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ABSTRACT 
 

EVALUATING THE MARGINAL INTEGRITY OF LITHIUM DISILICATE 
VENEERS FABRICATED WITH DIGITAL IMPRESSIONS AND CAD/CAM 

COMPARED TO CONVENTIONAL TECHNIQUES 
 

Michael C. Guzelian 
 

April 1, 2015 
 

This in vitro study compared marginal gap size in anterior lithium disilicate veneers 

produced by conventional and digital impressions.  One typodont right central incisor was 

prepared for an all-ceramic cast.  Ten conventional veneers were fabricated using Type IV 

stone, PVS, and IPS e.max press, while ten digital veneers were fabricated using Lava COS 

(3M ESPE) and IPS e.max CAD/CAM processing and milling.  Samples were divided 

double-blindly, captured at 45X magnification, evaluated at three images per orientation 

(B-D-M-P), and measured at three distances (largest, smallest, best fit) per image.  Data 

points were entered into SPSS code for one-way and two-way ANOVA, t-testing, Chi 

square, and odds ratio.  Compared to conventional technique, digital veneers recorded 

greater mean gap distances at all orientations, fewer “good fit” locations, and average gap 

size ≥ 120 µm.  All analysis techniques were statistically significant.  In vivo follow-up is 

necessary to justify digital impressions in clinical settings. 
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I. INTRODUCTION 
 
All-Ceramic Restorations in Dentistry 
 

The advancement of dental biomaterials and innovative technology creates a 

promising future for the progression of clinical dentistry.  Dental literature agrees that the 

application of metal crowns remains a viable, reliable, and consistent tooth-replacement 

strategy for posterior restorations (Waggoner et al., 2006 and Randall et al., 2002).  Unlike 

metal alloys, ceramics are characterized as a non-metallic material containing inorganic 

components (Rosenblum and Schulman, 1997).  Dental ceramics are composed of a 

particle-filled and glassy outer porcelain material, representing optical properties of enamel 

and dentin, and a tougher, generally crystalline substructure core (Kelly, 2004).  Achieving 

a quality interface between core substructure and its veneering material presents 

challenges, since the integration of chemically dissimilar biomaterials to create strong 

bonding can be diminished during the fabrication process (Culp and McLaren, 2010).  With 

increasing demands for esthetic dentistry in clinical settings, the need for a fracture-

resistant, tooth-colored restoration from ceramic seems to be essential. 

 
Clinical Performance of Ceramic Restorations 
 

To succeed in clinical outcomes, the application of ceramic materials in crowns, 

fixed partial dentures, and veneer restorations requires a precise biological and mechanical 

consideration to compete with full-cast or ceramo-metal restorations (Conrad et al, 2007).  

Dental ceramic is influenced by natural stresses within the oral cavity, including flexural, 
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residual and localized stresses (Swain et al., 2014), but the clear advantage for all-ceramic 

material lies in its esthetic potential (Donovan et al., 2008) and biocompatibility (Lu et al., 

2013).  Dental literature has frequently supported a consistent clinical performance of all-

ceramic restorations compared to partial or full metal restorations.  A 2007 systematic 

review of 34 published articles determined that 93.3% of all-ceramic crowns qualified for 

5-year survival, an optimistic percentage similar to 95.6% of 5-year survival rates met for 

metal-ceramic crowns (Sailer et al., 2007).  More recently, molar all-ceramic zirconia 

restorations exhibited an 86.8% success rate compared to 90.9% in metal-ceramic 

restorations (Rinke et al., 2012), supporting an earlier study that evaluated positive clinical 

behavior between all-ceramics and metal-ceramics (Etman et al., 2010).  More clinical 

evaluations verify a promising long-term effect on posterior restorations, where 95.1% of 

all-ceramic crowns remained replacement-free after 5 years and 92.8% after 10 years, 

citing core replacement as the primary cause for future repair (Dhima et al., 2012).  Despite 

long-term success, the tendency for chipping in all-ceramic crowns is statistically 

significant depending on location and tooth type, typically favoring anterior over posterior 

regions after looking at 5-year fracture rates (Wang et al., 2012). 

