x, c) ≥ 0.5 indicates the label c should be

assigned to an example x, and vice versa.

f ∗(x, c) =





−
f(x,c)−min

c′
f(x,c′)

2×min
c′

f(x,c′) , if f(x, c) < 0

0.5 + f(x,c)
2×max

c′
f(x,c′) , if f(x, c) ≥ 0

(5.7)

2. Compute masses or BBA for each label.

Define P (c|c′) to be the conditional probability of assigning class label c to a

class c′ example. When c 6= c′, P (c|c′) is simply the misclassification probability

of the classifier. Let c̄ denote the event that the example does not have label c.

Then

P (c|c̄) + P (c̄|c̄) = 1

and

P (c|c) + P (c̄|c) = 1.

Given a set of learning examples, P (c|c̄), P (c̄|c̄), P (c|c), and P (c̄|c) for any class

c can be estimated as follows.

P (c|c̄) =
#of examples not in class c that are classified as class c

#of examples that are not class c

P (c̄|c) =
#of class c examples that are not classified as class c

#of class c examples



78

Accordingly,

P (c̄|c̄) = 1− P (c|c̄)

and

P (c|c) = 1− P (c̄|c).

P (c|c̄) and P (c̄|c) are classification errors which tell us how accurate the classifier

is. These two quantities play an important role when many pieces of evidence

from multiple classifiers are to be combined since they imply some level of

uncertainty in the information provided by classifiers.

Denote the prior probability that an example is in class c as P (c) and the prior

probability that a document is not in class c as P (c̄).

P (c) + P (c̄) = 1

These probabilities can be estimated from learning examples.

P (c) =
#of class c examples

Total#of examples
(5.8)

P (c̄) = 1− P (c)

The credibility of a classifier depends on its prediction accuracy. How well a

classifier is in making a decision about the class c membership of an example

is determined by the sum of two errors, P (c|c̄)P (c̄) + P (c̄|c)P (c). The first

error is the case when an example not in class c is incorrectly labeled as class

c, and the second error is the case when a class c example is not recognized

as such. Naturally, when combining the evidence that supports class c from

multiple classifiers, we should take into account the performance pertinent to

class c of each classifier. Therefore, classifiers that have a larger sum of errors

when categorizing class c examples will receive smaller weight.



79

Let Θ = {c, c̄} be the frame of discernment (FoD) or sample space when con-

sidering a fixed label c. The BBA m(.) for FoD Θ must satisfy the conditions

in (5.1) and (5.2). A set of focal elements of Θ is F(Θ) = {A ⊆ Θ : m(A) >

0} = {c, c̄, Θ}. m({c}) and m({c̄}) are the supports assigned to the proposition

that an example has label c and the proposition that an example does not have

label c, respectively. For simplicity, we will write m(c) instead of m({c}) and

m(c̄) instead of m({c̄}).

When assigning the values to m(c) and m(c̄), both the confidence in the label

c and the accuracy of the classifier in choosing class c must be taken into con-

sideration. The confidence in the label c is given by f ∗(x, c) and the class c

classification accuracy of the classifier is

Acc(c) = P (c|c)P (c) + P (c̄|c̄)P (c̄) (5.9)

or, equivalently,

Acc(c) = 1− {P (c|c̄)P (c̄) + P (c̄|c)P (c)}.

Θ represents the event of imperfect knowledge regarding the class labels of the

example. In other words, we are in doubt whether the document has label c or

not. This is perhaps due to the lack of trust in the classifier, and consequently

the classification result provided by the classifier should be ignored. From this

rationale, the BBA assigned to the FoD Θ is calculated as:

m(Θ) = P (c|c̄)P (c̄) + P (c̄|c)P (c) (5.10)

m(c) = f ∗(x, c) ∗ {1− P (c|c̄)P (c̄)− P (c̄|c)P (c)} (5.11)

m(c̄) = f ∗(x, c̄) ∗ {1− P (c|c̄)P (c̄)− P (c̄|c)P (c)}

= (1− f ∗(x, c)) ∗ {1− P (c|c̄)P (c̄)− P (c̄|c)P (c)} (5.12)



80

The computation of basic belief assignments just described is summarized in Fig-

ure 5.3. Appendix A gives the formal proof that the masses thus calculated satisfy

the condition from Equation 5.2.

5.3.2 Combining evidence from multiple classifiers

To decide on the labels of a new example, one must gather information regarding

the belief in each label from all subclassifiers. Individual subclassifiers may produce

different decisions, but the conflicts can be resolved to some extent by DST. A group

decision will be made by new classification criteria derived from the summative in-

formation of the subclassifier committees. Let us start with two subclassifiers. Any

two items of evidence favoring or against a class label from two subclassifiers can be

combined into one piece by Dempster’s rule as follows.

Let m1 and m2 be two sets of BBAs associated with a label c for the same frame of

discernment Θ that correspond to subclassifiers 1 and 2, respectively. Let m denote

the BBA resulting from the combination of m1 and m2.

Consider the normalization constant

K12 = 1− {m1(c)m2(c̄) + m1(c̄)m2(c)}.

K12 measures the conflicting information about the label c from the two subclassi-

fiers. Providing K12 > 0, the two bodies of evidence {Θ, F,m1} and {Θ,F,m2} are

compatible. Then Dempster’s evidence combination function m is



81

Steps in assigning basic belief to each label:

1. For each classifier, compute the degree of belief, f∗(x, c), in each label.

(a) When f(x, c) ≥ 0 for all labels,

f∗(x, c) = 0.5 +
f(x, c)−min

c′
f(x, c′)

2× [max
c′

f(x, c′)−min
c′

f(x, c′)]

(b) When f(x, c) < 0 for all labels,

f∗(x, c) =
f(x, c)−min

c′
f(x, c′)

2× [max
c′

f(x, c′)−min
c′

f(x, c′)]

(c) When some f(x, c) ≥ 0 and some f(x, c) < 0,

f∗(x, c) =




−

f(x,c)−min
c′

f(x,c′)

2×min
c′

f(x,c′) , if f(x, c) < 0

0.5 + f(x,c)
2×max

c′
f(x,c′) , if f(x, c) ≥ 0

2. For each classifier, compute the BBA for each label as follows.

(a) Compute classification error probabilities for each label:

P (c̄|c) =
#of class c examples that are not classified as class c

#of class c examples

P (c|c̄) =
#of examples not in class c that are classified as class c

#of examples that are not class c

(b) Estimate prior probability of each label:

P (c) =
#of class c examples
Total #of examples

and P (c̄) = 1− P (c)

(c) Compute a set of BBAs associated with each label:

m(Θ) = P (c|c̄)P (c̄) + P (c̄|c)P (c)

m(c) = f∗(x, c) ∗ {1− P (c|c̄)P (c̄)− P (c̄|c)P (c)}

m(c̄) = f∗(x, c̄) ∗ {1− P (c|c̄)P (c̄)− P (c̄|c)P (c)}
= (1− f∗(x, c)) ∗ {1− P (c|c̄)P (c̄)− P (c̄|c)P (c)}

Figure 5.3: Computing basic belief assignments in multi-label problems



82

m(A) ≡ (m1 ⊕m2)(A)

=





0, if A = ∅

(m1(c)m2(c) + m1(c)m2(Θ) + m1(Θ)m2(c))÷K12, if A = c

(m1(c̄)m2(c̄) + m1(c̄)m2(Θ) + m1(Θ)m2(c̄))÷K12, if A = c̄

(m1(Θ)m2(Θ))÷K12, if A = Θ

(5.13)

The orthogonal sum operator ⊕ possesses the commutative and associative prop-

erties:

(m1 ⊕m2)(A) = (m2 ⊕m1)(A) (5.14)

m1 ⊕ (m2 ⊕m3)(A) = (m1 ⊕m2)⊕m3(A), (5.15)

Thus, the above evidence combination function (5.13) that are used to combine two

subclassifiers can be extended to the combination of any number of subclassifiers in

a straightforward manner.

Since there are only two elements, c and c̄, in the frame Θ, the beliefs assigned

to singletons c and c̄ are Bel(c) = m(c) and Bel(c̄) = m(c̄). Therefore, after the

fusion process is completely done, the final classification rule for predicting class c

can be established as a simple decision rule:

“Assign label c to the new example if Bel(c) > Bel(c̄).”

If Bel(c) ≤ Bel(c̄), declare that the new example does not belong to class c.



CHAPTER 6

Performance of Multi-label
Dempster-Shafer Fusion

Having proposed and presented a solution in the previous chapters to deal with a large

number of features when inducing multi-label classifiers, it is necessary to get a clear

idea on how the classifier induction system that was developed performs in practical

applications. We proceed to implement the master algorithm, DST-Fusion, with

AdaBoost.MH as a baseline learner and evaluate its performance empirically on two

real-life data sets. We revisit the EUROVOC database and conduct an in-depth study

on the system behavior. Some of the early experiments demonstrated a promising

performance of the DST-Fusion on subsets of EUROVOC data (Sarinnapakorn and

Kubat 2007b, 2007a, 2008). Results from a full set of experiments will be reported

in this chapter. In particular, the performance of DST-Fusion is compared to the

regular no fusion approach where the AdaBoost.MH is applied straight on the whole

feature set. We focus on studying the effects of a variety of factors, e.g., the number of

subclassifiers and the number of boosting rounds, on the DST-Fusion’s performance.

The experiments are designed with different parameter configurations; the general

framework is described in the Experimental Setup section.

Experiments with EUROVOC data prove that DST Fusion is efficient and has

acceptable predictive accuracy for text categorization task. Likewise, further experi-

83



84

ments with another data set, documents from the Reuters test collection, confirm the

same outcome.

6.1 Experimental Setup

Hundreds of experiments are carried out to answer several issues of interest. Three

main factors that can affect the performance of DST-Fusion are examined at this

point.

• Total number of features in the original feature set

• Number of feature subsets (or number of subclassifiers to be combined by the

master algorithm)

• Number of boosting iterations used in the AdaBoost.MH

The number of boosting iterations is a parameter that must be specified when

running AdaBoost.MH . It has an influence on the accuracy of AdaBoost.MH . In each

iteration only one feature is selected for weak hypothesis. As such, the total number

of features actually utilized in the AdaBoost.MH classifier is bounded by the number

of boosting rounds. We are tempted to use a large number of boosting rounds to allow

more features be selected. However, there seems to be a controversy as to whether

AdaBoost will overfit the training data. Overfitting refers to the situation when, after

going through the training cycle too many times, the training error stabilizes (does

not decrease any more) or sometimes even starts to increase. It was shown theo-

retically and empirically by Grove and Schuurmans (1998) and Schapire (1999) that

boosting overfits, whereas some other authors, Drucker and Cortes (1996), Quinlan

(1996a), and Breiman (2001), observed empirically that boosting tends not to overfit,



85

even when run for thousands of rounds. Thus concerning what number of boosting

iterations to use in our study, we decided to run two different sets of experiments. In

one setting, always use a fixed number of boosting rounds regardless of the number

of features in the training data. And in the other, set the number of boosting rounds

as a fixed percentage of the number of features in the training data.

When separating features in the original feature set into subsets, there is a question

about how to form feature subsets. Previous studies of similar nature indicated that

fusion of classifiers from feature subsets that are overlapping usually outperforms in-

dividual subclassifiers, and in many applications it is better than the classifier from all

features. We too reach the same conclusion in our experimentation that overlapping

feature subsets offer a slightly higher accuracy than non-overlapping ones. The ad-

vantage of overlapping over non-overlapping will be fully discussed later in Chapter 8.

For almost all of the experiments discussed here, we use overlapping feature subsets,

even though it will increase the computation time of fusion. In some instances, results

from non-overlapping feature subsets will also be presented for comparison.

DST-Fusion is tested and compared to “NoFusion” approach on two data sets,

a simplified EUROVOC database described in Section 4.1 and a publicly available

data set in Reuters test collection, Reuters Corpus Volume 1 version 2 (RCV1-v2).

RCV1 has been used as a benchmark for many supervised learning methods including

Naive Bayes, SVM and k-NN. For NoFusion, AdaBoost.MH is run on all features and

for DST-Fusion, the system runs AdaBoost.MH on feature subsets with subsequent

fusion of their recommendations. Experiments in this chapter share the same basic

design:

• No any special technique for feature selection is used.

• Feature subsets are of equal size and 20% of the features in each subset are

overlapping with other subsets. Thus, if the feature set has 4,000 features and



86

five feature subsets are to be formed, then each feature subset will have 1,000

features, 200 of which also appear in other subsets.

• Evaluation criteria are based on those performance measures in Sectionse:perform

and the computational costs which are measured by the total CPU time required

for induction of classification rules and classification of test examples. The ex-

periments are run on an AMD 64 bits Dual Core X2 3800+ with 3GB memory.

Note that the total CPU time is governed by the induction process since the

classification of test examples actually takes only a small fraction of induction

time.

• For EUROVOC data, the performance measures are estimated from 5-fold CV.

