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The recent experiences of asymmetric urban military operations have highlighted

the pressing need for incorporation of soft data, such as informant statements, into

the fusion process. Soft data are fundamentally different from hard data (generated

by physics-based sensors), in the sense that the information they provide tends to be

qualitative and subject to interpretation. These characteristics pose a major obstacle

to using existing multi-sensor data fusion frameworks, which are quite well estab-

lished for hard data. Given the critical and sensitive nature of intended applications,

soft/hard data fusion requires a framework that allows for convenient representation of

various data uncertainties common in soft/hard data, and provides fusion techniques

that are robust, mathematically justifiable, and yet effective. This would allow an

analyst to make decisions with a better understanding of the associated uncertainties

as well as the fusion mechanism itself.

We present here a detailed account of an analytical solution to the task of soft/hard

data fusion. The developed analytical framework consists of several main components:

(i) a Dempster-Shafer (DS) belief theory based fusion strategy, (ii) a complete char-

acterization of the Fagin-Halpern DS theoretic (DST) conditional notion which forms

the basis of the data fusion framework, (iii) an evidence updating strategy for the

purpose of consensus generation, (iv) a credibility estimation technique for validation

of evidence, and (v) techniques for reducing computational burden associated with

the proposed fusion framework.

The proposed fusion strategy possesses several intuitively appealing features, and

satisfies certain algebraic and fusion properties making it particularly useful in a



soft/hard fusion environment. This strategy is based on DS belief theory which allows

for convenient representation of uncertainties that are typical of soft/hard domains.

The Fagin-Halpern (FH) notion is perhaps the most appropriate DST conditional

notion for soft/hard data fusion scenarios. It also forms the basis for our fusion

framework. We provide a complete characterization of the FH conditional notion.

This constitutes a strong result, that sets the foundation for understanding the FH

conditional notions and also establishes the theoretical grounds for development of

algorithms for efficient computation of FH conditionals. We also address the converse

problem of determining the evidence that may have generated a given change of belief.

This converse result can be of significant practical value in certain applications.

A consensus control strategy developed based on our fusion technique allows con-

sensus analysis to be carried out in a multitude of applications that call for extended

flexibility in uncertainty modeling. We provide a complete theoretical development of

the proposed consensus strategy with rigorous proofs. We make use of these consen-

sus notions to establish a data validation technique to assess credibility of evidence

in the absence of ground truth. Credibility estimates can be used in fusion equations

and also be used to estimate reliability of sources for subsequent fusion operations.

Computational overhead is one of the major obstacles associated with data fusion

operations, especially in DS theoretic methods. We propose a graphical procedure and

its associated message passing scheme for efficient computation of the conditionals,

along with the theoretical bounds for computational costs. In addition, we propose a

method based on statistical sampling techniques to approximate DST data models.

This allows for efficient computational representations as well as further reductions

in computational costs associated with DS theoretic fusion operations.

We have used several example scenarios throughout the presentation to clarify

and validate the proposed notions and techniques. We conclude the dissertation by

providing several guidelines for future research and summary of the work that is being

presented.
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Ê tΘ Estimate of Ground Truth Def. 33 p. 116

E∗Θ Consensus BoE Def. 33 p. 116

EΘ set of all possible BoEs on Θ Def. 34 p. 118

FC
i CUE based operator on DST BoEs Def. 34 p. 118

Crcf (EΘi) conflict-based credibility of EΘi Def. 36 p. 129

Crcf1 (EΘi) conflict-based credibility variant-1 Def. 36 p. 129

Crcf2 (EΘi) conflict-based credibility variant-2 Def. 36 p. 129

Crcon (EΘi) consensus-based credibility of EΘi Def. 37 p. 129

xviii



Xi node corresponding to focal element BXi § 8.2.1 p. 138

X set of nodes corresponding to FΘ|A § 8.2.1 p. 138

ChXi set of child nodes of node Xi ∈ X § 8.2.1 p. 138

PaXi set of parent nodes of node Xi ∈ X § 8.2.1 p. 138

DesXi set of descendent nodes of node Xi ∈ X § 8.2.1 p. 138

Des∗Xi represents DesXi ∪ {Xi} § 8.2.1 p. 138

SXi collection of focal elements as defined in Eqn. 8.4 p. 138

FXi collection of focal elements as defined in Eqn. 8.4 p. 138

S(F )
Xi

sum of masses of focal elements Eqn. 8.5 p. 139

S(S)
Xi

sum of masses of focal elements Eqn. 8.5 p. 139

S(|A)
Xi

conditional mass of BXi given A Eqn. 8.5 p. 139

µXj→Xi(Xi) message from node Xj § 8.2.2 p. 139

Tid.ioa cpu time to identify in(A) and out(A) § 8.3 p. 141

Ttr.bld cpu time to build the polytree § 8.3 p. 141

Tps.msg average cpu time per message p. 141

Tbp.ohd average overhead without the CCT § 8.3 p. 141

Tcp.std time to compute mΘ(· | A) without CCT § 8.3 p. 141

Tcp.cct time to compute mΘ(· | A) with the CCT § 8.3 p. 141

Ttr.pro sum of Ttr.bld and Tps.msg § 8.3 p. 141

Tthm cpu time with CCT p. 141

Tstd cpu time with standard method p. 141

xix



Chapter 1
Introduction

1.1 Overview

T
he military, with its desire to fortify its technological stronghold, has always

pushed the boundaries of science and engineering by driving researchers to

tackle very challenging problems. The realm of data fusion —a discipline where

refined position/identity estimates are sought by using techniques for association,

correlation and combination of data [4]—is of no difference.

The recent experiences of asymmetric urban military operations [5] have high-

lighted the pressing need for incorporation of soft data (in the form of expert opin-

ions, informant statements, tips etc.) into the fusion process [6]. Multi-sensor data

fusion, i.e., fusion of data from multiple sensors, is quite well established for hard

data [7–13]—such as GEOINT (GEOspatial INTelligence), SIGINT (SIGnal INTelli-

gence) and MASINT (Measurements And Signatures INTelligence)—which are often

generated by calibrated physical sensors with well-defined characteristics. In asym-

metric warfare scenarios, soft sources (i.e., human-based sources) often provide the

most crucial and perhaps the best complementary evidence to those provided by

hard sensors [14,15]. See Figure 2.1 for a classification of information types typical of

such applications. However, human-generated soft data, such as HUMINT (HUMan

1
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INTelligence), OSINT (Open Source INTelligence) and COMINT (COMmunications

INTelligence), are fundamentally different in the sense that the information they pro-

vide tend to be more qualitative and subjective to interpretation. Thus, a majority

of the existing data fusion techniques, which are not capable of properly dealing with

the uncertainties typical of soft data, become obsolete and are ineffective for soft/hard

fusion applications [6, 16–18].

represented in the data set.  Next, we outline a data 
collection protocol for recording coincident hard/soft 
information content, to be executed during operational 
exercises.  We conclude by discussing conceptual 
requirements on future algorithms and provide references 
to existing applicable work.  

2 Sources of Hard/Soft Information  
The information sources available to support urban 
operations span a variety of physical and human sensors, 
and they generate information elements that can be 
loosely classified as either hard or soft.  The physics-
based sensors create information by measuring physical 
properties with quantitative values, errors and biases.  The 
types of physics-based sensors commonly available 
include radars, infrared and visible light imaging sensors 
(GEOINT, or geospatial intelligence), signals intelligence 
(SIGINT) sensors, and other measurement devices 
commonly grouped under the term measurements and 
signatures intelligence (MASINT).  Friendly units are also 
often equipped with global positioning system (GPS) 
receivers, and they periodically report their location back 
to command and control centers.  All of these sensing 
modalities generate information elements that have 
mathematical representations, and therefore serve as 
inputs to semi-automated or automated processing 
techniques.  Physics-based sensor measurements directly 
or indirectly result in observations of objects like vehicles, 
buildings, transmitters, and geographical features.  For 
these objects, physics-based sensors provide information, 
as applicable, about properties like location, spatial extent, 
signal frequency, and signal location.  

Soft information sources are fundamentally different 
in that their information content tends to be more 
qualitative and requires significant context for complete 
interpretation.  Examples of soft information sources are 
human intelligence (HUMINT), open source intelligence 
(OSINT), and communications intelligence (COMINT), 
which is human communications derived from SIGINT 
sources.  Soft information sources, by definition, include a 
human observer somewhere along the measurement chain.  
Because humans use inherently qualitative models to 
represent the world they perceive, and because they 
communicate observations using context-dependent 
languages over bandwidth-limited channels (e.g., writing, 
facial expressions, and spoken languages), humans 
regularly introduce subjective content into their 
descriptions.   

Another characteristic of soft information sources is 
that they are often the only observers of complex entities 
such as people of interest, institutions, cultures, and 
insurgent cell activities.  Complete observability and 
modeling of any one of these entities eludes the capacity 
of a single person, and therefore the resulting human 
descriptions are understandably incomplete.  The human 
element of soft information sources makes them 
indispensable in the urban landscape, yet this same feature 
complicates the design of machine, human-machine, or 
even human-only soft information processing systems.  

Figure 1 summarizes example information reports 
available in an urban operation.  The information elements 
are listed under the generating source, each corresponding 
to selected, and generally accepted, intelligence 
disciplines [9].  Items above the diagonal are soft 
information elements, while items below the diagonal are 

Figure 1: Representative information elements in an urban operation.  Information elements are placed in the table 
according to generating source (header row) and classification between hard and soft information (below and above the 
diagonal, respectively). The sources correspond to selected intelligence disciplines described in [9]. HUMINT and OSINT 
sources provide mostly soft information, and they are significant sources of information on the human activities in the 
urban environment.  SIGINT, GEOINT, and MASINT provide mostly hard information, but also soft information that must 
be interpreted by humans (e.g. COMINT, shown as intercepted audio, imagery, or video). 
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Figure 1.1: Representative information elements in an urban operation. Information
elements are placed in the table according to generating source and classification
between hard and soft information. [6]

1.2 Motivation

Defense-related research agencies have initiated soft/hard fusion research with a

main focus on asymmetric urban warfare applications. The importance of this task is

obvious from the increasing number of military-funded projects, challenges, compe-

titions, MURIs (Multi University Research Initiatives), etc., dedicated to soft/hard

fusion related work. Even though this soft/hard fusion related work as initiated in

the defense establishment, its application in civil (i.e., non-military) scenarios is not

far away. The key role that soft data can play in civil applications is already becom-
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ing clear to the research community. The concept of participatory sensing [19], in

which a community (of observers) is tasked to provide information for applications,

such as urban planning and pubic health, is a clear example. In fact, a whole new

paradigm of communication methods can be developed to link the military, local au-

thorities and other agencies to establish a dynamic observational platform that makes

use of humans, who are continuously adding content to the Internet, as sensors. To

quote [20],

“... those billion amateurs are taking pictures of everything on the
planet and placing the images on Flickr and other sites. There are thou-
sands upon thousands of pictures of every known place, taken from all
angles and under all lighting conditions. Researchers are now using those
pictures to create three-dimensional images and panoramic vistas.”

Even though the fusion community has recently begun to look into soft/hard

data issues [6, 14, 16, 17, 21–25], there is still a dearth of fusion frameworks catered

specifically towards such data. Given the enormous potential for soft/hard data fusion

techniques in both military and civil applications, a framework—which consists of

robust, effective and yet mathematically justifiable fusion strategies that are capable

of adequately representing and accommodating the types of imperfections inherent in

soft/hard data—is very much in demand.

1.3 Challenges

Humans, in a sensing environment, do not behave similar to physical sensors. This

fundamental difference in sources makes soft/hard data fusion a very challenging task.

1.3.1 C1: Accommodating Data Imperfections

The types of uncertainties that can be handled by a fusion framework is often

governed by the employed uncertainty handling formalism(s). A typical fusion en-
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gine employs one or more uncertainty processing formalisms1 for representation and

processing of uncertain data.

For instance, if Bayesian probability is used, a disjunction, an uncertainty type

typical of soft data, cannot be represented without making simplifying assumptions.

To illustrate, consider a battlefield scenario, where a suite of soft and hard data sensors

are employed for detection and identification of hostile units. A statement of the form:

SS1 ≡“I’m 90% sure, it’s either a TANK or a TRUCK.” is very typical of an evidence

a witness may provide, for instance, about the UNIT TYPE of a detected hostile unit.

However, Bayesian inferencing cannot proceed2 with P (UNIT TYPE = TANK∪TRUCK) =

0.90; but, on the other hand, a simplified model, such as P (UNIT TYPE = TANK) =

P (UNIT TYPE = TRUCK) = 0.45, would not be able to capture what SS1 conveys

adequately well. An uncertainty processing formalism suitable for soft/hard data

fusion must be able to model these inherent imperfections with ease and still be able

to capture the subtleties without making overly simplifying assumptions.

1.3.2 C2: Accommodating Source Differences

Soft and hard sources often span different scopes of expertise (or simply scopes).

For instance, in the battlefield scenario above, a hard sensor may be able to identify

fighter-jet(s) with certain signatures, whereas a trained human military attachè

may well be able to identify all different types of aircrafts (including fighter-jet(s)).

Moreover, in a distributed sensor network setting, a node may be content in simply

updating its existing Knowledge Base (KB) using the evidence that the node is rout-

ing to a neighboring node (i.e., “eavesdropping”). Thus, in a soft/hard data fusion

scenario, the ability to fuse data from sources having different scopes, with only a

moderate computational overhead, is a significant advantage. In addition, the ability

to combine/update information without having to change one’s own scope could be

1Chapter 3 provides a detailed discussion on uncertainty handling formalisms.
2P (UNIT TYPE = TANK∪TRUCK) must be distributed to P (UNIT TYPE = TANK) and P (UNIT TYPE =

TRUCK) to proceed with inferencing, which requires simplifying assumptions to be made.
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a particularly useful property to have in scenarios where the node possesses a scope

with irrelevant content.

In addition to having different scopes of expertise, sources often possess different

levels of reliability—a measure of being “consistently good in performance”/“able

to be trusted” [26]; some sources may be more “valuable” (e.g., a warfare expert

versus an informer) or may provide more credible information than others under

given circumstances. Furthermore, one may not want to make significant changes

to a KB built over time using evidence from multiple sources in favor of a single

piece of evidence. The fusion framework must be capable of taking these factors into

account. For instance, for updating the KB in the above battlefield scenario, one

may want to assign more weight to evidence coming from a military attaché than a

civilian; moreover, even if an incoming piece of evidence conflicts with the KB, if the

information is given by a highly reliable source (e.g., a situation expert), one may

still consider updating the existing KB.

1.3.3 C3: Adaptability of Fusion Operations

One often encounters contradictory evidence in soft/hard fusion scenarios. If all

sources are equally reliable, one may desire the fusion operation to be an aggregation

of all available evidence. On the other hand, if the evidence from a source contradicts

the current environment (e.g., the prevailing threat level), expert opinions and/or

other information, the processing node may want to discard or lower the impact of

this information.

In case of updating an existing KB, a processing node may need to be “cautious,”

especially if the integrity of the KB is high and/or the incoming evidence partially

or fully conflicts with the KB. In another instance, a source may be willing to be

very “receptive” or even be prepared to completely ignore an existing KB (e.g., with

a sudden change of the prevailing threat level). Thus, the fusion framework must

provide this flexibility to adapt to various situations.
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Moreover, A processing node may want to focus on evidence about a particular

object. For instance, in the above battlefield scenario, if the base commander has

confirmed evidence of a possible “air-attack,” s/he may want to refine incoming in-

formation to focus on evidence related to air-attacks and “filter out” the rest. So

the fusion technique should be able to “condition” the incoming evidence to what is

required under the given circumstances.

1.3.4 C4: “Well-founded” Fusion Framework

Fusion engines are often used to obtain a better view or estimate of a scenario by

fusing various inputs providing soft/hard evidence. An analyst, with a better under-

standing of the scenario, then takes final decisions or recommends necessary actions.

This requires, especially in critical/sensitive application domains, the fusion frame-

works to be “well-founded,” in the sense that the behavior of the fusion operations

are fully characterized under all operating conditions; in other words, fusion engines

cannot be “black-boxes.” Transparency of a fusion framework can be established by

characterizing the fusion operations as a set of algebraic and fusion properties. For

a given fusion technique, the validity and/or the usefulness of fusion operations are

determined by the extent to which the so-called fusion properties are mathematically

justifiable and applicable to the task at hand. Another aspect of transparency is that

fused results must reflect or indicate the associated uncertainties that were fed into

the fusion engine as part of the uncertainties associated with inputs; this allows, for

instance, an analyst to make decisions with a full understanding of the associated

uncertainties. Thus, in order to achieve transparency, data uncertainties must be

propagated throughout the fusion process; and also, the fusion framework must be

fully characterized via a set of properties applicable to various fusion tasks.
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1.3.5 C5: Computational Burden

Computational performance and and the capacity for uncertainty processing (for

example, within the modeling and inferencing processes) are often, in a very loose

sense, “inversely” related. In other words, techniques that are computationally faster

often do not offer the same level of uncertainty processing capacity of those techniques

that are not as fast. For instance, certainty factor based methods do not offer the

same modeling flexibility as that of Bayesian probabilistic methods, but they offer

much faster inferencing capabilities. On the other hand, Dempster Shafer (DS) belief

theoretic methods, which offer greater flexibility in uncertainty handling, even the

task of conditioning can become computationally demanding in some situations [27].

However, for soft/hard data fusion, given the fact that majority of the targeted

applications are in critical and sensitive domains (e.g., military and healthcare), it

is imperative that one employs formalisms that are capable of capturing adequately

well data uncertainties and propagating these uncertainties throughout the decision-

making process so that the final analysis (or decision-making) can be done with a

better awareness of the associated uncertainties. However, this comes at additional

cost in terms of the computational overhead. This calls optimization and other tech-

niques to make these uncertainty frameworks useful in more realistic applications.

1.4 Contributions

Three major formalisms—Bayesian probability theory, DS belief theory [28], and

possibility theory based on fuzzy reasoning [29,30], are predominantly used for uncer-

tain data handling3 in data fusion frameworks. DS belief theory, which provides a con-

venient framework [31] for working with a wide variety of data uncertainties [28,32,33],

has emerged as one of the most dominant frameworks in a wide spectrum of applica-

tion domains. These include, but are not limited to, signal processing [34–37], iden-

3Chapter 3 provides a discussion on uncertain data types and approaches for handling such data.
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tification [38–40], remote sensing [41], and machine learning [42–48]. The increasing

realization of the critical role soft evidence can play in the fusion and decision-making

process [49–51], within the defense-related fusion community has also revitalized in-

terest in DS theoretic (DST) methods [14,17,52,53]. One reason for this is the close

relationship between DS theory and the Bayesian probabilistic framework, which

forms the backbone of most of the methods for multi-sensor hard data fusion. More-

over, DST models can easily capture data imperfections that are characteristic of soft

evidence, such as “uncertain” implication rules which are very difficult to capture

using, for example, the Bayesian probability framework [54,55]. DS theory, given its

flexibility in representing various data imperfections typical of soft data and its close

relationship to existing multi-sensor fusion techniques that are used on probability

theory, forms the ideal basis for development of a soft/hard fusion framework. Here,

we present an analytical soft/hard data fusion framework addressing the challenges

discussed in Section 1.3. This work consists of six main contributions.

1.4.1 Conditional Core Theorem

As in probability theory, conditioning is the primary tool for DST evidence updat-

ing [56]. In fact, the core of the proposed technique for soft/hard fusion is based on

DST conditionals. Hence, it is imperative that we fully understand the various con-

ditional notions and their implications. The conditional core theorem addresses this

by providing a complete characterization of a DST conditional notion that is proba-

bly the most suitable for the task at hand. In addition to providing insight into the

conditioning operations (and fusion operations based upon conditionals), one direct

contribution of this important result is that it establishes the theoretical grounds for

developing algorithms for efficient computation of DST conditionals. We also address

the converse problem: what evidence may have played a role in generating a given

change of belief (i.e., conditioned belief)? This converse result can be of significant

practical value in certain applications (e.g., for studying the sensitivity of the updated
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knowledge base with respect to the evidence received).

1.4.2 Conditional Approach to Evidence Fusion

We propose a new DST strategy for soft/hard data fusion that addresses the chal-

lenges C1-C4. The proposed strategy can handle sources possessing non-identical

scopes with the least amount of computational burden compared to alternative meth-

ods that require the scopes to be expanded. In addition, it possesses several other

intuitively appealing properties such as tolerance to contradictory evidence, ability to

“refine” and “filter-out” information depending on the environment (e.g., prevailing

threat level, etc.). It also satisfies most of the algebraic properties and characteristics

that one expects fusion operators to possess. We also establish criteria for different

fusion environments and propose various parameter selection strategies.

1.4.3 Consensus in DST Fusion Environments

Consensus is an important fusion problem. Here, we propose a consensus pro-

tocol applicable to soft/hard data environments. The proposed consensus protocol

is defined in a setting that is applicable to any general fusion network (i.e., fully

or partially connected, synchronous or asynchronous communications), albeit certain

“coupling conditions” that are needed to guarantee the convergence (i.e., the exis-

tence of a consensus). As far as we know, the proposed method is probably the most

general consensus protocol in the sense that (i) it applies to fully or partially con-

nected networks with possible communication delays; and (ii) the consensus is sought

among a set of DST data models, thus allowing one to analyze/generate consensus

in a multitude of application domains that call for the use of richer and more flexible

models to handle the underlying uncertainties (compared to simple opinion dynamic

models and probabilistic models).
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1.4.4 Credibility Estimation in the Absence of Ground Truth

Due to its subjective nature which can otherwise compromise the integrity of the

fusion process, it is critical that soft data be validated prior to its incorporation into

the fusion engine. The strategy of discounting evidence based on source reliability

may not be applicable when dealing with soft sources because their reliability (e.g.,

an eye witnesses account) is often unknown beforehand.

We propose a methodology based on the notion of consensus that we have already

developed to estimate the credibility of (soft) evidence in the absence of a “ground

truth.” This estimated credibility can then be used for source reliability estimation,

discounting or appropriately “weighting” evidence for fusion. The consensus proce-

dure is set up via the proposed evidence fusion methods, thus allowing it the flexibility

to capture a variety of imperfections inherent to soft evidence.

1.4.5 Efficient Computation of DST Conditionals

Even though the conditional core theorem provides a complete characterization

of the conditional notions and in some cases can provide a significant reduction in

computational overhead, the numerical calculation of the conditionals can still be

computationally prohibitive. To address this, we propose a graphical procedure and

an associated message passing scheme for efficient computation of the conditionals.

The computational complexity of conditional computations is dependent on the evi-

dence and how the evidence is modeled in addition to other algorithmic parameters.

Thus, the extent of the computational gains can only be estimated after a careful

analysis of the implementation and application details. Keeping these observations

in mind, we provide criteria, which are based on “low cost” bounds, that one may

use to determine if the use of the conditional core and the proposed method indeed

offers computational gains.
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1.4.6 Approximations Via Statistical Sampling

The computational overhead of DST methods can still be significantly high, espe-

cially in the soft/hard data domains, where one often has to deal with sources having

large scopes. An efficient fusion framework must be capable of mitigating the compu-

tational burden via reasonable approximations, thus generating fast, yet sufficiently

accurate results. We propose a method based on statistical sampling techniques to

reduce the computational burden by approximating the DST data models by simpler

and computationally efficient variants.

1.5 Organization of the Dissertation

The rest of the dissertation is organized into three main parts and an epilogue

dedicated to the future research directions and concluding remarks.

Part I: Preliminary Notions contains introductory material that is essential to

understanding the rest of the dissertation.

Chapter 2 provides a brief review of data fusion with an introduction to popular

fusion models and levels of abstraction.

Chapter 3 presents a review of uncertainty processing, where we provide a taxon-

omy of uncertain data types and popular formalisms available for working with

such data. We also provide a detailed review of DS belief theory along with the

notions relevant to the work presented in this dissertation.

Part II: Soft/Hard Data Fusion Framework contains the proposed analytical

framework.

Chapter 4 provides a brief review of DST conditional notions. A mathematical

result that characterizes these conditional notions is then derived. The converse
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problem is also addressed. Theoretical results are explained with numerical and

application examples.

Chapter 5 introduces the main fusion component of the proposed framework. We

discuss the issue of working with sources having non-identical scopes of expertise

and then derive a new conditional notion that applies to both identical and

non-identical scopes. Based on this convenient representation, we present a

new fusion rule and derive its various properties. We illustrate several fusion

strategies and also provide insight into parameter selection;. The proposed

methods are then illustrated with examples; several guidelines are provided

via a detailed illustrative example. Two real-life application examples are also

provided to further illustrate the DST modeling and application of the fusion

techniques.

Chapter 6 studies the problem of consensus generation. We provide an overview

of the problem and challenges in generating a consensus in soft/hard data en-

vironment. The consensus generation is then established as a special case of

convergence in non-linear asynchronous iterations. We provide a brief review of

the theory of non-linear paracontractions and then set up a consensus genera-

tion protocol for soft/hard data modeled via DST notions. Consensus process

and properties therein are illustrated with a detailed example.

Chapter 7 presents a consensus-based technique for estimation of credibility of ev-

idence in the absence of ground truth. The proposed method is illustrated via

a numerical example.

Part III: Computational Optimizations contains several techniques for efficient

computation and reduction of computational burden associated with DST methods.

Chapter 8 presents an efficient method, based on graph theoretic and message pass-

ing techniques, for computation of DST conditionals. The proposed method is
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based on the theorem that was developed in Chapter 4. Theoretical bounds

for the resultant computational gains are derived, and they are evaluated and

verified via Monte-Carlo simulations.

Chapter 9 presents an approximation technique based on statistical sampling tech-

niques for reduction of computational burden associated with DST data rep-

resentations. The proposed method is evaluated via Monte-Carlo techniques

simulating typical real-life scenarios.

Part IV: Epilogue contains the concluding chapters of the dissertation.

Chapter 10 presents several future research directions to extend the proposed work

and also to generate new research avenues based on the theories and techniques

that have been developed here.

Chapter 11 provides concluding remarks.

Appendix contains detailed proofs of the various results that appear in Chapters 4,

5 and 6.

Vita contains the author’s biography.
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Chapter 2
Multi-sensor Data Fusion

D
ata fusion, in a broad sense, involves combining information to better estimate

the state of some aspect of universe. Multi-sensor data fusion (i.e., fusion of

data from multiple sensors) is an emerging technology among both military and non-

military (or civil) application domains. In this chapter, we provide a basic overview

of various fusion notions and abstraction levels in order to lay a foundation for the

rest of the presentation. A thorough understanding of the fundamental differences of

fusion and knowledge abstraction levels is extremely helpful in understanding a given

fusion problem as well as in choosing appropriate fusion method(s) for a given task.

2.1 Data Fusion

Data fusion is defined in the initial Data Fusion Lexicon produced by Joint Di-

rectors Laboratories Data Fusion Subgroup as,

a process dealing with the association, correlation, and combination of
data and information from single and multiple sources to achieve refined
position and identity estimates, and complete and timely assessments of
situations and threats, and their significance. The process is characterized
by continuous refinements of its estimates and assessments, and the eval-
uation of the need for additional sources, or modification of the process
itself, to achieve improved results [4].

15
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Multi-sensor fusion refers to the case where data are fused from multiple sensors,

whereas in the case of single-sensor fusion, multiple data from a single sensor are fused.

Thomopoulos in [57] provides a discussion regarding the advantages of multiple-sensor

systems over single-sensor systems. This discussion states that there are numerous

advantages in using multiple sensor systems including:

• higher signal-to-noise ratio;

• increased robustness and reliability in the event of sensor failures;

• information regarding independent features in the system can be obtained;

• extended parameter coverage rendering a more complete picture of the system;

• increased dimensionality of the measurement;

• improved resolution, reduced uncertainty and increased confidence;

• increased hypothesis discrimination with the aid of more complete information

arriving from multiple sensors;

• reduction in measurement time, and possibly costs - there is a trade off to con-

sider in this issue. Thus, an optimal number of sensors to extract the required

information from a system should be ideally pursued.

2.1.1 Processing Architectures

Three main fusion architectures can be identified as follows.

Data-level Fusion: if the sensors are measuring the same physical property (or

properties), then the raw sensor measurements can be directly combined. Typ-

ical raw sensor fusion techniques involve classical estimation techniques, e.g.,

Kalman Filtering.
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Feature-level Fusion: involves extraction of a representative set of features from

sensor data and then combined into a single vector of features. Typical tech-

niques include pattern recognition techniques such as neural networks, cluster-

ing algorithms, or template-based methods.

Decision-level fusion: Here, each sensor makes a preliminary estimation of an en-

tity’s identity in terms location, attributes, or any other DJDJDDJKDK. The

fusion techniques at this level includes weighted decision methos (e.g., voting),

classical inference, Bayesian inference, and Dempter-Shafer theoretic methods.

Remark: Mention that the fusion methods developed here applies to decision-level

fusion, and can also be applied to feature-level fusion.

2.2 Fusion Models

Data fusion models are a result of attempts by many in developing a unified ter-

minology. One of the first such attempts at unifying the terminology (still within mil-

itary applications) resulted in, perhaps the most widely known, JDL process model,

which was developed by the Joint Directors of Laboratories (JDL) data-fusion sub-

panel, under US Department of Defense (DoD).

Level 1 Object Refinement: attempts to locate and identify objects. For this

purpose a global picture of the situation is reported by fusing the attributes of

an object from multiple sources. The steps included at this stage are: Data

alignment, prediction of entitys attributes (i.e. position, speed, type of damage,

alert status, etc.), association of data to entities, and refinement of entitys

identity.

Level 2 Situation Assessment attempts to construct a picture from incomplete

information provided by level 1, that is, to relate the reconstructed entity with

an observed event (e.g. aircraft flying over hostile territory).
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Figure 3 The JDL data fusion model (1992 version)

Let us try refining definitions for the “levels”.   Our objectives are to (a) provide a useful
categorization representing logically different types of problems, which are generally (though
not necessarily) solved by different techniques; and (b) maintain a degree of consistency with
the mainstream of technical usage.

Our proposed definitions are as follows:

• Level 0 − Sub-Object Data Assessment: estimation and prediction of signal/object
observable states on the basis of pixel/signal level data association and characterization;

• Level 1 − Object Assessment:  estimation and prediction of entity states on the basis of
observation-to-track association, continuous state estimation (e.g. kinematics) and
discrete state estimation (e.g.  target type and ID);

• Level 2 − Situation Assessment:  estimation and prediction of relations among entities, to
include force structure and cross force relations, communications and perceptual
influences, physical context, etc.;

• Level 3 − Impact Assessment: estimation and prediction of effects on situations of
planned or estimated/predicted actions by the participants; to include interactions
between action plans of multiple players (e.g. assessing susceptibilities and
vulnerabilities to estimated/predicted threat actions given one’s own planned actions);

• Level 4 − Process Refinement (an element of Resource Management): adaptive data
acquisition and processing to support mission objectives.

Table 1 gives a general characterization of these concepts. Note that we differentiate the
levels first on the basis of types of estimation process, which typically relates to the type of
entity for which state is estimated.

Figure 2.1: JDL Fusion Model (1992 Revision) [1]

Level 3 Threat Assessment interprets the results from level 2 in terms of the

possible opportunities for operation. It analyses the advantages and disadvan-

tages of taking one course of action over another.

Level 4 Process Refinment performs the main functions of (i) monitoring the

data fusion process performance, (ii) identification of information needed to

improve multilevel fusion product, (iii) determination of source specific require-

ments to collect relevant information and (iv) allocation of sources to mission

goals.

2.3 Challenges for Multi-sensor Fusion

One needs to address several fundamental issues when building a data fusion

system for a given application:

(i) what algorithms or techniques are appropriate and optimal for a particular

application ?
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(ii) what architecture should be used (i.e., where in the processing flow should

data be fused) ?

(iii) how should the individual sensor data be processed to extract the maximum

amount of information ?

(iv) what accuracy can realistically be achieved by a data fusion process?

(v) how can the fusion process be optimized in a dynamic sense?

(vi) how does the data collection environment (i.e., signal propagation, target

characteristics, etc.) affect the processing;

(vii) under what conditions does multisensor data fusion improve system opera-

tion?

Answers to all these questions, help one to narrow down the available options

and to understand the optimal fusion strategy as well as an appropriate uncertainty

processing framework to be used.

At level 1, signal/feature reports are combined to estimate the states of objects. These are
combined, in turn, at level 2 to estimate situations (i.e. estimations of states of aggregations
of entities).  It is seen that level 3 is, according to this logical relationship, out of numerical
sequence.  It is a “higher” function than the planning function of level 4.

Indeed, Process Refinement (level 4) processes can interact with “classical” association/
estimation data fusion processes in any of a variety of ways, managing the operation of
individual fusion nodes or that of larger ensembles of such nodes, as illustrated in Figure 9
below.
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Figure 5  Multi-level inferencing example
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Figure 6  Understanding complex situations requires propagating evidence through
complex relational networksFigure 2.2: A Complex Fusion Scenario [1]

As we have already discussed, soft/hard data fusion is a special case of multi-

sensor fusion, where data are fused from both human-based and physics-based sensors.

Soft/hard data fusion is characterized by the numerous differences in scope of sources,
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unknown reliability, unknown distributions, unstructured and often inconsistent data.

These imperfections and differences in sources and characteristics of the data makes

hard/soft fusion a much harder problem than regular multi-sensor fusion. Figure 2.3

illustrates a complex fusion scenario, working at several fusion levels, e.g., object

refinement and situation assessment.

The other most important aspect of designing fusion frameworks is the identifica-

tion of an appropriate uncertainty processing framework(s) to handle the uncertainties

characteristic of the targeted application(s). In Chapter 3, we provide a discussion

on on various types of uncertainty and uncertainty processing formalisms that are

popularly used in fusion applications working at various fusion levels.



Chapter 3
Uncertain Data Processing

U
ncertain data processing lies in the heart of a data fusion framework. Fusion

characteristics and performance of such frameworks are often dominated by

the mechanism(s) used to handle uncertain data. Conversely, fusion mechanism de-

sign requires a proper understanding of (i) the types of uncertain data that needs to

be processed, (ii) fusion and inferencing requirements, and (iii) computational con-

straints (e.g., memory, processing time, etc.) of the given task. A sound knowledge

of the types of data uncertainties, processing mechanisms and their limitations is of

critical importance in scenarios that call for data fusion. Therefore, we provide a

detailed discussion on uncertain data types, their origins and three uncertainty pro-

cessing formalisms that are popular among the fusion community. In addition, we

provide a detailed summary of basic notions of DS belief theory.

This Chapter is organized as follows: Section 3.1 discusses how different types

of uncertain data are generated and presents a classification for uncertain data; Sec-

tion 3.2 provides a brief summary of several approaches, which are popular among

fusion researchers, for handling different types of uncertain data; Section 3.3 provides

a comparison of these uncertainty processing formalisms; Section 3.4 provides a de-

tailed summary of DS belief theory, the uncertainty processing formalism used in the

21
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work presented here; and Section 3.5 contains the chapter summary.

3.1 A Taxonomy of Uncertain Data

Uncertain data arises as a result of lack of information (regarding a subject of

interest). The type of information that is lacking consequently gives rise to different

types of uncertainty, which can be broadly classified as follows [58–60]4:

Incompleteness: refers to the case where certain parts (or all) of the informa-

tion are missing from a database record. For example, consider a database

record DB REC containing the information of a detected unit in a battlefield as

DB REC={UNIT TYPE, LOCATION, SPEED}. Now, for instance, if the UNIT TYPE

is missing from the database record, then DB REC is incomplete.

Imprecision: refers to the case where the given information is not having the re-

quired precision. For instance, in the above battlefield scenario, if the SPEED of

an enemy unit has been entered as 25− 40 mph, it may not be precise enough,

for instance, to fire an unguided rocket. In this case, DB REC is imprecise.

Uncertain: refers to the case where the given information is precise, complete, but

uncertain since it may be wrong. This type of uncertainty occurs mainly due

to imperfections associated with the source of information. For example, in the

above battlefield scenario, suppose the soldier in charge, due to bad weather

conditions, could only identify the UNIT TYPE of a detected unit to be either

a TANK or JEEP with 75% confidence. In this case, the information about the

detected unit becomes uncertain, even though the database record can still be

complete and precise.

In many applications, data records are often constrained by the domain and range

restrictions for categorical and numerical data types, respectively. For instance, in the

4Authors identify incompleteness, imprecision and uncertainty as types of ignorance, which is
defined as lack of information and is eventually related to uncertainty.
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above battlefield scenario, it is known that the UNIT TYPE can only be, for instance,

TANK, JEEP or TRUCK, and the SPEED must lie in the interval [0, 250] mph. In this case,

not being able to identify the UNIT TYPE can actually be viewed as not having enough

precision to differentiate between TANK, JEEP or TRUCK. This justifies the view where

incompleteness is taken as a special case of imprecision. Moreover, incompleteness

and imprecision are context-dependent in the sense that information that is imprecise

or incomplete in one context may be complete and precise (at least, precise enough)

in a another. For example, detecting the SPEED of enemy unit as 25 − 40 mph may

not be precise enough to fire an unguided rocket, but it is definitely precise enough to

issue an alert of a possible intrusion. Following this line of argument, one can clearly

see that all of the above cases are different types of uncertainty resulting from lack

of information.

Type Subtype Example

Incompleteness

Existential
An enemy unit has been detected at LOCATION=LOC#1, but
TYPE is unknown

Universal
All units that have been detected so far at various locations
are hostile, but their TYPE is unknown

Imprecision

Disjunctive The UNIT TYPE of an enemy unit is detected as TANK or JEEP

Negation The UNIT TYPE is not TANK.

Interval-valued The SPEED of a unit is detected as 25− 40 mph.

Fuzzy-valued A tracked unit is moving very fast.

Uncertainty

Probability The chance of UNIT TYPE=TANK is 70%.

Possibility It is possible that the SPEED=30 mph for the detected unit.

Credibility My degree of belief for UNIT TYPE=TANK is 0.8.

Table 3.1: A Classification of Uncertain Data Types

Table 3.1 presents a summary of different types and sub-types of uncertainties

[60]. Note how the way evidence is captured/generated naturally leads to different

types of uncertainty. Let us now analyze the mechanisms available for working with

such uncertain data.
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3.2 Approaches to Handling Uncertainty

A typical data fusion engine employs one or more uncertainty handling mecha-

nisms for data representation, fusion, inferencing, decision-making and various other

fusion related tasks. Let us proceed by formally defining the problem of uncertainty

handling, as applicable for the task of data fusion in uncertain data domains.

