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The development of the Internet makes the number of online videos increase

dramatically, which brings new demands to the video search engines for automatic

retrieval and classification. We propose an unsupervised moving object detection and 

retrieval framework by exploiting and analyzing spatio-temporal visual information in the 

video sequences. The motivation is to use visual content information to estimate the 

locations of the moving objects in the spatio-temporal domain. Compared with the 

existing approaches, our proposed detection algorithm is unsupervised. It does not need 

to train models for specific objects. Furthermore, it is suitable for the detection of 

unknown objects. Therefore, after object detection, the object-level features can be 

extracted for video retrieval.

The proposed moving object detection algorithm consists of two layers: global 

motion estimation layer and local motion estimation layer. The two layers explore and 

estimate motion information from different scopes in the spatio-temporal domain. The 

global motion estimation layer uses a temporal-centered estimation method to obtain a 

preliminary region of motion. Specially, it analyzes the motion in the temporal domain by 

using our proposed novel motion representation method called the weighted histogram of 



Harris3D volume which combines the optical flow field and Harris3D corner detector to 

obtain a good spatio-temporal estimation in the video sequences. The idea is motivated 

by taking advantages of the two sources of motion knowledge identified by different 

methods to get a complementary motion data to be kept in the new motion representation.

The method, considering integrated motion information, works well with the dynamic 

background and camera motion, and demonstrates the advantages of integrating multiple 

spatio-temporal cues in the proposed framework. In addition, a center-surround 

coherency evaluation model is proposed to compute the local motion saliency and weight 

the spatio-temporal motion to find the region of a moving object by the integral density 

algorithm. The global motion estimation layer passes the preliminary region of motion to

the local motion estimation layer. The latter uses a spatial-centered estimation method to 

integrate visual information spatially in adjacent frames to obtain the region of the 

moving object. The visual information in the frame is analyzed to find visual key 

locations which are defined as the maxima and minima of the result of the difference-of-

Gaussian function. A motion map of adjacent frames is obtained to represent the temporal 

information from the differences of the outcomes from the simultaneous partition and 

class parameter estimation (SPCPE) framework. The motion map filters visual key 

locations into key motion locations (KMLs) where the existence of the moving object is 

implied. The integral density method is employed to find the region with the highest 

density of KMLs as the moving object. The features extracted from the motion region are 

used to train the global Gaussian mixture models for the video representation. The 

representation significantly reduces the classification model training time in comparison 

to the time needed when the whole feature sets are used. It also achieves better 



classification performance. When combined with the information of scenes, the 

performance is further enhanced.

Besides the proposed spatio-temporal object detection work, two other related

methods are also proposed since they play subsidiary roles in the detection model. One is 

the innovative key frame detection method which selects representative frames as the key 

frames to provide key locations in the spatial-centered estimation method. By analyzing 

the visual differences between frames and utilizing the clustering technique, a set of key 

frame candidates is first selected at the shot level, and then the information within a video 

shot and between video shots is used to adaptively filter the candidate set to generate the 

final set of key frames for spatial motion analysis. Another new method is to segment and 

track two objects under occlusion situations, which is useful in multiple object detection 

scenarios.
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Chapter 1

Introduction

With the fast development of the Internet, more and more people search information

on the Internet. Consequently, many text-based search engines appear on the Internet

for topic and event search tasks [6]. Although texts share certain correlation informa-

tion with content data, it is not easy to search a multimedia content because multimedia

data, as opposed to texts, needs more pre-processing steps to yield indices relevant for

the query [7, 8]. With the amount of online multimedia data increasing at an explo-

sive speed, more challenges on data searching, retrieval, browsing and categorization

arise. These challenges motivate many researchers to devote their efforts into the mul-

timedia semantic retrieval area [9, 10, 11]. Especially, with the rapid advances of the

Internet and Web 2.0, the traditional ways of manually assigning a set of labels to a

record, storing it, and matching the stored label with a query obviously are not feasible

and effective for large multimedia databases. The successor methods, called content-

based video retrieval approaches, are developed to quickly and automatically identify

the semantic concepts and annotate the video sequences [12, 13, 14, 15, 16].

1
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Figure 1.1: An example content-based video classification/retrieval system

1.1 Challenges and Motivations

An example content-based video classification/retrieval system consists of several pro-

cessing steps [17]. As shown in Figure 1.1, the content representation is a key step in

a content-based video classification/retrieval system. A discriminate content represen-

tation would benefit model learning and result in good classification/retrieval perfor-

mance. To obtain more class related information, automatic object detection algorithms

are utilized to segment video frames into a set of semantic regions and each region cor-

responds to an object that is meaningful to the human vision system, such as a dog and

a tree. Then those features extracted from the objects are used for video content repre-

sentation. Compared with a content-based image retrieval (CBIR) system, the available

information and the challenges of object detection in video data are different. For ex-

ample, the temporal information in video sequences enables us to utilize the moving

object-level information for moving object detection.

After years of development, many object detection models have been proposed with

reasonably good performance in videos captured under controlled backgrounds. Nev-

ertheless, little progress is achieved toward model robustness when dealing with videos

with uncontrolled backgrounds, such as videos recorded by an amateur using a hand-
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(a) Airplane-flying (b) Animal

(c) Bicycling (d) Dancing

(e) Hand (f) Sports

(g) Running (h) Walking

Figure 1.2: Snap-shots extracted from video clips recorded in an uncontrolled condition
of eight concepts from the TRECVID 2010 video collection
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held camera containing significant camera motion, background clutter, and changes in

object appearance, scale, and illumination conditions. Figure 1.2 shows sample snap-

shots extracted from video clips recorded in an uncontrolled condition. These videos

with uncontrolled backgrounds pose lots of challenges for multimedia retrieval over the

Internet. This calls for the development of more advanced techniques for rapid process-

ing and summarization. The drawbacks of most of the existing techniques include the

following three requirements:

• static cameras or approximate compensation of camera motion;

• foreground objects that move in a consistent direction or have faster variations in

appearance than the background;

• explicit background models [18].

These requirements are mostly unrealistic and particularly questionable when an

ego-motion happens, e.g., a camera that tracks a moving object in a manner such that

the latter has a very small optical flow, or the background is dynamic. In addition,

background learning requires either a training set of the “background-only” images [19]

or batch processing (e.g., median filtering [20]) of a large number of video frames. The

latter must be repeated for each scene and is difficult for dynamic scenes where the

background changes continuously.

Psychological studies find that a human vision system perceives external features

separately [21] and is sensitive to the difference between the target region and its neigh-

borhood. Such kind of high contrast is more likely to attract human’s first sight than

their surrounding neighbors [22]. Extensive psychophysics experiments have shown

that these mechanisms can be driven by a variety of features, including intensity, color,
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orientation, or motion, and local feature contrast plays a predominant role in the per-

ception of saliency. Neurophysiological experiments on primates have also shown that

neurons in the middle temporal (MT) visual area compute local motion contrast with

center-surround mechanisms. In fact, it has been hypothesized that such neurons under-

lie the perception of motion pop-out and figure-ground segmentation [23]. The center-

surround saliency mechanisms of biological systems support the idea of motion region

estimation on measurements of local motion contrast. There is no need for training

samples or pre-build a “global background model” for the testing instances, which is

one of the advantages of the proposed framework. Instead, a motion region can be ef-

ficiently calculated using solely local motion information and could immediately adapt

to different kinds of unknown scenes. Also, using local motion contrast could make the

model robust to camera motion and dynamic background.

Besides extracting motion features from the temporal domain, key frames provide

important spatial information for object detection and recognition. How to select in-

formative key frames to represent the video sequences is another hot research topic,

since key frame extraction has broad applications in multimedia area. we can simply

use the sampling technique to select key frames from video sequences (e.g., uniform

sampling). However, the sampling approaches suffer from seriously problems due to

the characteristics of non-homogeneous content distribution of the video visual infor-

mation. For example, many frames within a shot have very visually similar content, and

thus content redundancies widely exist in the sampling results. Many key frame extrac-

tion algorithms have been proposed and developed to handle the drawback of sampling

approaches. One category of the algorithms generates key frames when the content

change exceeds a certain threshold [24, 25, 26]. Another category of methods is called

coverage-based approaches in [27, 28, 29, 30], which aim to get a small number of key
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frames by maximizing each key frame’s coverage towards adjacent frames. Further-

more, key frames could be extracted based on clips [31, 32] or shots [33, 34, 35, 36].

Compared with motion information, visual content in shot/video is described more re-

liably by color features. Mendi and Bayrak [37] created saliency maps based on color

and luminance features in video frames, and a similarity between frames was calculated

by using a new signal fidelity measurement called S-SSIM. Frames with the highest S-

SSIM in each shot were extracted as key frames. In [38], coarse regions were first

detected, and then interesting points in these detected regions served as a basis to com-

pare the similarity between frames at the shot level. Later, one key frame is extracted

from each shot. Although [37] and [38] reported good experimental results, they still

faced the same problem that many frames containing important visual content might

not be extracted as key frames, since one key frame per shot usually is insufficient to

represent the shot content. In order to completely summarize videos, more key frames

need to be extracted from each shot; otherwise, the summarization quality represented

by key frames would be compromised. On the other hand, the incensement of the num-

ber of frames extracted from each shot will increase the redundancy to the final set of

key frames. Therefore, the issue to balance quantity and quality in key frame extraction

is the major concern in our proposed work.

1.2 Contributions and Limitations

In this section, the contributions of the proposed methods are reviewed and outlined in

order to give the readers a brief understanding of the highlights of the proposed frame-

work. On the other hand, the proposed framework has a few limitations from various

perspectives, providing a lot of spaces for the improvement of the current framework in

the future. We summarize the contributions and limitations below.
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Contributions of the proposed framework are:

1. A two-layer detection framework is proposed for moving objects in an unsu-

pervised manner. The framework achieves good performance in realistic videos

having camera motion and unconstrained environment. The new framework es-

timates the motion of a video in a two-layer coarse-to-fine approach in spatio-

temporal domain. The first layer (global motion estimation layer) employs the

idea of temporal-centered estimation to preliminarily analyze motion and gives

the results to the second layer (local motion estimation layer). In the second

layer, the spatial-centered estimation method is utilized to capture local motion

information and find the regions of moving objects in the video sequence.

2. The temporal-centered motion estimation method first extracts Harris3D corner

information from video streams directly. The spatio-temporal information is then

combined with the optical flow field to represent the motion content by a weighted

histogram of Harris3D volume. The Harris3D corner information and optical flow

are two different sources of motion information obtained from different methods.

The combination achieves complementary motion cues and keeps them in the

new motion representation which weakens the influence from the camera motion

and background clutter. To the best of our knowledge, not much work has been

reported using similar methods on the moving object detection under uncontrolled

background in an unsupervised way.

3. The spatial-centered estimation method defines a motion map to capture temporal

information between adjacent frames. This method can simply and quickly get

the pixels having significant visual changes which imply the moving foreground.

On the other hand, key motion locations (KMLs) are selected via the motion map
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from the set of key locations which are obtained as maxima and minima of the

result of the difference of Gaussians function. The region of a moving object is

defined as the area with the highest density of KMLs, which is obtained by the

proposed integral density method since it allows the fast implementation of the

box type convolution filters.

4. An innovative key frame extraction approach is proposed with an attempt to

achieve a balance between the quantity of key frames for summarizing the shots

in a video sequence and the quality of key frames to represent the whole video.

The new method identifies transitive regions and informative regions by analyz-

ing the differences between consecutive frames at the shot level and proposes a

modified clustering technique that is utilized as the key frame extractor to select

a set of key frame candidates (KFCs) in informative regions, while transitive re-

gions are not used for key frame extraction. In addition, the method integrates the

frame information within a video shot and between video shots to filter redundant

KFCs to generate a better set of key frames.

5. A general solution of splitting overlapped objects in video sequences is proposed.

Compared with the previous methods, the new method can not only effectively

partition the objects with similar sizes, but also be able to process the objects

with a large variety on contour. This work can be viewed as an object tracking

method under an occlusion situation, which can later be integrated into the spatio-

temporal moving object detection model to process the case of multiple objects.

The limitations of the proposed framework are listed as below.

1. The spatio-temporal detection work is triggered by the motion contrast, so it

is not suitable for processing videos with only static objects and scenes. The
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static object and scene segmentation issue is usually solved by converting two-

dimensional (2D) videos or multiple images into three-dimensional (3D) models,

which consists of camera calibration and depth map determination. If the visual

change between frames happens only due to the depth dimension, the results of

the proposed methods are not ideal.

2. The interactive information between objects in videos has not been fully ex-

ploited. This kind of information will be useful for object detection or human

activity recognition. The proposed framework can be later improved by adding

an object trajectory analysis component to extract the interactive information of

objects for semantic retrieval. The information of previous frames could also be

involved for helping object detection and recognition in subsequent frames.

3. The proposed detection model only returns one motion region with the biggest

motion contrast to the scene at one time. For scenarios having more than one

moving object in the scene, the less active ones are ignored in the model. Though

the method could find the location of a moving object, but the size and shape of

the bounding box of the detected object has to be improved to fit various types of

objects in the future work.

4. The framework of key frame detection currently is motivated by the visual change

between frames. It is not a motion-driven model. If the model can involve more

foreground or moving object information, it would better summarize the videos.

On the other hand, the object-driven key frame detection method may provide

high quality key frames to the spatio-temporal moving object detection model to

improve the latter’s performance.
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1.3 Outline of the Work

The whole proposal is organized as follows. Chapter 2 reviews the important and re-

lated studies in the areas of moving object detection and key frame extraction. The

advantages and limitations of the peer approaches are analyzed and discussed. Some

related techniques employed as prior knowledge in our framework are briefly presented.

Chapter 3 overviews the proposed solutions of moving object detection and retrieval. In

addition, two methods used in the proposed framework are presented. One is an unsu-

pervised key frame detection approach using within and between shot visual informa-

tion. Another one addresses the issue of segmenting objects under occlusion situations

in the video stream. In Chapter 4, the temporal-centered and spatial-centered estima-

tion methods are presented for detecting moving objects in a non-static background.

Next, a center-surround motion coherency evaluation model is discussed to enhance the

detection work by using the proposed integral density approach. Furthermore, a two-

layer moving object detection model is proposed to integrate the temporal-centered and

spatial-centered methods. The framework is verified in terms of detection and recog-

nition accuracy. Chapter 5 concludes the proposed framework and shows the future

work.



Chapter 2

Literature Review and Related Techniques

In this chapter, we intensively review the literature with the related work. Section 2.1

focuses on discussing representative techniques of moving object detection in video

sequences. Section 2.2 discusses the recent important studies on key frame detections.

Several related key techniques employed in the proposed framework are presented in

section 2.3 for a better understanding of our framework.

2.1 Moving Object Detection Algorithms

In video sequences, the action of objects will dominate the frame and human percep-

tual reactions will mainly focus on motion contrast regardless of visual texture in the

scene. Several researchers have extended the study from the spatial attention to the

temporal domain where prominent motion plays an important role. Chen et al. [39]

proposed a backtrack-chain-updation split algorithm that can distinguish two separate

objects that were overlapped previously. It found the split objects in the current frame

and used the information to update the previous frames in a backtrack-chain manner.

Thus, the algorithm could provide more accurate temporal and spatial information of

the semantic objects for video indexing. In [5], the authors proposed a spatio-temporal

video attention detection technique for detecting the attended regions that correspond to

11
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both interesting objects and actions in video sequences. The presented temporal atten-

tion model utilized the interest point correspondences (instead of the traditional dense

optical fields) and the geometric transformations between images. Motion contrast was

estimated by applying RANSAC (RANdom SAmple Consensus) on point correspon-

dences in the scene. Obviously, the performance of the temporal attention model is

greatly influenced by the results of point correspondences.

A batch of action detection and recognition models have been proposed and achieved

good performance in videos captured under controlled backgrounds [1, 40, 41]. Nev-

ertheless, more progresses toward model robustness are expected in order to handle

the complexities of unconstrained backgrounds, such as videos recoded by an amateur

using a hand-held camera containing significant camera motion, background clutter,

and changes in object appearance, scale, and illumination conditions (as shown in Fig-

ure 2.1). These uncontrolled videos are the major challenges to the multimedia retrieval

engines on the Internet, which calls for rapid summarization and processing algorithms.

One related work is by Liu et al. on recognizing actions from videos “in the

wild” [1]. They estimated the centroid of the region of action by using the mean of

the coordinates of the interest points. Dimensions of the region are calculated by the

second central moments of the corresponding centroid. This strategy can obtain good

results when the interest points are mainly located on the action, but it would fail when

the background is non-static since it contributes to a lot of interest points. Ikizler-Cinbis

et al. [40] estimated the location(s) of the person(s) by using the human detector pro-

posed by Felzenswalb et al. [4]. To fill the gap in which the person detector did not fire

due to the motion blur and pose variations, the mean-shift tracking method was used

to locate the person in every frame [42]. The work considers any moving region as a

“candidate object”, and then finds the associated tracks and the corresponding features
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Figure 2.1: Examples of UCF Youtube action (UCF11) data set with approximately
1,168 videos in 11 categories [1]
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from each track. The approach, to some degree, was able to capture the human and ob-

ject features in the video. However, from the illustrated examples shown in the paper,

the detected regions of objects inevitable include noise from the region of persons and

background. The paper did not provide an effective solution to solve the issue. Optical

flow is utilized by Reddy et al. [41] to give a rough estimate of the velocity at each

pixel given two consecutive frames. A threshold on the magnitude of the optical flow

was then applied to decide if the pixel is moving or stationary. The stationary pixels are

regarded as background, while the moving pixels are viewed as the region of motion.

This method performs well in videos with static scenes, but the strategy fails in the

realistic videos with the unconstrained background.

In many natural frames, objects seldom laid out in well-separated poses as they of-

ten, more or less, overlapped on top of each other. Wittenberg et al. [43] first clustered

the neighboring pixels into several regions, yielding a full segmentation of an image,

and then combined these regions to objects that carried a semantic meaning. A pixel

in an image may be affiliated to one region only, but a region can be part of more than

one object. In this way, ambiguities occurred due to overlaps can be resolved on a se-

mantic level. Such an approach was applied to medical images containing overlapping

cervical cells, which achieved good results. In [44], the authors presented a new snake

algorithm extending conventional snake algorithms by utilizing a pair of stereo images.

The authors defined a unique energy function in the disparity space enabling successful

boundary detection of the objects even when those objects were overlapped one another

and the background was cluttered. An example was presented to demonstrate a suc-

cessful result of this stereo-snake algorithm for detecting an object out of a complex

image, though a set of interested points (including those objects to be segmented) needs

to be manually pre-selected. Another novel marker extraction method was proposed to
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extract those markers labeling the target fruit and the background [45]. Based on this

marker detection method, a new marker-controlled watershed transform algorithm was

developed for accurate contour extraction of the target fruit. The face validity of the

segmentation algorithm was tested with a set of grape images, and the segmentation

results were overlaid onto the original images for visual inspection. Quantitative com-

parison was conducted and it showed that the segmentation algorithm can obtain good

spatial segmentation results.

With the increasing amounts of digital video data becoming available in the Web,

more and more attentions have been paid to content-based video processing approaches

that can automatically identify the semantic concepts in a video [12, 13, 14, 15, 16]. To

achieve this, object detection is a crucial step and thus special attentions are devoted to

segmenting a video frame into a set of semantic regions, each of which corresponds to

an object that is meaningful to human viewers, such as a car, a person, and a tree. The

extra temporal dimension of the video allows the motion of the camera or the scene to

be used in processing. In [46], a region-based spatio-temporal Markov random field

(STMRF) model was proposed to segment moving objects semantically and the motion

validation was used to detect occluded objects. The STMRF model combined the seg-

mentation results of four successive frames and integrated the temporal continuity in

the uniform energy function. First, moving objects were extracted by a region-based

MRF model between two frames in a frame group of four successive frames. Then, the

ultimate semantic object was labeled by minimizing the energy function of the STMRF

model. Experimental results of the STMRF model showed that the proposed algorithm

could accurately extract moving objects.

Some other approaches handled occlusion during object tracking [47, 48, 49, 50].

Senior et al. [48] used the appearance models to localize objects during partial oc-
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clusions, detect complete occlusions, and resolve depth ordering of the objects. The

authors reported a good result on the PETS 2001 data set, though the performance was

influenced by the pre-selected parameters used to update the probability mask values in

the appearance models. [50] maintained a shape prior method to recover the missing

object regions during occlusion, while the algorithm was initialized with the bound-

aries of the objects in the first frame. Stein et al. [49] proposed a mid-level model for

reasoning more globally about object boundaries and propagating such local informa-

tion to extract improved, extended boundaries with the utilization of subtle motion cues

such as parallax induced by a moving camera. The method is mainly a boundary-based

algorithm which needs to combine with other techniques to build up a region-based

approach for object detection purpose.