For RCV1-v2 data, 5 independent training sets and 5 independent test sets are

readily available 1 (Lewis et al. 2004), so there is no need for cross validation.

The performance measures are estimated from 5 test data sets.

• Any statistical tests are based on 5% significance level.

6.2 Experiments with EUROVOC Data

In this section we study the specification of parameters involved in DST-Fusion.

We carry out experiments on DST-Fusion to analyze the effects of three factors:

number of features, number of subclassifiers, and number of boosting rounds. In the

experiments, one factor is changed, the rest of them are fixed each time, and the

impact on classification performance from the selected factor is studied. The results

are presented below.

1http://mlkd.csd.auth.gr/multilabel.html#Datasets



87

6.2.1 Effect of number of features

In our first experiment, we randomly select 500, 1,000, 2,000, and 4,000 (or all) of

the features from the simplified database. In each of the four cases, we divide the

feature set into five equally-sized subsets with 20% overlapping with other subsets,

thus obtaining sets of 125, 250, 500, and 1,000 features, respectively. The number of

boosting rounds used by AdaBoost.MH is set at 10% of the number of features (e.g.,

50 rounds for the experiment with 500 features).

Figures 6.1 and 6.2 compare the micro- and macro-averaging measurements of

the DST-Fusion to NoFusion. DST-Fusion has lower micro-average precision but

higher micro-average recall than NoFusion. Trading off between precision and recall,

DST-Fusion becomes comparable to the NoFusion on micro-average F1 basis. On the

macro-averaging version, NoFusion wins DST-Fusion noticeably. DST-Fusion is as

good as NoFusion on macro-average recall only when the number of features is 4,000.

However, the low precision of DST-Fusion causes its F1 measure to be lower. So, in

general DST-Fusion does worse than NoFusion on rare or small classes. Also shown

in the figures of micro-average F1 and macro-average F1 are the measurements of in-

dividual subclassifiers. DST-Fusion clearly outperforms each individual subclassifier.

For other performance criteria specific to multi-label problems, we see from Figure

6.3 that NoFusion performs better than DST-Fusion. Hamming loss is not shown in

this figure because it has similar pattern as the ranking loss. Besides, the difference

between two methods is very small; yet it is significant. Complete results can be

found in Appendix B which again support that DST-Fusion performs no worse than

individual subclassifiers.

It is obvious that the performance of both systems improves with the growing num-

ber of features but the improvement is quite unimpressive—many of the thousands

of features seem to be redundant or irrelevant. Interestingly, the margin between the



88

Figure 6.1: Micro-averaging of precision, recall, and F1 measure of DST-Fusion and
NoFusion when varying number of features. ♦ indicates F1 of each subclassifier.



89

Figure 6.2: Macro-averaging of precision, recall, and F1 measure of DST-Fusion and
NoFusion when varying number of features. ♦ indicates F1 of each subclassifier.



90

Figure 6.3: Multi-label performance measures of DST-Fusion and the NoFusion, when
varying number of features.



91

performance of DST-Fusion and NoFusion does not appear to depend on the total

number of features involved in the experiment. Furthermore, it is seen that classi-

fier fusion always incurs certain loss in classification performance, e.g., lower average

precision and higher ranking loss. Nonetheless, the loss never exceeds 5% on the

average precision measure and 2% on the ranking loss. There is an exception with

the micro-average F1 measure where the DST-Fusion and NoFusion do not differ. In

any case, these small losses are only marginal and may be deemed acceptable in view

of the fact that features were chosen at random and no effort has been made to opti-

mize feature-set selection. They can likely be tolerated if compensated by compelling

computational savings.

Figure 6.4 depicts the interplay between the CPU time of induction and average

precision. As we have seen earlier, the average precision increases steadily, though

gradually, as we have more and more features. And while the difference in the av-

erage precisions of the two methods is relatively constant, the computational costs

of NoFusion grow much faster than those of DST-Fusion. For example, for the case

of 4,000 features, the induction of the NoFusion version takes more than five times

longer than the induction of the DST-Fusion version. (Recall that for fusion we use

feature subsets having 20% of the features overlapped with each other. This amounts

to longer induction time to process extra number of features. If non-overlapping fea-

ture subsets are used or the overlapping percentage is smaller, DST-Fusion would

use less time than what is shown here.) In the real-world setting, with a hundred

thousand features in the entire domain of EUROVOC data, we expect this favorable

impact to be even more strongly pronounced.



92

Figure 6.4: Total CPU time and average precision of DST-Fusion and NoFusion when
varying number of features, 5-fold CV.



93

6.2.2 Effect of number of subclassifiers

In this section we want to understand how the behavior of the fusion system depends

on the number of subclassifiers that it combines. With this aim, we divide the 4,000

features in four different ways such that each subset has 20% of the features overlap-

ping with other sets: 5 sets of 1,000 features each, 10 sets of 500 features each, 20

sets of 250 features each, and 40 sets of 125 features each. For each of these divisions,

we use AdaBoost.MH to induce subclassifiers from feature subsets and followed by

DST-Fusion. As before, the number of boosting rounds is 10% of the number of

features in the training set. The results of the DST-Fusion will be compared to the

performance of “NoFusion” classifier which is a single classifier induced from all 4,000

features. We may think of this “NoFusion” classifier as a special case of DST-Fusion

where the number of subclassifiers is 1.

The results of all experiments are summarized in Figure 6.5 and Table 6.1. It is not

surprising to observe that the number of subclassifiers has an important impact on the

accuracy. The performance of DST-Fusion along all evaluation criteria deteriorates

with the growing number of subclassifiers. Moving from the NoFusion case (or DST-

Fusion of one subclassifier) to the DST-Fusion of 40 subclassifiers has led to a drop

in average precision of 24%, from 75% to 51%, which is prohibitive. This deficiency

notwithstanding, DST-Fusion is superior to individual subclassifiers. Another thing to

notice is that the coverage goes up slowly from 6.89 of NoFusion to 8.93 of DST-Fusion

of 20 subclassifiers, and then jumps to 18.02 of DST-Fusion of 40 subclassifiers. If the

NoFusion classifier is used to assign labels to an example, in average it has to assign

about 8 labels to be able to get all the correct labels of that example. Note that the

majority of examples in this simplified EUROVOC database have 3 to 4 labels with

the label cardinality 3.6. That is, half of the labels that NoFusion classifier assigns to

that example are incorrect. For DST-Fusion of 40 subclassifiers, the coverage of 18.02



94

Table 6.1: Performance of NoFusion and DST-Fusion for different numbers of sub-
classifiers.

# Sub Average Coverage Hamming One Error Ranking
classifiers Precision Loss Loss

1 0.75 6.89 0.083 0.20 0.078
NoFusion ±0.01 ±0.04 ±0.002 ±0.02 ±0.002

5 0.70 7.72 0.095 0.23 0.095
±0.01 ±0.03 ±0.002 ±0.02 ±0.003

10 0.68 8.28 0.102 0.26 0.106
±0.01 ±0.09 ±0.002 ±0.02 ±0.003

20 0.64 8.93 0.106 0.30 0.120
±0.01 ±0.08 ±0.002 ±0.03 ±0.004

40 0.51 18.02 0.111 0.40 0.349
±0.01 ±0.75 ±0.001 ±0.03 ±0.019

out of the total number of class labels 30 means the classifier is hardly getting labels

assigned correctly. We hypothesize that this failure of DST-Fusion in this case may

be due to the fact that 125 features are not enough to enable induction of sufficiently

good subclassifiers.

On the upside, Figure 6.6 indicates that, for the performance loss, we are com-

pensated by substantial savings in the CPU time. For 5 subclassifiers, the CPU time

consumed by induction using the DST-Fusion represents about 20% of the NoFusion

CPU time, and for 10 subclassifiers, only 15%, while the performance as measured

by the average precision is less affected, a decrease by 5 to 7%. For practical appli-

cations, using exceedingly many subclassifiers would cause too much precision loss to

be justified for the savings in time, however.



95

Figure 6.5: Micro-average and macro-average F1 from 5-fold CV of DST-Fusion when
varying number of subclassifiers. No-Fusion is simply DST-Fusion of one subclassifier
and is included for comparison. ♦ indicates F1 of each subclassifier.



96

Figure 6.6: Total CPU time and average precision of DST-Fusion when varying num-
ber of subclassifiers, 5-fold CV.



97

6.2.3 Effect of number of boosting rounds

Since our classifier induction system requires a baseline induction algorithm to run

on feature subsets and AdaBoost.MH is opted for, we want to know to what extent

the quality of the baseline algorithm can be manipulated by changing the number of

boosting rounds so that the final classification results from fusion can be improved.

In the experiments of previous sections, the number of boosting rounds was made

to depend on the number of features, i.e., we used a fixed percentage, 10%, of the

number of features as the number of rounds. Here we carry out experiments with just

AdaBoost.MH (or NoFusion) under the setting resembling to that in Section 6.2.1,

except that the number of boosting rounds is varied as 10, 50, 100, and 250. There

are 500, 1,000, 2,000, and 4,000 features divided into 5 equally-sized subsets with 20%

overlapping with other subsets.

The average precision of AdaBoost.MH is shown in Figure 6.7. For a given feature

set, generally increasing the number of boosting rounds will increase the average

precision. But it would not be worthwhile to use too large number of rounds because

after a sufficient number of iterations has been reached, all useful information from

features is likely to have been utilized, and there will be no much more gain in

accuracy. Furthermore, we see that when the number of boosting rounds is 10, no

matter how many features we have, we get the same average precision. This tells

us that 10 boosting rounds is not enough to extract necessary information from the

many features we have to do a good classification. The results of this experiment

demonstrate that many features in EUROVOC are not informative. In addition, it

supports our decision to use the number of boosting rounds equal to 10% of the

number of features in the experiments.

In the next set of experiments, we look at how increasing the number of boosting

rounds of AdaBoost.MH can help improve DST-Fusion to compete with NoFusion.



98

Figure 6.7: Average precision of AdaBoost.MH when using different numbers of boost-
ing rounds.



99

Table 6.2: Mean and standard deviation from 5-fold CV of 5 evaluation measures for
DST-Fusion of 5 subclassifiers using 1,000 features each.

# Boosting Average Coverage Hamming One Error Ranking
Rounds Precision Loss Loss

100 0.70 7.72 0.095 0.23 0.095
±0.01 ±0.03 ±0.002 ±0.02 ±0.003

200 0.73 7.24 0.09 0.21 0.09
±0.01 ±0.04 ±0.001 ±0.01 ±0.003

300 0.75 6.97 0.09 0.19 0.08
±0.01 ±0.02 ±0.001 ±0.01 ±0.002

400 0.76 6.81 0.08 0.18 0.08
±0.01 ±0.02 ±0.001 ±0.02 ±0.002

All 4,000 features are used to create 5 overlapping subsets of 1,000 features each and

vary the number of boosting rounds as 100, 200, 300, and 400 for every case. It is

clear from the results summarized in Table 6.2 that the performance of DST-Fusion

systematically rises, but at a slow pace, with the increasing number of rounds.

This said, one has to make sure that the induction does not incur impractically

large costs. Figure 6.8 indicates that the computational costs grow linearly in the

number of boosting rounds, in an exchange for not-so-impressive performance gain.

The average precision and the total CPU time of NoFusion (AdaBoost.MH run on

4,000 features set using 400 boosting rounds) are added in the figure as a reference. It

is interesting to observe that DST-Fusion can perform comparably to or even better

than NoFusion if the number of boosting rounds for inducing subclassifiers is large

enough. The micro- and macro-average F1 of DST-Fusion increase and even outstrip

those of NoFusion when the number of boosting rounds is at least 200. At that

point the CPU time required to run DST-Fusion is still only half of that required by

NoFusion. Concerning average precision, DST-Fusion reaches the same accuracy as



100

NoFusion with 300 boosting rounds. More than 300 rounds would make DST-Fusion

better than NoFusion, but that will call for longer total CPU time which may not be

desirable.

Another point of interest regarding the number of boosting rounds is how DST-

Fusion performs in comparison to NoFusion if both methods use the same number of

boosting rounds irrespective of the number of features. Figure 6.8 illustrates one such

situation where DST-Fusion uses 400 boosting rounds on each feature subset and it is

found that DST-Fusion is better than NoFusion that also uses 400 boosting rounds on

every performance criterion. More experimental results for other numbers of boosting

rounds are included in Appendix C. All results suggest that DST-Fusion usually

outperforms NoFusion when both of them use the same number of boosting rounds.

However it becomes obvious that DST-Fusion loses its computational advantage over

NoFusion. The total processing time of DST-Fusion appears to be close to or higher

than that is required by NoFusion. This may not be necessarily a reason to discourage

the use of DST-Fusion. If we are not subject to time constraint, but are restrained

only by computer capacity, we could as well consider using the DST-Fusion in place

of NoFusion in order to gain greater accuracy.

