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Multiple Sclerosis (MS) is an autoimmune disease of central nervous system. It may 

result in a variety of symptoms from blurred vision to severe muscle weakness and 

degradation, depending on the affected regions in brain. To better understand this disease 

and to quantify its evolution, magnetic resonance imaging (MRI) is increasingly used 

nowadays. Manual delineation of MS lesions in MR images by human expert is time-

consuming, subjective, and prone to inter-expert variability. Therefore, automatic 

segmentation is needed as an alternative to manual segmentation. However, the 

progression of the MS lesions shows considerable variability and MS lesions present 

temporal changes in shape, location, and area between patients and even for the same 

patient, which renders the automatic segmentation of MS lesions a challenging problem. 

In this dissertation, a set of segmentation pipelines are proposed for automatic 

segmentation of multiple sclerosis (MS) lesions from brain magnetic resonance imaging 

(MRI) data. These techniques use a trained support vector machine (SVM) to 

discriminate between the blocks in regions of MS lesions and the blocks in non-MS 

lesion regions mainly based on the textural features with aid of the other features. The 

main contribution of this set of frameworks is the use of textural features to detect MS 

lesions in a fully automated approach that does not rely on manually delineating the MS 



lesions. In addition, the technique introduces the concept of the multi-sectional views 

segmentation to produce verified segmentation. The multi-sectional views pipeline is 

customized to provide better segmentation performance and to benefit from the properties 

and the nature of MS lesion in MRI. These customization and enhancement leads to 

development of the customized MV-T-SVM.  

The MRI datasets that were used in the evaluation of the proposed pipelines are 

simulated MRI datasets (3 subjects) generated using the McGill University BrainWeb 

MRI Simulator, real datasets (51 subjects) publicly available at the workshop of MS 

Lesion Segmentation Challenge 2008 and real MRI datasets (10 subjects) for MS subjects 

acquired at the University of Miami. The obtained results indicate that the proposed 

method would be viable for use in clinical practice for the detection of MS lesions in 

MRI. 
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Chapter 1  
Introduction 
 

Multiple sclerosis (MS) is a chronic idiopathic disease that results in multiple areas of 

inflammatory demyelization in the central nervous system (CNS). Progressive MS lesion 

formation often leads to cognitive decline and physical disability. Due to its sensitivity in 

detecting MS lesions, Magnetic Resonance Imaging (MRI) has become an effective tool 

for diagnosing MS and monitoring its progression. Accurate manual assessment of each 

lesion in MR images would be a demanding and laborious task, and would also be 

subjective and have poor reproducibility. Automatic Segmentation offers an attractive 

alternative to manual segmentation which remains a time-consuming task and suffers 

from intra- and inter-expert variability. However, the progression of the MS lesions 

shows considerable variability and MS lesions present temporal changes in shape, 

location, and area between patients and even for the same patient. This makes the 

automatic segmentation of MS lesions a challenging problem. 

The objective of the research work included in this thesis is to provide a robust 

technique for automatic segmentation of multiple sclerosis lesions from brain MR 

images. The study focuses on using textural analysis in the segmentation process. Both 

single channel and multichannel MRIs are included in the research.  

Texture analysis in MRI has been used with some success in neuro-imaging to 

detect lesions and abnormalities. Textural analysis refers to a set of processes applied to 

characterize special variation patterns of voxels grayscale in an image. Segmentation 
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based on texture properties is promising in cases of lesions that are inhomogeneous, not 

sharp, and faint, but show an intensity pattern that is different from the adjacent healthy 

tissue.  

The use of textural features is a promising approach for providing accurate 

segmentation of MS lesions, especially when taking advantage of various MRI sequences 

to benefit from their relevant and complementary information for MS segmentation. 

However, to the best of our knowledge, texture based MS segmentation approaches that 

have been previously reported were applied to ROIs that are manually selected by an 

expert to indicate potential regions including MS lesions, which makes the segmentation 

process semi-automated. Therefore, efforts are needed to automate the use of textural 

features in the detection of MS lesions. 

Support Vector Machines (SVM’s) are supervised machine learning techniques, 

recently developed in the framework of statistical learning theory. They have been used 

with a great success in a variety of applications such as text categorization, face 

recognition, and bioinformatics. The great advantage of the SVM technique over 

conventional techniques, besides the well-established theoretical definition, is its capacity 

of working with high dimensional feature vectors without losing the generalization 

performance.  

Motivated by the ability of textural features to describe the special patterns such 

as the MS lesions and the ability of the support vector machines (SVM) to work with 

high dimensional feature vectors without losing the generalization performance, a 



3 

 

 

technique that combines these two aspects is proposed aiming to get a robust competitive 

MS lesions automatic segmentation clinical tool. 

Most of segmentation techniques in the literature suffer from high false positives 

due to the similarity between MS lesions and the white matter tissue and also due to 

basing the learning on voxels while the lesions form regions. Comprehensive study of 

false positive and negative in MS segmentation is needed to introduce a generic post-

processing method that can be merged with our proposed segmentation technique or any 

other technique to provide more accurate and clinical friendly results. 

Most of segmentation techniques process the MRI axial slices. Thanks to the 3D 

nature of the MRI, data can be studied from three sectional views: axial, sagittal, and 

coronal. Segmentation results obtained from a classifier that is trained with axial slices 

data can be verified, assessed or enhanced by segmentation performed by classifier on the 

other brain sectional views. Multi-views segmentation is a concept in our research plan to 

be incorporated in the proposed technique. 

Utilizing textural features without the need for manual labeling of ROIs, utilizing 

SVM, enabling segmentation using multi-channels MRI data and taking into account the 

different sectional views of the lesion volume are the pillars of the proposed technique. 

In this dissertation, we propose a segmentation framework which is based on an 

SVM fed by feature vector consists mainly of textural features with other groups of 

features. We refer to this core engine by textural based SVM. A comprehensive post 

processing module that addresses all possible segmentation errors is proposed to improve 

the segmentation quality. The progress of development of the segmentation framework 
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through this thesis was initialized by providing a technique for segmentation of FLAIR 

slices in axial view. Improvements were made to this technique to support the multi-

channels MRI. Then the proposed multi-sectional views segmentation concept was used 

to provide a robust technique that provides competitive results. 

The multi-sectional views segmentation framework is customized and a more 

robust framework (Customized MV-T-SVM) is presented to overcome the limitations 

and issues raised while testing. The customized MV-T-SVM uses 3D nature of the MRI 

information, template tissue information provided for images which are registered to an 

anatomical atlas and textural information from the multi-channels images. SVM learning 

procedure is revised to address imbalanced classes and to synchronize the learning of the 

engines of the three views.  

This technique is tested using both simulated and real MRI datasets. The MRI 

datasets that were used in the evaluation of the proposed pipelines are simulated MRI 

datasets (3 subjects) generated using the McGill University BrainWeb MRI Simulator 

[1], real datasets (51 subjects) publicly available at the Workshop of MS Lesion 

Segmentation Challenge 2008 [2] and real MRI datasets (10 subjects) for MS subjects 

acquired at the University of Miami. The obtained results indicate that the proposed 

method would be viable for use in clinical practice for the detection of MS lesions in 

MRI. 
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1.1 Scope and Limitations of the Proposed MS Lesions Segmentation Framework 

The proposed MS lesions segmentation framework deals with T1, T2, PD, and FLAIR 

the MRI channels. The Diffusion Tensor Imaging (DTI) is not included in our research 

work. The proposed technique is designed mainly for MS lesions detection and the 

different tissues of the brain are not segmented. The current state of the patient brain is 

the input dataset for the MS detection technique and there is no follow up for the lesion 

progression over periods of time.  

1.2 Outline of the Dissertation 

The dissertation is organized as follows: 

In Chapter 2, we provide background topics that will be used in the next 

chapters. These background topics include the Multiple Sclerosis (MS) disease, Magnetic 

Resonance Imaging (MRI) sequences, segmentation process, textural feature extraction 

techniques and support vector machines.  

In Chapter 3, we provide a comprehensive survey that covers the state of the art 

techniques that address the automatic segmentation of MS lesions in the MRI. 

In Chapter 4, we present our proposed approach developed that uses the textural 

features with a robust machine learning technique to achieve multiple sclerosis (MS) 

lesions segmentation in the brain MR images. The approach is presented in form of single 

view segmentation pipelines (single channel MRI and multi-channel MRI) and multi-

sectional views pipeline. 
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In Chapter 5, we present the customized MV-T-SVM which is proposed to 

provide optimal segmentation for MS and overcome the limitations and issues raised 

while testing the multi-sectional views’ segmentation pipeline. 

In Chapter 6, we summarize the work presented in this dissertation and we 

provide further insight regarding the areas of potential improvement. 
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Chapter 2   
Background 
 

This chapter provides the research objectives along with background topics including the 

Multiple Sclerosis (MS) disease, Magnetic Resonance Imaging (MRI) sequences, 

segmentation process, common textural feature extraction techniques, and the definition 

of the support vector machines.  

2.1 Multiple Sclerosis (MS) 

Multiple sclerosis (MS) is one of the most common diseases of the central nervous 

system. Today over 2,500,000 people around the world have MS [3]. MS is the result of 

damage to myelin, a protective sheath surrounding nerve fibers of the central nervous 

system. When myelin is damaged, this interferes with messages between the brain and 

other parts of the body. Symptoms vary widely and include blurred vision, weak limbs, 

tingling sensations, unsteadiness and fatigue. For some people, MS is characterized by 

periods of relapse and remission while for others it has a progressive pattern. For 

everyone, it makes life unpredictable.  

The cause of multiple sclerosis is not yet known, but thousands of researchers all 

over the world are meticulously putting the pieces of this complicated puzzle together. 

The damage to myelin in MS may be due to an abnormal response of the body's immune 

system, which normally defends the body against invading organisms (bacteria and 

viruses). Many of the characteristics of MS suggest an 'auto-immune' disease whereby the 
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body attacks its own cells and tissues, which in the case of MS is myelin. Researchers do 

not know what triggers the immune system to attack myelin, but it is thought to be a 

combination of several factors. One theory is that a virus, possibly lying dormant in the 

body, may play a major role in the development of the disease and may disturb the 

immune system or indirectly instigate the auto-immune process. A great deal of research 

has taken place in trying to identify an MS virus. It is probable that there is no one MS 

virus, but that a common virus, such as measles or herpes, may act as a trigger for MS. 

This trigger activates white blood cells (lymphocytes) in the blood stream, which enter 

the brain by making vulnerable the brain's defense mechanisms (i.e. the blood/brain 

barrier). Once inside the brain these cells activate other elements of the immune system 

in such a way that they attack and destroy myelin. Women are more likely to develop 

multiple sclerosis than men, with MS occurring 50% more frequently in women than in 

men (i.e. 3 women for every 2 men). Multiple sclerosis is a disease of young adults; the 

mean age of onset is 29-33 years, but the range of onset is extremely broad from 

approximately 10-59 years. Due to its sensitivity in detecting MS lesions, Magnetic 

Resonance Imaging (MRI) has become an effective tool for diagnosing MS and 

monitoring its progression [4]. In the following section, a brief summary of the MRI is 

presented.  

2.2 Magnetic Resonance Imaging (MRI) 

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to 

visualize detailed internal structures. MRI makes use of the property of nuclear magnetic 

resonance (NMR) to image nuclei of atoms inside the body.  
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An MRI machine uses a powerful magnetic field to align the magnetization of 

protons in the body, and radio frequency fields to systematically alter the alignment of 

this magnetization. This causes the protons to produce a rotating magnetic field of larger 

frequency detectable by the scanner and this information is recorded to construct an 

image of the scanned area of the body [5] Strong magnetic field gradients cause nuclei at 

different locations to rotate at different speeds. 3-D spatial information can be obtained 

by providing gradients in each direction. 

MRI provides good contrast between the different soft tissues of the body, which 

make it especially useful in imaging the brain, muscles, the heart, and cancers compared 

with other medical imaging techniques such as computed tomography (CT) or X-rays. 

Unlike CT scans or traditional X-rays, MRI uses no ionizing radiation. 

An MRI sequence is an ordered combination of radiofrequency (RF) and gradient 

pulses designed to acquire the data to form the image. The data to create an MR image is 

obtained in a series of steps. First the tissue magnetization is excited using an RF pulse in 

the presence of a slice select gradient. The other two essential elements of the sequence 

are phase encoding and frequency encoding (read out), which are required to spatially 

localize the protons in the other two dimensions. Finally, after the data has been 

collected, the process is repeated for a series of phase encoding steps. The MRI sequence 

parameters are chosen to best suit the particular clinical application. 

The gradient echo (GE) sequence is the simplest type of MRI sequence. It consists 

of a series of excitation pulses, each separated by a repetition time TR. Data is acquired at 

some characteristic time after the application of the excitation pulses and this is defined 
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as the echo time TE. The contrast in the image will vary with changes to both TR and TE. 

Advantages of this sequence are fast imaging, low Flip Angle and less RF power where 

the disadvantages are difficulty to generate good T2 contrast, sensitivity to B0 

inhomogeneities and sensitivity to susceptibility effects. 

The spin echo (SE) sequence is similar to the GE sequence with the exception that 

there is an additional 180° refocusing pulse present. 

Inversion recovery (IR) sequence is usually a variant of a SE sequence in that it 

begins with a 180º inverting pulse. This inverts the longitudinal magnetization vector 

through 180º. When the inverting pulse is removed, the magnetization vector begins to 

relax back to B0. A 90º excitation pulse is then applied after a time from the 180º inverting 

pulse known as the TI (time to inversion). The contrast of the resultant image depends 

primarily on the length of the TI as well as the TR and TE. The contrast in the image 

primarily depends on the magnitude of the longitudinal magnetization (as in spin echo) 

following the chosen delay time TI. 

Contrast is based on T1 recovery curves following the 180º inversion pulse. 

Inversion recovery is used to produce heavily T1 weighted images to demonstrate 

anatomy. The 180º inverting pulse can produce a large contrast difference between fat 

and water because full saturation of the fat or water vectors can be achieved by utilizing 

the appropriate TI. 

FLAIR is another variation of the inversion recovery sequence. In FLAIR, the 

signal from fluid (e.g. cerebrospinal fluid (CSF)) is nulled by selecting a TI 

corresponding to the time of recovery of CSF from 180º inversion to the transverse plane. 
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The signal from CSF is nullified and FLAIR is used to suppress the high CSF signal in 

T2 and proton density weighted images so that pathology adjacent to the CSF is seen 

more clearly. A TI of approximately 2000 ms achieves CSF suppression at 3.0T.  

Soft Tissue Contrast in MRI  

Contrast is the means by which it is possible to distinguish among soft tissue types owing 

to differences in observed MRI signal intensities. For example, in musculoskeletal 

imaging, there are differences among cartilage, bone, and synovial fluid. In 

neuroimaging, there are differences between white and grey matter. The fundamental 

parameters that affect tissue contrast are the T1 and T2 values, proton density, tissue 

susceptibility and dynamics. Tissue pathology will also affect contrast, as will the static 

field strength, the type of sequences used, contrast media and the sequence parameters 

(TR, TE, TI, FA, SNR etc…).  

T1 Weighting  

To demonstrate T1, proton density or T2 contrast, specific values of TR and TE are 

selected for a given pulse sequence. The selection of appropriate TR and TE weights an 

image so that one contrast mechanism predominates over the other two. A T1 weighted 

image is one where the contrast depends predominantly on the differences in the T1 times 

between tissues e.g. fat and water. Because the TR controls how far each vector can 

recover before it is excited by the next RF pulse, to achieve T1 weighting the TR must be 

short enough so that neither fat nor water has sufficient time to fully return to B0. If the 

TR is too long, both fat and water return to B0 and recover their longitudinal 
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magnetization fully. When this occurs, T1 relaxation is complete in both tissues and the 

differences in their T1 times are not demonstrated on the image.  

T2 Weighting  

A T2 weighted image is one where the contrast predominantly depends on the differences 

in the T2 times between tissues e.g. fat and water. The TE controls the amount of T2 

decay that is allowed to occur before the signal is received. To achieve T2 weighting, the 

TE must be long enough to give both fat and water time to decay. If the TE is too short, 

neither fat nor water has had time to decay and therefore the differences in their T2 times 

are not demonstrated in the image.  

Proton Density (PD) Weighting  

A proton density image is one where the difference in the numbers of protons per unit 

volume in the patient is the main determining factor in forming image contrast. Proton 

density weighting is always present to some extent. In order to achieve proton density 

weighting, the effects of T1 and T2 contrast must be diminished, so that proton density 

weighting can dominate. A long TR allows tissues e.g. fat and water to fully recover their 

longitudinal magnetization and therefore diminishes T1 weighting. A short TE does not 

give fat or water time to decay and therefore diminishes T2 weighting. Figure  2-1 below 

shows a comparison of T1, T2, and PD weighting. 
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Figure  2-1 : T1, PD and T2 Weighted Axial Brain Images 

In Table  2-1, the TR and TE for T1, T2, and PD weighted sequences are compared.  

 

 

 

Table  2-1 : Summary of T1, T2, and PD Weighting  

 

2.3 MS Segmentation in MRI of the Brain 

Accurate manual assessment of each lesion in MR images would be a demanding and 

laborious task, and would also be subjective and have poor reproducibility [6]. Automatic 

Segmentation offers an attractive alternative to manual segmentation which remains a 

time-consuming task and suffers from intra- and inter-expert variability [7]. However, the 

progression of the MS lesions shows considerable variability and MS lesions present 

temporal changes in shape, location, and area between patients and even for the same 

patient [8], [9], [10], [11]. This makes the automatic segmentation of MS lesions a 

challenging problem. 

 

Weighting TR  TE  
T1 Short  Short  
T2 Long  Long  
PD Long  Short  
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2.4 Texture Extraction Techniques 

Textural features can be categorized according to the matrix or vector used to calculate 

the feature. In this section, we are interested with histogram, gradient, run-length matrix 

and co-occurrence based features. These categories include features that are selected after 

being tested to be identifying for the texture of regions that suffer from the multiple 

sclerosis lesions. For all feature calculations, the image is represented by a function f(x,y) 

of two space variables x and y, x=0,1,…N-1 and y=0,1,…, M-1. The function f(x,y) can 

take any value i=0,1,…,G-1 where G is total number of intensity levels in the image. 

2.4.1 Histogram based Features 

The intensity level histogram is a function h(i) providing, for each intensity level i, the 

number of pixels in the whole image having this intensity. 
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The histogram is a concise and simple summary of the statistical information contained in 

the image. Dividing the histogram h(i) by the total number of pixels in the image 

provides the approximate probability density of the occurrence of the intensity levels p(i), 

given by: 

NMihip /)()( =  (2-2)

The following set of textural features is calculated from the normalized histogram: 
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2.4.2 Gradient based Features 

The gradient matrix element g(x,y) is defined for each pixel in the image based on the 

neighborhood size. For a 3x3 pixels neighborhood, g is defined as follows: 

22),(

)1,()1,(

),1(),1(

yx

y

x

yxg

yxfyxf

yxfyxf

Δ+Δ=

+−−=Δ
+−−=Δ

 
(2-7)

 

The following set of textural features is calculated from the gradient matrix: 

Mean of absolute gradient (GrMean) = 
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Variance of absolute gradient (GrVariance) = 
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Skewness and kurtosis of the absolute gradient can be calculated similar to those 

calculated for histogram. 

2.4.3 Run Length Matrix based Features 

The run length matrix is defined for a specific direction. Usually a matrix is calculated for 

the horizontal, vertical, 45° and 135° directions. The matrix element r(i,j) is defined as the 
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number of times there is a run of length j having gray level i. Let G be the number of gray 

levels and Nr be the number of runs. The following set of textural features is calculated 

from the run length matrix: 

Short run emphasis inverse moments (ShrtREmph) = C
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Long run emphasis moments (LngREmph) = Cjirj
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where the normalization coefficient C is defined as follows:  
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2.4.4 Co-occurrence Matrix based Features 

The co-occurrence matrix is a form of second order histogram that is defined for certain 

angle θ and certain distance d. The matrix element hdθ(i,j) is the number of times f(x1,y1) 

= i and f(x2,y2) = j where (x2,y2)=(x1,y1) + (d cos θ, d sin θ). Usually the co-occurrence 

matrix is calculated for d = 1 and 2 with angles θ = 0°, 45°, 90° and 135°. When the matrix 

element hdθ (i,j) is divided by the total number of neighboring pixels, the matrix becomes 

the estimate of the joint probability codθ (i,j) of two pixels, a distance d apart along a 

given direction θ having co-occurring values i and j. Let µx, µy, σ x and σ y denote the 
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mean and standard deviation of the row and column sums of the matrix co, respectively. 

The following set of textural features is calculated from the co-occurrence matrix: 

Angular second moment (AngScMom) = 2
1

0

1

0

)),((
−

=

−

=

G

i

G

j

jico  (2-15)
 

Contrast = ),()( 2
1

0

1

0

jicoji
G

i

G

j


−

=

−

=

−  (2-16)

Correlation = 
−

=

−

=

−1

0

1

0 x

µxµy ),(G

i

G

j y

jiijco

σσ
  (2-17)

Inverse Difference = 
−

=

−

= −+

1

0

1

0
2)(1

),(G

i

G

j ji

jico
  (2-18)

Entropy = -
−

= =

1

0
2

1

)),((log),(
G

i

N

j

jicojico
r

  
(2-19)

2.5 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised learning algorithm, which has at its core 

a method for creating a predictor function from a set of training data where the function 

itself can be a binary, a multi-category, or even a general regression predictor. To 

accomplish this mathematical feat, SVMs find a hypersurface which attempts to split the 

positive and negative examples with the largest possible margin on all sides of the 

hyperplane. It uses a kernel function to transform data from input space into a high 

dimensional feature space in which it searches for a separating hyperplane. The most 

common types of kernel functions used are: polynomial for polynomial classifiers, 

Gaussian for radial-basis function (RBF) classifiers, and tangent hyperbolic for two-layer 

perceptron classifiers. 
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For binary classification problems, the main idea of the SVM is to find a decision 

boundary between classes in the original feature space by mapping the feature vectors to 

a high dimensional space, where the features are more likely to be linearly separable. The 

optimal separating hyperplane (OSH) is choose in the high-dimensional space as the one 

that maximizes the margin of separability between the two sets of data points. This 

choice counteracts the increasing generalization error when constructing a decision 

boundary in higher-dimensional space. This approach also satisfies the Empirical Risk 

Minimization principle, which seeks to minimize the upper bound on the generalization 

error [12].  

The SVM formulation proposed initially by Vapnik [12] does not include any 

criteria to select the regularization parameter C or a kernel function that gives good 

generalization (or results in a classifier with low expected error bound). In practical 

problems, where the dataset does not present a large number of vectors, the VC-

dimension and the training errors can be used to select the best kernel function. However, 

in problems involving several thousands of examples, such as segmentation of MS-

lesions from magnetic resonance images, this process becomes a very time consuming 

task. 

2.5.1 Kernels: From Linear to Non-Linear Classifiers 

 

The data for a two class learning problem consists of objects labeled with one of two 

labels corresponding to the two classes; for convenience we assume the labels are +1 

(positive examples) or -1 (negative examples). In what follows x denotes a vector with 

components xi. The notation xi will denote the ith
 vector in a dataset {( , )} where yi 
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is the label associated with xi. The objects xi are called patterns or examples. The 

examples are assumed to belong to some set X. Initially, the examples are assumed to be 

vectors, but once kernels are introduced this assumption will be relaxed, at which point 

they could be any continuous/discrete object. A key concept required for defining a linear 

classifier is the dot product between two vectors, defined as = ∑ . A linear 

classifier is based on a linear discriminant function of the form 

( ) = +  (2-20)

The vector w is known as the weight vector and b is called the bias. Consider the case 

b=0 first. The set of points x such that = 0 are all points that are perpendicular to w 

and go through the origin, a line in two dimensions, a plane in three dimensions, and 

more generally, a hyperplane. The bias b translates the hyperplane away from the origin. 

The hyperplane f(x) given by: 

{ : ( ) = + = 0}  (2-21)

divides the space into two: the sign of the discriminant function f(x) denotes the side of 

the hyperplane a point is on as shown in Figure  2-2. 
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Figure  2-2 : A linear SVM. The circled data points are the support vectors - the examples that are closest to the 
decision boundary. They determine the margin with which the two classes are separated. 

 

The boundary between regions classified as positive and negative is called the decision 

boundary of the classifier. The decision boundary defined by a hyperplane is said to be 

linear because it is linear in the input examples (Equation 2-21). A classifier with a linear 

decision boundary is called a linear classifier. Conversely, when the decision boundary of 

a classifier depends on the data in a non-linear way the classifier is said to be non-linear. 

In many applications a non-linear classifier provides better accuracy. And yet, linear 

classifiers have advantages, one of them being that they often have simple training 

algorithms that scale well with the number of examples.  

The naive way of making a non-linear classifier out of a linear classifier is to map our 

data from the input space X to a feature space F using a non-linear function∅: → . In 

the space F the discriminant function is: 
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( ) = ∅( ) +   (2-22)

The approach of explicitly computing non-linear features does not scale well with the 

number of input features: when applying the mapping from the above example the 

dimensionality of the feature space F is quadratic in the dimensionality of the original 

space. These results in a quadratic increase in memory usage for storing the features and 

a quadratic increase in the time required to compute the discriminant function of the 

classifier. This quadratic complexity is feasible for low dimensional data; but when 

handling gene expression data that can have thousands of dimensions, quadratic 

complexity in the number of dimensions is not acceptable. Kernel methods solve this 

issue by avoiding the step of explicitly mapping the data to a high dimensional feature-

space. Suppose the weight vector can be expressed as a linear combination of the training 

examples, i.e. = ∑  . Then: 

( ) = ∑ +   (2-23)

In the feature space, F this expression takes the form: 

( ) = ∑ ∅( ) ∅( ) +   (2-24)

The representation in terms of the variables   is known as the dual representation of the 

decision boundary. As indicated above, the feature space F may be high dimensional, 

making this trick impractical unless the kernel function ( , ) defined as  

( , ) = ∅( ) ∅( ) (2-25)

can be computed efficiently. In terms of the kernel function the discriminant function is: 
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( ) = ∑ ( , ) +   (2-26)

A linear decision boundary can be “kernelized", i.e. its dependence on the data is only 

through dot products. In order for this to be useful, the training algorithms need to be 

kernelizable as well. It turns out that a large number of machine learning algorithms can 

be expressed using kernels including ridge regression, the perceptron algorithm, and 

SVMs. 

