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Alzheimer‟s disease (AD), the most common cause of dementia in the elderly, is a 

gradually progressive degenerative neurological disorder that is characterized by 

increasing cognitive impairment, characteristic degenerative pathology and brain atrophy. 

Studies have shown that the progression of AD pathology in the brain develops in a 

predictable pattern and the pathological changes that take place in brain begin at the 

microscopic level long before the first signs of memory loss. Structural Magnetic 

Resonance Imaging (MRI), which has exceptional soft tissue contrast and detailed 

resolution, is the best way to noninvasively examine changes which occur early in the 

course of AD. For this dissertation, our aim is to improve the methods for measuring the 

atrophy of brain structures in AD, as seen on MRI, and to apply these methods to subjects 

with cognitive impairment. 

This study has established a new coordinate template to replace the widely used Montreal 

Neurological Institute (MNI) template for the atlas-based segmentation procedure. The 

new template was derived from the same structural image as the one used by the 

Automated Anatomical Labeling (AAL) procedure. The agreement of the newly 



 

 

developed coordinate template and AAL helps to estimate accurate spatial transformation 

parameters used in warping the AAL to individual subject images. The new template 

combines the spatial information of the structural image and the frequency information of 

MNI template. Based on the same principle, a set of customized templates has been 

developed. The customized template, associated atlas and customized priors match more 

closely the aging population than the previous template, so as to improve the atlas-based 

segmentation of regions of interest in AD assessment. 

Visual Rating System (VRS) of a single coronal slice (MB slice) in MRI has been 

another valuable method in the assessment of medial temporal lobe atrophy. An 

automated procedure has been developed in this study to measure the hippocampal area 

on the same coronal slice so that the labor of human experts in the VRS assessment of 

hippocampus will be significantly reduced.  

Finally the methods and materials (template and atlas) developed in this dissertation were 

applied to cross-sectional studies of subjects with cognitive impairment. We conducted 

volumetric analysis on subjects and conclude that the data from the new approaches have 

higher correlations with clinical data, and therefore can be reliably used as part of an AD 

assessment tool. 
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Chapter 1  Introduction 

1.1 Dementia, AD and MCI 
 

Dementia is a clinical syndrome characterized by “a global deterioration of mental 

functioning in its cognitive, emotional and cognitive aspects” (Mayer-Gross et al., 1969).  

It is a major health problem, particularly in the elderly. Alzheimer‟s disease (AD) is the 

most common cause of dementia in the elderly population.  There are many other causes 

of dementia, such as cerebro-vascular disease, Lewy body disease, Parkinson‟s disease, 

frontotemporal dementia syndromes, alcoholism and prion diseases (e.g., mad cow 

disease).  The first clinical description of Alzheimer‟s diseases was reported in 1906 by 

German psychiatrist Alois Alzheimer.  He had provided care for a 51 year old woman, 

Auguste Deter, who had shown a progressive decline in cognitive function, disorientation, 

aphasia, delusions, and psychosocial incompetence.  She died within five years after the 

onset of illness and Alois Alzheimer examined her brain and observed unusual senile 

plaques (SPs) and neurofibrillary tangles (NFTs), which remain the pathological 

hallmarks of the disease and are used to this day to confirm the diagnosis.  Although 

Alzheimer was the first to recognize the clinicopatholgical features of the disease, 

Alzheimer‟s colleague Emil Kraepelin introduced the disease as Alzheimer's disease in 

the category of presenile dementias in the 1910 edition of his textbook (Kraepelin, 1910).  

Scientists now believe that Auguste Deter had a rare genetic mutation, identified in Volga 

Germans in the 1990s, that can cause Alzheimer‟s disease at an early age. 

Alzheimer‟s disease, is the most common cause of dementia among people 65 years and 

older.  The prevalence of AD is expected to increase dramatically as populations around 
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the globe continue to age.  According to the Center for Strategic and International 

Studies‟ 2003 Aging Vulnerability Index, “Ten years ago, global aging barely registered 

as a policy issue. Today, with the retirement of the large post–war baby-boom 

generations looming over the horizon, it is the focus of growing concern among political 

and policy leaders worldwide” (http://www.csis.org/media/csis/pubs/aging_index.pdf).  A 

new report from the Alzheimer‟s Association shows that the number of Americans age 65 

and older who have Alzheimer‟s disease will increase from 5.1 million today to 13.5 

million by mid-century and the cumulative costs of care for people with Alzheimer‟s 

from 2010 to 2050 will exceed $20 trillion, in today‟s dollars (http://www.alz.org).  

These demographic changes speak to the importance of early detection and accurate 

diagnosis of Alzheimer‟s disease, allowing intervention in the incipient phase of the 

disease. 

AD is a progressive neurodegenerative disorder, whose first symptoms usually include 

deficits in recent or short-term memory.  Subsequently, other cognitive domains, such as 

language, orientation, judgment and long-term memory are affected.  Behavioral 

problems such as social withdrawal, agitation and delusions increase and most patients 

eventually require total care.  The disease eventually contributes to death (Fradinger and 

Bitan, 2005).  The diagnosis of AD usually involves clinical assessments, cognitive tests, 

and a brain scan.  The average AD patient lives eight to ten years after the onset of 

illness. Survival can range from three to 20 years, depending on age and other health 

conditions.  The disease has a major effect on the quality of life of patients, as well as the 

quality of life of family members and caregivers.  Early and accurate diagnosis of AD can 

help patients delay decline in functioning for months to years and to be more involved in 



3 

 

 

 

treatments and decisions, such as when to stop driving and where to live.  Thus, there is a 

great need for new diagnostic tools for earlier and more accurate detection of AD.  

1.1.1. Neuropathology of AD 
 

It is known that neuropathological changes of Alzheimer‟s disease may be present years 

or even decades before the onset of the clinical manifestations of the disease.  Cognitive 

and functional reserve capacity, genetic factors and medical (especially cerebrovascular) 

co-morbidity may determine when the symptoms and functional impairment associated 

with AD are clinically manifest.  As demonstrated in Figure 1.1 below, AD is 

characterized pathologically by the presence of abundant extracellular  amyloid (A) 

neuritic plaques and intracellular neurofibrillary tangles (NFTs) (Khachaturian, 1985; 

Braak and Braak, 1991; Mirra et al., 1991).  

 

Figure 1.1 Neuropathology of AD. Large extracellular amyloid plaques (left, McGeer et 

al.) and dense intracellular neurofibrillary tangles (right) are well-known histological 

indicators of Alzheimer's disease.  The figure on the right shows a dark black 

neurofibrillary tangle stained with Bielschowsky silver stain.   

 

Six stages of disease propagation can be distinguished with respect to the location of the 

NFTs as shown in Figure 1.2 below: “transentorhinal stages I-II: clinically silent cases; 

limbic stages III-IV: incipient Alzheimer's disease; neocortical stages V-VI: fully 

developed Alzheimer's disease” (Braak and Braak, 1995). 



4 

 

 

 

 

Figure 1.2 Stages of Alzheimer‟s Disease 

 

1.1.2. Clinico - Pathological Correlations in AD 
 

Current criteria for the diagnosis of AD require the presence of a clinical syndrome.  

However, it is evident that the pathology of AD must pre-date the appearance of the 

clinical features, much like atherosclerosis pre-dates a diagnosis of ischemic heart 

disease.  Indeed, many studies have shown that the pathological changes of AD may 

begin many years before the patient is diagnosed with dementia (Braak and Braak, 1997; 

Crystal et al., 1988; Silverman et al., 1997).  Among elderly clinically normal individuals 

who have been classified pathologically as Braak and Braak stage II or less, amyloid or 

diffuse plaques are frequently present, but neuritic plaques are rare.  Subjects diagnosed 

with Mild Cognitive Impairment (MCI, a condition characterized by subtle cogntive 

deficits) during life have greater tau and neurofibrillary pathology (which correlates 

closely with cognitive function), but cortical plaque densities that are similar to that in 

patients with AD.  Although AD pathology is almost universally present among subjects 

classified clinically to have MCI, about 30% also have other pathologies, such as Lewy 
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bodies, argyrophillic grain disease or hippocampal sclerosis affecting the medial temporal 

lobe.  

On the other hand, about 30% of individuals who meet neuropathologic criteria for AD, 

and are classified as Braak and Braak stage V or VI at autopsy, remain non-demented 

during life (Snowdon et al., 1997).  This suggests that the disease can reach a relatively 

advanced pathological stage,  without significant symptomatology in some people. 

Factors that may modify the onset of the clinical manifestations of AD include cognitive 

reserve capacity, which is generally measured by educational and occupational 

achievement (Stern, 2003; Stern et al., 1994; Manly et al., 2003; Schofield et al., 1995; 

Mortimer et al., 2003; Graves et al., 1996), the presence and severity of co-existing 

cerebrovascular (Tatemichi et al., 1994; Schneider et al., 2004; Snowdon et al., 1997),  

degenerative and other diseases of the brain, and systemic diseases, such as hypertension, 

congestive heart failiure and diabetes mellitus (even borderline diabetes) (Xu et al. 2007).  

Appropriate treatment of various conditions, such as hypertension, diabetes mellitus, 

hyperlipidemia and obesity, as well as an optimal diet and level of physical, social and 

cognitive activities may determine when and if Alzheimer‟s disease becomes clinically 

apparent during life in an individual harboring the pathology of AD (Pope et al., 2003; 

Graves, 2004).   

1.1.3. Clinical Diagnosis of AD 
 

Established Criteria for the Diagnosis of AD  

Currently, the most widely used clinical criteria for the diagnosis of AD are the National 

Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease 

and Related Disorder Association (NINDS-ADRDA) Criteria (McKhann et al., 1984). 
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NINCDS-ADRDA criteria have been found to have high sensitivity (range 0.81 to 0.98), 

but relatively low specificity (range 0.41 to .84), against a histopathological diagnosis 

(Kukull et al., 1990; Nagy et al., 1998; Gold et al., 1994).  A computerized application of 

NINCDS-ADRDA criteria has been found to have significantly improved specificity, 

with equivalent sensitivity, as compared to the standard consensus diagnosis system 

(Hogervorst et al., 2003).  

Major advances have occurred in understanding the epidemiology, genetics and the 

biological basis of Alzheimer‟s disease since 1984, when NINCDS-ADRDA criteria for 

AD were developed.  Numerous cross-sectional and longitudinal studies, especially those 

that included clinico-pathological confirmation of the diagnosis, have improved our 

knowledge of the clinical features and the differential diagnosis of Alzheimer‟s disease.  

The current generation of neuropsychological tests can detect impairment in recent 

memory with much greater sensitivity than in the past (Duara et al., 2010).  The 

discovery of several genetic risk factors for AD, especially the Apolipoprotein E (ApoE) 

4 genotype, are likely to improve the accuracy of the diagnosis of AD, by identifying 

those who are at higher risk for the disease.  The use of brain imaging and cerebrospinal 

fluid (CSF) biomarkers, that are surrogates for AD pathology, should furher enhance the 

likelihood  that an earlier and more specific clinical diagnosis of AD can be made. 

Pre-Dementia and Pre-Alzheimer Syndromes and Mild Cognitive Impairment (MCI) 

An earlier diagnosis of AD can only be achieved by lowering the thresholds of cognitive 

and functional impairments currently required for a diagnosis of AD. A transitional, pre-

dementia state, between normal cognition and established dementia is likely to exist for 

most recognizable dementing diseases.  A number of studies have suggested that 
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impairment of recent memory may be the best cognitive biomarker of AD in its pre-

dementia state (Grober et al., 2000; Howieson et al., 1997; Small et al., 2003; Duara et 

al., 2010), even among asymptomatic, community-dwelling elders (Assal and Cummings, 

2002).  The accuracy of the diagnosis of early AD is likely to depend on the severity of 

cognitive impairment, especially in the memory domain.  Although memory-related 

symptoms are by far the most common presentation of early AD, variations in the onset 

and progression of AD are also well known, including an aphasic/anomic, a visual 

agnosic and a frontal (abulic or disinhibited) onset (Galton et al., 2000).  It also remains 

important to consider pre-dementia conditions other than AD, including Vascular 

Cognitive Impairment, Lewy Body Disease and various forms of fronto-temporal lobar 

degeneration. 

Cognitive impairment among non-demented elderly individuals may also be caused by a 

variety of systemic medical conditions, effects of medications and toxins, 

neuropsychiatric disorders, as well as by the effects of educational and socio-cultural 

deprivation and “frailty-related” factors.  

Mild Cognitive Impairment (MCI) (Petersen et al., 1999; 2003; 2004), which requires 

impairment in recent memory and a history of decline in cognition, in the face of intact 

global cognition and functional ability, is a pre-dementia condition that has been shown 

to have a high likelihood of progression to Probable AD.  Based on the clinical 

presentation, MCI could divided two subtypes: amnestic MCI (aMCI), if the impairment 

includes the memory domain, and nonamnestic MCI (naMCI), if the impairment is in one 

or more non memory domains such as attention/executive functioning, language, and 

visuospatial processing (Kantarci et al., 2008).  Patients with the aMCI subtype have a 
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higher risk of progression to AD compared with normal aging or naMCI.  Patients with 

naMCI are likely to have far more variability in terms of symptomatology and 

progression to various forms of dementia (e.g., frontotemporal dementia, primary 

progressive aphasia). In clinic cohorts, the annual rate of progression to full-blown AD in 

patients with MCI is generally reported to be around 15%–20%, meaning that in 3 years 

about half of the patients with MCI will develop clinical AD (Karas et al., 2008). As 

strategies to delay disease progression, and possibly prevent or offset the onset of AD are 

under development, it is extremely important to recognize individuals at high risk for 

developing AD who may particularly benefit from early therapeutic interventions 

(Mosconi et al., 2007). 

Neuropsychological testing is included in the standard medical workup for AD.  Mini-

Mental Status Examination (MMSE) is one of the commonly used neuropsychological 

tests.  It offers a brief 30-point questionnaire test that is used to quantify cognitive 

function and screen for cognitive impairment.  This test evaluates the individual‟s 

orientation, attention, calculation, recall, language and motor skills.  Each section of the 

test involves a related series of questions or commands.  The individual receives one 

point for each correct answer. A score below 24 usually indicates cognitive impairment.  

Figure 1.3 demonstrates that progressive declines in the functional abilities that correlate 

with MMSE scores during the clinical course of AD (Petrella et al., 2003).  
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Figure 1.3 Demonstration of the progressive declines in the functional abilities correlate 

with MMSE scores during the clinical course of AD. MCI (mild cognitive impairment) is 

coined to describe the transitional phase between normal aging and AD. (Petrella et al., 

2003) 

 

Another commonly used scale for evaluation of staging severity of dementia is Clinical 

Dementia Rating (CDR) scale.  It was developed primarily for use in persons with 

dementia of the Alzheimer type (the equivalent of probable AD) and it can also be used 

to stage dementia in other illnesses as well. It assesses six domains: memory; orientation; 

judgment and problem-solving; community affairs; home and hobbies; and personal care 

(Burns et al., 2002).  The global CDR score is the weighted average of the category 

ratings.  Ratings are 0 for healthy people, 0.5 for questionable dementia and 1, 2 and 3 for 

mild, moderate and severe dementia as defined in the CDR scale. The “sum of boxes” 

scores (CDR-sb) are the sum of the category ratings.  

1.1.4. Treatment of AD 
 

There is no cure available for patients suffering from AD.  However, careful assessment 

and the development of comprehensive multidisciplinary care plans to address personal, 

social, medical and behavioral problems associated with dementia have become the 
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mainstay of treatment and care program for people with AD and their caregivers.  For 

example, common psychosocial issues addressed by clinicians dealing with AD patients 

are “when to stop driving”, “how to take care of mom”, and “where to live”. 

So far, two main types of drugs are currently approved by the Food and Drug 

Administration (FDA) for use in Alzheimer's.  These drugs do not alter the course of 

disease, but can improve some of the cognitive and behavioral symptoms of AD for 

several years. Cholinesterase inhibitors temporarily boost the amount of a 

neurotransmitter important for learning and short-term memory (acetylcholine) in the 

brain.  The most commonly prescribed cholinesterase inhibitors are donepezil 

(Aricept®), galantamine (Razadyne®) and rivastigmine (Exelon®).  The other type of 

drug for AD works by regulating the activity of glutamate, a messenger chemical 

involved in all brain function, including learning and memory.  One such drug, 

Memantine (Namenda®), is approved only for the treatment of moderate to severe AD. 

It is possible that disease-modifying treatments for AD will become available in the near 

future, providing hope that the disease process will be arrested or reversed, especially if 

treatment is initiated early.  However, it is likely that pharmacological treatment of AD in 

a pre-dementia stage of the disease (i.e., Prodromal AD) will be approved by the FDA 

only when a secure diagnosis of AD can be made at this early stage. 

1.1.5. Use of Biomarkers for Diagnosis of Prodromal (PreClinical) AD 
 

Biomarker tests that indicate the presence of underlying AD pathology could be used to 

increase the sensitivity and specificity of the diagnosis of a pre-dementia syndrome, such 

as MCI.   
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Neuroimaging assessments of entorhinal cortex volume and hippocampal volume on 

structural MRI scans are highly correlated with the future rate of progression of MCI to 

AD.  Smaller hippocampal and entorhinal cortical size on MRI (de Leon et al., 1997) has 

been related to memory impairment in normal aging and future AD risk.  The presence of 

MCI or mild dementia versus normal cognition has been associated specifically with 

atrophy of the hippocampus, parahippocampal gyrus and amygdala (Bobinski et al., 

2000; Jarvenpaa et al., 2004; Salamon et al., 2004).  The histopathologics correlate of 

these imaging findings appears to be the accumulation of neurofibrillary tangles, neuritic 

plaques and the loss of neurons and dendritic arbor in the transentorhinal cortex, and the 

hippocampus cortex (Bobinski et al., 2000; Gosche et al., 2001, Jack et al., 2002).  The 

presence of medial temporal atrophy is not specific for AD and conditions, such as 

Fronto-temporal Lobar Dementia (FTLD), vascular dementia and hippocampal sclerosis 

may also demonstrate brain atrophy in these regions. 