6.2.4 Classifying EUROVOC subtree data

EUROVOC database has hierarchically organized category structure. In previous sec-

tions, experiments were carried out on the simplified database that contains 10,000

documents described by 4,000 features and classified into 30 top-level classes of the

classification hierarchy. In this section we want to know the behavior of DST-Fusion

when dealing with classes in the lower-level of hierarchy. A top-level class of the sim-

plified database is selected for study. Its subtree has 3,197 documents classified into



101

Figure 6.8: Total CPU time, average precision, micro-average and macro-average F1

of DST-Fusion when varying number of boosting rounds, 5-fold CV. Total CPU time
and corresponding performance measures of NoFusion are shown as reference.



102

7 classes. Out of 4,000 features, 109 features have common or constant values across

all classes, which means they do not have any power to discriminate classes. The

distribution of classes in this subtree is shown in Figure 6.9. These data are imbal-

anced; there is one class that has few observations compared to others. Figure 6.10

shows the number of documents that have different numbers of labels. The majority,

60%, of the subtree data are single-labeled, and the rest, 40%, are multi-labeled with

the number of labels ranging from 2 to 4. The subtree has label cardinality 1.49 and

label density 0.21.

We apply DST-Fusion on 5 overlapping feature subsets of equal size, 125, 250, 500,

and 1,000 features. The results from DST-Fusion and NoFusion on the subtree data

are in Figure 6.11. We reach similar conclusions as in the experiments of top-level

classes. DST-Fusion cannot perform as well as NoFusion, but the difference in the

performance is fairly small and it does not seem to depend on the number of features.

DST-Fusion is still more accurate than individual subclassifiers. Figure 6.12 shows

the CPU time required to run DST-Fusion and NoFusion. Because there are much less

number of classes (7 versus 30 classes) and less number of documents (3,197 versus

10,000 documents) involved in subtree, the CPU time for both methods is many times

less than what needed to process the whole simplified database. Again we see that

DST-Fusion can save us processing time, although the savings may not be as great

as we have seen from the top-level classification. For 500 features, DST-Fusion cuts

down half of the time spent by NoFusion and for 4,000 features, DST-Fusion uses less

than 1/3 of the time needed for NoFusion. Hence from these experiments, we have

verified that DST-Fusion has the ability to handle subtree classes.



103

Figure 6.9: Class distribution of a EUROVOC subtree



104

Figure 6.10: Number of documents in a EUROVOC subtree having different number
of class labels.



105

Figure 6.11: Performance of DST-Fusion and NoFusion on EUROVOC subtree data
when varying number of features. ♦ indicates measurement of each subclassifier.



106

Figure 6.12: CPU time and average precision of DST-Fusion and NoFusion on EU-
ROVOC subtree data when varying number of features.



107

6.3 Experiments with RCV1-v2 Data

Having seen promising results with EUROVOC data, we are interested to see how

the DST-Fusion performs on other data sets. Here we select a data set from Reuters

collection, Reuters Corpus Volume 1 (RCV1), to experiment with. Reuters, Ltd.

is the largest international text and television news agency whose editorial division

produces more than 11,000 stories a day in 23 languages. RCV1 is a high quality

and large corpus of newswire stories drawn from one of Reuters’ online databases

that consist of only English language stories, and was released and made available

by Reuters in 2000 for research purposes (Rose et al. 2002). It contains a corpus

of over 800,000 manually categorized Reuters news articles from 20 Aug 1996 to 19

Aug 1997. A modified version of this corpus, called the Reuters Corpus Volume 1

version 2 (RCV1-v2), was extensively documented by Lewis et al. (2004) after they

corrected various inconsistencies in the original corpus. RCV1-v2 is a standardized

collection of documents suitable for analysis and testing; it provides benchmark data

for testing several widely used supervised learning methods.

Every data set has 3,000 documents, each being labeled by one or more topics

in the set of 101 topic categories. Data are very sparse; there is a total of 47,236

features, many of which have zero values. We randomly select only 2,000 features

from a little over 2,000 features having non-zero values in more than 18 documents.

Shown in Figure 6.13 are the class distributions of documents in one training set and

its corresponding test set. The two distributions are in agreement indicating both

data sets are from the same population. The data are imbalanced; two major classes

have more than 500 documents, and the rest of classes have less than 500 documents

with many classes under 100 documents. Figure 6.14 displays the multi-label nature

of documents in these two data sets. The majority, 60%, of documents have 2 to

3 labels, 15% have a singe label, and the remaining have more than 3 labels. The



108

highest number of labels a document has is 11 in the training set, and 13 in the test

set. For the other 4 training sets and 4 test sets, their distributions and the multi-

label patterns look identical to the two sets presented here. See Appendix D for a

complete profile of all data. The average label cardinality from all data sets is 2.9,

and the label density is 0.03.

We vary the number of features in the experiments as 500, 1,000, 1,500, and

2,000, and for each case, the feature set is divided into five equally-sized subsets with

20% of the features in each subset overlapping with other subsets. Since features in

RCV1-v2 data are presumably more informative than features found in EUROVOC

data, we set the number of boosting rounds used by AdaBoost.MH to 20% of the

number of features. The results in Figures 6.15 and 6.16 are the standard evaluation

criteria of DST-Fusion and NoFusion. DST-Fusion performs better than each of

subclassifiers that it combines. It has higher micro-average recall than NoFusion,

but its micro-average precision is always lower. In consequence, micro-average F1 of

DST-Fusion is slightly smaller than that of NoFusion. For macro-averaging measures,

DST-Fusion has higher macro-average recall with more than 1,000 features and same

macro-average F1 as NoFusion with 2,000 features. The multi-label performance

measures in Figure 6.17 all indicate that DST-Fusion is a little less effective than

NoFusion.

On the efficiency side, Figure 6.18 exhibits the superiority of DST-Fusion; it is

roughly three times faster than NoFusion. While both DST-Fusion and NoFusion

perform better, though marginally, with more features, the difference in the perfor-

mance between the two is smaller as more features being used. This means that in an

actual application with a large number of features we can use DST-Fusion instead of

NoFusion without too much accuracy loss while reducing the processing time down

to one-third.



109

Figure 6.13: Class distributions of documents in RCV1-v2 experimental training data
and test data, non-disjoint classes. 3,000 documents in each set.



110

Figure 6.14: Number of documents in RCV1-v2 experimental training data and test
data having different numbers of class labels.



111

Figure 6.15: Micro-average recall, precision, and F1 of DST-Fusion and NoFusion for
RCV1-v2 data.



112

Figure 6.16: Macro-average recall, precision, and F1 of DST-Fusion and NoFusion for
RCV1-v2 data.



113

Figure 6.17: Performance of DST-Fusion and NoFusion for RCV1-v2 data as measured
by multi-label evaluation criteria.



114

Figure 6.18: Total CPU time and average precision of DST-Fusion and NoFusion for
RCV1-v2 data.



115

6.4 Benefits of Fusion

Previous sections have provided experimental evidence regarding the performance of

DST-Fusion. Results from experiments on two data sets agree. In summary, DST-

Fusion generally suffers some accuracy loss when compared to the classifier induced

from all features processed collectively, and effectiveness of DST-Fusion decreases with

increasing number of subclassifiers. This disadvantage, however, is well compensated

by the significant gain in induction speed. When we subdivide the feature set into a

few subsets, we have seen that DST-Fusion brings about convincing computational

savings without too much compromising classification performance. The savings in

time is larger when having more features while the precision loss is about the same

regardless of the number of features. Additionally, the experiments illustrated that

the performance of DST-Fusion can be boosted to reach the same level of accuracy

as NoFusion by increasing the number of boosting rounds of AdaBoost.MH that we

use as a baseline induction algorithm.

Classifier learning is the most time and resource consuming task for text catego-

rization. Even if time permits, for a very large training data set, a fast CPU and

big memory are needed to train data, which could be an obstruction for usual induc-

tion. Our proposed fusion approach can alleviate the problem of computational costs

associated with the current no-fusion approach. DST-Fusion can scale up well with

respect to high numbers of features. It yields a speedup for induction methods where

the computational complexity is superlinear in the number of features. Indeed the

CPU time in Figures 6.4 and 6.18 shows that DST-Fusion exhibits such a speedup

approximately 3 times faster for RCV1-v2 data and EUROVOC data with the num-

ber of features up to 2,000 and at least 5 times faster for EUROVOC data with 4,000

features.



116

DST-Fusion works by combining evidence from subclassifiers that are generated

independently from feature subsets. This makes DST-Fusion a preferred method

because it is more efficient, more convenient, and faster to work with small data sets,

particularly when we have limited computing resources. For example, the memory

requirements of each separate run is less with fewer data. Besides, the ability to split

the classification task gives us more flexibility in processing data. The independence

of subclassifier induction means that the process of inducing subclassifiers needs not

wait for one subclassifier to finish before another can be induced. In other words, the

induction can be done simultaneously for every subclassifier. The implication is that

DST-Fusion can fully take advantage of parallel processing. Figures 6.19 and 6.20

show the process real time required by DST-Fusion for EUROVOC and RCV1-v2 data

when parallel processing is exploited. The learning task now can be accomplished in

much less time. The implementation of DST-Fusion as a parallel learning algorithm

enables fast learning that is desirable in some practical applications.



117

Figure 6.19: Real time and average precision of NoFusion and DST-Fusion when
subclassifiers are processed in parallel, EUROVOC data



118

Figure 6.20: Real time and average precision of NoFusion and DST-Fusion when
subclassifiers are processed in parallel, RCV1-v2 data



CHAPTER 7

Comparison of Fusion Methods

A master algorithm to combine outputs from subclassifier committees is an essential

component of the proposed multi-label classifier induction system. We have devel-

oped a master algorithm called DST-Fusion based on the Dempster-Shafer theory.

Dempster-Shafer’s evidence combination is just one among a few classifier combina-

tion methods that we may choose to apply to the multi-label problems. Some other

combination schemes that we have considered include simple or unweighted majority

voting, weighted majority voting, and weighted sum methods.

These three classifier combination methods were originally created for single-label

classification. In the following sections, we modify them such that they can com-

bine predictions of multiple multi-label classifiers. We then carry on a comparative

study on the performance of these combination methods and DST-Fusion using the

simplified EUROVOC database.

119



120

7.1 Voting Methods and Weighted Sum for Multi-

label Problems

Majority/plurality voting system is a popular classifier combination technique used

in various disciplines. Many people are more accustomed to the term “majority”

voting than “plurality” voting, and often call the method majority voting when, in

fact, it is plurality voting. The slight difference between the two voting systems is

that majority voting requires the agreement of more than half of the committees to

reach a decision, whereas plurality voting selects the candidate with the most votes

(Lin et al. 2003). When there are only 2 candidates to select from, plurality voting

is simply the same as majority voting. Since in our multi-label classification scheme

we consider one label at a time and make a binary decision about the label, we will

use the more common name, majority voting, here.

The appeal of voting arises from its simplicity, generality, and effectiveness. The

implementation of majority voting is by far the simplest, and in many practical ap-

plications, there is only marginal performance difference between majority voting and

more advanced, complicated combination schemes, which require greater development

efforts. Theoretical justifications of the majority voting and plurality decision criteria

were provided by Lam and Suen (1997) and Lin et al. (2003), respectively. Lin et al.

also demonstrated that the combination of independent classifiers by voting results

in dramatic accuracy improvement. This is because the examples that are incorrectly

classified by one classifier have a good chance to be correctly classified by a majority

of the other classifiers.

We are interested in studying the prediction effectiveness of voting methods when

applied on the outputs of different multi-label subclassifiers induced by the baseline

algorithm, AdaBoost.MH. AdaBoost.MH generates a set of binary classification rules,

one rule for each class label with outputs yes/no for the label. We combine binary



121

outputs from subclassifiers by operating the combiner on one label each time. Suppose

the multiple classifier system comprises N subclassifiers. Each subclassifier makes its

decision about a label c independently of other subclassifiers. Let fj(x, .) be the

ranking function of an example x from subclassifier j, j = 1, 2, . . . , N . The three

voting methods considered are:

1. Simple or unweighted majority voting. Each subclassifier has one vote. Prior

knowledge of the behavior of the individual subclassifiers is not assumed for

this voting method. That is, the method treats each subclassifier as having the

same probability of voting correctly, or, in other words, all votes are equally

accurate. Therefore the majority vote rule for class label c is

Assign the label c to example x if

N∑
j=1

‖ fj(x, c) ≥ 0 ‖ > N/2

The summation simply counts the votes received for class c from the individual

subclassifiers. Class c is the consensus (majority) decision from the subclassifier

pool if the class c receives more than half of the total votes.

2. Weighted majority voting. Not all subclassifiers are built to be good at cate-

gorizing every label. The accuracy of the subclassifier j in making a decision

concerning the class c is the same as what has been defined in Equation (5.9):

Accj(c) = Pj(c|c)P (c) + Pj(c̄|c̄)P (c̄) (7.1)

where Pj(c|c′) is the conditional probability that the subclassifier j assigns class

label c to a class c′ example, and P (c) is the prior probability of class c.