Suppose a decision-maker (e.g., an analyst or a base commander) has the uni-

verse of discourse Ω = {ω1, . . . , ωn}5 at hand as the set of likely hypothesis for

a given decision-making problem. These hypothesis need to be associated with

some values, be they probabilities, possibility measures, or any other quantitative

terms suitably defined by the decision-maker, representing the decision-maker’s

quantified degrees of belief in their likely occurrences based on the available un-

certain evidence [60].

Depending on the complexity and flexibility of the mechanism used, the types of

uncertainty that can be represented and also the types of inferencing provided by a

given formalism varies. For example, in the Bayesian probability theory, one assigns

values to elements to a σ − algebra of Ω—which identifies a set of outcomes—to

represent the degree of belief (e.g., of an analyst) about how likely the events (as

defined by the σ − algebra) are to occur based on the evidence. Even though the

probability theory has been the predominant paradigm for handling uncertainty over

several decades, due to the way evidence is modeled, it is not capable of representing,

for instance, a disjunction of two events defined in the σ−algebra of Ω (see Table 3.1)

without making simplifying assumptions. In his seminal work [61], Pearl identifies

four main classes of approaches to uncertainty handling, namely, neo-probabilist, neo-

calculist, neo-logicist, and neo-possibilist, which are motivated by these weaknesses in

traditional frameworks, such as probability theory and classical logic. Table 3.2 [60]

provides a summary of these approaches.

5The symbol Ω is most commonly used in probability theory to denote the universe of discourse
or the sample space. However, in DS theoretic literature sample space is referred to as frame of
discernment and the symbol Θ is used instead of Ω. See Section 3.4 for a detailed discussion.
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Category Motivation Definition Technologies

Neo-probabilist Traditional probability
framework is not suitable
for handling large number
of variables

Consistent with the tradi-
tional probabilistic frame-
work; efficient computa-
tional methods are pro-
vided for various fusion
tasks

Bayesian networks

Neo-calculist Probability calculus is in-
adequate for capturing un-
certainty

New calculus for handling
uncertainty and fusion op-
erations

DS theory; cer-
tainty factors

Neo-logicist Monotonicity in classical
logics is not suitable for
handling commonsense
knowledge

Deals with non-numerical
and non-monotonic infer-
encing for handling uncer-
tainty in negation

Default logic, pro-
gram completion

Neo-possibilist Coarse grained two-valued
truth representation is not
sufficient to model practi-
cal applications

Nothing is a matter of de-
gree in two-valued Boolean
logic

Fuzzy sets, fuzzy
logic, possibility
theory, possibilistic
logic

Table 3.2: Approaches to Handling Uncertainty in Data

Let us now briefly analyze the basic differences of several popular uncertainty

modeling formalisms, namely, Bayesian probability theory, possibility theory, and DS

theory, in order to understand how these fundamental differences affect the types of

uncertainty that can be accommodated.

3.2.1 Bayesian Probability Theory

A Bayesian probabilistic model consists of the triplet (Ω,Φ, P ), where Ω is the

sample space, Φ is a σ-algebra of subsets of Ω, and P is a non-negative mapping of

Φ into the interval [0, 1]. The probability assignment P : Φ 7→ [0, 1] possesses the

following properties:

Axiom 1: Ω ∈ Φ with P (Ω) = 1;

Axiom 2: If A ∈ Φ, then A ∈ Φ, where A = Θ \ A;
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Axiom 3: For pairwise disjoint sets An for n ≥ 1,

P

(
∞⋃

n=1

An

)
=
∞∑

n=1

P (An).

Bayes’ theorem is employed to compute the probability of a hypothesis, given

some observation event. Consider a collection of hypotheses {Hi}ni=1, Hi ∈ F , for

i = 1, . . . , n, and suppose P (E) > 0 for some event E (typically, E is some evidence).

Conditional probability of occurring Hi provided the evidence E is given by,

P (Hi|E) =
P (E|Hi)P (Hi)

P (E)
, (3.1)

where

P (E) =
n∑

j=1

P (E|Hj)P (Hj) (3.2)

The quantities P (Hi) and P (E|Hi) are termed a-priori probabilities, since they

represent statements that can be made prior to knowing the true subject of any

observation. The conditional probabilities are calculated using above quantities along

with the probability of observation event P (E). These conditional probabilities are

then combined using the generalized Bayesian inference formula [9]:

P (Hi|E1 ∩ . . . ∩ Ek) =
P (Hi) · P (E1|Hi) . . . P (Ek|Hi)

n∑

j=1

P (Hj) · [P (E1|Hj) . . . P (Ek|Hj)]

(3.3)

to obtain a-posteriori probabilities with respect to the totality of events in the whole

sample space. A suitable decision logic is utilized to arrive at a decision based on

these final probabilities. Maximum a-posteriori (MAP) and maximum likelihood (ML)

methods are widely used as Bayesian decision rules [62,63].

Each proposition A ∈ F is associated with the probability P (A). Thus, from

Axioms 1-3, we must have

P (A) + P (A) = 1, (3.4)
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for all A ∈ F . Hence, in a Bayesian model, the knowledge one has about a proposition

A determines explicitly the knowledge one has regarding its complement. We cannot

refrain from assigning probability numbers to events in A that we are not certain

of. Therefore, it is incapable of representing the ignorance we may have regarding

the events in A. Moreover, the difficulties in defining prior likelihoods when sufficient

information is not available, and the requirement that the competing hypotheses must

be mutually exclusive are other disadvantages of Baysian probability theory [9].

3.2.2 Possibility Theory

Possibility measures introduced by Zadah [64] is closely associated with fuzzy

sets and measures [65]. It considers a body of knowledge represented as subsets

of a reference set S. A set of functions C : Θ 7→ [0, 1] referred to as confidence

functions map the elements of Θ, which is defined as the powerset of S, i.e., Θ ≡ 2S .

These confidence functions are monotonic, i.e., if A ⊆ B ⊆ Θ, then C(A) ≤ C(B).

The interpretation of this property is that, if an event A implies a second event B,

then there is at least as much confidence in the occurrence of the event B as in the

occurrence of the event A. The consequences of this monotonic property are:

C(A ∪B) ≥ max
(
C(A), C(B)

)
; and (3.5)

C(A ∩B) ≤ min
(
C(A), C(B)

)
. (3.6)

The limiting case C(A ∪ B) = max
(
C(A), C(B)

)
defines what are referred to

as possibility measures [65]. Suppose E ∈ Θ is such that C(E) = 1. Possibility

measure Πpos is defined as Πpos(A) = 1 if A ∩ E 6= φ and 0 otherwise. We inter-

pret Πpos(A) = 1 as A is possible. Also note that Πpos(A ∪ A) = Πpos(S) = 1

and max
(
Πpos(A),Πpos(A

)
= 1. Using this, A and A can be interpreted as two

contradictory events, i.e., at least one event is possible. However, one event being

possible does not prevent the other being possible as well. The notion of C(A∪B) =

max
(
C(A), C(B)

)
seem to be consistent with possibility in the real world, i.e., oc-
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currence of A ∪B requires only the easiest event (most possible event) of the two to

happen. Similarly, using the other limiting case C(A ∩ B) = min
(
C(A), C(B)

)
, a

necessity measure Npos is defined to interpret that if an event is necessary, its con-

trary is impossible. Conversely, if an event is possible, its contrary is absolutely not

necessary.

Uncertainty of events can be characterized by these possibility and necessity func-

tions, thus weakening the additivity property (3.4) of the Bayesian framework. Fuzzy

membership functions defining various relationships among fuzzy sets serve as possi-

bility distribution functions. Approaches based on fuzzy reasoning can represent the

vagueness of information. Probability theory only allows us to represent the chance

of extremes (occurrence or non-occurrence) of an event while possibility theory could

extend our view over to notions of “to what extent the event is possible?” and “to

what extent the event is necessary?” In certain situations, where such vagueness of

information needs to be represented, this formalism offers advantages over probabil-

ity theory [66]. The disadvantages of this framework include increased number of

computations compared to other methods, and the potential difficulty in generating

suitable membership functions corresponding to the fuzzy sets.

3.2.3 DS Theory

The DS belief theory, originally proposed by Dempster, can be thought of as an

extension to probability theory in the following sense. In comparison to the triplet

(Θ,F , P ) in probability theory, the triplet (Θ,FΘ,mΘ(�)) defines a DST model of

data, where Θ is referred to as the frame of discernment (FoD). The function mΘ :

2Θ 7→ [0, 1] is a mapping that assigns non-negative support to subsets of Θ and FΘ

is the Core which contains subsets B of Θ s.t. mΘ(B) > 0. Propositions B ⊆ Θ for

which mΘ(B) > 0 are referred to as focal elements. The mapping mΘ(�), which is
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referred to as basic probability assignment or mass function or mass satisfies:

mΘ(∅) = 0; and
∑

B⊆Θ

mΘ(B) = 1. (3.7)

The belief and plausibility functions in DS theory represents the total support

that can move into a proposition without any ambiguity and the extent to which

one finds a proposition plausible, respectively. When the focal elements consists of a

single element in Θ, i.e., |B| = 1 for all B ∈ F, both belief and plausibility functions

reduce to probability mass functions. Often, the belief and plausibility functions

are seen as lower and upper envelopes of the family of all probability distributions

conforming to DS model (based on evidence). Hence, one may draw a comparison

between the necessity and possibility measures in possibility theory to belief and

plausibility measures in DS theory.

Data are often modeled in terms of mass functions and probability mass functions

in DS theory and probability theory, respectively. A mass functions assigns support

to all subsets of Θ. A probability mass function P only assigns support to elements

of a σ − algebra of Θ defining the measurable events of Θ under P ; further, axioms

1-3 of governing P results in P (B) = 1−P (B) for any outcome B in the σ−algebra;

thus, support of any outcome also defines the support of its complement, which

may become very restrictive in certain application where available evidence may not

provide any information on its complement. The higher modeling flexibility of DS

theory compared to probability theory is a result of these facts. DS literature also

provides an extensive array of methods for various data fusion and decision-making

tasks. The disadvantage of complexity and additional modeling flexibility is the well-

known exponentially large computational overhead of DST methods.

3.3 A Comparison of Popular Formalisms

Consider the battlefield scenario, where a detected hostile unit is to be modeled

as DB REC={UNIT TYPE, LOCATION, SPEED} based on the available (uncertain) evi-
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dence. The type of uncertainties that can be captured is dependent on the formalism

used. Moreover, the fusion output which is to be used for decision-making is also

dependent on this choice.

To illustrate, let us consider a fusion result on the attribute UNIT TYPE based

on some typical uncertain evidence. In probability framework, evidence must be

distributed and assigned to all elements of UNIT TYPE, i.e., TANK, JEEP and TRUCK.

For instance, if one obtained evidence, say on UNIT TYPE = JEEP∪TRUCK with certain

confidence, this support has to be distributed among the individual elements JEEP and

TRUCK. The fusion results on this will also be a discrete (continuous if a attribute is

continuous) probability distribution on all these individual elements (see Table 3.3).

However, in the case of DST, one can assign support to composite elements. For

example, the proposition JEEP∪TRUCK can be assigned a support without distributing

into individual elements. The fusion results, depending on the evidence and fusion

mechanisms used, can consist of composite propositions. Table 3.3 inspired by [60])

provides a summary of output uncertainty provided by different formalisms.

Formalism Output Uncertainty Example

Bayesian probability Discrete or continuous distribution TN=0.1, JP=0.2, TR=0.7

DS theory Mass distribution among focal elements TN=0.1, (JP, TR)=0.3, JP=0.6

Certainty factors Certainty factor values TN=− 0.2, JP=0.2, TR=0.6

Classical logic Disjunction TN ∪ JP
Possibility Possibility measure TN=0.3, JP=0.6, TR=0.4

Table 3.3: Uncertainty output types from different formalisms for a typical fusion
result of uncertain evidence on UNIT TYPE, where TN=TANK, JP=JEEP and TR=TRUCK.

3.4 Detailed Review of DS Theory

As we have already discussed, DS belief theory provides a convenient framework for

representing and working with a wide variety of data imperfections. Over the years,
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DS belief theory has emerged as one of the most dominant frameworks for uncertainty

processing for decision-making purposes in a wide spectrum of problem domains.

Here, we provide a basic review of the basics of DST that forms the foundation of the

work provided in the chapters to follow. Some of the notions, terms, and abbreviations

have already been introduced and discussed in the previous chapters. However, in

this section, we provide a comprehensive review (which may involve redefinition of

relevant notions, terms, and abbreviations) for the sake of completeness. The notation

and terminology introduced here will be used throughout the rest of the presentation.

3.4.1 Basic Notions

In DST, the total set of mutually exclusive and exhaustive propositions that a

node may discern is referred to as its FoD (Frame of Discernment) Θ = {θ1, . . . , θn};
it signifies the ‘scope’ of expertise. A proposition θi represents the lowest level of

discernible information; it is referred to as a singleton. We use |Θ| and 2Θ to denote

the cardinality and the power set of Θ, respectively. Elements in 2Θ form all the

propositions of interest in DST. We use Θ\B, or simply B when the FoD is clear

from the context, to denote all singletons in Θ that are not included in B. In DST,

the ‘support’ for proposition B is provided via a basic belief assignment (BBA) or

mass assignment or mass function:

Definition 1 (Mass Function or BBA). The mapping mΘ : 2Θ 7→ [0, 1] is a mass

function for the FoD Θ if mΘ(∅) = 0 and
∑

A⊆Θ mΘ(A) = 1.

The mass assigned to a proposition is free to move into the individual single-

tons that constitute the composite proposition6, thus generating the notion of igno-

rance. The propositions that possess nonzero mass form the core FΘ. The triplet

{Θ,FΘ,mΘ(�)}, denoted by EΘ, is the corresponding body of evidence (BoE). The

6We will use the term, composite proposition to denote a proposition which consists of more than
one singleton, i.e., to denote a proposition B ⊆ Θ s.t. |B| > 1.
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quantity mΘ(B) measures the support assigned to proposition B ⊆ Θ only. The

belief assigned to B on the other hand takes into account the supports for all proper

subsets of B as well:

Definition 2 (Belief and Plausibility). Given a BoE {Θ,FΘ,mΘ(�)} and a proposition

B ⊆ Θ, BlΘ : 2Θ 7→ [0, 1], where BlΘ(B) =
∑

C⊆BmΘ(C) is the belief of B; and

PlΘ : 2Θ 7→ [0, 1], where PlΘ(B) = 1− BlΘ(B) is the plausibility of B.

In other words, in DST, BlΘ(B) represents the total support that can move into

the proposition B without any ambiguity, and PlΘ(B) represents the extent to which

one finds the proposition B plausible. We use F̂Θ to denote the set of propositions

with non-zero belief, .viz, F̂Θ ≡ {B ⊆ Θ | BlΘ(B) > 0}. When all the focal elements

are singletons, i.e., |B| = 1 for all B ∈ FΘ, the mass, belief and plausibility functions

reduce to probability mass functions. A probability distribution PrΘ(·) such that

BlΘ(B) ≤ PrΘ(B) ≤ PlΘ(B), ∀B ⊆ Θ, is said to be compatible with the underlying

mass function mΘ(·). An example of such a probability distribution is the pignistic

probability distribution BetPΘ(·) [67]

BetPΘ(θi) =
∑

θi∈B⊆Θ

mΘ(B)

|B| . (3.8)

3.4.2 Conditional Notions

As in probability theory, conditioning is the primary tool for DST evidence up-

dating [56]. For a BoE EΘ ≡ {Θ,FΘ,mΘ(�)} and a conditioning event A ⊆ Θ, the

conditional mass, belief and plausibility functions are denoted as mΘ(�|A), BlΘ(�|A)

and PlΘ(�|A), respectively. Dempster in [68] proposed:

Theorem 1 (Dempster’s (DS) Conditionals). For any B ⊆ Θ, the conditional belief

BlΘ(B|A) : 2Θ 7→ [0, 1] is given by

BlΘ(B|A) =
BlΘ(B ∪ A)− BlΘ(A)

1− BlΘ(A)
, (3.9)
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where the conditioning event A satisfies BlΘ(A) < 1.

The work of Fagin, et al., in [69] proposes an alternative conditional notion7 based

on the premise that DS belief and plausibility functions can be understood as inner

and outer measures of non-measurable events, respectively.

Theorem 2 (Fagin-Halpern (FH) Conditionals). [69] For any B ⊆ Θ, the conditional

belief BlΘ(B|A) : 2Θ 7→ [0, 1] and conditional plausibility PlΘ(B|A) : 2Θ 7→ [0, 1] are

given by

BlΘ(B|A) =
BlΘ(A ∩B)

BlΘ(A ∩B) + PlΘ(A ∩B)
; (3.10)

PlΘ(B|A) =
PlΘ(A ∩B)

[PlΘ(A ∩B) + BlΘ(A ∩B)
, (3.11)

respectively, where the conditioning event A satisfies BlΘ(A) > 0.

A proposition with positive mass after conditioning is referred to as a conditional

focal element. The set of conditional focal elements is referred to as the conditional

core and denoted by FΘ|A. Thus, FΘ|A ≡ {B ⊆ Θ | mΘ(B|A) > 0, A ∈ F̂Θ},
where mΘ(·|A) : 2Θ 7→ [0, 1] is the corresponding conditional mass function related to

BlΘ(·|A) via the Möbius transform [28]:

mΘ(B|A) =
∑

C⊆B

(−1)|B−C| BlΘ(C|A), ∀B ⊆ Θ. (3.12)

3.4.3 Evidence Combination

Evidence combination is the process of combining BoEs EΘi ≡ {Θi,FΘi ,mΘi(�)},
for i = 1, . . . , n, to arrive at a new BoE EΘ ≡ {Θ,FΘ,mΘ(�)}; we denote this process

as EΘ ≡ EΘ1on . . .onEΘn . A strategy used for such combinations is referred to as a

7The work reported here is based on the FH conditionals due to several reasons. See Chapter 5
for a detailed discussion on various DST conditionals and suitability of FH conditionals for the task
of soft and hard data fusion.



34

combination rule. These combination rules can be characterized by how masses are

combined and how conflicting masses are redistributed. However, the majority of pop-

ular BPA-based combination rules are based on the following two basic components

(n = 2 case):

Definition 3 (Conjunctive and Disjunctive Forms). The conjunctive and disjunctive

forms of combination are given by

mΘ1∩Θ2(B) =
∑

C∩D=B

mΘ1(C)mΘ2(D);

mΘ1∪Θ2(B) =
∑

C∪D=B

mΘ1(C)mΘ2(D),

respectively, where mΘ1∩Θ2(�) and mΘ1∪Θ2(�) are the fused BBA in each case. The

parameter K = mΘ1∩Θ2(∅) is referred to as the conflict.

The most commonly used combination rule in DS theory is the Dempster’s Com-

bination Rule (DCR) [70].

Definition 4 (Dempster’s Combination Rule (DCR)). The fused BBA generated by

the DCR is denoted as ⊕ and is given by

mΘ(B) =
1

1−K mΘ1∩Θ2(B), B 6= ∅,

whenever K = mΘ1∩Θ2(∅) 6= 1.

Remarks:

(i) The DCR requires Θi = Θ, for i = 1, 2, for combination. When Θ1 6= Θ2, the two

FoDs are extended to a common FoD Θ, via the ballooning extension.

(ii) DCR is not defined for K = 1.

The main drawback of the DCR is the counter-intuitive results it generates in the

presence of conflicting evidence. Alternative rules overcome this issue by redistribut-

ing the conflicting mass (or the conflict given by K) in numerous ways.
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Definition 5 (Yager’s Method (YGR)). [71] The fused BBA generated by the YGR

is

mΘ(B) =





mΘ1∩Θ2(B), for B 6= ∅;

mΘ1∩Θ2(B) +K, for B = Θ.

Dubois and Prade proposed to distribute conflict among propositions that actually

contribute to the conflict.

Definition 6 (DP1). The fused BBA generated by the DP1 is

mΘ(B) = mΘ1∩Θ2(B) +
∑

C∪D=B;
C∩D=∅

mΘ1(C)mΘ2(D), B 6= ∅.

The adaptive rule proposed by Dubois and Prade for possibility theory frame-

work automatically accounts for relative reliability of sources being combined. The

transformation of this rule to DST yields another combination rule.

Definition 7 (DP2). [3] The fused BBA generated by the DP2 is

mΘ(B) =
1

K
max

[
mΘ1∩Θ2(B)

1−K ,min (K,mΘ1∪Θ2(B))

]
, B 6= ∅,

where

K =
∑

B⊆Θ

max

[
mΘ1∩Θ2(B)

1−K ,min (K,mΘ1∪Θ2(B))

]
.

Several versions of partial conflict redistribution (PCR) rules have been developed

by Smarandache and Dezert [72], where the idea is to distribute the partial conflicts

among the focal elements involved in the conflict. PCR5, hereinafter referred to as

the PCR, is claimed to be the best among all the PCR rules.
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Definition 8 (PCR). The fused BBA generated by the PCR is

mΘ(B) = mΘ1∩Θ2(B) +
∑

B∩C=∅;
C⊆Θ

Γ(B,C), B 6= ∅,

where

Γ(B,C) =
mΘ1(B)2mΘ2(C)

mΘ1(B) +mΘ2(C)
+

mΘ2(B)2mΘ1(C)

mΘ2(B) +mΘ1(C)
.

A set of robust combinations rules (RCRs) proposed by Florea, et al., possesses

self-adaptive behavior for conflicting evidence as well as non-identical frames. These

are very important properties for a combination rule, especially in the case of hard/soft

data fusion.

Definition 9 (RCR). The fused BBA generated by the RCR is

mΘ(B) = αRCR(K)mΘ1∪Θ2(B) + βRCR(K)mΘ1∩Θ2(B), B 6= ∅,

where αRCR(K) = 1 − (1 − K) βRCR(K); αRCR(�) and βRCR(�) are increasing and

decreasing functions respectively satisfying αRCR(0) = 0, αRCR(1) = 1, βRCR(0) = 1

and βRCR(1) = 0.

3.4.4 Evidence Updating

Evidence updating is a special case of evidence combination, where, without loss

of generality, a BoE EΘ1 [k] ≡ {Θ1,FΘ1 [k],mΘ1(�)[k]} is combined with BoEs EΘi [k] ≡
{Θi,FΘi [k],mΘi(�)[k]}, for i = 1, . . . , n to obtain an updated EΘ1 [k] given by EΘ1 [k+1].

Here, k denotes discrete time/event index. We denote the updating process as EΘ1 [k+

1] = EΘ1 [k]C EΘ2 [k]on . . .onEΘn [k], ∀ k, (the order is as explained, unless parentheses

are used).
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3.4.5 Evidence Fusion: Non-exhaustive FoDs Case

The requirement to have identical FoDs in the BoEs being combined/updated

constitutes a major drawback in some of the most widely used combination rules

(e.g., the DCR). The approaches taken by fusion operators that can handle non-

identical FoDs (so that Θ1 6= Θ2 and Θ1 ∩Θ2 6= ∅, for n = 2 case) can be categorized

as follows.

3.4.5.1 Ignoring Differences in the FoDs

Each source would simply allocate zero mass to propositions that are not within its

own FoD and continue applying the fusion operator. In essence, this approach assumes

that each source can discern Θ1 ∪Θ2 and ignores the fact that some propositions are

not within its scope of expertise. The counter-intuitive conclusions this approach may

generate are well documented [73].

3.4.5.2 Deconditioning Approach

Here, each source would artificially introduce ambiguities into its evidence so that

its own FoD is ‘deconditioned’ or ‘expanded’ to Θ1 ∪ Θ2. For example, consider the

plausibilities correction method (PCM) in [73] and let ΘC = Θ1 ∩ Θ2. Then the

propositions of Θ1 ∩ΘC are discerned by the first source alone, those of Θ2 ∩ΘC are

discerned by the second source alone, and the propositions of ΘC are discerned by

both sources. A deconditioning step is applied to the partial knowledge of sources

to ‘refer’ their knowledge to Θ1 ∪ Θ2. Combination is performed via the multiplica-

tion of these ‘deconditioned’ plausibilities. The PCM requires that the plausibilities

of only singleton propositions are maintained throughout. Due to the lack of non-

singleton plausibilities after combination, it is impossible to obtain a valid BPA and

the uncertainty intervals for any composite proposition.
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3.4.5.3 Conditional Approach

The work in [74] proposes an evidence updating strategy that is based on FH

conditionals and avoids the need to continually “expand” its FoD or introduce am-

biguities when confronted with a source having a different FoD. Here, Belief update

EΘ1 [k + 1] = EΘ1 [k]C EΘ2 [k] is given by [74]

BlΘ1(B)[k + 1] = α(A)[k] BlΘ1(B)[k]

+ β(A)[k]

[
BlΘ2(B|A)[k]

+
1

2

∑

∅6=X⊆B∩A;
∅6=Y⊆A\Θ1

mΘ2(X ∪ Y |A)[k]

]
. (3.13)

Notice the following.

1. The term BlΘ1(B)[k] weighted by α(A)[k] accounts for the evidence that is

already available in EΘ1 [k] towards B.

2. The contribution from the second source (i.e., EΘ2 [k]) consists of:

(a) the term BlΘ2(B|A)[k] that accounts for evidence provided by those propo-

sitions that both Θ1 and Θ2 can discern (In fact, BlΘ2(B|A)[k] computes

the belief one allocates towards B when event A has occurred);

(b) the terms mΘ2(X∪Y |A)[k] that account for the propositions that can only

be discerned by Θ2, but can possibly move into Θ1 later on (see Fig. 3.1).

This type of evidence is generated by focal elements in EΘ2 [k] satisfying

both of the following properties:

i. they must be contained in A; and

ii. they must intersect both B and Θ1.
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Θ
B

Θ1 \ Θ

A

Θ1

B   A∩ 

m(B|A) in Θ

m(B) in Θ
m(B   D|A) in Θ1

∩ 

D     A \ Θ ⊆masses 'straddling'
B and D

Figure 3.1: Updating the BoE EΘ1 [k] = {Θ1,FΘ1 [k],mΘ1(�)[k]} with the evidence of
BoE EΘ2 [k] = {Θ2,FΘ2 [k],mΘ2(�)[k]} when Θ1 6= Θ2 and Θ1 ∩ Θ2 6= ∅. The terms
that contribute towards the update of mΘ1(B)[k] are shown.

These features can be extremely useful in some applications (e.g., soft/hard data

fusion). In fact, we make use of this approach to define a new set of conditional

notions that are applicable to non-identical FoDs (see Section 5.1 for details), based

upon which a new soft hard fusion strategy is proposed.

3.4.6 Evidence Discounting

When an evidence source is not fully reliable8, a “discounting” operation can be

performed on the associated mass function via [28]:

mΘ(B) =




dmΘ(B), for B ⊂ Θ;

1− d+ dmΘ(B), for B = Θ,

(3.14)

8Refer to Chapter 7 for a detailed discussion on accounting for source imperfections, including
the case of sources with unknown reliability.
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where d ∈ [0, 1] is referred to as the discounting factor. Often, the source reliability is

used to discount evidence before performing fusion operations, for instance, evidence

combinations.

3.4.7 Distance Measures for DST BoEs

A distance measure can be used to compare two given BoEs, similar to comparing

two probability mass functions, for instance, via the Kullback-Leibler (KL) diver-

gence [75]. Among many other options, a meaningful distance measure that takes

into account the set-theoretic overlap of propositions is given by [76]:

Definition 10 (JGB Distance). The distance between two BoEs EΘi s.t. Θi = Θ, for

i = 1, 2, is given by

dist (EΘ1 , EΘ2) =

√
1

2
(mΘ1 −mΘ2)T DΘ (mΘ1 −mΘ2), (3.15)

where mΘi = {mΘi(�)}, i = 1, 2, are 2Θ × 1 column vectors; and DΘ = {dj`} is a

2Θ × 2Θ matrix with dj` = |Aj ∩ A`|/|Aj ∪ A`|, Aj, A` ∈ 2Θ, |∅ ∩ ∅|/|∅ ∪ ∅| ≡ 0.

3.5 Chapter Summary

Different types of data uncertainties are generated depending on the how the data

is originated and various imperfections of the source. Uncertainty handling formalisms

provide techniques for modeling and working with these uncertain data types. For

a given task, one needs to choose such formalisms that can properly capture and

process the uncertainties typical of the task, yet satisfying the imposed constraints.
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Chapter 4
DST Conditional Notions

C
onditioning, as in the case of probability theory, is the primary tool for DST

evidence updating [56]. In fact, the core of the proposed soft/hard fusion frame-

work is based on DST conditionals. Hence, it is essential that we fully understand

the various conditional notions and their implications in order to be able to use them

properly in various fusion operations.

We present a discussion on two of the most popular DST conditional notions,

viz., DS conditionals [28] and FH conditionals [69], where we make the claim that the

latter is the more appropriate choice for the task of soft/hard data fusion operations.

However, due to the way FH conditionals are defined, identification of the conditional

core is extremely difficult. This hampers the ability to properly understand the results

of conditioning as well as the FH conditionals itself. The main result presented in this

chapter redresses this shortcoming by providing a complete characterization of the

conditional core generated by FH conditionals. In addition to providing insight into

conditioning (and fusion operations based upon conditionals), one direct contribution

of the proposed theorem is that it establishes the theoretical grounds for developing

algorithms for efficient computation of FH conditionals. We also address the converse

problem: “what events may have played a role in generating a given conditional core?”

42
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This converse result can be of significant practical value in certain applications (e.g.,

for studying the sensitivity of the updated knowledge base with respect to the evidence

received).

This chapter is organized as follows: Section 4.1 provides a detailed discussion on

how DS and FH conditionals are defined, and the choice of an appropriate conditional

notion for the task of soft/hard fusion; Section 4.2 contains our main result, its

implications, the converse result along with numerical examples; Section 4.3 contains

an application example illustrating the use of proposed theoretical results in a real life

problem; Section 4.4 provides the concluding remarks. The proof of the main result

together with several auxiliary results are relegated to Section A.1 in Appendix A.

4.1 Which Conditional Notion? And Why ?

Different conditional notions abound in DS theory literature. A rather comprehen-

sive collection of DST conditional notions appear in a more recent article by Kimala

and Yamada [77]. The question then is, what is the most appropriate conditional

notion for the task at hand, viz., soft/hard data fusion?

The strategies that have been successfully implemented for hard data fusion are

mainly Bayesian based. Moreover, there have been many attempts at relating DS the-

ory to probability theory, including the original papers by Dempster [61, 68]. Given

the abundant literature on probabilistic analysis of (hard) sensor networks, it is very

beneficial to have a fusion strategy that merges well with existing and widely uti-

lized strategies that work well with hard data. Based on this premise, we seek for

conditional notions that offer a unique probabilistic interpretation leading to a more

natural transition to the Bayesian conditional notions. Let us analyze, perhaps the

two most popular, conditional notions in DST fusion literature.
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4.1.1 DS Conditionals Versus FH Conditionals

The DS conditionals are developed on the following premise. Suppose we are given

a mass function m(�) and the new evidence which states A has occurred. Then, if

we model this new evidence via the mass function mA(�), which has A as its only

focal element, then the DS conditional with respect to A is defined as m(� | A) =

(m⊕mA)(�), where ⊕ denotes the DCR. In fact, this is really the impetus behind the

definition of the DS conditional; it is not necessarily an idea of a generalization of the

Bayesian conditional [28]. As a result, DS conditionals are not appropriate for some

applications, for instance, in soft/hard fusion where one may frequently encounter

contradictory evidence, one specific case where the DCR can give counter-intuitive

results. Thus, DS conditional notion only extend Bayesian conditioning in the sense

that, when the focal elements are constituted of singletons only, it coincides with the

Bayesian conditional. But then most, if not all, the conditional notions (including

the FH conditional notion) possess this same property.

On the other hand, the FH conditional notion is that it can truly be considered a

generalization of the Bayesian notion. This issue receives a comprehensive and rigor-

ous treatment in [9,69,78]. Recall that, the inner and outer measures are respectively

the best estimates one can make from below and above about the probability of a

non-measurable event (for which a probability is not assigned). It turns out that the

inner and outer measures induced by a probability function are indeed the belief and

plausibility functions, respectively; and conversely, belief and plausibility functions

are respectively the inner and outer measures induced by a probability function. It is

this very precise relationship between inner and outer measures induced by a prob-

ability function and DS theoretic belief and plausibility functions that allows us to

view DS theory as a generalization of, and being firmly rooted in, classical Bayesian

probability [9,78]. As demonstrated in the works of Fagin and Halpern [9,69,78], this

is exactly what the FH conditional achieves. To our knowledge, the FH conditional
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is the only DS conditional notion that can boast this property. In addition, FH con-

ditionals avoid certain paradoxes associated with the DS conditional, e.g., the sure

thing principle (see [2, 61,79,80], and in particular, [69] for a detailed discussion).

These are the reasons for opting to use the FH conditionals in our work. In what

follows, unless otherwise mentioned, we restrict our attention to the FH conditionals

only.

4.2 Characterization of the Conditional Core

In this section, we present the main result of this chapter. Let us proceed by

introducing a special set construction and some preliminary notions, which are very

useful for understanding the developments to follow.

4.2.1 Preliminaries

Definition 11 (Inner Sets and Outer Sets). Consider a BoE EΘ ≡ {Θ,FΘ,mΘ(�)}

and a conditioning event A ⊆ Θ s.t. A ∈ F̂Θ. Then, the inner and outer sets of the

conditioning event A are defined as

in(A) = {B ⊆ A | B ∈ FΘ} ; and

out(A) =
{
B ⊆ A | B ∪ C ∈ FΘ, ∅ 6= B, ∅ 6= C ⊆ A

}
,

respectively. The collections containing arbitrary unions of elements of in(A) and

out(A) are given by

IN(A) =

{
B ⊆ A | B =

⋃

i⊆I

Ci, Ci ∈ in(A)

}
; and

OUT(A) =

{
B ⊆ A | B =

⋃

j⊆J

Cj, Cj ∈ out(A)

}
,
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respectively; where, I and J are index sets that span the elements of in(A) and

out(A), respectively.

Θ

A

B1
B2

B3

B4

B5
B6 B7

Figure 4.1: A set theoretic interpretation of in(A) and out(A) in Definition 11.

The set in(A) contains all the focal elements that are contained in A; out(A) con-

tains all the focal elements that intersect but are not contained in A. The elements of

IN(A) and OUT(A) are arbitrary unions of elements of in(A) and out(A), respectively

(See Fig. 4.1). As we will see later, the elements of in(A) in union with elements of

OUT(A) form elements that are of special significance, i.e., the sets B ⊆ A, such

that B = X ∪ Y , for some X ∈ in(A), Y ∈ OUT(A). For B to be expressed in this

manner, we must of course have X ⊆ B and Y ⊆ B.

Definition 12 (Cumulative Mass). For a BoE EΘ ≡ {Θ,FΘ,mΘ(�)} and two arbitrary

subsets A ⊆ Θ and B ⊆ Θ, the sum

S(A;B) =
∑

∅6=X⊆A;
∅6=Y⊆B

mΘ(X ∪ Y ),

denotes the cumulative mass of propositions that “straddle” A and B.
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Remark: Clearly, for any C ⊆ B ⊆ Θ, we have S(A;C) ≤ S(A;B).

With the definition of S(A;B) in place, we can now express the FH conditional

in Theorem 2 as

Claim 3. The conditional belief of any arbitrary proposition B ⊆ Θ is given by

BlΘ(B|A) =
BlΘ(A ∩B)

PlΘ(A)− S(A;A ∩B)
, (4.1)

where A is the conditioning event s.t. A ∈ F̂Θ.

Proof. This is immediate from the relationship PlΘ(A)−S(A;A∩B) = BlΘ(A∩B)+

PlΘ(A ∩B).

4.2.2 Conditional Core Theorem

We are now in a position to state the main result of this chapter, which is a

theorem that establishes the necessary and sufficient conditions for a given proposition

to belong to the conditional core.

Theorem 4 (Conditional Core Theorem (CCT)). Let EΘ = {Θ,FΘ,mΘ(�)} be any

arbitrary BoE. Then, the conditional mass function mΘ(�|A) satisfies

mΘ(B|A) > 0 ⇐⇒ B ∈ in(A) or B ∈ in(A) ∪OUT(A); (4.2)

where A ⊆ Θ is any arbitrary conditioning event s.t. A ∈ F̂Θ.

Proof. See Section A.1 in Appendix A.

The proof of the CCT is somewhat laborious and hence we relegate it to the

Appendix for the sake of clarity of the presentation. While at a first glance this proof

may appear somewhat cumbersome, it is not too difficult to follow and it helps in

understanding the form of the conditional focal elements and how they are generated.



48

The mathematical rigor and all the machinery involved are required to capture the

subtleties that can arise depending on the “structure” of the core.

Let us illustrate the application of the CCT via a simple example.

Example 1. [52] Consider a situation assessment scenario, where objects crossing

the perimeter of a military facility are to be identified. Objects of concern are the

following:

F ≡ Fighter; M ≡ Bomber; T ≡ Tank; S ≡ Soldier; O ≡ Other,

Each class of objects, except O, which cannot be further sub-classified, may further

be sub-classified into either f ≡ friendly or e ≡ enemy. Therefore, the total set of

objects is

Θ = {Fe, Ff︸ ︷︷ ︸
F

,Me,Mf︸ ︷︷ ︸
M

, Te, Tf︸ ︷︷ ︸
T

, Se, Sf︸ ︷︷ ︸
S

, O}.

The BoE EΘ = {Θ,FΘ,mΘ(�)} represents the currently available evidence. Take

FΘ = {Me,Mf , Sf , (Fe, Se), (Me, Te, O),Θ};

mΘ(B) = {0.1, 0.1, 0.1, 0.2, 0.2, 0.3},

for B ∈ FΘ in the same order as in FΘ.

Suppose the BoE E needs to be updated to reflect new ground intelligence (which

informs of perhaps an aerial object) by conditioning with respect to the conditioning
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event A = (F,M,O). First, we identify

in(A) = {Me,Mf};

out(A) = {Fe, (Me, O), (F,M,O)};

IN(A) = {Me,Mf ,M};

OUT(A) = {Fe, (Me, O), (Fe,Me, O), (F,M,O)}.

The only propositions that can be expressed as X ∪ Y, X ∈ in(A), Y ∈ OUT(A), are

B = {(Fe,Me), (Fe,Mf ), (Me, O), (Fe,Me, O), (M,O), (Fe,M,O), (F,M,O)}.

So, according to the CCT, FΘ|A is the collection {X ⊆ Θ | X ∈ in(A) or X ∈ B}—the

propositions contained in sets in(A) and B. Table 4.1 confirms this result.