From a brief overview of the existing approaches, it shows that many efforts have

been made to solve the problem of detecting occluded objects in a video or the se-

quences of images. However, various kinds of restrictions were imposed before or dur-

ing the detection processing. For example, domain knowledge was needed in [43, 45],

interest points [44] or probability parameters [48] needed to be manually pre-selected,

the boundaries of the objects in the first frame should be known in [50], etc. Aiming at

designing a more generalized detection system, an unsupervised approach is proposed

in our work to identify moving objects under occlusion situations.

2.2 Key Frame Detection Algorithms

The simplest way to get key frames is to use the sampling technique. For example,

uniform sampling generates key frames at a fixed sampling rate. However, since the

sampling methods do not consider the characteristics of non-homogeneous distribution

of the video visual information, they suffer seriously from two major issues. First,



17

the sampling results may miss a lot of important frames which contain the significant

content of the videos. Second, since many frames within a shot are very visually similar

to each other, content redundancies widely exist in sampling results. To overcome these

problems, many key frame extraction algorithms have been proposed and developed.

One category of the algorithms generates key frames when the content change ex-

ceeds a certain threshold [24, 25, 26, 51, 52]. The content change could be measured

by a function based on histograms, accumulated energy, etc. The algorithms belonging

to this category do not require the existence of the frames coming afterwards. More-

over, no shot segmentation is required before applying key frame extraction methods.

Therefore, they are suitable for real time applications. However, one problem for this

kind of algorithms is that the key frames are generated without considering the content

of frames in the remaining video sequence. Therefore, the selected key frames may still

contain lots of redundancies and become suboptimal, since they cannot represent the

content temporally after them. In other words, the content coverage of these key frames

is only limited to the preceding frames.

To overcome the above problem, the coverage-based approaches are proposed in

[27, 28, 29, 30], which aim to get a small number of key frames by maximizing each

key frame’s coverage towards adjacent frames. One method presented by Chang et

al. [30] applied the greedy search to find key frames with the maximum coverage it-

eratively until all frames were represented by key frames. The major drawback of the

coverage-based approaches is the heavy computation. In order to search key frames

according to coverage, dissimilarity scores need to be calculated on all pairs of frames.

Therefore, the performance of the coverage-based approaches is limited by the com-

putation power of the underlying hardware. Another category of key frame extraction

methods that gains much attention is the cluster-based algorithms [53, 54, 55, 56].
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Cluster-based algorithms [56] require a preprocessing step that transforms the frames

into the points of a feature space, where the clustering methods are applied and all

points are grouped into a bunch of clusters. A cluster selection step is usually fol-

lowed by picking up the significant clusters and extracting frames that are close to the

cluster centers as the key frames. Cluster-based algorithms rely on a suitable feature

space to represent the content of frames. However, good and clean clusters are not

easy to be formed and therefore the patterns of data points in the feature space are not

straightforward. In addition, the cluster-based methods are more complicated than the

aforementioned key frame extraction methods. Theoretically, inter-cluster visual vari-

ance is large; while intra-cluster variance is small. Therefore, the redundancy within

the extracted key frames can be kept below a certain level.

There are also some other algorithms that focus on addressing the redundancy prob-

lem in the extracted key frames. One method used the integration of local and global

information to remove redundancy in the set of key frame candidates and achieved good

results [57]. Minimum-Correlation based algorithms [58, 59, 60] assumed that the key

frames had little correlation with each other. By pruning some significantly correlated

frames, the algorithms could ensure that the extracted key frames hold a low level of

redundancy. However, minimum-correlation-based algorithms were vulnerable to the

outliers.

Furthermore, key frames could be extracted based on clips [31, 32] or shots [33, 34,

35, 36]. Shot-based approaches are quite intuitive since shots are regarded as the basic

semantic unit in videos. Furthermore, shot segmentation techniques are quite mature

recently, and thus it is applicable to detect shots within a video before applying the key

frame extraction algorithms. The simplest approach of shot-based key frame extraction

is to choose the first frame of each shot as a key frame, which works well for shots with
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low motion. The work in [61, 62] adopted motion changes within a shot as a criterion to

select key frames. The idea was that more key frames should be extracted in shots that

consist of frequent motion activity changes. However, motion features obtained in [61,

62] were from MPGE-7 motion activity descriptors which were not easy to be applied

to the uncompressed videos. Therefore, the application of their work is limited to the

compressed domain. To compensate such a blank area, [63] built a motion energy model

to perceive motion patterns in the uncompressed domain. However, motion features do

not always represent major content within shots. Therefore, their approaches work well

for a particular application that is highly related with motion, such as sports [61, 62, 63].

2.3 Related Techniques

In this section, we briefly introduce the related techniques employed in this disserta-

tion, which either provide the essential information of visual features or evaluate the

performance of the new algorithms. In section 2.3.1, the detector of scale-space ex-

trema of differences-of-Gaussians (DoG) is introduced, which is employed to locate

the key locations in section 4.2. Section 2.3.2 discusses how to detect space time in-

terest points in spatio-temporal domain using the Harris3D corner detector. Section 2.1

briefly presents the general Gaussian mixture models (GMM) and GMM supervector

for feature representation prepared for the classification.

2.3.1 Detector of Key Location by Differences-of-Gaussians

The key locations detected on the video frame in our work are obtained from scale-space

extrema of differences-of-Gaussians (DoG) within a difference-of-Gaussians pyramid

[64, 65]. A Gaussian pyramid is constructed from the input image by repeated smooth-

ing and subsampling, and a difference-of-Gaussians pyramid is computed from the dif-

ferences between the adjacent levels in the Gaussian pyramid. Then, the key locations



20

are obtained from the locations at which the difference-of-Gaussians values assume ex-

trema with respect to both the spatial coordinates in the image domain and the scale

level in the pyramid [66].

Figure 2.2: Key locations detected from a grey-level frame using scale-space extrema
of the Laplacian. The radii of the circles illustrate the selected detection scales of the

key locations [2].

2.3.2 Harris3D Corner Detector of Space-Time Interest Points

As a space-time extension of the Harris detector [67], Laptev and Lindeberg proposed

the Harris3D detector in [68]. The spatio-temporal second-moment matrix at each video

point is computed by using independent spatial and temporal scale values σ ,τ , a sepa-

rable Gaussian smoothing function g, and space-time gradients ∇L as shown below.

μ(·;σ ;τ) = g(·;sσ ;sτ)∗ (∇L(·;σ ;τ))(∇L(·;σ ;τ))T
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The final locations of the space-time interest points are given by local maxima of H

which is computed as below.

H = det(μ)− ktrace3(μ),H > 0.

Laptev et al. [3] used those points extracted at multiple scales based on a regular

sampling of the scale parameters σ and τ and achieved promising results. Therefore,

we use the implementation codes on-line and standard parameter settings k = 0.0005,

σ 2 = 4,8,16,32,64,128,and τ2 = 2,4 in this dissertation. Figure 2.3 is an illustration

of interest points obtained by Harris3D corner detector. The size of the circle indicates

the scale and the center of the circle indicates the location of the interest point.

Figure 2.3: Space-time interest points detected for a video clip with human action -
hand shake [3].

2.3.3 General Gaussian Mixture Models and GMM Supervector

Gaussian mixture models (GMM) have been proven extremely successful for multime-

dia semantic indexing [69]. Most methods in multimedia classification utilize the idea
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of stacking the means of the GMM model to form a GMM mean supervector which

is viewed as a content representation of the training or testing instance. A Gaussian

mixture model is a weighted sum of K component Gaussian densities as given by Equa-

tion (2.1),

p(x|θ) =
K

∑
k=1

ωkN(x|μk,Σk), (2.1)

where x is a D-dimensional continuous-valued data vector (i.e., features), ωk (k =

1, . . . ,K) are the mixture weights, and N(x|μk,∑k) k = 1, . . . ,K, are the component

Gaussian densities. Each component density is a D-variate Gaussian function of the

form with mean vector μk and covariance matrix Σk as given in Equation (2.2).

N(x|μk,Σk) =
1

(2π)D/2|Σk|1/2 exp{−1
2
(x−μk)

′Σ−1
k (x−μk)}, (2.2)

The mixture weights satisfy the constraint that ΣK
k=1ωk = 1. The complete Gaussian

mixture model is parameterized by the mean vectors, covariance matrices, and mixture

weights from all component densities. These parameters are collectively represented by

the following notation:

λ = {ωk,μk,Σk} k = 1, . . . ,K. (2.3)

Given the training vectors, several techniques can be used to estimate the parameters of

a GMM [70]. Maximum likelihood (ML) estimation is a common one which aims to

find the model parameters that maximize the likelihood of a GMM, given the training

data. For a sequence of T training vectors X = {x1, . . . ,xT}, the GMM likelihood can

be written as follows [71].

p(X |λ ) =
T

∏
t=1

p(xt |λ ). (2.4)

However, the expression is a non-linear function of the parameter λ and it is impossible

to get a direct maximization. Therefore, a special case of the expectation-maximization
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(EM) algorithm proposed in [72] is employed to iteratively estimate the ML parame-

ter. On each EM iteration, the mixture weights ω k, means μ k, and variances σ 2
k are

re-estimated using Equations (2.5) to (2.7) to guarantee a monotonic increase in the

model’s likelihood value.

ωk =
1
T

T

∑
t=1

Pr(k|xt ,λ ), (2.5)

μk =
∑T

t=1 Pr(k|xt ,λ )xt

∑T
t=1 Pr(k|xt ,λ )

, (2.6)

σ 2
k =

∑T
t=1 Pr(k|xt ,λ )x2

t

∑T
t=1 Pr(k|xt ,λ )

−μ2
k . (2.7)

The a posteriori probability for component k is given by Equation (2.8)

Pr(k|xt,λ ) =
ωkN(xt |μk,Σk)

∑K
k=1 ωkN(xt |μk,Σk)

. (2.8)

In most cases, the number of feature vectors extracted from a single video is not enough

to estimate the GMM parameters precisely. Thus, in our work, the global Gaussian mix-

ture models (called Universal Background Model (UBM)) is learnt by using the features

from all the training videos. Then the UBM parameters are adapted in order to fit each

particular data distribution (a training or testing video sequence). This adaptation is

made by using the Maximum A Posteriori (MAP) approach [73].

The first step is to determine the probabilistic alignment of the training vectors with

the UBM Gaussian components. For a Gaussian component k in the UBM, we compute

Pr(k,xt) =
ωk pk(xt)

∑K
k=1 ωk pk(xt)

;

nk =
T

∑
t=1

Pr(k,xt);

Ek(x) =
1
nk

T

∑
t=1

Pr(k,xt)xt .
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Here, xt represents the tth feature vector of the video to be modeled. These statistical

values are then used for adapting the mean vector μ̂ of each Gaussian component.

μ̂k = αkEk(x)+(1−αk)μk;

αk =
nk

nk + r
,

where r is a fixed “relevance factor”. The concatenation of all the mean vectors of the

K Gaussian components is called the GMM supervector which is first proposed as a

speaker recognition method [74] and then has been applied to semantic indexing [69]

and music similarity [75].



Chapter 3

Overview of Proposed Framework

3.1 Proposed Solutions

With the requirements of processing videos with uncontrolled backgrounds in an un-

supervised way, we propose to estimate the locations of the moving objects in video

sequences by analyzing and integrating spatio-temporally visual contrast information.

Since the proposed framework mimics a human vision system and spontaneously fo-

cuses on the big motion contrast in the spatio-temporal domain, it has a good capability

to automatically capture the main object-level motion and ignore the interference from

the scenes. In addition, a new key frame extraction method is proposed to provide rep-

resentative frames as the summarization of the video sequences, which can also provide

a good foundation for the proposed moving object detection methods. Moreover, under

object occlusion situations, an extended moving object detection method is presented

to split and track the occluded objects, which later can be utilized in the detection step

to enhance the performance. The final goal of our proposed methods is to supply dis-

criminant object-level features on the moving objects to improve the performance of

classification and retrieval. Figure 3.1 shows the flowchart of the proposed framework.

25
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Figure 3.1: The flowchart of the proposed framework

3.1.1 Spatio-temporal Framework of Moving Object Detection

The framework has two layers: global motion estimation layer and local motion es-

timation layer. The global motion estimation layer aims to quickly exclude the non-

motion regions and passes the information to the next layer for further evaluation. At

the global motion estimation layer, a new motion representation, called weighted his-

togram of Harris3D volume, is presented to integrate two sources of motion messages

into a complementary one. The Harris3D corner detector is utilized to compute the

space-time interest points by using the spatial and temporal scale values independently.

The optical flow fields of the videos are calculated to weight the representation of Har-

ris3D corners for a complete expression of the motion information. A fast grouping and

searching method, named the integral density method, is proposed to find the region of

the highest density as the moving object. The optical flow and Harris3D corner detector

describe the motion signals from different perspectives, we expect the integrated repre-

sentation enables to capture the moving object information accurately while resist the
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noise from the uncontrolled environment.

The local motion estimation layer receives the preliminary result from the global

motion estimation layer, and analyzes the locally spatio-temporal information to iden-

tify the final region of moving object. First, key locations on the key frames are detected

from the locations at which the difference of Gaussians values assume extrema with re-

spect to both the spatial coordinates in the frame domain and the scale level in the

difference of Gaussians pyramid. On the other hand, the Simultaneous Partition and

Class Parameter Estimation (SPCPE) framework [76] is employed to preliminarily seg-

ment the key frames into foreground and background. The difference of the adjacent

segmented key frames is defined as motion map to filter the key locations. The out-

comes are called key motion locations (KMLs) which indicate the temporal changes in

the video. We used the integral density algorithm to find the region that has the highest

density of KMLs as the moving object.

3.1.2 Center-Surround Coherency Evaluation

The proposed model is inspired by biological mechanisms of human vision which make

motion salience (defined as attention due to motion) more “attractive” than some other

low-level visual features to people while watching the videos. Under this biological

observation, motion vectors are calculated using the optical flow algorithm to estimate

the movement of a block from one frame to another. A center-surround coherency

evaluation model is proposed to compute the local motion saliency in a completely

unsupervised manner. In the integral density algorithm, the local motion saliency can

either work alone or be used to weight the spatio-temporal motion to find the region

of moving object. Our proposed model evaluates video sequences captured in the non-

static background. The promising experimental results verify the effectiveness of the
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proposed model integrating the local saliency and spatio-temporal motion information.

3.1.3 Key Frame Detection Using Local Motion Information

The local motion estimation method of moving object detection starts from analyzing

the frames to obtain visual frame information. A set of good representative frames

enables to abstract the video effectively. We propose a new key frame extraction method

to extract a set of frames as the basis for the local motion analysis. The visual variance

between frames is checked first to get the description of the frames, followed by a

clustering technique to extract a set of key frame candidates for further filtering. The

information within a video shot and between video shots is employed to adaptively

select the final set of key frames.

3.1.4 Moving Object Detection under Object Occlusion Situations

For moving objects in a video sequence, their movements can bring extra spatio-temporal

information of successive frames, which helps object detection, especially for occluded

objects. A moving object detection approach is proposed for occluded objects in a video

sequence with the assistance of the Simultaneous Partition and Class Parameter Estima-

tion (SPCPE) unsupervised video segmentation method [76]. Based on the preliminary

foreground estimation result from SPCPE and object detection information from the

previous frame, an n-steps search (NSS) method is proposed and utilized to identify the

locations of the moving objects, followed by a size-adjustment method that adjusts the

bounding boxes of the objects. Several experimental results show that the proposed ap-

proach achieves good detection performance under object occlusion situations in serial

frames of a video sequence.
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3.1.5 Motion-Based Object Retrieval and Recognition

Figure 3.2: Demo interface of the retrieval system

The spatio-temporal motion detection framework identifies the location of a mov-

ing object where the object-level features can be extracted. Global Gaussian mixture

models are trained from the object-level features and maximum a posteriori method is

employed to finish the video representation in the classification step. The advantage

of using the object-level only features, instead of using the full feature set, to learn the

global Gaussian mixture models is the decreases of the off-line training time and bet-

ter classification performance. To further improve the performance, scene features are

considered to be integrated into the retrieval framework. In addition, a web-based video

retrieval demo was implemented to visualize the retrieval performance. As shown in
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Figure 3.2, the users could choose a concept (e.g., VolleyballSpiking) and the number

of videos they want to retrieve (e.g., 50), then click “submit”. The relevant videos are

shown and ranked based on the the similarity scores. Users can play the ranked videos

in the demo to check whether the video contains the selected concept.

3.2 Using Within and Between Shot Information for Key Frame

Extraction

As the cost of creating, acquiring, and transmitting video sharply decreases in the recent

decade, huge amounts of video data have been created and delivered every day. Mil-

lions of YouTube videos are clicked each day and meanwhile, hundreds of thousands

of new videos are uploaded to the expanding YouTube website. All of these create new

demands on efficient video browsing, searching, categorization, and indexing. Videos

can be regarded as a sequence or combination of video frames which are basic units of a

video. Usually, the amount of frames within a video is quite large. For example, a video

that lasts for 10 minutes at a frame rate of 25 frames per second has a total of 15,000

frames. The analysis of a video based on its frames could be computationally unafford-

able if the video is very long. Therefore, representative frames that commonly called

key frames are selected and extracted from a video. These extracted key frames are

supposed to be able to describe the content of the video and summarize the contained

information [77, 78].

Usually, a video sequence is first divided into meaningful segments (shots), and

then each shot is represented by key frames. Today, some websites like MEGAVIDEO

provide key frame-based browsing functionality to each video, so that a user who wants

to briefly browse a video’s content only needs to put the cursor on the interested video

and glance at a sequence of key frames rather than to operate it in the traditional way
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– clicking and watching the whole video clips. The key frame-based browsing func-

tionality not only decreases the time that users spend in searching their favorite videos,

but also reduces the network traffic by delivering a few images rather than the whole

video streaming. Key frames are also widely used in video searching and indexing

tasks. Almost all the teams utilized key frame-based features from video sources in the

TRECVID high-level feature extraction and semantic indexing task [79]. Key frames

make it practical for each team to analyze video contents and construct learning/ranking

models, providing a list of ranked shots by their relevance to the concerned high-level

features or concepts.

In this section, to achieve a balance between the quantity of key frames for summa-

rizing the shots in a video sequence and the quality of key frames to represent the whole

video, an innovative key frame extraction approach is proposed. Our proposed approach

has the following contributions: (1) It identifies transitive regions and informative re-

gions by analyzing the differences between consecutive frames at the shot level; (2) A

modified clustering technique is utilized as the key frame extractor to select a set of key

frame candidates (KFCs) in informative regions, while transitive regions are not used

for key frame extraction; and (3) It integrates the frame information within a video shot

and between video shots to filter redundant KFCs to generate the final set of key frames.

The rest of section 3.2 is organized as follows. The proposed key frame extrac-

tion approach is presented in Section 3.2.1. In Section 3.2.2, the experimental results

and analysis are provided followed by time complexity analysis. Finally, Section 3.2.3

concludes the proposed method and discusses the contributions and limitations.
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Figure 3.3: System architecture of the proposed key frame extraction approach
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3.2.1 The Proposed Video Key Frame Extraction Approach

Two main phases are included in the proposed approach. The first one is the cluster-

based key frame candidate extraction phase, which extracts a group of key frame candi-

dates (KFCs) on informative regions for each shot from the video sequences. The sec-

ond one is the filtering phase, in which the information within a video shot and between

video shots extracted from KFCs is used to remove those redundant KFCs. Figure 3.3

presents the system architecture of our proposed key frame extraction approach.

A Difference Measure Between Consecutive Frames

One of the frequently used methods that measure the differences of images is color his-

togram because of its computation simplicity. A color histogram is a representation of

the distribution of colors in an image. For digital images, a color histogram is repre-

sented by counting the number of pixels belonging to each color. It provides a compact

summarization of the color information in an image. However, the color histogram has

one drawback that is loses the spatial distribution information of the color data. For ex-

ample, by analyzing the color histogram, we can infer that the image is red and green,

but it cannot tell which part of the image is red or green. Considering such a drawback

of the color histogram, we use a color feature vector to represent the video frames and

employ the Euclidean distance of the feature vectors to measure the difference between

two frames.

For the sake of fast computation, each frame has been partitioned into several squares,

and each square is a 16× 16 block of pixels (as proposed by Kim et al. [80]). Then

the average pixel value of each square is calculated as a feature of that frame. In other

words, the frame has been resized to 1/256 of the original size (each dimension being

re-size to 1/16 of its original size), and each pixel is represented by the average pixel
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value of a 16×16 block. For instance, a new image with a lower resolution (18×22)

will be generated from an original frame with 288×352 pixels. If the columns are se-

quentially concatenated, the 18×22 image can be converted into a feature vector with

396 features. Therefore, a frame with 288× 352 pixels is projected into the feature

space as a feature vector with 396 features. Before re-sizing, the original frame was

first transferred from RGB color space to YCbCr color space, and was calculated to

represent each pixel in the frame by Equation (3.1) [80].