Other imaging techniques, such as positron emission tomography (PET) with 

radiolabeled [18F]-2-fluoro-deoxy-D-glucose (PET-FDG) may provide additional 

sensitivity though probably not specificity to the diagnosis of AD.  Using FDG-PET, with 

an automated method of image analysis to study the hippocampus, de Leon and 

colleagues showed that baseline measurements predicted decline from normal to MCI or 

AD six to seven years in advance of symptoms with 71% and 81% accuracy, respectively 

(de Leon et al., 2007).  An extrapolation of these results suggests that AD can be 

identified 12 years before the patient is symptomatic.  PET imaging using the amyloid-

binding agent Pittsburgh Compound-B (PiB) may provide high sensitivity to early AD 

pathology, but it may have many false positives; that is, many normal elderly subjects 



12 

 

 

 

may have a lot of amyloid in their brain and be able to function normally for 10 years or 

more. 

CT (X-ray computerized tomography) is mainly used to rule out treatable causes of 

dementia that can be treated surgically, such as tumors and hydrocephalus.  CT scans can 

be used to identify enlargement of CSF spaces, lateral ventricles, particularly the 

temporal horn of the lateral ventricle, and cortical sulci (Lehéricy et al., 2007).  

Functional MRI (fMRI), a functional imaging technique, can evaluate changes in blood 

flow in different areas of the brain over time in association with a cognitive task. By 

using fMRI, Sperling (2007) studied the cognitive–behavioral functions in early phases of 

neurodegenerative disorders and identified the neuroanatomical networks affected by 

these diseases (Sperling, 2007).  Another study of verbal short-term memory utilizing 

fMRI reports that alternative recognition mechanisms happens in left parahippocampus 

and hippocampus (Peters et al., 2009).  These studies demonstrate that AD patients have 

different functional networks for short-term memory processing. 

Biomarkers in CSF are related to the pathological hallmarks of AD.  Tau proteins in CSF 

are correlated with the number of neurofibrillary tangles in the brain, and “pathogenic” 

sections of the amyloid beta peptide (A42) in CSF contribute to amyloid plaques in the 

brain.  A marked increase in CSF tau with a marked decrease in CSF Aβ42 is found in 

AD, providing high sensitivity (90%) for the disease (De Meyer et al., 2010).  One study 

showed that 95% of MCI cases with an AD signature on CSF progressed to AD over a 

four to six year period (Hansson et al., 2006). The high rate of AD CSF biomarkers 

among normal elderly controls is likely related to preclinical pathology. 
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The use of neuroimaging and other biomarkers for the diagnosis of presymptomatic 

disease and for monitoring disease progression has been demonstrated by de Leon et al. 

among clinic patients.  Using MRI and an automated regional boundary shift method, the 

assessment of medial temporal lobe (MTL) atrophy predicted progression of MCI and 

AD with an accuracy of 89%.  Baseline FDG-PET measurements predicted decline from 

MCI to AD in 81% of cases.  Changes in hippocampal metabolism correctly classify 76% 

of the future decliners among normal and MCI subjects. Laurent and Dubois (2006) 

suggested that specific neuropsychological assessments, neuroimaging and biomarkers 

tests would allow demonstration of the underlying pathological process before AD 

patients meet the criteria of dementia, thus enabling the subgroup of MCI subjects who 

had Prodromal AD to be identified.  

1.2 Structural MRI in Detection of Atrophy in AD 
 

Alterations occurring in the brain in various neurodegenerative diseases can be detected 

and quantified by several brain neuroimaging techniques, such as CT, MRI, fMRI, PET 

and single photon emission computed tomography (SPECT).  Neuroimaging has been 

shown by some to be superior to neuro-psychological tests for early diagnosis of AD 

(Zamrini et al., 2004).  

Structural MRI is the best way to examine changes which occur early in the course of AD 

in regions such as the hippocampus.  It is routinely requested during the clinical work-up 

diagnosis.  MRI scanning is noninvasive, has exceptional soft tissue contrast and detailed 

resolution which allows the investigation of normal anatomical variability bounds, as 

well as the quantization of volumetric changes accompanying neurological conditions. 
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There are two main methods of analyzing MR images, so as to identify regional 

abnormalities or alterations from a normative group: voxel-based morphometry (VBM) 

and region of interest methods.  VBM uses a statistical method to identify alterations in 

tissue density on a voxel by voxel basis across the entire brain. No a priori hypothesis is 

required to identify morphological abnormalities.  It treats MRIs as continuous scalar 

measurements and tests for local differences at the appropriate spatial scale (Ashburner 

and Friston, 2009).  Recent VBM techniques have demonstrated that the progressive MCI 

subjects who convert from MCI to clinical AD present not only medial temporal lobe but 

also widespread neocortical atrophy compared to the cognitively stable MCI subjects 

(Jack et al., 2008; Fan et al., 2008).  Although VBM has shown new possibilities in the 

early identification of subjects with MCI, it does not provide single-subject level 

information which would be clinically important.  In addition, the currently used 

segmentation algorithms in VBM are not particularly adept in taking into account the 

partial volume effect when classifying the voxels into different tissue types.  As a result, 

there may be voxel intensity changes which may lead to erroneous tissue classification 

results (Julkunen, et al., 2009). 

Visual rating method and volumetric analysis are two widely used ROI analytic methods.  

Visual rating methods allow assessment of regional atrophy on one or more standard 

coronal slices in an MR scan (Scheltens et al., 1995, Urs, 2006, Duara et al., 2008, Urs et 

al., 2009).  It is simple to use and very practical for clinical application. Studies by Urs et 

al. (Urs, 2006, Duara et al., 2008, Urs et al., 2009) have demonstrated that visual rating 

of just one standard coronal slice in an MR scan provides semiquantitative measures 

which nevertheless have been shown to have high sensitivity and specificity for 
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distinguishing patients with AD from those with no cognitive impairment, and similar 

sensitivity and specificity levels have been obtained for diagnosing aMCI (Urs, 2006, 

Duara et al., 2008, Urs et al., 2009).  

Volumetric methods are quantitative and have been used to demonstrate significant 

reductions in volumes of specific medial temporal lobe structures, such as the 

hippocampus and amygdala among cognitive diagnostic groups (e.g. cognitive normal 

versus AD) (Barnes et al., 2006; den Heijer et al., 2006; Basso et al., 2006).  Because 

they provide regional brain volumes, they allow comparisons of volume changes in 

different pathological states or changes in regional volumes longitudinally (Ishii et al., 

2006).  Manual outlining of ROIs for volumetric analysis is currently considered to be the 

gold standard method, although it is time consuming, very labor intensive and may have 

high intra and inter-rater variability in measurement.  Further, a high level of training is 

required for manual tracing methods. Also, the definition of the boundary of the 

hippocampus has varied between studies, so there is an effort to use consistent anatomical 

landmarks among Alzheimer‟s researchers (http://www.hippocampal-protocol.net/public/

file/jack-protocol.pdf).  As a result, automatic delineation techniques have been 

developed and validated in AD related studies (Morey et al., 2009; Carmichael et al., 

2005; Tae et al., 2008; van der Lijn et al., 2008; Rodionov et al., 2009).  However, there 

is still room for improvement.  More accuracy in automatic delineation results in more 

accuracy of volumetric measurement. 

1.2.1 Visual Rating Methods 
 

The goal for the visual rating methods is to achieve an accurate and reliable assessment 

using a human “expert” rater. Scheltens et al. (1995) initially demonstrated that visual 
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rating methods could be helpful in distinguishing early AD subjects from those with no 

cognitive impairment (NCI), and it also predicted which subjects would convert from 

MCI to AD (Scheltens et al., 1995).  The visual rating scale developed by Scheltens et al. 

was used to assess medial temporal lobe atrophy on six coronal slices of MRI parallel to 

the brainstem axis.  The score is assigned based on visual rating of the width of the 

choroid fissure, width of the temporal horn, and height of the hippocampal formation. 

The resulting scores are 0=absent, 1=minimal, 2=mild, 3=moderate, and 4=severe medial 

temporal lobe atrophy.  

Visual rating system (VRS) software developed at the Wien Center for Alzheimer‟s 

Diseases and Memory Disorders in Mount Sinai Medical Center (Miami Beach, Florida) 

expands the scope and utility of the Scheltens method, as well as a method of 

standardization of the ratings of atrophy in the entorhinal and perirhinal cortices (ERC 

and PRC) and hippocampus (HPC) structures of the medial temporal lobe (Urs, 2006; 

Duara et al., 2008, Urs et al., 2009).  These regions are clearly outlined in Figure 1.4 

(below) on a coronal section of the brain, demonstrating the anatomy of this region and 

the relative ease with which the landmarks for these brain regions can be used to 

demarcate the structures of interest for distinguishing the earliest changes that occur in 

neurodegenerative diseases.  Ratings are based on a five point scale, with “0” signifying 

no atrophy, and “4” signifying the most severe atrophy (see Figure 1.5).  Medial temporal 

lobe atrophy (MTA) ratings for each hemisphere are calculated by summing the ratings 

for the HPC, ERC and PRC on each side.  A library of reference images that defines the 

anatomical boundaries of each brain structure and depicts different levels of atrophy are 

provided from a drop-down menu in the system interface; this facilitates a direct 
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comparison of each structure on the subject‟s MRI.  VRS enables digital entry of atrophy 

ratings that are automatically saved to an Excel file.  It has been tested with excellent 

inter-rater (kappa, 0.75 to 0.94) and intra-rater (kappa, 0.84 to 0.94) reliabilities for VRS 

ratings of atrophy in the HPC, ERC, and PRC (Urs et al., 2009).  It has also been shown 

to have high sensitivity and specificity for distinguishing patients with AD from those 

with no cognitive impairment, and similar sensitivity and specificity levels for patients 

with aMCI (Urs, 2006; Duara et al., 2008, Urs et al., 2009).  The coronal slice used for 

rating the hippocampus is standardized by using the mammillary bodies (an easily 

visualized structure which has constant relationships to the medial temporal regions that 

show atrophy early in the AD disease process.  Using the mammillary bodies (MB) slice 

also ensures that the only the anterior aspects of these medial temporal structures are 

rated.   

VRS-MTA has been further validated in several studies in which VRS was compared to 

APOE 4 (genetic risk factors for AD) genotype frequency, global cognitive scores and 

memory scores (Urs, 2006; Duara et al., 2008, Urs et al., 2009).  Thus far, VRS-MTA 

scores have performed about the same as volumetric measures of the hippocampus for 

distinguishing diagnostic groups (Shen et al., 2011a).  Further, VRS-MTA is user-

friendly, easily operates on a PC or radiology console, and does not require special 

technical support, which is a major obstacle in the routine use of volumetric methods. 

Also image artifacts, including those resulting from patient movement or aberrant 

positioning, have a much smaller impact on VRS-MTA ratings than on volumetric 

methods. These advantages allow VRS-MTA to be easily adopted for the clinical 

diagnostic tests.  
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Figure 1.4 Medial Temporal Anatomy. Hippocampus (HPC) is red; Entorhinal Cortex 

(ERC) is in green and Perirhinal Cortex (PRC) is in purple. 

 

 

  

HPC  L=0, R=0 HPC  L=2, R=3 

  

HPC  L=3, R=3 HPC  L=4, R=4 

Figure 1.5 An illustration of the different levels of atrophy of the hippocampal cortex 

(HPC), outlined in red, that is a recognizable “signature” of the atrophy associated with 

AD pathology. Atrophy Grades are: 0= no atrophy; 1=Minimal atrophy; 2=Mild atrophy; 

3=Moderate atrophy; 4= Severe atrophy 

 

VRS Visual rating scales, although simple to use, making them practical for clinical 

application, were not designed to detect atrophy progression on serial imaging; their 
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quantized nature makes them insensitive to change over time.  A technique that combines 

the simplicity of visual rating scales and the ability of volumetric measurement to track 

disease progression would be desirable. 

1.2.2 Volumetric Analysis  
 

Volumetric analyses of brain structures have become increasingly common for diagnostic 

purposes and for identifying disease progression.  It has been demonstrated that atrophy 

of the MTL memory structures, where the pathological changes of AD in terms of 

neurofibrillary tangles and neuronal loss first occur (Braak and Braak, 1991; Kordower et 

al., 2001), can be detected even in subjects with MCI (De Santi et al., 2001; Du et al., 

2007; Pennanen et al., 2004).  Atrophy of the MTL structures has also been claimed to 

predict the conversion from MCI to clinical AD (Uotani et al., 2006; Tapiola et al., 2008; 

Jack et al., 2004).  

Some previous volumetric studies of hippocampus and amygdala are shown in Table 1.1. 

Most of these studies are about AD or MCI verse normal control, few are about 

depression, Lewy body dementia or vascular dementia, which we include here, because 

those references are comparing the manual segment with the automated segment of 

hippocampus and amygdala.  These listed studies shown that the significant volume loss 

of hippocampus and amygdale for people with AD (de Jong et al., 2008; Colliot, et al., 

2008 Teipel et al., 2006; Müller et al., 2005) and volumes of the medial temporal 

structures correlated with memory performance (Mori et al., 1997).  Also, most of the 

listed studies in Table 1.1 demonstrated that the automated segments were high 

agreement with manually segments (Morey et al., 2009; Ishii et al., 2006; Leung et al., 
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2010), though Tae et al., (2008), Firbank et al. (2008) shown the automated segments 

were not very accuracy comparing with manually segments. 

In order to obtain the volumetric measurements for various structures, accurate regional 

segmentation on MR images is necessary.  The segmentation of an image into a number 

of different and disjoint sets of voxels that correspond to anatomically meaningful 

regions is a challenging task, due to the poor definition of regional boundaries on MRI 

scans, such as the cortical structures, hippocampus, amygdale, thalamus, putamen, etc.  

Signal intensity alone is not sufficient to distinguish between different cortical grey 

matter structures as observed and characterized by Fischl et al. (2002). 

Attempts have been made to improve the methodology of segmentation of brain MRI. 

The simplest is slice by slice manual delineation. It has been used for hippocampus and 

amygdala volumetric studies (Barnes et al., 2006; den Heijer et al., 2006; Basso et al., 

2006). This operator-dependent approach is very time consuming, requires expert 

neuroanatomical knowledge and high inter-operator reliability. Currently, it is still being 

used mainly as a “gold-standard” for evaluation of segmentation methods. Semi-

automated segmentation methods reduce manual labor by having an operator provide 

landmarks (Colliot et al., 2008), seed-points or bounding boxes (Chupin et al., 2007) to 

initiate or constrain a subsequent automated segmentation process. However, for a large-

scale study with many subjects, manual delineation may not be feasible. As a result, 

much research effort has been devoted to fully automated segmentation. Automated atlas-

based segmentation (also called label propagation) is one commonly used approach and it 

has given promising results in the volumetric analysis of AD or MCI atrophy. (Morey et 
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al., 2009; Carmichael et al., 2005; Tae et al., 2008; van der Lijn et al., 2008; Rodionov et 

al., 2009).  

Atlas-based Segmentation in Volumetric Analysis 

By using this method, prior knowledge is introduced through an anatomical structural 

atlas created by neuroanatomical experts who manually delineates the brain structures of 

interest. Then the labeling of the anatomical atlas is subsequently “warped” to the to-be-

segmented images to delineate the labeling of the to-be-segmented images. In this 

approach, a spatial registration is employed to obtain the information on the magnitude 

and direction required to transform a point in the anatomical atlas to the appropriate point 

in the to-be-segmented brain images. 

Two factors may influence the performance of this approach: the way the atlas is created 

and the registration algorithm for estimating the spatial registration parameters used to 

deform the atlas labels to the to-be segment images.  

Atlas in Atlas-based Segmentation  

The neuroanatomical atlas used in this standard approach is typically created by manually 

delineating the region of interest in a single subject image in the standard space (Haller et 

al., 1997; Hayashi et al. 2009; Tae et al., 2008; García-Vázquez et al., 2008; Seixas et al., 

2010). However, if the single subject is not representative of the investigated population, 

the accuracy of the segmentation may be reduced (Carmichael et al., 2005). A possible 

solution to this problem is to use multiple atlases, or an atlas which contain probabilistic 

information from multiple templates. (Fischl et al., 2002)  

 

 



22 

 

 

 

 

T
ab

le
 1

.1
 S

o
m

e 
v
o
lu

m
et

ri
c 

st
u
d
ie

s‟
 r

es
u
lt

s 
o
f 

h
ip

p
o
ca

m
p
u
s 

an
d
 a

m
y
g
d
al

a 
 



23 

 

 

 

 



24 

 

 

 

N
o
te

: 
u
n
it

 o
f 

v
o
lu

m
e 

is
 c

m
3
. 
H

P
C

: 
H

ip
p
o
ca

m
p
u
s;

 A
M

G
: 

am
y
g
d
al

o
id

; 
M

: 
M

al
e;

 F
: 

F
em

al
e;

 



25 

 

 

 

Heckemann et al. (2006) used the result of a single atlas on a to-be-segmented image as a 

classifier, and the deformed labels were combined with decision fusion (Heckemann et 

al., 2006). This study of 67 brain structures has shown that using multiple atlases 

combined with decision fusion better matched the manual segmentations than using 

single atlas propagations. Barnes et al. (2008) used a template library combined with 

morphological operations (intensity thresholding plus one conditional dilation) in 

hippocampus segmentation. His results have shown that the relative hippocampal volume 

change over time can be accurately quantified. Wu et al. (2007) used a family of brain 

template sets for atlas-based segmentation of anterior cingulate cortex and several 

subcortical structures. For each subject and each region, the template selection method 

automatically chooses the „best‟ template with the highest local registration accuracy, 

based on normalized mutual information. The results have demonstrated that the template 

selection method produced higher segment agreement with manual tracings than the 

single template method. Segmentation methods using multiple atlases were also applied 

by Klein et al. in the automatic segmentation of prostate in 3D MR images. (Klein et al., 

2008) 

The employment of multiple atlases in atlas-based segmentation has shown 

outperformance to a single atlas (Barnes et al., 2008). However it also brings additional 

computational cost because the method involves the registering of several atlases with 

each of the to-be-segmented images and the processing of decision fusion or atlas 

selection step.  