B mΘ(B|A) B mΘ(B|A)

Mf 0.11110 (Fe,Me, O) 0.02540
Me 0.11110 (M,O) 0.03175

(Fe,Me) 0.03175 (Fe,M,O) 0.02540
(Fe,Mf ) 0.03175 A 0.60000
(Me, O) 0.03175 all others 0.00000

Table 4.1: Conditional masses generated by explicitly computing the conditional mass
function with respect to the conditioning event A = (Ff , Fe,Mf ,Me, O) in Example 1.
Only the conditional focal elements, i.e., propositions with positive mass, are shown.

The following observations are noteworthy and make intuitive sense:

• Upon conditioning,

– propositions supporting non-aerial objects do not remain in the conditional core;

– propositions supporting only aerial objects remain in the conditional core.
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• The newly generated conditional focal elements can also be given intuitive interpreta-

tions.

– While (Fe, Se) goes to zero upon conditioning, the evidence existing toward Fe

moves into the two propositions (Fe,Me) and (Fe,Mf ).

– The two propositions (Fe, Se) and (Me, Te, O) goto zero upon conditioning. The

evidence existing toward Fe in (Fe, Se) does not move into Fe alone since there

is no evidence toward a ‘singleton’ proposition. However, the support existing

toward Fe and (Me, O) moves to (M,Fe, O).

Thus, using the CCT, one can easily identify the propositions generated by condi-

tioning without any numerical computations. As we have observed, these conditional

focal elements can also be given an intuitive interpretation with respect to the available

evidence and the conditioning event.

4.2.3 Implications of the CCT

Keeping in mind the observations made in Example 1, we now point out the several

important implications of the CCT. Consider any arbitrary proposition B ⊆ Θ that

is being conditioned with respect to an event A ∈ F̂Θ.

• Suppose B is not contained in A: then B cannot belong to the conditional core.

• Suppose B is contained in A. Then,

– if B belongs to the core, B belongs to the conditional core too;

– if B does not belong to the core, B belongs to the conditional core iff it

can be expressed as the union of a focal element contained in A and the
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intersection of A with some arbitrary set of focal elements each of which

straddles A and A.

• If there are no focal elements that straddle A and A, then the conditional core

is equivalent to the core.

• Propositions with zero belief do not belong to the conditional core.

4.2.4 Converse of the CCT

Having received new evidence, suppose the BoE EΘ = {Θ,FΘ,mΘ(�)} gets updated

to E ′Θ = {Θ,F′Θ,m′Θ(�)}. Knowledge of the conditioning proposition(s) that could have

generated this updated knowledge can give us valuable clues as to the sensitivity of the

knowledge base with respect to the evidence received. The following result—which

can be considered a converse to the CCT—addresses this issue by “bounding” the

sets of potential conditioning events, most importantly, with no recourse to numerical

computations.

Lemma 5 (Conditional Core Generator (CCG) Bounds). Let the BoE EΘ be updated

to E ′Θ after being conditioned with respect to A ∈ F̂Θ, i.e., F′Θ = FΘ|A and m′Θ(B) =

mΘ(B|A), ∀B ⊆ Θ. Then, F′Θ could have been generated from any conditioning

proposition A that is bounded as A∗ ⊆ A ⊆ A∗, where

(i)
⋃

B∈F′Θ

B ⊆ A∗ ,

(ii)
⋃

B∈FΘ

(B \ C) ⊆ A∗, where C =
⋃

C∈F′Θ

C.

Proof. directly follows from the CCT.

Let us consider the Example 1 again.
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Example 2. For FΘ and F′Θ = FΘ|A in Example 1, we have (F,M,O) ⊆ A∗ and

(T, S) ⊆ A∗, thus making A∗ ⊆ (F,M,O). Hence, in this particular case, we must

have the conditioning proposition A = (F,M,O).

On the other hand, suppose we have

FΘ = {Mf ,Me, Sf , (Fe, Se), (Me, Te, O)};

F′Θ = {Mf ,Me, (Fe,Mf ), (Fe,Me), (Me, O), (M,O), (Fe,M,O), (Fe,Me, O)}.

Then, (Fe,M,O) ⊆ A∗ and (Te, S) ⊆ A∗, thus making A∗ ⊆ (F,M, TF , O). Hence,

any conditioning proposition A satisfying (Fe,M,O) ⊆ A ⊆ (F,M, TF , O) may have

generated this F′Θ from FΘ.

4.3 Application Example

Let us study the Target Identification (Target ID) case study that appears in [81],

where several sensor reports are to be combined to determine the target ID in an air

surveillance context. We use the same example, but with an intermediate evidence

conditioning step to illustrate the application of the CCT and its converse.

4.3.1 Model

Suppose the target allegiance and target class FoDs are ΘA = {f, n, s, h} (f =

friend, n = nuetral, s = suspect, h = hostile) and ΘB′ = {B1, B2, B3, B4}
(B1 = Commercial Planes, B2 = Fighter Planes, B3 = Bombers, B4 = Military

Transport Planes), respectively. Each basic target class consists of several platform

types: B1 = {b11, b12}, B2 = {b21, b22, b23, b24, b25}, B3 = {b31, b32, b33}, and B4 =

{b41, b42} (e.g., b11 could be Airbus-320). Hence, the FoD ΘB = B1 ∪B2 ∪B3 ∪B4 is

a refinement of ΘB′ . Target ID belongs to the FoD Θ = ΘA ×ΘB.
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Report ID Corresponding Evidence BoE

Report (1): m
(1)
ΘB′

(B2) = 0.7; m
(1)
ΘB′

(B2, B3) = 0.2; m
(1)
ΘB′

(B′) = 0.1

Report (2): m
(2)
ΘB

(b22) = 0.6; m
(2)
ΘB

(b23) = 0.3; m
(2)
ΘB

(B) = 0.1

Report (3): m
(3)
ΘA

(s) = 0.6; m
(3)
ΘA

(A) = 0.4

Report (4): m
(4)
ΘA

(f) = 0.9; m
(4)
ΘA

(A) = 0.1

Table 4.2: Available Sensor Reports

4.3.2 Data Fusion and Decision-Making

The four sensor reports that are available are shown in Table 4.2. Fusion center

combines all the sensor reports and generates a BoE for decision-making. Suppose

the pairs {Report (1),Report (2)} and {Report (3),Report (4)} are fused separately.9

The resulting BoEs are vacuously extended and combined10 to obtain the fused mass

mΘ(�) as

mΘ(�) =
(
m

(1)
ΘB′

(�)⊕m(2)
ΘB

(�)
)B↑A×B

⊕
(
m

(3)
ΘA

(�)⊕m(4)
ΘA

(�)
)A↑A×B

.

The target ID decision can be made by application of the pignistic transformation

to mΘ(�) [33, 81]. Henceforth, when no confusion can occur, we avoid using the

“comma” within non-singleton propositions (e.g., (n, s, h) × (B1, B2, B3) is denoted

as nsh × B1B2B3). Table 4.3 shows the fused results based on the sensor reports

above and they appear to favor a target ID of f × b22 (i.e., a friendly b22) [81].

4.3.3 Evidence Conditioning

Suppose high confidence intelligence confirms that neither bombers nor friendly

or commercial planes are being deployed in the vicinity. The KB (i.e., mΘ(�)) thus

9Sensor reports can be combined in any order using the DCR.
10See [81] for a detailed discussion.
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B mΘ(B) B mΘ(B) B mΘ(B)

s× b22 0.07824 f × b22 0.46956 ΘA × b22 0.05220

s× b23 0.03912 f × b23 0.23478 ΘA × b23 0.02610

s×B2 0.00913 f ×B2 0.05478 ΘA ×B2 0.00609

s×B2B3 0.00261 f ×B2B3 0.01565 ΘA ×B2B3 0.00174

s×ΘB 0.00130 f ×ΘB 0.00783 ΘA ×ΘB 0.00087

Table 4.3: Fused BoE Generated From the Sensor Reports

can be conditioned with respect to the event A = nsh × B2B4. The associated

computation can be efficiently carried out by using the CCT to first identify the

conditional focal elements. Recall that the set in(A) captures the focal elements that

are contained in A; out(A) captures the focal elements that intersect but are not

contained in A. So we get

in(A) = {s× b22, s× b23, s×B2};

out(A) = {s×B2, s×B2B4, nsh× b22, nsh× b23, nsh×B2, nsh×B2B4}.

Table 4.4 shows all the elements that are either elements of in(A) or in(A) ∪
OUT(A). The CCT states that these are the only elements that belong to the con-

ditional core FΘ|A. A direct computation confirms this conclusion; these conditional

mass values are also indicated in Table 4.4. Similar to those in Example 1, notice the

following on conditional propositions.

• Upon conditioning, no proposition supporting bombers (B3), friendly (f) planes

or commercial (B1) planes are retained in the conditional core.

• The newly generated conditional focal elements can also be given an intuitive

interpretation. Upon conditioning, the support for s×ΘB vanishes and moves to-

ward non-commercial non-bomber objects represented in s×B2B4. The support
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for ΘA × b22 also vanishes. The support that had existed towards non-friendly

planes b22 moves toward nsh×b22, but not toward focal elements such as n×b22

because there is no evidence supporting such “singleton” propositions.

B Bl(B|A) m(B|A) B Bl(B|A) m(B|A)

s× b22 0.35989 0.35989 s× b23 0.17994 0.17994

s×B2 0.58890 0.04907 s×B2B4 0.59249 0.00359

nsh× b22 0.47361 0.11372 nsh× b23 0.20450 0.02456

(s× b22) ∪ (nsh× b23) 0.61349 0.04910 (s× b23) ∪ (nsh× b22) 0.71041 0.05686

nsh× b22b23 0.84371 0.05964 (s×B2) ∪ (nsh× b22) 0.77797 0.01849

(s×B2) ∪ (nsh× b23) 0.67036 0.00780 (s×B2) ∪ (nsh× b22b23) 0.92673 0.00766

nsh×B2 0.98313 0.05640 (s×B2B4) ∪ (nsh× b22) 0.78424 0.00268

(s×B2B4) ∪ (nsh× b23) 0.67501 0.00106 (s×B2B4) ∪ (nsh× b22b23) 0.93565 0.00159

(s×B2B4) ∪ (nsh×B2) 0.99317 0.00112 A = nsh×B2B4 1.00000 0.00683

Table 4.4: Conditional Core FΘ|A Corresponding to A = nsh×B2B4

Let us use the converse of the CCT on the conditioned BoE to identify potential

conditioning events that may have generated the new (conditioned) BoE.

We have A∗ ⊇ nsh × B2B3B4 and A∗ ⊇ (nsh × B1, f × ΘB) so that A∗ ⊆ nsh ×
B2B3B4. Thus, in this particular case A can be uniquely determined11 as A = nsh×
B2B3B4.

On the other hand, suppose mΘ(Θ) = 0 (and the other masses normalized) in

the original mass assignment in Table 4.3. Then, A∗ ⊇ (nsh × B2B3, s × B4) and

A∗ ⊇ (f×ΘB, s×B1), so that A∗ ⊆ (nsh×B2B3B4, nh×B1). Thus, the conditioning

event A is bounded as (nsh×B2B3, s×B4) ⊆ A ⊆ (nsh×B2B3B4, nh×B1). In this

11It is important to realize that for a given revised (conditioned) BoE, there can be many possible
conditioning events that may have generated the revised BoE from the originally cast BoE. Hence,
in general, the conditioning event cannot be determined uniquely.
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case, we can only bound the potential conditioning event by two sets—a set that is

contained in and another set that contains, the conditioning event.

4.4 Chapter Summary

There is no one conditional notion that is applicable to all the applications. We

have identified the FH conditionals to be a more suitable candidate for the task

of soft/hard fusion. The main result presented in this chapter is the CCT which

provides a complete characterization of the conditional focal elements with no recourse

to numerical computations. The CCT helps to better understand the conditional

notions and fusion operations, such as evidence updating schemes, that are based upon

them. In addition, the CCT lays the theoretical foundation for the development of

computational schemes for efficient calculation of FH conditionals. The CCG bounds

provide a way to bound the sets of conditioning events that may have caused a belief

change, again without numerical computations. These results can be very helpful in

understanding and interpreting dynamic changes in knowledge bases.



Chapter 5
Conditional Approach to Data Fusion

A
new DST fusion strategy that forms the core of the developed analytical frame-

work is presented. It addresses the challenges C1-C4 associated with soft/hard

data fusion (see Chapter 1 for details). While satisfying a majority of the algebraic

and fusion properties common to other widely used DST combination rules, this new

strategy also possesses several other intuitively appealing features which makes it

ideal for many soft/hard fusion applications. For instance, it is robust and provides

more reasonable results when confronted with contradictory evidence, a feature that

is lacking in perhaps the most widely used DST fusion rule—the DCR. We propose

several fusion techniques and the associated parameter selection strategies that are

applicable to a multitude of fusion tasks. These proposed techniques are further ex-

plained via a running example. We also provide a detailed example and two real-life

application examples to illustrate various parameter selection and fusion strategies

presented in this chapter.

This chapter is organized as follows: Section 5.1 presents new conditional operators

that are applicable for sources having non-identical FoDs; Section 5.2 presents a new

fusion strategy for soft/hard data based on the above conditional notions; analysis

of various fusion characteristics of the presented method are also given; Section 5.3

57
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presents several parameter selection strategies; Section 5.4 contains an illustrative

example; Section 5.5 presents two real life applications exhibiting some of the key

concepts and ideas introduced in the chapter; and finally, Section 5.6 contains the

chapter summary. The proofs of the results that do not appear within the text are

provided in Section A.2 of Appendix A.

5.1 Ported Conditional Notions

The conditional approach proposed in [74] is only applicable to evidence updating.

However, the features such as

(i) not having to expand one’s own FoD, and

(ii) the ability to refine and focus on relevant information via conditioning,

are indeed attractive properties in any fusion scenario, especially in the case of

soft/hard applications. In the conditional approach to belief updating in (3.13) (see

Section 3.4.5.3), the conditional belief is computed in EΘ2 (i.e., using the evidence in

EΘ2) for updating the belief of a proposition B in Θ1. One can view this as a belief

computation in a BoE being “ported” to another BoE, where the two FoDs need not

be identical. With this observation in mind, we can identify new conditional operators

that are applicable to both identical and non-identical FoDs. This also allows for a

unified representation of our fusion strategy. Let us proceed as follows.

Consider two BoEs EΘi = {Θi,FΘi ,mΘi(�)}, i = 1, 2 s.t. Θ1 ∩ Θ2 6= ∅ (i.e., Θ1

and Θ2 have at least one element in common, since, otherwise the fusion does not

make sense). Also, for any conditioning event A ∈ F̂Θ2 s.t. PlΘ2(Θ1|A) > 0, define a

normalizing constant KΘ2(Θ1|A) = BlΘ2(Θ1|A) + PlΘ2(Θ1|A).
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5.1.1 Ported Conditional Belief Function

Definition 13 (Ported Conditional Belief). The ported conditional belief of a propo-

sition B ⊆ Θ1 computed in EΘ2 is given by

Bl(Θ2)

Θ1
(B|A) =

1

KΘ2(Θ1|A)

(
BlΘ2(B|A) + BlΘ2(B∪Θ2\1|A)−BlΘ2(Θ2\1|A)

)
, (5.1)

for any A ∈ F̂Θ2 s.t. PlΘ2(Θ1|A) > 0.

Notice the following.

• Clearly, Bl(Θ2)

Θ1
(B|A) = BlΘ2(B|A), when Θ1 = Θ2; hence, ported conditional

belief function reduces to a regular belief function, when FoDs are identical.

• The ported conditional belief is not defined when PlΘ2(Θ1|A) = 0. In fact, if

even Θ1 is not plausible in EΘ2 when A is given, then it does not make any sense

to compute conditional beliefs (or plausibility or BPA for that matter) in EΘ2

for any subset B of Θ1.

Claim 6. The ported conditional belief Bl(Θ2)

Θ1
(·|A) : 2Θ1 7→ [0, 1] is a valid belief

function on Θ1, whenever A ∈ F̂Θ2 and PlΘ2(Θ1|A) > 0.

Proof. See Section A.2.1 of Appendix A.

Example 3. Consider the BoEs EΘi , i = 1, 2 where Θ1 = {a, b, c}, Θ2 = {b, c} and

{mΘ1(a), mΘ1(ab), mΘ1(bc)} = {0.4, 0.4, 0.2} and {mΘ2(b), mΘ2(bc)} = {0.8, 0.2}.

Say, we would like to compute ported belief conditionals Bl
(Θi)

Θ (�|�), i = 1, 2, for Θ =

{b, c}.

Take the computation of Bl(Θ1)

Θ (�|ab) (Note that PlΘ1(bc|ab) > 0). First, compute

the belief functions BlΘ1(�|ab) and obtain the normalization constant K1(Θ|ab) as
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B BlΘ1(B|ab) Bl(Θ1)

Θ (B|ab) BlΘ2(B|bc) Bl(Θ2)

Θ (B|bc)
∅ - - - -

a 0.1 - - -

b - 1.0 0.8 0.8

c - - - -

ab 1.0 - - -

ac 0.1 - - -

bc - 1.0 1.0 1.0

abc 1.0 - - -

Table 5.1: Computation Example of Ported Conditional Beliefs

Ki(Θ|ab) = BlΘ1(Θ|ab) + PlΘ1(Θ|ab) = 1 + BlΘ1(Θ|ab) − BlΘ1(Θ1 \ Θ|ab). Then,

use (5.1) to obtain Bl(Θ1)

Θ (�|ab) (see Table 5.1). Notice that Bl(Θ2)

Θ (�|bc) is identical to

BlΘ2(�|bc), since Θ2 = Θ.

5.1.2 Ported Conditional Plausibility Function

Since the ported conditional belief in Definition 13 turns out to be a valid DST

belief function, we can now use the standard definition to derive ported conditional

plausibility as:

Definition 14 (Ported Conditional Plausibility). The ported conditional plausibility

of a proposition B ⊆ Θ1 is

Pl(Θ2)

Θ1
(B|A) = 1− Bl(Θ2)

Θ1
(Θ1 \B|A), (5.2)

for any A ∈ F̂Θ2 s.t. PlΘ2(Θ1|A) > 0.
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Claim 7. The ported conditional plausibility function Pl(Θ2)

Θ1
(·|A) : 2Θ1 7→ [0, 1] defined

in Definition 14 is given by

Pl(Θ2)

Θ1
(B|A) =

1

KΘ2(Θ1|A)

(
PlΘ2(B|A) + PlΘ2(B ∪Θ2\1|A)− PlΘ2(Θ2\1|A)

)
, (5.3)

for any A ∈ F̂Θ2 s.t. PlΘ2(Θ1|A) > 0.

Proof. by direct substitution of (5.2) into (5.1).

Notice that Pl(Θ2)

Θ1
(B|A) also reduces to PlΘ2(B|A), when Θ1 = Θ2.

5.1.3 Ported Conditional Mass Function

Similarly, we can define the ported conditional mass function using the standard

belief to mass transformation as:

Definition 15 (Ported Conditional Mass). The ported conditional mass of a propo-

sition B ⊆ Θ1 is given by

m(Θ2)

Θ1
(B|A) =

∑

C⊆B

(−1)|B−C| Bl(Θ2)

Θ1
(C|A), (5.4)

for any A ∈ F̂Θ2 s.t. PlΘ2(Θ1|A) > 0.

Claim 8. The ported conditional mass function m(Θ2)

Θ1
(·|A) : 2Θ1 7→ [0, 1] in Defini-

tion 15 can be expressed as

m(Θ2)

Θ1
(B|A) =

mΘ2(B|A) +
∑

D⊆A\Θ1

mΘ2(B ∪D|A)

KΘ2(Θ1|A)
, for ∅ 6= B ⊆ Θ1;

with m(Θ2)

Θ1
(∅|A) = 0, for any A ∈ F̂Θ2 s.t. PlΘ2(Θ1|A) > 0.

Proof. See Section A.2.2 of Appendix A.
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Note that, similar to the above cases, m(Θ2)

Θ1
(B|A) also reduces to mΘ2(B|A), when

Θ1 = Θ2. As shown in the next section, it is this very property of ported conditionals

that allows us a unified representation of the fusion strategy in both identical and non-

identical FoD cases. Moreover, due to the use of ported conditionals, as it turns out,

the proposed fusion equation has the same functional form in all belief, plausibility

and mass functions.

5.2 Conditional Fusion Equation

With the ported conditionals in place, now we are in a position to present our

new evidence combination strategy.

Definition 16 (Conditional Fusion Equation (CFE)). The belief function associated

with the CFE-generated fused BoE EΘ = EΘ1 on EΘ2 is

BlΘ(B) =
∑

A1∈FΘ1

β1(A1) Bl(Θ1)

Θ (B|A1) +
∑

A2∈FΘ2

β2(A2) Bl(Θ2)

Θ (B|A2), (5.5)

whenever PlΘi(Θ|Θi) > 0, for i = 1, 2. Here, βi(�), i = 1, 2 are non-negative, real and

satisfy
∑

A1∈FΘ1

β1(A1) +
∑

A2∈FΘ2

β2(A2) = 1.

The CFE above defines a whole family of general fusion equations parameterized

via βi(·), i = 1, 2.

Remarks:

• The sets A ∈ FΘi for which βi(A) > 0, identify the conditioning events. Incom-

ing evidence is further “conditioned” (or “refined”) based on these events.

• The linear combination weights βi(A) > 0 can be used to emphasize or de-

emphasize the contribution from each conditioned proposition.

• The desired FoD Θ, can be chosen depending on the application requirements.

The only condition CFE imposed on Θ is Θ ∩Θi 6= ∅, for i=1, 2.
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In essence, CFE defines the belief of a proposition B ⊆ Θ as the weighted mean of

conditional belief of the proposition B taken over the sets of focal elements in BoEs

to be fused.

Claim 9. The belief function BlΘ(·) : 2Θ 7→ [0, 1] given in CFE Definition 16 is a

valid belief function on the FoD Θ.

Proof. Note that Bl
(Θi)

Θ (�|Ai) is valid belief function on Θ for all A ∈ FΘi , for i =

1, 2. The claim follows from the fact that an arbitrary convex combination of belief

functions defined on one FoD remains a valid belief function on the same FoD.

Example 4. Consider the Example 3 again. Let us compute the fused BoE EΘ =

EΘ1 on EΘ2 with parameters βi(A) = KimΘi(A), where Ki are normalization constants

(this particular parameter selection is referred to as rCFE; see Section 5.3.3.1 for

details). Table 5.2 lists the relevant ported conditional beliefs.

B Bl(Θ1)

Θ (B|ab) Bl(Θ1)

Θ (B|bc) Bl(Θ2)

Θ (B|b) Bl(Θ2)

Θ (B|bc) BlΘ(B)

∅ 0.0 0.0 0.0 0.0 0.00

b 1.0 0.0 1.0 0.8 0.85

c 0.0 0.0 0.0 0.0 0.00

bc 1.0 1.0 1.0 1.0 1.00

β1(ab) = .250 β1(bc) = .125 β2(b) = .500 β2(bc) = .125

Table 5.2: Ported Conditional Belief Values for BlΘ(·) Computation in Example 4.

Now, use (5.5) to compute the belief values.

We may now extract the plausibility and mass forms corresponding to the belief

equation in the CFE. As it turns out, all of these equations have the same functional

form.
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Claim 10. The plausibility and mass functions associated with the CFE-generated

fused BoE EΘ = EΘ1 on EΘ2 are, respectively,

PlΘ(B) =
∑

A1∈FΘ1

β1(A1) Pl(Θ1)

Θ (B|A1) +
∑

A2∈FΘ2

β2(A2) Pl(Θ2)

Θ (B|A2); (5.6)

mΘ(B) =
∑

A1∈FΘ1

β1(A1)m(Θ1)

Θ (B|A1) +
∑

A2∈FΘ2

β2(A2)m(Θ2)

Θ (B|A2); (5.7)

whenever PlΘi(Θ|Θi) > 0, for i = 1, 2. Here, βi(�), i = 1, 2 are non-negative, real and

satisfy
∑

A1∈FΘ1

β1(A1) +
∑

A2∈FΘ2

β2(A2) = 1.

Proof. The plausibility equation in (5.6) can be readily obtained by direct substitution

of identity PlΘ(B) = 1− BlΘ(Θ \B) into (5.5) in CFE Definition.

To get the mass equation, expand the right-hand side (RHS) of (5.5) in terms of

masses which yields

RHS =
∑

C⊆B

( ∑

A1∈FΘ1

β1(A1)m(Θ1)

Θ (C|A1) +
∑

A2∈FΘ2

β2(A2)m(Θ2)

Θ (C|A2)

)
(5.8)

But, the left-hand side (LHS) of (5.5) yields

LHS =
∑

C⊆B

m(C) (5.9)

Equate the LHS and RHS to get

∑

C⊆B

{
mΘ(B)−

( ∑

A1∈FΘ1

β1(A1)m(Θ1)

Θ (C|A1)+
∑

A2∈FΘ2

β2(A2)m(Θ2)

Θ (C|A2)
)}

= 0 (5.10)

Since, B ⊆ Θ is arbitrary, we must have

mΘ(B)−
( ∑

A1∈FΘ1

β1(A1)m(Θ1)

Θ (C|A1) +
∑

A2∈FΘ2

β2(A2)m(Θ2)

Θ (C|A2)
)

= 0, (5.11)

for all B ⊆ Θ. Hence, the claim.
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5.2.1 Properties of the CFE

Let us study some the important properties of CFE in order to better understand

how it behaves under various fusion conditions.

5.2.1.1 Algebraic Properties

Commutativity: This is trivial from the definition.

Associativity: Arbitrary fusion with the CFE does not preserve associativity, in

general. However, CFE can be used for associativity preserving fusion by, either

using the multiple-BoE form or selecting an appropriate set of parameters (see

Sections 5.2.3.1 and 5.2.3.2, respectively).

Continuity: In the context of evidence fusion, the continuity principle implies that

a small change in the BoEs being fused should cause only a small change in

the fused result [3]. This is definitely true for the CFE because conditionals are

continuous and the CFE itself is a convex combination of conditionals. So, the

CFE-generated fused BoE will undergo only a small change provided that the

sets FΘi remain unchanged with small changes in EΘi , for i = 1, 2.

Idempotency: CFE is not idempotent, in general. However, it can be shown that,

if FΘi is s.t. every Ai ∈ FΘi contains all the focal elements in EΘi , for i =

1, 2, then the CFE is idempotent. For instance, the trivial case results when

βi(Ai) = 0, ∀Ai 6= Θi, for i = 1, 2.

5.2.1.2 Fusion of Vacuous BoEs

Fusion of two vacuous BoEs, in the case of non-identical FoDs, is an interesting,

however not very intuitive situation. The following example illustrates this non-

trivial nature of fusing two vacuous BoEs, when the two corresponding FoDs are

non-identical.
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Example 5. [52] Consider the fusion of EΘ1 and EΘ2, where EΘ1 is vacuous, Θ1 =

{ab} and Θ2 = {bc . . .}. In the cases of, (a) mΘ2(bc) = 1.0, (b) mΘ2(bcde) = 1.0 and

(c) mΘ2(Θ2) = 1.0, when should we expect the fused BoE EΘ to be vacuous?

How the CFE handles such a situation becomes clear via:

Claim 11. Consider the CFE-generated fused BoE EΘ = EΘ1 on EΘ2, where EΘi , i =

1, 2, are both vacuous. Then,

(i) if Θ ⊆ Θ1 ∩Θ2, EΘ is vacuous;

(ii) otherwise, mΘ(Θi ∩Θ) = βi(Θi), i = 1, 2.

Proof. Since EΘi is vacuous, we have FΘi = {Θi}; therefore, the parameters βi(B) =

0, ∀B ⊂ Θi, for i = 1, 2. For a non-trivial fusion, assume βi(Θi) 6= 0, i = 1, 2. Then

the mass update equation reduces to

mΘ(B) = β1(Θ1)m(Θ1)

Θ (B|Θ1) + β2(Θ2)m(Θ2)

Θ (B|Θ2).

Use the CCT in Theorem 4, to obtain the result.

5.2.1.3 Fusion of Contradictory Evidence

Fusion of contradictory evidence in one of the most crucial challenges in soft/hard

fusion. Some of the well established DST combination rules (e.g., the DCR) are

known to yield counter-intuitive results in the presence of contradictory evidence.

Let us study the behavior of CFE in this situation. For illustrational purposes,

consider the fusion EΘ = EΘ1 on EΘ2 , where

EΘ1 : {mΘ1(a),mΘ1(Θ1)} = {µ, 1− µ};

EΘ2 : {mΘ2(b),mΘ2(Θ2)} = {ν, 1− ν}, ν < µ < 1,
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with Θ ≡ Θ1 = Θ2 = {a, b}. The CFE generates

mΘ(a) = β1(a) + β1(Θ)µ, mΘ(b) = β2(b) + β2(Θ) ν,

mΘ(Θ) = β1(Θ) (1− µ) + β2(Θ) (1− ν),

where β1(a)+β1(Θ)+β2(b)+β2(Θ) = 1. Clearly, the results are parameter dependent.

A particularly interesting parameter configuration that we refer to as rCFE (see

Section 5.3 for details) yields the ‘odds ratio’

mΘ(a)

mΘ(b)
=

β1(Θ)

1− β1(Θ)

µ

ν
→ β1(Θ)

1− β1(Θ)
, as ν → 1 with ν < µ < 1.

In contrast, the odds ratio generated from most of the combination rules based on

the conjunctive form, for instance DCR, tends to ∞ (irrespective of how close to one

ν is). Clearly, the CFE behaves more reasonably in this scenario. Let us illustrate

the behavior of several popular DST combination rules via two well-known examples.

In applying the rCFE and cCFE examples, we use K1 : K2 = 1 : 1 (see Section 5.3

for details on parameter selection). We also use the notation θij = (θi, θj) and θ123 =

{θ1, θ2, θ3}. The first example is due to Zadeh [2].

Example 6. [2] Let us fuse EΘ1 and EΘ2, where Θ1 = Θ2 ≡ Θ = {θ1, θ2, θ3} and

{mΘ1(θ1),mΘ1(θ3)} = {0.9, 0.1}, {mΘ2(θ2),mΘ2(θ3)} = {0.9, 0.1}. The results gener-

ated by the CFE and other combination rules appear in Table 5.3.

The rCFE simulates the scenario when one needs to aggregate the information,

resulting in an output similar to the conjunctive rule and its derivatives. On the

other hand, the cCFE simulates the scenario where one looks at evidence that both

sources “agree” on. Hence, even though the evidence towards θ3 is low, it is the only

proposition both EΘ1 and EΘ2 can agree upon. The result generated in this case is

similar to the DCR and DP2.
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B ∈ F Disj. Conj. DCR YGR DP1 DP2 PCR RCR rCFE cCFE

∅ - 0.99 - - - - - - - -

θ1 - - - - - - 0.49 - 0.45 -

θ2 - - - - - - 0.49 - 0.45 -

θ3 0.01 0.01 1.00 0.01 0.01 0.50 0.02 0.01 0.10 1.00

θ12 0.81 - - - 0.81 0.40 - 0.81 - -

θ13 0.09 - - - 0.09 0.05 - 0.09 - -

θ23 0.09 - - - 0.09 0.05 - 0.09 - -

Θ - - - 0.99 0.09 - - - - -

Decision θ12 ∅ θ3 Θ θ12 θ3 θ12 θ12 θ12 θ3

Table 5.3: Fusion of Contradictory Evidence: Example from [2]

The example due to Florea, et al [3] is:

Example 7. [3] Let us fuse EΘ1 and EΘ2, where Θ1 = Θ2 ≡ Θ = {θ1, . . . , θ5} and

{mΘ1(θ1),mΘ1(θ123)} = {0.8, 0.2}, {mΘ2(θ2),mΘ2(θ123)} = {0.8, 0.2}. The results

generated by the CFE and other combination rules appear in Table 5.4.

B ∈ F Disj. Conj. DCR YGR DP1 DP2 PCR RCR rCFE cCFE

∅ - 0.64 - - - - - - - -

θ1 - 0.16 0.44 0.16 0.16 0.27 0.48 0.03 0.40 -

θ2 - 0.16 0.44 0.16 0.16 0.27 0.48 0.03 0.40 -

θ12 0.64 - - - 0.64 0.39 - 0.60 - -

θ123 0.36 0.04 0.12 0.04 0.04 0.07 0.04 0.34 0.20 1.00

Θ - - - 0.64 0.09 - - - - -

Decision θ12 ∅ θ12 Θ θ12 θ12 θ12 θ12 θ12 θ123

Table 5.4: Fusion of Contradictory Evidence: Example from [3]

The decision generated by most of the combination rules favor θ12. YGR is dif-

ferent because it basically avoids making a decision. The cCFE narrows down the

possibilities to θ123.
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Table 5.5 provides a summary of fusion properties of some of the widely used DST

combination rules.

Feature Dis. Con. DCR YGR DP PCR RCR CFE

Commutativity Yes Yes Yes Yes Yes Yes Yes Yes

Associativity Yes Yes Yes No No No Yes NG

Continuity Yes Yes Yes Yes Yes Yes Yes Yes

Idempotency No No No No No No No NG

Non-Exhaustive FoDs No No No No No No Yes Yes

Contradictory Evidence No Yes No No Yes Yes Yes Yes

Vacuous Fusion Yes Yes Yes Yes Yes Yes Yes

Evidence Updating No No No No No No No Yes

Source/Sensor Weighting No No No No No No No Yes

Flexible Parameter Selection No No No No No No No Yes

Table 5.5: Summary of Fusion Properties of Commonly Used Combination Rules;
Here, Con.=Conjunctive form, Dis.=Disjunctive Form and NG=Not in General.

5.2.2 Evidence Updating

In an updating scenario, even though further refinements are unnecessary, the

inertia of available information (i.e., EΘ[k]) must be taken into account in the fusion

process. CFE can be yield this property by imposing certain restrictions on the

parameters.

To show this, consider the CFE-generated EΘ1 [k + 1] = EΘ1 [k] on EΘ2 [k] with

β1(A)[k] = 0, ∀A 6= Θ1, where EΘi [k] = {Θi,FΘi [k],mΘi(�)[k]}, i = 1, 2. This choice

of β1(·)[k] prohibits further refinement of EΘ1 [k], because the conditioning operation

is performed with only Θ1 itself.12 With α1[k] = β1(Θ1), the resulting CFE-generated

BoE is exactly what the Conditional Update Equation in [52] yields.

12Note that BlΘ1
(�|Θ1) ≡ BlΘ1

(�); therefore conditioning with respect to Θ− 1 do not change the
originally cast beliefs.
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Definition 17 (Conditional Update Equation (CUE)). [52] The belief function as-

sociated with the CUE-generated updated BoE EΘ1 [k + 1] = EΘ1 [k]C EΘ2 [k] is

BlΘ1(B)[k + 1] = α1[k] BlΘ1(B)[k] +
∑

A2∈FΘ2
[k]

β2(A2)[k]Bl(Θ2)

Θ1
(B|A2)[k], (5.12)

whenever, PlΘ2(Θ1|Θ2)[k] > 0. Here, the non-negative and real parameters satisfy

α1[k] +
∑

A2∈FΘ2
[k]

β2(A2)[k] = 1, for all k.

5.2.3 Fusion of Multiple BoEs

To fuse multiple BoEs, one can of course repeatedly apply the CFE. But, the

fused BoE may depend on the order of fusion, because the CFE does not possess

the associativity property, in general. While this may not be a concern in some

applications, for instance in evidence updating, certain situations call for aggregation

of evidence with the fused BoE being independent of how the evidence sources are

ordered for fusion.

5.2.3.1 Order-Independent Fusion for Multiple BoEs

Here we define a multi-BoE extension to the CFE that preserves associativity.

Definition 18. The CFE-generated fused BoE EΘ = EΘ1onEΘ2on · · ·onEΘn is

BlΘ(B) =
n∑

i=1

∑

Ai∈FΘi

βi(Ai) Bl
(Θi)

Θ (B|Ai), (5.13)

whenever PlΘi(Θ|Θi) > 0, for i = 1, . . . , n. Here, the non-negative real parameters

βi(�), i = 1, . . . , n satisfy
n∑

i=1

∑

Ai∈FΘi

βi(Ai) = 1.

Claim 12. The belief function BlΘ(·) : 2Θ 7→ [0, 1] generated by multiple-BoE exten-

sion of CFE in Definition 18 is a valid belief function on the FoD Θ.



71

Proof. Similar to the proof of Claim 9, this follows from the fact that an arbitrary

convex combination of belief functions defined on one FoD remains a valid belief

function on the same FoD.

The plausibility and mass functions associated with the belief function in Defi-

nition 18 of multiple-BoE form of CFE can be easily derived as earlier. Hence, we

simply state the result without proof.

Claim 13. The plausibility and mass functions associated with the CFE-generated

fused BoE EΘ = EΘ1 on EΘ2on · · ·onEΘn are, respectively,

PlΘ(B) =
n∑

i=1

∑

Ai∈FΘi

βi(Ai) Pl
(Θi)

Θ (B|Ai); (5.14)

mΘ(B) =
n∑

i=1

∑

Ai∈FΘi

βi(Ai)m
(Θi)

Θ (B|Ai); (5.15)

whenever PlΘi(Θ|Θi) > 0, for i = 1, 2. Here, the parameters βi(�), i = 1, . . . , n are

non-negative, real and satisfy
n∑

i=1

∑

Ai∈FΘi

βi(Ai).

5.2.3.2 Order-Independent Iterative-CFE for Multiple BoEs

The strategy in Definition 18 allows for order-independent fusion of multiple BoEs.

Here, we provide an iterative strategy, which comes in extremely handy in scenarios

that call for order-independent aggregation of multiple BoEs one-at-a-time, e.g., a

voting scenario where the evidence has to be aggregated as they “come in.” Let us

proceed as follows.

Let E{1:i} = {Θ,F{1:i},m{1:i}(�)} denote the BoE obtained by iteratively fusing the

BoEs EΘj , j = 1, . . . , i; hence,

E{1:i} =
(
· · ·
(
(EΘ1onEΘ2)onEΘ3

)
on · · ·onEΘi

)
, for i ≥ 2.

Now, in order to proceed, note that the task is to iteratively fuse the BoEs as

E{1:i+1} = E{1:i} on Ei+1, for i = 1, . . . , n−1,
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so that E{1:n} = EΘ1onEΘ2on · · ·onEΘn . Here, we take E{1:1} ≡ EΘ1 .