When combining outputs related to a class c, we weight the vote of each sub-

classifier by the accuracy of the subclassifier in categorizing the class c. Votes



122

from more accurate subclassifiers receive higher weight. The weighted votes for

class c and class “not” c from all subclassifiers are computed. The weighted

majority vote rule for class label c is

Assign the label c to example x if

N∑
j=1

Accj(c) ‖ fj(x, c) ≥ 0 ‖ >

N∑
j=1

Accj(c) ‖ fj(x, c) < 0 ‖

That is, if the class c is supported by subclassifiers that are more accurate, then

it is more likely that the example belongs to class c.

3. Weighted sum. This variant of voting system works on the confidence scores of

the binary decision rather than the binary decision itself. The confidence scores

of all possible labels are weighted by the accuracies of the individual subclassi-

fiers, and then are summed over all subclassifiers to give the overall confidence

in the labels. The sum of weighted confidence score is used to determine if the

label should be assigned to the example.

Since subclassifiers are induced from different sets of data, the confidence scores

that come from the ranking functions are not truly conforming between subclas-

sifiers and must be transformed and normalized, as explained in Section 5.3.1,

before computing weighted sum. Let fj
∗(x, c) be the normalized confidence

score of class label c for the example x from subclassifier j. The weighted sums

of class c and class c̄ are
N∑

j=1

Accj(c) ∗ fj
∗(x, c) and

N∑
j=1

Accj(c) ∗ fj
∗(x, c̄), respec-

tively, where Accj(c) is the accuracy in predicting class c of subclassifier j in

Equation (7.1). The label of class that has higher weighted sum value will be

assigned to the example. Consider the case where we will assign class c to the

example. We should have



123

N∑
j=1

Accj(c) ∗ fj
∗(x, c) >

N∑
j=1

Accj(c) ∗ fj
∗(x, c̄)

=
N∑

j=1

Accj(c)(1− fj
∗(x, c))

=
N∑

j=1

Accj(c)−
N∑

j=1

Accj(c) ∗ fj
∗(x, c)

or

2 ∗
N∑

j=1

Accj(c) ∗ fj
∗(x, c) >

N∑
j=1

Accj(c)

which leads to the following weighted sum decision rule:

Assign the label c to example x if

w(c) =

N∑
j=1

Accj(c) ∗ fj
∗(x, c)

N∑
j=1

Accj(c)

> 0.5.

7.2 Comparing Four Fusion Methods

To gain insight on how the DST-Fusion performs as compared to the three afore-

mentioned voting methods, we carry out experiments on the simplified EUROVOC

database. We follow the same experimental setup described in Section 6.1.

Figures 7.1 and 7.2 compare the performance of the NoFusion, DST-Fusion, Weighted

majority voting, and Weighted sum. For fusion methods, the feature set is split

into 5 feature subsets from which 5 subclassifiers are induced and subsequently com-

bined by each of the fusion methods. The plain majority voting is omitted from the

graphs because it almost always underperforms the other approaches; the inclusion

of its chart would only reduce clarity. The standard performance criteria, micro- and



124

macro-averaging of precision, recall, and F1, are used. The graphs show that the

performances of DST-Fusion and the weighted sum are comparable to NoFusion from

micro-average F1 standpoint. A closer look reveals that DST-Fusion and weighted

sum have the lowest micro-average precision but the highest micro-average recall

among all methods with no exception for NoFusion, while the two majority-voting

schemes have poor micro-average recall and, hence, micro-average F1. In terms of

macro-averaging, NoFusion outperforms every method. The charts also show the re-

sults of the individual subclassifiers. We see that DST-Fusion, weighted sum, and

NoFusion outperform each single subclassifier, whereas the majority voting (weighted

and unweighted) occasionally fails to outperform the best subclassifier.

Figure 7.3 compares the performance of the fusion methods along the multi-label

performance criteria. Again, DST-Fusion and the weighted sum outperform the other

fusion methods, though they still cannot compete with NoFusion on some measures.

For majority voting methods, they perform poorly, and quite often they are inferior

to even subclassifiers.

It is interesting to note that DST-Fusion and the weighted sum turn out to be

very close in performance. Their charts are nearly undistinguishable. DST-Fusion

is slightly better than weighted sum on the recall, while the weighted sum is only

marginally better than DST-Fusion on the precision. That is, DST-Fusion tends

to assign labels to the documents more often than the weighted sum does. When

subjected to the pairwise t-test, the differences in the performance of DST-Fusion

and the weighted sum are statistically insignificant. However, this does not mean

that they tend to label the documents with the same classes. In fact, we have found

from detailed study of classification results that each of them misclassified different

documents, but they both committed about the same number of errors. We will

present more in-depth analysis of this issue in the next section.



125

Figure 7.1: Micro-averaging of precision, recall, and F1 for “NoFusion” and three
fusion methods when varying number of features. ♦ indicates F1 of each subclassifier.



126

Figure 7.2: Macro-averaging of precision, recall, and F1 for “NoFusion” and three
fusion methods when varying number of features. ♦ indicates F1 of each subclassifier.



127

Figure 7.3: Multi-label performance measures of three fusion methods and the “No-
Fusion”, when varying number of features.



128

In the next round of experiments, we explore the performances of the fusion

schemes when increasing the number of subclassifiers. Figure 7.4 shows that none

of the fusion methods can hardly perform at the same level as NoFusion. The micro-

and macro-average F1 of DST-Fusion and weighted sum decay with the growing num-

ber of subclassifiers, although they still clearly outperform the other voting methods.

We do not observe any discernible difference between DST-Fusion and the weighted

sum, except with 40 subclassifiers that the weighted sum seems to have a little higher

F1, but it is non-significant statistically.

7.3 Detailed Analysis of DST-Fusion and Weighted

Sum

Estimates of evaluation measures and statistical tests based on empirical results in the

previous section showed that DST-Fusion performs at the same level as the weighted

sum. Despite the test outcome, we notice that the two methods does not always

output the same set of labels for the same example. Further study on case by case

label prediction of test examples reveals that there are many examples where the

predictions by these two methods are opposite. DST-Fusion makes incorrect decisions

on some documents and the weighted sum makes incorrect decisions on some others,

but at the end, the total errors are the same for both. To illustrate how DST-Fusion

and weighted sum make different decisions, we will use two simple numerical examples.

Let us consider the combination of evidence for an arbitrary class, say class 1,

from 2 classifiers.



129

Figure 7.4: Micro- and macro-average F1 from 5-fold CV of three fusion methods:
DST-Fusion, weighted majority voting, and weighted sum, when varying number of
subclassifiers. NoFusion results are shown for comparison.



130

1. Suppose the normalized confidence scores of class 1 for one example are 0.7 from

classifier 1, and 0.05 from classifier 2. Classifiers 1 and 2 have accuracy 0.8 and

0.4, respectively. Then,

f1
∗(x, 1) = 0.7, f2

∗(x, 1) = 0.05

Acc1(1) = 0.8, Acc2(1) = 0.4

and, by Equations (5.10) and (5.11), we obtain the following BBAs:

m1(Θ) = 1− Acc1(1) = 0.2, m2(Θ) = 1− Acc2(1) = 0.6

m1(1) = f1
∗(x, 1) ∗ Acc1(1) = 0.56, m2(1) = f2

∗(x, 1) ∗ Acc2(1) = 0.02

We now apply the two fusion methods.

• Combining two classifiers by the weighted sum gives

w(1) =
Acc1(1) ∗ f1

∗(x, 1) + Acc2(1) ∗ f2
∗(x, 1)

Acc1(1) + Acc2(1)
= 0.4833 < 0.5.

Decision: Do not assign label 1 to the example.

• For DST-Fusion, we first compute K12 and then combine the evidence by

Equation (5.13).

K12 = 1− (m1(1) ∗m2(1̄) + m1(1̄) ∗m2(1)) = 0.7824

m(1) =
m1(1) ∗m2(1) + m1(1) ∗m2(Θ) + m1(Θ) ∗m2(1)

K12

= 0.4489

m(1̄) =
m1(1̄) ∗m2(1̄) + m1(1̄) ∗m2(Θ) + m1(Θ) ∗m2(1̄)

K12

= 0.3978

Bel(1) = m(1) > m(1̄) = Bel(1̄)

Decision: Assign label 1 to the instance.



131

In this example, DST-Fusion leans toward classifier 1 and chooses class 1 be-

cause classifier 1 has higher accuracy and classifier 1 believes in class 1. On

the contrary, weighted sum does not choose class 1 because classifier 2 is very

confident that the example is not class 1. The weighted sum seems to ignore

the fact that classifier 2 makes correct predictions less than half of the time

(Acc2(1) = 0.4).

2. Now suppose the normalized confidence scores of class 1 for another example are

0.7 from classifier 1, and 0.4 from classifier 2. Classifiers 1 and 2 have accuracy

0.53 and 0.9, respectively. That is,

f1
∗(x, 1) = 0.7, f2

∗(x, 1) = 0.4

Acc1(1) = 0.53, Acc2(1) = 0.9

Compute the corresponding BBAs of each classifier.

m1(Θ) = 1− Acc1(1) = 0.47, m2(Θ) = 1− Acc2(1) = 0.1

m1(1) = f1
∗(x, 1) ∗ Acc1(1) = 0.371, m2(1) = f2

∗(x, 1) ∗ Acc2(1) = 0.36

Then apply the fusion methods.

• Combining two classifiers by the weighted sum gives

w(1) =
Acc1(1) ∗ f1

∗(x, 1) + Acc2(1) ∗ f2
∗(x, 1)

Acc1(1) + Acc2(1)
= 0.5112 > 0.5.

Decision: Assign label 1 to the example.

• For DST-Fusion, compute K12 and combine evidence.

K12 = 1− (m1(1) ∗m2(1̄) + m1(1̄) ∗m2(1)) = 0.7424

m(1) =
m1(1) ∗m2(1) + m1(1) ∗m2(Θ) + m1(Θ) ∗m2(1)

K12

= 0.4578



132

m(1̄) =
m1(1̄) ∗m2(1̄) + m1(1̄) ∗m2(Θ) + m1(Θ) ∗m2(1̄)

K12

= 0.4789

Bel(1) = m(1) < m(1̄) = Bel(1̄)

Decision: Do not assign label 1 to the example.

In this example, DST-Fusion chooses to follow classifier 2 and not to label

the example with class 1 because classifier 2 has very high accuracy. Quite

the opposite, the weighted sum follows the prediction of classifier 1 although

classifier 2 is much more accurate than classifier 1.

To conclude, even though the experiments show DST-Fusion and the weighted sum

methods perform roughly the same on EUROVOC data, from the above numerical

examples, we can see that the decisions made by DST-Fusion are fundamentally

different from that by weighted sum. Weighted sum tends to base its decision on the

confidence in the label of the classifiers, whereas the DST-Fusion bases its decision

on the accuracy of classifiers. Following the Dempster-Shafer theory of evidence,

the inference mechanism of DST-Fusion is analogous to human reasoning process. It

seems more logical and sensible that we should believe in what the more accurate

classifier says. How much confidence the classifier has in a label does not help if the

classifier is not accurate. Therefore, with this analogy, we are in favor of DST-Fusion

and believe it should provide more trusted decisions than the weighted sum.



CHAPTER 8

Partitioning a Feature Space

We have presented a strategy to handle classification problems of multi-label data

in a high dimensional feature space. The very first step in exploiting the proposed

algorithm is to partition the large feature set into a number of subsets. Despite that,

the discussion on the feature set generation issue have been pushed aside, and in

the experiments of earlier chapters we plainly randomly separated the feature set

to generate feature subsets. In this last part of the dissertation we will look briefly

into this pending issue with some experiments. Would the ensemble of subclassifiers

yield accuracy at an acceptable level with simple random grouping of features? Or a

sophisticated method to generate a superior partition of the feature space is needed?

Admittedly features are the key of the whole classification process. However,

we will not go into the feature optimization topic here. Rather, it is assumed that

features in the entire large feature set have already gone through feature selection

procedure and we only need to divide features into groups from which subclassifiers

can be induced. We consider comparing two different arrangements of features in

feature subsets; one is the non-overlap where any two feature subsets are disjoint,

and the other is the overlap where different feature subsets have some features in

common so that they are not disjoint.

133



134

Concerning feature space partitioning, another question that has come up is

whether the mutual relations among features that might be weakened or eliminated

by the partitioning has any effect on the end result of the proposed fusion method.

We will investigate this point with the help of the principal component analysis to

identify the relationship between features.

