
University of Miami
Scholarly Repository

Open Access Dissertations Electronic Theses and Dissertations

2017-04-21

Data-Driven Malware Detection Based on
Dynamic Behavioral Features
Rui Han
University of Miami, iurnah@gmail.com

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_dissertations

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Han, Rui, "Data-Driven Malware Detection Based on Dynamic Behavioral Features" (2017). Open Access Dissertations. 1806.
https://scholarlyrepository.miami.edu/oa_dissertations/1806

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1806&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1806&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1806&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1806&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations/1806?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1806&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

UNIVERSITY OF MIAMI

DATA-DRIVEN MALWARE DETECTION BASED ON DYNAMIC
BEHAVIORAL FEATURES

By

Rui Han

A DISSERTATION

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Coral Gables, Florida

May 2017

c�2017
Rui Han

All Rights Reserved

UNIVERSITY OF MIAMI

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

DATA-DRIVEN MALWARE DETECTION BASED ON DYNAMIC
BEHAVIORAL FEATURES

Rui Han

Approved:

Jie Xu, Ph.D.
Assistant Professor of Electrical
and Computer Engineering

Mohamed Abdel-Mottaleb, Ph.D.
Professor of Electrical and Computer
Engineering

Mei-Ling Shyu, Ph.D.
Professor of Electrical and Computer
Engineering

Michael Scordilis, Ph.D.
Associate Professor in Practice of
Electrical and Computer Engineering

Saman Zonouz, Ph.D.
Assistant Professor of Electrical
and Computer Engineering
Rutgers University

Guillermo Prado, Ph.D.
Dean of the Graduate School

HAN, RUI (Ph.D., Electrical and Computer Engineering)

Data-Driven Malware Detection Based on
Dynamic Behavioral Features

(May 2017)

Abstract of a dissertation at the University of Miami.

Dissertation supervised by Professor Jie Xu.
No. of pages in text. (130)

Malware programs, such as viruses, worms, Trojans, etc., are a worldwide epidemic

in the digital world. Studies and statistics show that malware volume has increased

tremendously year after year in the past decade. Due to the rapid malware growth in

recent years, the malware detection approaches have been experiencing a paradigm

shift from the laborious manual analysis, signature-based approach to a data-driven,

machine learning-based approach.

This thesis presents a semi-automated malware detection solution using machine

learning. It notifies the user if the application she downloaded behaves di↵erently

than what she expected at download time. The hypothesis is that in spite of millions

of currently downloadable executables on the Internet, almost all of them provide

functionalities from a limited set. Additionally, because of each functionality, e.g.,

text editor, requires particular system resources, it exhibits a unique system-level

activity pattern. During an on-line training process, the system creates a profile

dictionary of various functionalities. This profile dictionary is then used to warn

the user if she downloads an executable whose observed activity does not match its

advertised functionality.

The proposed solution is deployed as a cloud service. It includes a multi-model

classification module that takes into account the time-variant property of function-

ality and behavior features from the system level. Since static features are easier to

be extracted, but it is less e↵ective compared to dynamic behavioral features; Dy-

namic behavioral features are much more pricey to collect, but it is very e↵ective.

However, the e↵ectiveness of dynamic behavioral features depends on the length of

analysis; thus accurate detection requires more time and computing resources. Exist-

ing works focused on improving the model accuracy by discovering distinctive features

in static analysis or dynamic analysis. Despite these recent advances, to implement

an e�cient and user interactive malware detection system remains challenging. The

uniform length of dynamic analysis adopted by previous research failed to capture

the ongoing evolvement of malware behaviors. Extending the duration of dynamic

analysis, although advantageous in improving the accuracy, is nevertheless both re-

source intensive and time-consuming. There exist a need to balance the accuracy and

resource consumption in a practical system. We modeled the system using contextual

multi-armed bandit framework and presented two on-line learning algorithms that,

for each sample to be analyzed ensures the high probability of selecting the best clas-

sifier. To that end, we define Quality of Experience (QoE) as a user metric in the

framework to balance the accuracy and e�ciency trade-o↵ and use static file feature

as the context to facilitate the classifier selection. Our experiment results using 2000

real malware samples show that context specification of classifiers can be discovered

over time to create a strong detector given K weak detectors.

to my families

iii

Acknowledgements

First and foremost, I would like to thank my research advisor Dr. Jie Xu and

Dr. Saman Zonouz for their support and guidance in the past few years. I feel very

fortunate to have had the chance to work with Dr. Jie Xu and Dr. Saman Zonouz.

They are always supportive and provides me with extremely helpful advice both for

my Ph.D. research and beyond. I thank Dr. Mohamed Abdel-Mottaleb, Dr. Mei-

Ling Shyu, and Dr. Micheal Scordilis for their advice to my research and the inspiring

technical discussion we had.

I also thank my internship manager Dr. Kevin Qin and Hayley Zhang at Juniper

Networks for sharing their perspectives in career choices. Additionally, many thanks

go to Hopper Wang, Xiaosong Yang, Yong Hao.

I thank my dear parents Ping and Jianye, and my lovely sister, Yu for their

constant support and encouragement. It would have been impossible for me to go

this far without their support.

Last but not the least, I am grateful to my girl friend, Da Zhang, whose support,

inspiration and love was absolutely essential for success of the work I have done.
Rui Han

University of Miami

May 2017

iv

Table of Contents

LIST OF FIGURES viii

LIST OF TABLES x

1 INTRODUCTION 1

1.1 Motivation . 2

1.2 Contributions . 6

1.3 Thesis Outline . 7

2 RELATED WORK 9

2.1 Traditional Method Against Malware Threats 9

2.2 Machine Learning Based Malware Detection 10

2.3 Executable Behavior Profiling . 16

2.4 Reinforcement Learning Based Approach 17

2.5 Malware Information Sharing Platforms 18

3 TROGUARD AS A HOST-BASED MALWARE DETECTOR 21

3.1 Background . 21

v

3.2 System Architecture . 27

3.2.1 Functionality Classes . 31

3.2.2 Bridging the Semantic Gap 33

3.3 Implementation . 38

3.3.1 Browser Extension . 38

3.3.2 Application Tracing . 41

3.3.4 Functionality Profile Generation 45

3.4 Evaluation . 46

3.4.1 Website Analysis Performance 48

3.4.2 Application Classification Accuracy 50

4 TROGUARD AS A CLOUD-BASED MALWARE DETECTION

SERVICE 65

4.1 System Overview . 65

4.1.1 Client Agent . 67

4.1.2 Malware Analysis as a Cloud Service 68

4.2 System Model . 72

4.2.1 A On-line Classifier Selection Problem Formulation 73

4.2.2 Contextual Multi-Armed Bandit Framework 77

4.3 Contextual Bandits Learning Algorithm for QoE Optimization 79

4.3.1 Sample Context Feature Clustering 80

4.3.2 Algorithm Description . 82

vi

4.3.3 Learning Regret Analysis and Algorithm Complexity 85

4.3.4 Contextual Bandits under User Interference 85

4.4 Experiment Results . 87

4.4.1 Dataset and Context Clustering 88

4.4.2 The QoE and Classification Performance 89

4.4.3 On-line Learning with Context Information 93

5 EMPIRICAL STUDY OF STATIC AND DYNAMIC FEATURES

FOR MALWARE DETECTION 95

5.1 System Components . 96

5.2 Experiments Results . 101

5.2.1 Static Features Extraction . 102

5.2.2 Hyper-Parameter Search Algorithm 102

5.2.3 Dynamic Behavior Features and the Model 109

6 CONCLUSIONS 117

6.1 Thesis Overview . 117

6.2 Future Work . 119

Appendix APPENDIX A STATIC FEATURES 121

BIBLIOGRAPHY 125

vii

List of Figures

3.1 TroGuard’s High-Level Architecture 28

3.2 TroGuard Components . 37

3.3 Proof of concept example popup window 40

3.4 Website Analysis Accuracy . 49

3.5 Classification recall for detectors using di↵erent attribute sets on dif-

ferent functionality classes. 51

3.6 Classification precision for detectors using di↵erent attribute sets on

di↵erent functionality classes. 52

3.8 Classification Using Intermediate Features 55

3.9 Sandboxing CPU Usage Overhead . 58

3.10 TroGuard Overhead on System Resources 59

3.11 Game Trojan’s Download Webpage 61

3.12 TroGuard Alert . 62

3.13 TroGuard Against Mimicry Exploits 62

4.1 System Architecture . 66

4.2 Context clustering without updating 89

4.3 Normalized QoE comparison for � = 0.01 (" = 0.1) 90

4.4 ROC curve and AUC comparison for � = 0.01 (" = 0.1) 91

viii

4.5 Normalized QoE comparison for � = 0.1 (" = 0.1) 92

4.6 ROC curve and AUC comparison for � = 0.1 (" = 0.1) 92

4.7 QoE and actions for each rounds . 93

4.8 Percentage of the best classifier selected 94

5.1 System Architecture . 96

5.2 Architecture of Malware Detection Model Generator 99

5.3 Candidate classifiers and hyper-parameter grids 104

5.4 ROC curve for the best models returned by grid search for static features106

5.5 Learning curve for the best models returned by grid search for static

features . 107

5.6 Execution duration quantums vs. Number of samples in the quantum 110

5.7 Scatter plot of duration and file size for the dataset 111

5.8 Feature importance ranking . 111

5.9 Utility function based on RandomForestClassifier and static feature . 113

5.10 ROC curve for the best models returned by grid search for dynamic

behavioral features . 114

5.11 Learning curve for the best models returned by grid search for dynamic

behavioral features . 115

5.12 PoA obtained from experiments . 116

ix

List of Tables

3.1 90% of the top MacOS Malware are Trojans [1]. 26

3.2 Functionality classes inTroGuard and their corresponding categories

for three popular software-download web sites. 32

3.3 Website analysis times (seconds) . 48

3.4 Training times (seconds) . 57

4.1 Silhouette Coe�cient for Number of Clusters 89

5.1 Experiment Data Sets . 100

5.2 Table to illustrate evaluation metrics 104

5.3 Summary of Cuckoo Sandbox settings I 110

A.1 Extracted static features vector by pefile 121

A.2 Directly Mapped intermediate Level Attributes 122

A.3 Network Attributes . 123

A.4 Resource Usage Attributes . 123

A.5 User Interactivity Attributes . 123

A.6 File System Attributes . 124

x

CHAPTER 1

Introduction

The number of cyber attacks has been skyrocketing in the past decade. The

significance can be verified by the high frequency of headlines that cover cyber attack

incidences around the world. The reason is twofold: more and more people and

businesses hold social occasions and make business transactions digitally; and less and

less e↵ort is needed to successfully carry out a cyber attack because of the emerging

attack generation toolkits. Malicious software, namely malware, is one of the major

root causes of everyday cyber attack incidences. According to a security report [2],

in 2014, 15% of 40 million files monitored in several corporate networks are malware.

The growing proliferation of malware is profoundly detrimental to the general public,

businesses, and national security. It poses threats to the integrity and security of

personal data and computer systems. Malware infiltrations could result in various

consequences, such as personal or corporate data breaches and critical infrastructure

failures. To defeat cyber attacks brought by malware, defenders should be able to

identify and block the malware from the host computer or network tra�c. In Section

1.1, we will first review some classic methods in malware detection and summarize

the main challenges. In Section 1.2, we give a summary of the major contributions

of this thesis. In Section 1.3, we outline the structure of this thesis.

1

2

1.1 Motivation

Traditionally, malware detectors use virus signature scanners and heuristic meth-

ods to defend against malicious software. Most current commercial anti-virus tools

rely on a database of syntactical patterns or regular expressions that characterize

known malware variants. Anti-virus companies very often update their databases

whenever an unknown malware variant is encountered in the wild. File features, with

all their di↵erent formats, data structures, and metadata, are the origin of most anti-

virus signatures. To generate signatures from these file features demands significant

human works. Although a practical solution to prevent the known malware sam-

ples from spreading, signature-based malware detection fails to detect new malware

samples and new malware variants. Moreover, malicious files can be either packed or

encrypted to avoid being analyzed or can be encapsulated with obfuscated attack code

that deceives. For some cases, the malicious files conceal their maliciousness until trig-

gered by certain system events or by downloaded payloads. With these challenges,

the signature generating rate fails in catching up to the malware production rate.

Many researchers have proposed to share signatures between di↵erent organizations

to combat the overflow of newly created malware. The cooperation rarely happens

because the anti-virus industry treats malware signatures as intellectual property and

refuses to share them. Even if companies are willing to share, the proprietary formats

or specifications will render such interaction impossible.

In aware of the drawbacks in signature based detection, many recent studies ap-

plied a data analysis method such as machine learning in malicious file detection.

The hypothesis behind the method is that if one can extract distinctive features

from a large amount of labeled malicious and benign samples, with the help of cross-

3

validation strategies, one can train an accurate classification model for the known

malware samples. The obtained model could be applied to predict the maliciousness

of new malware samples. The challenge of the method primarily lies in the feature

extraction step. A multitude of works have studied static file features in applying ma-

chine learning to achieve automatic malware detection [3], [4], [5], [6], [7], [8], [9], [10],

[11], [12], [13], [14]. In this literature, the static file features are obtained solely from

the file contents without executing the file itself. However, it has been shown that

static feature based malware detectors are susceptible to evasion attacks [15], [16], [17].

For example, Xu et al. applied generic programming algorithms in mutating mali-

cious samples to generate evasive variants and achieved 100% successful evasion for

the specific detector studied in the research [17].

Instead of analyzing the features based on the static file content, dynamic analysis

takes the recorded runtime activities as features. The procedure is to run the file, i.e.

a Windows executable, in an instrumented environment and record all the runtime

behaviors that can be analyzed by cluster or classification algorithms. Malware de-

tection based on dynamic analysis received a lot of attention in industry because of

the growing need to automate the malware analysis procedure. Take VirusTotal [18]

as an example, it executes malware samples in a controlled environment and moni-

tors their behaviors. Reports are generated from the execution traces to support a

malware analyst to reach a conclusion about the level of severity imposed by a mal-

ware of the threat. To completely free the human analyst from reading the tedious

reports, Rieck et al. built Malheur, a machine learning based malware clustering

tool based on behavior reports [19]. Bayer et al. successfully clustered millions of

malware samples into groups by applying various data analysis methods in gener-

ated reports [20], [21], [22]. As malware runtime behavior features are harder to be

4

modified to create mimicry attacks compared to static file content features, machine

learning based method with dynamic features is superior to a method with static

features because it is harder to be evaded. However, the dynamic feature extraction

requires more complex system configuration and higher resources consumption.

In building dynamic behavior feature based detection system, previous work set

forth some promising systems and demonstrated the detection e↵ectiveness using pri-

vate sample collections with individually engineered behavior features. Nevertheless,

these conventional design have some inherent drawbacks, without being resolved,

will prevent them from being deployed in an e↵ective and user interactive environ-

ment. First and foremost, existing works trained models using partial behavioral

features collected from a heuristically determined period of dynamic monitoring, usu-

ally within less than 2 minutes from the start of execution. There is no performance

guarantee that the selected time length is close to optimal and is also applicable

to future analysis without performance degradation. For a certain batch of binary

samples, one might find adding a extra minute in behavioral tracing could increase

the detection accuracy. More importantly, predetermined execution time exposes the

detection system to deceptive malware attacks, which would take preemptive delay

of the malicious activity against the detection. Moreover, the determined execution

length usually applies to all the samples that will result in waste of computing re-

source. For instance, if a malware sample reveal its malicious traits in the first few

seconds, whereas the system default tracing length is 2 minutes. There is lacking an

analytical method to determine the execution length for di↵erent samples dynami-

cally.

Second, the authors of conventional approaches trained their classifier using cross

validation method and evaluate it with limited testing sample from past, which could

5

ruled out other better classifiers had they trained with longer behavior features and

evaluated with more samples. As a consequence, the system will perform significantly

worse in the long run because it gets stuck on the suboptimal classifier. From the

perspective of reinforcement learning, existing works are exploiting the best classifier

evaluated using the samples at hand without exploring other classifiers that may per-

formance better in the long term. The trade-o↵ between exploring new classifier and

exploiting the best classifier identified by the moment need to be carefully balanced

to achieve more accurate detection results.

Third, they focus only on achieving high accuracy without considering the cost

of the system, especially the resource usage and time cost of dynamic execution of

the samples. Ignoring the cost make those systems less scalable or even impractical

to be implemented as an interactive malware detection solution. In an endpoint sys-

tem, it is generally accepted that user experience is a↵ected by both the accuracy

and the waiting time. Increasing the time of dynamic feature extraction in conven-

tional system can explore more traits of malware behaviors which could improve the

detection accuracy, but longer waiting will bring fair quality of experience for user

and pose heavy system load for the server. To provide better quality of experiences,

the resource constrain need to be take into consideration together with the accuracy

requirements.

The proposed system bridge the gap between the existing dynamic behavior fea-

ture based machine learning method and a user interactive malware detection system

with high quality of experience. We take into account the fact that malware fea-

tures collected from di↵erent execution length will incur di↵erent time and resource

cost, and produce classifiers with di↵erent accuracy. Specifically, longer execution

will explore the behavioral feature space extensively and consume extremely high

6

computation resources. In contrast, short binary execution period will only exercise

a limited dynamic feature space thus cost less in resource usage. We introduce a on-

line learning approach to select a particular classifier for each submitted file based on

the classifiers’ history Quality of Experience (QoE) measurement and the context of

the file sample. The system is modeled using contextual multi-armed bandit frame-

work to balance the exploitation and exploration of the available classifiers. Since

these classifiers are trained with behavior features from distinct tracing periods, the

selected classifier for next classification task reflect how long the sample should be

executed. The determined analysis length could be used to notifying the user of the

needed waiting time. To facility the multi-armed bandit learning, we explore the

similarity information among the samples’ context features (structural file features).

We proposed two e�cient on-line learning algorithms that learns over time the best

mapping from context features to the best matching classifier with the QoE metric.

The QoE provide a knob to allow the system to adjust the trade-o↵ between accuracy

and resource usage under di↵erent use cases.

1.2 Contributions

We addressed several of the challenges in detecting socially engineered malwares

and in improving the performance of machine learning based malware detection sys-

tem. We proposed a novel system TroGuard, which is capable of analyzing the

functionality of the software based on its system level activities. To that end, we

defined functionality classes according to user’s perception and rule-based mapping

that cast system level dynamic activities (syscalls) to intermediate behavioral fea-

tures. Supervised learning algorithms is applied afterward to bridge the gap between

the functionality classes and the behavioral features. To better improve user’s quality

7

of experience. A cloud version of TroGuard is proposed and modeled using contex-

tual multi-armed bandits framework to balance the trade-o↵ between the detection

accuracy and the corresponding detection time and computing cost. We have built

the prototypes and successfully evaluated the proposed approaches. To sum up, we

make the following contributions in this thesis:

• A new approach to detect socially engineered malware downloads, that at its

core relies on comparing the functionality expected by the user (e�ciently de-

termined through in-depth and automated analysis of the download web site)

to the functionality exhibited during the downloaded application’s execution;

• An end-to-end system for detecting Trojan downloads is designed and imple-

mented to identify mismatches between user-perceived functionalities and actual

software functionalities. TroGuard consists of a browser plugin and a host

monitoring tool that communicate with each other to bridge the gap between

the user experience and system activities;

• A comprehensive modeling of the cloud version of TroGuard using contextual

multi-armed bandit framework and algorithms run in the framework to optimize

the quality of experience of users and reduce the dynamic analysis cost.

1.3 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 introduces the

related work in machine learning based malware detection and collaborate malware

sharing platforms. Chapter 3 presents a host-based machine learning-based malware

detector to defeat socially engineered Trojan. Chapter 4 describes the cloud system

architecture of the enhanced malware detection system and the multi-armed bandit

8

model to optimize the overall detection performance, characterized by Quality of

Experience (QoE). Chapter 5 presents the empirical study of the e↵ectiveness of

static and dynamic feature based malware detection. Finally, Chapter 6 presents

concluding remarks and discusses some possible directions to extend this work in

future.

CHAPTER 2

Related Work

2.1 Traditional Method Against Malware Threats

Safe Browsing, a commercial service of Google, protects devices by showing warn-

ings to users when they attempt to download dangerous files [23]. It detects malicious

software downloads by matching URLs against the system‘s constantly updated lists

of malicious URLs. In practice, update cycle of Safe Browsing database may cause

inherent delays in protecting users against frequently mutated URL and binaries. In

addition, many deceptive behaviors currently pervasive to software bundling could

disarm Safe Browsing’s protection when paired with deceptive promotional tools or

social engineering tactics. Abu Rajab et al. presented a binary reputation system

CAMP [24] that hardens the original Safe Browsing design. CAMP use binary cir-

cuits to compute software reputation scores from several statistical attributes derived

from client request features and server side dynamic analysis features. Since CAMP

is a proprietary service, there is no open knowledge about the design of the server side

dynamic analysis module. We believe it su↵ers from the same drawbacks as those

study based on dynamic analysis which will be discussed in the following section.

9

10

2.2 Machine Learning Based Malware Detection

Attackers often choose file based exploits to gain access to the victim system

because files can be reliably delivered to intended targets and easily modified to

avoid signature detection. To defeat file based intrusions, defenders should be able

to detect, quarantine, and remove malicious files from various digital media such as

hard disk or network tra�c. Signature based detection method an practical solution

to prevent the known malware samples from spreading, fails to detect new malware

samples or mutations. Counter measures such as machine learning based methods

have been studied extensively and implemented in some real world intrusion detection

systems. Kong et al. [12] classify malware variants into corresponding families by

extracting function call graphs and using it as malware features. The work adopts an

ensemble classifier and applies it in a dataset containing unpacked malware instances

from 526,197 unique files. The experimental result of the work achieves the best

F1 score of 98%. In other’s work, N-gram byte-level file content have been used as

detection features and achieved high accuracy in [3], [4], and [5]. Unfortunately, this

n-gram model have been demonstrated vulnerable to evasion attacks by Wagner and

Soto in [6]. Other literatures explore edit distance between instruction sequences [7],

[8], [9] and graph representations of disassembled executable code [10], [11], [12] as

detection features. Recently, there is a stream of work on maclious PDF file detection

which focuses on applying machine learning methods and extracting file features from

structure pdf data and meta data [13], [14], [15], [16], [25], [17].

The series of aforementioned literatures on malicious PDF detectors have thor-

oughly studied the method applying machine learning in achieving automatic malware

detection from both attacker and defender’s point of view. The feature vectors used in

11

these works are mainly based on PDF’s moderate complex structural features. Smutz

et al. [13] extract features from document meta data and structure information, such

as “number of characters in the title” and “the size of the images in the document”.