2.5.2 Support Vector Machines: Large Margin Classifier 

In what follows the term linearly separable is used to denote data for which there exists a 

linear decision boundary that separates positive from negative examples as shown in 

Figure  2-2. Initially, linearly separable data is assumed, and later how to handle data that 

is not linearly separable is indicated. 

In this section, the notion of a margin is defined. For a given hyperplane we denote by 

x+(x-) the closest point to the hyperpalne among the positive (negative) examples. The 

norm of a vector w denoted by ||w|| is its length. A unit vector  in the direction of w is 

given by w / ||w|| and has = 1 . From simple geometric considerations the margin of 

a hyperplane f with respect to a dataset D can be seen to be: 

( ) = ( − )  (2-27)

where  is a unit vector in the direction of w, and x+ and x- are assumed to be equidistant 

from the decision boundary i.e. 



23 

 

 

( ) = + =  ( ) = + = −  
(2-28)

 

for some constant a > 0. Note that multiplying our data points by a fixed number will 

increase the margin by the same amount, whereas in reality, the margin hasn't really 

changed - we just changed the “units” with which we measure it. To make the geometric 

margin meaningful we fix the value of the decision function at the points closest to the 

hyperplane, and set a = 1 in equation (2-28). Adding the two equations and dividing by 

||w|| we obtain: 

( ) = 12 ( − ) = 1
 (2-29)

 

Now that we have the concept of a margin we can formulate the maximum margin 

classifier. We will first define the hard margin SVM, applicable to a linearly separable 

dataset, and then modify it to handle non-separable data. The maximum margin classifier 

is the discriminant function that maximizes the geometric margin 1/ ||w|| which is 

equivalent to minimizing ||w||2. This leads to the following constrained optimization problem: 

., 12 ‖ ‖  

 : ( + ) ≥ 1 = 1, … . ,  

(2-30)
 

The constraints in this formulation ensure that the maximum margin classifier classifies 

each example correctly, which is possible since we assumed that the data is linearly 

separable. In practice, data is often not linearly separable; and even if it is, a greater 

margin can be achieved by allowing the classifier to misclassify some points. To allow 
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errors, the inequality constraints are replaced in equation (2-30) with ( + ) ≥1 −   = 1, … . , . 

where   ≥ 0  are slack variables that allow an example to be in the margin ( 0 ≤   ≤ 1, also called a margin error) or to be misclassified ( > 1). Since an example 

is misclassified if the value of its slack variable is greater than 1, ∑  is a bound on the 

number of misclassified examples. Our objective of maximizing the margin, i.e. 

minimizing ‖ ‖  will be augmented with a term ∑  to penalize misclassification 

and margin errors. The optimization problem becomes: 

., 12 ‖ ‖ +  

 : ( + ) ≥ 1 − , ≥ 0, = 1, … . ,  

(2-31)
 

The constant C > 0 sets the relative importance of maximizing the margin and 

minimizing the amount of slack. This formulation is called the soft-margin SVM, and 

was introduced by Cortes and Vapnik [12]. In the following, the common basic kernel 

functions: 

Linear kernel:  K x , x = x x  (2-32)

Polynomial:  K x , x = (γx x + r)  (2-33)

Radial basis function (RBF): K x , x = exp −γ x − x ;  γ > 0 (2-34)

Sigmoid function: K x , x = tanh γx x + r  (2-35)

where γ, r and d are kernel parameters.
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Chapter 3  

Automatic Segmentation of Multiple 
Sclerosis Lesions in Brain MR Images 
 

This chapter provides a survey on the area of segmentation of multiple sclerosis in the 

Brain MR images. The segmentation techniques, while their approaches vary widely in 

the literature, their frameworks composed of similar components which are addressed 

differently in each framework.  

The segmentation framework of the multiple sclerosis lesions can be decomposed 

into set of components as listed in table 1.  Each component is labeled (with labels C#) to 

help place certain topics in the context of a segmentation framework and to refer easily. 

MR images are available in different sequences including T1, T2, PD, and FLAIR...etc. 

One or combination of MRI sequences is selected by any of the segmentation technique 

to be an input. MRI Sequence selection (C1) is the entry component. Preprocessing (C2) is 

usually applied on the MR images either to enhance the quality of the images or to 

provide features to be used in the segmentation processing. In Feature Extraction (C3), 

each technique extracts image features from the feature space to represent the voxels of 

the image. Pattern recognition algorithm (C4) is the core of the segmentation processing. 

Post-Processing steps (C5) usually are applied on the results to improve the performance 

of the segmentation. Performance Evaluation (C6) is performed to evaluate the accuracy 

of each of segmentation techniques using different metrics. The segmentation framework 

(C7) is the main component that specifies the design of the segmentation process, breaks 
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down the process into smaller components, manages the flow of their outputs and 

integrates them to get segmentation results. 

Label Component Description 
C1 MRI Sequence Selection Choice of MRI modality of the subject brain: 

Either Single Channel or Multi-Channels and Selection of 
which channels to use. 

C2 Pre-Processing  Image Processing Steps applied on the subject MRI to 
enhance the image quality, remove the effect of MRI 
acquisition noise and aid in feature extraction. 

C3 Feature Extraction Image Features are extracted to represent the Image Voxels. 
C4 Pattern Recognition 

Algorithm 
Classification of the Voxels into Healthy or MS Lesions 
Voxels. 

C5 Post-Processing Image Processing and additional Pattern Recognition Steps 
applied on the segmentation result to Improve the 
performance. 

C6 Performance Evaluation Metrics used to evaluate performance of the segmentation. 
C7 Segmentation Pipeline Integrating the components of the segmentation framework to 

achieve the segmentation task. 

Table 1 – Components of Multiple Sclerosis Lesions Segmentation Framework 

In the following sections, a categorization for the segmentation frameworks is 

presented followed by discussion for each of the frameworks’ components with the 

related work in literature is reviewed. 

3.1 Segmentation Framework 

The segmentation framework refers to the concept behind the approach used to perform 

the MS segmentation. According to the segmentation framework, the problem is defined 

and the needed components (C1 to C6) are implemented. These components are integrated 

in a pipeline (C7) that would be the software design of the segmentation framework. The 

segmentation frameworks in literature can be categorized into two main categories. In the 

first category, the problem is defined as pattern classification problem. The second 

category, the problem is modeled by imitating the expert knowledge in labeling the MS 
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lesion either implicitly or explicitly.  Such a categorization is not always straightforward 

since some techniques resort to more than one strategy to achieve segmentation and thus 

cannot be sharply categorized. 

3.1.1 Pattern Classification based Framework 

It is also referred to by feature space clustering. In this framework, the MS lesions 

segmentation problem is defined as a classification problem. A pattern classification 

technique from literature is selected or modified. Some frameworks propose a novel one. 

The pattern classification technique is used to learn the features of the MS lesion voxels 

and normal voxels in binary classifications or to learn the different brain tissues and 

including the MS lesion as a tissue in multi-classes classifications.  

The work proposed by Geremia et al. [13] and Akselrod-Ballin et al. [14], the 

decision forests are used to perform the classification. In [15], [16], and [17], a model is 

proposed and upgraded sequentially that involves using spectral gradient and graph cuts 

in binary classification of the brain voxels into MS lesion or background normal brain 

tissues. Expectation maximization (EM) is used by [18] and [19]. K-Nearest Neighbors 

(KNN) is used by Anbeek et al. [20], Wu et al. [21] and Cardenes et al. [22]. Support 

Vector Machines (SVM) is used by Ferrari et al. [23]. Principle component analysis 

(PCA) is used by Kroon et al. [24].  

Model outlier detection can be included in this category of segmentation 

framework where the brain tissues are modeled and the MS lesions are detected as 

outliers to the model. It is used by Leemput et al. [25] and [26]. In [27] and [28], Brqiue 
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et al. uses Hidden Markov Chains (HMC) to perform tissues classification and detect the 

MS lesions as outlier outliers to the model. 

In spite of providing segmentation with acceptable performance, these 

frameworks lack tackling and understanding the MS lesion as an object. 

3.1.2 Contextual model based Framework 

This framework includes the techniques that model the expert knowledge in MS 

delineation and tries to get maximum benefit from the MS lesion context information. In 

this framework, the MS lesions segmentation problem is modeled based on object and 

scene understanding. In object and scene understanding, it has been increasingly realized 

that context information plays a vital role [29]. Medical images contain complex patterns 

including features such as textures (homogeneous, inhomogeneous, and structured) which 

are also influenced by acquisition protocols. The concept of context covers intra-object 

consistency (different parts of the same structure) and inter-object configurations (e.g., 

expected symmetry of left and right hemisphere structures).  

In [30], Moora et al. integrated appearance and context information in a seamless 

way by automatically incorporating a large number of features through iterative 

procedures. 

Scully et al. [31] constructed an explicit model of the feature vector intensities 

that identify lesion tissue. This model is the joint histogram calculated over the vector 

image constructed by co-registered T1, T2, and FLAIR slices, then creating an image 

where each voxel contains a vector representing the T1 intensity, the T2 intensity, the 

FLAIR intensity, and the tissue class for that voxel’s location. The joint histogram then 
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represents the number of times a given feature vector was labeled lesion, along with the 

number of times that vector was not labeled lesion and the 4D joint histogram was 

calculated. An initial predicted lesion label map was constructed for each test subject by 

setting the voxel value equal to the frequency of that voxel location’s feature vector in the 

4D joint histogram model. These values were then thresholded in order to reduce the 

amount of false positives while keeping the number of false negatives low. The threshold 

value was selected empirically and could likely be improved through the application of a 

more rigorous experimental process. In order to obtain rough tissue segmentation, 

KMeans, with initial class means, was performed on the T1image for each subject. This 

label map was combined with the thresholded lesion mask to create a label map with 

different integer values for Grey, White, CSF, and Lesion tissue. The generated label map 

was then filtered so that lesion tissue that was within 2 voxels of CSF tissue was 

discarded. The label map was then used to pull 200 exemplar points to train a naive 

Bayesian classifier which then proceeded to classify the vector image composed of the 

T1, T2, and FLAIR images. Each independent connected component in the lesion map 

produced by the Bayesian classifier was then filtered based on a minimum lesion size 

provided by a local MS expert. Each lesion component had to have a least one dimension 

with three voxels with the other two dimensions being at least two voxels. While lesions 

may occur below this size they are generally not labeled by human experts due to high 

error rates. 

Zhuge et al. [32] utilized absolute fuzzy connectedness and certain morphological 

operations to generate the brain intracranial mask. The optimum thresholding method was 

applied to the product image (the image in which voxel values represent T2 value×PD 



30 

 

 

value) to automatically recognize potential MS lesion sites. Then, the recently developed 

technique, vectorial scale-based relative fuzzy connectedness, was utilized to segment all 

voxels within the brain intracranial mask into WM, GM, CSF, and MS lesion regions. 

Zhu et al. [33] applied knowledge guided information fusion. In this work, T1, T2, 

and PD images of, providing information on the properties of tissues from different 

aspects, were treated as three independent information sources for the detection and 

segmentation of MS lesions. Based on information fusion theory, a knowledge guided 

information fusion framework is proposed to accomplish 3-D segmentation of MS lesions. 

This framework consists of three parts: information extraction, information fusion, and 

decision. Information provided by different spectral images was extracted and modeled 

separately in each spectrum using fuzzy sets, aiming at managing the uncertainty and 

ambiguity in the images due to noise and partial volume effect. In the second part, the 

possible fuzzy map of MS lesions in each spectral image was constructed from the 

extracted information under the guidance of experts’ knowledge, and then the final fuzzy 

map of MS lesions was constructed through the fusion of the fuzzy maps obtained from 

different spectrum. Finally, 3-D segmentation of MS lesions was derived from the final 

fuzzy map.  

Ghazel et al. [34] proposed a semi-automated MS lesion detection and 

segmentation method based on optimal filter design for maximal feature selection and 

separation utilizing expert knowledge. The method is based on designing an optimized 

filter that aims for separating the texture features and energies of the two main classes 

assumed to be within the prescribed region of interests (ROI’s), namely the MS lesions 

and the normal white matter. This has resulted in a system output where the MS lesions 
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have been transformed to brighter areas with increased intensity, while the background 

(healthy white matter tissues) has been transformed to a darker area. Consequently, the 

MS lesions and the healthy tissues become more distinguishable at the output of the 

system than they were originally. They may even be separated from one another by 

applying a thresholding operation.  

Yamamoto et al. [6] proposed a false positive reduction scheme, which consisted 

of a rule-based method, a level set method, and a support vector machine. Identification 

of initial MS candidate regions is done by using an automated thresholding technique 

based on a linear discriminate analysis on the pixel-value histogram in the T1-weighted 

image. Next, a brain region was extracted by thresholding the pixel value for removing 

fat regions with high pixel values around the brain. In addition, a morphological opening 

operation with a circular structuring element of one pixel radius was also applied after 

thresholding. MS lesions were enhanced by subtraction of a background image 

approximated by the first order polynomial in a brain region from the FLAIR image. 

Then, an unsharp masking filter was applied to the subtraction image for enhancement of 

boundaries of MS lesions. The MS lesions were well enhanced in the subtraction image 

compared with the original FLAIR image. The initial candidates were identified by using 

a multiple-gray level thresholding technique on the subtraction image. MS initial 

candidate points were picked up according to the following three criteria: (1) Longest and 

shortest Euclidean distances between the centroids of a brain and each candidate region, 

because MS lesions would be developed within a certain distance from the centroid of the 

brain, (2) Minimum pixel value of MS candidates, because MS lesions have relatively 

higher pixel values compared with normal tissues in a brain parenchyma in the 
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subtraction image and (3) Minimum distance between candidate points so that one point 

with a higher pixel value can be selected as a final candidate point. MS candidate regions 

were segmented by using a region growing technique. Image features of MS candidate 

regions are determined. Next, false positive outliers were reduced using a rule-based 

method. In the rules of the contrast and the maximum pixel value, false positive outliers 

were removed by the minimum and maximum threshold of the feature values of all true 

positive regions. However, a different rule was employed for the distance feature value. 

Further reduction of false positives and determination of MS candidate regions is done 

based on a level set method. Finally, classification of MS candidate regions is done using 

a support vector machine (SVM). All candidate regions were classified into true positive 

and false positive candidate regions by using the SVM. 

Freifeld et al. [35] proposed a probabilistic model termed Constrained Gaussian 

Mixture Model (CGMM) to capture the complex tissue spatial layout based on a mixture 

of multiple spatially oriented Gaussians per tissue. The intensity of a tissue is considered 

a global parameter and is constrained, by a parameter-tying scheme, to be the same value 

for the entire set of Gaussians that are related to the same tissue. MS lesions are identified 

as outlier Gaussian components and are grouped to form a new class in addition to the 

healthy tissue classes. A probability-based curve evolution technique is used to refine the 

delineation of lesion boundaries.  

This category of segmentation frameworks is promising but lacks the 

incorporation of enough knowledge about the MS lesions to create robust model. More 

efforts are still needed to present mature techniques.  
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3.2 MRI Sequence Selection 

In the acquisition of the MR images for the patient, many MRI sequences can be 

generated. Each of the MRI sequence provides information about the MS lesion at 

specific stage. Acute or enhanced lesions can be visualized on Gad-E-T1-w images, 

chronic lesions in T1-w images, and other lesions specified on FLAIR and T2-w images 

[36], [21]. Because of more inflammation, edema, and little demyelination, acute plaques 

appear with less signal changes in T1-w images. Consequently, these plaques, in T1-w 

images, compared with white matter, will be signal isointense or hypointense (less 

darkness). In addition, their borders are vague and cannot be marginated well. With 

progress in demyelination process and also chronicity of the disease, the plaques 

gradually become darker in T1-w images. More demyelination and gliosis (replacement 

of fibrous tissue instead of myelin and neuron) lead to sharpness of the lesions borders. 

This process results in the formation of some chronic plaques known as black holes. 

These plaques will appear as hyperintense areas in T2-w images and their signal intensity 

will not change in enhanced T1-w images [37].  

According to the channels used, the techniques can be classified into single 

channel and multi-channels MS lesion segmentation techniques. 

3.2.1 Single Channel  

FLAIR image contains the most distinctive information for segmentation of white matter 

lesions. Since MS lesion tissue has comparable characteristics as white matter lesion, 

with respect to location and signal intensity, wide category of techniques chose to use 

only the FLAIR image in the MS segmentation process. 
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According to [20], Anbeek et al. use only the FLAIR image. The addition of other 

image types (T1, T2, FLAIR, proton density and T1-weighted inversion recovery) wasn’t 

significantly beneficial for the segmentation, and sometimes had negative effect on the 

results. Although they use T1 image for creation of the brain mask, only the FLAIR 

image was involved in the classification stage. Also, Khayati et al. [36] used the FLAIR 

channel in his proposed work. 

3.2.2 Multi Channels 

Taking advantage of the various protocols that acquire images using multiple modalities 

is a current issue (typically T1, T2, PD, DTI or Flair sequences in MR neuroimaging). 

The data are becoming more and more multi-channel data and their unique and 

complementary information should be merged together before segmentation in order to 

get rid of the inconsistencies one can encounter when segmenting each modality 

separately. Today, reliable registration methods, using different resolution and time, are 

available; nevertheless, a simple, robust, fast and reliable segmentation approach still 

does not exist for such kind of problem especially when dealing with pathologies. 

Multichannel segmentation usually relies on clustering or classification.  

In [17], three gray-level MRIs are merged into a single MRI to form a colored 

image to be processed by a colored edge detector. In [13] and [6], T1, T2, and FLAIR 

intensities are used in the feature vector separately. Zhu et al. [33], T1, T2, and PD 

images were treated as three independent information sources for the detection and 

segmentation of MS lesions and data fusion was applied. 

  



35 

 

 

3.3 Preprocessing steps 

Image Processing Steps applied on the subject MRI to enhance the image quality, remove 

the effect of MRI acquisition noise and aid in feature extraction. 

Studies have shown the usefulness of applying inhomogeneity correction 

exclusively to the IC portion of MR images [38], [39]. In [21], Wu et al include 

preprocessing unit for intra- and inter-scan intensity inhomogeneities and normalizes the 

observed scan intensities.   

In [13], the inter-subject intensity variations were normalized. RF acquisition field 

inhomogeneities are corrected. Spatial prior is added by registering the MNI atlas to the 

anatomical images, each voxel of the atlas providing the probability of belonging to the 

white matter (WM), the grey matter (GM) and the cerebro-spinal fluid (CSF). These 

priors can be used as part of the feature vector. 

In [20], a brain mask was created, indication the region of interest for the 

segmentation. This reduces the amount of voxels being processed, thus saving computer 

time and memory. The mask was created by applying the brain extraction tool [40] on the 

T1 image with a relatively high value for the fractional threshold. This procedure resulted 

in a narrow brain mask, consisting of brain tissue only. This narrow mask was observed 

empirically to perform well with the segmentation method. 

In [21], Wu et al. proposed a procedure for intracranial cavity (IC) extraction. This 

IC extraction procedure combined non-parametric intensity-based statistical (Parzen 

window) segmentation and automated morphological operations. After the human-

supervised Parzen window tissue sampling was calibrated one time on two test scans, the 
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Parzen window classifier was saved for automated segmentation of ICs on the remaining 

scans. Occasionally, minimal operator manual editing was conducted on the resulting IC 

masks. The IC masks were superimposed onto images to exclude extracranial tissues, 

skull and large vessels on the brain surface. 

3.4 Features Extraction 

Independent on the segmentation technique, the brain MRI voxels are represented by set 

of features. Good features are those which are most discriminative between the normal 

brain tissues and multiple sclerosis lesions. The features commonly used in the literature 

techniques may be categorized into intensity, spatial, neighborhood, shape, texture, atlas 

based priors and context defined features. Most of the techniques are using combination 

of features from the different categories. 

Segmentation frameworks do feature selection either by using analysis or by 

using software tools. Software tools are used for features selection by defining pool of 

potentially informative features to draw from and analysis is done to select the most 

discriminative features [30].  

3.4.1 Features Generated without Image Processing 

These are the features generated by picking first order information from the input dataset 

without using any algorithms for feature extraction. 

Intensity Features 

This category of features is the basic features used by almost all of the techniques. The 

grayscale intensity for each voxel in the used MRI sequence can be used as a feature 

representing the voxel [20]. In case of using multi-channels, the grayscale intensity of the 
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voxel in each sequence can be used a part of the feature vector assuming that all channels 

are registered to a reference channel [13].  

One of the problems of using intensity as a feature is the noise in MR images. To 

overcome the problem, other than the intensity correction techniques discussed in the 

previous section, the intensity can be averaged over a neighborhood (i.e. a cube) around 

the each voxel [13]. 

Spatial Features 

Spatial features are commonly used to benefit from the common locations of multiple 

sclerosis lesions in the brain. The simplest features used in the feature vector are the three 

Cartesian coordinates [20], [24]. To use such features, registration should be done among 

the different dataset used in training and segmentation. Also, distance to the approximate 

center of the brain is used as a spatial feature [24]. 

Using spatial features adds inaccuracy to the segmentation due to the differences 

in size and location between the patients. This problem was avoided in [20] by 

normalizing the spatial features using variance scaling. In variance scaling, each spatial 

feature, feature, the mean of the feature values was subtracted from the voxel value, and 

the outcome was divided by the standard deviation. This approach resulted in a mean of 0 

and variance of 1 for all features. This implicitly corrects for differences in size and 

location between the patients. 
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 Neighborhood Features 

This category of features is used to represent the local intensity pattern of the voxel of 

interest. Voxel intensity along with the surrounding voxels intensities is used. 

Neighborhood size varies according to the number of surrounding voxels involved in the 

neighborhood and whether the current slice or the neighboring slices are considered. 

Shape Features 

Curvature is used with different neighborhood size in [30]. In [6], initial candidate 

regions are initially selected. Processing is done later to classify these regions. A feature 

vector is calculated for each regios that includes five shape features. The five shape 

features were: the effective diameter, the circularity, the slenderness, periphery length 

and the Euclidean distance between a candidate and the centroid of a brain. 

3.4.2 Features Generated with Image Processing 

Several features derived directly or indirectly from the analysis of the visual 

characteristics of multiple sclerosis lesions in the MRI were introduced to provide better 

discrimination.  

Atlas based Priors Features 

When a standard atlas is registered to the anatomical images, spatial priors can be 

extracted and added to the feature vector. T1 sequence can be registered to the MNI atlas 

to get tissues probability priors [13] and [30]. These tissue probability priors are the 

probability given for each voxel of the atlas of belonging to the white matter, the grey 

matter and the cerebo-spinal fluid (CSF). 
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Spectral Gradient Features 

In [17], based on the psycho-visual color theory, a scale-space approach was proposed to 

build a color-edge detector. This color edge detector is applied to MRI by merging three 

gray-level MRIs into a single MRI. 

Context-rich features  

This group of features was proposed by Geremia et al. [13]  to use the similarity nature of 

the brain which is obvious in the axial view of the MRI. Context-rich features compare 

the voxel of interest with distance regions. As shown in Figure  3-1, the first context rich 

feature looks for relevant 3D boxes R1 and R2 to compare within an extended 

neighborhood. The regions R1 and R2 are sampled randomly in a large neighborhood of 

the voxel v. The sum over these regions is efficiently computed using integral volume 

processing. The second context rich feature compares the voxel of interest at x with its 

symmetric counterpart with respect to the mid-sagittal plane, noted S(x) Instead of 

comparing with the exact symmetric S(x) of the voxel, its 6, 26, and 32 neighbors in a 

sphere, centered on S(x) are considered respectively.  

Texture Features 

Textural analysis refers to a set of processes applied to characterize special variation 

patterns of voxels grayscale in an image. Segmentation based on texture properties is 

promising in cases of lesions that are inhomogeneous, not sharp, and faint, but show an 

intensity pattern that is different from the adjacent healthy tissue. In [41], Subanna et al. 

presented an automatic tissue classification scheme based on Markov Random Fields 

(MRF) that probabilistically models the local spatial relationships between voxels and 
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their neighbors. Their approach explicitly built distributions for lesions as separate tissue 

classes, as opposed to considering them as outliers. They adapted simulated annealing 

techniques to obtain the required MRF parameters. Standard texture features (provided in 

Chapter 2) were used by Zhang et al. [42]. In (Ghazel-2006), a feature extraction method 

based on optimal filter design is proposed that aims for producing output texture features 

corresponding to the MS lesions and healthy tissues background which are maximally 

separable. The good results for MS texture classification obtained by Zhang et al. 

motivated us to use the same features in the proposed work in our dissertation. 

 

Figure  3-1: Context-rich features proposed by Geremia et al., 2010. 

(a) A context-rich feature depicting two regions R1and R2 with constant offset relatively to x. (b-d) Three 
examples of randomly sampled features in an extended neighborhood. (e) The symmetric feature with respect to 

the mid-sagittal plane. (f) The hard symmetric constraint. (g-i) The soft symmetry feature considering 
neighboring voxels in a sphere of increasing radius. See text for details. 

 

3.5 Pattern Recognition Algorithm 

The core of the segmentation framework is the pattern recognition algorithm. For the MS 

Segmentation framework, any of the pattern recognition algorithms is adapted to fit the 

binary classification of the voxels into two classes: voxel which is part of MS lesion and 
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non-MS voxel. The pattern recognition technique is used to perform training with the 

training data sets’ voxels labeled by the experts to get a discriminative model. The pattern 

recognition algorithm is again used by the model to perform the binary classification of 

the testing data sets’ voxels. Based on the pattern recognition algorithm, the techniques in 

the literature can be classified into categories discussed in the following subsections. 