8.1 Common Features in Feature Subsets

There is a number of studies related to the use of different feature subsets for each

classifier. Since feature subsets will have only a partial view of each data point,

diversity is very important in ensemble generation. Integrating classifications of base

classifiers trained on too similar ensemble members will show no improvement over

any of the constituent members due to redundant information. Ho (1998) has shown

that simple random selection of feature subsets is an effective technique for generating

feature subsets. Chen and Ho (2000) used decision forests for text categorization

where each tree in the forest is constructed in a randomly chosen feature subspace

and different feature dimensions may be selected at each split. Random subspace

method is effective if the data set size is small relative to its dimensionality

Greene et al. (2004) discussed and evaluated a variety of ensemble generation

strategies including random subspacing, random selection from the original feature

space with replacement, and algorithms based on clustering. They demonstrated

that diversity among ensemble members is necessary, but not sufficient to yield an

improved solution without the selection of a suitable fusion scheme.

In our original idea of using subclassifiers combination approach to circumvent

computational difficulty due to the high dimensional feature space is to simply subdi-

vide features in the feature set into smaller groups. If all feature subsets are disjoint,



135

the total number of features we need to process under this approach will not increase.

However this may not be an ideal partitioning if it does not produce accurate fi-

nal classification. It has been shown that using overlapping informative subsets of

features may help to improve the performance. Random subspacing and random

selection of features with replacement are examples of methods that output feature

subsets having some features in common. The total number of features to process will

increase in this case. Since it will require longer processing time, we want to know if

having common features in subsets improves the accuracy of the classification system.

The two cases that we compare are overlapping and non-overlapping feature subsets.

For non-overlapping subsets, we randomly select the desired number of features from

the feature set without replacement and place them in each subset. In this way the

feature subsets are mutually disjoint. For overlapping subsets, we want to be able to

control the number of common features in subsets in order to study and understand

the effect of common features better. Therefore instead of using random selection

with replacement, we add 25% more features into each of the non-overlapping feature

subsets. The additional features in each subset are randomly selected from those

features in other subsets. So the resulting feature subsets are not disjoint; there are

some features that are in more than one feature subset.

We experiment with EUROVOC data using 5 feature subsets of 4 different sizes,

100, 200, 400, and 800 features for non-overlap case, and 125, 250, 500, and 1,000

features for overlap case. In Figure 8.1, the average precisions of DST-Fusion with

overlapping and non-overlapping feature subsets are inferior to the one of NoFusion.

As anticipated, between the two DST-Fusion results, we get slightly higher average

precision from using overlapping feature subsets, but it comes at the price of longer

CPU time. Still, both of them use much less time than NoFusion. From these results

we may conclude that it is advantageous to use common features in DST-Fusion



136

to improve classification accuracy and save a considerable amount of time on data

processing.

8.2 Mutual Relations among Features

In any set of features, it is not unusual to find some of available features having

mutual relationship, and it may be necessary that the features that come from mul-

tiple relations must be joined together in order to have enough power to distinguish

classes. Since we generate feature subsets by randomly dividing the feature set, the

mutual relations among features would be disturbed. We are interested in learning if

there is any consequence of such division that may contribute to the degradation in

the performance of DST-Fusion when compared to NoFusion where all features are

together.

We study this issue on EUROVOC data with 1,000 and 2,000 features and RCV1-

v2 data with 2,000 features. The first thing is to identify features that are in the same

relationship. To accomplish this task, we consider two methods, cluster analysis and

principal component analysis.

Cluster analysis seeks to identify homogeneous subgroups of cases in the data, i.e.,

features that are similar or share some common traits will be grouped together. There

are several ensemble generation techniques that are clustering-based. However, the

application of cluster analysis on our two data sets failed to generate feature clusters

in the sizes appropriate for further fusion. For example, the 2,000 features of RCV1-

v2 data were grouped by k-mean clustering into one large cluster of 1,632 features,

and four small clusters of 217, 88, 39, and 24 features.

Principal component analysis (PCA) is a well known method for dimensionality

reduction of the feature space (Johnson and Wichern 2002). By analyzing the covari-



137

Figure 8.1: Total CPU time and average precision of two DST-Fusion cases, overlap
and non-overlap, and NoFusion when varying number of features, EUROVOC data
and 5-fold CV.



138

ance structure of data, a set of principal components are obtained. When the first few

principal components corresponding to large eigenvalues of the covariance matrix can

explain most of the total variation in the data, these few principal components can

replace all of the original features in further analysis without much loss of informa-

tion. However, our purpose of exploiting PCA here is different from what have been

explained. We will make use of the last few principal components that correspond

to very small eigenvalues to explore the linear dependence among features. This is

an effective method to detect the presence of multicollinearity in regression analysis

(Kutner et al. 2004).

For each of the data sets, we use the last five principal components to identify the

features that have strong linear relationship (see details in Appendix E). Then we

have 5 sets of features where features within each set are mutually dependent. For

comparison purpose, extra features are randomly selected to be added in these sets

so that each of them has the specified number of features. We apply DST-Fusion on

these five sets of features. The number of features in each subset is 500, when the

total number of features is 2,000, and 250 when the total number of features is 1,000.

The number of boosting rounds is 10% of the number of features for EUROVOC data

and 20% for RCV1-v2 data.

Presented in Tables 8.1 and 8.2 are the micro- and macro-average F1 and the

average precision. As before, NoFusion is apparently better than DST-Fusion on the

average precision measure. There is no obvious difference between the two formations,

random or PCA, of feature subsets, except the case of 2,000 features of EUROVOC

data where PCA has lower micro-average F1 than others.

These experiments tell us that random selection of features for feature subsets

gives equally good performance as using PCA to form feature subsets. Random

selection is preferred as it is easier. As a matter of fact, if a group of features have very



139

Table 8.1: Performance of NoFusion vs. DST-Fusion when features in feature subsets
are (1) randomly selected and (2) from PCA, EUROVOC data. Bold items indicate
significant difference from others at 0.05 level.

#Features Method Micro F Macro F Average Precision

1000 NoFusion 0.456 ± 0.020 0.372 ± 0.044 0.669 ± 0.006

Random 0.462 ± 0.020 0.294 ± 0.023 0.628 ± 0.007

PCA 0.425 ± 0.026 0.282 ± 0.020 0.617 ± 0.013

2000 NoFusion 0.510 ± 0.015 0.447 ± 0.034 0.710 ± 0.006

Random 0.503 ± 0.012 0.369 ± 0.025 0.669 ± 0.009

PCA 0.469 ± 0.005 0.357 ± 0.029 0.648 ± 0.004

Table 8.2: Performance of NoFusion vs. DST-Fusion when features in feature subsets
are (1) randomly selected and (2) from PCA, RCV1-v2 data. Bold items indicate the
method is significantly better at 0.05 level.

Method Micro F Macro F Average Precision

NoFusion 0.675 ± 0.010 0.339 ± 0.010 0.806 ± 0.005

Random 0.645 ± 0.007 0.330 ± 0.019 0.788 ± 0.004

PCA 0.644 ± 0.006 0.331 ± 0.008 0.787 ± 0.005



140

strong mutual relationship, it should not be necessary to use all features in that group

together. Features not present in the feature subset will find their representatives

in the subset. This is similar to what happens in the analysis of linear models with

multicollinearity problem. Multicollinearity does not affect goodness of fit of a model.

It merely makes the interpretation of the model harder. In other words, the prediction

is still accurate.

Though the knowledge of mutual relations among features does not seem to help in

the above experiments, we have tried another different way of utilizing the information

about mutual relations. Theoretically, a group of independent classifiers improve upon

the single best classifier when majority vote combination is used. However, Kuncheva

et al. (2000) and Kuncheva et al. (2002) suggested independent classifiers may not

be the best choice. They showed that dependent classifiers tend to offer a dramatic

improvement over the individual accuracy, and in general, negative dependence is

preferable. The negatively dependent classifiers will learn different aspects of training

data, so that ensembles of classifiers can search in a wide solution space (Ryu and

Sung-Bae 2002). They can intelligently complement each other, e.g., in the case when

a classifier has difficulty categorizing an example, the other classifiers may be able

to categorize it correctly. Quite the contrary, Shipp and Kuncheva (2002) indicated

that dependent set of classifiers may be either better or worse, and although diversity

is a desirable characteristic of feature subsets, diversity can be both beneficial or

harmful. In any case, it is agreeable that classifier combination will result in improved

classification performance if each separate feature subset contains some amount of

useful and complementary information, and provided the combination scheme can

exploit it.

To see if negatively correlated feature subsets will improve the performance of

DST-Fusion, we conduct an experiment with RCV1-v2 data. We separate 2,000 fea-



141

Table 8.3: Performance of NoFusion vs. DST-Fusion when feature subsets are from
(1) random selection, (2) PCA, and (3) negative correlation, RCV1-v2 data. Bold
items indicate the method is significantly better at 0.05 level.

Method Micro F Macro F Average Precision

NoFusion 0.675 ± 0.010 0.339 ± 0.010 0.806 ± 0.005

Random 0.645 ± 0.007 0.330 ± 0.019 0.788 ± 0.004

PCA 0.644 ± 0.006 0.331 ± 0.008 0.787 ± 0.005

NegCorr 0.636 ± 0.005 0.316 ± 0.014 0.779 ± 0.007

tures into 5 groups; two groups contain features that are positively correlated, another

two groups also contain features positively correlated among themselves but have neg-

ative correlation with features in the first two groups, and the last group contains

features that have very weak correlation with features in other groups. Table 8.3

shows the results of DST-Fusion from negative dependence feature subsets compared

to previous results of random selection and PCA feature subsets as well as NoFusion.

It is seen that DST-Fusion with random selection of feature subsets still compare fa-

vorably to other ensemble generation methods. The negative correlation does not do

well perhaps because features in this data set do not exhibit very strong relationship.

The largest pairwise correlation coefficient is found to be less than 0.15 in magnitude.



CHAPTER 9

Conclusion and Future Work

The dissertation has shown how text categorization, a major task in information

retrieval, can benefit from machine learning techniques. The main point to remember

is that text categorization differs from traditional classification problems in that each

document can belong to more than one category at the same time—each example can

have more than one class label. The dissertation therefore focused on the relatively

new problem of induction from multi-label examples. The experience made by the

many authors mentioned in the survey of literature is that this type of induction is

computationally very costly, sometime prohibitively so. The research reported in this

dissertation has resulted in a solution that significantly reduced these costs, paying

for this considerable speedup by modestly impaired classification performance.

9.1 Summary and Contributions

A critical aspect of the domain that inspired this work is that the number of fea-

tures describing each document is very high. This is serious in view of the fact that

many existing algorithms need time that is exponential, or at least supralinear, in

142



143

the number of features. The solution proposed in this dissertation reduces these com-

putational costs by the use of a so-called ensemble approach. The idea is to induce

several subclassifiers, each from a different subset of the features, and then combine

(“fuse”) the recommendation of these subclassifiers when applying them to the clas-

sification of testing examples.

Here are the major contributions of the work reported in this dissertation.

• The author designed and implemented a classifier induction system, DST-

Fusion, for the induction of multi-label classifiers. The system proves par-

ticularly efficient when applied to large sets of data. Its essential principle is

an ensemble of classifiers induced independently from feature subsets that are

much smaller than the original feature set. This speeds up induction techniques

whose computational complexity is superlinear in the number of features. The

developed approach has two major aspects: induction of subclassifiers and fu-

sion of subclassifiers. In the experiments reported here, the method made the

baseline induction algorithm, AdaBoost.MH much faster, and the final predic-

tive accuracy was not much worse than that observed in the case of learning

from the complete set of features combined. The method is scalable in the sense

that it does not collapse with the growing number of features.

• The author developed a method to combine the outputs of subclassifiers using

a scheme based on the principles of the Dempster-Shafer theory. Unlike some

other classifier combination methods, this scheme was shown to outperform any

of the individual classifiers it combines.

• The author modified three traditional voting methods for combining single-

label classifiers to make them handle multi-label domains. Extensive exper-



144

iments have evaluated the differences in the decisions made by two classifier

combination methods: the weighted sum and the Dempster-Shafer’s evidence

combination.

• The author compared the performance of four induction algorithms: AdaBoost.MH,

ADTree, C4.5 , and k-NN. From these, AdaBoost.MH was found to be much

faster than the others. Its accuracy was acceptable, though not the best.

DST-Fusion clearly outperformed simple majority voting and weighted majority

voting. Experimental results indicated that its performance was comparable also

to that of the weighted sum rule, but in some cases seemed to give more sensible

prediction.

Generally speaking, fusion of subclassifiers induced from feature subsets under-

performs a “full-scale” classifier induced from all features combined. However, by

accepting the small loss in accuracy, fusion has substantially reduced computational

costs. Experiments indicate that the performance of the fusion method can be fur-

ther improved by fine-tuning such as increasing the number of boosting rounds of the

baseline induction algorithm, AdaBoost.MH . This, of course, increases the computa-

tion time, thus reducing the main advantage of fusion. Obviously, a major tradeoff is

involved here.

Another advantage of the developed system is that each subclassifier is induced

from a small feature subset, and therefore the memory requirements of each separate

run are relatively small. Since inductions from different feature subsets can be handled

independently of each other, the method can easily be parallelized. Thus further

speeding up the induction process.