Although these features are not explicitly measuring inherently malicious attributes,

it is proofed by experimental dataset that they are reflective of malicious activity and

are useful in identifying malicious PDF files. Their final prototype, PDFrate1 is freely

open to public for malicious PDF detection research and evaluation. They evaluate

PDFrate’s robustness against direct evasion and mimicry attacks. To generate eva-

sion samples, the author use normally distributed data to perturbate a subset of most

important features extracted from malicious PDF files. The experiment result shows

that the evasion rate is relatively low and PDFrate is resilient to the type of evasion

attacks in which a malware sample mimics the important features of a benign file in

order to be classified as benign.

Šrndić et al. [14] make use of the di↵erence of structure paths in malicious and

benign PDF documents to separate them apart, thus to achieve detection purpose.

They parse PDF files according to the PDF Reference specifications, convert the

logical document structures of various PDF objects into the structure path format,

extract features by counting the structure paths, and finally train and evaluate a

classification model based on the vectorized structure path counting. The experi-

ment results evaluated on several heterogeneous dataset show that the PDF structure

path feature could be very e↵ective when using decision tree and SVM classifier. At

last, they discuss the possible techniques to evade their method. According to their

reasoning decision tree classifier achieves high accuracy in experiment study, but it

could be easily evaded due to simplicity. To attack a decision tree classifier, attacker

1
https://csmutz.com/pdfrate/

12

can build decision tree and generate evasive samples by trial and error. Similarly,

SVM with linear kernel is susceptible to the similar evasion attacks. However, SVM

with RBF kernel, which has the best performance as it demonstrated by experiment

result, is almost impossible to evade. Additionally, they also presents an experiment

of 10 weeks continuous testing on an accumulated dataset and concluded that the

detection system outperforms most common commercial antiviruses.

The collection of detection and evasion studies on the infamous machine learning

based malicious pdf file detector PDFrate have showed that, despite machine learning

based method can achieve high e↵ectiveness in malicious pdf file detection, such a

system will not be able to use reliably in practice until an algorithm which is resilient

to mimicry attack is proposed. For example, the evasion work by Xu et al. [17] apply

generic programming algorithms in mutating malicious samples in order to generate

evasive variants. Without knowledge about the classifier and the training data, their

research experiments achieve 100% evasion rate.

As malware runtime behavior is much more di�cult to modify in order to create

mimicry attacks compared to static file contents features. Malware detection based

on dynamic analysis receives a lot of attention [19], [20], [21] [22]. Instead of ana-

lyzing the features based on the static file contents, dynamic analysis look into the

runtime activities. The idea is to run the file, i.e. an executable, in an instrumented

environment and record all the runtime behaviors for being analyzed by clustering or

classification algorithms.

Bayer et al. [20], [21], [22] studied dynamic malware behavior clustering system.

Their method is to execute malwares in a sandbox environment that monitors the

system call traces and taint input data to keep tracking how the malware manipulate

and move the data. Consequently, a complete malware behavioral profile is generated

13

in terms of operating system objects, operating system operations that are carried

on those objects. Their work also includes network analysis which extracts high-level

semantic operations from low-level socket system calls such as names of download files,

name of IRC channels, or mail subjects. To achieve higher scalability, they proposed

a fast clustering algorithm based on locality sensitive hash to reduce the complexity

of distance calculation from n2 to n2/2. A reference clustering dataset has been

used to evaluate e�ciency of the algorithm, precision and recall reported together

with previous methods show that their behavior profile and clustering method are

superior to the existing works. Lastly, they also evaluate the scalability and e�ciency

of their solution on test set include 75,692 samples. It takes total of 2 hours and 18

minutes to complete the clustering task and keep memory usage under 4 GB.

Rieck et al. [19] and Trinius et al. [26] proposed a malware detection framework

that automatically analyze dynamic malware behaviors using machine learning. The

system is able to identify new class of malware by behavioral clustering and to classify

new malwares into already identified classes. The project also propose a incremental

approach for behavior-based analysis to process thousands of binaries on a daily basis,

thus to reduce the analysis time significantly. The first novel point is the Malware

Instruction Set (MIST). Which is a format that record dynamic behaviors. For

example, each MIST instruction encodes one monitored system call and its arguments.

An the data encoded in the instruction are arranged in di↵erent level of blocks,

reflecting behavior with di↵erent degree of specificity. Those arguments are encoded

as a table index, which will map to the original contents, such as file and mutex

names.

It describe the behavior of malware using “Q-grams”. Embedding function �(x)

is used to vectorized the MIST, then �(x) will be normalized to �̂(x). The distance

14

measurement is based on �̂(x), and Euclidean distance is measured. The clustering

and classification are based on the distance measurements. To solve the scalability

issue, “prototypes” are first extracted from the data, they are basically reports being

typical for a group of homogeneous behavior. The paper illustrate the algorithms to do

prototype extraction, clustering using prototypes, and classification using prototypes

in order. Lastly, an incremental analysis algorithm is proposed to repeat the above

algorithms on new data collected.

Sommer et al. [27] have studied the di↵erences between network intrusion detec-

tion and other areas where machine learning finds successful. The paper discussed

challenges of applying machine learning in intrusion detection. It conclude that the

“strength of machine-learning tools is finding activity that is similar to something pre-

viously seen, without the need however to precisely describe that activity up front.”

While this paper is quite negative, it only limited in the static features. Pattern from

network tra�c could be see as static feature, while we would focus on features obtain

from dynamic analysis. [28] is a enterprise solution that take two dimension features

(byte content of image), and pass through deep neural network designed for image to

detect the abnormal of malwares samples.

In our preliminary work, which will be presented in Chapter 3 in detail, we present

TroGuard, a semi-automated web-based trojan detection solution, that notifies the

user if the application she downloaded behaves di↵erently than what she expected

at download time. TroGuard builds on the hypothesis that in spite of millions

of currently downloadable executables on the Internet, almost all of them provide

functionalities from a limited set. Additionally, because each functionality, e.g., text

editor, requires particular system resources, it exhibits a unique system-level activity

pattern. During an o✏ine process, TroGuard creates a profile dictionary of various

15

functionalities. This profile dictionary is then used to warn the user if she downloads

an executable whose observed activity does not match its advertised functionality

(extracted through automated analysis of the download website).Our experimental

results prove the above mentioned premise empirically and show that TroGuard

can identify real-world socially engineered trojan download attacks e↵ectively.

Although the accuracy is impressive in the experimental dataset, the above dis-

cussed solutions are likely to fail in real adversary scenarios when exposed to a broader

scope of attackers and attack mechanisms. On one hand, To avoid detection, malware

authors managed to generate mimicry malware by hiding obfuscated malicious code

in a seemingly legitimated binary. They entice user to download such a malware-

bearing file by various social engineering scams. Those mimicry malware are usually

highly evasive. On the other hand, because the capabilities of an individual IDS sys-

tem is limited by its dataset size no matter what classification algorithm is selected.

Therefore, automatic and accurate malware detection requires not only advanced file

feature analysis and dynamic behavior based detection, but also high collaboration

on sharing malicious files and indicators.

In face of the burden to e↵ectively detect new malwares samples, it is a natural

reaction to aggregate multiple detectors to achieve a higher accuracy. Researchers

proposed the idea of collaborative malware detection in [29,30] and designed malware

analysis systems to facilitate collaborative detection e↵orts. The landscape of sharing

thread intelligence has expand ever since. There exist more than a dozen of free,

automated malware analysis services [31] online. Some of those have been highlighted

in research paper such as VirusTotal and Anubis. Those services can examine the

uploaded sample dynamically and generate a detailed activity report. Whether they

16

are static or dynamic analysis based, above mentioned malware detection services are

lack of data analysis capabilities for the generated report.

2.3 Executable Behavior Profiling

Lo et al. [32] design a system for finding program bugs or abnormal code runs

caused by intrusions. In their terminology, a software behavior is a series of events

including execution of a statement, a method call, or a basic block in a control

flow graph. The technique is not scalable enough for real time use, in contrast to

TroGuard.

In their propose frame work, a scalable algorithm is proposed to mine closed

unique iterative patterns from program traces of known normal and failing executions.

Following this pattern mining step, highly discriminative patterns is selected and a

classifier is constructed based on the training traces with such pattern-based feature.

Although the behavior features in [32] is accuracy enough in some software reliability

data set, which only include two classes, the reliable software traces and unreliable

software traces. Those features will fail our malware detection technique if we apply

them as our feature list. Since the iterative pattern in software is not discriminative

enough for a large amount of software classes. With respect to our higher level

behavior features, adding those software iterative patterns into our feature list will

overlap or breach the scalability of our method. Because it is possible that two

di↵erent type of applications may have similar iterative patterns in their program

execution traces.

Okazaki et al. [33] introduced early their work on process profiling from system call

traces to deploy an anomaly-based intrusion detection system. The profile is simply

a record of system call types and their observed frequencies. Although e�cient, their

17

approach is not resilient to circumvention by attackers, who can easily design their

trojan to perform any required number of system calls to match a desired profile.

Zhang [34] proposed a system to improve the resource allocation in grid computing

based on whether the application belongs to CPU intensive, I/O and paging inten-

sive, network intensive, or idle. Although they demonstrate their work improved the

throughput in schedule tasks in clusters, it is unclear that the same characteristics

are useful in a security setting.

2.4 Reinforcement Learning Based Approach

To the best of our knowledge, no existing research studied malware behavioral

classification and detection using reinforcement learning. We reviewed papers that

applied contextual multi-armed bandits framework in activity classification, and cloud

computing based face recognition application. Xu et. al. have proposed a real time,

context driven activity classification system that is capable of learning the best ac-

tivity classifiers to accurately classify human activity data from wireless wearable

devices [35]. Context information such as location of the activity and user’s personal

profile including genders, age, weight, etc. have been use to assist the learning. The

proposed learning algorithm exploited the context similarity and adaptively parti-

tioned the context space into smaller subspaces and learn the best oracle classifiers

within each subspace. The simulation results of their demonstrate that proposed

system and algorithm have significantly improved the performance of activity classifi-

cation and reduce the energy consumption for power critical wearable devices. Onur

et. al. studied contention and congestion problem in mobile device based graphic pat-

tern recognition via cloud computing infrastructure [36]. They proposed two multi-

armed bandits algorithms to learn the optimal condition for image transmission and

18

recognition in the cloud. The first algorithm is a device-oriented algorithm, in which

each devices are independent and proactively optimize its recognition rate by balance

the exploitation and exploration of di↵erent levels of network contention and cloud

congestion. While the second algorithm is service-oriented and it takes into account

the resource restriction of the cloud system and allow the cloud to learn the best

transmission setting and suggested to all the devices for e�cient resource usage.

2.5 Malware Information Sharing Platforms

Collaborative threat analysis and threat information sharing gain more and more

popularities in mitigating complex cyber attacks, but the actions are mostly restricted

inside the organization’s ecosystem. Webroot’s BrightCloud platform is an exemplar

collective threat intelligence system that apture, analyze, classify, correlate and pub-

lish cyber threat intelligence. In the tech brief [2], it developed an overarching view of

the thread landscape from integration of billions of pieces of information from millions

of security sensors. For example, the collective information showed 85,000 malicious

URL launched daily. Among the 40 million new files saw by its clients network in

2014, 15% are malware. We see only through collective information can we know the

malware landscape in this level. However, the BrightCloud didn’t have a model that

are automatically and accurately conduct the analysis and classification.

The Verizon 2015 Data Breach Investigation Report [37] shared some status about

threat intelligence sharing. In short, two facts are shared: 1) Threat feeds on sources

of scanning activity and spam/phishing e-mail are significantly overlapped, while

threat feeds that provide information on destinations that serve either exploit kits

or malware binaries, or provide locations of command-and-control servers are barely

overlapped. 2) 75% of attacks spread from one to another within one day, and most

19

of those indicator remain valid only for 1 days. The report also present study from

ThreatConnect what exactly shared among its sharing community. In the Figure 7

of the report [37], IP addresses and hosts are highly shared(around 50%); however,

few E-mail, files, URLs are shared among the studied communities(less than 10%).

This could be our motivation to increase file sharing, because files might be the most

complex form of data to share, analyze, and detect.

Security Information and Event Management (SIEM) suite is one of the most

broadly deployed threat sharing system among organizations that have established

mutual trusts. Most SIEM systems mainly rely on human analysts to first identify

threat (i.e., phishing urls, indicator of DDos, targeted malware campaign, etc.) by

forensic analysis or reverse engineering. The intrusion detection system achieved bet-

ter performance by simply accumulating the manually identified threat information

which essentially demand significant amount of human labor.

Recently, the sharing initiatives from organizations including government agen-

cies, companies, and individuals have shown a willingness to share threat intelligence

across organizations. Malware Information Sharing Platform [38], designed by NATO,

promoted the concept of cyber defense information sharing. It is a open source project

with a combination of a community of members, a knowledge base on malware, and

a web based platform. STIX, TAXII and CybOX specifications [39] and MAEC lan-

guage [40] by MITRE Corporation is a series of the most prominent work attempting

to standardize the vocabulary, expression and conveyance of threat intelligence thus

to solve the challenge that data could not be automatically and e↵ectively transfered

and consumed. With these specifications from MITRE, the sharing processes could

be done automatically across heterogeneous networks and even between disparate

tools. Many industry platforms adopted STIX, TAXII, and CybOX to deploy on-line

20

threat sharing communities that is accessible to public. Representative platforms

we reviewed include AlienVault Open Threat Exchange (OTX) [41], ThreatConnect

collaborative threat intelligence platform [42], IBM X-Force Exchange [43], Facebook

ThreatExchange [44], Cyber Threat Alliance [45], and Virus Total [18]. These plat-

forms is capable of sharing thread information in a social network fashion, in the

format of a list of malicious IP address, malware analysis reports, indicator of com-

promise, or malicious executables.

We’ve saw the model of sharing threat information is desirable and highly prac-

tical. Participants recognize that collaborative threat sharing is beneficial. However,

the general idea of threat sharing outside organization is unfavorable to those who

argue that there is a chance of losing privacy or losing competition advantages. To

better understand this threat information sharing paradigm, we build a centralized

system which accept public contributed threat data and run on it various analysis

algorithms to achieve automatic intrusion detection; More importantly, we model the

system operation from a public goods game theoretical point of view, from which we

could gain insights about the conflict between individual incentives to free-ride and

social incentives to contribute toward the provision of public intrusion detection sys-

tem. Our experiment will focus on malicious file sharing and collaborative malware

analysis. To our best knowledge, there is no existing work on theoretical modeling of

a practical threat information sharing system.

CHAPTER 3

TroGuard as a Host-Based Malware
Detector

3.1 Background

Social engineering attacks rely on the user being a point of weakness in any secure

system and create one of the most challenging security problems, where users them-

selves perform or facilitate attack steps. For example, in the case of “fake anti-virus”

malware, the user is convinced to download the legitimate-looking executable to her

computer and then willingly execute a piece of software that is core to the attack.

Protecting a computer system and its users against such socially engineered down-

load attacks appears to be impossible, as any such protection could interfere with

the user’s freedom to install software on their own computer. We describe in this

paper our e↵orts to alleviate this threat without impinging on the user’s freedom, by

providing a system that automatically compares the stated goal of a software pro-

gram (as perceived by the user) with its actual goal (as inferred from the program’s

execution).

Web-based socially engineered download attacks that result in a trojan software

installation on the victim’s computer are becoming more widespread. This is mainly

due to new security measures (e.g., memory-page protection and address randomiza-

21

22

tion to prevent bu↵er overflows) that significantly reduce the success rate of other

popular, automated attack vectors. Trojan downloads range from rogue security soft-

ware (also known as “scareware” or fake anti-virus), to fake games, fake video codecs,

and to fully functional pirated softwares that are infected with malware. As a case

in point, TrojanClicker.VB.395 (detected by TrojanHunter [46]) purports to be an

Adobe Flash updater; however, once downloaded and installed by unsuspecting users,

the trojan launches a spyware that monitored and uploaded all Google searches to a

remote server www.msjupdat e.com. To make the users aware of such attacks, Adobe

announced that malicious hackers were starting to use fake Flash Player downloads

as social engineering lures for malware and issued a call-to-arms for users to validate

installers before downloading software updates. The company’s notice came on the

heels of malware attacks on Facebook, MySpace and Twitter that attempted to trick

Windows users into installing a Flash Player update [47]. Furthermore in the last few

years the threats of trojan downloads have expanded quickly from desktop to mobile

platforms, e.g., the Opfake browser [48], where the app-store concept seems to drive

the user-made download decisions away from provenance and towards functionality.

t There are unfortunately few techniques to help users protect themselves against

trojan downloads. One technique is based on dynamically updated blacklists, where

web browsers check against an online blacklist service (e.g., Google SafeBrowsing [49])

that the current web page does not contain malicious software. Similarly, anti-virus

software (e.g., McAfee [50]) also uses a blacklist to determine whether the down-

loaded program is malicious. Both of these security techniques rely on precise and

timely maintenance of the blacklists—a time-consuming challenging endeavor in prac-

tice. Protection techniques that monitor for “drive-by downloads” (e.g., Blade [51])

are inapplicable here because trojan downloads are performed through user inter-

23

action, not via an exploit. User education to protect against trojans is ine↵ective

at best since the vast majority of users lack the necessarily complex technical skills

and tools to determine whether a downloaded program is malicious. Consequently,

almost all of the existing techniques fall short in providing an e↵ective protection

mechanism against trojan download attacks that could ideally manage the whole

download-install-execute process for the user and provide security in that context.

Our approach bridges the gap between what the user perceives regarding the func-

tionality of the downloaded software and the functionality observed during its actual

execution. We observe that, throughout the download–install–execute process, the

user maintains a consistent expectation about the functionality of the downloaded

program. Following the Principle of Least Surprise [52] in user-interface design, i.e.,

“design should match the user’s experience, expectations, and mental models” [53],

we wish to build on the user’s expectations of a downloaded application and her ex-

perience with past applications with similar functionalities. To this end, our solution

detects trojan downloads by comparing the user’s expectation of functionality (as

primed by the software download web page) with the actual functionality exhibited

at runtime, and imposes constraints on the downloaded application’s local execution

using the contextual information on the download web page.

Comparing an application’s expected and actual behaviors, while intuitive, poses

significant challenges. It is unclear whether an actual system-level behavior can be

summarized concisely that is high-level enough to compare with a label that a typical

human user could place on the downloaded application. This is mainly because of

the huge gap between the human description of the application (in terms of abstract

concepts and functionalities such as web browsing) and its system-level behavior (in

terms of concrete operations and concrete runtime metrics such as syscalls). Addition-

24

ally even obtaining a concise label from the human description is not straightforward,

as web pages for application downloads often contain extraneous marketing informa-

tion. We tackle these challenges to create an end-to-end system for detecting trojan

downloads.

Our system, called TroGuard, analyzes the information visible to the user on

the software download web page to infer the perceived software category. TroGuard

also monitors the execution of the downloaded program to infer its actual software

category in real-time, and alerts the user if the perceived and actual categories do

not match. We chose to abstract as software category both the web-page information

around the program download and the execution of the program, because a software

category matches closely to how users commonly understand software. Finding this

middle ground between human descriptions of software functionality and low-level

system operations invoked by the software is non-trivial, because those software cat-

egories need to be not only meaningful to users (e.g., “o�ce application” vs. “text

editing tool”) but also extractable from the low-level system traces. Furthermore,

applications within the same category should expose similar system-level profiles to

be classified as the same category by TroGuard later.

Even with a well-chosen set of software categories (as we give in this paper), there

are significant engineering problems in (1) designing a web-page analyzer that can au-

tomatically classify the download with high accuracy, in the presence of rich web tech-

nologies fully under the attacker’s control, (2) constructing a runtime monitor that

can abstract away inconsequential behaviors so to classify the execution of the down-

loaded program correctly, and (3) integration of the complete TroGuard framework

into a convenient web-browsing experience for the user. As detailed throughout the

25

paper, TroGuard overcomes these problems through a combination of machine

learning and security engineering.

We use supervised machine-learning to construct our software-category classifier.

We considered two training data sets, one consisting of traces collected from user-

executed software and one from symbolically-executed software. Although the first

data set does not provide complete coverage, since our users did not attempt to explore

all functionality of each software program, it leads to a more accurate classifier. We

explore and explain this surprising phenomenon in our evaluation.

We make the following contributions in this paper:

• A new approach to detecting trojan downloads is introduced, that at its core

relies on comparing the functionality expected by the user (e�ciently deter-

mined through in-depth and automated analysis of the download web site) to

the functionality exhibited during the downloaded application’s execution;

• An end-to-end system for detecting trojan downloads is designed and imple-

mented to identify mismatches between user-perceived and actual software cat-

egories. TroGuard consists of a browser extension and plugin as well as a

host monitor that communicate with each other to bridge the gap between user

experience and system activity; and

• A comprehensive evaluation over a large data set shows high-accuracy detec-

tion (up to 98.3%), even in the presence of programs that naturally combine

functionality from multiple (traditional) software categories.

It is also noteworthy to mention that TroGuard concentrates on the detection

of socially-engineered trojans and does not provide post-detection intrusion-response

solutions to remove the malware or restore the system back to a previous clean state.

26

Table 3.1: 90% of the top MacOS Malware are Trojans [1].

Rank Name Percentage
1 Trojan.OSX.FakeCo.a 52%
2 Trojan-Downloader.OSX.Jahlav.d 8%
3 Trojan-Downloader.OSX.Flashfake.ai 7%
4 Trojan-Downloader.OSX.FavDonw.c 5%
5 Trojan-Downloader.OSX.FavDonw.a 2%
6 Trojan-Downloader.OSX.Flashfake.ab 2%
7 Trojan-FakeAV.OSX.Defma.gen 2%
8 Trojan-FakeAV.OSX.Defma.f 1%
9 Exploit.OSX.Smid.b 1%
10 Trojan-Downloader.OSX.Flashfake.af 1%

3.1.1 Motivation

The attacks via web-based Trojan downloads are hard to protect against because

they involve a social engineering step where the user (as sociotechnical root of trust)

gets tricked (i.e., compromised) into downloading and running the Trojan program

themselves. This favors attackers such that nine out of the top-10 MacOS threats in

2012 were Trojan downloads (Table 3.1) causing 30% increase in number of signatures

created by Kaspersky Labs [1].

The ubuntu malware [54] hidden inside a screen saver from Gnome-look.org was

one of the real word examples showing the severity of such attach in non-Windows

platform. When a ordinary computer user downloaded this screen saver without

knowing anything about the downloaded executable, the installed application se-

cretly install some executable scripts beside giving the user the desired screen saver

functionality. The secretly installed scripts connected to command and control server

for downloading malicious code or steal local sensitive information.

