
University of Miami
Scholarly Repository

Open Access Dissertations Electronic Theses and Dissertations

2016-03-25

Sparse Model Learning for Identifying Nucleotide
Motifs and Inferring Genotype and Phenotype
Associations
Indika Priyantha Kuruppu Appuhamilage
University of Miami, indika@miami.edu

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_dissertations

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Kuruppu Appuhamilage, Indika Priyantha, "Sparse Model Learning for Identifying Nucleotide Motifs and Inferring Genotype and
Phenotype Associations" (2016). Open Access Dissertations. 1588.
https://scholarlyrepository.miami.edu/oa_dissertations/1588

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations/1588?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

UNIVERSITY OF MIAMI

SPARSE MODEL LEARNING FOR IDENTIFYING NUCLEOTIDE MOTIFS AND
INFERRING GENOTYPE AND PHENOTYPE ASSOCIATIONS

By

Indika P. Kuruppu Appuhamilage

A DISSERTATION

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Coral Gables, Florida

May 2016

©2016
Indika P. Kuruppu Appuhamilage

All Rights Reserved

UNIVERSITY OF MIAMI

 A dissertation submitted in partial fulfillment of
 the requirements for the degree of

 Doctor of Philosophy

 SPARSE MODEL LEARNING FOR IDENTIFYING
NUCLEOTIDE MOTIFS AND INFERRING GENOTYPE AND

PHENOTYPE ASSOCIATIONS

 Indika P. Kuruppu Appuhamilage

Approved:

________________ _________________
Xiaodong Cai, Ph.D. Miroslav Kubat, Ph.D.
Professor of Electrical Associate Professor of Electrical
and Computer Engineering and Computer Engineering

________________ _________________
Jie Xu, Ph.D. Sawsan Khuri, Ph.D.
Assistant Professor of Electrical Assistant Professor of Computer
and Computer Engineering Science

________________ ________________
Stefan Wuchty, Ph.D. Guillermo Prado, Ph.D.
Associate Professor of Computer Dean of the Graduate School
Science

KURUPPU APPUHAMILAGE, INDIKA P. (Ph.D., Electrical and
Sparse Model Learning for Identifying Nucleotide Motifs Computer Engineering)
and Inferring Genotype and Phenotype Associations (May 2016)

Abstract of a dissertation at the University of Miami.

Dissertation supervised by Professor Xiaodong Cai.
No. of pages in text. (191)

Variation in gene expression is an important mechanism underlying phenotypic variation

in morphological, physiological and behavioral traits as well as disease susceptibility. A

connection between DNA variants and gene expression levels not only provides more

understanding of the biological network, but also enhances the mapping of these

quantitative traits. Thus, an understanding of the mechanism of gene expression and the

genotype/phenotype relationship is of paramount importance to both scientific research and

social economics.

The primary functionality of the gene expression process is to convert information

stored in genes into gene products such as RNAs or proteins. The fundamental of this

complex process is controlled by a class of proteins known as transcription factors (TFs)

that bind to special locations of the DNA double helix. These special binding sites, known

as transcription factor binding sites (TFBSs), are generally short motifs of 6-20 base pairs.

Furthermore, the discovery of new TFBSs will contribute to the establishment of gene

regulation networks, diagnosis of genetic diseases and new drug design.

On the other hand, the genotype/phenotype relationship is mainly explained by multiple

quantitative trait loci (QTLs), epistatic effects and environmental factors. A QTL is a

section of DNA that correlates with variation in a phenotype. The QTL typically is linked

to, or contains, the genes that control that phenotype interactions among QTLs or between

genes, and environmental factors contribute substantially to variation in complex traits.

During the last two decades the use of QTLs has proven to be effective for increasing food

production, resistance to diseases and pests, tolerance to heat, cold and draught, and to

improve nutrient content in animal and plant breeding.

Therefore, the objective of this dissertation is to develop sparse models for such high

dimensional data, develop accurate sparse variable selection and estimation algorithms for

the models and design statistical methods for robust hypothesis tests for the TFBSs

identification and QTL mapping problems. Although the sparse model learning works

presented in this thesis are used in the context of TFBSs identification or QTL mapping

problems, the algorithms are equally applicable to a broad range of problems, such as

whole-genome QTL mapping and pathway-based genome-wide association study

(GWAS), etc.

The widely used computational methods for identifying TFBSs based on the position

weight matrix (PWM) assume that the nucleotides at different positions of the TFBSs are

independent. However, several experimental results demonstrate the dependencies among

different positions. Recently, Bayesian networks (BN) and variable order Bayesian

networks (VOBN) were proposed to model such dependencies and thereby improve the

accuracy of predicting TFBSs. However, BN and VOBN model the dependencies in a

directional manner, which may hinder their capability of completely capturing complex

dependencies. To this end, we develop a Markov random field (MRF) based model for

TFBSs capable of capturing complex unidirectional relationships among motifs. To

capture the large extent of dependencies in a sparse model without causing overfitting, we

develop a feature selection method that carefully chooses only the most relevant features

of the model.

An exhaustive simulation study affirmed that our MRF-based method outperforms

other state-of-the-art methods based on VOBN. To further reduce the computational

complexity of our algorithm, we introduce a novel pairwise MRF model to the TFBSs, and

develop a fast algorithm to learn the model parameters. Specifically, we adopt an

optimization method that employs the log determinant relaxation approach to evaluate the

partition function in the MRF, which dramatically reduces the computational complexity

of the algorithm.

For the genotype/phenotype association problem, we develop a novel empirical

Bayesian least absolute shrinkage and selection operator (EBlasso) algorithm with normal

and exponential (NE) and normal, exponential and gamma (NEG) hierarchical prior

distributions. Both of these algorithms employ a novel proximal gradient approach to

simultaneously estimate model parameters that leads to extremely fast convergence.

Furthermore, we develop a novel proximal gradient hybrid model capable of detecting

more QTLs than its vanilla flavor, but still maintaining a lower false positive rate.

Having both covariance and posterior modes estimated, they also provide a statistical

testing method that considers as much information as possible without increasing the

degrees of freedom (DF). Extensive simulation studies are carried out to evaluate the

performance of the proposed methods, and real datasets are analyzed for validation. Both

simulation and real data analyses suggest that the new methods are fast and accurate

genotype-phenotype association methods that can easily handle high dimensional data,

including possible main and interaction effects with orders of magnitude faster than

existing state-of-the-art methods. Specifically, with the EBlasso-NEG, our new algorithm

could easily handle more than 105 possible effects within few seconds running on an

average personal computer.

Given the fundamental importance of gene expression and genotype/phenotype

associations in understanding the genetic basis of complex biological system, the MRF,

pairwise-MRF, EBlasso-NE, EBlasso-NEG and EBlasso-NEG hybrid algorithms and

software packages developed in this dissertation achieve the effectiveness, robustness and

efficiency needed for successful application to biology. With the advancement of high-

throughput molecular technologies in generating information at genetic, epigenetic,

transcriptional and posttranscriptional levels, the methods developed here have broad

applications to infer TFBSs and different types of genotype and phenotypes associations.

.

To my family

iii

Acknowledgments

This dissertation would not have been possible without the help of so many people

in so many ways. I would like to express my sincere gratitude first to my advisor and

chairman of the committee, Professor Xiaodong Cai, for his continuous suggestions,

guidance, and support throughout my Ph.D. studies. I am also thankful to my

committee members, Professor Miroslav Kubat, Professor Jie Xu of the Electrical and

Computer Engineering Department, and Professor Sawsan Khuri, Professor Stefan

Wutchy of the Computer Science Department at University of Miami for accepting

the appointment to the dissertation committee and for their helpful suggestions and

support.

I wish to acknowledge Professor Reuven Lask for giving me the opportunity to

work as a teaching assistant during my stay at the University of Miami. I also extend

my thanks to Ms. Rosamund Coutts, Ms. Michelle Perez, Ms. Angie Del-Llano and

Ms. Kendra Parks for their administrative assistance.

To all my beloved friends who have supported me throughout these years with

their continuous encouragement, considerations and assistance, I offer my sincerest

thanks. Finally, I would like to extend my utmost gratitude to my parents, Somalatha

iv

Grace and Wijayasinghe; my brother, Chaminda Saman Kumara; my grandmother

Seelawathi Perera; my wife Disna Ranasinghe; my daughter Sayuri Kuruppu and my

son Sanuj Kuruppu, for their caring, encouragement and love, which made this work

possible.

INDIKA P. KURUPPU APPUHAMILAGE

University of Miami

May 2016

v

Contents

List of Figures x

List of Tables xiii

CHAPTER 1 Introduction 1

1.1 Biological Background . 3

1.2 TFBSs Identification . 10

1.2.1 Experimental Methods to Identify TFBSs 10

1.2.2 Computational Methods for Identification of TFBSs 11

1.2.3 Statistical Methods over Consensus Methods 11

1.2.4 Motivation for the TFBSs Identification Problem 13

1.2.5 Markov Random Field Framework for Identifying TFBSs . . . 15

1.2.6 Pairwise MRF Model and Fast Learning Algorithm 18

1.3 QTL Mapping . 19

1.3.1 Statistical Methods for QTL Mapping 21

1.3.2 Single Marker Analysis . 22

1.3.3 Interval Mapping . 26

vi

1.3.4 Variable Selection in Multiple Variant Methods 28

1.3.5 Motivation and Objectives for QTLs Mapping 31

1.4 Outline of the Dissertation . 33

CHAPTER 2 Modeling TFBSs Identification Problem with MRF 37

2.1 The Nature of the Problem . 38

2.2 Background Models . 38

2.3 MRF Model for TFBSs . 43

2.3.1 Parameter Estimation . 46

2.3.2 L1 Regularization . 48

2.3.3 Bayesian Regularization . 49

2.3.4 Feature Selection Algorithm 50

2.4 Algorithm . 54

2.4.1 Algorithm with L1 Regularization 56

2.4.2 Algorithm with Bayesian Regularization 58

2.4.3 Best Model Selection . 62

2.5 Experiment Procedure . 63

2.6 Results and Discussion . 65

2.6.1 Phase 1 . 66

2.6.2 Phase 2 . 70

2.6.3 Phase 3 . 74

CHAPTER 3 Pairwise MRF Model and Fast Learning Algorithm 77

3.1 Pairwise MRF Model . 78

vii

3.2 Approximation Method . 80

3.3 Model Conversion . 87

3.4 Algorithm . 89

3.5 Results and Discussion . 90

3.5.1 De Novo Discovery of TFBSs 96

3.5.2 MRF Approach to De Novo Identification of TFBSs 98

CHAPTER 4 Fast Proximal Gradient Optimization of the Empirical

Bayesian Lasso for Multiple Quantitative Trait Locus Mapping 100

4.1 Background . 100

4.2 Linear Model of Multiple QTLs . 103

4.3 Prior and Posterior Distribution . 104

4.4 Proximal Gradient Algorithm for Maximum A Posteriori Estimation . 105

4.5 Experiment Procedure . 111

4.6 Results and Discussion . 114

4.6.1 Phase 1 . 114

4.6.2 Phase 2 . 118

4.7 Summary . 123

CHAPTER 5 Empirical Bayesian Lasso Proximal Gradient Algorithm

with Normal, Exponential and Gamma Hierarchical Prior Distribu-

tions for Fast Learning 125

5.1 Background . 126

5.2 Bayesian Multiple Linear Regression Model for QTLs 130

viii

5.3 NEG Hierarchical Prior Distribution 131

5.4 Proximal Gradient Approach . 133

5.4.1 Case 1: ∆ < 0 . 134

5.4.2 Case 2: ∆ = 0 . 134

5.4.3 Case 3: ∆ > 0 . 134

5.5 Experiment Procedure . 137

5.6 Results and Discussion . 140

5.6.1 Phase 1: Simulated Data . 140

5.6.2 Phase 2: Effect Over Various Sample Sizes 146

5.6.3 Phase 3: Including Epistatic Effects 151

5.6.4 Phase 4: Hybrid Model . 153

5.6.5 Phase 5: Real Data . 159

5.7 Summary . 164

CHAPTER 6 Conclusion and Future Work 169

6.1 Conclusion . 170

6.2 Future Work . 171

6.2.1 MRF-based Discriminative Methods for Discovering DNA Motifs172

6.2.2 Empirical Bayesian Lasso for QTL Mapping of Binary Traits . 173

6.2.3 Empirical Bayesian Method for Inference of Gene Networks . . 174

Bibliography 176

ix

List of Figures

1.1 DNA is made of four nucleotide building blocks [ABH+03] 4

1.2 DNA is compacted to form chromosome 6

1.3 Transcription process [ABH+03] . 7

1.4 An undirected graph . 35

1.5 Prior distribution that penalizes posterior distribution. Top: prior

probability of regression coefficients; bottom: log scale of the prior

probability of regression coefficients. 36

2.1 A first order Markov tree, Markov(1) 41

2.2 A Homogeneous VOM tree constructed from a fifth-order Markov model. 41

2.3 Representing a nucleotide sequence as a bit stream 61

2.4 Maximum likelihood as a function of model iteration for the foreground

model MRFBayes. (a), (b), (c), and (d) represent sets 1, 5, 100, and

735, respectively. 67

x

2.5 Mean TP rates for different fixed order Markov background models at

a TN rate of 99.9%. Orders of Markov background models from 0 to

4 are shown on the horizontal axis. The number in the parentheses

represents the number of nodes for the corresponding background model. 69

2.6 Mean TP rates for the VOM background models with an initial order

5 and different pruning constants c at a TN rate of 99.9%. Pruning

constants are shown on the x-axis. The average number of nodes in

the background model is shown in parentheses for each pruning constant. 70

2.7 Maximum mean TP rates of foreground models with VOM(5, c) as the

background model. Refer Table 2.5 to get the corresponding pruning

constant of background model (at TN rate 99.9%). 72

2.8 The ROC curves of different foreground models. Sensitivity and speci-

ficity are the normalized values of mean TP rate and TN rate, respec-

tively. 73

2.9 Improvement of MRFBayes in mean TP rates relative to PWM, VOBN(1,2−3.75),

MRFL1. ∆X = MeanTPMRFBayes −MeanTPX , where X represents

foreground models PWM, VOBN(1,2−3.75) and MRFL1. 76

3.1 Variation of computational complexity of approximation method and

exact method with different motif lengths (N). Top: linear scale, Bot-

tom: log scale . 94

xi

3.2 Improvement of approximation method over exact method for various

motif lengths (N). Improvement was calculated as texact/tapprox. Top:

linear scale, Bottom: log scale . 95

4.1 Prediction error changes based on the log and linear scale of λ. 115

4.2 Power of detection for the proximal gradient and coordinate ascent

algorithm. Performance data were obtained from mean of 100 replicas

for different sample sizes (n = 200, 400, 600, 800, 1000). 120

4.3 False discovery rate for the proximal gradient and coordinate ascent

algorithm. Performance data were obtained from mean of 100 replicas

for different sample sizes (n = 200, 400, 600, 800, 1000). 121

4.4 Performance is calculated as tCoordinateAscent/tProximalGradient. Perfor-

mance data were obtained by using the mean of 100 replicates. 122

5.1 Power of detection for the proximal gradient and coordinate ascent

algorithm. Performance data were obtained from the mean of 100

replicas for different sample sizes (n = 200, 400, 600, 800, 1000). . . . 147

5.2 False discovery rate for the proximal gradient and coordinate ascent

algorithm. Performance data were obtained from mean of 100 replicas

for different sample sizes (n = 200, 400, 600, 800, 1000). 148

5.3 Performance is calculated as tProximalGradient/tCoordinateAscent. Perfor-

mance data were obtained by using the mean of 100 replicates. 150

5.4 CPU time for real data over various hyperparameter value combinations.163

xii

List of Tables

1.1 IUPAC codes for Nucleic acids . 12

2.1 Feature selection algorithm . 54

2.2 Algorithm with L1 regularization . 57

2.3 Mofified feature selection algorithm for Bayesian regularization 59

2.4 Algorithm with Bayesian regularization 60

2.5 Background model that gives the best mean TP rate for each fore-

ground model in Figure 2.8 . 75

3.1 Algorithm with L1 regularization . 91

3.2 Computational complexity comparison of MRF-approximation method

over MRF-exact method. 93

4.1 Proximal method with line search algorithm 112

4.2 EBlaso with proximal gradient . 112

4.3 Variaton of detections over λ with prediction error obtained from ten-

fold cross validation. 117

4.4 True estimated QTL effects for the simulated data with main effects. 119

xiii

5.1 Proximal method with line search algorithm 138

5.2 EBlaso with proximal gradient . 138

5.3 Variaton of PE values over different combinations of a and b obtained

from ten-fold cross validation . 144

5.4 True estimated QTL effects for the simulated data with main effects. 145

5.5 Average run time over various sample sizes for proximal gradient method

and the coordinate ascent method. 149

5.6 True estimated QTL effects for the simulated data with main and

epistatic effects for sample size 600. 152

5.7 EBlaso With Proximal Gradient Hybrid 156

5.8 Various PE values for the secondary algorithm with hybrid model. . . 156

5.9 True estimated QTL effects for the simulated data with main and

epistatic effects for hybrid model. 158

5.10 Number of detections and PE values for different hyperparameter com-

binations for real data. 160

5.11 Number of detections across all hyperparameter combinations for p-

value= 0.05 . 161

5.12 Number of detections across all hyperparameter combinations for p-

value= 0.01 . 162

5.13 Number of detections and PE values for different hyperparameter com-

binations for coordinate ascent . 164

xiv

CHAPTER 1

Introduction

A gene is the molecular unit of heredity that is a region (locus) of deoxyribonu-

cleic acid (DNA) that encodes a functional ribonucleic acid (RNA) or protein prod-

uct [Sla14, AJL+14]. The individual organism exhibits observable characteristics

known as traits or phenotypes that may be quantitative, such as color of the skin,

height, or qualitative, such as blood type, risk for specific diseases. The transmission

of genes to an organism’s offspring is the basis of the inheritance of phenotypic traits.

Most biological traits are under the influence of polygenes (many different genes) as

well as gene-gene and gene-environment interactions.

Genes can acquire mutations in their sequence, leading to different variants, known

as alleles, in the population. An allele is one of the possible forms of a gene at a given

position. These are distinguished by four types of bases in the double DNA strands:

adenine (A), cytosine (C), guanine (G) and thymine (T). These alleles encode slightly

different versions of a protein, which cause different phenotype traits. Genes evolve

due to natural selection or survival of the fittest of the alleles.

The concept of a gene continues to be refined as new phenomena are discov-

ered [GH06]. For example, regulatory regions of a gene can be far removed from

1

2

its coding regions, and coding regions can be split into several exons. Some viruses

store their genome in RNA instead of DNA, and some gene products are functional

non-coding RNAs. Therefore, a broad, modern working definition of a gene is any

discrete locus of heritable genomic sequence that affects an organism’s traits by being

expressed as a functional product or by regulation of gene expression [Pea06, Pen07].

A great number of genes are differentially expressed among individuals. The

variation in gene expression is a more important mechanism underlying phenotypic

variation in morphological, physiological and behavioral traits as well as disease sus-

ceptibility. A connection between DNA variants and gene expression levels not only

provides more understanding of the biological network but also enhances the mapping

of the above-mentioned quantitative traits. In fact, gene expression levels themselves

can be treated as quantitative traits.

Thus, an understanding of the mechanism of gene expression and the relationship

of genotype to phenotype is of paramount importance to both scientific research and

social economics. The primary functionality of the gene expression process is to con-

vert information stored in genes into gene products such as RNAs or proteins. Since

all cells contain the same information (with some exceptions), it is essential for an

organism to increase versatility and adaptability by allowing cells to express different

proteins when needed. As an example, in the course of embryonic development, a fer-

tilized egg cell gives rise to many cell types that differ dramatically in both structure

and function [ABH+03]. The fundamental of this complex process is controlled by a

class of proteins known as transcription factors (TFs) [Wat04] that bind to special

locations of DNA double helix. These special binding sites are known as transcription

3

factor binding sites (TFBSs), which are generally short motifs of length in the range

of 6-20 base pairs [BN03, JLZL04, PMP04]. Other than an understanding of gene reg-

ulation mechanism, the discovery of new TFBSs will contribute to the establishment

of gene regulatory networks, diagnosis of genetic diseases, new drug design, etc.

On the other hand, the genotype/phenotype relationship is mainly explained by

multiple quantitative trait loci (QTLs), epistatic and environmental factors. QTL

is a section of DNA that correlates with variation in a phenotype (the quantitative

trait). QTL typically is linked to, or contains, the genes that control that phenotype

Interactions among QTLs or between genes, and environmental factors make a sub-

stantial contribution to variation in complex traits [CH04]. Use of quantitative trait

loci (QTLs) has proven to be an effective tool to increase food production, resistance

to diseases and pests, tolerance to heat, cold and draught, and to improve nutrient

contents in animal and plant breeding during the last two decades [BBC08]. Thus, the

identification of transcription factor binding sites and QTL mapping studies opens

up two major avenues to the research community and still remains as active research

topic. First, we briefly sketch the biological background.

1.1 Biological Background

Gregor Johann Mendel, considered as the father of genetics, was the first to discover

the existence of biological elements called genes in 1866 [Men65] by conducting exper-

iments with pea plants. The significance of his work was not recognized until it was

rediscovered by Hugo de Vries and Carl Correns in 1900 [Bow03]. Swiss physiological

4

chemist Friedrich Miescher is considered as the discoverer of deoxy-ribonucleic acid

(DNA), which he called nuclein (now nucleic acids) inside the nuclei of human white

blood cells in 1869 [Pra08]. Later, in 1953, James Watson and Francis Crick discovered

the double-helical, three-dimensional structure of the DNA molecule [FG53, Cri74].

Figure 1.1: DNA is made of four nucleotide building blocks [ABH+03]

As described in Figure 1.1, DNA is composed of four basic components, namely,

nucleotides, which are identical except that each contains a different nitrogen base.

5

Each nucleotide contains a phosphate, a sugar and one of the four bases: Adenine,

Guanine, Cytosine, and Thymine usually denoted as A, G, C, and T, respectively.

The double-helical structure is made by combining these bases as pairs with hydrogen

bonds. Each base pairs consists of A and T or C and G. Due to the asymmetrical

structure of sugars, the DNA molecule is directional. Each sugar is connected to

the strand upstream in its fifth carbon and to the strand downstream in its third

carbon. Therefore, in biological jargon, the DNA strand goes from 5’ to 3’ as shown

in Figure 1.1.

The complete set of information contained within an organism is called its genome.

For simplicity, we can think of this information as being written as a long chain of

four-letter alphabet: A, T, G and C. This extremely long double-stranded DNA is

compacted into chromosomes (see Figure 1.2) in eukaryotes (a higher level organism

whose cells have nuclei). Although a similar name appears as bacterial chromosome in

prokaryotic (single cell organisms whose cell does not have nuclei) cells, the structure

is different. In eukaryotic organisms, every cell, with few exceptions, has a complete

genome set.

Information coded in the genome leads to the synthesis of proteins. A protein is

an amino acid sequence (a molecule containing both amine and carboxyl functional

groups) and considered to be the principal constituent of cells that determines their

structure and functionality. Each protein has its own unique amino acid sequence,

usually called polypeptide chain, that dictates the protein to have a distinctive shape

and chemical properties. This complex process of transforming information in genome

to produce proteins is known as gene expression.

6

Figure 1.2: DNA is compacted to form chromosome

7

This process mainly consists of two steps: transcription and translation. Tran-

scription refers to the process of copying information in DNA to form ribonucleic acid

(RNA). RNA is a single stranded linear chain of polymer made of four different types

of nucleotide subunits linked together by phosphodiester bonds. There are two main

differences between DNA and RNA: (1) the nucleotides in RNA are ribonucleotides;

(2) RNA has uracil (U) in one of the bases, instead of the thymine(T) found in DNA.

Therefore, we can assume that the RNA has the same information written with al-

phabet A, G, C and U. The process of using information contained in RNA to form

protein is known as translation.

Figure 1.3: Transcription process [ABH+03]

The enzymes that carry out the transcription process are known as RNA poly-

merases. Even though bacteria contain only a single type of RNA polymerase, eu-

karyotic cells have three types: RNA polymerase I, RNA polymerase II, and RNA

polymerase III. Out of these three, the vast majority of genes, including all those

8

that encode proteins, are transcribed by RNA polymerase II. The RNA polymerase

moves stepwise along the DNA, unwinding the DNA helix just ahead to expose a new

region as the template strand for complementary base-pairing as shown in Figure 1.3.

Therefore, the growth of the RNA chain is extended from 5’ to 3’ direction.

Even though all cells in multicellular organisms have the same genetic informa-

tion (with some exceptions), different cell types produce different sets of proteins at

different times. This is due to the controlling mechanism regulating gene expression.

Controlling the gene expression is a very complex process and eukaryotic cells have

more complex controlling mechanisms which are not available to bacterial cells. As

discussed earlier, the DNA-to-protein conversion process begins with the transcrip-

tion process. Therefore, the factors that initiate the transcription process have larger

impact over the controlling mechanism of gene expression.

Bacterial RNA polymerase is able to initiate transcription without the help of

additional proteins. However, eukaryotic RNA polymerases need the help of a large

set of proteins called general transcription factors (TFs). These must assemble at

each promoter (promoter is a region of DNA that facilitates the transcription of a

particular gene that typically located near the genes they regulate) along with the

polymerase before the polymerase can begin transcription. These special binding sites

in the DNA are called transcription factor binding sites (TFBSs). Together with TFs,

these binding sites position the RNA polymerase correctly at the promoter, to aid

in pulling apart the two strands of DNA to allow transcription to begin. This also

allows RNA polymerase to leave the promoter as transcription begins. Usually, the

length of these short TFBSs ranges from 6 to 20 base pairs [BN03, JLZL04, PMP04].

9

Moving back to the genotype/phenotype associations, Mendel’s principles of hered-

ity explain qualitative traits that are controlled by single gene locus, while quanti-

tative inheritance theory assumes that phenotypes result from multiple gene factors,

gene-gene interactions as well as environmental effects [FM96]. Each of the main and

interaction effects exhibits only a modest effect on the phenotype and it is difficult to

dissect their individual effect. The genotype/phenotype association in animal/plant

breeding can be modeled by QTL mapping in inbred lines. In human populations, this

relationship is studied by examining the association of phenotypes with the natural

occurring genetic variations such as SNPs.

With the advent of new DNA sequencing technologies, high density markers can

be easily generated along the genome. However, it is still very likely that true causal

markers are not captured due to the large amount of genomic variants in living or-

ganisms [AJL+14, Con07]. On the other hand, with the large number of available

genetic markers, researchers usually have a hard time in finding the number, location

and effect of the individual genetic marker involved in the inheritance of target phe-

notypes. Therefore, the correlation among genetic markers and oversaturated models

are two common properties in QTL mapping.

Now that we have provided a basic biological background, the rest of the dis-

cussion is devoted to further exploring the two avenues we described earlier: TFBSs

identification and the QTL mapping.

10

1.2 TFBSs Identification

A large number of methods have been proposed toward identification of TFBSs due

to the increased interest in this area. In general, these methods can be categorized

as experimental and computational.

1.2.1 Experimental Methods to Identify TFBSs

Experimental methods are the traditional way of identifying TFBSs through labo-

ratory experiments. These methods are usually known as wet-lab experiments, and

there are a number of popular methods such as DNAse I protection or footprint-

ing assays [ZG03] and electrophoretic mobility shift assay (EMSA) [GR81]. Due to

scale problems, though, these methods are not best suited for whole genome-wide

analysis. However, some high-throughput methods also have been developed, such

as systematic evolution of ligands by exponential enrichment (SELEX) [TG90] and

protein-binding DNA microarray. The most common high-throughput technique is

chromatin immunoprecipitation of bound DNA followed by either microarray hy-

bridization (ChIP-chip) or sequencing (ChIP-seq) [Bul03, RRW+00]. These methods

are generally time consuming and expensive. Therefore, various computational meth-

ods have emerged due to the advancement of computer technologies with much lower

cost.

11

1.2.2 Computational Methods for Identification of TFBSs

There are two basic approaches to model and identify TFBSs [JLZL04] using compu-

tational methods. One is to represent a specific TFBS as a consensus sequence and

use a search algorithm to find the sequences that match the most positions of the

consensus sequence, allowing one or several mismatches. The other approach is to

model a TFBS using a statistical model and employ a statistical method to search for

sequences that are statistically consistent with the model. With both these categories,

the algorithms that do not use any training data sets to identify putative binding sites

are called de novo methods. These methods usually search over promoter regions of

a number of genes that have common TFBSs that would appear more than expected

from chance alone. Let us first briefly describe the nature of each type of algorithms

before we go into more detail.

1.2.3 Statistical Methods over Consensus Methods

Consensus-based methods represent a motif as a sequence of characters defined by

the International Union of Pure and Applied Chemistry (IUPAC) [IUP86] as shown

in Table 1.1. For example, GAL4 binding sites in yeast can be represented as CG-

GNNNNNNNNNNNCCG [ZZ99] where N stands for any nucleotide. Thus, any oligos

(short term for oligonucleotide: a short sequence of nucleotide) starting with CGG

and ending with CCG, with any 11 nucleotides in the middle, are considered as GAL4

binding sites. These methods usually belong to the class of string-matching problems

12

where some distance measure such as Levenshtein distance is used to calculate the

distance between pattern and the sequence being considered.

Table 1.1: IUPAC codes for Nucleic acids

code description

A Adenine

C Cytosine

G Guanine

T Thymine

U Uracil

R Purine (A or G)

Y Pyrimidine (C, T, or U)

M C or A

K T, U, or G

W T, U, or A

S C or G

B C, T, U, or G (not A)

D A, T, U, or G (not C)

H A, T, U, or C (not G)

V A, C, or G (not T, not U)

N Any base (A, C, G, T, or U)

The first consensus-based method to identify TATA-box motif was developed by

Galas et al. [GES85]. Since then, many consensus based methods have emerged [EP02,

ST02, PMMP04]. However, the main problem with these methods is the omission

of important variable regions of binding sites [RFJ+98] and inability of providing

information of the relative frequency of alternative nucleotides. Therefore, statistical-

based methods have become popular over the consensus based methods because the

statistical approach is flexible in handling missing data and incorporating information

13

from various sources. A few of the most popular TFBS-finding algorithms are all

based on explicit statistical modeling [JLZL04].

A widely used statistical model is based on the position frequency matrix, which

contains the frequency of each nucleotide at each position of TFBS, or equivalently

the position weight matrix (PWM) [KGR+03] that contains the probability of each

nucleotide at each position of the TFBS. PWM is also known as position-specific

scoring matrix (PSSM). In fact, TF databases such as TRANSFAC [MFG+03] and the

SCPD [ZZ99] use this representation to describe binding site consensuses. The PWM

model has been successfully applied not only to the problem of TFBS identification,

but also to other diverse problems in DNA and protein sequences analysis [Sal97].

Although some other scoring models have been used to improve the performance

over the PWM, they are not as prevalent as the simple PWM model [FH97] in iden-

tification of TFBSs. Some other statistical methods have been proposed to overcome

certain drawbacks in the PWM based methods. We will discuss these in more detail

in the next section.

1.2.4 Motivation for the TFBSs Identification Problem

PWM-based methods [SSGE82, HHG83] assume statistical independence among base

pairs at different positions. Therefore, the joint probability of a given sequence

segment factorizes into the product of single position probabilities [DSS03, EG01].

However, there has been increasing evidence suggesting the existence of correla-

tions between nucleotide positions among TFBSs [BJC02, BLFS01, WGRP99, MS01,

14

BPQ+06, UMFK02, OPLS05]. Man and Stormo [MS01] showed that the interac-

tion of salmonella bacteriophage repressor Mnt with its operator DNA at position

16 and 17 was not independent. Furthermore, dependencies within binding sites of

Arabidopsis ABA responsive element were described by Barash et al. [BEFK03] and

Udalova et al. [UMFK02] demonstrated the existence of such interdependent effects

in binding sites of the NF-k B protein. Therefore, PWM based methods often result

in a high rate of false-positive predictions [TLB+05, JCIL05].

Although dependencies between a base pair and several immediate upstream or

downstream base pairs are captured to a certain extent by fixed order Markov models

and hidden Markov models (HMMs) [TLM+01, LBL01, OH99, ON01], they fail to

represent distant relationships among base pairs. In fact, these long distance depen-

dencies can still be modeled with higher order Markov models, but the large number of

variables that increases exponentially with the order of the model leads to over-fitted

models as well as prohibitive amount of computation. To alleviate such problems,

Bayesian networks (BN) were proposed to identify TFBSs. The BN model is a di-

rected graphical representation of probabilistic dependence knowledge [Pea88], where

the edges are directed from an influencing position (parent) into an influenced position

(child). BN model has been applied to a vast number of applications such as analysis

of gene expression data [FLNP00], genetic linkage analysis [HGC95] and the iden-

tification of TFBSs and other functional DNA regions [BEFK03, CDKK00, CG04].