 
Full-Coverage to Partial-Coverage Crowns 
 

Full-coverage crowns, which include crowns composed of one material, display 

superior retention and resistance properties (Shillingburg et al., 2012) and significantly 

higher survival rates compared to partially-covered metal-ceramic or all-ceramic crowns 

(Burke et al., 2008).  The primary drawback to full-coverage preparations, however, is in 

its destructive and subtractive method, compromising dentin support and removing excess 

tooth structure (Guess et al., 2009).  Progression to partial coverage crowns enhanced 
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structural integrity through conservative design, resulting in greater bonding, esthetic 

desire, and minimal tooth reduction (Rappelli et al., 2004 and Broderson, 1994).  In 

promising fashion, partial crown preparation design can potentially restore teeth using 

ceramic material, performing at 96.7% longevity (Schulte et al, 2005).  

 
Veneer Restorations 
 

Unlike crown coverage restorations, porcelain veneer restorations bond a thin 

laminate to reduced tooth surfaces using adhesive and resin cement (Peumans et al., 2000).  

The desired outcome is generally to alter the color, morphology, size, or position of anterior 

teeth without compromising healthy enamel depth during the reduction (Öztürk et al., 

2013).  Preparation guidelines for a porcelain veneer require three precise measurements – 

0.5 millimeter cervical reduction, 0.7 millimeter midfacial reduction, and 1.5 millimeter 

incisal reduction (Shillingburg, 2012), guidelines designed to allow proper cementation 

through conservation of natural enamel (Lin et al., 2012).    Recently, it was shown that the 

optimization of physical properties within resin cement during final preparation contributes 

to esthetic, clinical, and functional parameters in veneer restorations (Archegas et al., 

2011). 

Unlike the survival rates before re-intervention for full-coverage and partial-

coverage crown restorations (Burke et al., 2008), a subsequent veneer study showed that 

only 53% of porcelain laminate veneers survived without re-intervention after 10 years, 

while 20% of those replaced-veneers required greater invasion to treat the problem (Burke 

et al., 2009).  In contrast, a longer 16-year follow-up study determined that 304 feldspathic 

porcelain veneers yielded a 96% survival rate at 5-6 years, 93% at 10-11 years, and 73% 

from 15-16 years, suggesting a slow, predictable negative trend in survival spanning past 
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a decade (Layton et al., 2007).  A recent meta-analysis of veneer longevity suggests that 

inconsistent clinical outcomes can be traced to differences in experimental methodologies, 

treatment settings, clinician skill level and proficiency, access to resources, and population 

pool bias (Layton et al., 2012).  Similar to other all-ceramic therapies, poor long-term 

outcomes may originate from a non-uniform adhesion complex, inflammatory gingiva 

response due to biomaterials, and abrasive angle contacts from faulty geometry reduction 

(Peumans et al., 2000). 

 
Marginal Integrity 
 

Shillingburg proposes that tooth preparation is based on five principles: structure 

preservation, retention and resistance, structural durability, marginal integrity, and 

periodontium preservation.  These qualitative and quantitative principles work in 

conjunction to influence long-term clinical performance for restorations (Shillingburg, 

2012). 

Holmes et al. defined the first consistent definition of marginal fit as the absolute 

marginal discrepancy, calculated from over and under-extending casting margins, by way 

of vertical and horizontal discrepancy, seating discrepancy, and misfit measured at points 

between casting surface and the tooth (Holmes et al., 1989).  Established dental literature 

supports clinically acceptable marginal integrity from 40 to 120 μm (McLean et al., 1971, 

Bader et al., 1991, Sulaiman et al, 1997), with 120 μm considered the “maximum, tolerable 

marginal opening” for tooth preparations (Contrepois et al., 2013).  Unacceptable or 

inadequate marginal fits (typically wider than 120 μm) can shorten the longevity of a 

restoration due to greater cement film exposure (Yucel et al., 2013).  In the modern 

definition, marginal integrity is considered the “absolute vertical distance between a finish 
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line of the prepared tooth and the margins of a fabricated veneer” (Aboushelib et al., 2012), 

the acceptable degree of marginal exposure between a restorative veneer and its tooth of 

interest determines long-term durability (Celick et al., 2002).  Internal marginal adaptation, 

an extension to marginal fit measurements, evaluates the relative thickness of resin cement 

lying directly underneath a veneer restoration and contributes to clinical outcomes 

(Aboushelib et al., 2012). 