3.5.1 K-Nearest Neighbor (KNN) 

 

K-Nearest Neighbor classification [43], [44] is a statistical pattern recognition method, 

assigning samples (e.g. image voxels) to a class (e.g. MS-lesion) by searching for 

samples in a learning set with similar values in a predefined feature space. In this space 

each axis represents one of the voxel features. The learning set consists of pre-classified 

samples, which are added to the feature space according to their feature values. A new 

image voxel is classified by comparison with the K learning samples that are closest in 

terms of Euclidian distance (or any other defined feature distance) to it in the feature 

space. Commonly, the most frequent class among the K learning samples is assigned to 

this voxel. The choice of variable K in is dependent on the relation between the number 

of features and the number of cases. A small K will cause the result being influenced by 

individual cases, while a large value of K makes the classification outcome smoother. In 

general, for this type of problems a large K is favorable [45], [46]. The KNN is effective 

for multichannel MR data and particularly suitable for this three-channel segmentation. 

Previous studies also show that post-probability k-NN segmentation is more accurate and 

stable than segmentation approaches based on a priori statistical assumptions [47], [48]. 
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In [20], Anbeek et al. used this technique for classification without assigning one 

class to the voxel, but with assigning probability per voxel being part of a lesion by 

taking the K learning samples into account. To get binary classification, threshold is 

applied on the probability of each voxel. They chose K = 40 by performing experiments 

on the training set with different K-values. The decision for this choice was made by 

visual inspection of the images in the training set. A larger K did not improve the results 

appreciably, but had a negative effect on the computational efficiency. 

In [21], Wu et al. used KNN segmentation for the initial image intensity-based 

statistical classification of pre-processed three-channel image data into tissue classes. 

Seven classes are involved in the classification: T1 hyperintense enhancing lesions, T1 

hypointense, cerebrospinal fluid (CSF)-like “black holes”, T1 isointense but T2WI and 

PDWI hyperintense lesions ‘‘other T2 lesions’’, normal appearing white matter 

(NAWM), gray matter; CSF and background. K value was interactively selected by an 

expert neuroradiologist to maximize the classification accuracy on the basis of 

classification results. After the expert was satisfied with the classification on the two 

calibration scans, the classifier was saved as a master classifier. A k value of 3 was 

estimated.  

3.5.2 Decision Forests 

Discriminative random decision forest is an ensemble learner using decision trees as base 

learners. Decision trees are discriminative classifiers which are known to suffer from 

over-fitting. A random decision forest [49] achieves better generalization by growing an 

ensemble of many independent decision trees on a random subset of the training data and 

by randomizing the features made available to each node during training [7].  
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In [13], Geremia et al. used this technique within their segmentation framework. 

Training according to their implementation assumes that the forest has T components 

with t indexing each tree. The training data consists of a set of labeled voxels. When 

asked to classify a new image, the classifier aims to assign every voxel in the volume a 

label: 1 for MS lesion and 0 for non-MS. During training, all observations are pushed 

through each of the trees. Each internal node applies a binary test according based on 

visual features function.  To perform the prediction, when applied to a new test data, each 

voxel is propagated through all the trees by successive application of the relevant binary 

tests. When reaching the leaf node in all trees, posteriors are gathered in order to compute 

the final posterior probability. This probability may be thresholded at a fixed value if a 

binary segmentation is required.  

In [14], Akselrod-Ballin uses segmentation to obtain a hierarchical decomposition 

of a multichannel, anisotropic MR scans. It then produces a rich set of features describing 

the segments in terms of intensity, shape, location, neighborhood relations, and 

anatomical context. These features are then fed into a decision forest classifier, trained 

with data labeled by experts, enabling the detection of lesions at all scales. Unlike 

common approaches that use voxel-by-voxel analysis, this system can utilize regional 

properties that are often important for characterizing abnormal brain structures. 

3.5.3 Principal Components Analysis 

Principal component analysis (PCA) is a mathematical procedure that uses an orthogonal 

transformation to convert a set of observations of possibly correlated variables into a set 

of values of uncorrelated variables called principal components. This transformation is 

defined in such a way that the first principal component has as high a variance as possible 
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and each succeeding component in turn has the highest variance possible under the 

constraint that it be orthogonal to the preceding components. Principal components are 

guaranteed to be independent only if the data set is jointly normally distributed. It is 

mostly used as a tool in exploratory data analysis and for making predictive models.  

In [24], Kroon et al. used PCS with log-liklihood to classify each voxel based on 

feature vector method that contains neighbourhood voxel intensities, histogram and MS 

probability atlas information.  

3.5.4 Graph Cut 

In the Graph Cuts framework, the image is represented by a weighted graph where each 

image voxel is represented by a node and each edge links the voxel to each of its 

neighboring voxels. The binary graph cut associates each node to one of two special 

nodes, called the “source” node and the “sink” node. These two nodes (the terminal 

nodes) represent the labels (i.e. “object” or “background”).  

In [17], Leceour et al. build a color MRI from three grey-level MRI sequences by 

assigning each red, green or blue channel to a sequence. The spectral gradient is 

computed and used it in a graph cut framework which requires seeds as input to obtain 

the segmented structures (e.g. brain, MS lesions). The object (O) and background (B) 

seeds are placed by the user at the beginning of the process are used to compute spectral 

intensity distribution models. 

They improved this in [15] and [50] where seed source and sinks were automated 

using expectation minimization. 
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3.5.5 Support Vector Machine (SVM) 

 

Support Vector Machines are supervised machine learning techniques, recently 

developed in the framework of statistical learning theory [51]. They have been used with 

a great success in a variety of applications such as text categorization, face recognition, 

and bioinformatics. In many of these areas SVM have outperformed well-established 

methods such as artificial neural networks, radial basis functions, and non-parametric 

cluster classification [52]. The great advantage of the SVM technique over conventional 

techniques, besides the well-established theoretical definition, is its capacity of working 

with high dimensional feature vectors without losing the generalization performance [12]. 

This property makes SVMs very suitable for segmentation of multispectral MR images.  

In [23], Ferrari et al. used SVM with radial basis function (RBF) kernel. The 

kernel parameter (γ) and the penalty value for the errors (C) were determined by using a 

very loose stopping criterion for the SVM decomposition. 

Yamamoto et al. [6] used a support vector machine (SVM) to classify MS 

candidate regions. All candidate regions were classified into true positive and false 

positive candidate regions by using the SVM. 

3.5.6 Expectation Maximization 

The expectation maximization (EM) algorithm is an iterative method for finding 

maximum likelihood or maximum a posteriori (MAP) estimates of parameters in 

statistical models, where the model depends on unobserved latent variables. The EM 

iteration alternates between performing an expectation (E) step, which computes the 

expectation of the log-likelihood evaluated using the current estimate for the parameters, 
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and maximization (M) step, which computes parameters maximizing the expected log-

likelihood found on the E step. These parameter-estimates are then used to determine the 

distribution of the latent variables in the next E step.  

According to the work of Pernod et al. [18], the expectation-maximization 

algorithm consists of two steps: labelization of the image (Expectation step) and 

estimation of the Gaussian class parameters (Maximization step). In this last step, the 

class parameters are computed from the intensities of the different voxels. In order to 

improve the algorithm speed, only a part of the image voxel can be taken into 

consideration thanks to a ratio parameter.  

3.5.7 Outlier Detection 

An outlier is an observation which deviates so much from the other observations as to 

arouse suspicions that it was generated by a different mechanism [53]. 

In [25], Leemput et al. performs intensity-based tissue classification using a 

stochastic model for normal brain images and simultaneously detects MS lesions as 

outliers that are not well explained by the model. This approach circumvents explicit 

lesion modeling, which is difficult because of their widely varying appearance in MR 

images, and because not every individual scan contains a sufficient number of lesions for 

estimating the model parameters. The core of this method is a clustering algorithm that is 

made robust against model outliers. From an algorithmic point of view, this method bears 

close resemblance to an adaptation of the EM classifier described by Schroeter et al.[54], 

who iteratively classified normal brainMR images into a small number of Gaussian 

distributions, each time rejecting voxels that exceed a predefined Mahalanobis distance to 
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each of the Gaussians, and updating the model parameters only based on non rejected 

voxels. In contrast this method that either accepts or rejects voxels, the method proposed 

by Leemput et al. [25]  uses a soft rejection scheme and also takes the classification of the 

voxels and their neighbors into account 

In [26], Prastawa et al. combines outlier detection and region partitioning. This 

method is based on an atlas of healthy subjects and detects lesions as outliers, without 

requiring the use of training data with segmented lesions. In order to segment lesions as 

spatially coherent objects and avoid spurious lesion detection, they perform classification 

on regions (connected groups of voxels) instead of individual voxels. Each voxel location 

is assigned to a region that would maximize overall relative entropy divergence between 

neighboring regions.  

In [27], [28] Bricq et al. proposes a method that performs tissue classification 

using a Hidden Markov Chain (HMC) model and detects MS lesions as outliers to the 

model. For this aim, they used the Trimmed Likelihood Estimator (TLE) to extract 

outliers. Furthermore, neighborhood information is included using the HMC model a 

priori information brought by a probabilistic atlas is incorporated. 

3.6 Post processing steps 

Image Processing and additional Pattern Recognition Steps applied on the segmentation 

result to improve the performance. 

False Positive reduction is a common post processing step. Due to similarity 

between MS lesions and the white matter tissue, it is common to have huge number of 
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false positives. To improve the segmentation results, many of the techniques add a rule 

based stage to reduce the false positives. 

In [19], Gracia-Lorenzo et al. applied lesion rules to discriminate between the 

white matter lesions and false positives. The rules were defined with neurologists and 

neuroradiologists based on image intensities from the respective MR sequences and voxel 

connectivity. Different intensity rules can be implemented for the different types of MS 

lesions: black holes, Gadolinium-enhanced lesions and T2-w lesions. Their focus was on 

the T2-w lesions that are, compared to the normal appearing WM, hyperintense in T2-w 

and FLAIR, and isointense or hypointense (e.g.black holes) in T1-w. Hyperintense and 

hypointense voxels are defined by 3.0×  ±μWM, where  and μWM are the standard 

deviation and the mean of the white matter respectively. Voxel connectivity allows the 

use of neighboring rules instead of classifying each voxel independently. In this case, a 

minimal size of MS lesion is defined, so detected lesions that have a size smaller than 3 

mm3 were discarded. They also removed detected lesions that are contiguous to brain 

border or not contiguous to WM tissue. 

In [55], a post-processing step is performed since many false positives occur due 

to artifacts in the external CSF, all lesions detected neighboring the brain border are 

removed from the segmentation. 

In [27], to remove voxels which are not MS lesions that are detected outside MS 

lesions, especially in the CSF class, voxels for which the prior probability of CSF given 

by the atlas is higher than 0.5 were removed and lesions with a small volume (3mm3) 

were excluded. 
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In [35], the segmentation approach usually results in an overestimation in the size 

of the lesions. This is most likely due to the fact that the area in the proximity of a lesion 

is somewhat different from the other tissues. In addition, the segmentation step model is 

done voxel wise and does not take into account the smoothness of the lesion boundaries. 

Hence, a post-processing step for refining the lesion boundary is needed. Active contour 

technique is proposed and applied as a post processing step for lesion delineation.  

Lesion boundary refinement is also addressed in the post processing approaches. 

In  [21], refining ‘‘black holes’’ segmentation ‘‘Black holes’’ identified by the main 

segmentation technique do not include areas of the white matter that are hypointense with 

respect to healthy white matter but isointense with respect to grey matter. Therefore, in 

the post processing step the classification of ‘‘black holes’’ is refined to include subtly 

hypointense signal. A more sensitive k-NN classifier is obtained by adding training 

points from mildly T1-hypointense WM regions and is selectively applied to lesion 

classes. One master classifier for this second segmentation step was generated and stored 

for k-NN segmentation of all the subjects.  

3.7 Performance evaluation 

To evaluate the segmentation techniques, comparison should be performed between the 

automatic segmentation (Seg) generated by the proposed approached and the manual 

segmentation provided by the expert neuroradiologist (Ref) as shown in Figure  3-2. 

Performance evaluation formulas are incorporated in the segmentation frameworks.  
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Figure  3-2: Comparison between the automatic segmentation (Seg) and the manual segmentation (Ref) 

 

The voxels that are marked as MS in both Seg and Ref are the true positives (TP), 

voxels appears only in Seg are false positives (FP), voxels appears only in Ref are false 

negatives (FN) and voxels that are marked as non-MS in both sets are true negatives 

(TN). Based on these parameters, number of metrics is used in the literature to evaluate 

the segmentation performance. Dice similarity (Similarity Index), Tanimoto Overlap and 

Sensitivity are common metrics. 

3.8 MS Lesions Segmentation Pipeline 

The segmentation pipeline is method of integrating the components of the segmentation 

framework to achieve the segmentation task. Pipelines used in MS lesion segmentation 

techniques can be classified to single processing core, preprocessing-processing, 

processing-post processing, pre processing-processing-post processing and special 

pipelines. 
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3.8.1 One stage: Processing Core Pipelines 

In this category of pipelines, the segmentation framework is composed mainly of a 

segmentation core that performs the segmentation without either improvement to the 

input quality or improvement to the output segmentation. Examples to segmentation 

pipelines in this category are those proposed by [28],[30] and [36] 

3.8.2 Two stages: Pre processing and Processing Pipelines 

In this category of pipelines, the segmentation framework is composed of a segmentation 

core that performs the segmentation proceeded by a preprocessing module that mainly 

provides improvement to the input quality. An example to segmentation pipelines in this 

category are those proposed by [13]. 

3.8.3 Two stages: Processing and Post processing Pipelines 

In this category of pipelines, the segmentation framework is composed mainly of a 

segmentation core that performs the segmentation followed by a post processing module 

that mainly improves the quality of the output segmentation. The segmentation pipeline 

proposed by [35] is an example to a pipeline classified in this category. 

3.8.4 Three stages: Pre processing, Processing, and Post processing Pipelines 

In this category of pipelines, the segmentation framework is composed mainly of a 

segmentation core that performs the segmentation proceeded by a preprocessing module 

that mainly provides improvement to the input quality and followed by a post processing 

module that mainly improves the quality of the output segmentation. The segmentation 

pipelines proposed by [56] and [20] are classified in this category. 
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3.8.5 Special Pipelines 

In this category of pipelines, the components and their integration are custom to the 

concept of the technique. Samples of these pipelines are discussed in this subsection. 

In [21], the pipeline shown in Figure  3-3 is proposed for the automated three-

channel segmentation. Dashed boxes indicate procedures performed only once and then 

used for all the subjects. Abbreviations used in the pipeline are: 3ch-MRI = three-channel 

MRI consisted of proton density-weighted image, T2-weighted image and post-contrast 

T1-weighted image; IC = intracranial cavity mask extraction; TDS+ = template-driven 

segmentation plus partial volume artifact correction. 

 

Figure  3-3: Customized pipeline proposed by Wu et al., 2006. 
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In [17], the following framework have been designed as follow: from three grey-

level MRI sequences, a color MRI was built by assigning each red, green or blue channel 

to a sequence. Then the spectral gradient was computed and used in a graph cut 

framework which requires seeds as input. In the end of this framework, the segmented 

structures (e.g. brain, MS lesions) are generated. Figure  3-4 summarizes this pipeline. 

 

Figure  3-4: Customized pipeline proposed by Leceour et al., 2008. 

 

3.9 Limitations and Open Areas 

Each of the segmentation frameworks discussed in this chapter contributes to the problem 

of automatic segmentation of multiple sclerosis lesions in MRI in one of the following 

situations only: 

1. In Preprocessing step: improving the properties of the MRI. 

2. In Feature Extraction: extracting features that try to separate the MS voxels from 

non-MS voxels. 

3. In Pattern Recognition: customizing a well known machine learning technique. 

4. In Post-processing steps: rejection of false positives. 
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Most of the segmentation framework in literature deals with the MR images as stream 

of data, and the aim is to classify these data without deep study of the nature of the 

appearance of MS lesions in the different modalities of MRI and giving attention to 

common location and intensity behavior in the neighborhood of brain structures. More 

efforts are needed to provide a contextual based framework that tackles the MS lesion 

segmentation explicitly. 

The following study is used as a base for our technique. In [42], Zhang et al. 

presented a comparative study that targets texture analysis of multiple sclerosis. Texture 

analysis was performed on MR images of MS patients and normal controls and a 

combined set of texture features were explored in order to better discriminate tissues 

between MS lesions, normal appearing white matter (NAWM), and normal white matter 

(NWM) in region of interests (ROIs). Features were extracted from gradient matrix, run-

length (RL) matrix, gray level co-occurrence matrix (GLCM), autoregressive (AR) 

model, and wavelet analysis, and were selected based on greatest difference between 

different tissue types. The results of the combined set of texture features were compared 

with our previous results of GLCM-based features alone. The results of this study 

demonstrated that: 

1. With the combined set of texture features, classification was perfect (100%) between 

MS lesions and NAWM (or NWM), less successful (88.89%) among the three tissue 

types and worst (58.33%) between NAWM and NWM.  

2. Compared with GLCM-based features, the combined set of texture features were 

better at discriminating MS lesions and NWM, equally good at discriminating MS 
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lesions and NAWM and at all three tissue types, but less effective in classification 

between NAWM and NWM.  

This study suggested that texture analysis with the combined set of texture features 

may be equally good or more advantageous than the commonly used GLCM-based 

features alone in discriminating MS lesions and NWM/NAWM and in supporting early 

diagnosis of MS. 

They reported in future improvement the need to apply texture analysis with 

automatic selection of the ROIs rather than drawing ROIs manually.  

To the best of our knowledge, texture based MS segmentation approaches that have 

been previously reported were applied to ROIs that are manually selected by an expert to 

indicate potential regions including MS lesions, which makes the segmentation process 

semi-automated. Therefore, efforts are needed to automate the use of textural features in 

the detection of MS lesions. 

Also, MR images are processed in most of the algorithm in the axial view, where the 

other views sagittal and coronal can be used in assessment of the MS lesion obtained 

from automatic segmentation in axial view. 

Utilizing textural features without the need for manual labeling of ROIs, enabling 

segmentation using multi-channels MRI data and taking into account the different 

sectional views of the lesion volume are the pillars of the proposed technique that is 

explained in detail in  Chapter 4. 
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Chapter 4  
Textural based SVM for MS Lesion 
Segmentation in MRIs 
 

This chapter presents the approach developed in this dissertation to use the textural 

features (C3) with a robust machine learning technique (C4) to achieve multiple sclerosis 

(MS) lesions segmentation in the brain MR images. The approach is based on emulating 

the expert in labeling the MS lesions. The core modules of the segmentation framework 

are presented. Further progression in pipelines (C7) based on these modules is 

subsequently presented with the motivation of enhancing the performance as well as 

supporting different problems in datasets. 

4.1 Texture Analysis Open Area 

Textural analysis refers to a set of processes applied to characterize special variation 

patterns of voxels grayscale in an image. Segmentation based on texture properties is 

promising in cases of lesions that are inhomogeneous, not sharp, and faint but show an 

intensity pattern that is different from the adjacent healthy tissue [57].  

Texture based MS segmentation approaches that have been previously reported 

were applied to ROIs that are manually selected by an expert to indicate potential regions 

including MS lesions, which makes the segmentation process semi-automated. Therefore, 

efforts are needed to automate the use of textural features in the detection of MS lesions 

[42]. 
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4.2 Performance Evaluation 

To evaluate the performance of the automatic segmentation method, comparisons are 

performed with state of the art methods. Different metrics (C6) are used to evaluate the 

performance for these literature techniques, therefore, according to the comparison 

needed; difference metrics will be calculated in the later sections that shows the results of 

the segmentation. Some of the performance evaluation metrics used in this dissertation 

are calculated as defined in the literature. Others are introduced to evaluate clinical 

valuable parameters. Besides, MS Lesion Challenge workshop [2] provides scores to 

compare the competitive techniques. 

4.2.1 Dice Similarity (DS): 

The dice similarity (DS) is a measure of the similarity between the manual segmentation 

(X) and the automatic segmentation (Y). The equation for the calculation can be written 

as: 

DS = 2 YX ∩ / ( X + Y ) (4-1)

As stated in [58] and [59], a DS score above 0.7 is generally considered as very good, 

especially when the segmented structures are small. In our evaluation, dice similarity is 

calculated based on the similarity of lesion regions which means that the number of 

common MS lesion regions between manual and automatic segmentation is used for 

YX ∩ and the number of MS lesion regions of manual and automatic segmentation are 

used for X  and Y  respectively. In this context, the automatically segmented lesion 

region that shares at least one pixel with a manually segmented lesion region is 
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considered as a common MS lesion region since the number of MS lesion regions is more 

clinically relevant than the number of voxels [60], [61].  

4.2.2 Sensitivity 

Sensitivity is a measure of how many lesions are detected. It can be calculated as the 

percentage of true positive voxels to the total number of MS voxels in the ground truth. 

For the two sets manual segmentation (X) and automatic segmentation (Y), the sensitivity 

is calculated as: 

Sensitivity = YX ∩ / X  (4-2)

4.2.3 Detected Lesion Load (DLL): 

Detected lesion load is a measure of how much lesion volume is detected compared to the 

original lesion volume. The detected lesion volume takes into account all the positive 

lesions whether true or false. Having a percentage of detected lesion load close to 1.0 is 

clinically satisfactory since it provides a relatively accurate measure of the MS lesions 

volume. For the two sets manual segmentation (X) and automatic segmentation (Y), the 

Detected Lesion Load is calculated as: 

DLL = Y / X  (4-3)

 

4.2.4 True positive rate (TPR) and Positive Predictive Value (PPV) 

For the two sets manual segmentation (X) and automatic segmentation (Y), true positives 

(TP), false positives (FP) and false negatives (FN) can be calculated as: 
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TP = YX ∩  

FP = XY −  

FN= YX −  

(4-4)
 

The True positive rate (TPR) and Positive Predictive Value (PPV) are defined as: 

TPR=TP / (TP + FN) 

PPV=TP / (TP + FP) 
(4-4)

 

4.2.5 MS Lesion Challenge Metrics and Score 

The automated evaluation system used by the MS Lesion Challenge uses the volume 

difference (Volume diff.), average distance (Avg. Dist.), true positive rate (True Pos.) and 

false positive rate (False Pos.) to evaluate the segmentation. These metrics are defined in 

[2] as follows: 

Volume Difference, in percent: The total absolute volume difference of the 

segmentation to the reference is divided by the total volume of the reference, in percent.  

Average Distance, in millimeters: The border voxels of segmentation and reference are 

determined. These are defined as those voxels in the object that have at least one 

neighbor (of their 18 nearest neighbors) that does not belong to the object. For each voxel 

along one border, the closest voxel along the other border is determined (using unsigned 

Euclidean distance in real world distances, thus taking into account the different 

resolutions in the different scan directions). All these distances are stored, for border 

voxels from both reference and segmentation. The average of all these distances gives the 

averages symmetric absolute surface distance. 
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True Positive Rate, in percent: This is measured by dividing the number of lesions in 

the segmentation that overlap with a lesion in the reference segmentation with the 

number of overall lesions in the reference segmentation. This evaluates whether all 

lesions have been detected that are also in the reference segmentation.  

False Positive Rate, in percent: This is measured by dividing the number of lesions in 

the segmentation that do not overlap with any lesion in the reference segmentation with 

the number of overall lesions in the segmentation. This rate represents whether any 

lesions are detected that are not in the reference.  

All measures have been scored in relation to how the expert raters compare 

against each other. A score of 90 for any of the metric indicate a comparable performance 

with an expert rater. The overall score for each test case is an average of the score of the 

above four metrics calculated for two different raters. An overall score is an average for 

the scores of each individual test case. 

4.3  Dataset 

4.3.1 Synthetic Data 

The simulated MRI datasets generated using the McGill University BrainWeb MRI 

Simulator ([1], [62], [58], [63], [59]) include three brain MRI datasets with mild, 

moderate and severe levels of multiple sclerosis lesions. We will refer to these templates 

in this dissertation, including the results, as MSLES 1, MSLES 2, and MSLES 3 for the 

mild, moderate, and severe levels, respectively. The MRI data was generated using T1, 

T2, and Inversion Recovery (IR) channels. Isotropic voxel size of 1mm x 1mm x 1mm 
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and spatial in-homogeneity of 0% are used in this dissertation. For each channel, the 

images are available at six different noise levels (0%, 1%, 3%, 5%, 7%, and 9%). 

4.3.2 Real Data 

Datasets of 61 cases are used to verify the segmentation technique proposed by this 

dissertation. The sources of these datasets are the workshop of MS Lesion Segmentation 

Challenge 2008 ([2], [64] ) and real MRI studies for MS subjects acquired at the 

University of Miami. 