We tackle this problem by equipping the user with a tool to answer the question

“Is this downloaded program doing what I expect it to do?”. To this end, we combine

an analysis of the information about the program that is available to the user on the

27

download web page with an analysis of the runtime information collected by the user’s

computer from the program execution. Both of these analyses produce summaries

of the program functionality, one of perceived functionality (as the user sees it) and

one of actual functionality (as the host system sees it). The perceived and actual

functionality profiles are then compared against each other and the user is notified

in the case of mismatch. The analyses rely on a database of known applications,

known websites, and known functionality classes in order to produce the perceived

and actual summaries.

3.2 System Architecture

We present an overview of the proposed solution and discuss how it protects

the client systems against web-based socially engineered Trojan threats. Figure 3.1

illustrates individual components in TroGuard and how they are logically inter-

connected. The overall solution consists of two major steps of 1) o✏ine application

tracing and data analysis, and 2) online user query and dynamic malware detection.

More specifically, during the o✏ine phase, TroGuard captures and traces several

behavioral aspects of various applications with di↵erent functionalities dynamically.

TroGuard analyzes the program from a collection of labeled applications where

each application, e.g., Firefox, is marked with the functionality it provides, e.g., web

browser. The abovementioned collection is created such that most of widely-used

functionalities, e.g., web browser or o�ce suite, are provided by multiple applications.

The objective of the o✏ine phase is to create a behavioral profile of each functionality

in terms of its system-level activities, such as filesystem reads/writes, network data

transfer, and user interactivity. The premise, that we prove by our experimental eval-

28

Figure 3.1: TroGuard’s High-Level Architecture

uation, is that behavioral aspects of applications with similar functionality are similar

to each other and di↵erent from those of applications with di↵erent functionalities.

Once the application activities are captured, the recorded data sets with the func-

tionality labels are fed into a supervised machine-learning algorithm to extract dis-

criminative features about each functionality. For instance, game applications often

exhibit intense user interactivity and time-varying system CPU usage while music

players present minimal user interactivity and stable CPU usage over time, with low

filesystem and network interaction. Similarly, word-processor users will press navi-

gation and alphanumeric keys significantly more than other key categories, while for

game players either use a limited times of alphanumeric keys such as A, S, D, and W.

The discriminative features for each functionality form a profile feature vector and

are stored for the online detection phase. It is noteworthy that the o✏ine phase is

29

a one-time e↵ort and the functionality profiles, once created, can be reused across

multiple systems.

The second phase in TroGuard is that of on-demand website and application

analysis, leading to the automated real-time malware detection. When the user in-

tends to download a legitimate-looking (potentially malicious) program, e.g., a game,

from a website, TroGuard monitors the download and installation process on the

local system closely using its browser extension and plugin components, respectively.

Once the browser extension component in TroGuard notices a download initiated

by the user, it starts the website analysis process to determine the type of application

(functionality) being downloaded, by parsing the text from the web site and from

its images (which are first processed using OCR). TroGuard then calculates an

list of most-likely functionalities and presents them to the user before the download

starts. The user confirms or corrects the expected functionality for TroGuard to

use during its dynamic program analysis. Once the program is downloaded, installed,

and executed in a sandboxed environment (all steps automatically monitored), Tro-

Guard’s runtime tracing component starts behavioral monitoring, data collection,

and real-time classification of its behavior to verify that the application does not

violate the corresponding functionality profile obtained from the o✏ine phase.

Revisiting our example of TrojanClicker.VB.395 from the introduction, Tro-

Guard would infer that the program to be downloaded claims to be a software

updater and would retrieve the appropriate functionality profile from its database.

When the Trojan starts executing, TroGuard would monitor its activity, looking

for updater-like behaviors (e.g., many filesystem and registry operations for existing

entries, little-to-no network tra�c). As the Trojan installs itself into the system (into

a new location and as an extension to any web browsers present) and as it com-

30

municates over the network (sending collected logs of Google searches), TroGuard

observes the discrepancy and notifies the user consequently.

TroGuard protects the users against a specific class of Trojan download attacks

where, through a web-based social engineering step, the user is lured into downloading

and installing a malicious legitimate-looking executable on her system. A web-based

Trojan attack download can be described as a series of steps that the victim is initially

tricked using social engineering, and then he or she intentionally performs to complete

the download and installation of malware for the attacker. The goal of the web-based

Trojan exploit is to take e↵ective control of the client machine in order to complete

subsequent malicious activities such as bot deployment.

The attacker wishes to trick the user into downloading the Trojan program, and

can use any social engineering technique for this purpose. Additionally, the attacker

has full control over the web page that proposes the download to the user and can

use any web technology on that page, with the exception of exploits. In other words,

we place the user’s web browser and underlying operating system into the trusted

computing base (TCB) and assume that they have no vulnerabilities. Protecting

the TCB from attacks is orthogonal to our work and has been widely researched by

others, with a variety of solutions available.

We assume that the attack does not involve the use of exploits or other automated

techniques, but only the willing cooperation of the user to install and launch the Tro-

jan software. It is important to highlight that our threat model is subtly di↵erent from

drive-by downloads (e.g., as addressed by Blade [51]), where the adversary performs

a surreptitious download via the user’s browser through a shell-code injection step,

with no social engineering needed. In this case a browser vulnerability is exploited

and no social engineering step is needed to complete the attack. Furthermore, unlike

31

in our threat model, the user does not notice the download and installation of the

malware. This type of drive-by download attack requires a vulnerable browser to be

feasible and is outside the scope of the present work.

TroGuard analyses the source website of an application, while that application

is being downloaded, to determine the appropriate functionality profile for that ap-

plication. It then compares the execution of the downloaded application against this

profile and alerts the user if it discovers any discrepancies. In this section, we discuss

what a functionality profile is and how we build a representative database of them.

3.2.1 Functionality Classes

Functionality class is a key concept in our system, as it represents both the user’s

understanding of a software category and the system’s observation of a software’s

execution behavior. Defining an ideal structure to capture the concept of functionality

class is close to impossible, as an unlimited number of structures of varying degrees

of abstraction could serve the purpose.

In TroGuard we use a highly summarized view of the program execution to

define a functionality class. In particular, the profile associated with a functionality

class is a vector of key behavior features, as explained in the following subsections.

Each behavior feature is high-level enough to be describable to the user (e.g., “Pro-

gram X was classified as a game because in normal use it generates a lot of user

interaction”, where level of user interaction is one feature in the profile vector). Fur-

ther more, each behavior feature should be e�ciently computable in real time from

the program execution observations.

The remaining challenge is how to select the most representative functionality

classes. By “most representative” we mean both classes that are meaningful to users

32

TroGuard Softpedia.com cnet.com Tucows.com
Graphics Editor Artistic SW Graphic Design SW Design tools
Game Games Games Games
Browser Internet Browsers

Internet
Instant Messenger (IM) Communications Communications
Media Player

Multimedia
MP3/Audio SW

Audio / VideoAudio Editor
Video Editor Video SW
O�ce O�ce Productivity SW Business
IDE Programming Developer Tools Dev/Web

Calculator Utilities Utilities/OS
Home
/Education

Table 3.2: Functionality classes in TroGuard and their corresponding categories for three
popular software-download web sites.

and with member programs that share behaviors. As an example of a poor choice

of functionality class, “System Utilities” fails our criteria because its meaning is too

generic to a user and its member programs have many, distinct behaviors with no

common functionality. We turned to ten software-download websites such as Softpe-

dia, Tucows, and FileGuru, and surveyed their top-level software categories. As these

website are popular Internet destinations for software downloads, their categories

likely reflect users’ understanding and serve as a good starting point for TroGuard.

We summarized the categories and combined them into a more concise set, as shown

in Table 3.2.

It is noteworthy that the correct selection of functionality classes results in ef-

fective detection of behavioral mimicry attacks, where the carefully crafted malware

attempts to accomplish a malicious objective while pretending a legitimate function-

ality delivery. We will discuss how robust TroGuard is against mimicry attacks in

section 3.4.2.

33

3.2.2 Bridging the Semantic Gap

The goal of our system is to distinguish an application’s genuine type from its

advertised type based on functional profiling of the application against a trained

application functionality class database. The system should first be trained using a

supervised training algorithm with a large set of sample applications. To generate dis-

criminative features, comprehensive functional profiles are required. Unlike previous

work on behavior based malware clustering [55] and [56], besides system call traces,

application behavioral in our work is expanded to include user space properties: CPU

and memory usage, network protocols, port numbers, the number of IP addresses (or

domain names) the application connects to, and the user machine interactivity, such

as keyboard strokes and mouse clicks. The presence or absence of those attributes

in each application’s profile not only represent the core functionalities of that appli-

cation, but can also be used to separate a particular type of application from the

rest. Practically, such behavioral profiles are generated by collecting and analyzing

the system wide activities both in kernel space and user space. In this section we will

discuss the feature list generation and it properties.

System call traces are very useful in studying the run-time activities of an appli-

cation. In our project we use the LTTng [57] tool kit to obtain the system call logs.

However, we will not analyze the system call log directly, such as using the n-gram

method. This is mainly because system call traces can vary significantly between

programs of a single application type. Consider a file downloader as an example: in

a multi-process platform, file downloader A might write 512 bytes data fetched from

the web server to the file system in eight consecutive write system calls, taking 64

bytes as the input argument for each write operation. Whereas, file downloader B

might write 512 bytes to the file system by a single write operation. Moreover, in the

34

trace of program A, it is very likely to interleave the write system calls with some

other process management system calls. The significant di↵erences in such system

call traces of two similar applications will not reflect the similar behaviors they ex-

hibit. For this reason, we first study the system call log manually and build a model

to abstract feature from it.

TroGuard extracts low-level system features using its dynamic kernel and user

space tracing engines. For low-level kernel activity tracing, TroGuard intercepts

syscalls, and it analyzes system call to obtain more semantic information such as

used protocols, system libraries that the application is accessing, file system activi-

ties. Furthermore, we focus on the input and output arguments of the system call

as well as the system call statistics such as average amount of network data transfer.

In order to obtain the dependency of the data flow from the trace, we also consider

the functionality of individual system calls. This is necessary to build the depen-

dency relationship among system entities. Additionally, TroGuard gathers system

call statistics such as system call frequency in di↵erent operation categories, i.e.,

file system I/O statistics, and network I/O statistics, filesystem accesses, and inter-

process communication. Though system call analysis, TroGuard also extracts the

information flow dependency among the operating system assets, e.g., processes and

directories. For instance, when a process sends an IPC message to another running

process, the second process becomes directly (information flow-) dependent on the

first process. Transitive information flow among a sequence of assets cause indirect

dependencies. TroGuard adds such data dependencies to the system-level features

of the target application. Based on our system call trace analysis model, a list of fea-

ture vectors are generated from the kernel space trace, including the total number of

35

system calls in di↵erent operation categories, file system I/O statistics, and network

I/O statistics, file modification dependency, and interprocess communication.

In addition to the system call traces, we include some user space properties as

part of a program’s feature list. These include CPU and memory usage, user machine

interactivity, port numbers, and the number of IP addresses (or domain names) the

application connected to. It is worth mentioning that some of those properties are

theoretically available in the kernel traces. However, due to the limitation of our

tracing tool, the port numbers a program used could not be retrieved from the traces

and we collect them using Linux utility programs such as sockstat and lsof out of

the kernel space. The whole feature collection process is done by running a script, in

which both the LTTng tracing results and the sockstat or lsof output are collected

as raw data files. Those files are further processed and the output of this step is the

abstracted application profile.

We consider CPU and Memory usage as application features because during our

study we found that CPU and memory usage for di↵erent types of applications exhibit

similar patterns that are unique to that application type. For example, the resource

consumptions for web browsers have a sharp increase at start up, and are then reduced

to a moderate level and linearly increase as new tabs are created. While for text

editors, the CPU and memory usage mostly remain in the same level as it started.

Moreover, resource consumptions implicitly reflect how the user interacts with the

application. Resource consumptions such as CPU and memory usage are correlated

with the tasks the program executes. The human interactivity features are also

considered in our feature list in the form of statistics of keyboard strokes and mouse

clicks.

36

Nowadays, most applications highly rely on a remote web server. The port num-

bers and IP addresses the program communicate with can be taken as features in

the feature list. For example, port 25 is for SMTP service, so any application that

uses port 25 is very likely to be an email client. By dumping the IP addresses and

referring to the open website directory such as dmoz.com. we can link the program

to a particular category of web services, which is used as one element in the feature

list for classification later.

The main challenge in designing such functionality-based detection solutions is the

large semantic gap that exists between the high-level user-perceivable functionality

classes (Section 3.2.1) and low-level system activities, e.g., syscalls. To fill the seman-

tic gap without sacrificing detection accuracy much, TroGuard uses an intermediate

level of features that not only are semantically closer to the functionality classes but

also can be inferred from the low-level system and network event logs (Figure 3.2). In

particular, the system-wide tracing instrumentations notifies TroGuard about low-

level activities. TroGuard accomplishes intermediate-level feature inference from

the low-level activities using predefined rules implemented by regular expressions.

The inference rules are designed as a one-time e↵ort (took two person-days in our ex-

periments) and, once developed, could be reused across machines. The inference rules

are either direct or indirect. TroGuard directly infers an intermediate-level feature

when it explicitly matches particular points in the system-level activity logs such as

a file type access attempt or a specific network protocol. Indirect inference requires

more computation since the information should be extracted and combined from dif-

ferent points such as system call arguments or system call invocation sequences, and

processed to check whether they satisfy a given regular expression rule. For instance,

the intermediate attributes protocol::imap and works-with-format::pdf, belong

37

Figure 3.2: TroGuard Components

to the directly mapped attributes extracted from Debtags system [58], can be obtained

explicitly from system call argument. However, the feature interface::x11 is in-

ferred indirectly from low level system call activities such as opening and frequently

reading Xorg library files.

We take Debtags information from Debian package manage system as a reference

in writing the intermediate feature inference rules. We believe that the high level

application functionality classes of those packages can be identified by combination

of multiple tags from Debtags [58]. In other words, a subset of Debtags can play the

role of feature vector to distinguish applications in various categories. Furthermore, if

this particular subset can be generalized to classify other applications except Debian

packages, it will be the feature vector we are looking for. To verify our hypothesis,

we need to collect tags for our studied applications coming from outside of Debian

package repository. In our implementation, we map system level features such as

system call traces to intermediate level features (Debian tags) by rules determined

empirically.

38

3.2.3 Completeness of Functionality Profiles

The functionality profiles we construct inTroGuard are based on the application

behaviors observed during a training phase, in which selected, well-known applications

are run manually under comprehensive system monitoring. This necessarily means

that the functionality profiles are incomplete, which could lead to false alarms (e.g.,

alerting that a downloaded copy of the Banshee music player is not really a music

player).

In our current implementation we considered two options for the training phase.

The first option relies on manual exploration, where users exercise most of the core

functionality of each application in the training set. While this does not technically

ensure 100% coverage of code paths, it su�ciently captures the code paths commonly

executed by normal users. The second option relies on symbolic execution [59] to

improve the code coverage and thus the functionality coverage. We will explore this

option in future work. The full results will be delivered in this thesis.

3.3 Implementation

3.3.1 Browser Extension

The webpage analysis is implemented as an extension to the Google Chrome

browser. The real-time detection system composed of Chrome extension with web

page contents analysis, application tracing component, and NPAPI plugin (also im-

plemented in C++) that can be used by the extension as interface to the local host

to initiate the detection engine. The extension monitors the user’s browsing behavior

and whenever a file download link is clicked, the extension runs the web page analysis

(implemented in JavaScript) and presents the user with a dialog box before the down-

39

load starts. The user then uses the drop-down selection (Figure 3.3) with the most

likely application type ranked as its first option. The likelihood ranking is computed

by the web page analysis component of the extension. The user has the opportunity

to select another application type (according to his expectation). Once the perceived

functionality type is confirmed, the extension invokes (via a native NPAPI plugin

component) the following tasks in our system: initiation of system-call tracing, ini-

tiation of user-space feature collection, and application classification. By comparing

with the functionality class selected by the user, the detection system can warn as

appropriate.

TroGuard fires up when the user interacts with the web browser to download a

software application. When the user clicks a file URL to download an application in

a TroGuard protected computer, the browser extension invokes a popup window

with drop-down options displaying a set of potential application types extracted from

the web page. The displayed application types are a set of frequently occurring

keywords such as web browser, email client, and text editor, etc. These keywords are

defined during the design and implementation of the browser extension. When the

user confirms the application type by either confirming the default type or selecting

another type she/he believes the program belongs to, this keyword is submitted to

the extension and used later for the detection step.

TroGuard uses the Chrome Extension technology [60], to bring up a popup

window (Figure 3.3) which provides the user with a list of potential application type

he/she is currently downloading. TroGuard performs website content analysis in

the background prior to showing the list to the user. The content analysis component

of TroGuard makes use of the text in introducing and marketing the product,

as well as related pictures on the current web page. This component automatically

40

Figure 3.3: Proof of concept example popup window

search all the DOM nodes in the current web page, captures screen-shots of the

visible surface of the browsing window, and employs an OCR engine to extract the

text in the screen-shots. We use Tesseract [61] as the OCR engine. Specifically,

we study the websites front end content to obtain software vendor’s favorite word

choices in describing their applications. Some application names are described in a

single keywords, such as browser and game, and those keywords are descriptive of

the application type on their own. If the content analysis component extracts any

of these descriptive keywords from the download page, the corresponding application

type is added to the list of potential applications shown to the user. For other

less descriptive application names, TroGuard requires co-occurrence of multiple

keywords on the page to characterize its application type in website analysis. For

instance, we count the appearance of both “message” and “chat” in the web page to

add Instance Message application type to the potential application list.

The following is a list of applications and their descriptive single keywords: Browser

(browser), Game (game), IDE (develop), Media Player (player), Calculator (calcula-

41

tor), Downloader (download), Email (email), Database (database), Driver (driver),

Ebook (ebook), and Themes (themes). The second category of applications without

a single descriptive keyword include O�ce (text, editor), IM (chat, message), Graph-

ics (image, draw), Video Editor (video, editor), Audio Editor (audio, editor), PDF

Reader (pdf, reader), Anti-virus (security, antivirus, virus), P2P Application (share,

download, p2p), Network Tools (network, ip, internet). The application types in the

drop-down menu are ranked according to the frequency of those keywords appearing

in the web page, with the highest ranking type shown as the default option.

Furthermore, to simplify TroGuard’s operations on the user’s side, we have

created a simple PHP web service that receives the screen-shot URL, extracts the text

using a PHP wrapper around Tesseract and returns the extracted text. TroGuard’s

Chrome Extension talks with the PHP web service via simple AJAX requests. The

application types in the drop-down menu are ranked according to the frequency of

those keywords appearing in the web page, with the highest ranking type as the

default option. Specifically, empirically define When the user confirms the application

type by either confirming the default type or selecting another type she/he believes

the program belongs to, this keyword is submitted to the extension and used later

for the detection step.

3.3.2 Application Tracing

The runtime tracing is started as soon as the downloaded executable is launched.

The tracing operates by monitoring low-level system activities, mapping them to

intermediate-level application behaviors, and then checking these intermediate-level

behaviors against the functionality profile named by the functionality class inferred

from the download web page. If the intermediate-level behaviors do not match the

42

functionality profile, an alert is raised and the user is given the option to terminate

the application.

The captured low-level system features consist of intercepted system calls, CPU

utilization, memory usage, keyboard activity, mouse clicks, and network activity, e.g.,

socket numbers and IP addresses.

TroGuard further monitors the child and peer processes, and assigns their OS-

object accesses to the top application. Peer processes are processes that were influ-

enced by the application or one of its peer processes via inter-process communication

(IPC), shared memory, remote-process calls (RPC), or other cross-process mecha-

nisms. Consequently, TroGuard adds the assets that interact with the application

directly or indirectly to the target application’s feature vector. This aggressive ap-

proach to assigning all direct and indirect resource accesses to the top application

ensures that all malicious actions are visible to TroGuard.

Additionally, TroGuard also takes into account the frequency and amount of

transferred data among the assets as well as between the local host and remote net-

work end-points. For the application’s network activity, TroGuard also records the

average number of unique remote end-points that the application communicates with

every time unit. To capture the user-machine’s interactivity, we calculate statistical

measures to encode the degree and type of interactivity from observed input events.

In particular, we divide keyboard keys into several types: alphanumeric, modifiers,

navigation and typing modes, system commands and miscellaneous [62]. For mouse

clicks, TroGuard captures left/right/middle clicks and scroll wheel rotation.

TroGuard is primarily a monitoring, classification, and detection framework

and as such has to be supplemented with mechanisms for protecting the host envi-

ronment from the untrusted application’s execution. Sandboxing is the best choice of

43

mechanism in our scenario, as it cleanly separates the application’s persistent changes

to the OS from the rest of the host system. TroGuard makes use of SE-Linux plat-

form to generate and enforce policies to keep the downloaded applications within a

contained sandbox until their benign behavior is confirmed by TroGuard. During

the training phase, TroGuard logs the executed syscalls for the applications in a

functionality class and then uses the union of those logs to generate SE-Linux policies

automatically. TroGuard creates a policy ruleset by parsing the log files for each

functionality class. Once the user downloads an application, TroGuard employs

the created sandbox (i.e., loads the corresponding generated policy’s kernel modules)

for the claimed functionality class. Consequently, the loaded sandbox policies will not

allow the downloaded applications to expose behaviors not already exposed by any

of the application instances within the same functionality class during the training.

A variety of sandboxing approaches work in combination with TroGuard, rang-

ing from whole-system virtualization [63], to per-app virtualization [64], to emula-

tion [65], and to microvirtualization [66]. Since TroGuard is not a static-verification

to ol, but relies on dynamic analysis, it can never safely declare an application as

non-malicious (especially given the existence of time-delayed trojans [67]). As such,

a downloaded application has to be sandboxed in every run. We note however that,

TroGuard allows us to merge persistent changes from the sandbox into the host

system, because TroGuard reasons only about a recent window of events from the

application. All past activity from the application can safely be committed to the

host system as long as TroGuard did not raise an alarm about them.

44

3.3.3 Monitor for Execution Analysis

The native components, outside the browser, consist of a system-call tracing tool

and a user-space component for collecting high-level information, both for Linux.

The LTTng tool kit is used in our project to collect system call traces. LTTng

project aims at providing highly e�cient tracing tools for Linux platform. It has

been frequently used for tracking down performance issues and debugging problems

involving multiple concurrent process and threads. LTTng kernel tracer is used in

our project and is installed as a Linux kernel module. The tracing result written to

file system in a format called Common Trace Format (CTF) is then processed using

Babeltrace (part of LTTng) to generate a log that can then be analyzed.