Unlike Markov models, BN models do not assume that the dependencies are neces-

sarily between adjacent positions.

15

To further reduce the number of parameters and the likelihood of over-fitting, vari-

able order Bayesian networks (VOBN) were proposed to model TFBSs [BGSG+05].

The VOBN approach extends the inhomogeneous variable order Markov (VOM)

model by allowing dependencies among non-adjacent positions while maintaining

fewer parameters. They first construct a BN model, where a node corresponds to

a position, and a directed edge (an arrow) from node i to node j meaning that the

nucleotide at position i is considered as part of the context of the nucleotide at po-

sition j. After that, they created a VOM tree for each position of the sequence and

employed a pruning method by using Kullback-Leibler (KL) divergence [Kul59] of the

conditional probabilities of symbols between each leaf and its parent node. However,

both BN and VOBN are based on directed graphs. This imposes some restrictions

on modeling dependencies and may not completely capture the dependencies among

base pairs. There is thus a strong motivation to develop a framework that could

handle these undirected relations among base pairs still keeping the computational

tractability.

1.2.5 Markov Random Field Framework for Identifying TF-

BSs

To solve the TFBSs identification problem, we propose using Markov random field

(MRF) or undirected graphical model [KS80, Bis06]. MRF has a set of nodes or

vertices, each corresponding to a variable or set of variables. Each node of the graph

can connect with any other nodes through undirected links. These links are usually

16

called edges that represent relations or dependencies among variables. In general,

this graph can have any complex structure, though some applications use special

cases, such as chain-structured graphs and grid-structured graphs. When each node

is connected to all the other nodes in the graph, it is known as a fully connected

graph. It is worthwhile to understand a few terms that we will use throughout our

discussion before going into more detail.

The subset of nodes where a link exists between all pairs of nodes in the subset

is called a clique. In other words, the nodes in a clique are fully connected. Let us

consider the example described in Figure 1.4. Variables that are assigned to each

node are represented as x1, x2, x3, x4, x5 and x6. Note that we alternatively use the

variable name to identify the node as well. As one can see from the graph, nodes x4,

x5 and x6 form a clique, because each has an edge to all the others. Furthermore, a

maximal clique is a clique such that it is not possible to include any other nodes from

the graph without ceasing to be a clique. In Figure 1.4, the set consisting of vertices

{x5, x6} is not a maximal clique because we can still add vertex x4 to the set without

losing the clique property. Therefore, the maximal clique contains vertices {x4, x5,

x6}.

With MRF, the joint distribution of variables over the nodes is represented as a

product of potential functions. These functions are positive and real valued functions

defined on maximal cliques of the graph. Unlike in directed graphical models (e.g.,

BN) where each factor in the joint distribution represents the conditional distribution

of the corresponding variable, given the state of its parents, we do not impose any

restrictions over the potential functions to have any specific probabilistic interpreta-

17

tions such as marginal or conditional distributions. This gives us more freedom to

define any form of positive real valued potential function for the purpose.

One consequence of this fact is that we need to add a normalization factor to

the joint distribution because, in general, the product of potential functions is not

correctly normalized. Usually, this normalization factor is known as partition func-

tion. As we will see shortly, the main computational burden in training as well as

in inferencing through the undirected graphical model is caused by this partition

function.

Having described basic properties of MRF, and its importance over the directed

models, let us present the problem of modeling and identification of TFBS with MRF.

We define each position in the TFBS as a vertex or node in the MRF. To each node,

we associate a random variable, which in our case takes values in a configuration

space {A,T,G,C}. As we illustrate later, this enables us to easily define any complex

dependencies among nucleotides with a proper set of feature functions as explained

in Section 2.3. Although this representation helps to capture most of the complex

dependencies among nucleotides in the TFBSs, the exponential number of model

parameters makes the model unusable, due to the following two reasons:

1. Parameter estimation involves an extremely high computational complexity;

2. Limited training instances lead to an over-fitted model.

Therefore, we need to include a large number of parameters to capture depen-

dencies, but including a large number of parameters may cause over-fitting problems.

To solve this paradox, we propose to use an iterative procedure that uses the Max-

18

imum Likelihood (ML) approach together with two levels of feature reduction tech-

niques, as we will describe more detail in Chapter 2. The first level uses a feature

induction algorithm [PPL97] that carefully adds a small number of most relevant

parameters to the existing model in each iteration. The second level uses a regular-

ization mechanism with the ML approach to eliminate less relevant parameters. In

particular, we propose to use two types of regularization techniques: L1 regulariza-

tion [SK03, Ng04, DPS04, LGK07] and Bayesian regularization [CT06]. As we will

demonstrate in Chapter 2, combining these two feature reduction techniques helps

to make the model as sparse as possible and to capture complex dependencies while

keeping the computational complexity at a feasible level.

1.2.6 Pairwise MRF Model and Fast Learning Algorithm

The proposed MRF model has a general structure where feature functions are allowed

to grow to higher orders in the iteration process. Thus, the maximal clique size can be

any number from one to the length of the motif. This leads to a higher computational

complexity in the parameter learning phase. In particular, the major computational

complexity is caused by the calculation of partition function.

The computational complexity of exact evaluation of partition function is in the

order of 4N ×K, where N is the length of the TFBS and K is the number of param-

eters. Previously, we proposed to use two level feature reduction techniques together

with the ML approach, which effectively reduces the value of K in each iteration.

Even with efficient implementation with C++, the computational complexity of the

19

algorithm for long motifs, e.g., 20 nucleotides, is extremely high. To tackle this prob-

lem, we propose to model TFBS using pairwise MRF where the maximal clique size

is limited to two. However, we allow any two nodes to form a clique. In this way,

we capture most of the dependencies among nodes while reducing the computational

complexity.

Using this pairwise MRF, we develop a fast algorithm to learn the structure of

the model using an approximation method to evaluate the partition function. Specif-

ically, we adopt an optimization method that employs the log determinant relaxation

approach [WJ06] to solve this problem. As we will further explain in Section 3.2, with

the dual formulation of the optimization problem, the complexity of the calculation

of the partition function is reduced to the order of (4N)3. This will drastically reduce

the overall complexity of our learning algorithm that facilitates employing our MRF

model in modeling and identifying long motifs.

1.3 QTL Mapping

In previous sections, we went over the TFBSs identification problem, where we pro-

posed a Markov random field-based model for sparse model learning. Even though

the QTL mapping problem shares some similar characteristics with the TFBSs iden-

tification problem, the number of model parameters involved in QTL mapping could

be extremely large. Due to the high computational complexity of Markov random

field-based models for such problems, we will take a different route. Before going into

more detail, let us give some insight into the QTL mapping problem.

20

Phenotypic traits that vary continuously are referred to as quantitative traits.

Stretches of DNA containing or linked to the genes that underlie a quantitative trait

are called quantitative trait loci (QTL). QTL mapping is a scientific undertaking to

identify QTL using information of biological markers. Consider the case where two

inbred lines with different traits of interest are chosen to cross. In this scenario, the

first generation (F1) will have identical genetic markers that show complete linkage

disequilibrium (LD) (the non-random association of alleles at different loci) for genes

differing between the inbred lines. Starting from the F1, we can use several designs

to study QTL mapping.

For example, intercross design (IC) is to cross between siblings among F1 individ-

uals. Crossing of F1 individuals to one of the two parental lines leads to backcross

design (BC). The doubled haploid (DH) design is to develop individuals from pollens

of an F1 plant through another culture and chromosome doubling; and recombinant

inbred lines design (RIL) is to cross between sibling individuals for many generations

starting from F2 till almost all of the segregating loci come to be homozygous.

While the different experiment designs lead to different breeding populations for

QTL mapping research, the F2 population provides the most genetic information

among different types of mapping populations [LGA+09]. Even though several tech-

niques are used in QTL mapping, such as single marker mapping, interval mapping,

multiple loci mapping as well as composite interval mapping, the principles in these

mapping techniques are generally the same, and methods used in one population can

be extended to other experiment populations. Techniques such as simple linear regres-

sion, t-test and analysis of variance (ANOVA) are used by single marker test, while

21

multiple loci mapping considers multiple markers simultaneously that may include

possible higher order marker interactions as well as environment factors.

Interval mapping [LB89] and composite interval mapping [Zen94] are extensions

of single marker test and multiple loci test, respectively. In interval mapping, each

locus is considered one at a time and the logarithm of the odds ratio (LOD score)

is calculated for the model that the given locus is a true QTL. In composite interval

mapping, one performs interval mapping using a subset of marker loci as covariates.

These markers serve as proxies for other QTLs to increase the resolution of interval

mapping, by accounting for linked QTLs and reducing the residual variation [LB89].

1.3.1 Statistical Methods for QTL Mapping

As biotechnology progresses, more and more biological markers become available

in many organisms, and the genotyping of the markers has become less and less

expensive. QTL mapping is now being used on a daily basis in genetic research as

well as in medical studies. Appropriate and efficient statistical methodologies are

crucial for QTL mapping to be fruitful. As the data complexity of QTL mapping

evolves due to the progress of bio-technology, many advanced statistical methods

have been developed in recent years.

The data points for the problem include phenotype values (quantitative such as

weight and height, or qualitative including nominal values such as male/female and

ordinal values such as strong/normal/weak), and genotype values (homozygote, het-

erozygote, or another minor homozygote in intercross and population studies). The

22

goal of the computational methods is to differentiate the testing markers in linkage

with causal markers through genotype/phenotype association studies.

There are mainly two categories of methods: single marker analysis and interval

mapping (IM). The models that take a single variant at a time are mostly used due

to the less computational complexity, while the models with multiple variants are

undergoing intensive research studies. We will discuss these two areas with more

detail in the following sections.

1.3.2 Single Marker Analysis

Single marker analysis is simple and straightforward for most models, such as simple

linear regression, analysis of variance (ANOVA), t-test, the Cochran-Armitage test,

Pearson χ2 test and generalized regression for qualitative traits. All these methods

analyze the simplest association among genotype of markers and the phenotype quan-

titative trait and test for trait value differences between marker groups. The statistics

tests the null hypothesis that the trait value is independent of the genotype at a par-

ticular marker, for a given trait. It rejects the hypothesis if the test statistics is larger

than a threshold value. Specific to the t-test statistics, the hypothesis corresponds

to the test of mean phenotypic values among genotypes at a marker. In regression

models, the hypothesis corresponds to the test of slope.

Suppose n1 individuals have genotype value MM at marker q in a mapping pop-

ulation, while n2 have mm, and the corresponding mean phenotype values are µM

and µm. The hypothesis test is to test: H0 : µM = µm and H1 : µM 6= µm. Then the

23

t-score is calculated as t = µM−µm√
s2p(1/n1+1/n2)

∼ tn1+n2−2, where s2
p =

(n1−1)s2M+(n2−1)s2m
n1+n2−2

with s2
i , i = M or m being the estimated phenotypic variance within the two groups,

and tn1+n2−2 stands for the Students t distribution with a degree of freedom (DF)

equals to n1 + n2 − 2. Then the test rejects H0 if t > tα/2, where tα/2 is a threshold

defined such that p(|t| > tα/2) = α, with α being a pre-specified constant typically

equals to 0.05.

This can also be used to test the heterozygote genotype (a locus with different

alleles) Mm against the other two genotypes to reveal dominant effects since it does

not assume a specific genetic model. The ANOVA method computes a score as

F = variance between M and m
variance within M and m

∼ F1,n1+n2−2, where F1,n1+n2−2 stands for the F distribution

with DFs equal to 1 and n1 + n2 − 2. It rejects the null hypothesis if the score is

outside of α/2 ∼ (1− α/2) range of the F -distribution. The linear regression model

assumes that the phenotype can be expressed as a linear combination of predictor

plus an error term that follows a normal probabilistic distribution. The statistics

tests if the regression coefficient of the linear model equals zeros, or equivalently the

phenotype value equals to population mean. In the latter case, the test is equivalent

to the t-test.

The Cochran-Armitage test evaluates the null hypothesis that the proportion of

cases counts among n1 individuals having genotype value MM , n2 having Mm and

n3 having mm at a marker fit a straights line with zero slope [Arm55]. Pearson χ2

test puts the genotype counts into a contingency table and computes the score as

χ2 =
p∑
i=1

(Oi−Ei)
2

Ei
∼ χ2

2, where p is number of cells in the table, Oi is the observed

24

counts in ith cell, Ei is the expected counts in the given study cohort [Bal06], and

χ2
2 represents the χ2 distribution with a DF of 2. The generalized regression model

consists of three components: linear predictors, a link function and a probabilistic

distribution model of the qualitative phenotype, which is typically binomial or multi-

nomial distribution [DRW03]. Similar to linear regression, the generalized regression

model for qualitative traits also tests if the regression coefficient is zero.

The methods described above use different genetic effects such as additive and

dominant effect in testing genotype and phenotype associations. In regression mod-

els, they can be tested simultaneously by adding dummy variables to encode different

effects. Take linear regression as an example. Suppose we observe quantitative phe-

notype yi, i = 1, · · · , n, of n individuals and now test marker q with possible genotype

MM , Mm and mm. A widely used genetic model is the Cockerham model [Coc54]

that defines the values of the additive effect as xi = −1, 0 and 1 for the three geno-

types and the values of the dominance effect as zi = −0.5 and 0.5 for homozygotes and

heterozygotes, i = 1, 2, · · · , n, respectively. Then the regression model is formulized

as

yi = β0 + β1xi + β2zi + ei, i = 1, 2, · · · , n, (1.1)

where ei is residual error that follows a normal distribution with zero-mean and

variance σ2. The parameters are estimated by the least square estimator (LSE). For

qualitative traits, the generalized linear model forms similar linear predictors:

ηi = β0 + β1xi + β2zi, i = 1, 2, · · · , n, (1.2)

25

and utilizes a link function such that E(yi|xi, zi) = g−1(η). The parameters are

estimated by the maximum likelihood (ML) estimator.

To control the overall type I error rate, single marker methods require multiple test

correction such as Bonferroni correction [Dal04] and family-wise error rate [BH95].

Given the large number of possible markers, multiple test correction leads to such a

stringent criterion that most modest effects could not pass the threshold. Usually, the

complex phenotype is controlled by multiple genetic factors and their interactions with

environmental effects. However, each of the main and interaction effects exhibits only

a modest effect on the phenotype, which makes it difficult to dissect their individual

effect.

As shown in an example in prokaryotes, genes belonging to specific/non-specific

membrane channels, oxidative stress response and osmotic stress response are involved

in conferring bacterial resistance to high arsenic level, and looking for a single gene or

single regulon may end up with no meaningful result [HTRM10]. Therefore, a marker

that is identified with a single marker method as associated with the phenotype may

only explain a small proportion of the phenotype variation. Before we move on to the

multiple loci association methods that are capable of capturing these complex rela-

tionships, it is worthwhile understanding the interaction of genes, known as epistatic

effects.

Epistasis refers to genetic interactions in which the mutation of one gene masks

the phenotypic effects of a mutation at another locus [Cor09, Cor02, MW05]. While

biological epistasis is defined as physical interaction among genes, statistical epis-

tasis is defined mathematically as deviation from additivity in a linear model of

26

genotypes [MW05]. Given the nature of genes in functioning by affecting behav-

iors of other genetic products, epistasis is believed to play an important role in the

genesis of complex disease [Ste12]. Interactions between QTLs or SNPs can be ana-

lyzed with a regression model, including two markers and their high order interaction

terms [Cor02]. The two loci linear regression model is:

yi = β0+ βa1xi1 + βd1zi1 + βa2xi2 + βd2zi2 + βaaxi1.xi2 + βadxi1.zi2

+βdazi1.xi2 + βddzi1.zi2 + ei, i = 1, 2, · · · , n, (1.3)

where βas are the regression coefficients for additive effects, βds are the regression

coefficients for dominant effects, si and zi are dummy variables identical to the ones

in the single marker model, and the epistatic effects are modeled via element-wise

product of effects in two loci. Such a two loci approach considers one epistatic effect

at a time, and inherits similar multiple test problems as in the single marker approach.

In fact, given the combinatorial number of possible interactions, the selection criterion

is even more stringent. To mitigate the multiple test problem and to reduce the

computational burden, a two-stage strategy that analyzes the subset of interactions

within significant marginal effects has been proposed [ZL07, WMS+11].

1.3.3 Interval Mapping

To overcome drawbacks of single marker analysis, multiple loci association methods

have been proposed to handle main and interaction effects simultaneously. The idea

behind interval mapping is simple: one can gain power in testing the null hypothesis

against the alternative that there is a QTL at a specified locus, by incorporating

27

marker information from either side of the locus. In addition to avoiding the multiple

test correction problem, the multiple loci methods are also motivated by the fact

that complex phenotypes are controlled by multiple genetic factors [AJX01] and that

gene-gene interactions are pervasively present [Cor09].

Single variant regression can be extended to multiple-variant analysis by including

multiple covariates into the regression model. It is also common to use haplotypes in

LD blocks to capture the correlation structure of SNPs in regions of little recombi-

nation. A haplotype is a combination of alleles at different loci on the same chromo-

some [AKFST09]. The haplotype regression method leads to a model with fewer DF

and captures the overall effects of tightly linked cis-acting causal variants [Bal06].

Despite the promise of high power and reasonable type I error rate, there are great

challenges in the implementation of multiple QTLs mapping and SNPs association.

First and foremost, even though high-throughput technologies are able to genotype a

large number of samples efficiently, the possible number of markers p is typically far

greater than the number of samples n in the study. Traditional ordinary least square

regression method fails for the case p� n. When taking into account the interactions

between loci, variable selection is even more demanding [WE07].

It is likely that the increased DF in a multiple QTLs model jeopardizes the power

gain over single-locus models [GCS+13, ZGD11]. Additionally, in binary-trait or case-

control association analysis, complete or semi-complete separation can be a serious

problem due to the discrete nature of both marker data and binary outcomes [Hei06,

GJPS08]. Usually, the separation problem is handled by removing predictors, which,

however, may result in loss of the strongest predictors [Zor05]. Therefore, accurate

28

variable selection methods and sparse model inference become critical for the multiple

variant association approach, especially when epistasis is considered [Rit11].

1.3.4 Variable Selection in Multiple Variant Methods

It is critical to select an appropriate multi-variant model to identify correct genetic

loci associated with a phenotype, particularly in the case of “large p and small n”

where p� n. The objectives of designing robust variable selection techniques include

accurate causal variables detection, precise estimation, as well as powerful hypothe-

sis tests [HCMF08]. Variable selection and shrinkage are two general techniques in

handling such model selection problems, and they typically produce sparse models.

Traditional variable selection methods include single variable analysis, forward

selection, backward elimination and forward stagewise selection. The single variable

regression test discussed in the previous section is computationally convenient for

high dimensional data, but it falls short in taking interactions into consideration

and requiring a stringent criterion to declare significance. Forward selection and

backward elimination are regression methods that start with one or full variables

and iteratively add or delete one variable to select the optimal variable subsets. The

methods apply selection criteria such as the Akaike information criterion (AIC) or

Bayesian information criterion (BIC) [Sch78] to penalize model complexity.

The forward stagewise method starts with an empty set and iteratively adds the

variable that is most correlated with the current residual at each step, and increases

the regression coefficients with a small value. These greedy selection methods may

29

result in a suboptimal subset, and are computationally expensive even for small num-

ber of variables [HTF09]. The variable shrinkage method includes all variables in

the model and applies a penalty function or appropriate prior distributions on the

variables to automatically shrink most non-effects toward zero.

Two well-known methods are the regularized regression method [Tib96, ZH05,

HTF09] and the Bayesian shrinkage method [OS09]. Among them, two special cases

where certain penalties such as l1 or l2 penalty, or hierarchical prior distributions such

as Normal-Exponential-Gamma (NEG) or Normal-inverse-χ2 distributions that favor

sparseness are the most popular techniques. Consider the general multiple linear

regression problem with n samples and p variables:

yi = µ+

p∑
j=1

xijβj + εi, (1.4)

where yi is the response variable for sample i, xij is the jth predictor for the ith sample,

µ is the regression intercept, βj is the regression coefficient responsible for the effect

of variable Xj to y, and εi is the residual error that follows a normal distribution

with zero-mean and covariance σ2
0 : ε ∼ N(0, σ2

0). Defining y = [y1, y2, · · · , yn]T ,

β = [µ, β1, β2, · · · , βp]T and X = [1, xT1 , x
T
2 , · · · , xTp]T , we can write the regression

model in a more compact form:

y = Xβ + e, (1.5)

where e is the residual error that follows a normal distribution with zero-mean and

covariance σ2
0I : e ∼ N(0, σ2

0I). The generic penalized regression method infers the

model parameters as:

β̂ = arg min
β
||y −Xβ||22 + λ||η(β)||qq, (1.6)

30

where η(β) ≥ 0, and ||η(β)||qq =
p∑
j−1

η(βj)
q is the lq penalty term. Here the intercept is

absorbed into matrix X, and it is not penalized. Without loss of generality, variables

are assumed to be rescaled to have variance 1 to obtain invariant penalties. Notice

that when η(βj) =

1, if βj 6= 0

0, otherwise

, ∀j the model penalizes the number of effects.

With q = 1, the solution of (1.6) is equivalent to the AIC (for λ = 2) or BIC

(for λ = log(n)) in forward selection and backward elimination, and the estimates

are the same as the least square solutions. Let η(βj) = |βj|, j = 1, 2, · · · , p to

penalize the effect size, (1.6) becomes the bridge regression [FF93, Fu98], which is

a generalization of the two most popular penalized regression methods, namely, the

l2 penalty of the ridge regression [HK70], and the l1 penalty of the least absolute

shrinkage and selection operator (Lasso) [Tib96]. In the Bayesian shrinkage approach,

a prior distribution p(β|λ) is assigned to β. The posterior distribution given the

observed data takes the form of

p(β|y, λ) ∝ p(y|β)p(β|λ). (1.7)

If we are looking for β that maximizes the posterior distribution, the problem is

equivalent to finding

β̂ = arg max
β

[
log p(y|β) +

p∑
j=1

log p(βj|λ)

]
(1.8)

which is equivalent to the penalized ML method. Then β̂ is the mode of the pos-

terior distribution and this method is referred to as maximum a posteriori (MAP)

approach [GCS+13].

31

The Bayesian interpretation of penalized regression methods has sparked interest

in developing Bayesian hierarchical regression models for model selection. Theoreti-

cally, prior distributions with spike finite limit at zero and flat tails at two ends can

be a penalty of the log posterior distribution (Figure 1.5) [HWIB08, AC10, HL13].

In practice, conjugate priors are often chosen [GCS+13]. Among them the Normal

+ inv-χ2 (t-family) distribution [Xu07, GJPS08, YB09, Xu10] and NEG hierarchi-

cal priors [HWIB08, GB11] are most often used with both variable shrinkage and

computational feasibility considerations.

For Bayesian estimation, Markov Chain Monte Carlo (MCMC) [RC04] can be

employed to draw samples from posterior distribution for each parameter. How-

ever, for high dimensional data the MCMC method is known to be computationally

intensive. The posterior mode estimation is a modal representation of the poste-

rior distribution that achieves faster computation and easier interpretation. Efficient

methods for estimating the posterior mode have been developed, which employ the

expectation-maximization (EM) algorithm [Gel06, GJPS08, YB09, Xu10] or other

numerical methods that further integrate out the variance components and obtain

similar sparse results as the Lasso (which is named as HyperLasso) [HWIB08, AC10].

1.3.5 Motivation and Objectives for QTLs Mapping

The l2 penalty in ridge regression cannot shrink regression coefficients to zero even

though it guarantees a solution for p � n problems. The l1 penalty in the Lasso

and the Bayesian shrinkage in the HyperLasso are able to set the coefficients to zero

32

and estimate only nonzero variables, thus offering computational feasibility to handle

a large number of variables [HWIB08, WCH+09]. However, Lasso and HyperLasso

only provide a point estimate of the variables without other information, such as the

variance of the estimated effects [Tib96, HWIB08, AC10].

The EM algorithm in inferring Bayesian hierarchical models makes multiple passes

over all candidate variables and produces a sequence of MAP estimates. Given the

slow convergence problem [GJPS08, YB09, Xu10, GB11], it is computationally expen-

sive when dealing with high dimensional data. Even though the Bayesian shrinkage

approach used in [CHX11] has shown improved performance, the greedy coordinate

ascent algorithm makes it slower when dealing with a larger number of parameters.

To address this, we develop fast and robust sparse model learning techniques

and design a powerful hypothesis test method for the QTL mapping problem. We are

particularly interested in the Bayesian shrinkage approach with appropriate prior dis-

tribution for the unknown variables that not only shrinks irrelevant variables, yielding

a sparse model, but also provides both posterior mode and covariance estimates to

facilitate hypothesis tests. Furthermore, we employ a proximal gradient method that

considers the nonzero effects in the model simultaneously over the greedy coordi-

nate ascent approach taken in [CHX11]. Such designs result in sparse models with

extremely fast convergence, which is ideal for analyzing high dimensional genotype

data efficiently and more accurately.

33

1.4 Outline of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we describe our

proposed MRF framework for modeling TFBSs and develop two ML based methods

to estimate model parameters using L1 and Bayesian regularization, respectively.

Furthermore, using the feature induction approach in [PPL97] and our parameter

estimation method, we develop an iterative algorithm that can find a near-optimal

MRF model for the TFBSs. In Chapter 3, to further reduce the complexity of the

algorithm to deal with long motifs, we develop a pairwise MRF model for TFBSs.

Based on this pair-wise MRF, we formulate an optimization problem to approximate

the partition function that significantly reduces the computational complexity.

In Chapter 4, we present a fast empirical Bayesian Lasso (EBlasso) method in

conjunction with proximal gradient algorithm using NE hierarchical prior distribution

for multiple QTL mapping [AHC14]. In Chapter 5, we further extend this model with

NEG hierarchical prior distribution with fast proximal gradient algorithm to reduce

the computational complexity while increasing the detection rate. Furthermore, we

develop a powerful hybrid model that is capable of detecting more QTL effects with

lower false positives.

Although the sparse model learning work presented in this thesis is used in the

context of TFBSs identification or QTL mapping, the algorithms are equally applica-

ble to a broad range of problems, such as de novo TFBSs identification, whole-genome

QTL mapping and pathway-based genome-wide association study (GWAS) [HXC14b,

34

HMVC14], etc. The final chapter concludes the dissertation by summarizing the

achievements and opening up avenues for future research.

35

Figure 1.4: An undirected graph

36

Figure 1.5: Prior distribution that penalizes posterior distribution. Top: prior proba-
bility of regression coefficients; bottom: log scale of the prior probability of regression
coefficients.

CHAPTER 2

Modeling TFBSs Identification Problem

with MRF

We present a framework for identifying TFBSs with MRF. For a given DNA sequence,

the segments corresponding to TFBSs are known as foreground, while the rest are

considered as the background. We first briefly introduce the background models that

are widely used in the research community. Then we formulate the TFBSs identifica-

tion as an undirected graphical model structure learning problem. We further define

a set of features that can be used with the structure learning problem using the factor

graph concepts. Using these features in the model allows us to convert the problem

into a parameter estimation problem.

A fully connected structure leads to a computational explosion that makes the

model learning intractable. To address this, we propose a two-level feature reduc-

tion technique that will be described in sections 2.3.2, 2.3.3, and 2.3.4. This reduces

the complexity while capturing dependencies among nucleotides. The efficient imple-

mentation of the algorithm also plays a vital role, and we will discuss some of the

important aspects of the algorithms implementation in section 2.4.

37

38

2.1 The Nature of the Problem

We consider identification of TFBSs as a classification problem that classifies a given

segment of a DNA sequence into a TFBS or a background sequence (non-TFBS se-

quence). Suppose we have a set of experimentally discovered TFBSs for a specific

transcription factor. We use this set of sequences as training data to learn the pa-

rameters of the model for TFBSs or the foreground model. Suppose that we also

have a set of background DNA sequences for non-TFBS sequences. We use this set of

sequences to train the background model (see section 2.2 for more details). Specifi-

cally, we use MRF based foreground models and employ a widely used Markov model

for background sequences. Based on these two models, we design a classification rule

to maximize the true positive (TP) rate for a fixed true negative (TN) rate. Before

going into more details of our foreground model, let us briefly summarize the widely

used background models.

2.2 Background Models

Various types of background models have been proposed for modeling non-TFBS re-

gions of the genome. However, the models based on Markov properties have drawn

great interest in this area [HETC00]. Usually, the background sequences are of vari-

able lengths. Therefore, all background models can be considered as homogeneous

models where there is no position-dependent information.

In general, Markov models can be either fixed order or variable order, but the

most popular background model is the zeroth order Markov model, also known as

39

Bernoulli model due to its simplicity [LNL95, HETC00]. We abbreviate this model

as Markov(0). Let us now define some notations to continue with our discussion.

We denote a segment of a DNA sequence starting from position l, and ending

with position n as xnl = xl, xl+1, · · · , xn−1, xn [BW99]. With this notation, we can

define any DNA sequence of length N as xN1 . For simplicity, when we use the whole

sequence, we drop the superscript and subscript, and use x to denote the sequence.

Let each position of this sequence xi take values from a configuration set denoted

by A = {A, T,G,C}, which is also known as nucleotide bases or simply DNA let-

ters [BW99]. Clearly, the cardinality of this set, d, is equal to 4. Furthermore,

we define each element in A as aj where j = {1, 2, 3, 4}. Thus we have a1 = A,

a2 = T , a3 = G and a4 = C. Let X denote a random DNA sequence and Xi be

the random variable associated with the ith position of X so that Xi takes values

from the same configuration set A. With these notations, for a zeroth order homo-

geneous background model, we can write the probability of a sequence x, denoted by

p(x) ≡ p(X = x) as

p(x) =
N∏
i=1

P (Xi = xi). (2.1)

Although this zeroth order model is very simple, it has no context (the set

of nucleotides observed earlier is called the context) information at all. There-

fore, this model poorly captures the complex dependencies residing in DNA se-

quences [TLM+01, LBL01]. For this reason, higher order Markov models have been

40

proposed. With this representation, the likelihood of a sequence given by an Lth order

Markov model, Markov(L), can be written as

p(x) =
N∏
i=1

P (Xi = xi | X i−1
i−L = xi−1

i−L), (2.2)

where i−L ≡ max(i−L, 1). As we can see from (2.2), the likelihood is based on the se-

quence of predecessors of a fixed length L, where L < N . For example, the likelihood

of the sequence ACCTGGCT, P (ACCTGGCT), with a second-order Markov model

can be written as P (A)P (C|A)P (C|AC)P (T |CC)P (G|CT)P (G|TG)P (C|GG)P (T |GC).

The main drawback of using fixed-order Markov models is the exponential growth of

parameters with respect to the order of the model. This will result in over-fitted mod-

els as indicated by Buhlmann et al. [BW99] and Orlov et al. [OFPK02]. To alleviate

this problem, variable order Markov models (VOM) were proposed.

Both fixed order and variable order Markov models can be represented as trees,

usually known as context trees [Ris83]. The height of a tree is equal to the order of

the Markov model, while the number of leaves is equal to dL. Each node contains d

number of probabilities corresponding to each nucleotide base. Therefore, the zeroth

order Markov model has just a single node at the root. Figure 2.1 represents a first-

order Markov model as a context tree. The branches from the root on top down to

the leaves represent the reversed context.

The VOM tree is constructed from a fixed order Markov model as described

in [BGMS03, BW99]. To construct the VOM tree from a regular fixed order Markov

model, the concept of pruning is used. The statistical significance of the parent

41

Figure 2.1: A first order Markov tree, Markov(1)

Figure 2.2: A Homogeneous VOM tree constructed from a fifth-order Markov model.

node and child node of the tree is measured using KL divergence. To obtain the

final VOM tree, we recursively prune out all child nodes having smaller KL diver-

gence (usually known as pruning constant, c) than their corresponding parent. The

number of nodes contained in the final tree is governed by the value of the prun-

ing constant. The higher the value of the pruning constant, the smaller the number

of nodes we get in the final tree. For further details of constructing VOM trees,

see [SBG07, BGSG+05, BGMS03, BW99]. Figure 2.2 shows a VOM tree constructed

from a fifth-order Markov model. It can be clearly seen that most of the nodes are

pruned out and the height of the tree has become 3 instead of 5. Thus, it elimi-

nates most of the less relevant dependencies, which helps overcome the problem of

over-fitting.

42

The likelihood of a sequence using a VOM model can be written in the same way

as fixed order Markov models with slight modification to the order L as [BGSG+05],

p(x) =
N∏
i=1

P (Xi = xi | X i−1
i−Li

= xi−1
i−Li

). (2.3)

Here the number of previously observed symbols to calculate the probability of each

position is not fixed as we saw in fixed order Markov models. The optimum value

of Li is given by, Li ≡ max{L − j|xL−j ∈ B}, where j is an integer that can take

values {0, · · · , L} and the set B is the set containing all predecessors of xi remaining

in the VOM tree. If (L − j) = 0 then there is no context and we use the corre-

sponding probability from the root. For example, when calculating probability for

the position i, if we do not find the context xi−L, xi−L+1, · · · , xi−1 in the VOM tree,

we look for the context xi−L+1, xi−L+2, · · · , xi−1. This process is continued until we

find an entry in the tree. Moving back to Figure 2.2, it is not difficult to show that

the calculation of likelihood of the sequence TCCGGA, P(TCCGGA) is reduced to

P (T)P (C|T)P (C|TC)P (G|CC)P (G|CG)P (A|G).