MS Lesion Segmentation Challenge 2008  

Datasets used for evaluation in this dissertation include 51 cases which are publicly 

available from the MS Lesion Segmentation Challenge 2008 website [64]. For each case, 

three MR channels are made available (T1-,T2-weighted, and Flair). The datasets are 

divided into labeled cases used for training (20 cases) and non-labeled cases used for 

testing (31 cases). The MRI datasets are from two separate sources: 28 datasets (10 for 

training and 18 for testing) from Children’s Hospital Boston (CHB) and 23 datasets (10 

for training and 13 for testing) from University of North Carolina (UNC). The UNC cases 

were acquired on a Siemens 3T Allegra MRI scanner with slice thickness of 1 mm and 

in-plane resolution of 0.5 mm. No scanner information was provided about the CHB 

cases. All subjects MRI are re-sliced to be 512x512x512 with resolution 0.5mm x 0.5 

mm x 0.5mm. We will refer to training datasets of CHB and UNC as 

CHB_train_CaseXX and UNC_train_CaseXX respectively (with XX refers to study 

number in two digits). Smilarly the test datasets of CHB and UNC are referred to by 

CHB_test1_CaseXX and UNC_test1_CaseXX respectively. 
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MS Subjects MRI Data acquired at University of Miami 

The acquired MRI datasets for MS subjects are composed of multi-channel MRI, 

including T1, T2, PD, and FLAIR, for 10 subjects (4 males, age range: 50-72 and 6 

females, age range: 30-59). The corresponding volumes in the different sequences are co-

centered and have the same field of view of 175x220 mm. The slice thickness and 

spacing between slices for T2, PD, and FLAIR sequences are 3mm and 3.9 mm, 

respectively, while both of the slice thickness and spacing between slices for the T1 

sequence is 1mm, respectively, for the same field of view. On average, each T2 and 

FLAIR MRI sequence consists of thirty seven slices while the T1 MRI sequence consists 

of one hundred and sixty slices that cover the whole brain. The axial FLAIR sequences 

used in this dissertation were acquired using the following imaging parameters: 

9000/103/2500/256×204/17/123 (repetition time ms/echo time ms/inversion time/matrix 

size/echo train length/ imaging frequency). The parameters for axial T1 sequences: 

2150/3.4/256× 208/1/123 (repetition time ms/echo time ms /matrix size/echo train 

length/ imaging frequency), while the parameters for axial T2 sequences: 6530/120/256

×204/11/123 (repetition time ms/echo time ms /matrix size/echo train length/ imaging 

frequency). The parameters for axial PD sequences: 6530/10/256 × 204/11/123 

(repetition time ms/echo time ms /matrix size/echo train length/ imaging frequency). All 

the subjects were referred for brain MRI studies based on an earlier diagnosis of MS. The 

MS lesions were manually labeled on the FLAIR sequences by a neuro-radiologist. The 

ten MRI studies were acquired using a 3.0T MR scanner under a human subject’s 

protocol approved by our institutional review board. We will refer to these subjects as 

MSX (with X is an integer number from 2 to 11). 
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4.4 Segmentation Framework 

The segmentation framework for the proposed technique is based on an SVM fed by 

feature vector consists mainly of textural feature. We refer to this core engine by textural 

based SVM. The initial pipeline was designed to deal with single channel MRI mainly 

the FLAIR sequence (pipeline 1). Then, we aimed to benefit from the complementary 

information in the multi-channels MRI and the tissues probabilities obtained when 

registered to spatial atlas. Hence, the pipeline 1 was developed to incorporate these 

functions and we obtained pipeline 2. Subsequently, we introduced the concept of multi-

sectional views segmentation, where each brain sectional views’ slices are segmented 

individually and aggregate function is applied to get more accurate segmentation. We 

developed pipeline 3 to incorporate the multi-view segmentation. In the following 

sections, the three pipelines are discussed and followed by an experimental results 

section. 

4.5 Pipeline 1 - Single View and Single-Channel MRI (FLAIR) Pipeline  

In this pipeline, the MRI FLAIR slices of the brain are preprocessed for intensity 

correction to remove the effect of noise and differences in brightness and contrast 

between different scans of different subjects. The next step is the main processing module 

which is used for the detection of initial MS lesions regions based on textural features. 

This stage generates scores for each voxel in the slices that represents the probability of 

being MS voxel or not. The connected voxels having non-zero scores form regions of 

potential MS lesions. The post processing step involves addressing false positive MS 

regions based on location attributes and detecting false negative MS regions through 

inter-slice comparisons using the 3D nature of the MRI. After that, the post processing 
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step improves the MS lesions for each slice by removing voxels based on distance and 

grayscale features, and including neighboring voxels using region growing based on 

grayscale features and including voxels by removing holes in lesion regions based on the 

concept of lesion continuity. The pipeline is shown in Figure  4-1. 

 

Figure  4-1: Single View Pipeline – Single Channel MS Segmentation Pipeline (Pipeline 1). 

The modules of this pipeline are explained in details in the following subsections. 

4.5.1 Preprocessing 

This Module involves intensity correction of the subject’s MRI data to improve the 

quality of the input FLAIR slices prior to texture extraction.  
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Intensity Correction: 

Due to different operating conditions, brightness and contrast of the imaging slices may 

vary among subjects. This affects performance of segmentation that is based on textural 

features which are calculated based on grayscale intensities. If a dataset is used for 

training, better histogram matching of the dataset to be segmented and the training data 

will lead to more accurate definition of MS lesions. We used our preprocessing technique 

used before in [65] that starts with applying contrast-brightness correction to maximize 

the intersection between the histogram of the training and segmentation datasets followed 

by using 3D anisotropic filter to eliminate empty histogram bins. Figure  4-2 shows the 

effect of the preprocessing technique on improving a FLAIR slice from MS6 (subject 

dataset to be segmented) with reference to MS3 (subject dataset used in training). 

 

Figure  4-2: Intensity correction for FLAIR Sequence.  

(a) A slice from the reference subject MS3 (used in training), (b) a slice from subject MS6 before preprocessing 
and (c) the same slice of MS6 after preprocessing. 

 

4.5.2 Processing Core Module: Single Sectional View Textural Based SVM 

Each preprocessed MRI axial FLAIR slice is processed through a trained detector engine 

to obtain potential MS lesions regions. The detector engine in our method is implemented 
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using support vector machine. Training the detector engine is done by processing the 

training dataset and dividing its slices into square blocks and assigning a binary class for 

each block. If the block contains at least one pixel manually labeled as MS, it is classified 

as MS block (class 1). Otherwise, the block is classified as non-MS block (class 0) if all 

of its pixels are labeled as non-MS pixels. Each block is described by a feature vector 

which mainly represents textural features of the block. During segmentation, the slice to 

be segmented is divided into square overlapping blocks and each block is classified by 

the trained engine as MS block or non-MS block. 

Block Size 

Statistics were previously made to measure the size of the multiple sclerosis lesions. The 

common values for the diameter are between 3.5 mm and 13.5mm [66]. For input MRI 

studies, the size of the square blocks wxw pixel2 is selected automatically to be within the 

range of (4x4 mm2) which tightly covers the smallest possible MS lesion diameter based 

on the input dataset pixel size which is determined from the input resolution and field of 

view.  

Feature Vector 

In order to describe each square block of the MRI slice, a features vector of is calculated. 

The block features are classified into three categories: textural features, position features, 

and neighboring blocks features. The features vector is listed in Table  4-1. 
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Textural Features 

The textural features are calculated for the FLAIR sequence (C1). Textural features 

include histogram-based features (mean and Variance), gradient-based features (gradient 

mean and gradient Variance), run length-based features (gray level non-uniformity, run 

length non-uniformity) and co-occurrence matrix-based features (contrast, entropy and 

absolute value). Run length-based features are calculated 4 times for horizontal, vertical, 

45 degrees and 135 degrees directions. Co-occurrence matrix-based features are 

calculated using a pixel distance d=1 and for the same angles as the run length-based 

features. The details for calculating the textural-based features are provided in Chapter 2. 

The motives for using these features specifically for statistical texture are the 

recommendation for features provided in the study of Zhang et al. [42] to describe the 

MS texture as well as our feature selection study done for a pool of hundreds of textural 

features extracted from healthy and lesion blocks. 

Position Features 

The position features are the slice relative location with reference to the bottom slice and 

the radial Euclidean distance between the block’s top left pixel and the center of the slice 

normalized by dividing it by the longest diameter of the slice as shown in Figure  4-3. The 

center and the longest diameter of the slice are parameters that are geometrically 

calculated in the preprocessing step.  

The neighboring blocks features are the difference between the mean intensity of the 

current block and the mean intensity of each of the eight neighboring blocks as shown in 

Figure  4-4.  
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Figure  4-3: Position Features Extraction on a Sample Slice. 

Calculation of the normalized radial distance between block (2) and slice center (1) (length of line 3 / length of 
line 4). 

Neighboring Features 

 

Figure  4-4: Neighboring Blocks Features on a Sample Slice 

Calculation of the eight neighboring blocks features (difference between mean grayscale of the centered red 
block and mean grayscale of each of the eight neighboring green blocks in the grid circled by the yellow circle). 
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SVM training and segmentation 

Support Vector Machine (SVM) is a supervised learning algorithm, which has at its core 

a method for creating a predictor function from a set of training data where the function 

itself can be a binary, a multi-category, or even a general regression predictor. To 

accomplish this mathematical feat, SVMs find a hypersurface which attempts to split the 

positive and negative examples with the largest possible margin on all sides of the 

hyperplane. It uses a kernel function to transform data from input space into a high 

dimensional feature space in which it searches for a separating hyperplane. 

Features Category Features 

Textural features 1-Mean (Histogram based feature) 
2-variance (Histogram based feature) 

 3-Gradient mean (Gradient based feature) 
4- Gradient variance (Gradient based feature) 

 5-8 Grey level non-uniformality in the 4 directions (Run length 
based feature) 
9-12 Run length non-uniformality in the 4 directions (Run length 
based feature) 

 13-16 Contrast in the 4 directions (Co-occurrence matrix based 
feature) 
17-20 Absolute value in the 4 directions (Co-occurrence matrix 
based feature) 
21-24 Entropy in the 4 directions (Co-occurrence matrix based 
feature) 

Position features 25-Slice relative location 
26- Normalized radial distance between block and slice center 

Neighboring 
blocks features 

27-34 Differences between grayscale of the block and each of  the 
8 neighboring blocks 

Table  4-1 : A square Block Features Vector in Single-View Single Channel Pipeline. 

The radial basis function (RBF) kernel is selected to be the kernel of the SVM. This 

kernel nonlinearly maps samples into a higher dimensional space so it can handle the case 

when the relation between class labels and attributes is nonlinear. The library libsvm 2.9 
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[67] includes all the methods needed to do the implementation, training and prediction 

tasks of the SVM. It is incorporated in our method to handle all the SVM operations. 

Training 

The dataset of one subject (or more) is used to generate the SVM training set. In the 

selected brain view, the slices of this training dataset are divided into n square blocks of 

size wxw pixels. SVM training set (T) is composed of training entries ti (xi, yi) where xi is 

the features vector of the block bi, yi is the class label of this block for i =1 to n (n is the 

number of blocks included in the training set). The segmentation of MS lesions amounts 

to a binary classification problem, i.e., yi is either 0 or 1. The training entry is said to be 

positive entry if yi is 1 and negative in the other case.  

For each slice of the training dataset, each group of connected pixels labeled 

manually as MS pixels forms a lesion region. Blocks involved in the set of positive 

training entries (TP) are generated by localizing all the lesion regions and for each of 

them, the smallest rectangle that encloses the lesion region is divided into non-

overlapping square blocks of size wxw pixels. Each block bi of these blocks is labeled by 

yi=1 if any of the w2 pixels inside this block is manually labeled as MS pixel. Any block 

that contains at least 1 MS pixel is referred to in our method as MS block. Similarly, the 

blocks involved in the set of negative training entries (TN) are generated by localizing the 

non-background lesion regions whose pixels are not manually labeled as MS pixels and 

dividing them into non-overlapping square blocks of size wxw pixels. These blocks are 

referred to in our method as non-MS blocks. Each block bi of these blocks is labeled by 

yi=0. Feature vector xi is calculated for each block of both positive and negative training 
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entries. The positive training entries Tp contain blocks that contain 1 to w2 MS pixels. 

This helps the SVM engine to learn the features of the blocks that either partially or 

completely contain MS pixels. The training set T is composed of the positive training 

entries and the negative training entries: = ∪ . The training set entries were fed to 

the SVM engine to generate a MS classifier which is able to classify any square wxw 

block of a brain MRI slice as MS block (y=1) or non-MS block (y=0) based on its 

features vector (x). 

Training the classifier with more than one subject dataset allow the classifier to 

learn broad ranges for the features of real MS-blocks. However, due to computation time, 

training using many datasets is supported with each contributing only with a specified 

percentage to the overall training set. Usually the amount of MS blocks is much lower 

than the non-MS blocks. Hence, the share of blocks from each single dataset in the 

training set includes all MS blocks and the share is completed by selecting randomly non-

MS blocks that cover all brain areas. One of the datasets will be the reference for 

intensity correction, while the other datasets are intensity corrected according to the 

reference dataset before adding their shares to the training set to maintain one intensity 

reference that can be used for the datasets to be segmented. 

SVM Parameters selection directly affects the classification performance. The 

SVM penalty parameter C and the RBF kernel parameter γ are chosen via a grid search 

using cross validation as proposed in [67]. In cross validation, the training dataset are 

divided into subsets. Sequentially one subset is tested using the classifier trained on the 

remaining subsets. Cross validation accuracy is the percentage of data which are correctly 

classified. Various pairs of (C; γ) values are tried in the cross validation tests and the one 
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with the best cross validation accuracy is picked. We applied the cross validation on the 

training subject (MS3) dataset. Using this offline exhaustive search, C and γ that 

provided best accuracy in the cross validation for our technique are 1 and 0.029 

respectively.  

On the other hand, the training set used in training the SVM is highly imbalanced. 

The size of the negative training entries (TN) is much higher than the positive training 

entries (TP) due to the relative size of lesion with respect to the normal brain tissues. This 

affects the performance of SVM. However traditional approaches to overcome 

imbalanced data involve either over-sample the minority class (MS blocks) or under-

sample the majority class (non-MS blocks). The first results in a distribution that no 

longer approximates the target distribution and the later results in discarding instances 

that may contain valuable information. Our decision was to leave the data with neither 

over-sampling nor under-sampling to avoid biasing the classifier and to keep the real 

distribution. Future improvement should address balancing the dataset with no added 

inaccuracy. 

Segmentation 

Each of the axial FLAIR slices of the subject dataset to be segmented is divided into 

overlapping square blocks of size wxw pixels depending in the computation time 

constraints. The features vector for each block is calculated. The trained SVM for the 

corresponding brain view is used to predict the class labels for all the blocks. For any 

block classified as MS block, assuming true positive classification, this does not mean 
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that all pixels of the block should be classified as MS pixels because the SVM engine is 

trained to detect the blocks that contains MS pixels completely or partially.  

For each slice, all pixels are assigned an integer score. This score is initialized 

with a zero value. During segmentation, if any block is classified as MS block (y=1), the 

scores of all pixels inside the block are incremented. As the blocks are overlapped, each 

pixel is part of w2 blocks as demonstrated in Figure  4-5. Thus, the score will be any value 

from 0 to w2. 

 

Figure  4-5: All possible overlapping blocks that contain a pixel. 

for 8x8 blocks (w=8), the red pixel is part of w2=64 blocks. The eight bold blocks are samples where the red pixel 
lies in the coordinates (8,8) of block 1, (7,7) of block 2 … and (1,1) of block 8. 

 

After classification, these scores act as initial lesion probability maps where a large score 

indicates high probability for the pixel to be an MS pixel. Initial MS lesions can be 

generated by assigning any pixel of non-zero score as MS pixel. 

Figure  4-6 shows segmentation of sample slice from subject (MS6) in axial views. 

Figure  4-6(a) shows the preprocessed FLAIR slice. Figure  4-6(b) is the ground truth for 

the lesions generated through manual segmentation. Figure  4-6(c) is the initial 

segmentation by considering any pixel of score higher than zero as MS pixel. 

Figure  4-6(d) provides a colored evaluation of the segmentation where the true positive 
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pixels are marked by blue, false positive are marked by red, false negatives are marked 

by green and true negatives are the background pixels. 

 

Figure  4-6: Using Textural SVM in Single Channel and Single View. 

(a) preprocessed FLAIR axial slice from MS6, (b) ground truth, (c) initial segmentation and (d) colored 
evaluation of segmentation. 

 

4.5.3 Post-Processing Module 

The purpose of the post processing step is to improve and refine the performance of 

initial segmentation through dealing with different types of errors (false positives and 

false negatives). Figure  4-7 shows the initial segmentation of a sample slice from subject 

MS5 and the colored evaluation of the segmentation in which the false negatives and 

positives are marked in green and red colors, respectively. Errors in the initial 

segmentation of MS lesions can be classified as: 

• Type 1: False negatives resulting from not detecting MS lesion regions (labeled by 1 

in Figure  4-7 (b)). 

• Type 2: False negatives resulting from incomplete MS lesion regions (labeled by 2 in 

Figure  4-7 (b)).  

• Type 3: False positives resulting from false MS lesion regions (labeled by 3 in 

Figure  4-7 (b)). 
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• Type 4: False positives resulting from false portions of true MS lesion regions 

(labeled by 4 in Figure  4-7 (b)). 

The following steps, which constitute the post processing of the MS lesion 

segmentation framework, are a set of logical operations that aim to address the different 

types of errors in the initial segmentation of MS lesions without adding new errors. The 

subject dataset used in training (MS3) was segmented by the textural SVM to get the 

initial segmentation which was analyzed for the different errors in MS lesions 

segmentation to formulate the criteria and thresholds used in post processing. This is 

summarized in the block diagram shown in Figure  4-8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4-7: False negatives and positives in the textural segmentation. 

 (a) initial segmentation of a slice from MS5 and (b) colored evaluation of the initial segmentation where the 
different types of errors are labeled by a number matching the corresponding error type. 
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Figure  4-8: Formulation of Criteria and Thresholds used in Post processing. 

 

 

Elimination of false positives resulting from lesion regions in uncommon locations  

In this step, errors of type 3 in MS lesions are addressed. This type of errors in MS 

lesions results from detected MS lesion regions which are completely false. Some of 

these MS lesion regions that are located in uncommon locations can be eliminated. Odd 

locations include MS lesions outside the brain area, close to the brain boundary, or close 

to the sagittal plan [27].  

In Figure  4-9, step 1 of post processing is applied to the initial segmentation of a 

slice from subject MS6, shown in Figure  4-9(a) and color evaluated in Figure  4-9(b), to 

eliminate the erroneous MS lesion regions circled in yellow circle as they are located so 

close to the boundary of the slice. The same slice after applying step 1 of post processing 

is shown in (Figure  4-9(c), Figure  4-9(d)). The same results were obtained for this slice 

by deletion based on location or by using the following SVM based Deleter. 
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Figure  4-9: Post processing Step1: Elimination of segmented lesion regions in odd locations. 

 (a) and (b) are the slice segmentation and colored evaluation of the segmentation before applying step 1 (MS 
lesion regions in odd locations are circled in yellow). (c) and (d) are the slice segmentation and colored 

evaluation of the segmentation after applying step1. 

 

Detection of non-detected MS lesion regions (false negatives) 

In this step, errors of type 1 in MS lesions are addressed. This type of errors in MS 

lesions results from not detecting the lesion region, i.e., completely missing it. According 

to [68], in most cases the MS lesions extend only into one to three consecutive slices 

when the thickness of the slices is 3 mm. Therefore, In order to recover the missing MS 

lesion regions the initial segmentations of the previous and the next slices (or neighboring 

slices) are considered. The detected MS lesion regions in the previous and next slices are 

intersected based on the common coordinates on both slices generating a new slice of MS 
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lesion regions. Any pixel in the MS lesion regions resulting from the intersection is 

assigned the average of the segmentation scores of the two pixels located at the same 

slice local coordinates in the intersecting slices. Each intersection lesion region is 

assigned a score which is the average of the scores of the pixels in the lesion region. 

Because of the 3D nature of the MRI slices and the fact that the lesion occupies a volume, 

the lesion regions generated from the intersection should be highly correlated to the 

lesion regions in the original slice (the slice between the intersecting slices) especially if 

the generated lesions are of high scores.  If this intersection leads to new regions in the 

current slice that have high scores, there will be a high probability that these new lesion 

regions are part of non-detected lesions in the current slice, and they should be added as 

initial segmentations. In Figure  4-10, step 2 of post processing is applied to the initial 

segmentation of a slice from subject MS6. Figure  4-10(a) shows slice 12 and the circled 

green lesion is a sample for a completely non-detected MS lesion region. Figure  4-10 (b) 

and Figure  4-10 (c) show slices 11 and 13, respectively. The circled lesion regions in 

both of them are detected lesion regions in the textural segmentation step. When these 

lesion regions are intersected as shown in Figure  4-10(d), they recover part of the non-

detected lesion region in slice 12 as shown in Figure  4-10(e). The recovered part of lesion 

region can act as a seed that can be expanded in the region growing used as part of post 

processing step 3. 
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Figure  4-10: Post processing Step2: Detection of the non-detected lesion regions using neighboring slices. 

 (a) non detected lesion in slice 12 of MS6. (b) and (c) detected lesions in the slices 11 and 13 respectively are 
intersected to recover part of the non detected lesion region. (d) Intersection provides part a new lesion region 

(e) Portion of the lesion region in the slice 12 is recovered by adding (a) and (d). 

 

Step 3: Lesion Regions Shape Correction 

In this step, errors of type 2 and 4 in MS lesions are addressed. These two types of errors 

represent false parts in the segmented MS lesion regions in the form of either additional 

parts that need to be removed or incomplete parts that need to be detected. Both types of 

errors are addressed through shape correction of each segmented MS lesion region 

without adding or deleting MS lesion regions. Each detected MS lesion region in each 

slice is processed to correct its shape through the elimination of false positive pixels (type 

4) and adding non-detected or false negative pixels (type 2). The shape correction of 

detected MS lesions is performed through the following three operations. Figure  4-12 

will be used to illustrate the application of the different operations in post processing step 

3 to a sample segmented slice from MS6. Figure  4-12 (i1) and Figure  4-12(i2) show the 

initial colored evaluation of the segmentation and the initial segmentation, respectively. 

The other parts of Figure  4-12 will be used to illustrate the corresponding operations in 

the following discussion of step 3.  
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Step A - Elimination of the false positives on the boundary of detected MS lesion 

regions 

The colored evaluation of the segmentation depicted in Figure  4-12(i1) shows that each 

lesion regions colored in blue area (true positive) is surrounded by a red boundary (false 

positive). These false positive pixels on the boundary of the lesion regions may arise 

from the similarity between the textural properties (features) of non-MS regions and MS 

lesion regions. These false positive pixels may also arise from blocks classified in the 

initial segmentation as MS blocks which will cause all the block pixels’ scores to be 

incremented increasing their probability to be MS-pixel even when some of the pixels in 

the block are not MS pixels.  

To eliminate these false positive pixels, especially on the boundary, the following 

parameters are considered for each pixel: 

1. Euclidean distance between the pixel and the lesion region boundary. 

2. Difference between the grayscale of the pixel and the mean grayscale of the lesion 
region. 

3. Segmentation score of the pixel at the conclusion of the initial segmentation step. 

 

Some of the pixels of the non-MS pixels on the boundary of lesion regions can be 

eliminated based on these parameters using a fuzzy engine designed for this purpose 

where the membership functions and the threshold values are calculated based on the 

analysis of the initial segmentation of the training subject dataset (MS3). A Summary of 

the fuzzy engine including variable fuzzification, fuzzy rules, and defuzzification is 

provided in Figure  4-11. The fuzzy rules output is the decision which is binary variable 
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have two values; either keep the pixel in the lesion region (KEEP) or remove it 

(REMOVE). The defuzzification is performed using the centroid rule which is used in 

case of classification [69].  

 

Figure  4-11: Fuzzy Engine used in Lesion Regions Shape Correction (Step 3-a). 

Variables fuzzification, fuzzy rules, and defuzzification. (In Fuzzy rules, X indicates don’t care condition and 
DECISION=KEEP means keep the pixel in the MS lesion region and DECISION=REMOVE means remove the 

pixel from the MS lesion region). 
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Figure  4-12 (a1) and Figure  4-12 (a2) show the effect of applying this step (A) on a slice 

from MS6 in case of using the fuzzy based engine. The lesion regions became smoother 

after trimming the false positive pixels on the boundary, but some pixels inside the lesion 

regions were eliminated by mistake leaving some holes (green voxels in Figure  4-12 (a1) 

and black voxels in Figure  4-12(a2). These holes will be addressed in operation (c) of 

step 3 of post processing, to be discussed later. Any excessive pixels trimmed from the 

boundary can be recovered in operation (b) of step 3 of post processing where false 

negatives are addressed. 

Step B - Elimination of the false negatives on the boundary of the lesion regions 

The colored evaluation of the segmentation depicted in Figure  4-12(i1) shows green 

pixels (false negatives) connected to some of the lesion regions blue areas (true 

positives). These false negative pixels on the boundary of the lesion regions can arise 

from the dissimilarity between the textural properties (features) of the non-detected lesion 

areas and the textural properties of the detected lesion region itself. To recover these 

pixels, region growing is applied for each lesion region. Any of the pixels neighboring to 

each lesion region are included in the closely adjacent MS lesion region if the absolute 

difference between the grayscale of the pixel and the mean grayscale of the lesion region 

does not exceed the standard deviation of the grayscale of the lesion region. The region 

growing operation is repeated recursively until no new pixels are added. Figure  4-12(b1) 

and Figure  4-12(b2) show the effect of applying this recursive region growing operation, 

where most of the false negative pixels were recovered. 
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Step C - Forcing lesion continuity to eliminate false negatives (holes) inside the 

lesion regions 

For each lesion region, there may be some pixels inside the region which are not detected 

in the initial segmentation (due to the block’s textural features being different from 

features of MS blocks) or detected but removed as part of the elimination of false 

positives on the boundary of MS lesions during operation (a) of this step while trimming 

the lesion region. By applying the logical concept of lesion continuity, which means that 

the lesion cannot have inside holes, all the pixels inside the boundary of the lesion 

regions are assigned to be MS pixels. Figure  4-12(c1) and Figure  4-12(c2) show the 

effect of applying this operation where all the holes were filled. 

All the operations visualized in Figure  4-12 shows that step 3 did not add or remove any 

lesion regions from the initial segmentation but only the lesion regions became more 

completed and smoother. 

4.6 Pipeline 2 - Single View and Multi-Channels MRI Pipeline  

This pipeline is similar to the previous pipeline but supports inputs of multi-channels 

MRIs. The supported channels are FLAIR, T1, T2 and PD MRI sequences. The following 

subsections describes the added functions to the modules of pre-processing, core textural 

SVM and post-processing to benefit from the multi-channels data and also benefits from 

the registration of the T1 channel to the MNI atlas template to provide spatial priors.
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Figure  4-12: Post processing Step3: Lesion Regions Shape Correction. 