To encompass the inter-individual variability of investigated subjects, another possibility 

is to use a probabilistic atlas from a set of images. This technique has been applied to 

2
4
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brain tissue, as well as brain structure segmentation (Fischl et al., 2002; Hammers et al., 

2007). Once the average atlas has been constructed, the approach on the average atlas 

requires less computation than the multi-atlas approach. However, because it still relies 

on a single registration, average atlas segmentation is less accurate than registering 

multiple atlases (Heckemann et al. 2006).  

Registration Algorithms in Atlas-based Segmentation 

Another possible factor that may influence the performance of atlas-based segmentation 

approaches is the registration algorithm for estimating the spatial registration parameter, 

which would be used to deform the atlas labels to the to-be-segmented images. 

Some authors have used affine (Carmichael et al., 2005) or piecewise affine (Barnes et 

al., 2006) registration algorithms. However, in order to achieve precise extraction, 

typically a high dimensional nonlinear registration algorithm is employed. An increase in 

degrees of freedom results in more flexibility to adapt the atlas to the target image, but it 

also increases computational cost and the risk, where the optimization may get stuck in a 

local minimum that is far away from the optimal solution. Since the similarity is 

computed over the entire image, atlas-based segmentations are prone to errors that do not 

have a large effect on this measure.  

Much work has been done on the registration algorithms. There are several registration 

methods that are publicly available online. ANIMAL+INSECT of Collins and Evans 

(Collins et al. 1995, 1999) was one of the earliest automated labeling strategies. 

ANIMAL registration is a high degrees of freedom (around 6.9x10
4
) intensity based 

technique where the similarity measure is a normalized correlation statistic of the 

intensities within a local neighborhood, the constraint is affected by smoothing the 
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deformation vectors at each iteration, and a multi-resolution scheme is used. Automatic 

Registration Toolbox (ART) (http://www.nitrc.org/projects/art/) generates around 7x10
6 

parameters to describe the deformation field where the similarity measure is also a 

normalized correlation statistics of the intensities. Affine Inter-Modal Image Registration 

(FLIRT) employing a linear rigid technique to produce 9 affine transforms parameters. 

The image registration procedures of Statistical Parametric Mapping (SPM, 

http://www.fil.ion.ucl.ac.uk/spm/software/spm5/) includes two steps: (1) an affine 

transform which is a linear approach for finding the best combination of global 

translation, rotation, and scaling factors and (2) a higher-order (degrees of freedom is 

around 1200) nonlinear transform for estimating the deformation field at a regional level 

where the similarity measure is the mean squared difference of the intensities.   

IBASPM (Individual Brain Atlases using SPM) (Alemán-Gómez et al., 2006) is the one 

of the third-party toolboxes of the SPM. It employs the image registration function within 

the SPM and the Anatomical Automatic Labeling (AAL, Tzourio-Mazoyer et al., 2002) 

to automatically segment 116 structures of brain.  AAL is a predefined anatomical 

labeling by manually tracing 116 ROIs on an image from a young normal brain. These 

ROIs include the hippocampus, amygdala and parahippocampus, which are the regions 

where atrophy initially appears in AD and MCI. Some authors have used IBASPM in 

neurodegenerate disease studies. The study of Hayashi et al. (2009) showed that 

volumetric measurement using IBASPM can distinguish an AD group from a normal 

control group. Tae et al. (2008) compared the ability of FreeSurfer (Fischl et al., 2002) 

and IBASPM in detecting hippocampal atrophy of the patients with major depressive 

disorder. The results indicated that both automated methods can detect hippocampal 
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atrophy and that FreeSurfer is better. However Hasan KM (2009) questioned this results 

because the authors did not realize that the default atlas AAL of IBASPM is right-left 

swapped; that may have adversely affected the performance of IBASPM. García-

Vázquez V et al. (2008) tested the influence of the atlas when segmenting normal and 

pathologic brains using IBASPM. They showed that overlap ratio and volumetry with 

manual segmentation were better in healthy controls than in patients. This indicated “that 

a critical point in the atlas-based automatic segmentation techniques and a possible cause 

of this difference is the registration to Montreal Neurological Institute T1-weighted 

template (MNI template), representing normal healthy brains which does not properly 

represent inter-group variability.” Seixas F.Z. (2010) compared FreeSurfer, IBASPM and 

FSL in volumetric assessment of the hippocampus. They showed that Freesurfer and FSL 

presented better relative overlay indexes than IBASPM. Freesurfer and IBASPM, 

compared with IBASPM, also had greater agreement with manual methods as measured 

by intraclass coreelations. The authors also mentioned that the errors of segmentation 

using IBASPM arose from inaccurate image registration and use of the MNI single-

subject for the manually predefined region of interest of the hippocampus.  

1.3 Problem Statement 
 

Studies have shown that atlas-based volumetric analysis and visual rating methods can 

detect the neurodegenerative atrophy associated with AD and can distinguish different 

diagnostic groups. However, the success of the automated volumetric analysis relies on 

the accuracy of segmentation by the ROIs. Some studies have also shown there are errors 

in atlas-based segmentation. We believed the inaccuracy in IBASPM (SPM) based 

anatomical segmentation was caused by the following:  
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(1)The standard template used in SPM (or IBASPM), known as the MNI template, was 

created at McGill University (http://www.mni.mcgill.ca/). The MNI template was 

averaged from the T1-weighted images of 152 healthy subjects, of which 57% were male, 

90% were right handed and with a mean age of 25 years. The default anatomical atlas of 

IBASPM is AAL which was manually segmented using images from a young normal 

brain. Although AAL is in the same MNI space as the MNI template, the regional 

anatomy is different. Even the deformation field was estimated accurately by applying 

image registration to the to-be-segmented image and the MNI template, warping the atlas 

to the to-be-segmented image would cause errors. 

(2) Either the MNI template or AAL is from the images of „normal‟ brains. However, the 

success of atlas based segmentation methods which rely heavily on heuristic rules and a 

priori shape information can be attributed to the accuracy and reliability of the atlas. 

Therefore, using a template and atlas which are morphologically variant from the 

investigated group would cause the inherent systematic bias (i.e. the patient images will 

tend to undergo more warping than the control images). In this case, it is preferable to 

generate a study-specific template and anatomical atlas used in the particular study.  

VRS rating of the MB coronal slice has been shown to be valuable in the assessment of 

medial temporal lobe atrophy. To reduce inter-rater variability caused by different 

operators manually picking different slices to assess atrophy in a specific structure, an 

automatic method to mimic what is done in the VRS assessment of HPC is included in 

our study.  
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1.4 Thesis Contributions  
 

The goal of this research is to build robust and automated measurement methods for 

assessing atrophy of large cohorts of MRI scans from aged subjects. All regional volumes 

of interest and regional area measures on a single coronal slice of subjects‟ MRIs were 

used for cross-sectional studies of cognitive impairment subjects. Furthermore, different 

atrophy measurements were compared regarding their addition to the clinical assessments 

and ability to distinguish diagnostic groups. The main contributions of this work are the 

following:  

1. The introduction of a method of producing a new standardized stereotactic template to 

improve the accurate of atlas-based segmentation based on IBASPM (SPM5). 

2. The introduction of a customized template set specifically for our study. 

3. The introduction of methodology for automated regional area measures at MB coronal 

slice of MRI to assess the AD pathology atrophy. 

4. Cross-sectional studies of cognitive impairment using the ROI volumetric and regional 

areas measures. 
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Chapter 2  Development of a New Coordinate Template 
 

2.1 Image Registration 
 

In atlas-based segmentation, image registration procedure is performance to estimate the 

spatial transformation parameter that maps corresponding points of the to-be-segmented 

image to the coordinate template which is standardized a stereotaxic space.  Our 

development is conducted under the SPM environment. 

The image registration procedure of SPM includes two steps.  The first step is affine 

transform which is a linear approach for finding the best combination of global 

translation, rotation, and scaling factors to transform a brain into a standardized 

stereotaxic space.  The second step is a higher-order nonlinear transform for fining the 

deformation field between the to-be-segmented image and the coordinate template that 

cannot be accounted by the affine transformation in regional level (Ashburner and 

Friston, 1999). 

2.1.1 Affine Transform  

 

An affine transformation preserves the straightness of lines and planarity of surfaces, as 

well as parallelism, but changes the angles between lines.  The objective is to fit the 

object image f to a template image g.  An affine transformation from coordinates x in 

object image f to coordinates y in template image g is defined by 
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This mapping is referred as y=Mx.  M is the combination by multiplying the matrices of 

translation, rotation, zoom and shear:

                                       
 

Where,  
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Without zoom and shear, the affine transformation turns into rigid body transformation 

which is used to co-register images of the same subject together.  The general affine 

transformation parameters mi (i = 1, …, 12) in Equation 2.1 is the function of parameters 

q1 to q8, θ, ϕ and φ (θ, ϕ and φ in radians).  Usually, there are intensity difference between 

the object image f and the template image g, so an additional intensity scaling parameter 

m13 is used to estimate the intensity difference. 

In most cases, object image f and template image g have anisotropic voxels. And the 

dimensions of the voxels are also likely to differ.  This problem can be solved by 

interpolation.  However a simpler way is to affine transform the images to a Euclidian 
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space, where measures of distances are expressed in millimeters and the origin is at the 

center of the image.  For example, if object image f is of size 120×130×45, and has 

voxels that are 1.02mm×1.02mm×1.5mm, the affine transformation of image f into 

Euclidian space is defined by following matrix:  
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For template image g, a similar 4×4 matrix Mg is defined for the affine transformation of 

image g into the Euclidian space.  Therefore, affine transformation of object image f to 

template g is given by: 

  
                                          

The transformation parameters (M) are optimized by minimizing the sum of squared 

differences (σ
2
) between the object image and template images. σ is given as: 

   ∑                   

 

   

 (2.2) 

Where ei describes the difference between the object image f and the template image g at 

voxel i, and is given as below.  I is the number of voxels.  

                                  

The algorithm for searching the affine transformation parameters M used by SPM is 

similar to Gauss-Newton optimization and is as follows for iteration n:  
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Where, 

    
      

   
 

       

   
                    

    
      

   
 

            

   
                       

                

The iteration converges when the decrease of σ
2
 is negligible or the pre-determined 

number of iterations is reached  

2.1.2 Non-linear Registration  
 

A linear combination of three dimensional basis functions performed after the affine 

registration is used to estimating the nonlinear deformations. The transformation from 

coordinates x to coordinates y is given by: 
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Where 
j is the orthogonal basis function, 

ija  is the jth coefficient for ith dimension. 

Orthogonal basis functions are independent of each other and each of them contributes to 

the function definition in a certain unique way. Orthonormal basis functions can be 

viewed as unit orthogonal vectors in the function space and they satisfy: 
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where   is the complete domain. A common choice is to represent the deformation field 

using a set of orthonormal basis functions such as Fourier basis functions. Here, discrete 

cosine transform basis functions are used to represent warps in each of the directions. 

The basis function coefficient a is optimized by minimizing the sum of squared 

differences between the object image f and the template image g. The parameters are 

optimized requiring the derivatives of the function of the sum of squared differences 

between the object image f and the template image g. These can be obtained using the 

chain rule. 
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Where k = 1, 2 or 3, stands for the three dimensions. The parameters optimization 

involves iteratively computing.  

To avoid unnecessary deformations that only reduce the residual sum of squares by a tiny 

amount, regularization is introduced in the parameters optimization (Ashburner and 

Friston, 1999).  Therefore the parameter estimation problem is re-defined as below:  

))())(),,(((maxargˆ pβyxpp
ρ

 gf  (2.4) 

where, ))(),,(( yxp gf is a similarity measure, f (p,x) is the nonlinear transformation of 

object image f to template image g, p denotes all the transformation parameter, β is a 

regularization parameter and )(p is a priori information.  And the parameter estimation 

problem can be solved by maximizing a similarity measure and a priori information in a 

maximum a posteriori estimator framework.  The similarity measure is defined in 

Equation 2.2.  For this definition, the lower σ
2
, the higher  .  There are some possible 
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energy forms can be used for describing priors )(p .  Bending energy is used in the SPM 

package.  The 3D bending energy is defined as following, and it is computed using finite 

sum at grid points (Rueckert  et al., 1999). 
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2.2 Image Segmentation of Different Tissue Classes 
 

2.2.1 Distribution of Gray Matter, White Matter and Cerebrospinal 

Fluid Intensities in MRI  
 

The three types of brain tissue, i.e., gray matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF), can be classified from a T1 MRI scan. Figure 2.1 (A) – (D) 

show a slice of T1 MRI in coronal view and its GM, WM and CSF of the same slice, 

respectively. The algorithm used in the SPM for segmenting these three types of tissue is 

called Gaussian (or normal) mixture model-based clustering.  The expectation-

maximization (EM) approach, a well-established maximum likelihood algorithm, is 

employed for estimating the unknown cluster parameters (Ashburner and Friston, 1997).  

 

    
A B C D 

Figure 2.1 (A) One slice of a T1 weighted MRI in coronal view, and its gray matter (B), 

white matter (C) and cerebrospinal fluid (D) of the same slice in coronal view. 

 

The voxel intensities belonging to GM, WM or CSF can be conformed to be a 

multivariate normal distribution (Ashburner and Friston, 1997).  Figure 2.2 shows the 

intensity histograms of GM, WM and CSF of a T1 MRI.  For each multivariate normal 

distribution, it can be described by a mean, a variance matrix and the number of voxels 
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belonging to the distribution. So the entire data set (a to-be-segmented image) can be 

modeled by a mixture of these distributions.   

 

Figure 2.2 Intensity histograms for WM, GM and CSF of a randomly selected subject‟s 

T1 weighted MRI. 

 

The EM algorithm performs an iterative computation of maximum likelihood estimation 

when the observed data are incomplete.  Generally speaking, this approach is the iteration 

of “expectation” (the E step) and “maximization” (the M step).  The E step is to evaluate 

the responsibilities using the current parameter values.  The M step is to re-estimate the 

parameters using the responsibilities found in the E step. 

2.2.2 Tissue Segmentation by EM for the Mixture of Gaussian 
 

Some assumptions are made by the classification model. The to-be-segmented image is 

   
 
 , where    is the coordinate of image f, i denotes the index of voxels, from 1 to I. K 

is the known number of distinct tissue classes. Here K is three. To simply the algorithm, 

the distribution of the voxel intensities within each cluster is normal, and is described by 
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the number of voxels within the cluster (hk), the mean for that cluster (vk), and the 

variance around that mean (ck). The algorithm is described as follow. 

1. Parameters initialization 

A belonging probability (pik) for each of the I voxels being drawn from each of the 

K clusters is initially assigned. To avoid leading the EM algorithm to converge to a 

“local” optimal point, the initialization of the mixture components is modified 

slightly by adding random noise. 

2. Expectation step 

a. Compute the number of voxels belonging to each class (hk) as 

   ∑               

 

   

 

b. Calculate the mean voxel intensities for each class (vk) as  

   
∑        

  
   

  
           

c. The variance of each class (ck) is then computed as 

   
∑         

     
  

   

  
            

3. Maximization step 

a. Compute the probability density functions for the classes at each voxel: 
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)                         

b. The probabilities of cluster k for the voxel i is as: 
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                                   (2.5) 

c. The probabilities is normalized so that they integrate to 1 at each  

    
   

∑    
 
   

                      

4. Repeat 

Re-evaluate the log-likelihood as below and check its change.  

∑     ∑   

 

   

 

   

  

The algorithm converges when the change of the log-likelihood is less than a given 

threshold or the pre-determined number of iterations is reached. 

Normal Mixture Models with high likelihood can be successfully used to create soft 

clustering boundaries around data. The component distributions tend to have the high 

“peaks”.  However, image segmentation using this clustering algorithm, based on MRI 

intensities only, is very much challenged.  Examining Figure 2.2, which shows the 

intensity histograms of GM, WM and CSF, there are apparent overlaps between the class 

distributions (e.g., CSF and GM, GM and WM).  Adding additional information, such as 

the global position within the brain, can help to disambiguate the classification of 

different tissue.  The use of spatial distributions of the different tissue can be facilitated 

by the construction of the probability images in the standard space. Here, bk (k = 1, …, K) 

denotes the a priori image of class (tissue) k in the below functions.  Figure 2.3 shows 

coronal views of the a priori images of GM (A), WM (B) and CSF (C). These a priori 
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images, provided by the Montreal Neurological Institute, are derived from scans of more 

than one hundred young healthy subjects (Ashburner and Friston, 1997).  

   
A B C 

Figure 2.3 Coronal views of the a priori images of GM (A), WM (B) and CSF (C). These 

a priori images provided by the Montreal Neurological Institute are derived from scans 

of 152 young healthy subjects. 