YCbCravg =
2
3
·Y +

1
6
·Cb +

1
6
·Cr. (3.1)

The problem of estimating the difference in the visual content of two frames is

converted into a similarity measure of their feature vectors. There are several distance

formulas for measuring the similarity of the feature vectors. Euclidean distance d(·) is

employed to measure the similarity of the two feature vectors p and q using Equation

(3.2).

d(p,q) =

√
n

∑
i=1

(pi −qi)2, (3.2)

where p = [p1p2 . . . pn], q = [q1q2 . . .qn], and n is the dimension of the feature vector

(e.g., n = 396 in the above example).

A Cluster-Based Frame Extraction Method on Informative Regions

A video stream is made up of a group of shots and each shot is a series of consecutive

frames from the start to the end of recording in a camera. For some shots, there is

little visual content difference between successive frames. In such cases, a single frame

may be sufficient to represent the content of all the frames in a shot. On the other

hand, for those shots whose contents are more complex, more key frames are needed
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to represent the shots. One of the most common methods to select key frames is the

temporal sampling method. Though the method is fast and easy to use, it usually does

not provide a successful representation since it ignores the fact that the variation of the

content within a shot is usually not proportional to the shot length.

In order to effectively select a proper set of key frames to represent the correspond-

ing shot, the frames in each shot are first separated into two types: transitive frames

(TFs) or informative frames (IFs). TFs are those frames that have large pictorial con-

tent differences compared with their adjacent frames, implying the transition of visual

content due to the relatively fast movement of the camera. Compared with TFs, IFs

contain the content and objects that are more stable and those are the real visual infor-

mation that the recorder wants to take. Based on the above assumption, key frames are

selected among IFs, but TFs are ignored.

Figure 3.4: Identification of transitive regions and informative regions

Followed by the difference calculation between adjacent frames, the idea of con-

structing a binary classifier to identify TFs and IFs from [81] is adopted. It comes from

the field of computer vision and image processing, and computes a global threshold that

can be used to convert an intensity image to a binary image by choosing the threshold

to minimize the intra class variance of the black and white pixels. The final goal of

classifying TFs and IFs is to divide a shot stream into informative regions and transitive
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regions. A transitive region whose members are mostly TFs contains blurry objects or

uniformly colored images that are meaningless in terms of the information supplied.

Therefore, key frames should be selected from the informative regions. As can be seen

from Figure 3.4, the first row is an initial classification of IFs and TFs, and the second

row shows more continuous regions after the smoothing process.

For key frame selection, a clustering technique is employed in our proposed ap-

proach. Cluster analysis is the formal study of methods and algorithms for grouping

data [82]. The general idea of cluster-based key frame extraction methods is to consider

all the frames of a shot together and cluster them based on the similarity of their feature

vectors. The frame that is closest to the cluster’s center is usually selected as the key

frame. One of the problems in clustering is that in order to identify a key frame, the

center of a cluster needs to be first calculated. In our proposed approach, this step is

omitted in order to reduce the computation time. In other words, instead of calculating

the cluster’s center and its distance with nearby frames, our proposed approach utilizes

the middle frame of each shot as the first KFC f1. Based on f1, the second KFC f2 is

chosen using the following criterion:

argmax
f2

d( f1, f2) (3.3)

The above expression is the set of values of f2 for which d( f1, f2) has the largest value,

where argmax stands for the argument of the maximum and d( f1, f2) indicates differ-

ence in the visual content between f1 and f2 obtained by Equation (3.2). To generalize

the selection rule, the nth KFC fn is selected using the following criterion:

argmax
fn

n−1

∑
k=1

d( fk, fn). (3.4)

This selection criterion chooses fn for which the sum of differences between fn and
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previous n− 1 KFCs (k = 1,2,3, . . . ,n− 1) has the largest value among all non-KFCs

in the shot.

KFC Filtering by Integrating Information within a Video Shot and Between Video

Shots

One of the major issues in the topic of key frame extraction is to decide the amount of

key frames that should be selected per shot. A large set of key frames would give a

more comprehensive representation of the video stream, but at the same time it would

result in content redundancy. On the other hand, a small set of key frames could restrict

pictorial redundancy, but it hardly represents the video content completely. Another

issue is that the numbers of extracted key frames in different shots should be varied due

to the unequal quantities of information conveyed in different shots. A commonly used

method is pre-setting a threshold T in the key frame extractor, but the determination

of the threshold T is another decisive factor to affect the final performance of the key

frame extractor. Chatzigiorgaki et al. [83] used two videos from TRECVID 2007 test

data set [79] as a training set to conduct the threshold selection process, which achieved

good results in their experiments. It is an acceptable approach that employs the training

videos to calculate the threshold for key frame extractor, but it would be more inspiring

if a self-adapted method can be developed to decide the number of key frames to be

extracted in each shot based on the video stream information itself. Such an extraction

method would be more compact and accurate than those adopt the threshold calculated

by other training videos.

In this section, we utilize the information within a shot and between shots (e.g.,

standard deviation of KFCs) to filter the KFCs. Assume that the shot content changes

are relatively small, so the value of the standard deviation of KFC’s feature vectors
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in the shot should be small, and vice versa. On the basis of such an assumption, the

standard deviation of the whole KFCs set is used as a threshold to measure the content

variation of each shot. The strategy is that if the standard deviation of the jth shot

is less than the standard deviation of the whole KFCs set of the video, only KFC f1

is reserved to represent the jth shot. Otherwise, Euclidean distances between KFCs

are used to decide how many KFCs are kept as key frames to represent the shot. For

instance, using the first two KFCs f1 and f2 that have been kept as key frames of the jth

shot to decide whether f3 should be kept as a key frame by evaluating the relationships

among d( f1, f2), d( f1, f3) and d( f2, f3). If in the case of Figure 3.5(a) that d( f1, f3)+

d( f2, f3) > 2 · d( f1, f2), which means f3 may contain extra information other than f1

and f2, then f3 would be reserved as a key frame. However, if f1, f2 and f3 construct a

relation as shown in Figure 3.5(b) that d( f1, f3)+d( f2, f3) ≤ 2 ·d( f1, f2), it implies f3

may have similarly visual content with f1 or f2.

(a) (b)

Figure 3.5: Two kinds of space layouts. (a) d( f1, f3) + d( f2, f3) > 2 · d( f1, f2); (b)
d( f1, f3)+d( f2, f3)≤ 2 ·d( f1, f2)

Furthermore, in the case of Figure 3.6, assuming that f3 has been selected as a key

frame, KFC f4 would be evaluated to obey the similar strategy. If the average length

of the three dash lines in Figure 3.6 is larger than the average length of the other solid
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lines, f4 is kept as a key frame. The same process applies to evaluate f5 and so on.

Figure 3.6: The space layouts of f1, f2, f3 and f4

If f3 is removed, f4 will not be considered and the process of filtering KFCs in

the current shot terminates. The general rules in the filtering phase are as follows.

Keep f1 as a key f rame and set n = 2

IF std( j)>= α · std(video) THEN

WHILE ( 1
n−1 ∑n−1

k=1 d( fk, fn)>
(n−1)(n−2)

2 ∑n−1
p=1,q=2 d( fp, fq))

Keep fn as a key f rame and n = n+1

END-WHILE;

END-IF;

where std( j) denotes the standard deviation of the KFCs in the jth shot, std(video)

denotes the standard deviation of all KFCs in the video, and α is the coefficient whose

value is between 0 and 1. The expression in the “while” statement indicates that if the

average Euclidean distance between KFC fn and the other n−1 key frames in the same

shot is larger than the average Euclidean distance between n− 1 key frames, KFC fn

should be kept as a key frame and the process to evaluate KFC fn+1 is continued.

3.2.2 Experimental Results and Analyses

Shot boundary detection algorithm aims to break up the video into meaningful sub-

segments by using pixel comparison between consecutive frames, edge changes, grey-
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scale and RGB color histogram features, and similarity analysis. In this section, shot

boundary information was given by the data provider, so we do not discuss shot bound-

ary detection here, but focus on testing the robustness of the proposed key frame extrac-

tion method at the shot level.

Evaluation Metrics

We carried out the evaluation of the proposed approach in terms of the percentage of

the extracted key frames and the retrieval precision. In the premise of no significant

scenario missing during the key frame extraction process, the smaller number of key

frames we use to represent the video, the better performance the key frame extractor

does. Therefore, low key frame percentage is preferred to avoid unnecessary content

redundancy in the set of key frames. The percentage of the extracted key frames (%KF)

is defined as follows.

%KF =
number o f extracted key f rames

total number o f f rames
×100% (3.5)

In statistics, the precision is the number of correct results divided by the number of

all returned results. To define correctly extracted key frames, we introduced a concept

called hit deviation to evaluate the quality of the extracted key frames. Hit deviation

is defined as the difference between true frame (ground truth) index number and ex-

tracted key frame index number. The distance of the frame index number between a

true and an extracted key frame that is less than the preset hit deviation means a correct

extraction. For instance, if the index number of a true key frame is 39, and the hit devi-

ation threshold is set to 5, an extracted key frame’s index number between 34 and 44 is

viewed as a correct hit. If two or more extracted key frames hit one true key frame, only

the nearest one was recorded and the others are ignored. As shown in Figure 3.7, KF2

fails to hit the adjacent ground truths GT1 and GT2, since there has other key frames
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that are closer to the true key frames GT1 and GT2 than KF2. In the case of MPEG-1

video with 25fps, if the difference between two frames’ index numbers is less than 25,

it means the time interval between the two frames is less than one second. Generally

speaking, the visual content changes would be relatively small within one second and

the frames in one second have similarly pictorial content.

Figure 3.7: Hit deviation measure of extracted key frames. t denotes frame index num-
ber at time t; KF1, KF2, KF3 denote extracted key frames; GT1 and GT2 denote true

key frames (ground truth), and HD1 and HD2 denote hit deviations.

Videos Data Sets

Fourteen MPEG-1 video sequences with 25fps from TRECVID 2007 test video collec-

tion [79] were used to evaluate the performance of the key frame extraction approach.

Table 3.1 summarizes the characteristics of the fourteen video test sequences including

the name, length, number of shots, number of frames, average number of frames per

shot, number of ground truth, and average number of ground truths per shot.

In addition to the proposed approach, for the purpose of comparison, we also tested

the commonly used key frame extraction method: temporal sampling. In particular,

temporal sampling was implemented into two versions. One is the average temporal

sampling that samples a pre-fixed number of frames per shot with an equal interval.

Another sampling method is called adaptive temporal sampling [84] whose initial pur-
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Table 3.1: The fourteen videos used to test the key frame extraction approaches. # of
shot denotes the number of shots the video contains, # of Fr denotes the number of
frames the video contains, and FrPerShot indicates the average number of frames for
each shot; while # of true KF and tKFPerShot indicate the number of ground truth and

the average number of ground truth per shot respectively.
Video name Length(hh:mm:ss) # of shots # of Fr FrPerShot # of ture KF tKFPerShot

BG 2196 00:26:13 124 39339 317.234 147 1.185
BG 10241 00:15:40 131 23517 179.504 146 1.115
BG 11369 00:06:33 59 9828 166.542 90 1.525
BG 34837 00:15:05 156 22624 145.026 203 1.301
BG 35447 00:14:59 127 22489 177.079 174 1.370
BG 35751 00:15:11 108 22786 210.981 137 1.269
BG 35757 00:14:53 85 22327 262.671 112 1.318
BG 35767 00:14:27 74 71679 968.635 94 1.270
BG 36304 00:18:06 163 27169 166.681 290 1.779
BG 36366 00:14:28 92 21706 235.935 113 1.228
BG 36511 00:10:03 72 15075 209.347 86 1.194
BG 37613 00:15:53 117 23830 203.675 139 1.188
BG 37796 00:15:16 74 22912 309.622 92 1.243
BG 38002 01:08:53 700 103347 147.639 1003 1.433

pose was to select more frames in a rapidly changing shot region. The method selects

sampling rate on the basis of accumulated value of the color histogram differences in the

video. We use a modified version of adaptive temporal sampling by using our feature

vectors instead of color histogram. I-frames of each shot were first selected as basic

frames for the KFC extraction.

Results

The experimental results of the key frame percentages are presented in Table 3.2. One

of the drawbacks in temporal sampling method is that the sampling rate should be pre-

set manually. Since the average number of true key frames per shot is greater than one,

here for adaptive temporal sampling, we extracted twice of the number of ground truth

key frames to represent the video. For the average temporal sampling method, we set

the sampling rate to two and three.



43

Table 3.2: Key frame percentage (%). AvgTS (3) and AvgTS (2) denote the average
temporal sampling with sampling rate at 3 and 2 frames per shot, respectively; AdaTS
(2) denotes the adaptive temporal sampling with an average sampling rate on two frames

per shot.
%KF AvgTS(3) AvgTS(2) AdaTS(2) Proposed method Ground truth

BG 2196 0.946 0.630 0.630 0.493 0.374
BG 10241 1.671 1.114 1.114 0.850 0.621
BG 11369 1.801 1.201 1.201 0.926 0.916
BG 34837 2.069 1.379 1.379 1.224 0.897
BG 35447 1.694 1.129 1.129 1.009 0.774
BG 35751 1.422 0.948 0.948 0.812 0.601
BG 35757 1.142 0.761 0.761 0.703 0.502
BG 35767 0.310 0.206 0.206 0.187 0.131
BG 36304 1.800 1.200 1.200 1.097 1.067
BG 36366 1.272 0.848 0.848 0.691 0.521
BG 36511 1.433 0.955 0.955 0.736 0.570
BG 37613 1.473 0.982 0.982 0.864 0.583
BG 37796 0.969 0.646 0.646 0.554 0.402
BG 38002 2.032 1.355 1.355 1.161 0.971
Average 1.431 0.954 0.954 0.808 0.638

As can be seen from the results, the key frame percentages of our proposed approach

were all limited to a maximum of 1.224%; while on average it reached 0.808%. In other

methods, the maximum is 1.379% or 2.069% and the average key frame percentage is

0.954% or 1.431%. Compared with the ground truths that reach 1.067% on maximum

and 0.638% on average, it shows that our proposed approach effectively eliminates the

redundancy and controls the key frame percentage in an acceptable level (i.e., about

1.2 times of the ground truths on average). It indicates that our proposed key frame

extraction approach is able to find a smaller subset of frames, which is in fact a better

representation in summarizing the video. This is preferable in any key frame extraction

method. Figures 3.8, 3.9, 3.10 and 3.11 show the precision values of four methods with

hit deviation setting at 5, 15, 30 and 60S, respectively. When we set the hit deviation to

5, 15, 30 and 60, the best average results of temporal samplings are 15.4%, 35%, 50.6%
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and 63.4%, in contrast with the average precision values of our proposed approach,

namely 22.8%, 45.2%, 63.9% and 72.1%, respectively. It indicates that our proposed

approach outperforms the temporal samplings approaches for both the average one and

the adaptive one, which verifies the effectiveness of our proposed approach in video

summarization.

Figure 3.8: Precision results when hit deviation (HD) was set to 5, AvgTS (3) and
AvgTS (2) denote the average temporal sampling with sampling rate at 3 and 2 frames
per shot, respectively; AdaTS (2) denotes the adaptive temporal sampling with an aver-

age sampling rate on two frames per shot.

In order to make a pictorial comparison on visual content of the extracted key

frames, we selected a video clip to evaluate the proposed approach and the tempo-

ral sampling approach. The extraction results are shown in Figures 3.12, 3.13, 3.14

and 3.15. Compared with the ground truth in Figure 3.16, lots of redundant frames

existed in Figure 3.12. The same problem also happens in Figures 3.13 and 3.14. Fur-

thermore, content redundancy in Figures 3.13 and 3.14 also suffered from the issue of

missing key frames. The results of our proposed approach are shown in Figure 3.15

which has successfully reserved effective key frames and reduced the overlapped infor-

mation.
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Figure 3.9: Precision results when hit deviation (HD) was set to 15, AvgTS (3) and
AvgTS (2) denote the average temporal sampling with sampling rate at 3 and 2 frames
per shot, respectively; AdaTS (2) denotes the adaptive temporal sampling with an aver-

age sampling rate on two frames per shot.

Figure 3.10: Precision results when hit deviation (HD) was set to 30, AvgTS (3) and
AvgTS (2) denote the average temporal sampling with sampling rate at 3 and 2 frames
per shot, respectively; AdaTS (2) denotes the adaptive temporal sampling with an aver-

age sampling rate on two frames per shot.
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Figure 3.11: Precision results when hit deviation (HD) was set to 60, AvgTS (3) and
AvgTS (2) denote the average temporal sampling with sampling rate at 3 and 2 frames
per shot, respectively; AdaTS (2) denotes the adaptive temporal sampling with an aver-

age sampling rate on two frames per shot.

Figure 3.12: Key frames extracted by average temporal sampling (3 frames per shot) on
11 consecutive shots from shot 11 to shot 21 in video BG 2196
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Figure 3.13: Key frames extracted by average temporal sampling (2 frames per shot) on
11 consecutive shots from shot 11 to shot 21 in video BG 2196

Figure 3.14: Key frames extracted by adaptive temporal sampling (averagely 2 frames
per shot) on 11 consecutive shots from shot 11 to shot 21 in video BG 2196

Figure 3.15: Key frames extracted by proposed method on 11 consecutive shots from
shot 11 to shot 21 in video BG 2196
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Figure 3.16: Ground Truth on 11 consecutive shots from shot 11 to shot 21 in video
BG 2196

Time Complexity Analysis

In terms of the theoretical complexity, the proposed approach is more expensive than

the adaptive temporal sampling and average temporal sampling approaches. Specifi-

cally, the adaptive temporal sampling and average temporal sampling approaches have

the time complexities of O(N) and O(1), respectively; while the proposed approach

takes O(N2), where N is the number of frames in a video sequence. However, the ex-

traction time complexity might not be an issue since in most of cases, key frames can be

extracted off-line. In this case, due to the lower percentage and better precision of key

frames of the proposed approach, the key frame based applications such as searching

and browsing become more efficient in terms of time and space complexities. Table 3.3

shows the computation time (in minutes). We have implemented the key frame extrac-

tion algorithm in Matlab the R2008a development environment. The computer used for

the comparison was an Intel Core2 Duo CPU T6400 (2.00GHz) with 4GB of RAM, and

running a Windows 7 Home Premium operating system.

3.2.3 Conclusions

This section proposes an effective key frame extraction approach by utilizing the in-

formation within a video shot and between video shots. Our proposed approach first

selects a set of key frame candidates in the informative regions, and then removes a few
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Table 3.3: Computation time of four methods on the 14 videos, AvgTS (3) and AvgTS
(2) denote the average temporal sampling with sampling rate at 3 and 2 frames per
shot, respectively; AdaTS (2) denotes the adaptive temporal sampling with an average

sampling rate on two frames per shot.
Extraction time (minute) AvgTS(3) AvgTS(2) AdaTS(2) Proposed method

BG 2196 0.017082 0.016620 1.362779 243.447
BG 10241 0.017331 0.060535 4.431702 166.835
BG 11369 0.007284 0.005452 4.095344 68.483
BG 34837 0.017959 0.010439 1.383119 150.277
BG 35447 0.016773 0.016574 0.563536 142.304
BG 35751 0.017110 0.016050 1.224688 164.526
BG 35757 0.009854 0.015565 0.750621 151.175
BG 35767 0.015513 0.009274 0.733494 142.495
BG 36304 0.020402 0.012377 1.636738 182.165
BG 36366 0.015871 0.015543 1.405718 159.646
BG 36511 0.010955 0.009050 4.134540 99.356
BG 37613 0.017339 0.010614 2.167435 159.450
BG 37796 0.016350 0.015164 0.961948 150.424
BG 38002 0.060810 0.064711 1.760058 733.047
Average 0.018617 0.019855 1.900837 193.831

of redundant key frame candidates to finalize the set of key frames based on the evalua-

tion of within and between shot information. Through the filtering process, most of the

redundant key frame candidates are successfully deleted to obtain a reduced set of key

frames. According to the performance in term of extraction percentage and retrieval

precision, the proposed approach effectively demonstrates its good capability of reserv-

ing effective key frames while reducing overlapped visual content. One of our further

improvement directions is to self-adaptively choose the position of the initial KFC f1,

while currently we use the middle frame of a shot as the initial KFC f1. Another en-

hancement direction is to extract KFCs by using the object and motion information in

both temporal and spatial dimensions from the video sequences. We believe it would

deliver compensatory information which is not available in the current image-based key

frame extraction methods.
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3.3 Moving Object Detection under Object Occlusion Situations

It is a great challenge to detect an object that is overlapped or occluded by other ob-

jects in images. For moving objects in a video sequence, their movements can bring

extra spatio-temporal information of successive frames, which helps object detection,

especially for occluded objects. A moving object detection approach is proposed for

occluded objects in a video sequence with the assistance of the SPCPE (Simultaneous

Partition and Class Parameter Estimation) unsupervised video segmentation method.

Based on the preliminary foreground estimation result from SPCPE and object detec-

tion information from the previous frame, an n-steps search (NSS) method is utilized

to identify the location of the moving objects, followed by a size-adjustment method

that adjusts the bounding boxes of the objects. Several experimental results show that

our proposed approach achieves good detection performance under object occlusion

situations in a series of frames of a video sequence.