Proof:

P (TCCGGA) = P (T)P (C|T)P (C|TC)P (G|TCC)P (G|TCCG)P (A|TCCGG)

= P (T)P (C|T)P (C|TC)P (G|CC)P (G|CCG)P (A|CCGG)

= P (T)P (C|T)P (C|TC)P (G|CC)P (G|CG)P (A|CGG)

= P (T)P (C|T)P (C|TC)P (G|CC)P (G|CG)P (A|GG)

= P (T)P (C|T)P (C|TC)P (G|CC)P (G|CG)P (A|G)

43

In each step we remove the element xi−L from the context when we do not find

the entry in the tree. As an example, the last term of the likelihood, P (A|TCCGG),

is all the way reduced to P (A|G) since we do not find any entry in the tree for

TCCGG, CCGG, CGG and GG when A is observed. With this brief understanding

of the widely used background models, let us now present our MRF framework for

the foreground model.

2.3 MRF Model for TFBSs

An MRF is an undirected graph G = (V,E), where V = {1, · · · , N} is the vertex set

and E is a set of undirected edges joining pairs of vertices. To model a DNA sequence

as an MRF, we define each position in the sequence as a vertex or node. To each

node i ∈ V , we associate a random variable Xi which in our case takes values in the

configuration space A. A clique of the MRF is a maximum subset of V in which each

pair of nodes is joined by an edge. All random variables associated with nodes in a

clique are dependent on each other. The joint distribution of a random sequence X,

p(x) ≡ p(X = x), associated with an MRF, can be written as a product of potential

functions ψ(XC) over the maximal cliques of the graph as [Bis06]

p(x) =
1

Z

∏
C

ψ(XC), (2.4)

where C represents a clique, and XC denotes the connected nodes in clique C. The

product is taken over all possible cliques in the graph. As explained in Section 1.2.5,

44

we need to use an external normalization factor called partition function,

Z =
∑
X

∏
C

ψ(XC), (2.5)

If not normalized, the product of potential functions cannot be interpreted as a

probability distribution. Here the summation is taken over all possible sequences of

length N denoted by X . Let us denote fs(XS) as a feature function over a subset of

nodes XS within a clique, which we will define shortly. Since we only need to consider

potential functions as strictly positive, each potential function can be written as an

exponential function of a set of feature functions [KFL01]

ψ(XC) = exp
(∑

s

θsfs(XS)
)
, (2.6)

where θs is the weight for the feature function fs(XS). Using this representation, we

can rewrite the joint distribution in (2.4) as

p(x) =
1

Z
exp
(K∑
k=1

θkfk(Xk)
)
, (2.7)

where K is the total number of feature functions. For this joint distribution, we

obtain the partition function as

Z =
∑
X

exp
(K∑
k=1

θkfk(Xk)
)
. (2.8)

Also, we denote the set containing the weights of all feature functions as Θ

(∀k, θk ∈ Θ). As one can see from (2.8), Z is a function of Θ. Therefore, we will alter-

natively use Z(Θ) to denote the partition function Z, whenever we need to emphasize

that the Z is a function of Θ.

45

To complete the model, we need to define all feature functions. We define a set of

4N elementary feature functions known as atomic or first-order feature functions as

follows:

f4(i−1)+j =

1, if xi = aj

0, otherwise,

(2.9)

where i = 1, · · · , N and j = 1, · · · , 4, a1 = A, a2 = T , a3 = G and a4 = C. If we

denote this set of feature functions as fn, where n = 1, · · · , 4N , then we can find

the correlation between n, i and j as i =
⌈
n
4

⌉
and j = n%4 + 1. To further clarify,

f1 = 1 if x1 = A, f6 = 1 if x2 = G and so forth. We denote this set of atomic feature

functions as Fatom. The motivation behind this definition is that we can define any

higher order feature functions as a product of these elementary feature functions, as

we will explain shortly. Now let us define a second-order feature function as:

fm =

1, if xi1 = aj1 AND xi2 = aj2

0, otherwise,

(2.10)

where m = 4N + 1, · · · , 8N(N + 1), i1 = 1, · · · , N − 1, i2 = i1 + 1, · · · , N − 1,

j1 = 1, · · · , 4 and j2 = 1, · · · , 4. Capitalizing on the idea of atomic features, we can

find an alternative form given by

fn = f4(i1−1)+j1 × f4(i2−1)+j2 . (2.11)

As one can see, the second-order feature function can be defined as the product

of two atomic features. This process can be continued to obtain any higher order

feature functions. In general, a kth (k > 1) order feature function can be defined as

a product of k atomic feature functions.

46

If the MRF model contains only the first-order feature functions, then all nodes

are independent and the model is equivalent to the PWM model. If the MRF model

contains all first and second order feature functions, then it is the pairwise MRF

considered in [WJ06]. Given the probability model specified by the probability dis-

tribution (2.7), we need to estimate model parameters θk, k = 1, · · · , K, which we

will discuss in the next section.

2.3.1 Parameter Estimation

Suppose that we are given a set of M independent and identically distributed training

sequences D = {xj, ..., xM}. Then the log likelihood function of the data can be

written as

l(D|Θ) =
K∑
k=1

θkfk(D)−M logZ(Θ), (2.12)

where Θ = {θ1, · · · , θK}, we have explicitly expressed Z as a function of Θ, and

fk(D) =
M∑
m=1

fk(x
m) (2.13)

is the sum of the feature values over the entire data set. We can estimate the set

of parameters, Θ, by maximizing the log likelihood function (2.12). It can be easily

shown that this log likelihood function is convex. Therefore, maximization (2.12)

becomes a convex optimization problem that can be solved by using any convex

optimization algorithm.

We allow feature functions of any possible order (up to Nth order) to be included

in our model to capture dependencies among several nodes. Note that there are 4k(Nk)

kth order feature functions for motifs of length N . If we include higher order feature

47

functions, then the model contains a large number of parameters even for a moderate

N . This exponential number of features causes very high computational complexity

in the ML approach. Furthermore, the limited number of training instances leads to

over-fitted models.

To tackle this challenge, we propose to use an iterative method to build the model

by carefully introducing only the most relevant set of features in each iteration by

using a feature selection algorithm [PPL97]. Specifically, we start the graph structure

with a small set of relevant nodes. And then, in each iteration, we introduce the next

set of the most relevant nodes and edges to the current model, thus adding more and

more dependencies among nodes.

This mainly limits the number of features associated with the ML estimation

process. Then we apply another level of feature reduction technique by using a reg-

ularization together with the ML approach. In fact, we propose to use two types of

regularization: L1 regularization [SK03, Ng04, DPS04, LGK07] and Bayesian Regu-

larization [CT06]. This will eliminate most of the excessive features involved in the

current model, which helps to reduce the number of features added by the feature

induction algorithm in the next iteration.

These two techniques drastically reduce the computation complexity while in-

creasing the performance, as we will shortly see in the simulation and results section

(Section 2.6). Now, we describe each of these method in detail in the next two sec-

tions.

48

2.3.2 L1 Regularization

In this approach, we first get a L1-regularized likelihood function by inserting a term

of weighted L1 norm of the parameters into (2.12) and then find parameters by

maximizing this L1-regularized likelihood function:

arg max
Θ

[
K∑
k=1

θkfk(D)−M logZ(Θ)− λ
K∑
k=1

|θk|

]
, (2.14)

where λ is a constant. We will later discuss determining the value of λ. Using

L1-regularization provides several advantages. First, it has been shown that L1-

regularization leads to a sparse model by nullifying less relevant parameters [Tib94,

LGK07], which in turn can avoid the over-fitting problem. Second, it can identify

relevant features with fewer number of training samples [DPS04, Ng04]. These two

advantages ensure that the L1-regularized ML estimation offers much better perfor-

mance than the direct ML estimation.

Since both the generalization ability of the classifier and the level of sparsity

achieved are critically dependent on the value of the regularization parameter λ, it

must be carefully tuned to optimize performance. Higher values of λ keeps only

the more sensitive features while lower values of λ includes less sensitive features.

Therefore, selecting a suitable value of λ depends on the training data. At the same

time, using a fixed value for λ does not give good results. Therefore, we use the

variable λ selection method with the aid of simulated annealing schedule to address

the problem. This allows us to add more sensitive features at the first and less and

less sensitive features to be included later in training process.

49

2.3.3 Bayesian Regularization

The second regularization we use is Bayesian regularization that was originally pro-

posed to solve sparse logistic regression problems [CT06]. The main advantage of this

method is that it does not contain any parameter involved with the regularization term

as in L1 norm. The regularization parameter λ is integrated out analytically, using

an uninformative Jeffery’s prior, in the style of Buntine and Weigend [CT06, BW91].

This provides an easy way of using this regularization together with the ML approach,

since we do not need to employ other complicated methodology to optimize the regu-

larization parameter as we suggested with L1 norm. Incorporating this regularization

term into (2.12), we get the Bayesian regularized ML optimization function:

arg max
Θ

[
K∑
k=1

θkfk(D)−M logZ(Θ)−K log

(
K∑
k=1

|θk|

)]
. (2.15)

With L1 regularization, we need to use a separate data set known as evaluation set

to find the best model, as explained in Section 2.4.3. This will effectively reduce the

number of data instances for the training process. But we can overcome this problem

with Bayesian regularization.

To give some intuition to this fact, consider the first two terms of the (2.15). They

come from the original likelihood function. When the number of features is increased,

the net value of these two terms also increases because the model captures the less

sensitive information from the training set. This is the reason for the over-fitting

problem. The regularization term is always positive and it is directly proportional

to the number of features, as can be seen from (2.15). When we get more and more

50

features, the incremental value of this term becomes larger. Since this is subtracted

from the net value of the first two terms, when the number of features in the model

is greater than a certain value, the overall maximum value of the (2.15) becomes

smaller. Therefore, the maximum likelihood values of (2.15) as a function of model

index follow a convex shape. This can be clearly seen with our results presented in

Section (2.6). We use this fact to eliminate the need for another evaluation set for

the model selection process, as described in Section (2.4.3).

2.3.4 Feature Selection Algorithm

Clearly, there is no closed-form solution to the optimization problem in (2.14) or (2.15).

Therefore, we need to employ numerical optimization algorithms to find the solution.

The main challenge with the application of an optimization algorithm to this problem

is the calculation of the partition function Z(Θ). With the length of N base pairs for

the TFBS, we need to get a sum over 4N ×K terms to evaluate Z(Θ), which requires

very large computation if both N and K are relatively large.

Therefore, it is very important that, for a given N , we choose a relatively small K

by only selecting the most relevant set of features before carrying out the optimization

step. Even though we have discussed two types of regularization techniques capable

of eliminating most of the excessive features, they do not have any control over the

number of features (K) included in the initial ML estimation problem. This is the

main motivation to use a feature induction algorithm.

51

The basic strategy of this method is to add a new set of features to the current

model so that the overall model gets closer to a reference distribution p̄, which is the

empirical distribution of the training set defined as

p̄(x) =
c(x)

M
, (2.16)

where M is the total number of training sequences and c(x) is the count of occurrences

of sequence x.

Assume that the probability distribution of the sequence x given by the current

model is qi(x). Given this distribution, our goal is to find the next best set of features

to include in the model. We start with a set of active features determined in the cur-

rent model, say Fcur. As discussed in Section 2.3, any higher order feature functions

can be obtained as a product of several atomic feature functions. Therefore, we select

one feature at a time from Fatom and multiply it with each active feature in Fcur to

build the next candidate features. If the selected atomic feature is not included in the

current model, the atomic feature itself is also added as a candidate feature. Now,

we calculate the gain G of adding each candidate feature to the current model as

G = DKL(p̄‖qi)−DKL(p̄‖qi+1), (2.17)

where qi+1 is the probability distribution of x obtained from the new model after

adding the candidate feature.

To reduce computational complexity, we assume that the existing feature weights

remain unchanged while a new feature is added as in [PPL97]. Note that the weight

of the newly added feature can be optimized to calculate the maximum gain. Let θ̂

be the weight of the newly added feature that gives the maximum gain. With the

52

assumption of fixed weights with current model feature functions, and using indicator

features defined in Section 2.3, we can get a closed-form solution for the new feature

weight θ̂ as:

θ̂ = log

(
p̄[g](1− qi[g])

qi[g](1− p̄[g])

)
, (2.18)

where p[g] =
∑

x∈X g(x)p(x) and g(x) denotes the added feature function. With this

optimum weight of the new feature function, the gain can be written as [PPL97]

G = (1− p̄[g]) log

(
1− p̄[g]

1− qi[g]

)
+ p̄[g] log

(
p̄[g]

qi[g]

)
. (2.19)

Proof: By applying the definition of KL divergence to (2.17),

G = DKL(p̄‖qi)−DKL(p̄‖qi+1) (2.20)

=
∑

p̄(x) log

(
p̄(x)

qi(x)

)
−
∑

p̄(x) log

(
p̄(x)

qi+1(x)

)
=
∑

p̄(x) log

(
qi+1(x)

qi(x)

)
=
∑

p̄(x) log

(
exp (

∑
θkfk) exp (αg)

qi(x)
∑

exp (θkfk) exp (αg)

)
=
∑

p̄(x) log

(
exp (αg)

qi[exp (αg)]

)
=
∑

p̄(x)(αg − log qi[exp (αg)])

= αp̄[g]− log qi[exp (αg)]

The derivative of (2.20) with respect to α yields

∂G

∂α
= p̄[g]− qi[g exp (αg)]

qi[exp (αg)]
.

Since we consider only binary features, g can take only 1 or 0. Let X0 be the

set of x that evaluates to 0 and X1 be the set of x that evaluates to 1. Now at the

maximum of the above equation, the derivative is equal to 0.

53

p̄[g]− qi[g exp (α̂g)]

qi[exp (α̂g)]
= 0

p̄[g] =

∑
exp (θkfk)g exp (α̂g)∑
exp (θkfk) exp (α̂g)

=

∑
X1

exp (θkfk) exp α̂∑
X0

exp (θkfk) +
∑

X1
exp (θkfk) exp α̂

exp α̂ =
p̄[g]

∑
X1

exp (θkfk)

(1− p̄[g])
∑

X0
exp (θkfk)

=
p̄[g](1− qi[g])

(1− p̄[g])qi[g]

α̂ = log

(
p̄[g](1− qi[g])

(1− p̄[g])qi[g]

)

Now substituting the α̂ into (2.20), the maximum gain provided by the added new

feature can be written as

Gmax = α̂p̄[g]− log qi[exp (α̂g)]

= α̂p̄[g]− log (exp α̂qi[g] + (1− qi[g]))

= p̄[g] log

(
p̄[g](1− qi[g])

(1− p̄[g])qi[g]

)
− log

(
1− qi[g]

1− p̄[g]

)
= log

(
p̄[g]p̄[g](1− qi[g])p̄[g]−1

q
p̄[g]
i (1− p̄[g])p̄[g]−1

)

= p̄[g] log (p̄[g] + (p̄[g]− 1) log(1− qi[g]))

− p̄[g] log qi[g]− (p̄[g]− 1) log(1− p̄[g])

= (1− p̄[g]) log

(
1− p̄[g]

1− qi[g]

)
+ p̄[g] log

(
p̄[g]

qi[g]

)
.

After calculating gains for all possible candidate features, we add those features

with the maximum gain as the next best features to the current model. After adding

54

Table 2.1: Feature selection algorithm

FeatureSelection
for all fa ∈ Fatom do

for all fc ∈ Fcur do
fn = fa.fc
if fn ∈ Fcur then

Continue
end if
Compute Gain for fn(2.19)
Store Gain and fn

end for
if fa 6∈ Fcur then

fn = fa
Compute Gain for fn(2.19)
Store Gain and fn

end if
end for
Fmax = fns with maximum gain
Fcur = Fcur ∪ Fmax

EndFeatureSelection

those features, we need to use the numerical optimization technique we explained

earlier to find the correct feature weight that maximizes the ML optimization function.

The feature selection algorithm can be summarized as in Table 2.1. So far we have

described two levels of feature reduction techniques we used in our framework. Now

we combine these two techniques and formulate the final algorithm.

2.4 Algorithm

We propose to use an iterative method to learn the MRF model. In the initialization

phase, we select one atomic feature at a time from Fatom to form the model. Note that

there is only a single weight involved in the model denoted as θk. Then we find the

optimum value for each θk as θ̂k using the regularized ML method described earlier.

55

Since we have only a single feature in the model, the computational overhead can be

reduced by deriving a closed-form solution for θ̂k when optimizing with (2.14). The

derivation is as follows.

There is only a single weight involved in the model, denoted as θ̂k. Consider the

simplified partition function for the model having only a single feature,

Z =
∑
X

exp
(
θkfk(Xk)

)
(2.21)

= 4n−1 exp θk + (4n − 4n−1).

With this Z, we can get the derivative of (2.14) and equate it to zero to find the

solution for θ̂k. Since the derivative is not defined at zero, we can find two solutions

for θ̂k as follows:

θ̂k =

log
(
−3(fk(D)−λ)
fk(D)−M−λ

)
, for θ̂k > 0;

log
(
−3(fk(D)+λ)
fk(D)−M−λ

)
, for θ̂k < 0.

(2.22)

We find the solution from each case and check whether it matches with the correct

range. Due to the convexity of our problem, a unique solution exists for θ̂k. Therefore,

if both cases fail, we can safely assume that the solution to θ̂k is 0.

We denote the probability distribution given by each model in the initialization

process as q0(x). Clearly, there are 4N number of models to consider. Then we find

the KL divergence between p̄(x) and q0(x) as

DKL(p̄‖q0) =
∑
x∈X

p̄(x) log

(
p̄(x)

q0(x)

)
. (2.23)

Since there are 4N atomic features, we get 4N number of KL distances. The set

of atomic features with the minimum KL distance is selected to be included in the

56

initial model. Based on this set of selected features, we use regularized ML method

to evaluate optimum set of Θ, as Θ̂ and form the initial model q1(x).

Due to the regularization parameter in the optimization, the final algorithm takes

different forms based on the regularization technique we use. Therefore, we present

our complete algorithm with each regularization method separately.

2.4.1 Algorithm with L1 Regularization

We use a simulated annealing schedule to estimate the regularization parameter λ in

each iteration. As one can see in the algorithm (Table 2.2), the initialization step

automatically selects an appropriate starting value for λ based on the given training

set. Therefore, one does not need to have any prior knowledge to select the value of

λ. Also, we add not only the minimum KL distance features, but also some features

close to the minimum distance, in the initialization step. Similarly, in each iteration,

we add some features that are close to the maximum gain in addition to the features

with maximum gain. This process increases the performance and reduces the time

complexity in the training process, as shown in the results.

As can be seen from the algorithm, we always use the simulated annealing schedule

for λ and redo the optimization whenever we fail to get a nonzero weight for any of

the newly added features or when the new model has a negative gain. But this is not

necessary with Bayesian regularization since no regularization parameter is involved.

The complete algorithm is shown in Table 2.2.

57

Table 2.2: Algorithm with L1 regularization
Begin

define ZERO = 1.0E − 5
λ = 1000 (use a large number)
define λfrac = 0.85
Initialization

repeat
for all fa ∈ Fatom do

Form the model with fa
Compute θ̂k (2.22)

if |θ̂k| > ZERO then
Compute KL distance (2.23)

end if
end for
if ∀ θ̂k, |θ̂k| ≤ ZERO then

λ = λ.λfrac
Continue

end if
until ∃ θ̂k s.t. |θ̂k| > ZERO

Fcur = all features with non zero θ̂k
Take this as the initial model and optimize (2.14)

if All |θ̂k|s ≤ ZERO then
go to Initialization

end if
EndInitialization

while true do
FeatureSelection Call the feature selection algorithm in Table 2.1
if |Fmax| = 0 then

go to End
end if

Optimization
repeat

Optimize the current model (2.14)

if ∀ θ̂k ∈ Fmax, |θ̂k| ≤ ZERO then
λ = λ.λfrac
Continue

end if
until ∃ θ̂k ∈ Fmax s.t. |θ̂k| > ZERO

EndOptimization

Compute Gain, G (2.19)
if (G < 0) then

λ = λ.λfrac
go to Optimization

end if
Save the Model

end while
End

58

2.4.2 Algorithm with Bayesian Regularization

Let us first discuss the differences between Bayesian regularization and L1 regular-

ization. One difference is that we add only the features with minimum KL distance

in the initialization process. Furthermore, we only add features with maximum gain.

Recall that in the previous method we added some set of features that were close

to the maximum gain. The other difference is the feature selection procedure. In

the previous method, we could always include the next best set of features into the

model by reducing the value of λ. However, this is not possible with this method.

Therefore, we modify the feature selection algorithm by incorporating optimization

into the feature selection algorithm as shown in Table 2.3. Now with this modified

version of feature selection algorithm, it is easy to present the complete algorithm

with Bayesian regularization as shown in Table 2.4.

So far we have presented MRF model formation algorithms with both regular-

ization methods. To complete our discussion, let us consider the main challenges in

implementation of this algorithm and efficient techniques to reduce the computational

complexity. The main challenge is the extremely high computational complexity of

the partition function. MATLAB is not capable of handling that level of computa-

tional complexity. Therefore, we implemented algorithms using C++ with efficient

data structures and coding techniques. To make the evaluation of feature functions

faster, we converted all records to a binary format. Each nucleotide of the sequence

was represented with a two-bit binary number (A=00, T=01, G=10, C=11) so that

a length N sequence is represented by a 2N bit stream. For an example, a sequence

59

Table 2.3: Mofified feature selection algorithm for Bayesian regularization

FeatureSelection
for all fa ∈ Fatom do

for all fc ∈ Fcur do
fn = fa.fc
if fn ∈ Fcur then

Continue
end if
Compute Gain for fn(2.19)
Store Gain and fn

end for
if fa 6∈ Fcur then

fn = fa
Compute Gain for fn(2.19)
Store Gain and fn

end if
end for
Assume that we stored gains in the array Garray

Sort Garray in descending order
for i = 1 ,|Garray| do
Fmax = all features at ith location
Fcur = Fcur ∪ Fmax

Optimize the model (2.15)
if ∃ θ̂k ∈ Fmax s.t. |θ̂k| > ZERO then

break
else
Fcur = Fcur −Fmax

Reset weights to original values
|Fmax| = 0

end if
end for

EndFeatureSelection

60

Table 2.4: Algorithm with Bayesian regularization

Begin
define ZERO = 1.0E − 5
Initialization

for all fa ∈ Fatom do
Form the model with fa
Compute θ̂k (2.15)
if |θ̂k| > ZERO then

Compute KL distance (2.23)
end if

end for
if ∀ θ̂k, |θ̂k| ≤ ZERO then

go to End
end if
Fcur = all features with non zero θ̂k
Take this as the initial model and optimize (2.15)
if All |θ̂k|s ≤ ZERO then

go to End
end if

EndInitialization
repeat

FeatureSelection Call the feature selection algorithm in Table 2.3
if |Fmax| 6= 0 then

Save the Model
end if

until |Fmax| = 0
End

61

Figure 2.3: Representing a nucleotide sequence as a bit stream

of length 12, ATGCCCCCAATT, can be represented as 000110111111111100000101,

as shown in Figure 2.3. And also we represented all atomic feature functions with a

value and a mask.

f4(i−1)+j =

mask = 4i − 4i−1,

value = 4i−1 × (j − 1),

(2.24)

where i = 1, · · · , N , and j = 1, 2, 3, 4. Note that all atomic features defined on

the same position of the sequence have the same mask but different values. To

clarify this further, the atomic feature f2 (x1 = T) is represented with value 1

(000000000000000000000001) and mask 3 (000000000000000000000011) with sequences

of length 12.

This representation provides an efficient way of building complex higher order fea-

tures as well as an evaluation of feature functions to be implemented with bitwise op-

erations rather than string comparison. This will drastically improve the performance

when implemented with C++. As an example, to evaluate the feature value for a given

sequence, we can simply consider the Boolean operation (x & mask[f] == value[f])

where mask[f] and value[f] are the mask and value of feature f . Furthermore, we

can make a complex higher order feature fcom by combining two features fx and fy

as follows:

62

fcom

mask[fcom] = mask[fx] OR mask[fx]

value[fcom] = value[fy] OR value[fy].

(2.25)

We use dynamic programming concepts to reduce the complexity of certain sec-

tions of the algorithm, and also implement the gradient projection algorithm with

variable step sizes to have a fast convergence using C++.

2.4.3 Best Model Selection

Algorithms that we proposed in previous sections generate a series of sparse MRF

models throughout the iteration process, by adding or removing features from the

current model to the next model. However, the problem of under-fitting or over-

fitting cannot be avoided completely. Therefore, selecting the best model out of this

series of models is very important.

For Bayesian regularization, as explained in Section 2.3.3, the maximum likelihood

as a function of model index always has a global maximum. Therefore, we use this

fact to select the best model with Bayesian regularization. As our results will show,

the variation of the function around the maximum point is very small. Therefore, we

select all models where maximum likelihood is 2.5% closer to the peak value. Out of

these models, we choose the model with the lowest test threshold (the test threshold

is defined in (2.26)) as the best model. Our results indicate that this method improves

the TP rate in classification.

With L1 regularization method, there is no such property as in Bayesian regular-

ization. Therefore, we use the evaluation data set (the procedure of generating an

63

evaluation set will be described in the next section) to select the best model. Once

the model iterations are completed, we choose the model that gives the maximum

TP rate with respect to the evaluation set as the best model. Whenever we get more

than one model with the same highest accuracy, we choose the one with the lowest

test threshold as the best. The main drawback to this procedure is that this will

effectively reduce the number of training instances, as indicated in next section.

2.5 Experiment Procedure

For the training and testing purposes, we used two types of data sets: the foreground

and background data sets obtained from Ben-gal et al. [BGSG+05]. The foreground

data set consists of 238 E.coli sigma-70 binding sites of length 12 base pairs, and the

background data set consists of 472 intergenic ‘non-promoter’ sequences of E.coli that

gives a total of 77,644 nucleotides.

From each data set (foreground and background) we randomly selected 10% as

the testing set and the rest 90% as the training sets. Out of these 90% training data,

we randomly selected another 10% as the evaluation set for selecting the best model

for L1-based algorithm as described in Section 2.4.3. We repeated this procedure to

randomly generate 1000 data sets to evaluate the performance of each method. This

process can be named as the 1000-fold stratified-holdout procedure [BGSG+05]. Since

the PWM-based model is the most popular model for TFBSs while the VOBN-based

method outperforms other algorithms such as those based on PWM, BN, or the fixed-

order Markov model [BGSG+05], we compared the performance of our MRF-based

64

methods with the PWM and VOBN-based methods. Using the training data in each

background data set, we trained the background model Mbg. For methods, PWM,

VOBN, and MRF with Bayesian regularization (MRFBayes), we used training data

in each foreground data set to train the foreground model Mfg. For MRF with L1

regularization method (MRFL1), we used the training data that excludes the evalu-

ation data set. After training our MRF-based methods, we used the evaluation data

set and best model selection criteria as described in section 2.4.3 to select the best

model for each data set. After training the foreground and background models, we

classified each sequence in the testing data set as a TFBS if the following condition

was satisfied:

P (x|Mfg)

P (x|Mbg)
≥ T, (2.26)

where P (x|Mfg) and P (x|Mbg) represent the probability of x calculated from the

foreground and background models, respectively, and T is a threshold that was de-

termined by a given TN rate.

In the process of background model training, we first created a context tree as

described in Section 2.2 and then calculated the probability of each node as follows:

P
(
Xi = xi | X i−1

i−L = xi−1
i−L
)

=
n
(
xii−L

)
n
(
xi−1
i−L
) , (2.27)

where n(.) denotes the frequency of its argument in a training set. To compensate for

zero occurrences of certain oligonucleotides, we added a fixed count known as pseudo-

count [BGSG+05] to all the nodes in the same level of the tree before calculating the

probability using (2.27). More precisely, we assumed that the sum of all pseudo-counts

in a level was 4096 [BGSG+05, HGC95]. For example, a fifth-order Markov model

65

has a pseudo-count of 1024 for each frequency in the root node, and pseudo-count of

1 for each frequency in leaf nodes.

We conducted three phases of experiments. In the first phase, we chose fixed order

Markov models with several orders as the background model. We fixed the TN rate at

99.9% to have a fair comparison with the results of Ben-gal et al. [BGSG+05], and then

compared the mean TP rates of foreground models, namely, PWM, V OBN(1, 2−3.75),

MRFL1, and MRFBayes. For the VOBN model, we used the pruning constant of

2−3.75 and the initial order of 1, because these parameters give the best performance

for the given data set according to [BGSG+05]. For the notational simplicity, in Sec-

tion 2.6, we alternatively used VOBN to refer to the actual model V OBN(1, 2−3.75).

In the second phase, we used a fifth-order VOM model with different pruning con-

stants [BGSG+05] to analyze the effect of VOM background models to the mean TP

rate. In the third phase, we used all the background models used in first and second

phases of experiments to evaluate mean TP rates of each foreground model with dif-

ferent TN rates. Then we selected the best mean TP rate to obtain receiver operating

characteristic (ROC) curves.

2.6 Results and Discussion

Before we move into the classification results, we will justify our claim in the best

model selection procedure for MRF with Bayesian regularization. We claimed that

the maximum likelihood of (2.15) as a function of model iteration index achieves

a global maximum. Since all the data sets follow the same pattern, we randomly

66

selected four data sets for the demonstration, and calculated the maximum likelihood

given by models in each iteration.

Figure 2.4 shows the results for sets 1, 5, 100, and 735. In Figure 2.4 the likeli-

hood function clearly achieves a global maximum. Furthermore, the variation of the

likelihood is very small around the peak. This is the reason to pick a set of models

around the peak point to obtain the best model as described in Section 2.4.3. We

use all models that are 2.5% close to the peak value in selecting the best model. As

one can see from Figure 2.4, we do not need to go for higher iterations since those

models fall out of the domain considered in best model selection. Thus, this provides

an early termination criterion for iterations, and further reduces the time required in

the training process.

2.6.1 Phase 1

We used fixed order homogeneous Markov models with order L = 0, 1, · · · , 4, as

background models. Fixing the TN rate at 99.9%, we obtained the mean TP rates

from 1000 data sets for foreground models. Figure 2.5 plots these mean TP rates.

Note that the number of nodes for each background model is shown in brackets under

the name of the background model.

67

Figure 2.4: Maximum likelihood as a function of model iteration for the foreground
model MRFBayes. (a), (b), (c), and (d) represent sets 1, 5, 100, and 735, respectively.

68

We noticed in the experiments that there was not much improvement when the

number of iterations was approximately greater than 100. Therefore, we limited the

number of iterations to 100 for each set, and selected the best model as described

in Section 2.4.3. Note that there are two additional curves in Figure 2.5, labeled

MRFL1-B and MRFBayes-B. To obtain these curves, for each set, we selected the

best model by using the testing data itself, and then calculated the mean TP rate

given by these best models. Therefore, MRFL1-B and MRFBayes-B can be thought

as upper bounds of mean TP rates for MRFL1 and MRFBayes methods, respectively.

The reason is that if we could develop an ideal best model selection method, then we

could have achieved these mean TP rates.

In Figure 2.5, VOBN and MRFL1 achieve their best TP rates with the third-order

Markov background model, while PWM and MRFBayes methods achieve their best

TP rate with the second-order Markov background model. Comparing the TP rates

for all background models with an order from 0 to 4, we observe that the maximum

TP rates for PWM and VOBN are 44.84% and 46.25%, respectively. Clearly, both

of our proposed methods outperform the other two methods with all the background

models. The maximum TP rate of MRFL1 is 47.42%, while the maximum TP rate

of MRFBayes is 48.95%. Thus, our MRFBayes method offers 4.12% improvement

over the PWM and 2.71% improvement to the VOBN. Furthermore, it has 1.53%

improvement over the MRFL1 method. Using the t-test to test the null hypothesis

that the TP rate of our MRFBayes is equal to that of PWM or VOBN, we obtained

a p-value of 1.34 × 10−15 and 1.21 × 10−7 for the test against PWM and VOBN,

69

Figure 2.5: Mean TP rates for different fixed order Markov background models at a
TN rate of 99.9%. Orders of Markov background models from 0 to 4 are shown on
the horizontal axis. The number in the parentheses represents the number of nodes
for the corresponding background model.

70

respectively. These results indicate that the improvement of our MRF model over

PWM and VOBN is statistically significant.