 

To utilize the a priori information, Equation 2.5 is replaced by: 

         

    
     

∑     
  
   

 
   

                     

Where, M is the spatial affine transformation parameter matrix which has been derived in 

the image registration step.  Based on the information from the a priori probability 

images (see Figure 2.3), 
    

  
   

∑     
     

 
   

 effectively produces a weighted mean (hk) of the 

image voxels. . This weight can be regarded as the probability density function of a voxel 

from cluster k being found at location i, irrespective of how many voxels of type k there 

are in the brain (Ashburner and Friston, 1997).  This tissue segmentation algorithm can 

be more robust and accurate by including the tissue spatial a priori information for 

estimating the cluster parameters. 
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2.3 New Coordinate Template Design  
 

2.3.1 Motivation 
 

As mentioned in section 1.3, the most widely used standard MNI template (available in 

the templates directory of SPM99 and later versions) is the average of 152 normal MRI 

scans, each of which has been matched to the MNI305 space. The “averaging” process 

increases the signal to noise ratio, reduces the anatomic difference from subject to subject 

and maintains common spatial variability. This process is equivalent to a “low pass 

filter”, which enhances the “low frequency” component and decreases the “high 

frequency” component of the template in frequency domain. Since it only carries the 

common spatial variability, this template is widely used as a coordinate system for 

mapping individual object images to the same stereotaxic space. The image registration 

of the object image to the stereotaxic space in SPM5 is not the voxel-to-voxel mapping. It 

estimates less 1000 parameters. Using a high resolution image as coordinate template, the 

image registration process is unable to converge into a limited number of local minima. 

Sophisticated algorithms might have the capability, however, with time-consuming 

computation as trade-off. After the atlas-based segmentation method appears, MNI 

template also has been employed as coordinate template in the atlas-based segmentation 

procedures (Alemán-Gómez et al., 2006; Hayashi et al., 2009; Tae et al., 2008; Seixas 

F.Z., 2010). However, the MNI template is an average brain. Without the detailed 

anatomical information, no atlas can be defined from it directly. Generally, the atlas used 

is defined from a high resolution image which has been aligned to the MNI template, 

such as AAL (Tzourio-Mazoyer et al. 2002). If the atlas is not “originated” from the 

same “source” of coordinate template used in atlas-based segmentation procedures, even 
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the image registration (from the individual object MRI image to the coordinate template) 

parameters is estimated accurately, it will inevitably induce segmentation errors to 

deform the atlas to the  individual object image using those image registration 

parameters.  

AAL atlas (Tzourio-Mazoyer et al., 2002) is a widely used atlas definition in the 

automatic atlas-based segmentation procedure.  This atlas was manually delineated on a 

high resolution MNI (Montreal Neurological Institute) single subject MRI image, which 

was obtained from the MRI acquisition of a young man whose brain was scanned 27 

times using a T1-weighted gradient echo sequence (TR/TE/FA = 18 ms/10 ms/30°). Each 

acquired image was spatially normalized by using a nine-parameter linear transformation 

to the MNI305 space (the first standard stereotactic template created by MNI). To 

facilitate the following discussion, the phrase “single-subject image” will specifically 

describe this image used for AAL definition. If this single-subject image could have the 

MNI template‟s frequency information, the “origination” problem would have been 

solved. Based on this concept, following processing steps were designed.  

2.3.2 Methods  
 

Figures 2.4 and 2.5 show the intensity images (top rows) and frequency spectra (bottom 

rows) of the single-subject and the MNI template in spatial domain and frequency 

domain respectively. The following processing steps were designed to make single-

subject image have the similar frequency spectrum to the MNI template‟s. 
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A B 

Figure 2.4 (A) The MNI template in spatial domain shows “blurring” of the image. (B) 

The 3D amplitude spectrum of the MNI template after Fourier transform shows the low 

frequency component dominates the spectrum. The most of the “high frequency” 

information has been filtered out by the “averaging-smoothing” process.  

 

 

  
A B 

Figure 2.5 (A) The high resolution single-subject image shows anatomical structures 

clearly. (B) The 3D amplitude spectrum of the single-subject image after Fourier 

transform shows that both low frequency and high frequency components occupy the 

frequency domain.  

 

1) Gaussian Filter 

2

2

2
1

2

1
)( 



xx

exG


  (2.6) 

where G(x1) is a normalized 1D Gaussian kernel, and  is the standard deviation of the 

distribution (the size of  is inversely related to the cut-off frequency). 3D Gaussian filter 

is a digital version of the product of three 1D Gaussian:  
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A convolution was performed three dimensionally between the Gaussian kernel and the 

single-subject image ),,( 321 xxxI . This procedure is given by:  

),,(),,(),,( 321321321 xxxIxxxGxxxJ   (2.8) 

Where  denotes convolution, and ),,( 321 xxxJ  is the smoothed version of single-subject 

image ),,( 321 xxxI . Through this convolution process, the low frequency component can 

be increased and the high frequency component is removed from the single-subject 

image.  

2) Fourier Transformation 

Fourier transform was three-dimensionally performed on the smoothed single-subject 

image I  and MNI template image P . 

)),,((FT)),,((FT 321321 xxxPPxxxJJ FF   (2.9) 

Where FT denotes Fourier transform. 
FJ  is the 3D amplitude spectrum of J  in 

frequency domain, and 
FP  is the 3D amplitude spectrum of P  in frequency domain. 

3) Similarity Metrics 

In this step, the similarity between the 3D amplitude spectrum FJ  of the smoothed 

single-subject image and the 3D amplitude spectrum FP  of the MNI template image was 

measured. For a qualitative examination of the similarity, the metrics can either be a 

calculation over the whole images, or an estimation of specifically determined structures 
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in these two 3D amplitude spectrum images. Normalized cross-correlation and cut-off 

frequency as two similarity measurements are here.  

The cross-correlation measures the intensity difference between the images and sums the 

product, estimating the similarity of the images from this value. The normalized cross-

correlation is calculated using the following equation: 

 







22 ))()(()(

))()()((
))(,(






FFFF

FFFF

FF

JJPP

JJPP
JPNCC  (2.10) 

where FP  and FJ  are the mean magnitude values of 3D amplitude spectrum 
FJ  and 

FP  

respectively. The maximum normalized correlation coefficient between 
FJ  and 

FP  is 

defined as the optimal matching criterion. 

The cut-off frequency of 3D amplitude spectrum is defined as the radius of a sphere 

centered in the frequency domain (see Figure 2.6). The radius is chosen by specifying 

2

1
of the total power enclosed by the sphere. The total power 

FTP  of 3D amplitude 

spectrum FP  is given by:  


1 2 3

2

321 )),,((
x x x

FF xxxPTP  
(2.11) 

Where Pr  denotes the cut-off frequency of 3D amplitude spectrum FP . Jr  denotes the 

cut-off frequency of 3D amplitude spectrum FJ . The optimal matching criterion using 

cut-off frequency similarity is given by:  

2))((minarg)ˆ( 


JP rr   (2.12) 
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4) Optimization Process 

The process for searching ̂  which is used to smooth the single-subject image is 

automated by varying  as it matches the optimal criterion.  starts from 1, with 

increments of 0.1, until the amplitude spectrum 
FJ  of the smoothed single-subject image 

is most “similar” to the amplitude spectrum 
FP  of MNI template image.  

Figure 2.7 shows the new coordinate template intensity images (left) and amplitude 

spectrum (right). Figure 2.8 shows the flowchart of the described procedure. In Figure 

2.8, the normalized cross-correlation is employed for examination the similarity between 

the smoothed single-subject spectra and MNI template spectra in frequency domain. This 

similarity metrics can be replaced with cut-off frequency and the optimal matching 

criterion is given by Equation 2.10. Figure 2.9 shows that the normalized correlation 

coefficient between the spectra of the smoothed single-subject and MNI template reaches 

maximum when Sigma () equals 1.9. Without smoothing (Sigma equals 0), the 

normalized correlation coefficient is as low as 0.52. Figure 2.10 shows that the smoothed 

single-subject image has the most similar cut-off frequency to the MNI template when 

Sigma () equals 2.0.  
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Figure 2.6 Cut-off frequency r of 3D amplitude spectrum is defined as the radius of a 

sphere centered in the frequency domain. The radius is chosen by specifying 21  of the 

total power enclosed by the sphere.  

 

 

  
A B 

Figure 2.7 (A) The single-subject image appears blurring after convolution with a 

Gaussian kernel. (B) The spectra of the smoothed single-subject with =1.9 are similar to 

the spectra of the MNI template in frequency domain. 
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Figure 2.8 A schematic flow diagram for creation the new coordinate template. The 

single-subject image is smoothed by convolving the Gaussian kernel with =1. Similarity 

of the spectra of the smoothed single-subject and the MNI template is measured by 

calculating the normalized cross-correlation. The procedure stops when NCC yields the 

maximum.  
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Smooth single-subject image (I) by convolving 

with Gaussian kernel 
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Figure 2.9 Normalized cross-correlation coefficient between the spectra of the smoothed 

single-subject and MNI template reaches maximum (0.869) when Sigma () equals 1.9. 

Without smoothing (Sigma equals 0), the normalized correlation coefficient is low as 

0.52. 
 

 

 

Figure 2.10 Plot for the difference of the cut-off frequency between the smoothed single-

subject image and MNI template. Smoothed single-subject image has the most similar 

cut-off frequency with MNI template when Sigma () equals 2.0. 
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2.4 ROI Segment Procedure 
 

2.4.1 Manual Tracing  
 

Manual segmentation by human expert is still regarded as the “gold standard”. The 

boundary definition of the ROIs followed the published protocol described by Tzourio-

Mazoyer et al. (2002) which was applied on AAL.  Manual tracing of a ROI on a T1-

weighted MRI image was performed on each slice of coronal plane from anterior-to-

posterior and corrected in the sagittal plane. The performance was done by using publicly 

available software MRIcroN (http://www.cabiatl.com/mricro/mricron/).  

2.4.2 Automated Atlas-based Segment Procedure 
 

Volumetric automatic segmentation of a to-be-segmented T1-weighted MRI scan 

includes following steps. 1) MRIs were segmented into gray matter, white matter and 

cerebral spinal fluid (see Figure 2.11);  2) MRI scans were spatially registered to 

coordinate templates using affine transformations for approximate registration, and 

nonlinear transformation for fine registration to obtain the deformation field (see Figure 

2.12);  3) An automatic atlas was deformed to the to-be-segmented T1-weighted MRI and 

each structure encoded with an unique intensity value (see Figure 2.13); 4) Volume 

information for each structure was derived by summing the number of voxels assigned 

the same coding intensity value and then multiplying by the voxel size (see Figure 2.13);  

5) Total intracranial volume (TIV) was calculated as the summation of gray matter, white 

matter, and cerebrospinal fluid volumes, and TIV was used to normalize each brain 

structure‟s volume. The above procedures utilized the modified functions in SPM5 and 

IBASPM (Alemán-Gómez et al., 2006) 
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Figure 2.11 T1 weighted MRI segmentation of three tissues: gray matter, white matter 

and cerebral spinal fluid 

 

 

 

 

 

Figure 2.12 To-be-segmented T1 weighted MIR registration to the coordinate template. 
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Figure 2.13 Anatomic atlas is warped to the to-be-segmented image and generates the 

automated regional segmented image for calculating the volume of the ROIs. 

 

2.5 Validation 
 

Since the single-subject image is the data source where AAL comes from, the new 

coordinate template has been validated on the single-subject image itself first.  

2.5.1 Correspondence of HPC and AMG Volumes Using Manual and 

Automated Segmentation 

 

Though AAL includes 116 regions, here we focus the validations on hippocampus and 

amygdale, since these two MTL substructures have been reported to be strongly 

correlated to the severity of AD pathology.  In this validations the high resolution single-

subject image was used as the “to-be-segmented image”. Volumetric segmentation by 

using the MNI template or the new coordinate template of the hippocampus (HPC) and 

Grey Matter 

Anatomical automatic labeling (AAL) 

 AND 

Segment Image 

Transformation 
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amygdale (AMG) were performed. The automated atlas-based segment procedures were 

described in section 2.4.2. Segment volumes of HPC and AMG were superimposed to the 

high resolution single-subject image. One coronal slice was shown in Figure 2.14. The 

segment volumes of HPC and AMG were in red. HPCs were shown in the left column, 

whereas AMGs were shown in the right column. Atlas-based automated segments using 

new coordinate template were shown in the top row. Segments using MNI template were 

shown in the bottom row.  

As is evident (visually checking slice by slice), the automated delineation of the 

hippocampus and amygdala on serial coronal slices was better matched the original 

image by using the new coordinate template than the MNI template.  

N
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p
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M
N

I tem
p
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 HPC AMG 

Figure 2.14 Comparison automated segments of hippocampus (HPC) and amygdale 

(AMG) using new coordinate template and MNI template. Automated segments (in red) 

are superimposed on the subject‟s MRI. HPCs are shown in left column, whereas AMGs 

are shown in right column. Atlas-based automated segments using new coordinate 

template are shown top row. Segments using MNI template are shown bottom row.  
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To further validate the new coordinate template, several quantitative measures were used. 

In the formulae presented below, the segmentation result is denoted as A and the gold 

standard is denoted as G (see Figure 2.15(A)). The gold standards are the manual 

segmentations of hippocampus and amygdala from the high resolution single-subject MR 

image. The manual segmentation procedures have been described in section 2.4.1. 

Volume Overlap 

Similarity indices (D) (Dice, 1945) and overlap ratios (J) (Jaccard, 1907) are two widely 

used spatial overlap agreement measures. Similarity index is defined as the intersection 

divided by the mean volume of the two volumes, 

, 2.10 

where Ai and Gi are binary values for each voxel, i.e., 1 if the voxel is within the volume 

of interest, 0 if the voxel is outside the volume of interest,  stands for logic “AND” 

operation. Similarity indices range between 0 (no overlap) and 1 (perfect agreement). 

Overlap ratio is the intersection over the union: 

 2.11 

where  stands for logic “OR” operation. Overlap ratio can be derived from similarity 

indices.  
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Figure 2.15 (A) A is for the automatic segment and B is for the gold standard. (B) 

. (C). . (D)  (E) . 
 

False positive (FP) and false negative (FN) errors, which are two widely used spatial 

overlap disagreement measures, are used for evaluating how much over-segmentation or 

under-segmentation. False positive (FP) error for a given volume is the measure of how 

much of the volume outside volume of interest is incorrectly assigned to the volume‟s 

label. It is computed as the volume of a source region outside the corresponding target 

region divided by the volume of the source region (Klein et al., 2009): 

where  is logic “NOT” operation on Gi, i.e., 0 if Gi is 1 and 1 if Gi is 0. FP ranges from 

0 (perfect overlap) to 1 (no overlap). A false negative error for a given region is the 

measure of how much of that region is incorrectly labeled. It is computed as the volume 

of a target region outside the corresponding source region divided by the volume of the 

target region (Klein et al., 2009): 

 2.13 

where  is logic “NOT” operation on Ai, i.e., 0 if Ai is 1 and 1 if Ai is 0. FN ranges from 

0 (perfect overlap) to 1 (no overlap). 
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Volume Similarity 

Volume similarity coefficient, VS, is defined as the ratio of the absolute difference 

between the segmented volume Va, obtained through the MNI template and the new 

single subject template, and the manual segmented volume Vg (gold standard) to the gold 

standard volume Vg.  Although this measure does not reflect registration accuracy, it is a 

conventional measure included for retrospective evaluation of prior studies. VS is equal 

to 0, if no difference between Va and Vg (perfect overlap). 

 2.14 

All quality measures are listed in Table 2.1. Segmentation of hippocampus and amygdala 

on the single-subject image, using the new coordinate template yielded better results than 

the MNI template in all quantitative volumetric measures. This validation indicates that 

even the single-subject image from which the AAL atlas was defined cannot be perfectly 

segmented by the same AAL atlas. 

Table 2.1 Segmentation quality indices for the new coordinate template and MNI 

template 

 ROI D J FP FN VS 

New coordinate 

template 

Left HPC 

Right HPC 

0.969 

0.974 

0.973 

0.972 

0.048 

0.037 

0.015 

0.015 

0.033 

0.022 

Left AMG 

Right AMG 

0.986 

0.986 

0.939 

0.949 

0.026 

0.027 

0.001 

0.001 

0.025 

0.027 

MNI template 

Left HPC 

Right HPC 

0.617 

0.728 

0.446 

0.572 

0.344 

0.246 

0.421 

0.298 

0.074 

0.050 

Left AMG 

Right AMG 

0.601 

0.635 

0.429 

0.466 

0.393 

0.381 

0.406 

0.348 

0.013 

0.033 

Regional segmentation of hippocampus and amygdala on single-subject image using the 

new coordinate template yielded better results than the MNI template in all quantitative 

volumetric measures, overlap ratio (D), similarity indices (J) false positive (FP), false 

negative (FN) and volume similarity coefficient (VS). HPC = hippocampus; AMG = 

amygdale. 
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2.5.2 Similarity Comparison using MNI Template and New 

Coordinate Template  
 

Our hypothesis was that increased accuracy in deforming the high resolution single-

subject image from which the AAL was derived to the to-be-segmented image, would 

lead to increased accuracy in warping the anatomic atlas labels (AAL) to the appropriate 

anatomic locations of the to-be-segmented image. 

The deformed high resolution single-subject image was obtained by an inverse 

transformation to the to-be-segmented image space using the image registration 

parameters estimated in the spatial transformation step. The accuracy by using the 

deformed high resolution single-subject image was evaluated by the similarity between 

this deformed single-subject image and the to-be-segmented image. Normalized cross-

correlation and sum of squared difference were employed to assess the image similarity. 

The cross-correlation is given by: 
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Where x is the coordinates of the single-subject image. S  is the mean intensity of the to-

be-segmented image. IS  is the mean intensity of the inversely transformed single-subject 

image in to-be-segmented image space.  

The sum of squared difference is given by: 
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In Equation 2.15 and Equation 2.16,  (see Figure 2.16) is a mask for defining the 

similarity measure region only inside of the skull, so as to avoid mis-evaluating outside 

of skull. T is the image registration matrix estimated from the spatial transformation step. 