The author has also investigated the effect of feature subset selection on DST-

fusion’s performance. A few different ways of generating these feature subsets were



145

evaluated. It turned out that a simple random selection with some overlapping fea-

tures worked adequately and was not worse than more complicated methods.

9.2 Future Research Direction

The research has indicated promising performance of the fusion approach in domains

that call for induction of classifiers from very large sets of multi-label examples. The

following natural extensions perhaps deserve further investigation.

• A basic component of the classifier induction system is the baseline induction

algorithm. In this particular work, the AdaBoost.MH was chosen to this end.

However, this may not necessarily be the best choice. More than likely, using

a different algorithm for baseline induction might lead to higher performance.

An interesting candidate for baseline induction algorithm is SVM-Perf . SVM-

Perf is a support vector machine (SVM) that was improved by Joachims (2006)

to reach the accuracy of the standard SVM, but it runs faster. SVM has the

ability to generalize well in high dimensional feature space, and thus eliminates

the need for feature selection. This makes it attractive for text categorization.

In addition, in contrast to AdaBoost.MH where the number of boosting rounds

has high impact on performance, SVM is less dependent on parameter setting.

According to Joachims (2003), SVM promises a good prediction performance.

Therefore it would be interesting to see how DST-Fusion will perform when

SVM-Perf is used as the baseline induction algorithm.

• The weighted-sum rule turned out to have comparable performance to that of

DST-Fusion, but sometimes each of them assigned very different labels to the

same example. Comparing the two methods, DST-Fusion has slightly higher



146

recall, and the weighted sum has slightly higher precision. It would be of interest

to examine in detail the circumstances under which one method should be

given preference over the other. Ideally, the two methods might be used to

complement each other, and thus provide more reliable conclusion. For example,

another level of fusion may be implemented to combine the results of both

methods.

• In this work the question of the possible impact of feature selection methods

was more or less left aside. Nevertheless, the potential of feature-selection meth-

ods to improve classification performance has already been recognized in general

classification problems. However, a closely related issue to feature selection that

should be also considered is how to generate the feature subsets. While tradi-

tional feature selection algorithms aim to find the best set of features relevant to

the learning task and induction algorithm, the ensemble feature selection task

also seeks to find a set of feature subsets that will promote diversity among the

base classifiers. For example, if a feature-selection technique makes the induced

subclassifiers complement each other in the spirit of the boosting algorithms,

the accuracy of DST-Fusion is likely to improve. One possibility is to search

for good feature subsets by clustering algorithm.



APPENDIX A

Validity of the Proposed BBA
Calculation

Let Θ be a frame of discernment. Any basic belief assignment of a proposition A ⊆ Θ,

m(A) ∈ [0, 1], must satisfy the following conditions:

m(∅) = 0 (A.1)

∑
A⊆Θ

m(A) = 1 (A.2)

We will show that the calculation of the BBAs by the procedure described in

Section 5.3.1 produces BBAs that satisfy the above conditions:

Let us denote by P (c) the prior probability that an example belongs to class c,

and let P (c|c′) denote the conditional probability that the example is classified as

belonging to class c when, in fact, the correct class label is c′:

P (c|c′) = P (Classify an example as class c|True class of the example is c′)

For a single label c, we require that

P (True class is c) + P (True class is not c) = 1.

The first of these terms can be re-written as follows:

147



148

P (True class is c) = P (True class is c and classify as class c)

+P (True class is c and classify as class not c)

= P (Classify as class c|True class is c)P (True class is c)

+P (Classify as class not c|True class is c)P (True class is c)

= P (c|c)P (c) + P (c̄|c)P (c)

Doing the same for the second term, we obtain the following relationship:

P (True class is not c) = P (c|c̄)P (c̄) + P (c̄|c̄)P (c̄)

Putting the two terms together then establishes the following equality:

P (c|c)P (c) + P (c̄|c)P (c) + P (c|c̄)P (c̄) + P (c̄|c̄)P (c̄) = 1.

From here, we conclude that

P (c̄|c)P (c) + P (c|c̄)P (c̄) ≤ 1.

and, therefore,

m(Θ) = P (c|c̄)P (c̄) + P (c̄l|c)P (c) ≤ 1.

Finally, we obtain the following:

m(Θ) + m(c) + m(c̄) = [P (c|c̄)P (c̄) + P (c̄|c)P (c)]

+ f ∗(x, c)× [1− P (c|c̄)P (c̄)− P (c̄|c)P (c)]

+ [1− f ∗(x, c)]× [1− P (c|c̄)P (c̄)− P (c̄|c)P (c)]

= [P (c|c̄)P (c̄) + P (c̄|c)P (c)]

+ [1− P (c|c̄)P (c̄)− P (c̄|c)P (c)]

= 1.

This completes the proof.



APPENDIX B

Performance of DST-Fusion vs.
NoFusion

In the experiments of Section 6.2.1, we studied the effect of the number of features

on the performance of DST-Fusion and NoFusion using the simplified EUROVOC

database. We present in this appendix the detailed results. Four different sizes of

feature set were used: 500, 1,000, 2,000, and 4,000 features. For NoFusion, we ran the

AdaBoost.MH on each of the feature set. For DST-Fusion, in each case, the feature set

was divided into five equally-sized subsets with 20% of the features overlapping with

other subsets and then AdaBoost.MH was applied to feature subsets. AdaBoost.MH

trained these data with the number of boosting rounds equal to 10% of the number

of features.

Table B.1 shows five performance measurements that were estimated from 5-fold

CV for NoFusion and DST-Fusion as well as each of the 5 individual subclassifier.

No matter which feature size, DST-Fusion is not as good as NoFusion, but it has a

higher performance than individual subclassifiers.

149



150

Table B.1: Multi-label performance measurements for DST-Fusion of 5 subclassifiers
and NoFusion compared to individual subclassifiers. (Estimated from 5-fold CV. Bold
items indicate that NoFusion is significantly better at 0.05 level.)

.

# Features Average Coverage Hamming One Error Ranking
Precision Loss Loss

500
SET1 0.56 ± .008 10.20 ± .064 0.11 ± .001 0.41 ± .016 0.16 ± .003
SET2 0.57 ± .009 10.14 ± .103 0.11 ± .002 0.40 ± .019 0.15 ± .004
SET3 0.57 ± .008 10.13 ± .075 0.11 ± .001 0.40 ± .016 0.15 ± .003
SET4 0.56 ± .010 10.19 ± .097 0.11 ± .001 0.43 ± .017 0.16 ± .004
SET5 0.56 ± .008 10.28 ± .118 0.11 ± .001 0.42 ± .014 0.16 ± .004
DST 0.60 ± .009 9.59 ± .071 0.11 ± .001 0.35 ± .021 0.14 ± .004

NoFusion 0.64 ± .007 8.77 ± .094 0.10 ± .002 0.32 ± .018 0.12 ± .002

1000
SET1 0.58 ± .007 9.86 ± .101 0.11 ± .001 0.39 ± .016 0.15 ± .003
SET2 0.59 ± .007 9.72 ± .085 0.11 ± .002 0.37 ± .015 0.14 ± .003
SET3 0.57 ± .005 9.76 ± .076 0.11 ± .001 0.41 ± .016 0.15 ± .002
SET4 0.59 ± .006 9.50 ± .038 0.11 ± .001 0.39 ± .006 0.14 ± .003
SET5 0.59 ± .008 9.78 ± .092 0.11 ± .002 0.37 ± .012 0.14 ± .003
DST 0.63 ± .007 9.05 ± .045 0.11 ± .001 0.32 ± .019 0.12 ± .002

NoFusion 0.67 ± .006 8.15 ± .077 0.10 ± .001 0.29 ± .011 0.11 ± .002

2000
SET1 0.62 ± .008 9.12 ± .084 0.11 ± .002 0.35 ± .015 0.13 ± .003
SET2 0.62 ± .005 9.04 ± .036 0.10 ± .001 0.36 ± .004 0.13 ± .002
SET3 0.62 ± .005 9.00 ± .055 0.10 ± .001 0.35 ± .014 0.13 ± .002
SET4 0.61 ± .010 9.21 ± .100 0.11 ± .002 0.35 ± .022 0.13 ± .003
SET5 0.62 ± .009 9.13 ± .093 0.10 ± .002 0.35 ± .021 0.13 ± .004
DST 0.67 ± .009 8.35 ± .071 0.10 ± .002 0.27 ± .016 0.11 ± .003

NoFusion 0.71 ± .006 7.49 ± .042 0.09 ± .002 0.24 ± .015 0.09 ± .002

4000
SET1 0.65 ± .007 8.62 ± .075 0.10 ± .001 0.31 ± .017 0.12 ± .002
SET2 0.64 ± .008 8.76 ± .077 0.10 ± .002 0.33 ± .024 0.12 ± .002
SET3 0.65 ± .008 8.50 ± .056 0.10 ± .001 0.31 ± .016 0.12 ± .002
SET4 0.65 ± .006 8.55 ± .051 0.10 ± .001 0.31 ± .012 0.12 ± .003
SET5 0.64 ± .008 8.67 ± .051 0.10 ± .001 0.32 ± .018 0.12 ± .003
DST 0.70 ± .008 7.72 ± .031 0.10 ± .002 0.23 ± .017 0.10 ± .003

NoFusion 0.75 ± .008 6.89 ± .041 0.08 ± .002 0.20 ± .016 0.08 ± .002



APPENDIX C

Number of Boosting Rounds in
Experiments

The number of boosting rounds for AdaBoost.MH used in most of our experiments

with EUROVOC data was 10% of the number of features. As AdaBoost.MH selects

one feature at each round, the 10% of the number of features would allow both

NoFusion and DST-Fusion to utilize the information from approximately the same

number of features out of the feature pool that is available to them when categorizing

a document. This gives an advantage to NoFusion to select good features for weak

hypotheses from a larger set of features, while DST-Fusion is restricted to selecting

features from smaller feature subsets. Consequently, NoFusion has higher accuracy

than DST-Fusion and inevitably longer run time. What would be interesting is if

DST-Fusion uses the same number of boosting rounds as NoFusion and surely DST-

Fusion will not be in a favorable position considering the CPU time, is DST-Fusion

able to compete with NoFusion on accuracy?

To understand this point better, we do more experimentation on the simplified

EUROVOC database. For NoFusion, we use all 1,000 features, and for DST-Fusion,

we divide feature set into 5 subsets of equal size in 2 ways, non-overlapping subsets

each having 200 features and 20% overlapping subsets each having 250 features. The

number of boosting rounds is always set to be the same for both approaches, and we

151



152

Table C.1: Performance of NoFusion and DST-Fusion of 5 subclassifiers from over-
lapping and non-overlapping feature subsets. Both methods use the same number of
boosting rounds.

#Boosting Method Micro F Macro F Average CPU Time
Rounds Precision (Minutes)

10 NoFusion .369 ± .010 .173 ± .008 .580 ± .009 8.1
DST NonOvl .426 ± .008 .228 ± .012 .588 ± .010 8.0
DST Ovl .426 ± .006 .224 ± .009 .587 ± .008 10.0

50 NoFusion .425 ± .028 .282 ± .024 .644 ± .007 35.7
DST NonOvl .482 ± .004 .349 ± .022 .646 ± .007 35.2
DST Ovl .486 ± .006 .378 ± .034 .651 ± .006 43.7

100 NoFusion .456 ± .020 .372 ± .044 .669 ± .006 71.6
DST NonOvl .510 ± .010 .416 ± .044 .665 ± .007 69.0
DST Ovl .509 ± .007 .414 ± .031 .669 ± .006 86.5

250 NoFusion .494 ± .006 .442 ± .028 .701 ± .004 174.7
DST NonOvl .546 ± .011 .488 ± .034 .694 ± .004 170.6
DST Ovl .550 ± .010 .489 ± .028 .698 ± .005 211.8

vary this number as 10, 50, 100, and 250. Table C.1 compares NoFusion to DST-

Fusion for overlap and non-overlap cases. Learning from overlapping feature subsets

usually produces somewhat better classifiers than learning from non-overlapping sub-

sets. DST-Fusion is superior to NoFusion on micro- and macro-average F1 On average

precision measure, DST-Fusion also tends to be better. As far as the CPU time is

concerned, DST-Fusion with non-overlapping feature subsets uses a little less total

CPU time than NoFusion, and DST-Fusion with overlapping subsets uses more time

than NoFusion due to more features in total need to be processed.



APPENDIX D

Profile of RCV1-v2 Data

RCV1-v2 is a text categorization test collection converted from Reuters Corpus Vol-

ume 1 (RCV1) after removing various errors by Lewis et al. (2004). It consists

of 804,414 newswires stories based on data released by Reuters, Ltd. Each news

story (document) has been categorized according to its content and identified by a

unique document ID. A total of 47,236 features are extracted from the documents

and indexed.