Given that marginal integrity is a significant criterion in long-term clinical success, 

a greater cement film (Almeida et al., 2013) results in several complications; including 

mechanical defects, discoloration and decay (Aboushelib et al., 2012), luting agent 

dissolution (Colpani et al., 2013 and Baig et al., 2010); microleakage and plaque 

accumulation (Contrepois et al., 2013, Beuer et al., 2010, and Bergenholtz et al., 1982); 

increased recurrent caries incidence (Felden et al., 2000); and pulpal inflammation (Bader 

et al., 1991).  While some literature suggests a higher accuracy of marginal fit in metal-

ceramic over all-ceramic restorations, others suggest negligible differences between these 

restoration types (Pneumans et al. 2000).  It is paramount to the clinician to minimize any 

inherent risk by delivering high-quality, close proximal marginal and internal fit between 

restorations and their abutment (Almeida et al., 2013), and veneers are not an exemption. 

Marginal accuracy is linked to design and manufacturing considerations of ceramic 

veneers (Toh et al., 1987), commonly from interplay between a substructure core and its 

veneer material.  In a failure pattern study evaluating three veneering materials on marginal 

fit and fracture resistance of an alumina core, Fahmy determined that a larger marginal gap 

between a core and its veneer presented a significantly decreased fracture resistance 

(Fahmy, 2011).  With marginal performance in mind, dental researchers are progressing 
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towards a substantial, fixed crystalline material manufactured for anterior or posterior 

ceramic restorations. 

 
Elastomer versus Scanner Impressions 
 

Conventional impressions, which commonly involve elastomer such as vinyl 

polysiloxane and polyether, are considered cost-effective and resilient materials in practice 

for restorative dentistry (Jamani et al., 1989, Clancy et al., 1983, and Endo et al., 2006).  

Elastomers are characterized on their aqueous properties: (1) aqueous elastomers, which 

are dimensionally unstable, include agar, a reverse hydrocolloid poured immediately, and 

alginate, an irreversible hydrocolloid poured within ten minutes; and (2) non-aqueous 

elastomers, namely polyvinyl siloxanes (PVS), which exhibit moderate strength through 

dimensional stability, elastic recovery, and adequate contact angles on maxillary and 

mandibular arches.  

Distinct advantages exist in the application of conventional PVS impression 

material, including minimal and simple equipment, relatively inexpensive full-arch 

materials, high accuracy press, and a straightforward clinical technique well-established in 

dental communities (Christensen, 2008).  Despite these benefits, conventional impressions 

exhibit deficiencies, including messy preparations with debris material, potential patient 

discomfort during impressing, and air bubbles causing cast-pour errors (Christensen, 

2008).  Even with the emergence of alternative technology to overcome conventional 

impressions, most active clinicians are content using traditional impressions and feel little 

pressure to change these techniques serving their patients (Christensen, 2009). 

Digital impressions, accomplished without the required cast-pouring or die 

trimming, reflect distinct benefits over conventional methods, including eliminated mess 
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and clean-up procedures, improved patient comfort, and rapid transfer to laboratory 

locations for milling (Christensen, 2009).  In a study assessing efficiency outcomes 

between conventional and digital impressions, Lee et al. reported a lower preparation, 

working, and re-take time in digital impressions and lower level of difficulty conducting 

digital impressions for implant services (Lee et el., 2012).  A subsequent study by Lee 

documented the favorable perception and rapidly growing preference for digital 

impressions in dental student communities compared to active clinicians, suggesting a clear 

transition for newfound practitioners utilizing modern digital techniques (Lee et al., 2013).  

In a controlled clinical trial comparing a patient’s perceived source of stress, attitude, and 

perception between a standard, polyether arch bite impression and intraoral bite scan, 

digital impressions were considered the more efficient and comforting treatment plan 

(Yuzbasioglu et al., 2014). 