The profiler functions as trace parser and data formating tool (implemented in

C++). It is not only to parse and extract file system access information but also

to analyze informative returned value, and resolve the interdependency between the

di↵erent system calls. For example, it analyzes the possible system call patterns

between open and close and the path arguments of the read and write operations

to build file system access dependencies. The parser takes care of all the file system

modification operations in newest kernel versions. It also parses and calculates the

data amount the particular application process writes or reads, and the amount of

network data it sends and receives. We resolve the process dependencies by the

following heuristic. We say that process B depends on process A if process B reads

a file F after process A wrote to file F .

The user-space feature collection for CPU and memory usage, user machine inter-

activity, port numbers, and the total numbers of IP addresses relies on Linux utilities

such as sockstat and lsof. The combination of kernel space system call traces and

user space meta-features enable us to generate comprehensive application profiles. In

45

our implementation, the CPU and memory usage are obtained by dynamically read-

ing the /proc file system data structures. The user interactivity feature consists of

statistics over keyboard strokes and mouse clicks. We divide computer keys into sev-

eral types: alphanumeric, modifiers, navigation and typing modes, system commands

and miscellaneous [62]. For mouse clicks, we track the following attributes, left click,

right click, middle click, and scroll wheel activity. We use evtest, a input device

event monitor and query tool in the X11 server platform, to capture all the keyboard

strokes and the mouse clicks. The results are presented as XML files and read by our

profiling program later to generate the application profiles.

3.3.4 Functionality Profile Generation

All of those applications were installed incrementally and run separately in a

Ubuntu virtual machine with LTTng module loaded. An automatic data collection

bash script was used to collect kernel trace result by running LTTng and initiating

other tools to collect resource usage information, such as CPU and memory usage.

During each application tracing, our researcher worked with the application to explore

its features as most as he can for 60 seconds. The output of the raw data collection

is one large size system call log and five small size feature files, including the CPU

usage, memory usage, keyboard logging, mouse click logging, and the dumped network

information (socket numbers and IP addresses). The profiler will take those files at

the collection step as the input to produce a single line of entry in the final dataset,

which in our case is single ARFF file for all the 100 applications. In details, the CPU

and memory usage is read from /proc/[pid]/stat. The socket and IP information

is obtained by running netstat. The I/O devices is monitored by evtest. By

doing preliminary test and statistical analysis of keyboard key usage for variance

46

applications, we observed the pattern of usage for the keyboard key between di↵erent

type of applications.

We employed machine learning tool Weka as our training and classification engine.

The application profiles generated as Attribute-Relation File Format (ARFF) format

in order to meet the supported input format for Weka. ARFF is one of the simple

data set format Weka can parse correctly.

We selected 100 applications in 10 categories from Ubuntu Software Center and

Softpedia.com. To build the application profile database, the testing platform has

been configured to allow file sharing between guest and host. So the application

traced results can be immediately profiled by the powerful host machine. Which can

significantly reduce the time to build the application functionality profile database.

Total number of 100 applications have been installed and the tracing results have

been obtained inside the virtual machine. To reduce the system call trace data size and

accelerate the profiling process, we ensured that there are no other user application

run except the target application and the system service processes the operating

system is needed in bootstrap. In the o↵-line training stage, each of the application

was run for 60 seconds with user performing normal operations on the application

main functionalities. After obtain the raw data, which will be pass to the trace parser

for generating application profile. Each application profile collected during 60 seconds

is divide into 6 independent data point with 10 second trace for each. We put together

the whole data set as a single ARFF data file after all the traces have been completed.

3.4 Evaluation

We deployed TroGuard in a testbed environment and evaluated various aspects

of its operation. In particular, we designed a set of experiments to empirically answer

47

the following questions: How e�ciently does TroGuard trace and capture individ-

ual attributes of applications during their execution time? How accurately can Tro-

Guard classify the applications based on the gathered labeled data logs and generate

the corresponding functionality profiles? Can TroGuard distinguish between appli-

cations of di↵erent functionality classes precisely? How accurately can TroGuard

estimate the functionality class that the user believes in the downloaded application is

of? How does TroGuard work in details through a complete real-world case study

scenario? Evaluation results will be presented regarding TroGuard’s e�ciency,

accuracy, and discriminative power between functionality classes.

Our browser extension monitors user download activities and recommend user the

most likely application type he/she is trying to download. This step is mainly done by

our web page analysis tool implemented in the content script of the chrome extension.

We will present the accuracy and the performance of the web page analysis in this

section. The automatic application tracing and profiling are conducted both in kernel

and user space. They naturally will introduce overhead for the whole system. We

will discuss how the overhead looks like in this section (may be better in case study).

The critical part of the TroGuard is the malware detection accuracy, also know

as application type classification accuracy. We will start with evaluating di↵erent

components with respect to their running environments separately. The integrated

system performance evaluation will be presented in case study.

We installedTroGuard in an Ubuntu 12.10 computer system with Intel R� CoreTM

i7 3.6 GHz Processor and 8 GB of memory was used for the experiments. We extended

and used LTTng tool [57] to trace system-level activities including the semantic in-

formation such as filenames and network protocols. The Weka framework [68] was

used for functionality classification of running applications.

48

Web Page CNET Tucows Softpedia Download3k Soft82 Average

Pure Text 0.606 0.209 0.337 0.334 0.262 0.378
Pure OCR 69.871 35.715 25.427 34.532 45.556 38.892

Table 3.3: Website analysis times (seconds)

3.4.1 Website Analysis Performance

Real-world usable deployment of TroGuard requires e�cient and interactive

website analysis so that real-time user interaction with the browser extension becomes

feasible. We measured the performance of the automated website analysis engine on

100 potential download websites that include text and image files. Table 3.3 shows the

performance results of applying text and image analyses for each class of websites. As

shown, the website text analysis solution in TroGuard accomplishes the procedures

within 0.4 seconds on average, while the image OCR analysis engines takes longer, i.e.,

approximately 38.9 seconds. For image heavy websites, i.e., the websites with a large

number of images, such as CNET, the image analysis requires more than a minute

to complete. According to the results presented in Figure 3.4, the text analysis in

almost all of the tested websites produces more accurate results while running faster

that facilitates the real-time interaction with the user significantly. Consequently,

TroGuard makes use of text analysis unless the result are not conclusive or the

website is image heavy.

TroGuard deploys the website analysis engine to simplify the users choice upon

the exact functionality class, which the downloaded application is believed to be of,

using the popup window that lists the ranked functionality classes. The ranked types

are based on information from the webpage, such as pure text, the text in images, and

interactive ads. The extension monitors the user’s browsing behavior and whenever

a file download link is clicked, the extension runs the web page analysis and presents

49

Figure 3.4: Website Analysis Accuracy

the user with a dialog box before the download starts. The user then uses the drop-

down selection (see Figure 3.3) with the most likely application type ranked as its

first option. The user has the opportunity to select another application type, if

the default is not correct. Once the perceived functionality type is confirmed, the

extension invokes (via a native NPAPI plugin component) the following tasks in our

system: initiation of system-call tracing, initiation of user-space feature collection,

and application classification.

We compare the accuracy of pure HTML document analysis and pure image OCR

analysis by testing them in 100 popular download websites such as Download.com,

Softpedia.com, Tucows.com, etc. We visited each download web page trying to

download a random application. Figure 3.4 presents the accuracy results for the

website content analysis in TroGuard. The vertical axis presents the accuracy value

based on the portion of cases where a functionality class was determined correctly

50

using the automated website analysis engine, i.e., the automatically determined class

matched the functionality class that the user believed was downloading. We studied

the accuracy of text-based and image-based functionality class inference separately.

For image-based analysis, TroGuard uses the open source Tesseract OCR engine

[61]. In particular, the engine took screen shots of the download website before

performing an in-depth OCR analysis to search for the target key terms, e.g., the

functionality class names and related keywords. It is noteworthy that the OCR

analysis accuracy is relatively lower compared to the pure text-based analysis. As

shown in the figure, TroGuard’s pure text-based analysis engine outperforms the

image-based website analyzer in almost all of the cases except the IDE functionality

class.

3.4.2 Application Classification Accuracy

To evaluate the application classification in TroGuard, we installed 100 applica-

tions1 chosen from ten di↵erent functionality classes (10 application per functionality

class) and collected data corresponding to individual attributes. During the o↵-line

training stage, each application ran for 60 seconds while a user exercised the appli-

cation’s main functionalities. It is noteworthy that, after several trials, we found the

60-second interval su�cient to capture the main functionalities of each application

according to its functional category. Each application’s data log was divided into six

time periods (10 seconds each), to be used later for testing phase. Consequently, our

collected database composed of 600 labeled data points.

We evaluated the performance of application type learning and classification com-

ponent in TroGuard using 10-fold cross validation [69]. We considered two statis-

1The applications were chosen from Ubuntu Software Center and www.Softpedia.com.

51

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

File Network CPU-Mem Interaction All

R
ec

al
l

Different Attributes Domains

Browser
Office

IM

Game
IDE

Media-Player

Graphic-Editor
Video-Editor
Audio-Editor

Calculator
Average

Figure 3.5: Classification recall for detectors using di↵erent attribute sets on di↵erent func-
tionality classes.

tical measures, namely 1) recall, the fraction of relevant instances that are retrieved

during the classification; and 2) precision, the fraction of retrieved instances (i.e.,

marked as a particular functionality class by TroGuard) that are correct (i.e., ac-

tually of the marked class).

Figure 3.5 shows the recall values for each functionality class as a result of classifi-

cation using di↵erent subsets of attributes. The employed attributes fall into four cat-

egories, file system-related (File), network-related (Network), system resource-related

(CPU–Mem), and user interactivity-related (Interaction). We also present results of

the classification using all of the attributes. The results for each subset of attributes

are a clustered set of bars, each representing the recall value for an individual func-

tionality class. As the results show, the browser functionality class gives the highest

recall percentage except when the classification is performed using the Interaction

attributes only. This is because various web pages require di↵erent kind of user in-

teractions. As a case in point, the way users interact with an online game website,

52

Figure 3.6: Classification precision for detectors using di↵erent attribute sets on di↵erent
functionality classes.

i.e., intense keyboard and mouse interaction, is extremely di↵erent from that of a

text or video news channel, i.e., minimal interaction while the video is being played.

Therefore, many browser samples have been wrongly marked as other functionality

classes such as graphic editor that require similar mouse activity. Another interesting

functionality class is the game class whose most distinguishing characteristic are its

CPU–Mem attributes because games usually require high CPU and memory resources

in comparison to other functionality classes. The network attributes are the weakest

for distinguishing game samples as they do not make regular connections to network

very often.

Figure 3.6 also shows the precision results for the application type learning and

classification component of TroGuard. As can be seen, using all of the attributes

results in application marking with a higher accuracy. Comparing the recall and pre-

cision results using Interaction attributes for the browser class, the classifier has been

selective in marking application samples as the browser functionality class resulting

53

in high precision. Additionally, many of the graphic editor, media player and IDE

samples are marked falsely as browsers resulting in a poor precision rates. Based on

both recall and precision results, the user interactivity attribute contributes the least

to the overall accuracy. In addition to the use of di↵erent GUI schemes in appli-

cations, this may be attributed to several applications executing in the background

while they are not the active window on screen, i.e., zero user interactivity.

Figure 3.7 shows the accuracy results from a di↵erent perspective, providing more

details on how applications were classified correctly or confused by mistake by the

TroGuard framework. In particular, we present one 10x10 gray-scale confusion

matrix for each set of attributes, e.g., File. In the confusion matrix, a darker shade

of gray in a cell indicates that the detector had higher confidence in classifying a

program from the given row as the part of the functionality class from the given

column. A perfect detector produces a completely black diagonal confusion matrix.

To further clarify, each (i, j) element in a confusion matrix represents how many

of application data points of the i-th functionality class was marked (classified) as

the j-th functionality class2. Therefore, the diagonal elements denote the samples

that were classified correctly. Clearly, out of the four sets of attributes, CPU–Mem

attributes are the most discriminative, while Network attributes do relatively well

except for the data points labeled as the calculator functionality class. Regarding

the least contributing attribute set (Interaction), as the Media Player applications do

not require high user interaction, most of their corresponding data points (column 6)

have been classified wrongly. On the other hand, we can see accurate classification

results for IDE applications with high user interaction.

2The functionality class numbering is as follows: Browser (0), O�ce (1), Game (2), IDE (3), IM
(4), Graphic Editor (5), Media Player (6), Video Editor (7), Audio Editor (8), and Calculator (9).

54

1

3

5

7

9

 0

 2

 4

 6

 8

1 3 5 7 9 0 2 4 6 8

C
ro

ss
 V

al
id

at
io

n
(C

la
ss

ifi
ed

 A
s)

Label in the Data Set
(a) File-system activity only.

1

3

5

7

9

 0

 2

 4

 6

 8

1 3 5 7 9 0 2 4 6 8

C
ro

ss
 V

al
id

at
io

n
(C

la
ss

ifi
ed

 A
s)

Lable in the Data Set
(b) Network activity only.

1

3

5

7

9

 0

 2

 4

 6

 8

1 3 5 7 9 0 2 4 6 8

C
ro

ss
 V

al
id

at
io

n
(C

la
ss

ifi
ed

 A
s)

Label in the Data Set
(c) Resource usage only.

1

3

5

7

9

 0

 2

 4

 6

 8

1 3 5 7 9 0 2 4 6 8

C
ro

ss
 V

al
id

at
io

n
(C

la
ss

ifi
ed

 A
s)

Label in the Data Set
(d) User interactivity only.

1

3

5

7

9

 0

 2

 4

 6

 8

1 3 5 7 9 0 2 4 6 8

C
ro

ss
 V

al
id

at
io

n
(C

la
ss

ifi
ed

 A
s)

Lable in the Data Set

 0

 10

 20

 30

 40

 50

 60

057

44

53

48

35

23

38

37

37

51

1 0 2 0 0 0 0 0

0 4 0 1 2 2 2 50

3 0 0 2 0 1 0 01

1 1 2 1 2 1 0 1 3

0 1 2 1 4 10 2 2 3

3 0 3 4 4 9 3 9 2

0 1 2 0 4 2 4 9 0

140 0 2 2 2 4 8

145802300

0 0 2 1 1 1211

95%

73%

88%

80%

58%

63%

61%

61%

85%

38%

Label in the Data Set

(e) All activity attributes.

Figure 3.7: Confusion matrices for a variety of detectors. Figures (a)–(d) describe class-
specific detectors, each using a particular class of activity attributes. Figure (e) describes
a detector using all attributes.

55

Figure 3.8: Classification Using Intermediate Features

Finally, we measured how much the usage of intermediate-level features improved

the classification accuracy (Figure 3.8). For intermediate-level feature-based func-

tionality classification, TroGuard uses Debtags [58] that is a large set of Debian

packages, approximately 39K packages, each labeled manually with many facet fea-

tures by developers to facilitate application package search by high level application

functionality tags. We grouped the packages into 10 functionality classes automat-

ically using logical rules on combination of facet features, and then verified the au-

tomatically categorized packages one by one manually for correctness. As a case in

point, we used the following rule for the browser category browser:|use::browse|

format::html|protocol::http, i.e., the package is a browser type if its facet feature

set include any of the three listed features. We later used the abovementioned func-

tionality class labels for supervised learning using the intermediate-level facet features

of each Debtags data point (application). The computed learning rules were later used

for trojan detection and classification of legitimate Debtags and non-Debtags appli-

56

cations. The final average accuracy was 96% compared to 70% (see Figure 3.7) that

empirically proves the benefit of intermediate-level features as an approach to fill the

semantic gap between the high-level functionality classes and low-level system traces.

3.4.3 Application Classification Performance

During the application type learning phase, TroGuard saved the collected data

for the 100 applications in human readable plain text files (totaling 40.5 GB). Tro-

Guard parses each file, extracts and stores the suitable attributes for the application

classification step later.

TroGuard built 5 models using the meta classifier Ensembles of Nested Dichoto-

mies (END) in the Weka machine learning suite [68], based on the C4.5 decision tree

classification algorithm [68]. The algorithm can handle both continuous (numeric)

and discrete (nominal) attributes. TroGuard builds the decision tree with 2 as

the minimum number of instances per leaf. Additionally, TroGuard uses 1 fold

for reduced-error pruning, and 2 extra folds for growing the tree. Table 3.4 shows

the performance results for the application classification engine. As shown the total

81 attributes were distributed among the four attribute sets. The second row shows

how long it takes for TroGuard to complete the supervised learning and training

phases using all of the application data logs. The first four columns show the time

requirement for classification using a subset of attributes, and the last column reports

the overall time required for creating trained models using all of the attributes. As

shown, the training phase using the all the attributes takes less than 1 second to

complete that is an acceptable duration for real-world deployment of the TroGuard

framework.

57

Table 3.4: Training times (seconds)
File Network CPU-Mem Inter. All

#Attr. 44 20 8 9 81
Time 0.49 0.14 0.19 0.4 0.82

In the evaluation of the accuracy of the model, we divided our feature vector(data

attributes) into four categories, file system related attributes, network related at-

tributes, resource usage related attributes, and user interactivity attributes. We took

the attribute as a variable and to use cross-validation to verify how those di↵erent

domain information e↵ect the accuracy of the model. File system related feature has

been broadly explored in the past [70], [55], etc.. Application profile that heavily rely

on file system related feature is e↵ective in detect malicious program functionalities

in some cases, but those system is easy to be circumvented and very often they fail

to detect the new malicious application. As we will present, combining with other

features independent of file system is e↵ective to distinguish malware and benign

applications.

3.4.4 Sandboxing Performance

We measured how much overhead TroGuard’s generated SE-Linux policies put

on the system once the user downloads the application. Figure 3.9 shows the results.

On average TroGuard’s sandbox puts 5.4% overhead on the system throughput. It

is noteworthy that the overhead is temporal and will go away once TroGuard con-

firms that the application is benign and could run outside of the SE-Linux sandbox.

3.4.5 System Performance Overhead

We studied the performance overhead of data collection tool LTTng kernel tracer.

The LTTng kernel tracer is a highly e�cient tracing tool that typically used by

58

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60

C
PU

 U
sa

ge
 (

Ji
tt

er
s)

Sandboxing enabled
Sandboxing disabled

Figure 3.9: Sandboxing CPU Usage Overhead

system developer to track down performance issues and debug problems in multi-

process system. The reported impact of LTTng on kernel operations in terms of

percentage of CPU cycles against vanilla kernel is less then 5% in [71].

We measured the impact of TroGuard syscall interception engine on various as-

pects of the system performance, namely kernel CPU utilization, memory utilization,

disk throughput, and network throughput. In addition, we benchmarked the net-

work throughput over loopback. Figure 3.10 shows the results. In our experiments,

the maximum CPU overhead TroGuard’s kernel tracer introduced is 20% for the

calculator. The maximum memory overhead is 15% for running video editor. The

measured performance overhead for disk throughput ranges from 45% to 87%. The

fairly high disk operation overhead of TroGuard is due to its logging activities to

the system’s disk in parallel. The network performance degradation ranges from 55%

to 60%. It is noteworthy that these overheads are not permanent and go away once

TroGuard comes to a conclusion on whether the running application is a trojan.

59

office
IM

Game
IDE

Media-Player
Graphic-Editor

Video-Editor
Audio-Editor

Calclulator

0

10

20

30

40

50

60

70

80

90

100
P

e
rc

e
n

ta
g

e
 o

f
C

P
U

 u
s
a
g

e
 f

o
r

K
e
rn

e
l

(a) Kernel CPU Utilization only.

office
IM

Game
IDE

Media-Player
Graphic-Editor

Video-Editor
Audio-Editor

Calclulator

0

20

40

60

80

100

120

140

160

D
is

k
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

office
IM

Game
IDE

Media-Player
Graphic-Editor

Video-Editor
Audio-Editor

Calclulator

0

50

100

150

200

250

300

350

N
e
tw

o
rk

 T
h

ro
u

g
h

p
u

t
(L

o
o

p
b

a
c
k
 M

B
/s

)

office
IM

Game
IDE

Media-Player
Graphic-Editor

Video-Editor
Audio-Editor

Calclulator

0

50

100

150

200

250

300

350

N
e
tw

o
rk

 T
h

ro
u

g
h

p
u

t
(L

o
o

p
b

a
c
k
 M

B
/s

)

office
IM

Game
IDE

Media-Player
Graphic-Editor

Video-Editor
Audio-Editor

Calclulator

0

20

40

60

80

100

120

140

160

D
is

k
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

office
IM

Game
IDE

Media-Player
Graphic-Editor

Video-Editor
Audio-Editor

Calclulator

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e
rc

e
n

ta
g

e
 o

f
O

v
e
ra

ll

M
e
m

o
ry

 U
s
a
g

e

(b) Overall Memory Utilization only.

No-LTTng LTTng

office
IM

Game
IDE

Media-Player
Graphic-Editor

Video-Editor
Audio-Editor

Calclulator

0

20

40

60

80

100

120

140

160

D
is

k
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

office
IM

Game
IDE

Media-Player
Graphic-Editor

Video-Editor
Audio-Editor

Calclulator

0

50

100

150

200

250

300

350

N
e
tw

o
rk

 T
h

ro
u

g
h

p
u

t
(L

o
o

p
b

a
c
k
 M

B
/s

)

office
IM

Game
IDE

Media-Player
Graphic-Editor

Video-Editor
Audio-Editor

Calclulator

0

50

100

150

200

250

300

350

N
e
tw

o
rk

 T
h

ro
u

g
h

p
u

t
(L

o
o

p
b

a
c
k
 M

B
/s

)

office
IM

Game
IDE

Media-Player
Graphic-Editor

Video-Editor
Audio-Editor

Calclulator

0

20

40

60

80

100

120

140

160

D
is

k
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

(c) Disk Throughput (Loopback) only.

office
IM

Game
IDE

Media-Player
Graphic-Editor

Video-Editor
Audio-Editor

Calclulator

0

20

40

60

80

100

120

140

160

D
is

k
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

office
IM

Game
IDE

Media-Player
Graphic-Editor

Video-Editor
Audio-Editor

Calclulator

0

50

100

150

200

250

300

350

N
e
tw

o
rk

 T
h

ro
u

g
h

p
u

t
(L

o
o

p
b

a
c
k
 M

B
/s

)

office
IM

Game
IDE

Media-Player
Graphic-Editor

Video-Editor
Audio-Editor

Calclulator

0

50

100

150

200

250

300

350

N
e
tw

o
rk

 T
h

ro
u

g
h

p
u

t
(L

o
o

p
b

a
c
k
 M

B
/s

)

(d) Network Throughput only.