The matrix T using the new coordinate template and the matrix T using MNI template 

were applied in Equation 2.15 and Equation 2.16. Both similarity comparisons were 

performed on 241 MR images which were chosen by convenience from the Wien Center 

for Alzheimer‟s Diseases and Memory Disorders at Mount Sinai Medical Center (Miami 

Beach, Florida) (see section 5.2).  Results plotted in Figures 2.17 and Figure 2.18 show 

that the inversely transformed single-subject image was more correlated to the to-be-

segmented image (see Figure 2.17) and had a lower sum of squared difference with to the 

to-be-segmented image (see Figure 2.17). Therefore, this image matched the to-be-

segmented image better by using the new coordinate template than the MNI template, 

with the exception of two subjects. 

 

Figure 2.16 Mask   which only includes the part inside of skull is used to define the 

similarity measure region. 
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Figure 2.17 Similarity comparisons on 241 MR images using normalized cross-

correlation.  

 

 

 

  

Figure 2.18 Similarity comparisons on 241 MR images using sum of squared difference. 
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Chapter 3  Development of a Custom Elderly Template 

Set – Template E Set 
 

3.1 Motivation 
 

Various studies show that as adults get older, their brains become smaller and the sulci 

visibly increase in size and depth. Autopsy studies confirm that brain weight in both men 

and women declines by at least 10% between the ages of 25 and 75+ years. In a 

postmortem study, Miller et al. (1980) found that brain volume decreases at the rate of 

about 2% per decade following the age of 50. MRI based studies also show that the rate 

of brain atrophy accelerates in older age groups, but there appears to be no sex 

differences in brain aging patterns (Allen et. al., 2005). 

It has been confirmed by previous studies (Miller et al., 1980; Allen et. al., 2005), that 

there exist significant anatomic differences between young adult brains and aged adult 

brain If the anatomic labeling used in the atlas-based segmentation is defined on a young 

adult brain, the anatomic differences will induce measurement errors in the aged brains. 

For the volumetric studies on older subjects, it is important to establish an anatomic 

template specifically suited for the elderly who are being studied.  

Many studies have confirmed that the severity of atrophy medial temporal lobe 

structures, such as hippocampus and amygdale, strongly correlate to the severity of AD 

pathology and to the severity of cognitive and functional impairment as well as to the 

subsequent rate of progression (de Jong  et al., 2008; Firbank et al., 2008; Colliot, et al., 

2008; Mori et al., 1997; Ishii et al., 2006; Devanand et al., 2008; Teipel et al., 2006; 

Müller et al., 2005 Babiloni et al., 2009 Chao et al., 2010 Leung et al., 2010). In addition 

to confirming the well known presence of decreased grey matter in the MTL regions, this 
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study will investigate the phenomenon in the other areas, such as deep brain structure 

putamen and thalamus. Questions are whether these regions suffer degeneration in 

Alzheimer‟s disease, and whether such degeneration is associated with cognitive 

deterioration. This study will also examine the ventricles to confirm that dilatation of 

ventricle is a feature of patients with AD or MCI (Jack et al., 2004; Brewer et al., 2009). 

Altogether, we will create an atlas of 26 regions, including the insula, hippocampus 

parahippocampal, amygdale, fusiform, precuneus, putamen, thalamus, superior temporal 

(temporal_Sup), superior temporal pole (temporal_Pole_Sup), middle temporal 

(temporal_Mid), inferior temporal (temporal_Inf) and ventricle on both hemispheres. 

Some of the regions are shown in Figure 3.1. 

 

Figure 3.1 Regions will be included in custom elderly atlas. (http://www.fmrib.ox.ac.uk

/fslcourse/) 
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3.2 Creation of Elderly Custom Anatomical Atlas 
 

In order to establish the proposal template, we designed an automated procedure. The 

customized elderly template was created using the following steps. 

1) A good quality MRI scan of a 70 years old, female with no cognitive impairment was 

chosen as a representative brain (Figure 3.2 (A)). 

2) The anatomic template was obtained by normalizing the chosen image to MNI space 

using a 12-parameter affine transformation and nonlinear transformation within 

SPM5 (http://www.fil.ion.ucl.ac.uk/spm/software/spm5/), and then reslicing to a 

voxel size of 1x1x1mm
3
. (Figure 3.2 (B)). This processed image was used as 

anatomic template for defining our custom anatomic labeling in the following step.  

3) The automated segments of ROI on the left and right sides of the anatomic template 

(Figure 3.2 (C)) were obtained using the “Atlasing” function in IBASPM.  

4) The automated segments of 26 regions were examined in the coronal plane slice by 

slice from anterior-to-posterior and manually edited using publicly available software 

MRIcroN (http://www.cabiatl.com/mricro/mricron/). Later, each region (left and 

right) was coded with a specific intensity to obtain a 3D image with custom anatomic 

labeling (Figure 3.2 (D)). This manual editing of 26 regions followed the published 

protocol described by Tzourio-Mazoyer et al. (2002). However, we defined the 

anterior-to-posterior extent of the parahippocampal and fusiform region between the 

anterior commissure and the posterior commissure from the coronal slices for this 

study, whereas the AAL parahippocampal and fusiform regions extend further 
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posteriorly (Tzourio-Mazoyer et al., 2002), including regions that are only minimally 

affected by AD pathology. 

5) The normalized image (Figure 3.2 (B)) was smoothed to a lower resolution (σ = 1.9) 

so as to generate the custom coordinate template (Figure 3.2 (E)) 

     

A B C D E 

Figure 3.2 (A) A 70-year-old female subject‟s MRI scan was chosen for generating our 

custom elderly template set. (B) Anatomic template which is the chosen image 

normalized to MNI space. (C) Anatomic template with superimposed automated regional 

segmentation of the hippocampus (in red), parahippocampal gyrus (in violet) and 

amygdala (in green). (D) Anatomic template superimposed with customized 

segmentation of the hippocampus (in red), parahippocampal gyrus (in violet) and 

amygdala (in green). (E) Customized stereotactic template. 

 

Figure 3.3 shows the flowchart of creating a customized elderly template set. It consists 

of a coordinate template and an anatomical atlas labeling which matches closely the 

population under our investigation. We name it Template Set E. 

The customized elderly anatomical atlas was superimposed on the anatomic template 

which was a representative subject image spatial normalized to MNI space. Figure 3.4 

shows coronal view of the custom elderly atlas superimposed on the anatomic template. 

Figure 3.5 is the horizontal view of the custom elderly atlas superimposed on the 

anatomic template. Figure 3.6 is the 3D rendering of the anatomic atlas. The customized 

elderly anatomical atlas includes 26 regions. 
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Figure 3.3 Flowchart of creating a customized elderly template set. It consists of a 

coordinate template and an anatomical atlas labeling which matches more closely the 

population under our investigation.  
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Figure 3.4 Coronal view of the custom elderly atlas superimposed on the anatomic 

template.  
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Figure 3.5 Horizontal view of the custom elderly atlas superimposed on the anatomic 

template.  
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Figure 3.6 3D rendering of the anatomic atlas.  
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3.3 Creation of Elderly Custom Tissue Class priors 
 

The MNI a priori probability images of GM, WM and CSF (see Figure 2.3) are derived 

from the T1-weighted images of 152 healthy subjects, of which 57% were male, 90% 

were right handed and with a mean age of 25 years. However, the subjects enrolled in our 

study are over 65 years old. Previous studies have confirmed that there are significant 

anatomic differences between young adult brains and aged adult brains. To avoid induce 

bias errors in the tissue segmentation procedure by using the MNI a priori tissue images 

from young subjects, it is important to create the custom GM, WM and CSF priors 

specifically suited for the elderly who are being studied.  

The procedures used for construction of the custom three tissue priors are depicted 

schematically in Figure 3.7 and proceeds as follows:  

1) Ten health subject‟s MRI scans are spatial normalized to the new coordinate template 

which is created in chapter 2, and then re-slicing to a voxel size of 1x1x1mm
3
;  

2) Segment the re-sliced spatial normalized images to GM, WM and CSF using the MNI 

priors;  

3) Binary these GM, WM and CSF images;  

4) Average the binary GM, WM, and CSF images respectively;  

5) Apply a 6-mm FWHM Gaussian smoothing kernel to the averaged images to obtain 

the custom GM, WM, and CSF priors. 

The customized GM, WM and CSF priors images are shown in Figure 3.8 in coronal 

views. 
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Figure 3.7 Flowchart of creating a customized GM, WM and CSF priors. 

 

   
A B C 

Figure 3.8 Coronal views of the customized GM (A), WM (B) and CSF (C) priors.  
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Chapter 4  Development of an Automated Area 

Measure on a Single Coronal Slice  
 

4.1 Visual Rating System 
 

Studies have shown that the neuropathology of AD begins in the medial temporal lobe 

(Apostolova et al., 2007; Mosconi et al., 2007). With the use of high-resolution 

quantitative MRI techniques, it is possible to directly visualize the hippocampus and 

other critical MTL structure in substantial cytoarchitectonic detail (Frisoni et al., 2003). 

Visual rating system (VRS) developed in the Wien Center for Alzheimer‟s Diseases and 

Memory Disorders at Mount Sinai Medical Center (Miami Beach, Florida) to standardize 

ratings of atrophy of individual structures of interest (Urs, 2006; Duara et al., 2008, Urs 

et al., 2009) is a JAVA application. It is user-friendly, easily operated on a PC or 

radiology console, and does not require special technical support. Ratings of atrophy are 

given based on 1.5 mm or less thick coronal MRI slices that were reconstructed in the 

coronal plane perpendicular to the anterior commissure-posterior commissure (AC-PC) 

line. Ten coronal slices are selected using easily identifiable landmarks for rating of 

various brain regions. Figure 4.1 shows the interface of VRS. Figure 4.2 shows the high 

resolution single-subject MR images in standard MNI space to show the locations of five 

cornel slices at sagittal view image (red lines in left image), and the five coronal slices 

pCC (Post border of Corpus Callosum), PC (Posterior Commissure), MB (Mammillary 

Bodies), AC (Anterior Commissure) and aCC (Anterior border of Corpus Callosum) are 

showing on right side from top to bottom.  

VRS ratings are based on a five point scale, with “0” signifying no atrophy, and “4” 

signifying the most severe atrophy. A library of reference images that define the 
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anatomical boundaries of each brain structure and depict different levels of atrophy are 

provided from a drop-down menu in the system interface.  This facilitates a direct 

comparison of each structure on the subject‟s MRI. VRS enables digital entry of atrophy 

ratings that are automatically saved to an Excel file.  

 

 

Figure 4.1 VRS interface. Window in left side is for inputting the rate of atrophy of brain 

structure that can be automatically saved to an Excel file. Window in right side is for 

displaying the reference images that define the anatomical boundaries of each brain 

structure and depicts different levels of atrophy. 
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Figure 4.2 The high resolution single-subject MR images in standard MNI space are 

employed here to show the locations of pCC, PC, MB, AC and aCC coronal slices of 

VRS (see the red lines on the sagittal brain view image). The pCC, PC, MB, AC and aCC 

coronal slices are shown on right from top to bottom. pCC = Post border of Corpus 

Callosum; PC= Posterior Commissure; MB = Mammillary Bodies; AC= Anterior 

Commissure; aCC= Anterior border of Corpus Callosum. The AC-PC line (see the green 

lines at sagittal brain view image) goes from the superior surface of the anterior 

commissure to the center of the posterior commissure, according to the Talairach Atlas 

rules. 
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Atrophy first appears in the medial temporal lobe structures in AD patients. Specifically, 

the earliest pathological changes of AD occur at the Cornu Ammonis (CA) areas CA1 

sector of the adjacent head of the hippocampus (Leverenz et al., 1998), which can be 

visualized on the coronal MB slice that intersects the mammillary bodies (Figure 4.3). In 

contrast, volumetric analysis focuses on the entire hippocampal structure, averaging the 

most anterior aspects with the less affected middle and posterior regions of the HPC. In 

primates, lesions in the entorhinal cortices and CA1 sector of the HPC cause the most 

severe impairment in memory test performance (Zola-Morgan et al., 1989; 1993). Several 

studies using MRI have shown that atrophies in the entorhinal cortices and inferior 

temporal cortex, which is immediately lateral to the perirhinal cortices, in addition to 

HPC atrophy, are among the earliest structural changes that distinguish mildly impaired 

AD subjects from cognitively normal elderly individuals (Desikan et al., 2009; Krasuski 

et al., 1998). 

 

Figure 4.3 Coronal MB slice used for assessment of medial temporal lobe atrophy. CA = 

Cornu Ammonis; MB = mammillary bodies; ERC = entorhinal cortices.  

 

Since VRS ratings of the MB coronal slice have been shown to be valuable in the 

assessment of medial temporal lobe atrophy, we aim to develop an automatic method to 

mimic what is done in the VRS assessment of HPC. The automatic method would 

CA1 
MB 
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initially select the MB slice and then assign a VRS rating to the HPC. Automatic 

assessment of the atrophy of HPC on MB should reduce inter-rater variability caused by 

(1) operators who may not agree on which MB slice to select and (2) variance among 

human raters in assigning atrophy levels. 

 

4.2 Methods 
 

The definition of automated hippocampal area measurement on a single coronal slice is 

crucial.  When neuroimaging experts evaluate hippocampal atrophy, they take into 

account what a normal hippocampus should look like. Also, experts are aware of nearby 

adjacent changes (e.g. variation of CSF) resulting from atrophy. Further, the size of the 

brain is different from individual to individual, and so is the area of the hippocampus, 

such as the area inside of the red boundaries in Figure 4.4 on a single coronal slice. It is 

noticed that there is almost no hippocampal temporal horn the area inside of the green 

boundaries (Figure 4.4.) in the NCI brain. However, there is a usually a large increase in 

temporal horn size during the transition from MCI than NCI. The increase of the 

hippocampus temporal horn and the decrease of the hippocampus reinforce the evidence 

of accelerated MTL atrophy. Therefore, we define a novel ratio RHPA (ratio of 

hippocampal area) as the measurement, 

     
  

                  
 (4.1) 

Where, HP is the number of pixels within the hippocampus (Figure 4.4 Area inside of the 

red boundaries), and HP_TemporalHorn. The area inside of the green boundaries in 
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Figure 4.4 is the number of pixels within the anterior temporal horn of the lateral 

ventricle, which includes CSF. 

Figure 4.4 Coronal MRI scan (MB slice) of subjects, showing the anatomical boundaries 

used in RHPA in the right hemisphere for the hippocampus (red) and hippocampus 

temporal horn (green). (A) NCI; (B) MCI, and (C) AD.  

 

A method was developed to locate the coronal MB slice of a subject‟s MRI scan 

automatically. The coronal MB slice is where the mammillary bodies (Figure 4.3. and 

Figure 4.5.) present and are bigger than in adjacent coronal slices.  The coordinates 

),,( 321 yyy  of the mammillary bodies in coordinate template are known and they can be 

converted to the individual subject‟s MRI space based on the spatial normalization 

parameters (T) (see Figure 4.6).  

),,(),,( 321321 yyyTxxx   (4.2) 

where, ),,( 321 xxx  are the coordinates of the mammillary bodies in the individual 

subject‟s MRI space. The mammillary bodies, which are transformed from the coordinate 

space red spots in Figure 4.6 left side, will present on several adjacent coronal slices in 

Figure 4.6 right side. The MB slice is selected the one with the biggest mammillary 

bodies area. The equation is given by: 

   
A B C 
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))( bodies mammillary ofarea (maxarg)ˆ( xx
x

  (4.3) 

 

Figure 4.5 Mammillary bodies (red spots) on anatomic template. Fragment of sagittal 

(left column), coronal (center column), and axial (right column). 

 

 

 

Figure 4.6 Mammillary bodies (red spots) on anatomic template transformed from 

coodinate space to individual subject‟s MRI space are present on several adjacent coronal 

slices. The MB slice is selected the one with biggest mammillary bodies area. 

 

4.3 Results of Automated Choosing MB Slice 
 

Figure 4.7 shows the results of automatically choosing the MB slice on 241 subjects 

which were chosen by convenience from the Wien Center for Alzheimer‟s Diseases and 

Memory Disorders at Mount Sinai Medical Center (Miami Beach, Florida) (see section 

5.2).  Altogether, in 102 cases the automatic method chose the same slice as the expert 
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human operator and in 91 cases there was a difference of one slice. A difference of one 

slice may be tolerable, because the thickness of the subjects‟ MRI scan is 1.5 mm or less. 

A one slice error will not cause large differences in the measurement of RHPA. Even 

trained raters will not always agree on what is the MB slice. Nevertheless, there were 48 

cases which were off by two slices or more. These cases need to be improved.  

Figure 4.7 The results of automatically choosing MB Slice on 241 subjects. The 

automatic method chooses the same slice as the expert human operator for 102 cases. 

And there is one slice difference for 91 cases (13 cases are anterior, 78 cases are posterior 

to the one chose by the expert human operator). In the rest cases, there are more than two 

slices off the one that is chosen by the expert human operator.  
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Chapter 5  Clinical Application of Cognitive 

Impairment 
 

5.1 Materials and Methods 
 

The atlas-based automated segmentation of ROIs and area measurements on a single 

coronal slice have been applied to the cross-sectional studies of a large cohort of clinical 

cognitive impairment subjects with NCI, naMCI, aMCI, and early AD. The methods were 

tested and validated by the following ways: 

1) Atlas-based segmentation on a randomly selected older subject was compared using 

three template sets: MNI template set (consists of MNI coordinate template and AAL 

anatomical atlas), template set S (consists of the new coordinate template and AAL 

anatomical atlas) and template set E (consists of the customized elderly coordinate 

template and customized elderly anatomical atlas). The correspondence of hippocampus 

and amygdala volume with manual segmentation was used for validation. 

2) Atlas-based segmentation using three template sets (MNI template, template set S and 

template set E) was performed on 241 subjects. The correlation of regional volumes with 

the cognitive test MMSE and the clinical dementia rating was used to compare the 

performance of templates.  The ability of the templates to distinguish diagnostic groups 

was also used as a metric of validation.  