 
Conventional Pressing Technique 
 
 In 2015, the most common fabrication technique of ceramic restorations still 

remains the IPS Empress system created by Ivoclar Vivadent.  The manufacturer applies a 

hot-pressing of leucite glass-ceramic designed for single-unit crowns, inlays, onlays, and 

veneers (El-Mowafy et al., 2002).  IPS Empress fabrication is based on the following steps: 

(1) pre-sintered glass-ceramic ingots, (2) a mold wax-up by lost-wax procedure, (3) the 

ceramic placed in an automatic furnace to achieve viscous plasticity, (4) complete contour 

wax by phosphate-bonded dentin investment, (5) dentin-shading of the ingot, and (6) 

application of an outer-enamel porcelain layer to match optical properties (Dong et al., 

1992 and Holand et al., 2000).  Ivoclar Vivadent introduced IPS Empress II which 

incorporated a 60% lithium-silicate glass ceramic (Sorensen et al., 1998) that outperformed 
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leucite-reinforced porcelain in fracture toughness and flexural strength tests (Holand et al., 

2000).   

 
Lithium Disilicate 
 

Lithium disilicate, considered a special subset of particle-filled glasses, presents a 

crystalline filler engineered as a monolithic, high-strength (360-400 MPa) ceramic crown 

which (1) does not require a secondary layering or adhesive cementation bonds, (2) 

withstands normal masticatory forces, and (3) exhibits greater fracture resistance and 

flexural strength compared to pressed zirconia (Kim et al., 2014).  In 2005, Ivoclar 

Vivadent introduced IPS e.max lithium disilicate as a full-contour, monolithic ceramic 

press technique exhibiting the following physical properties: optimal flexural strength 

(360-400 MPa), high fracture toughness (2-3 MPa), and high thermal shock resistance, all 

while eliminating the dissimilar material interface previously observed in zirconia 

(Tysowski, 2009).  In manufacturing centers, IPS e.max press applies traditional lithium 

disilicate, composed of quartz, lithium dioxide, phosphor oxide, alumina, potassium oxide, 

and other components, through a series of melting, cooling, nucleating, and crystallizing 

of a glass ingot to produce a 70% volume of needle-like crystals.  Before the crystallization 

per volume is achieved, the company provides a wide variety of glass ingots with 

contrasting opacity and translucency levels to satisfy a clinician’s esthetic outcome – high 

opacity (HO), medium opacity (MO), low translucency (LT), and high translucency (HT) 

are the primary selections for anterior restorations (Ivoclar Vivadent, 2009). 

Dental literature suggests of clear transition in heat-pressing protocols to the use of 

monolithic lithium disilicate over bilayered or reinforced biomaterials.  A recent study 

evaluating fracture resistance by static loading determined that monolithically pressed 
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lithium disilicate crowns exhibited greater fracture resistance over zirconia/fluroapatite 

pressed-over crowns (Altamimi et al., 2014).  Likewise, the microstructure of lithium 

disilicate glass ceramic is shown to outperform feldspathic and leucite-reinforced materials 

with respect to resistance of crack formation and propagation during in vitro wear testing 

(Etman, 2009). 

 
Lava Chairside Oral Scanner (COS) by 3M ESPE 
 

With respect to intraoral scanners, the Lava COS system utilizes three-dimensional 

motion technology based on the following principles: (1) capturing images of data in real-

time from a single lens measuring depth at different perspectives, (2) measuring out-of-

plane coordinates of object points using an off-axis aperture element, and (3) utilizing 24 

million generated data points per scan through three overlapping images captured 

simultaneously (Rohaly et al. 2006 and 3M Technical Data Sheet, 2009).   

Logozzo presents a detailed description of the Lava COS scanning process and its 

digital conversion for manufacturing restorations.  An operator must prepare the area of 

interest by dusting all surface contacts using titanium dioxide powder, a substance which 

highlight contrast mediums on the gingiva surface.  Within the allotted time per arch, an 

operator uses the wand hand pulsating a blue light, a process known as “stripe scanning,” 

to scan the desired region at all proximal contacts.  If any coverage areas are insufficient, 

an operator can re-scan the errors via rotation and magnification of the model on screen to 

detect irregularities.  After the arches are complete, a closed-bite jaw record, or maximum 

intercuspal position, is required to properly articulate maxillary and mandibular positions 

for registration (Logozzo et al., 2011).  Next, the operator transmits these final images via 

a wireless prescription to a laboratory technician, who virtually customizes margins to 
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digitally cut a die, mark the margins, and generate a stereolithography (SLA) file.  When 

an SLA model is articulated with all operative, opposing, and bite scans, the file is sent 

back to the laboratory technician for the preferred finishing technique, usually heat-

pressing or virtual manufacturing (Birnbaum et al., 2009). 