Step 1—Compute E{1:2} = EΘ1 on EΘ2. The corresponding CFE parameters must

satisfy
∑

A1∈FΘ1

β1(A1) +
∑

A2∈FΘ2

β2(A2) = 1. (5.16)

Step 2—Compute E{1:3} = E{1:2} on EΘ3. Again, the corresponding CFE parame-

ters must satisfy

∑

A{1:2}∈F{1:2}

β{1:2}(A{1:2}) +
∑

A3∈FΘ3

β3(A3) = 1. (5.17)

However, this would entail conditioning in E{1:2}, which would not yield the

required result E{1:n} at the end. What we need is to select the CFE parameters

s.t. the already fused result in E{1:2} is retained. To achieve this objective,

invoke the CUE form of the fusion; i.e., perform E{1:3} = E{1:2}C EΘ3 with CUE

parameters satisfying

α{1:2} +
∑

A3∈FΘ3

β3(A3) = 1, with α{1:2} > 0 (5.18)

Step i—Compute E{1:i+1} = E{1:i} C EΘi+1
. As in (5.18), we now must choose the

CUE parameters to satisfy

α{1:i} +
∑

Ai+1∈FΘi+1

βi+1(Ai+1) = 1, with α{1:i} > 0 (5.19)

In this manner, at the conclusion of Step (n−1), we would have computed the

required fused result E{1:n} = EΘ1 on EΘ2 on · · · on EΘn . Note that, knowledge of the

total number of BoEs n that are to be fused is not required. What we have effectively

shown is that a step-wise update using CUE is identical to an associative fusion with

CFE.
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Example 8. For a survey that calls for each incoming piece of evidence to be equally

‘weighted’ for fusion, the above order-independent iterative strategy can be used by

picking the parameters as

∑

Ai∈FΘi

βi(Ai) =





1/2, for i = 1, 2;

1/i, for i > 2;

and α{1:i} = i/i+1, for i > 2.

5.2.3.3 Evidence Updating with Multiple BoEs

To achieve order-independence when a KB is being updated with multiple new

pieces of evidence, we can use

Definition 19. The belief function associated with the CUE-generated updated BoE

EΘ1 [k + 1] = EΘ1 [k]C ( EΘ2 [k]on · · ·onEΘn [k] ) is

BlΘ1(B)[k + 1] = α1[k] BlΘ1(B)[k] +
n∑

i=2

∑

Ai∈FΘi
[k]

βi(Ai)[k]Bl
(Θi)

Θ1
(B|Ai)[k], (5.20)

whenever PlΘi(Θ|Θi)[k] > 0, for i = 1, . . . , n. Here, the CUE parameters are non-

negative, real and satisfy α1[k] +
n∑

i=2

∑

Ai∈FΘi
[k]

βi(Ai)[k] = 1, for all k.

5.3 Selection of Parameters

With the appropriate parameters being utilized, the CFE provides enormous flex-

ibility to cater to a variety of fusion requirements (evidence fusion and updating,

refinement of incoming information to focus on relevant evidence, order-preserving

fusion of multiple BoEs, etc.). Any CFE-based fusion of n BoEs EΘi , i = 1, . . . , n, to

yield the BoE EΘ requires one to select following parameters:
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(a) FoD Θ for the fused BoE;

(b) subset of conditioning sets in FΘi , i = 1, . . . , n; and

(c) combinations weights βi(A), ∀A ∈ FΘi , i = 1, . . . , n.

How one goes about selecting the appropriate parameter configuration however is

highly dependent on the application and domain. Here, we propose a few strategies

that are applicable for general fusion and updating scenarios.

5.3.1 Selection of the FoD for fused BoE Θ

The choice of FoD for evidence updating is trivial. However, for an evidence com-

bination, one has the flexibility of picking a relevant FoD with the minimal condition

Θ∩Θi 6= ∅, i = 1, . . . , n. In addition, CFE does not require the ballooning extensions

on the FoD of the BoEs to be fused. For a “meaningful” fusion, one should consider

the structure of the evidence and other context/application dependent parameters in

the process of selecting an appropriate FoD.

5.3.2 Selection of the Conditioning Sets

Evidence from BoE EΘi is further refined for fusion via conditioning with respect

to conditioning events A ∈ FΘi , i = 1, . . . , n. This refinement can be done w.r.t any

conditioning set A as long as A ∈ F̂Θi . However, a suitable subset of elements can

be chosen by setting βi(Ai) = 0 for rest of the conditioning events. We present one

such strategy, in the next section, where overlapping focal elements are “merged,”

effectively reducing the number of conditioning sets.

5.3.3 Selection of the Linear Combination Weights βi(�)

These weights allow one to emphasize/de-emphasize the propositions within each

conditioning set A. A relative importance measure of evidence provided by a BoE

EΘi (e.g., relative credibility/reliability) can also be incorporated into βi(�)s. For this
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purpose, let Ki denote the normalized relative importance measure associated with

BoE EΘi , for i = 1, . . . , n.

5.3.3.1 Evidence Combination

In an evidence combination scenario, evidence from the BoE EΘi is “weighted”

according to the support EΘi itself has for it. One obvious choice would be:

Definition 20 (Receptive fusion (rCFE)). The parameters βi(�), i = 1, . . . , n for

rCFE fusion is given by

βi(A) =





KimΘi(A), for PlΘi(Θ|A) > 0;

0, otherwise.

(5.21)

where, Ki, i = 1, . . . , n are normalization constants.

Here, each BoE is conditioned with respect to its focal elements and weighed by

the associated mass. An alternative is to condition the evidence based on the groups

formed by focal elements. For this, first, construct the set of conditioning sets as

Di =
{ ⋃

j∈J ;
J⊆Ii

F
(i)
j | F (i)

k ∩ F
(i)
` 6= ∅, ∀ k, ` ∈ J

}
, (5.22)

where Ii is an index set for FΘi ≡ {F (i)
j }, i = 1, . . . , n. Then, for each i = 1, . . . , n

set the parameters as

βi(A) =





Ki
∑
B⊆A

mΘi(B), A∈Di, PlΘi(Θ|A)>0;

0, otherwise.

(5.23)

Here, evidence is conditioned on non-overlapping sets formed by taking unions of

intersecting focal elements and weighed by their cumulative mass.
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Remark:

Often the case is that, in practice, Θi is assigned a smaller weight as a way of repre-

senting overall uncertainty, not necessarily to support the proposition Θi. To account

for this, when Θi ∈ FΘi , one can obtain Di by first forming a D́i with FΘi \ Θi as in

(5.22) and then setting Di = D́i ∪Θi, for i = 1, . . . , n.

In the case of two BoE fusion (n = 2), one can use the following interesting

assignment, where evidence from each BoE can be weighted on the support the other

BoE has for it.

Definition 21 (Cautious Fusion (cCFE)). The parameters βi(�), i = 1, 2 for cCFE

fusion is given by

βi(A) =





KimΘj(A ∩Θi), for PlΘi(Θ|A) > 0, i 6= j;

0, otherwise.

(5.24)

where, Ki, i = 1, . . . , n are normalization constants.

Note that the conditioning based on grouped focal elements can be easily extended

to this case as well.

Example 9. Consider the fusion scenario in Example 4. Given Θ = (bc) and the

relative importance of the BoEs as EΘ1 : EΘ2 = 5 : 3, let us compute the linear

combination weights for rCFE and cCFE cases.

Case 1. rCFE Parameters: We have, K1 : K2 = 5 : 3, since EΘ1 : EΘ2 = 5 : 3;

now, we get β1(ab) = 0.4K1, β1(bc) = 0.2K1, β2(b) = 0.8K2 and β2(bc) = 0.2K2.

Using β1(ab)+β1(bc)+β2(b)+β2(bc) = 1 with K1 : K2 = 5 : 3, we obtain K1 = 5/6 and

K2 = 1/2. Therefore, β1(ab) = 1/3, β1(bc) = 1/6, β2(b) = 2/5 and β2(bc) = 1/10.
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Note that the focal element a in EΘ1 does not generate any conditioning events, since

PlΘ1(Θ|a) = PlΘ2(Θ|a) = 0.

Case 2. cCFE Parameters: Similarly, we get β1(ab) = 0.8K1, β1(bc) = 0.2K1,

β1(abc) = 0.2K1 and β2(bc) = 0.2K2. As before, with K1 : K2 = 5 : 3, we obtain

K1 = 25/33, K2 = 5/11. Then, β1(ab) = 20/33, β1(bc) = 5/33, β1(abc) = 5/33 and

β2(bc) = 1/11.

5.3.3.2 Evidence Updating

Evidence updating is fundamentally different from a combination operation. In

an updating scenario one also has to take into account the inertia of the existing

BoE, in addition to weighting the incoming evidence. Consider the updating process

EΘ1 [k + 1] = EΘ1 [k]C EΘ2 [k]on . . .onEΘn [k], ∀ k as in Definition 19.

5.3.3.2.1 Selection of α1[k] The weight α1[k] in Definition 19 can be interpreted

as a measure that indicates the flexibility or inertia of the originally cast evidence.

With α1[k] = 1, one can model complete inflexibility of the available evidence towards

changes (e.g., when it perceives the incoming evidence to be completely unreliable,

when the original BoE is formed from a vast collection of reliable data, etc.) On

the other hand, α1[k] = 0 captures the complete flexibility of the available evidence

towards changes (e.g., when it perceives the incoming evidence to be completely

reliable, when the original BoE has little or no credible knowledge base to begin with,

etc.). Non extreme cases can be modeled with an α1[k] ∈ (0, 1). For instance, one can

set α1[k] = M/(M + 1), where M is the number of “pieces” of evidence on which the

available evidence is based upon. This treats each piece of already gathered evidence

and the new piece of incoming evidence as having equal inertia.



78

5.3.3.2.2 Selection of βi[k] We propose the following interesting choices that are

inspired by the work in [52,74,82].

Receptive Update Strategy (rCUE): This strategy “weights” the incoming

evidence from EΘi according to the support EΘi itself has for it. In other words, we

are “receptive” to what EΘi thinks.

βi(A) =




KimΘi(A), for PlΘi(Θ|A) > 0;

0, otherwise.

(5.25)

Cautious Update Strategy (cCUE): This strategy “weights” the incoming

evidence from EΘi according to the support EΘ1 has for it. In other words, being

“cautious,” we are checking if incoming sources are agreeable with currently available

evidence.

βi(A) =




KimΘ1(A ∩Θ1), for PlΘi(Θ|A) > 0;

0, otherwise.

(5.26)

Let us illustrate these with an example.

Example 10. Given a BoE EΘ0 [k] ≡ {Θ0,FΘ0 [k],mΘ0 [k]}, where Θ0 = {b, c} and

mass assignment: mΘ0(c)[k] = 0.2 and mΘ0(bc)[k] = 0.8. We would like to update

the BoE EΘ0 [k] with the evidence given by EΘ1 and EΘ2 at time index k as given in

Example 3.

BoE EΘ0 [k] is fairly new. Hence, we would like to give more “weight” to incoming

evidence. So, set α0[k] to a lower value, say α0[k] = 1/5. Since EΘ0 [k] is receptive to

incoming evidence, rCUE is more appropriate. First, compute the ported conditional

belief values (see Table 5.2). With α0[k] = 1/5, we get β1(ab)[k] = 0.2, β1(bc)[k] =

0.1, β2(b)[k] = 0.4 and β2(bc)[k] = 0.1. Then, use Equation (5.20) to compute the

updated belief as, BlΘ0(b) = 0.68, BlΘ0(c) = 0.1 and BlΘ0(bc) = 1.0.
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5.4 An Illustrative Example

In this section, we utilize an extended version of the example scenario in [52] to

highlight the various features of the CFE and also to provide insight into parameter

selection strategies.

5.4.1 Scenario

A remote military facility uses a suite of hard sensors, viz., SH and soft sensors

SS1 , SS2 and SS3 , for the identification of objects crossing its perimeter. The objects

crossing the perimeter are classified into one of four classes:

S ≡ Soldier, F ≡ Fighter−Jet, T ≡ Tank, O ≡ Other;

each class, except O which accounts for an object that cannot be sub-classified (e.g.,

an animal), may further be sub-classified as f = friendly or e = enemy; so, the

exhaustive set of objects of interest is

ΘObj = {Sf , Se︸ ︷︷ ︸
≡S

, Ff , Fe︸ ︷︷ ︸
≡F

, Tf , Te︸ ︷︷ ︸
≡T

, O}.

5.4.2 Evidence

The BoEs associated with each evidence source is as follows:

Hard Sensor Suite: Sensors belonging to the suite SH can identify ground objects,

but cannot differentiate between f = friendly and e = enemy forces. The

corresponding BoE is EΘH = {ΘH ,FΘH ,mΘH (�)}, where ΘH = {S, T,O}.

Soft Sensors: The soft sensor SS1 provides the prevailing threat level (TL) in the

proximity of the security zone. We assume that this assessment is provided by

the base commander, hence a highly reliable source. The soft sensors SS2 and

SS3 correspond to two cooperating human witnesses. We use SS1 for refining the
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evidence provided by these human witnesses. The BoE corresponding to source

SSi is taken as EΘSi
= {ΘS,FΘSi

,mΘSi
(�)} for i = 2, 3, where ΘS = {S, T, F}.

We partition the time axis into intervals, so that the evidence being received within

each interval is unchanged. For our simulations, we use five such intervals, (a), (b),

(c), (d) and (e). We will use an index k, which may take the values {a, b, c, d, e},
to identify the interval. For convenience, we will then use the indices k − 1 and

k + 1 to identify the previous and next intervals of interval k. For example, EΘH [b] is

the hard evidence generated within interval (b); EΘH [k − 1] then identifies the hard

evidence generated in interval (a). Table 5.6 shows the evidence being generated by

the sources SH and SSi , i = 1, 2, 3, within each interval and their corresponding DS

theoretic mass assignments.

Evidence Source Interval (a) Interval (b) Interval (c) Interval (d) Interval (e)

SH : Hard Sensor No data No data

EΘH
{ΘH}={1.0} {T,ΘH}={.70, .30} {T,ΘH}={.70, .30} {ΘH}={1.0} {S,O}={.80, .20}

SS1
: Threat Level Normal Ground Attack Ground Attack Unknown Ground/Air Attack

Ai, i=1, 2 ∅ (S, T ) (S, T ) Θ∗ ΘS

SS2
: Wit. Report 1 S, 90% T , 80% T , 75% T or F , 90% S, 90%

EΘS2
{S,ΘS}= {T,ΘS}= {T,ΘS}= {(T, F ),ΘS}= {S,ΘS}=

{.90, .10} {.80, .20} {.75, .25} {.90, .10} {.90, .10}

SS3
: Wit. Report 2 No data F , 70% F , 75% T , 90% F , 80%

EΘS3
{ΘS}= {F,ΘS}= {F,ΘS}= {T,ΘS}= {F,ΘS}=

{1.0} {.70, .30} {.75, .25} {.90, .10} {.80, .20}

Table 5.6: Evidence Gathered from Soft and Hard Sensor Suites

5.4.3 Evidence Updating/Fusion

In our simulations, we look at three schemes, FS1, FS2 and FS3, that a fusion

center may employ to maintain a KB. Let us denote the BoE generated at this fusion

center as EΘ∗ [k] = {Θ∗,FΘ∗ [k],mΘ∗(�)[k]}, where Θ∗ is the FoD being retained at the
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KB. Corresponding to each fusion scheme, the fused BoEs obtained in the intervals

(a)-(e) are tabulated in Table 5.7.

Fusion Scheme B ∈ FΘ∗ [k] ↓ mΘ∗(�)[k]

k = a k = b k = c k = d k = e

FS1

ΘH 1.0000 0.3000 0.7000 0.7000 0.1205

T - 0.7000 0.3000 0.3000 0.5915

S - - - - 0.2880

FS2

ΘObj 1.0000 - - - -

ΘS - - - 0.1000 0.0750

ΘH - 0.1500 0.1500 - -

S, T - 0.1000 0.1000 - -

F, T - - - 0.4500 -

T - 0.7500 0.7500 0.4500 -

S - - - - 0.6250

F - - - - 0.2000

O - - - - 0.1000

FS3

ΘObj 1.0000 - - - -

ΘS - 0.1250 0.1250 0.1225 0.0872

ΘH - 0.1500 0.1500 0.1350 0.0135

F, T - - - 0.0450 0.0045

T - 0.5500 0.5500 0.5400 0.0540

S - - - - 0.5450

F - 0.1750 0.1750 0.1575 0.2158

O - - - - 0.0800

Table 5.7: Fused Results Corresponding to Example 5.4

5.4.3.1 FS1: Updating Hard Evidence

Here, the fused BoE is given by EΘ∗ [k+ 1] = EΘ∗ [k]C EΘH [k+ 1], where Θ∗ = ΘH

with βH(ΘH)[k] = 1 − αH [k]. This simulates a scenario where soft information is

unavailable and only the hard evidence is used without any refinement.

Note that, EΘ∗ [a] being vacuous, we set αH [b] = 0 for the update in interval (b).
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For k = c, we set EΘ∗ [k] = EΘ∗ [k − 1] because there is no change in the evidence

provided by SH . In interval (d), with no incoming evidence, we set αH [d] = 1 to

preserve the existing KB. In interval (e), the KB is updated with αH [e] = 0.7. The

fused results in each interval appear in Fig. 5.1.

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)
0
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0.4
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1

 

 ΘObj
ΘS
ΘH

S,T
F,T
T
S
F
O

FS 3FS2FS1

Figure 5.1: Fusion results of Example 5.4. Fused mass assignments in each interval is
plotted in its own section corresponding to the fusion scheme. For instance, mΘ∗(�)[b]
for FS1 is plotted in Section FS1 under (b).

5.4.3.2 FS2: Fusion of Soft/Hard Evidence

Here, hard evidence in each interval is fused with soft information from the same

interval. We refine the incoming soft information from the human witnesses SS2 and

SS3 using the threat level information (TL) from SS1 . The hard evidence from SH
is used ‘as is’ (i.e., conditioning on ΘH). Thus, the fused BoE is given by EΘ∗ [k] =



83

EΘH [k]C (EΘS2
[k] on EΘS3

[k]). We use Θ∗ = ΘObj.

In interval (a), soft information is “filtered out,” because TL = Normal. In inter-

val (b), evidence from S3 is filtered out because the threat level indicates a “Ground

Attack.” Fusion is performed with αH [b] = β2(S, T )[b] = 0.5, which puts equal weight

to EΘH and EΘS2
. Interval (c) can be handled similarly. But we can exploit the con-

tinuity property of the CFE and not update the KB because the evidence change

in EΘS2
is minimal. In real-life applications, such observations can be used to cut

down on computational and energy costs (e.g., in distributed sensor networks). So,

we refrain from updating the KB in this interval. Interval (d) illustrates a scenario,

where hard sensors fail to capture evidence and domain experts (in this example, the

base commander) have not yet been able to asses the situation. In this case, soft

information is fused with no further refinement. We use βi(Θ∗)[d] = 0.5, i = 2, 3,

to equally weigh the evidence from SS2 and SS3 . Fusion in interval (e) is similar to

interval (b) and we pick the parameters αH [e] = 0.5, β2(ΘS)[e] = β3(ΘS)[e] = 0.25.

The fused results in each interval appear in Fig. 5.1.

5.4.3.3 FS3: Updating Hard Evidence with Soft Evidence

Here, we consider the ‘complete’ fusion scenario where the KB is updated by

evidence from both soft and hard sensors. The fused BoE is given by EΘ∗ [k + 1] =

EΘ∗ [k]C (EΘH [k] on EΘS2
[k] on EΘS3

[k]), where Θ∗ = ΘObj. As above, we refine the soft

information using TL and use hard evidence as is.

Interval (a) remains vacuous as before because TL = Normal. In interval (b),

we pick α∗[b] = 0, βH(ΘH)[b] = 0.5 and βi(S, T )[b] = 0.25, i = 2, 3, thus giving

more weight to the hard data. In interval (c), since the change in evidence pro-

vided by the sensors is marginal, as implied by the continuity property of the CFE,

EΘH [c] on EΘS2
[c] on EΘS3

[c] ≈ EΘ∗ [b] (with the same parameters). Thus, we refrain

from updating the KB. However, in interval (d), lack of new evidence forces the KB
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to preserve its existing evidence. Thus, we set α∗[d] = 0.9 and update from the soft

data with βi(Θ∗)[d] = 0.05, i = 2, 3. In interval (e), both TL and hard sensor in-

formation are available. Thus, in order to take more recent and reliable information

into account, evidence update is carried out with the KB allowed to be more flexible

to change. As usual, we also refine soft evidence using TL. Accordingly, we set the

parameters as α∗[e] = 0.1, βH(ΘH)[e] = 0.4 and βi(ΘS)[e] = 0.25, i = 2, 3. The fused

results in each interval appears in Fig. 5.1.

5.4.4 Analysis

As this example illustrates, the CFE parameters can be used to easily account

for relative reliability of evidence sources. The conditioning operation allows one to

refine the incoming evidence. For instance, in interval (b) of the FS2 scheme, when

TL = Ground Attack, the evidence provided by SS3 was ignored by the CFE and only

the relevant evidence from SS2 was taken. This is a very useful feature in soft/hard

data fusion, where sources often provide irrelevant information.

5.5 Application Examples

In this section, we illustrate the application of CFE to real life evidence combina-

tion and updating scenarios. Each application also shows basic steps of DST evidence

modeling.

5.5.1 NLP Application

Here, we illustrate how the CFE can be used for the task of incorporating soft

evidence in the form of text statements, into the fusion task. The issues of Natural

Language Processing (NLP) parsing of text, logical form extraction, and conversion

to DS theoretic forms are not addressed here. We use this application example to

illustrate how the CFE can be used for the pertinent fusion tasks.
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5.5.1.1 Scenario

A suspicious activity in the proximity of a military base was reported. Reports

from the various hard sensors (e.g., metal, magnetic, IR) deployed around the perime-

ter of the base confirms vehicle activity; and analysis of night vision cameras confines

the set of possible vehicles to one in ΘV = {Jeep, Truck, Car} ≡ {Jp, Tk, Cr}. The

task of the base commander is to determine the most probable suspect and the vehicle

driven by the suspect.

5.5.1.2 Setup

The base commander maintains a “blacklisted” group of personnel in Θπ =

{Andy, Bob, Ken, Larry} ≡ {A,B,K,L}, from which he usually picks the ini-

tial suspects. The commander gets soft evidence from two human witnesses WS1

and WS2 and also from a public database DB3 (see Table 5.8) containing demo-

graphic information on ΘS × ΘΠ, where ΘS = {Tall,Med, Short} ≡ {T l,Md, St}
and ΘΠ = {Andy,Bob, Chuck, . . . , Jude} ≡ {A,B,C, . . . , J}.

Source Evidence Confidence

WS1 “A tall man was driving a truck or jeep” [0.7]

WS2 “Andy drives a truck” [0.9]

DB3 〈Height = Tall〉=⇒ 〈Person = Bob〉 [0.5, 0.8]

Table 5.8: Evidence gathered from WS1, WS2 and DB3.

The values in square brackets indicate the confidence each source places on its own

evidence. Table 5.9 shows the reliability and DS theoretic evidence model correspond-

ing to each evidence source. Note that |ΘΠ| = 10, Θπ 6⊂ ΘΠ and ΘΠ ∩Θπ = {A,B}.
The CFE’s ability to handle non-exhaustive frames without having to expand the

FoDs using computationally expensive ballooning extensions becomes very handy in

this situation.
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Source Source Reliability DS Model FoD

WS1 r1 EΘ1 Θ1 = ΘS ×ΘV ×Θπ

WS2 r2 EΘ2 Θ2 = ΘS ×ΘV ×Θπ

DB3 r3 EΘ3 Θ3 = ΘS ×ΘV ×ΘΠ

Table 5.9: Evidence models of WS1, WS2 and DB3.

5.5.1.3 Modeling

Let us use the following models for the soft evidence provided by witnesses and

the database:

EΘ1 : mΘ1(T l × (Jp, Tk)×Θπ) = 0.7r1

mΘ1(ΘS ×ΘV ×Θπ) = 1− 0.7r1

EΘ2 : mΘ2Θ2(ΘS × Tk × A) = 0.9r2

mΘ2(ΘS ×ΘV ×Θπ) = 1− 0.9r2

EΘ3 : mΘ3Θ3(T l ×ΘV ×B) = r3c1

mΘ3((Md, St)×ΘV × ¬B) = r3(1− c2)

mΘ3(ΘS ×ΘV ×ΘΠ) = 1− r3(1 + c1− c2)

Remarks:

1. We use simple, intuitive models to capture the soft evidence from witnesses WS1

and WS2. The reliability associated with an evidence source is incorporated by

simply discounting the initial mass assignments. For instance, if the reliability

r1 of WS1 is very low, we may want to give a lower weight to the proposition

T l × (Jp, Tk)×Θπ.

2. Textual information or expert opinions are often modeled as logical implication

rules. The ability to combine such evidence into hard evidence is of significant

importance, especially in military, medical, and other sensitive domains.
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5.5.1.4 Evidence Updating with CFE

We use the following evidence updating strategy (see Fig. 5.2) to fuse soft/hard

evidence. Let the BoE, BoE(k) ≡ EΘ[k] = {ΘS × ΘV × Θπ,FΘ[k],mΘ(·)[k]} be

the evidence BoE at the k-th update. We initialize BoE EΘ[0] with a vacuous BoE

representing the hard evidence, “The observed vehicle is in ΘV ”. At the k-th update

cycle, we compute the update EΘ[k] = EΘ[k − 1]onEk, k = 1, . . . 3. The idea here is to

refine (i.e., update) the evidence obtained from hard sensors with the soft evidence

from the witnesses and the public database in order to narrow down the possible

suspects.

"A tall man was driving
a jeep or truck" [0.70]

WS1

Reliability   r1 Reliability   r2 Reliability   r3

"Andy drives a truck" 
[0.90]

Inertia   α2 Inertia   α3

BoE(0) Update BoE(1) Update

WS2

Vacuous
BoE

Inertia   α1

BoE(2) Update BoE(3)

<Tall>           <Bob>
[c1,c2]

Updated
BoE

DB3

Figure 5.2: Updating scheme used in the example

5.5.1.5 Fusion Results

We obtain the following BoE after updating the initial BoE with all three pieces

of evidence:

mΘ(T l × (Jp, Tk)×Θπ) = α3α2(1− α1)(0.7r1)(2− 0.7r1)

mΘ(ΘS × Tk × A) = α3(1− α2)(0.9r2)(2− 0.9r2)
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mΘ(ΘS ×ΘV ×Θπ) = α3α2[α1 + (1− α1)(1− 0.7r1)2] + α3(1− α2)(1− 0.9r2)2

mΘ(T l ×ΘV ×B) = r3c1(1− α3)[2− r3(1 + c1 − c2)]

mΘ((Md, St)×ΘV × A) = r2
3(1− α3)(c2 − 1)(1 + c1 − c2) + 2r3(1− α3)(1− c2)

mΘ(ΘS ×ΘV × (A,B)) = (1− α3)][1− r3(1 + c1 − c2)]2.

Note the dependency of these final masses on the source reliability and “inertia,” viz.,

αi. Table 5.10 contains the final fusion results for several sets of parameters.

Rule confidence low: [c1, c2] = [0.1, 0.4]

WS1 → r1 = 0.10 r1 = 0.90 r1 = 0.90

WS2 → r2 = 0.90 r2 = 0.10 r2 = 0.90

Proposition↓ BetPΘ(�) [BlΘ(�),PlΘ(�)] BetPΘ(�) [BlΘ(�),PlΘ(�)] BetPΘ(�) [BlΘ(�),PlΘ(�)]

Tk,A 0.42 [0.30,0.70] 0.17 [0.01,0.99] 0.49 [0.42,0.58]

Jp,A 0.11 [0.00,0.66] 0.16 [0.00,0.96] 0.07 [0.00,0.58]

Cr,A 0.11 [0.00,0.65] 0.10 [0.00,0.44] 0.02 [0.00,0.17]

Tk,B 0.05 [0.00,0.47] 0.10 [0.00,0.77] 0.07 [0.00,0.58]

Jp,B 0.05 [0.00,0.47] 0.10 [0.00,0.77] 0.07 [0.00,0.58]

Cr,B 0.05 [0.00,0.47] 0.03 [0.00,0.26] 0.02 [0.00,0.16]

(Jp, Tk), A 0.53 [0.30,0.96] 0.33 [0.01,0.99] 0.56 [0.42,1.00]

(Jp, Tk), B 0.10 [0.00,0.47] 0.20 [0.00,0.77] 0.14 [0.00,0.58]

(Jp, Tk),K 0.07 [0.00,0.40] 0.16 [0.00,0.69] 0.13 [0.00,0.55]

Rule confidence high: [c1, c2] = [0.6, 0.9]

WS1 → r1 = 0.1 r1 = 0.9 r1 = 0.9

WS2 → r2 = 0.1 r2 = 0.1 r2 = 0.9

Proposition↓ BetPΘ(�) [BlΘ(�),PlΘ(�)] BetPΘ(�) [BlΘ(�),PlΘ(�)] BetPΘ(�) [BlΘ(�),PlΘ(�)]

Tk,A 0.08 [0.01,0.99] 0.10 [0.01,0.99] 0.37 [0.30,0.70]

Jp,A 0.08 [0.00,0.77] 0.10 [0.00,0.77] 0.06 [0.00,0.47]

Cr,A 0.08 [0.00,0.76] 0.03 [0.00,0.26] 0.03 [0.00,0.18]

Tk,B 0.14 [0.00,0.96] 0.16 [0.00,0.96] 0.13 [0.00,0.66]

Jp,B 0.14 [0.00,0.96] 0.16 [0.00,0.96] 0.13 [0.00,0.66]

Cr,B 0.14 [0.00,0.95] 0.10 [0.00,0.44] 0.09 [0.00,0.36]

(Jp, Tk), A 0.16 [0.01,0.99] 0.20 [0.01,0.99] 0.43 [0.30,0.78]

(Jp, Tk), B 0.28 [0.00,0.96] 0.32 [0.00,0.96] 0.25 [0.00,0.66]

(Jp, Tk),K 0.12 [0.00,0.69] 0.16 [0.00,0.69] 0.09 [0.00,0.40]

Table 5.10: Final fusion results.
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5.5.1.6 Analysis of Fusion Results

We have taken DB3 to be very reliable with r3 = 0.9; r1 and r2 denote the reliabili-

ties of WS1 and WS2, respectively. BetPΘ(·) column depicts the pignistic probability

[67]; the [BlΘ(·),PlΘ(·)] values depict the corresponding belief and plausibility values

which can be interpreted as indicating the uncertainty associated with the underlying

probability.

The main observation one should make here is that, while one may reach the

same conclusion under different circumstances, the uncertainty associated with the

decision may vary significantly. For instance, when rule confidence is low, while

both scenarios {r1 = 0.1, r2 = 0.9} and {r1 = 0.9, r2 = 0.9} favor Andy driving the

truck, the uncertainty associated with the latter is much smaller because of the higher

reliability of WS1. When rule confidence is high, a decision favoring Bob driving has

to be made with care because the associated uncertainty is very high. This is one

main advantage of DS theory: one can make a decision with a better awareness of

the associated uncertainties.

5.5.2 Underwater Objects Characterization

Characterization, management and remediation of military munitions, especially

in underwater environments, is a challenging task given all the technical and physi-

cal barriers. Optical cameras are better suited for identifying the physical shape of

objects. But in underwater, low visibility almost prohibits the use of these cameras.

Acoustic imaging is a good alternative to this, but the characteristics of imaging along

with numerous artifacts of physical systems which are not easy to model, makes the

object recognition task non-trivial. Here, we illustrate the use of CFE for the task at

hand by counteracting data imperfections via fusing evidence from multiple perspec-

tives (hence, sources). The data used in the experiments were obtained at a test site

located in the Florida Atlantic University premises.
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5.5.2.1 Problem Formation

Let Θ = {θ1, . . . , θn} be the set of targets of interest. Once an object is observed,

optical sensor provides the BoE EΘO = {Θ,FΘO ,mΘO(·)} which models the optical

evidence. Similarly, sonar sensor provides the BoE EΘS = {Θ,FΘS ,mΘS(·)}. The

objective is to obtain the fused BoE EΘ = {Θ,FΘ,mΘ(·)} to characterize the object

observed. We seek for a method to obtain an ‘optimal’ EΘ for the task at hand by

exploring different possible ways of fusing available evidence.

5.5.2.2 Experimental Setup

An object OΘ is placed in the middle of a pool with a known depth and dimensions.

An equipment setup consisting of (i) a 1M-pixel digital optical stereo camera, and

(ii) a DIDSON sonar video camera operating at 1.1/1.8MHz, is rotated around the

target. The height of the equipment setup from the ground plane and the distance to

OΘ are recorded. There are 5 possible target types, identified as θi 6= θ6, i = 1, . . . , 5

where θ6 denotes any other object.

Target Description

θ1 Cylindrical target with length l and radius h/2

θ2 Cylindrical target with length l and radius h

θ3 Cylindrical target with length l/2 and radius h/2

θ4 Spherical target with radius h/2

θ5 Spherical target with radius h

Table 5.11: Target Characteristics

Let α denote the incident angle of sensors to the target. Given α, target dimensions

and distance to target from cameras and ground level, the acoustic shadow image

Shθi(αin) corresponding to each target type θi is computed. To characterize the

object OΘ, both optical and acoustic images of the object were taken at incident

angles of 0, 30, 60, 90, 120, 150 degrees.



91

(a) αin = 0 (b) αin = 30 (c) αin = 60

(d) αin = 90 (e) αin = 120 (f) αin = 150

Figure 5.3: Acoustic images of the object OΘ at angles 0− 150 at steps of 30 degrees.
Observe the variation of the shadow geometry with αin.

5.5.2.3 Evidence Modeling

We generate EO for each αin by manually assigning the weights depending on the

ability to visually identify targets. Note that, for simulating a human observer, only

the object shapes can be identified. Inability to identify objects precisely, i.e., the

uncertainty in classification, in a given view is modeled by assigning a mass to the

complete ambiguity Θ.

Shadow analysis on acoustic images allows one to quantify evidence and generate

confidence values to represent whether an observed object is of type θi ∈ Θ. This is

done via a measure µθi(·) : Shθi(·)×ShOΘ
(·) 7→ [0, 1], which captures the ‘similarity’ of

Shθi(·) to ShOΘ
(·), i.e., the shadow image of the object under investigation. We assign
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(a) αin = 0 (b) αin = 30 (c) αin = 60

(d) αin = 90 (e) αin = 120 (f) αin = 150

Figure 5.4: Preprocessed optical images of the object OΘ at angles 0 − 150 at steps
of 30 degrees. In views 5.4(b)-5.4(c), it is clear that object is cylindrical. However,
view 5.4(a) could well be some rectangular object. This uncertainty is even more
pronounced in view 5.4(d).

the ‘singleton’ mass mΘS(θi) = 0.2 × µθi(αin), for each θi ∈ Θ, and the remaining

total mass to mΘS(Θ), for each αin. See Table 5.12 for an example mass assignment

for object OΘ.

5.5.2.4 Combining Evidence Sources

In the current setup, evidence fusion is not trivial. One can choose to com-

bine/update evidence from individual sources over different αin, or one can combine

two different sources for a fixed αin. We take a more intuitive approach to this with

the help of CFE.
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αin EΘO
(αin) EΘS

(αin)

{A1, A2, A3,Θ} {θ1, θ2, θ3, θ4, θ5,Θ}

0 {0.75, 0.0, 0.0, 0.25} {.180, .139, .110, .039, .073, .459}
30 {0.75, 0.0, 0.0, 0.25} {.189, .128, .099, .033, .067, .484}
60 {0.75, 0.0, 0.0, 0.25} {.175, .132, .091, .042, .070, .490}
90 {0.0, 0.75, 0.0, 0.25} {.099, .173, .098, .092, .165, .373}
120 {0.0, 0.0, 0.0, 1.0} {.178, .126, .106, .041, .066, .483}
150 {0.0, 0.0, 0.75, 0.25} {.185, .133, .114, .059, .090, .419}

Table 5.12: Mass Assignment Models of the Evidence Generated by Optical and Sonar
Sensors. Note that, A1 = {θ1, θ2, θ3, θ6}, A2 = {θ4, θ5, θ6}, A3 = {θ1, θ2, θ3}.

Optical Source Alone: Here we study the use of the optical source alone. One can

rotate around a target to obtain as much information as possible to characterize

the object into one of the θi ∈ Θ. As one rotates around the object, one can

update the existing belief about the object. This is illustrated under the column

EΘ(θ) = EΘO(θ − 1)C EΘO(θ) in Table 5.13.

Initially, one can see that the evidence is more towards a target which is not

spherical. As more views are considered, the support weighs more towards a

cylindrical target. However, it is not possible to pin-point to one particular

target. Also, notice the fact that there is significant amount of mass being

assigned to Θ, representing the ambiguity in the available evidence. Thus, even

after fusing 6 views together, one cannot make a crisp decision based on this

evidence alone.

Acoustic Source Alone: Individual evidence corresponding to each αin from the

acoustic sensor is very uncertain. For instance, EΘS(60) leans more towards

target type θ1, whereas EΘS(90) leans more towards target type θ2. However,

the uncertainty in both of these BoEs is quite high as indicated by the high

mass for complete ambiguity.
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As before, let us explore the pattern of belief change as one updates its belief

over different passes. One clear observation is that the mass assigned to total

ambiguity decreases over the iterations. The support towards target type θ1

increases. However, supports towards θ2 and θ3 are not negligible given the

mass assigned to total ambiguity.

EΘO
(αin)⊕ EΘS

(αin) EΘ(αin − 1) C EΘO
(αin) EΘ(αin − 1) C EΘS

(αin) (EΘ(αin − 1) C EΘO
(αin))

. . .C EΘS
(αin)

αin {θ1, θ2, θ3, θ4, θ5, {A1, A2, A3,Θ} {θ1, θ2, θ3, θ4} {θ1, θ2, θ3, θ4, θ5,

A1, A2, A3,Θ} θ5,Θ} A1, A2, A3,Θ}

0 {.196, .152, .120, .011, .020, {.750, .000, .000, .250} {.179, .139, .110, .039, {.131, .102, .080, .029, .054,

.376, .000, .000, .501} .073, .460} .375, .000, .000, .229}

30 {.204, .139, .107, .009, .018 {.844, .000, .000, .156} {.230, .165, .128, .044, {.181, .129, .100, .029, .058,

.392, .000, .000, .131} .086, .347} .358, .000, .000, .145}

60 {.191, .144, .099, .011, .019 {.891, .000, .000, .109} {.246, .181, .132, .053, {.198, .146, .106, .034, .061

.402, .000, .000, .134} .095, .293} .352, .000, .000, .103}

90 {.034, .060, .034, .128, .228 {.445, .469, .000, .086} {.190, .209, .133, .090, {.140, .144, .093, .071, .127

.000, .387, .000, .129} .161, .217} .176, .180, .000, .069}

120 {.178, .126, .105, .041, .066 {.223, .234, .000, .543} {.227, .198, .145, .075, {.177, .148, .110, .060, .103

.000, .000, .000, .484} .130, .225} .088, .090, .000, .224}

150 {.209, .150, .128, .017, .250 {.111, .117, .469, .303} {.245, .193, .153, .080, {.196, .151, .121, .056, .090

.000, .000, .354, .117} .129, .200} .044, .045, .163, .134}

Table 5.13: Mass Models of Fused Evidence BoEs. Note that, A1 = {θ1, θ2, θ3, θ6},
A2 = {θ4, θ5, θ6}, A3 = {θ1, θ2, θ3}. Highest and second highest masses in each BoE
are marked in bold and underlined, respectively. These represent the propositions
with the highest ‘support’.