(i1) and (i2): the initial colored evaluation of the segmentation and the initial segmentation. (a1) and (a2): Effect 
of applying step 3a. (b1) and (b2): Effect of applying step 3b. (c1) and (c2): Effect of applying step 3c. 

 

4.6.1 Changes in Preprocessing Module 

In pipeline 1, the preprocessing module provides intensity correction to the FLAIR slices. 

In pipeline 2, offline registration to the probabilistic MNI atlas [70], co-registration 

among the different channels and Intensity correction to all channels are added. 

Registration with MNI Probabilistic Atlas 

The probabilistic MNI atlas [70] provides for each voxel the probability of belonging to 

the white matter (WM), the grey matter (GM) and the cerebro-spinal fluid (CSF). The 

template of the MNI atlas is a T1 sequence, thus the T1 sequence of the subject MRI is 

used for registration with the atlas. The registration is done offline before the 

segmentation using AIR package [71]. Based on the registration step, three values are 

provided for each voxel representing the prior probabilities of the voxel to belong to 
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white matter, gray matter or CSF tissues. A sample slice from the MNI atlas template and 

T1 slice along with the registered priors of the probabilistic MNI atlas are shown in 

Figure  4-13. Figure  4-13 (c-e) are the corresponding slice from the probabilistic tissue for 

the white matter (WM), gray matter (GM) and CSF tissue prior probabilities, 

respectively. 

 

Figure  4-13: Registration To MNI Atlas with T1 sequence. 

(a) a slice from the MNI atlas template (b) a T1 slice from the subject MS3 registered to slice shown in (a)  
(c)Registered White Matter Probability (d) Registered Gray Matter Probability (e) Registered CSF Probability 

  

Co-registration 

As described in the datasets section 2.1, the datasets acquired at the University of Miami 

Miller School of Medicine, have different resolutions across the channels. These datasets 

are used in our research in three settings: single-channel, multi-channels, and MS 

Challenge settings. In multi-channels settings (this pipeline), the other sequences (T2, 

PD, and FLAIR) are co-registered to the T1 sequence that was already registered to the 

MNI atlas. The expert MS labels are manually delineated on the FLAIR sequence. In 

order to keep the manual MS labels unaffected through the registration, the FLAIR 

sequence should not go through minimum changes in the registration process. Thus, T2 

and PD are co-registered to T1. Then, all of (T1, T2, and PD) are re-sampled to the same 

resolution and the same inter-slices distances of the FLAIR. Thus, each slice of FLAIR 

sequence corresponds to a slice from the other sequences. Then, 2D registration is 
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applied to each slice of FLAIR to match corresponding slice of T1 sequence and the 

transformation matrix parameters are extracted and applied to the MS label overlay. A 

sample T1 slice along with the other channels and the ground truth lesion mask registered 

to the T1 sequence are shown in Figure  4-14. Figure  4-14 (a) shows a T1 slice (from 

subject MS6) registered to the MNI atlas template and down sampled to the resolution of 

FLAIR. Figure  4-14 (b) shows the corresponding FLAIR slice corresponding to the 

T1slice after registration. Figure  4-14 (c) shows the ground truth lesion mask 

superimposed over the FLAIR slice after registration. In Figure  4-14 (d), lesion mask is 

extracted.  Figure  4-14 (e and f) show the corresponding T2 and PD slices corresponding 

to the T1slice after registration, respectively. 

 

 

Figure  4-14: Co-Registration of the different channels. 

(a) a T1 slice from the subject MS6 (b) FLAIR slice registered to T1 (c) Ground Truth Lesion mask 
superimposed over the FLAIR slice is registered  (d) the lesion mask is extracted after registration (e) T2 slice 

registered to T1 (f) PD slice registered to the T1.  

 

Intensity Correction: 

The same intensity correction module used in pipeline 1 is applied in pipeline 2 for the all 

channels.  
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4.6.2 Changes in the Processing Core Module “Textural Based SVM” 

The same engine used in pipeline 1 is used in pipeline 2 with only two added categories 

of blocks features are added to the feature vector: other channels intensities and the 

tissues priors obtained from the MNI atlas. 

Changes in the Feature Vector 

The block features are classified into five categories: textural features, position features, 

co-registered intensities, tissues priors and neighboring blocks features.  The updated 

features vector is listed in Table  4-2. 

Multi-Channels Intensities 

The other channels features (C2 and C2) include intensity means for the corresponding 

block in the T1, T2, and PD channels. 

Spatial probabilistic tissues Priors 

The atlas spatial prior probabilities features include the means of the priors extracted 

from the probabilistic atlas (White Matter, Gray Matter, and CSF probabilities) for the 

block. 

The textural features, position features, and neighboring blocks features. categories were 

explained in pipeline 1. 

4.6.3 Post-Processing Module 

To benefit from the tissues probabilities in the post-processing module, step 1 and step 

3A of the post-processing module used in pipeline 1 are replaces with SVM based 

Deleter and SVM based Trimmer respectively. 
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Features Category Features 

Textural features 1-Mean (Histogram based feature) 
2-variance (Histogram based feature) 

 3-Gradient mean (Gradient based feature) 
4- Gradient variance (Gradient based feature) 

 5-8 Grey level non-uniformality in the 4 directions (Run length 
based feature) 
9-12 Run length non-uniformality in the 4 directions (Run length 
based feature) 

 13-16 Contrast in the 4 directions (Co-occurrence matrix based 
feature) 
17-20 Absolute value in the 4 directions (Co-occurrence matrix 
based feature) 
21-24 Entropy in the 4 directions (Co-occurrence matrix based 
feature) 

Position features 25-Slice relative location 
26- Normalized radial distance between block and slice center 

Other Channels 27-T1 Mean 
28- T2 Mean 
29- PD Mean 

Atlas Spacial 
Priors 

30-WM Probability Mean 
31- GM Probability Mean 
32-CSF Probability Mean 

Neighboring 
blocks features 

33-40 Differences between grayscale of the block and each of  the 
8 neighboring blocks 

Table  4-2 : A square Block Features Vector in Single-View Multi-Channels Pipeline. 

SVM based Deleter  

To improve elimination of false positive regions (step 1), an SVM lesion region eraser 

engine is introduced. This is an engine is based on a features vector for the segmented 

lesion region. The features vector is summarized in Table  4-3.  



89 

 

 

Features Category Features 

Lesion Region Area and 
Position 

Lesion Region Area 
 Normalized Cartesian coordinates of the top left point of the 
lesion region.  

Segmentation Mean 
Score of the Lesion 
Region 

Mean of Segmentation scores of the lesion regions pixels at 
the conclusion of the initial segmentation step. 
 

Region Intensity Mean Mean of Grayscale intensities of the lesion region pixels (for 
the supported channels). 

Difference between 
Lesion Region Intensity 
Mean and Background 
Intensities mean 

Difference between the grayscale intensity of the pixel and 
the mean grayscale intensity of the lesion region neighboring 
background (for the supported channels). 
 Difference between the grayscale intensity of the pixel and 
the mean grayscale intensity of the slice background (for the 
supported channels). 

Table  4-3 : Segmented Lesion Region Features Vector 

The lesion region features include the lesion region area which is calculated by counting 

the pixels of the region. The Cartesian coordinates of the top left pixel of the lesion 

region are normalized; for each feature, the mean of the feature values was subtracted 

from the voxel value, and the outcome was divided by the standard deviation. This 

approach resulted in a mean of 0 and variance of 1 for all features. The position features 

are added because some of the false positive MS lesion regions are located in uncommon 

locations. Odd locations include MS lesions outside the brain area, close to the brain 

boundary, or close to the sagittal plan. Since the spatial features were also normalized by 

this method, this implicitly corrects for differences in size and location between the 

patients. The segmentation score of the pixels of the lesion region are averaged to get a 

feature for the region. The lesion region mean intensities (for the supported channels) are 

included as a feature. The difference between the mean grayscale intensity and the 

background mean intensity is used to formulate features representing the lesion region. 

There are two types of region backgrounds; the neighboring background and the slice 
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background. The neighboring background for the lesion region is defined as the rectangle 

whose width and length are three times the width and length of the smallest rectangle 

enclosing the lesion region respectively and the lesion region are centered in this 

rectangle. Figure  4-15 shows the lesion region neighboring background marked with 

yellow lines. The slice background is the brain area surrounding the lesion region. The 

means of intensities of neighboring and slice backgrounds are calculated excluding any 

other lesions in these backgrounds. The difference between grayscale intensity of the 

lesion region and both backgrounds intensities mean for all of the four channels are used 

as features in the features vector. 

 

Figure  4-15: Neighboring Background (Marked by Yellow rectangle) of a Lesion Region (Marked by Red 
indicating False Positive). 

 

The deleter engine is a SVM engine added to provide a decision to keep (or discard) each 

segmented lesion region. It is trained with the evaluation of the result of the main 

segmentation process. The same subject dataset used in training the main segmentation 

engine is segmented by the main segmentation engine and the segmented lesion regions 

are compared with the ground truth. For each lesion region of the segmented lesion 

region, the above features are calculated and Keep/Discard decision of the lesion region 
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is assigned to 1 (Keep) in the training set if the lesion region has at least one pixel marked 

as MS lesion in the ground truth and 0 (Discard) otherwise. The trained SVM engine is 

used to delete the false positive lesion regions in the texturally segmented lesion regions.  

 SVM based Trimmer 

To improve elimination of false positive pixels in the true regions (step 3A), especially 

on the boundary, a SVM lesion region trimmer engine is introduced. This is engine is 

based on a features vector for the pixel of the segmented lesion region. This feature 

vector is summarized in Table  4-4. 

The trimmer engine is a SVM engine added to provide Keep/Discard decisions for 

each pixel of the lesion region. It is trained with the evaluation of the result of the main 

segmentation process. The same subject dataset used in training the main segmentation 

engine is segmented by the main segmentation engine and the segmented lesion regions 

are compared with the ground truth. For each pixel of the segmented lesion region, the 

above features are calculated and a Keep/Discard decision for the pixel is assigned to 1 

(Keep) in the training set if the pixel is part of an MS lesion in the ground truth and 0 

(Discard) otherwise. The trained SVM engine is used to trim the false positive pixels in 

the segmented lesion regions.  
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Features Category Features 

Relative Position of Pixel 
to region 

Euclidean distance between the pixel and the lesion region 
calculated center. This distance is normalized by dividing 
by the lesion region perimeter. 
Euclidean distance between the pixel and the lesion region 
boundary. This distance is normalized by dividing by the 
lesion region perimeter. 

Segmentation Score of 
the pixel 

Segmentation score of the pixel at the conclusion of the 
initial segmentation step. 

Pixel Intensity Grayscale intensity of the pixel (for the supported 
channels). 

Difference between Pixel 
Intensity and Region and 
Background Intensities 

mean 

Difference between the grayscale intensity of the pixel and 
the mean grayscale intensity of the lesion region (for the 
four channels). 
Difference between the grayscale intensity of the pixel and 
the mean grayscale intensity of the lesion region 
neighboring background (for the supported channels). 
Difference between the grayscale intensity of the pixel and 
the mean grayscale intensity of the slice background (for the 
supported channels). 

Atlas Spatial Priors  Pixel WM Probability 
 Pixel GM Probability 
Pixel CSF Probability 

Table  4-4 : Segmented Pixel Features Vector 

4.7 Pipeline 3 – Segmentation of MS in Multi-Sectional Views Multi-channel Slices 

The MS lesion volumes can be viewed from the different sectional views of the brain 

MRIs. Figure  4-16 shows an MS lesion volume in the three sectional views. A lesion 

region in the axial view is pointed to by a cursor in Figure  4-16(a), its corresponding 

lesion region in the sagittal view in Figure  4-16(b) and its corresponding lesion region in 

the coronal view in Figure  4-16(c). The proposed technique aims to benefit from the 

multiple views in improvement the quality of MS lesions segmentation. Our 

segmentation technique strategy is to superimpose the segmentations, in which slice 

segmentation are performed on axial, sagittal and coronal views and the resultant 

segmentations are aggregated to generate the final segmentation. 
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Figure  4-16: An MS lesion volume in the three sectional views. (a) The cursor points to an MS lesion region in 
the axial view. (b) The cursor points to the corresponding MS lesion region in the sagittal view. (c) The cursor 

points to the corresponding MS lesion region in the coronal view. 

 

A pipeline was developed based on the preprocessing and textural based SVM 

processing core to implement the multi-sectional views segmentation. This pipeline is 

composed of preprocessing, three instances of textural based SVM core and multi-views’ 

segmentation aggregation modules as shown in Figure  4-17. The input studies are 

preprocessed offline for registration and co-registration. The three textural based SVM 

core are similar engines; each is applied to a sectional view (Axial, Sagittal, and Coronal 

views). Through each engine, the multi-channels MRI slices of the brain are preprocessed 

for intensity correction to remove the effect of noise and variations in brightness and 

contrast among corresponding sequences of different subjects. The next step in each 

sectional view engine is the processing module, which is used for the detection of initial 

MS lesions regions based on textural features. The output segmentations of the sagittal 

and coronal view engines are rotated to be in the axial view. The output segmentations of 

the axial, sagittal, and coronal sectional views engines are noted as A, B, and C, 

respectively. The multi-sectional views’ segmentations aggregation step is applied to A, 

B, and C to generate the final output segmentation. No post processing module is 

included in this pipeline. 
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Figure  4-17: MS lesions Multi-sectional views – Multi-Channels MS lesions segmentation framework (Pipeline 
3). 

 

The block division is done in a non-overlapping manner to reduce computation 

time taking into consideration that the segmentation is done three times, once for each 

sectional view. 
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4.7.1 Changes in Pre-Processing Module 

It uses the same pre-processing module used in pipeline 2 with only three channels (T1, 

T2, and FLAIR are supported). 

For the MS Lesion Segmentation Challenge datasets, all datasets were rigidly 

registered to a common reference frame and re-sliced to isotropic voxel spacing, with 

resolution 512x512x512, using B-spline based interpolation. The images were then 

aligned on the mid-sagittal plane [34]. The template of the MNI atlas is a T1 sequence, 

thus the T1 sequence of the MRI datasets is used for registration with the atlas.  

For the datasets acquired at the University of Miami Miller School of Medicine, 

have different resolutions across the channels. In this pipeline, these datasets are used in 

MS Challenge settings. In MS-Challenge settings, all the datasets were re-sliced to be in 

the same resolution conditions of MS Lesion Segmentation Challenge datasets to be 

tested by the models trained by MS Lesion Segmentation Challenge training data. Then 

they were registered to the MNI atlas using Automated Image Registration (AIR) 

software [35]. 

We have created a spatial priors atlas for the BrainWeb datasets analog to the 

standard MNI atlas. The BrainWeb database provides twenty anatomical models for 

normal brain. These anatomical models consist of a set of fuzzy tissue membership 

volumes, one for each tissue class, i.e., white matter, gray matter, cerebrospinal fluid, fat. 

The voxel values in these volumes reflect the proportion of tissue present in that voxel, in 

the range [0, 1]. Since we are interested in this dissertation in the white matter, gray 

matter, and CSF tissues probabilities, the corresponding tissues membership volumes in 
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the anatomical models are averaged over the twenty brain templates to get a spatial priors 

atlas to be used when testing the BrainWeb data. 

4.7.2 Changes in core “textural based SVM” Module 

The textural based SVM is cloned three times for the three sectional-views. For each 

sectional brain view (axial, sagittal or coronal), a trained classifier is designed to segment 

the MS lesions in the corresponding view. The details discussed in this subsection apply 

to the three classifiers. The single view classifiers are identical in the structure, criteria, 

and algorithm while the difference is only in the slices view from which the features are 

extracted.  

It uses the same feature vector used in pipeline 2 listed in Table  4-2 (except that only PD 

channel based feature (no. 29) is not included).  

The training takes place the same as the single views’ pipelines (1 and 2), the only 

difference that it is performed in pipeline 3 for all sectional views. The segmentation is 

little bit different due to using non-overlapping blocks to reduce computation time as 

explained below: 

Segmentation 

In the selected brain view, each of the slices of the subject dataset to be segmented is 

divided into non-overlapping square blocks of size wxw pixels. The features vector for 

each block is calculated. The trained SVM for the corresponding brain view is used to 

predict the class labels for all the non-overlapping blocks. The block division is done in a 

non-overlapping manner to reduce computation time taking into consideration the high 

resolution of each slice and performing the segmentation three times, once for each 
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sectional view. For any block classified as MS block, assuming true positive 

classification, this does not mean that all pixels of the block should be classified as MS 

pixels because the SVM engine is trained to detect the blocks that contains MS pixels 

completely or partially. However, during segmentation, if any block is classified as MS 

block (y=1), all pixels inside the block are marked as MS voxel while the final decision 

for the individual pixels taken by the aggregate segmentation step. For the sagittal and 

coronal sectional-view segmentations, the output segmentation is rotated to be in the 

axial view. The output segmentations of the axial, sagittal, and coronal sectional views 

segmentation engines are noted as A, B, and C, respectively. 

Figure  4-18 shows segmentation of sample slices from subject (CHB_train_Case01) in 

multi-sectional views (axial, sagittal, and coronal). Figure  4-18 (A) demonstrate axial 

sectional view segmentation: Figure  4-18 (A1) shows the original FLAIR slice. 

Figure  4-18 (A2) shows the ground truth for the lesions generated through manual 

segmentation. Figure  4-18 (A3) provides the colored evaluation of the segmentation. 

Similarly, Figure  4-18 (B) and Figure  4-18 (C) demonstrates sagittal and coronal views 

segmentations. 
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Figure  4-18: Using Textural SVM in Multi-Sectional Views. 

 (A) Axial Sectional-View Segmentation, (B) Sagittal Sectional-View Segmentation and (C) Coronal Sectional-
View Segmentation. (A1, B1 and C1) Sample slice from CHB_train_Case07 in the corresponding View, (A2, B2 

and C2) ground truth for the sample slice, (A3, B3 and C3) colored evaluation of the corresponding view 
segmentation. 

  



99 

 

 

4.7.3 Aggregate Segmentation 

The set S includes all voxels in the dataset to be segmented. The resultant segmentations 

from the single view classification can be represented by sets A, B, and C for the axial, 

sagittal, and coronal segmentations, respectively. Each set includes the voxels that are 

classified as MS-voxel in the corresponding view segmentation. In the best case scenario, 

all the positive and negative classes are true, and A, B, and C should be identical. 

However, reality is that the three sets intersect with each other as shown in Figure  4-19. 

As the number of segmentation sets where a certain voxel is included increases, the 

higher the probability of this voxel to be true positives. 

 

Figure  4-19: Segmentation sets of single views: Axial (A), Sagittal (B) and Coronal (C). 

 

The aggregate segmentation function decides for each voxel ∈  if it should be 

included in the aggregate segmentation set (G) according to the relation between  and 

the three sets of the sectional views segmentations A, B, and C. We model the 

aggregation as a binary classification problem that assigns for each voxel ∈   either 

the class MS1 (included in G) or the class MS0 (not included in G). 
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For each voxel , we define a discrete variable  that represents the number of 

segmentation sets where the voxel  is included. The variable  can take discrete 

symbolic values X0, X1, X2, and X3 according to the following definition:  

= X , ∈ − ( ∪ ∪ C)X ,  ∈ ([ − ( ∪ )] ∪ [ − ( ∪ )] ∪ [ − ( ∪ )])X , ∈ ([( ∩ ) − ] ∪ [( ∩ ) − ] ∪ [( ∩ ) − ])X , ∈ ( ∩ ∩ )  (4-6) 

According to the above definition and the demonstration in Figure  4-19, = X0 if 

 falls inside the white area (  is not included in any of A,B or C), = X1 if  falls 

inside the yellow area (  is inside either A,B, or C), = X2 if  falls inside the orange 

area (  is included by any two sets of A,B, and C) and = X3 if  falls inside the red 

area (  is included in A,B, and C). 

The Bayesian decision rule is applied to obtain the posterior probability 

P(MS1| ). This involves the calculation of the classes priors P(MSi)  and the likelihood 

functions P( |MSi) for (i=0 to 1). In order to obtain the prior probabilities and the 

likelihoods, statistical analysis was performed on the training datasets (the 20 training 

datasets from the MS Lesion Challenge). The prior probability P(MS1) is the percentage 

of voxels that are manually labeled as MS-voxels in the datasets ground truth while the 

prior probability P(MS0) is the percentage of voxels that are manually labeled as normal 

voxels. Then the training datasets were segmented using the three engines of the single 

view (Axial, Sagittal, and Coronal) segmentations to get the three sets A, B, and C 

respectively for the training datasets. The likelihood function P( =Xi|MS1) is the 

percentage of voxels that are manually labeled as MS-voxels in the datasets ground truth 
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and in the same time =Xi according to the automatic segmentation for (i=0 to 3). In the 

same manner, P( =Xi|MS0) is calculated for (i=0 to 3). 

The posterior probability P(MS1| ) is calculated using the Bayesian decision rule: 

P(MS1| )= (P( |MS1). P(MS1) )/ P( ) (4-7) 

where the evidence P( ) is given by: 

P( )=P( |MS1). P(MS1) +  P( |MS0). P(MS0) (4-8) 

Finally, the aggregate segmentation function uses the posterior probability P(MS1| ) to 

select voxels from the the S to be included in the aggregate set G according the following 

rule: 

G = { | P (MS1| ) ≥   ∀ ∈  } (4-9) 

with  is a threshold that converts the posterior into a binary decision. The value 0.5 is 

selected for . 

The aggregate segmentation of the multi-sectional views segmentations is 

demonstrated in Figure  4-20. Figure  4-20(a) shows a sample axial slice (257) from 

CHB_train_Case07. Figure  4-20(b) shows the axial view segmentation for this slice 

referred to by A257 (A stands to the axial segmentation set and the subscript 257 stands to 

the slice number). A segmented lesion region (RA) is highlighted by yellow circle. 

Figure  4-20(c) shows sagittal sectional-view segmentation performed in a sagittal slice 

with the highlighted area intersects with (RA). After performing sagittal view 

segmentation for all sagittal slices, the resultant segmentation is rotated to the axial view 
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(B). The result of this segmentation that corresponds to the original sample slice, referred 

to by B257 (B stands to the set of sagittal segmentation rotated to axial view and the 

subscript 257 stands to the slice number in axial view) is shown in Figure  4-20(d) with 

the highlighted area is a new segmentation for RA namely (RB). Similarly, Figure  4-20(e) 

shows coronal sectional-view segmentation performed in a coronal slice with the 

highlighted area intersects with (RA). After performing coronal view segmentation for all 

coronal slices, the resultant segmentation is rotated to the axial view (C). The result of 

this segmentation that corresponds to the original sample slice, referred to by C257 (C 

stands to the set of coronal segmentation rotated to axial view and the subscript 257 

stands to the slice number in axial view) is shown in Figure  4-20(f) with the highlighted 

area is a new segmentation for RA namely (RC). Figure  4-20(g) gives the aggregate 

segmentation of A257, B257, and C257 referred to by G257 (G stands to the aggregate 

segmentation set and the subscript 257 stands to the slice number in axial view). The 

highlighted lesion region (RG) is the aggregate of the (RA), (RB), and (RC). Figure  4-20(h) 

shows the colored evaluation of the aggregate segmentation with the highlighted lesion 

region (RG) is colored mostly with blue (true positive voxels) along with small portions 

colored with red and green (false positive and false negative voxels respectively). 
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Figure  4-20: Aggregate segmentation of the multi-sectional views segmentations. 

 (a) Axial slice (257) from CHB_train_Case07. (b) Axial sectional-view segmentation of the slice (A257) with a 
lesion region (RA) highlighted in yellow. (c) Sagittal sectional-view Segmentation. The highlighted lesion region 
intersects with (RA). (d) Segmentation of the original slice (B257) in sagittal sectional-view segmentation rotated 

to axial view with lesion region (RB) highlighted in yellow. (e) Coronal sectional-view segmentation. The 
highlighted lesion region intersects with (RA). (f) Segmentation of the original slice (C257) in coronal sectional-
view segmentation rotated to axial view with lesion region (RC) highlighted in yellow. (g) Segmentation of the 

original slice (G257) by aggregates segmentation of (A257), (B257) and (D257). The marked lesion region (RG) is the 
aggregate of (RA), (RB) and (RC). (h) Colored evaluation of the aggregate segmentation (G257) and the 

highlighted area is the colored evaluation if (RG). 
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4.8 Experimental Results 

This section integrates all tests done to evaluate the different pipelines. Although the 

development of three segmentation pipelines are done in sequence, we can look to the 

technique as a single segmentation framework and each pipeline can be obtained by 

configuring the pre-processing, core, and post-processing modules to ease discussion of 

the testing results. 

Possible Configurations of the Preprocessing Module 

The segmentation pipeline uses the preprocessing module configured using the following 

options: 

• Intensity Correction on selected brain sectional view: Axial, Sagittal or Coronal. 

• Intensity Correction on selected Channels. 

• Registration of T1 channel to the MNI T1 atlas can be enabled or disabled. 

• Co-Registration among the different channels can be enabled or disabled. 

Possible Configurations of the Textural based SVM Core Module 

The segmentation pipeline uses the textural based SVM configured using the following 

options: 

• Segmentation is done on selected brain sectional view: Axial, Sagittal or Coronal. 

• Slice is divided into either overlapping or non-overlapping blocks. 

• Blocks feature vector includes textural, position, and neighboring blocks features 

and: 

o Spatial Features (Tissues Probabilities) can be included or not. 
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o Other Channels Mean Intensities Features Can be: 

 None. 

 Means of the intensities of another 2 channels T1 and T2. 

 Means of the intensities of another 3 channels T1, T2, and PD. 

Possible Configurations of the Post Processing Module 

The segmentation pipeline uses the post-processing module configured using the 

following options: 

• Step 1 False positive Lesion Regions Reduction – can be done using either: 

o SVM  based Deleter module or 

o Deletion of false region based on location. 