Dental literature has established that among competitors within digital scanners and 

against conventional impression technique, Lava COS is considered a consistent and 

accurate scanning protocol for restorative services.  Schafer determined that the type of 

digital impression technique utilized in vitro, which examined iTero, cara TRIOS, CEREC 

AC, and Lava COS, significantly influences the marginal fit of lithium disilicate partial 

crowns (Schaefer et al., 2014).  Van der Meer et al. evaluated the intraoral scanning 

accuracy between CEREC, iTero, and Lava COS systems for a master model made from 

high-precision polyether-ether-ketone cylinders.  Lava COS exhibited the least scanning 

variance for spatial and angulation measurements between these cylinder centers and 

generated the fewest mean distance errors; this literature advocated it as the most accurate 

digital workflow for implant restorations (van der Meer et al., 2012).  Ender et al. compared 

the accuracy (trueness and precision) of an in vitro full arch model fabricated by Lava COS 

and Cerec AC Bluecam protocols compared to conventional impressions.  After data 

records were superimposed on the master model between impressions groups, the accuracy 

of digitally impressed arches were statistically similar to conventional impressions (Ender 

et al., 2011).  Güth et al. tested the in vitro accuracy of a titanium, four-unit fixed dental 

prosthesis reference model by (1) direct Lava COS data capturing, (2) digitizing a polyether 

impressions, and (3) indirect gypsum cast scanning using Lava Scan ST.  After datasets 

were aligned with a reference dataset, 3D divergences and positive or negative deviations 
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were calculated.  A direct digitalization using Lava COS showed a statistically significant 

and higher accuracy to the reference model compared to conventional impressions and 

indirect digitalization (Güth et al., 2013).  

 
Computer-Aided Design and Manufacturing (CAD/CAM) System 
 

The emergence of Lava Chairside Oral Scanner (3M ESPE), CEREC (Sirona), and 

iTero (Cadent) has enhanced the speed and quality of synergistic collaboration between 

chairside dental impressions and laboratory milling.  Using an accurate digital impression 

with proper occlusion, clinicians can fabricate all-ceramic restorations by aid of computer-

aided design and manufacturing (CAD/CAM), a subtractive technology, and open access 

systems – a combination which increases technically-sensitive precision for a finished 

product (Schaefer et al., 2013).  The elementary, former digital workflow for CAD/CAM 

is based the following execution: (1) data acquisition of a tooth’s geometry using an 

intraoral scanning device, (2) data processing into a virtual or physical cast, and (3) 

manufacturing of the cast in a nearby laboratory or remote production center (Touchstone 

et al., 2010 and Logozzo et al., 2011).  The CAM-processing of the restoration from CAD 

software is based upon a number of milling axes and path points, offering simple-to-

complex spatial directions depending on the complexity designated for geometric 

restoration.  Potential materials utilized in CAD/CAM include metals, resin, silica-based 

ceramics, infiltration ceramics, and aluminum and yttrium-stabilized oxide blocks (Beuer 

et al., 2008).  The former digital workflow overcomes the challenges for clinicians using a 

traditional workflow with impressions trays; challenges including mold instability, 

transport, or packaging, plaster pouring and solidification, delamination, lacerations on 
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margins, and geometrical inconsistencies between plaster model and real teeth (Logozzo 

et al., 2014). 

Beyond its streamlined operational advantages against PVS, CAD/CAM creates the 

desired flexibility for clinicians to customize dental restorations specific to a patient’s need 

(Noort, 2012).  The supplementary role of Chairside Economic Restoration of Esthetics 

Ceramics (CEREC), combined with CAD/CAM, can generate a scanned tooth surface in 

three dimensions and manufacture a restoration at a personal dentist’s office (Mormann, 

2006).  A virtual in-office milling produces convenient single-visit restorations, eliminates 

temporary restorations or repeated procedures, and offers financial flexibility for services 

that normally require extra appointments (Christensen, 2009). 