Combining Both Optical and Acoustic Sources: The obvious fusion strategy

is to combine evidence from each source for each αin separately. The results

obtained in this way are tabulated in the first column of Table 5.13. We have

used DCR for combining EΘS and EΘO . On may also do the following: at each

observation, update the belief by first fusing evidence from both optical and

acoustic sources together and then using this combined evidence to update the

existing belief. This is a more intuitive way of updating an existing belief. See
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column (EΘ(θ − 1) C EΘO(θ)) C EΘS(θ) in Table 5.13 for the BoEs obtained

at each αin. Observations are very similar to the previous cases in terms of

the decreasing overall uncertainty. As more evidence is gathered, the support

moves towards target type θ1 and the overall uncertainty represented by m(Θ)

decreases.

5.6 Chapter Summary

The CFE addressed the challenges C1-C4 associated with soft/hard data fusion.

The use of ported conditional notions allows the CFE to be represented in one unified

setting for both identical and non-identical FoDs. CFE also possesses several intu-

itively appealing features which seem to indicate its suitability for scenarios that call

for soft and hard evidence fusion. We have also shown how various fusion character-

istics can be obtained via suitable parameter selections. Challenge C5—computation

overhead associated with conditionals and other DST computations are addressed in

Chapters 7 and 8 under Part III: Computational Optimizations.



Chapter 6
Consensus in a Fusion Environment

C
onsensus is a fundamental issue arising in a fusion scenario. In this chapter,

we study the consensus problem as a special case of finding fixed-points in

asynchronous iterations for nonlinear paracontracting operators [83]. This allows for

a unified analysis of consensus in arbitrary sensor networks with possible communi-

cation impairments. For instance, convergence of a fully-connected “perfect” network

and an ad-hoc network with communication failures can both be analyzed using the

same principles. Based on the CUE developed in Chapter 5, we present a complete

theoretical development of a consensus protocol applicable to DST data fusion envi-

ronments. Criteria for convergence analysis in several network topologies is provided

thus addressing a wider class of distributed sensor networks.

Mathematical rigor, which requires somewhat complex notation, is essential for the

development of a unified answer to convergence analysis covering a broad spectrum

of networks. It is also very helpful in understanding the intricacies involved in such

iterative infinite processes. We will utilize figures and remarks to better illustrate

the salient points of the arguments and highlight the properties and features of the

strategy being developed. Proofs of the results that are relevant to understanding the

presentation appears within the text, while the rest of the proofs are relegated to the

96
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appendix for clarity of the presentation. A credibility estimation technique, based on

the proposed consensus notions, is developed in Chapter 7.

This chapter is organized as follows: Section 6.1 presents an overview of the

basic notions of consensus, consensus protocols and network topologies on which

the consensus is usually sought; Section 6.2 introduces the notions of asynchronous

iterations, paracontractions and their convergence; and presents a reformulation of

consensus protocols as asynchronous iterations; Section 6.3 presents the development

of a new consensus protocol that is applicable to soft/hard data fusion environments;

convergence criteria for several common network topologies are also derived; and

finally, Section 6.4 contains the chapter summary. The proofs of the results that do

not appear within the text are provided in Section A.3 of Appendix A.

6.1 Overview

The word consensus refers to a general agreement [26] among sources, e.g., a con-

sensus of opinions among a jury pool. The notion of consensus is becoming increas-

ingly popular among sensor related research/applications [84–90], where an agreement

is sought among a group of agents13. Agents mutually exchange their states (which

may represent an opinion or belief on a certain scenario), until they all converge. The

way agents interact plays a key-role in reaching a consensus among their opinions.

6.1.1 Agent Interactions

Consider a set N = {A1, . . . ,Am} of m interacting agents. A multi-agent system

undergoes changes when an agent updates its state by interacting with other agents

at discrete time instances t0 < t1 < · · · < tk < · · · . Here, tk is referred to as the

discrete event-based time and k is referred to as the discrete event-based time index.

13The term ‘agent’ is often used in consensus literature to refer to sources, which can be either
soft or hard. In the case of hard sensors, the change of an agent’s belief refers to the notion where
a change of belief occurs in the fusion node managing the actual physical sensor, but not a change
in the measurements/readings of the actual sensor.
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Time tk is discrete event-based time since it refers to a discrete event, not necessarily

to an absolute time reference. Hence, without loss of generality, we can assume that

only one agent updates its state at any event-based discrete time tk and the sequence

satisfies t0 < t1 < · · · < tk < · · · . Indeed, in a situation where n ≤ m multiple agents

{Ai1 , . . . ,Ain} update their states at the same time tk, one can derive a corresponding

discrete event-based time sequence · · · < tk−1 < tk1 ≤ tk2 ≤ · · · ≤ tkn < tk+1 · · · so

that only agent Aij updates its state at time tkj , for j = 1, . . . , n. See Figure 6.1.

Hence, from now onwards, we assume that only a single agent updates the state at

time tk and the sequence satisfies t0 < t1 < · · · < tk < · · · .

Ai1 Ai2 Ain· · ·

tk

tk�1 tk+1tk1
tk2

tkn· · ·

|{z}

· · ·

Discrete time

Discrete event-based time

Updating agents at time tk

tk�1 tk+1

Updating Agent Ai1 Ai2 Ain· · ·

Figure 6.1: When the n agents {Ai1 , . . . ,Ain} update their states at the same time
tk, a discrete event-based time sequence · · · < tk−1 < tk1 ≤ tk2 ≤ · · · ≤ tkn < tk+1 · · ·
can be defined so that only agent Aij updates its state at time tkj , for j = 1, . . . , n.
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6.1.1.1 Agent Interaction Topology

Agent interaction topology refers to the structure of the spatial connectivity among

agents at a discrete event-based time tk. An agent, over the course of information

exchange, may use different interaction topologies for state updates. Let us denote by

Qi,j, j = 1, . . . , ni, the jth interaction topology used by agent Ai, for i = 1, . . . ,m. Let

us also use Q ≡ {Qi,j|j = 1, . . . , ni; i = 1, . . . ,m} to denote the set of all interaction

topologies used by the multi-agent system.

Since only a single agent updates its state at any given tk, agent interaction

topology at tk can be modeled via a directed graph G[k] ≡ (N , E[k]), where each

edge eij ∈ E[k] represents a unidirectional information exchange link from agent Ai
to agent Aj, i.e., only Aj can receive information from Ai (see Figure 6.2). Let us use

the sequence {J [k] ∈ Q | k = 0, 1, . . .} to identify the sequence of agent interactions,

i.e., J [k] identifies the interaction topology “active” at discrete event-based time index

tk, for k = 0, 1, . . ..

6.1.1.2 Fully-Connected Versus Partially-Connected Systems

An interaction topology is said to be fully-connected if the agent updating its

state receives information from all the other agents (see Figure 6.2 (a)). A multi-

agent system is fully-connected if all the interaction topologies (i.e., for all Q ∈ Q)

are fully-connected. If an agent updates its state without taking information from all

the other agents, then the corresponding interaction topology is said to be partially-

connected (see Figure 6.2 (b)). A multi-agent system is partially-connected if at least

one interaction topology in use is partially-connected.

6.1.1.3 Static Versus Dynamic Systems

Multi-agent system can be either static or dynamic. If the interaction topologies

of each agent Ai is time invariant for all the agents A1, . . . ,An, then we refer to such
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A1

A2 A3

A4 A5

(a) Q5,1: a fully-connected interaction topol-
ogy

A1 A2

A3

A4

A5

(b) Q5,2: a partially-connected interaction topology

Figure 6.2: Spatial connectivity among a set of agents N = {A1, . . . ,A5}. In (a),
agent A5 receives information from all other agents; hence, the interaction topology is
fully-connected. In (b), agent A5 does not receive information from agent A3; hence,
it is only partially-connected.

a system as a static multi-agent system. Hence, in a static multi-agent system,

we must have Qi,j = Qi, j = 1, . . . , ni for all i = 1, . . . ,m, where Qi denotes the

interaction topology of agent Ai for i = 1, . . . ,m. If this does not hold true (i.e., at

least one agent uses interaction topologies Qi,j, Qi,k s.t. Qi,j 6= Qi,k), then we refer

to such a system as a dynamic multi-agent system (see Figure 6.3).

6.1.2 Consensus

The consensus problem can be formally stated as:

Definition 22 (Consensus). [88] Consider a set N = {A1, . . . ,Am} of agents embed-

ded at each discrete event-based time tk, k = 0, 1, . . ., in an agent interaction topology

modeled via a directed graph G[k] = (N , E[k] ), where each edge eij ∈ E[k] represents

a unidirectional information exchange link from agent Ai to agent Aj. Each agent

Ai ∈ N starts with the initial state xi[0] ∈ D ⊆ <n and repeatedly updates its state
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A1 A2

A3

A4

A5

Q3,1

A1 A2

A3

A4

A5

A1 A2

A3

A4

A5

Q3,2 Q3,3

Figure 6.3: A dynamic partially-connected 5 agent network which shows three differ-
ent interaction topologies of agent A3.

by exchanging information according to the communication network specified by G[k].

We say that a consensus is reached among the agents in N , if ||xi[k]−xj[k]|| → 0 as

k →∞ for all Ai,Aj ∈ N , for some norm || � || : D 7→ <.

6.1.3 Consensus Protocols

The consensus generating mechanisms are referred to as consensus control strate-

gies, consensus control protocols or simply consensus protocols.

6.1.3.1 Linear Versus Non-Linear Consensus Protocols

In linear consensus protocols, the agents update their states as a convex sum of

the states of agents. For instance,

xi[k + 1] =
m∑

j=1

fij[k] xj[k], (6.1)

where fij[k] ≥ 0 and
∑m

j=1 fij[k] = 1 for all i, j, specifies a general linear consensus

protocol. Here, whenever fij[k] > 0, agent Aj communicates its current state to agent
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Ai, weighted by fij[k]. However, in the case of a non-linear protocol, the state update

between agents is non-linear. For instance,

xi[k + 1] = F ij
(
x1[k], · · · ,xm[k]

)
(6.2)

specifies a general non-linear consensus protocol, where the functions F ij(�, · · · , �), j =

1, . . . , ni for i = 1, . . . ,m specify the non-linear interaction among agents14. Clearly,

linear consensus protocols are a special case of non-linear consensus protocols.

6.1.3.2 Synchronous Versus Asynchronous Consensus Protocols

These consensus protocols can be either synchronous or asynchronous. The con-

sensus protocols in (6.1) and (6.2) are synchronous, in the sense that all the agents

update their states using the latest state values of the other agents (i.e., there is no lag

in communication paths). However, due to various imperfections in communications,

such as link failures and synchronization errors, etc., synchronous updates may not

be possible in real-life situations, thus generating asynchronous consensus protocols.

Asynchronous consensus protocols can be formally defined as follows.

Definition 23 (Non-Linear Asynchronous Consensus Protocol). [88] Let t0 < t1 <

· · · < tk < · · · denote the discrete event-based time instances that the state of a multi-

agent system undergoes changes. Let xi[k] denote the state of agent Ai at time tk

for k = 0, 1, . . .. Let Q = {Qi,j | j = 1, . . . , ni, i = 1, . . . ,m} denote the set of

all interaction topologies observed during the consensus process. Here, Qi,j denotes

the jth interaction topology used by agent Ai, for j = 1, . . . , ni and i = 1, . . . ,m.

Let J [k] ∈ Q identify the agent interactions at time tk, for k = 0, 1, . . .. Then, an

14Here, each agent Ai updates its states via one of the mi functions available, for i = 1, . . . ,m.
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asynchronous consensus protocol is given by

xi[k + 1] =





F ij
(
x1(s1[k]), · · · ,xm(sm[k])

)
, for J [k] = Qi,j;

xi[k], otherwise,

(6.3)

where F ij specifies the non-linear interaction topology corresponding to Qi,j and s`[k] ∈

N0 ≡ {0, 1, . . .} s.t. s`[k] ≤ k for ` = 1, . . . ,m, k = 0, 1, . . .. The quantities k − s`[k]

and J [k] are referred to as iteration delay and updating sets, respectively.

Following remarks are noteworthy.

• Definition 23 describes the most general consensus protocol. It is applicable to

any multi-agent system that is partially or fully connected, static or dynamic,

and having synchronous of asynchronous communications.

• At a given time instance tk, the agent interaction is fully characterized by J [k].

For example, if J [k] = Q3,8 then the agentA3 updates its states via F 38(�, · · · , �),
while all the other agents will retain the previous states (i.e., xi[k + 1] = xi[k],

for i 6= 3). Hence, the sequence {J [k] | k = 0, 1, . . .} identifies the sequence of

agent interactions at discrete event-based time instances t0 < t1 < · · · .

• Note that F ij(�, · · · , �) could be any non-linear or linear function. As we will

introduce in the following section, the class of functions that is referred to as

paracontracting operators is of special importance in the study of consensus.

• Also, notice that synchronous consensus protocols are a special case of asyn-

chronous consensus protocols (i.e., when s`[k] = k, for all `, k). Thus, non-linear

asynchronous consensus protocols subsume all other consensus protocols.
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6.2 Paracontractions View of Consensus Protocols

Consensus analysis in multi-agent systems can be formulated as a special case

of finding common fixed points of a (finite) pool of paracontracting multiple-point

operators [88]. Convergence of these schemes can then be established if the iterations

are bounded by certain coupling conditions. Let us proceed by first introducing the

basic notions of the theory of paracontractions.

6.2.1 Paracontracting Operators

For the purpose at hand, we use D to denote the ‘domain of interest.’ In consensus

analysis, one can take D to be the domain of agent states, which can be a real

vector, probability mass function or any other valid and appropriate representation.

Consensus protocols developed in this chapter consider agent states modeled as DS

BoEs. So, for this particular case, D is the domain of all valid DS BoEs.

Definition 24 (Fixed point). Let D be the domain of interest. A vector ξ ∈ D is

referred to as a fixed point of an operator F : Dm 7→ D iff F (ξ, . . . , ξ) = ξ, where

m ∈ N. Further, the set of all fixed points of operator F is denoted by fix(F ), where

fix(F ) ≡ {ξ ∈ D | F (ξ, . . . , ξ) = ξ}.

A vector ζ ∈ D is a common fixed point of a pool of operators F , if ζ is a fixed

point common to all operators F ∈ F , viz., ζ ∈ fix(F ), ∀F ∈ F .

We now introduce

Definition 25 (Paracontracting Operators). [91] An operator F : Dm 7→ D is para-

contractive on D with respect to a given vector norm || � ||, if

||F (X)− ξ|| < max
j
||xj − ξ||, (6.4)

for all X ≡ [x1, . . . ,xm] ∈ Dm and any ξ ∈ fix(F ), unless X ∈ fix(F ).
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Definition 26 (Paracontracting Pool of Operators). [91] Let I ⊂ N ≡ {1, 2, . . .} be a

set of indices, m ∈ N a fixed number and F = {F i, i ∈ I | F i : Dmi 7→ D} be a pool of

operators, where mi ∈ N s.t. mi ≤ m, ∀i ∈ I, and D is closed. Then, if for all i ∈ I,

X = [x1, . . . ,xmi ] ∈ Dmi and a vector norm || � ||, F i is continuous on Dmi, then F is

said to be paracontracting on D, if for any ξ ∈ fix(F i),

||F i(X)− ξ|| < max
j
||xj − ξ||, (6.5)

unless X ∈ fix(F i).

Example 11. Consider a pool of operators F = {F i | i = 1, . . . , 6}, where the

operators are defined as F 1 : <2 7→ <, F 2 : <2 7→ <, F 3 : <4 7→ <, F 4 : <3 7→ <,

F 5 : <2 7→ < and F 6 : <3 7→ <. The set I = {1, . . . , 6} is an index set for all the

operators.

So, if all the operators are continuous and paracontracting on < w.r.t. Defini-

tion 25, then, according to Definition 26, the whole pool of operators F is paracon-

tractive on <.

The above defines the paracontraction property for a pool of operators. As we will

explain in the following sections, a pool of operators is used to update a multi-agent

system where each operator is a paracontraction on the domain of interest15.

6.2.2 Non-Linear Asynchronous Iterations

An asynchronous iteration can be formally defined as follows.

15The operators in Example 11 were selected with this idea in mind. Notice the connection of F i

to the node connectivity of Agent Ai of Figure 6.2 (b).
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Definition 27 (Asynchronous Iteration). [83] Let I be a set of indices, m ∈ N a fixed

number and F = {F i, i ∈ I | F i : Dmi 7→ D, mi ∈ N s.t. mi ≤ m} be a pool of

operators, where D is closed. Let X0 = {x[−`] ∈ D | ` = 1, . . . ,M} be a given set of

vectors, where M is the number of initial conditions.

Let S denote the sequence of mi-tuples from N0 ∪ {−1, . . . ,−M}, where S ≡
{
s1[k], . . . , smI[k] [k]

∣∣∣ I[k]∈I, s`[k] ∈ N0∪{−1, . . . ,−M} s.t. s`[k] ≤ k, k = 0, 1, . . .
}

.

Then, for sequences I ≡ {I[k] ∈ I | k = 0, 1, . . .} and S, the sequence given by

x[k + 1] = F I[k]
(

x[ s1[k] ], . . . ,x[ smI[k] [k] ]
)
, (6.6)

is referred to as an asynchronous iteration and denoted by (F ,X0, I,S).

Example 12. Let us consider the pool of operator F in Example 11. Also, consider

X0 = {x[−`] | ` = 1, . . . , 6} (so that we have M = 6 initial conditions). Here, the

sequence I ≡ {I[k] ∈ I | k = 0, 1, . . .} consists of elements of I = {1, . . . , 6}. Consider

the sequence I = {1, 2, 4, 5, 3, 6, 1, . . .}. Hence, the iteration is done in the following

order:

x[1] = F 1
(
x[s1[0]],x[s2[0]]

)
, k = 0;

x[2] = F 2
(
x[s1[1]],x[s2[1]]

)
, k = 1;

x[3] = F 4
(
x[s1[2]],x[s2[2]],x[s3[2]]

)
, k = 2;

x[4] = F 5
(
x[s1[3]],x[s2[3]]

)
, k = 3;

x[5] = F 3
(
x[s1[4]],x[s2[4]],x[s3[4]],x[s4[4]]

)
, k = 4;

x[6] = F 6
(
x[s1[5]],x[s2[5]],x[s3[5]]

)
, k = 5;

x[7] = F 1
(
x[s1[6]],x[s2[6]]

)
, k = 6;
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...

x[k + 1] = F I[k]
(
x[s1[k]], . . . ,x[smI[k] [k]]

)
, k.

The sequence S, in a loose sense, defines the “time lag” in updating. To illustrate,

consider the sequence S ≡ {(s1[0]= − 2, s2[0]= − 1), (s1[1]= − 1, s2[1]=0), (s1[2]= −

2, s2[2]=0, s3[2]=−5), (s1[3]=−4, s2[3]=2), . . .}. Then, the first 4 iterations are given

by

x[1] = F 1
(
x[−2],x[−1]

)
, k = 0;

x[2] = F 2
(
x[−1],x[0]

)
, k = 1;

x[3] = F 4
(
x[−2],x[0],x[−5]

)
, k = 2;

x[4] = F 5
(
x[−4],x[2]

)
, k = 3.

Notice that s`(k) ≤ k for all k.

6.2.3 Confluence and Regulatory Assumptions

Convergence of an asynchronous iteration scheme is dependent on the properties

of the operators and the coupling among the agents. Let us study the restrictions on

coupling that must be imposed to yield convergence in the sense of Theorem 14 (see

Section 6.2.4).

Definition 28. [91] Let (F ,X0, I,S) be an asynchronous iteration. Then,

(i) S is regulated if

s ≡ max
k,`

(
k − s`[k]

)
exists.

(ii) I is an index-regulated sequence if, for all i ∈ I, ∃ ci ∈ N0, s.t. for all k ∈ N0,

i ∈ {I[k]} ∪ {I[k + 1]} ∪ · · · ∪ {I[k + ci]}.
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(iii) I is regulated if ∃ c ∈ N0, s.t. for all k ∈ N0,

{I[k]} ∪ {I[k + 1]} ∪ · · · ∪ {I[k + c]} = I.

Let us explain these notions via an example.

Example 13. Consider Example 12 again.

To check if the sequence S is regulated, we need to check all of s`[k] to see if

(i) is satisfied. Here, we have max
k,`

(k − s`[k]) = 7, for k = 0, . . . , 7. Similarly, if

max
k,`

(k − s`[k]) is finite for all k, `, then the sequence S is regulated.

To check if the sequence I is index-regulated, from a starting position k, we should

be able to locate finite segments of the sequence I that contains i, for all i ∈ I. If

this is satisfied for all k, then the I is index-regulated. Here, we have 1 ∈ {I[0]},

2 ∈ {I[0] ∪ I[1]}, 3 ∈ {I[0] ∪ I[1] ∪ I[2] ∪ I[3] ∪ I[4]}, 4 ∈ {I[0] ∪ I[1] ∪ I[2]},

5 ∈ {I[0] ∪ I[1] ∪ I[2] ∪ I[3]} and 6 ∈ {I[0] ∪ I[1] ∪ I[2] ∪ I[3] ∪ I[4] ∪ I[5]}. So,

I satisfies (ii) for k = 0. If I continues to satisfy (ii) for all k ≥ 0, then it is

index-regulated.

To check if the sequence I is regulated, from an arbitrary starting position k ≥

0, we must find a a finite segment of the sequence that contains I. Here, we have

{I[0]∪ I[1]∪ I[2]∪ I[3]∪ I[4]∪ I[5]} = I. If I continues to satisfy (iii) for all k ≥ 0,

then I is regulated.

The set of edges E[k] in graph G[k] ≡ (N , E[k]) defines the spatial coupling among

agents at a given discrete-event based index k. However, in an asynchronous iteration

process, the coupling among agents at various time instances must be constrained to

guarantee convergence. This is perhaps best explained via the notion of an iteration

graph [88].
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Definition 29 (Iteration Graph). The iteration graph of the asynchronous iteration

(F ,X0, I,S) is the digraph (V , ES), where the set of vertices and edges are given by

V ≡ N0 ∪ {−1, . . . ,−M} and ES ≡ {(k, k0) | ∃ 1 ≤ ` ≤ mI(k0−1) s.t. s`(k0 − 1) = k},

respectively.

Let us illustrate these notions via an example.

Example 14. Consider a multi-agent system consisting of 5 agents, Ai, i = 1, . . . , 5,

whose interactions are described by an asynchronous iteration (F ,X0, I,S), where F

as given in Example 11, and the initial conditions X0 and the sequences I and S

as given in Example 12. Assume that agent Ai updates the vector x using operator

F i for i = 1, . . . , 4 and agent A5 uses operators F 5 and F 6. Hence, at a given k,

the sequence I determines, which agent performs the update on x[k]. This (spatial)

interaction is shown in the interaction graph in Figure 6.4 (a).

A1

A3

A2

A3

A3

A4

A5

k=   -5        -4       -3        -2       -1         0         1         2    . . .

A1A2A3A4A5 A3 A4 A1

.      .      .

A4

A5

A1 A2

A3

A4

A4

A5

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

A1

(a) Interaction Graph

A1

A3

A2

A3

A3

A4

A5

A4

A5

A1 A2

A3

A4

A4

A5

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

k=      -5        -4       -3        -2        -1        0         1        2         3     …   

(b) Iteration Graph

Figure 6.4: Interaction and iteration graphs for Example 14.

However, note that the iteration delays in the updating scheme cannot be identified
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via the interaction graph. As we illustrate later, adequate coupling in terms of iter-

ation is important for convergence in asynchronous networks. Figure 6.4 shows the

iteration graph of this scheme; here, each node represents an iteration index. Nodes

−5 through −1 represents the initial conditions X0. A node that represents the itera-

tion index k has edges coming to it from the iterations of which the state vectors are

used by the current iteration. For example, node k = 1 has edges coming from k = 0

and k = −1, since the x[1 + 1] uses the states x[0] and x[−1].

The coupling conditions are imposed to guarantee the existence of convergence. In

addition, the confluent conditions are imposed to make sure that all the operators in

F are involved in the iteration process. An iteration that satisfies confluent conditions

can be formally defined as:

Definition 30 (Confluent Iteration). An asynchronous iteration (F ,X0, I,S) is con-

fluent if there are numbers n0, b ∈ N and a sequence {bk ∈ N | k = n0, n0 +

1, . . . s.t. k ≥ n0} s.t. the following is true:

(i) for every vertex k0 ≥ k, there is a path from bk to k0 in (V , E);

(ii) k − bk ≤ b;

(iii) S is regulated;

(iv) for every i ∈ I, there is a ci ∈ N, so that for all k ≥ n0, there is a vertex wik ∈ V,

which is a successor of bk and a predecessor of bk+ci, for which I(wik − 1) = i.

6.2.4 Convergence Criteria

The convergence of non-linear asynchronous iterations are governed by



111

Theorem 14. Let F be a paracontracting pool on D ⊂ Rn and assume that F has

common fixed points, viz., fix(F) 6= ∅. Then, any confluent asynchronous iteration

(F ,X0, I,S) converges to some fixed point ξ ∈ fix(F).

Hence, an asynchronous iteration involving a pool of multiple-point operators

converges if (i) the operators are paracontracting, (ii) pool has common fixed points

and (iii) the iterations among operators are confluent. Next, we study how these

results can be applied for analysis of asynchronous consensus protocols.

6.2.5 Non-Linear Asynchronous Consensus Protocols

If the consensus protocols take the form of an asynchronous iteration, we can make

use of the above convergence results to develop consensus protocol by using paracon-

tracting operators and posing necessary coupling conditions for confluent iterations.

However, the relationship between consensus protocols and asynchronous iterations is

not obvious from the definitions16. We now reformulate the non-linear asynchronous

consensus protocol in Definition 23 as an asynchronous iteration.

6.2.5.1 Consensus Protocols as Asynchronous Iterations

In an asynchronous iteration, at index k, a vector x[k] is updated via an operator

F i, i ∈ I specified by I[k]. However, in a consensus protocol, a state vector of an

agent specified by J(k) is updated at time tk, i.e. the state vector xi′ [k] corresponding

to the active agent interaction topology J [k] = Qi′,j at discrete-event based time tk.

The idea behind this transformation is to renumber the sequences in such a manner

that updating vector x[k] at k via F i is equivalent to updating xi′ [k
′] via F i at some

index k′, where tk = t′k. Note that having k 6= k′ is irrelevant as long as tk = tk′ .

16Notice that in (6.6), an x ∈ D ⊆ Rn is updated at every k, whereas in (6.3), state of agent Ai

which is given by xi ∈ D ⊆ Rn is updated, for some i ∈ {1, . . . ,m}. Hence, asynchronous iterations
look at an update of a whole vector x ∈ D at each discrete-event index k, compared to independent
updates of individual elements in the case of consensus protocols.
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I[k] identifies the “active” operator F i, i ∈ I at k; also, each F i, for all i ∈ I

identifies the “active” interaction topology Qi′,j, which in turn identifies the agent

Ai′ that is updating its state. Hence, for ease and clarity of presentation, we assume

that I[k] directly identifies the active agent. So, here, xI[k][k] = xi′ [k]. We can

now formulate the consensus protocol given in (6.3) to the form of an asynchronous

iteration given in (6.6) as follows.

Step(1): Re-number s`[k], k = 0, 1, . . . in such a manner that all the components

x`[s
`[k]] in (6.3) are updated at time s`[k], i.e.,

I( si[k]− 1 ) = i, ∀k ∈ N, i ∈ {1, . . . ,m} with si(k) ≥ 1. (6.7)

Step(2): Assume all initial vectors are multiples of 1 and set

x[−k] := xk[0]1, ∀ k = 1, . . . ,m; (6.8)

and renumber the elements of sequences of s`[k], k = 0, 1, . . . and ` = 1, . . . ,m

for which, s`[k] = 0 in the same way.

Step(3): Generate asynchronous iteration (F ,YO, I,S) with

y[k + 1] := F I(k)
(
y[s̃ 1[k]], . . . , y[s̃mI[k] [k]]

)
, k = 0, 1, . . . (6.9)

where F = {F I[k] | k = 0, 1, . . .} as in (6.3), I = {I[k], k = 0, 1, . . .} and

S = {s̃ i[k] | k = 0, 1, . . . ; i = 1, . . . ,mI[k]} is given by

s̃ i[k] := smI[k](i)[k], ∀k ∈ N0, i = 1, . . . ,mI[k], (6.10)

and YO by

y[−`] := x[−`], ` = 1, . . . ,m. (6.11)

=⇒ The asynchronous iteration in (6.9) and (6.10) is equivalent to the consensus

protocol (6.3) in the sense that

y[k + 1] = xI(k)[k + 1], ∀ k ∈ N0. (6.12)
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With this in place, we now establish the conditions for analysis of confluence in

order to use the Theorem 14.

6.2.5.2 Verification of Confluence

Conditions for confluent iterations can be best described via the iteration graphs.

Let us proceed by introducing some basic notions on graph composition [87].

Definition 31. Let G be the set of all directed graphs with vertex set N . Let Gi ∈ G

be two arbitrary graphs defined as Gi ≡ (Ni, Ei), where Ni and Ei are the sets of

vertices and edges of Gi for i = 1, 2, respectively. The composition G2 ◦ G1 is the

graph G2 ◦G1 = (N1◦2, E1◦2) s.t. if (u,w) ∈ E1◦2 then (u, v) ∈ E1 and (v, w) ∈ E2.

A vertex i ∈ N1 is a root of graph G1, if the edge (i, j) ∈ E1 for all the vertices

j ∈ N1 \ i. A rooted graph has at least one root. A finite sequence of directed

graphs Gp1 , Gp2 , . . . , Gpk from G is jointly rooted, if the composition Gpk ◦ Gpk−1
◦

· · · ◦ Gp1 is a rooted graph. An infinite sequence of graphs Gp1 , Gp2 , . . . in G is a

repeatedly jointly rooted, if there is a positive integer r for which each finite sequence

Gpr(k−1)+1
, . . . , Gprk , k ≥ 1 is jointly rooted.

Example 15. Consider the set of graphs G(i), i = 1, . . . , 4 as given in Figure 6.5.

The graph G(i) is rooted, since there is a path from node Ai to all the other nodes,

for i = 1, . . . , 4.

Now, the composition G(4) ◦G(3) ◦G(2) ◦G(1) generates the edge set {(A1,A1),

(A1,A2), (A1,A3)}, hence G(4)◦G(3)◦G(2)◦G(1) is a rooted graph, therefore the se-

quence G(1), G(2), G(3), G(4) is jointly rooted. Also, as it turns out, the composition

G(4) ◦ G(3) ◦ G(2) ◦ G(1) ≡ G(1). Hence, for any sequence containing this pat-
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Figure 6.5: Example 15: An illustration of graph composition

tern will have a subsequence that is jointly rooted. Therefore, the infinite sequence,

. . . , G(4), G(1), G(2), G(3), G(4), G(1), . . . is repeatedly jointly rooted.

Graph composition is fundamental to understanding the coupling among opera-

tors, especially in an asynchronous situation. See Figure xxx for example of rooted

and repeatedly jointly rooted graphs. A result that establishes the conditions for an

asynchronous iteration to be confluent is given by:

Lemma 15. [88] Let (F ,YO, I,S) be the asynchronous iteration in (8). Consider any

trajectory of (F ,YO, I,S) along the sequence of interaction graphs G(0), G(1), . . .. If

the sequence G(0), G(1), . . . is repeatedly jointly rooted; and satisfies the assumptions

i.) Agent Ai0 always uses its own latest state to update its current state. That is, si0(k) =

max{k0 ≤ k | Ik0−1 = i0} for all k > min{k0 ∈ N0 | Ik0 = i0} with Ik = i0;

ii.) I = Ik, k = 0, 1, . . . is regulated;

iii.) k − s`(k) ≤ s, ∀k ∈ N0, ` = 1, . . . ,m, for some s ∈ N0;

then, the asynchronous iteration (F ,YO, I,S) is confluent.
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6.2.5.3 Verification of Convergence

Convergence of an asynchronous consensus protocol can now be established by

verifying, (i) the pool of operators to be paracontractive on the domain of interest;

and (ii) the coupling conditions of an equivalent asynchronous iterations. With these

developments in place, we are now in a position to develop a DST consensus protocol

that is applicable for soft/hard data fusion environments.

6.3 Consensus in DST Fusion Environments

The notion of consensus has used across several disciplines over several decades.

The seminal work [92] of Lehrer and Wagner—professors of philosophy and math-

ematics, respectively—laid the foundation for mathematical modeling of consensus

and its applications.

One of the basic rules of the consensus notion established by the work in [92],

which became popular as Lehrer-Wagner Model of rational consensus, is that the

consensus has to be established as a weighted average of opinions of agents. Most of

the consensus protocols and techniques that are out there satisfy this condition, since

they are weighted averages of rather simple numerical models or at most probability

mass functions, and only provide very limited functionality. However, soft/hard data

fusion environments calls for rather sophisticated mechanisms that allows for one

to incorporate elaborate features. For instance, in soft/hard fusion environments one

often has access to highly reliable estimates of the Ground Truth (GT); these estimates

are often vague, but highly reliable, e.g., prevailing threat level estimates via satellite

imagery in contrast to witness estimates. In these type of situations, it is extremely

beneficial that the consensus protocols are capable of accounting for this type of

information and being able to “drive” or “force” the generated consensus towards

them. Hence, we emphasize on several properties to be mandated by consensus

protocols in order to generate a meaningful, or in other words, a rational consensus.
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Thus, in order to be able to generate a rational consensus, the consensus being attained

must:

P1: be a weighted average of opinions among the agents [92];

P2: reach the GT when it is known (i.e., all evidence must converge to GT); and

P3: be “consistent” with a fully reliable estimate of the GT when it is available

(i.e., the consensus must be “contained” within the estimate of the GT).

6.3.1 Consensus in a DST Fusion Environment

Consider a soft/hard data fusion environment, where consensus is sought among a

set of m agents who maintain their current state as a DST BoE. We are now interested

in developing a consensus protocol that is applicable to such scenarios. Let us proceed

by formally defining the consensus in this context.

Definition 32 (DST Consensus). Consider a set N = {A1, . . . ,Am} of agents em-

bedded at each discrete event-based index k in a directed graph G[k] = (N , E[k] ),

where every edge eij ∈ E[k] represents a unidirectional information exchange link

from agent Ai to agent Aj. State of agent Ai at discrete event-based index k is given

by a BoE EΘi [k] ≡ {Θ,FΘi [k],mΘi(�)[k]}, for i = 1, . . . ,m.

Each agent Ai ∈ N starts with an initial state EΘi [0] and repeatedly update their

states (via a valid DST updating strategy) by exchanging information according to

the communication network specified by G[k]. Then, we say a consensus is reached

among agents in N , if ‖EΘi [k]−EΘj [k]‖ → 0 as k →∞ for all Ai,Aj ∈ N , for some

DST norm ‖ � ‖.

The desired properties P1-P3 of a rational consensus can be translated into the

DST notions as follows (see Figure 6.6 for a graphical illustration).
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Definition 33 (Rational Consensus). Let E tΘ ≡ {Θ,FtΘ,mt
Θ(�)} and Ê tΘ ≡ {Θ, F̂tΘ, m̂t

Θ(�)}

denote the GT and a reliable estimate of GT, respectively. Also, let the BoE E∗Θ ≡

{Θ,F∗Θ,m∗Θ(�)} denote a consensus reached by the agents in N via some valid con-

sensus protocol. Now, we say E∗Θ is rational if

i). E∗Θ is generated via a weighted average of state BoEs of agents in N ;

ii). E∗Θ reaches E tΘ when it is known; and

iii). E∗Θ is a refinement of Ê tΘ when it is known, in the sense that for all propositions

B ∈ F∗Θ, B ⊆ C ∈ FtΘ.

E⇥i
E⇥j

E⇤
⇥

Êt
⇥ = Et

⇥

(a) GT known

E⇥i
E⇥j

E⇤
⇥

Êt
⇥

(b) Estimate of GT known

E⇥i
E⇥jE⇤

⇥

Êt
⇥

(c) Unknown GT

Figure 6.6: A Rational Consensus in DST Sense

What is required for the task at hand is an appropriate DST evidence updating

strategy that generates a rational consensus, i.e., a consensus that is compliant with

Definition 33. As we have discussed in Chapter 5, the CUE obviously makes sense in

this situation and probably the most suitable candidate, given its flexibility in param-

eter selection and most importantly robustness against contradictory evidence—which

is unavoidable in consensus scenarios17. However, we need to address some important

questions before diving into the task of developing consensus protocols.

17Note that in most cases the BoEs cannot be discounted, simply because their reliability is
unknown. In fact, the consensus can actually be used to estimate the credibility of a given BoE by
comparing it against the consensus. see Chapter 7 for details.



118

Q1. Is it possible to establish a consensus protocols that generates a rational con-

sensus in the sense of Definition 33 ?

Q2. What is an appropriate updating strategy ? Can we achieve a consensus by

using the CUE ? Can the convergence be theoretically established ?

Q3. Can we establish consensus in partially-connected sensor networks (e.g., dis-

tributed networks) ?

Q4. How can we establish consensus protocols for networks with dynamic links (e.g.,

ad-hoc networks) and communication impairments (i.e., asynchronous consen-

sus protocols) ?

We provide answers to all of the questions posted above with a single unified

solution via setting up the consensus problem as an asynchronous iteration problem.

6.3.2 Asynchronous Consensus Protocols for DST BoEs

In this section, we establish a DST consensus protocol that achieve a rational

consensus in the sense of Definition 33. We make use of the machinery from the pre-

vious section to generate convergence criteria that are applicable to various network

topologies.