3.3.1 The Proposed Approach

Figure 3.17 presents the system architecture of the proposed approach for each frame

i (i > 1) in a video sequence. It includes four steps to handle the occlusion situation

between moving objects.

In the first step, background and foreground of frame i are estimated with the help

of the unsupervised SPCPE video segmentation method using the background and fore-

ground of frame i− 1 as the initial class partition. After removing the background,

bounding boxes are used to describe the foreground objects. Of note, the first frame of

the video needs to be processed through SPCPE using an arbitrary initial class partition

to get the bounding boxes of its foreground objects. In Step 2, an idea from [39] is

adopted to detect object occlusion situations by using the size and location information
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Figure 3.17: The system architecture of the propose approach
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of bounding boxes in two consecutive frames (i.e., frames i−1 and i). If object occlu-

sion occurs, the bounding box of the occluded objects is passed to Step 3; otherwise,

the loop goes back to Step 1 to process the next frame. In order to identify the location

of the occluded objects more generally, an n-steps search (NSS) method is employed by

using the spatial information of the objects in frame i−1, and the preliminary detection

results of frame i are generated in Step 3. Finally, in Step 4, a size-adjustment method

is developed to adjust the bounding boxes of the occluded objects for the purpose of

obtaining more accurate sizes and positions of the objects. The same steps are iterated

for all the frames i (i > 1) of the video.

Background and Foreground Estimation

The background and foreground estimation method presented here is based on the

SPCPE algorithm [76] that is able to partition objects from the background. The seg-

mentation starts with an arbitrary class partition (for the first frame) and then an iterative

process is employed to jointly estimate the class partition and its corresponding class

parameters (for the rest of the frames in the video sequence).

The SPCPE algorithm is applied to segment each pixel in frames into two classes,

namely background and foreground. Let the segmentation variable be c = {cb,c f } and

the class parameter be θ = {θb,θ f }. Let all the pixel values yi j (where i and j are

the row number and column number of the pixel, respectively) in the frame belonging

to class k be put into a vector Yk, where k = b means background and k = f means

foreground. Each row of the matrix Φ is given by (1, i, j, i j), and αk is the vector of
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(a) A video frame (b) Estimated background
and foreground for (a)

Figure 3.18: An example of the SPCPE estimation result

parameters (αk0, . . . ,αk3)
T .

yi j = αk0 +αk1i+αk2 j+αk3i j, ∀(i, j) yi j ∈ ck (3.6)

yk = Φαk (3.7)

α̂k = {ΦT Φ}−1ΦTyk (3.8)

Here, it is assumed that the adjacent frames in a video do not differ much, and thus

the estimation results of background and foreground of successive frames do not change

significantly. Under this assumption, the segmentation of the previous frame is used as

an initial class partition, so the number of iterations for processing is greatly decreased.

Since the first frame does not have a previous frame, an arbitrary class partition is used

to start the estimation process. Figure 3.18(a) is a color frame extracted from a video of

race cars, and Figure 3.18(b) is its background (shown in black) and foreground (shown

in white) estimation result by the SPCPE algorithm.

Previous Occlusion Detection Strategy

An effective method was proposed in [39] to detect the occlusion of objects by utilizing

the concept of minimal bounding rectangle (MBR) in R-trees [85] to bound each se-

mantic object by a rectangle. The main idea is to measure the distances and sizes of the
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bounding boxes between frames to check if two segments in adjacent frames represent

the same object. If a segment cannot find its successor in the subsequent frame, then a

merge or split of objects may happen between the two frames.

In [39], the authors proposed a backtrack-chain-updation split algorithm and a ver-

tex recovery method to identify the occluded objects, which work well under the sit-

uation that two objects with similar sizes and shapes merge or split from the diagonal

direction. However, the vertex recovery method may fail in other situations. For ex-

ample, in Figure 3.19(a) and Figure 3.19(b), the vertex recovery method would “paste”

vertex BUL onto vertex AUL and vertex CBL onto vertex ABL, leading to the detection

result as shown in Figure 3.19(c), while the correct bounding boxes should be located

as shown in Figure 3.19(d).

New Occluded Objects Detection Approach

Assume that the appearance of the same object in adjacent frames does not change a lot,

the idea of a quick block motion estimation method [86], called three-step search (TSS),

is extended to identify the location of occluded objects from the spatial information in

the previous frame. The TSS algorithm is based on a coarse-to-fine approach with

logarithmic decreases in steps as shown in Figure 3.20. In TSS, the initial step size is

half of the maximum motion displacement p. For each step, nine checking points are

matched and the minimum Mean Absolute Difference (MAD) [87] point of that step is

chosen as the starting center of the next step whose size is reduced by half. When the

step size is reduced to 1, the searching process terminates. The three-step is obviously

designed for a small search window (i.e., p = 7).

In this section, TSS is extended to an n-steps search by using the same searching

strategy. For the sake of quick computation of MAD, the search process is conducted on
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(a) Two objects are separate in a
frame

(b) The same objects are oc-
cluded in the subsequent frame

(c) Split result by vertex recovery
method

(d) Correct detection result

Figure 3.19: An example when the vertex recovery method would fail

the SPCPE segmentation result instead of the color frame, and we use the bounding box

in the previous frame as the reference block. Figure 3.21(a) is the SPCPE segmentation

result of the current frame where two objects are identified as one. Figure 3.21(b) is

the segmentation result utilizing the positions of the bounding boxes of the previous

frame, which is not precise; while on the basis of Figure 3.21(b), n-steps search returns

an acceptable object detection result (as shown in Figure 3.21(c)).
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Figure 3.20: Illustration of three-step search

Size Adjustment of Occluded Objects

The positions of the occluded objects are roughly located by the n-steps search as shown

in Figure 3.21(c). Since the shapes of the moving objects in a video sequence may

change, size adjustment is needed to re-size the bounding boxes of the objects. Unlike

the size adjustment method in [39] which used the ratio information of size changes on

length and width of the split objects in successive frames to update the bounding box

of each object, our proposed size adjustment method uses the contour of the occluded

objects in the current frame to re-size the object’s bounding box.

Let Ball denote the bounding box of the occluded objects (shown in Figure 3.21(a)),

and BO1 and BO2 denote the bounding boxes of the individual objects O1 and O2 (shown

in Figure 3.21(c)). The final bounding boxes of O1 and O2 are defined as follows. With

the size restriction of the bounding box of the occluded objects, our proposed method

has the ability of size adjustment as shown in Figure 3.21(d).
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(a) SPCPE segmentation result in the
current frame

(b) Segmentation using bounding
boxes of the previous frame

(c) Detection result after n-steps
search

(d) Detection result after size adjust-
ment

Figure 3.21: Detection of occluded objects

B′
O1 = BO1

⋂
Ball; (3.9)

B′
O2 = BO2

⋂
Ball. (3.10)

3.3.2 Experimental Results and Analyses

Two video sequences containing object occlusion situations are employed to evalu-

ate the performance of the proposed moving object detection approach. Table 3.4

lists the information of two video sequences used in our experiments. One is from

YouTube [88], and the other is from TRECVID 2007 test video collection [79]. Sev-
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Table 3.4: Three examples of video sequences
Category # of frames Solution Source

“Ravens” Video 58 360 * 480 YouTube
“Girl on the street” Video 81 288 * 352 TRECVID

eral sample frames in these videos are shown to demonstrate the effectiveness of our

proposed approach.

The first column in Figures 3.22 and 3.23 shows the original frames from the video

sequences. The second column is the segmentation results of the objects from the back-

ground by SPCPE. If there are more than two columns, the third column indicates the

positions of the bounding boxes of the previous frame, which are used as the initial

searching positions of the NSS method on the current frame. The displacement is set

to 10 in the experiment. The searching results are shown in the fourth column, and the

fifth column displays the final detection results tuned by the size adjustment method.

Two scenarios are shown in Figure 3.22. One happens at the beginning of the over-

lapping of two ravens, and one is the severe occlusion. For the first scenario, the oc-

clusion is not significant, and thus it is easier to get good detection result than in the

latter scenario. For the second scenario, one object is heavily occluded by another one,

resulting in lots of loss of shape and size information. Therefore, the detection result

greatly depends on the previous detection result. It can be seen from the split results

in Figure 3.22(b) and Figure 3.22(d) that our proposed approach gives a satisfactory

performance on both scenarios.

Figure 3.23 gives an example that has complicated spatial relationships between

objects in a video. In this video, the girl and curb are overlapped and segmented as one

partition initially. Figure 3.23(b)- Figure 3.23(e) give the detection results. It shows

that based on the information from Figure 3.23(a), our proposed approach successfully
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splits the girl from the road curb in the following four consecutive frames.

3.3.3 Conclusions

This section proposes a moving object detection approach utilizing the spatio-temporal

information of successive frames in video sequences. It first employs the SPCPE al-

gorithm to estimate the background and foreground of the frames, followed by detect-

ing the object occlusion situations with the help of the size and location information

of the bounding boxes in two consecutive frames. Next, the n-steps search and size-

adjustment methods are utilized to obtain the preliminary location of each object and

tune the size of each object to address the shape changes in the video sequence, re-

spectively. Experimental results on three video sequences with severe object occlusion

situations demonstrate that our proposed approach is able to cope with the more gen-

eralized object occlusion situations and achieve satisfactory detection results for the

moving objects under object occlusion situations.
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(a) Frame 548

(b) Frame 549

(c) Frame 557

(d) Frame 558

Figure 3.22: Results for the “Ravens” video sequence
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(a) Frame 5284

(b) Frame 5285

(c) Frame 5286

(d) Frame 5287

(e) Frame 5288

Figure 3.23: Results for the “Girl on the street” video sequence



Chapter 4

Proposed Detection and Retrieval Framework

4.1 Temporal-CenteredMotion Estimation and Recognition in Non-

Static Background

In the recent years, video content analysis has been used in a broad range of applica-

tions, such as real-time surveillance, activity monitoring, video indexing and retrieval,

human-computer interaction, etc. [47, 89, 15]. Various motion detection methods have

been proposed in the past decade, but there are seldom attempts to investigate the ad-

vantages and disadvantages of different detection mechanisms so that they can comple-

ment each other to achieve a better performance. Toward such a demand, this section

proposes a human action detection and recognition framework to bridge the semantic

gap between low-level pixel intensity change and the high-level understanding of the

meaning of an action. To achieve a robust estimation of the region of action with the

complexities of an uncontrolled background, we propose the combination of the optical

flow field and Harris3D corner detector to obtain a new spatial-temporal estimation in

the video sequences. The action detection method, considering the integrated motion

information, works well with the dynamic background and camera motion, and demon-

62
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strates the advantage of the proposed method of integrating multiple spatial-temporal

cues. Then the local features (SIFT and STIP) extracted from the estimated region of

action are used to learn the Universal Background Model (UBM) for the action recog-

nition task. The experimental results on KTH and UCF YouTube Action (UCF11) data

sets show that the proposed action detection and recognition framework can not only

better estimate the region of action but also achieve better recognition accuracy com-

paring with the peer work.

In this section, we propose a robust action detection and recognition framework that

integrates multiple motion detectors and takes the complementary advantages of the

motion cues to estimate the region of action [90]. Features extracted from the region are

minimally disturbed by scene noise and represent the characteristics of the action. To

the best of our knowledge, not much work has been reported on the region detection of

action from unconstrained videos in an unsupervised way. In this section, we investigate

the ideas of motion detectors and propose a framework that detects region(s) of action

by integrating multiple spatial-temporal cues and recognizes actions by using static and

motion features on the region of action. The main contributions of this section are

summarized as follows.

1. A weighted integration approach is proposed to fuse spatial-temporal information

from the optical flow field and the Harris3D detector into a new robust motion

representation in the videos.

2. The idea of integral density is utilized to estimate the region of action by using the

new motion field. The region of action is defined as the area with a high density

of motion.
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3. SIFT and STIP features extracted from the region of action are employed to train

the universal background model (UBM) for the purpose of action recognition,

instead of using the whole feature set. This method is verified to be an effective

and efficient way of training recognition model.

To the best of our knowledge, no one has trained UBM by using only action-related

features (less than 20% of the whole feature set) and is able to receive a better perfor-

mance than using the full feature set.

The rest of the section is organized as follows. Section 4.1.1 describes the details

of the region of action estimation by integrating multiple spatial-temporal motion fields

and quickly locating the high density area of motion. In Section 4.1.2, we present the

method of action recognition that uses multiple features from the region of action to

train UBM and classifies the actions. The experiments and results of the KTH and

UCF11 data sets with discussions are provided in Section 4.1.3. Finally, a conclusion

is given in Section 4.1.4.

4.1.1 Moving Object Detection Using Spatio-temporal Information

State-of-the-art motion recognition approaches mainly use the features extracted from

the whole frame, no matter the background or the region of motion, to generate the

code book which inevitably involves unrelated scene information that may affect the

recognition performance. In order to decrease the influence of the background on the

motion recognition task, a new motion region estimation method is presented in this

section. The proposed algorithm comprehensively analyzes and integrates the motion

information from space and time domain in an unsupervised manner, and is robust to

non-static scene and camera motion. The motion features extracted from the estimated

region of motion are employed to learn the Universal Background Model (UBM) for
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the motion recognition purposes, which is able to achieve a good performance. The

proposed framework is shown in Figure 4.24.

Figure 4.1: Proposed Framework

Biological Motivation

Psychological studies find that a human vision system perceives external features sep-

arately [21] and is sensitive to the difference between the target region and its neigh-

borhood. Such kind of high contrast is more likely to attract human’s first sight than

their surrounding neighbors [22]. Extensive psychophysics experiments have shown

that these mechanisms can be driven by a variety of features, including intensity, color,

orientation, or motion, and local feature contrast plays a predominant role in the per-

ception of saliency. Neurophysiological experiments on primates have also shown that
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neurons in the middle temporal (MT) visual area compute local motion contrast with

center-surround mechanisms. In fact, it has been hypothesized that such neurons under-

lie the perception of motion pop-out and figure-ground segmentation [23]. The center-

surround saliency mechanisms of biological systems support the idea of motion region

estimation on measurements of local motion contrast. There is no need for training

samples or pre-build a “global background model” for the testing instances, which is

one of the advantages of the proposed method. Instead, a motion region can be effi-

ciently calculated using merely local motion information and could immediately adapt

to different kinds of unknown scenes. Also, using local motion contrast could make the

model robust to the camera motion and dynamic background.

Apparent Motion Descriptor - Optical Flow

Optical flow is the pattern of motion of objects, surfaces, and edges in a visual scene

caused by the relative motion between an observer (an eye or a camera) and the scene.

In 1981, Horn and Schunck [91, 92] deduced a basic equation of optical flow estimation

when the interval of consecutive frames was short, and the gray change in the image

was also small. If at time t, the coordinates of a pixel on the image with its gray value

is I(x,y, t), and at time (t+�t), the pixel has moved to new position, its location on the

image becomes (x+�x,y+�y), and the gray value becomes I(x+�x,y+�y, t+�t).

dI(x,y, t)/dt = 0 is obtained based on the assumption that intensity is conserved. Then

the equation can be re-written as I(x,y, t) = I(x+�x,y +�y, t +�t), whose Tayor

expansion can be used to derive the gradient constraint equation as below.

∂ I
∂x

dx
dt +

∂ I
∂y

dy
dt +

∂ I
∂ t = 0.

Suppose u and v are two components of the optical flow along the x coordinate and

y coordinate, and they are defined as u = dx/dt, v = dy/dt. Then the basic optical
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flow equation is obtained as Ixu+ Iyv+ It = 0, where Ix denotes the partial x coordinate

derivative of I(x,y, t), Iy denotes the partial y coordinate derivative of I(x,y, t), and It

denotes the partial time derivative of I(x,y, t).

The advantage of using the optical flow is that it does not require any priori knowl-

edge on the object appearance which satisfies the requirement of an unsupervised method

in this section. The disadvantage is that the computation is usually too complex to be

used in real-time applications if there is no special hardware support. With the attempt

to reduce the computation complexity of the optical flow technique, the motion vector

idea using the optical flow technique to work on the block-level instead of pixel-level

motion is adopted.

Motion vector is an integral part of many video compression algorithms which are

used for motion compensation. The idea behind block matching is to divide the current

frame into a matrix of blocks that are then compared with the corresponding block

and its neighbors in the previous frame to determine a motion vector that estimates the

movement of a block from one frame to another. For fast motion estimation purposes,

we employ the optical flow method to describe the spatial motion of blocks in the frame.

Harris3D Corner Detector

If the video sequences are captured by a moving camera or in a non-static background,

no satisfactory results can be obtained by simply relying on the motion described by

optical flow to estimate the motion region. Thus, in our proposed framework, the space

time interest point detector, Harris3D corner detector [93], is employed to integrate the

motion presented by optical flow. The Harris3D corner detector is used to detect the

spatial-temporal corners with velocity changes over a sequence of frames.
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We consider a 3D window at a space-time point I(x,y, t) and analyze the average

intensity change (gradient) as the window is shifted by a small amount (σ ,τ) in spatial

as well as temporal dimensions (σ is the spatial scale and τ is the temporal scale). The

space-time gradient is obtained as ∇L = (Lx,Ly,Lt)
T . The interest point is identified by

evaluating the distribution of ∇L within a local neighborhood. The matrix μ of the sec-

ond moments measures the variation of the gradients. μ is a 3-by-3 matrix composed of

the first order spatial and temporal derivatives being averaged using a Gaussian weight-

ing function g(·;σ 2
i ,τ2

i ). A high variation of ∇L implies large eigenvalues of μ , and the

spatial-temporal corners are obtained from the local maxima of H over I(x,y, t).

H = det(μ)− k · trace3(μ) = λ1λ2λ3 − k(λ1 +λ2 +λ3)
3,

where λ s are the eigenvalues of H and k is a constant with a value close to 0.15.

Integrated Spatial-Temporal Motion

The above discussion shows that the optical flow field and Harris3D corner detector

have their individual characteristics in the spatial-temporal motion calculation. The

integration of these two sources of motion information may provide the complementary

motion information to improve the region of motion estimation.

Suppose N key frames are sampled from a motion video sequence, and N − 1 op-

tical flow fields are generated. Spatial-temporal volumes created around the Harris3D

corners are illustrated in gray boxes in Figure 4.2. All volumes are clustered into N −1

groups based on the time stamp of the key frames. As shown in Figure 4.2, if the cen-

ter of the volume is between [n−0.5,n+1.5], the volume belongs to group (n, n+1).

The histogram of Harris3D volumes of group (n, n+1) is then generated based on the

distribution of the volumes along the time line. The new motion M(x,y) at pixel (x,y)

between key frames n and n+1 is calculated as given in Equation (4.1).
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M(x,y) = O(x,y)∗H(x,y) (4.1)

where O(x,y) is the the motion vector of optical flow and H(x,y) is the histogram of

Harris3D volumes at pixel (x,y). This method is also viewed as a weighted optical

flow approach which uses the histogram of Harris3D volumes to weigh the optical flow

field. In this way, two sources of motion information are integrated in terms of the key

frames.

Figure 4.2: Illustration of the histogram of Harris3D volumes

Region of Motion Estimation

An unsupervised motion region estimation method is proposed in this section by an-

alyzing the new motion field generated from the integration of optical flow and the

histogram of Harris3D volumes. The idea of the integral density, as defined in [94], is

adopted in the method since it allows fast implementation of the box type convolution

filters. The entry of a summed area table I∑(x) at a location x=(x,y) represents the sum
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of all values in the input 2D matrix I of a rectangular region formed by the point x and

the origin, i.e.,

I∑(x) = ∑i≤x
i=0 ∑j≤y

j=0 I(i, j).

With I∑(x) calculated, it takes only four additions to calculate the sum of the values

over any upright rectangular areas, independent of their sizes. In the same way, the

maximal motion region is identified as the region of motion. We define the maximal

motion region as an area having the highest motion density as shown below, where

v(x,y) indicates the integrated motion at pixel (x,y).

argmax
R

∫ ∫
R

v(x,y)dxdy.

4.1.2 Moving Object Recognition Framework

Gaussian Mixture Models (GMM) are employed in our proposed framework, whose

probability density function (pdf) is given by p(x|θ) = ∑K
k=1 ωkN(x|μk,∑k), where K

is the number of Gaussian mixtures, and θ = {ωk,μk,∑k}K
k=1 is a set of parameters

including a mixing coefficient ωk and a pdf of Gaussian distribution N(x|μk,∑k) with

the mean vector μk and the variance matrix ∑k. The GMM parameters are estimated by

an expectation maximization (EM) algorithm. The EM algorithm is known as a method

for finding the maximum likelihood of a model with latent variables.