Figure 2.6: Mean TP rates for the VOM background models with an initial order
5 and different pruning constants c at a TN rate of 99.9%. Pruning constants are
shown on the x-axis. The average number of nodes in the background model is shown
in parentheses for each pruning constant.

2.6.2 Phase 2

Mean TP rates of foreground models with VOM background models constructed

from a fifth-order Markov model, with different pruning constants 23, 21, 20, 2−0.5,

71

2−1, 2−3.305, 2−5.5 and 2−6 are shown in Figure 2.6. Mean number of nodes with each

pruning constant is shown in brackets, below the pruning constant. The higher the

pruning constant value, the lower the number of nodes in the background model, as

one can see from Figure 2.6. In general, the lower or higher pruning constants lead

to low mean TP rates. This is due to the over-fitting effect of the background model

at lower pruning constants and the under-fitting effect at higher pruning constants.

According to the results, MRF-based methods outperform both PWM and VOBN

with all pruning constants. MRFL1 and PWM both achieve their best TP rate of

48.26% and 45.17%, respectively, with the pruning constant of 2−3.305, while MRF-

Bayes achieves its maximum of 49.22% with the pruning constant of 2−1. Maximum

TP rate of 47.17% with the pruning constant of 2−5.5 of VOBN model agrees with

the results in [BGSG+05]. Note that all foreground models achieve comparatively

higher accuracy with VOM model as background, because the VOM model is capable

of capturing long distance dependencies among base pairs without over-fitting. For

comparison purposes we have summarized the maximum mean TP rates in Figure 2.7.

Clearly, the mean TP rate of MRFBayes outperforms all other foreground models

PWM, VOBN, and MRFL1 by 4.05%, 2.05%, and 0.96%, respectively. Furthermore,

p-values of MRFBayes against PWM and VOBN are 1.33 × 10−14 and 4.26 × 10−5,

respectively. These results provide evidence that the improvement of MRFBayes

method is statistically significant.

72

Figure 2.7: Maximum mean TP rates of foreground models with VOM(5, c) as the
background model. Refer Table 2.5 to get the corresponding pruning constant of
background model (at TN rate 99.9%).

73

Figure 2.8: The ROC curves of different foreground models. Sensitivity and specificity
are the normalized values of mean TP rate and TN rate, respectively.

74

2.6.3 Phase 3

All previous experiments were conducted with a fixed TN rate of 99.9%. To show

how the TP rate of each model is affected by the TN rate, we conducted another

set of experiments to draw ROC curves. Figure 2.8 shows the best mean sensitivity

(normalized mean TP rate) at different specificity levels (normalized TN rate). As

a standard, we used 1-specificity in x-axis. To select the best mean sensitivity for a

given TN rate, we evaluated the mean TP rate with all background models used in

the previous two experiments and then selected the maximum mean TP rate. We

have listed background models that give the best mean TP rate for each foreground

model at different TN rates in Table 2.5.

To obtain ROC curves as shown in Figure 2.8, we changed TN rates from 95% to

99.99%. It is seen that the ROC curves of our MRFL1 and MRFBayes are above the

ROC curves of PWM and VOBN(1,2−3.75) at all TN rates indicating the significance

of our work. To highlight the improvement gained by MRFBayes, we plotted the

difference of mean TP rates between MRFBayes and other foreground models, PWM,

VOBN, as well as MRFL1, in Figure 2.9. These results indicate that the differences

are always positive, implying the improvement of our method is consistent across all

TN rates. Compared with VOBN, MRFBayes achieves a maximum improvement of

5.87% in its mean TP rate at the TN rate 99.6%; compared with PWM, MRFBayes

achieves a local maximum of 2.2% around 99% and then after 99.25% it is continuously

increasing up to a maximum of 7.2%. It is interesting to see that PWM model

outperforms VOBN model up to TN rate of 99.75%.

75

Table 2.5: Background model that gives the best mean TP rate for each foreground
model in Figure 2.8

TN (%) MRFBayes MRFL1 VOBN(1,2−3.75) PWM

95 Markov(1) Markov(0) VOM(5, 23.000) Markov(0)

97 Markov(0) Markov(0) VOM(5, 23.000) Markov(0)

98 Markov(0) Markov(0) VOM(5, 23.000) Markov(0)

99 Markov(0) Markov(0) VOM(5, 23.000) VOM(5, 23.000)

99.1 Markov(0) Markov(0) Markov(1) VOM(5, 23.000)

99.25 VOM(5, 21.000) Markov(1) Markov(1) VOM(5, 2−1.000)

99.3 VOM(5, 21.000) VOM(5, 21.000) Markov(1) Markov(2)

99.4 VOM(5, 23.000) Markov(1) Markov(1) VOM(5, 21.000)

99.5 Markov(1) VOM(5, 23.000) VOM(5, 21.000) Markov(2)

99.6 Markov(1) Markov(1) VOM(5, 21.000) Markov(2)

99.75 VOM(5, 2−1.000) VOM(5, 23.000) VOM(5, 2−5.305) VOM(5, 2−5.305)

99.8 VOM(5, 20.000) VOM(5, 2−1.000) VOM(5, 2−5.500) VOM(5, 2−5.305)

99.85 VOM(5, 2−1.000) VOM(5, 2−1.000) VOM(5, 2−5.305) VOM(5, 2−5.305)

99.9 VOM(5, 2−1.000) VOM(5, 2−5.305) VOM(5, 2−5.500) VOM(5, 2−5.305)

99.98 VOM(5, 20.000) VOM(5, 21.000) VOM(5, 21.000) VOM(5, 21.000)

99.99 VOM(5, 21.000) VOM(5, 21.000) VOM(5, 21.000) VOM(5, 21.000)

76

Figure 2.9: Improvement of MRFBayes in mean TP rates relative to PWM,
VOBN(1,2−3.75), MRFL1. ∆X = MeanTPMRFBayes −MeanTPX , where X repre-
sents foreground models PWM, VOBN(1,2−3.75) and MRFL1.

CHAPTER 3

Pairwise MRF Model and Fast Learning

Algorithm

The MRF model we proposed in the previous chapter does not impose any restriction

on the structure of the model. Thus, the maximal clique size could grow to the length

of the motif. As stated in the previous chapter, the structure of the model is learned

by our algorithm using a feature induction method and a ML parameter estimation

method with L1 or Bayesian regularization. Note that the major computational

complexity of our algorithm is due to the calculation of partition function Z.

The exact method of evaluating Z has a computational complexity of 4N × K,

whereN is the length of the TFBS andK is the number of parameters. In the previous

chapter, we proposed two levels of feature reduction technique that effectively reduces

the value of K in each iteration. These methods perform better when the motif length

is comparatively small. However, due to the exponential nature of the computational

complexity, the performance is greatly degraded when the motif length gets longer.

For instance, a TFBS of length 12 (used in the previous chapter) takes approximately

4-6 hours to learn the structure of the model on a personal computer (PC) having a

77

78

CPU speed of 3.4 GHz with a memory size 2GB. It may take much longer time to

learn a model with longer motifs.

To address this issue, we propose modeling TFBS using pairwise MRF. In a pair-

wise MRF, the maximal clique size is two. However, we allow any two nodes to form

a clique, which is expected to capture dependencies between any two nodes. The

motivation here is that it allows us to develop an approximation method to infer

the partition function, which leads to a significantly lower computational complexity.

Toward this direction, we adopt an optimization method proposed by Wainwright et

al. [WJ06].

The rest of the chapter is organized as follows: Section 3.1 provides a description

of restructuring our MRF model to develop a fast learning algorithm. In section 3.2,

we describe the formulation of the approximation method, while section 3.3 provides

a description of conversion process needed to switch between domains {-1, +1} and

{0, 1}. In Section 3.4, we summarized the complete algorithm with approximation

method followed by a discussion in section 3.5.

3.1 Pairwise MRF Model

Representing a DNA sequence as a binary valued sequence provides an easy way of

incorporating approximation method. Toward this end, we define our configuration

set, A, as

ai = 2i−1, i = 1, 2, 3, 4, (3.1)

79

and then represent each ai as a 4 bit binary number corresponding to the value given

by (3.1). This will convert a DNA sequence x ∈ X , having a length of N , to a 4N

bit stream. Thus each position of the sequence takes values from the set {0, 1}.

The motivation behind this representation is that this will provide an easy way to

represent our previously defined atomic features Fatom as

f4(i−1)+j = x4(i−1)+j, i = 1, · · · , N, j = 1, 2, 3, 4. (3.2)

Note that all atomic features still get binary values, because each xi is either 0 or

1, as we defined earlier. Let the number of atomic features be denoted by n, where

n = 4N . As explained in the previous chapter, any second-order feature is constructed

as a multiplication of two atomic features. Let us denote each second-order feature

as

fi,j = xixj, i = 1, · · · , N, i = 1, · · · , N, and i 6= j, (3.3)

where i, and j are corresponding atomic feature indexes. Recall the definition we

provided for MRF, G = (V,E), where V = {1, · · · , N} is the vertex set and E is a

set of undirected edges joining pairs of vertices. Since we include only the first- and

second-order features, the number of first- and second-order features is equal to |V |

and |E|, respectively. Therefore, on a complete graph, the dimension of the weight

vector Θ is n+ (n2). With these notations, we can denote the distribution of sequence

x as

p(x) =
1

Z
exp
(n∑
i=1

θixi +
n−1∑
i=1

n∑
j=i+1

θi,jxixj

)
. (3.4)

80

For this joint distribution, we obtain the partition function as

Z =
∑
X

exp
(n∑
i=1

θixi +
n−1∑
i=1

n∑
j=i+1

θi,jxixj

)
. (3.5)

The distribution given in (3.4) is known as pairwise MRF. The actual complexity of

calculation of Z in this model is 2n
(
n2+n

2

)
. Now, we define the log partition function

as

W (Θ) = logZ(Θ). (3.6)

We have deliberately put Θ in W to indicate that the W is a function of Θ to avoid

confusion in the next section. With this log partition function, we can rewrite our

distribution as

p(x) = exp
(n∑
i=1

θixi +
n−1∑
i=1

n∑
j=i+1

θi,jxixj −W (Θ)
)
. (3.7)

The reason for introducing this log partition function will be clearer in the next

section.

3.2 Approximation Method

In this section, we develop a method to find an approximation for the log partition

function for a fully connected pairwise MRF. Wainwright et al. [WJ06] considered

the computation of marginal probability of a discrete-valued MRF. Since the exact

method of evaluation of partition function is computationally intractable when the

number of nodes is large, they proposed a relaxation by using a Gaussian bound on

the log partition function and a semidefinite outer bound on the polytope of marginal

probabilities. We begin by limiting to the spin variables, where the sequence can

81

take values from the set {+1, -1} as described by Wainwright et al. [WJ06]. Then we

extend their work to solve our original problem in which the sequences take values

from the set {0, 1}. With these spin variables, the distribution for a sequence v, can

be written as

p(v) = exp

(
n∑
i=1

γivi +
n−1∑
i=1

n∑
j=i+1

γi,jvivj − A(γ)

)
, (3.8)

In this definition of distribution, we consider the log partition function and one can

compare this with our similar definition in (3.7). The partition function for this joint

distribution is given by

A(γ) = log
∑
V

exp

(
n∑
i=1

γivi +
n−1∑
i=1

n∑
j=i+1

γi,jvivj

)
. (3.9)

This log partition function maps parameter vectors γ ∈ Rd to real numbers and

is a convex function of γ. This facilitates writing A(γ) in a variational fashion as

A(γ) = sup
η∈R
{〈γ, η〉 − A∗(η)} , (3.10)

where 〈γ, η〉 is the inner product of vectors γ and η and A∗ is an auxiliary function

known as the conjugate dual. The dual vector η, where η ∈ Rd, represents the slope

of the hyperplane describing a half-space, whereas the dual value A∗(η) represents

the negative intercept of the hyperplane. Furthermore, with convexity of A(γ), we

define the conjugate dual formation of A(γ) as

A∗(η) = sup
γ
{〈η, γ〉 − A(γ)}, (3.11)

82

where A∗ : Rd → R ∪ {+∞} [WJ06]. Now, let us define the matrix M1[η] as

M1[η] =

1 η1 η2 · · · ηn−1 ηn

η1 1 η1,2 · · · ηn−1 η1,n

η2 η1 1 · · · ηn−1 ηn

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

ηn−1 · · · · · · · · · · · · ηn−1,n

ηn ηn,1 ηn,2 · · · ηn,n−1 1

. (3.12)

As explained in [WJ06], the motivation for this representation is that it can be

interpreted as the matrix of second-order moments for the vector (1, v), as computed

under p(v). Using an entropy bound, Wainwright and Jordan derived a lower bound

for the negative dual function as

−A∗(η) ≤ 1

2
log det

[
M1[η] +

1

3
blkdiag[0, In]

]
+ n log

(n
2

)
log
(πe

2

)
. (3.13)

Using the result in (3.13), we can find an upper bound on A(γ) as follows.

A(γ) ≤ max
η∈OUT (KN),Mi[η]�0

[
〈γ, η〉+

1

2
log det

[
M1[η] +

1

3
blkdiag[0, In]

]]
+ n log

(n
2

)
log
(πe

2

)
, (3.14)

where OUT (Kn) is the compact convex outer bound on the marginal polytope,

MARG(Kn), as described in [WJ06]. We use the notation Mi[η] � 0 to indicate

that matrix Mi[η] is positive semidefinite. This problem is strictly concave and has a

unique global optimum. The simplest form of (3.14) can be obtained by only impos-

ing the constraint M1[η] � 0. Thus, we can use interior point methods specializing

83

log-determinant problems [VBW98] to solve this. However, the complexity of the

generic interior point method is O(n6). Therefore, the computational complexity is

still infeasible for large n. However, we can use a relaxation to the constraint and

a dual reformulation so that the final complexity can be reduced to O(n3), as we

describe below.

Note that the term
[
M1[η] + 1

3
blkdiag[0, In]

]
enforces the constraint, M1[η] �

−1
3
blkdiag[0, In], which is a weaker constraint than M1[η] � 0. This observation

leads to the relaxed problem

max
η

[
〈γ, η〉+

1

2
log det

[
M1[η] +

1

3
blkdiag[0, In]

]]
+ n log

(n
2

)
log
(πe

2

)
. (3.15)

Next, we introduce a matrix variable Y = M1[η] + 1
3
blkdiag[0, In], and define another

matrix, B, with negative weights of γ as

B =

0 −γ1 −γ2 · · · −γn−1 −γn

−γ1 0 −γ1,2 · · · −γn−1 −γ1,n

−γ2 −γ1 0 · · · −γn−1 −γn

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

−γn−1 · · · · · · · · · · · · −γn−1,n

−γn −γn,1 −γn,2 · · · −γn,n−1 0

. (3.16)

By defining B and Y in this way, we can simply write the 〈γ, η〉 as 1
2
〈−B, Y 〉,

where 1
2
〈−B, Y 〉 is the Frobenius inner product or the component-wise inner product

of matrix −B and Y , evaluated as trace(−BTY) or in our case trace(−BY) since

the matrices B and Y are symmetric. The Frobenius product is also evaluated as

84

the sum of the entries of the Hadamard product given by
∑

i

∑
j Bi,jYi,j. With these

notations, the relaxed log determinant problem can be written as

max
Y�0

1

2
[〈−B, Y 〉+ log detY] + n log

(n
2

)
log
(πe

2

)
, (3.17)

where the diag(Y) = d = [1, 4/3, · · · , 4/3]T . Dropping the constant terms and multi-

plication factor of 1
2
, we can define a simplified version of (3.17) as

max
Y�0

[〈−B, Y 〉+ log detY] . (3.18)

This optimization problem can be converted to an unconstrained optimization

problem by obtaining the Lagrangian dual as follows:

Q(λ) = −(n+ 1)− log det [B + diag(λ)] + 〈diag(λ), diag(d)〉, (3.19)

where, λ ∈ Rn+1 are the Lagrange multipliers associated with the linear constraints

diag(Y) = d. And also the gradient of Q, ∇Q(λ) = −diag[B + diag(λ)]−1 + d

and Hessian ∇2Q(λ) = − ([A+ diag(λ)]−1) � ([A+ diag(λ)]−1), where � denotes

Hadamard product, are obtained by using properties of matrix derivatives. Given the

optimum value of λ∗, we can find the solution to Y as Y ∗ = [B + diag(λ)]−1. The

main assumption of this problem is that the matrix [B+diag(λ)] � 0. Otherwise, we

cannot solve the above problem since the (3.19) involves a log term of the determinant

of [B + diag(λ)].

It is not difficult to show that, by adding a proper constant values to the diagonal

of the matrix B in (3.16), we can always satisfy this condition for any given matrix

B.

85

Proof: Let us denote the minimum eigenvalue of any weight matrix B, as λmin.

Since the matrix B is real and symmetric, using eigenvalue decomposition we can

always write B as

B = UΛUT

where U is an orthogonal matrix and Λ is real and diagonal matrix having the eigenval-

ues of B on the diagonal. Furthermore, we define a constant σ such that, σ ≥ −λmin.

Then consider the matrix B∗ = B + σI,

B∗ = UΛUT + σI

= UΛUT + σUUT

= U(Λ + σI)UT

Let Λ + σI = Λ̃. With this notation we can write B∗ as

B∗ = U Λ̃UT .

By comparing this equation with eigenvalue decomposition, we notice that the diago-

nal elements of matrix Λ̃ represent the eigenvalues of B∗. Furthermore, according to

our selection of σ, all the values of this diagonal matrix Λ̃ are non-negative because

σ + λmin ≥ 0. This concludes our proof that, B∗ is positive semidefinite.

With this representation of B∗, let us express the term 〈−B∗, Y 〉 as

〈−B∗, Y 〉 = 〈−(B + σI), Y 〉 (3.20)

= 〈−B, Y 〉+ 〈−σI, Y 〉

= 2〈γ, η〉+ 〈−σI, diag(d)〉.

86

By substituting (3.20) into (3.15), and introducing a matrix variable Y = M1[η] +

1
3
blkdiag[0, In], we get the relaxed optimization problem with B∗ as follows:

max
η

1

2
[(〈−B∗, Y 〉 − 〈−σI, diag(d)〉) + log detY] + n log

n

2
log(

πe

2
) (3.21)

= max
η

1

2
[〈−B∗, Y 〉+ log detY]− 1

2
〈−σI, diag(d)〉+ n log

(n
2

)
log
(πe

2

)
.

We drop all the constants and multiplication factor of 1
2

to obtain the simplified

version of (3.21) as

max
η

{
〈−B∗, Y 〉+ log detY

}
. (3.22)

Note that (3.18) and (3.22) have the same format, but (3.22) has B∗ instead of B.

Therefore, we can use the Lagrangian dual function we derived in (3.19) to solve the

optimization problem by replacing B with B∗. Recall that B∗ is positive semidefinite.

This implies that the term det[B∗+ diag(λ)] is also positive semidefinite (λ is always

≥ 0), and this alleviates the previous problem we had in (3.19). This unconstrained

problem can be solved with the complexity of O(n3), using Newton’s method or any

other gradient method.

The main complexity is due to the inversion of (n + 1) × (n + 1) matrix and

finding the minimum eigenvalue of the matrix B∗. There are some approximation

methods to calculate the minimum eigenvalue of a matrix. In our case we do not

need the exact value of the minimum eigenvalue but a lower bound, because we

need to satisfy the condition σ ≥ −λmin. So far, we have completely formulated the

approximation method to work with spin variables with any given weight matrix. We

now describe the way of using these results to solve our original problem with {0, 1}

valued variables.

87

3.3 Model Conversion

In this section, we make the relation between spin variables and {0, 1} valued vari-

ables. First, let us define the relation between variables vi and xi as

vi = 2xi − 1 (3.23)

xi =
1

2
(vi + 1).

This definition provides an easy way of going back and forth between models, by

converting {0, 1} representation of variable xi into {−1,+1} representation of variable

vi and vice versa. We begin with our original distribution defined in (3.7). Then we

substitute the expression for xi using (3.23) to the exponential expression in (3.7),

n∑
i=1

θixi +
n−1∑
i=1

n∑
j=i+1

θi,jxixj =
n∑
i=1

θi
1

2
(vi + 1) +

n−1∑
i=1

n∑
j=i+1

θi,j
1

4
(vi + 1)(vj + 1) (3.24)

=
n∑
i=1

1

2
θivi +

n−1∑
i=1

n∑
j=i+1

1

4
θi,j(vi + vj)+

n−1∑
i=1

n∑
j=i+1

1

4
θi,jvivj +

n∑
i=1

1

2
θi +

n−1∑
i=1

n∑
j=i+1

1

4
θi,j

=
n∑
i=1

1

4

(
2θi +

n∑
j=1,j 6=i

θi,j

)
vi +

n−1∑
i=1

n∑
j=i+1

1

4
θi,jvivj+

n∑
i=1

1

2
θi +

n−1∑
i=1

n∑
j=i+1

1

4
θi,j

=
n∑
i=1

1

4

(
2θi +

n∑
j=1,j 6=i

θi,j

)
vi +

n−1∑
i=1

n∑
j=i+1

1

4
θi,jvivj + ξ

where ξ =
∑n

i=1
1
2
θi+
∑n−1

i=1

∑n
j=i+1

1
4
θi,j, and we use the fact that

∑n−1
i=1

∑n
j=i+1 θi,j(vi+

vj) =
∑n

i=1

∑n
j=1,j 6=i θi,jvi, that is proved as follows.

88

Proof:

n−1∑
i=1

n∑
j=i+1

θi,j(vi + vj) =
n−1∑
i=1

n∑
j=i+1

θi,jvi +
n−1∑
i=1

n∑
j=i+1

θi,jvj

=
n−1∑
i=1

n∑
j=i+1

θi,jvi +
n∑
j=2

j−1∑
i=1

θi,jvj

=
n−1∑
i=1

n∑
j=i+1

θi,jvi +
n∑
i=2

i−1∑
j=1

θj,ivi

Since we consider an MRF, edges are undirected, Thus, θi,j = θj,i. Using this repre-

sentation, we can write
∑n−1

i=1

∑n
j=i+1 θi,j(vi + vj) as

n−1∑
i=1

n∑
j=i+1

θi,j(vi + vj) =
n−1∑
i=1

n∑
j=i+1

θi,jvi +
n∑
i=2

i−1∑
j=1

θi,jvi

=
n∑
i=1

n∑
j=1,j 6=i

θi,jvi.

Substituting (3.24) into (3.7), we obtain

p(v; Θ) = exp

[
ξ +

n∑
i=1

1

4

(
2θi +

n∑
j=1,j 6=i

θi,j

)
vi +

n−1∑
i=1

n∑
j=i+1

1

4
θi,jvivj (3.25)

− log

(∑
V

exp

(
ξ +

n∑
i=1

1

4

(
2θi +

n∑
j=1,j 6=i

θi,j

)
vi +

n−1∑
i=1

n∑
j=i+1

1

4
θi,jvivj

))]

= exp

[
n∑
i=1

1

4

(
2θi +

n∑
j=1,j 6=i

θi,j

)
vi +

n−1∑
i=1

n∑
j=i+1

1

4
θi,jvivj

− log

(∑
V

exp

(
n∑
i=1

1

4

(
2θi +

n∑
j=1,j 6=i

θi,j

)
vi +

n−1∑
i=1

n∑
j=i+1

1

4
θi,jvivj

))]

Since we have used the variable conversion from {0, 1} domain to {-1, +1} domain,

distribution (3.25) should represent exactly the same distribution we defined in (3.8).

Thus, we can get the relationships as follows:

89

1

4

(
2θi +

n∑
j=1,j 6=i

θi,j

)
= γi

1

4
θi,j = γi,j

By substituting these into (3.7), we can convert the distribution to

p(v; γ) = exp

[
γivi + γi,jvivj − log

(∑
V

exp (γivi + γi,jvivj)

)]
. (3.26)

From our derivation, A(γ) and W (Θ) are related by

W (Θ) = A(γ) + ξ. (3.27)

Using the log partition function W (Θ), we can easily evaluate the original partition

function Z as exp (W (Θ)). Thus, we can use the following set of relationships to go

back and forth between two distributions.

γi =
1

4

(
2θi +

n∑
j=1,j 6=i

θi,j

)
(3.28)

γi,j =
1

4
θi,j

θi = 2
(
γi −

n∑
j=1,j 6=i

θi,j

)
θi,j = 4γi,j

3.4 Algorithm

In the previous sections, we explained the approximation procedure to estimate a

value for A(γ) by considering spin variables. Then we presented the conversion pro-

90

cedure that facilitates estimating a value for our original partition function, Z, using

the results we derived. Recall that in Chapter 2, in each iteration of the numer-

ical optimization procedure, we needed to evaluate the value of Z. Therefore, in

each iteration of the main optimization loop, we need to run another sub iteration

procedure to find the approximation value for Z. As shown in our discussion, the

computational complexity of approximate evaluation of Z is in the order of O(n3),

with the exact complexity being the 2n
(
n2+n

2

)
. Thus, this approximation procedure

drastically reduces the overall complexity of our algorithm.

Since our original model works with 0, 1 valued sequences, we use (3.28) to go back

and forth between distributions in {0,1} domain and {-1, +1} domain. As explained

earlier, we allow all the first- and second-order features to form the model. This

eliminates the need for the feature selection algorithm we described in Section 2.3.4.

We can use any of the two types of regularization methods, as discussed in the previous

chapter in the main optimization loop. The complete algorithm is summarized in

Table 3.1.

3.5 Results and Discussion

As described earlier, the main computational burden in learning and inferring the

model is in calculating the partition function, Z. As described in Chapter 2, the

exact method of evaluating Z has a computational complexity of 4N ×K, where N

is the length of the TFBS and K is the number of parameters. However, due to

the exponential nature of the computational complexity, the performance is greatly

91

Table 3.1: Algorithm with L1 regularization

Begin
Initialization

Add all first and second order features
Initialize weight parameters

EndInitialization

Optimization
repeat

SubOptimization
Compute matrix B∗ using (3.28)
Do Optimization to compute λ∗ (3.19)
Compute Y ∗ as Y ∗ = [B∗ + diag(λ∗)]−1

Computer A(γ) using (3.17) and (3.18)
Compute Z using (3.28)

EndSubOptimization
Do work in main optimization

until Main optimization complete
EndOptimization
Save the Model

End

degraded when the motif length gets longer. For an example, a TFBS of length

12 took approximately 4-6 hours to learn the structure of the model on a personal

computer (PC) having a CPU speed of 3.4 GHz with a memory size 2GB. It may

take much longer time to learn a model with longer motifs.

However, the recent interest of research requires dealing with motifs having longer

lengths [Bai11, HBS+10, GPGK13, HZS+11, YMF+14, PS14, FBS08, RB07] that

requires more efficient algorithms to reduce the computation complexity of struc-

ture learning. Capitalizing on this idea, we developed an approximation method to

evaluate the partition function in this chapter. The computational complexity of ap-

proximate evaluation of Z is on the order of O(n3), with the exact complexity being

92

the 2n
(
n2+n

2

)
. Thus, this approximation procedure drastically reduces the overall

complexity of our algorithm.

To demonstrate the performance of the novel approximation method presented

in this chapter over the exact method developed in Chapter 2, we tabularized the

complexity of both algorithms over various motif lengths. Table 3.2 summarizes the

complexity of both algorithms for a fixed K of 100. As one can clearly see, the exact

method becomes quickly unusable when motif lengths get longer and longer. Recall

the observation we had from Chapter 2 where it took 6 hours to learn the model

for motifs with length 12. If we were to predict the learning time for a model with

motif length of 20 based on this observation, it would take 44.89 years with the exact

method. In comparison, it would take 27.77 hours with the approximation method.

To highlight the performance improvement further, we plotted the computational

complexity of approximation method over exact method in Figure 3.1 and improve-

ment of the performance in Figure 3.2. The improvement of the performance was

calculated as texact
tapprox

. We also included logarithmic scale for the y-axis in bottom fig-

ures to easily visualize the differences. As one can clearly see, the improvement over

the performance is very impressive with longer motifs. This is highly desirable when

dealing with problems that demand higher motif lengths, such as de novo TFBSs

identification, as we further describe in the next section.

93

Table 3.2: Computational complexity comparison of MRF-approximation method
over MRF-exact method.

N MRF-Approx MRF-Exact

1 1 400

2 8 1600

3 27 6400

4 64 25600

5 125 102400

6 216 409600

7 343 1638400

8 512 6553600

9 729 26214400

10 1000 104857600

11 1331 419430400

12 1728 1677721600

13 2197 6710886400

14 2744 26843545600

15 3375 1.07374E+11

16 4096 4.29497E+11

17 4913 1.71799E+12

18 5832 6.87195E+12

19 6859 2.74878E+13

20 8000 1.09951E+14

94

0

1E+13

2E+13

3E+13

4E+13

5E+13

6E+13

7E+13

8E+13

9E+13

1E+14

1 3 5 7 9 11 13 15 17 19

C
o

m
p

u
ta

ti
o

n
a

l
co

m
p

le
xi

ty
 :

 l
in

e
a

r
sc

a
le

Length of motif (N)

MRF-Approx MRF-Exact

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11

1E+12

1E+13

1E+14

1 3 5 7 9 11 13 15 17 19

C
o

m
p

u
ta

ti
o

n
a

l
co

m
p

le
xi

ty
 :

 l
in

e
a

r
sc

a
le

Length of motif (N)

MRF-Approx MRF-Exact

Figure 3.1: Variation of computational complexity of approximation method and
exact method with different motif lengths (N). Top: linear scale, Bottom: log scale

95

0

2E+09

4E+09

6E+09

8E+09

1E+10

1.2E+10

1.4E+10

1.6E+10

1 3 5 7 9 11 13 15 17 19

Im
p

ro
ve

m
e

n
t

(t
_

e
xa

ct
/t

_
a

p
p

ro
x)

 :
 l

in
e

a
r

sc
a

le

Lenght of motif (N)

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1 3 5 7 9 11 13 15 17 19

Im
p

ro
ve

m
e

n
t

(t
_

e
xa

ct
/t

_
a

p
p

ro
x)

:

 lo
g

 s
ca

le

Length of motif (N)

Figure 3.2: Improvement of approximation method over exact method for various
motif lengths (N). Improvement was calculated as texact/tapprox. Top: linear scale,
Bottom: log scale

96

3.5.1 De Novo Discovery of TFBSs

So far, we have used a set of training data that contains experimentally verified

TFBSs to train models. This method falls into the category of supervised learning,

where we use a training data set to learn the model. Now we are considering the

possibility of applying our proposed MRF-based model in solving the problem of

identifying TFBS in the unsupervised learning domain where no training data set is

used. These methods are used for de novo discovery of TFBSs and they play a vital

role in identifying novel TFBSs that have not been discovered experimentally.

In general, the unsupervised learning process takes a set of sequences as input

and discovers the patterns shared by some of the sequences. Usually, unsupervised

learning is harder than supervised learning because the space of possible patterns is

much larger, and also the patterns to be discovered are not required to be in any of

the sequences. Thus, the unsupervised learning algorithms simultaneously look for a

cluster of input sequences and patterns common to the members of this cluster. Now,

let us briefly describe the work has been done in this direction.

The novel TFBSs identification problem can be formulated as a process where it

outputs the locations and sites as putative binding sites, within a set of regulatory

regions that are known to be regulated by the same transcription factor(s). The

problem itself is complicated because we need to infer both the pattern of the motifs

and their locations in the input sequences. Since the problem tries to model the

similarity among segments of nucleotides known as oligonucleotides (a short nucleotide

sequence), two main approaches have been introduced to represent oligos (short term

97

for oligonucleotide), align consensus sequences or express them with a profile such as

PWM, PSSM, or PFM. As we will see shortly, the latter is the one where we have

room to improve the performance of identifying novel TFBS.

The fundamental problem of identifying novel TFBS is that we do not know the

location. This naturally inclined us to do an exhaustive search with different locations

and became the first approach to the problem [GES85, WAG84]. The main overhead

of this method is the exponential search space. This complexity was later significantly

reduced by using proper indexing structures such as suffix trees [Gus97]. Later in

this row, various algorithms based on exhaustive search with allowed mutations were

developed such as SMILE [MS00] and Weeder [PMP04]. All of these algorithms are

based on consensus-based representation of motifs. Since the consensus representation

is not flexible enough to describe a motif [Sto00], a different approach of alignment

based methods was proposed.

Basically, these methods try to align a given set of sequences with some scoring

schemes to fit into the best profile. But it has been proven that finding the best

profile is an NP-hard problem [AAS00]. This implies that the determination of the

best profile is computationally infeasible, no matter what scoring scheme is used. To

alleviate this problem, some heuristic methods are used to prune the search space.

As an example, Consensus [SH89], is a method based on greedy heuristics. Methods

such as BLAST [AGM+90], FASTA [PL88] all fall in this category.