6.3.2.1 A CUE-based Paracontraction

We propose a particular CUE parameter selection that achieves several desirable

properties for the given context. As it turns out, a consensus generated via this

parameter selection satisfies all the properties P1-P3, and hence compliant with Def-

inition 33 (see Claim 18).
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Definition 34. Let EΘ ≡
{
EΘ | EΘ = {Θ,FΘ,mΘ(�)}

}
denote the set of all possible

BoEs defined on Θ. Now, consider the set of n BoEs 18, EΘi ∈ EΘ, i = 1, . . . , n.

Then, the operator FC
i : E n

Θ 7→ EΘ that updates EΘi with all EΘj s.t. j 6= i is defined

as

FC
i(EΘ1 , . . . , EΘn) ≡ EΘi C

(
EΘ1on · · ·onEΘi−1

onEΘi+1
on · · ·onEΘn

)
, (6.13)

where the CUE parameters are given by

αi = Ci, (6.14)

βij(A) =





Cjmi(A), for Ei ≡ Ê t;

Cjmj(A), otherwise,

(6.15)

such that αi +
∑

j∈{1,...,n}\i

∑

Aij∈FΘj

βij(Aij) = 1, where Ci ∈ <+, i = 1, . . . , n.

Remarks:

• Here, the parameter selections are based on rCUE and cCUE strategies.

• As one would have expected, notice that the parameter selection for an agent,

who is not providing an estimate of the GT, is in fact rCUE. This allows for

the agent to be “receptive” to the other agents. On the other hand, an agent

providing a very reliable estimate has to be more “cautious,” and hence the

cCUE strategy. This is exactly what guarantees a refinement only on the initial

BoE of such an agent.

• The parameters Ci, i = 1, . . . ,m allows to incorporate relative “importance”

factors of agents, when such information is available.

18The set of BoEs is taken to contain an estimate of GT when it exists, i.e., if ∃ Êt, then EΘi
≡ Êt

for some EΘi
. Note that only one such estimate is allowed in the consensus process.
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• Note, only one Ê tΘ is allowed to be incorporated into the consensus process; and

obviously there can only be one fully reliable estimate of GT.

Claim 16. The operator FC
i : E n

Θ 7→ EΘ as given in Definition 34 has infinitely

many fixed points. Furthermore, let EΘ ∈ fix (FC
i) be arbitrary. Then, for all B ∈ FΘ,

@C ∈ FΘ s.t. B ⊂ C or B ⊃ C.

Proof. see Section A.3.1 in Appendix A.

In other words, the Claim 16 establishes the fact that the operator FC can be used

to generate fixed-points in EΘ. Further, it also states that the fixed-points (BoEs) will

have a certain structure; for any focal element B of a given fixed-point (BoE), there

won’t be any other focal element that containing or contained in B (see Figure 6.6

for a set theoretic interpretation). One can interpret this as fixed-points containing

propositions that do not allow further “refinements.”

With this, we now make a claim that sets the foundation to develop consensus

protocols based on CUE.

Claim 17. The operator FC
i : E n

Θ 7→ EΘ as given in Definition 34 is a paracontractive

on EΘ w.r.t. any p−norm, ‖ � ‖ : EΘ 7→ < given by
∥∥EΘ

∥∥ =
(∑

B⊆Θ

|mΘ(B)|p
) 1
p
.

Proof. See Section A.3.2 in Appendix A.

After identifying the above CUE-based updating scheme as a paracontraction on

the domain of DST BoEs, we are now in a position to define a consensus protocol for

DST fusion environment.

Definition 35 (Asynchronous DST Consensus Protocol). Let t0 < t1 < · · · < tk <

· · · denote the event-based discrete time indices that the state of multi-agent system

undergoes changes. Let the BoE EΘi [k] denote the state of agent Ai at time tk for

k = 0, 1, . . .. Let Q = {Qi,j | j = 1, . . . , ni, i = 1, . . . ,m} denote the set of all



121

interaction topologies observed during the consensus process. Let J [k] ∈ Q identify

the agent interactions at time tk, for k = 0, 1, . . .. Then, an asynchronous consensus

protocol is given by

EΘi [k + 1] =





FC
ij
(
EΘ1 [s1(k)] , · · · , EΘmI[k]

[smI[k](k)]
)
, if i = I[k];

EΘi [k], if i 6= I[k],

(6.16)

where, FC
ij specifies the updating corresponding to Qi,j and s`[k] ∈ N0 s.t. s`[k] ≤ k

for ` = 1, . . . ,m, k = 0, 1, . . ..

Remarks:

• This protocol allows for CUE-based evidence updating for agent BoEs in an

asynchronous fashion.

• Agent interaction can be via fully or partially connected networks that are either

static of dynamic.

Following is a very important claim that justifies the use of the above protocol in

soft/hard fusion environment.

Claim 18. A consensus BoE generated using the protocol in Definition 35 is a rational

consensus in accordance with Definition 33.

6.3.3 Existence of Consensus: Proof of Convergence

We are now in a position to derive the convergence of the consensus protocol

in Definition 35. First derive the equivalent asynchronous iteration (FC,YO, I,S)

following the steps Step(1) − Step(4) as described in Section 6.2.5.1, where FC =

{FC
i | i ∈ I}, YO ≡ {y[−k] ∈ EΘ | y[−k] = EΘk [0]1, for k = 1, . . . ,m} and I =

{I[k] ∈ I | k = 0, 1, . . .}, where I = {1, . . . ,m}. We now claim that
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Claim 19. The pool FC is paracontractive on EΘ and contains infinitely many com-

mon fixed-points in EΘ.

Proof. see Section A.3.3 in Appendix A.

With the above in place, all we need to show is that the iteration (FC,YO, I,S) is

confluent in order to prove its convergence, thus establishing the convergence of the

DST consensus protocol in Definition 35. Let us now study the existence of consensus

(i.e., convergence) of the above protocol under several interaction topologies.

6.3.3.1 Synchronous Fully-connected Network

A fully-connected synchronous network represents perhaps the simplest agent

setup, where each agent is connected to all the other agents and information is ex-

changed without any iteration delay (i.e., k − sj[k] = 0). In this case, consensus

protocol in equation (6.16) reduces to

EΘi [k + 1] = FC
i
(
EΘ1 [k] , · · · , EΘm [k]

)
, i = 1, . . . ,m, k ≥ 1. (6.17)

Claim 20. Consensus protocol as given in (6.17) converges in a fully-connected syn-

chronous network.

Proof. Let us first prove that the equivalent iteration (FC,YO, I,S) of (6.17) is con-

fluent. Clearly, the sequence of iteration graphs G[k], k ≥ 1 is repeatedly jointly

rooted. (i) all the agents Ai, i = 1, . . . ,m use its latest state for the update; (ii)

I = {1, . . . ,m} and I is regulated19; and (iii) k−s`[k] = 0 ≤ s, ∀k ∈ N0, ` = 1, . . . ,m

for all s ∈ N0. Hence, from Lemma 15, it follows that (FC,YO, I,S) is confluent.

Now, according to Claim 19 and Theorem 14, the iteration (FC,YO, I,S) con-

verges. Hence, the consensus protocol in (6.17) converges.

19I regulated guarantees the fact that all the elements inI are used within a finite time span. In
this case I[k] = I since all the agents update their states at all k, which can also be renumbered s.t.
I[k] ∪ I[k + 1] ∪ · · · ∪ I[k +m− 1] = I.
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6.3.3.2 Synchronous, Static, Partially-connected Network

A static partially-connected synchronous network represents a setup, where agents

communicate without iteration delays (i.e., k − sj[k] = 0) with a network topology

that is not fully connected and that does not change over time. Therefore, some of the

agents cannot communicate to other agents (see Figure xxx). In this case, consensus

protocol in equation (6.16) reduces to

EΘi [k + 1] = FC
i
(
EΘ1 [k] , · · · , EΘmi

[k]
)
, i = 1, . . . ,m, k ≥ 1, (6.18)

where mi ∈ {1, . . . ,m}.

Claim 21. Consensus protocol as given in (6.18) converges as long as the graph union

of interaction networks of all agents is connected.

Proof. Consider the equivalent iteration (FC,YO, I,S) of (6.18). Since, graph union

of interaction topology of agents is connected and each agent uses his own latest

state for update, the interaction graphs G[k] are repeatedly jointly rooted. Similar

to the case of synchronous fully-connected network, clearly assumptions (i) and (iii)

of Lemma 15 are satisfied. Now, I = {1, . . . ,m}, since the the topology is static and

the network is connected. Hence, I is regulated. Hence, (FC,YO, I,S) is confluent

according to Lemma 15. Thus, the confluent iteration (FC,YO, I,S) converges ac-

cording to the Claim 19 and Theorem 14. Hence, the consensus protocol in (6.18)

converges.

6.3.3.3 Synchronous, Dynamic, Partially-connected Network

A synchronous dynamic partially-connected synchronous network represents a

setup, where agents communicate without iteration delays (i.e., k − sj[k] = 0), and

with a network topology that is not fully connected and changes over time. Therefore,

the agents do not interact with all the other agents; and also their interaction topology
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changes over time (see Figure 6.3). In this case, consensus protocol in equation (6.16)

reduces to

EΘi [k + 1] = FC
I[k]
(
EΘ1 [k] , · · · , EΘmI[k]

[k]
)
, i = 1, . . . ,m, k ≥ 1, (6.19)

where mi ∈ {1, . . . ,m}. Given that FC is paracontracting on EΘ, we only need

to satisfy confluence conditions on equivalent iteration (FC,YO, I,S) in order to

prove convergence. In a synchronous network, assumption (iii) of Lemma 15, viz.,

k − s`(k) ≤ s, ∀k ∈ N0, ` = 1, . . . ,m, for any s ∈ N0 is clearly satisfied. Clearly,

assumption (i) of Lemma 15, is also satisfied. Thus, if the interaction sequence I is

regulated (i.e., one should be able to find a finite time span at any given time tk, on

which all the agents participate in the consensus process), while the interaction graphs

G[k], k ≥ 1 of the network are repeatedly jointly rooted, the consensus protocol (6.19)

converges.

6.3.3.4 Asynchronous Fully-connected Network

A fully-connected asynchronous network represents an agent communication setup,

where each agent is connected to all the other agents, but the information exchange

is not synchronized (or delayed) (i.e., k − sj[k] < 0). In this case, consensus protocol

in equation (6.16) reduces to

EΘi [k + 1] = FC
i
(
EΘ1 [s1(k)] , · · · , EΘm [sm(k)]

)
, i = 1, . . . ,m, k ≥ 1. (6.20)

Claim 22. The consensus protocol as given in Equation 6.20 convenes if the iteration

delays are finite.

Proof. Consider the equivalent iteration (FC,YO, I,S) of (6.18). Since the network

topology is fully connected, the interaction graphs G[k], k ≥ 1 are repeatedly jointly

rooted. Clearly, (FC,YO, I,S) satisfies the assumptions (i) and (ii) of Lemma 15.

Thus, if the iteration delays are finite , viz., k − s`(k) ≤ ∞∀k ∈ N0, ` = 1, . . . ,m,
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then according to Lemma 15, the iteration (FC,YO, I,S) is confluent. Then, the

convergence is guaranteed via Claim 19 and Theorem 14. Hence, the consensus

protocol in (6.20) converges.

This discussion can also be extended to study asynchronous, static and partially-

connected networks. In this case, the similar to the case of static, partially-connected

networks, one needs to impose conditions on how agents interact in order to make

sure that there’s adequate coupling among agents to reach a consensus. This can

be setup by making sure that graph union of interaction topology of each agent is

connected graph. In order to guarantee the confluence in iterations, one also needs

to make sure that the iteration delays is finite at any given time.

6.3.3.5 An Arbtrary Network Topology

As we have shown (with theoretical proofs) with several network topologies, one

needs to make sure that the coupling among agents is adequate to reach a consensus.

Given that the CUE-based operators is paracontractive on on DST BoEs, the consen-

sus protocol we have presented is capable to generating a rational consensus in any

network setup as long as these coupling conditions are satisfied. In the analysis of an

arbitrary network topology, one only need to make sure that it satisfies Lemma 15;

and the convergence is automatically guaranteed via Theorem 14.

Note:

We illustrate the proposed consensus protocol by applying it to a credibility estima-

tion, where the GT is estimated by consensus. See Chapter 7 for details.

6.4 Chapter Summary

Consensus analysis is a fundamentally important problem soft/hard fusion net-

works. We have presented a consensus protocol based on DST notions of evidence

updating. Therefore the proposed method can be applied in soft/hard fusion envi-
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ronments containing various types of data uncertainties and it is theoretically proven

to generate a rational consensus. Convergence criteria is derived in such a manner, so

that the same principles can be applied to analyze a wider class of network topologies.

We have proven the convergence of the proposed consensus protocol under several net-

work topologies; and provided criteria for convergence on arbitrary networks. The

theoretical results are highlighted and confirmed by the observations made in the

experiments. In the next Chapter, we make use of the notions of consensus in order

to assess the credibility of sources in the absence of GT.



Chapter 7
Data Validation for Robust Fusion

D
ue to its subjective nature which can otherwise compromise the integrity of the

fusion process, it is critical that soft data be validated prior to its incorporation

into the fusion engine. The strategy of discounting evidence based on source reliability

may not be applicable when dealing with soft sources because their reliability is often

unknown beforehand. Thus, it is necessary that some mechanism is employed to

validate the data when their credibility is unknown beforehand. Here, we propose

a methodology based on the notion of consensus to estimate the credibility of (soft)

evidence in the absence of GT. This estimated credibility can then be used for source

reliability estimation, discounting or appropriately “weighting” evidence for fusion.

We illustrate several interesting and intuitively appealing properties of the proposed

method via a numerical example.

This chapter is organized as follows: Section 7.1 provides an overview of the data

validation problem in soft/hard fusion domains; Section 7.2 describes the credibility

estimation problem and presents a new strategy based on consensus; Section 7.3

highlights various properties of the proposed method and illustrates the consensus-

based credibility estimation strategy; and finally, Section 7.4 contains the chapter

summary.
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7.1 Overview

Credibility refers to “... the quality of being trusted and believed in [26].” Thus,

one can interpret credibility as an instantaneous measure of trustworthiness of evi-

dence. Therefore, credibility of evidence, when provided, can be used to validate evi-

dence prior to fusion. However, this information is not available in many applications;

and often other relevant contextual/meta data one may use to estimate credibility are

also not available in most circumstances. Reliability, which refers to a notion of “...

[being] consistently good in quality/performance or able to be trusted [26]”, provides

an overall performance figure of a source. This information can be used to “discount”

for evidence whose credibility information is not known in order to guarantee a robust

fusion.

7.2 Credibility Estimation

Discounting based on source reliability is not feasible in many, especially soft/hard,

applications. A good example would be a situation assessment scenario, where a

group of civilians are providing “eye-witness” statements to identify a suspicious

vehicle: in such scenarios, this type of evidence often provide perhaps the most crucial

information, but their credibility or the reliability of sources are often not known

beforehand.

In typical soft/hard fusion scenarios, such as the above, soft evidence is usually

gathered from many sources. Even though, the actual reliability of these sources are

not fully known, they are usually not totally unreliable. Hence, it is not unreasonable

to assume that the truth is reflected in the “aggregate of their opinions,” if an adequate

number of sources are considered.
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7.2.1 Conflict-based Credibility Estimation

A method to self-validate the evidence is provided in [93] by estimating the conflict

among evidence. Here, the conflict of a body of evidence is “inversely” related to its

credibility20.

Definition 36. Given the BoEs EΘi , i = 1, . . . , n, the credibility of EΘi is given by

Crcf (EΘi) =
(
1− conf (EΘi , Ej 6=i )λ

)1/λ
, (7.1)

where λ ∈ <+, Ej 6=i = {EΘj , j = 1, . . . , n | j 6= i} and conf (EΘi , Ej 6=i) is the conflict

between EΘi and Ej 6=i. Two variants Crcf1 and Crcf2 are

conf (EΘi , Ej 6=i) =





1

n− 1

n∑
j=1;
j 6=i

dist (EΘi , EΘj), for Crcf1;

dist (EΘi , E⊕ j 6=i), for Crcf2,

where E⊕ j 6=i = EΘ1 ⊕ · · · ⊕ EΘi−1
⊕ EΘi+1

⊕ · · · ⊕ EΘn, for i = 1, . . . , n and dist(�, �) is

a distance measure for DST BoEs as given in Definition 10.

7.2.2 Consensus-based Credibility Estimation

With credibility viewed as a measure of the instantaneous trustworthiness of ev-

idence, it makes sense to assess the credibility of a BoE by comparing it to the GT

via a distance measure (such as what appears in Definition 10 in Chapter 3):

Definition 37. Let E t denote the GT. Then, the credibility of the BoE E is given by

Crcon(E) =
(
1− dist(E , E t)λ

)1/λ
, where λ ∈ <+.

20The authors in [93] refer to this as a measure of relative reliability. However, to be consistent
with our interpretations of the terms, we take their definition as a measure of credibility.
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As sensible as it appears, the difficulty with this strategy lies in the fact that

the GT is usually absent. Is there a way to estimate the GT in such a situation?

The notion of consensus has been used in many disciplines (e.g., social sciences,

marketing/finance, engineering) and in a myriad of applications as a method to arrive

at a “general agreement’” among opinions or sources. Here, we make use of the DST

consensus protocol that was developed in Chapter 6 to generate an estimate of GT

from the available evidence. This strategy provides an ideal method to estimate the

GT due to some of its properties; for instance the consensus BoE E∗Θ ≡ {Θ,F∗Θ,m∗Θ(�)}
will always be a refinement of a reliable estimate of GT fed into the system Ê tΘ ≡
{Θ, F̂tΘ, m̂t

Θ(�)}.

7.3 An Illustrative Example

Consider a multi-agent system that consists of 5 agents Ai, i = 1, . . . , 5, where

each agents evidence is given by EΘi = {Θ ≡ {abcde},FΘi ,mΘi(�)}, for i = 1, . . . , 5.

Suppose their reliabilities are unknown. We also have a 100% reliable estimate of GT

given by ÊΘ = {Θ, F̂tΘ, m̂t
Θ(�)}

Setup: Suppose the BPAs are as follows:

mΘ1(ac)=0.9; mΘ2(b) =0.9; mΘ3(ac)=0.9; mΘ4(ac)=0.9; mΘ5(e) =0.9;

mΘ1(b) =0.1; mΘ2(abc)=0.1; mΘ3(e) =0.1; mΘ4(d) =0.1; mΘ5(abc)=0.1.

We consider four cases (in decreasing order of “preciseness” of the GT estimate):

Case 1 Case 2 Case 3 Case 4

m̂t
Θ(a)=1.0; m̂t

Θ(ab)=1.0; m̂t
Θ(abc)=1.0; m̂t

Θ(Θ)=1.0.

The cases simulates the following scenarios:

Case 1: GT is known

Cases 2-3: only an estimate of the GT is known; and

Case 4: the GT is completely unknown.
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For each case, all the six BoEs EΘi , i ∈ 1, . . . , 5, reach the following consensus

BoE:

Case 1: m∗Θ(a) = 1.00

Case 2: m∗Θ(b) = 1.00

Case 3: m∗Θ(b) = 0.29 m∗Θ(ac) = 0.71

Case 4: m∗Θ(b) = 0.30 m∗Θ(ac) = 0.66 m∗Θ(d) = 0.02 m∗Θ(e) = 0.02
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(a) Case 1: m̂t
Θ(a) = 1.0
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(b) Case 2: m̂t
Θ(ab) = 1.0
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(c) Case 3: m̂t
Θ(abc) = 1.0
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(d) Case 4: m̂t
Θ(Θ) = 1.0

Figure 7.1: Convergence of EΘ1 to E∗Θ as indicated by the the evolution of the BPA
with k. All the focal elements that are not contained in the core of the estimated GT
Ê tΘ vanish as EΘ1 reaches E∗Θ.
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Figure 7.1 shows the convergence of BoE EΘ1 to E∗Θ for each case. Note how the

consensus BoE is ‘consistent’ or ‘agrees’ with E tΘ. Behavior of other BoEs are similar

and converge to E∗Θ in each case.

Method

Credibility

Case 1. m̂tΘ(a) = 1.0 Case 2. m̂tΘ(ab) = 1.0 Case 3. m̂tΘ(abc) = 1.0 Case 4. m̂tΘ(Θ) = 1.0

EΘ1 EΘ2 EΘ3 EΘ4 EΘ5 EΘ1 EΘ2 EΘ3 EΘ4 EΘ5 EΘ1 EΘ2 EΘ3 EΘ4 EΘ5 EΘ1 EΘ2 EΘ3 EΘ4 EΘ5

Crcf1 0.32 0.05 0.32 0.32 0.06 0.47 0.17 0.46 0.45 0.12 0.51 0.15 0.51 0.50 0.13 0.52 0.12 0.52 0.51 0.14

5 1 5 5 2 5 2 4 3 1 5 2 5 3 1 5 1 5 3 2

Crcf2 0.32 0.05 0.32 0.32 0.06 0.32 0.05 0.32 0.32 0.06 0.90 0.07 0.90 0.90 0.08 0.90 0.07 0.90 0.90 0.08

5 1 5 5 2 5 1 5 5 2 5 1 5 5 2 5 1 5 5 2

Crcon 0.32 0.05 0.32 0.32 0.06 0.10 0.92 0.05 0.05 0.06 0.83 0.33 0.77 0.77 0.19 0.71 0.37 0.70 0.67 0.38

5 1 5 5 2 4 5 2 2 3 5 2 4 4 1 5 1 4 3 2

Table 7.1: Estimated credibility measures of the BoEs.

Credibility Estimation: We now use the consensus BoE E∗Θ in place of E tΘ in

Definition 37 to get the credibility estimates Crcon for each BoE. See Table 7.1 which

also shows the two measures Crcf1 and Crcf2 in Definition 36. Ranked credibility

values (lowest is ‘1’) are also indicated underneath each credibility value in Table 7.1.

In Case 1, not surprisingly, all measures produce identical results. In Case 2, the

assignment of a low credibility to EΘ2 (supporting proposition b) by both Crcf1 and

Crcf2 is surprising when GT is either a or b. Crcon assigns a significantly higher credi-

bility to EΘ2 relative to other BoEs. The assignment of low credibility to EΘ1 , EΘ3 , EΘ4

(mainly supporting a or b) also needs further investigation. The comparison is more

difficult with decreasing exactness of the GT estimate, but they all seem to agree.

Cases 3-4 are illuminating: (a) consensus BoE allocates higher supports for ac, which

is in concordance with what a cursory glance at the BoEs reveals; (b) a is absent in

the consensus because no BoE supports the singleton a; (c) d and e are absent in

Case 3 consensus because they are absent in the GT estimate.
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7.4 Chapter Summary

The proposed consensus-based credibility estimation strategy addresses an impor-

tant research question: how can we validate evidence when the GT is unknown? It

can be used for purposes of (a) estimating the source reliability, (b) weighting the

sources for fusion, or (c) discounting the BoEs. We have used the DST consensus

protocol developed in Chapter 6. This is the major difference with conflict-based

methods which are heavily dependent on the combination rule utilized (e.g., when

the Crcf2 employs the DCR, evidence conflicts can generate null results. To avoid

this, we set mi(Θ) = 0.0001 (and deducted 0.0001 from the largest mass). How-

ever, the conflict-based measures may be computationally more efficient than the

consensus-based approach. This important issue warrants further investigation.



Part III

COMPUTATIONAL

OPTIMIZATIONS
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Chapter 8
Efficient Computation of DST Conditionals

C
onditioning in DST, especially with the FH conditionals, carries a significant,

sometimes even prohibitive, computational overhead. To quote [56], “... the

operation of conditioning can cause an exponential explosion in the number of nonzero

Möbius assignments used to represent the function.” Moreover, the computational

complexity exponentially grows with increasing cardinality of the FoD [27]. As a re-

sult, DST methods involving conditionals can quickly become intractable in hard/soft

data fusion scenarios where the FoDs of sources are often of high cardinality. However,

the CCT proposed in Chapter 4 provides an appealing path that can be pursued to-

wards the development of efficient algorithms for computing FH conditionals. In this

chapter, a graphical structure and a message-passing scheme for efficiently computing

the FH conditionals are developed. Bounds on computational complexity, conditions

that would ensure the proposed algorithm to yield computational advantages, and

extensive simulations to illustrate these advantages, are also provided.

This chapter is organized as follows: Section 8.1 provides a chapter overview

addressing the issues related to conditional computations; Section 8.2 provides a

method to directly compute the conditional masses by exploiting the CCT; Section 8.3

presents an analysis on computational gains and also provide criteria for selecting an
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optimal computational method; Section 8.4 contains several experimental simulations;

and finally Section 8.5 provides the chapter summary.

8.1 Chapter Overview

As Kennes, et al., mentions [27], as the size of the FoD is increased, conditioning

causes an “exponential explosion.” This is simply due to the fact that many of the

more commonly utilized DST conditional notions, including the FH conditionals, are

defined in terms of either belief or plausibility [28, 69, 94, 95]. Therefore, one has

to compute and store belief/plausibility values for essentially all the elements of the

powerset of the FoD, For instance, an FoD having cardinality 40 has 240 ≈ 1012

belief values; with floating number representation, this requires approximately 8TB

of storage space.

However, most real-world evidence sources allocate non-zero mass to only a few

propositions. Thus, it is often computationally efficient to store and operate on

the mass assignments instead of the alternate DST notions of belief or plausibility

[96]. Since the CCT can directly identify the conditional focal elements, the need

to compute the conditional beliefs/plausibilities of all the subsets of the conditioning

event and then relying on a Möbius transformation to get the conditional masses is

eliminated. Once the conditional focal elements are thus identified, by representing

the conditional core as a directed graph, we present a simple uni-directional message

passing scheme to compute the conditional masses. The conditional beliefs of the

conditional focal elements are also generated as an intermediate result. The proposed

algorithm has the potential to provide significant computational savings in larger FoDs

where the computation and storage of belief/plausibility functions are prohibitive. We

also derive specific conditions that identify the scenarios where the algorithm provides

computational savings.
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8.2 Direct Computation of Conditional Masses

Here we illustrate how conditional masses can be directly computed, once they are

identified using the CCT. This requires the conditional focal elements to be “properly

ordered,” so that the computations can be carried out without having to access the

belief and/or plausibility functions. Let us proceed by analyzing the definition of FH

conditionals.

Expand the belief terms expression for BlΘ(B|A) in Claim 3 in terms of mass

functions to get

∑

C⊆B

mΘ(C|A) =

∑
C⊆B

mΘ(C)

PlΘ(A)− ∑
∅6=C⊆B;
∅6=D⊆A

mΘ(C ∪D)
(8.1)

=⇒ mΘ(B|A) =

∑
C⊆B

mΘ(C)

PlΘ(A)− ∑
∅6=C⊆B;
∅6=D⊆A

mΘ(C ∪D)
−
∑

C⊂B

mΘ(C|A) (8.2)

We make the following observations:

1. PlΘ(A) is common to all B ⊆ Θ.

2. Computation of m(B|A) requires access to,

(a) all C ∈ FΘ s.t. C ⊆ B;

(b) all (C ∪D) ∈ FΘ s.t. C ⊆ B and D ⊆ A; and

(c) all C ∈ FΘ|A s.t. C ⊂ B.

3. If the mΘ(·|A) computation is “properly ordered,” the availability of BlΘ(B)

and PlΘ(B) for all B ⊆ Θ is not required.

With these observations in place, we propose to represent the conditional focal ele-

ments in a polytree as described below. Then, the decomposition in (8.2) can be used

to derive a simple message passing scheme to compute the conditional masses.
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8.2.1 Polytree Representation of Conditional Core

Let X = {X1, . . . , Xn} denote n = |FΘ|A| number of nodes. For i = 1, . . . , n,

the conditional focal element BXi ∈ FΘ|A is represented by the node Xi. The sets

Ch(Xi) and Pa(Xi) represent the child nodes and parent nodes of node Xi ∈ X . If

Xj ∈ Ch(Xi), then it is represented by a directed path or edge Xi → Xj, i 6= j. Note

that

Ch(Xi) =
{
X ∈ X |BX = Lgst

{
B ∈ FΘ|A | B ⊂ BXi

}}
. (8.3)

If there is a directed path from node Xi to Xj, then we say that the node Xj is a

descendent of Xi. The set Des(Xi) represents the set of descendent nodes of Xi; we

use Des∗(Xi) to represent Des(Xi) ∪ {Xi}. A node Xi for which Des(Xi) = ∅ is

referred to as a leaf node. The polytree corresponding to the conditional core FΘ|A in

Example 1 appears in Figure 8.1.

X7

X1

X3 X4 X2

X6X5

X9

X8

X1 = ME

X2 = MF

X3 = ( FE, ME )

X4 = ( ME, O )

X5 = ( FE, ME, O )

X6 = ( M, O )

X7 = ( FE, MF )

X8 = ( FE, M, O )

X9 = A

Figure 8.1: Polytree corresponding to FΘ|A in Example 1.

Define the collections

SXi =
{
B ∈ FΘ | (B ∩ A) ∈ out(A), B ∩ A ⊆ BXi , B ∩ A * BXj , ∀Xj ∈ Des(Xi)

}
;

FXi =
{
B ∈ FΘ |B ⊆ BXi , B * BXj , ∀Xj ∈ Des(Xi)

}
, (8.4)
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to identify the focal elements that first appear in node Xi without appearing in its

decendents. Let us also define

S(F )
Xi

=
∑

B∈FXi

mΘ(B); S(S)
Xi

=
∑

B∈SXi

mΘ(B); S(|A)
Xi

= mΘ(BXi |A). (8.5)

8.2.2 Conditional Masses via Message-Passing

The node Xi needs the messages µXj→Xi(Xi), ∀Xj ∈ Ch(Xi), to compute the

conditional mass mΘ(BXi |A). For node Xj to pass the message µXj→Xi(Xi) to a node

Xi ∈ Pa(Xj), it requires mΘ(BXj |A). Thus, the message passing is only upstream;

each node Xj ∈ X passes the message µXj→Xi(Xi) to its parent node Xi, ∀Xi ∈
Pa(Xj). The computations are initiated at the leaf nodes. So, we arrive at the

following message passing scheme:

1. Each child node Xj passes the following message matrix to its parent Xi:

µXj→Xi(Xi) =
[
Des∗(Xj) µ

(F )
Xj→Xi µ

(S)
Xj→Xi µ

(|A)
Xj→Xi

]
, (8.6)

where

µ
(·)
Xj→Xi =

[
S(·)
Xj
S(·)
Xk1

. . . S(·)
Xkn

]T
, Xk` ∈ Des(Xj), ` = 1, . . . , n. (8.7)

2. At each node Xi ∈ X , the conditional mass mΘ(BXi |A) is calculated as

mΘ(BXi |A) =

S(F )
Xi

+
∑

Xj∈Des(Xi)

S(F )
Xj

PlΘ(A)− S(S)
Xi
− ∑
Xj∈Des(Xi)

S(S)
Xj

−
∑

Xj∈Des(Xi)

mΘ(BXj |A), (8.8)

where the updated descendants vector of Xi is given by

Des(Xi)←
⋃

Xj∈Ch(Xi)

Des(Xj). (8.9)

3. At any leaf node Xi ∈ X , the computation of m(BXi |A) simplifies to

mΘ(BXi |A) =
S(F )
Xi

PlΘ(A)− S(S)
Xi

. (8.10)
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8.3 Computational Gains

The CCT precisely identifies the |FΘ|A| number of conditional focal elements, thus

eliminating the need for computing conditional masses of all these subsets of A. We

can easily derive the following upper bound on the size of the conditional core in

terms of the size of sets in(A), out(A) and OUT(A).

Claim 23 (Upper Bound on |FΘ|A|). Let Nin = |in(A)|, Nout = |out(A)|, and NOUT =

|OUT(A)|. Then, |FΘ|A| ≤ Nin(1 +NOUT) ≤ Nin2Nout.

Proof. Let B = {B = X ∪ Y s.t. ∅ 6= X ∈ in(A), ∅ 6= Y ∈ OUT(A)}. Then,

|FΘ|A| = |in(A) ∪B| = |in(A) ∪ (B \ in(A))|

= |in(A)|+ |B| − |B ∩ in(A)|

≤ Nin +NinNOUT − |B ∩ in(A)|

≤ Nin +NinNOUT ≤ Nin +Nin(2Nout − 1).

This establishes the claim.

Remarks:

• If |in(A)∩B| << Nin(1+NOUT), then |FΘ|A| ≤ Nin(1+NOUT) provides a tighter

bound.

• Also, note that NOUT could be significantly smaller than 2Nout−1, since elements

of OUT(A) are not necessarily disjoint. Thus, Nin2Nout may lead to a very

conservative bound if there is significant overlap in the elements of OUT(A).

Example 16. Let us consider Example 1 in Chapter 4 again. Here, use of the

CCT leads to about a 70% reduction in the required number of conditional mass

computations. The CCT can be used to obtain significant computational savings in
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situations where the sets involved are of higher cardinality, and Nin and Nout are

significantly small compared to 2|A| (e.g., when dealing with soft evidence). For in-

stance, take |Θ| = 50, |A| = 20, Nin = 500, Nout = 8, and NOUT = 200. The

number of conditional mass computations reduces from 220 − 2 to a maximum of

500× 201 ≤ 500× 28 = 128000 (corresponding to about 88% reduction).

While the CCT can be used to identify the conditional focal elements with no

recourse to numerical computations, the identification step itself takes non-zero com-

putational power. Indeed, with the CCT, the number of times the conditional mass

has to be computed is typically much less; however, one also has to take into account

the overhead associated with identifying conditional focal elements and extra burden

associated with data representations and computations. Thus, the overall computa-

tional gains are highly dependent on the implementation, as well as the application.

To provide specific conditions that would guarantee computational gains with

the use of the CCT, we will make use of the implementation specific constants in

Table 8.1.

Notation Description

Tid.ioa Average cpu time to identify elements of in(A) and out(A)

Ttr.bld Average cpu time for processing FΘ|A to build the polytree

Tps.msg Average cpu time per message

Tbp.ohd Average overhead (e.g., BlΘ(·) etc.) cpu time without the CCT

Tcp.std Average cpu time to compute mΘ(·|A) without the CCT

Tcp.cct Average cpu time to compute mΘ(·|A) with the CCT

Ttr.pro Ttr.bld + Tps.msg

Table 8.1: Some Implementation Specific Constants (on a per proposition basis)

Notice the following about the graph structure and the proposed massage passing

scheme for conditional mass computation:

1. The graph structure can be readily obtained while generating conditional focal

elements by taking the unions of elements of in(A) with OUT(A).
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2. One may start by setting the elements in in(A) as leaf nodes, and adding their

parent nodes by taking unions of leaf nodes with out(A).

3. Since the message passing is up-stream only, mass computation and message

passing can coincide. Thus, any node is accessed only once.

So, the total computational time can be estimated as follows:

CCT Method:

Tthm = 2|Θ| · Tid.ioa +Nin2Nout · Ttr.pro + |FΘ|A| · Tcp.cct;

Sandard Method:

Tstd = 2|Θ| · Tbp.ohd + 2|A| · Tcp.std. (8.11)

Here, the CCT method refers to the method of using the CCT to directly identify

the conditional core and then using the proposed graphical structure and the mes-

sage passing scheme; the standard method refers to the direct method of Möbius

transforming the conditional beliefs to obtain the conditional masses. Therefore, the

CCT method is guaranteed to reduce the computational burden if Tthm < Tstd. Once

a BoE and a conditioning event are given, the following procedure can be used to

systematically check whether the application of the CCT method is useful.

Lemma 24 (Criterion 1). Evaluate Nin and Nout. This only takes 2|Θ|Tid.ioa of com-

putational time. Then check for

Nin2Nout <
2|Θ| · (Tbp.ohd − Tid.ioa) + 2|A| · Tcp.std

Ttr.pro + Tcp.cct
.

If this is true, then the CCT is guaranteed to provide computational gains; if it fails,

check Criterion 2.
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Lemma 25 (Criterion 2). Evaluate NOUT. Then check for

Nin2Nout · Ttr.pro +Nin(1 +NOUT ) · Tcp.cct < 2|Θ| · (Tbp.ohd − Tid.ioa) + 2|A| · Tcp.std.

If this is true, then the CCT is guaranteed to provide computational gains.

If Criterion 2 fails, some computational power is wasted on identifying elements

in in(A), out(A), and OUT(A). This can be relatively large, especially for large FoDs

and cores. However, |FΘ|/(2|Θ| − 1 � 1 in most real-world applications, and under

these conditions, the CCT method offers significant computational gains. Thus, one

may even set the evaluation criteria based on |FΘ| and |A| only.

8.4 Experiments

Here we carry out several experiments to study the performance of the CCT

method. The results demonstrate how the cost associated with conditional mass

computations is related to certain properties of the BoE being conditioned and the

conditioning event itself. Full knowledge of these relationships gives valuable informa-

tion on how to optimize the conditional mass computation for efficient implementation

of evidence update and fusion strategies [52].

8.4.1 Data Generation

For simulation and verification purposes, for a selected pair of values for |Θ| and

|FΘ| ∈ {1, . . . , 2|Θ|}, we randomly generate a BoE E = {Θ,FΘ,mΘ}. Even for modest

values of |Θ|, the number of propositions possessing a positive belief (i.e., |F̂Θ|) can

be extremely high. Therefore, instead of computing the conditional masses for all the

propositions in F̂Θ, we select conditioning propositions A`,j as follows: select a value

for N from {1, . . . , 2|Θ|}, and then randomly pick at most N conditioning propositions

A ∈ F̂Θ for which |A| = `; repeat this for each value of ` in {1, . . . , |Θ|} so that we
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Figure 8.2: Variation of |FΘ|A| versus |A|/|Θ| and ρ, where |Θ| = 12.

end up with conditioning propositions of all cardinalities, but not more than N of

each cardinality.

We repeat this procedure K times thus generating K different BoEs for each

{|Θ|, |FΘ|} pair. The reported results are obtained by averaging over these K different

BoEs; we used K = 50 in our experiments. We also use ρ = |FΘ|/(2|Θ| − 1) as a

measure of ‘density’ of the BoE’s core.