• Step 2: False Negative Lesion Regions Reduction by inter-slices comparison (No 

Configuration). 

• Step 3 Lesion Region Shape Correction 

o A- False positive on boundary reduction- can be done using either: 

 Fuzzy based engine. 

 SVM based Trimmer. 

o B- False negative on boundary reduction by region growing - No 

Configuration. 

C- False negatives inside region reduction by forcing lesion continuity - No 

Configuration. 



106 

 

 

In the following subsections, the core (main) classifier is verified, single view pipelines 

(1 and 2) are validates and the multi-views pipeline is evaluated. 

4.8.1 Validation of the Main Classifier 

Receiver operating characteristics (ROC) analysis was performed to evaluate the main 

processing classifier that generates the initial MS-blocks. Due to using overlapping 

blocks, each slice pixel is included in 64 blocks (in case of using square blocks of 8x8 

pixels). A score is given to each pixel equals to the number of blocks that encloses the 

pixel and classified as MS-block. To draw the ROC curve, a threshold is defined as the 

number of positive blocks needed to consider the pixel as MS pixel. This threshold was 

changed from 64 blocks down to 0, and for each case the specificity (true negatives rate) 

and sensitivity (true positives rate) were calculated in order to create the ROC curve as 

plotted in Figure  4-21 where the false positive rate (1-specificity) is on x-axis and the 

sensitivity is on y-axis. Using very high threshold leads to zero false positives and very 

low sensitivity while very low threshold leads to both very high false positive rate and 

sensitivity. For all tests, the ROC curve falls above the diagonal indicating good 

classification. 
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Figure  4-21: Receiver Operating Characteristics (ROC) curve for main processing performance. 

 

To compare the ROC curve of the proposed technique with one of the state of the art 

methods that used ROC for evaluation, the free-response receiver-operating characteristic 

curve for overall performance of method proposed by Yamamoto et al. [6] is cloned in  

Figure  4-22. Since their method does not involve threshold, they could not draw real 

ROC, but instead, the sensitivity is plotted versus the number of false positives per slice. 

 

Figure  4-22: Free-response receiver-operating characteristic curve for overall performance of a state of the art 
method in detection of MS lesions. 
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4.8.2 Validation of the Single View Pipelines (Pipeline 1 and Pipeline 2) 

The dataset of ten real FLAIR MRI axial sequences were used to evaluate the 

performance of the proposed single view pipelines (pipeline 1 and pipeline 2). The 

performance metrics detailed in section  4.2 were calculated.  

In pipeline 1, the preprocessing, the textural based SVM core and post-processing 

modules are configured as following: 

Pre-processing module configuration: 

• Intensity Correction on axial view. 

• Intensity Correction on FLAIR slices. 

• Registration of T1 channel to the MNI T1 atlas is disabled. 

• Co-Registration among the different channels is disabled. 

Textural based SVM configuration: 

• Segmentation is done on axial view. 

• Slice is divided into overlapping blocks. 

• Blocks feature vector includes textural, position and neighboring blocks features 

and: 

o Spatial Features (Tissues Probabilities) is not included. 

o Other Channels Mean Intensities Features is not included. 

Post-Processing module configured using the following options: 
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• Step 1 False positive Lesion Regions Reduction – using Deletion of false region 

based on location. 

• Step 2: False Negative Lesion Regions Reduction by inter-slices comparison. 

• Step 3 Lesion Region Shape Correction 

o A- False positive on boundary reduction either Fuzzy based engine. 

o B- False negative on boundary reduction by region growing. 

o C- False negatives inside region reduction by forcing lesion continuity. 

In pipeline 2, the textural based SVM core and post-processing modules are configured as 

following: 

Pre-processing module configuration: 

• Intensity Correction on axial view. 

• Intensity Correction on 4 channels: FLAIR, T1, T2 and PD slices. 

• Registration of T1 channel to the MNI T1 atlas is enabled. 

• Co-Registration among the different channels is enabled. 

Textural based SVM configuration: 

• Segmentation is done on axial view. 

• Slice is divided into overlapping blocks. 

• Blocks feature vector includes textural, position and neighboring blocks features 

and: 

o Spatial Features (Tissues Probabilities) is included. 

o Other Channels Mean Intensities Features include: 
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 Means of the intensities of another 3 channels: T1, T2, and PD. 

Post-Processing module configured using the following options: 

• Step 1 False positive Lesion Regions Reduction – using SVM based Deleter. 

• Step 2: False Negative Lesion Regions Reduction by inter-slices comparison. 

• Step 3 Lesion Region Shape Correction 

o A- False positive on boundary reduction using SVM based Trimmer. 

o B- False negative on boundary reduction by region growing. 

o C- False negatives inside region reduction by forcing lesion continuity. 

The segmentation results are summarized in Table  4-5. In this table, for each study 

subject, the dice similarity based on lesion regions DSR, the dice similarity based on 

voxels DSV, sensitivity, and detected lesion load are given. Overall average is given for 

each of these performance metrics. 

Study 
Pipeline 1 (FLAIR) Pipeline 2 (Multi-Channels) 

DSR DSV SensitivityV DLL DSR DSV SensitivityV DLL 

MS2 0.88 0.78 0.67 0.93 0.88 0.78 0.67 0.93 
MS3 0.96 0.93 0.89 1.1 0.91 0.86 0.86 0.96 
MS4 0.68 0.64 0.72 0.92 0.82 0.74 0.79 0.93 
MS5 0.72 0.68 0.59 0.65 0.72 0.68 0.59 0.65 
MS6 0.84 0.72 0.64 0.76 0.84 0.72 0.64 0.76 
MS7 0.77 0.67 0.63 0.91 0.83 0.72 0.72 0.93 
MS8 0.68 0.68 0.72 1.05 0.68 0.68 0.72 1.05 
MS9 0.76 0.63 0.57 0.78 0.81 0.7 0.71 0.82 
MS10 0.83 0.71 0.62 0.81 0.83 0.71 0.62 0.81 
MS11 0.75 0.68 0.74 1.12 0.82 0.78 0.81 1.3 

Average 0.79 0.71 0.68 0.90 0.814 0.737 0.713 0.914

Table  4-5 : Segmentation Result 
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The single-channel pipeline has average metrics of 0.79 for DSR, 0.71 for DSV, 0.68 for 

sensitivity, and 0.9 for percentage of detected lesion load. Better results are obtained for 

the multi-channel pipeline where the average metrics are 0.81 for DSR, 0.73 for DSV, 0.71 

for sensitivity, and 0.91 for percentage of detected lesion load. The average detected 

lesion load indicates that the proposed method could detect the MS lesion with 

reasonable error rates. Although the average dice similarity based on voxels DSV is 

exceeds the minimum value for reasonably good segmentation, there were drops in the 

performance for some of the studies. Based on the analysis of the results for these studies, 

the MS lesions were found to be very small for these studies (percentage of MS lesions 

volume in voxels to the total volume in voxels less than 0.1%).   

Excellent result for the segmentation of the training set is a bottom line for accepting the 

technique. If the segmentation result of the training dataset (MS3) is removed from the 

average calculation, the average metrics would be lower but still in the good range. 

However, it is included for comparison with results of other techniques that includes the 

training set segmentation result in their averages.  

The effect of the post processing steps on the overall performance is shown in 

Figure  4-23. For each study, the dice similarity based on Voxels (DSV) is calculated 

before and after the use of the post processing step for both pipelines. The average 

improvement in dice similarity of the overall segmentation due to the post processing 

stage varies is 12% for pipeline 1 and 15% for pipeline 2. 
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Figure  4-23: Effect of the Post processing steps on the overall segmentation performance. 

 

One of the recent publications [6] provides a comparison table between different 

techniques for detection of the multiple sclerosis lesions according to the dice similarity 

based on lesion regions. We quote the table with in Table  4-6 with our results added as 

the last two line for the two single view pipelines. For each technique, the citation is 

referenced and the methods used in segmentation are provided along with the number of 

subjects used in the evaluation and the average dice similarity obtained using the 

technique. In the original publication of [6], the dice similarity was calculated based on 

the common regions between the manual segmentation and the automatic segmentation 

and similarly we also used the value of DSR in the table 3. The table shows that our 

method has an average regional dice similarity of which is the highest among the past 

studies for both pipelines. This does not mean that our method is the best in terms of 

automatic segmentation performance because the comparative results in table 3 are 

dependent on the image properties of the datasets, which are different among the 

techniques included in the table. However, the comparison shows the success of our 

method for detecting MS lesions in real MRI datasets with competitive results. 
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Authors Segmentation Method #studies Average 
DSR

Boudraa et al. 
2000 [72] 

Fuzzy C-Means 10 0.62 

Leemput et al. 
2001 [60] 

Stochastic model 50 0.51 

Zijdenbos et al. 
2002 [73] 

Pipeline analysis 29 0.68 

Khayati et al. 
2008 [36] 

AMM (adaptive mixtures method), 
MRF (Markov random field 

model) 

20 0.75 

Yamamoto et al. 
2010 [6] 

Region growing, 
LSM (level set method) 

6 0.77 

Proposed 
Pipeline1 [74] 

Texture Analysis,SVM (Pipeline 1) 10 0.79 

Proposed 
Pipeline2 [75] 

Texture Analysis,SVM (Pipeline 2) 10 0.8 

Table  4-6 : Comparison of the automated methods for detection of MS in MR images 

4.8.3 Validation of the Multi-Sectional Views Pipeline (Pipeline 3) 

Evaluation was performed using both synthetic data and real MRI data containing 

varying levels of MS lesion load at different locations in the brain.  

In pipeline 3, the three pairs of pre-processing and textural based SVM cores are 

configured as following: 

Pre-processing module configuration: 

• Intensity Correction on axial, sagittal, and coronal (individually) view. 

• Intensity Correction on 3 channels: FLAIR, T, and T2 slices. 

• Registration of T1 channel to the MNI T1 atlas is enabled. 

• Co-Registration among the different channels is enabled. 
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Textural based SVM configuration: 

• Segmentation is done on axial, sagittal, and coronal (individually) view. 

• Slice is divided into non-overlapping blocks. 

• Blocks feature vector includes textural, position, and neighboring blocks features 

and: 

o Spatial Features (Tissues Probabilities) is included. 

o Other Channels Mean Intensities Features include: 

Means of the intensities of another 2 channels: T1, T2. 

The following subsections provide details about the evaluation settings, metrics, result in 

comparison to other methods and comment on results. 

Synthetic Data 

The BrainWeb database provides three simulated subjects brains involving three levels of 

MS lesion; mild, moderate, and severe referred to in this dissertation as MSLES 1, 

MSLES2, and MSLES3, respectively. The features vector used in the proposed method 

uses multi-channels image intensities with textural features from the FLAIR sequence. 

However, the FLAIR sequence is not provided in the BrainWeb MRI data, but the 

Inversion recovery sequence (IR) provided in the BrainWeb MRI data is used instead 

since it is the closest sequence to FLAIR. Besides, the feature vector depends on spatial 

priors’ atlas to provide white matter, gray matter, and CSF tissues probability for each 

voxel. For this purpose, a simulated atlas was generated using anatomical models 

provided for the twenty normal simulated brains in the BrainWeb database as described 

in preprocessing section. 
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In the training phase, two different engines were trained. The first engine 

(Engine_Moderate_0%) was trained using moderate level lesion subject MSLES2 with 

0% of noise level. The second engine (Engine_Severe_0_3_7_9%) was trained using 

severe level lesion subject MSLES3 at noise levels 0%, 3%, 7%, and 9% with each noise 

level sharing 25% of the training set. In segmentation phase, all the three subjects were 

tested with all noise levels and the obtained results are shown in Table  4-7. For each case, 

the segmentation is evaluated using dice similarity (DS) and detected lesion load (DLL) 

for both trained engines. 

It is clear from Table  4-7 that using the second engine (trained with the severe 

level of MS lesions and varying noise levels) provides better segmentation performance 

for the mild, moderate, and severe cases for different noise levels compared to the first 

engine (trained with the moderate MS case at 0% noise level) in terms of the dice 

similarity (DS) and detected lesion load (DLL). Even the moderate MS case has better 

performance for the high noise levels with the second engine than with the first engine 

which is trained with the same dataset at 0% of noise. 

The results were compared to those obtained by Garcia-Lorenzo et al. [15] for the 

same dataset. The comparison for the mild, moderate, and severe cases is provided in 

Figure  4-24(a), Figure  4-24 (b) and Figure  4-24 (c) respectively. In [15], the training was 

made using the 0% noise level template for each case and the segmentation is tested 

using the other noise levels, excluding the 0% noise level, in contrast to our testing that 

involves intra subject evaluation (training with a subject template and testing another 

subject). Therefore, the 0% will have no results in the charts for the Garcia Lorenzo [15] 

data in Figure  4-24.  
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Besides, the results were compared to Leemput et al. [25] and Freifeld et al. [35] 

for the moderate dataset, which was the only MS lesion level provided by the BrainWeb 

at the time of publication of these two methods. The comparison for the different noise 

levels is shown in Table  4-8. In [25] and [35], the training was made using the 0% and 

1% noise levels for the moderate case template and the segmentation is tested using the 

other noise levels excluding the 0% and 1% noise levels for the same case where our 

testing involves segmentation of all moderate case noise levels using the engine trained 

by severe case (Engine_Severe_0_3_7_9%). Therefore, the 0% and 1% will have no 

results for [25] and [35] data in Table  4-8.  

Comparison with Gracia-Lorenzo et al. [15] in Figure  4-24 shows stability of the 

performance using the second engine against different noise levels even for the mild and 

moderate cases which are not included in the training set, which supports using different 

noise levels in the training set. Comparison with Leemput et al. [25] and Freifeld et al. 

[15] shows competitive performance while considering that we use an engine trained with 

a different brain template compared to the segmented brain data while both of techniques 

used the same brain template for training and segmentation with different noise levels. 
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Subjects 
Noise 
Level 

Using  
Engine_Moderate_0% 

Using  
Engine_Severe_0_3_7_9% 

DS DLL DS DLL 
MSLES1 

(Mild) 
0% 0.79 1.06 0.57 1.65 

1% 0.69 1.21 0.57 1.49 
3% 0.37 3.31 0.55 1.72 
5% 0.06 27.06 0.49 1.82 
7% 0.03 50.60 0.49 1.75 
9% 0.03 53.16 0.53 1.65 

MSLES2 
(Moderate) 

0% 0.88 0.85 0.82 0.74 

1% 0.87 0.85 0.81 0.74 
3% 0.85 0.88 0.80 0.71 
5% 0.53 2.00 0.77 0.69 
7% 0.33 3.86 0.75 0.66 
9% 0.23 5.22 0.72 0.63 

MSLES3 
(Severe) 

0% 0.94 0.92 0.94 0.93 

1% 0.94 0.92 0.93 0.92 
3% 0.89 0.93 0.93 0.90 
5% 0.55 2.18 0.92 0.88 
7% 0.35 3.87 0.90 0.85 
9% 0.32 4.11 0.88 0.80 

Table  4-7 : Segmentation results for the BrainWeb subjects for different noise levels 

 Noise  
Level  

Leemput 2001 et 
al.[16] 

Freifeld 2008 et 
al. [42] 

Proposed 
Method[76] 

0% N/A N/A 0.82 

1% N/A N/A 0.81 

3% 0.80 0.79 0.80 

5% 0.73 0.79 0.77 

7% 0.61 0.78 0.75 

9% 0.47 0.76 0.7 

Table  4-8 : Comparison between the proposed method and state of the art methods on 
BrainWeb moderate lesion level dataset for different noise levels based on of dice 

similarities. 
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Figure  4-24: Comparison between the proposed method and a state of the art method.  

BrainWeb datasets are used for different noise levels based on dice similarities for different subject templates. 
(a) Mild lesion level subject. (b) Moderate lesion level subject. (c) Severe lesion level subject. 

 

 

Real Data 

Datasets of 61 cases were used to verify the segmentation technique proposed in this 

dissertation. The sources of these datasets are the workshop of MS Lesion Segmentation 

Challenge 2008 (51 subjects) and real MRI datasets acquired for MS subjects at the 

University of Miami Miller School of Medicine (10 subjects). The subjects datasets of the 

MS Lesion Segmentation Challenge are categorized as twenty subjects provided for 
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training (10 from CHB and 10 from UNC) and  thirty one subjects provided for testing 

(18 from CHB and 13 from UNC) and labels are not provided for the testing set. 

In the training phase, two different engines were trained. The first engine 

(Engine_CHB) was trained using four subjects of the training dataset 

(CHB_train_Case01, CHB_train_Case02, CHB_train_Case06 and CHB_train_Case10) 

with each subject sharing 25% of the training set. The second engine (Engine_UNC) was 

trained using four subjects of the training dataset (UNC_train_Case02, 

UNC_train_Case03, UNC_train_Case09 and UNC_train_Case10) with each subject 

sharing 25% of the training set. As recommended by Anbeek et al. [20], 

CHB_train_Case04, CHB_train_Case05, CHB_train_Case09, UNC_train_Case01, 

UNC_train_Case05 and UNC_train_Case06 were avoided due to image and manual 

segmentation quality. For the UNC training set, only the manual segmentations of the 

CHB rater were used. 

In the segmentation phase, three groups of subjects were tested. The first group is 

composed of the MRI dataset acquired for MS subjects at the University of Miami Miller 

School of Medicine. The second group is composed of the training set of CHB provided 

by MS Lesion Challenge. The third group is composed of the testing cases provided by 

MS Lesion Challenge. For each group, the segmentation is evaluated using the metrics 

that match those used in other methods using the MS Lesion Segmentation Challenge 

datasets to facilitate the comparison with other method for the purpose of the evaluation.  
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MS Subjects MRI data 

The ten MRI studies for MS subjects acquired at University of Miami, referred to as MS2 

to MS11, have been re-sliced to have the same resolution of the training set of 

Engine_CHB and registered to the MNI atlas as described in the preprocessing section. 

The segmentation of these datasets was performed to check the robustness of the 

proposed technique when training is done using one source of data with set of conditions 

of acquisition and segmentation is performed using a different source of data with 

different set of conditions. The dice similarity for the segmentation of the ten subjects is 

shown in Figure  4-25. 

The X-axis provides the subjects ordered by the total lesion load (TLL) in ml to show the 

effect of this parameter on the segmentation performance. An approximate total lesion 

load is calculated by counting the number of MS voxles in the ground truth and 

multiplying by the voxel volume. 

 

Figure  4-25: Dice similarity versus the total lesion load. 

X-Axis gives the study name ordered by the total lesion load in ml. 
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The results shown in Figure  4-25 demonstrate the success of the proposed technique to 

deal with the case when training is done using one source of data and conditions of 

acquisition and segmentation is performed using a different source of data and different 

conditions. Results for these datasets show weak performance when dealing with MRI 

studies that have very low total lesion load (TLL) which leads to the conclusion that extra 

effort is still needed to specifically handle the mild MS lesions cases. 

MS Lesion Segmentation Challenge Training Set Data 

The ten CHB subjects provided by the MS Lesion Segmentation Challenge datasets are 

segmented by the proposed technique. For the purpose of comparison, segmentation 

results are evaluated using TPR and PPV in the same manner reported by Geremia et al. 

[13] who provides results for segmenting the training datasets. Table  4-9 shows a 

comparison between the proposed technique, Geremia et al. [13] and Souplet et al. [43] 

(the best result in the MS Lesion Segmentation Challenge at that time). The value marked 

in bold is the best metric value obtained. 
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Study Case 

TPR PPV 
Souplet 

et al.  
2008 
[77] 

Geremia 
et al.  
2010 
[13] 

Proposed 
Method 

[76] 

Souplet 
et al.  
2008 
[77] 

Geremia 
et al.  
2010 
[13] 

Propose
d 

Method 
[76] 

CHB_train_Case0
1 

0.22 0.49 0.73 0.41 0.64 0.48 

CHB_train_Case0
2 

0.18 0.44 0.02 0.29 0.63 0.56 

CHB_train_Case0
3 

0.17 0.22 0.14 0.21 0.57 0.06 

CHB_train_Case0
4 

0.12 0.31 0.48 0.55 0.78 0.04 

CHB_train_Case0
5 

0.22 0.4 0.44 0.42 0.52 0.10 

CHB_train_Case0
6 

0.13 0.32 0.15 0.46 0.52 0.42 

CHB_train_Case0
7 

0.13 0.4 0.29 0.39 0.54 0.54 

CHB_train_Case0
8 

0.13 0.46 0.76 0.55 0.65 0.47 

CHB_train_Case0
9 

0.03 0.23 0.18 0.18 0.28 0.09 

CHB_train_Case1
0 

0.05 0.23 0.38 0.18 0.39 0.43 

Table  4-9 : Comparison of the proposed method segmentation results with state of the art 
methods. 

 

 MS Lesion Segmentation Challenge Testing Set Data 

After testing the technique with the available datasets that contain the ground truth, the 

test cases provided by MS Lesion Segmentation Challenge are segmented using the 

proposed method with the CHB test cases segmented using the Engine_CHB and the 

UNC test cases segmented using Engine_UNC for the purpose of comparison and 

competition with other competitors have done the same. The segmentation of the test 
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cases were uploaded to the MS Lesion Segmentation Challenge to get the automatic 

evaluation of the segmentation with team name (UM-ECE_team) and the results were 

posted and can be accessed from the official MS Lesion Segmentation Challenge results 

section[78]. A snapshot of results is depicted in Figure  4-26 with the performance metrics 

used explained in subsection 2.5.4. Currently, the proposed technique segmentation score 

is included in the best ten scores knowing that the proposed technique is the only 

technique that was tested using 31 test cases where the others were tested using only 25 

test cases. 

 

Figure  4-26: Snapshot of the results table generated automatically by the MS Lesion Segmentation Challenge 
workshop evaluation software for the segmentation of the test cases. 
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For the test done on the datasets obtained from MS Lesion Challenge, two engines were 

trained namely Engine_CHB and Engine_UNC for the purpose of comparison and 

competition with other competitors have done the same. However, having a unified 

engine in clinical practice will provide better performance when dealing with other 

subjects.  
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Chapter 5  
Customized MV-T-SVM for Lesions and 
Tissues Detection in MRI 
 

This chapter presents the enhancements developed to customize multi-sectional views 

textural based SVM (pipeline 3) approach presented in the end of  Chapter 4 to provide 

optimized performance in segmentation of tissues and lesions in MRI. The proposed 

technique is referred to as customized multi-sectional views textural based SVM (MV-T-

SVM). 

In the customized MV-T-SVM, enhancements are needed to overcome the 

limitations of the pipeline 3. First, pipeline 3 shows low performance when tested on 

datasets with low TLL. Also, the technique does not take into consideration the anatomic 

properties of the brain area that can be determined from the MNI atlas and thus using the 

probability based on statistics of having MS lesion in a specific area. Lesion regions 

shape improvement in post-processing does not take the contouring properties into 

consideration. The textural features are based on FLAIR sequence and does not benefit 

from the lesion pattern in the other sequences in multi-channels MRI. Performance of 

using SVM to learn lesion properties is affected by imbalanced training set due to the 

relative size of the lesion with respect to the normal brain tissues. Finally, using SVM to 

learn lesion blocks properties within a slice does not benefit from the 3D information of 

the MRI in learning. 
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The enhancements involve benefiting from the tissues and lesions specific 

information in the training and prediction phases of the classifier. The customized MV-T-

SVM uses 3D nature of the MRI information, template tissue information provided for 

images which are registered to an anatomical atlas as well as textural information from 

the multi-channels images. Also, SVM learning procedure is revised to address 

imbalanced classes and to synchronize the learning of the three views engines. In 

addition, the multi-views aggregate function is replaced by variable aggregate operator 

instead of the naive Bayesian formula. 

 Although the customizations made in the MV-T-SVM are made to enable the 

technique to best deal with all tissues and lesions detection in MRI, but the concept is 

mainly applied on MS-Lesions which is the core of this dissertation without loss of 

generality. The twenty real subjects’ datasets provided by MS Lesion Challenge are used 

to train, get statistics, priors, criteria, and thresholds of the customized MV-T-SVM while 

the ten real subjects’ datasets acquired at University of Miami are used for testing the 

technique. The ability of the customized MV-T-SVM to deal with other tissues and 

lesions detection is tested using the publicly available datasets in the CAUSE07 challenge 

[79] which aim to get best performance in detection of caudate. 

5.1 Statistical Textural Features in Multi-Channels Images 

The statistical textural features used in the three segmentation pipelines introduced in 

Chapter 4 are extracted from FLAIR images. These textural features extraction formulas 

are provided in section  2.4. Changes proposed in features extraction to benefit from the 

multi-channels information are mentioned in this section. 
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We assume that the medical (brain) image is available in L channels and that 

features are calculated for each square block of area w2. The intensity of each image 

channel k is given by fk(x,y,z) of three space variables x, y, and z and the function f can 

take any value i=0,1,…. (Gk -1) where Gk is the number of intensity levels in the image 

channel k. For simplicity the dimension z is neglected in the formulas given that the 

textural features are extracted for a slice in certain section view which leads to constant z. 

In the following subsections, the updates proposed to the definitions of textural 

features provided in section  2.4 are explained to each category of features. 

5.1.1 Multi-Channels Histogram based Features 

This category of textural features was updated to be extracted from all channels instead of 

single channel. The intensity level histogram is a function hk(i) providing, for each 

intensity level i, the number of pixels in the whole square block having this intensity in 

the image channel k: 
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The histogram is a concise and simple summary of the statistical information contained in 

the image. Dividing the histogram hk(i) by the total number of pixels in the image 

provides the approximate probability density of the occurrence of the intensity levels 

pk(i), given by: 

NMihip kk /)()( =  (5-2) 
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The following set of textural features is calculated from the normalized histogram for 

each image channel for a certain square block: 

Mean: 
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5.1.2 Multi-Channels Gradient based Features 

This category of textural features was updated to take the neighboring slices and the other 

channels into consideration. 