Another way of finding the best alignment profile is to use a statistical method

to infer the location of the motifs and the profile jointly. The Bayesian method

and several related Gibbs sampling algorithms for motif discovery fall into this cat-

98

egory [LNL95]. Instead of using the Bayesian method, Lawrence et al. [LR90] used

the maximum likelihood method that relies on EM algorithm to estimate the loca-

tion of PWM of the motifs. The original algorithm has a restriction of one TFBS

per sequence. Bailey et al. relaxed this restriction by introducing a method called

MEME [BE94, BE95].

3.5.2 MRF Approach to De Novo Identification of TFBSs

As discussed in the previous section, profile-based methods find more interest because

they are capable of modeling motifs better than the consensus-based methods. The

basic problem of profile representation is that they assume a statistical independence

among base pairs. As we described earlier, recent studies show that there are some

dependencies [BJC02, BLFS01, WGRP99, MS01, BPQ+06, UMFK02, OPLS05], and

hence this representation does not model the motif well. Since we have developed an

MRF model capable of capturing more dependencies among base pairs, we believe

that if we apply our MRF to de novo identification of TFBSs, it will provide better

performance than conventional ML or Bayesian methods based on PWM.

As we have shown earlier, the MRF model can be considered as a better rep-

resentation of modeling motifs. We use this fact to investigate the possibility of

incorporating our MRF model with EM algorithm to use in novel TFBS identifica-

tion. Bailey et al. have done some work in this direction using existing profile base

modeling. We hope that we can improve the performance by using MRF to model

the motif.

99

Specifically, we can treat the locations of motif as missing data and develop an

EM algorithm that can handle missing data and maximize the likelihood function of

the input data sequences based on a pairwise MRF model for TFBSs, and a PWM

or fixed order Markov model for background. Since the EM algorithm runs in an

iterative fashion, and in each iteration we need to maximize the likelihood function

to estimate model parameters, the computational complexity of the algorithm may be

large. However, using the fast optimization algorithm we developed here, we expect

that the speed of the EM algorithm can be increased dramatically.

CHAPTER 4

Fast Proximal Gradient Optimization of

the Empirical Bayesian Lasso for Multiple

Quantitative Trait Locus Mapping

Complex quantitative traits are influenced by many factors, including those of many

quantitative trait loci (QTLs), epistatic effects involving more than one QTL, envi-

ronmental effects and effects of gene-environment interactions. We develop here a fast

proximal gradient optimization algorithm with empirical Bayesian Lasso (EBlasso)

method that uses a high-dimensional sparse regression model to infer the QTL effects

from a large set of possible effects. The new algorithm outperforms state-of-the-art

algorithms in terms of power of detection (PD) and false discovery rate (FDR), and

capable of handling a relatively large number of possible QTLs.

4.1 Background

Such complex quantitative traits are usually controlled by multiple quantitative trait

loci (QTLs) along with environmental factors. Quantitative trait QTL mapping goal

100

101

identifies multiple genomic loci that are associated with the traits and estimates the

genetic effects of these loci, possibly including some of the main effects, gene-gene in-

teractions (epistatic effects) and gene-environment interactions. Although technology

advancement in molecular genotyping has made high density genomic markers avail-

able, including these markers with their possible interactions in a single QTL model,

it leads to a large number of model variables, typically much larger than the sample

size. This not only involves huge computation, which is challenging to existing QTL

mapping methods, but it also may reduce the power of detection (PD) and maybe

increase the false discover rate (FDR). As described in Chapter 1, variable selection

and shrinkage operator are two techniques often used in the inference of such high

dimensional QTL models.

Phenotypic variation is best explained through variable selection, which identifies

a subset of all possible genetic effects [LLF+09]. This usually occurs by stepwise

forward selection or backward elimination along with selection criteria such as the

Bayesian information criterion (BIC) [Sch78] to restrict the model space. Shrinkage

methods, like Lasso [Tib96], elastic net [ZH05] and Bayesian Lasso [YX08, PC08] have

all variables in the model, but use a penalty function of the variables or appropriate

hierarchical prior distributions for the variables to shrink most variables toward zero.

An approach that has gained a great deal of attention is the Markov Chain Monte

Carlo (MCMC) simulation-based Bayesian shrinkage approach [OS09] that has been

applied to multiple QTL mapping [YX08, WYL+05, Xu03]. MCMC simulation is

quite computationally intensive (see Chapter 2 herein); with a large number of effects

in the model, it can also be time consuming. So more efficient methods [HWIB08,

102

YB09] have been developed to reduce computational burden for the Bayesian QTL

models.

An efficient empirical Bayesian Lasso (EBlasso) algorithm has been developed,

from a two-level hierarchical model that has normal and exponential priors (EBlasso-

NE) or a three-level hierarchical model with normal, exponential, and Gamma priors

(EBlasso-NEG) [CHX11, HXC13]. Also developed was an empirical Bayesian elastic

net (EBEN) with the use of a two-level hierarchical model that had normal and gener-

alized gamma priors [HXC14a] for multiple QTL mapping. EBlasso and EBEN both

outperform other methods, including Lasso and MCMC-based Bayesian shrinkage in

terms of PD and FDR. Whole-genome QTL mapping [HXC14b] and pathway-based

genome-wide association study (GWAS) [HMVC14] have had EBlasso applied, with

linear regression models with millions of variables inferred. Unfortunately, the ac-

curacy and computational speed may not be optimal for both methods, as they are

optimized by a greedy coordinate ascent algorithm.

Taking advantage of recent advancements in convex optimization, we developed a

fast proximal gradient algorithm for the EBlasso-NE method (referred to as EBlasso

hereon). Because of the advanced optimization algorithm and other techniques, this

new method is quite efficient, in comparison with the previous one that was optimized

by coordinate ascent algorithm. Simulations have shown that the proximal gradient

algorithm provides better PD and FDR than did the coordinate ascent method, and

does so with computational time that is considerably reduced.

103

4.2 Linear Model of Multiple QTLs

Let yi be the phenotypic value of a quantitative trait of the ith individual in a map-

ping population. Assume we observe yi, i = 1, · · · , n, of n individuals and collect

them into a vector y = [y1, y2, · · · , yn]T . In these n individuals, further suppose p en-

vironmental covariates are observed and q genetic markers genotyped. Let covariate

l and genotype of marker j of individual i be xEil and xGij, respectively. We define

XEi = [xEi1, xEi2, · · · , xEip]T and XGi = [xGi1, xGi2, · · · , xGiq]T . Then we have the

following linear regression model for y:

y = µ+XGβG +XEβE + e, (4.1)

where µ is the population mean, vectors βG and βE represent the genetic effects

of all markers and environmental effects; matrices XG = [XG1, XG2 · · ·XGn]T and

XE = [XE1, XE2 · · ·XEn]T are the corresponding design matrices of different effects,

and e is the residual error that follows a normal distribution with zero-mean and

covariance σ2
0I.

XG, the design matrix, depends on a specific genetic model, for which we adopt

the widely used Cockerham genetic model [Coc54]. It defines the values of a marker

effect as -0.5 and 0.5 for two genotypes in a back cross design; -1, 0 and 1 for three

genotypes having an additive effect; and -0.5 and 0.5 for homozygotes and heterozy-

gotes having a dominance effect in an intercross (F2) design. For the sake of simplicity

we only look at additive effects in (4.1). However, the method developed here is also

applicable to a model with dominance effects. Epistatic effects can also be incorpo-

104

rated into (4.1) as done in [CHX11]. However, for the ease of presentation, we use

model (4.1) throughout the chapter.

Defining β = [β0, β
T
G, β

T
E]T , X = [XG, XE], we can write (4.1) in a more compact

form:

y = µ+Xβ + e, (4.2)

Given q markers with additive main effects and p environmental covariates, the size

of matrix X is n × m where m = p + q. Only a small portion of marker effects

are expected to be QTL effects, implying that β is a sparse vector, and thus most

elements of β are zero. We thereby develop an efficient EBlasso algorithm to infer

sparse β from (4.2) (see the next two sections).

4.3 Prior and Posterior Distribution

There are three unknown parameters in model (4.2): µ, σ2
0, and β. We are mainly

interested in β, but µ and σ2
0 need to be estimated so that we can infer β. A nonin-

formative uniform prior is assigned to µ and σ2
0, i.e., p(µ) ∝ 1 and p(σ2

0) ∝ 1. Then

a two-level hierarchical model is assumed for β. Elements of β are denoted as βj,

j = 1, 2, · · · ,m. At the first level, βj, j = 1, 2, · · · ,m follow independent normal

distributions with mean zero and unknown variance τj : βj ∼ N(0, τj). Then at the

second level, τj, j = 1, 2, · · · ,m, follow independent exponential distribution with a

common parameter λ: p(τj) = λ exp(−λτj). For a given λ, the distribution of βj is

the Laplace distribution: p(βj) =
√

λ
2

exp(−2
√
λ|βj|); this is known to encourage the

shrinkage of β toward zero [Tib96].

105

Let τ = [τ1, τ2, · · · , τm]T . Our EBlasso method first estimates parameters τ , σ2
0

and µ and then finds the posterior distribution of β based on the estimated parame-

ters. The posterior distribution of µ, β, τ and σ2
0 is given by

p(µ, β, τ, σ2
0|y) ∝ p(y|µ, β, σ2

0)p(µ)p(β|τ)p(τ |λ)p(σ2
0). (4.3)

The marginal posterior distribution of µ, τ , and σ2
0 can then be written as

p(µ, τ, σ2
0|y) =

∫
p(µ, β, τ, σ2

0|y)dβ. (4.4)

We collect all parameters that need to be estimated as θ = (µ, σ0, τ). The log

marginal posterior distribution of θ can be found from (4.4) as follows:

L(θ) = −1

2

[
log |C| − 1

2
(y − µ)TC−1(y − µ)

]
− λ

m∑
j=1

τj + constant (4.5)

where

C = σ2I +
m∑
j=1

τjxjx
T
j (4.6)

is the covariance matrix of y with a given τ .

4.4 Proximal Gradient Algorithm for Maximum A

Posteriori Estimation

We focus on the τ̂ , as the estimation of τ , while two unknown parameters µ and

σ2
0 can be obtained by setting ∂L(θ)

∂µ
= 0 and ∂L(θ)

∂σ2
0

= 0. Previously, we employed a

coordinate ascent algorithm to infer a sparse τ from (4.5), which estimates one τ̂j at

a time and is slow. In this chapter, we have developed a novel fast proximal gradient

algorithm method to estimate unknown parameters τ .

106

Let

J(τ) = f(τ) + g(τ), (4.7)

where

g(τ) = λ
m∑
j=1

τj, (4.8)

f(τ) =
1

2

[
log |C|+ ỹTC−1ỹ

]
, (4.9)

and ỹ = (y − µ). We then use proximal gradient algorithm to minimize J(τ). The

proximal gradient method is an iterative algorithm with the k + 1 step being:

τ k+1 = proxλkg
(
[τ k − λkDk∇f(τ k)]+

)
, (4.10)

where ∇f(τ k) =
[
∂f(τ)
∂τ1

, · · · , ∂f(τ)
∂τm

]T
τ=τk

, Dk =
[
diag

(
∂2f(τ)

∂τ21
...∂

2f(τ)
∂τ2p

)
τ=τk

]−1

and su-

perscript k denotes the value obtained from kth step.

Let vk =
[
ṽk
]+

=
[
τ k − λkDk∇f(τ k)

]+
. The proximate operator is defined as

proxλkg := arg minτk
(
g(τ) + 1

2λk
‖τ − V k‖2

2

)
[PB13], where λk > 0 is a step size to

be determined. Note that vkj =

ṽkj , if ṽkj > 0

0 o.w.

, j = 1, 2, · · · ,m. Solving equa-

tion (4.10), we obtain:

τ k+1
j =

vkj − λλk if vki > λkλ,

0 o.w.

(4.11)

We use the line search algorithm with the proximal gradient method to obtain τ k+1

and λk as shown in Table 4.1.

In Table 4.1, the calculation of vk in each iteration requires evaluating derivative

components ∂f(τ)
∂τ1

and ∂2f(τ)

∂τ21
, while the exit criterion requires calculating f(τ). How-

107

ever, the calculation of f(τ) requires both |C| and C−1. Now, we derive more efficient

expressions for these.

Given the equation (4.6), we can find an alternative form for C as

C = C−i + τixix
T
i , (4.12)

where C−i = σ2I +
p∑

j=1,j 6=i
τjxjx

T
j . This facilitates finding an expression for modulus

of C given by

|C| = |C−i(I + τiC
−1
−i xix

T
i)|

= |C−i||I + τiC
−1
−i xix

T
i |

= |C−i|(1 + τix
T
i C
−1
−i xi). (4.13)

However, since C is a relatively large matrix of size n × n, direct calculation of

C−i results in large computational complexity. To alleviate this problem, we use the

Woodbury identity to find a less expensive alternative for this as:

C−1 = C−1
−i −

c−1
−ixix

T
i C
−1
−i

1/τi + xTi C
−1
−i xi

. (4.14)

By combining these, we gain a more concise expression for f(τ) (4.9) as:

f(τ) =
1

2
[log |c−i + ỹTC−1

−i ỹ + log(1 + τix
T
i C
−1
−i xi)]−

ỹTC−1
−i x

T
i x

T
i C
−1
−i y

1/τi + xTi C
−1
−i xi

= f(τ−i) + f(τi). (4.15)

Motivation for this alternate form of f(τ) will be more clear when we derive ex-

pressions for derivative components of f(τ). For simplification, we define qi and si

as:

qi , xTi C
−1
−i ỹ and

si , xTi C
−1
−i xi. (4.16)

108

This results in a more simplified form for f(τi) given by

f(τi) =
1

2

[
log(1 + τisi)−

q2
i

1
τi

+ si

]
. (4.17)

With these expressions, it is not difficult to find the derivative components of f(τ)

as

∂f(τ)

∂τi
=

1

2
[

si
1 + τisi

− q2
i

(1 + τisi)2
]

=
1

2

si − q2
i + s2

i τi
(1 + τisi)2

(4.18)

and

∂2f(τ)

∂τ 2
i

=
1

2
[− s2

i

(1 + τisi)2
+

2q2
i si

(1 + τisi)3
]. (4.19)

To further simplify the expressions, we define Si and Qi as:

xTi C
−1ỹ = qi −

siqi
1/τi + si

=
qi

1 + τisi
, Qi and

xTi C
−1xi = si −

siqi
1/τi + si

=
si

1 + τisi
, Si. (4.20)

With these, the derivative components get more compacted forms given by

∂f(τ)

∂τi
=

1

2
[xTi C

−1xi − (xTi C
−1ỹ)2] =

1

2
[Si −Q2

i] (4.21)

and

∂2f(τ)

∂τ 2
i

=
1

2
[−(xTi C

−1xi)
2 + 2(xTi C

−1y)2xTi C
−1xi]

=
1

2
[−S2

i + 2Q2
iSi]. (4.22)

The major computational complexity is in calculating Qi, Si and f(τ), because

calculation of these requires an inversion of matrix C. However, since C is a relatively

109

large matrix of size n× n, direct calculation of C−1 has a computational complexity

of O(n3). When n is large, this dramatically affects the performance. To avoid this

burden, we derive a solution that results in a much lower computational complexity

using the Woodbury matrix identity.

Let T be a diagonal matrix containing k non zero τjs and X̃ be n × k matrix

containing corresponding xjs. This gives an alternate form for C as:

C = σ2I + X̃T X̃T . (4.23)

Now, using the Woodbury identity, we can find the inverse of C as:

C−1 = σ−2I − σ−4X̃ΣX̃T , (4.24)

where Σ = (A + σ−2X̃T X̃)−1 and A = diag(τ̃−1
1 ...τ̃−1

k). As one can see, this has

a computational complexity of O(k3). Note that, due to the sparsity of the model,

k � n, that leads to a much lower computational complexity than its original form.

In the same direction, we can find expressions for Qi and Si with much lower

computational complexity given by

Qi = σ−2xTi ỹ − σ−4xTi X̃ΣX̃T ỹ and

Si = σ−2xTi xi − σ−4xTi X̃ΣX̃Txi. (4.25)

110

With these, it is not difficult to find an alternative expression for f(τ) with a lower

computational complexity than its original complexity of O(n3) as follows:

f(τ) = log |C|+ ỹTC−1ỹ

= |σ2I + X̃T X̃T |+ ỹTC−1

= (σ2)n|I + σ−2X̃T X̃T |+ ỹTC−1

= (σ2)n|Ik×k + σ−2X̃T X̃T |+ ỹTC−1

= (σ2)n−k|σ2Ik×k + X̃T X̃T |+ ỹTC−1

= (σ2)n−k|σ2Ik×k + X̃T X̃T |+ σ−2||ỹ||2 − σ−4ỹT X̃ΣX̃T ỹ. (4.26)

As can be seen from the final expression, this has a computational complexity of

max({O(k3), O(nk)}), which is much lower than its original form of O(n3) due to the

sparsity of the model.

Other two unknown parameters µ and σ2
0 can be obtained by letting ∂L(θ)

∂µ
= 0

and ∂L(θ)

∂σ2
0

= 0. This results in

µk+1 =
1TC−1y

1TC−11
, (4.27)

where 1 is a vector whose elements are all 1, and

σ2(k+1) =
||ỹ − X̃u||2

n− k +
k∑
i=1

[Σ]ii
τ̃i

, (4.28)

where Σii is the ith diagonal element of Σ and

u = σ2(k)ΣX̃T ỹ. (4.29)

After these parameters are estimated, the posterior distribution of β can be

found. Specifically, the proximal gradient algorithm will select m′ (typically m′ � m)

111

nonzero elements of β corresponding to the nonzero elements in τ̂ , which is denoted

as a m′ × 1 vector β′, that corresponds to finite τ̂js. Let τ̂ be a m′ × 1 vector

contain all finite τjs. Given τ̂ , it is not difficult to show that the posterior distribu-

tion of β′ is a Gaussian distribution with mean β̂′ = σ2
0Σ̂X̃(y − µ) and covariance

Σ̂ = (A+ σ−2
0 X̃T X̃)−1, where X̃ is an n×m′ matrix that contains the columns of X

corresponding to β′, and A is a diagonal matrix with 1
τ̂1
, · · · , 1

τ̂m′
on its diagonal.

For the final algorithm, we employ a two level iterative technique to evaluate the

model. In the inner loop, we assume that the µ and σ2
0 are known and fixed, then

we estimate the τ k+1 and λk. In the outer loop, based on estimations from the inner

loop, we refine µ and σ2
0 and check for convergence. The convergence of the outer

loop is achieved when both of the following conditions are met.

1. Indices of elements of τ̃ do not change; note that τ̃ contains the nonzero elements

of τ which is a long vector of m× 1, but length of τ̃ should be relatively small.

2. |τ̃
k−τ̃k−1|2
|τ̃k−1|2 < ε, where ε is a small number (e.g., 1e−3 or 1e−4)

Having defined all necessary expressions, we summarize our EBlasso algorithm in

Table 4.4.

4.5 Experiment Procedure

The population of an F2 family derived from the cross of two inbred lines with

m = 481 genetic markers, which were evenly spaced on a large chromosome of 2400

cM (interval d = 5 cM), was simulated. For the three genotypes, A1A1, A1A2 and

112

Table 4.1: Proximal method with line search algorithm

Begin
Let α = λk−1, γ ∈ (0, 1)
f̂α(z, vk) , f(vk) +∇f(vk)T (z − vk) + 1

2α
‖z − vk‖2

2

while true do
vk =

[
ṽk
]+

=
[
τ k − λkDk∇f(τ k)

]+
z = proxαg(v

k)

if f(τ) ≤ f̂α(z, vk) then
break

end if
α = γα

end while
λk = α, τ k+1 = z

End

Table 4.2: EBlaso with proximal gradient

Begin

Initialization: Choose λ > 0, u = 1T y
n
, ỹ = y− u1, γ = 0.5, λ0 = 1, σ2 = 0.1||ỹ||2

n

repeat
Begin

SubRoutine: (τ̃ k+1,Σ, X̃) = proxm(τ k, λk−1, γ) (4.1)
End
Calculate µk+1

Calculate σ2(k+1)

until Indices of elements of τ̃ do not change AND |τ̃k−τ̃k−1|2
|τ̃k−1|2 < ε, where ε is a

small number
End

113

A2A2 of individual i at marker j, the dummy variable was defined as xij = 1, 0,−1,

respectively. The assumption was that the QTLs coincided with markers. If they

were not on markers, they may still have been detected, as the correlation between a

QTL and a nearby marker was high. However, to get the same power of detection a

slightly larger sample size may be required.

We performed data simulations based on the F2 population with 20 main QTL

effects, whose effect sizes were randomly generated from a normal distribution with

mean zero and variance equals to four. Environmental effects were not simulated.

The true population mean was µ = 100 and the residual variance was σ2
0 = 10.

We did two phases of simulations. In the first phase, we generated a data set with

sample size 1000. This was used to evaluate the power of detection (PD) and the false

discovery rate (FDR) of our EBLasso proximal gradient algorithm over the coordinate

ascent algorithm [HXC13]. We used the prediction error (PE) [Tib96] obtained from

a ten-fold cross validation process to select the value of the hyperparameter λ for

both algorithms. For estimated phenotype value ŷi = µ̂+ x̃iu, the PE was calculated

by:

PE =
1

n

n∑
i=1

(yi − ŷi)2. (4.30)

The results of this phase primarily illustrate parameter estimation and cross val-

idation. In the second phase, for a measure of the robustness of our algorithm, we

generated 100 replicates with sample sizes 200, 400, 600, 800 and 1000. Compu-

tational time, PD and FDR were evaluated to have a better comparison with the

coordinate ascent algorithm.

114

To have a fair comparison, both our algorithm and the comparison algorithm were

implemented in C/C++ following the same level of coding and algorithmic techniques.

The data were analyzed on a personal computer (PC) with Intel Xeon 2.93GHz CPU

running 64 bit Windows server 2008.

4.6 Results and Discussion

4.6.1 Phase 1

We fixed the λk and γ parameters in our algorithm at 1.0 and 0.5, respectively, and

used the ten-fold cross validation to estimate the hyperparameter λ. We could also

have used the same cross validation technique to evaluate λk and γ as well, but that

requires more time in the training phase. However, as we observed in the simulation

study, this did not adversely affect the results.

Even though cross validation allows us to pick the optimum λ value, it is chal-

lenging to find the set of minimum candidate values for the λ to avoid extensive

computational overhead. From a brute force perspective, we could have used very

large sets of values spaced evenly in a linear scale, but that would dramatically in-

crease the training time. Especially when dealing with a large number of data sets,

this would not even be feasible. To overcome this problem, we used an evenly spaced

log scale for candidate values for λ. Furthermore, we formulated a method to infer

the lower and upper bound of λs from the data set. This will play a vital role in

dealing with many data sets in Phase2 that drastically expedites the training phase.

115

Specifically, we defined the upper bound of λ as:

λmax =
1

N
max(xj ∗ (y − µ)). (4.31)

The lower bound of λ, λmin, was calculated by λmax×0.001. We used the full data set

in evaluating the bounds since we needed to use the same sets of candidate λs with

all the ten-fold cross validation data sets. To obtain the candidate values, we equally

divided the range log(λmax − λmin) into 40 steps, which resulted in 41 candidate

values. Figure 4.1 demonstrates the variation of PE with both linear and log scales.

0

2

4

6

8

10

12

14

16

0.001

0.5124

1.0237

1.535

2.0464

2.5577

3.0691

3.5804

4.0917

4.6031

5.11445.6258

6.1371

6.6484

7.1598

7.6711

8.1825

8.6938

9.2051

9.7165

10.2278

linear log

Figure 4.1: Prediction error changes based on the log and linear scale of λ.

116

In general, the values close to the lower and upper bounds get larger prediction

errors, and this is clearly depicted in Figure 4.1. Furthermore, the log scale keeps more

candidate points in the interesting region, still giving a good visibility on bounds.

It is interesting to observe the impact of the cross validation results over the actual

detections. To examine this, we tabled a few candidate values used in ten-fold cross

validations with their true positive (TP) and false positive (FP) detections, as shown

in Table 4.3.

The average PE and the standard error were obtained from ten-fold cross valida-

tion. The number of effects was obtained by using all 1000 samples not from cross

validation samples. All the effects counted had a p-value ≤ 0.01. According to the

Table 4.3, we observed a lowest prediction error 11.4984, which resulted in 17 true

detections and a single false detection.

Our algorithm considers all variables simultaneously. If you recall the algorithm,

in each inner iteration, we added non zero τis to the model when vki − λkλ > 0. We

observed that, adding a small positive number ε to the right hand side will greatly

reduce the number of iterations required for convergence. The reason is that it takes

some additional iterations to get rid of those less impactful τis. For this reason, we

used ε = 0.001 with all our simulations.

As shown in Table 4.4, our algorithm consists of two loops, the inner loop and

the outer loop. Basically, we can improve performance further by filtering out less

interesting parameters just before we transition from the outer loop to the inner loop.

We used a t-test with p-value < 0.01 to filter out some noisy parameters. A similar

technique was used by Yi and Banerjee in [YB09].

117

Table 4.3: Variaton of detections over λ with prediction error obtained from ten-fold
cross validation.

λ True Detections False Detections PE ± STD

0.1023 15 2 11.7435 ± 0.7124

0.1288 15 2 11.6724 ± 0.8342

0.1621 16 0 11.759 ± 0.7231

0.2041 15 0 11.6874± 0.7568

0.2569 14 2 11.6539± 0.8245

0.3234 17 4 11.5041± 0.8561

0.4072 15 1 11.5722 ± 0.8345

0.5126 15 2 11.5913± 0.7634

0.6453 16 2 11.6489 ± 0.7823

0.8124 15 1 11.6662 ± 0.7458

1.0228 17 1 11.4984 ± 0.7452

1.2876 16 1 11.7545 ± 0.8345

1.621 17 2 11.8032 ± 0.8256

2.0407 17 1 11.9084 ± 0.8235

2.5691 16 1 12.456 ± 0.7812

3.2343 15 0 12.0436 ± 0.7954

4.0718 12 2 12.5187 ± 0.9674

5.1261 13 1 12.1537 ± 0.9345

6.4533 16 2 11.8593 ± 0.9567

8.1243 15 1 13.1843 ± 0.8758

10.2278 14 0 14.4569 ± 0.9124

118

We used the same ten-fold cross validation technique for both algorithms to find

the optimum value for λ. Once the algorithms were completed, each algorithm output

some non-zero values for the corresponding indexes of xi. For those xis not in the

model, we can declare that they do not affect the quantitative trait because their

regression coefficient is zero. For those xis in the matrix X̃, the posterior distribution

of their regression coefficients β̃ is Gaussian with covariance Σ and mean u. We then

used t-statistics to test if β̃ 6= 0 with p-value = 0.01. Table 5.4 summarizes the final

detection results for both algorithms based on optimum λ values.

As one can see from Table 5.4, the proximal gradient algorithm detected 17 TPs,

while the coordinate accent algorithm detected only 15. The proximal gradient algo-

rithm detected the marker 466 as a false positive, while the coordinate ascent algo-

rithm detected the marker 78 as a false positive. Based on CPU times, our algorithm

accelerated the EBlasso method by 73.04% (−(tProximalGradient−tCoordinateAscent)
tCoordinateAscent

× 100%).

4.6.2 Phase 2

In this phase, to see if the proximal gradient algorithm could estimate QTL effects

robustly, we replicated 100 data sets with sample sizes 200, 400, 600, 800, and 1000

using the same procedures described in Phase 1. Primary focus here is to evaluate the

consistency of the results and measure the impact on the detection rate over different

sample sizes. We used the same technique we detailed in Phase 1 for the ten-fold

cross validation. The PD and FDR were calculated as an average of 100 replicated

119

Table 4.4: True estimated QTL effects for the simulated data with main effects.

Markers Position Proximal gradient Coordinate ascent

(cM) (Is detected?) (Is detected?)

11 50 Yes Yes

26 125 Yes Yes

42 205 Yes Yes

48 235 Yes Yes

72 355 No No

73 360 Yes Yes

123 610 Yes Yes

127 630 Yes Yes

161 800 Yes Yes

181 900 Yes No

182 905 Yes Yes

185 920 Yes No

221 1100 Yes Yes

243 1210 Yes Yes

262 1305 Yes Yes

268 1335 No No

270 1345 No No

274 1365 Yes Yes

361 1800 Yes Yes

461 2300 Yes Yes

120

simulations. Figure 4.2 and Figure 4.3 show the PD and the FDR plots for both

algorithms, respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 300 400 500 600 700 800 900 1000

P
o

w
er

 o
f

d
et

ec
ti

o
n

Sample size

Proximal Gradient Coordinate Ascent

Figure 4.2: Power of detection for the proximal gradient and coordinate ascent algo-
rithm. Performance data were obtained from mean of 100 replicas for different sample
sizes (n = 200, 400, 600, 800, 1000).

As one can see from the results, the proximal gradient offered better PD and FDR

over the coordinate ascent algorithm. However, the major contribution of our work

is to the performance aspect of the EBlasso method. We calculated the average CPU

121

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 300 400 500 600 700 800 900 1000

Fa
ls

e
d

is
co

ve
ry

 r
at

e

Sample Size

Proximal Gradient Coordinate Ascent

Figure 4.3: False discovery rate for the proximal gradient and coordinate ascent
algorithm. Performance data were obtained from mean of 100 replicas for different
sample sizes (n = 200, 400, 600, 800, 1000).

122

time for both algorithms for the same 100 data sets used in the previous step. The

results are plotted in Figure 4.4. As one can see, our new proximal gradient algorithm

accelerates the EBlasso method by 1.5 - 2.5 times based on 100 replicates with a range

of different sample sizes.

0

0.5

1

1.5

2

2.5

3

200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

Sample size

Figure 4.4: Performance is calculated as tCoordinateAscent/tProximalGradient. Performance
data were obtained by using the mean of 100 replicates.

The simulation result demonstrated that the better optimization approach of the

proximal gradient algorithm improves EBlasso from both computational efficiency

and detection accuracy. Specifically, in the proximal gradient method, the nonzero

effects in the model are considered simultaneously, and the global optimum is obtained

123

faster and more accurately compared with the greedy approach that considers one

effect at a time in the coordinate ascent algorithm.

Since our proximal gradient algorithm calculates all the variables at the same time

instead of one by one as in coordinate ascent, there is more room for improvement

by parallelizing some of the calculations. We did not use any parallel computations

for the results presented here meaning that there is more room for performance im-

provements.

4.7 Summary

Leveraging on recent advancements of proximal algorithms and their applications in

Lasso type of problems, we developed a novel proximal gradient algorithm [AHC14]

for the EBlasso method. Our EBlasso method is based on a Bayesian linear regression

model that uses the same two-level hierarchical prior for the regression coefficients as

the one used in the Bayesian Lasso linear regression model [YX08, PC08, CHX11]. It

first estimates the variance of the regression coefficients and then finds the posterior

distribution of the regression coefficients based on the estimated variance.

Compared to the previous implementation with the greedy coordinate ascent al-

gorithm that adds, removes or re-estimates one variable from the model at a time, the

proximal gradient algorithm considers all variables simultaneously and maps points

towards the minimum of the objective function in (4.5). In the proximal algorithm,

the base operation is to evaluate the proximal operator, which is typically a specialized

method with closed form solutions [PB13].

124

Based on the simulation study by Cai et al. [CHX11], our previous algorithm offers

better performance than the other state-of-the-art methods such as Lasso [Tib96] and

elastic net [ZH05], in terms of PD, FDR. Thanks to the high level of abstraction

with great flexibility, proximal algorithms and their particular implementations have

been shown to be efficient at solving regularized regression such as Lasso [BT09]

and structured input and output Lasso problem [LX12]. With the objective function

evaluated efficiently, our simulation results show that the new method provides better

accuracy and faster computational speed in multiple QTL mapping [AHC14].

Our recent studies demonstrate that EBlasso has a broad range of applications,

such as whole genome QTL mapping and pathway-based genome-wide association

study (GWAS) [HXC14b, HMVC14]. When the number of possible effects is very large

in QTL models with both main and epistatic effects, the computation time becomes

a critical concern. Given that high density marker maps can be easily obtained due

to advancements in sequencing technology, it would be worthwhile to explore these

areas with the new method developed in this chapter.

The advancement in developing proximal algorithms for the EBlasso also presents

future research avenues. For example, both EBlasso-NEG [CHX11, HXC13] and our

recent developed EBEN [HXC14a] have more parameters and require much more

computation in cross validation to identify their optimal values. It would be very

useful to have more efficient proximal algorithms for these methods.

CHAPTER 5

Empirical Bayesian Lasso Proximal

Gradient Algorithm with Normal,

Exponential and Gamma Hierarchical

Prior Distributions for Fast Learning

In the previous chapter, we developed a novel proximal gradient optimization algo-

rithm for the empirical Bayesian Lasso (EBlasso) NE model that resulted in a better

power of detection (PD), false discovery rate (FDR) and greatly increased perfor-

mance. Continuing in the same direction, we develop here a novel proximal gradient

based EBlasso algorithm with Normal, Exponential and Gamma (NEG) prior dis-

tributions. This type of hierarchical prior distribution results in a fast convergence

while alleviating the problem of choosing an inappropriate value for λ. The key to the

increased performance is that it considers all the model parameters simultaneously.