3) The automated area measurements on MB slice were compared with VRS ratings from 

the same slice on a total of 241 subjects. Also, the performance of these automated area 

measurements were compared with volumetric measurement using template set E. 

4) In a subset of 80 subjects, the performance of these atlas-based segmentations using 

three template sets was compared with Neuroquant
TM

 (CorTechs Labs Inc, La Jolla, CA). 
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This is a commercial software product that provides full volume segmentation of 10 

subcortical brain regions in each hemisphere. 

Among the experiments mentioned above, the customized GM, WM and CSF priors is 

used in the procedure of segmentation three brain tissues when applying the template set 

E in atlas-based segmentation. 

Because brain size differs from one individual to another, the region of interest volume is 

normalized before conducting statistical analyses. Each region of interest volume is 

adjusted to the total intracranial volume, which is the sum volume of the gray matter, 

white matter, and cerebrospinal fluid. 

5.2 Subjects and MR Acquisition 
 

Total of 241 male and female subjects, 65 years of age or older, were chosen by 

convenience from the Wien Center for Alzheimer‟s Diseases and Memory Disorders at 

Mount Sinai Medical Center (Miami Beach, Florida). The study was approved by the 

Mount Sinai Medical Center Institutional Review Board. All subjects and/or a legal 

representative signed informed consent. All subjects were evaluated with a full battery of 

neuropsychological tests and a neurological evaluation, which included: 1) Mini-Mental 

State Examination (MMSE) (Folstein et al., 1975) (MMSE; an MMSE score of 20 or 

greater was required to enter this study); 2) a neuropsychological test battery 

(Loewenstein et al., 2000), following the National Alzheimer‟s Coordinating Center 

(NACC) protocol (http://www.alz.washington.-edu/), and Three Trial Fuld Object 

Memory Evaluation (Fuld et al., 1981), Hopkins Verbal Learning Test (Lacritz et al., 

2001); and 3) an underwent brain MR imaging. The demographics and clinical 

characteristics of subjects are displayed in Table 5.1. Group comparisons of means of 
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age, MMSE Score and CDR-sb were examined using one-way analysis of variance 

(ANOVA). Scheffe‟ post-hoc procedure was used to examine differences between means. 

Dichotomous variables gender was analyzed using χ
2
 tests (see superscripts in Table 5.1). 

Statistical analyses were implemented in SPSS 17.0 for Windows software (SPSS Inc, 

Chicago, IL). 

 

Table 5.1 Demographic variables of diagnostic groups (N=241). 

Diagnostic Group 
NCI 

(N=103) 

naMCI 

(N=24) 

aMCI 

(N=68) 

AD 

(N=46) 
F-Value 

Age Mean 

(SD) 

70.8
a
 

(5.3) 

75.1
b
 

(6.6) 

76.8
b
 

(5.8) 

79.1
b
 

(7.1) 
26.3* 

Gender 

(% Female) 
75.7% 45.8% 51.4% 58.7% 

15.4*(χ2

) 

MMSE Score Mean 

(SD) 

29.1
a
 

(1.0) 

25.6
b
 

(3.1) 

26.2
b
 

(2.2) 

22.3
c
 

(3.3) 
107.7* 

CDR-sb Mean 

(SD) 

0.60
a
 

(0.56) 

2.09
b
 

(1.18) 

2.50
b
 

(1.74) 

5.30
c
 

(2.63) 
110.0* 

NCI= No Cognitive Impairment; naMCI=Non-Amnestic MCI, aMCI=Amnestic MCI. 

Note: *p<.001; Means with different alphabetic superscripts are statistically significant at 

p<.05 by the Scheffe‟ procedure. MMSE= Mini-Mental Status Examination; CDR-sb= 

Clinical Dementia Rating - sum of boxes 

 

The cognitive and etiological diagnoses were made by consensus conference. The 

diagnosis of probable AD satisfied the NINCDS-ADRDA criteria for Alzheimer‟s 

disease (McKhann et al., 1984). The diagnosis of amnestic MCI (aMCI) satisfied the 

Petersen criteria (Petersen et al., 1999). The diagnosis of no cognitive impairment (NCI) 

required that informants reported “no significant decline in cognition or functional 

ability,” and no cognitive test scores were 1.5 SD or more, below the age and education 

corrected means. The non-amnestic MCI (naMCI) diagnosis required that all memory test 

scores were higher than 1.5 SD below education-corrected normative values, but one or 

more non-memory test scores were 1.5 SD or more below normal values. 
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The subjects‟ MRI brain scans were obtained on a 1.5 Tesla MRI machine using: a) 

proprietary 3-D MPRAGE (Siemens), or 3-D SPGR (General Electric) sequences to 

acquire contiguous coronal slices that were 1.5 mm or less in thickness. 3-D MPRAGE 

sequence scans were reconstructed in the coronal plane perpendicular to the AC-PC line. 

Fluid Attenuated Inversion Recovery (FLAIR) sequences were used to obtain axial slices. 

FLAIR sequences were as follows: TR/TE (ms) = 9000/109; T1 = 2500ms; flip angle = 

150degrees; matrix = 144  256; FOV = 230mm; phase FOV = 75%; 20 slices from top 

of skull to magnum foramen; 5.5mm slices; slice interval 1.9mm; BW = 130 Hz/pixel; 

phase direction = right to left; acquisition time = 2 min 44 sec. 

5.3 Experiment 1: Correspondence of HPC and AMG Volumes 

Using Manual Segmentation and Atlas–Based Automated 

Segmentation  
 

An 89-year-old male subject‟s MRI scan was randomly chosen to compare the 

correspondence of the manually delineated hippocampal (HPC) and amygdala (AMG) 

volume to automated segmentation using three template sets: MNI template set, template 

S set and template E set.  

The automated segments were superimposed on the subject‟s MRI scan (see Figure 5.1). 

Hippocampus is in red and amygdala is in blue. It can be seen by visual inspection that 

segmentation of the hippocampus and amygdala using the MNI template set results in 

large errors of anatomical definition, with the hippocampus and amygdale being 

displaced anteriorly and superiorly in comparison to placement using the template S set 

and template E set. 
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Next, several widely used quantitative measures for volume comparisons (the Dice 

similarity index [D]; False positive error [FP]; False negative error [FN]; Volume 

similarity coefficient [VS]) were employed to compare the automatic segmentation with 

the gold standard manual segmentations (Table 5.2). Comparisons of D, FP, FN and VS 

values for HPC and AMG volumes cross the three template sets were listed in Table 5.2.  

With few exceptions, the largest errors were found using the MNI template set and the 

smallest errors were found with template E set; Template S set yielded results that were 

intermediate between the MNI template and template E set. 

 Sagittal plane Coronal plane Transverse plane 

MNI 

Template 

set 

   

Template 

S 

set 

   

Template 

E 

set 

   

Figure 5.1 An 89-year-old male subject‟s MRI scan was randomly picked to assess the 

correspondence of the manually delineated hippocampus and amygdala volume to 

automated segmentation using MNI Template set, Template S set and Template E set. 

The automated segments were superimposed on the subject‟s MRI scan. Hippocampus is 
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in red, and amygdala is in blue. Visually, the automated delineation of the hippocampus 

and amygdala using Template S set and Template E set were better than MNI Template 

set. 

 

Table 5.2 Segmentation quality indices for the three Template Sets 

Template ROI D FP FN VS 

MNI 

Template 

Set 

Left HPC 0.51 0.42 0.56 0.13 

Right HPC 0.35 0.54 0.75 0.19 

Left AMG 0.61 0.24 0.53 0.25 

Right AMG 0.54 0.42 0.49 0.06 

Template S 

Set 

Left HPC 0.77 0.20 0.25 0.05 

Right HPC 0.73 0.22 0.32 0.10 

Left AMG 0.84 0.11 0.20 0.09 

Right AMG 0.81 0.13 0.25 0.11 

Template E 

Set 

 

Left HPC 0.80 0.10 0.19 0.02 

Right HPC 0.73 0.27 0.27 0.01 

Left AMG 0.93 0.10 0.04 0.06 

Right AMG 0.93 0.10 0.04 0.06 

ROI = Region of Interest; HPC = Hippocampus; AMG= Amygdala; D= Overlap Ratio; 

FP = False Positive Ratio; FN = False Negative Ratio; VS =Volume Similarity Index 

Coefficient; 

 

5.4 Experiment 2: Cross-sectional Studies on 241 Subjects - 

Volumetric Analysis 
 

In this experiment, three template sets were applied to the automated segmentations of 

three tissues and 24 brain regions (two more regions: left ventricle and right ventricle for 

template set E) on a large cohort of subjects with NCI, naMCI, early aMCI, and AD. The 

demographic variables of subjects are listed in Table 5.1. Pearson Correlation 

Coefficients were employed to compare volumetric measures to indices of memory and 

severity of clinical impairment. Comparison of the three methods to classify subjects in 

different diagnostic groups was conducted by comparison of the area under the receiver 

operating curve (ROC). This (ROC) analyses was conducted to determine the extent to 
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which volumetric measures could distinguish between NCI,naMCI, aMCI and AD 

groups. 

5.4.1 Comparisons of Normalized Volumes by Diagnostic Groups  
 

Normalized volumes (mean±SD) for the four groups using template set E set, template S 

set and MNI template set are shown Table 5.3, Table 5.4 and Table 5.5 respectively. 

Group differences were examined using ANOVA. Post-hoc tests of means by Scheffe‟ 

analyzed the effect of four diagnostic groups (NCI, naMCI, MCI and AD) on all these 

measurements. see superscripts in Table 5.3, Table 5.4 and Table 5.5. Statistical analyses 

were implemented in SPSS 17.0 for Windows software (SPSS Inc, Chicago, IL).  

Data shown in Table 5.4 and Table 5.5 include three tissue types and 24 regions. Those 

24 regions are all located in the grey matter and are predefined in AAL. Data shown in 

Table 5.3 derived from the template S set includes two more regions: left and right 

ventricles which were included in atlas E, but not in AAL.  

In general, normalized volumes using template E show a greater difference of the means 

between diagnostic groups (based on highest F value), with few exceptions 

(ParaHippocampal and Thalamus). Template S set yielded results that were intermediate 

between the MNI template and template E set. 

The data derived from template E set and from template S set both show that the “No 

Cognitive Impairment” (NCI) group has the largest mean hippocampus and amygdala 

volumes on both sides, and the dementia group has the smallest mean hippocampus and 

amygdala volumes on both sides. This demonstrates the effect of the severity of disease 

(presumably AD) on the degree of atrophy seen on MRI scans. In general, using template 
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S set and template E set, the HPC and AMG volumes are significantly larger in the NCI 

group than in the other three diagnostic groups (p<0.05), and the volumes in the dementia 

group are smaller than in the others three groups (p<0.05). Only the naMCI and aMCI 

groups do not have significantly different volumes.  

Table 5.3 Normalized volumes by diagnostic groups using Template E Set.  

 Brain Regions 
NCI 

(N=103) 

naMCI 

(N=24) 

aMCI 

(N=68) 

AD 

(N=46) 

F-Value 

(df=3,237

) 

T
em

p
late E

 S
et 

GM 

(SD) 

458.2
a
 

(46.5) 

431.1
a,b,c

 

(47.6) 

424.6
b,c

 

(36.7) 

428.1
b,c

 

(59.5) 
8.9* 

WM  

(SD) 

298.6 

(26.0) 

298.5 

(23.3) 

299.6 

(23.5) 

282.1 

(59.8) 
3.0 

CSF  

(SD) 

243.2
a
 

(42.3) 

270.4
b
 

(39.6) 

275.8
b
 

(36.2) 

289.8
b
 

(40.1) 
17.8* 

Hippocampus L  

(SD) 

2.99
a
 

(0.29) 

2.73
b
 

(0.33) 

2.59
b
 

(0.33) 

2.26
c
 

(0.46) 
52.5* 

Hippocampus R  

(SD) 

2.80
a
 

(0.38) 

2.51
b
 

(0.30) 

2.38
b
 

(0.37) 

2.12
c
 

(0.49) 
35.5* 

Amygdala L  

(SD) 

0.96
a
 

(0.07) 

0.93
a,b

 

(0.08) 

0.91
b
 

(0.08) 

0.81
c
 

(0.11) 
36.5* 

Amygdala R  

(SD) 

0.98
a
 

(0.09) 

0.92
b,c 

(0.09) 

0.91
b,c

 

(0.08) 

0.86
c
 

(0.11) 
22.9* 

ParaHippocampal L  

(SD) 

1.83 

(0.29) 

1.77 

(0.22) 

1.76 

(0.24) 

1.65 

(0.29) 
4.8 

ParaHippocampal R  

(SD) 

2.49
a
 

(0.31) 

2.37
a,b

 

(0.23) 

2.36
b
 

(0.28) 

2.39
b
 

(0.30) 
8.9* 

Insula L  

(SD) 

5.26
a
 

(0.45) 

4.77
b
 

(0.49) 

4.80
b
 

(0.46) 

4.74
b
 

(0.74) 
16.8* 

Insula R  

(SD) 

5.14
a
 

(0.47) 

4.67
b
 

(0.46) 

4.70
b
 

(0.42) 

4.72
b
 

(0.67) 
15.1* 

Fusiform L  

(SD) 

1.38
a
 

(0.19) 

1.36
a
 

(0.15) 

1.32
a
 

(0.14) 

1.22
b
 

(0.19) 
10.1* 

Fusiform R  

(SD) 

1.85
a
 

(0.22) 

1.78
a
 

(0.18) 

1.77
a
 

(0.17) 

1.66
b
 

(0.24) 
9.0* 

Precuneus L  

(SD) 

6.41 

(0.75) 

6.13 

(0.86) 

6.07 

(0.72) 

5.94 

(0.83) 
5.0 

Precuneus R  

(SD) 

5.97
a
 

(0.71) 

5.61
a,b

 

(0.73) 

5.41
b
 

(0.65) 

5.52
b
 

(0.89) 
9.2* 

Putamen L  

(SD) 

2.50 

(0.35) 

2.35 

(0.44) 

2.33 

(0.35) 

2.36 

(0.65) 
2.7 

Putamen R  

(SD) 

2.20 

(0.30) 

2.03 

(0.34) 

2.03 

(0.31) 

2.06 

(0.56) 
3.6 
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Thalamus L  

(SD) 

2.45
a
 

(0.33) 

2.21
b
 

(0.32) 

2.18
b
 

(0.31) 

2.06
b
 

(0.36) 
18.7* 

Thalamus R  

(SD) 

2.32
a
 

(0.35) 

2.09
b
 

(0.33) 

2.00
b,c

 

(0.27) 

1.85
c
 

(0.38) 
25.7* 

Temporal_Sup L  

(SD) 

2.99
a
 

(0.42) 

2.68
b
 

(0.27) 

2.65
b
 

(0.29) 

2.53
b
 

(0.38) 
21.9* 

Temporal_Sup R  

(SD) 

4.12
a
 

(0.58) 

3.61
b
 

(0.53) 

3.56
b
 

(0.48) 

3.45
b
 

(0.55) 
23.1* 

Temporal_Pole_Sup L  

(SD) 

2.52
a
 

(0.32) 

2.41
a,b

 

(0.30) 

2.26
b
 

(0.39) 

1.94
c
 

(0.57) 
24.2* 

Temporal_Pole_Sup R  

(SD) 

2.53
a
 

(0.31) 

2.45
a,b

 

(0.30) 

2.30
b
 

(0.37) 

2.04
c
 

(0.52) 
19.1* 

Temporal_Mid L  

(SD) 

4.88
a
 

(0.63) 

4.56
a,b

 

(0.40) 

4.50
a,b

 

(0.39) 

4.47
b
 

(0.64) 
9.5* 

Temporal_Mid R  

(SD) 

4.05
a
 

(0.44) 

3.89
a,b

 

(0.30) 

3.77
b
 

(0.36) 

3.73
b
 

(0.56) 
8.0* 

Temporal_Inf L  

(SD) 

4.93
a
 

(0.51) 

4.65
a,b

 

(0.48) 

4.67
b
 

(0.40) 

4.46
b
 

(0.72) 
9.4* 

Temporal_Inf R  

(SD) 

5.01 

(0.59) 

4.85 

(0.33) 

4.81 

(0.43) 

4.69 

(0.70) 
4.0 

Ventricl L  

(SD) 

10.9 

(2.83) 

12.4 

(3.1) 

13.21 

(3.0) 

13.8 

(3.1) 
13.7* 

Ventricl R  

(SD) 

9.0 

(2.5) 

10.23 

(3.2) 

11.0 

(3.0) 

11.6 

(2.6) 
12.7* 

NCI= No Cognitive Impairment; naMCI=Non-Amnestic MCI, aMCI=Amnestic MCI 

Note: Volumes and SD are expressed as 1/000 of intracranial volume.  

*p<.001; Means with different alphabetic superscripts are statistically significant at p<.05 

by the Scheffe‟ procedure.  

 

 

Table 5.4 Normalized volumes by diagnostic groups using Template S Set.  