SIFT [95] and STIP [93] features are used to describe the action video sequences in

the action recognition. However, the number of features (SIFT or STIP) from a single

video is not enough to estimate the GMM parameters precisely. Thus, we first learn

a global GMM (called Universal Background Model (UBM)) by using the features

from all training videos, then adapt the UBM parameters in order to fit each particular

data distribution. This adaptation is made by using the Maximum A Posteriori (MAP)
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approach [73]. The first step consists of determining the probabilistic alignment of the

training vectors with the UBM Gaussian components. For a Gaussian component k in

the UBM, we compute:

Pr(k,xt) =
ωk pk(xt)

∑K
k=1 ωk pk(xt)

,

nk =
T

∑
t=1

Pr(k,xt),

Ek(x) =
1
nk

T

∑
t=1

Pr(k,xt)xt ,

where, Xt represents the tth feature vector of the video to be modeled. These statistical

values are then used for adapting the mean vector μ̂ of each Gaussian.

μ̂k = αkEk(x)+(1−αk)μk;

αk =
nk

nk + r
,

where r is a fixed “relevance factor”, usually set between 8 and 20 [75]. The con-

catenation of all the mean vectors of the N Gaussian components is called the GMM

supervector which was first proposed as a speaker recognition method [74] and then

has been applied to semantic indexing [69] and music similarity [75]. Knowing the

parameter of the UBM, a particular video model can be resumed by the mean vectors

of its Gaussian mixture components. The testing videos are classified by using the sup-

port vector machines (SVMs) with the RBF kernel [96]. In this section, to save UBM

training time, only features extracted from each region of action are used to model the

overall data distribution.

4.1.3 Experimental Results on KTH and UCF11 Data Sets

The detection and recognition experiments were conducted on the KTH and UCF Youtube

Action (UCF11) data sets. The KTH data set has 25 actors performing six actions four
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times in four different environments, resulting in 599 video sequences in total. The

video sequences were recorded in a controlled setting with slight camera motion and

a simple background. The six categories of actions are boxing, hand clapping, hand

waving, jogging, walking, and running [97]. UCF Youtube Action (UCF11) data set

is more challenging than the KTH data set since it includes 1,168 videos and has 11

categories of actions collected from YouTube with non-static background, low quality,

camera motions, poor illumination conditions, etc. [1].

Experimental Setup

For the interest point detection, the difference of Gaussians edge detection method pro-

posed by Lowe [95] and the Harris3D corner detector proposed by Laptev [93] are used

to locate the interest points of SIFT and STIP, respectively. Three key frames were

equally sampled along the video for SIFT feature extraction and optical flow compu-

tation. The dimensions of the SIFT and STIP features are reduced to 32 by applying

the Principle Component Analysis [98] from 128 and 162, respectively. The number

of Gaussian components in GMM (i.e., K) is set to 256 for the KTH and UCF11 data

sets. For classifier selection, we have many choices, such as [99, 100, 101, 102, 103].

In the experiment, support vector machine (SVM) is used to cope with the multi-class

classification task due to its robustness to different data sets. We adopt the empirical set-

ting in libSVM [104], and for comparison purposes, the leave one out cross validation

(LOOCV) scheme is employed to compare with some existing approaches.

Experimental Results on the KTH Data Set

Though the proposed framework is mainly designed to deal with videos captured in

unconstrained environments, it is also proved to achieve pretty good performance in

videos recorded in a “clean” background, such as the KTH data set. First, the accurate
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Table 4.1: Accuracy comparison on the KTH data set (%)
Algorithm Accuracy (%)

Proposed framework 93.67
Reddy et al. [41] 89.79
Dollar et al. [105] 81.2

Liu et al. [106] 91.3
Wong et al. [107] 83.9
Laptev et al. [3] 91.8

localization of motion is verified. Sample regions of motion estimation results are il-

lustrated in Figure 4.3. The features extracted from the regions of motion were used

to learn UBM and a classification accuracy of 93.67% was obtained if combining the

SIFT and STIP similarity scores, whereas the accuracy was 84.65% if using the SIFT

features alone and was 90.65% if using the STIP features alone. The combination of

two kinds of features achieved 3% improvement in the performance. Table 4.1 lists

several state-of-the-art performance results on the KTH data set, and indicates that our

proposed framework outperforms the peer work. Of note, the amount of features used

to train UBM is less than 15% of the total features over all video sequences, which

clearly shows to reduce lots of offline training time.

Figure 4.4 shows the confusion table containing the detailed confusion values be-

tween action categories. Based on the moving part of a person, the six action categories

can be grouped into limb action (boxing, hand clapping, and hand waving) and leg

action (jogging, running, and walking). Of note, the confusion happens either within

limb action or leg action videos. From the figure, it can be seen that no limb action is

misclassified as leg action, and vice versa. This indicates our proposed framework is

reasonably good.
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(a) Boxing (b) Handclapping

(c) Handwaving (d) Jogging

(e) Running (f) Walking

Figure 4.3: Region of motion detection results on sample frames in the KTH data set.

Experimental Results on the UCF11 Data Set

The UCF11 data set is more challenging than the KTH data set, since it contains realistic

actions, camera motions, and complicated backgrounds. Figures 4.5 - 4.7 illustrates

some sample results of motion region estimation of the proposed framework (on the

left of each sub-figure) and felzenszwalb’s part-based models (on the right of each sub-

figure) [4]. The codes we used to conduct felzenszwalb’s algorithm were downloaded

from [108]. Note that felzenszwalb’s method works well with human vertical positions

in simple backgrounds, such as in Figures 4.5(d), 4.6(a) and 4.7(a). Since the method

does not consider temporal information, it may fail in cluttered scenes such as in the first
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Figure 4.4: Confusion matrix of 6 action categories on the KTH data set with an average
performance of 93.67%.

example of Figure 4.5(a) which has a lot of trees having similar appearances with the

person. In contrast, since our proposed framework is unsupervised, it could effectively

locate the region of motion without many appearance constraints obtained from the

training data. Furthermore, our proposed framework is motion-driven so it is more

suitable for motion detection which includes the interaction of humans and objects like

biking (Figure 4.5(b)), horse riding (Figure 4.5(e)), etc.

In addition, unlike previous approaches that use all features in the videos (extracted

from the scene and object), we use only those features extracted from the region of mo-

tion to train UBM, which significantly reduces the training time. In this experiment, the

motion-related features are about 20% of the full feature set (scene and object), but our

proposed framework achieves better performance than the previous approaches which

use a full set of features. Of note, our proposed framework achieves the performance of

76.06% (as presented in Figure 4.8) after fusing the similarity scores of SIFT and STIP;

while the performance obtained from the SIFT descriptor alone is 55.85% and that from
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(a) Basketball

(b) Biking

(c) Diving

(d) Golfswing

(e) Horseriding

Figure 4.5: Sample results of the proposed region of motion detection method (left) and
felzenszwalb’s part-based models [4] (right) in UCF11 data set.
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(a) Soccerjuggling

(b) Swing

(c) Tennisswing

(d) TrampolineJumping

(e) VolleyballSpiking

Figure 4.6: Sample results of the proposed region of motion detection method (left) and
felzenszwalb’s part-based models [4] (right) in UCF11 data set.
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(a) Walkingwithdog

Figure 4.7: Sample results of the proposed region of motion detection method (left) and
felzenszwalb’s part-based models [4] (right) in UCF11 data set.

Figure 4.8: Confusion matrix of 11 action categories on the UCF data set with an aver-
age performance of 76.06%.
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the STIP descriptor alone is 72.82%. In our proposed framework, the size of the code

book used in the experiments is only 256, which is relatively smaller than those in the

state-of-the-art work, and it also achieves good performances. This demonstrates that

the features are extracted from the correct regions of motions and can describe the class-

related information. The recognition performance reported by Liu et al. is 71.2% using

hybrid features obtained by pruning the motion and static features [1]. Another similar

work that split the moving foreground from the static background and then combined

the motion and the scene context features obtained 73.2% [41].

4.1.4 Conclusions

In this section, a new motion detection and recognition framework that integrates the

spatial-temporal motion obtained from the optical flow field and the Harris3D corner

detector is proposed. It is motivated by taking the advantages of the two sources of

motion information identified by different methods to obtain the complementary motion

information which is kept in the new motion representation. A fast region of motion

estimation method is also proposed by using the integral density algorithm. The SIFT

and STIP features extracted from the regions are used to learn UBM for the motion

recognition proposes. The experimental results verify that the proposed framework

achieves good performance on both motion detection and recognition tasks.

4.2 Spatial-Centered Motion Estimation and Retrieval in Uncon-

strained Environment

In the area of multimedia semantic analysis and video retrieval, automatic object detec-

tion techniques play an important role. Without the analysis of the object-level features,

it is hard to achieve high performance on semantic retrieval. As a branch of object detec-

tion study, moving object detection also becomes a hot research field and gets a great
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amount of progress recently. For example, the analysis of vehicle make and model

needs the vehicle-level information from the video sequence [109, 110]. This section

proposes a moving object detection and retrieval model that integrates the spatial and

temporal information in video sequences and uses the proposed integral density method

to quickly identify the motion regions in an unsupervised way. First, key information

locations on video frames are achieved as maxima and minima of the result of Dif-

ference of Gaussians algorithm. On the other hand, a motion map of adjacent frames

is obtained from the diversity of the outcomes from Simultaneous Partition and Class

Parameter Estimation (SPCPE) framework. The motion map filters key information

locations into key motion locations (KMLs) where the existence of moving objects is

implied. Besides showing the motion zones, the motion map also indicates the motion

direction which guides the proposed “integral density” approach to quickly and accu-

rately locate the motion regions. The detection results are not only illustrated visually,

but also verified by the promising experimental results which show that the concept

retrieval performance can be improved by integrating the global and local visual infor-

mation [94].

With the rapid advances of Internet and Web 2.0, the amount of online multimedia

data increases in an explosive speed, which brings many challenges to data retrieval,

browsing, searching and categorization [9, 10, 11]. Manual annotation obviously cannot

catch up the speed of increasing multimedia data, so content-based video processing

approaches are developed to quickly and automatically identify the semantic concepts

and annotate the video sequences [12, 16, 13, 14, 15].

Automatic object detection techniques, as a key step in content-based multimedia

data analysis framework, has also attracted lots of attention these years. It aims to seg-

ment a visual frame into a set of semantic regions, each of which corresponds to an
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object that is meaningful to the human vision system, such as a car, a person, a tree,

etc. When the object detection issues move from image area to video domain, tempo-

ral information in video sequences brings moving object-level information which can

be utilized for moving object detection. From this perspective, this section integrates

spatial information locations (the yellow crosses shown in Figure 4.9(a)) and temporal

motion cues (the white and black zones shown in Figure 4.9(b)) to find the locations

that are rich in spatial-temporal information (the yellow crosses shown in Figure 4.9(c))

and uses integral density method to identify the motion region (the yellow bounding

box shown in Figure 4.9(d)). The motion region is also verified to be helpful to improve

the content-based multimedia retrieval performance.

Psychological studies find that a human vision system perceives external features

separately [21] and is sensitive to the difference between the target region and its neigh-

borhood. Such kind of high contrast is more likely to attract human’s first sight than

their surrounding neighbors [22]. Following this finding, many approaches have fo-

cused on the detection of feature contrasts to trigger human vision nerves. This re-

search field is usually called visual attention detection or salient object detection. Liu, et

al. [111] employed a conditional random field method which was learned to effectively

combine multiple features (including multi-scale contrast, center-surround histogram,

and color spatial distribution) for salient object detection.

The main contributions of this section include: (1) Define a motion map based

on the segmentation results of Simultaneous Partition and Class Parameter Estimation

(SPCPE) [76] and identify key motion locations (KMLs) by filtering key information

locations via the motion map. The motion map not only shows the motion areas, but also

indicates the moving direction of the objects which help the identification of the moving

objects later. (2) Propose an integral density method inspired by the idea of integral
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(a) (b)

(c) (d)

Figure 4.9: Illustration of moving object detection. (a) Key information locations (yel-
low crosses) on a sample image. (b) Motion map of the sample image (white and black
zones). (c) Key motion locations (KMLs) on the motion map. (d) Motion region de-

tected by the proposed integral density method from (c).
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image in order to quickly and accurately detect the moving object regions from KMLs.

(3) Present a multimedia retrieval framework to integrate global and local features in

order to enhance the existing retrieval framework that uses only global features [112].

The remainder of this section is organized as follows. The moving object detection

framework is presented in Section 4.2.1. Section 4.2.2 describes the proposed moving

object detection and retrieval model that fuses the global and local features to enhance

the retrieval performance. The new content-based multimedia retrieval framework is

also introduced in this section. Section 4.2.3 presents the experimental results and

analyzes the performance from the detection and retrieval angles, respectively. Sec-

tion 4.2.4 concludes the proposed moving object detection and retrieval model.

4.2.1 Moving Object Detection Framework

Figure 4.10: The proposed moving object detection framework
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Figure 4.11: An example of the detection flowchart

In the motion detection field, the optical flow method is commonly used to com-

pute motion contrast between visual pixels. However, it has obvious drawbacks. For

instance, when multiple motion layers exist in the scene, optical flows at the edge pixels

are noisy. Also, in texture-less regions, optical flows may return error values. To ad-

dress these drawbacks, instead of using the above pixel-wise computations, we employ

an unsupervised object segmentation method called SPCPE (Simultaneous Partition and

Class Parameter Estimation) to segment the frame approximately, and then compute the

difference between the two frame segments whose results are called the “motion map”

in this section. This motion information is used to filter the key information locations

obtained from the result of difference of Gaussians algorithm applied in scale space to

a series of smoothed and re-sampled videos frames [95]. Finally, the integral density

method is utilized to identify those regions as the moving objects where the KMLs is

high. Figure 4.10 shows the flowchart of our proposed moving object detection frame-

work. Figure 4.11 illustrates a detailed example of the detection flowchart.
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Motion Map Generation

We aim to separate the moving objects from the relatively static background in an unsu-

pervised manner or a bottom-up approach. Unlike those top-down approaches which are

task-driven and need to know the prior knowledge of the target, bottom-up approaches

are referred to as the stimuli-driven mechanism which is based on the human reaction

to the external stimuli (for example, the prominent motion from the surroundings).

As shown in the third row of Figure 4.12, the pixels in the video frames are seg-

mented into two classes by using the SPCPE algorithm. It starts with an arbitrary class

partition and then an iterative process is employed to jointly estimate the class partition

and its corresponding class parameters. The iteration is terminated when the areas of

the two classes are stable. Assume that the content of the adjacent frames in a video

sequence does not change much (as shown in Figures 4.12(a) and 4.12(b)), and thus the

estimation result of the two classes of successive frames does not differ a lot as shown

in Figures 4.12(e) and 4.12(f). Under this assumption, the segmentation of the previous

frame is used as an initial class partition for the next frame, so the number of iterations

for processing is significantly decreased.

Though the contours of the objects are not very precise as shown in Figures 4.12(e)

and 4.12(f), the segmentation is considered to reflect the object information in the frame.

Even though using binary images as shown in Figures 4.12(c) and 4.12(d) can in some

degrees represent object information, the difference of binary images shown in Fig-

ure 4.13(a) contains too much noise so that it fails to give the motion cues of mov-

ing objects as the difference of the SPCPE results does in Figure 4.13(b). Assume

the white regions and black regions in Figures 4.12(e) and 4.12(f) stand for class 1

and class 2, respectively. The gray area in Figure 4.13(b) shows the pixels which do
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Comparison of the binary images and SPCPE segmentation results of
sample frames. (a) and (b) are adjacent frames containing trees, roads, and bicycling
persons. (c) and (d) are binary images converted from (a) and (b). (e) and (f) are the

two-class SPCPE segmentation results of (a) and (b).



87

(a) (b)

(c) (d)

Figure 4.13: Comparison of the motion maps and corresponding moving object detec-
tion results. (a) is the motion map generated from Figures 4.12(c) and 4.12(d). (b) is the
motion map created from Figures 4.12(e) and 4.12(f). (c) and (d) are detection results

by using (a) and (b).
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not change the class labels from Figures 4.12(e) to 4.12(f). The white zones in Fig-

ure 4.13(b) show those pixels which change from class 1 to class 2, and the black zones

show those pixels which change from class 2 to class 1. Obviously, these white and

black zones contain the contour information of the moving objects and background,

as well as the moving direction information of the objects. Thus we define the white

and black zones in Figure 4.13(b) as the motion map of Figures 4.12(e) and 4.12(f).

Figures 4.13(c) and 4.13(d) are the motion detection results by using different motion

maps (Figures 4.13(a) and 4.13(b)), respectively. It shows that SPCPE aims to keep the

general object information while ignoring the detailed texture information, so it is good

for getting a robust motion map. In contrast, the binary images contain more detailed

object contour information which may influence the quality of the motion map if the

background in the frames contains many detailed texture information.

Key Motion Locations Identification via Motion Map

Our proposed moving object detection and retrieval model identifies the key informa-

tion locations by searching the maxima and minima of the results of the DoG function

when it is applied in scale space to a series of smoothed and re-sampled frames [95].

Some of the key information locations describe the moving objects and the others de-

scribe the background. Based on this observation, we use the motion map generated

in the previous step to filter those key information locations which are not located on

the contour of the moving object. Actually, only the key information locations on the

motion map are kept as the so-called “key motion locations” (KMLs) to help find the

moving object regions as shown in Figure 4.9(c), since we consider KMLs are motion

related.
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Moving Object Region Detection

After identifying KMLs, how to group them into meaningful moving objects becomes

a critical issue. This is a global searching problem that is very time-consuming. To

solve this problem, we propose a method to quickly find the moving object regions that

have a high density of KMLs and satisfy the direction constraint in the motion map. In

the proposed model, the idea of integral images, as defined in [113], is adopted since

it allows the fast implementation of the box type convolution filters. The entry of an

integral image I∑(x) at a location x=(x,y) represents the sum of all pixels in the input

image I of a rectangular region formed by the point x and the origin, i.e.,

I∑(x) =
i≤ x

∑
i=0

j≤y

∑
j=0

I(i, j).

With I∑(x) calculated, it only takes four additions to calculate the sum of the intensities

over any upright rectangular areas, independent of their sizes.

Inspired by the integral images, we calculate the density of KMLs in the input image

instead of the sum of all pixels. This new approach is defined as the “integral density”

in this section. This provides us a fast way to find the region where the density of KMLs

is high, and we consider this region is greatly related to the moving objects. In order

to bound the whole moving object instead of part of it, the satisfied region is subject

to one condition. That is, the moving object region needs to satisfy the constraint that

the ratio of two motion zones (white zone and black zone) in the motion map is not

high. Ideally, the two zones should have the same area, which indicates the moving

direction of the object. Of note, in the section the ratio is set to 2. However, the

determination of this ratio threshold can be adjusted depending on the applications. As

shown in Figure 4.14(a), the white zone and black zone are separate. Without the above
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constraint, only a half of the person in Figure 4.14(b) may be bounded where the density

of the interest points is high.

(a) (b)

Figure 4.14: Demonstrate the necessity of the proposed constraint for integral density.
(a) is the motion map of frame (b), which shows a correct moving object detection result

under the constraint.

4.2.2 Effective Retrieval Using Global and Local Features

Our proposed moving object detection and retrieval model consists of a new content-

based multimedia retrieval framework that integrates the global and local features to

enhance the retrieval performance. The motivation of this framework is to utilize the

information obtained from the moving object detection part of the model so that the

local or object-level features can be integrated with the commonly used global features

for the retrieval. As shown in Figure 4.15, the training phase of the retrieval framework

includes two main modules: feature extraction and subspace training, which work on

the moving object regions and original frames, respectively. The Subspace modeling

and ranking (SMR) algorithm [114] is adopted to train the subspace in this proposed

content-based multimedia retrieval framework. That is, a subspace called local sub-

space will be trained for the local features extracted from the moving object regions,
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and a subspace called global subspace will be trained for the global features extracted

from the original video frames.

Figure 4.15: Training phase of the proposed moving object detection and retrieval
model (with a new content-based multimedia retrieval framework)

For each query (concept), the training data set (local or global) is first split into

a positive subset and a negative subset. The positive subset is made up of positive

instances; whereas the negative subset consists of negative instances. Two subspace

models are built from the two subsets separately. First, the z-scores normalization is

applied to the positive instances and the negative instances, respectively. Then, Singular

Value Decomposition (SVD) is used to derive the Principal Components (PCs) and

eigenvalues of the normalized positive instances and those of the normalized negative

instances from their covariance matrix. Those PCs attached to zero eigenvalues are

discarded since they contain no extra information. A subspace is built for the positive
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training instances and likewise a subspace is built for the negative training instances.

The two subspaces as well as those related eigenvalues are used in the testing phase for

each testing instance.

For the testing phase that is shown in Figure 4.16, the feature extraction process

is the same as that in the training phase. The visual features are projected onto the

subspace obtained in the training phase. That is, the local features extracted from the

moving object regions in the testing data set will be projected onto the local subspace

obtained in the training phase (from the moving object regions in the training data set),

and the global features extracted from the video frames in the testing data set will be

projected onto the global subspace obtained in the training phase (from the video frames

in the training data set). Each testing feature vector will be converted into a similarity

score after the subspace projection. A fusion process is necessary to combine the simi-

larity scores from local and global subspaces to give a final similarity score to represent

each video shot. In this section, the logistic regression method is employed to fuse the

global and local similarity scores from the different features. In the future, other fusion

methods will be explored in our proposed model.