Figure 3.10: TroGuard Overhead on System Resources

3.4.6 Behavioral Mimicry Attacks

One of the main challenges that behavioral-based detection solutions face gen-

erally is their vulnerability against behavioral mimicry attacks. We evaluated how

TroGuard performs in terminating such attacks that try to pretend delivering a le-

gitimate functionality while conducting a malicious activity in the background. First,

we describe a concrete case study to show step by step how TroGuard detects a

sample trojan Freesweep game application that is downloaded from a legitimate-

looking malicious website. Next, we will present our results on 50 other mimicry

attack samples.

We obtained the Freesweep game application trojan payload using the Metas-

ploit suite [72] as a Ubuntu deb game package. The trojan package included the

60

original game, the exploit payload, and a post-installation script that executed the

exploitation script. Upon execution, the malicious payload opened a socket connec-

tion secretly and created a reverse shell to connect back to an adversarial remote

site.

We masqueraded a Softpedia web page as shown in Figure 3.11 to hold the mali-

cious trojan game package. Consequently, the victim user was convinced to download,

install and run the game on her desktop computer. Once the victim clicked to down-

load the package, TroGuard’s extension component noticed the download action

request in the browser. TroGuard analyzed the download website and correctly

estimated the functionality class, i.e., game. The determined functionality class was

shown to the user through a browser popup (similar to Figure 3.3) with the default

option set to game. After the user’s confirmation, TroGuard switched to the moni-

toring mode to trace and capture the application’s execution footprint. Analysis of the

logged data sets using the 100-application trained model resulted in classification of

most of the downloaded application’s data points as calculator. Figure 3.12 shows the

calculated probability values for each functionality class, i.e., the probability that the

downloaded application is of a particular functionality class. The mismatch between

the confirmed functionality class and the derived class caused TroGuard to raise a

warning notifying the user of the mismatch and a potential malicious download.

We evaluated TroGuard on 50 mimicry trojan samples created by reverse engi-

neering and malicious code patching of the benign pdf readers. Figure 3.13 shows the

classification results of how accurately the mimicry trojans are classified compared

to their corresponding benign applications. The ratings are averaged over all trojan

samples for each classification parameter that show lower classification accuracy when

TroGuard classifies a trojan. For instance, TroGuard classified 90% of benign

61

Figure 3.11: Game Trojan’s Download Webpage

pdf-reader applications correctly, in contrary, only 10% of mimicry trojans that pre-

tended to be a pdf-reader application was classified as a pdf-reader by TROGUARD.

All others were classified as Because of such low classification accuracies (below the

predefined acceptance threshold 0.8), TROGUARD was able to detect and terminate

all 50 trojan samples.

3.4.7 Security Analysis and Discussion

We discuss various aspects and the potential deployment limitations of the Tro-

Guard framework.

How representative are the functionality classes in TroGuard? Coming up with

a comprehensive, meaningful and universal set of functionality classes is challenging,

and at the same time, critical to the TroGuard’s correct operation. To this end,

we have identified and used a common set of functionality classes from three popular

software-download web sites and the Debian package tags that host a large compre-

62

Functionality-Class Mismatch:
Expected: Game
Observed: 10% Game, 50% Calculator

Figure 3.12: TroGuard Alert

0"

0.2"

0.4"

0.6"

0.8"

1"

True"
Posi1ve"

False"
Posi1ve"

Precision" Recall" F9Measure"

Ra
te
"

Trojans" Benign"Apps"

Figure 3.13: TroGuard Against Mimicry Exploits

hensive set of software applications and are viewed by millions of users every day

(Section 3.2.1).

How usable can TroGuard be for non-technical users? To provide the users with

a usable security solution, one of our main objectives in designing every component in

TroGuard has been to separate the low-level system details that are used for various

analyses from the high-level information that is communicated to the user. As a case

in point, while the kernel-level modules are tracing di↵erent system-level activities

of the suspicious application, the user’s interaction with TroGuard is through the

browser extension using terms that the (potentially non-technical) user usually sees

on popular download websites and is familiar with. In the simplest form, the user

only has to confirm that the application class diplayed by the browser extension

matches the class he expected based on what he saw and read on the download page.

We believe that such design points has made TroGuard usable by a vast range of

63

users. Of course, this belief has to be validated through an actual usability study,

and we intend to pursue such a study in our future work, pending IRB approval.

Is TroGuard useful even if it is not absolutely accurate? Semi-automated detec-

tion of social engineering attacks using mostly system-level information has remained

to be a very challenging problem that is also indicated by their recent increasing pop-

ularity among attackers. TroGuard introduces a new solution against web-based

socially engineered trojan attacks through categorization of applications’ functionality

classes rather individual applications (developed by possibly unknown third-parties).

Additionally, as our implementation is not yet optimized, both the website analysis

and application classification accuracies can be improved through parameter tuning

as well as usage of more complete techniques such as static executable analysis tech-

niques to estimate the application’s functionality class.

How can attackers evade the TroGuard’s detection analyses? Evasion of the

TroGuard’s detection solution requires the trojan application to accomplish its ma-

licious tasks, such as sensitive system file modifications, through complete imitation

of a benign functionality class. This is a feasible attack against not only TroGuard

but also most of the anomaly-based malware detection solutions in general, and we

note that detecting mimicry attacks is a hard problem and an ongoing research topic.

What if TroGuard notifies the user about a downloaded trojan too late? To

minimize the possibly of late user notification, TroGuard performs real-time analy-

sis of the execution and warns the user as soon as its confidence regarding the ongoing

malicious activity gets high enough. Furthermore, to eliminate the possibility of late

notification, sandboxing could be deployed once the application is installed according

to its functionality class. For instance, a password file access attempt by a game tro-

64

jan application would be blocked by the deployed sandbox. We consider this extension

outside the scope of this paper and consider it as a future work.

CHAPTER 4

TroGuard as a Cloud-Based Malware
Detection Service

4.1 System Overview

We present the design and architecture of the proposed system in this section.

Our goal is to create a vertical malware analysis and detection framework that is

e�cient, transparent to endpoint users, and with truthful detection capability. To

this end, the system includes two major components as shown in Figure 4.1: a user

agent and a cloud analysis platform. The user agent in our design is integrated

into a web browser as an add-on application to provide on-demand malware analysis

interface to the cloud. However, this is not the only use case possible. The user

agent could also be implemented in security gateways as a tra�c processing plug-in

to detect malicious files in a network. The following discussions of user agent focus

on endpoint user, while the design principle of the two are very much alike. The

cloud analysis platform consists of database systems, dynamically provisioned virtual

sandboxes, and computation units that enable malware sample storage, context aware

behavioral analysis, and e�cient behavior feature modeling and classification.

The highlight of the system is that it introduces an advanced on-line learning

algorithm to learn the best analysis time frame achieve e�cient analysis and accu-

65

66

Model Training

Cloud Based Static and Dynamic Analysis

...

Submit ?
Yes

Wait x
seconds ?

i.e. x = 60

verdict

SignaturesBlacklists Sample File DBs

Context
Clustering

Context Feature
Extraction

Clustering
Model

Context
Cluster

Model 1 Model 2 Model k

Contextual Model Selection
(To be learned)

Dynamic analysis Module
Resource

provisioning

Allow/Block
Update sample DBUser

Internet

Yes

Fast Check

User Agent

Figure 4.1: System Architecture

rate detection of heterogeneous malware samples. In contrast, all existing behavior

analysis systems select the time length of dynamic analysis using some heuristics and

apply uniformly to all samples. Our improvement also enhance the system usabil-

ity by providing users with optimal waiting time (shortest waiting to get the most

accurate result) and a projection of the low bound for detection accuracy. All the

information will be available before the cloud start the dynamic analysis, making it

much user-friendly because it o↵ers users the flexibility to configure the length of

sample execution (may receive suboptimal analysis result). In the following sections,

we will discuss each component in details.

67

4.1.1 Client Agent

In a system protected by our service, when a user clicks a URI to download an

executable file within a browser, the installed user agent is activated and pop up a

window to o↵er him/her the cloud based malware detection service. If the user click

accept to scan the file, the client agent will connect to the remote file downloading

server and start the file download. Instead of writing the file data to local disk,

the client agent will initiate a separate connection to the cloud analysis platform and

forward the downloading data to it. This design leave no chance for the suspicious file

to infect the host computer because the client agent is run in a sandbox environment.

The packets received at the cloud are reassembled into executable files when all the

packets in the downloading session arrived.

In each detection task, client agent keep interacting with cloud system until re-

ceived the final verdict. The first message from cloud informs user of the required

dynamic analysis time, computed by the contextual bandits algorithm according to

the samples context information. Users are free to decline or accept the waiting. In

the former case he/she receives no malware protection, while in the later case the

user have to spend extra time to download, allowing an extended period of dynamic

analysis for detection results. To reduce the length of waiting is very important for

improving user’s quality of experience (QoE), therefore our learning strategy at cloud

is designed to optimizing the length of dynamic analysis (major contribution to the

waiting) with the condition of accurate detection and e�cient resource usage. As

noted above, client agent could also be implemented as a plug-in of security gateway

systems configured by the IT administrator.

68

4.1.2 Malware Analysis as a Cloud Service

The malware analysis and detection engine is designed to be deployed in a cloud

environment to reach scalability and performance requirements and to meet the user’s

QoE. The platform could be deployed in a private cloud to protect an organizational

network or in a public cloud to provide malware detection services for all the sub-

scribed users. The cloud based detection engine includes fast file checker, context

feature extraction and clustering modules, dynamic behavior analysis module, and

contextual multi-armed bandit learning and classification modules. Figure 4.1 shown

the modules and the data flow of the system.

Fast Check Using Blacklists and Signatures. The Fast Check is the first

module processes the received executable file. It use traditional pattern machining

method to fast check the known malware to reduce unnecessary delay. We use Safe

Browsing URI lists as the blacklist to check against. It reduces detection latency

for some well known malicious web resources, If a user try to submit a executable

download from a URI that is in the Safe Browsing database, the user will experience

minimum delay in receiving the detection result. If this is the case, the sample and its

label will be stored in the sample file database for future model update. Otherwise,

the downloaded file will be passed to the signature scanner.

Using signature scanning alone cannot defeat new malware, but like using black-

list it is e↵ective for filtering samples known to the signature database and reduce

system load. The di↵erence between signature scanning and blacklist checking is that

signature scanning matches file signatures against file content while blacklist checking

the requested URI against entries in the list database. We use a collection of anti-

virus products (via Virus Total APIs) to scan the submitted files to avoid repeated

analysis of same file. It combines results aggregated from 54 anti-virus engines and

69

we use majority vote to drawn the conclusion, i.e., we treat the files that marked by

half of anti-virus engines as malware and return the result to user agent. Fast Check

module is also a labeling tool that generates labeled dataset for training classifiers for

malware detection.

Context Feature Extraction. In our real-life malware samples, we observed

some distinctive file characteristics that separate the malicious samples apart from

the benign ones. For example, malicious executables are usually packed or obfuscated

while benign programs are not; the average size of malicious executables is far smaller

than the average size of benign programs, etc.. These file characters are not su�cient

to be used as features in training reliable detection models; However, they can be used

to facilitate the behavioral feature analysis and classifier selection. File characteristics

are viewed as context information in our work and is the key of the contextual multi-

armed bandits modeling (Section 4.2). By following a designated learning policy,

the system learns the best mapping from context information to the classifiers that

trained using behavioral features from di↵erent analysis length. Our assumption is

that only those samples with similar context features should be included in training

an accurate behavioral feature based classifier. In other words, classifiers need to be

trained separately according to their context feature. After all, it is not reasonable

to compare the behavior features of packed binaries and those unpacked ones.

Context Clustering. Initially, cloud will make use of context features of the

training samples to build an clustering model that divide the context features space

into subspaces. The purpose of this context space partitioning is to allow the system

to learn the performance of di↵erent classifiers for a subspace of contexts rather than

each individual context, thereby improving the learning speed significantly.

70

Context clustering model is trained using the context features from the submitted

samples that is known to the Safe Browsing and anti-virus signature scanning com-

ponents. For new samples submitted for detection, context cluster labels are revealed

first and applied to the Contextual Model Selection module to select the best classifier

from array of classifiers. This made possible by the learned mapping relation between

context context information and the best classifier given the context. There are two

advantages of introducing the context clustering module. First, the easy obtained

context information determines how long it need to execute the sample in order to

use the selected classifier, as the classifier is trained with behavior features from same

length of execution. Secondly, the determined optimal execution length feedback to

the user and make our system much user-friendly than conventional systems. Specif-

ically, users of our system are explicitly informed of how much delay he/she would

experience and given the option to alter it, while users of all other systems su↵er from

longer waiting for all the detection tasks.

Dynamic Behavioral Analysis. The Dynamic Analysis Module is equipped

with virtualized sandbox to conduct on-demand dynamic behavior feature collection.

We modified Cuckoo Sandbox [73] by adding an interface to the Context Clustering

Module so that the determined execution length for the sample can be passed to the

Resource Provisioning submodule to time the sample execution. The Resource Pro-

visioning submodule dynamically allocate Virtual Machine (VM) instances based on

individual requests. Every submitted sample does not hit the fast checker database

will be run in an instrumented VM dedicated for the particular sample. The vir-

tual resource of each analysis instance such as CPU cores, base memory, hard drive,

video memory, etc., is a variable because di↵erent sample requires di↵erent resource

requirements. However, the available physical machines that host the instances is

71

limited by the overall infrastructure. For a cloud system with thousands of users, the

VM instance provisioning process need to be carefully planned to avoid wasting the

computing resources — i.e., allocating too much disk space for one analysis instance

that will not be fully used during the sample execution. One strategy we have already

introduced is to combine context feature clustering in deciding the optimal tracing

length. This has to do with the CPU time. In later section we will introduce the

definition of QoE which will take into account the memory consumption for executing

a sample in order to balance the trade o↵ between the achieved accuracy and resource

cost it takes. The objective is to improve the QoE for users.

Once the executable start executing, a script emulating a human user will start

clicking the software’s GUI to cover more functionality of the sample software. We

have enhanced Cuckoo’s out-of-box human emulation script by adding capability to

search and click UI buttons in Chinese and Russian, because many of the studied

samples have user interface in the two languages other than Cuckoo Sandbox’s default

English.

Detection Model Training. Unlike most existing dynamic behavioral feature

based malware detection systems that employ a single detection model with fixed

length of behavior monitoring, our cloud based detection system maintains multiple

models trained with behavioral features collected from di↵erent length of executions.

Specifically, each training sample will be execute multiple times with di↵erent exe-

cution length denoted by a discrete set {⌧1, ⌧2, . . . , ⌧K}. A finite set of supervised

learning models F = {f1, f2, . . . , fk} have been trained and readily to be deployed

through Contextual Model Selection module. The training samples could be a mix of

legitimate executable files and some historical malware samples that have been man-

ually analyzed by anti-virus organizations or other malware researchers. The imple-

72

mentation of Model Training module lies in the field of supervised machine learning.

Existing algorithms could be applied to search in a function space f
k

: X
k

! Y for a

detector with least cross validation error. Here X
k

is the feature space obtained from

T
k

period of dynamic analysis of submitted samples and Y is the label space. The

function space searching is well studied in supervised machine learning and malware

classification literatures [19, 25, 32, 74, 75]. So that we will not discuss the details

about model selection and hyper-parameter searching in this work, instead we design

cloud interfaces that allow any independent implementation of the Model Training

subsystem to be integrated in to the cloud platform.

Multi-Armed Bandit Learning. We introduce the contextual multi-armed

bandit learning framework to learn the best classifier (require shorter period of dy-

namic analysis) based on sample’s context information. Learning the best classifier

among many is necessary because unlike applications such as speech and text recogni-

tion where audio and image features remain relatively constant over samples, malware

behaviors evolve and some times adversaries attempt to fool the detectors by delaying

the malicious activities. So that it is necessary to maintain multiple models with dif-

ferent length of behavioral profiles and allow the system to choose the best classifier

in order to achieve high accurate of detection by capturing more behavioral activi-

ties. We will presented the complete model of the framework in the next section and

discuss the details of the algorithm we proposed in order to achieve highest expected

QoE.

4.2 System Model

Behavioral feature based malware classification usually modeled as a supervised

learning problem in the past. Under the framework, a malware classifier f that

73

trained with labeled history feature vectors will be applied to the vectorized features

to compute the likelihood of the sample being malicious. We noted that malware

behavior features are highly depends on the length of monitoring ⌧ , the performance

of the classifier in turn depends on ⌧ . Generally, larger ⌧ leads to accurate classifiers,

while smaller ⌧ gives classifiers that perform worse. To improve the performance

of the malware classifier, increase the length of behavior monitoring ⌧ arbitrarily

will drain the computation resource of the cloud system. In practical system, we

need to carefully balance the trade-o↵ between achieving excellent accuracy and the

incurred cost, both of which connected to ⌧ . Our proposed system maintains multiple

classifiers f
⌧1 , . . . , f⌧k trained with behavior features from di↵erent monitoring period

⌧1, . . . , ⌧k. For each individual detection task, the system learns in real time which

classifier is the best one to choose. We model such a learning process as a contextual

multi-armed bandit problem.

In this section, we focus on the modeling of the Contextual Model Selection module

in Figure 4.1. The problem of time-variant behavioral feature based malware detection

system can be naturally modeled as a multi-armed bandit problem with malware

context information.

4.2.1 A On-line Classifier Selection Problem Formulation

The original multi-armed bandit setting includes a finite set of K actions A =

{a1, . . . , aK}. In each round t = 1, . . . , T , one particular action a
k

is taken and the

corresponding reward r
t

(k) for the action will be returned. The reward r
t

(k) is chosen

from a stationary probability distribution that depends on the action k. The goal is

to design a policy that maximize the total rewards through repeated action selection.

74

If there are contextual z
t

available at time t to assist the action selection, the problem

becomes a contextual multi-armed bandit problem.

The problem of malware classifier selection can be naturally modeled using the

contextual multi-armed bandit framework outlined above. The Contextual Model

Selection module from Figure 4.1 maintains a finite set of malware classifiers F =

{f1, f2, . . . , fk} indexed byK = {1, 2, . . . , k}, for which each classifier f
k

2 F is trained

o↵-line with behavioral features from a specific execution time ⌧
k

and associated with

an unknown and fixed accuracy distribution D over [0, 1]. In the system introduced

in Figure 4.1, consider the most recent N files that have been submitted to the cloud

along a discrete time horizon t by either personal users at via web browser or security

gateway systems. As part of the requests handling process, the Contextual Model

Selection module will select and apply one of the k classifiers to the given sample’s

behavioral feature vector xt to output a classification result yt = f
k

(xt) 2 Y = {0, 1}.

This corresponds to choose an arm to play in original bandit problem. In our model,

the reward received for the module by selecting f
k

is an indicator function r
t

= 1(yt =

ŷt), in which ŷt 2 Y is the true label of the sample. The “1” in the binary label set Y

represents malware and “0” for legitimate software. In practice, the detection result

yt could also be a probability prediction (e.g. yt 2 Y 0 = [0, 1], values from the range

represent lowest to highest possibility of being a malware) . It is worth noting that

the feature vector xt in round t and the training features of classifier f
k

come from

behavioral features collected during dynamic execution for time length of ⌧
k

.

Each of the k classifiers has an expected or mean reward given that it is selected

in multiple rounds, we call it the accuracy of the classifier. We denote the classifier

selected on time step t as F
t

, thus the accuracy of an arbitrary classifier f
k

denoted

q(f
k

), is the expected reward given that f
k

is selected:

75

q(f
k

) = E[r
t

|F
t

= f
k

]. (4.1)

The accuracy is a simple and intuitive metric to evaluate classification system. As

a matter of fact, majority of dynamic feature based malware classification systems

presented evaluation result in the similar form of measurement: precision, recall, F1

score etc., while ignoring the cost incurred in conducting dynamic behavioral features

analysis. We observed that in a user interactive system under limited computa-

tion resource budget, to achieve the ultimate behavioral based classification accuracy

through comprehensive dynamic analysis is impractical. Thus we designed a new

metric Quality of Experience (QoE) with the mind of balancing the trade-o↵ between

high analysis accuracy and the cost of analysis.

Definition 1 (Quality of Experience). The Quality of Experience received by

user at at time t + ⌧
t

by selecting the kth classifier from F at time t is the weighted

sum of the classifier’s accuracy and the incurred cost because of ⌧
t

length of dynamic

analysis

Q(f
k

) = q(f
k

)� �c(⌧
k

) (4.2)

Where � 2 [0, 1] is a trade-o↵ parameter that depends on the application require-

ments. ⌅

We now have the QoE as a measurement of how the cloud based detection system

performs. Briefly, we want to maximize the expectation of QoE by determine how

long to execute each sample in order to apply one of the maintained classifiers based

on their evaluative feedbacks, i.e. the history QoEs. As we don’t have the true value of

Q(f
k

), we have to estimate it for each k in order to find the maximum. One possible

method to do this is to start with large value of k to explore as many behavioral

76

features as possible until a superior execution length (smallest k that result in highest

empirical mean of QoE) is observed among K, and switch to the particular choice of

optimal value k⇤ to exploit the benefits of fast and accurate detection. However, this

greedy method subject to sub-optimal result because in all the future detections they

only exploit their previous known best classifier, behavior model of which may not

be su�cient to capture behavioral feature of new samples.

While exploitation is good to maximize the QoE on one step, we also need to

explore other classifiers not selected by greedy method to improve the estimated

accuracy, because exploration may produce the greater total QoE in the long run.

For example, if we identified f1 is the classifier by greedy selection, while several other

classifiers are estimated to be nearly as good but with uncertainty. The uncertainty

is that there may exist one of these other classifier that is better than f1 in future,

but you don’t know which one at time t. In our system design, we have to make the

classifier selection on each time steps, then it may be better to explore other classifiers

and discover which of them are better in the long run. We will present an algorithm

in the next section (Section 4.3) to balance the trade-o↵ between the exploitation and

exploration of classifiers in order to have the highest expected QoE.

In on-line learning comparing the QoE against di↵erent classifiers isn’t practical.

A better measurement of the learning success is regret, which defined as following.

Definition 2 (Regret for learning algorithm A). Given the total number of

detection requests T that cloud processed according to a on-line detection algorithm

A. The cumulative regret of A is the di↵erence between the total QoE by applying

the best classifier and the total QoE by following algorithm A in all T detections.