 Brain Regions 
NCI 

(N=103) 

naMCI 

(N=24) 

aMCI 

(N=68) 

AD 

(N=46) 

F-Value 

(df=3,237

) 

T
em

p
late S

 S
et 

GM  

(SD) 

445.4
a
 

(38.1) 

423.8
a,b

 

(51.6) 

419.4
b
 

(37.6) 

421.9
b
 

(61.4) 
5.9* 

WM  

(SD) 

300.9 

(24.0) 

298.4 

(26.4) 

299.5 

(23.5) 

282.9 

(59.4) 
3.3 

CSF  

(SD) 

253.7
a
 

(41.2) 

277.7
a,b

 

(47.2) 

281.1
b
 

(38.6) 

295.1
b
 

(41.1) 
12.9* 

Hippocampus L  

(SD) 

2.58
a
 

(0.24) 

2.38
b
 

(0.30) 

2.26
b
 

(0.27) 

1.97
c
 

(0.41) 
48.5* 

Hippocampus R  

(SD) 

2.46
a
 

(0.28) 

2.28
a,b

 

(0.28) 

2.13
b
 

(0.34) 

1.90
c
 

(0.44) 
33.5* 

Amygdala L  

(SD) 

0.78
a
 

(0.07) 

0.76
a,b

 

(0.10) 

0.74
b
 

(0.07) 

0.69
c
 

(0.09) 
18.1* 
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Amygdala R  

(SD) 

0.81
a
 

(0.07) 

0.77
a,b,c 

(0.09) 

0.76
b,c

 

(0.07) 

0.72
b,c

 

(0.10) 
16.8* 

Insula L  

(SD) 

5.02
a
 

(0.50) 

4.59
b
 

(0.54) 

4.61
b
 

(0.48) 

4.51
b
 

(0.72) 
13.6* 

Insula R  

(SD) 

4.80
a
 

(0.44) 

4.39
b
 

(0.50) 

4.40
b
 

(0.47) 

4.36
b
 

(0.60) 
14.4* 

ParaHippocampal L  

(SD) 

2.40 

(0.30) 

2.31 

(0.33) 

2.33 

(0.32) 

2.20 

(0.35) 
4.2 

ParaHippocampal R  

(SD) 

2.85 

(0.30) 

2.71 

(0.29) 

2.76 

(0.34) 

2.67 

(0.37) 
3.6 

Fusiform L  

(SD) 

5.96
a
 

(0.54) 

5.64
a,b

 

(0.61) 

5.73
b
 

(0.51) 

5.75
b
 

(0.81) 
6.1* 

Fusiform R  

(SD) 

6.12
a
 

(0.58) 

5.75
a,b

 

(0.59) 

5.86
a,b

 

(0.53) 

5.75
b
 

(0.81) 
5.5 

Precuneus L  

(SD) 

7.11
a
 

(0.74) 

6.81
a,b

 

(1.07) 

6.71
b
 

(0.83) 

6.62
b 

(1.00) 
5.0 

Precuneus R  

(SD) 

6.39
a
 

(0.73) 

6.12
a,b

 

(0.84) 

5.81
b
 

(0.71) 

6.01
a,b

 

(1.18) 
7.0* 

Putamen L  

(SD) 

2.50 

(0.44) 

2.35 

(0.56) 

2.34 

(0.48) 

2.42 

(0.95) 
1.1 

Putamen R  

(SD) 

2.57 

(0.42) 

2.39 

(0.51) 

2.43 

(0.49) 

2.54 

(0.94) 
1.2 

Thalamus L  

(SD) 

2.43
a
 

(0.36) 

2.18
b
 

(0.35) 

2.15
b
 

(0.32) 

2.10
b
 

(0.53) 
11.5* 

Thalamus R  

(SD) 

2.30
a
 

(0.38) 

2.05
b
 

(0.36) 

1.98
b
 

(0.29) 

1.92
b
 

(0.51) 
15.2* 

Temporal_Sup L  

(SD) 

5.13
a
 

(0.56) 

4.70
b
 

(0.63) 

4.68
b
 

(0.55) 

4.62
b
 

(0.86) 
10.9* 

Temporal_Sup R  

(SD) 

6.62
a
 

(0.77) 

6.00
b
 

(0.98) 

5.94
b
 

(0.75) 

5.96
b
 

(1.05) 
12.0* 

Temporal_Pole_Sup L 

(SD) 

3.12
a
 

(0.43) 

3.05
a
 

(0.42) 

2.77
b
 

(0.53) 

2.39
c
 

(0.66) 
24.0* 

Temporal_Pole_Sup R 

(SD) 

3.01
a
 

(0.39) 

2.95
b
 

(0.44) 

2.69
a,b

 

(0.53) 

2.40
c
 

(0.57) 
20.0* 

Temporal_Mid L  

(SD) 

11.62
a
 

(1.05) 

10.74
b
 

(1.13) 

10.85
b
 

(1.02) 

10.84
b
 

(1.89) 
7.9* 

Temporal_Mid R  

(SD) 

10.09 

(0.85) 

9.53 

(0.88) 

9.49 

(0.93) 

9.73 

(1.66) 
5.0 

Temporal_Inf L  

(SD) 

8.63
a
 

(0.65) 

8.21
a,b

 

(0.80) 

8.25
b
 

(0.64) 

8.04
b
 

(1.02) 
8.2* 

Temporal_Inf R  

(SD) 

9.34 

(0.66) 

8.96 

(0.68) 

8.98 

(0.74) 

8.96 

(1.14) 
4.4 

NCI= No Cognitive Impairment; naMCI=Non-Amnestic MCI, aMCI=Amnestic MCI 

Note: Volumes and SD are expressed as 1/000 of intracranial volume.  

*p<.001; Means with different alphabetic superscripts are statistically significant at p<.05 

by the Scheffe‟ procedure.  
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Table 5.5 Normalized volumes by diagnostic groups using MNI Template Set.  

 Brain Regions 
NCI 

(N=103) 

naMCI 

(N=24) 

aMCI 

(N=68) 

AD 

(N=46) 

F-Value 

(df=3,23

7) 

M
N

I T
em

p
late S

et 

GM  

(SD) 

429.5 

(40.7) 

409.0 

(45.4) 

409.8 

(51.1) 

404.6 

(43.8) 
4.7 

WM  

(SD) 

304.5 

(23.9) 

308.0 

(25.3) 

306.1 

(26.3) 

300.4 

(42.1) 
0.5 

CSF  

(SD) 

266.0
a
 

(40.9) 

283.0
a,b

 

(36.9) 

284.1
a,b

 

(48.2) 

295.0
b
 

(40.6) 
5.7* 

Hippocampus L  

(SD) 

2.00
a
 

(0.26) 

1.86
a,b

 

(0.31) 

1.75
b
 

(0.26) 

1.52
c
 

(0.33) 
32.5* 

Hippocampus R  

(SD) 

1.83
a
 

(0.28) 

1.66
a,b

 

(0.31) 

1.58
b
 

(0.32) 

1.43
b,c

 

(0.39) 
19.7* 

Amygdala L  

(SD) 

0.65
a
 

(0.06) 

0.62
a,b

 

(0.06) 

0.61
b
 

(0.08) 

0.57
c
 

(0.10) 
13.9* 

Amygdala R  

(SD) 

0.76 

(0.06) 

0.72 

(0.06) 

0.73 

(0.07) 

0.73 

(0.10) 
3.4 

Insula L  

(SD) 

4.40
a
 

(0.43) 

4.17
a,b

 

(0.42) 

4.09
b
 

(0.41) 

3.96
b
 

(0.61) 
11.7* 

Insula R  

(SD) 

4.27
a
 

(0.38) 

3.93
b
 

(0.46) 

3.90
b
 

(0.48) 

3.83
b
 

(0.56) 
14.7* 

ParaHippocampal L  

(SD) 

2.25
a
 

(0.20) 

2.18
a,b

 

(0.22) 

2.21
a
 

(0.28) 

2.04
b
 

(0.30) 
7.8* 

ParaHippocampal R  

(SD) 

2.88
a
 

(0.22) 

2.81
a,b

 

(0.23) 

2.79
a,b

 

(0.27) 

2.66
b
 

(0.34) 
7.5* 

Fusiform L  

(SD) 

5.48
a
 

(0.54) 

5.20
a,b

 

(0.55) 

5.19
b
 

(0.42) 

5.03
b
 

(0.61) 
9.0* 

Fusiform R  

(SD) 

5.74
a
 

(0.59) 

5.41
a,b

 

(0.60) 

5.42
b
 

(0.54) 

5.36
b
 

(0.78) 
6.0* 

Precuneus L  

(SD) 

6.01 

(0.82) 

5.88 

(1.10) 

5.84 

(1.05) 

5.78 

(1.01) 
0.8 

Precuneus R  

(SD) 

5.59 

(0.64) 

5.44 

(0.74) 

5.18 

(0.71) 

5.29 

(0.86) 
5.0 

Putamen L  

(SD) 

2.09 

(0.38) 

2.04 

(0.55) 

1.99 

(0.43) 

1.97 

(0.55) 
1.1 

Putamen R  

(SD) 

2.19 

(0.35) 

2.07 

(0.42) 

2.08 

(0.42) 

2.07 

(0.61) 
1.5 

Thalamus L  

(SD) 

2.24
a
 

(0.35) 

1.99
b
 

(0.35) 

1.95
b
 

(0.35) 

1.79
b
 

(0.38) 
20.1* 

Thalamus R  

(SD) 

2.32
a
 

(0.34) 

2.09
b
 

(0.31) 

2.02
b
 

(0.30) 

1.86
b
 

(0.38) 
23.5* 

Temporal_Sup L  

(SD) 

4.90
a
 

(0.59) 

4.32
b
 

(0.53) 

4.38
b
 

(0.71) 

4.21
b
 

(0.55) 
18.6* 
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Temporal_Sup R  

(SD) 

5.77
a
 

(0.75) 

5.20
b
 

(0.88) 

5.33
b
 

(1.10) 

5.21
b
 

(0.83) 
6.5* 

Temporal_Pole_Sup L  

(SD) 

2.25
a
 

(0.38) 

2.06
a,b

 

(0.41) 

2.03
b
 

(0.47) 

1.89
b
 

(0.53) 
8.1* 

Temporal_Pole_Sup R  

(SD) 

2.21
a
 

(0.34) 

2.07
a,b

 

(0.37) 

1.95
b
 

(0.52) 

1.84
b
 

(0.56) 
8.8* 

Temporal_Mid L  

(SD) 

10.71
a
 

(1.01) 

10.01
a,b

 

(1.11) 

10.14
b
 

(1.20) 

9.90
b
 

(1.45) 
6.9* 

Temporal_Mid R  

(SD) 

9.97
a
 

(1.03) 

9.33
a.b

 

(1.15) 

9.17
b
 

(1.39) 

9.01
b
 

(1.27) 
9.7* 

Temporal_Inf L  

(SD) 

7.44 

(0.68) 

7.18 

(0.71) 

7.19 

(0.55) 

7.15 

(0.93) 
2.8 

Temporal_Inf R  

(SD) 

8.70 

(0.70) 

8.28 

(0.78) 

8.38 

(0.77) 

8.36 

(1.06) 
3.7 

NCI= No Cognitive Impairment; naMCI=Non-Amnestic MCI, aMCI=Amnestic MCI 

Note: Volumes and SD are expressed as 1/000 of intracranial volume.  

*p<.001; Means with different alphabetic superscripts are statistically significant at p<.05 

by the Scheffe‟ procedure.  
 

5.4.2 Correlation with Clinical Evaluations: MMSE and CDR-sb 
 

Three Tissues and 24 or 26 ROI 

Within all diagnostic groups, bivariate correlation (Pearson‟s r) coefficients were used to 

examine the relationship between normalized three tissues and 24 or 26 ROIs volumes 

and the measures of clinical status: neuropsychological test MMSE scores and the 

Clinical Dementia Rating scale (CDR-sb).  The results of these analyses are shown in 

Figure 5.2 and Figure 5.3.  As shown in Figure 5.2, the correlations of MMSE scores, a 

measure of global cognitive function, with volumetric measures (except left 

parahippocampal volume), were significantly greater for Template E than for the 

corresponding volumes measures by the MNI Template or the Template S (p<.05). Taken 

together, volumetric measures using the Template E set were more highly correlated with 

cognitive test scores and severity of clinical symptoms than the volumetric measures 

using the MNI Template or the Template S. As for the correlations of Clinical Dementia 

Rating scale (CDR-sb), similar results were obtained and are shown in Figure 5.3.   
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Hippocampal and Amygdaloid Complex 

Atrophy of medial temporal structures, such as hippocampus and amygdala, is one of the 

best-established signs of AD (Duyckaerts et al., 2008; Hamalainen et al., 2007, Chupin et 

al., 2007). Post-mortem studies report early neuropathological lesions and neuronal loss 

in hippocampus and amygdala (Duyckaerts et al., 2008). Studies have shown that the 

combined MRI based volumetric measurement of hippocampus and amygdala improved 

the accuracy in distinguishing diagnosis groups (Pantel et al., 1997; Hampel et al., 2002). 

Here, we examined the relationship between normalized hippocampal and amygdaloid 

complex with the clinical measures MMSE and CDR-sb by bivariate correlation analysis 

(Pearson‟s r). The results are shown in Figure 5.4 and Figure 5.5. 

Left and right hippocampal and amygdaloid complex volumes based on template S set 

showed higher correlations with MMSE score (Figure 5.4) (left: R=0.488, F=74.7; right: 

R=0.425, F=52.8) than these volumes based on the MNI Template (left: R=0.419, 

F=48.3; right: R=0.307, F=24.9). Volumes based on the Template S set were similar to 

those of Template E set (left: R=0.487, F=74.4; right: R=0.405, F=46.9).  

As for the correlations with CDR-sb scales, left and right hippocampal and amygdaloid 

complex volumes based on template S set also showed higher negative correlations 

(Figure 5.5) (left: R=0.559; F=108.4; right: R=0.538; F=97.3) compared to volumes 

based on the MNI Template (left: R=0.484; F=73.2; right: R=0.407; F=47.6). Volumes 

based on the Template S set were similar to those of Template E set (left: R=0.558; 

F=108.3; right: R=0.528; F =92.4).  
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 Left Right 

T
em
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late E

 S
et 

  
 R=.488; F=74.7* R=.425; F=52.8 

T
em

p
late S

 S
et 

  
 R=.487; F=74.4 R=.405; F=46.9* 

M
N

I T
em

p
late S

et 

  
 R=.410; F=48.3 R=.307; F=24.9 

Figure 5.4 Correlation between hippocampal and amygdaloid complex volume and 

MMSE scores within all diagnosis groups. The regression lines are indicated. HPC = 

Hippocampus; AMG= Amygdala.  

  



96 

 

 

 

 Left Right 

T
em

p
late E

 S
et 

  
 R=.559; F=108.4 R=.538; F=97.3 

T
em

p
late S

 S
et 

  
 R=.558; F=108.3 R=528; F =92.4 

M
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p
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et 

  
 R=.484; F=73.2 R=.407; F=47.6 

Figure 5.5 Correlation between hippocampal and amygdaloid complex volume and CDR-

sb scales within all diagnosis groups. The regression lines are indicated. HPC = 

Hippocampus; AMG= Amygdala.  
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5.4.3 Ability to Distinguish Diagnostic Groups 
 

The accuracy of discrimination among diagnostic groups with ROI volumetric measures 

using three template sets was assessed in the total group by computing areas under the 

curve (AUC) of receiver-operating characteristics (ROC). The ROC curve is a frequently 

used measure of the effectiveness of diagnostic tests in discriminating between groups of 

individuals.  

In discriminating between AD patients and “No Cognitive Impairment” (see Figure 5.6), 

the highest area under the curve of the ROC was 0.90 for left hippocampus using 

template E set. The second highest AUC was 0.89 for left amygdale using template E set. 

With few exceptions (right insula, left parahippocampal, left thalamus and middle 

temporal), volumetric analysis using template E shown higher AUC compared with 

template E or MNI template S.  

In discriminating between aMCI and “No Cognitive Impairment” (see Figure 5.7), the 

highest area under the curve of the ROC was 0.82 for left hippocampus using template E 

set. With few exceptions (fusiform, right superior temporal pole, right middle temporal, 

right inferior temporal), volumetric analysis using template E shown higher AUC 

compared with template E or MNI template S.  

These analyses showed that the new template E set was superior to the MNI template set 

in general.  
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5.5 Experiment 3: Cross-sectional Studies on 241 Subjects – 

Volumetric, Automated Area and VRS  
 

5.5.1 Comparisons of Means by Diagnostic Groups Using RHPA, VRS 

of HPC and HPC Volumes  
 

We applied this automated area measurement method to the 241 subjects.  The results 

(RHPA) were compared with VRS hippocampal scores (VRS_HPC) and normalized 

hippocampal volumes (HPC_Vol) using template set E. Group comparisons of means 

were analyzed using one-way ANOVA. Statistical results (mean±SD) of RHPA, 

VRS_HPC scores and HPC_Vol are shown in Table 5.6.  

RHPA measures for the “No Cognitive Impairment” group have the largest mean, while 

the AD group has the smallest mean ratio on both sides. VRS_HPC mean scores for “No 

Cognitive Impairment” are the highest and for the AD group are lowest on both sides. 

HPC_Vol measures on both sides show a larger difference of the means between 

diagnostic groups, and has the highest F values for both sides compared with RHPA or 

VRS_HPC.  

All three measurements show the effect of AD on the degree of atrophy on MRI. Post-

hoc tests of means by Scheffe‟ analyzed the effect of diagnostic group on all these 

measurements (see superscripts in Table 5.6). 
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Table 5.6 Values (mean±SD) of RHPA, VRS_HPC and HPC_Vol in all diagnostic 

groups 

Diagnostic Group 
NCI 

(N=103) 

naMCI 

(N=24) 

aMCI 

(N=68) 

AD 

(N=46) 

F-Value 

(df=3,237) 

RHPA L 

(SD) 

0.83
a
 

(0.09) 

0.79
a,b

 

(0.08) 

0.73
b
 

(0.13) 

0.65
c
 

(0.17) 
24.6* 

RHPA R 

(SD) 

0.87
a
 

0.10 

0.84
a,b

 

(0.11) 

0.75
b,c

 

(0.17) 

0.68
c
 

(0.19) 
20.8* 

VRS_HPC L 

(SD) 

0.55
a
 

(0.654) 

0.75
a
 

(0.608) 

1.41
b
 

(1.011) 

2.30
c
 

(1.209) 
45.1* 

VRS_HPC R 

(SD) 

0.59
a
 

(0.694) 

0.96
a,c

 

(0.859) 

1.60
b,c

 

(1.161) 

2.07
b
 

(1.200) 
30.3* 

HPC_Vol L 

(SD) 

2.99
a
 

(0.29) 

2.73
b
 

(0.33) 

2.59
b
 

(0.33) 

2.26
c
 

(0.46) 
52.5* 

HPC_Vol R 

(SD) 

2.80
a
 

(0.38) 

2.51
b
 

(0.30) 

2.38
b
 

(0.37) 

2.12
c
 

(0.49) 
35.5* 

NCI= No Cognitive Impairment; naMCI=Non-Amnestic MCI, aMCI=Amnestic MCI 

RHPA: automated area measurements; VRS_HPC: VRS hippocampus scores on coronal 

MB slice; HPC_Vol: normalized hippocampus volumes. Volumes and SD are expressed 

as 1/000 of intracranial volume. 