All simulations were carried out on an Apple Mac Pro Desktop with 2× 2.66GHz

quad-core Intel Xeon processors, 16GB 1066MHz DDR3 RAM, running Mac OS X

10.6.2. Programs are non-optimized and no multiprocessing is used. Computational

times were obtained while running regular programs. For each setting of parameters,

mΘ(·|A) is computed using both the CCT and the standard methods.
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8.4.2 Results and Analysis

8.4.2.1 Cardinality of the Conditional Core

For a given BoE, the cardinality of the conditional core |FΘ|A| depends heavily

on ρ and |A|. The left-hand side plot in Fig. 8.2 shows this variation for different

ρ values. As can be seen, for |A| < |Θ|, |FΘ|A| increases exponentially with |A|;
however, |FΘ|A| sees a sudden drop at |A| = |Θ|. The CCT explains this phenomenon

well. As |A| increases, the number of elements in out(A) increases thus exponentially

increasing |OUT(A)| and |FΘ|A|. However, as |A| = |Θ|, the number of elements in

out(A) suddenly decreases thus resulting in the sudden drop of |FΘ|A|.
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Figure 8.3: Variation of |FΘ|A| versus |Θ| for different |A|/|Θ|, with ρ = 1/16.

The right-hand side plot in Fig. 8.2 shows the variation of |FΘ|A| versus ρ for

different values of |A|. Clearly, |A| imposes an upper bound on |FΘ|A| because |FΘ|A| ≤
2|A|−1. When ρ is small (i.e., when there are only a very few focal elements present),

|FΘ|A| is determined by ρ; but as ρ increases, the impact of ρ on |FΘ|A| diminishes.
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This scenario can also be understood via the CCT. Even though |FΘ| and hence ρ

increase, the |out(A)| is always bounded by |A|. Therefore, an increasing ρ does not

necessarily increase |OUT(A)|. Note that, the operational area of many applications,

especially those dealing with soft data, correspond to FoDs with high cardinality with

only a few number of (mostly non-singleton) propositions receiving positive support.

This situation is depicted in the bottom left-hand corner of the plot where ρ is low

and |FΘ|A|) is highly dynamic.
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Figure 8.4: Tstd/Tthm versus |A|/Θ for different ρ, with |Θ| = 12.

Fig. 8.3 shows the variation of |FΘ|A| versus |Θ| for different values of |A|/|Θ|,
with fixed ρ = 1/16. Note how |FΘ|A| increases exponentially with increasing |Θ|.

8.4.2.2 Computational Time

Even though the absolute times are highly platform- and system- dependent, the

ratio Tstd/Tthm provides a good measure of the relative speed. Fig. 8.4 shows the
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variation of Tstd/Tthm (log scale) versus |A| for different values of ρ, with fixed |Θ| =
12.
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Figure 8.5: Tstd/Tthm versus ρ for different |A|, with |Θ| = 12.

For approximately ρ < 0.125, all curves follow the same trend, viz., Tstd/Tthm
increases with increasing |A|. Also, except when ρ ≥ 0.5, Tstd/Tthm > 1. Note that,

with |Θ| = 12, a ρ ≥ 0.5 implies a BoE with over 2047 focal elements, which is rather

unlikely in most practical applications; with ρ = 0.02, we still get a BoE with over

80 focal elements.

Fig. 8.5 shows the variation of Tstd/Tthm (log scale) versus ρ for different values

of |A|, with fixed |Θ| = 12. Note that, except when |A| = 11, Tstd/Tthm > 1 for

all values of ρ and |A|. Also, Tstd/Tthm is significantly large for smaller ρ, which is

typical of many practical applications. Fig. 8.6 shows a zoomed-in version of Fig. 8.5

for smaller ρ, where Tstd/Tthm is seen to be quite high.

As Figs 8.4 and 8.5 show, the CCT method may not yield computational gains

in all situations. The plot of Tstd − Tthm versus ρ in Fig. 8.7 perhaps illustrates this
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Figure 8.6: Tstd/Tthm versus smaller ρ for different |A|, with |Θ| = 12.

better. Take, for example, the |A| = 11 case. It clearly shows that the CCT method

is more expensive than the standard method for approximately ρ > 0.3. In this

scenario, the additional overhead associated with identifying and processing of con-

ditional focal elements becomes more expensive than a brute force direct evaluation

of the conditional masses.

In most practical applications, the mass assignment strategy generates a very

small number of focal elements. The problem with the DS belief computation is that,

even though |FΘ| may remain significantly small, the computational time increases

exponentially as |Θ| increases. Fig. 8.8 compares the variations of Tstd and Tthm versus

|Θ| for different values of |A|, with fixed |FΘ| = 4. It clearly shows the exponential

increase of the computational time Tstd associated with the standard method. In

contrast, the time Tthm associated with the CCT method remains almost constant,

thus overcoming the scaling issue of the DS theoretic conditional mass computation

to a large extent.
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Figure 8.7: Tstd − Tthm versus ρ for different |A|, with |Θ| = 12.

8.5 Chapter Summary

The proposed graphical method along with an efficient message-passing scheme

based on the CCT, clearly reduces the number of conditional mass computations.

But, the total computational cost, as we have pointed out, depends on the implemen-

tation and the scenario under consideration. For larger FoDs, the proposed strategy

achieves very high computational gains. Moreover, with the cardinalities of the condi-

tioning event and the core kept fixed, the computational cost of CCT method remains

almost constant with increasing cardinality of the FoD. Thus, the CCT method scales

well for large FoDs. The standard method becomes prohibitive in such a scenario.

We believe that this constitutes a very significant result, especially when dealing with

soft/hard data fusion scenarios where one has to deal with rather large FoDs pos-

sessing relatively smaller number of focal elements. Of course, the CCT method may

not provide computational gains in all operating conditions. The proposed empirical

criteria can be used to identify the conditions that would render the use of the CCT
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method computationally more efficient.



Chapter 9
DST Core Approximations

A
s we have pointed out earlier, the computational overhead of DST methods are

relatively much higher than, for instance, Bayesian methods mainly due to the

fact that DST methods work with the powerset of the source FoDs. On the other

hand, this very fact is the main reason for the enormous flexibility that the DS theory

provides in uncertain data modeling. In Chapter 8, we illustrated how the CCT can be

exploited to directly identify the conditional core thus potentially providing significant

computational gains, In this Chapter, we propose yet another strategy to reduce the

computational burden associated with DST methods: approximation of DST data

models based on statistical sampling techniques. Our proposed method allows one

to approximate the focal set based on an objective function and then statistically

redistribute the masses of removed focal elements. The objective function can be

chosen depending on the application to remove irrelevant propositions (e.g., those

that are impossible to occur). In the absence of such information, the proposed

method can merely impose bounds on the cardinality or the minimum mass of focal

elements (similar to the methods in [97–100]).

This chapter is organized as follows: Section 9.1 provides a chapter overview;

Section 9.2 provides a review of existing DST approximation methods; Section 9.3

151
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presents the main result of this chapter; Section 9.4 contains an extensive set of simu-

lations highlighting the salient points of the presented method; and finally Section 9.5

provides the chapter summary.

9.1 Overview

As we have already discussed, potential of many DST methods is often thwarted

by the significant computational overhead in terms of storage and processing. Com-

putational optimization techniques (e.g., fast computational methods and approxima-

tions) to address this issue have been proposed in the DST literature. For example,

the extensive amount of work carried out by Wilson, et al., [96, 101–103] addresses

issues related to fast belief/plausibility computation, DCR approximations, and ap-

proximated decision making.

In real-life applications, evidence can usually be captured via a smaller number of

focal elements which is far less than the possible maximum (i.e., powerset of the FoD).

However, repeated DST operations (e.g., evidence combination, conditioning) have

the potential to exponentially increase the number of focal elements, thus making the

subsequent processing more expensive. Given the fact that storage requirements and

processing costs are directly proportional to the number of focal elements, a natural

question that arises is whether one can reduce the computational overhead in terms

of storage and processing by explicitly reducing the number of focal elements through

approximations.

The approach taken by most of the existing techniques is to retain only the propo-

sitions with highest masses and recompute their masses via redistribution and/or

normalization [97–100]. Even though, some of these methods are as simple as sum-

marizing the mass of discarded propositions to a single proposition obtained as the

disjunction of the discarded propositions, their performance is very satisfactory in

most practical applications. However, one must keep in mind that removal of focal
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elements and redistribution of their masses have to be done with extreme care to

preserve the underlying evidence and the associated uncertainties to a level that does

not alter the final inferences. Therefore, methods that simply retain the highest val-

ued propositions may not be appropriate for all applications and may not be able to

capture the underlying meaning adequately well.

Approximation approaches such as statistical sampling methods have gained im-

portance in many probabilistic signal processing methods. For example, sampling

methods are commonly used in optimal filtering and tracking (e.g., in particle filters),

where complicated posterior probabilities are approximated in a formal manner. Sev-

eral approximation techniques based on statistical sampling methods have been used

in DST as well, e.g., approximating the combined belief [101]. However, to the best

of our knowledge, such sampling methods have not been used for approximation of

focal elements and their support.

9.2 Approximations of the Core

In this section, we provide a review of some of the existing approximation tech-

niques that reduce the computational burden by reducing the number of focal ele-

ments. Suppose the BoE EΘ = {Θ,FΘ,mΘ(�)} is to be approximated by the new BoE

E ′Θ = {Θ,F′Θ,m′Θ(�)}.

9.2.1 The Bayesian Approximation (BA)

This method reduces a given BPA to a PMF [97]. Thus, only singleton proposi-

tions are allowed in the approximated BPA.
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Definition 38 (Bayesian Approximation (BA)). [97] The BoE E ′Θ is given by

m′Θ(B) =





1

KBA

∑

B⊆C

mΘ(C), for |B| = 1;

0, otherwise.

where KBA =
∑

C⊆Θm(C) |C|.

By definition, |F′Θ| is at most |Θ| and the cost of approximation is in the order

of O(|FΘ| � |Θ|). Furthermore, if the BoEs are combined using the DCR, then the

combination and approximation do not depend on the order, i.e., one can either

combine BoEs prior to the approximation, or vice versa, and obtain the same result.

The BA is the only approximation method that possesses this property.

9.2.2 The k-`-x Method (k`x)

This method focuses on retaining only the highest valued focal elements [98]. The

BoE E ′Θ will have at least k or at most ` focal elements with a sum of the BPA being at

least 1− x, x ∈ [0, 1]. The approximation is finally normalized s.t.
∑

B∈F′Θ

m′Θ(B) = 1.

The approximation time is in the order of O(|FΘ| � log(|FΘ|)).

9.2.3 Summarization Method (SM)

This method leaves the highest valued k−1 focal elements intact and ‘summarizes’

the remaining focal elements to their set theoretic union [99].

Definition 39 (Summarization Method (SM)). [99] Let k be the number of focal

elements to be contained in E ′Θ and let M denote the set of k − 1 focal elements
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B ∈ FΘ with the highest BPA. Then, the BoE E ′Θ is given by

m′Θ(B) =





mΘ(B), for B ∈M;

∑
C∈FΘ\M

mΘ(C), for A = A0;

0, otherwise,

where A0 =
⋃

C∈FΘ\M
C.

This approximation is extremely fast and can be computed in O(|FΘ|), even

though the applicability to arbitrary BoEs is arguable.

9.2.4 D1 Approximation (D1)

This method retains a set of highest valued focal elements and distributes the

BPA of the remaining focal elements among them [100]. The BPA distribution is

intuitive and the method is applicable to arbitrary BoEs.

Let k be the desired number of focal elements to be contained in E ′Θ and let

M+ denote the set of k − 1 focal elements B ∈ FΘ with the highest BPA, and

M− = FΘ \ M+. Then, the BPA of the focal elements in B ∈ M− is distributed

among the elements in M+ as follows:

Given a B ∈M−, computeMB = {C ∈M+ | B ⊆ C}. ThenmΘ(B) is dispensed

uniformly among the set-theoretically smallest members of MB. If MB = ∅, then

M′
B = {C ∈ M+ | |C| ≥ |B|, C ∩ B 6= ∅} is generated and mΘ(B) is shared

among the smallest members. This process is invoked recursively until all of mΘ(B)

is assigned to M+ or M′
B is empty, in which case the remaining mass is assigned

to Θ. The cost of the D1 approximation is O(k � (|FΘ| − k)). This approximation is

conservative in the sense that the BoE E ′Θ is less specific than the original EΘ.
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9.3 Monte Carlo Core Approximation (MCCA)

In this section, we introduce our Monte Carlo core approximation (MCCA) tech-

nique, a sampling-based technique for approximating the core for the purpose of

computational overhead reduction in DST methods. Monte Carlo (MC) approach is

commonly used in statistical signal processing literature to estimate complex ana-

lytic or unknown probability distributions with sample-based representations. Here,

we use the MC method to estimate a given BoE EΘ with a new BoE E ′Θ such that

(a) E ′Θ is computationally more efficient than EΘ; and (b) decisions generated with

E ′Θ are close to those generated with EΘ.

Regarding (a), the computational gains are to be achieved by reducing the number

of focal elements in the core via an objective function that chooses the focal elements

to be retained in E ′Θ. This objective function can be chosen to obtain an ‘optimal’ core

depending on the application. In a simple setup, it can be chosen to limit the number

of focal elements (e.g., pick the focal elements with the highest BPA). However, it

can also be used to satisfy more elaborate properties (e.g., to avoid certain composite

focal elements with impossible singleton combinations).

Regarding (b), the probability mass function (PMF) BetP (�) (generated via the

pignistic transformation) is often used in DST for decision-making. Thus, the new

BoE E ′Θ is generated s.t. the pignistic transformation BetP (�) corresponding to mΘ(�)

given is approximately equal to the pignistic transformation BetP ′(�) corresponding

to m′Θ(�). Let us proceed by formally stating the approximation problem.

9.3.1 Problem Formulation

Let EΘ = {Θ,FΘ,mΘ(�)} be the BoE to be approximated by the BoE E ′Θ =

{Θ,F′Θ,m′Θ(�)}. The core F′Θ is to be determined by an objective function O : 2Θ 7→
2Θ with O(FΘ) = F′Θ s.t. |F′Θ| < |FΘ|. The new BPA m′Θ(·) : 2Θ 7→ [0, 1] is to

be derived s.t. BetP ′(�) ≈ BetP (�), where BetP ′(�) and BetP (�) are the pignistic
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transformations of m′Θ(·) and mΘ(·), respectively.

9.3.2 Algorithm

Once the F′Θ is generated via the objective function O(�), we use the MC method

for approximating m′Θ(�) s.t. BetP ′(�) ≈ BetP (�). The approximation procedure is

as follows:

Step I. Initialization:

1. Define the collections Gθ as

Gθ ≡ {B ∈ FΘ | θ ⊆ B}.

2. Define the corresponding PMF PG(B | θ) : Gθ 7→ [0, 1] as

PG(B | θ) =
1∑

C∈Gθ
mΘ(C)

mΘ(B).

3. Initialize the weights WB(0) as

WB(0) =




mΘ(B), for B ∈ F′Θ;

0, otherwise.

4. Define the weight distribution constant KFΘ\F′Θ as

KFΘ\F′Θ = 1−
∑

C∈F′Θ

mΘ(C).

Step II. Sampling:

1. Sample θk ∈ Θ, k = 1, . . . , Ns, from BetP (θ).

2. Sample Bk ∈ Gθk from PG(B | θk).

3. If Bk ∈ F′Θ, update the weight of Bk as

WBk(k) =WBk(k − 1) +
1

Ns

KFΘ\F′Θ .
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4. If Bk /∈ F′Θ, then resample.

Step III. Resampling:

1. Define ĜBk and the corresponding PMF P̂G(B | Bk) as follows:

(a) Let ĜBk = {B ∈ F′Θ | Bk ⊆ B}.

(b) If ĜBk 6= ∅, then do the following:

i. Define the PMF P̂G(B | Bk) as

P̂G(B | Bk) =
1

L̂Bk
m(B),

where L̂Bk =
∑

C∈ĜBk

m(C).

ii. Sample B̂k ∈ ĜBk from P̂G(B | Bk).

iii. Update the weight of Bk as

WBk(k) =WBk(k − 1) +
1

Ns

KFΘ\F′Θ .

(c) If ĜBk = ∅, then do the following:

i. Redefine ĜBk as

ĜBk = {B ∈ F′Θ | B ∩Bk 6= ∅}.

ii. If ĜBk 6= ∅, update the weights of B ∈ ĜBk as

WB(k) =WB(k − 1) +
1

NsLsup
Bk

|B ∩Bk|
|B ∪Bk|

KFΘ\F′Θ ,

where

Lsup
Bk

=
∑

B∈ĜBk

|B ∩Bk|
|B ∪Bk|

.
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iii. If ĜBk = ∅, update the weights of B ∈ F′Θ as

WB(k) =WB(k − 1) +
1

Ns|F′Θ|
KFΘ\F′Θ .

2. Select the BPA m′Θ(�) as

m′Θ(B) =
∑

C⊆Θ

WC [Ns] δ(B − C)

=




WB[Ns], for B ∈ F′Θ;

0, otherwise.

To compare the various approximation methods with the proposed MCCA method,

let us consider the following example taken from [100].

Example 17. [100] The BoE EΘ for which Θ = {a, b, c, d, e} and mΘ({ab, acd, c, cd, de}) =

{0.50, 0.30, 0.10, 0.05, 0.05} is to be approximated by E ′Θ. The approximated results are

tabulated in Table 9.1.

Approximation parameters for methods BA, k`x, SM and D1 are chosen as in

[100]; for the MCCA, we choose |F′Θ| = 3 with Ns = 100.

Method F′Θ m′Θ

BA {a, b, c, d, e} {0.360, 0.230, 0.205, 0.180, 0.023}
k`x {ab, acd, e} {0.556, 0.333, 0.111}
SM {ab, acd, cde} {0.500, 0.300, 0.200}
D1 {ab, acd,Θ} {0.500, 0.475, 0.025}

MCCA {ab, acd, c} {0.538, 0.354, 0.108}

Table 9.1: Core Approximation of Example 17
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9.3.3 Selection of an Appropriate Objective Function

After a several iterations of processing, the BoE may contain “unwanted” propo-

sitions (e.g., impossible combinations of singletons) that may not necessarily have

the lowest support. Combination and conditioning operations often generate large

numbers of propositions, which often grow exponentially with respect to the number

of operations (see Section 9.4 for details).

In MCCA, via the objective function, one has the flexibility of specifying what

propositions are to be kept and/or removed (without being forced to retain the propo-

sitions having the highest mass). The choice is of course application dependent. To

illustrate this, let us take an example involving DST conditioning.

Example 18. Consider a BoE EΘ = {Θ,FΘ,mΘ(�)} with Θ = {a, b, c, . . . , x, y, z},

FΘ = {b, a, pqr, bck, dl, em} and mΘ(B) = {0.35, 0.25, 0.15, 0.10, 0.10, 0.05}, for B ∈

FΘ (in the same order given in FΘ). Let us compute the conditional masses with

respect to the conditioning event A = (abcdefghij) (see Table 9.2).

B m(B|A) B m(B|A) B m(B|A) B m(B|A)

a 0.2941 abcd 0.0121 b 0.4118 bcd 0.0169

abc 0.0392 abce 0.0054 bc 0.0549 bce 0.0076

ad 0.0392 ade 0.0054 bd 0.0549 bde 0.0076

ae 0.0184 abcde 0.0029 be 0.0257 bcde 0.0039

Table 9.2: Conditional Core Corresponding to A = (abcdefghij).

Notice the following. When the BoE is conditioned with respect to A = (abcdefghij),

all the focal elements that are not contained in A vanish. The elements that “strad-

dle” A and A (i.e., elements in out(A)) generate a slew of conditional focal elements

by making arbitrary unions. Thus, conditioning increases the size of the core from 7
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to 16, even though the “focus” has narrowed down to 10 (= |A|) elements from 20

(= |Θ|).

Let us assume that, for the application at hand, we are only interested in retaining

the focal elements that are “contained in” the conditioning event. However, to preserve

the contribution from focal elements that straddle A and A, we also retain the focal

elements that are unions of (i) an element in in(A) and (ii) the union of all the

elements in out(A) (i.e., largest (set theoretic) element in OUT(A). With the help of

CCT, one can define the objective function to achieve exactly this.

Approximated BoE Error

F ′ m′ ERR1 RMS MAE

BA a, b, c, d, e .293, .452, .100, .100, .055 .057 .031 .214

k`x b, a, bd, bc .505, .361, .067, .067 .063 .026 .162

SM b, a, bd, abcde .412, .294, .055, .239 .022 .010 .060

D1 b, a, bd, bc .503, .387, .055, .055 .049 .027 .186

MCCA† b, a, bcde, abcde .508, .365, .038, .089 .040 .021 .132

MCCA‡ b, a, bd, bc .479, .354, .083, .084 .053 .021 .128

Table 9.3: Core Approximation of Example 18

Approximated results appear in Table 9.3. In Table 9.3, MCCA† retains the focal

elements of interest only. As a means of comparing with the BA, k`x, SM and D1

methods, MCCA‡ retains the focal elements with the highest mass only. As we can

see, the results of MCCA† is comparable to other methods, while it retains more

meaningful propositions as required by the application. The error measure that are

used in Table 9.3 are defined in Section 9.4.3.
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9.4 Experiments

In this section, we carry out an experiment to analyze the behavior of the MCCA

as well as to compare its performance to existing methods. Full knowledge of the be-

havior and comparative results to exiting algorithms provide valuable information on

how to optimize and also to choose an appropriate algorithm for a given application.

We proceed by explaining the experimental methodology.

9.4.1 Methodology

Consistent with what has been employed in [98], and later followed in [100], the

methodology we adopted for constructing the BoEs is the following:

1. Set |Θ| = 32 and use an exponential distribution [100] to generate 6 random

BoEs EΘi ≡ {Θ,FΘi ,mΘi(�)}, i = 1, . . . , 6, s.t. each focal set has 8 elements,

i.e., |FΘi| = 8, i = 1, . . . , 6.

2. Using the DCR, fuse the BoEs as

EΘ[j] =




EΘ1 ⊕ EΘ2 , for j = 1;

EΘ[j − 1]⊕ EΘj+1
, for j = 2, . . . , 5.

(9.1)

Let EΘ = EΘ[5].

3. Generate the approximations

EΘX [j] =




X(EΘ[1]), for j = 1;

X(EΘX [j − 1]⊕ EΘj+1
), for j = 2, . . . , 5,

(9.2)

where X(EΘ[�]) denotes the approximation of EΘ[�] with the method X. Let

E ′Θ = EΘX [5].

4. Repeat the above procedure for all approximation methods BA, k`x, SM, D1

and MCCA.
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5. Repeat the whole procedure for 1000 times.

9.4.2 Parameters

For consistency, we choose the same approximation parameters used in [100]. But

in contrast to [100], we use the same set of BoEs for all approximation methods. Even

though the differences diminish as the number of iterations increase, this procedure

allows for a fairer comparison.

We identify the various approximations as follows. The k`x method carried out

with {k = 7, ` = 8, x = 0.0001} and {k = 29, ` = 30, x = 0.0001} are denoted

by k`x−8 and k`x−30, respectively. The experiments with the k`x method in [100]

are carried out in a way that one setting selects as many focal elements as it needs

and another setting selects only one focal element. However, our parameter selec-

tion allows a fairer comparison by selecting the same number of focal elements for

all the methods. The SM, D1, and MCCA methods with a maximum of 8 focal el-

ements are denoted by SM-8, D1-8, and MCCA-8, respectively; with a maximum of

30 focal elements, the approximations are denoted by SM-30, D1-30, and MCCA-30,

respectively.

9.4.3 Performance Criteria

We use the measures used in [98, 100] along with other frequently used error

measures for comparison purposes.

9.4.3.1 Quantitative Measures

Error1 = max
θ∈Θ
|BetP (θ)−BetP ′(θ)|; (9.3)

RMS =

√√√√∑

θ∈Θ

(BetP (θ)−BetP ′(θ))2

|Θ| ; (9.4)
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MAE =
∑

θ∈Θ

|BetP (θ)−BetP ′(θ)|. (9.5)

The measure Error1 is used in [98], and later in [100].

9.4.3.2 Qualitative Measures

Let θ0, θ
′
0 ∈ Θ be the best choices among all the alternatives generated via BetP (�)

and BetP ′(�), respectively, i.e.,

θ0 = arg max
θ∈Θ

BetP (θ); θ′0 = arg max
θ∈Θ

BetP ′(θ).

Then, measures Error2 and Error3 are given by

Error2 = |{θ ∈ Θ | BetP ′(θ) > BetP ′(θ0)}| ;

Error3 = |{θ ∈ Θ | BetP (θ) > BetP (θ′0)}| . (9.6)

The measures Error2 and Error3 are proposed and used in [100]. The measure

Error3 is particularly important for assessing an approximation method with respect

to decision-making; Error3 = 0 represents the case when the approximated BoE

yields the same decision as that of the original BoE.

9.4.4 Results and Analysis

9.4.4.1 Behavior of the MCCA

To study the behavior of the MCCA method with respect to its parameters, we

compare the approximation error of the MCCA-generated DCR-fused BoE E ′Θ in (9.2)

with the original DCR-fused BoE EΘ in (9.1) for different parameter configurations.

The idea here is to understand the sensitivity of MCCA to its parameters, e.g., the

number of samples Ns.

Variation of Error1. As one would expect, Error1 decreases (see Fig. 9.1)

with increasing cardinality which is to be expected because, as the size of the ap-

proximated core approaches the size of the original core, the approximation error
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Figure 9.1: MCCA-generated approximation: Error1 Vs. |F′Θ|.

diminishes. However, it is important to notice that the error is not highly dependent

on the number of sampling iterations (see Fig. 9.2). This can be understood since

the approximation method attempts to preserve the underlying PMF obtained via

the pignistic transformation. Behavior of other performance measures are also not

highly dependent on the number of sampling iterations. Hence, we only show the

dependency of performance measures on the cardinality of the approximated core.

Variations of Error2 and Error3. See Fig. 9.3. The variation of Error2 is

somewhat arbitrary and small compared to Error3 which decreases as |F′Θ| decreases.

Again, the dependency of Error2 and Error3 on Ns is minimal.

Variations of RMS and MAE. See Fig. 9.4. This behavior is similar to that

of Error1.

In summary, it can be seen that the proposed MCCA algorithm ‘converges’ in the

sense that it is possible to pick the approximation parameters (e.g., Ns) to achieve a
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Figure 9.2: MCCA-generated approximation: Error1 Vs. Ns.

balance between a desired level of approximation error and the computational over-

head.

9.4.4.2 Performance Comparison

In this section, we compare and contrast the error performance of MCCA to the

other existing approximation techniques that were discussed in Section ??.

Cardinality of the Core. Table 9.4 shows the average, minimum, and maxi-

mum cardinality of the core generated at each step when the 6 BoEs are fused using

the DCR to generate the final fused original BoE EΘ[k] in (9.1). The approximations

in (9.2) generate either 8 or 30 focal elements at each step.

Variation of Error1. Fig. 9.5 shows the variation of Error1 of the i-th DCR-

fused combination in (9.2). 30 focal elements cases of all methods outperform their



167

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

|F’|

Er
ro

r2

 

 

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

|F’|

Er
ro

r3

 

 
Ns = 1
Ns = 5
Ns = 10
Ns = 25
Ns = 50
Ns = 100
Ns = 1000

Ns = 1
Ns = 5
Ns = 10
Ns = 25
Ns = 50
Ns = 100
Ns = 1000

Figure 9.3: MCCA-generated approximation: Error2 and Error3 Vs. |F′Θ|.

8 focal elements counterparts as expected. It is important to note that the approxi-

mation techniques approximate an increasing number of focal elements. MCCA−30

and D1 − 30 are superior to other methods. Error in BA method tends to decrease

over the others. However, the use of BA approximation is very limited since it de-

stroys the uncertainty associated with focal elements by only estimating masses for

singletons.

Variations of Error2 and Error3. Fig. 9.6 shows the variations of Error2

and Error3 of the i-th DCR-fused combination in (9.2). MCCA-30 is among the

other best alternatives in both measures. In fact, the error is almost zero everywhere,

implying that the the approximated BoE generates the same optimal choice as the

original BoE. It is important to notice that MCCA-8 belongs to the group of 30 focal

element approximations.

Variations of RMS and MAE. The results corresponding to the variations
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Figure 9.4: MCCA-generated approximation: RMS and MAE Vs. |F′Θ|.

of RMS and MAE measures (which provide aggregated overall errors) in Fig. 9.7

demonstrate features that are similar to observations made in Fig. 9.6.

Notice that the variations of the error measures in our experiments for the D1,

SM, are consistent with the results in [100].

9.5 Chapter Summary

When compared to using measures that have been used in the literature, the

proposed approximation technique is comparable to the existing methods in both

qualitative and quantitative aspects. We have shown that the proposed methodology

is robust and less sensitive to approximation parameters and provides accurate pre-

dictions with relatively smaller number of sampling iterations. However, some of the

other approximation methods are simpler and more efficient to implement. Thus, one
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Fusion Step 1 2 3 4 5

Average 63.9 433.2 1020.8 1027.3 782.9

Minimum 62 325 481 386 264

Maximum 64 494 1752 2329 1972

Table 9.4: Cardinality of the Core of the DCR-Fused BoE EΘ[k]

needs to select an appropriate approximation strategy depending on the application.

The results of the empirical study carried out in the experimental section can be used

to aid this task.

One key feature of the proposed methodology is the flexibility of specifying the

desired core, thus allowing for a more meaningful approximation than merely restrict-

ing to propositions with the highest support. In the case of conditioning, one can

make use of the CCT to specify a more specific (in contrast to less specific) core for

approximation via the MCCA as we have illustrated in an example.
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Figure 9.6: Error2 and Error3 of EΘX [i], i=1, . . . , 5, the i-th DCR-fused BoE.
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Chapter 10
Future Research Directions

T
he work presented in this dissertation provides a rather comprehensive theo-

retical analysis of several core fusion problems. The analytical tools that we

have provided—the CFE and its variants, the CCT and associated computational

methods, the consensus protocol and their convergence analysis, and the approxima-

tions techniques—set a solid foundation for further development of tools that cater to

other real-life soft/hard fusion application scenarios. In this chapter, we provide some

thought and guidelines that maybe used in order to extend this work or to generate

new research based on the provided analytical tools.

10.1 Distributed Fusion

The idea behind this approach is to develop a computationally efficient “joint”

representation of the DST data model involving multiple sources. If the sources can

be localized based on some “independence” notions, then the computations can be

localized and the overall computational costs can be significantly reduced. Let us

proceed as follows.

174
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10.1.1 Problem Formulation

Let X = [X1, X2, ..., XN ] be a set of sources where each source Xi is modeled via

FoD Θi={θi,ki}, ki=1, |Θi| and i=1, . . . , N . Let the BoE EΘ={Θ,FΘ,mΘ} denote the

joint BoE where Θ=
∏N

i=1 Θi. Then we model the BoE EΘ as a DST Markov random

field (MRF):

Definition 40 (DS-MRF). A DST Markov random field (DS-MRF) or undirected

DST graphical model is a graphical model where Markovian properties (conditional

independencies) of random variables are described by an undirected graph. The joint

mass function of random variables X=[X1, X2, . . . , XN ] is defined as

m(X) =
1

Z

∏

c∈C

ψc(Xc),

where Z=
∑

x⊆Θ

∏
c∈C ψc(xc) is the partition function and ψc(Xc) is the potential

defined over the clique c ∈ C. The cliques define the factorization of random variables

[X, Y ] according to the conditional dependencies as described by the graph.

10.1.2 Distributed Fusion via DS-MRF

Computations in a MRF can be performed in a clique-wise fashion. For instance,

take N = 5 with |Θi| = 2, for i=1, . . . , 5. Thus, for instance, a belief computation

in the joint space Θ requires 210 = 1024 computations if there is no factorization.

However, if X1, X2, X3 and X4, X5 form two separate cliques, then the total number

of computations reduces to 26 + 24 = 80, providing over 92% computational savings

(in terms of the number of computations).

10.1.3 CCT-based message passing

The computational advantages of probabilistic graphical models (e.g., Bayesian

networks, Conditional Random Fields, etc.) are due to the efficient message-passing
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schemes. The “holy grail” of message passing schemes is precisely the fact that the

conditional probability P (B|A) is proportional to P (A ∩ B) (from Bayes Theorem).

This allows one to compute the joint probabilities and then estimate the condition-

als via normalization. However, this approach fails in the case of DST conditionals,

such as the FH conditional. Hence, conditionals have to be explicitly computed in a

DST message passing scheme. Since, the CCT provides a complete characterization

of the conditional core, one could exploit this to implement efficient message passing

schemes. Further, the graphical approach to conditional mass computation suggests

a recursive implementation of conditionals for composite propositions. For example,

propositions with cardinality one (i.e., |B| = 1) are computed first, then the propo-

sitions with cardinality two, etc. One could also look into incorporating this into the

message passing, so that both the conditional masses and inferences can be computed

at once.

10.2 Implication Rules as Conditionals

Popularity of DS belief theory in soft/hard applications is mainly due to its flex-

ibility in modeling complex data models with ease. Consider a 2−dof (degrees of

freedom) implication rule A =⇒ B : ΘA 7→ ΘB with [α, β]. This cannot be modeled

in probability theory, without making simplifying assumptions. On the other hand,

DS theory does provide strategies to model these implications; however, the exist-

ing models are rather complex and computationally more expensive. In probability

theory, the inappropriateness of using conditional probabilities for modeling implica-

tions is a well studied and discussed topic (see [54] for a detailed discussion on this).

However, in DS theory we can precisely capture the meaning of the 2 − dof rule by

modeling it as,

Bl(B|A) = α; Pl(B|A) = β
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These models can be easily used with the proposed fusion strategy (CFE) with least

computational burden. However, the challenge lies in deriving Bl(�) an Pl(�) on the

joint space (i.e., ΘA × ΘB), where these conditional functions do not possess one

unique mapping. The CCT probably provides the best avenue to pursue towards

deriving models for implication rules based on conditional notions.

10.3 Reliability/Credibility Estimation

10.3.1 Source Reliability Estimation via ACF

Soft sources (e.g., a human witness) are neither capable of providing evidence

in all occasions nor capable of understanding all contexts. Thus, the information

provided by these sources are often sparse and highly context dependent. The idea

behind using ACF is to make use of contextual information and past experience with

soft sources to estimate the reliability of sources for a situation that is currently under

observation. Let us explain this approach via an example.

Incident → Incident #1 Incident #2 Incident #3 · · · Incident #M

Witness ↓
Witness1 0.7 - 0.2 · · · 0.5

Witness2 - 0.9 - · · · -
...

...
...

...
. . .

...

WitnessN - 0.9 - · · · 0.1

Table 10.1: Numerical assessments of truthfulness of evidence

10.3.1.1 Scenario and Problem Formulation

Assume a battlefield scenario, where human witnesses provide evidence regarding

suspicious activities in a neighborhood. Once the activity is fully understood, witness

statements are assessed by analysts (e.g., a warfare experts) in order to numerically
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quantify the truthfulness of the evidence (See Table 10.2.) This determination de-

pends on analyst’s domain expertise, past experience with the witness, context, and

other factors. Further, a context analysis of the incident is also performed (See Ta-

ble 10.2.)

Table 10.2: Context classification of incidents

Context → Explosives Region Clan X · · · ContextM
Incident ↓

Incident #1 1 1 0 · · · 0

Incident #2 0 1 0 · · · 1
...

...
...

...
. . .

...

Incident #N 1 1 0 · · · 0

10.3.2 Source Reliability Assessment

When the reliability of evidence sources need to be assessed for an ongoing sce-

nario, (i) the context variables are computed to categorize the ongoing situation,

(ii) using historical data in collaboration with other witnesses, ACF is used to esti-

mate the measures of truthfulness of new evidence provided by witnesses making, and

finally (iii) the assessments are combined (using an appropriate methodology [104])

in a context-aware setting to estimate the reliability of the source in the context of

the ongoing situation.



Chapter 11
Conclusion

H
ow one may most effectively incorporate soft data into the fusion process has at-

tracted considerable attention in the evidence fusion community. In soft/hard

data fusion, the very nature of the soft data introduces several challenges that have

been identified as C1-C5 in Chapter 1. We have proposed an analytical framework

addressing these challenges associated with soft/hard fusion.

CFE, the evidence fusion strategy proposed in Chapter 5, possesses several in-

tuitively appealing features which seem to indicate its suitability for soft/hard data

fusion. CFE addresses the challenges C1 − C4 via the use of the DST conditional

approach. Among the various attractive properties that the use of the conditional

approach contributes, it also possesses the ability to handle non-identical FoDs. Our

use of the ported conditional notations allows one to easily understand and also to

represent fusion operations in both identical and non-identical FoDs via a unified

operator.

Consensus is an important fusion problem, where an agreement among a group of

agents is sought via repeated exchange of information. This is particularly useful in

soft/hard fusion environments where the opinions (soft data received from agents) can

often be contradictory and inconsistent. The DST consensus protocol is applicable
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to any fusion domain where the data are modeled as DST BoEs. This protocol

generates a rational consensus, which makes intuitive sense and immune to errors, in

the sense that it is capable of “driving” a consensus to an estimate of the GT (Ground

Truth), when such evidence is available. The consensus strategy we have developed

is applicable to a broad class of networks; and the convergence criteria therein can

be easily applied to check for convergence of arbitrary networks.

Data validation is imperative in fusion operations in order to mitigate the risks of

making decisions based on questionable fused outputs. However, reliability or other

information needed to assess the credibility of data provided by soft sources is often

unavailable in many application domains. Based on our notion of rational consensus,

we have proposed a credibility estimation method that can be used to self-validate

evidence in the absence of such data. These credibility estimates can be used in fusion

equations, and can be used for reliability estimation of sources for subsequent fusion

operations.

The core of the analytical framework presented here is based on the FH condi-

tional notions, perhaps the most appropriate DST conditional notion for soft/hard

fusion operations due to its close connection to Bayesian probability theory. The

CCT (Conditional Core Theorem) provides a complete characterization of the FH

conditional notions. We believe this theorem is fundamental in understanding var-

ious fusion strategies based upon FH conditional notions and the FH conditionals

itself. We have also addressed the converse problem via the CCG (conditional core

generator) bounds. These bounds provide a way to bound the sets of conditioning

events that may have caused a belief change, again without any numerical compu-

tations. This result is of significant practical value to an analyst, for instance, in

studying the sensitivity of a knowledge base with respect to updates. In addition to

providing insight into the conditioning operations, one direct contribution of this im-

portant result is that it establishes the theoretical grounds for developing algorithms

for efficient computation of DST conditionals.
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The strength of DST methods are often hampered by high computational require-

ments. Computational complexity of even the basic operations, such as conditioning,

can grow exponentially with respect to the size of the FoD. Computational complexity

of the CCT-based approach for conditional computation does not change as the size

of the FoD is increased. Thus, the CCT-based method scales quite well for large FoDs

unlike the standard method of conditional computation which can become prohibitive

in terms of computational overhead. This is a very significant result, especially in

the case of soft data where one often has to deal with large FoDs possessing only a

smaller number of focal elements. For swift assessment and analysis of information,

the soft/hard fusion framework must be computationally very efficient. The MCMC

sampling based method allows for further improvements by approximating the DST

BoEs by computationally efficient variants. The advantage of the proposed method

is that it allows one to select an appropriate objective function for approximation,

and this function can be chosen to suit the application and decision-making criteria.