4.2.3 Experimental Results and Analyses

The effectiveness of our proposed moving object detection and retrieval model is eval-

uated on a subset of the TRECVID 2010 video collection [79]. The subset contains

ten queries (concepts) which involve in motion (consisting of motion information) as

shown in Table 4.2. Some shots are multi-labeled, so the total number of shots is less

than the sum of the numbers of shots in all ten queries. For example, a shot which is

annotated as “running” is possibly also labeled as “sports”.
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Figure 4.16: Testing phase of the proposed moving object detection and retrieval model
(with a new content-based multimedia retrieval framework)

Table 4.2: Data set parameters of the experiments
Concept Concept # of shots # of shots

ID in training in testing
4 Airplane-flying 83 113
6 Animal 687 1069

13 Bicycling 79 55
38 Dancing 390 250
59 Hand 759 287

100 Running 245 116
107 Sitting down 1555 536
111 Sports 607 839
127 Walking 1067 412
128 Walking or running 2145 766

Total 7617 3604
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(a) Key information loca-
tions

(b) SPCPE segmentation
results

(c) Motion map

(d) Key motion locations
(KMLs)

(e) Motion region by the
proposed model

(f) Motion region by [5]

Figure 4.17: Sample detection results on a video clip for airplane flying compared with
method in [5]. (a) key information locations, (b) SPCPE segmentation results, (c) the
motion map, (d) key motion locations (KMLs), (e) moving object regions obtained by

the proposed model, and (f) object regions obtained by temporal model in [5].
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(a) Key information loca-
tions

(b) SPCPE segmentation
results

(c) Motion map

(d) Key motion locations
(KMLs)

(e) Motion region by the
proposed model

(f) Motion region by [5]

Figure 4.18: Sample detection results on a video clip for animal compared with method
in [5]. (a) key information locations, (b) SPCPE segmentation results, (c) the motion
map, (d) key motion locations (KMLs), (e) moving object regions obtained by the pro-

posed model, and (f) object regions obtained by temporal model in [5].
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(a) Key information loca-
tions

(b) SPCPE segmentation
results

(c) Motion map

(d) Key motion locations
(KMLs)

(e) Motion region by the
proposed model

(f) Motion region by [5]

Figure 4.19: Sample detection results on a video clip for bicycling compared with
method in [5]. (a) key information locations, (b) SPCPE segmentation results, (c) the
motion map, (d) key motion locations (KMLs), (e) moving object regions obtained by

the proposed model, and (f) object regions obtained by temporal model in [5].
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(a) Key information loca-
tions

(b) SPCPE segmentation
results

(c) Motion map

(d) Key motion locations
(KMLs)

(e) Motion region by the
proposed model

(f) Motion region by [5]

Figure 4.20: Sample detection results on a video clip for dancing compared with method
in [5]. (a) key information locations, (b) SPCPE segmentation results, (c) the motion
map, (d) key motion locations (KMLs), (e) moving object regions obtained by the pro-

posed model, and (f) object regions obtained by temporal model in [5].
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(a) Key information loca-
tions

(b) SPCPE segmentation
results

(c) Motion map

(d) Key motion locations
(KMLs)

(e) Motion region by the
proposed model

(f) Motion region by [5]

Figure 4.21: Sample detection results on a video clip for hand compared with method
in [5]. (a) key information locations, (b) SPCPE segmentation results, (c) the motion
map, (d) key motion locations (KMLs), (e) moving object regions obtained by the pro-

posed model, and (f) object regions obtained by temporal model in [5].
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(a) Key information loca-
tions

(b) SPCPE segmentation
results

(c) Motion map

(d) Key motion locations
(KMLs)

(e) Motion region by the
proposed model

(f) Motion region by [5]

Figure 4.22: Sample detection results on a video clip for running compared with method
in [5]. (a) key information locations, (b) SPCPE segmentation results, (c) the motion
map, (d) key motion locations (KMLs), (e) moving object regions obtained by the pro-

posed model, and (f) object regions obtained by temporal model in [5].
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(a) Key information loca-
tions

(b) SPCPE segmentation
results

(c) Motion map

(d) Key motion locations
(KMLs)

(e) Motion region by the
proposed model

(f) Motion region by [5]

Figure 4.23: Sample detection results on a video clip for sitting down compared with
method in [5]. (a) key information locations, (b) SPCPE segmentation results, (c) the
motion map, (d) key motion locations (KMLs), (e) moving object regions obtained by

the proposed model, and (f) object regions obtained by temporal model in [5].
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Performance of the Moving Object Detection Framework

To form the experimental data set, a reference key frame for each shot is kept, assuming

that the reference key frame represents the content of the shot. In the proposed motion

region detection model and the semantic concept retrieval model, four extra frames

around the reference key frame in each shot are extracted for the purpose of calculating

the motion of the shots. In this study, the time interval between two frames is set to

0.2 seconds. Such a value can be adjusted or adaptively computed based on the motion

speed in the shot in our future work. Furthermore, to achieve fast computation, the

minimum motion region size is set to 0.4 times of the shorter dimension size of the

frame. This assumes that a small region only includes a part of a moving object. Some

examples of motion region detection results in the data set are provided in Figures 4.17-

4.23.

Without considering the temporal motion information in the video sequences, there

can be a large number of key information locations which represent a rich texture infor-

mation area from the spatial angle, but some of them are considered noise (as shown in

(a) of Figures 4.17-4.23). As the result of applying our proposed key information loca-

tion filtering via the motion map (in (c) of Figures 4.17-4.23 obtained from the SPCPE

algorithm), it can be clearly seen that the resulting key motion locations (KMLs) are

able to keep the spatio-temporal information which is suitable for the motion region

detection purpose (as shown in (d) of Figures 4.17-4.23). The detection results from the

temporal model of [5] are given in (f) of Figures 4.17-4.23. The reason why the model

proposed in [5] fails in some cases is that the model is greatly influenced by the results

of point correspondences. Though the new model proposed in this section uses a similar

strategy as in [5] to locate the key information locations, our proposed motion map re-
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moves those motion-unrelated information and the integral density method successfully

gets the motion region by precisely analyzing the distribution of the KMLs. Finally, the

effectiveness of our proposed motion region detection model is demonstrated via (e) of

Figures 4.17-4.23.

Performance of the Proposed Moving Object Detection and Retrieval Model

The motion regions detected in the previous subsection can be viewed as a kind of local

features that describe the object-level texture of the shot. This may be complementary

to the global information for multimedia retrieval. To verify this assumption, a set of

comparable experiments is conducted in three data sets (reference key frame (RKF),

multiple frames (MF), and multiple frames plus motion regions (MF+MR)). The data

set of the reference key frames is the same set used in the moving object detection

model. Four frames are extracted per shot around the reference key frame. That is,

including the reference key frame, each shot is represented by five frames which consist

of the MF data set. On each frame, one or more motion regions (MR) may be detected.

Motion regions detected in the MF data set plus the MF data set itself form the MF+MR

data set. The experimental design aims to check whether the motion region features can

complement the global features to enhance multimedia retrieval.

In the feature extraction step, three kinds of texture features (YCbCr, Gabor, and

LBP) are extracted from each data set. For YCbCr features, the frame or region is first

converted to the YCbCr color space from the RGB color space. Then the frame or region

is divided into nine blocks. Mean, variance, skewness, and kurtosis are calculated on

Y, Cb, and Cr components, respectively. Considering the mean, variance, skewness,

and kurtosis calculated on Y, Cb, and Cr components of the global frame, there are

totally 120 features that are obtained from each frame or region. For Gabor features,



103

Table 4.3: MAP Comparison when different numbers of results are requested (%) -
YCbCr features

Top 10 100 1000 2000 All
RKF 0.4528 0.4657 0.3745 0.3400 0.3063
MF 0.5484 0.5503 0.4147 0.3752 0.3460

MF+MR 0.6746 0.6103 0.4355 0.3968 0.3691
Impr. % to RKF 48.98 31.05 16.29 16.71 20.50
Impr. % to MF 23.01 10.90 5.02 5.76 6.68

Table 4.4: MAP Comparison when different numbers of results are requested (%) -
Gabor features

Top 10 100 1000 2000 All
RKF 0.7034 0.5773 0.4045 0.3630 0.3349
MF 0.6511 0.6051 0.4563 0.4051 0.3798

MF+MR 0.7286 0.6550 0.4799 0.4271 0.3997
Impr. % to RKF 3.58 13.46 18.64 17.66 19.35
Impr. % to MF 11.90 8.25 5.17 5.43 5.24

a set of Gabor filters with different frequencies and orientations is convolved with the

frame or region to generate 108 features to describe the frame or region. LBP (Local

Binary Pattern) is a simple yet very efficient texture operator which labels the pixels

of a frame or region by thresholding the neighborhood of each pixel and considers the

result as a binary number. After summarization of the binary numbers, 59 LBP features

are returned to represent the frame or region.

In this section, we transform the multi-class issue into the binary class problem.

This means that in the training phase, the one-again-all strategy is utilized. Logistic

regression method is used to fuse the similarity scores of multiple frames (MF) as well

as multiple frames and motion region (MF+MR).

The mean average precision (MAP) is defined as the mean of the average precision

(AP) of all queries, and is used as the criterion to evaluate and compare the performance

of different approaches. Average precision (AP) is a popular measure that takes into
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Table 4.5: MAP Comparison when different numbers of results are requested (%) - LBP
features

Top 10 100 1000 2000 All
RKF 0.4929 0.5287 0.4370 0.4079 0.3915
MF 0.5316 0.5541 0.4729 0.4437 0.4281

MF+MR 0.6209 0.6034 0.4983 0.4659 0.4501
Impr. % to RKF 25.97 14.13 14.03 14.22 14.97
Impr. % to MF 16.80 8.90 5.37 5.00 5.14

Table 4.6: MAP Comparison when different numbers of results are requested (%) - LBP
+ Gabor + YCbCr

Top 10 100 1000 2000 All
RKF 0.7159 0.6787 0.5460 0.5113 0.4952
MF 0.7801 0.7221 0.5759 0.5423 0.5261

MF+MR 0.8563 0.7741 0.6134 0.5748 0.5594
Impr. % to RKF 19.61 14.06 12.34 14.42 12.96
Impr. % to MF 9.77 7.20 6.51 5.99 6.33

account of both recall and precision in the information retrieval field. Strictly speaking,

the average precision is the precision averaged across all recall values between 0 and 1.

In practice, the integral is closely approximated by a sum over the precisions at every

possible threshold value, multiplied by the change in recall. Let k be the rank in the

sequence of retrieved shots, n be the number of retrieved shots, P(k) be the precision at

cut-off k in the list, and Δr(k) be the change in recall from items k−1 to k [115]. AP is

defined as shown in Equation (4.2).

AP =
n

∑
k=1

P(k)Δr(k). (4.2)

Tables 4.3-4.6 show the MAP values when retrieving 10, 100, 1000, 2000, and all

shots in the three data sets. RKF means the reference key frame data set; MF means the

multiple-frame data set including the reference key frame and four extra frames; and

MF+MR is the union of MF and motion-region data set, including multiple frames with

the moving object region obtained from the multiple frames. Though using different
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features, the retrieval results are consistent among three kinds of data sets. The results

of MF generally outperform those of RKF at different numbers of the retrieval shots,

which indicates that using multiple frames could provide more useful information to

improve the concept retrieval performance than using a single reference key frame. On

the other hand, MR+MF outperforms both MF and RKF on all ten queries. This verifies

that the moving object region has the concept-related information that can be utilized

in the semantic retrieval domain. When comparing the MAP values in the same data

set among Tables 4.3- 4.5, the YCbCr, Gabor, and LBP return similar MAP values. If

using multiple features, the retrieval performance is improved in a considerable degree

(20% more in Table 4.6). Also, we observed that the proposed detection model indeed

effectively identifies the moving object in the frame as shown in Figures 4.17-4.23.

4.2.4 Conclusions

This section proposes a new moving object detection and retrieval model to analyze

and retrieve the spatial-temporal video sequence information. A motion map is gener-

ated from the SPCPE segmentation results to keep the motion related key information

locations, called key motion locations (KMLs). Next, an integral density method is

proposed to quickly and precisely identify the motion region by analyzing the density

of the KMLs under the motion direction restraint generated by the motion map. A new

multimedia retrieval framework using the global and local features is presented to effec-

tively combine and fuse the texture information from the global features via the original

frames and the local features from the motion regions. Experimental results show that

our proposed moving object detection and retrieval model achieves good performance

in terms of the moving object detection and multimedia concept retrieval.
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4.3 Motion Saliency Detection Using Center-Surround Coherency

Model

In this section, a video semantic retrieval framework is proposed based on a novel unsu-

pervised motion region detection algorithm which works reasonably well with dynamic

background and camera motion. The proposed framework is inspired by biological

mechanisms of human vision that motion saliency (defined as attention due to motion)

is more “attractive” than some other low-level visual features to people while watching

videos. Under this biological observation, motion vectors in frame sequences are cal-

culated using the optical flow algorithm to estimate the movement of a block from one

frame to another. Next, a center-surround coherency evaluation model is proposed to

compute the local motion saliency in a completely unsupervised manner. The integral

density algorithm is employed to search for the globally optimal solution of the min-

imum coherency region as the motion region which is then integrated into the video

semantic retrieval framework to enhance the performance of video semantic analysis

and understanding. Our proposed framework is evaluated using video sequences in

non-static background, and the promising experimental results reveal that the seman-

tic retrieval performance can be improved by integrating the global texture and local

motion information.

The main contributions of this section include: (1) Define a center-surround co-

herency model to describe motion contrast computed by motion vectors obtained from

the optical flow algorithm. (2) Employ the integral density algorithm to calculate the

globally optical minimum coherency as the motion region in the frame. (3) Present a

multimedia retrieval framework to integrate global texture and local motion in order to

enhance the existing retrieval framework that uses only global features [116].
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The remainder of this section is organized as follows. The motion saliency region

detection framework is presented in Section 4.3.1. Section 4.3.2 describes the new se-

mantic retrieval model that fuses the global texture and local motion features to enhance

the retrieval performance. The new content-based multimedia retrieval framework is

also introduced in this section. Section 4.3.3 presents the experimental results and

analyzes the performance on KTH and TRECVID 2010 data sets from the detection

and retrieval perspectives, respectively. Section 4.3.4 concludes the proposed motion

saliency detection and semantic retrieval model.

4.3.1 Motion Saliency Region Detection

The studies on the human vision system reveal that it perceives external features sepa-

rately and is sensitive to the diversity of the target region and its neighborhood [22][21].

The center-surround mechanisms of biological systems support the idea of motion

saliency detection on the measurements of local motion contrast. In order to build

an unsupervised detection framework on motion saliency while avoiding the “global

background model” or any type of training processing, a center-surround coherency

model is proposed in our proposed framework (as shown in Figure 4.24) to measure the

motion contrast of a local region and its neighborhoods. After that, the integral den-

sity algorithm is utilized to achieve global minimum coherency as the expected motion

region.

It is not necessary to train samples or pre-build a “global background model” for

the testing instances in the proposed model. Local motion information can be utilized

to compute the motion saliency, so that the model could immediately adapt to different

kinds of unknown backgrounds. Moreover, the model is robust to the camera motion

and dynamic background because of the exploration of its global minimum coherency.
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Figure 4.24: Motion region detection model

Motion Vector by Optical Flow

The concept of optical flows was introduced by James J. Gibson in the 1940s to de-

scribe the visual stimulus provided to animals moving through the world. In 1981,

Horn and Schunck [91][92] conducted a performance analysis of a number of optical

flow techniques. Recently the term optical flow has been co-opted to incorporate related

techniques from image processing and control of navigation, such as motion detection,

object segmentation, etc. The optical flow methods try to calculate the motion between

two image frames which are taken at times t and t +Δt, as shown in Figures 4.25(a)

and 4.25(b).

(a) (b) (c)

Figure 4.25: Illustration of two frames at t and t +Δt, following by the optical flow
calculated from the two frames.
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If the coordinates of a pixel on the image with its gray value at time t is I(x,y, t)

and the pixel moves to new position at time (t +Δt), its location on the image becomes

(x+Δx,y+Δy), and the gray value becomes I(x+Δx,y+Δy, t+Δt). Assuming that the

intensity is conserved, we can have Equation (4.3) which can be re-written as Equation

(4.4). The gradient constraint equation is easily derived from a Tayor expansion of

Equation (4.4) as shown in Equation (4.5).

dI(x,y, t)/dt = 0; (4.3)

I(x,y, t) = I(x+Δx,y+Δy, t +Δt); (4.4)
∂ I
∂x

dx
dt

+
∂ I
∂y

dy
dt

+
∂ I
∂ t

= 0. (4.5)

Let the two components of the optical flow along the x and y coordinates be u =

dx/dt and v = dy/dt, and let Ix, Iy, and It denote the partial x coordinate, partial y coor-

dinate, and partial time derivatives of I(x,y, t). Equation (4.6) presents the basic optical

flow equation. Figure 4.25(c) illustrates the optical flow calculated from Figures 4.25(a)

and 4.25(b).

Ixu+ Iyv+ It = 0. (4.6)

The optical flow does not require any a priori knowledge on the object appearance,

which is an important merit. However, its complex computation time makes it unsuit-

able for real-time applications (if without special hardware). To address such an issue,

in this section, motion vectors are used to decrease its processing time, i.e., to use the

optical flow technique on the block-level motion instead of the pixel-level one. An in-

tegral part of many video compression algorithms is the motion vectors since they are
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used for motion compensation. The idea of the so-called block matching is to divide

the current frame into a matrix of blocks that are then compared with the corresponding

block and its neighbors in the previous frame to determine the motion vector. In other

words, the motion vector is calculated using the optical flow method, but the motion

information of the frame is presented in the block-level.

Center-Surround Coherency Model

To deal with the issues raised by the camera motion or the dynamic background, a

center-surround coherency model is presented, which enables the automatic adaption

of the background variations. There is no need to build or train a global model of

the background. Because coherency compares the center and surrounded regions, it

depends only on the relative disparity between the motion values, and therefore the new

model is invariant to the camera motion.

(a) (b)

Figure 4.26: Illustration of a center-surround sample window. (a) the original frame;
(b) an illustrated center-surround region. The red area denotes the center region, and

the yellow area denoted the surround region.

Suppose an image is divided into m×n blocks, 1 ≤ i ≤ m, 1 ≤ j ≤ n, so ui, j and vi, j

denote two components of the motion vectors at block (i, j). Given a center-surround
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region R which includes a center region Rc and a surrounded region Rs as shown in the

red and yellow areas in Figure 4.26(b). If the block (i, j)⊂ R, then block (i, j) belongs

to either Rc or Rs, where 1 < i1 ≤ i≤ i4 < m, 1 < j1 ≤ j ≤ j4 < n. Here, i1, j1, i4, and j4

are the block boundary coordinates of R; while i2, j2, i3, and j3 are the block boundary

coordinates of Rc. The motion vectors Uc and Vc of the center region Rc are computed

by summing up the motion vectors of the blocks located in the center region as shown

in Equation (4.7) and Equation (4.8), where ∀ block (i, j) ⊂ Rc. If ∀ block (i, j)⊂ Rs,

then the motion vectors Us and Vs of the surrounded region are calculated in the same

way as given in Equation (4.9) and Equation (4.10).

Uc = ∑ui, j; (4.7)

Vc = ∑vi, j; (4.8)

Us = ∑ui, j; (4.9)

Vs = ∑vi, j. (4.10)

The coherency C of the center region and the surrounded region can be obtained

by computing the cosine similarity over the center and surrounded areas (as shown in

Equation (4.11)).

C = cosθ =
Mc ·Ms

‖Mc‖‖Ms‖ ,

where Mc = [Uc Vc] and Ms = [Us Vs] denote the motion energy values in the center

region Rc and the surrounded region Rs, respectively. The smaller the value C is, the

lower the probability that the center region and the surrounded region have similar mo-

tion activities.
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The motion vector gives a measure of the block movement direction in the image.

The greater cosine similarity of the two motion vectors, the more likely the two motion

vectors come from the same object. Considering the temporal consistence of the object

motion in continuous frame sequences, the sum of the coherency Ct in �t time window

is calculated as the estimation criterion of the motion activity in region R in Equation

(4.11).

Ct = ∑t+�t
t C.

Global Minimum Coherency

After the discussion of the temporal coherency Ct , how to quickly find the global min-

imum coherency region in the image turns into an urgent problem in the unsupervised

motion detection topic. Such a problem is a global search issue, which is usually very

time-consuming. To solve this issue, a quick search method is presented to find the pos-

sible motion regions that have a low center-surround coherency. The integral density

concept in [94], which was developed based on the integral images in [113], is adopted.

The rationale is because it allows a fast implementation of the box type convolution

filters. Each entry in the summed area table I∑(x) at a location x=(x,y) represents the

sum of all the values in the input 2D matrix I of a rectangular region formed by the

point x and the origin (please see Eq. (4.11)). After I∑(x) is calculated, the calculation

of the sum of the values over any upright rectangular areas, independent of their sizes,

will take only four additions.