In combination with monolithic lithium disilicate, increasing in vitro evidence 

proposes a CAD/CAM crown restoration can compete, and possibly outperform, crowns 

fabricated from bi-layered CAD or layering-pressed techniques.  Monolithic lithium 

disilicate crowns from IPS e.max CAD are shown to withstand mouth-motion fatigue and 

resist fracture at higher loads over hand-layered-veneered IPS e.max ZirCAD crowns 

(Guess et al., 2010).  In determining the ultimate load to failure and chipping behavior of 

zirconia-framework crowns veneered by glass-infused lithium disilicate IPS e.max CAD 

or conventional manual-layering material, CAD/CAM crowns resisted artificial ageing at 

fractures up to 1600 N, while 87.5% of conventionally-veneered crowns failed during 

chewing stimulation (Schmitter et al., 2012). 

 
Digital Workflow and Marginal Integrity 
 

The marginal fit of all-ceramic CAD/CAM crowns fabricated from intraoral digital 

impressions is promising compared to conventional techniques, and contemporary work 
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considers accessible marginal accuracy (AMI) and internal fit (IF) as factors when 

analyzing the marginal integrity (Holmes et al., 1989).  Syrek et al. conducted an in vivo 

double-blind study in 20 patients preparing two zirconia crowns each, one fabricated by 

silicone two-step putty-wash impressions and the other fabricated by Lava COS.   

Compared to PVS impressions (71 µm), all-ceramic zirconia crowns subjected to Lava 

COS (49 µm) demonstrated significantly improved marginal fit, closer interproximal 

contact quality, and acceptable marginal discrepancy (Syrek et al., 2010).  Scotti et al. 

tested the accuracy of 37 zirconia-ceramic single crowns (anterior and posterior) made by 

Lava COS for 15 patients requiring a full-coverage restoration. After measuring for 

marginal and internal fitting values under a stereomicroscope, it was determined that the 

placement accuracy under clinical conditions was acceptable for Lava COS (Scotti et al., 

2011).  Seelbach et al. measured all-ceramic zirconia crowns impressed with multiple 

intraoral acquisition systems – Lava COS, CEREC, and iTero – compared to two-step and 

one-step putty wash impressions. After measurements were performed via a 3D-coordinate 

system and assessed at 50 points per crown for local deviations, digital impressions 

delivered comparable mean internal fit and accessible marginal inaccuracy similar to 

conventional methods.  Lava COS outperformed CEREC with respect to internal fit, an 

outcome possibly attributed to superior resolution properties during the scanning process 

(Seelbach et al., 2013).   

Despite encouraging progress in the digital workflow for all-ceramic restorations, 

dental literature indicates that marginal integrity is compromised compared to conventional 

technique.  Anadioti et al. released a study investigating the 3D and 2D marginal fit of 

lithium disilicate crowns fabricated by (1) PVS/IPS e.max press, (2) PVS/IPS e.max CAD, 
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(3) Lava COS/IPS e.max press, and (4) Lava COS/IPS e.max CAD.  In measuring the 

marginal integrity using 3D laser-coordination and 2D microscopic measurements at 

facial-lingual and mesial-distal locations, a conventionally impressed, IPS e.max pressed 

crown (3D: 48 µm, 2D: 40 µm) produced the most accurate marginal fit.  Lava COS/IPS 

e.max press (3D: 89 µm, 2D: 75 µm) and Lava COS/IPS e.max CAD (3D: 84 µm, 2D: 74 

µm) were still clinically acceptable.  In a subsequent study with similar group conditions, 

Anadioti measured the internal fit, again using 3D laser-coordination at axial walls and on 

the occlusal surface.  Lava COS/IPS e.max press crowns (211 µm) produced the least 

accurate and largest average internal gaps compared to a PVS-pressed crown (111 µm) and 

Lava/CAD crown (145 µm), suggesting that a complete or partial digital workflow does 

not satisfy internal fit standards (Anadioti et al., 2014 and 2015). 

Logozzo et al. presented the concepts of rapid digital workflow in 2014, a transition 

in working principles allowing a clinician who owns an intraoral scanner to conveniently 

mill restorations in-office within minutes.  These advances provide clinicians significant 

advantages over former digital workflow, including (1) database updates for existing 

patient profiles, (2) periodic restorations which optimize marginal preparations long-term, 

(3) simulations of surgical interventions on a digital model for cases requiring invasive 

treatment, and (4) streamlined esthetic outcomes desired by patients (Logozzo et al., 2014).  