Accordingly, the cumulative regret is given by

77

ghh. (4.3)

And the goal of the algorithm design for our bandit problem is to minimize the

expected cumulative regret, which by linearity of expectation we have

E
"
RegA(T)

#
= Tµ⇤ � E

"
TX

t=1

Qt(A)

#
. (4.4)

Where µ⇤ = max1iK

µ
i

is expected QoE of the best classifier. we should note

that there are theorems concerning lower bounds for expected cumulative regret. The

algorithm we will introduce in Section 4.3 will guarantee O(
p
KT log T). ⌅

4.2.2 Contextual Multi-Armed Bandit Framework

In previous multi-armed bandits framework, the QoE payo↵ is only determined

by the classifier that selected at time t. Any side information about the sample is

ignored. Notice the learning goal of cloud platform is to provide user the best QoE by

choosing the best classifiers. To achieve the goal, cloud have to learn overtime which

classifier perform the best for the next detection request. It is important to exploit the

similarity of side information and take into account the information in future learning

process. This problem can be naturally modeled as a contextual multi-armed bandit

problem. That is the QoE of an detection not only depend on the selected classifier

but also rely on how we explore the available contextual information to make the best

learning. In this section we present the contextual multi-armed bandit formulation

for our malware detection problem.

To include sample context in the setup, cloud platform will first extract the context

features from the received client request and perform context clustering in order to

choose a classifier according to the cluster result. We abstract the sample context

78

feature at time t using the notation ✓t 2 ⇥ with ⇥ being a d-dimensional feature space.

The context can include information about various file properties of the sample such

as file header and other standard file specification metadata. Note that contexts

could also be features extracted from the sample rather than metadata information.

Extracting specific features is more costly, so we will use only the side information as

the context in this paper.

Under this contextual bandits formulation, we have a unknown distribution P over

(⇥, Q⇥(f1), . . . , Q⇥(fK)). On each round, a sample (✓, Q
✓

(f1), . . . , Q✓

(f
K

)) is drawn

from P , the context ✓ is announced, and then for precisely one classifier is chosen

by a bandits algorithm, its instant QoE Q
✓

(f
k

) is revealed. A contextual bandits

algorithm B choose a classifier at each time slot t, based on the previous observation

sequence
�
(✓1, f 1

k

, Q
✓

1(f 1
k

)), . . . , (✓t�1, f t�1
k

, Q
✓

t�1(f t�1
k

))

, and the current context ✓t.

The expected cumulative regret (learning loss) of algorithm B with respect to the

oracle benchmark by time T is given by

E
"
RegB(T)

#
= Tµ⇤

✓

� E
"

TX

t=1

Qt

✓

(B(✓))
#

(4.5)

The expected cumulative reward gives the convergence rate of the total expected

reward of the learning algorithm to the value of the optimal solution. Any learning

algorithm with sublinear regret O(N�) (for � < 1) will converge to the optimal

solution in terms of the expected reward. In another words, the goal of algorithm B

is to minimize its regret, which is equivalent to maximizing the total reward.

In the next section, we will propose an e�cient learning algorithm that learns the

oracle classifiers with sub-linear regret bounds. To enable rigorous regret analysis,

we assume that if context information is similar, then the expected reward obtained

by selecting the same classifier is also similar. Formally, we have Lipschitz condition

79

Assumption: A Lipschitz contextual multi-armed bandit problem is a pair of

spaces – a contextual space ⇥ and a function F . A instance of the problem is a

function µ
✓2⇥ : ⇥⇥F ! [0, 1], which is Lipschitz in each coordinate, that is 8✓, ✓0 2 ⇥,

8f
k

2 F , there exists M > 0 and 0 < ↵  0 such that

|µ
✓

(f
k

)� µ
✓

0(f
k

)| M |✓ � ✓0|↵ (4.6)

Remarks: The above assumption will hold if the expected QoE µ
✓

(f) is bounded 8✓, f

and M is chosen su�ciently large and ↵ su�ciently small. while we prefer smaller

M and ↵ because in this case more similarity information can be exploited and may

lead to a better system performance.

4.3 Contextual Bandits Learning Algorithm for QoE

Optimization

In this section, we will discuss the details of context clustering and how we make

use of the context information to optimize the expected QoE through the proposed

contextual multi-armed bandit model. As discussed in the system model Section

4.2, the algorithm must balance exploitation and exploration to get good statistic

performance. In the exploration phases, di↵erent classifiers are selected to learn their

expected reward. In the exploitation phases, the classifier with the best estimated

reward is selected in order to maximize the classification rewards. Note that the

exploration and exploitation phases are interleaved unlike in the conventional learning

approaches where only a single training phase is executed followed by the exploitation

phase.

The expected QoE of di↵erent classifiers will di↵er because the length of be-

havioral feature collection have significant impact on the expected QoE µ(f ⇤
k

) of a

80

behavioral feature based malware classifier. Increasing the execution time will record

more comprehensive behavioral features that generally lead to more accurate results.

The improvement is mostly applicable to detect malwares that intentionally or unin-

tentionally delay the malicious behavior after being analyzed. After all, short analysis

will not capture any useful behavioral features for this type of malware and hence

will lead to poor detection result.

4.3.1 Sample Context Feature Clustering

We observed there is exist some connections between the context information

and the accuracy of the classifier q(f
k

), which in turn a↵ects the expected QoE. For

example, two groups of sample with significant di↵erent file properties may receive

di↵erent QoE even though cloud system apply same selection policy. such as one

group is packed software and the other group is non packed. The learning problem

would be simple if there was no context information. But without using the context

information the performance of the learning algorithm can be poor because the best

oracle classifiers can be very di↵erent for di↵erent context information. Since the

context space ⇥ can be very large and even continuous, learning the best oracle

classifier for each individual context ✓ 2 ⇥ is extremely di�cult, if not impossible.

To overcome this obstacle, our learning algorithm will first partition the context space

into smaller subspaces (i.e. context clusters) and learn the best oracle classifier within

each subspace.

We take the K-means clustering algorithm as a context space partitioning subrou-

tine in discussing our learning algorithm and it proofed e↵ective in our experiment in

Section 4.4. However, other clustering algorithm could also be implement to replace

the K-means subroutine. The algorithm iterate through each training sample’s con-

81

text feature to assign the sample to the closest centroid in the metric of Euclidean

distance, and recompute the mean of each centroid using the point assign to it. The

K-means algorithm will always converge to some final set of means for the centroids.

A partition of context feature space could be achieved by computing the Voronoi

partition using the converged centroids.

Note that the converged solution may not always be ideal for our application and

depends on the initial setting of the centroids. Therefore, in practice the K-means

algorithm is run a few times with di↵erent random initializations. We choose the best

centroids between di↵erent solutions by minimize the cost function

J(`1, . . . , `T , ⌫1, . . . , ⌫L) =
1

T

TX

t=1

||✓t � ⌫
`

t ||2 (4.7)

where `t 2 L = {1, . . . , L} is the index of cluster which the sample’s context ✓t

currently assigned to and ⌫
`

t is the context cluster centroids.

For a specific detection request, cloud extracts the received contextual features

from client as the first step in the detection transaction. The extracted feature will

be normalized for simplicity reason. For instance, if we decide to only include the

file size as the context feature, the context space will be normalized with respect to

the maximum file size and the minimum file size that cloud received so far. The

normalized context features will be run through the pre-built clustering model and

the cluster label of the input sample will be revealed. The learning algorithm will

determine the optimal tracing length for this sample based on the context label and

history rewards of the available classifiers.

Notice that for each specific sample with cluster label y
✓

, the realized QoE Q
✓

(f
k

)

by selecting f
k

is an random variable drawn from an unknown distribution with mean

µ
✓

(f
k

), which is also initially unknown. However, we can estimate the expected QoE

82

by observing many reward realizations from testing samples. Specifically, the best

classifier under context ✓ is f ⇤(✓) := argmax
fk2F µ

✓

(f
k

) and the best expected QoE

for context cluster y
✓

is µ⇤
✓

:= µ
✓

(f ⇤(✓)). We call f ⇤(✓) the oracle classifier for context

cluster y
✓

. The oracle classifiers are not know before hand by the on-line detection

system but instead need to be learned. The learning is achieved by repeatedly test

samples against classifiers of the cloud platform with a classifier selection policy ⇡

that need to be designed.

4.3.2 Algorithm Description

Confidence bound is a standard statistics tool that commonly used to solve the ex-

ploitation and exploration trade-o↵ in bandit problems. We propose an new algorithm

in a similar vein with existing upper confidence bound (UCB) algorithms [76,77], but

with context information and classifier updates. The formal description of the algo-

rithm is presented in Algorithm 1 and we name it ConUCB. It uses sample context

information to learn the best classifier for the context (thus the optimal dynamic anal-

ysis length) along the time horizon by maximize user’s expected QoE of the malware

detection service.

During the learning procedure, the algorithm maintains multiple counters and

the estimated accuracy q̄
`

(f
k

) and the QoE Q̄
`

(f
k

) for each available classifier F =

{f1, . . . , fk} under di↵erent context type ⌫
`

. The counter N `

k

records how many times

the classifier f
k

has been chosen to classify samples whose context type is ⌫
`

up to

round t. The counter N
k

denote the total number of classifier f
k

being selected in

all the t rounds. The counter N is the total number of samples that have been

submitted to the cloud. In the bootstrap of the algorithm, each classifier is applied

for every context type to initialize the estimated QoE Q̄(f
k

). For each future samples

83

Algorithm 1 ConUCB Contextual Upper Confidence Bounds for Malware Detector
Selection

Input: ↵ 2 R+, S = {(✓1,x1), (✓2,x2), . . . , (✓t,xt)},
F = {f1, f2, . . . , fK}, K = {1, . . . , K}, � 2 [0, 1],
M = {⌫1,⌫2, . . . ,⌫L

}, L = {1, . . . , L}
Output: {y1, . . . , yt} 2 {0, 1}
1: Initialization:
2: for ` 2 L do
3: for k 2 K do
4: Randomly select (✓m,xm)
5: Set q̄

`

(f
k

) f
k

(xm)
6: Set Q̄

`

(f
k

) q̄
`

(f
k

)� �c(⌧
k

)
7: Set N `

k

 1
8: end for
9: Set N ` K,
10: end for
11: Set N LK,
12:

13: for each malware detection request (✓t,xt) do
14: `⇤ = argmin

`2L
||✓t � ⌫

`

||2

15: k⇤ = argmax
k2K

(Q̄
`

⇤(f
k

) +
q

↵ lnN

`⇤

N

`⇤
k

)

16: Set r
t

= f
k

⇤(xt)
17: Set q̄

`

⇤(f
k

⇤) q̄
`

⇤(f
k

⇤) + 1
N

`⇤
k⇤

[r
t

� q̄
`

⇤(f
k

⇤)]

18: Set Q̄
`

⇤(f
k

⇤) q̄
`

⇤(f
k

⇤)� �c(⌧
k

⇤)
19: Set N `

⇤ N `

⇤
+ 1

20: Set N `

⇤
k

⇤ N `

⇤
k

⇤ + 1
21: Set N N + 1
22: end for

84

submitted, the algorithm first run the clustering routine to get the cluster type and

then to select a classifier by taking into account both how close the current estimates

are to be the maximum and the variance of the estimate. This could explore their

potential for being optimal. After select the classifier and run the detection, the

estimate of the QoE and the corresponding counters will be updated.

The quantity being maxed over in line 15 of the given algorithm is the upper

confidence bound on the possible true QoE of the classifier f
k

for the particular

context type, where the parameter ↵ controls the width of the confidence interval.

Each time a classifier f
k

is selected for context type ⌫
`

the variance of Q̄⇤
`

is reduced

because N `

⇤
k

is in the denominator of the variance term. On the other hand, each

time a classifier other than f
k

is selected for context type ⌫
`

, the variance term of

estimated QoE for f
k

will maintain unchanged. As time goes by it will be a longer

wait, and thus a lower selection frequency, for classifier with a lower value estimate

or that have already been selected more times for a particular context type.

In Algorithm 1, the exploitation and exploration phases are alternate implicitly in

consecutive actions. If a classifier with large variance component (in the square root

term) is chosen, we can view the action as explorative decision, since in such a case

the upper bound is loose and taking Q̄
`

⇤ as the estimate of the true expected reward is

quite questionable. It is likely some other classifiers outperform f
k

in the measure of

QoE. On the contrary, if an arm with large estimated QoE Q̄
`

⇤(f
k

) is chosen, we can

view the action as exploitative decision. Considering that
q

↵ lnNk

N

`⇤
k

decreases rapidly

with each choice of k, the number of explorative decisions is limited. As
q

↵ lnNk

N

`⇤
k

becomes smaller, the average Q̄
`

⇤(f
k

) gets closer to the true expected QoE Q
`

⇤(f
k

),

and it is with high probability that the classifier corresponding to maximal QoE for

the context type is indeed the optimal classifier for the context.

85

4.3.3 Learning Regret Analysis and Algorithm Complexity

In this subsection, we will first discuss the regret bound of the Algorithm 1 for

contextual malware classification. The regret of the proposed algorithm depends on

the sub-optimality of each non-optimal selection. We denote such a quality �
i

=

µ
i

� µ⇤, 8i : µ
i

> µ⇤. If there is no context information, we know from the classic

work by [76] that the regret is bounded by O(
p
KT log T). We can use this results

to derive a regret bound for our proposed algorithm with context information. In

the case with context, the regret bound will depends on the context clustering and

the arrival process of di↵erent context types. Suppose in T rounds we have total

of T1, T2, . . . , T`

samples arrived that belongs to context type 1, 2, . . . `, respectively.

So the regret of our algorithm is R(�1, . . . ,�i

) = ↵1

p
KT1 log T1 + ↵2

p
KT2 log T2 +

· · · + ↵
`

p
KT

`

log T
`

, where the ↵ is the constant coe�cient. considering the worse

case bound by maximizing the regret R subject to T = T1 + T2 + · · · + T
`

. Solving

this maximization problem give us the solution that T1 = T2 = . . . ,= T
`

= T/L.

Thus the regret bound for our ConUCB is O(
p
KLT log T). Thus we can still obtain

sublinear regret bound with context information, but penalized by an extra constant

that related to the number of context clusters compared to the regret bound without

context information in [76].

4.3.4 Contextual Bandits under User Interference

As the cloud platform provides user the optimal time length it needs to execute

and classify the submitted sample, users might not alway accept the default time and

may request a di↵erent value (Usually smaller because users are impatient) through

the User Agent. To cope with this scenario, we have modified the Algorithm 1 to

86

produce a modified version (Algorithm 2) called "-ConUCB. The " stands for the

probability of users refuse to accept the analytical time length yield by Algorithm 1.

Algorithm 2 "-ConUCB Contextual Upper Confidence Bounds for Malware De-
tector Selection with User Interference.

Input: ↵ 2 R+, S = {(✓1,x1), (✓2,x2), . . . , (✓t,xt)},
F = {f1, f2, . . . , fK}, K = {1, . . . , K}, � 2 [0, 1],
M = {⌫1,⌫2, . . . ,⌫L

}, L = {1, . . . , L}
Output: {y1, . . . , yt} 2 {0, 1}
1: Initialization:
2: Initialize Q̄

`

(f
k

), N `, N `

k

,, and N as in ConUCB
3:

4: for each malware detection request (✓t,xt) at time t do
5: `⇤ = argmin

`2L
||✓t � ⌫

`

||2

6: k⇤ = argmax
k2K

(Q̄
`

⇤(f
k

) +
q

↵ lnN

`⇤

N

`⇤
k

)

7: k0 User Input(")
8: if k0 < k⇤ then
9: Set k⇤ k0

10: end if
11: Update Q̄

`

⇤(f
k

⇤), N `

⇤
, N `

⇤
k

⇤ ,, and N as in ConUCB
12: Set r

t

= f
k

⇤(xt)
13: end for

As the user input in Algorithm 2 violated the specific routine employed by ConUCB

to balance the exploration and exploitation, the performance of "-ConUCB would suf-

fer more regret compared to ConUCB. For each sample that submitted by user that

doesn’t accept the analytical waiting time, we assume the worst case regret is�. Con-

sidering the probability of such detection task happening in the system is ", the total

regret for these non-compliant detection in T rounds is "T�. Similarly, the regret for

the compliant detection tasks in T rounds is bounded by O(
p

(1� ")KT log(1� ")T).

Together we obtained the linear regret bound O(
p

(1� ")KT log(1� ")T + "T) =

O(T). This result is same as the regret bound of "-greedy, therefore it may stuck on

some suboptimal classifier. However, in the practical implementation we could always

87

run ConUCB at the background while providing the specific no-compliant user with

the suboptimal solution and maintain the overall regret sublinear.

4.4 Experiment Results

We implemented a prototype of the proposed system in an emulated laboratory

environment and evaluated various aspects of its performance. In particular, we

designed a set of experiments and used real-word malware samples collected from

Internet to observe the dynamic actions in selecting the best available classifiers for

each submitted samples based on the malware context features and accumulative

QoE of each available classifier. We will show how our on-line learning algorithms

presented in Section 4.3 learn to choose the best classifier given the sample context

and achieve the optimized detection results.

Three major components of the system need to be deployed for sample submission

from user agent, dynamic malware analysis virtual cluster at cloud, and system eval-

uation components. The user agent is implemented as a Chrome Extension, in which

we have an utility component that built specially for the purpose of our experiment

evaluation, removing the need for manual test. The utility component can automati-

cally submit malware samples given a list of URIs of testing samples. All the samples

will be submitted to cloud regardless of the projected detection time requirement. It

is essentially a replacement of a human tester that repeatedly “click” URIs to down-

load testing samples and respond to cloud proposed analysis length with designed

actions.

The cloud continuously receives malware detection requests from di↵erent end-

users through the browser Extension. In contextual detection mode (Algorithm 2),

the Context Feature Extraction component first extracts the context information (such

88

as various file meta data) associated with the submitted sample. The context infor-

mation which we use in the experiments are the size of the executable, and the size

of the PE code section (.text section) in the binary. Nevertheless, the framework can

be applied to any context feature in general. For example, the packer information

can also be added as a key context feature. In the samples we obtained, all the exe-

cutables are non-packed Windows PE binary. After the context feature is clustered

using K-means, the cluster label will be used to select a classifier to perform the mal-

ware detection. Once the classifier is selected, the analysis length will be determined

correspondingly and a instrumented virtual machine will be deployed immediately to

analyze the submitted sample for that long. After the dynamic analysis and feature

preprocessing, the selected classifier will be used to predict the maliciousness of the

sample under analysis. We now show the detailed results of our experiments.

4.4.1 Dataset and Context Clustering

The experiment dataset includes 3000 Portable Executable samples, among which

1500 are malicious and the other 1500 are benign software. The ground truth labels

are obtained through Virus Total online scanner. We divide the sample set into three

subsets with 1000 samples each. The first subset is for initial training, the second

subset is for initial testing and continuous updating of the classifiers, and the third

subset is for continuous testing. Figure 4.2 show the scatter plot of the context feature

of the first two subset. We have selected the file size and the code section as context

feature in our example not only because it is simple and intuitive but also because

it is e↵ective. The number of clusters is decided based on the metric of Silhouette

score [78]. The score can help to identify clusters that are dense and well separated,

which fulfills the requirements of context clustering. Table 4.1 show the calculated

89

Figure 4.2: Context clustering without updating

value for di↵erent clusters. Due to the heterogeneous size distribution of our collected

samples, We discovered it is better to use log scale for the context features clustering.

Table 4.1: Silhouette Coe�cient for Number of Clusters

Num. of
Clusters

2 3 4 5 6 7 8

Silhouette
Score

0.368 0.408 0.446 0.415 0.392 0.368 0.358

4.4.2 The QoE and Classification Performance

In our experiment, we analyzed each training sample in our cloud detection system

for 3 minutes and trained four individual classifiers using feature vectors extracted

from profiles of the analysis for 0.5 minute, 1 minute, 2 minutes, and 3 minutes

respectively. During the on-line learning process, selecting di↵erent classifiers to

90

Figure 4.3: Normalized QoE comparison for � = 0.01 (" = 0.1)

predict the testing sample will generate di↵erent QoEs as we defined in Section 4.2.

For our performance evaluation, we take linear cost function i.e. c(⌧
k

) = ⌧
k

in the

definition of QoE and compare the estimated expected QoE obtained by applying the

proposed algorithms, namely ConUCB and "-ConUCB, over the classifiers and the

expected QoE obtained by each individual classifier.

The first experiment used the initial training set of 1000 samples to build the

dynamic behavioral classifiers and conducted the evaluation using the initial testing

set of 1000 samples. Figure 4.3 show the normalized accumulative QoE for � = 0.01.

The QoE curves are obtained by calculating the expected value of 100 plays over the

randomized testing sample sequences with the proposed on-line learning algorithm.

The two proposed learning algorithms outperform all the individual classifiers. The

ConUCB algorithm improved the maximum QoE of four individual classifiers from

91% to 94% after 1000 rounds of malware classification. The "-ConUCB algorithm

also gains up to 2% of rewards. Given that the experiment have moderate number

of rounds and the context information used is limited to the size of the PE code

section and the PE file size, a much higher performance gain can be expected when

91

Figure 4.4: ROC curve and AUC comparison for � = 0.01 (" = 0.1)

more rounds are played and more context information is available. In Figure 4.4,

we compared the performance of the algorithms with performance of each individual

classifiers, both ConUCB and "-ConUCB achieved lower false positive rate than the

individual classifiers. ConUCB and "-ConUCB increased the area under the ROC

curve to 96% and 94%.

In Figure 4.5, the normalized accumulative QoE is presented for � = 0.1. Com-

pared to Figure 4.3, increasing the value of the cost coe�cient � will bring down

the QoE of all the four basic classifiers, thus reduce the QoE of the ConUCB and

"-ConUCB because the algorithm tend to optimized towards the less accurate classi-

fier that trained on 30 seconds of behavioral feature profiles. Figure 4.6 presents the

corresponding performance comparison under the sample �. For � = 0.1, ConUCB

increased the AUC by 1%, while "-ConUCB have the similar performance as using

single classifier that trained using 2 minutes of behavioral feature profiles.

92

Figure 4.5: Normalized QoE comparison for � = 0.1 (" = 0.1)

Figure 4.6: ROC curve and AUC comparison for � = 0.1 (" = 0.1)

93

Figure 4.7: QoE and actions for each rounds

4.4.3 On-line Learning with Context Information

We have also studied each of the individual actions taken by algorithm ConUCB.

Figure 4.7 display the classifier selection steps over a experiment of 1000 rounds and

show the obtained QoE. The bottom color bar in the figure illustrates all the 1000

actions using four di↵erent colors, each of which represent an individual classifier that

is selected in the step. The four color bars above it illustrate the actions taken under

each di↵erent context cluster. Each row of these four color bar includes the action

taken over samples belongs to a single context cluster in Figure 4.2. We can observed

from the four color bars in the figure that each context cluster have gradually learned

the best classifier to select under the particular context. For example, in the first 200

actions ConUCB has no preference on any particular classifiers and each classifier

has the same probability of being selected. This corresponding to the exploration

phase. On the other hand, when the play proceeds to the 800th round, the algorithm

94

Figure 4.8: Percentage of the best classifier selected

is entering exploitation phase since the best classifier for the context is selected with

high probability. Figure 4.8 show the percentage of the best action at di↵erent round

by applying ConUCB with � = 0.01.