Our new algorithm, running on a personal computer, could easily handle a linear

QTL model with more than 100,000 variables with extremely fast convergence. To

further enhance the detection rate, we develop a novel hybrid algorithm that combines

125

126

the fast convergences of our proximal gradient method with a simplified secondary

algorithm to achieve higher level of QTL detections, while keeping the false positive

effects at a much lower level.

5.1 Background

Analysis of quantitative trait loci (QTLs) is a statistical method that links two types

of information, phenotypic data (trait measurements) and genotypic data (usually

molecular markers), in an attempt to explain the genetic basis of variation in complex

traits [FM96, Kea98, LW98]. QTL analysis allows researchers in fields as diverse as

agriculture and medicine to link certain complex phenotypes to specific regions of

chromosomes. The goal of this process is to identify the action, interaction, number,

and precise location of these regions.

It is highly desirable to analyze a large number of loci simultaneously due to

the physical linkage of epistatic interactions among multiple QTLs. Since hundreds

of thousands of genomic loci or markers are usually genotyped and involved in QTL

mapping studies, including all these markers and their possible interactions in a model

leads to a huge number of model variables, typically much larger than the sample

size. This is not only entails huge computation that is not affordable to existing

QTL mapping methods, but also may reduce power of detection and/or increase false

discovery rate.

There are two general techniques often employed to handle such oversaturated

models: variable selection and shrinkage. Variable selection attempts to identify

127

a subset of all possible generic effects that best explain the phenotypic variation,

typically using a stepwise search procedure in conjunction with a selection criterion

such as the Bayesian information criterion (BIC) [Sch78]. On the other hand, a

shrinkage method includes all variables in the model, but uses a penalty function of

the variables or appropriate prior distributions on the variables to shrink less effective

variables toward zero. Ridge regression [HK70] and the least absolute shrinkage

and selection operator (LASSO) [Tib96] are examples of early shrinkage methods.

However, the Bayesian shrinkage method [OS09] has received considerable attention

recently.

Bayesian shrinkage has been applied to multiple QTL mappings [Xu03, WYL+05,

HS06, HETZ07, YX08]. Basically, Markov chain Monte Carlo (MCMC) simulation

is used with all of these works to fit the Bayesian model and provide comprehensive

information about the model drawing from the posterior distribution of the model

variables. However, despite the advances in the development of the MCMC simulation

algorithms [RC04], MCMC simulations are heavily computationally intensive and

time consuming, as we saw in Chapter 2. To reduce the computational burden of

the fully Bayesian approach relying on MCMC simulations, Xu [Xu07] developed an

empirical Bayes (EB) method that uses a properly chosen prior distribution for the

model variables to shrink variables toward zero.

Xu [Xu07] demonstrated that the EB method can handle a large number of model

variables simultaneously. More recently, the EB method was extended to handle

classification predictor variables [Xu10]. The EB method estimates the variance com-

ponents utilizing numerical algorithms such as the simplex algorithm [NM65]. Al-

128

though it requires much less computational power over the fully Bayesian approach,

the efficiency is limited by the numerical optimization algorithm. On the other hand,

the machine learning community developed a very efficient EB method, namely, the

relevance vector machine (RVM) [Tip01, TF03].

The RVM has increased speed because it estimates the variance components in

a closed form. Furthermore, it employs a few other algorithmic techniques in the

implementation to make it faster. It assumes a uniform prior distribution for the

variance components. Although this choice of the prior distribution gets rid of any

hyperparameters to be pre-specified, it lacks the flexibility of adjusting the degree

of shrinkage needed for analyzing a specific data set. Particularly, its uniform prior

distribution may not provide enough shrinkage in multiple QTL mapping, which

includes a very large number of possible effects, often resulting in a large number of

false effects [Xu10].

We developed an efficient empirical Bayesian Lasso (EBlasso) algorithm based

on the Bayesian LASSO model [YX08, PC08] with an exponential prior distribution

for the variance components in contrast to the inverse χ2 distribution for the vari-

ance components used by the EB method [Xu07]. Based on the simulation study

in [CHX11], the EBlasso method demonstrated outstanding performance in terms of

detection rate, false discovery rate and speed. In fact, the EBlasso method was or-

ders of magnitude faster than the EB method. However, the greedy coordinate ascent

algorithm used in the EBlasso method considers one effect at a time in an iterative

fashion [CHX11]. This makes the algorithm comparatively slow when dealing with a

large number of model variables, even though it is considered much faster than the

129

EB method. Since the model grows one effect at a time, it also fails to capture the

complex relations across multiple effects simultaneously.

Capitalizing on this idea, we have developed a novel proximal gradient optimiza-

tion algorithm for the EBlasso method. Our model uses three-level hierarchical prior

distribution, normal, exponential and gamma, for the variance components. Instead

of the previous implementation with the greedy coordinate ascent algorithm that

adds, removes or reestimates one variable from the model at a time, the proximal

gradient algorithm considers all variables simultaneously and maps points toward

the minimum of the objective function. Thanks to the advanced optimization al-

gorithm and other algorithmic techniques used, the new proximal gradient based

algorithm is capable of providing better detection rate, lower false discovery rate and

superior speed over the coordinate ascent algorithm. Furthermore, it is capable of

handling extremely large numbers of parameters. As simulation results indicate, the

new proximal gradient algorithm is orders of magnitude faster than the coordinate

ascent algorithm. We also develop a novel hybrid model that is capable of detecting

more QTL effects than its vanilla flavor (regular proximal gradient method). More-

over, real data analysis demonstrates that the proximal gradient algorithm is able to

detect more QTL effects with impressive speed over the coordinate ascent algorithm.

130

5.2 Bayesian Multiple Linear Regression Model for

QTLs

Capitalizing on the concepts from the previous chapter, we utilize a Bayesian multiple

linear regression model to infer genotype and quantitative phenotype associations. We

also consider environmental effects, main and epistatic effects of all markers and gene-

environment (G × E) interactions. Let yi be the phenotypic value of a quantitative

trait of the ith individual in a mapping population. Suppose we observe yi, i =

1, · · · , n of n individuals and collect them into a vector y = [y1, y2, · · · , yn]T . In

these n individuals, suppose p environmental covariates are observed and q genetic

markers genotyped. Let covariate l and genotype of marker j of individual i be

xEil and xGij, respectively. Let us define XEi = [xEi1, xEi2, · · · , xEip]T and XGi =

[xGi1, xGi2, · · · , xGiq]T . The interaction between any two effects is modeled as the

element-wise product of the corresponding main effects. Let XGGi be a 1
2
q(q− 1)× 1

vector containing xGij. xGij′ , j = 1, · · · , q − 1, j′ > j, XGEi be a pq × 1 vector

containing xEil. xGij, l = 1, · · · , p, j = 1, · · · , q. Then we have the following linear

regression model for y:

y = µ+XEβE +XGβG +XGGβGG +XGEβGE + e, (5.1)

where µ is the population mean, vectors βE and βG represent the environmental ef-

fects and the main effects of all markers, respectively, and vectors βGG and βGE cap-

ture the epistatic effects and the gene-environment interactions, respectively. XE =

[XE1, XE2, · · · , XEn]T , XG = [XG1, XG2, · · · , XGn]T , XGG = [XGG1, XGG2, · · · , XGGn]T ,

131

XGE = [XGE1, XGE2, · · · , XGEn]T are the corresponding design matrices of different

effects, and e is the residual error that follows a normal distribution with zero-mean

and covariance σ2
0I.

The design matrix XG depends on a specific genetic model. We adopt the same

Cockerham genetic model we used in Chapter 4. We can write y in more compact

form as:

y = µ+Xβ + e, (5.2)

where β = [β0, β
T
E , β

T
G, β

T
GG, βTGE]T , X = [XE, XEG,XGG, XGE]. Let environmental

covariates be p and the number of markers whose main effects are additive be q. This

makes the size of the matrix X as n×m where m = p+ 1
2
q(q+ 1). Typically, m� n.

Furthermore, m is even larger if dominance effects of the markers are considered. Our

goal is to estimate all possible environmental and genetic effects on y manifested in the

regression coefficients β, which is a challenging problem because m � n. However,

we would expect that most elements of β to be zeros, and thus we have a sparse

linear model. We will adopt the Blasso model [PC08, YX08] where appropriate prior

distributions are assigned to the elements of β as described in the next section.

5.3 NEG Hierarchical Prior Distribution

While complete model parameters of (5.2) are µ, σ2
0 and β, let us first focus on β.

We assign a non-informative uniform prior to µ and σ2
0, p(µ) ∝ 1 and p(σ2

0) ∝ 1,

respectively. We assume a three-level hierarchical model for β. Let us denote the

elements of β as βj, j = 1, · · · ,m. At the first level, βj, j = 1, · · · ,m follows an

132

independent normal distribution with zero mean and unknown variance τj : βj ∼

N(0, τj). At the second level, τj, j = 1, 2, · · · ,m, follows an independent exponential

distribution with a common parameter λ: p(τj) = λ exp(−λτj). For a given λ, the

distribution of βj is found to be the Laplace distribution: p(βj) =
√

λ
2

exp(−2
√
λ|βj|),

which is known to encourage the shrinkage of β toward zero [Tib96].

However, the degree of shrinkage strongly depends on the values of λ. To alleviate

the problem of choosing an inappropriate value for λ, we add another level to the

hierarchical model at which we assign a conjugate Gamma prior Gamma(a, b) with

a shape parameter a > 0 and an inverse scale parameter b > 0 to the parameter λ.

As discussed in [YX08], we can pre-specify appropriate values for a and b so that the

Gamma prior for λ is essentially non-informative. Let us define τ = [τ1, τ2, · · · , τm]T .

Similar to the EB method of [Xu07], we first estimate parameter τ , σ2
0 and µ then

find the posterior distribution of β based on the estimated parameters. Since λ is

the parameter we do not want to estimate, we can find the prior distribution of τ

independent of λ as follows:

p(τ) =

∞∫
0

p(τ |λ)p(λ)dλ =
a

b(τ/b+ 1)a+1
. (5.3)

The posterior distribution of µ, β, τ and σ2
0 is given by:

p(µ, β, τ, σ2
0|y) ∝ p(y|µ, σ2

0)p(µ)p(β|τ)p(σ2
0). (5.4)

We collect all parameters that need to be estimated as θ = (µ, σ0, τ). The log marginal

posterior distribution of θ can be found from (5.4) as:

133

L(θ) = −1

2

[
log |C| − 1

2
ỹTC−1ỹ

]
−

m∑
j=1

(a+ 1) log(τi + b) + constant, (5.5)

where C = σ2I+
m∑
j=1

τjxjx
T
j is the covariance matrix of y with a given τ and ỹ = (y−µ).

5.4 Proximal Gradient Approach

While two unknown parameters µ and σ2
0 can be obtained by setting ∂L(θ)

∂µ
= 0 and

∂L(θ)

∂σ2
0

= 0, we will focus on the τ̂ , the estimation of τ .

Let

J(τ) = f(τ) + g(τ), (5.6)

where f(τ) = 1
2

[
log |C| − 1

2
ỹTC−1ỹ

]
and g(τ) =

m∑
j=1

(a + 1) log(τi + b). Proximal

method gives an estimate for τ , as τ̂ = arg minτ
(
g(τ) + 1

2λ
||τ − v||2

)
. This leads to

an expression for J(τi) given by:

J(τi) =
1

2λ
(τi − vi)2 + (a+ 1) log(τi + b) (5.7)

With this, we can derive an expression for the derivative of J(τi) with respect to

τi as:

dJ(τi)

dτi
=

1

λ
(τi − vi) +

a+ 1

τi + b

=
(τi − vi)(τi + b) + λ(a+ 1)

λ(τi + b)

=
τ 2
i + (b− vi)τi − bvi + λ(a+ 1)

λ(τi + b)
. (5.8)

134

Since the numerator of dJ(τi)
dτi

, N (τi), represents a quadratic equation of τ , the

discriminant, ∆ is given by:

∆ , (b− vi)2 − 4[λ(a+ 1)− bvi]. (5.9)

Given this, let us consider possible solutions for τ , τ ∗:

5.4.1 Case 1: ∆ < 0

Since τi is real, N (τi) = 0, means no solution. This implies that dJ(τi)
dτi

> 0, that

results in τ ∗i = 0.

5.4.2 Case 2: ∆ = 0

This yields only a single solution and dJ(τi)
dτi

> 0 at τi 6= τ̂i; thus it results in τ ∗i = 0.

5.4.3 Case 3: ∆ > 0

In this case, N (τi) has two solutions without constraint τi > 0. Let us denote two

roots of τi as ri1 and ri2, given by:

ri1 =
1

2
[vi − b−

√
∆]

ri2 =
1

2
[vi − b+

√
∆] (5.10)

With these roots, let us consider three main scenarios:

135

a) vi − b < −
√

∆

This makes ri1, ri2 < 0, which implies τ ∗i = 0. This helps in deriving boundaries of vi

as follows:

vi − b < 0

(vi − b)2 > ∆

v2
i − 2bvi + b2 > v2

i + b2 + 2bvi − 4λ(a+ 1)

vi <
λ(a+ 1)

b
=⇒

vi < min

(
b,
λ(a+ 1)

b

)
(5.11)

b) vi − b+
√

∆ > 0 and vi − b−
√

∆ < 0

This results in ri1 < 0 and ri2 >) giving J ′(τi) :=

< 0 if τi < ri2,

> 0 if τi > ri2

. This gives

τ ∗i = ri2 and the boundaries of vi given by:

|vi − b| <
√

∆

(vi − b)2 < ∆ =⇒

vi >
λ(a+ 1)

b
(5.12)

136

c) vi − b−
√

∆ > 0

In this case, both ri1 and ri2 > 0.

The boundaries of vi can be written as:

|vi − b| > 0

(vi − b)2 > ∆ =⇒

b < vi <
λ(a+ 1)

b
(5.13)

Values of J(τi) at 0 and ri2 can be found as:

J(τi = 0) =
1

2λ
v2
i + (a+ 1) log b

J(τi = ri2) =
1

2λ

[
−vi − bi +

√
∆

2

]2

+ (a+ 1) log
vi + b+

√
∆

2
. (5.14)

This results in values for τ ∗i given by:

τ ∗i =

0 if J(τi = 0) < J(τi = ri2),

ri2 o.w.

(5.15)

.

We will use the line search algorithm with the proximal gradient method to obtain

τ k+1 and λk as shown in Table 5.4.3.

Following similar derivations from Chapter 4, we can find the derivative compo-

nents as:

∂f(τ)

∂τi
=

1

2
[Si −Q2

i] (5.16)

137

and

∂2f(τ)

∂τ 2
i

=
1

2
[−S2

i + 2Q2
iSi], (5.17)

where Qi = σ−2xTi ỹ − σ−4xTi X̃ΣX̃T ỹ, Si = σ−2xTi xi − σ−4xTi X̃ΣX̃Txi, Σ = (A +

σ−2X̃T X̃)−1 and A = diag(τ̃−1
1 ...τ̃−1

k).

The same expressions holds true for f(τ), µ, u and σ2 as well.

f(τ) = (σ2)n−k|σ2Ik×k + X̃T X̃T |+ σ−2||ỹ||2 − σ−4ỹT X̃ΣX̃T ỹ, (5.18)

µk+1 =
1TC−1y

1TC−11
, (5.19)

σ2(k+1) =
||ỹ − X̃u||2

n− k +
k∑
i=1

[Σ]ii
τ̃i

, (5.20)

and

u = σ2(k)ΣX̃T ỹ. (5.21)

where 1 is a vector whose elements are all 1 and C−1 = σ−2I − σ−4X̃ΣX̃T . Now

that we have derived all the necessary expressions, we can summarize our EBlasso

algorithm for the NEG model as shown in Table 5.4.3.

5.5 Experiment Procedure

As shown in [CHX11], the algorithm based on EBlasso coordinate ascent outper-

formed other state of the art algorithms such as EB [Xu07], RVM [Tip01, TF03] and

138

Table 5.1: Proximal method with line search algorithm

Begin
Let α = λk−1, γ ∈ (0, 1)
f̂α(z, vk) , f(vk) +∇f(vk)T (z − vk) + 1

2α
||z − vk||22

while true do
vk =

[
ṽk
]+

=
[
τ k − λkDk∇f(τ k)

]+
z = proxαg(v

k)

if f(τ) ≤ f̂α(z, vk) then
break

end if
α = γα

end while
λk = α, τ k+1 = z

End

Table 5.2: EBlaso with proximal gradient

Begin

Initialization: Choose λ > 0, u = 1T y
n
, ỹ = y− u1, γ = 0.5, λ0 = 1, σ2 = 0.1||ỹ||2

n

repeat
Begin

Subroutine: (τ̃ k+1,Σ, X̃) = proxm(τ k, λk−1, γ)
End
Calculate µk+1

Calculate σ2(k+1)

until Indices of elements of τ̃ do not change AND |τ̃k−τ̃k−1|2
|τ̃k−1|2 < ε, where ε is a

small number
End

139

LASSO [YX08, PC08] with both the power of detection as well as computational

efficiency. Thus, in our simulation study we compared the performance of our new

proximal gradient algorithm with the coordinate ascent algorithm. We implemented

both the algorithms in C/C++ using the same level of coding and algorithmic tech-

niques to have a fair comparison. All the simulations were run on a personal computer

with Intel Xeon 3.39GHz CUP running 64 bit Windows server 2012 with 32GB of

RAM.

We ran five phases of experiments. In the first phase, we simulated a single large

chromosome of 2400 centimorgan (cM) long covered by evenly spaced 481 markers

(q = 481) with a marker interval of 5 cM. The simulated population was an F2

family derived from the cross of two inbred lines with a sample size 1000 (n = 1000).

We only simulated the main effects in this dataset. However, both algorithms ran

with full sets of parameters including epistatic effects, which results in a total of

1+481+
(

481
2

)
= 115, 922 parameters. We used the ten-fold cross validation technique

to find out the optimal hyperparameter values for both algorithms.

In the second phase, to further analyze the robustness of our proximal gradient

algorithm over various sample sizes, we used 100 simulated datasets with sample

sizes 200, 400, 600, 800 and 1000. The optimal values of the hyperparameters for

both algorithms were evaluated following the same ten-fold cross-validation technique

described earlier.

So far we have considered only the main effects. To evaluate the performance of

the new algorithms over an extremely higher number of model parameters, we created

a dataset that included both main and epistatic effects. Basically, twenty markers

140

are QTLs with main effects and 20 out of the
(

481
2

)
= 115, 440 marker pairs have

interaction effects. This results in a QTL model containing a total of 1+481+
(

481
2

)
=

115, 922 possible effects. The PD, FDR and CUP time of the proximal method were

compared with the coordinate ascent method. Based on the third phase results, we

observed that the detection rate of our proximal gradient algorithm can be further

improved by using a hybrid model. Therefore, in the fourth phase, we evaluated the

performance of our hybrid model using the same dataset we used in phase three.

Finally, in phase five, we used a real dataset obtained from [LPD+07]. This dataset

consisted of 150 samples of double haploids (DH) derived from the cross of two spring

barley varieties, Morex and Steptoe. There were 495 markers distributed along seven

pairs of chromosomes of the barley genome, covering 206 cM of the barley genome.

This led to a total number of model effects of 1 + 495 +
(

495
2

)
= 122, 761, about 818

times as large as the sample size. We compared the detections from both algorithms

based on different p-values.

5.6 Results and Discussion

5.6.1 Phase 1: Simulated Data

A total of q = 481 markers were simulated on a large single chromosome of 2400

centimorgan (cM) long with evenly spaced marker interval of 5 cM. The simulated

population was an F2 family derived from the cross of two inbred lines with a sample

size n = 1000. The genotype indicator variable for individual i at marker j was

141

defined as xij = 1, 0,−1 for the three genotypes, A1A1, A1A2 and A2A2, respectively.

Twenty markers were QTLs with 20 main effects. We did not simulate epistatic effects,

environmental effects or gene-environment (G×E) effects. However, both algorithms

incorporated epistatic effects also in the model parameters, even though the dataset

was only simulated for main effects. The true population mean was µ = 100 and

the residual variance was σ2
0 = 10. Note that the QTLs were assumed to coincide

with the markers. If QTLs are not on the markers, they may still be detected since

correlation between a QTL and a nearby marker is high, although a slightly larger

sample size may be needed to give the same power of detection.

The total phenotypic variance for the trait can be written as

σ2
γ = σ2 +

q∑
j=1

q∑
j′=1

βjβ
′
jcov(xj, x

′
j), (5.22)

where cov(xj, x
′
j) is the covariance between xj and x′j if j 6= j′ or the variance of x′j

if j = j′, which can be estimated from the data. If we ignore the contributions from

the covariance terms, which are relatively small, the proposition of the phenotypic

variance explained by a particular QTL effect j can be approximated by

h2
j =

β2
j var(xj)

σ2
γ

, (5.23)

where var(xj) is the variance of Xj.

We used the prediction error (PE) [Tib96] obtained from ten-fold cross validation

process to select the optimal values for hyperparameters a and b. For estimated

phenotype value ŷi = µ̂+ x̃iu, the PE is calculated by:

PE =
1

n

n∑
i=1

(yi − ŷi)2. (5.24)

142

Specifically, the dataset was first divided into ten subsets. Nine out of these

ten subsets were used as the training data to estimate the model parameters, and

the log likelihoods of the remaining testing data were calculated using the estimated

parameters. This process was repeated ten times until every subset was tested. Since

values of a and b are continuous, ideally we could have used a large number of discrete

pair of values for these two variables in the cross-validation. However, that would

have required a longer training time. Instead of using a large number of combinations,

we used a similar technique used in [CHX11] to obtain a reduced number of candidate

values for hyperparameters a and b.

Basically, we started with a = b = 0.001, 0.01, 0.05, 0.1, 0.5, 1. The degree of

shrinkage generally decreases along this path. As shown in the Table 5.3, a = .05 and

b = .05 had the lowest PE value for proximal gradient method. To check whether

this is the optimal combination, we further ran cross-validation by fixing the b at .05,

with a = .1 and a = .01. Usually, the degree of shrinkage decreases when a decreases.

This effect is clearly shown in the Table 5.3.

The parameter combinations (a = 0.001, b = 0.05) and (a = 0.01, b = 0.05) were

close, but noticeably higher than the (a = 0.05, b = 0.05). Therefore, we selected the

a = 0.05 and b = 0.05 as the optimal values from the cross-validation results. To

further observe the variation of the true detections (TP) and false detections (FP) over

various combinations of hyperparameter values used in ten-fold cross-validation, we

also included TP and FP values in the Table 5.3. Note that the number of detections

is based on the full dataset with all the 1000 samples, but not from cross-validation.

143

Since the comparison algorithm, the coordinate ascent, is also based on the NEG

priors, it has the same type of hyperparameters. Therefore, we followed the same

technique for that one as well. We also included the candidate hyperparameter value

combinations that we used in ten-fold cross validation with the coordinate ascent

algorithm in Table 5.3. Out of all the candidate parameter combinations, a = 0.001

and b = 0.001 had the lowest PE value for coordinate ascent algorithm. It was shown

during the ten-fold cross validation that coordinate ascent took much longer time

to complete the training than the proximal gradient method. This is because the

proximal gradient method had a very fast convergence. The Table 5.4 shows the final

detections based on optimal values for both algorithms.

As one can clearly see from Table 5.4, our algorithm outperformed the coordinate

ascent algorithm in terms of detection rate. Basically, the proximal gradient algorithm

detected three more effects than the coordinate ascent algorithm. Note that all the

effects we detected from our new algorithm were based on p-value ≤ 0.05. The non-

detections shown with ‘*’ were actually detected by our algorithm, but they were

later filtered out by the t-test with p-value = 0.05. We will further analyze this

phenomenon in Phase 4.

Clearly, the results show that the main contribution of our algorithm is to the

performance aspect. Basically, our algorithm finished within 6.7 seconds, while the

coordinate ascent algorithm took 38.4 seconds, meaning that our new algorithm is

5.7 times faster than the coordinate ascent algorithm. Specifically, in the proximal

gradient method, the non-zero effects in the model are considered simultaneously,

and global optimal is obtained faster and more accurate compared with the greedy

144

Table 5.3: Variaton of PE values over different combinations of a and b obtained from
ten-fold cross validation

Algorithm a b TP FP PE

0.001 0.001 8 1 54.7815

0.01 0.01 13 1 44.9232

0.05 0.05 15 0 43.7188

0.1 0.1 13 0 44.6603

Proximal 0.5 0.5 13 0 45.4422

Gradient 1.0 1.0 12 0 46.9343

0.01 0.05 15 0 43.8779

0.001 0.05 15 0 43.8733

-0.01 0.05 15 0 44.0462

0.001 0.001 12 0 80.1496

0.01 0.01 14 0 83.915749

0.05 0.05 14 0 83.929658

0.1 0.1 14 0 83.922186

Coordinate 0.5 0.5 13 0 84.071424

Ascent 1.0 1.0 14 0 84.309103

0.01 0.001 14 0 80.150408

0.05 0.001 14 0 80.153684

145

Table 5.4: True estimated QTL effects for the simulated data with main effects.

Markers Position Proximal gradient Coordinate ascent

(cM) (Is detected?) (Is detected?)

11 50 Yes Yes

26 125 No Yes

42 205 No* No

48 235 Yes Yes

72 355 Yes Yes

73 360 Yes No

123 610 Yes Yes

127 630 Yes Yes

161 800 No* No

181 900 Yes No

182 905 Yes Yes

185 920 Yes No

221 1100 Yes Yes

243 1210 Yes Yes

262 1305 Yes Yes

268 1335 No* No

270 1345 Yes No

274 1365 Yes Yes

361 1800 Yes Yes

461 2300 No* No

CPU time 6.745 sec 38.417 sec

146

approach that considers one effect at a time used by the coordinate ascent algorithm.

Since the effects are considered simultaneously, this allows most of the computational

workflows to be implemented as parallel workflows, and that could further increase

the performance. However, we did not implement any parallel execution workflows

in our algorithm for the results presented here.

5.6.2 Phase 2: Effect Over Various Sample Sizes

In Phase 1, we observed that our proximal gradient method is capable of detecting

QTLs more efficiently than the coordinate ascent with better detection accuracy. To

further analyze the performance of our new algorithm over various sample sizes, we

generated 100 replicates with sample sizes 200, 400, 600, 800 and 1000 using the

same techniques we described earlier. Each replicate consists of individuals whose

genotypes at 481 markers were independently generated and whose phenotypes were

calculated from (5.2) with e independently generated from Gaussian random variables

with zero mean and covariance 10. Only the main effects were considered. We used

the same ten-fold cross validation technique we described earlier with each of these

sampled datasets in obtaining the optimal hyperparameter values for both algorithms.

The PD and FDR are plotted in Figures 5.1 and 5.2, respectively.

The figures are based on the average over 100 data samples. Both methods demon-

strated 0.0 false discovery rate over all the sample sizes. As one can clearly see from

Figure 5.1, the proximal gradient algorithm showed a better detection rate across

all the sample sizes. Note that we used the p-value = 0.05 with all the simulated

147

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 300 400 500 600 700 800 900 1000

P
o

w
er

 o
f

d
et

ec
ti

o
n

Sample size

Proximal Gradient Coordinate Ascent

Figure 5.1: Power of detection for the proximal gradient and coordinate ascent algo-
rithm. Performance data were obtained from the mean of 100 replicas for different
sample sizes (n = 200, 400, 600, 800, 1000).

148

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 300 400 500 600 700 800 900 1000

Fa
ls

e
d

is
co

ve
ry

 r
at

e

Sample size

Proximal Gradient Coordinate Ascent

Figure 5.2: False discovery rate for the proximal gradient and coordinate ascent
algorithm. Performance data were obtained from mean of 100 replicas for different
sample sizes (n = 200, 400, 600, 800, 1000).

149

datasets. In general, when the sample size is larger, the power of detection increases,

as indicated in Figure 5.1. As shown from the results, the main contribution of the

proximal gradient method is to the performance improvement to the runtime. We

have shown the average run time over various sample sizes in Table 5.5.

Table 5.5: Average run time over various sample sizes for proximal gradient method
and the coordinate ascent method.

Sample size Proximal Gradient Coordinate Ascent tCoordinateAscent

tProximalGradient

CPU time (sec) CPU time (sec)

200 1.109 5.076 4.575

400 2.208 16.755 7.588

600 3.499 24.191 6.914

800 3.673 33.024 8.992

1000 5.439 32.394 5.955

To further highlight the improvement in terms of runtime, we also plotted the

performance characteristics of our algorithm in Figure 5.3. The y-axis represents the

division of average run time of the coordinate ascent algorithm (tCoordinateAscent) by

the average run time of proximal gradient algorithm (tProximalGradient). As Figure 5.3

clearly indicates, our new algorithm is orders of magnitude faster than the coordinate

ascent algorithm across all sample sizes. Furthermore, as we mentioned elsewhere, the

performance of our new algorithm can be further improved by parallelizing calculation

workflows. This is only possible with the new algorithm since it considers nonzero

effects in the model simultaneously, rather than the greedy approach that considers

one effect at a time.

150

0

1

2

3

4

5

6

7

8

9

10

200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

Sample size

Figure 5.3: Performance is calculated as tProximalGradient/tCoordinateAscent. Performance
data were obtained by using the mean of 100 replicates.

151

5.6.3 Phase 3: Including Epistatic Effects

Usually with the real datasets, we find smaller sample sizes. To better capture this,

we simulated a single large chromosome of 2400 cM long covered by evenly spaced q

= 481 markers with a marker interval of 5 cM with interactive effects. The simulated

population was an F2 family derived from the cross of two inbred lines with a sample

size n=600. Twenty markers are QTLs with main effects and 20 out of the
(

481
2

)
=

115, 440 marker pairs have interaction effects. Environmental effects and G×E effects

were not simulated. The true population mean is µ = 100 and the residual variance is

σ2
0 = 10. Including the population mean, the main and the pair-wise epistatic effects,

the total number of model effects was 1 + 481 +
(

481
2

)
= 115, 922, about 193 times as

large as the sample size.

We used ten-fold cross validation to estimate optimal values for hyperparameters.

We used the same technique described in Phase 1 to reduce the number of candidate

pairs for a and b. Table 5.6 shows the detection status for both algorithms based on

the optimal hyperparameter values.

As shown in Table 5.6, the proximal gradient algorithm detected 14 true effects

with only a single false effect, while the coordinate ascent algorithm detected 15 true

effects with two false effects. Even though the new algorithms detected single effects

less than the coordinate ascent algorithm, it detected 11 out of 14 effects from the

exact location. However, with the coordinate ascent algorithm, it only detected 10

out of 15 from the exact location. The most noticeable improvement is in the CPU

time. As one can see, the proximal gradient algorithm finished within 0.84 seconds

152

Table 5.6: True estimated QTL effects for the simulated data with main and epistatic
effects for sample size 600.

Markers Position Proximal gradient Coordinate ascent
(cM) (Is detected?) (Is detected?)

(11,11) (50,50) Yes Yes
(26,26) (125,125) Yes Yes
(42,42) (205,205) No* Yes
(48,48) (235,235) No* No
(72,72) (355,355) Yes No
(73,73) (360,360) Yes Yes
(123,123) (610,610) No* No
(127,127) (630,630) No No
(161,161) (800,800) No No
(181,181) (900,900) Yes No
(182,182) (905,905) Yes Yes
(185,185) (920,920) Yes No
(221,221) (1100,1100) Yes Yes
(243,243) (1210,1210) No* No
(262,262) (1305,1305) No* No
(268,268) (1335,1335) No No
(270,270) (1345,1345) No No
(274,274) (1365,1365) Yes No
(361,361) (1800,1800) No No
(461,461) (2300,2300) No No
(5,6) (20,25) No No
(6,39) (25,190) Yes Yes
(42,220) (205,1095) Yes Yes
(75,431) (370,2150) No No
(81,200) (400,995) No* No
(82,193) (405,960) No No
(87,164) (430,815) No* Yes
(87,322) (430,1605) Yes Yes
(92,395) (455,1970) No* Yes
(104,328) (515,1635) No No
(118,278) (585,1385) No* Yes
(150,269) (745,1340) No No
(237,313) (1180,1560) No No
(246,470) (1225,2345) No* No
(323,464) (1610,2315) No No
(328,404) (1635,2015) No* Yes
(342,420) (1705,2095) No No
(344,407) (1715,2030) No* Yes
(373,400) (1860,1995) Yes No
(431,439) (2150,2190) Yes Yes

CPU time 0.84 sec 27.56 sec

153

while the coordinate ascent took 27.56 seconds. This means that the new proximal

gradient algorithm is 32.8 times faster than the coordinate ascent algorithm. This is

a very impressive performance improvement when dealing with much larger datasets

with extremely large number of model parameters. All the detections from the new

algorithm were based on the p-value of 0.05.