*p<.001; Means with different alphabetic superscripts are statistically significant at p<.05 

by the Scheffe‟ procedure.  

 

 

5.5.2 Correlation with Clinical Evaluations: MMSE and CDR-sb 
 

Within all diagnostic groups, the relationship between RHPA values, VRS_HPC scores 

and normalized hippocampus volumes, and the relationships between these three 

measures with MMSE or CDR-sb were examined by bivariate correlational analysis 

(Pearson's r). The results of that analysis are displayed in Table 5.7 and Table 5.8.  

Table 5.7 shows that these three approaches for assessing hippocampal atrophy are 

strongly correlated. With respect to the left hippocampus, the correlation coefficient is -

0.671 (p<0.001) between RHPA values and VRS_HPC; 0.716 (p<0.001) between RHPA 

values and HPC_Vol; -0.689 (p<0.001) between VRS_HPC and HPC_Vol. For right 
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hippocampus, the correlation coefficient is -0.801 (p<0.001), 0.492 (p<0.001). and -0.685 

(p<0.001) respectively (Table 5.7).  

Table 5.7 Correlations between RHPA, VRS_HPC and HPC_Vol within all diagnostic 

groups. 

Correlation 

Coef. 
RHPA L RHPA R 

VRS_HP

C L 

VRS_HP

C R 

HPC_Vol 

L 

HPC_Vol 

R 

RHPA L 1 .513* -.671* -.583* .498* .492* 

RHPA R .513* 1 -.622* -.801* .664* .716* 

VRS_HPC L -.671* -.622* 1 .728* -.689* -.603* 

VRS_HPC R -.583* -.801* .728* 1 -.626* -.685* 

HPC_Vol L .716* .664* -.689* -.626* 1 .852* 

HPC_Vol R .498* .492* -.603* -.685* .852* 1 

RHPA: automated area measurements; VRS_HPC: VRS hippocampus scores on coronal 

MB slice; HPC_Vol: normalized hippocampus volumes. 

*. Correlation is significant at the 0.001 level (1-tailed). 

 

The correlations of atrophy measures from these three methods with a cognitive test 

(MMSE) and the clinical dementia rating score (CDR-sb) scores, are showing in Table 

5.8. Compared with automatic area measures and hippocampus volumes, VRS_HPC 

scores show higher correlations (left is 0.506 (p<0.001), right is 0.456 (p<0.001)) with 

MMSE and higher correlations (left is 0.582 (p<0.001), right is 0.527 (p<0.001)) with 

CDR-sb.  

5.5.3 Ability to Distinguish Diagnostic Groups 
 

The ability of RHPA, VRS_HPC and HPC_Vol to distinguish the diagnostic groups NCI, 

naMCI, aMCI and AD were compared using area under the curve (AUC) for the receiver 

operating characteristics (ROC) (Table 5.9).   
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Table 5.8 Correlations between RHPA, VRS_HPC or HPC_Vol with MMSE and CDR-

sb within all diagnostic 

Correlation Coef. MMSE CDR-sb 

RHPA L .381* -.372* 

RHPA R .340* -.450* 

VRS_HPC L -.506* .582* 

VRS_HPC R -.456* .527* 

HPC_Vol L .461* -.540* 

HPC_Vol R .385* -.520* 

RHPA: automated area measurements; VRS_HPC: VRS hippocampus scores on coronal 

MB slice; HPC_Vol: normalized hippocampus volumes. 

*. Correlation is significant at the 0.001 level (1-tailed). 

 

 

Table 5.9 Ability of RHPA, VRS_HPC and HPC_Vol in distinguishing diagnostic 

groups. Areas under curve for receiver operator characteristics (AUC-ROC) 

AUC-ROC AD versus NCI aMCI versus NCI 

RHPA L .828 .728 

RHPA R .816 .719 

VRS_HPC L .875 .757 

VRS_HPC R .846 .757 

HPC_Vol L .905 .831 

HPC_Vol R .870 .796 

NCI= No Cognitive Impairment; aMCI=Amnestic MCI 

RHPA: automated area measurements; VRS_HPC: VRS hippocampus scores on coronal 

MB slice; HPC_Vol: normalized hippocampus volumes. 

 

Table 5.9 shows a comparison of these three approaches for assessing hippocampal 

atrophy in distinguishing diagnostic groups. The results show that hippocampal volumes 

are the most robust for distinguishing aMCI from Mild AD, and aMCI from NCI.  

Overall, the automatic area measure RHPA is inferior to hippocampus volumetric 

measures or VRS hippocampus scores from the coronal MB slice. 
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5.6 Experiment 4: Comparison with NeuroQuant
TM 

 

The NeuroQuant
TM

 is a commercial software package (CorTechs Labs Inc, La Jolla, CA), 

which provides a full volume segmentation of 10 subcortical brain regions in each 

hemisphere, including hippocampus, amygdale, putamen, thalamus, pallidum, caudate, 

cerebellum, and brain stem. It has been validated against manual segmentation methods 

and on the basis of those studies received Food and Drug Administration 510K approval 

for clinical use in measuring volumes of brain structures in MR images (Kovacevic et al., 

2009; Brewer et al., 2009). The automated segmentation of structures algorithm is similar 

to FreeSurfer (Fischl et al., 2002), which is based on surface deformations and employs 

Markov random fields to approximate the posterior distribution for anatomic labelings at 

each voxel in the brain. It utilizes a predefined probabilistic brain atlas which was 

designed to better represent the aged population (Kovacevic et al., 2009; Brewer et al., 

2009).  

The results of automated atlas-based segmentation using three template sets are compared 

with NeuroQuant
TM

 on 72 clinical MRI scans of subjects with NCI, aMCI and AD.  

The statistical comparisons of mean, correlations with clinical evaluations CDR-sb or 

MMSE and the ability to distinguish diagnostic group are shown in Table 5.10, Figure 

5.8 and Figure 5.9. 
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Table 5.10 Normalized volumes by diagnostic groups.  

  Brain Region 
NCI aMCI AD F-Value 

(N=21) (N=26) (N=25) (df=2,69) 

NeuroQuant
TM

 

Hippocampus L 

(SD) 

2.39
a
 

(0.26) 

2.14
b
 

(0.24) 

1.87
c
 

(0.34)  
19.2* 

Hippocampus R 

(SD) 

2.54
a
 

(0.36)  

2.16
b
 

(0.31)  

1.91
b
 

(0.46) 
15.1* 

Amygdala L 

(SD) 

1.08
a
 

(0.10) 

0.91
b
 

(0.15) 

0.77
c
 

(0.17) 
23.2* 

Amygdala R 

(SD) 

1.09
a
 

(0.19) 

0.87
b
 

(0.18) 

0.84
b
 

(0.22) 
11.0* 

Putamen_L 

(SD) 
3.11 

(0.30)) 

2.82 

(0.39) 

2.75 

(0.59) 
3.8 

Putamen_R 

(SD) 
2.89 

(0.31) 

2.67 

(0.34) 

2.56 

(0.58) 
3.4 

Thalamus_L 

(SD) 

5.19 

(0.79) 

5.19 

(0.42) 

5.16 

(0.67) 
0.1 

Thalamus_R 

(SD) 

5.35 

(0.76) 

5.26 

(0.43) 

5.20 

(0.81) 
0.3 

Template 

set E 

Hippocampus L 

(SD) 

3.00
a
 

(0.30) 

2.54
b
 

(0.34) 

2.25
c
 

(0.42) 
21.7* 

Hippocampus R 

(SD) 

2.78
a
 

(0.40) 

2.28
b
 

(0.41) 

2.11
b
 

(0.51) 
13.2* 

Amygdala L 

(SD) 

0.95
a
 

(0.06) 

0.89
b
 

(0.06) 

0.83
c
 

(0.11) 
12.1* 

Amygdala R 

(SD) 

0.95
a
 

(0.09) 

0.88
b
 

(0.09) 

0.87
b
 

(0.11) 
4.5 

Putamen_L 

(SD) 
2.47 

(0.27) 

2.32 

(0.33) 

2.31 

(0.67) 
0.8 

Putamen_R 

(SD) 
2.13 

(0.23) 

2.04 

(0.31) 

2.03 

(0.58) 
0.4 

Thalamus_L 

(SD) 

2.40
a
 

(0.37) 

2.21
a
 

(0.26) 

2.20
b
 

(0.35) 
8.0* 

Thalamus_R 

(SD) 

2.27
a
 

(0.39) 

2.02
b
 

(0.24) 

1.76
c
 

(0.35) 
13.9* 

NCI= No Cognitive Impairment; aMCI=Amnestic MCI. * p<0.001 

Note: Volumes and SD are expressed as 1/000 of intracranial volume.  

Means with different alphabetic superscripts are significantly different from each other at 

p<0.05 by the Scheffe‟ procedure.  
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Figure 5.8 (Top) AUC-ROC for AD versus NCI. AUC-ROC for hippocampus and 

putamen are similar using NeuroQuant
TM 

or template E set volumetric analysis. However, 

template E set performs better than NeuroQuant
TM 

for the right (R) and left (L) thalamus. 

(Bottom) AUC-ROC for MCI versus NCI. The AUC-ROC for right amygdale, left and 

right putamen are higher for NeuroQuant
TM 

 than using template E set volumetric 

analysis, but the opposite is true for the thalamus. AUC-ROC: Area Under the Curve for 

the receiver operator characteristics. 



107 

 

 

 

 

Figure 5.9 The correlations of the Mini Mental State Examination (MMSE) scores with 

volumetric measures using three template sets.  

 

  



 

 

108 

 

Chapter 6  Discussion and Conclusion 
 

The initial results from the study that compared the VRS-MTA method with the 

volumetric analysis using IBASPM with the MNI template (Shen et al., 2011b) show 

clearly that the conventionally used standard template lacks accuracy in anatomical 

segmentation.  As a result, the MNI template has reduced sensitivity and specificity for 

distinguishing AD and normal control subjects.  This stimulated the motivation of this 

study to improve templates so as to allow continued use of atlas based methods with 

IBASPM for volumetric analysis and to achieve higher accuracy in segmentation. The 

value of IBASPM for volumetric analysis, which is an atlas-based approach, as opposed 

to other voxel-by-voxel approaches, such as Freesurfer, lies on the fact that it is 

operationally much less demanding in terms of computational effort and, as a result, 

allows the processing of images in a fraction of the time required by the Freesurfer 

software. 

 

6.1 Discussion 
 

This study demonstrates that replacing the MNI Template Set, which consists of a brain 

atlas definition AAL (Tzourio-Mazoyer et al., 2002) and a coordinate template (the MNI 

Template), by the Template S Set, which consists of the same atlas definition AAL 

(Tzourio-Mazoyer et al., 2002) and a new coordinate template derived from single-

subject image, has improved the accuracy of anatomical segmentation of the ROIs, such 

as HPC and AMG (Shen et al., 2011b).  The improved segmentation is evaluated by the 

measures of correspondence between the manual and the automated segmentations (by 

using both templates) of the structures most affected by Alzheimer‟s disease. A further 

improvement in accuracy of segmentation can be seen when the Template S Set is 
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replaced by the Template E Set, which consists of a custom-defined atlas, drawn on an 

elderly subject‟s brain which has been transformed to MNI space, and a coordinate 

template which has also been derived from the same image, and custom tissue class 

priors which has been created from the study population. The improved accuracy of 

segmentation when using these novel templates is reflected by the ability to better 

discriminate subjects with NCI from those with aMCI subjects and probable AD.  

Furthermore, the correlations of ROIs volumes to the MMSE and CDR-sb scores across 

subject groups are improved when replacing the MNI Template Set by the Template S 

set, and even more by the Template E Set.  

The comparison between the commercial software NeuroQuant
TM

 and the atlas-based 

segmentation by using the Template E Set has shown that both methods performed 

equivalently in most brain regions. However, NeuroQuant
TM

 is superior at amygdala and 

putamen volume analysis, and the new method is superior at hippocampus and thalamus 

volume analysis, all based on discrimination between diagnostic groups and in higher 

correlations with clinical data MMSE or CDR-sb.  

In general, the “gold standard” method of obtaining the volumes of a brain structure on 

MRI scans has been considered to be the use of manual segmentation (den Heijer et al., 

2006; Basso et al., 2006; Chupin et al., 2007).  Mean volumes of the HPC, obtained using 

the Template E Set (3.03 for the left HPC), underestimated by about 9% results obtained 

using manual segmentation-based approaches for HPC volumes in elderly cognitively 

normal subjects (Sánchez-Benavides et al., 2010) (3.34 for the left HPC). Mean volumes 

of the HPC reported using the commercial software Neuroquant
TM

, Freesurfer-based 

program (2.39 for the left HPC) underestimated by about 28%, and those using IBASPM 
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with the MNI template (1.99 for the left HPC) underestimated by about 40% of the 

volumes of the left HPC obtained by manual segmentation. Nevertheless, HPC volumes 

obtained using the MNI Template Set are equivalent to those obtained using a variety of 

automated or semi-automated methods that have been reported in the literature (Teipel et 

al., 2006 Mori et al., 1997). 

In this study, the automatic hippocampal area measurement on a single coronal slice (MB 

slice) was able to discriminate diagnostic groups and had strong correlations with clinical 

data.  However, it is inferior to hippocampus volumetric data or VRS hippocampus 

scores because this measurement is the ratio of the area of hippocampus to hippocampus 

temporal horn on a single coronal slice. Generally speaking, in the high resolution MRI 

scan setting there are around 0 to 200 pixels of hippocampus and 0 to 100 pixels of 

hippocampus temporal horn on the MB slice. A small error in measurement will affect 

the RHPA ratio. Finally, the inaccuracy of choosing MB slice will also result in the error 

of RHPA. Using multiple slices, such as including one anterior and one posterior slice, 

may improve this method.  

Research studies employing SPM5 or IBASPM to perform volumetric analysis have long 

relied on the MNI Template Set ignoring the fact that the coordinate MNI template is not 

from the same “source” as where the anatomical atlas AAL is defined. There usually 

exist a big variance between AAL and the anatomical characteristics of the to-be-

segmented brain MRI, which will result in less accuracy of the segmentation.  However, 

the results of this study suggest that a customized atlas associated with corresponding 

template, derived from an aged subject, may be particularly important to produce 

accurately automated segmentation.  Another factor that may need to be taken into 
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account for customizing atlases and templates is that the disease “states” affect the 

anatomy of the brain. This study demonstrated that the use of an elderly subject‟s brain 

for creating the atlas and template for atlas-based segmentation not only improves the 

accuracy of measurement of the volume of the hippocampus, but also enhances the 

applicability for distinguishing NCI from aMCI and AD. 

Another important contribution of this study is the comparison between different 

template sets and their resultant ROIs volumes by analyzing metrics for distinguishing 

between NCI and aMCI, and NCI and AD.  A further way of comparing template set was 

to analyze the correlations of scores of cognition (MMSE) and functional ability (CDR-

sb) to ROIs volumes. Atrophy of the MTL structures, such as entorhinal cortex, HPC and 

AMG, is an early and reliable indicator of the development of neurofibrillary pathology 

in the brain, characterizing of the neurodegenerative stage of Alzheimer‟s disease. It has 

been shown in this and many previous studies that increasing severity of atrophy of the 

HPC and AMG is associated with the severity of cognitive and functional impairment in 

patients with aMCI and AD. It has been shown by this study that the measurement of 

HPC and AMG volume, obtained through the use of the Template E Set, resulted in 

better distinctions between diagnostic groups than those obtained using the Template S 

Set and the MNI template Set because of higher accuracy in the measurement of HPC 

and AMG volumes.  

 

6.2 Conclusion 
 

Using atlas-based segmentation, the accuracy of ROIs segmentation is dependent on: (1) 

correspondence of the coordinate template with the anatomical atlas; (2) deformation 

field estimation; (3) anatomical characteristics of the to-be-segmented brain MRI 
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reflection in the anatomical atlas. Using manual segmentation as gold standard to validate 

the automated segmentation obtained through the use of three different template sets, we 

can concluded that the automated segmentation using an atlas-based approach associated 

with the template derived from the aged subject, assessing elderly normal or cognitively 

impaired subjects, yields the most accurate results while the least accurate results occur 

when the template sets are based on a young male. The reasons for the high accuracy of 

the Template E Set for obtaining HPC volumes are self-evident, because it is not 

generally recognized that the template employed for obtaining regional brain volumes 

should be customized so that the template can optimally approximate the anatomy of the 

target brain(s) to be segmented.   

In summary, this study has shown that fully automated atlas-based segmentation can be 

customized so as to make the measurement of regional volumes more accurate for certain 

target groups of subjects, such as those who are elderly with degenerative diseases.  We 

can further compare the automated segmentation, using different atlases and templates, to 

manual segmentation done in all the NCI, aMCI and AD subjects.  Nevertheless, the 

results of this study show that convenient, atlas-based approaches to performing MRI 

volumetry can be optimized for research and clinical purposes by customizing the 

anatomical atlases and corresponding spatial coordinate templates, so as to account for 

the age and disease state of the subject to be assessed.  
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