CHAPTER 5

Empirical Study of Static and Dynamic
Features for Malware Detection

This chapter presents some of our preliminary study about the e↵ectiveness of

static and dynamic features using supervised learning approach in a collaborative

environment. We will discuss how the di↵erent components in the system enable users

to submit files to the platform for analysis and receive the malware detection decision.

A detection decision could be a probability value indicating the maliciousness level of

the sample or simply true or false value indicating a positive or negative detection.

Users can submit executable files by a web interface or by the provided APIs. To

sanitize the submitted data, the file manager has a duplication filter which checks the

collection of submitted files for duplicates. The files passing through the filter are all

new samples known to the platform and will be handled by the file manager. The

file manager communicates with three core components: database, dynamic analysis

sandbox, and malware classification engine. File manager is responsible for storing

samples in the database, scheduling the dynamic execution of the samples in the

sandbox, and running the classification algorithm. Result server and file analysis

manager share the same components and positioned between the submission interface

and the three system core components: malware detection model generator, database,

95

96

Figure 5.1: System Architecture

and dynamic analysis sandbox. Figure 5.1 show the main components and data flows

in the system. We will discuss each component separately.

5.1 System Components

5.1.1 Data Contributors

Since the system will be openly accessible, any entities that possess one or many

malicious files are able to submit either by the provided submission APIs or by the sys-

tem’s web interface. Data contributor could be any or all of the following: malware

analyst, mail server, honeypot, IDS/Firewall devices, SIEM, and private malware

contributor. The contributor’s capabilities are not limited to sharing malicious files.

They are o↵ered to access the detection engine that build on the collection of all

contributed samples. In fact, being able to access the detection engine is the major

97

motivation for them to sharing the malicious samples. In a word, the users are both

the producer (malware data contributor) and the consumer (malware detection capa-

bility usage) in the system. For example, malware analysts who contribute samples

may interest in using the platform to do initial scan of the samples and prioritize their

manual analysis and forensic tasks. The willingness from private malware contribu-

tor may come from the fact that he/she discovered a malware campaign and want

to raise public awareness of the threat. Contributions from mail server, honeynpot,

IDS/Firewall, or SIEM system are mainly motivated by a more accurate detection

engine they demand.

5.1.2 File Manger and Result Server

The platform accept malware submission both individually and collectively. File

manager is the component that handle the uploading tra�c, organize and queue the

files to be processed in the next stage. It checks and filters duplicate submissions to

prevent same file from being analyzed multiple times. Checking the file hash is an

e↵ective method to detect duplications. Each unique malware sample passing through

the file manager will be sent to the static feature extractor. After extracting the static

feature, file manager stores the malware sample, the static features of the sample, and

various file identification information such as ssdeep hash and yara signature, into the

database.

The result server has three key components. They are virtual machine manager

(VMM), task scheduler, and report server. The VMM is responsible for scheduling,

initiating, and terminating of virtual sandboxes that analyze the malware dynami-

cally. Depending on system loads, our system can initialize multiple virtual sandboxes

at the same time and run individual samples in parallel. This could greatly reduce

98

the total time to analyze a large dataset by a factor of n, where n is the number of

VMs that run in parallel. Task scheduler distributes uploaded samples to the sandbox

environment. In a production environment, various scheduler policy can be employed,

such as user privilege based scheduling or threat severity level based scheduling. For

example, sample submitted by prime users will be analyzed first. Newly discovered

threats indicated by the file owner will be analyzed before the threats identified out-

dated. Report server relays the analysis data from the sandboxes to the database, it

also responsible for forwarding the raw analysis reports to the use upon request. This

raw analysis data can be rendered in a human friendly format for review by human

analysis if necessary.

5.1.3 Database System

From the previous discuss, we learned the database can store the submitted sam-

ples, the static features, and the dynamic analysis reports. We also store history

classifier object in the database. As our system keep evolving with more and more

contributed malware samples, the current classification algorithm will be retrained

and an improved classifier will be generated. The newly generated classifier will be

upgraded in order to take advantages of the larger dataset. We use non-relational

database for the data storage. On one hand, it is well suited for document storage and

compatible with our Python APIs in retrieving feature set for the classification algo-

rithms. On the other hand, non-relational database allow the malware storage system

to scale horizontally to clusters of machines, which is necessary for our platform.

99

Figure 5.2: Architecture of Malware Detection Model Generator

5.1.4 Machine Learning Component

The machine learning component is the core of our proposed system. It is where

all the contribution of this thesis originated from. The major innovation of this

component is that it is capable of automatically improve the detection accuracy by

running a serious of algorithms including stratified train and test data split, hyper-

parameter search, and model selection algorithms. The flow diagram in Figure 5.2

shows the details of the machine learning component. At the input, It is up to the user

to select the static features or the dynamic features to build the malware classifier.

Once a user initiate the train procedure, the file manager will read the vectorized

features from database and input to the machine learning component. The input

data will be divided into two di↵erent sets, namely the training set and the testing

set. The training set will be used in model searching for best hyper-parameters,

100

Table 5.1: Experiment Data Sets

Data sets
Malicious Benign

Count Size (GB) Count Size (GB)
Juniper 1315 1.1 630 3.1

and the testing set is use in model selecting in order to obtain the best performance

model. Since we apply supervised learning on only two classes: benign and malicious,

it is very common that the number of samples in one class are far more than the

number of samples in another class. To avoid issues cased by imbalanced dataset,

we use straitified sampling method to divide the data into training and testing sets.

The training data will be further split into two sets, one for training and another for

validating in grid search, in order to find the best hyper-parameters for the classifiers.

The classifiers with the best hyper-parameter set will be evaluated on the testing

data, which have been left out for purpose of the model selection. At last, the best

performed classifier on the training data is selected and applied as the detection engine

for next period of system operation.

We formulate a public goods game model in the previous chapter based on sig-

nature detection. In this chapter, we present the procedure to build the proposed

system and evaluate its performance using collective malware data. A game theoretic

analysis of the system operation is constructed from the utility function obtained

from experimental results. Specifically, we focus on implementation, evaluation, and

operation of a malware detection system built on supervised learning classifiers for

both static features and dynamic features. A hyper-parameter grid search algorithm

is proposed to obtain the most accurate model fitting the cross validation data. The

models obtained from both static features and dynamic features will be presented.

We use various machine learning metrics to evaluate these best models. The purpose

101

of these evaluations is to gain better understanding of the classification algorithm

applied in the learning-based malware detection settings, thus improving its robust-

ness in case of possible evasion attacks. Finally, we take a dataset composed of real

malware samples captured in a corporate network. Subsets of the malware samples

are submitted to the implemented system in order to simulate the public goods game.

From the experimental results, we obtain a concrete utility function for the users, with

which we achieved several very insightful findings. These findings will be presented

throughout this chapter.

5.2 Experiments Results

We extracted both static and dynamic features for the testing dataset. The static

feature was easy to extract via ”pefile”, a Python module to parse Portable Executable

files. It can programmatically access most of the information contained in the PE

headers as well as all sections’ details and their data very e�ciently. The dynamic

feature extraction was more challenging. It would have been very di�cult to build

from scratch had we not discovered the software suite Cuckoo Sandbox. When prop-

erly configured, Cuckoo Sandbox can automatically initiate a pre-configured analysis

guest, execute the sample in the isolated machine, and record all the operating sys-

tem level activities as behavior features. Normally, Cuckoo Sandbox analysis reports

contain useful dynamic behavioral features of the analyzed file. In our experiments,

we used Cuckoo Sandbox to collect dynamic features for the classification task. Two

virtual machines were set up to run the samples in parallel in a private cloud. The

host computer where Cuckoo Suite was installed was a Debian Linux PC that has 8

cores, 16 GB RAM, and 3 TB disk drive. The machine learning software used in our

experiments includes NumPy, SciPy, pandas, scikit-learn, and matplotlib.

102

Table 5.1 presents the overview of the dataset on which we experimented. The

dataset includes a total of 1945 Win32 binary samples collected from the real world

intrusion detection system of a corporate network during a one week period in 2015.

Each sample in the dataset is labeled as either malicious or benign by the intrusion

detection system. As shown in Table 5.1, the number of malicious samples is twice

as much as the number of benign ones, while the size of the malicious set is only

one third of the size of benign set. From these numbers we observe the fact that the

average file size of a malware sample in this dataset is six time less than average size

of a benign sample.

5.2.1 Static Features Extraction

We started our experiments by extracting the static features of the binaries be-

cause the overhead of static feature extraction was small but nonetheless has been

proofed e↵ective [13,25]. The static features extracted from PE executables included

all the PE header information and other meta data of the PE files such as symbol

tables and the import tables. In our experiments, the total number of static file fea-

tures extracted was 56. A complete set of static features used in our experiments is

presented in Appendix A. All the static features were dumped using “pefile” tool.

To build the model that fit the static feature well, our experiments ran a grid search

algorithm over multiple classifiers with grids of hyper-parameter candidates.

5.2.2 Hyper-Parameter Search Algorithm

Because we only possessed a limited experiment dataset, we had to use it carefully

in order to produce valuable results. The algorithm used in conducting the grid search

is presented in Algorithm 3. Generally, the grid search algorithm search for the

103

highest scored classifier and corresponding hyper-parameters. It repeat the training

and testing process on k di↵erent stratified splits of the cross validation data, which

is a subset of the overall dataset after set aside the testing samples. A average

score of all the k fold scores will be calculated and used to compare with di↵erent

classifier’s score. The classifier with highest average cross validation score will be

selected. Briefly, using gird search algorithm to select the best model by evaluating

various parameter settings can be seen as a way to use the labeled data to train the

hyper-parameters.

Algorithm 3 Grid search algorithm for the best model

Input: S: Dataset; s: score function; H: set of candidate classifiers; G: parameter
space; K: set of stratified k fold cross validation splits

Output: Hopt: best performance model evaluated on S
1: for each clf 2 H do
2: for each parameter set C 2 G do
3: for each CV split cv(i) 2 K do
4: clf.fit(C, (cv)train

i

, s)
5: cv score(i) = clf.score((cv)test

i

)
6: end for
7: cv mean = 1

k

P
i cv score(i)

8: update the parameter C for best performance of clf
9: end for
10: update the best performance model for the grid search algorithm
11: end for

The candidate classifiers and hyper-parameter grids are shown in Figure 5.3. The

grid search algorithm is run independently for five di↵erent scoring functions: ac-

curacy, precision, recall, F1, and receiver operating characteristic (ROC). With the

illustration of Table 5.2, the first four evaluation metrics are defined as follows.

104

Figure 5.3: Candidate classifiers and hyper-parameter grids

Table 5.2: Table to illustrate evaluation metrics

Actual class

Predicted class
TP (Correct result) FP (Unexpected result)
FN (Missing result) TN (Correct result)

accuracy =
TP + TN

TP + FP + FN + TN

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2
precision⇥ precision

precision + precision

Accuracy measures the fraction of all testing instances that are correctly classified;

it is the ratio of the number of correct classifications to the total number of correct or

incorrect classifications. For a malware detection system accuracy is one of the very

important metrics to the users but is insu�cient for our design purpose. Accuracy

doesn’t yield useful marginal interpretations, due to mixing of true positives and false

positives instances. For example, in evaluating testing set with highly imbalanced

positive and negative labels. A system with high precision but low recall returns very

105

few true positive result, but most of its predicted labels are correct when compared to

the training labels. A system with high recall but low precision is just the opposite,

returning many true positive results, but most of its predicted labels are incorrect

when compared to the training labels. An ideal system with high precision and high

recall will return many results, with all results labeled correctly. The F1 score is

a weighted average of the precision and the recall, providing a unified metrics for

compact evaluation results. It reaches its best value at 1 and worst score at 0.

The ROC curves typically feature true positive rate on the vertical axis, and false

positive rate on the horizontal axis. This means that the top left corner of the plot

is the “ideal point: a false positive rate of zero, and a true positive rate of one. This

is not very realistic, but it does mean that a larger area under the curve (AUC) is

usually better.

To be more specific, the series of best models are obtained through the following

steps:

• Step 1: Run grid search algorithm to find the best parameter set for each of the

candidate classifier. We obtain 8 di↵erent classifiers from this step.

• Step 2: Plot ROC curves and learning curves for the 8 classifiers obtained from

previous step.

• Step 3: Choose the best classifier based on the ROC curve and learning curve.

At the end of this step, we complete the model selection process with the best

model at hand.

To evaluate the performance of di↵erent classifiers, we plotted ROC curves for the

best model of each 8 di↵erent classifiers in Figure 5.4. To gain insight of how good

the model performs, we plot the learning curve for each best model of the 8 di↵erent

106

Figure 5.4: ROC curve for the best models returned by grid search for static features

107

Figure 5.5: Learning curve for the best models returned by grid search for static features

108

classifiers. Figure 5.5 shows the learning curve. From the ROC curves and the cal-

culated area under the curve (AUC), AdaBoostClassifier, GradientBoostingClassifier

RandomForestClassifier stand out as very good classifiers for our classification prob-

lem. All the di↵erent folds of AUC for these three classifier are over 0.97. However,

for GradientBoostingClassifier and RandomForestClassifier, all their AUCs are above

0.98. If we have to choose one superior classifier, RandomForestClassifier is the one

to choose from the AUC’s perspectives. However, GradientBoostingClassifier ’s per-

formance is very close to it. To get the classifiers performance from a di↵erent angle,

we turn to the learning curve for a better evaluation and comparison of models. As

we can see from the learning curve in Figure 5.5, RandomForestClassifier has high

variance problem. The learning curve of AdaBoostClassifier is a ideal case when the

training error and test error curve finally meet at a rate very close to 1. For a collab-

orative malware detection platform, we expect the detection accuracy will increase as

the sample contribution increase. The RandomForestClassifier is perfect satisfy our

requirement as its learning curve shows that the model improved its detection accu-

racy when the training data increases. It also have more space to improve following

the trend presented. So we select the RandomForestClassifier as the classifier. As for

all the other good model, they all inferior to the three classifiers discussed from both

ROC curve and learning curve plots.

By comparing Figure 5.4 and Figure 5.5, we selected the RandomForestClassifier

as our classifier for the game theoretic analysis. In the next, we will take the Random-

ForestClassifier model as our system detection model and conduct our experimental

game analysis.

109

5.2.3 Dynamic Behavior Features and the Model

As we discussed in the Section 3.1, the detection system should based on features

that are not easy to identify and mutate, so that evasion attacks by generating mal-

ware mutants are impossible. The following experiment method is based on dynamic

behavior features. It provide an “adaptive” method that is able to continuously im-

prove the detection model and therefore to achieve high accuracy, robust malware

detection. We now present the procedures that achieved this objective.

5.2.4 Dynamic Behavior Features

The dynamic behavior features are generated from Cuckoo Sandbox. Juniper

dataset was submitted to the latest version (2.0-rc1) of Cuckoo. In the feature en-

gineering procedure, Cuckoo will be improved to capture more dynamic traits that

identified important. For our first prototype, we use features from Cuckoo’s vanilla

report, which is the json formatted analysis result generated by out-of-box Cuckoo.

Table 5.3 is the settings used in vanilla cuckoo to collect our first version of be-

havior features. Cuckoo with two VMs takes 32.57 hours to execute all the files

in the dataset. This time is very close to the theoretical value which is about

1945 ⇥ 120/2 = 32.4 hours. However, our study about execution status revealed

the fact that no every sample executed exactly 120 seconds. As a matter of fact, 35

examples were not executed at all, some of the samples are terminated very early,

others are executed more than 120 seconds. We also discovered that the average ex-

ecution time for the benign set is 165 seconds, which is higher that the 102 average

execution time for the malware set. It is noticeable that malware samples incur more

frequent abnormal executions that cause it to terminate earlier. This complies with

the fact that malware samples that evade Sandbox execution exist. Figure 5.6 is the

110

Figure 5.6: Execution duration quantums vs. Number of samples in the quantum

bar chart that show the real execution time for all the samples. The scatter plot of

all the samples is presented in Figure 5.7, with duration of execution on x axis and

file size on y axis.

Table 5.3: Summary of Cuckoo Sandbox settings I

Options Setting
1 Analysis Timeout 120 seconds
2 VMs in parallel 2
3 Network Host-Only, InetSim
4 Volitality O↵
5 TCPDump On
6 Screenshot On
7 html reporting On
8 json reporting On
9 maongdb reporing On

5.2.5 Model Evaluation - Dynamic Features

The features we extracted is show in the Figure 5.8 with there respective impor-

tance score in the best model obtained from grid search. “duration”, namely the real

execution time by Cuckoo is ranked the most important score in our best model. An-

other five most important features are “directory created”, “file exists”, “apistats”,

111

Figure 5.7: Scatter plot of duration and file size for the dataset

Figure 5.8: Feature importance ranking

112

“dns”, and “processes”. While the five least importance features are “udp”, “mu-

tex”, “file deleted”, “regkey deleted”, and “hosts”. This ranking information is quite

intuitive in general.

As mentioned above, grid search is used in obtaining a best model for dynamic

feature. We employ the same grid search algorithm described in 5.2.2. Similarly, we

used grid search algorithm to obtain the best hyper-parameters for each candidate

classifiers. Once the best hyper-parameters for are found, we plot the ROC curves

and learning curves for each individual classifiers.

We now present the performance evaluation of the models obtained from grid

search for the dynamic behavior features. Figure 5.10 is the ROC plot of the grid

search found classifiers. Figure 5.11 is the corresponding learning curves.

From Figure 5.10, we noticed that RandomForestClassifier excels in ROC and

AUC. GradientBoostingClassifier and AdaBoostingClassifier are also very good can-

didates with respect to the metrics ROC and AUC for di↵erent folds of cross validation

data. As we observed, all the other classifiers are low performance and we will not

consider them for further discussion. We then turn to the learning curve in Figure 5.11

for further insights about the three ensemble classifiers that have good performance.

The learning curves of these ensemble classifiers indicate they are potential good

classifiers to select from because their testing scores are increasing with more samples

included in the training set. However, the training scores for RandomForestClassifier

and GradientBoostingClassifier are either remain highest (former) or keeping a gap

between the corresponding testing scores (latter) for di↵erent training set sizes. These

are all sign of overfitting. We further conclude that AdaBoostingClassifier is the best

classifier of all three because its training scores are decreasing with growing number

of samples and finally approaching the testing scores. The learning curve indicates

113

Figure 5.9: Utility function based on RandomForestClassifier and static feature

that the good performance of AdaBoostingClassifier is unlikely from overfitting the

training data as it did in the other two ensemble classifiers. In this case, we choose

the AdaBoostingClassifier as our detection engine.

Once the best model obtained, we can use numerical method to get the utility

function. Figure 5.9 show the utility function of the machine learning based malware

detection system based on dynamic feature vectors. For dynamic features we also

plotted in Figure 5.12 the PoA when number of player is increased.

To compare with the result we get from static feature based classifier. We notice

some di↵erences in the PoA changes and the social optimal contribution changes with

respect to the increasing of the players in the game. The PoA curve plotted based on

static feature have increased smoothly, while the PoA curve for dynamic feature based

model have experienced a leap at when the number of players in the game reached

37. This o↵er a great opportunity for the platform operator to keep the system work

114

Figure 5.10: ROC curve for the best models returned by grid search for dynamic behavioral
features

115

Figure 5.11: Learning curve for the best models returned by grid search for dynamic be-
havioral features

116

Figure 5.12: PoA obtained from experiments

in an e�cient state by limiting the number of contributors. However, the concrete

user throttle mechanism is heavily depends on how the operator monetize the utility.

CHAPTER 6

Conclusions

The number of malware threats increased tremendously in the past decade. The

malware growth made malware based security breach becomes one of the major threat

in the information security landscape. Because traditional signature-based malware

detection method mainly relies on the work of human analysts to reverse engineer

the malicious artifacts and create the signatures for detection. There are not enough

security experts to handle the large set of malware samples, thus making the tradi-

tional signature-based method too costly to be e↵ective. In this thesis, we proposed

malware detection methods that leverage the e↵ectiveness of large dataset analysis

using machine learning on malware datasets.

6.1 Thesis Overview

We presented TroGuard, an e�cient system solution to protect the client sys-

tems against web-based Trojan attacks that make use of social engineering techniques

to convince victim users to willingly download and execute a legitimate-looking ma-

licious software. TroGuard creates a profile dictionary of various application func-

tionalities (types) through system-level activity observation and supervised classifica-

tion of several applications of each category. TroGuard later employs the generated

117

118

profiles across the client systems for online detection of the Trojan attacks that occur

through website downloads. TroGuard notifies the user of his/her recent suspicious

executable download if the functionality type of its system-level activity trace does

not match the functionality type inferred by TroGuard’s website analysis engine.

Our results over a large set of applications show that TroGuard can e↵ectively

bridge the gap between the high-level user perceptions and low system-level execu-

tion traces in order to block Trojan intrusions e�ciently under real-world adversarial

situations.

To provide better user experiences through comprehensive dynamic analysis, Tro-

Guard leveraged the advantages of cloud computing to analyze the malware samples

in dynamically provisioned virtual machine sandboxes. This flexibility of dynamic

analysis in cloud equipped TroGuard with the capability to balance the trade-o↵

between the detection accuracy and the corresponding time and resource cost, thus

providing the user with the best Quality of Experience for the given cloud infras-

tructure. To the best of our knowledge, this thesis is the first to define Quality of

Experience as a performance metric for cloud-based malware detection. Chapter 4

proposed an on-line learning approach to select a particular classifier from a set of

trained classifiers for each submitted file based on the static file feature of the sample

and the classifiers history Quality of Experience measurements. The system model is

based on contextual multi-armed bandit framework to balance the exploitation and

exploration of the available classifiers. Our experiment results with 2000 real world

samples demonstrated that the proposed framework e↵ectively learned the best clas-

sifier based on the QoE measurement for a particular cluster of malware samples that

share the same static file features. Accuracy study of the detection showed that the

119

on-line learning approach also achieved better accuracy than each of the individual

classifier.

6.2 Future Work

Although our work addresses many challenges in the design and modeling of prac-

tical dynamic malware detection system, the solutions we proposed have raised some

new challenges. We conclude by discussing some open problems and directions for

future research.