The gradient matrix element g(x,y) is defined for each pixel in the image square block 

based on the neighborhood size. For a 3x3x3 pixels neighborhood, g is defined as 

follows: 
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The following set of textural features is calculated from the updated gradient matrix: 

Mean of absolute gradient (GrMean) = 
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Variance of absolute gradient (GrVariance) = 
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5.1.3 Multi-Channels Run length matrix based Features 

The run length matrix is defined for a specific direction. Usually a matrix is calculated for 

the horizontal, vertical, 45°, and 135° directions. The matrix element r(i,j) is originally 

defined as the number of times there is a run of length j having gray level i.  

We made the following changes to the definition of Run length matrix: 

• For a certain image channel k, the Gray levels Gk are divided into Rk ranges (Each 

range covers Gk / Rk gray levels).  

• A pixel in a block can fall in ranges R1, R2, …. RL. These ranges for a single pixel 

are defined as a gray level range intersection. 

• The number of possible gray level ranges intersections R is given by: 

= ∏   (5-8) 

• The matrix element r(i,j) is defined as the number of times there is a run of length 

j falling in  the gray level intersection i. 

 The following set of textural features calculated from the multi-channels run length 

matrix is used in the feature vector of customized MV-T-SVM: 
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Multi-channels Gray level non-uniformity (GLevNonUni) = Cjir
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Multi-channels Run length non-uniformity (RLNonUni) 
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where the normalization coefficient C is defined as follows:  
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5.1.4 Multi-Channels Co-occurrence matrices based Features 

The co-occurrence matrix is defined for certain angle θ and certain distance d. The matrix 

element hdθ(i,j) is the number of times f(x1,y1) = i and f(x2,y2) = j where (x2,y2)=(x1,y1) 

+ (d cos θ, d sin θ).  

Instead of extracting features for each square block based on a co-occurrence matrix for 

single channel image, we calculated a co-occurrence matrix for each channel 

CO1,CO2,….COL and modified the formulas of textural extraction to use all of the 

matrices. 

The following set of textural features calculated from the multi-channels co-occurrence 

matrices are used in the feature vector of customized MV-T-SVM: 
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Multi-channels Contrast = ( ) 
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Multi-channels Entropy =  - 
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5.2 Regional Segmentation 

The MNI atlas provides anatomical labels for each voxel in the brain as demonstrated in 

Figure  5-1 with each anatomical label is represented by a unique color. Since the datasets 

used in this dissertation are already registered to this atlas, the anatomical information 

can be used to enhance the proposed technique to get more accurate results. 

 

Figure  5-1: Atlas Discrete Labels for a brain slice. 

Applying statistical analysis on the ground truth of the real subjects’ datasets 

provided by MS Lesion Challenge using the anatomical labels atlas; results in the 

distribution of MS voxels in different regions of the brain as shown in Figure  5-2. Most 

of the MS lesions (66%) occur in the White Matter tissue, which is the highest rate of MS 
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lesions voxels among all labels. (In Figure  5-2, White Matter is removed from the chart 

to avoid dominating the other percentages). 

Some brain regions have high percent of MS lesions voxels. Other regions of the 

brain have no MS voxels and this is logical due to the anatomical properties of these 

regions which are not vulnerable to such type of lesions. On the other hand, some brain 

regions have non-zero percentage of MS voxels although the anatomical structure cannot 

hold such lesions but the MS lesions can occur in the adjacent tissues while the atlas 

provides wrong label due to errors in the registration. 

 

Figure  5-2: Distribution of MS lesion on the brain regions according to analysis made on training dataset 
registered to MNI atlas. 

 

We used this percent as the likelihood P(Tissue(v)|MS1) where Tissue(v) is the 

label assigned to voxel v using the MNI atlas. Using the naive Bayesian decision rule, the 

posterior P(MS1|Tissue(v)) can be calculate based on the likelihood obtained from the 

statistical analysis on the twenty real subjects. Assuming two-class problem with the 

classes MS1 (lesion voxel) and MS0 (healthy voxel), the posterior is given by: 
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(5-15) 

 

By calculating posterior for all tissues, we get P(MS1|Tissue(v)) as shown in Figure  5-3. 

 

 

 

 

 

 

 

 

Figure  5-3: Calculated posterior based on the anatomical tissues likelihood. 

 

Errors in registration are expected due to difference in brain sizes and difference 

in region sizes from subject to another, we do not base the classification directly on the 

calculated posterior but it is used as a threshold in the aggregation step in the customized 

MV-T-SVM as presented later in this chapter.  
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5.3 MS Lesion Customized Learning Engine 

In this section modification are proposed to update the learning of the classification 

engine to be customized to the MS lesions problem. The purpose from the first 

modification is to enhance the integration between the three sectional views classification 

engines. The other modification is done to overcome the imbalanced data effect on 

learning. 

5.3.1 Overlapping Learning of the Multi-Views SVM’s 

In multi-sectional views pipeline explained in  Chapter 4, the three SVM engines are 

trained independently using the training set obtained by dividing the slices of the 

corresponding views into blocks with the texture features of each block are mainly used 

to create a feature vector and the class assigned to each block is either MS-block or non-

MS block. 

In the aggregation step after the three views segmentation, the variable Xv 

assigned to each voxel v can take the discrete values X0, X1, X2 or X3 which indicates 

being classified as MS voxel either 0, 1, 2 or 3 times in the different views segmentations 

respectively. The value assigned to Xv highly affects the inclusion of the voxel v to the 

aggregate set G. The worst case classification occur when the true class of the voxel is 

negative while Xv=3 (worst case false positive) and similarly when the true class of the 

voxel is positive while Xv=0 (worst case false negative). The reason of considering these 

cases as worst case scenario is the difficulty of recovering the error with later steps in the 

segmentation framework due to the misguiding voting resulting from the three views 

segmentation. 
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The proposed modification to the learning scheme aims to minimize the number 

of times that the three views classification engines result in misguided voting (False 

positive with Xv= X3 or False negative with Xv= X0). We will refer to this count as 

Misguiding Voting Error (MVE). 

According to our approach in pipeline 3, the three sectional-views engines were 

trained to classify square blocks of area d2 pixels. In the training phase, no information 

about the single pixel was considered. The geometrical intersection from 3 blocks from 3 

different views results in a single voxel. 

Initially, assuming that the sagittal and coronal SVM were trained, the current 

activity will be training the axial SVM to accurately classify block of axial slices while 

minimizing the misguiding voting error (MVE). Assuming that the two intersecting 

blocks S and C from sagittal and coronal slices respectively were classified by the 

corresponding two SVM’s, the intersection of these two blocks generates a line SC as 

shown in Figure  5-4. According to multi-view segmentation, before axial SVM 

classification, Xv of each voxel of the line SC may be assigned a value from X0, X1, or X2 

according to the other two views segmentation. 

 

Figure  5-4: Line SC resulting from intersection of Sagittal Block (S) and Coronal Block (C). 
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When axial blocks of axial slices intersecting with the line SC are classified by 

the corresponding SVM, the variable Xv corresponding to the intersection voxel v may be 

incremented to the higher discrete level or remains the same according to the class 

assigned to the axial block. 

The decision taken for the axial block by the axial classifier is taken based on the 

engine trained by the features vector extracted per block. It is required to bias the axial 

classifier to classify the axial block that intersects with the line SC in a way that 

minimizes MVE. For the block that intersects with SC in a voxel v, if the current Xv = X2 

while the ground truth of this specific voxel is non-MS, then it is required from axial 

classifier to classify the axial block as non-MS block to avoid having Xv = X3 for non-

MS voxel. Similarly, for the block that intersects with SC in a voxel v, if the current Xv = 

X0 while the ground truth of this specific voxel is MS, then it is required from axial 

classifier to classify the axial block as MS block to avoid having Xv = X0 for MS voxel. 

This can be represented by the variable Biasv given by the following equation: 

= +1, ( ) = 1 & =−1, ( ) = 0 & =0, ℎ  
(5-16) 

 

where GT(v) is the ground truth of the voxel v. This variable indicates the bias required 

to be taken into consideration in the remaining view segmentation based on the current 

Xv resulting from segmentation from the other two views.   
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For axial block i composed of d2 pixels, each of these pixels should be taken into 

consideration to minimize the overall MVE.  

To train the axial classifier, taking into consideration the sagittal and coronal 

classifier, the subject training dataset is segmented first by the trained sagittal and coronal 

dataset.  

The effect of segmentation of pixels of the block i using the other segmentation 

engines can be represented by Bias Count Modifier variable (BCMi) which can be 

calculated by: 

= ( ) (5-17) 

This variable will be positive if majority of voxels of the block are biasing the block class 

to vote as positive to rescue them from having Xv=X0 while they are positive. Similarly, 

BCMi will be negative if majority of voxels of the block are biasing the block class to 

vote as negative to rescue them from having Xv=X3 while they are negative. The variable 

will be zero if all voxels are not in the critical situation or it is balanced biasing where the 

number of voxels biasing to positive equals the number of voxels biasing to negative.  

When the subject dataset is used to train the axial SVM, each axial block i having 

feature vector xi, the ground truth class of the block yi is originally has value 1 (MS-block 

or contains at least 1 MS pixel) or -1 (non-MS or contains non-MS pixel). To minimize 

MVE, the block class yi need to be updated according to the following formula: 

= ( + 2 ) (5-18) 
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According to (5-18), if BCMi is zero, the block class yi will remain the same, while the 

class block will be biased to +1 if BCMi is positive and similarly it will be biased to -1 if 

BCMi is negative whatever the original yi. 

After training the axial sectional view SVM, a new iteration of learning is performed 

to modify the coronal sectional view SVM to minimize MVE based on results of 

segmentation of the training set by the axial SVM and sagittal SVM considering the 

individual voxels ground truth. The same will be done to update the sagittal view SVM 

based on the other two sectional views classifier. More training iterations can be made 

and derivations to stopping condition can be done, but the time complexity of the 

processing will be infeasible; thus we recommend using fixed number of iterations. 

Modes of learning 

In order to provide the axial SVM with trained sagittal SVM and coronal SVM, the last 

two engines should be trained in non-overlapping learning mode while the axial engine is 

trained in overlapping mode. The overall learning of MV-T-SVM is overlapping scheme 

but the individual engines should support the two modes of learning. 

In non-overlapping learning, the input training entries are pairs (xi,yi) where xi is the 

feature vector of the block in the corresponding sectional view and yi is the class of the 

block which is either MS block(class +1) if at least one pixel is MS in ground truth and 

non-MS block (class -1) if all pixels are non-MS in ground truth. In the non-overlapping 

learning process, yi is never modified. 

In overlapping learning, the input training entries are composed of three groups: 
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• Pairs (xi,yi) where xi is the feature vector of the block in the corresponding 

sectional view and yi is the class of the block which is either MS block(class +1) 

if at least one pixel is MS in ground truth and non-MS block (class -1) if all pixels 

are non-MS in ground truth.  

• The class of the individual pixels of each block entry provided from the ground 

truth of the subject dataset. 

• The segmentation result of the training subject dataset using the other two 

sectional views’ engines. 

In the overlapping learning process, yi is modified using equation (5-18). 

5.3.2 Dealing with Imbalanced Data 

Customization of the learning scheme to best fit the MS lesion detection includes dealing 

with the imbalanced data problem. In lesion or tissue detection, the positive class is 

always much less than the negative class which represents healthy voxels (in case of 

lesion detection) or the remaining of the organ (in case of tissue detection). We used the 

recommendation of the libsvm authors to use two different penalty parameters in the 

SVM formulation. Thus the formulation of the optimization problem of the SVM given in 

equation (2-31) is updated to the following equation: 

.,   12 ‖ ‖ + +  

 : ( + ) ≥ 1 − ,     ≥ 0, = 1, … . ,  

 

(5-19) 
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The learning of each SVM is updated to solve the optimization problem (5-19) instead of 

single penalty parameter problem (2-31).  

5.4 Rule based Multi-Sectional Views Aggregate function 

The aggregate function used in multi-sectional views pipeline (pipeline 3) uses the 

threshold function defined in equation (4-9) that is based on the posterior P(MS1|Xv) 

calculated using the naive Bayesian decision rule in equation (4-7). More customization 

is made to the multi-sectional views segmentation technique by updating the aggregate 

function.  

The updates proposed to the aggregate function aim to deal with the following problems: 

1. Minimize the false positive in case of low TLL subjects which dominate the 

segmentation performance. 

2. Take in consideration the posterior probability of MS lesion region based on brain 

anatomical region given by equation (5-15) 

In case of subjects of low TLL, the low performance of the segmentation is mainly 

because the effect of false positives that dominate the true positive voxels. Although 

similar rate of false positive occurs with segmentation of high TLL but the domination of 

true positive results in good  performance in terms of dice similarity. According to tests 

made on the training sets, the segmentation performance of the low TLL subjects was 

improved by at least 10% in terms of dice similarity when the AND operator is applied 

on the three segmentation sets A, B, and C.  
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An estimate of the total lesion load (TLL) can be determined before applying the 

aggregate function by taking the average of the number of voxels segmented as MS 

voxels in the three segmentation sets A,B, and C. 

The aggregate function of customized MV-T-SVM depends on the posterior 

P(MS1|Xv), the posterior P(MS1|Tissue(v)) and estimate of TLL of the dataset to be 

segmented. Each of the three factors is compared to thresholds specific for each 

parameter to enable rule based decision. P(MS1|Xv) thresholds are PXVH (very high), 

PXVH (high) and PXVL (very low). Similarly, P(MS1|Tissue(v)) thresholds are PTVH 

(very high) and PTVL (very low). The average TLL threshold is TLLVL (very low). 

 

The new aggregate function is given by the rule based function listed in Figure  5-5. 

Rule 1 makes the aggregate function include the voxel v in the aggregate set G only if the 

posterior P(MS1|Xv) is very high in case of low TLL or in case of voxels falling in brain 

regions that has very low posterior P(MS1|Tissue(v)). Rule 2 makes the aggregate 

function include the voxel in the aggregate set G only if the posterior P(MS1|Tissue(v)) is 

very high in cases of low P(MS1|Xv) . The goal of this rule is to give opportunity to 

voxels appearing in only one sectional view segmentation to be added to the aggregate set 

if its posterior probability based on registered tissue is highly to have MS lesion. Rule 3 

is to apply the same rule proposed in equation (4-9) in the common cases. 
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Figure  5-5: Rule based Multi-View Aggregate Function. 

 

 

5.5 Automatic Contouring Algorithm 

According to our approach in generating the final segmentation of the MS lesions of the 

subject test case, the connected pixels are grouped and form a lesion region. Due to the 

square block based segmentation in all sectional views, the lesion region contour is not 

smooth in most case but forms staircase contour with some random lines outing from the 

lesion region due to multi-view aggregation.  

We propose a contouring module to improve the shape of the resulting lesion 

regions. The purpose of the contouring module other than having smoother lesion region 

For each voxel v: 

1. If (TLLaverage ≤ TLLVL)or ( P(MS1|Tissue(v)) ≤ PTVL ) then 

 G={v |  P(MS1|Xv) >  PXVH } 

2. Else if (PXVL < P(MS1|Xv) < PXH ) then 

 G={v |  MS1|Tissue(v) >  PTVH } 

3. Else 

G={v |  P(MS1|Xv) >  PXH } 

End If 
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is also to trim extra segmented pixels (false positives) on the lesion region boundary and 

to recover missing pixels adjacent to the lesion region boundary (false negatives). 

The proposed contouring algorithm determines for each lesion region three basic 

contours. The first is the initial contour which is the boundary of the lesion region in the 

aggregate segmentation. The second contour is the smallest possible contour which is the 

boundary of the lesion region resulting from applying AND operator on the three views 

segmentation. The third contour is the largest possible contour which is the boundary of 

the lesion region resulting from applying OR operator on the three views segmentation. 

The determination of the basic contours for a lesion region is illustrated in Figure  5-6. 

The contouring algorithm processes the initial contour pixels. The processing results in 

reformation of the initial contour without crossing the smallest contour to the interior 

when shrinking and without crossing the largest contour to the exterior when expanding. 

The pseudocode of the proposed contouring algorithm is listed in Figure  5-7. 

The routines BoundaryTest(b,M1,M2) compares the grayscale of the pixel b with 

the region mean (M1) and the neighborhood mean(M2). It takes decision of Keep if 

grayscale of b is suitable to be boundary between M1 and M2. BoundaryTest takes 

decision Grow when b is closer to M2 than M1 which means that b should be exterior 

pixel. BoundaryTest takes decision Shrink when b is closer to M1 and also M2 is close to 

M1 which means that b should be an interior pixels. 
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Figure  5-6: Multi-Views segmentations (A, B and C) sand Basic Contours determination. 

 

The routine StopRegion represents the stopping condition and it stops when no 

longer formation is possible to the boundary of the lesion region without crossing the Imin 

or Imax. 

The efficient application of the contouring algorithm results in minimizing the 

false positive and false negative pixels on the boundary of the lesion regions. Besides, it 

gives clinic-friendly output. An example of the output of applying the contouring 

algorithm on a sample slice is shown in Figure  5-8. 
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Figure  5-7: Proposed Lesion Region Contouring Algorithm. 

  



146 

 

 

 

Figure  5-8: MS Lesion boundary generated by the proposed automatic contouring algorithm. 

 

5.6 Experimental Results 

In this section the segmentation performance of customized MV-T-SVM is evaluated. 

The twenty real datasets of the MS Lesion Segmentation Challenge were used for 

training and setting the thresholds while the ten real datasets acquired at University of 

Miami (UM datasets) were used for testing. To test the ability of the technique to be 

generalized to do other tissues segmentation, the caudate segmentation was tested using 

MV-T-SVM with settings updated to match the dataset settings. 

5.6.1 MS Lesions Segmentation 

The effect of the enhancements applied to pipeline 3 to have the customized MV-T-SVM 

segmentation framework was evaluated through the testing of UM datasets. First, the 

overlapping learning scheme of the three SVM engines was evaluated by analysis of its 

effect on P(Xv| MS1) and P(Xv| MS0) as a measure of minimizing the MVE. In Figure  5-9 

(a), the P(X0| MS1) is reduced which reduces misguiding voting in multi-view 

segmentation that results in reporting an MS voxel as non-MS in all views. Similarly, In 

Figure  5-9 (b), the P(X3| MS0) is reduced which reduces misguiding voting in multi-view 

segmentation that results in reporting an non-MS voxel as MS voxel in all views. In 
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Figure  5-9 (b), the P(X0| MS0) is removed from the chart because of  its very large value 

(most voxels are healthy and segmented as healthy) to avoid dominating the other values. 

Second, the effect of replacing the single channel based textural features with the 

proposed multi-channels textural based features was evaluated by drawing the ROC 

curve for the axial views segmentation SVM and comparing it with the ROC curve drawn 

before in section  4.8.1. In Figure  5-10, the comparison between customized MV-T-SVM 

and pipeline 3 shows the improvement of using the proposed multi-channels textural 

features on the blocks classification performance. 

(a) 

 

(b) 

 

Figure  5-9: Effect of overlapping learning of three views engines on MVE. 

 (a) P(Xv|MS1) and (b) P(Xv| MS0). 
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Figure  5-10: Effect of using multi-channels textural features on the ROC curve compared with Pipeline 3. 

 

Third, the effect of applying the proposed contouring algorithm on the aggregate 

segmentation lesion region was evaluated quantitatively by measuring the amount of 

false positive voxels removed from boundary versus the false negative voxels added 

when the contouring algorithm results in shrinking of the lesion region. Also evaluation 

involves measuring the amount of false negative voxels removed from boundary versus 

the false positive voxels added when the contouring algorithm results in growing the 

lesion region. The effect of contouring algorithm on the lesion region boundary is shown 

in Figure  5-11. The y-axis percentage is the percentage of the total number of voxels 

removed or added to the total areas of lesion regions. For shrinking function, the 

percentage of false positive voxels removed from boundary is 20% versus 5% of false 

negative voxels added. For growing function, the percentage of false negative voxels 

recovered is 7% versus 2% of false positive voxels added. 
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Figure  5-11: Effect of contouring algorithm on lesion region boundary voxels. 

 

The segmentation of the ten real subjects acquired at University of Miami using 

customized MV-T-SVM was evaluated by measuring the dice similarity in comparison 

with the previous measure done using the pipeline 3. Figure  5-12 shows the result and 

comparison. Better result is obtained for most of studies with average 9%. The effect of 

low TLL on the performance is reduced. 

 

Figure  5-12: Segmentation results of UM datasets using customized MV-T-SVM versus pipeline 3. 
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5.6.2 Caudate Segmentation 

In this section, we test the MV-T-SVM in segmentation of a context other than the MS 

lesions. The datasets publicly available on CAUSE07 were used to test the performance 

of using MV-T-SVM to segment the caudate nucleus. CAUSE07 is a competition that 

was held as part of the workshop 3D Segmentation in the Clinic. The goal of this 

competition was to compare different algorithms to segment the caudate nucleus from 

brain MRI scans. The ideal segmentation of caudate is shown in Figure  5-13. 

 

Figure  5-13: Caudate segmentation. 
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Dataset 

The caudate data consisted of a total of 15 training datasets from healthy controls and 

subjects in a Schizoptypal Personality Disorder (SPD) study provided by Psychiatry 

Neuroimaging Laboratory at the Brigham and Women’s Hospital, Boston. The datasets 

are referred in results with notation (BWH_PNL_XX_MRI_RAI) with XX is replaced by 

two digits integer from 01 to 15. Caudate manual segmentation protocols often differ in 

regard to the exact separation of caudate to the nucleus accumbens anteriorly and the 

level of inclusion of the vanishing tail posteriorly. Such variability in caudate definition is 

common place and part of clinical routine when comparing studies.  

All datasets were scanned with an Inversion Recovery Prepped Spoiled Grass 

sequence on a variety of scanners (GE, Siemens, Philips, all 1.5 Tesla). Some data sets 

were acquired in axial direction, others in coronal direction. All data sets were re-oriented 

to axial orientation, but were not aligned in any fashion. The resolution of the datasets is 

at 0.9375 × 0.9375 × 1.5 mm.  

Multi-sectional Views Segmentation 

In order to apply MV-T-SVM to segment the caudate, the following settings are set to 

match the input dataset properties: 

• Intensity correction is enabled 

• Registration is disabled 

• Textural Features : Single Channel 

• Block size is set 4mm x 4mm 

• Atlas prior features and Atlas Tissue based posteriors are disabled 
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• Contouring algorithm is enabled 

As shown in Figure  5-14, the pair of caudate may be visualized and hence segmented 

from a single axial or coronal sectional view where they are separated in sagittal view. In 

our testing, the segmentation is done through separating the right and left half of the 

brains and then result segmentations are added up to result in the final segmentation. 

Results on the training datasets 

In training, the BWH_PNL_01_MRI_RAI and BWH_PNL_02_MRI_RAI were used in 

training while all of the 15 datasets were used in segmentation. The result of 

segmentation is given in Table  5-1. The segmentation performance is evaluated using the 

dice similarity metric for the left and right nucleus separately and the total segmentation 

dice similarity is given. The average dice similarity values for left and right halves 

segmentation are 0.67 and 0.68 which is a good result for using segmentation framework 

mainly designed for MS segmentation for segmenting other parts in brain. Better results 

can be achieved if multi-channels images are provided and if features are customized for 

caudate segmentation. 
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Figure  5-14: Caudate analysis using multi-views segmentation. 
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Study 
Dice Similarity 

Left Right Total 
BWH_PNL_01_MRI_RAI 0.84 0.82 0.83 
BWH_PNL_02_MRI_RAI 0.8 0.79 0.795 
BWH_PNL_03_MRI_RAI 0.71 0.73 0.72 
BWH_PNL_04_MRI_RAI 0.63 0.67 0.65 
BWH_PNL_05_MRI_RAI 0.65 0.62 0.635 
BWH_PNL_06_MRI_RAI 0.45 0.51 0.48 
BWH_PNL_07_MRI_RAI 0.62 0.63 0.625 
BWH_PNL_08_MRI_RAI 0.69 0.71 0.7 
BWH_PNL_09_MRI_RAI 0.74 0.73 0.735 
BWH_PNL_10_MRI_RAI 0.65 0.68 0.665 
BWH_PNL_11_MRI_RAI 0.32 0.27 0.295 
BWH_PNL_12_MRI_RAI 0.83 0.86 0.845 
BWH_PNL_13_MRI_RAI 0.73 0.78 0.755 
BWH_PNL_14_MRI_RAI 0.64 0.63 0.635 
BWH_PNL_15_MRI_RAI 0.7 0.71 0.705 

Average 0.67 0.68 0.67 

Table  5-1 : Segmentation Results – Segmenting Caudate from training subjects of 
CAUSE07.



 

 

155 

 

Chapter 6  
Conclusion 
 

6.1 Summary 

In this dissertation, a set of segmentation frameworks is developed for the purpose of 

automated classification of multiple sclerosis (MS) lesions in MRI. Specifically, three 

pipelines are progressively developed to use the statistical texture as a feature vector and 

the support vector machines (SVM) as a learning technique in the MS lesions 

segmentation. We proposed two generic configurable components: a processing core 

module that locates the areas in the brain that potentially forms MS lesions and a post-

processing module that adds or removes from these areas to have more accurate 

segmentations. Based on these configurable modules, single view segmentation and 

multi-sectional views segmentation pipelines are proposed. The single view segmentation 

pipeline has two versions: FLAIR channel (pipeline 1) and multi-channels MRI (FLAIR / 

T1 / T2 / PD) inputs (pipeline 2). Multi-Sectional views segmentation pipeline takes 

multi-channels MRI (FLAIR / T1 / T2) inputs (pipeline 3). The single views pipelines 

were evaluated on 10 real datasets. The multi-view pipeline was evaluated by 3 simulated 

datasets and 61 real datasets. The segmentation average results were both good and 

competitive. 