When we further analyzed the filtered out detections from the t-test, we observed

that we had 27 true detections (marked with ’*’). But 13 of them were filtered out by

the t-test. We observed similar behavior in Phase 1 as well. This phenomenon gave

us a direction to define a novel algorithm where we can further improve the detection

rate, still keeping the runtime improvement at a high level. That is the hybrid model.

5.6.4 Phase 4: Hybrid Model

As we saw in the simulation results from Phase 3, our algorithm has extremely fast

convergence with comparatively higher detection rate. However, some of the true

detections were filtered out by the t-test. As an example, in the previous simulations,

there were 27 detections, but 13 of them were filtered out by the t-test. To still keep

the majority of detections without sacrificing the false discovery rate, we propose a

hybrid model where we utilize the main strengths of our algorithm while alleviating

the problem of filtering done by the t-test using a secondary algorithm. Basically, our

proximal algorithm does the heavy lifting where it reduces the parameter space to a

very small manageable set within a couple of seconds. As an example, in the previous

simulations, the original number of parameters was 115,922 and our algorithm was

154

capable of reducing it to 122 nonzero parameters within 0.84 seconds with 27 true

detections. Out of those 122, there were few false positives, but the majority of them

were collocated with the true detections.

Since the parameter space for the secondary algorithm is bound to the output

from the main algorithm, there is no scalability concern for the secondary algorithm.

To this end, we can redefine the model to the secondary algorithm as:

y = µ+X ′β′ + e, (5.25)

where X ′ is the design matrix associated with the output from our main algorithm

and β′ is the effect of markers. Note that, X ′ is a matrix with size n × k′ where

k′ � p + q
2
(q + 1) + pq, which is the original parameter space. To solve this prob-

lem, we can properly choose some prior distribution and define the joint posterior

distribution of the parameters. Then we can utilize any technique to solve this as an-

other optimization problem such as MCMC. As we saw in the chapter 2, the MCMC

methods incur higher computational cost.

We borrowed the greedy algorithm used in [CHX11] as our secondary algorithm

and modified and optimized it to work with a smaller sets of data. One of the

motivations was that we could reuse some of the implementation we had already

done for our main algorithm. Since scalability is not a concern here, we can do most

of the calculations in memory. We chose proper data structures to facilitate this and

implemented with C/C++ that yields higher efficiency. With this hybrid model, we

can redefine our algorithm as shown in Table 5.6.4.

155

To evaluate our hypothesis, we used the same dataset we used in Phase 3. Since

the hybrid model consists of two stages, we first did the ten-fold cross validation with

the proximal gradient method to obtain the optimal values for hyperparameters. Then

we fixed those parameters and initiated another ten-fold cross validation process for

the secondary algorithm. Since the secondary algorithm runs with an extremely small

number of parameters, the variation of the results was expected to be small, meaning

that it is less sensitive to parameter values. This is a key aspect since it will drastically

reduce the number of candidate values for cross-validations. To demonstrate this

clearly, we tabled the PE values for various parameter combinations, a = b = 0.01,

0.05, 0.1, 0.5 and 0.8 in Table 5.8. We also included TP and FP detections to back

up our theory. Note that this data is shown only the output from the secondary

algorithm, but not the final merged results.

As one can see from Table 5.8, the output from the secondary algorithm detected

19 true effects with only a single false effect at (257,257). Even that one is just 25

cM away from the QTL located at (262, 262). As shown in Table 5.8, various values

of secondary algorithm result in the same level of detection. This is what we claimed

before, that we could have used any secondary algorithm for this purpose. How-

ever, with this secondary algorithm, the original detections were greatly discounted

as well. As one can see, the number of TP drops from 27 to 19, because the secondary

algorithm we used had strong shrinkage. Since the number of parameters that the

secondary algorithm needs to handle was largely reduced, we could have used a dif-

ferent algorithm with lower shrinkage to increase the number of TPs while keeping

the FPs low.

156

Table 5.7: EBlaso With Proximal Gradient Hybrid

Begin

Initialization: Choose λ > 0, u = 1T y
n
, ỹ = y− u1, γ = 0.5, λ0 = 1, σ2 = 0.1||ỹ||2

n

repeat
Begin

Subroutine: (τ̃ k+1,Σ, X̃) = proxm(τ k, λk−1, γ)
End
Calculate µk+1

Calculate σ2(k+1)

until Indices of elements of τ̃ do not change AND |τ̃k−τ̃k−1|2
|τ̃k−1|2 < ε, where ε is a

small number
Obtain the final indices of elements of τ̃ and the corresponding design matrix

X ′

Begin
Subroutine: (τfinal) = secondary(τ̃ , X ′, y)

End
Merge results

End

Table 5.8: Various PE values for the secondary algorithm with hybrid model.

a = b TP FP PE CPU time (sec)

0.01 18 1 1.864 0.91

0.05 19 1 1.070 0.92

0.1 19 1 0.928 0.81

0.5 19 1 1.014 0.97

0.8 19 1 0.974 0.95

157

The final CPU time for the hybrid model is the summation of the original prox-

imal gradient method and the secondary algorithm, which was 1.65 seconds. This

means that the new hybrid model is still 16.7 times faster than the coordinate ascent

algorithm. In this way, we slightly sacrificed performance in favor of better detec-

tion rate. Table 5.9 shows the final detections from the hybrid model. For ease of

comparison, we also include the results from the vanilla proximal gradient method as

well.

As one can see from Table 5.9, the final hybrid model detected 22 true effects.

When compared with the coordinate ascent algorithm, our hybrid model was capable

of detecting seven more true effects. This gives PD and FDR for the proximal hybrid

method, 0.55 and 0.04, respectively. When compared to the coordinate ascent algo-

rithm, it had PD and FDR values, 0.375 and 0.12, respectively. Furthermore, the new

hybrid model is 16 times faster than the coordinate ascent algorithm. As mentioned

earlier, we could improve performance further by parallelizing calculation workflows.

At the same time, we could increase the detection rate by deriving a new secondary

algorithm with slightly less shrinkage. Since the requirement for the secondary algo-

rithm is fairly simple, there is more room for improvements. Basically, we can use

some closed form solutions that may lead to better accuracy since performance is not

a concern for the secondary algorithm due to greatly reduced parameter space.

158

Table 5.9: True estimated QTL effects for the simulated data with main and epistatic
effects for hybrid model.

Markers Position Proximal Proximal-gradient Coordinate
(cM) gradient hybrid ascent

(11,11) (50,50) Yes Yes Yes
(26,26) (125,125) Yes Yes Yes
(42,42) (205,205) No Yes No
(48,48) (235,235) No Yes No
(72,72) (355,355) Yes Yes No
(73,73) (360,360) Yes Yes Yes
(123,123) (610,610) No No No
(127,127) (630,630) No No No
(161,161) (800,800) No No No
(181,181) (900,900) Yes Yes No
(182,182) (905,905) Yes Yes Yes
(185,185) (920,920) Yes Yes No
(221,221) (1100,1100) Yes Yes Yes
(243,243) (1210,1210) No No No
(262,262) (1305,1305) No No No
(268,268) (1335,1335) No No No
(270,270) (1345,1345) No No No
(274,274) (1365,1365) Yes Yes No
(361,361) (1800,1800) No No No
(461,461) (2300,2300) No No No
(5,6) (20,25) No No No
(6,39) (25,190) Yes* Yes* Yes
(42,220) (205,1095) Yes Yes Yes*
(75,431) (370,2150) No No No
(81,200) (400,995) No Yes* No
(82,193) (405,960) No No No
(87,164) (430,815) No Yes Yes*
(87,322) (430,1605) Yes Yes Yes*
(92,395) (455,1970) No Yes* Yes*
(104,328) (515,1635) No No No
(118,278) (585,1385) No Yes* Yes
(150,269) (745,1340) No No No
(237,313) (1180,1560) No No No
(246,470) (1225,2345) No No No
(323,464) (1610,2315) No No No
(328,404) (1635,2015) No Yes* Yes
(342,420) (1705,2095) No No No
(344,407) (1715,2030) No Yes* Yes*
(373,400) (1860,1995) Yes* Yes* No
(431,439) (2150,2190) Yes* Yes* Yes

CPU time 0.84 sec 1.65 sec 27.56 sec

159

5.6.5 Phase 5: Real Data

So far, we have analyzed the performance of our proximal algorithm based on sim-

ulated datasets. To see how well the algorithm behaves with the real data, we used

a dataset obtained from Luo et al. [LPD+07]. This dataset consists of n = 150 dou-

ble haploids (DH) derived from the cross of two spring barley varieties, Morex and

Steptoe. The total number of markers was q = 495 distributed along seven pairs

of chromosomes of the barley genome, covering 206 cM of the barley genome. The

phenotype was the spot blotch resistance measured as the lesion size on the leaves of

barley seedlings. Note that spot blotch is a fungus named Cochliobolus sativus. The

genotype of the markers was encoded as +1 for genotype A (the Morex parent), -1

for genotype B (the Steptoe parent), and 0 for missing genotype.

Ideally, the missing genotypes should be imputed from known genotypes of neigh-

boring markers. For simplicity, we replaced the missing genotypes with 0 in order

to use the phenotypes of the individuals with missing genotypes. The total missing

genotypes only account for about 4.2% of all the genotypes. Including the population

mean, the main and the pair-wise epistatic effects, the total number of model effects

was 1 + 495 +
(

495
2

)
= 122, 761, about 818 times as large as the sample size.

We used five-fold cross validation since the sample size was too small to do

ten-fold cross validation. For the hyperparameters, we chose values from the set

0.001, .01, .05, .07, .08, .1, .5, .8, .9, 1 where a = b. The table 5.10 shows the PE values

for each combination. We used two p-values, 0.05 and 0.01 in our simulations. Basi-

160

cally, p-value of 0.01 gives more conservative results. The table 5.10 shows detections

for both of these p-values.

Table 5.10: Number of detections and PE values for different hyperparameter com-
binations for real data.

a = b PE Effects Effects CPU time

p-value= 0.05 p-value= 0.01 seconds

0.001 2.2192 59 21 0.81

0.01 2.3359 42 15 0.80

0.05 2.4408 29 10 0.80

0.07 2.4438 28 8 0.90

0.08 2.4438 28 7 0.65

0.1 2.4885 27 7 0.59

0.5 2.5232 21 6 0.48

0.8 2.5282 20 5 0.42

0.9 2.5282 20 5 0.43

1.0 2.5282 20 5 0.57

Note that the number of detections was obtained from the full sets of samples.

The PE values shown are for the p-value of 0.05. We also included CPU time for each

parameter combination. As shown on the Table 5.10, our proximal algorithm took

less than a second across all combinations. Furthermore, the variation of PE was

very small over a range of hyperparameter combinations. Therefore, we calculated

the frequency of every effect across all parameter combinations. The effects that have

more than or equal to 50% occurrences are shown in Table 5.11 for p-value = 0.05.

Similar information for results with p-value = 0.01 is shown in Table 5.12.

According to Tables 5.11 and 5.12 , our proximal algorithm detected twenty effects

common to all parameter combinations for p-value= 0.05 and five effects for p-value=

0.01. For the coordinate ascent algorithm, we used parameter combinations a = b =

161

Table 5.11: Number of detections across all hyperparameter combinations for p-
value= 0.05

Marker Frequency

(1,467) 10

(30,417) 10

(31,335) 10

(50,72) 10

(58,288) 10

(78,149) 10

(79,147) 10

(109,141) 10

(110,395) 10

(113,274) 10

(137,334) 10

(145,379) 10

(154,274) 10

(202,384) 10

(223,296) 10

(259,292) 10

(330,359) 10

(426,442) 10

(427,432) 10

(435,439) 10

(400,477) 7

(9,253) 6

(48,165) 6

(106,284) 6

(302,329) 6

(305,435) 6

(137,331) 5

(291,438) 5

162

0.001, 0.01, 0.05, 0.07, 0.1, 0.5, 1.0. Table 5.13 summarizes the results based on the

five-fold cross validations.

As one can see from Table 5.11, the proximal gradient method was more consistent

over a large range of parameter values. On the other hand, the coordinate ascent algo-

rithm seems to either under-detect or over-detect on most of the parameter combina-

tions. Since coordinate ascent had only one or two detections for a = b = 0.001, 0.01,

we did a similar frequency calculation for a = b = 0.05, 0.07, 0.1, 0.5 and 1.0. Eight

effects were common to these parameter combinations.

To demonstrate runtime improvement of the proximal algorithm, we plotted run-

time over various parameter combinations in Figure 5.4. Clearly, in Figure 5.4, the

new proximal gradient method is considerably faster than the coordinate ascent algo-

rithm across all combinations. As an example, based on the combination that resulted

in the lowest PE value, the proximal gradient method is 115 times faster than the

coordinate ascent algorithm.

Table 5.12: Number of detections across all hyperparameter combinations for p-
value= 0.01

Marker Frequency

(78,149) 10

(113,274) 10

(223,296) 10

(426,442) 10

(435,439) 10

(154,274) 7

(58,288) 6

163

0

100

200

300

400

500

600

700

800

0 0.2 0.4 0.6 0.8 1 1.2

Chart Title

0

100

200

300

400

500

600

700

800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 t

im
e

(s
ec

)

a = b

Coordinate Ascent Proximal Gradient

Figure 5.4: CPU time for real data over various hyperparameter value combinations.

164

Table 5.13: Number of detections and PE values for different hyperparameter com-
binations for coordinate ascent

a = b PE Effects Effects CPU time

p-value= 0.05 p-value= 0.01 seconds

0.001 1.979627 1 1 0.89

0.01 2.006083 2 2 3.85

0.05 2.610536 11 11 757.56

0.07 2.621296 15 10 175.94

0.1 2.513092 128 13 149.81

0.5 2.501755 112 9 93.27

1.0 2.483921 115 8 74.25

5.7 Summary

There are various methods used in multiple QTL mapping such as EB [Xu07], RVM [Tip01,

TF03], Lasso [YX08, PC08], penalized likelihood (PENaL) [ZX05] and stochastics

search variable selection(SVVS) [YGA03]. According to the comparison provided by

Xu [Xu07], the SSVS method is much slower than the EB method; whereas, Lasso

and PENAL methods are faster than the EB method. Although EB, Lasso, PENAL

and SSVS methods all produced satisfactory results in a simulation study [Xu07], the

EB method outperformed the other three methods. Moreover, when applied to a real

data set, the EB and Lasso detected some effects, whereas PENAL and SSVS failed

to generate any meaningful results [Xu07].

On the other hand, based on the simulation study by Cai et al. [CHX11], the

EBlasso method detected more true effects than the EB method without raising the

false positive rate. Furthermore, when analyzing a real dataset, they found that

the EBlasso method detected a reasonable number of effects, but the EB method

165

detected one or zero effect depending on the values of the hyperparameters used.

These observations in both simulation study and real data analysis demonstrate that

the EBlasso method outperforms both the EB and the Lasso methods.

The EBlasso method was built upon the idea of the RVM in machine learning. The

EBlasso and EB methods, as well as the RVM, all are based on a Bayesian hierarchical

linear regression model and all estimate the variances of the regression coefficients.

The difference of the three methods in the regression model is the different prior dis-

tributions for the hyperparameters. The EB method and the RVM employ inverse χ2

and uniform distributions, respectively, for the variances of the regression coefficients,

while the EBlasso assigns exponential distributions to the variance components and

uses a Gamma distribution for the parameter of the exponential distribution. The uni-

form prior distribution used by the RVM may not provide enough degree of shrinkage

for certain data, and thus generate a large number of false positive effects, as shown

in [Xu10, CHX11].

The prior distributions used by the EBlasso and RVM methods enable one to

estimate the variance components in a closed form, while the EB method generally

needs a numerical optimization algorithm to estimate the variance components. For

this reason, EBlasso and RVM methods can always find the unique optimal estimate

of a variance component with much less computation than the EB method [CHX11].

Since the EBlasso method claims to have superior detection power with extremely

fast performance over EB, RVM and LASSO methods, and EB method outperforms

most of the other state-of-the-art methods, we compared our new proximal gradient

algorithm with the EBlasso method.

166

The greedy coordinate ascent algorithm used in the EBlasso method considers

one effect at a time in an iterative fashion [CHX11]. This is the main drawback of

this method, where it could still take longer time even though it is much faster than

the EB method. Moreover, it fails to capture much broader complex relations across

multiple model parameters simultaneously.

Capitalizing on this idea, in this chapter we have developed a novel proximal

gradient optimization algorithm for the EBlasso method. Our model is based on a

Bayesian hierarchical linear regression model that uses three-level hierarchical prior

for the regression coefficients, namely, normal, exponential and Gamma (NEG). It

first estimates the variance of the regression coefficients and then finds the posterior

distribution of the regression coefficients based on the estimated variance. Compared

to the previous implementation with the greedy coordinate ascent algorithm that

adds, removes or reestimates one variable from the model at a time, the proximal

gradient algorithm considers all variables simultaneously and maps points toward

the minimum of the objective function in (5.5). In the proximal algorithm, the base

operation is to evaluate the proximal operator, which is typically a specialized method

with closed form solutions [PB13].

The simulation results demonstrate that the new proximal gradient algorithm

provides superior performance in terms of power of detection and false positive rate.

It is also clearly shown that the proximal gradient algorithm is orders of magnitude

faster than the coordinate ascent algorithm based on all the simulated variants. Our

new algorithm can easily handle more than 105 possible effects within a few seconds

running on an average personal computer.

167

Our new algorithm has shown impressive performance over real data as well.

As one can see from the results in Phase 5, the new algorithm reliably detected

more effects than the coordinate ascent algorithm with all the hyperparameter value

combinations. Based on the optimal hyperparameter values, the new algorithm is 115

times faster than the coordinate ascent algorithm.

With the novel proximal gradient hybrid algorithm, we detected seven more true

effects than the coordinate ascent algorithm, which yields PD and FDR values of

0.55 and 0.04, respectively, over 0.375 and 0.12 provided by the coordinate ascent

algorithm. Moreover, the proximal gradient algorithm was 16 times faster than the

coordinate ascent algorithm based on the optimal parameter values. We emphasize

here that the impressive detection rates were obtained with small number of samples.

Since our proximal gradient algorithm considers nonzero effects in the model pa-

rameters simultaneously, we can further improve the speed by parallelizing calculation

workflows. Furthermore, we can derive new algorithms to be used as the secondary

algorithm with the hybrid model. Since the secondary algorithm runs on very small

sets of model parameters, we can easily find better closed form solutions that could

yield increased detection rates.

Our recent studies demonstrated that EBlasso has a broad range of applications,

such as whole-genome QTL mapping and pathway-based genome-wide association

study (GWAS) [HXC14b, HMVC14]. When the number of possible effects is very large

in QTL models, with both main and epistatic effects, the computation times become a

critical concern. Given that high density marker maps can be easily obtained, thanks

168

to advancement in sequencing technology, it would be worthwhile to explore these

areas with the new methods developed in this chapter.

CHAPTER 6

Conclusion and Future Work

In Chapter 1, we explored two main research areas: gene regulation and geno-

type/phenotype association. Along those two major avenues, we formulated two

main problems: TFBSs identification and QTL mapping. We further observed vari-

ous methods used in these two areas, including state-of-the-art techniques. In Chap-

ter 2, we developed a novel MRF based TFBSs identification algorithm and further

improved the performance by introducing a pairwise-MRF model in Chapter 3. We

diverged from the TFBSs identification problem and developed a novel proximal based

algorithm for EBlasso-NE model to infer QTLs in Chapter 4. In Chapter 5, we further

extended our algorithm to EBlasso-NEG model, which demonstrated extremely fast

convergence with higher detection rate. Furthermore, we developed a novel proximal

gradient hybrid model to further enhance the detection rate with lower false positive

rate. We next summarize the contribution of the proposed methods, and discuss

future research avenues in this concluding chapter.

169

170

6.1 Conclusion

Given the fundamental significance of gene regulation and genotype/phenotype as-

sociation in understanding the genetic basis of complex biological systems, powerful

statistical modeling and inference methods are highly desirable. In this dissertation,

we propose novel MRF based methods for the TFBSs identification problem and fur-

ther improve the performance by developing a pairwise-MRF model. The exhaustive

simulation study affirmed that our new methods are fast and accurate when compared

to the other state-of-the-art methods.

Toward the QTL mapping problem, we propose novel empirical Bayesian methods

that are able to model a large number of additive and dominance markers effects,

including both main and epistatic effects. Furthermore, the novel proximal gradient

based algorithms are capable of handling model parameters simultaneously over the

greedy approach used by other state-of-the-art methods. This also opens up further

improvements to the performance by allowing the algorithm implementers to execute

most of the workflows in parallel by taking full advantage over advanced computer

technologies.

Both simulation and real data analysis suggested that the proposed EBlasso-

NE [AHC14], EBlasso-NEG and EBlasso-NEG hybrid methods are fast and accurate

variable selection and estimation methods for multiple QTL mapping. The perfor-

mance of the proposed EBlasso methods was compared to the other state-of-the-

art genotype and phenotype association methods, such as EB [Xu07], RVM [Tip01,

TF03], Lasso [YX08, PC08], penalized likelihood (PENaL) [ZX05] and stochastics

171

search variable selection(SVVS) [YGA03] as well as our previous EBlasso coordinate

ascent method [CHX11].

In addition to the fast convergence and improved detection rate, the newly pro-

posed EBlasso algorithms estimate both posterior mode and covariance of the marker

effects, which in turn enables statistical testing. We demonstrated this fact by uti-

lizing the t-statistics with EBlasso in QTL mapping. The EBlasso algorithms apply

prior assumption to the regression coefficients and are applicable to different regres-

sion models.

In summary, given the fundamental importance of gene expression and geno-

type/phenotype associations in understanding the genetic basis of complex biologi-

cal systems, the MRF, pairwise-MRF, EBlasso-NE, EBlasso-NEG and EBlasso-NEG

hybrid algorithms and software packages developed in this dissertation achieve the

effectiveness, robustness and efficiency needed for successful application to biology.

With the advancement of high-throughput molecular technologies in generating in-

formation at genetic, epigenetic, transcriptional and posttranscriptional levels, the

methods developed in this dissertation can have broad applications to infer TFBSs

and different types of genotype and phenotype associations.

6.2 Future Work

Capitalizing on the sparse models and the associated inference methods presented in

this dissertation, we envision the following new research directions.

172

6.2.1 MRF-based Discriminative Methods for Discovering

DNA Motifs

As described in Chapter 3, our method for DNA motif discovery first learns an MRF

model from a set of known motif sequences, and then the likelihood of each candidate

sequence belonging to the motif is evaluated based on the MRF model and compared

with the likelihood a background sequence. An immediate work is to extend our

method to de novo motif discovery. In this case, we have a set of DNA sequences

and need to find a DNA motif from this set of sequences without any information

about the motif. Many algorithms have been developed for de novo motif discovery.

A well-known algorithm is MEME [BWML06], where the expectation-maximization

(EM) method was exploited to estimate the position weight matrix (PWM) of the

motif. If we use an MRF model instead of a PWM for the motif, we can use our

MRF-based approach for de novo discovery of a motif.

Early de novo motif discovery methods such as MEME find over-represented se-

quences in a set of sequences that contain motifs, relative to background sequence

model. A more recent discriminative approach, in contrast, searches for specific mo-

tifs that are present at a higher frequency in a positive set of sequences than in

a negative set of sequences. The discriminative approach can improve the accu-

racy of prediction motifs by reducing the false positive rate and increasing detec-

tion power. A frequency difference in the positive and negative sets is required for

accurate classification of one set from the other, and is often not reflected by over-

representation in the positive set, as many instances of the over-represented motifs

173

are also found in the negative set. This can reduce the false positive rate. On

the other hand, motif sequences may be much less likely to appear in the negative

set than that predicted by a background model. Apparently, the discriminative ap-

proach increases the power of detection. A number of discriminative methods have

been developed [Bai11, HBS+10, GPGK13, HZS+11, YMF+14, PS14, FBS08, RB07];

however, they do not take into account the interaction between nucleotides in a motif,

which may limit the accuracy of predicting motifs. To overcome this problem, we can

use MRF to model a motif and develop an MRF-based discriminative method, which

is expected to improve motif prediction accuracy.

6.2.2 Empirical Bayesian Lasso for QTL Mapping of Binary

Traits

In Chapter 5, we developed a very efficient empirical Bayesian (EB) Lasso algorithm

based on the proximal operator for QTL mapping of quantitative traits. Although

complex binary traits only show binary phenotypic variation, different from the con-

tinuous variation in quantitative traits, they do not follow a simple Mendelian pattern

of inheritance and also have a polygenic basis similar to that of quantitative traits.

Therefore, like QTL mapping for quantitative traits, mapping for complex binary

traits aims to identify multiple genomic loci that are associated with the trait and

to estimate the genetic effects of these loci, possibly including any of the following

effects: main effects, gene-gene interactions (epistatic effects) and effects of gene-

environment interactions. In [HXC13], we employed a Bayesian logistic regression

174

model as the QTL model for binary traits that includes both main and epistatic

effects. Our logistic regression model employs hierarchical priors for regression co-

efficients similar to the ones used in the Bayesian LASSO linear model for multiple

QTL mapping for continuous traits described in Chapter 5. We developed efficient

empirical Bayesian algorithms to infer the logistic regression model. We expect that

our proximal operator-based method developed in Chapter 5 can also be extended to

handle binary traits.

6.2.3 Empirical Bayesian Method for Inference of Gene Net-

works

Genes in living organisms do not function in isolation, but may interact with each

other forming complicated networks [LRR+02]. Uncovering the structure of gene net-

works is critical to understanding gene functions and cellular dynamics, as well as to

system-level modeling of individual genes and cellular functions. A number of com-

putational methods have been developed to infer gene networks from gene expression

data based on the pair-wise correlation between the expression levels of each pair

of genes [BTS+00, BMS+05], Gaussian graphical models [DHJ+04, SS04], Bayesian

networks [FLNP00, SSR+03], linear regression models [GdBLC03, dBTG+05, SS05].

More recently, genetic variations and gene expression data are exploited jointly for

inference of gene networks based on Bayesian networks [ZLL+04, ZWZ+07, ZZS+08],

likelihood test [KJ06, CESS07, NFAY08, AFLH08, MZZS09], and the structural equa-

tion model (SEM) [XLF04, LdlFH08, LM10, MEW+10, CBG]. As naturally occur-

175

ring genetic variations provide perturbations to gene networks, exploiting such genetic

variation apparently will improve the accuracy of inferring network structures. More

important, such genetic variations enable inference of the causal relationship between

different genes or between genes and certain phenotypes.

Motivated by the fact that gene networks or more general biochemical networks

are sparse [TYHC03, JMBO01, THPRCV98], we employed a sparse SEM to infer gene

networks from both gene expression and eQTL data. Incorporating network sparsity

constraints, a sparsity-aware maximum likelihood (SML) algorithm is developed for

network topology inference. Computer simulations demonstrate that the SML algo-

rithm offers significantly better performance than existing competing algorithms. We

expect that a Bayesian SEM can be used to model sparse gene networks, and that our

proximal operator-based approach can be adopted to infer such a Bayesian SEM. This

approach will not only provide an efficient algorithm for inferring gene networks, but

also enable incorporation of prior knowledge into the inference process, which may

further improve the inference accuracy.

Bibliography

[AAS00] T. Akutsu, H. Arimura, and S. Shimozono, On approximation algo-
rithms for local multiple alignment, RECOMB 2000, ACM, 2000, pp. 1–
7.

[ABH+03] B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff,
K. Roberts, and P. Walter, Essential cell biology, second ed., Garland
Pub, 2003.

[AC10] K. L. Ayers and H. J. Cordell, SNP selection in genome-wide and can-
didate gene studies via penalized logistic regression, Genet. Epidemiol
34 (2010), 879–891.

[AFLH08] J. E. Aten, T. F. Fuller, A. J. Lusis, and S. Horvath, Using genetic
markers to orient the edges in quantitative trait networks: The NEO
software, BMC Syst Biol 2 (2008), 34.

[AGM+90] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
Basic local alignment search tool, J Mol Biol 215 (1990), 403–410.

[AHC14] I. P. K. Appuhamilage, A. Huang, and X. Cai, Fast proximal gradient
optimization of the empirical Bayesian Lasso for multiple quantitative
trait locus mapping, IEEE Conf. on Signal and Information Processing
(GlobalSIP), December 2014, pp. 1348–1351.

[AJL+14] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter,
Molecular biology of the cell, sixth ed., Garland Science, 2014.

[AJX01] J. Akey, L. Jin, and M. Xiong, Haplotypes vs single marker linkage
disequilibrium tests: what do we gain, Eur. J. Hum 9 (2001), no. 4,
291–300.

[AKFST09] S. S. Murray A. K. Frazer, N. J. Schork, and E. J. Topol, Human
genetic variation and its contribution to complex traits, Nature Reviews
Genetics 10 (2009), 241–251.

176

177

[Arm55] P. Armitage, Tests for linear trends in proportions and frequencies,
Biometrics 11 (1955), 375–386.

[Bai11] T. L. Bailey, DREME: Motif discovery in transcription factor ChIP-seq
data, Bioinformatics 27 (2011), 16531659.

[Bal06] D. J. Balding, A tutorial on statistical methods for population associ-
ation studies, Nat. Rev. Genet 7 (2006), 781–791.

[BBC08] D. J. Balding, M. Bishop, and C. Cannings, Handbook of statistical
genetics, third ed., Wiley, 2008.

[BE94] T. L. Bailey and C. Elkan, Fitting a mixture model by expectation
maximization to discover motifs in biopolymers, Proc Int Conf Intell
Syst Mol Biol., 1994, pp. 28–36.

[BE95] , Unsupervised learning of multiple motifs in biopolymers using
expectation maximization, Machine Learning 21 (1995), 51–80.

[BEFK03] Y. Barash, G. Elidan, N. Friedman, and T. Kaplan, Modeling depen-
dencies in protein-DNA binding sites, In Proc. of RECOMB-03, 2003,
pp. 28–37.

[BGMS03] I. Ben-Gal, G. Morag, and A. Shmilovici, Context-based statistical
process control: a monitoring procedure for state-dependent processes,
Technometrics 45 (2003), 293–311.

[BGSG+05] I. Ben-Gal, A. Shani, A. Gohr, J. Grau, S. Arviv, A. Shmilovici,
S. Posch, and I. Grosse, Identification of transcription factor binding
sites with variable-order Bayesian networks, Bioinformatics 21 (2005),
no. 11, 2657–2666.

[BH95] Y. Benjamini and Y. Hochberg, Controlling the false discovery fate: a
practical and powerful approach to multiple testing, J. R. Stat. Soc. 57
(1995), 289–300.

[Bis06] C. M. Bishop, Graphical models for machine learning and digital com-
munication, Springer, 2006.

[BJC02] M. L. Bulyk, P. L. F. Johnson, and G. M. Church, Nucleotides of
transcription factor binding sites exert interdependent effects on the
binding affinities of transcription factors, Nucleic Acids Research 30
(2002), no. 5, 1255–1261.

[BLFS01] P. V. Benos, A. S. Lapedes, D. S. Fields, and G. D. Stormo, Samie:
statistical algorithm for modeling interaction energies, PSB’01 (2001),
115–126.

178

[BMS+05] K. Basso, A. A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera,
and A. Califano, Reverse engineering of regulatory networks in human
B cells, Nature Genetics 37 (2005), 382–390.

[BN03] T. L. Bailey and W. S. Noble, Searching for statistically significant
regulatory modules, Bioinformatics (Proceedings of the European Con-
ference on Computational Biology) 19 (2003), ii16–ii25.

[Bow03] P. J. Bowler, Evolution: the history of an idea, Berkeley: University of
California Press, 2003.

[BPQ+06] M. F. Berger, A. A. Philippakis, A. M. Qureshi, F. S. He, P. W. Estep,
and M. L. Bulyk, Compact, universal DNA microarrays to comprehen-
sively determine transcription-factor binding site specificities, Nature
Biotechnology 24 (2006), 1429–1435.

[BT09] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems, SIAM Journal on Imaging Sciences
2 (2009), no. 1, 183–202.

[BTS+00] A. J. Butte, P. Tamayo, D. Slonim, T. R. Golub, and I. S. Ko-
hane, Discovering functional relationships between RNA expression and
chemotherapeutic susceptibility using relevance networks, Natl Acad Sci
97 (2000), no. 22, 1218212186.

[Bul03] M. L. Bulyk, Computational prediction of transcription-factor binding
site locations, Genome Biology 5 (2003), no. 1, 201–211.

[BW91] W. L. Buntine and A. S. Weigend, Bayesian back-propagation, Com-
plex Syst. 5 (1991), 603–643.

[BW99] P. Bhlmann and A. J. Wyner, Variable length markov chains, Ann.
Statist 27 (1999), no. 2, 480–513.