I∑(x) =
i≤x

∑
i=0

j≤y

∑
j=0

I(i, j).

Inspired by the summed area table algorithm, the motion vectors of each block in an

image are written as a matrix. The summed area table of this motion matrix is then

generated for the fast computation of the center-surround coherency of every location.
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After traversing the center-surrounded region in the image, the global minimum co-

herency can be quickly obtained.

4.3.2 Semantic Retrieval Model

Based on the proposed motion saliency region detection algorithm, a semantic retrieval

model is presented. It consists of a new multimedia semantic retrieval framework that

integrates the global texture and local motion features to enhance the retrieval perfor-

mance. The motivation of this framework is to utilize the information obtained from

the motion saliency region detection part of the model so that the local or object-level

features can be integrated with the commonly used global features for the retrieval.

As shown in Figure 4.27, the training phase of the retrieval framework includes two

main modules: feature extraction and subspace training, which work on the motion re-

gions and original frames, respectively. The representative subspace projection model-

ing (RSPM) algorithm [15] is adopted to train the subspace in this proposed multimedia

semantic retrieval framework. That is, a subspace called the local subspace will be

trained for the local features extracted from the motion regions, and a subspace called

global subspace will be trained for the global features extracted from the original video

frames.

Figure 4.27: Training phase in the proposed semantic retrieval framework

In the testing phase given in Figure 4.28, the feature extraction process is the same as

that in the training phase. The visual features are projected onto the subspace obtained

in the training phase. That is, the local features extracted from the motion regions in



114

Figure 4.28: Testing phase in the proposed semantic retrieval framework

the testing data set will be projected onto the local subspace obtained in the training

phase (from the motion regions in the training data set), and the global features ex-

tracted from the video frames in the testing data set will be projected onto the global

subspace obtained in the training phase (from the video frames in the training data set).

Each testing feature vector will be converted into a similarity score after the subspace

projection. A fusion process is necessary to combine the similarity scores from the lo-

cal and global subspaces to give a final similarity score to represent each video shot. A

good fusion strategy can further improve the final performance of the semantic retrieval

framework. In this section, the logistic regression algorithm is employed to combine the

global and local similarity scores. In the future, more fusion methods will be explored

in our proposed model.

4.3.3 Experimental Results and Analyses

We use two data sets, KTH [97] and TRECVID 2010 (in semantic indexing task) [79],

to evaluate the performance of the proposed framework. In the KTH data set, there

are 25 actors performing six actions four times in four different environments with a

total number of 599 video sequences. There are six action categories, namely boxing,

hand clapping, hand waving, jogging, walking, and running. One characteristic of these

video sequences is that they were recorded in a controlled setting with slight camera

motion and a simple background.
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Table 4.7: TRECVID 2010 Data Set Used in the Experiments
Concept Concept # of shots # of shots

ID name in training in testing
4 Airplane-flying 83 113
6 Animal 729 1087

13 Bicycling 111 64
38 Dancing 411 255
59 Hand 764 289

100 Running 638 252
111 Sports 1024 275
127 Walking 2237 850

Total 5997 3185

On the other hand, the data set in semantic indexing task of TRECVID 2010 con-

tains 130 queries, while the majority belongs to static concepts. Eight queries describ-

ing moving objects were chosen to build a subset for testing our framework, namely

airplane flying, animal, bicycling, dancing, hand, running, sports, and walking. These

all involve salient motion. More detailed information is shown in Table 4.7. Some shots

are multi-labeled. For example, one shot annotated as “sports” can also be labeled as

“running”. In this section, the multi-class issue is transformed into the binary class

problem, meaning that the one-again-all strategy is utilized in the training phase.

Experiments on the KTH Data Set

This KTH data set is used to demonstrate that our proposed framework is able to achieve

pretty good performance in videos recorded in a “clean” background, even though our

proposed framework is designed to deal with videos captured in uncontrolled environ-

ments. In the frame extraction step, we did not use a key frame extraction algorithm to

select the representative key frames as did in [57]. Instead, three frames per second on

average are used to compute the motion saliency in the KTH data set.
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First, the accurate localization of motion is verified. Samples of motion saliency

regions are illustrated in yellow boxes in Figure 4.29. We notice that the motion saliency

of the human body is accurately identified from the videos, while the static parts of the

body are excluded from the boxes. This property of the motion saliency detection model

will later be transferred to the advantage of moving object-level feature extraction, and

proved helpful for semantic retrieval.

(a) Boxing (b) Hand clapping

(c) Hand waving (d) Jogging

(e) Running (f) Walking

Figure 4.29: Samples of motion saliency detection on KTH data set

In the experiments, we test the precision of the concept retrieval using those fea-

tures extracted in frame-wide and region-wide, respectively. To avoid the feature bias,

three kinds of texture features (Gabor, LBP, and HOG) are employed to represent each

frame and motion region. For Gabor features, a set of Gabor filters with different fre-
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quencies and orientations is convolved with the frame or region to generate 108 features

to describe the frame or region. LBP (Local Binary Pattern) is a simple yet very effi-

cient texture operator which labels the pixels of a frame or region by thresholding the

neighborhood of each pixel and considers the result as a binary number. After the sum-

marization of the binary numbers, 59 LBP features are returned to represent the frame

or region. Histogram of Oriented Gradients (HOG) are feature descriptors that are used

in computer vision and image processing. HOG features count the occurrences of the

gradient orientation in the localized portions of an image. It is computed on a dense

grid of uniformly spaced cells and uses the overlapping local contrast normalization for

improved accuracy. The dimension of the HOG features used in the experiment is 135.

The Mean Average Precision (MAP) value is used to evaluate the performance of

different approaches in the section. MAP is the mean of the average precision (AP) of

all queries. For approaches that return a ranked sequence of video shots, the Average

Precision (AP) value is a criterion that considers the order in which the returned shots

are presented. In the other word, AP is the precision value averaged across all recall

values between 0 and 1. Let k be the rank in the sequence of retrieved shots, n be the

number of retrieved shots, P(k) be the precision at cut-off k in the list, and rel(k) be an

indicator function with 1 if the item at rank k is a relevant shot, and 0 otherwise [115].

AP is defined as

AP =
∑n

k=1(P(k)× rel(k))
number o f relevant shots

(4.11)

In the KTH data set, we select the frames of ’person’ 01 - 15 as the training set

and the frames of ’person’ 16 - 25 as the testing set. In each frame, Gabor, HOG, and

LBP features are extracted in frame-wide and region-wide, respectively. The purpose

of extracting frame-wide features is to estimate the performance of only using global

features and ignoring the object-level features. Then, the features of the object-level
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are estimated as region-wide features. We expect the features from a small area, but the

motion saliency should be more discriminative than those from frame-wide.

Meanwhile, considering the possibility of the complementary information among

different methods, we also test the performance of the fused similarity scores of frame-

wide and region-wide. The scores are fused by Logistic Regression (LR) method. Ta-

bles 4.9, 4.10, and 4.8 present the retrieval results in terms of mean average precision

(MAP). The columns show the number of videos requested in each method. Note that

the region-wide method outperforms the frame-wide one using the LBP features, while

using Gabor features, the frame-wide method exceeds the region-wide one. For HOG

features, if retrieving the top 5, 10, or 20 related videos, the region-wide method per-

forms better than frame-wide one; while if retrieving more than 50 related videos, the

frame-wide approach obtains a higher MAP. This result indicates that a single method

does not achieve good precision on all kinds of features. Thus, a fusion technique is

utilized to integrates the advantages of frame-wide and region-wide methods.

The experimental results of the fused method (labeled as “Fused”) are shown in

Tables 4.10, 4.9, and 4.8. The last two rows of Tables 4.10, 4.9, and 4.8 list the im-

provement of the fused method compared to the frame-wide and region-wide methods,

respectively. It can be observed that the fused results, finding that the performance

improvement is prominent.

The average improvements of the fused method by using the Gabor and HOG fea-

tures are 39.75% and 14.52%, respectively. For the LBP features, the poor perfor-

mances of the frame-wide method affect the fusion results, resulting in the decrease

in MAP comparing to the region-wide method in the top 50 and 100 retrieved videos.

However, in the top 5, 10, and 20, the fused method achieves an increase in MAP though

the performances of the frame-wide and region-wide methods are not commensurable.
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Table 4.8: MAP Comparison when different numbers of results are requested (%) - LBP
Features

LBP 5 10 20 50 100
Frame-wide 3.33 5.42 9.42 15.09 18.14
Region-wide 32.36 39.48 40.82 43.29 44.24

Fused 49.17 49.51 47.29 42.24 41.08
Impr. % to frame-wide 1376.58 813.47 402.02 179.92 126.46
Impr. % to region-wide 51.95 25.41 15.85 −2.43 −7.14

Table 4.9: MAP Comparison when different numbers of results are requested (%) -
Gabor Features

Gabor 5 10 20 50 100
Frame-wide 52.99 53.88 48.10 43.02 39.02
Region-wide 42.92 36.60 33.88 33.13 33.56

Fused 67.78 65.07 54.34 52.01 47.25
Impr. % to frame-wide 27.91 20.77 12.97 20.90 21.09
Impr. % to region-wide 57.92 77.79 60.39 56.99 40.79

The overall performance of the fused method verifies that the global (frame-wide) and

local (region-wide) information has the complementary discriminative potential for in-

formation retrieval.

Experiments on the TRECVID Data Set

One reference key frame in each shot is provided in the TRECVID 2010 video col-

lection. In addition to the reference key frame that stands for the content of the shot,

we also extract four extra frames around the reference key frame in each shot for the

Table 4.10: MAP Comparison when different numbers of results are requested (%) -
HOG Features

HOG 5 10 20 50 100
Frame-wide 57.57 62.58 67.07 68.06 65.25
Region-wide 70.09 67.35 67.33 63.91 62.10

Fused 78.68 78.14 74.33 71.54 69.09
Impr. % to frame-wide 36.67 24.86 10.82 5.11 5.89
Impr. % to region-wide 12.26 16.02 10.40 11.94 11.26
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purpose of calculating the motion of the shots. In the experiments, the time interval be-

tween two frames is set to 0.2 seconds. This value can be adaptively computed based on

the motion speed in the shot in our future work. Also, for the fast computation purpose,

the minimum motion region size is set to 0.4 times of the shorter dimension size of the

frame based on the assumption that a small region only includes a part of a moving

target.

Figure 4.30 shows several detection results of motion saliency. Images in the first

and third columns come from TRECVID 2010 training data set; while the ones in the

second and fourth columns are from TRECVID 2010 testing data set. These images

are extracted from videos containing non-static background, and some of them have

complex scenes. Of note, as an unsupervised motion region detection framework, the

proposed motion saliency region detection algorithm successfully identifies the main

motion region in various backgrounds. This provides a good foundation for the further

semantic retrieval task which views the motion regions as a kind of local information

that describes the object-level texture of the shot. This may be complementary to the

global information for multimedia semantic retrieval task.

To verify this assumption, a set of comparable experiments is conducted in three

subsets (reference key frame, multiple-frame, and multiple-frames plus motion-region).

The data set of the reference key frames is provided by TRECVID 2010 regarded as the

representative frames of the video shots. The multiple-frame data set is made up of

the reference key frame and four extra frames extracted in the region detection step.

On each of the five frames, one motion-region is located. Therefore, motion-region

detected in the multiple-frame data set plus the multiple-frame data set itself form the

multiple-frames plus motion-region data set. The experimental design aims to check

whether the local motion region features can complement the global texture features to
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(a) Airplane-flying (b) Animal

(c) Bicycling (d) Dancing

(e) Hand (f) Sports

(g) Running (h) Walking

Figure 4.30: Some results of motion saliency region detection
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Table 4.11: MAP Comparison when different numbers of results are requested (%) -
YCbCr Features

YCbCr 5 10 20 50 100
RKF 54.48 59.95 53.64 51.03 49.09
MF 54.06 58.02 58.56 56.74 53.40
FR 77.01 79.60 78.42 75.93 72.38

Impr. % to RKF 41.35 32.78 46.20 48.79 47.44
Impr. % to MF 42.45 37.19 33.91 33.82 35.54

Table 4.12: MAP Comparison when different numbers of results are requested (%) -
Gabor Features

Gabor 5 10 20 50 100
RKF 60.10 64.31 63.45 59.63 55.54
MF 59.48 60.95 62.03 59.16 56.62
FR 64.38 64.96 68.42 72.49 71.53

Impr. % to RKF 7.12 1.01 7.83 21.57 28.79
Impr. % to MF 8.24 6.58 10.30 22.53 26.33

enhance multimedia semantic retrieval.

Since the video shots in the TRECVID 2010 data set are color ones, we use YCbCr

features, together with Gabor, HOG, and LBP features, to evaluate the retrieval perfor-

mance. For the YCbCr features, the frame or region is first converted to the YCbCr

color space from the RGB color space. The frame or region is then divided into nine

blocks. Mean, variance, skewness, and kurtosis are calculated on Y, Cb, and Cr compo-

nents, respectively. Considering the mean, variance, skewness, and kurtosis calculated

on Y, Cb, and Cr components of the global frame, there are totally 120 features that

Table 4.13: MAP Comparison when different numbers of results are requested (%) -
LBP Features

LBP 5 10 20 50 100
RKF 49.01 50.73 51.18 51.50 51.33
MF 44.69 48.28 50.37 52.14 52.01
FR 67.50 68.33 67.36 60.34 55.92

Impr. % to RKF 37.73 34.69 31.61 17.17 8.94
Impr. % to MF 51.04 41.53 33.73 15.73 7.52
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Table 4.14: MAP Comparison when different numbers of results are requested (%) -
HOG Features

HOG 5 10 20 50 100
RKF 74.44 70.69 66.06 59.95 55.34
MF 65.76 63.45 59.91 55.55 52.52
FR 80.28 79.32 70.20 68.42 65.72

Impr. % to RKF 7.85 12.21 6.27 14.13 18.76
Impr. % to MF 22.08 25.01 17.18 23.17 25.13

are obtained from each frame or region. Logistic regression method is used to fuse the

similarity scores of multiple-frame as well as multiple-frames plus motion-region.

Tables 4.11, 4.12, 4.13, and 4.14 show the MAP values when retrieving 5, 10, 20,

50, and 100 shots in the RKF, MF and FR data sets. RKF means the reference key

frame data set; MF means the multiple-frame data set including the reference key frame

and four neighbor frames; and FR is the union of multiple-frame and motion-region

data set, including multiple-frame with the motion-region obtained from the multiple

frames. Though using different features, the retrieval results are consistent among the

three kinds of data sets. One interesting observation is that using multiple frames does

not necessarily get better retrieval results than using single frames. The results of MF do

not always outperform those of RKF at different numbers of the retrieval shots, which

indicates that sometime a representative frame could provide better texture information

to improve the concept retrieval performance than those from multiple frames. On the

other hand, FR outperforms both MF and RKF on all four features. This verifies that

the motion region has the concept-related information that can be utilized in the seman-

tic retrieval area. When comparing the MAP values in the same data set among Tables

4.11, 4.12, 4.13, and 4.14, the YCbCr and Gabor features keep a stable retrieval perfor-

mance with different numbers of retrieval instances, i.e., MAP does not change much,

even a little increasing using the Gabor features. However, using the LBP and HOG
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features, the retrieval performance may experience a significant drop when retrieving

more instances. Considering the different performances of the features, using multiple

features in semantic retrieval system to improve the performance seems to be a good

choice.

4.3.4 Conclusions

Inspired by the biological mechanisms of human visions that motion saliency attracts

more attention than other low-level visual features in videos, a new semantic retrieval

framework for videos in non-static background is proposed, based on a novel motion

saliency region detection algorithm. This framework defines a center-surround co-

herency model to describe the motion contrast computed by the motion vectors obtained

via the optical flow algorithm, and it utilizes the integral density algorithm to calculate

the global optical minimum coherency as the motion region in the frame. Further, our

semantic retrieval framework integrates the global texture and local motion information

obtained from the proposed motion region detection method in order to enhance the

existing retrieval framework that uses only the global features.

4.4 Combining Object and Scene Information for Moving Object

Retrieval

In many video clips, moving objects not only can be identified by features extracted

from region of object, but also can be inferred from the surrounding environment. For

example, if the background is a sky in the video, “bird” becomes a possible moving

object; otherwise, if the environment is soccer field, “soccer player” is more possible

appeared than “bird” within the scene. Based on this observation, the features from the

object and the surrounding scene may be complementary to each other on information

representation and consequently can be combined together to help the video retrieval.
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An integrated detection framework of moving object is proposed in this section to

analyze motion information in space and time dimension. Specially, a two-layer moving

object detection method is presented to decrease the influence of dynamic background.

The first layer, temporal-centered estimation presented in section 4.1, analyzes the mo-

tion information in temporal dimension and preliminarily estimates the region of motion

(ROM) in the video sequence. The second layer, spatial-centered estimation presented

in section 4.2, further analyzes motion information based on the preliminary ROM and

finalizes the location of ROM. The proposed algorithm comprehensively integrates the

motion information in spatio-temporal space in an unsupervised manner, and is robust

to non-static scene and camera motion.

4.4.1 Two-Layer Detection Model of Region of Motion (ROM)

The proposed two-layer detection framework aims to maximize the complementary

features and obtain accurate ROMs in uncontrolled video sequences. The proposed

detection framework of ROM is shown in Figure 4.32. Temporal-centered and spatial-

centered estimation methods proposed in section 4.1 and section 4.2 enable to detect

moving object in video sequences. Due to the different avenues of obtaining motion

information, the two methods work subject to different constraints. Spatial-centered

estimation method gets motion information by computing difference between two ad-

jacent key frames. If the moving object moves at a low speed, the difference between

key frames is not distinct. This would consequently affect the detection performance.

On the other hand, the spatio-temporal interest points returned by Harris3D detector

are sparse, providing limited locally motion hints of moving object. Figure 4.31 shows

the interest point distribution on a sample frame. Difference of Gaussians edge detector

is sensitive to edge on the frame, so that it is more easy to be affected by background
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(a) (b)

Figure 4.31: Comparison of interest point distribution. (a) interest points detected
by difference of Gaussians edge detector are illustrated in yellow crosses; (b) interest

points detected by Harris3D detector are illustrated in yellow circles.

clutter. Harris3D detector finds interest points in the spatio-temporal domain, therefore

it keeps the space-time sudden changes and provides less interest points than difference

of Gaussians edge detector. Based on the observations of the characteristics of the two

detectors, the proposed two-layer detection framework therefore first narrows down the

motion searching space by utilizing the information from temporal-centered estimation

method. Then, using locally spatial information to estimate the ROM. The two-layer

strategy employs the complementary advantages of spatial and temporal approaches,

and achieves improved performance comparing with the single estimation approach

presented in section 4.1 and section 4.2.

The first layer is called global motion estimation layer, in which interest points in

spatio-temporal space are detected by Harris3D detector. The mechanism of Harris3D

detector has been discussed in section 4.1.1. Comparing with the optional mechanism

for spatio-temporal scale selection proposed in [68], [3] shows promising results by

using interest points extracted at multiple scales based on a regular sampling of the scale

parameters σ and τ . Integral density algorithm combines interest points and optical
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Figure 4.32: The proposed two-layer framework

flow computed from key frames to give a general motion estimation. The goal of the

first layer is to comprehensively analyze the general motion cues in video sequences

to identify a broad region of motion. The layer aims to filter non-static background

and provide high-quality base to the second layer. Figure 4.33(a) shows three example

results given by global motion estimation layer which filters the background and keeps

the generated region of motion (illustrated in yellow box).

The second layer is named as local motion estimation layer, which analyzes motion

key locations on the generated region of motion obtained by the global motion estima-

tion layer and identifies the final location of moving object. Figure 4.33(b) illustrates the

final region of given by global motion estimation layer to filter the background and keep

the generated region of motion. Temporal-centered method presented in section 4.1 re-

turned unsatisfied results of certain videos as shown in Figure 4.33(c). On the other

hand, as shown in Figure 4.33(d) spatial-centered method proposed in section 4.2 also

fails in most cases. Of note, the detection results in Figure 4.33(c) and Figure 4.33(d)

are complementary. Temporal-centered method fails on the third example (“walking

with a dog”) while achieves relatively better results on the first two videos (“diving”
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and “volleyball spiking”) than the spatial-centered method. The latter obtains a better

result on the third video than the former. The proposed two-layer framework effectively

utilizes the complementary characteristics of the two methods to improve the detection

performance of moving object.

The new framework also works well on videos on which temporal-centered esti-

mation method achieved good results. We employ two-layer detection framework to

re-test the samples on which temporal-centered estimation method achieved good de-

tection results that illustrated in Figure 4.34 - 4.36. The comparison results of two-layer

framework and temporal-centered estimation method in Figure 4.34 - 4.36 show sim-

ilar detection results. It verifies that the two-layer framework could not only success-

fully find ROM in some cases that temporal-centered estimation method fails, but also

have similar convincing performance as temporal-centered estimation method in most

videos.