The multi-sectional views pipeline (pipeline 3) is customized to solve limitations 

found in the segmentation results and to make best use of the properties and nature of MS 

lesion in MRI. These customizations and enhancements lead to development of the 
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customized MV-T-SVM. In the customized MV-T-SVM involves the use of the 

anatomical tissue provided by the MNI atlas in segmentation and the use of the proposed 

textural features extracted from multi-channel images instead of single channel textural 

features. Besides, the learning of the SVM of the different views is updated to be 

overlapping learning scheme instead of non-overlapping learning. In the customized MV-

T-SVM, the aggregate function is rule based to differentiate between voxels classification 

based on the brain anatomical region and the estimated total lesion load of the subject 

dataset. A contouring algorithm is proposed and incorporated in MV-T-SVM to improve 

the smoothness of lesion regions and to provide better performance quantitatively. The 

customized MV-T-SVM was trained with 20 real datasets and tested with another 10 real 

datasets. The proposed customization applied in this approach results in improvement of 

the average segmentation performance. 

The generality of the proposed segmentation framework is tested by applying the 

technique with different settings on healthy datasets to segment the caudate. Good results 

were obtained with minor changes in the segmentation technique. 

6.2 Findings: 

According to the obtained results for the three pipelines, we concluded a set of findings. 

The proposed technique would be viable for use in clinical practice for the detection of 

MS lesions in MRI. It provides good segmentation when tested with datasets acquired at 

a source different from the source of training datasets with in terms of the acquisition 

conditions. The textural based SVM (C3 and C4) provides good coarse segmentation that 

can be used as an initial step in any MS segmentation framework. Slice division into 
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blocks enables the technique to benefit from the textural features (C3) in detection of the 

candidate lesion region without manually labeled ROIs. In the same time, slice division 

into blocks makes the technique avoid voxel based learning which results in high rate of 

false positives and scattered automatic MS lesions. Using overlapping blocks provide 

more accurate segmentation with cost of computation time. It is only suitable for low-

resolution datasets. Basing the classifier on SVM (C4) as a machine learning technique 

provides a robust classifier. Feature selection (C3) based on explicit use of human visible 

features and trying to emulate expert non-intended features aid the technique to find 

lesion areas that has high similarity (Dice similarity / Similarity Index) with the manually 

labeled areas. Training the blocks classifier in such a way where all blocks that contains 

at least 1 MS voxel are marked as MS-blocks aids that classifier to find that blocks that 

are completely or partially are MS blocks. Using more sequences in MRI (C1) improves 

the performance of MS Segmentation. Using Tissues Probabilities based on the MNI 

atlas (C2 and C3) improves the performance of MS Segmentation. The use of post-

processing module (C5) that deals with higher level of lesion which the “MS Lesion 

Region” provides more Clinic-friendly outputs as long the improvement in the numeric 

metrics. The proposed post-processing module (C5) is generic enough to be added to any 

other segmentation framework to improve the quality of the segmentation output. 

Performance evaluation (C6) that adds metrics such as Dice Similarity for regions (DSR) 

and Detected Lesion Load (DLL) ensures the clinically relevant performance. The multi-

view segmentation pipeline (C7) is suitable in cases of high resolution 3D Images that 

provides Lesion Visibility from all sectional views and it adds to the accuracy of the final 

segmentation. 
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According to the obtained results for the customized MV-T-SVM, we concluded a 

set of findings. Using rule based aggregate function allows improving the performance 

when tested on datasets with low TLL without effect on datasets with high TLL. Also, 

the rule based aggregate function reduces false positives in areas in anatomical regions 

statistically have low likelihood to have MS lesions. Lesion regions shape improvement 

using the proposed contouring algorithm (C5) provides more Clinic-friendly outputs as 

long the improvement in the numeric metrics even better than using the post-processing 

modules used in pipeline 1 and pipeline 2. Using the proposed textural features (C3) 

extracted from the multi-channels MRI provided better block segmentation. The 

overlapping learning (C4) of the three views classification engines improves the quality of 

the aggregate segmentation in terms of voxel segmentation. 

6.3 Future Work 

More efforts are still needed to improve the proposed segmentation framework both in 

performance and in functionality. In the following, we mention the work that can be 

applied on the segmentation framework to provide more clinical relevant technique: 

1. Textural based segmentation of 3D blocks instead of 2D blocks in multi-views 

slices should be analyzed. 

2. Analysis of using advanced texture models such as Marcov Random Fields 

texture models [80] to represent the texture and study of the effect on 

improvement the discrimination between healthy and MS lesion areas. 

3. Intensity correction based on the anatomical region of the brain should be 

analyzed. 
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4. Analysis of using the Diffusion Tensor Imaging (DTI) for MS segmentation 

and study the effect on the segmentation performance. 

5. In order to provide better clinical relevant output, the monitoring of the MS 

lesion volume, location and gray level over the time need to be incorporated 

with the segmentation framework.  

6. Study the ability of the segmentation technique to segment other lesions or 

tissues in MRI or Computed Tomography (CT) scans. Specifically using MV-

T-SVM for liver tumor segmentation in MRI and vessels segmentation in 

lungs is included in our current research activity. 

  



 

 

160 

 

Bibliography 
[1] BrainWeb: Simulated Brain Database. [Online]. 

http://www.bic.mni.mcgill.ca/brainweb/ 

[2] M Styner, J Lee, B Chin, M Chin, O Commowick, H Tran, S Markovic-Plese, and V 
Jewells, "3D Segmentation in the Clinic: A Grand Challenge II: MS lesion 
segmentation," MIDAS Journal, pp. 1–5, Sep. 2008. 

[3] The Multiple Sclerosis International Federation (MSIF). [Online]. 
http://www.msif.org. 

[4] C H Polman, S C Reingold, G Edan, M Filippi, H P Hartung, F D Lublin, L M Metz, 
H F McFarland, P W O'Connor, M Sandberg-Wollheim, A J Thompson, B G 
Weinshenker, and J S Wolinsky, "Diagnostic Criteria for Multiple Sclerosis: 2005 
Revisions to the ‘McDonald Criteria’," Annals of Neurology, vol. 58, pp. 840-856, 
2005. 

[5] D H Miller, R I Grossman, S C Reingold, and F McFarlan, "The Role of Magnetic 
Resonance Techniques in Understanding and Managing Multiple Sclerosis," Brain, 
vol. 121, pp. 3–24, 1998. 

[6] Daisuke Yamamoto, Hidetaka Arimura, Shingo Kakeda, Taiki Magome, Yasuo 
Yamashita, Fukai Toyofuku, Masafumi Ohki, Yoshiharu Higashida, and Yukunori 
Korogi, "Computer-Aided Detection of Multiple Sclerosis Lesions in Brain Magnetic 
Resonance Images: False Positive Reduction Scheme Consisted of Rule-Based, Level 
Set Method, and Support Vector Machine," Computerized Medical Imaging and 
Graphics, vol. 34, no. 5, pp. 404-413, July 2010, DOI: 
10.1016/j.compmedimag.2010.02.001. 

[7] Leo Breiman, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001. 

[8] C J Wallace, T P Seland, and T C Fong, "Multiple Sclerosis: The Impact of MR 
Imaging," American Journal of Roentgenol, vol. 158, pp. 849–857, 1992. 

[9] S Wiebe, D H Lee, S J Karlik, M Hopkins, M K Vandervoort, C J Wong, L Hewitt, G 
PA Rice, G C Ebers G C, and J H Noseworthy, "Serial Cranial and Spinal Cord 
Magnetic Resonance Imaging in Multiple Sclerosis," Annals of Neurology, vol. 32, 
pp. 643–650, 1992. 

  



161 

 

 

[10] L Truyen, "Magnetic Resonance Imaging in Multiple Sclerosis: A Review," Acta 
Neurologica Belgica, vol. 94, pp. 98–102, 1994. 

[11] F Fazekas, F Barkhof, M Filippi, R I Grossman, D KB Li, W I McDonald, H F 
McFarland, D W Paty, J H Simon, J S Wolinsky, and D H Miller, "The Contribution 
of Magnetic Resonance Imaging to the Diagnosis of Multiple Sclerosis," Neurology, 
vol. 53, pp. 448–456, 1999. 

[12] V N Vapnik, The Nature of Statistical Learing Theory. New York: Springer-Verlag, 
1995. 

[13] Ezequiel Geremia, Bjoern Menze, Olivier Clatz, Ender Konukoglu, Antonio 
Criminisi, and Nicholas Ayache, "Spatial Decision Forests for MS Lesion 
Segmentation in Multi-Channel MR Images," in Medical Image Computing and 
Computer-Assisted Intervention â MICCAI 2010, vol. 6361, 2010, pp. 111-118. 

[14] Ayelet Akselrod-Ballin, Meirav Galun, John Moshe Gomori, Massimo Filippi, Paola 
Valsasina, Ronen Basri, and Achi Brandt, "Automatic Segmentation and 
Classification of Multiple Sclerosis in Multichannel MRI," IEEE Transactions on 
Biomedical Engineering, vol. 56, no. 10, Oct. 2009. 

[15] Daniel Garcia-Lorenzo, Sylvain Prima, Sean P Morrissey, and Christian Barillot, 
"Multiple Sclerosis Lesion Segmentation using an Automatic Multimodal Graph 
Cuts," in 12th International Conference on Medical Image Computing and 
Computer Assisted Intervention, London, 2009, pp. 584-591, DOI : 10.1007/978-3-
642-04271-3. 

[16] J Lecoeur, S P Morissey, J C Ferré, D Arnold, D Collins, and C Barillot, "Optimized 
Supervised Segmentation of MS Lesions from Multispectral MRIs," in Proceedings 
of MICCAI workshop on Medical Image Analysis on Multiple Sclerosis (validation 
and methodological issues), 2009. 

[17] J Lecoeur, S P Morissey, J C Ferré, D Arnold, D Collins, and C Barillot, "Multiple 
Sclerosis Lesions Segmentation using Spectral Gradient and Graph Cuts," in 
Proceedings of MICCAI workshop on Medical Image Analysis on Multiple Sclerosis 
(validation and methodological issues), 2008. 

[18] Erik Pernod, Jean-Christophe Souplet, Javier Rojas Balderrama, Diane Lingrand, 
and Xavier Pennec, "Multiple Sclerosis Brain MRI Segmentation Workflow 
deployment on the EGEE Grid," in Olabarriaga, Lingrand and Montagnat (Eds.), 
New York, 9. 2008. 



162 

 

 

[19] Daniel Garcia-Lorenzo, Sylvain Prima, Sean P Morrissey, and Christian Barillot, "A 
Robust Expectation-Maximization Algorithm for Multiple Sclerosis Lesion 
Segmentation," in The MIDAS Journal - MS Lesion Segmentation (MICCAI 
Workshop), 2008. 

[20] P Anbeek, K L Vincken, and M A Viergever, "Automated MS-Lesion Segmentation 
by K-Nearest Neighbor Classification," MIDAS Journal, 2008. 

[21] Ying Wu, Simon K Warfield, Leng Tan, William M Wells, Dominik S Meier, 
Ronald A van Schijndel, Frederik Barkhof, and Charles R G Guttmanna, 
"Automated Segmentation of Multiple Sclerosis Lesion Subtypes with Multichannel 
MRI," NeuroImage, vol. 32, pp. 1205 – 1215, 2006. 

[22] Ruben Cardenes, Simon K Warfield, Elsa M Macıas, Jose Aurelio Santana, and Juan 
Ruiz-Alzola, "An Efficient Algorithm for Multiple Sclerosis Lesion Segmentation 
from Brain MRI," in EUROCAST 2003, LNCS 2809, Berlin Heidelberg, 2003, pp. 
542–551. 

[23] Ricardo J Ferrari, Xingchang Weia, Yunyan Zhanga, James N Scottb, and J Ross 
Mitchell, "Segmentation of Multiple Sclerosis Lesions Using Support Vector," in 
SPIE 5032, vol. 16, 2003, doi:10.1117/12.481377. 

[24] Dirk-Jan Kroon, Erik van Oort, and Kees Slump, "Multiple Sclerosis Detection in 
Multispectral Magnetic Resonance Images with Principal Components Analysis," 
The MIDAS Journal - MS Lesion Segmentation (MICCAI Workshop), 2008. 

[25] K V Leemput, F Maes, D Vandermeulen, A Colchester, and P Suetens, "Automated 
Segmentation of Multiple Sclerosis Lesions by Model Outlier Detection," IEEE 
Transactions on Medical Imaging, vol. 20, no. 8, pp. 677–688, 2001. 

[26] Marcel Prastawa and Guido Gerig, "Automatic MS Lesion Segmentation by Outlier 
Detection and Information Theoretic Region Partitioning," The MIDAS Journal - MS 
Lesion Segmentation (MICCAI Workshop), 2008. 

[27] Stephanie Bricq, Christophe Collet, and Jean-Paul Armspa, "MS Lesion 
Segmentation based on Hidden Markov Chains," The MIDAS Journal - MS Lesion 
Segmentation (MICCAI Workshop), 2008. 

  



163 

 

 

[28] Stephanie Bricq, Christophe Collet, and Jean-Paul Armspa, "Lesions Detection on 
3D Brain MRI using Trimmmed Likelihood Estimator and Probabilistic Atlas," in 
Biomedical Imaging: From Nano to Macro. ISBI. 5th IEEE International 
Symposium, Paris, 2008, pp. 93 - 96, DOI:10.1109/ISBI.2008.4540940. 

[29] A Oliva and A Torralba, "The Role of Context in Object Recognition," Trends in 
Cognitive Sciences, vol. 11, no. 12, pp. 520–527, Dec. 2007. 

[30] Jonathan H Morra, Zhuowen Tu, Arthur W Toga, and Paul M Thompson, 
"Automatic Segmentation of MS Lesions Using a Contextual Model," The MIDAS 
Journal - MS Lesion Segmentation (MICCAI Workshop), 2008. 

[31] Mark Scully, Vincent Magnotta, Charles Gasparovi, Peter Pelligrino, Delia Feis, and 
H Jeremy Bockholt, "3D Segmentation In The Clinic," The MIDAS Journal - - MS 
Lesion Segmentation (MICCAI Workshop), 2008 (MSC). 

[32] Ying Zhugea and Jayaram K Udupaa, "Multiple Sclerosis Lesion Quantification in 
MR Images by using Vectorial Scale-based Relative Fuzzy Connectedness," in 
Medical Imaging 2004: Image Processing - Proceedings of SPIE, vol. 5370, 2004, 
DOI: 10.1117/12.535655. 

[33] Chaozhe Zhu and Tinazi Jiang, "Knowledge Guided Information Fusion for 
Segmentation of Multiple Sclerosis Lesions in MRI Images," in SPIE03, vol. 5032, 
2003, DOI:10.1117/12.480312. 

[34] M Ghazel, A Traboulsee, and R K Ward, "Optimal Filter Design for Multiple 
Sclerosis Lesions Segmentation from Regions of Interest in Brain MRI," in IEEE 
International Symposium on Signal Processing and Information Technology, 2006, 
pp. 1-5. 

[35] Oren Freifeld, Hayit Greenspan, and Jacob Goldberger, "Multiple Sclerosis Lesion 
Detection Using Constrained GMM and Curve Evolution," International Journal of 
Biomedical Imaging, 2009, DOI:10.1155/2009/715124. 

[36] R Khayati, M Vafadust, F Towhidkhah, and S M Nabavi, "Fully Automatic 
Segmentation of Multiple Sclerosis Lesions in Brain MR FLAIR Images using 
Adaptive Mixtures method and Markov Random Field Model," Computers in 
Biology and Medecine, vol. 38, pp. 379–390, 2008. 

[37] David D Stark and William G Bradley, Magnetic Resonance Imaging, 3rd ed.: 
Mosby, Incorporated, 1999. 



164 

 

 

[38] B Johnston, M S Atkins, B Mackiewich, and M Anderson, "Segmentation of 
Multiple Sclerosis Lesions in Intensity Corrected Multispectral MRI," IEEE 
Transactions on Medical Engineering, vol. 15, pp. 154–169, 1996. 

[39] B Mackiewich, Master’s thesis:Intracranial Boundary Detection and Radio 
Frequency Correction in Magnetic Resonance Images. Burnaby, British Columbia: 
Simon Fraser Univ. Computer Science Dept., 1995. 

[40] S M Smith, "Fast Robust Automated Brain Extraction," Hum Brain Mapp, vol. 17, 
no. 3, pp. 143-155, 2002. 

[41] N K Subanna, M Shah, S J Francis, S Narayanan, D L Collins, D L Arnold, and T 
Arbel, "MS Lesion Segmentation using Markov Random," in Workshop on Medical 
Image Analysis on Multiple Sclerosis - MIMAS, 2009. 

[42] Jing Zhang, Longzheng Tong, Lei Wang, and Ning Li, "Texture Analysis of 
Multiple Sclerosis: A Comparative Study," Magnetic Resonance Imaging, vol. 26, 
no. 8, pp. 1160-1166, Oct. 2008, DOI: 10.1016/j.mri.2008.01.016. 

[43] J H Friedman, F Baskett, and L J Shustek, "An Algorithm for Finding Nearest 
Neighbors," IEEE Transactions on Computers, vol. C-24, pp. 1000–1006, 1975. 

[44] S K Warfield, "Fast k-NN Classification for Multichannel Image Data," Pattern 
Recognition Letters, pp. 713–721, 1996. 

[45] C M Bishop, Neural Networks for Pattern Recognition. Oxford, Great Britain: 
Oxford University Press, 1995. 

[46] R O Duda, P E Hart, and D G Stork, Pattern Classification. New York, U.S.A.: John 
Wiley & Sons, Inc., 2001. 

[47] L P Clarke, R P Velthuizen, S Phuphanich, J D Schellenber, J A Arrington, and M 
Silbiger, "MRI: Stability of Three Supervised Segmentation Techniques," Magnetic 
Resonance Imaging, vol. 11, pp. 95–106. 

[48] S Vinitski, C Gonzalez, F B Mohamed, T Iwanaga, K Kamil Khalili, and J Mack, 
"Improved Intracranial Lesion Characterization by Tissue Segmentation based on a 
3D Feature Map," Magnetic Resonance In Medicine, vol. 37, pp. 457–469, 1997. 

[49] Yale Amit and Donald Y Geman, "Shape Quantization and Recognition with 
Randomized Trees," Neural Computation, vol. 9, no. 7, pp. 1545–1588, 1997. 



165 

 

 

[50] Jeremy Lecoeur, Jean-Christophe Ferre, and Christian Barillot, "Optimized 
Supervised Segmentation of MS Lesions from Multispectral MRIs," 2009, p. 
MICCAI workshop on Medical Image Analysis on Multiple Sclerosis (validation 
and methodological issues). 

[51] C Cortes and V Vapnik, "Support Vector Networks," Machine Learning, vol. 20, pp. 
1-25, 1995. 

[52] CJC Burges, A Tutorial on Support Vector Machines for Pattern Recognition. 
Boston: Kluwer Academic Publishers, 1998, vol. 2. 

[53] Douglas M Hawkins, Identification of Outliers.: Chapman and Hall, 1980. 

[54] P Schroeter, J -M Vesin, T Langenberger, and R Meuli, "Robust Parameter 
Estimation of Intensity Distributions for Brain Magnetic Resonance Images," IEEE 
Transactions on Medical Engineering, vol. 17, no. 2, pp. 172–186, Apr. 1998. 

[55] D Garcia-Lorenzo, L Lecoeur, D Arnold, and D L Collins, "Multiple Sclerosis 
Lesion Segmentation using an Automatic Multimodal Graph Cuts," in MICCAI09, 
2009, pp. 584-591. 

[56] Sushmita Datta, Balasrinivasa Rao Sajja, Renjie He, Rakesh K Gupta, Jerry S 
Wolinsky, and Ponnada A Narayana, "Segmentation of Gadolinium-Enhanced 
Lesions on MRI in Multiple Sclerosis," Magnetic Resonance Imaging, vol. 25, pp. 
932–937, 2007. 

[57] Frithjof Kruggel, Suresh Paul Joseph, and Hermann-Josef Gertz, "Texture-based 
Segmentation of Diffuse Lesions of the Brain's White Matter," NeuroImage, vol. 39, 
no. 3, pp. 987-996, Feb. 2008, DOI: 10.1016/j.neuroimage.2007.09.058. 

[58] R K.-S Kwan, A C Evans, and G B Pike, "An Extensible MRI Simulator for Post-
Processing Evaluation," Visualization in Biomedical Computing (VBC'96). Lecture 
Notes in Computer Science, vol. 1131, pp. 135-140, 1996. 

[59] D L Collins, A P Zijdenbos, V V. Kollokian, J G Sled, N J Kabani, C J Holmes, and 
A C Evans, "Design and Construction of a Realistic Digital Brain Phantom," IEEE 
Transactions on Medical Imaging, vol. 17, no. 3, pp. 463-468, June 1998. 

[60] K V Leemput, PhD Thesis: Quantitative Analysis of Signal Abnormalities in MR 
Imaging for Multiple Sclerosis and Creutzfeldt-Jakob Disease. Leuven, Belgium: 
Katholieke Universiteit Leuven, 2001. 



166 

 

 

[61] L J Rosner and S Ross, Multiple Sclerosis. New York: Simon and Schuster, 1992. 

[62] C A Cocosco, V Kollokian, R K.-S Kwan, and A C Eva, "BrainWeb: Online 
Interface to a 3D MRI Simulated Brain Database," in NeuroImage, Proceedings of 
3-rd International Conference on Functional Mapping of the Human Brain, 
Copenhagen, 1997. 

[63] R K.-S Kwan, A C Evans, and G B Pike, "MRI Simulation-based Evaluation of 
Image-Processing and Classification Methods," IEEE Transactions on Medical 
Imaging, vol. 18, no. 11, pp. 1085-1097, Nov. 1999. 

[64] MS Lesion Segmentation Challenge 2008. [Online]. http://www.ia.unc.edu/MSseg/ 

[65] Akmal Younis, Mohamed Ibrahim, Mansur Kabuka, and Nigel John, "An Artificial 
Immune-Activated Neural Network Applied to Brain 3D MRI Segmentation," 
Journal of Digital Imaging, 2008. 

[66] Jan Rexilius, Horst K Hahn, Holger Bourquain, and Heinz-Otto Peitgen, "Ground 
Truth in MS Lesion Volumetry –A Phantom Study," Medical Image Computing and 
Computer-Assisted Intervention - MICCAI03 Lecture Notes in Computer Science, 
vol. 2879, pp. 546-553, 2003, DOI: 10.1007/978-3-540-39903-2_67. 

[67] Chih-Chung Chang and Chih-Jen Lin, "LIBSVM: A Library for Support Vector 
Machines," ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, 
pp. 1-27, 2011, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. 

[68] D Goldberg-Zimring, H Azhari, S Miron, and A Achiron, "3-D Surface 
Reconstruction of Multiple Sclerosis Lesions using Spherical Harmonics," Magnetic 
Resonance Imaging, vol. 46, pp. 756–766, 2001. 

[69] Zheru Chi, Hong Yan, and Turan Pham, Fuzzy Algorithms: With Application to 
Image Processing and Pattern Recognition, 1st ed. Singapore: World Scientific 
Publishing Co. Pte. Ltd, 1996. 

[70] A C Evans, D L Collins, S R Mills, E D Brown, R L Kelly, and T M Peters, "3D 
Statistical Neuroanatomical Models from 305 MRI Volumes," in IEEE-Nuclear 
Science Symposium and Medical Imaging Conference, 1993, pp. 1813–1817. 

[71] R P Woods, S T Grafton, C J Holmes, S R Cherry, and J C Mazziotta, "Automated 
Image Registration: General Methods and Intrasubject, Intramodality Validation," 
Journal of Computer Assisted Tomography, vol. 22, pp. 39-152, 1998. 



167 

 

 

[72] A O Boudraa, S MR Dehakb, Y M Zhu, C Pachai, Y G Bao, and J Grimaud, 
"Automated Segmentation of Multiple Sclerosis Lesions in Multispectral MR 
Imaging using Fuzzy Clustering," Computers in Biology and Medecine, 2000. 

[73] A P Zijdenbos, R Forghani, and A C Evans, "Automatic “pipeline” Analysis of 3-D 
MRI Data for Clinical Trials: Application to Multiple Sclerosis," IEEE Transactions 
on Medical Imaging, pp. 1280–1291, 2002. 

[74] Bassem A. Abdullah, Akmal A Younis, Pradip M Pattany, and Efrat Saraf-Lavi, 
"Textural based SVM for MS Lesion Segmentation in FLAIR MRIs," Open Journal 
of Medical Imaging, vol. 1, no. 2, Dec. 2011. 

[75] Akmal A Younis, Bassem A. Abdullah, Pradip M Pattany, and Efrat Saraf-Lavi, 
"Multiple Sclerosis Lesion Segmentation in Multi-Channel MRIs using Textural-
based SVMs," Journal of the Digital Imaging, 2011, In Review. 

[76] Bassem A. Abdullah, Akmal A Younis, and Nigel John, "Multi-Sectional Views 
Textural based SVM for MS Lesion Segmentation in Multi-Channels MRIs," The 
Open Biomedical Engineering Journal, vol. 6, no. 1, pp. 5-23, Dec. 2011. 

[77] J C Souplet, C Lebrun, N Ayache, and G Malandain, "An automatic Segmentation of 
T2-FLAIR Multiple Sclerosis Lesions," The MIDAS Journal - - MS Lesion 
Segmentation (MICCAI Workshop), 2008. 

[78] Results Page - MS Lesion Segmentation Challenge 2008 (Team Name: UM-
ECE_team). [Online]. http://www.ia.unc.edu/MSseg/results_table.php 

[79] CAUSE07:Caudate Segmentation Evaluation 2007. [Online]. 
http://www.cause07.org/ 

[80] George R Cross and Anil K Jain, "Markov Random Field Texture Models," IEEE 
Transactions Pattern Analysis and Machine Intelligence, vol. 5, no. 1, pp. 25 - 39, 
Jan. 1983. 

 


	University of Miami
	Scholarly Repository
	2012-02-17

	Segmentation of Multiple Sclerosis Lesions in Brain MRI
	Bassem A. Abdullah
	Recommended Citation


	Microsoft Word - babdullahSp12.docx