[BWML06] T. L. Bailey, N. Williams, C. Misleh, and W. W. Li, MEME: discov-
ering and analyzing DNA and protein sequence motifs, Nucleic acids
research 34 (2006), no. supp1 2, 369–373–9.

[CBG] X. Cai, J. A. Bazerque, and G. B. Giannakis, Inference of gene regula-
tory networks with sparse structural equation models exploiting genetic
perturbations, PLoS Comput Biol 23, no. 9, e1003068.

[CDKK00] D. Cai, A. Delcher, B. Kao, and S. Kasif, Modeling splice sites with
bayes networks, Bioinformatics 16 (2000), no. 2, 152–158.

[CESS07] L. S. Chen, F. Emmert-Streib, and J. D. Storey, Harnessing naturally
randomized transcription to infer regulatory relationships among genes,
Genome Biol 8 (2007), no. 10, R219.

179

[CG04] R. Castelo and R. Guig, Splice site identification by idlBNs, Bioinfor-
matics 20 (2004), i69–i76.

[CH04] O. Carlborg and C. S. Haley, Epistasis: too often neglected in complex
trait studies, Nature Reviews Genetics 5 (2004), 618–625.

[CHX11] X. Cai, A. Huang, and S. Xu, Fast empirical Bayesian LASSO for mul-
tiple quantitative trait locus mapping, BMC Bioinformatics 12 (2011),
no. 1, 211.

[Coc54] C. C. Cockerham, An extension of the concept of partitioning hereditary
variance for analysis of covariances among relatives when epistasis is
present, Genetics 39 (1954), 859–882.

[Con07] T. I. H. Consortium, A second generation human haplotype map of
over 3.1 million snps, Nature 449 (2007), 851–861.

[Cor02] H. J. Cordell, Epistasis: what it means, what it doesn’t mean, and
statistical methods to detect it in humans, Hum. Mol. Genet 11 (2002),
2463–2468.

[Cor09] , Detecting gene-gene interactions that underlie human diseases,
Nat. Rev. Genet. 10 (2009), 392–404.

[Cri74] F. Crick, The double helix: a personal view, Nature 248 (1974),
no. 5451, 799–9.

[CT06] G. C. Cawley and N. L. C. Talbot, Gene selection in cancer classi-
fication using sparse logistic regression with Bayesian regularization,
Bioinformatics 22 (2006), no. 19, 2348–2355.

[Dal04] R. N. Dale, A simple correction for multiple testing for sngle-nucleotide
polymorphisms in linkage disequilibrium with each other, Am. J. Hum.
Genet 74 (2004), 765–769.

[dBTG+05] D. di Bernardo, M. J. Thompson, T. S. Gardner, S. E. Chobot, and
E. L. Eastwood, Chemogenomic profiling on a genome-wide scale using
reverse-engineered gene networks, Nat Biotechnol 23 (2005), 377383.

[DHJ+04] A. Dobra, C. Hans, B. Jones, J. R. Nevins, G. Yao, and M. West,
Sparse graphical models for exploring gene expression data, Multivar
Analysis 90 (2004), no. 1, 196212.

[DPS04] M. Dudk, S. J. Phillips, and R. E. Schapire, Performance guaran-
tees for regularized maximum entropy density estimation, Proceedings
of the 17th Annual Conference on Computational Learning Theory,
Springer Verlag, 2004, pp. 472–486.

[DRW03] B. Devlin, K. Roeder, and L. Wasserman, Analysis of multilocus models
of association, Genet Epidemiol 25 (2003), 36–47.

180

[DSS03] M. Djordjevic, A. M. Sengupta, and B. I. Shraiman, A biophysical
approach to transcription factor binding site discovery, Genome Res.
13 (2003), no. 11, 2381–2390.

[EG01] W. J. Ewens and G. R. Grant, Statistical methods in bioinformatics:
An introduction, Springer-Verlag, New York, INc., 2001.

[EP02] E. Eskin and P. A. Pevzner, Finding composite regulatory patterns in
DNA sequences, Bioinformatics 18 (2002), no. Suppl 1, S354–S63.

[FBS08] F. Fauteux, M. Blanchette, and M. V. Strmvik, Seeder: discriminative
seeding DNA motif discovery, Bioinformatics 24 (2008), no. 20, 2303–
2307.

[FF93] I. E. Frank and J. H. Friedman, Statistical view of some chemometrics
regression tools, Technometrics 35 (1993), 109–135.

[FG53] R. E. Franklin and R. G. Gosling, Molecular configuration in sodium
thymonucleate, Nature 171 (1953), no. 4356, 740–1.

[FH97] J. W. Fickett and A. G. Hatzigeorgiou, Eukaryotic promoter recogni-
tion, Genome Res. 7 (1997), no. 9, 861–878.

[FLNP00] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, Using Bayesian
network to analyze expression data, Comput Biol 7 (2000), no. 3-4,
601620.

[FM96] D. S. Falconer and T. F. C. Mackay, ntroduction to quantitative genet-
ics, third ed., Addison-Wesley, 1996.

[Fu98] W. J. J. Fu, Penalized regressions: The bridge versus the Lasso,
J.Comput. Graph. Stat 7 (1998), 397–416.

[GB11] J. E. Griffin and P. J. Brown, Bayesian hyper-lassos with non-convex
penalization, Aust. N. Z. J. Stat 53 (2011), 423–442.

[GCS+13] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari,
and D. B. Rubin, Bayesian data analysis, third ed., Chapman and
Hall/CRC, 2013.

[GdBLC03] T. S. Gardner, D. di Bernardo, D. Lorenz, and J. J. Collins, Inferring
genetic networks and identifying compound mode of action via expres-
sion profiling, Science 301 (2003), 102105.

[Gel06] A. Gelman, Prior distributions for variance parameters in hierarchical
models, Bayesian Anal 1 (2006), 515–533.

[GES85] D. J. Galas, M. Eggert, and M. S.Waterman, Rigorous pattern-
recognition methods for DNA sequences: Analysis of promoter se-
quences from e. coli, J. Mol. Biol 186 (1985), no. 1, 117–128.

181

[GH06] N. M. Gericke and M. Hagberg, Definition of historical models of gene
function and their relation to students understanding of genetics, Sci-
ence and Education 16 (2006), 849–881.

[GJPS08] A. Gelman, A. Jakulin, M. G. Pittau, and Y. Su, A comparative in-
vestigation of methods for logistic regression with separated or nearly
separated data, Ann. Appl. Stat 2 (2008), 1360–1383.

[GPGK13] J. Grau, S. Posch, I. Grosse, and J. Keilwagen, A general approach
for discriminative de novo motif discovery from high-throughput data,
Nucleic Acids 41 (2013), no. 21, e197.

[GR81] M. M. Garner and A. Revzin, A gel electrophoresis method for quan-
tifying the binding of proteins to specific DNA regions: application to
components of the escherichia coli lactose operon regulatory system,
Nucleic Acids Res 9 (1981), no. 13, 3047–3060.

[Gus97] D. Gusfield, Algorithms on strings, trees and sequences: Computer
science and computational biology, Cambridge University Press, 1997.

[HBS+10] S. Heinz, C. Benner, N. Spann, E. Bertolino, Y. C. Lin, P. Laslo, J. X.
Cheng, C. Murre, H. Singh, and C. K. Glass, Simple combinations of
lineage-determining transcription factors prime cis-regulatory elements
required for macrophage and B cell identities, Mol Cell 38 (2010), no. 4,
576–589.

[HCMF08] T. Hesterberg, N. H. Choi, L. Meier, and C. Fraley, Least angle and l1
penalized regression: A review, Stat. Surv 2 (2008), 61–93.

[Hei06] G. Heinze, A comparative investigation of methods for logistic regres-
sion with separated or nearly separated data, Statist. Med 25 (2006),
4216–4226.

[HETC00] J. D. Hughes, P. W. Estep, S. Tavazoie, and G. M. Church, Compu-
tational identification of cis-regulatory elements associated with groups
of functionally related genes in saccharomyces cerevisiae, J. Mol. Biol
296 (2000), no. 5, 1205–1214.

[HETZ07] H. Huang, C. D. Eversley, D. W. Threadgill, and F. Zou, Quantita-
tive trait loci mapping for complex traits using markers of the entire
genome, Genetics 176 (2007), no. 4, 2529–2540.

[HGC95] D. Heckerman, D. Geiger, and D. M. Chickering, Learning Bayesian
networks: The combination of knowledge and statistical data, Machine
Learning 20 (1995), 197–243.

[HHG83] R. Harr, M. Haggstrom, and P. Gustafsson, Search algorithm for pat-
tern match analysis of nucleic acid sequences, Nucleic Acids Res. 11
(1983), no. 9, 2943–2957.

182

[HK70] A. E. Hoerl and R. W. Kennard, Ridge regression: Biased estimation
for nonorthogonal problems, Technometrics 12 (1970), 55–67.

[HL13] A. Huang and D. Liu, From quantitative trait locus mapping to genomic
selection: the roadmap towards a systematic genetics, OA Genetics 1
(2013), no. 4, 1–5.

[HMVC14] A. Huang, E. Martin, J. Vance, and X. Cai, Detecting genetic inter-
actions in pathway-based genome-wide association studies, Genet Epi-
demiol 38 (2014), no. 4, 300–309.

[HS06] F. Hoti and M. J. Sillanp, Bayesian mapping of genotype x expression
interactions in quantitative and qualitative traits, Heredity 97 (2006),
4–18.

[HTF09] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statisti-
cal learning: Data mining, inference, and prediction, second ed., New
York, Springer, 2009.

[HTRM10] A. Huang, M. Teplitski, B. Rathinasabapathi, and L. Ma, Character-
ization of arsenic resistant bacterial communities in the rhizosphere
of an arsenic hyperaccumulator pteris vittata, Can. J. Microbiol 56
(2010), 236–246.

[HWIB08] C. J. Hoggart, J. C. Whittaker, M. Iorio, and D. J. Balding, Simultane-
ous analysis of all snps in genome-wide and re-sequencing association
studies, PLoS Genet 4 (2008), e1000130.

[HXC13] A. Huang, S. Xu, and X. Cai, Empirical Bayesian LASSO-logistic re-
gression for multiple binary trait locus mapping, BMC Genet 14 (2013),
no. 1, 5.

[HXC14a] , Empirical Bayesian elastic net for multiple quantitative trait
locus mapping, Heredity (2014), 79.

[HXC14b] , Whole-genome quantitative trait locus mapping reveals major
role of epistasis on yield of rice, PLoS ONE 9 (2014), no. 1, e87330.

[HZS+11] P. Huggins, S. Zhong, I. Shiff, R. Beckerman, O. Laptenko, C. Prives,
M. H. Schulz, I. Simon, and Z. Bar-Joseph, A general approach for dis-
criminative de novo motif discovery from high-throughput data, Bioin-
formatics 27 (2011), no. 17, 2361–2367.

[IUP86] IUPAC, Nomenclature committee of the international union of bio-
chemistry (nc-iub). nomenclature for incompletely specified basis in nu-
cleic acid sequences. recommendations 1984, Natl. Acad. Sci. USA 83,
1986, pp. 4–8.

183

[JCIL05] E. R Jolly, C. S. Chin, I.Herskowitz, and H. Licorresponding, Genome-
wide identification of the regulatory targets of a transcription factor us-
ing biochemical characterization and computational genomic analysis,
BMC Bioinformatics 6 (2005), no. 275, 275–287.

[JLZL04] S. T. Jensen, X. S. Liu, Q. Zhou, and J. S. Liu, Computationl discovery
of gene regulatory binding motifs: A Bayesian perspective, Statistical
Science 19 (2004), no. 1, 188–204.

[JMBO01] H. Jeong, S. P. Mason, A. L. Barabassi, and Z. N. Oltvai, Lethality
and centrality in protein networks, Nature 411 (2001), 4142.

[Kea98] M. J. Kearsey, The principles of QTL analysis (a minimal mathematics
approach), Experimental Botany 49 (1998), 1619–1623.

[KFL01] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, Factor graphs and
the sum-product algorithm, IEEE Transactions on Information Theory
47 (2001), no. 2, 498–519.

[KGR+03] A. E. Kel, E. Gssling, I. Reuter, E. Cheremushkin, O. V. Kel-
Margoulis, and E. Wingender, Match: A tool for searching transcrip-
tion factor binding sites in DNA sequences, Nucleic Acids Res. 31
(2003), no. 13, 3576–3579.

[KJ06] D. C. Kulp and M. Jagalur, Causal inference of regulator-target pairs
by gene mapping of expression phenotypes, BMC Genet 7 (2006), 125.

[KS80] R. Kindermann and J. L. Snell, Markov random fields and their appli-
cations, AMS, 1980.

[Kul59] S. Kullback, Information theory and statistics, A Wiley publication in
mathematical statistics, 1959.

[LB89] E. S. Lander and D. Botstein, Mapping mendelian factors underlying
quantitative traits using rflp linkage maps, Genetics 121 (1989), 185–
199.

[LBL01] X. Liu, D. L. Brutlag, and J. S. Liu, Bioprospector: discovering
conserved DNA motifs in upstream regulatory regions of co-expressed
genes, Pac Symp Biocomput 6 (2001), 127–138.

[LdlFH08] B. Liu, A. de la Fuente, and I. Hoeschele, Gene network inference via
structural equation modeling in genetical genomics experiments, Ge-
netics 178 (2008), 17631776.

[LGA+09] E. S. Lander, P. Green, J. Abrahamson, A. Barlow, M. J. Daly, S. E.
Lincoln, and L. A. Newberg, Mapmaker: an interactive computer pack-
age for constructing primary genetic linkage maps of experimental and
natural populations, Genomics 1 (2009), no. 2, 174–181.

184

[LGK07] S. Lee, V. Ganapathi, and D. Koller, Efficient structure learning of
markov networks using l1-regularization, Advances in Neural Informa-
tion Processing Systems 18 (2007), 817–824.

[LLF+09] S. Li, Q. Lu, W. Fu, R. Romero, and Y. Cui, A regularized regression
approach for dissecting genetic conflicts that increase disease risk in
pregnancy, Stat Appl Genet Mol Biol 8 (2009), no. 1, 1–28.

[LM10] B. A. Logsdon and J. Mezey, Gene expression network reconstruction
by convex feature selection when incorporating genetic perturbations,
PLoS Comput Biol 6 (2010), no. 12, e1001014.

[LNL95] J. S. Liu, A. F. Neuwald, and C. E. Lawrence, Bayesian models for
multiple local sequence alignment and gibbs sampling strategies, Journal
of the American Statistical Association 90 (1995), no. 432, 1156–1170.

[LPD+07] Z. W. Luo, E. Potokina, A. Druka, R. Wise, R. Waugh, and M. J.
Kearsey, SEP genotyping from affymetrix arrays is robust but largely
detects cisacting expression regulators, Genetics 176 (2007), 789–800.

[LR90] C. E. Lawrence and A. A. Reilly, An expectation maximization (em)
algorithm for the identification and characterization of common sites
in unaligned biopolymer sequences, Proteins 7 (1990), 41–51.

[LRR+02] T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, and Z. Bar-Joseph,
Transcriptional regulatory networks in saccharomyces cerevisiae, Sci-
ence 298 (2002), 799804.

[LW98] M. Lynch and B. Walsh, Genetics and analysis of quantitative traits,
first ed., Sunderland, MA, Sinauer, 1998.

[LX12] S. Lee and E. P. Xing, Leveraging input and output structures for joint
mapping of epistatic and marginal eQTLs, Bioinformatics 28 (2012),
no. 12, i137–i146.

[Men65] J.G. Mendel, Versuche ber plflanzenhybriden verhandlungen des natur-
forschenden vereines in brnn, Bd. IV fr das Jahr (1865), 3–47.

[MEW+10] X. Mi, K. Eskridge, D. Wang, P. S. Baenziger, B. T. Campbell, K. S.
Gill, I. Dweikat, and J. Bovaird, Regression-based multi-trait QTL map-
ping using a structural equation model, Stat Appl Genet Mol Biol 9
(2010), no. 1, 1544.

[MFG+03] V. Matys, E. Fricke, R. Geffers, E. Gossling, M. Haubrock, R. Hehl,
K. Hornischer, D. Karas, A. E. Kel, O. V. Kel-Margoulis, D. U.
Kloos, S. Land, B. Lewicki-Potapov, H. Michael, R. Munch, I. Reuter,
S. Rotert, H. Saxel, M. Scheer, S. Thiele, , and E. Wingender, Trans-
fac: Transcriptional regulation, from patterns to profiles, Nucl. Acids
Res. 31 (2003), 374–378.

185

[MS00] L. Marsan and M. F. Sagot, Algorithms for extracting structured motifs
using a suffix tree with an application to promoter and regulatory site
consensus identification, J Comput Biol. 7 (2000), 345–362.

[MS01] T. K. Man and G. D. Stormo, Non-independence of mnt repressor-
operator interaction determined by a new quantitative multiple fluores-
cence relative affinity (qumfra) assay, Nucleic Acids Res. 29 (2001),
no. 12, 2471–2478.

[MW05] J. H. Moore and S. M. Williams, Traversing the conceptual divide be-
tween biological and statistical epistasis: systems biology and a more
modern synthesis, BioEssays 27 (2005), 637–646.

[MZZS09] J. Millstein, B. Zhang, J. Zhu, and E. E. Schadt, Disentangling molec-
ular relationships with a causal inference test, BMC Genet 10 (2009),
23.

[NFAY08] E. C. Neto, C. T. Ferrara, A. D. Attie, and B. S. Yandell, Inferring
causal phenotype networks from segregating populations, Genetics 179
(2008), 10891100.

[Ng04] A.Y. Ng, Feature selection, l1 vs. l2 regularization, and rotational in-
variance., In Proc. 21st International Conference on Machine Learning,
2004.

[NM65] J. A. Nelder and R. Mead, A simplex method for function minimization,
Comput J 7 (1965), 308–313.

[OFPK02] Y. L. Orlov, V. P. Filippov, V. N. Potapov, and N. A. Kolchanov,
Construction of stochastic context trees for genetic texts, In Silico Biol.
2 (2002), no. 3, 233–247.

[OH99] U. Ohler and S. Harbeck, Interpolated markov chains for eukaryotic
promoter recognition, 1999.

[ON01] U. Ohler and H. Niemann, Identification and analysis of eukaryotic
promoters: recent computational approaches, Trends Genet. 58 (2001),
56–60.

[OPLS05] R. A. O’Flanagan, G. Paillard, R. Lavery, and A. M. Sengupta, Non-
additivity in protein-DNA binding, Bioinformatics 21 (2005), no. 10,
2254–2263.

[OS09] R. B. O’Hara and M. J. Sillanpaa, A review of bayesain variable selec-
tion methods: what, how and which, Bayesian Anal 4 (2009), 85–118.

[PB13] N. Parikh and S. Boyd, Proximal algorithms. foundations and trends
in optimization, no. 3, 123–231.

186

[PC08] T. Park and G. Casella, The Bayesian Lasso, J Am Stat Assoc 103
(2008), no. 482, 681–686.

[Pea88] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference, Morgan Kaufmann, California, 1988.

[Pea06] H. Pearson, Genetics: what is a gene, Nature 441 (2006), no. 7092,
398401.

[Pen07] E. Pennisi, Genomics. DNA study forces rethink of what it means to
be a gene, Science 316 (2007), no. 5831, 15561557.

[PL88] W. R. Pearson and D. J. Lipman, Improved tools for biological sequence
comparison, Proc Natl Acad Sci U S A. 85 (1988), no. 8, 2444–2448.

[PMMP04] G. Pavesi, P. Mereghetti, G. Mauri, and G. Pesole, Weeder web: dis-
covery of transcription factor binding sites in a set of sequences from
co-regulated genes, Nucleic Acids Res. 1 (2004), no. 32, W199–W203.

[PMP04] G. Pavesi, G. Mauri, and G. Pesole, In silico representation and dis-
covery of transcription factor binding sites, Briefings in Bioinformatics
5 (2004), no. 3, 217–236.

[PPL97] S. D. Pietra, V. D. Pietra, and J. Lafferty, Inducing features of random
fields, IEEE Transactions on Pattern Analysis and Machine Intelligence
19 (1997), no. 4, 380–393.

[Pra08] L. A. Pray, Discovery of DNA structure and function: Watson and
crick, Nature Education 1 (2008), no. 1, 1–8.

[PS14] R. Y. Patel and G. D. Stormo, Discriminative motif optimization based
on perceptron training, Bioinformatics 30 (2014), no. 7, 941–948.

[RB07] E. Redhead and T. L. Bailey, Discriminative motif discovery in DNA
and protein sequences using the deme algorithm, BMC Bioinformatics
8 (2007), 385.

[RC04] C. R. Robert and G. Casella, Monte carlo statistical methods, New
York, Springer, 2004.

[RFJ+98] E. Roulet, I. Fisch, T. Junier, P. Bucher, and N. Mermod, Evaluation
of computer tools for the prediction of transcription factor binding sites
on genomic DNA, Silico Biol 1 (1998), no. 1, 21–28.

[Ris83] J. Rissanen, A universal data compression system, IEEE Transactions
on Information Theory 29 (1983), 656– 664.

[Rit11] M. D. Ritchie, Using biological knowledge to uncover the mystery in
the search for epistasis in genome-wide association studies, Ann. Hum.
Genet 75 (2011), 172–182.

187

[RRW+00] B. Ren, F. Robert, J. J. Wyrick, O. Aparicio, E. G. Jennings, I. Simon,
J. Zeitlinger, J. Schreiber, N. Hannett N, and E. Kanin, Genome-
wide location and function of DNA binding proteins, Bioinformatics
(Proceedings of the European Conference on Computational Biology)
290 (2000), 2306–2309.

[Sal97] S. L. Salzberg, A method for identifying splice sites and translational
start sites in eukaryotic mrna, Comput Appl Biosci. 13 (1997), no. 4,
365–376.

[SBG07] A. Shmilovici and I. Ben-Gal, Using a vom model for reconstructing
potential coding regions in est sequences, Computational Statistics 22
(2007), no. 1, 49–69.

[Sch78] G. Schwarz, Estimating the dimension of a model, Ann. Stat 6 (1978),
461–464.

[SH89] G. D. Stormo and G. W. Hartzell, Identifying protein-binding sites
from unaligned DNA fragments, Proc Natl Acad Sci U S A. 86 (1989),
no. 4, 1183–1187.

[SK03] S. K. Shevade and S. S. Keerthi, A simple and efficient algorithm
for gene selection using sparse logistic regression, Bioinformatics 19
(2003), no. 17, 2246–2253.

[Sla14] J. M. W. Slack, Genes-A very short introduction, Oxford University
Press, 2014.

[SS04] J. Schfer and K. Strimmer, An empirical bayes approach to inferring
large-scale gene association networks, Bioinformatics 21 (2004), no. 6,
754764.

[SS05] , A shrinkage approach to large-scale covariance matrix estima-
tion and implications for functional genomics, Stat Appl Genet Mol
Biol 4 (2005), no. article 32.

[SSGE82] G. D. Stormo, T. D. Schneider, L. Gold, and A. Ehrenfeucht, Use of
the perceptron algorithm to distinguish translational initiation sites in
e. coli, Nucleic Acids Res. 10 (1982), no. 9, 2997–3011.

[SSR+03] E. Segal, M. Shapira, A. Regev, D. Pe’er, and D. Botstein, Module
networks: identifying regulatory modules and their condition-specific
regulators from gene expression data, Nat Genet 34 (2003), 166–176.

[ST02] S. Sinha and M. Tompa, Discovery of novel transcription factor binding
sites by statistical overrepresentation, Nucleic Acids Res. 15 (2002),
no. 30, 5549–5560.

188

[Ste12] K. V. Steen, Travelling the world of gene-gene interactions, Brief.
Bioinform 13 (2012), no. 1, 1–19.

[Sto00] G. D. Stormo, DNA binding sites: representation and discovery, Bioin-
formatics 16 (2000), no. 1, 16–23.

[TF03] M. E. Tipping and A. C. Faul, Fast marginal likelihood maximisation
for sparse Bayesian models, Proceedings of the Ninth International
Workshop on Artificial Intelligence and Statistics, 2003, pp. 3–6.

[TG90] C. Tuerk and L. Gold, Systematic evolution of ligands by exponential
enrichment: Rna ligands to bacteriophage t4 DNA polymerase, Nucleic
Acids Res 249 (1990), no. 4968, 505–510.

[THPRCV98] D. Thieffry, A. M. Huerta, E. Perez-Rueda, and J. Collado-Vides, From
specific gene regulation to genomic networks: a global analysis of tran-
scriptional regulation in escherichia coli, Bioessays 20 (1998), 433440.

[Tib94] R. Tibshirani, Regression shrinkage and selection via the Lasso, Jour-
nal of the Royal Statistical Society, Series B 58 (1994), 267–288.

[Tib96] , Regression shrinkage and selection via the Lasso, J. Roy. Stat.
Soc. B. Met 58 (1996), 267–288.

[Tip01] M. E. Tipping, Sparse Bayesian learning and the relevance vector ma-
chine, J Mach Learn Res 1 (2001), 211–244.

[TLB+05] M. Tompa, N. Li, T. L. Bailey, G. M. Church, B. De Moor, E. Es-
kin, A. V. Favorov, M. C. Frith, Y. Fu, W. J. Kent, V. J. Makeev,
A. A. Mironov, W. S. Noble, G. Pavesi, G. Pesole, M. Rgnier, N. Si-
monis, S. Sinha, G. Thijs, J. van Helden, M. Vandenbogaert, Z. Weng,
C. Workman, C. Ye, and Z. Zhu Z, Assessing computational tools for
the discovery of transcription factor binding sites, Nat Biotechnol 23
(2005), no. 1, 137–144.

[TLM+01] G. Thijs, M. Lescot, K. Marchal, S. Rombauts, B. De Moor, P. Rouz,
and Y. Moreau, A higher-order background model improves the detec-
tion of promoter regulatory elements by gibbs sampling, Bioinformatics
17 (2001), no. 12, 1113–1122.

[TYHC03] J. Tegner, M. K. Yeung, J. Hasty, and J. J. Collins, Reverse engineer-
ing gene networks: integrating genetic perturbations with dynamical
modeling, Proc Natl Acad Sci 100 (2003), no. 10, 59445949.

[UMFK02] I. A. Udalova, R. Mott, D. Field, and D. Kwiatkowski, Quantitative
prediction of nf-kappa b DNA-protein interactions, Proc Natl Acad Sci
U S A 99 (2002), no. 12, 8167–8172.

189

[VBW98] L. Vandenberghe, S. Boyd, and S. P. Wu, Determinant maximiza-
tion with linear matrix inequality constraints, SIAM Journal on Matrix
Analysis and Applications 19 (1998), no. 2, 499–533.

[WAG84] M. S. Waterman, R. Arratia, and D. J. Galas, Pattern recognition in
several sequences: consensus and alignment, Bull Math Biol. 46 (1984),
no. 4, 515–527.

[Wat04] J. D Watson, Molecular biology of the gene, Cold Spring Harbour Lab-
oratory Press, 2004.

[WCH+09] T. T. Wu, Y. F. Chen, T. Hastie, E. Sobel, and K. Lange, Genome-wide
association analysis by Lasso penalized logistic regression, Bayesian
Anal 25 (2009), 714–721.

[WE07] T. Wang and R. C. Elston, Improved power by use of a weighted score
test for linkage disequilibrium mapping, Am. J. Hum. Genet 80 (2007),
353–360.

[WGRP99] S. A. Wolfe, H. A. Greisman, E. I. Ramm, and C. O. Pabo, Analysis
of zinc fingers optimized via phage display: evaluating the utility of a
recognition code, J. Mol. Biol 285 (1999), no. 5, 1917–1934.

[WJ06] M. J. Wainwright and M. I. Jordan, Log-determinant relaxation for
approximate inference in discrete markov random fields, IEEE Trans-
actions on Signal Processing 54 (2006), no. 6, 2099–2109.

[WMS+11] T. Wurschum, H. P. Maurer, B. Schulz, J. Mhring, and J. C. Reif,
Bayesian inference of epistatic interactions in case-control studies,
Theor. Appl. Genet 123 (2011), no. 1, 109–118.

[WYL+05] H. Wang, Y.M.Zhang, X. Li, G. L. Masinde, S. Mohan, D. J. Baylink,
and S. Xu, Bayesian shrinkage estimation of quantitative trait loci pa-
rameters, Genetics 170 (2005), 465–480.

[XLF04] M. Xiong, J. Li, and X. Fang, Identification of genetic networks, Ge-
netics 166 (2004), 10371052.

[Xu03] S. Xu, Estimating polygenic effects using markers of the entire genome,
Genetics 163 (2003), no. 2, 789–801.

[Xu07] , An empirical bayes method for estimating epistatic effects of
quantitative trait loci, Biometrics 63 (2007), no. 4, 513–521.

[Xu10] , An expectation maximization algorithm for the Lasso estima-
tion of quantitative trait locus effects, Heredity (2010), 1–12.

[YB09] N. Yi and S. Banerjee, Hierarchical generalized linear models for multi-
ple quantitative trait locus mapping, Genetics 181 (2009), no. 3, 1101–
1113.

190

[YGA03] N. Yi, V. George, and D. B. Allison, Stochastic search variable selection
for identifying multiple quantitative trait loci, Genetics 164 (2003),
no. 3, 1129–1138.

[YMF+14] Z. Yao, K. L. Macquarrie, A. P. Fong, S. J. Tapscott, W. L. Ruzzo,
and R. C. Gentleman, Discriminative motif analysis of high-throughput
dataset, Bioinformatics 30 (2014), no. 6, 775783.

[YX08] N. Yi and S. Xu, Bayesian LASSO for quantitative trait loci mapping,
Genetics 179 (2008), no. 2, 1045–1055.

[Zen94] Z. B. Zeng, Precision mapping of quantitative trait loci, Genetics 136
(1994), 1457–1468.

[ZG03] Z. Zhang and M. Gerstein, Of mice and men: phylogenetic footprinting
aids the discovery of regulatory elements, Journal of Biology 2 (2003),
no. 2, 11–15.

[ZGD11] F. Zhang, X. Guo, and H. Deng, Multilocus association testing of
quantitative traits based on partial least-squares analysis, PLoS One
6 (2011), no. 2, e16739.

[ZH05] H. Zou and T. Hastie, Regularization and variable selection via the
elastic net, J. Roy. Stat. Soc. B. Met 67 (2005), no. 2, 301–320.

[ZL07] Y. Zhang and J. S. Liu, Bayesian inference of epistatic interactions in
case-control studies, Nat. Genet 39 (2007), 1167–1173.

[ZLL+04] J. Zhu, P. Y. Lum, J. Lamb, D. GuhaThakurta, S. Edwardsa,
R. Thieringer, J. P. Berger, M. S. Wu, J. Thompson, A. B. Sachs,
and E. E. Schadt, An integrative genomics approach to the reconstruc-
tion of gene networks in segregating populations, Cytogenet Genome
105 (2004), no. 2-4, 363–374.

[Zor05] C. Zorn, A solution to separation in binary response models, Polit.
Anal 13 (2005), 157–170.

[ZWZ+07] J. Zhu, M. C. Wiener, C. Zhang, A. Fridman, E. Minch, P. Y. Lum,
J. R. Sachs, and E. E. Schadt, Increasing the power to detect causal
associations by combining genotypic and expression data in segregating
populations, Comput Biol 3 (2007), no. 4, e69.

[ZX05] Y. M. Zhang and S. Xu, A penalized maximum likelihood method for
estimating epistatic effects of QTL, Heredity 95 (2005), 96–104.

[ZZ99] J. Zhu and M. Q. Zhang, Scpd: a promoter database of the yeast sac-
charomyces cerevisiae, Bioinformatics 15 (1999), 607–611.

191

[ZZS+08] J. Zhu, B. Zhang, E. N. Smith, B. Drees, R. B. Brem, L. Kruglyak,
E. R. E. Bumgarner, and E. E. Schadt, Integrating large-scale func-
tional genomic data to dissect the complexity of yeast regulatory net-
works, Nat Genet 40 (2008), no. 7, 854–861.

	University of Miami
	Scholarly Repository
	2016-03-25

	Sparse Model Learning for Identifying Nucleotide Motifs and Inferring Genotype and Phenotype Associations
	Indika Priyantha Kuruppu Appuhamilage
	Recommended Citation

	phd_template_indika
	UNIVERSITY OF MIAMI
	SPARSE MODEL LEARNING FOR IDENTIFYING NUCLEOTIDE MOTIFS AND INFERRING GENOTYPE AND PHENOTYPE ASSOCIATIONS
	By
	Indika P. Kuruppu Appuhamilage
	A DISSERTATION
	Coral Gables, Florida
	May 2016

	KURUPPU APPUHAMILAGE, INDIKA P. (Ph.D., Electrical and
	Sparse Model Learning for Identifying Nucleotide Motifs Computer Engineering)
	Abstract of a dissertation at the University of Miami.

	dissertation