Five training sets and five test sets from RCV1-v2 collection 1 are selected for use

in our experiments. There are 103 topic categories, 101 with one or more positive

training examples on training sets. Figure D.1 shows the distributions of topic cat-

egories and Figure D.2 shows the multi-label character of documents in each of the

data sets. Obviously, all data sets possess almost identical multi-label characteristics.

1http://mlkd.csd.auth.gr/multilabel.html#Datasets

153



154

Figure D.1: Class distributions of documents in each of five RCV1-v2 experimental
training data sets and five test data sets, non-disjoint classes. 3,000 documents in
each set.



155

Figure D.2: Number of documents in each of five RCV1-v2 experimental training
data sets and five test data sets having different numbers of class labels.



APPENDIX E

Linear Relationship Between
Features

The principal component analysis (PCA) is concerned with explaining the variance-

covariance structure of a set of variables (or features) through a few new variables

which are linear combinations of the original variables. By creating new data of this

smaller set of new variables, the dimensionality of original data is reduced (John-

son and Wichern 2002). Dimensionality reduction is usually the main purpose for

exploiting PCA. Another less common use of PCA is in identifying the source of

multicollinearity in data.

Principal components are particular linear combinations of the p random variables

x1, x2, . . . , xp, with three important properties: (1) the principal components are

uncorrelated, (2) the first principal component has the highest variance, the second

principal component has the second highest variance, and so on, and (3) the total

variation in all the principal components combined equal to the total variation in the

original variables x1, x2, . . . , xp. The new variables with such properties can be easily

obtained from the eigenanalysis of the covariance matrix or the correlation matrix of

x1, x2, . . . , xp.

Let the original data X be an n× p data matrix of n observations on each of the

p variables x1, x2, . . . , xp and let S be a p × p sample covariance matrix of x1, x2,

156



157

. . . , xp. If (λ1, e1), (λ2, e2), . . . , (λp, ep) are the p eigenvalue-eigenvector pairs of the

matrix S, then the i-th principal component is

ui = e
′
i(x− x̄) = ei1(x1 − x̄1) + ei2(x2 − x̄2) + . . . + eip(xp − x̄p), i = 1, 2, . . . , p

where

λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0,

e
′
i = (ei1, ei2, . . . , eip) is the i-th eigenvector,

x
′

= (x1, x2, . . . , xp) is any observation vector of the p variables, x1, x2, . . . , xp,

and

x̄
′

= (x̄1, x̄2, . . . , x̄p) is the sample mean vector of the p variables, x1, x2, . . . , xp.

The i-th principal component has sample variance λi and the sample covariance

of any pair of principal components is 0. In addition, if sii is the sample covariance

of the variable xi, then the total sample variance in all variables x1, x2, . . . , xp is

p∑
i=1

sii = λ1 + λ2 + . . . + λp

which is the total sample variance in all the principal components. This means that

instead of working with the original variables x1, x2, . . . , xp, we can work with the

principal components and get the same result. There is no loss of information since

all of the variation in the original data is accounted for by the principal components.

PCA can be carried out on the p× p sample correlation matrix R of the variables

x1, x2, . . . , xp in the same fashion as with the covariance matrix. If (λ1, e1), (λ2,

e2), . . . , (λp, ep) are the p eigenvalue-eigenvector pairs of the matrix R, then the i-th

principal component takes the form

ui = e
′
iz = ei1z1 + ei2z2 + . . . + eipzp, i = 1, 2, . . . , p (E.1)

where



158

z
′

= (z1, z2, . . . , zp) is the vector of standardized observations defined as

zk =
(xk − x̄k)√

skk

, k = 1, 2, . . . , p

The principal components from the sample correlation matrix still have the same

properties as before. That is, the i-th principal component has sample variance λi,

the sample covariance of any pair of principal components is 0, and the total sample

variance in all the principal components is

λ1 + λ2 + . . . + λp = p

which is the total sample variance in all standardized variables z1, z2, . . . , zp.

The last few principal components represent linear functions of the original vari-

ables with minimal variance. If the variances are close to zero, it means these compo-

nents vary very little around their mean values which is also zero. For example, the

p-th principal component has variance λp ≈ 0, we can approximate this last principal

component by its mean, 0. That is, from Equation (E.1) we have

up = ep1z1 + ep2z2 + . . . + eppzp ≈ 0, (E.2)

or

ep1
(x1 − x̄1)√

s11

+ ep2
(x2 − x̄2)√

s22

+ . . . + epp
(xp − x̄p)√

spp

≈ 0. (E.3)

This gives the approximate linear relationship among variables. We can simplify

the relationship by discarding any variable i associated with small eigenvector coef-

ficient epi. More linear relationships can also be found from other last few principal

components in the same way.



Bibliography

Aas, K. and Eikvil, L. 1999. Text categorisation: A survey. Technical report,

Norwegian Computing Center, June 1999.

Al-Ani, A. and Deriche, M. 2002. A new technique for combining multiple

classifiers using the Dempster-Shafer theory of evidence. Jour. of Artificial

Intelligence Research 17, 333–361.

Altınçay, H. 2005. A Dempster-Shafer theoretic framework for boosting based

ensemble design. Pattern Analysis & Applications 8, 3 (Dec.), 287–302.

Aphinyanaphongs, Y., Tsamardinos, I., Statnikov, A., Hardin, D.,

and Aliferis, C. F. 2005. Text categorization models for high quality

article retrieval in internal medicine. Journal of the American Medical In-

formatics Association 12, 2, 207–216.

Bahler, D. and Navarro, L. 2000. Methods for combining heterogeneous

sets of classifiers. In Proc. Natl. Conf. on Artificial Intelligence (AAAI)

Workshop on New Research Problems for Machine Learning.

Bell, D. A., Guan, J., and Bi, Y. 2005. On combining classifier mass

functions for text categorization. IEEE Trans. on Knowledge and Data En-

gineering 17, 10 (Oct.), 1307–1319.

Bennett, P. N., Dumais, S. T., and Horvitz, E. 2005. The combination

of text classifiers using reliability indicators. Information Retrieval 8, 1, 67–

100.

Bi, Y., Bell, D. A., Wang, H., Guo, G., and Greer, K. 2004. Combin-

ing multiple classifiers using Dempster’s rule of combination for text catego-

rization. In Proc. Int’l Conf. Modeling Decisions for Artificial Intelligence.

127–138.

Bi, Y., McClean, S., and Anderson, T. 2005. Improving classification

decisions by multiple knowledge. In Proc. IEEE Int’l Conf. on Tools with

Artificial Intelligence (ICTAI’05). 340–347.

159



160

Blake, C. and Pratt, W. 2001. Better rules, few features: A semantic

approach to selecting features from text. In ICDM. 59–66.

Boutell, M. R., Luo, J., Shen, X., and Brown, C. M. 2004. Learning

multi-label scene classification. Pattern Recognition 37, 9, 1757–1771.

Breiman, L. 2001. Random forests. Machine Learning 45, 5–32.

Cai, L. and Hofmann, T. 2003. Text categorization by boosting automati-

cally extracted concepts. In SIGIR. 182–189.

Calvo, R. A., Lee, J.-M., and Li, X. 2004. Managing content with auto-

matic document classification. Journal of Digital Information 5.

Challa, S. and Koks, D. 2004. Bayesian and dempstershafer fusion. 29,

145–176.

Chen, H. and Ho, T. K. 2000. Evaluation of decision forests on text catego-

rization. In Proceedings of the 7th SPIE Conference on Document Recogni-

tion and Retrieval, D. P. Lopresti and J. Zhou, Eds. SPIE - The International

Society for Optical Engineering, San Jose, US, 191–199.

Chen, J., Zhou, X., and Wu, Z. 2004. A multi-label Chinese text catego-

rization system based on boosting algorithm. In Proc. IEEE Int’l Conf. on

Computer and Information Technology (CIT’04). 1153–1158.

Clare, A. and King, R. D. 2001. Knowledge discovery in multi-label phe-

notype data. In Proceedings of the 5th European Conference on Principles

of Data Mining and Knowledge Discovery (PKDD’01). Freiburg, Germany.

De Comité, F., Gilleron, R., and Tommasi, M. 2001. Learning multi-

label alternating decision trees and applications. In Proc. Conf. en Appren-

tissage Automatique (CAP’01). 195–210.

De Comité, F., Gilleron, R., and Tommasi, M. 2003. Learning multi-

label alternating decision trees from texts and data. In Proc. Int’l Conf. on

Machine Learning and Data Mining (MLDM’03). 35–49.

Diao, L., Hu, K., Lu, Y., and Shi, C. 2002. Boosting simple decision trees

with Bayesian learning for text categorization. In Proc. World Congress on

Intelligent Control and Automation. Shanghai, P.R.China, 321–325.

Diplaris, S., Tsoumakas, G., Mitkas, P. A., and Vlahavas, I. P. 2005.

Protein classification with multiple algorithms. In Panhellenic Conference

on Informatics. 448–456.



161

Drucker, H. and Cortes, C. 1996. Boosting decision trees. In Advances in

Neural Information processing Systems 8. 479–485.

Esuli, A., Fagni, T., and Sebastiani, F. 2006. Mp-boost: A multiple-pivot

boosting algorithm and its application to text categorization. In Proceedings

of the 13th International Symposium on String Processing and Information

Retrieval (SPIRE’06). Glasgow, UK.

Eyheramendy, S., Lewis, D. D., and Madigan, D. 2003. On the naive

Bayes model for text categorization. In Proc. Int’l Workshop on Artificial

Intelligence and Statistics.

Feldman, R. and Sanger, J. 2007. The Text Mining Handbook: Advanced

Approaches in Analyzing Unstructured Data. Cambridge University Press,

New York, NY, 410.

Fern, X. Z. and Brodley, C. E. 2003. Boosting lazy decision trees. In

Proceedings of the Twentieth International Conference on Machine Learning

(ICML-2003). Washington, DC, USA, 178–185.

Forman, G. 2007. Feature selection for text classification. In Computational

Methods of Feature Selection. CRC Press/Taylor and Francis Group.

Freund, Y. and Mason, L. 1999. The alternating decision tree learning

algorithm,. In Proc. Int’l Conf. on Machine Learning (ICML’99). Morgan

Kaufmann, San Francisco, CA, 124–133.

Freund, Y. and Schapire, R. E. 1996. Experiments with a new boosting

algorithm. In Proc. Int’l Conf. on Machine Learning (ICML’96). 148–156.

Freund, Y. and Schapire, R. E. 1997. A decision-theoretic generalization

of on-line learning and an application to boosting. Jour. of Computer and

System Sciences 55, 1 (Aug.), 119–139.

Friedman, N., Geiger, D., and Goldszmidt, M. 1997. Bayesian network

classifiers. Machine Learning 29, 2-3, 131–163.

Fürnkranz, J. 2002. Hyperlink ensembles: A case study in hypertext classi-

fication. Information Fusion 3, 4 (Dec.), 299–312.

Gao, S., Wu, W., Lee, C.-H., and Chua, T.-S. 2004. A MFoM learning

approach to robust multiclass multi-label text categorization. In Proc. Int’l

Conf. on Machine Learning (ICML’04). 329–336.

Godbole, S. and Sarawagi, S. 2004. Discriminative methods for multi-

labeled classification. In Proc. Pacific-Asia Conference (PAKDD’04). 22–30.



162

Greene, D., Tsymbal, A., Bolshakova, N., and Cunningham, P. 2004.

Ensemble clustering in medical diagnostics. In CBMS ’04: Proceedings of the

17th IEEE Symposium on Computer-Based Medical Systems (CBMS’04).

IEEE Computer Society, Washington, DC, USA.

Grove, A. J. and Schuurmans, D. 1998. Boosting in the limit: Maximizing

the margin of learned ensembles. In AAAI/IAAI. 692–699.

Guyon, I. and Elisseeff, A. 2003. An introduction to variable and feature

selection. Journal of Machine Learning Research 3, 1157–1182.

Han, E.-H., Karypis, G., and Kumar, V. 2001. Text categorization using

weight adjusted k-nearest neighbor classification. In Pacific-Asia Conference

on Knowledge Discovery and Data Mining. 53–65.

Ho, T. K. 1998. The random subspace method for constructing decision forests.

IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 8,

832–844.

Holmes, G., Pfahringer, B., Kirkby, R., Frank, E., and Hall, M.

2002. Multiclass alternating decision trees. In Proc. European Conf. on Ma-

chine Learning (ECML’02). Springer Verlag.

Hsu, J. C. 1996. Multiple Comparisons: Theory and Methods. Chapman and

Hall/CRC.

Ittner, D. J., Lewis, D. D., and Ahn, D. D. 1995. Text categorization of

low quality images. In Proceedings of SDAIR-95, 4th Annual Symposium on

Document Analysis and Information Retrieval. Las Vegas, US, 301–315.

Jain, G., Ginwala, A., and Aslandogan, Y. A. 2004. An approach to text

classification using dimensionality reduction and combination of classifiers.