In 2015, the application of CAD/CAM for fabricating definitive veneers is evolving 

through virtual esthetic treatment that facilitates feedback between clinician, patient, and 

laboratory technician (Lin et al., 2015).  Zandinejad et al. released a clinical case report 

detailing the costs and benefits of a comprehensive, cast-free digital workflow for anterior, 

maxillary laminate veneers.  In considering CAD design software as an alternative to 
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traditional pressing restorations, a digital workflow presented customizable, provisional 

veneers that optimized final shape, contour, and shading in a patient’s restoration – an 

advantage that comes at a cost, including higher laboratory fees, increased chair time and 

additional appointments (Zandinejad et al., 2015).  Considering the fast-growing, favorable 

perception of digital impressions within the dental student community (Lee et al., 2013), 

the impact of a cast-free digital workflow on clinical parameters for all-ceramic, anterior 

veneers is presently unexplored in vitro. 

Unlike the recent progress investigating digital techniques on all-ceramic crowns, 

no conclusive evidence exists to suggest that digitally impressed, anterior laminate veneers 

from CAD/CAM virtual design yield superior or inferior marginal fit differences against 

conventional approaches.  Evaluating marginal fit, through in vitro and clinical studies, 

would justify the contribution of digitally impressed veneers within esthetic anterior 

restorations, offer clinicians greater insight into the risks and benefits of digitally designed 

restorations, and provide a logical alternative to conventional impressions in dentistry. 

 
Research Objectives 
 

The primary purpose of this study was to evaluate and compare the marginal 

integrity of anterior lithium disilicate veneers fabricated from a digital workflow (Lava 

COS and CAD/CAM) compared to conventional technique (PVS impressions and IPS 

e.max press).  The secondary purpose of this study was to evaluate the gap distance trends 

of digitally impressed veneers, with respect to a 120 µm clinical threshold, against 

conventionally impressed veneers.  The null hypothesis (Ho) of this study is that the average 

marginal integrity of digitally impressed veneers exhibited a distance greater than or equal 

to 120 µm compared to conventionally impressed veneers.  The alternative hypothesis (HA) 
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is that the average marginal integrity of digitally impressed veneers exhibited a distance 

less than 120 µm compared to conventionally impressed veneers.
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II. MATERIALS AND METHODS 
 
Diagnostic Cast and Veneer Reduction 
 

Columbia dentoform was used as an in vitro model (Dentoform M-860, Columbia 

Dentoform Corporation, Long Island City, NY) to prepare a veneer on maxillary right 

central incisor (tooth #8). A diagnostic maxillary and mandibular cast was constructed 

using Jeltrate Regular Set Alginate impression material (Dentsply Caulk, Milford, DE) and 

Type IV dental stone (Jade stone, WhipMix Corp., Louisville, KY).  A reduction guide was 

fabricated with the cast using Clear Temporary Splint material (Buffalo Dental Mfg Co 

Inc., Syssoset, NY). 

Maxillary right central incisor tooth #8 was prepared using guidelines 

recommended as follows: preparation depth 1.5 mm incisally, 0.5 mm cervically, and 0.7 

mm facially using round-ended diamond cutting instruments (Braessler USA, Savannah, 

GA). 

 
Custom Tray Fabrication 
 

Ten (10) custom trays were made of the diagnostic casts using Triad TruTray 

Custom Tray Material (Dentsply, York, PA).  To block out undercuts in the jade stone cast, 

TruWax baseplate wax (Dentsply, York, PA) was heated in boiling water, pressed over the 

typodont cast, and reduced using a scalpel blade number 20 (Miltex, York, PA). Following 

baseplate placement, Triad TruTray material was draped and pressed over the maxillary 

arch, trimmed with scalpel, and set in a light curing unit (Triad 2000 Dental, Dentsply, 
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York, PA) for eight minutes.  After curing, a carbide acrylic bur (Faskut Carbide Cutter, 

216C, Dentsply, York, PA), polishing brush (Polishing Brushes-Coarse, Medium, and 

Fine, Dentsply, York, PA), pumice and pumice wheel (CL-85 Pumice, Whip Mix, 

Louisville, KY) was used to smooth edges and finish the custom tray. 