The work presented in this dissertation provides a rather comprehensive theoreti-

cal analysis of several core fusion problems. The analytical tools that we have provided

(e.g., the CUE and CFE, the CCT, consensus protocols, their convergence analysis,

the approximation techniques, etc.) set a solid foundation for further development of

tools that cater to other real-life soft/hard fusion application scenarios.



Appendices

182



Appendix A
Proofs

A.1 Chapter 4 Proofs

A notion that captures the “size” of a set is

Definition 41 (Largest Set). Let Ω be any arbitrary set. For an arbitrary ω ∈ Ω

and some property P : Ω 7→ {true, false}, we say that ω∗ is the largest element in

Ω satisfying the property P and denote it as ω∗ = Lgst(ω ∈ Ω | P), if P(ω∗) = true

and P(ω′) = false, ∀ω′ ∈ Ω s.t. ω∗ ⊂ ω′. By convention, we take ω∗ = ∅, if

P(ω) = false, ∀ω ∈ Ω.

A.1.1 A Useful Set Construction

The proof of the CCT requires consideration of several cases. We will make use of

a certain set construction that captures all these cases in one setting, thus enabling us

to provide a general proof. An important result regarding this particular collection of

sets is Corollary 27. To establish Corollary 27, we make use of the following identity

the dual of which can be thought of forming the basis for the popular inclusion-

exclusion principle.
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Claim 26. Consider an arbitrary collection of sets A1, . . . , An, s.t. A =
n⋃
i=1

Ai. Then,

the identity

1∩A =
n∑

k=1

(−1)k−1
∑

I⊆{1,...,n};
|I|=k

1A∪I

holds true for identity functions 1(·), where A∪I =
⋃
i∈I

Ai.

Proof. Easily established via mathematical induction.

Corollary 27. For a given set B ⊆ Θ, consider any arbitrary collection of sets {Bk}

s.t. Bk ⊂ B, k = 1, N , and
⋃k
j=1B \Bj ⊂ Bk+1 ⊂ B, k = 1, N − 1. Then

BlΘ(B) = (3− 2N) · BlΘ(B
(N)
∩ ) +

(N,J )∑
(−1)|J |−1 ·BlΘ(B

(N)
∩ ∪B

(J )
B )

+
∑

∅6=Yk⊆B\Bk;
k∈{1,...,N}



mΘ(Y

(N)
∪ ) +

∑

∅6=X⊆B(N)
∩

mΘ(X ∪Y
(N)
∪ )



 ,

(A.1)

where we use the notation

B
(N)
∩ =

N⋂

i=1

Bi; Y
(N)
∪ =

N⋃

j=1

Yj; B
(J )
B =

⋃

j∈J

B \Bj;

(N,J )∑
=

N−1∑

n=1

n∑

`=1

∑

I⊂{1,...,N};
|I|=n

∑

J⊆I;
|J |=`

,

and BlΘ(·) : 2Θ 7→ [0, 1] is a valid belief function on Θ.

Proof. By construction, we have

B = B
(N)
∩ ∪B

(1,N)
B ; B

(N)
∩ ∩B

(1,N)
B = ∅.

Thus, we can expand BlΘ(B) as

BlΘ(B) = BlΘ

[
B

(N)
∩ ∪B

(1,N)
B

]
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= BlΘ(B
(N)
∩ ) + BlΘ(B

(1,N)
B ) +

∑

∅6=X⊆B(N)
∩ ;

∅6=Y⊆B(1,N)
B

mΘ(X ∪ Y ). (A.2)

Since (B \Bi) ∩ (B \Bj) = ∅, ∀ i 6= j, we can expand the second belief term as

B
(1,N)
B =

∑

∅6=Y⊆B(1,N)
B

mΘ(Y ) +mΘ(∅)

=
N−1∑

n=1

∑

I⊂{1,...,N};
|I|=n

∑

∅6=Yk⊆B\Bk;
k∈I

mΘ

(⋃

i∈I

Yi

)
+

∑

∅6=Yk⊆B\Bk;
k∈{1,...,N}

mΘ(Y
(N)
∪ ).

Now, use Claim 26 on
⋃
i∈I

Yi, Yk ⊆ B \Bk, k ∈ I, ∀I ⊂ {1, . . . , N}, to get

B
(1,N)
B =

N−1∑

n=1

∑

I⊂{1...N};
|I|=n

n∑

l=1

(−1)l−1
∑

J⊆I;
|J |=l

∑

∅6=Y⊆
⋃
j∈J

B\Bj

mΘ(Y ) +
∑

∅6=Yk⊆B\Bk;
k∈{1...N}

mΘ(Y
(N)
∪ )

=

(N,J )∑
(−1)|J |−1

∑

∅6=Y⊆B(J )
B

mΘ(Y ) +
∑

∅6=Yk⊆B\Bk;
k∈{1...N}

mΘ(Y
(N)
∪ ). (A.3)

Similarly, expand the second summation in (A.2) and substitute back into (A.2)

with (A.3) to get

BlΘ(B)

= BlΘ(B
(N)
∩ ) +

(N,J )∑
(−1)|J |−1 ·

[ ∑

∅6=Y⊆B(J )
B

mΘ(Y ) +
∑

∅6=X⊆B(N)
∩ ;

∅6=Y⊆B(J )
B

mΘ(X ∪ Y )

]

+
∑

∅6=Yk⊆B\Bk;
k∈{1,...,N}

mΘ(Y
(N)
∪ ) +

∑

∅6=X⊆B(N);
∅6=Yk⊆B\Bk;
k∈{1,...,N}

mΘ(X ∪Y
(N)
∪ )

= BlΘ(B
(N)
∩ ) +

(N,J )∑
(−1)|J |−1

[
BlΘ(B

(N)
∩ ∪B

(J )
B )− BlΘ(B

(N)
∩ )

]

+
∑

∅6=Yk⊆B\Bk;
k∈{1,...,N}


mΘ(Y

(N)
∪ ) +

∑

∅6=X⊆B(N)
∩

mΘ(X ∪Y
(N)
∪ )
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=

[ (N,J )∑
(−1)|J | + 1

]
BlΘ(B

(N)
∩ ) +

(N,J )∑
(−1)|J |−1

[
BlΘ(B

(N)
∩ ∪B

(J )
B )
]

+
∑

∅6=Yk⊆B\Bk;
k∈{1,...,N}

[
mΘ(Y

(N)
∪ ) +

∑

∅6=X⊆B(N)
∩

mΘ(X ∪Y
(N)
∪ )

]
.

The binomial theorem yields

(N,J )∑
(−1)|J | + 1 =

N−1∑

n=1

(
N

n

)
1n ·

n∑

`=1

(
n

`

)
(−1)` + 1

= [2N − 2] · (−1) + 1 = 3− 2N .

Substitute this in the BlΘ(B) expansion above to obtain the required result.

A.1.2 Proof of the CCT

Proof. Given E = {Θ,FΘ,mΘ(�)} and A ∈ F̂Θ, we have to prove the following:

mΘ(B|A) > 0 ⇐⇒ ∃X ∈ in(A), ∃Y ∈ OUT(A) ∪ {∅},

s.t. B = X ∪ Y.

We need to consider three cases.

CASE 1. B 6⊆ A:

In this case, B cannot be expressed as B = X ∪ Y, X ∈ in(A), Y ∈ OUT(A) ∪ {∅}.

Also, BlΘ(B|A) = BlΘ(B ∩ A|A) implies mΘ(B|A) = 0, ∀B * A. Hence, the CCT

holds true in this case.

CASE 2. B ⊆ A and B ∈ FΘ:

Such a B can indeed be expressed as B = X ∪ Y by taking X = B, Y = ∅. Express
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the expression in Claim ?? in masses to get

∑

C⊆B

mΘ(C|A) =
∑

C⊆B

mΘ(C)

PlΘ(A)− S(A;B)
≥
∑

C⊆B

mΘ(C)

PlΘ(A)− S(A;C)
,

because S(A;C) ≤ S(A;B) whenever C ⊆ B. Since this holds true for all B ⊆ Θ,

we have

mΘ(B|A) ≥ mΘ(B)

PlΘ(A)− S(A;B)
> 0,

because mΘ(B) > 0, B ∈ FΘ. Hence, the CCT holds true in this case.

CASE 3. B ⊆ A and B 6∈ FΘ:

With B 6∈ FΘ, we must have Y 6= ∅. Thus, we only have to prove the following:

mΘ(B|A) > 0 ⇐⇒ ∃X ∈ in(A), ∃Y ∈ OUT(A), s.t. B = X ∪ Y.

With no loss of generality, from now on, we can restrict our attention to X ∈

in(A), X ⊆ B, and Y ∈ OUT(A), Y ⊆ B; it is impossible to represent B as X ∪ Y

otherwise. Let us consider the ‘forward’ and ‘reverse’ directions separately.

Case 3.a. ‘Forward’ Direction:

Here, given B /∈ FΘ and B ⊆ A, we need to prove

mΘ(B|A) > 0 =⇒ ∃X ∈ in(A), X ⊆ B, ∃Y ∈ OUT(A), Y ⊆ B, s.t. B = X ∪ Y.

Let us prove the contrapositive. Note that under the condition X ⊆ B and Y ⊆ B,

if B 6= X ∪ Y , we must have (X ∪ Y ) ⊂ B, with X ⊂ B and Y ⊂ B. Thus, the

contrapositive is

(X∪Y ) ⊂ B, ∀X ∈ in(A) s.t. X ⊂ B and ∀Y ∈ OUT(A) s.t. Y ⊂ B =⇒mΘ(B|A) = 0.

(A.4)
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We proceed as follows. Pick B̂ = X̂ ∪ Ŷ , where

X̂ =
⋃

X∈in(A);
X⊂B

X; Ŷ = Lgst {Y ∈ OUT(A) | Y ⊂ B} .

Notice that S(A;B) = S(A; Ŷ ). Further, B̂ ⊆ B, since X̂ ⊆ B and Ŷ ⊂ B. So, we

have two possibilities to consider: B̂ ⊂ B and B̂ = B.

Case 3.a.i. ‘Forward’ Direction, Part 1. B̂ = (X̂ ∪ Ŷ ) ⊂ B: Here we have

S(A; B̂) = S(A; Ŷ ) = S(A;B) and BlΘ(B) = BlΘ(X̂) = BlΘ(B̂) because B 6∈ FΘ and

X̂ capture all the focal elements in B. So,

BlΘ(B|A) =
BlΘ(B)

PlΘ(A)− S(A;B)

=
BlΘ(B̂)

PlΘ(A)− S(A; B̂)
= BlΘ(B̂|A),

Thus, we must have mΘ(G|A) = 0, ∀B̂ ⊂ G ⊆ B. In particular, mΘ(B|A) = 0.

Hence, the contrapositive given in (A.4) holds true for B̂ ⊂ B.

Case 3.a.ii. ‘Forward’ Direction, Part 2. B̂ = X̂ ∪ Ŷ = B: This case

requires a little more effort to establish. We proceed with the following set construc-

tion.

Let B1 = X1 ∪ Ŷ , where

X1 = Lgst
{
X ∈ IN(A) | X ∪ Ŷ ⊂ B

}
.

We must have X1 6= ∅ because, given that ∃X ∈ in(A), X ⊂ B, s.t. X ∪ Ŷ ⊂ B (and

trivially, in(A) ⊆ IN(A)). So, S(A;B) = S(A;B1) since Ŷ ⊆ B1 ⊂ B. Note that,
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X1 exhausts all the focal elements in B s.t. X1 ∪ Ŷ ⊂ B. Thus, B cannot contain

focal elements that are (i) strict subsets of B \ B1; or (ii) unions of a subset of B1

and a strict subset of B \ B1. So, we must have mΘ(C) = 0, for all C = X ∪ Y s.t.

X ′ ⊂ B \B1 and Y ⊆ B1.

We may now continue to form Bk = Xk ∪ Ŷ , with Xk 6= ∅ for k ≥ 2, where

Xk=Lgst

{
X ∈ IN(A)

∣∣∣∣ B
(1,k−1)
B ⊆ X s.t. X ∪ Ŷ ⊂ B

}
,

and terminate at the smallest N s.t. XN+1 = ∅. Clearly, for this N , we must have

mΘ(C) = 0, ∀C s.t. B
(1,N)
B ⊆ C ⊂ B. (A.5)

Note that, B1 = X1 ∪ Ŷ ⊂ B = X̂ ∪ Ŷ . Hence, ∃X∗ ∈ in(A), X∗ ⊂ B, s.t.

(X1 ∪ X∗) ∪ Ŷ = B; conversely, ∃X∗ ∈ in(A) s.t. B \ B1 ⊆ X∗. So, we must have

X2 6= ∅. Hence, N ≥ 2. Moreover, this procedure is guaranteed to terminate with an

upper bound of N ≤ |B \ Ŷ | (see Appendix A.1.3 for the proof).

By construction, the sets Bk satisfy the following properties:

Ŷ ⊆ Bk ⊂ B, k = 1, N ; (A.6)

S
(
A;
⋂

i∈I

Bi

)
= S(A;B), I ⊆ {1, . . . , N}; (A.7)

B
(1,k)
B ⊂ Bk+1 ⊂ B, k = 1, N − 1; (A.8)

mΘ(C) = 0, ∀C = X ∪ Y s.t.

X ⊆ B
(k)
∩ , Y 6= B

(1,k−1)
B and

∅ 6= Y ⊂ B
(I)
B , I⊂{1, . . . , k} k = 1, N. (A.9)

With this set construction in place, we may now proceed as follows to establish

the required result.
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First notice that, Corollary 27 is applicable to the collection of sets {Bk}Nk=1. For

the expression for BlΘ(B), consider the term corresponding to the last term in (A.1):

∑

∅6=Yk⊆B\Bk;
k∈{1,...,N}

[
mΘ(Y

(N)
∪ ) +

∑

∅6=X⊆B(N)
∩

mΘ(X ∪Y
(N)
∪ )

]

= mΘ(B
(1,N)
B ) +

∑

∅6=X⊆B(N)
∩

mΘ

(
X ∪B

(1,N)
B

)

+
∑

∅6=Yk⊂B\Bk;
k∈{1,...,N}

[
mΘ(Y

(N)
∪ ) +

∑

∅6=X⊆B(N)
∩

mΘ

(
X ∪Y

(N)
∪

)]

=
∑

B
(1,N)
B ⊆C⊂B

mΘ(C) +mΘ(B).

Note that all the terms in the last summation group are zero from property (A.9).

Using property (A.5) from the termination criterion of set generation and the fact

that B /∈ F, we get

∑

∅6=Yk⊆B\Bk;
k∈{1,...,N}

[
mΘ(Y

(N)
∪ ) +

∑

∅6=X⊆B(N)

mΘ(X ∪Y
(N)
∪ )

]
= 0.

So, BlΘ(B) reduces to

BlΘ(B) = (3− 2N) · BlΘ(B
(N)
∩ ) +

(N,J )∑
(−1)|J |−1 · BlΘ(B

(N)
∩ ∪B

(J )
B ). (A.10)

Use this and property (A.7) in Claim ?? to get

BlΘ(B|A) = (3− 2N) · BlΘ(B
(N)
∩ |A) +

(N,J )∑
(−1)|J |−1 · BlΘ(B

(N)
∩ ∪B

(J )
B |A). (A.11)

Next, apply Corollary 27 to the collection {Bk} to obtain

BlΘ(B|A) = (3− 2N) · BlΘ(B
(N)
∩ |A) +

(N,J )∑
(−1)|J |−1 · BlΘ(B

(N)
∩ ∪B

(J )
B |A)
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+
∑

∅6=Yk⊂B\Bk;
k∈{1,...,N}

[
mΘ(Y

(N)
∪ |A) +

∑

∅6=X⊆B(N)
∩

mΘ

(
X ∪Y

(N)
∪ |A

)]
.

(A.12)

Now, equate terms in (A.11) and (A.12) to get

∑

∅6=Yk⊆B\Bk;
k∈{1,...,N}

[
mΘ(Y

(N)
∪ |A) +

∑

∅6=X⊆B(N)
∩

mΘ

(
X ∪Y

(N)
∪ |A

)]
=0.

Since m(·|A) ≥ 0, each individual mass term must equal to zero. In particular,

mΘ

(
B

(N)
∩ ∪B

(1,N)
B

∣∣∣A
)

= mΘ(B|A) = 0.

Thus, the contrapositive in (A.4) holds true for B̂ = B.

Thus the ‘Forward’ direction of Case 3 is established.

Case 3.b. ‘Reverse’ Direction:

Given B /∈ F and B ⊆ A, we now need to prove

∃X ∈ in(A), X ⊆ B and ∃Y ∈ OUT(A), Y ⊆ B s.t. B = X∪Y =⇒ mΘ(B|A) > 0.

Since B /∈ F, we must have B 6= X, ∀X ∈ in(A). Hence, given B = X ∪ Y for some

X ∈ in(A) s.t. X ⊂ B and some Y ∈ OUT(A) s.t. Y ⊆ B, we need to prove that

mΘ(B|A) > 0. Let us proceed as follows.

Let G1 = X1 ∪ Y1, where

X1 = Lgst {X ′ ∈ IN(A) | X ⊆ X ′ ⊂ B} ;

Y1 = Lgst {Y ′ ∈ OUT(A) | Y ⊆ Y ′ s.t. X1 ∪ Y ′ ⊂ B} .
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Clearly, X1 6= ∅ and also G1 ⊂ B. Further, note that S(A;G1) < S(A;B). Let

Ŷ = Lgst {Y ′ ∈ OUT(A) | Y ⊆ Y ′ s.t. X ∪ Y ′ = B} .

Now, S(A;B) = S(A; Ŷ ), since Ŷ exhausts all Y ∈ OUT(A) s.t. Y ⊆ B. Similarly,

S(A;G1) = S(A;Y1). But, X ⊆ X1 and X1 ∪ Y1 ⊂ X ∪ Ŷ . Hence, we must have

Y1 ⊂ Ŷ . Thus, S(A;Y1) < S(A; Ŷ ). Therefore, S(A;G1) < S(A;B).

We may now continue to form Gk = Xk ∪ Yk, with Xk 6= ∅ for k ≥ 2, where

Xk = Lgst

{
X ′ ∈ IN(A)

∣∣∣∣G
(1,k−1)
B ⊆ X ′ s.t. X ′ ⊂ B

}
;

Yk = Lgst

{
Y ′ ∈ OUT(A)

∣∣∣∣∣Xk ∪ Y ′ ⊂ B

}
,

and terminate at the smallest M s.t. XM+1 = ∅. Clearly, for this M , we must have

mΘ(C) = 0, ∀C s.t. G
(1,M)
B ⊆ C ⊂ B. (A.13)

Moreover, this procedure is guaranteed to terminate with an upper bound of M < |B|

(see Appendix A.1.4 for the proof).

Now, consider the sets of the form C = D ∪ E s.t. ∅ 6= D ⊂ G
(I)
B , where D 6=

G
(1,k−1)
B , I ⊂ {1, . . . , k}, E ⊆ G

(k)
∩ , and k = 1,M . By construction of Gk, k = 1,M ,

we have C /∈ F and thus mΘ(C) = 0. Further, C 6= X ′ ∪Y ′, for all X ′ ∈ IN(A), X ′ ⊆

C, and Y ′ ∈ OUT(A), Y ′ ⊆ C. We must therefore have C 6= X ′′ ∪ Y, ∀X ′′ ∈ in(A),

because in(A) ⊆ IN(A). But, we have already proven that mΘ(C|A) = 0 for all such

C.

In summary, the setsGk satisfy the following properties (first three by construction

and the last property as argued above):

Gk ⊂ B, k = 1,M ; (A.14)
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S
(
A; G

(k)
∩

)
< S(A;B), k = 1,M − 1; (A.15)

G
(1,k)
B ⊂ Gk+1 ⊂ B, k = 1,M − 1; (A.16)

mΘ(C) = mΘ(C|A) = 0,

∀C = X ∪ Y s.t. X ⊆ G
(k)
∩ ,

∅ 6= Y ⊂ G
(I)
B , I ⊂ {1, . . . , k}

and Y 6= G
(1,k−1)
B , k = 1,M. (A.17)

With this set construction in place, we may now proceed as follows to establish

the required result.

First notice that Corollary 27 is applicable to the collection of sets {Gk}Mk=1. Sim-

ilar to (A.10), let us use Claim ?? to express BlΘ(B|A) as

BlΘ(B|A) = (3− 2M) · BlΘ(G
(M)
∩ )

PlΘ(A)− S(A;B)
+

(M,J )∑
(−1)|J |−1 · BlΘ(G

(M)
∩ ∪G

(J )
B )

PlΘ(A)− S(A;B)
.

In arriving at this expression, we have used the property (A.17) and the termina-

tion condition (A.13). Now, using the property (A.15), one can clearly see that the

following inequality holds:

(3− 2M) · BlΘ(G
(M)
∩ )

PlΘ(A)− S(A;B)

+

(M,J )∑
(−1)|J |−1 · BlΘ(G

(M)
∩ ∪G

(J )
B |A)

PlΘ(A)− S(A;B)

> (3− 2M) · BlΘ(G
(M)
∩ )

PlΘ(A)− S(A; G
(M)
∩ )

+

(M,J )∑
(−1)|J |−1 · BlΘ(G

(M)
∩ ∪G

(J )
B )

PlΘ(A)− S(A; G
(M)
∩ ∪G

(J )
B )

.

So, we get

BlΘ(B|A) > (3− 2M) · BlΘ(G
(M)
∩ |A) +

(M,J )∑
(−1)|J |−1 · BlΘ(G

(M)
∩ ∪G

(J )
B |A). (A.18)
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Similarly, we get

BlΘ(B|A)

= (3− 2M) · BlΘ(G
(M)
∩ |A) +

(M,J )∑
(−1)|J |−1 · BlΘ(G

(M)
∩ ∪G

(J )
B |A)

+
∑

∅6=Yk⊆B\Bk;
k∈{1,...,N}

[
mΘ(Y

(N)
∪ |A) +

∑

∅6=X⊆B(N)
∩

mΘ(X ∪Y
(N)
∪ |A)

]

= (3− 2M) · BlΘ(G
(M)
∩ |A) +

(M,J )∑
(−1)|J |−1 · BlΘ(G

(M)
∩ ∪G

(J )
B |A) +mΘ(B|A),

(A.19)

where all the other terms in the last two summation groups vanish according to

property (A.17).

Now, combine (A.19) and (A.18) to conclude that m(B|A) > 0.

Thus the ‘Reverse’ direction of Case 3 is established.

This completes the proof of the CCT.

A.1.3 Proof of Upper Bound for N

Proof. By construction of Bi, i = 1, N , we have

B
(N)
∩ ⊇ Ŷ ; (B \Bi) ∩ (B \Bj) = ∅, ∀ i 6= j.

Now,
∣∣∣B(1,N)

B

∣∣∣ =
∣∣∣B \B

(N)
∩

∣∣∣ ≤
∣∣∣B \ Ŷ

∣∣∣ .

By construction, we also have

∣∣∣B(N)
B

∣∣∣ =
N∑

i=1

|B \Bi| ≥ N,

because |B \Bi| ≥ 1, when Bi ⊂ B, ∀ i = 1, N . Therefore, we have N ≤ |B \ Ŷ |.
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A.1.4 Proof of Upper Bound for M

Proof. By construction of Gi, i = 1,M , we have

(B \Gi) ∩ (B \Gj) = ∅, ∀ i 6= j,

and
∣∣∣G(M)

B

∣∣∣ =
M∑

i=1

|B \Gi| ≥M,

because |B \ Gi| ≥ 1, when Gi ⊂ B, ∀ i = 1,M . Trivially,
∣∣∣G(M)

B

∣∣∣ < |B|, so that we

have M < |B|.
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A.2 Chapter 5 Proofs

A.2.1 Proof of Claim 6

Proof. Pick any A ∈ F̂2 s.t. Pl2(Θ1|A) > 0 (otherwise, Bl(Θ2)

Θ1
(·|A) does not exist).

Clearly, Bl(Θ2)

Θ1
(∅|A) = 0 and Bl(Θ2)

Θ1
(Θ1|A) = 1 by direct substitution. We also need to

prove the following: for every positive integer n and every collection B1, . . . , Bn s.t.

Bi ⊆ Θ1, i = 1, n

Bl(Θ2)

Θ1

( n⋃

i=1

Bi

∣∣∣∣A
)
≥

∑

I⊆{1,...,n};
I 6=∅

(−1)|I|+1 Bl(Θ2)

Θ1

(⋂

i∈I

Bi

∣∣∣∣A
)
. (A.20)

To show this, notice that, for any arbitrary set B, we have BlΘ2(B|A) = BlΘ2(B ∩

Θ2|A). Hence, without loss of generality, we can assume that Bi ⊆ Θ1 ∩Θ2, i = 1, n.

Since BlΘ2(·|A) is a valid belief function on Θ2, we must have

BlΘ2

( n⋃

i=1

Bi

∣∣∣∣A
)
≥

∑

I⊆{1,...,n};
I 6=∅

(−1)|I|+1 BlΘ2

(⋂

i∈I

Bi

∣∣∣∣A
)

(A.21)

Then the following two properties directly follow from the fact that Bi ∩ Θ2\1 =

∅, ∀i ∈ {1, . . . n}:

D∪ni=1Bi
=

n⋃

i=1

DBi ; D∩ni=1Bi
=

n⋂

i=1

DBi . (A.22)

Thus,

BlΘ2

(
D∪ni=1Bi

∣∣∣∣A
)

= BlΘ2

( n⋃

i=1

DBi

∣∣∣∣A
)

≥
∑

I⊆{1,...,n};
I 6=∅

(−1)|I|+1 BlΘ2

(⋂

i∈I

DBi

∣∣∣∣A
)

=
∑

I⊆{1,...n};
I 6=∅

(−1)|I|+1 BlΘ2

(
D∩i∈IBi

∣∣∣∣A
)

(A.23)
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Since
∑

∅6=I⊆{1,...n}

(−1)|I|+1 = 1, we also have

BlΘ2(Θ2\1|A) =
∑

I⊆{1,...n};
I 6=∅

(−1)|I|+1 BlΘ2(Θ2\1|A). (A.24)

The claim follows by direct substitution of (A.21), (A.23) and (A.24) into (5.1) in the

definition of Bl(Θ2)

Θ1
(·|A).

A.2.2 Proof of Claim 8

Proof. Clearly, m(Θ2)

Θ1
(∅|A) = Bl(Θ2)

Θ1
(∅|A) = 0. Now, let ∅ 6= B ⊆ Θ1 be arbitrary.

Expressing the belief terms in (5.1) in terms of masses and cross multiplying by

K2(Θ1|A), we get

K2(Θ1|A) �
∑

C⊆B

m(Θ2)

Θ1
(C|A)

=
∑

C⊆B

mΘ2(C|A) +
∑

C⊆B;
D⊆Θ2\1

mΘ2(C ∪D|A)−
∑

D⊆Θ2\1

mΘ2(D|A)

=
∑

C⊆B

mΘ2(C|A) +
∑

∅6=C⊆B;
D⊆Θ2\1

mΘ2(C∪D|A)

=
∑

∅6=C⊆B


mΘ2(C|A) +

∑

D⊆Θ2\1

mΘ2(C∪D|A),


 . (A.25)

Since mΘ2(G|A) = 0 for all G * A (see [82] for details) and m(Θ2)

Θ1
(∅|A) = 0, we get

∑

∅6=C⊆B

{
m(Θ2)

Θ1
(C|A)− 1

K2(Θ1|A)

[
mΘ2(C|A)

+
∑

D⊆A\Θ1

mΘ2(C∪D|A)

]}
= 0. (A.26)

The claim then follows because ∅ 6= B ⊆ Θ1 is arbitrary.
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A.3 Chapter 6 Proofs

A.3.1 Proof of Claim 16

Proof. We need to show that FC
i : E n

Θ 7→ EΘ as given in Definition 34 has infinitely

many fixed points and the core of a fixed point EΘ ∈ fix(FC
i) is s.t. for all B ∈ FΘ,

@C ∈ FΘ s.t. B ⊂ C or B ⊃ C. Let us proceed as follows.

Part 1: Here, we show that FC
i has infinitely many fixed points, viz., we need

to show that there are infinite number of EΘ ∈ EΘ s.t EΘ = FC
i
(
EΘ, . . . , EΘ). Let us

proceed as follows.

Construct a BoE EΘ = {Θ,FΘ,mΘ(�)} as follows. Pick FΘ s.t. for all B ∈ FΘ,

@C ∈ FΘ satisfying B ⊂ C or C ⊂ B for B,C ⊆ Θ. Such a set exists, since

FΘ = {B,Θ\B}, for any arbitrary ∅ 6= B ⊂ Θ satisfies this condition. Now, pick any

arbitrary mass assignment mΘ(�) s.t.
∑

A∈FΘ

mΘ(A) = 1. Therefore, EΘ ∈ EΘ. Now,

we show that EΘ ∈ fix(FC
i).

By construction of FΘ, according to CCT (Theorem 4) we have

m(B|C) = 0, for all B,C ∈ FΘ s.t. B 6= C. (A.27)

Now, let E ′Θ = FC
i(EΘ, . . . , EΘ), where E ′Θ = {Θ,F′Θ,m′Θ(�)}. So, the mass function

for any B ∈ FΘ gives

m′Θ(B) = CimΘ(B) +
n∑

j=1;
j 6=i

∑

A∈FΘ

CjmΘ(A)mΘ(B|A)

= CimΘ(B) +
n∑

j=1;
j 6=i

CjmΘ(B)mΘ(B|B), from (A.27)

= mΘ(B)
(
Ci +

n∑

j=1;
j 6=i

Cj

)
from (4.2) (CCT)
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= mΘ(B) from (6.14),

where the last line follows from the fact that αi +
∑∑

βij = 1 in (6.14). Therefore,

we have m′Θ(B) = mΘ(B) for all B ∈ FΘ. Hence, we get F′Θ = FΘ and also m′Θ(�) =

m′Θ. Therefore E ′Θ = EΘ, and hence EΘ ∈ fix(FC
i). However, by construction, FΘ

is arbitrary and there are infinite number of mΘ(�), thus there are infinitely many

EΘ ∈ EΘ satisfying above. Hence, FC
i has infinitely many fixed points.

Part 2: Let EΘ ∈ fix(FC
i). Now, we need to show that, for all B ∈ FΘ, @C ∈ FΘ

s.t. B ⊂ C or B ⊃ C. Let us proceed as follows.

Consider the mass function of FC
i for any arbitrary B ∈ FΘ. Since, EΘ ∈ fix(FC

i),

we have

mΘ(B) = CimΘ(B) +
n∑

j=1;
j 6=i

∑

A∈FΘ

CjmΘ(A)mΘ(B|A)

= CimΘ(B) +
n∑

j=1;
j 6=i

Cj

( ∑

A∈FΘ

mΘ(B)mΘ(B|A)

)

= CimΘ(B) + (1− Ci)mΘ(B)
∑

A∈FΘ

mΘ(B|A), from (6.14)

=⇒ mΘ(B) = mΘ(B)
∑

A∈FΘ

mΘ(B|A), since Ci 6= 1.

Since, B ∈ FΘ (viz., mΘ(B) > 0), we have
∑

A∈FΘ
mΘ(B|A) = 1, for all B ∈ FΘ.

Then, use CCT to obtain the claim.

This completes the proof.

A.3.2 Proof of Claim 17

Proof. Consider n arbitrary BoEs EΘi ∈ EΘ, i = 1, . . . , n and an arbitrary fix point

EΘ ∈ fix(FC
i). So, we need to prove ‖FC

i
(
EΘ1 , . . . , EΘn

)
− EΘ‖ < max

j
‖EΘj − EΘ‖, or
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otherwise EΘj = EΘ, j = 1, . . . , n. Let us proceed as follows.

Let Bj ⊆ FΘj s.t. for all B ∈ Bj, @C ∈ FΘj s.t. C ⊂ B. Now, for any B ∈ Bj,

∑

A∈FΘj

mΘj(A)mΘj(B|A) =
∑

A∈FΘj
;

A⊇B

mΘj(A)mΘj(B|A) +
∑

A∈FΘj
;

A⊂B

mΘj(A) mΘj(B|A)︸ ︷︷ ︸
=0 from CCT

= mΘj(B) mΘj(B|B)︸ ︷︷ ︸
=1

+
∑

A∈FΘj
;

A⊃B

mΘj(A)mΘj(B|A)

=⇒
∑

A∈FΘj

mΘj(A)mΘj(B|A) ≥ mΘj(B), (A.28)

Since,
∑

B⊆Θ

∑

A∈FΘj

mΘj(A)mΘj(B|A) = 1, we have

∑

A∈FΘj

mΘj(A)mΘj(B|A) ≤ mΘj(B), for all B /∈ Bj. (A.29)

Now, Consider FΘ. As we have shown earlier, for all B ∈ FΘ, @C ∈ FΘ s.t. B ⊂ C

or B ⊃ C. Therefore, for all B ∈ FΘ, and for any p ∈ <+ s.t. p ≥ 1 we have,

∑

B∈FΘ

∣∣∣∣∣
∑

A∈FΘj

mΘj(A)mΘj(B|A)−mΘ(B)

∣∣∣∣∣

p

<
∑

B∈FΘ

∣∣mΘj(B)−mΘ(B)
∣∣p, (A.30)

from (A.28),
∑

B∈FΘ

mΘ(B) = 1 and the fact that EΘj 6= EΘ.
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Now, for all B /∈ FΘ, we have
∑

B/∈FΘ

mΘ(B) = 0, hence

∑

B/∈FΘ

∣∣∣∣∣
∑

A∈FΘj

mΘj(A)mΘj(B|A)−mΘ(B)

∣∣∣∣∣

p

=
∑

B/∈FΘ

∣∣∣∣∣
∑

A∈FΘj

mΘj(A)mΘj(B|A)

∣∣∣∣∣

p

, since mΘ(B) = 0

≤
∑

B/∈FΘ

∣∣mΘj(B)
∣∣p, from (A.29)

=
∑

B/∈FΘ

∣∣mΘj(B)−mΘ(B)
∣∣p, since mΘ(B) = 0,

=⇒
∑

B/∈FΘ

∣∣∣∣∣
∑

A∈FΘj

mΘj(A)mΘj(B|A)−mΘ(B)

∣∣∣∣∣

p

≤
∑

B/∈FΘ

∣∣mΘj(B)−mΘ(B)
∣∣p. (A.31)

From (A.30) and (A.31), we get

∑

B⊆Θ

∣∣∣∣∣
∑

A∈FΘj

mΘj(A)mΘj(B|A)−mΘ(B)

∣∣∣∣∣

p

<
∑

B/∈FΘ

∣∣mΘj(B)−mΘ(B)
∣∣p. (A.32)

We can now show the contracting property of FC
i as,

‖FC
i
(
EΘ1 , . . . , EΘn

)
− EΘ‖p

=
∑

B⊆Θ

∣∣∣∣∣CimΘi(B) +
n∑

j=1;
j 6=i

∑

A∈FΘj

CjmΘj(A)mΘj(B|A)−mΘ(B)

∣∣∣∣∣

p

≤
∑

B⊆Θ

Ci
∣∣mΘi(B)−mΘ(B)

∣∣p

+
∑

B⊆Θ

(1− Ci)
∣∣∣∣
∑

A∈FΘj

n∑

j=1;
j 6=i

Cj
1− Ci

mΘj(A)mΘj(B|A)−mΘ(B)

∣∣∣∣
p

=
∑

B⊆Θ

Ci
∣∣mΘi(B)−mΘ(B)

∣∣p

+
∑

B⊆Θ

(1− Ci)
∣∣∣∣

n∑

j=1;
j 6=i

Cj
1− Ci

∑

A∈FΘj

mΘj(A)mΘj(B|A)−mΘ(B)

∣∣∣∣
p
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≤
∑

B⊆Θ

Ci
∣∣mΘi(B)−mΘ(B)

∣∣p

+ max
k

∑

B⊆Θ

(1− Ci)
∣∣∣∣

n∑

j=1;
j 6=i

Cj
1− Ci

∑

A∈FΘk

mΘk(A)mΘk(B|A)−mΘ(B)

∣∣∣∣
p

since,
∑

j 6=iCj = 1− Ci, we get

‖FC
i
(
EΘ1 , . . . , EΘn

)
− EΘ‖p

≤
∑

B⊆Θ

Ci
∣∣mΘi(B)−mΘ(B)

∣∣p

+ max
k

∑

B⊆Θ

(1− Ci)
∣∣∣∣
∑

A∈FΘk

mΘk(A)mΘk(B|A)−mΘ(B)

∣∣∣∣
p

using (A.32), we get

‖FC
i
(
EΘ1 , . . . , EΘn

)
− EΘ‖p

<
∑

B⊆Θ

Ci
∣∣mΘi(B)−mΘ(B)

∣∣p + max
k

∑

B⊆Θ

(1− Ci)
∣∣mΘk(B)−mΘ(B)

∣∣p

= max
k

∑

B⊆Θ

{
Ci
∣∣mΘi(B)−mΘ(B)

∣∣p + (1− Ci)
∣∣mΘk(B)−mΘ(B)

∣∣p
}

= max
k

∑

B⊆Θ

∣∣mΘi(B)−mΘ(B)
∣∣p

Therefore,

‖FC
i
(
EΘ1 , . . . , EΘn

)
− EΘ‖ < max

k

[∑

B⊆Θ

∣∣mΘi(B)−mΘ(B)
∣∣p
] 1
p

= max
k

∥∥mΘi(B)−mΘ(B)
∥∥.

This completes the proof.
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A.3.3 Proof of Claim 19

Proof. Here, we need prove that the pool FC = {FC
i | i ∈ I} is paracontractive

on EΘ and contains infinitely many common fixed-points in EΘ. This is very easily

established as follows.

Construct a BoE EΘ with an arbitrary FΘ s.t. for all B ∈ FΘ, @C ∈ FΘ s.t. B ⊂ C

or C ⊂ B. Now, let mΘ(�) be arbitrary mass assignment s.t.
∑

B∈FΘ
mΘ(B) = 1.

Now, as we have already shown, EΘ is a fixed point of FC
i for all i ∈ I, there for it’s

a common fixed-point of FΘ.
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