In IRI. 564–569.

Joachims, T. 1998. Text categorization with support vector machines: learn-

ing with many relevant features. In Proc. European Conf. on Machine Learn-

ing (ECML’98), C. Nédellec and C. Rouveirol, Eds. Number 1398. Springer

Verlag, Heidelberg, DE, Chemnitz, DE, 137–142.

Joachims, T. 2003. Learning to Classify Text Using Support Vector Machines.

Kluwer Academic Publishers, Norwell, MA.

Joachims, T. 2006. Training linear svms in linear time. In Proceedings of the

ACM Conference on Knowledge Discovery and Data Mining (KDD). ACM.



163

Johnson, M. and Cipolla, R. 2005. Improved image annotation and la-

belling through multi-label boosting. In Proc. the 2005 British Machine

Vision Conference (BMVC ’05).

Johnson, R. A. and Wichern, D. W. 2002. Applied Multivariate Statistical

Analysis , 5 ed. Prentice Hall.

Kang, F., Jin, R., and Sukthankar, R. 2006. Correlated label propagation

with application to multi-label learning. In CVPR (2). 1719–1726.

Koller, D. and Sahami, M. 1996. Toward optimal feature selection. In

ICML. 284–292.

Kubat, M. and Cooperson, M., J. 2001. A reduction technique for nearest-

neighbor classification: Small groups of examples. Intelligent Data Analy-

sis 5, 463–476.

Kuncheva, L., Skurichina, M., and Duin, R. 2002. An experimental study

on diversity for bagging and boosting with linear classifiers. Information

Fusion 3, 4, 245–258.

Kuncheva, L. I., Whitaker, C., Shipp, C., and Duin, R. 2000. Is indepen-

dence good for combining classifiers? Proc. 15th International Conference

on Pattern Recognition (ICPR’00) 2, 168–171.

Kutner, M. H., Nachtsheim, C. J., and Neter, J. 2004. Applied Linear

Regression Models , 4 ed. McGraw Hill/Irwin.

Kwok, J. T. 1998. Automated text categorization using support vector ma-

chine. In Proc. Int’l Conf. on Neural Information Processing (ICONIP’98).

Kitakyushu, JP, 347–351.

Lafferty, J. and Wasserman, L. 2006. Commentary - challenges in statis-

tical machine learning. Statistica Sinica 16, 307–322.

Lam, L. and Suen, C. Y. 1997. Application of majority voting to pattern

recognition: An analysis of the behavior and performance. IEEE Transac-

tions on Systems, Man, and Cybernetics 27, 5, 553–568.

Langley, P., Iba, W., and Thompson, K. 1992. An analysis of Bayesian

classifiers. In Proc. of the 10th Natl. Conf. on Artificial Intelligence. AAAI

Press and M.I.T. Press, 223–228.

Larkey, L. S. and Croft, W. B. 1996. Combining classifiers in text cat-

egorization. In Proc. ACM SIGIR Conf. Research and Development in In-

formation Retrieval, H.-P. Frei, D. Harman, P. Schäuble, and R. Wilkinson,

Eds. ACM Press, New York, US, Zürich, CH, 289–297.



164

Lauser, B. and Hotho, A. 2003. Automatic multi-label subject indexing in

a multilingual environment. In ECDL. 140–151.

Lewis, D. D. 1992a. An evaluation of phrasal and clustered representations on

a text categorization task. In Proceedings of SIGIR-92, 15th ACM Interna-

tional Conference on Research and Development in Information Retrieval.

37–50.

Lewis, D. D. 1992b. Feature Selection and Feature Extraction for Text Catego-

rization. In Proceedings of Speech and Natural Language Workshop. Morgan

Kaufmann, San Mateo, California, 212–217.

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. 2004. RCV1: A new

benchmark collection for text categorization research. Journal of Machine

Learning Research 5, 361–397.

Li, B., Lu, Q., and Yu, S. 2004. An adaptive k-nearest neighbor text catego-

rization strategy. ACM Trans. on Asian Language Information Processing

(TALIP) 3, 215–226.

Li, B., Yu, S., and Lu, Q. 2003. An improved k-nearest neighbor algorithm

for text categorization. In Proceedings of the 20th International Conference

on Computer Processing of Oriental Languages.

Li, T. and Ogihara, M. 2003. Detecting emotion in music. In Proc. of the

International Symposium on Music Information Retrieval. 239–240.

Lin, X., Yacoub, S. M., Burns, J., and Simske, S. J. 2003. Performance

analysis of pattern classifier combination by plurality voting. Pattern Recog-

nition Letters 24, 12, 1959–1969.

Liu, H. and Motoda, H. 2002. On issues of instance selection. Journal of

Data Mining and Knowledge Discovery 6, 115–130.

Lu, X., Wang, Y., and Jain, A. K. 2003. Combining classifiers for face recog-

nition. In IEEE International Conference on Multimedia & Expo (ICME’03).

Vol. III. 13–16.

McCallum, A. and Nigam, K. 1998. A comparison of event models for

naive Bayes text classification. In Proc. Workshop on Learning for Text

Categorization (AAAI’98).

McCallum, A. K. 1999. Multi-label text classification with a mixture model

trained by EM. In Proc. of AAAI’99 Workshop on Text Learning.

Michalski, R. S., Bratko, I., and Kubat, M. 1998. Machine Learning

and Data Mining: Methods and Applications. John Wiley.



165

Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T. M. 2000.

Text classification from labeled and unlabeled documents using EM. Ma-

chine Learning 39, 2/3, 103–134.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. Morgan Kauf-

mann Publishers, San Mateo, CA.

Quinlan, J. R. 1996a. Bagging, boosting, and c4.5. In Proc. of the 13th Nat’l.

Conf. on Artificial Intelligence. AAAI Press and the MIT Press, 725–730.

Quinlan, J. R. 1996b. Improved use of continuous attributes in c4.5. Journal

of Artificial Intelligence Research 4, 77–90.

Quinlan, J. R., Compton, P. J., Horn, K. A., and Lazarus, L. 1986.

Inductive knowledge acquisition: a case study. In Proceedings of the Second

Australian Conference on applications of expert systems. 183–204.

Rahman, A. F. R., Alam, H., and Fairhurst, M. C. 2002. Multiple clas-

sifier combination for character recognition: Revisiting the majority voting

system and its variations. Lecture Notes in Computer Science 2423, 167 ff.

Ramasubramanian and Paliwal. 2000. Fast nearest-neighbor search al-

gorithms based on approximation-elimination search. PATREC: Pattern

Recognition, Pergamon Press 33.

Roli, F. and Giacinto, G. 2002. Design of multiple classifier systems.

Rose, T., Stevenson, M., and Whitehead, M. 2002. The reuters corpus

volume 1 from yesterdays news to tomorrows language resources. In Pro-

ceedings of the Third International Conference on Language Resources and

Evaluation. 827–832.

Ruiz, M. E. and Srinivasan, P. 1998. Automatic text categorization using

neural networks. In Advances in Classification Research: Proc. Classification

Research Workshop (ASIS SIG/CR). Vol. 8. Medford, New Jersey, 59–72.

Ruta, D. and Gabrys, B. 2000. An overview of classifier fusion methods.

Computing and Information Systems 7, 1 (February), 1–10.

Ryu, J. and Sung-Bae, C. 2002. Gene expression classification using optimal

feature/classifier ensemble with negative correlation. In Proceedings of the

International Joint Conference on Neural Networks (IJCNN02). Honolulu,

Hawaii, 198–203.

Sarinnapakorn, K. and Kubat, M. 2007a. Combining subclassifiers in text

classification: A dst-based solution and a case study. IEEE Transactions on

Knowledge and Data Engineering 19, 12 (December), 1638–1651.



166

Sarinnapakorn, K. and Kubat, M. 2007b. Induction from multi-label

training examples in text categorization: Combining subclassifiers (a case

study). In Proc. of the 2007 International Conference on Artificial Intelli-

gence (ICAI’07). CSREA Press, 351–357.

Sarinnapakorn, K. and Kubat, M. 2008. Induction from multilabel ex-

amples in information retrieval systems. Applied Artificial Intelligence 22, 1

(January).

Schapire, R. E. 1990. The strength of weak learnability. Machine Learn-

ing 5, 2, 197–227.

Schapire, R. E. 1999. A brief introduction to boosting. In IJCAI. 1401–1406.

Schapire, R. E. and Singer, Y. 1999. Improved boosting using confidence-

rated predictions. Machine Learning 37, 3, 297–336.

Schapire, R. E. and Singer, Y. 2000. BoosTexter: A boosting-based system

for text categorization. Machine Learning 39, 2/3, 135–168.

Sebastiani, F. 2002. Machine learning in automated text categorization. ACM

Comput. Surv. 34, 1, 1–47.

Sebastiani, F. 2006. Classification of text, automatic. In The Encyclopedia

of Language and Linguistics , Second ed., K. Brown, Ed. Vol. 2. Elsevier

Science Publishers, Amsterdam, NL, 457–463.

Shafer, G. 1976. A mathematical theory of evidence. Princeton University

Press.

Shen, X., Boutell, M., Luo, J., and Brown, C. 2004. Multi-label machine

learning and its application to semantic scene classification. In Proc. Int’l

Symposium on Electronic Imaging. San Jose, CA.

Shipp, C. A. and Kuncheva, L. I. 2002. Relationships between combina-

tion methods and measures of diversity in combining classifiers. Information

Fusion 3, 2, 135–148.

Su, C.-Y., Lo, A., Lin, C.-C., Chang, F., and Hsu, W.-L. 2005. A novel

approach for prediction of multi-labeled protein subcellular localization for

prokaryotic bacteria. In 2005 IEEE Computational Systems Bioinformatics

Conference - Workshops (CSBW’05). IEEE Computer Society, Los Alami-

tos, CA, USA, 79–82.

Sun, A. and Lim, E.-P. 2001. Hierarchical text classification and evaluation.

In ICDM. 521–528.



167

Tsoumakas, G. and Katakis, I. 2007. Multi-label classification: An

overview. International Journal of Data Warehousing and Mining 3, 3, 1–13.

Uren, V. S. and Addis, T. R. 2002. How weak categorizers based upon

different principles strengthen performance. The Computer Journal 45, 5,

511–524.

Vafaie, H. and Jong, K. A. D. 1994. Improving a rule induction system us-

ing genetic algorithms. In Machine Learning IV: A Multistrategy Approach,

R. Michalski and G. Tecuci, Eds. Morgan-Kaufmann, 453–470.

van Rijsbergen, C. J. 1979. Information Retrieval , 2 ed. Butterworths, Lon-

don.

Vilar, D., Castro, M. J., and Sanchis, E. 2004. Multi-label text classi-

fication using multinomial models. In Proc. Espan a for Natural Language

Processing (EsTAL’04). Alicante, Spain.

Williams, N., Zander, S., and Armitage, G. 2006. A preliminary per-

formance comparison of five machine learning algorithms for practical ip

traffic flow classification. ACM SIGCOMM Computer Communication Re-

view 36, 5 (Oct.), 5–16.

Witten, I. H. and Frank, E. 2005. Data Mining: Practical machine learning

tools and techniques , 2 ed. Morgan Kaufmann, San Francisco, CA.

Yang, Y. 1999. An evaluation of statistical approaches to text categorization.

Information Retrieval 1, 1/2, 69–90.

Yang, Y. and Liu, X. 1999. A re-examination of text categorization meth-

ods. In Proc. ACM SIGIR Conf. Research and Development in Information

Retrieval. Berkley, 42–49.

Yang, Y. and Pedersen, J. O. 1997. A comparative study on feature selec-

tion in text categorization. In Proceedings of ICML-97, 14th International

Conference on Machine Learning, D. H. Fisher, Ed. Morgan Kaufmann Pub-

lishers, San Francisco, US, Nashville, US, 412–420.

Zhang, B. and Srihari, S. N. 2004. Fast k-nearest neighbor classification

using cluster-based trees. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 26, 4, 525–528.

Zhang, M.-L. and Zhou, Z.-H. 2005. A k-nearest neighbor based algorithm

for multi-label classification. In The 1st IEEE Int’l Conf. on Granular Com-

puting (GrC’05). Vol. 2. Beijing, China, 718–721.



168

Zhang, M.-L. and Zhou, Z.-H. 2006. Multilabel neural networks with ap-

plication to functional genomics and text categorization. IEEE Trans. on

Knowledge and Data Engineering , 1338–1351.

Zhu, S., Ji, X., Xu, W., and Gong, Y. 2005. Multi-labelled classification

using maximum entropy method. In Proc. ACM SIGIR Conf. Research and

Development in Information Retrieval. 274–281.


	University of Miami
	Scholarly Repository
	2007-12-21

	Induction of Classifiers from Multi-labeled Examples: an Information-retrieval Point of View
	Kanoksri Sarinnapakorn
	Recommended Citation


	tmp.1297370526.pdf.8zcIQ