4.4.2 Moving Object Retrieval Using Object and Scene Features

In many cases, people can recognize objects from not only the appearance, but also

the properties of the surrounding scenes. For example, if the environment of the video

sequences is a pool, it is more possible to have a person diving there than bicycling.

The video sequence will not be ranked to top if the query is “bicycling”. In this section,

the features from scenes are exploited to the retrieval model to help object retrieval.

We aims to apply the proposed retrieval framework to the real-world videos, i.e.

videos recorded under controlled environments. The videos are usually weakly labeled

(class-level). One class label is for the whole video sequence. The exactly time interval

of the appearance is not available. More than one moving objects may be present in

video sequences, and only a subset of detected regions is related to the retrieval tar-
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(a) Examples on horse riding, volleyball spiking, and walking with dog estimated by local
motion estimation layer

(b) Region of motion detected by local motion estimation layer based on 4.33(a)

(c) Region of motion detected by temporal-centered estimation method

(d) Region of motion detected by spatial-centered estimation method

Figure 4.33: Illustration of comparison of temporal-centered method and two-layer
framework
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(a) Basketball

(b) Biking

(c) Diving

(d) Golfswing

(e) Horseriding

Figure 4.34: Comparison of detection results of the proposed two-layer moving object
detection method (left) and temporal-centered estimation method (right) in UCF11 data

set.
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(a) Soccerjuggling

(b) Swing

(c) Tennisswing

(d) TrampolineJumping

(e) VolleyballSpiking

Figure 4.35: Comparison of detection results of the proposed two-layer moving object
detection method (left) and temporal-centered estimation method (right) in UCF11 data

set.
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(a) Walkingwithdog

Figure 4.36: Comparison of detection results of the proposed two-layer moving object
detection method (left) and temporal-centered estimation method (right) in UCF11 data

set.

get. Meanwhile, the quality of videos is not adequate and guaranteed. The camera

is non-stationary in many videos captured by an amateur. Moreover, the background

usually is complex and cluttered with poor illumination condition. If the foreground is

moving, it is very difficult to identify the semantic meaning delivered by the moving

object. Under these challenges, we propose to extract features of moving object and

scene, respectively. The complementary information from moving objects and scene is

integrated for capturing relationships to enhance the retrieval performance.

Some of the recent works have explored the possibility of integrating features of

moving object and surrounding scene to improve object recognition performance. Reddy

et al. [41] used optical flow to give a rough estimate of the velocity at each pixel given

two consecutive frames. They, then, applied a threshold on the magnitude of the optical

flow to decide if the pixel was moving or stationary. The stationary pixels were re-

garded as background, while the moving pixels were viewed as the ROM. This method

performs well in videos with static scenes, but the strategy was not suitable for the re-

alistic videos with the unconstrained background. Ikizler-Cinbis et al. [40] estimated

the location(s) of the person(s) by using the human detector proposed by Felzenswalb

et al. [4]. To fill the gap in which the person detector did not fire due to the motion
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blur and pose variations, the mean-shift tracking method was used to locate the person

in every frame [42]. The work considered any moving region as a “candidate object”,

and then found the associated tracks and the corresponding features from each track.

The approach, to some degree, was able to capture the human and object features in the

video. However, from the illustrated examples shown in the paper, the detected regions

of object inevitable included noisy from region of person and background. The paper

did not provide an effective solution to solve the issue.

Our proposed retrieval framework is set up on the basis of the presented two-layer

moving object detection framework. We use the bounding box as the lines to parti-

tion foreground and background. The interest points on foreground and background

are detected by Harris3D detector. HOG/HOF descriptors [117] are employed to com-

pute the histograms of spatial gradient and optical flow accumulated in spatio-temporal

neighborhoods of interest points detected by Harris3D detector. For the combination

of HOG/HOF descriptors with interest point detectors, the descriptor size is defined

by Δx(σ) = Δy(σ) = 18σ , Δt(τ) = 8τ . Each volume is subdivided into a nx × ny × nt

grid of cells. For each cell, 4-bin histograms of gradient orientations (HOG) and 5-

bin histograms of optic flow (HOF) are computed. Normalized histograms are con-

catenated into HOG/HOF descriptor vectors. Peer work names the feature as STIP

features. We use the implementation codes on-line and standard parameter settings

σ 2 = 4,8,16,32,64,128, τ2 = 2,4,nx, ny = 3, nt = 2. This choice is motivated by the

reduced computational complexity, the independence from scale selection artifacts and

the recent evidence of good recognition performance using dense scale sampling [3].
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4.4.3 Experimental Results and Analyses

We test the proposed retrieval framework using UCF11 data set collected by Liu et

al [1]. UCF11 is a large data set containing 1168 videos of human action. Videos

in UCF11 are divided into 11 categories; they are basketball shooting, bicycling, div-

ing, golf swinging, horse riding, soccer juggling, swinging, tennis swinging, trampo-

line jumping, volleyball spiking, and walking with a dog. The rich categories make

it a particularly suitable data set to learn the integration of moving object and scene.

Meanwhile, quite challenges are existed in the data set, such as lots of camera move-

ment, cluttered backgrounds, different viewing directions and varying illumination con-

ditions. Videos for each category of motion are divided into 25 related subsets, and

leave-one-out cross validation (LOOCV) is applied over these subsets, following the

same evaluation methodology of work in [1].

For comparison purposes, besides STIP feature descriptor, SIFT (Scale-Invariant

Feature Transform) is employed to provide video representations [95]. The descriptor

represents the spatial structure and the local orientation distribution of a patch surround-

ing keypoints into a 128-dimensional feature vector. SIFT is regards as one of the best

descriptors for keypoints [118].

The work in [41] exploited the influence of fusion strategy on the performance.

The experimental results show late fusion (probabilistic fusion) achieves best perfor-

mance among all fusion strategies. We apply probabilistic fusion to integrate SIFT and

STIP features since the two descriptors are considered to be conditionally independent.

In probabilistic fusion the individual probabilities are multiplied and normalized. For

object and scene fusion, we use sum-rule to combine the results from classifier (e.g.

LibSVM in section 4.1.3).
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Table 4.15 summarizes the overall quantitative performance on UCF11 data set.

The classification accuracy shown in the Table 4.15 is normalized with respect to the

number of videos for each motion category.

Table 4.15: Overall performance evaluation of single and integrated feature channels
% Correct classification using single feature channels

Bas Bic Div Gol Hor Soc Swi Ten Tra Vol Wal Avg. Std.
STIP-object 50.4 77.9 79.4 84.5 82.2 61.5 76.6 64.1 79.8 76.7 58.5 72.2 10.8
SIFT-object 55.5 70.34 85.6 73.9 76.7 21.2 52.6 61.1 57.1 83.6 67.5 64.1 17.2
CSIFT [41] 56.0 49.0 81.0 80.0 55.0 56.0 55.0 59.0 61.0 71.0 36.0 59.9 12.7

Gradient [41] 38.0 60.0 94.0 72.0 72.0 12.0 52.0 47.0 75.0 87.0 51.0 60.1 22.4
STIP-scene 51.8 79.3 81.1 85.2 83.3 64.7 79.6 65.9 79.0 75.9 61.0 73.3 10.3
SIFT-scene 59.9 74.5 86.3 76.8 80.2 20.5 58.4 59.9 58.8 83.6 66.7 66.0 17.5
GIST [40] 38.4 60.7 69.0 61.0 66.0 9.0 42.0 61.0 54.0 81.0 43.1 53.2 18.5
Color [40] 33.3 44.8 86.0 65.0 43.0 22.0 27.0 47.0 57.0 73.0 43.9 49.3 18.6

% Correct classification using integrated feature channels
Object+Scene 59.9 86.9 87.6 90.1 85.8 60.3 78.1 64.7 69.8 91.4 74.8 77.2 11.5

Ikizler [40] 48.5 75.2 95.0 95.0 73.0 53.0 66.0 77.0 93.0 85.0 66.7 75.2 15.3
Reddy [41] 55.0 67.0 98.0 89.0 83.0 49.0 67.0 68.0 76.0 92.0 59.0 73.2 15.2

The first eight rows of Table 4.15 show the performance of the individual feature

channels. Of note, STIP-object and STIP-scene are STIP features extracted from the

region of object and scene of video sequences, respectively. SIFT-object and SIFT-scene

are SIFT features extracted from the region of object and scene of frames, respectively.

CSIFT and Gradient denote results of color SIFT and motion features shown in [41].

GIST and Color denote results of scene features in [40]. The results show that, even

using the single feature channel SIFT-object gives 65.95% average accuracy in the data

set, whereas the STIP-scene feature is able to perform with 73.33% average accuracy.

These numbers are obviously high. This observation shows that using scene features

can provide a great deal of useful information of the possible motion, especially in this

data set. For instance, for the motion of soccer juggling and swinging, STIP-scene

features achieve 64.74% and 79.56% accuracy, whereas for basketball shooting, the

SIFT-scene features give 59.85%. These results suggest that when the person is less



136

visible, the scene features can be used for helping deciding the category of possible

motions.

The second part of Table 4.15 is the overall combination results compared with peer

work. We notice that the proposed integration method brings an improvement over

the peer work (results in [40] is the best reported performance in the data set). The

average improvement is higher than the peer work in [41] and [40] (5.5% and 2.6%,

respectively). Also, the standard deviations of our method are much smaller than the

peer work. This means the proposed integration gets better performance on difficult

categories (e.g., Basketball shooting, soccer juggling, walking with a dog); while keeps

good accuracy on categories.

Table 4.16 compares the overall accuracies between the proposed integration method

and the state-of-the-art methods on UCF11 data set. The experimental results demon-

strate that object and scene properties are informative and complementary to each other.

Different feature channels bring diversely useful information for the identification of

moving objects.

Table 4.16: Accuracy comparison of the proposed method and state-of-the-art ap-
proaches

Method Ikizler [40] Reddy [41] Liu [1] Proposed method
Accuracy(%) 75.21 73.2 71.2 77.2

4.4.4 Conclusions

In this section, we first present a two-layer framework for moving object detection in

video sequences. The framework contains global motion estimation layer and local

motion estimation layer. The detection framework is unsupervised which means we

bound the moving object in the videos without previously knowing what object it is.

The global motion estimation layer analyzes the motion information and returns a pre-
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liminarily region to the second detection layer. The final bounding box of the moving

object is obtained from the local motion estimation layer. The design aims to comple-

ment the advantages of two kind of motion estimation methods presented in section 4.1

and section 4.2. Temporal method works with videos having low resolution and under

unstable camera conditions (e.g. YouTube videos), since the method has good noise-

tolerant characteristics. At local motion estimation layer, spatial method could provide

more detailed motion map for local motion estimation.

In addition, we explore object and scene properties to use complementary features

of each other for the better motion identification. The scene helps when the moving

object is captured from a far distance and the distinct features of the object can not be

fully visible. In that case, the surrounding scene can provide a hint for the identification

of the moving object. Our results verify the effectiveness of integration of the moving

object and scene. The proposed integration framework can be extended to handle more

feature channels. The framework could also be extended to the field of human activity

identification. The relationship of object and human body can be exploited as the work

in [40]. On the other hand, the object and scene information could be integrated on

feature level. It means more features have to be considered and combined. In that

case, feature selection approaches need to be involved in our future works for choosing

discriminant features to improve retrieval performance [119, 120, 121, 122].



Chapter 5

Conclusions and Future Work

In this chapter, we summarize the proposed solutions of moving object detection and

retrieval in video sequences in section 5.1. The contributions are concluded and high-

lighted. In section 5.2, we discuss the current limitations in the proposed framework,

and future work is proposed.

5.1 Conclusions

We have presented a two-layer detection framework to automatically detect moving

objects in the spatio-temporal domain. The global motion estimation layer employed

the temporal-centered method for a preliminary motion estimation. It used Harris3D

corner key points and the optical flow field to represent the motion message in the video

stream [90]. A center-surround coherency model was proposed to estimate the local

motion and included in the integral density algorithm to find the preliminary regions

having a high motion energy. The global motion estimation layer found the preliminary

motion region for the local motion estimation layer. The spatial-centered estimation

algorithm used in the local layer extracts the texture information from the visual key

frames. The temporal information on adjacent frames was presented by the proposed

motion map which was calculated from the visual change of the result generated from
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the SPCPE algorithm from the key frames [94]. The motion map then filtered the key

locations to generate the motion-related key points which were used as the input to the

proposed integral density algorithm to find the motion region with the highest density

of motion points.

To enhance the proposed spatio-temporal object detection algorithm, a new key

frame detection method was proposed to extract the representative frames as the base

frame for the motion information computing [123]. Informative regions were defined

and utilized by a modified clustering technique to select a set of key frame candidates

(KFCs), while transitive regions were not used for key frame extraction. The final set

of key frames was adaptively determined from the speed of the visual change within a

video shot and between video shots. Another algorithm was proposed to solve the object

detection under occlusion situations. The approach extended an existing algorithm that

uses the preliminary foreground estimation result and object detection information from

the adjacent frames to identify the locations of the moving object by an n-steps search

(NSS) method, followed by a size-adjustment method that adjusts the bounding boxes

of the objects [89].

The proposed framework of moving object detection has been verified to enable the

enhancement on the video recognition and retrieval by providing the object-level fea-

tures. The main contribution of the recognition work is to prove that using a subset

of features (extracted from the region of the object) to train the global Gaussian mix-

ture models can achieve a high accuracy. The method saved a lot of off-line training

time compared to when using the whole set of feature from the video streams. On the

other hand, the integration of scene and object-level features can further improve object

retrieval and recognition performance.
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5.2 Future Work

Although we proposed several solutions on the topic of moving object detection in video

sequences, the framework can be further improved from various perspectives. For ex-

ample, the information of the relationships and interactions of multiple objects in the

video sequence can be mined to help object recognition. Another potential work is to

use the information of moving objects and background to estimate the static objects

in the environment. For instance, we can build a general system consisting of moving

object detection, static object detection, object relationship estimation, and background

estimation. We give a blueprint for the future work on the basis of the proposed solu-

tions in this section.

5.2.1 Integration of Tracking and Detection into Framework

Current detection model applies a simple tracking strategy [124] to track the detected

moving object. The strategy is used to deal with the situation that a more active object

comes in view. Without tracking function, the detection model will lose the position

of the previous object as shown in Figure 5.1. At the first frame, only one player is

playing the volleyball. From the second frame, another player enters the screen at a

higher speed. The detection model returns the most action region as the location of the

moving object, so that the position of the first player is lost.

Figure 5.1: Moving object detection results without the tracking in a sampled video
sequence (frame sampling rate is 3 fps)
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After involving tracking component into the detection model, the position of every

detected object can be well kept in the following sequences as shown in Figure 5.2. We

Figure 5.2: Modified object detection results with the tracking

define the following criterion to checking whether a new object comes in view.

dist(ctrt − ctrd) = ‖ctrt − ctrd‖2 ≥ δ ,

where ctrt is the centroid of the bounding box from the tracking component, ctrd is the

centroid of the bounding box from the detection model, and δ is an empirical distance

(using 20% of the width of video in the experiments). Figure 5.3 shows an example

of the tracking result (in yellow box) and detection result (in red box). The blue line

illustrates the Euclidian distance between centroids of the two boxes. If the distance is

greater than δ , the boxes are regarded as two objects; otherwise, the detection result is

used as the region of moving object and the tracking result is omitted.

Figure 5.3: Checking whether new object appears

Actually, both of the tracking results and the detection results could provide infor-

mation of the moving objects. The integration of the two information channels should

be able to provide complementary information and enhance the detection performance.
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In the future, the previous detection and tracking results in the same sequence can be

involved in giving an initial location of the moving object in the current frame. Assume

the motion status does not change too much in the continuous video sequences, the in-

formation from the previous frames may give a good start up to the current detection in

the same video sequence. The idea can not only save the processing time, but also de-

crease influence caused by the local space-time visual anomalies as shown in Figure 5.4.

Many state-of-the-art works have achieved successes in object tracking area, which can

help quickly integrate the latest developments into our framework [125, 126].

Figure 5.4: Moving object detection in a sampled video sequence (frame sampling rate
is 3 fps)

5.2.2 Relationship and Interaction Mining Among Multiple Objects

The realistic videos usually contain multiple objects at the same time which have dif-

ferent moving directions and many occlude each other. The proposed detection model

currently only returns one motion region with the highest motion contrast than other

foregrounds. As shown in Figure 5.5, the model is confused by the two moving ob-

jects because it is designed for detecting only one moving object. To generalize the

proposed detection and retrieval model, a detection method of multiple objects has to

be included. For scenarios having more than one moving object in the scene, the less

active ones should also been considered in the model. One of the solutions is to include

a tracking component to track detected object, by doing that the framework enables to

handle the new object coming in view while keeps tracking the previous objects. An-

other possible approach is to set up a criterion to select the proper motion regions. For
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example, the distance between the two centroids of the motion regions can be used as

a threshold to decide whether the two regions describe the same object. Once the in-

formation of the multiple objects is available, the relationship and interaction can be

mined and bring informative messages to facilitate many research topics, such as hu-

man activity recognition. The work in [127, 128] used the distance between two persons

as an important feature to evaluate the actions. Besides the distance between objects,

we hope to mine more information among multiple objects to enhance performance

in video retrieval. The multiple objects in the same video may belong to the different

concepts, whose properties can help the recognition of each other. For example, two

objects are detected in a video. If one object is recognized as a basketball, the chance of

the other object being a player increases. Recently, many research progresses have been

achieved in the area of the association information integration for semantic concept de-

tection [129, 130, 131, 132, 133]. These works analyze and utilize the information of

the co-occurred concepts to improve the concept retrieval performance.

Figure 5.5: Moving object detection in a sampled video sequence with two objects

Sometimes an occlusion happens between objects. The proposed object tracking

method under the occlusion situation can be employed to solve the issue [89]. When

the objects split, a simple tracking strategy is sufficient to locate the objects. On the

other hand, the current detection model only considers motion contrast in the frame

sequences, which is not applicable for processing videos with only static objects and

scenes. The static object and scene segmentation issue is usually solved by converting
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a 2D video or multiple images into a 3D model, requiring the techniques of camera

calibration and depth map estimation. If the visual change between frames happens

only due to the depth dimension, the results of the proposed methods are not ideal.

The information of foreground (moving objects) should be able to help detect the non-

moving objects in the non-static background if combined with other computer vision

and image processing technologies. For example, the appearance of basketball players

could raise the probability of basketball field and backboards as shown in Figure 5.6.

Figure 5.6: Examples of frames containing non-moving objects

5.2.3 Design of Motion-Driven Key Frame Detection Algorithm

The proposed key frame detection model is driven by the visual change between the

frames, which achieved pretty good performance compared to the state-of-the-art ap-

proaches. The current model provides key frames as the input of the moving object

detection framework. Therefore, the quality of key frames affects the performance of

the detection framework. If the model can be driven by the motion message in the

video sequence, it would serve the object detection model better. That is, the model

could intensively analyze the frames with a moving object in the center of the frame.

Figure 5.7 is an example to illustrate the good and bad key frames from the angle of

the detection model. The five frames are selected from the same video sequence as

key frames to represent the content of the video sequence. From the object detection

perspective, obviously the third one is a proper one for the input of the object detection

model since the appearance and size of the object in Figure 5.7 is suitable for detection
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Figure 5.7: Examples of key frames extracted from a video sequence

and recognition. The objects in the second and fourth frames can be easily detected

since it is not occluded by other foreground. But they are not proper for the recogni-

tion due to the blur appearance and the small size of the object. The first and the last

frames in Figure 5.7 should be avoid cases in the key frame extraction. The objects are

too small to be detected and recognized by the framework. The significance of the key

frame extraction model in the proposed framework is clearly shown in Figure 5.7. If

the key frame extraction model could consider the location of the object to select the

key frames, it would definitely improve the performance of the detection and recogni-

tion framework. On the other hand, a motion-driven key frame detection model may

provide a better summarization of the video, which is another important application of

online multimedia.

5.2.4 Integrate multiple channels of multimedia information for video retrieval

Currently work only analyzes the visual information for moving object detection. How-

ever, most video sequences provide audio channel as well. Audio data may deliver

sound-related message to help the video retrieval in many concepts (e.g., baby crying,

explosion, applause). In addition, users could also provide text information (e.g., title,

tags) when uploading videos to the social networks and the Internet. The text data could

deliver information which is difficult to obtain from visual and acoustic channels such as

date, time, location, etc [134, 135]. Multiple channels of multimedia information may

complement each other to achieve better retrieval performance [136, 137, 138, 139]. We
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can refer existed research works to analyze the complementary information in various

channels to enhance our proposed video retrieval framework [140, 141, 142, 143]. Fur-

thermore, we can consider to integrate the multiple information channels into the demo

video retrieval system shown in Figure 3.2. That would give a more comprehensive

evaluation of the video retrieval system comparing with the state-of-the-art web-based

multimedia retrieval system [144, 145, 146].
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