TroGuard provides the users with a practical security solution, one of our pri-

mary objectives in designing individual components in TroGuard has been to sepa-

rate the low-level system details that are used for various analyses from the high-level

information that is communicated to the user. As a case in point, while the kernel-

level modules are tracing di↵erent system-level activities of the suspicious application,

the user’s interaction with TroGuard is through the browser extension using terms

(potentially non-technical) that the user usually sees on popular download websites

and is familiar with. In the simplest form, the user only has to confirm that the

application class displayed by the browser extension matches the functionality he ex-

pected based on what he saw and read on the download page. Our usability study

is conducted for a single subject, and we believe that such design points have made

TroGuard usable by a vast range of users. However, there are many open questions

remain. For example, what is the error rate of human in confirming the functionality

proposed by website analysis? How frequently users abort the detection task after

cloud have started the dynamic analysis? How these aborted tasks a↵ect the overall

performance of the platform. All those questions can be answered through an actual

usability study in future.

120

TroGuard is built with various techniques to defend against adversaries users.

The enhanced cloud version of TroGuard executes the proposed on-line bandits

algorithm ConUCB to automatically select classifiers that are trained with di↵erent

length of dynamic analysis based on static file features. Our experiment showed that

the algorithm is able to progressively learn the optimal mapping from the clusters of

static file feature (also refereed to as context type) of the tested samples to the avail-

able classifiers; However, we did not test the approach against new malware samples

due to dataset limitation. As malware and its behaviors evolves across time, such evo-

lution may a↵ect the detection accuracy and is better to be taken into account when

evaluating a practical malware detection system. Moreover, as the time progressed,

the cloud platform is able to collect more and more samples, which could be used to

improve the performance of each individual classifier. A possible solution to incor-

porate such dynamics into our system would be to enable system update with more

training data and more accurate training labels that the system gained by learning.

For example, the cloud detection system can trigger a system update after certain

period of time or after certain number of processed samples. During the update, the

classifiers could be upgraded with more training samples from recent detection; the

static file feature space partitioning could also be improved by including static feature

of newly detected malicious samples.

APPENDIX A

Static Features

Table A.1: Extracted static features vector by pefile

No. Feature Value No. Feature Value

1 number of import symbols 113 29 major version 0
2 size code 4096 30 debug size 0
3 sec rawsize rdata 4096 31 sec rawptr rdata 8192
4 pe i386 1 32 pe char 271
5 sec rawptr text 4096 33 export size 0
6 size image 20480 34 sec vasize text 3346

7 iat rva 9256 35
datadir IMAGE DIRECTORY
ENTRY IMPORT size

100

8 sec rawptr rsrc 16384 36
datadir IMAGE DIRECTORY
ENTRY EXPORT size

0

9 pe minorlink 0 37 number of bound import symbols 0

10 sec vasize rdata 2182 38
datadir IMAGE DIRECTORY
ENTRY BASERELOC size

0

11 sec entropy rsrc 1.02867676446 39 pe dll 0
12 sec entropy rdata 3.20648735647 40 compile date 1218437803
13 minor version 0 41 sec rawsize data 4096
14 sec vasize data 468 42 number of bound imports 0
15 size initdata 12288 43 sec raw execsize 16384
16 sec rawptr data 12288 44 sec entropy data 0.442147583267
17 sec rawsize rsrc 4096 45 pe driver 0
18 pe warnings 0 46 sec entropy text 4.85296240301

19 size uninit 0 47
datadir IMAGE DIRECTORY
ENTRY IAT size

468

20 number of sections 4 48 sec va execsize 7044
21 generated check sum 53913 49 number of imports 4
22 std section names 1 50 virtual size 3346
23 number of export symbols 0 51 sec rawsize text 4096

24 pe majorlink 6 52
datadir IMAGE DIRECTORY
ENTRY RESOURCE size

1048

25 check sum 0 53 pe exe 1
26 virtual address 4096 54 number of rva and sizes 16
27 virtual size 2 2182 55 sec vasize rsrc 1048
28 total size pe 20480 56 sec entropy reloc 0

121

122

Table A.2: Directly Mapped intermediate Level Attributes

Attributes Value Type # Attributes Value Type
1 mail::filters nominal 41 works-with-format::xml nominal
2 mail::pop nominal 42 works-with-format::zip nominal
3 mail::smtp nominal 43 works-with::3dmodel nominal
4 protocol::bittorrent nominal 44 works-with::archive nominal
5 protocol::ftp nominal 45 works-with::audio nominal
6 protocol::http nominal 46 works-with::im nominal
7 protocol::imap nominal 47 works-with::image nominal
8 protocol::ip nominal 48 works-with::mail nominal
9 protocol::ipv6 nominal 49 works-with::text nominal
10 protocol::irc nominal 50 works-with::video nominal
11 protocol::jabber nominal 51 interface::commandline nominal
12 protocol::kerberos nominal 52 interface::daemon nominal
13 protocol::nntp nominal 53 interface::shell nominal
14 protocol::pop3 nominal 54 interface::text-mode nominal
15 protocol::smtp nominal 55 interface::web nominal
16 protocol::ssh nominal 56 interface::x11 nominal
17 protocol::ssl nominal 57 x11::applet nominal
18 protocol::tcp nominal 58 x11::application nominal
19 works-with-format::bib nominal 59 use::browsing nominal
20 works-with-format::docbook nominal 60 use::chatting nominal
21 works-with-format::dvi nominal 61 use::compressing nominal
22 works-with-format::gif nominal 62 use::editing nominal
23 works-with-format::html nominal 63 use::filtering nominal
24 works-with-format::info nominal 64 use::gameplaying nominal
25 works-with-format::jpg nominal 65 use::learning nominal
26 works-with-format::man nominal 66 use::login nominal
27 works-with-format::mp3 nominal 67 use::monitor nominal
28 works-with-format::oggtheora nominal 68 use::organizing nominal
29 works-with-format::oggvorbis nominal 69 use::playing nominal
30 works-with-format::pdf nominal 70 use::printing nominal
31 works-with-format::plaintext nominal 71 use::proxying nominal
32 works-with-format::png nominal 72 use::scanning nominal
33 works-with-format::po nominal 73 use::searching nominal
34 works-with-format::postscript nominal 74 use::text-formatting nominal
35 works-with-format::sgml nominal 75 use::transmission nominal
36 works-with-format::svg nominal
37 works-with-format::swf nominal
38 works-with-format::tar nominal
39 works-with-format::tex nominal
40 works-with-format::wav nominal

123

Table A.3: Network Attributes

Attributes Value Type
1 Port(11380) nominal
2 Port(12350) nominal
3 Port(1863) nominal
4 Port(40005) nominal
5 Port(43277) nominal
6 Port(443) nominal
7 Port(49037) nominal
8 Port(49038) nominal
9 Port(5222) nominal
10 Port(53) nominal
11 Port(80) nominal
12 Port(9997) nominal
13 INET numeric
14 INET6 numeric
15 UNIX numeric
16 NETLINK numeric
17 Unique IPs numeric
18 Network class count numeric
19 Total recieve numeric
20 Total sent numeric

Table A.4: Resource Usage Attributes

Attributes Value Type
1 CPU usage Mean numeric
2 CPU usage Stdev numeric
3 CPU usage Virance numeric
4 MEM usage Mean numeric
5 MEM usage Stdev numeric
6 MEM usage Virance numeric
7 Memory class count numeric
8 Process control class count numeric

Table A.5: User Interactivity Attributes

Attributes Value Type
1 KB Alpa nominal
2 KB Arrow nominal
3 KB Modi nominal
4 KB Num nominal
5 KB Punc nominal
6 Mouse Left nominal
7 Mouse Middle nominal
8 Mouse Right nominal
9 Mouse Wheel nominal

124

Table A.6: File System Attributes

Attributes Value Type
1 Dep(cc1plus) nominal
2 Dep(codelite indexe) nominal
3 Dep(gdnc) nominal
4 Dep(geniusreadline) nominal
5 Dep(lame) nominal
6 Dep(make) nominal
7 Dep(perl) nominal
8 Dep(pool) nominal
9 Dep(StreamTrans #5) nominal
10 Dep(unitypanelser) nominal
11 Dep(Xorg) nominal
12 R(./..) nominal
13 R(dev/..) nominal
14 R(etc/..) nominal
15 R(extcalc/..) nominal
16 R(helloword.project/..) nominal
17 R(home/..) nominal
18 R(in/..) nominal
19 R(initrd.img/..) nominal
20 R(var/..) nominal
21 R(lib/..) nominal
22 R(opt/..) nominal
23 R(proc/..) nominal
24 R(run/..) nominal
25 R(sys/..) nominal
26 R(tmp/..) nominal
27 R(ui/..) nominal
28 R(usr/..) nominal
29 W(/..) nominal
30 W(npdf32Log/..) nominal
31 W(dev/..) nominal
32 W(etc/..) nominal
33 W(extcalc/..) nominal
34 W(helloword wsp.mk/..) nominal
35 W(home/..) nominal
36 W(opt/..) nominal
37 W(proc/..) nominal
38 W(pwd/..) nominal
39 W(tmp/..) nominal
40 W(usr/..) nominal
41 W(var/..) nominal
42 File access class count numeric
43 Total read numeric
44 Total write numeric

Bibliography

[1] McAfee Antivirus Solution, “Top 10 malicious programs for Mac OS X; available
at http://www.securelist.com,” 2012.

[2] Webroot, “Insights from Collective Threat Intelligence,” Tech. Rep. April, 2015.

[3] R. Perdisci, A. Lanzi, and W. Lee, “McBoost: Boosting Scalability in Malware
Collection and Analysis using Statistical Classification of Executables,” 2008,
pp. 301–310.

[4] S. M. Tabish, M. Z. Shafiq, and M. Farooq, “Malware Detection using Statistical
Analysis of Byte-Level File Content,” CSI-KDD ’09 Proceedings of the ACM
SIGKDD Workshop on CyberSecurity and Intelligence Informatics, pp. 23–31,
2009.

[5] G. Jacob, P. M. Comparetti, M. Neugschwandtner, C. Kruegel, and G. Vigna,
“A Static, Packer-Agnostic Filter to Detect Similar Malware samples,” vol. 7591
LNCS, pp. 102–122, 2013.

[6] D. Wagner and P. Soto, “Mimicry Attacks on Host-Based Intrusion Detection
Systems,” Proceedings of the 9th ACM Conference on Computer and Communi-
cations Security, pp. 255–264, 2002.

[7] A. Walenstein and M. Venable, “Exploiting Similarity Between Variants to De-
feat Malware,” Proceedings of BlackHat Briefings DC 2007, pp. 1–12, 2007.

[8] A. Karnik, S. Goswami, and R. Guha, “Detecting Obfuscated Viruses Using
Cosine Similarity Analysis,” First Asia International Conference on Modelling
& Simulation (AMS’07), pp. 165–170, 2007.

[9] M. Gheorghescu, “An Automated Virus Classification System,” Virus Bulletin
Conference, pp. 294–300, 2005.

[10] C. LeDoux and A. Lakhotia, “Malware and machine learning,” in Intelligent
Methods for Cyber Warfare, 2015.

125

126

[11] X. Hu, T. Chiueh, and K. G. Shin, “Large-scale Malware Indexing Using
Function-Call Graphs,” Proceedings of the 16th ACM Conference on Computer
and Communications Security, 2009.

[12] D. Kong, “Discriminant Malware Distance Learning on Structural Information
for Automated Malware Classification,” Proceedings of the ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pp. 1357–1365,
2013.

[13] C. Smutz and A. Stavrou, “Malicious PDF Detection Using Metadata and Struc-
tural Features,” Proceedings of the 28th Annual Computer Security Applications
Conference on - ACSAC ’12, p. 239, 2012.

[14] N. Srndic and P. Laskov, “Detection of Malicious PDF Files Based on Hierarchi-
cal Document Structure,” Proceedings of the 20th Annual Network & Distributed
Systems Symposium, 2013.

[15] D. Maiorca and G. Giacinto, “Looking at the Bag is not Enough to Find the
Bomb : An Evasion of Structural Methods for Malicious PDF Files Detection,”
Proceedings of the ASIA CCS’13, pp. 119–129, 2013.

[16] N. Srndic and P. Laskov, “Practical Evasion of A Learning-based Classifier: A
case study,” Proceedings - IEEE Symposium on Security and Privacy, pp. 197–
211, 2014.

[17] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers: A case study
on pdf malware classifiers,” NDSS, 2016.

[18] “VirusTotal,” https://www.virustotal.com/, 2016, [Online; accessed March,
2016].

[19] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic Analysis of Malware
Behavior using Machine Learning,” pp. 1–30, 2011.

[20] U. Bayer, “Large-Scale Dynamic Malware Analysis,” PhD Thesis, pp. 1–109,
2009.

[21] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda, “Scalable
, Behavior-Based Malware Clustering,” NDSS, pp. 51–88, 2009.

[22] U. Bayer, E. Kirda, and C. Kruegel, “Improving the E�ciency of Dynamic Mal-
ware Analysis,” in Proceedings of the 2010 ACM Symposium on Applied Com-
puting - SAC ’10, 2010, p. 1871.

[23] Google Safe Browsing, “Google Safe Browsing.” [Online]. Available: https:
//safebrowsing.google.com/

127

[24] M. A. Rajab, L. Ballard, N. Lutz, P. Mavrommatis, and N. Provos, “CAMP:
Content-Agnostic Malware Protection,” NDSS, 2013.

[25] C. Smutz, “GMU-TR-2015-11 Discerning Machine Learning Degradation via En-
semble Classifier Mutual Agreement Analysis,” George Mason University, Tech.
Rep., 2015.

[26] P. Trinius, C. Willems, T. Holz, and K. Rieck, “A Malware Instruction Set for
Behavior-Based Analysis,” Sicherheit Schutz und Zuverlässigkeit SICHERHEIT,
pp. 1–11, 2011.

[27] R. Sommer and V. Paxson, “Outside the Closed World: On Using Machine
Learning for Network Intrusion Detection,” 2010 IEEE Symposium on Security
and Privacy, pp. 305–316, 2010.

[28] J. Saxe and K. Berlin, “Deep neural network based malware detection using two
dimensional binary program features,” in Proceedings of the 2015 10th Interna-
tional Conference on Malicious and Unwanted Software (MALWARE), 2015, pp.
11–20.

[29] M. Colajanni, D. Gozzi, and M. Marchetti, “Collaborative Architecture for Mal-
ware Detection and Analysis,” IFIP International Federation for Information
Processing, vol. 278, pp. 79–93, 2008.

[30] J. Oberheide, E. Cooke, and F. Jahanian, “CloudAV: N-version Antivirus in The
Network Cloud,” Proceedings of the 17th conference on Security symposium, pp.
91–106, 2008.

[31] L. Zeltser, “Free Automated Malware Analysis Sandboxes and Services,” https:
//zeltser.com/automated-malware-analysis/, [Online; accessed March, 2016].

[32] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun, “Classification of software
behaviors for failure detection: a discriminative pattern mining approach,” in
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2009, pp. 557–566.

[33] Y. Okazaki, I. Sato, and S. Goto, “A new intrusion detection method based
on process profiling,” in Applications and the Internet, 2002. (SAINT 2002).
Proceedings. 2002 Symposium on, 2002, pp. 82 –90.

[34] J. Zhang and R. J. Figueiredo, “Application classification through monitoring
and learning of resource consumption patterns,” in Proceedings of the 20th Inter-
national Conference on Parallel and Distributed Processing, 2006, pp. 144–144.

[35] J. Xu, L. Song, J. Y. Xu, G. J. Pottie, and M. van der Schaar, “Personalized
active learning for activity classification using wireless wearable sensors,” IEEE
Journal of Selected Topics in Signal Processing, vol. 10, no. 5, pp. 865–876, Aug
2016.

128

[36] O. Atan, Y. Andreopoulos, C. Tekin, and M. van der Schaar, “Bandit framework
for systematic learning in wireless video-based face recognition,” IEEE Journal
of Selected Topics in Signal Processing, vol. 9, no. 1, pp. 180–194, Feb 2015.

[37] Verizon, “2015 Data Breach Investigations Report,” Information Security, pp.
1–70, 2015.

[38] “Malware Information Sharing Platform,” http://www.misp-project.org/, 2016,
[Online; accessed March, 2016].

[39] “Information Sharing Specifications for Cybersecurity,” https://www.us-cert.
gov/Information-Sharing-Specifications-Cybersecurity, 2016, [Online; accessed
March, 2016].

[40] “Malware Attribute Enumeration and Characterization,” http://maec.mitre.
org/, 2016, [Online; accessed March, 2016].

[41] “AlienVault Open Threat Exchange,” https://www.alienvault.com/
open-threat-exchange, 2016, [Online; accessed March, 2016].

[42] “ThreatConnect Collaborative Threat Intelligence Platform,” https://www.
threatconnect.com/, 2016, [Online; accessed March, 2016].

[43] “IBM X-Force Exchange,” https://exchange.xforce.ibmcloud.com/, 2016, [On-
line; accessed March, 2016].

[44] “Facebook ThreatExchange,” https://developers.facebook.com/
products/threat-exchange, 2016, [Online; accessed March, 2016].

[45] “Cyber Threat Alliance,” http://www.cyberthreatalliance.org/, 2016, [Online;
accessed March, 2016].

[46] “Trojanhunter; available at www.trojanhunter.com,” 2013.

[47] R. Naraine, “Adobe: Beware of fake flash downloads; available at http://www.
zdnet.com,” 2008.

[48] L. Garber, “Security, privacy, and policy roundup,” IEEE Security & Privacy,
pp. 15–17, 2012.

[49] C. Kuo, F. Schneider, C. Jackson, D. Mountain, and T. Winograd, “Google safe
browsing. project at google,” Inc., June–August, 2005.

[50] McAfee, “Mcafee antivirus solution; available at http://www.mcafee.com,” 2013.

[51] L. Lu, V. Yegneswaran, P. Porras, and W. Lee, “Blade: an attack-agnostic
approach for preventing drive-by malware infections,” in Proceedings of the 17th
ACM conference on Computer and communications Security, ser. CCS ’10, 2010,
pp. 440–450.

129

[52] P. J. Denning and R. D. Riehle, “The profession of it is software engineering
engineering?” Communications of the ACM, vol. 52, no. 3, pp. 24–26, 2009.

[53] J. H. Saltzer and F. Kaashoek, Principles of computer system design: an intro-
duction. Morgan Kaufmann Pub, 2009.

[54] J.-E. SNEDDON, “Malware hidden inside screensaver on
gnome-look; available at http://www.omgubuntu.co.uk/2009/12/
malware-found-in-screensaver-for-ubuntu,” 2009.

[55] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Krügel, and E. Kirda, “Scalable,
behavior-based malware clustering,” in NDSS. The Internet Society, 2009.

[56] M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications of malicious
behavior,” in 6th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2007, pp. 5–14.

[57] D. Toupin, “Using tracing to diagnose or monitor systems,” Software, IEEE,
vol. 28, no. 1, pp. 87–91, 2011.

[58] E. Zini, “A cute introduction to debtags,” in Proceedings of the 5th annual Debian
Conference, 2005, pp. 59–74.

[59] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths for
malware analysis,” in Proceedings of the 2007 IEEE Symposium on Security and
Privacy, 2007, pp. 231–245.

[60] N. Carlini, A. P. Felt, and D. Wagner, “An evaluation of the google chrome
extension security architecture,” in Proceedings of the 21st USENIX Conference
on Security Symposium, 2012, pp. 7–7.

[61] R. Smith, “An overview of the tesseract ocr engine,” in Proc. Ninth Int. Confer-
ence on Document Analysis and Recognition (ICDAR), 2007, pp. 629–633.

[62] Wikipedia, “Computer keyboard — Wikipedia, the free encyclopedia,” 2013.
[Online]. Available: en.wikipedia.org/wiki/Computer keyboard\#Standard

[63] VMware, “VMware workstation,” Published online at https://www.vmware.
com/products/workstation/, 2013.

[64] G. Loiacono, F. Cecaro, and L. Vassallo, “Qube-OS,” Published online at http:
//www.qube-os.com/, 2013.

[65] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceedings
of the Annual Conference on USENIX Annual Technical Conference, 2005, pp.
41–41.

130

[66] Bromium, “Understanding bromium micro-virtualization for security architects,”
Published online at http://www.bromium.com/sites/default/files/Bromium%
20Microvirtualization%20for%20the%20Security%20Architect.pdf, 2013.

[67] C. Kolbitsch, E. Kirda, and C. Kruegel, “The power of procrastination: detec-
tion and mitigation of execution-stalling malicious code,” in Proceedings of the
18th ACM conference on Computer and communications security, ser. CCS ’11.
ACM, 2011, pp. 285–296.

[68] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-
ten, “The weka data mining software: an update,” ACM SIGKDD Explorations
Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[69] S. Arlot and M. Lerasle, “V -fold Cross-Validation and V -Fold Penalization
in Least-Squares Density Estimation,” Oct. 2012, working paper or preprint.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-00743931

[70] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda, “Access-
miner: Using system-centric models for malware protection,” in Proceedings of
the 17th ACM Conference on Computer and Communications Security, ser. CCS
’10, 2010, pp. 399–412.

[71] R. G. Anjoy and S. K. Chakraborty, “E�ciency of lttng as a kernel and userspace
tracer on multicore environment,” Tech. Rep., 2010.

[72] D. Maynor, Metasploit Toolkit for Penetration Testing, Exploit Development,
and Vulnerability Research. Syngress, 2007.

[73] C. Guarnieri, A. Tanasi, J. Bremer, and M. Schloesser, “Automated Malware
Analysis.” [Online]. Available: https://cuckoosandbox.org/

[74] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, “Learning and Clas-
sification of Malware Behavior,” in Proceedings of the 5th International Confer-
ence on Detection of Intrusions and Malware, and Vulnerability Assessment, ser.
DIMVA ’08, 2008, pp. 108–125.

[75] C. Smutz and A. Stavrou, “When a Tree Falls: Using Diversity in Ensemble
Classifiers to Identify Evasion in Malware Detectors,” NDSS, pp. 21–24, 2016.

[76] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed
bandit problem,” Mach. Learn., vol. 47, no. 2-3, pp. 235–256, May 2002.

[77] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A Contextual-Bandit Approach
to Personalized News Article Recommendation,” WWW 2010, p. 10, 2010.

[78] P. J. Rousseeuw, “Silhouettes: A Graphical Aid to the Interpretation and Vali-
dation of Cluster Analysis,” Journal of Computational and Applied Mathematics,
vol. 20, pp. 53–65, nov 1987.

	University of Miami
	Scholarly Repository
	2017-04-21

	Data-Driven Malware Detection Based on Dynamic Behavioral Features
	Rui Han
	Recommended Citation

	dissertation