 
Conventional Veneers 
 

Using ten fabricated custom trays, ten conventional impressions were taken of the 

prepared tooth on a selected typodont using light and heavy body polyvinyl siloxane (PVS) 

as a one-step impression (Dentsply, Aquasil Ultra, York, PA) following manufacturer 

instruction.  Conventional impressions were sent to a commercial dental lab for Type IV 

die stone pouring and casting.  Ten monolithic, ceramic veneers were created from a 

traditional IPS e.max hot-press technique: (1) low translucency, lithium disilicate glass 

ingots waxed up to full contour; (2) melting, cooling, nucleation, and crystallization steps 

of glass ingots; and (3) pressed microstructure crystals resulting in 70% lithium disilicate 

veneers (LT IPS e.max Press, Vita A2; Ivoclar Vivadent).  Samples were delivered back 

for marginal integrity testing. 

 
Digital Veneers 
 

Ten digital impressions were taken of dentoform on (1) the maxillary arch holding 

a reduced veneer model, (2) the opposing mandibular arch, and (3) a closed-jaw record 

using a Lava COS scanner (Software Version 3.0.2, 3M ESPE, St. Paul, MN) according to 

manufacturer’s recommendations.  Titanium dioxide ESPE Lava scanpowder (3M ESPE, 

St. Paul, MN) was lightly administered as a contrast medium on both arches of the 

dentoform and closed-jaw record before each subsequent scan.  Complete scan coverage 
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was achieved in the allotted time assigned for each sample. The intraoral scanner 

overlapped all information obtained from maxillary, mandibular, and closed-bite scans to 

form a complete bite registration.  Files were then sent electronically to a commercial 

dental laboratory (Roy Dental Laboratory, New Albany, IN) for virtual preparation and 

design of laminate veneer margins.  The designed veneers were sent to milling centers for 

post-processing and veneer fabrication using IPS e.max computer-aided design and 

manufacturing (CAD/CAM) with lithium disilicate glass-ceramic block (LT e.max CAD, 

Vita A2; Ivoclar Vivadent).  Milled and processed restorations were delivered back for 

marginal integrity testing. 

 
Marginal Gap Measurement 

All 20 veneers fabricated by conventional and digital impressions were divided in 

two designations, Group 1 and Group 2, in double-blind fashion by a supervisor 

prosthodontist.  Four separate baseplate wax moldings were created to allow resting 

position in four orientations.  These wax moldings were shaped and sculpted at equal 

heights to allow the clearest magnification and light contrast of each sample holding a 

ceramic veneer covering.  All veneers were positioned on each indented baseplate wax 

molding for buccal, distal, mesial, and palatal orientations.  The marginal gap was 

measured under 45X magnification using a stereomicroscope attached to a microscopic 

camera and captured by Windows Movie Maker software. 

Three images were recorded per orientation: (1) at the mid-point initially marked 

by a prosthodontist’s penmark and one full image frame (2a) above and (3a) below the pen 

marking or one full image frame (2b) right and (3b) left of the pen marking.  Depending 

on the orientation designation (B, D, M, P), the mid-point image was labeled “1”, frames 
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above and below were labeled “2” and “3”, and frames to the right and left were labeled 

“2” and “3”.  Before capture, each ceramic veneer placed upon the resting model was fitted 

as tightly as possible by the operator according to gravity.  Specimens were not cemented 

for any measurement, and no operator hand-pressure was applied to the model and its 

ceramic sample at any moment during image acquisition.  All images were recorded in one 

session under normal laboratory conditions. 

Two images were not recorded due to unreadable gap distances on the 

stereomicroscope: the third image in Sample 2 of Group 1 at the buccal region recorded a 

gap distance wider than the 45X frame, while Sample 7 in Group 2 at the palatal region 

recorded a maximum pressed gap distance between the veneer and the sample. 

 
Image Analysis 
 

Relative gap distance was calibrated using a standard 1 mm (1000 µm) scale 

captured at 45X.  Using free ImageJ software downloaded for Window 7, the calibrated 

scale was standardized to a certain pixilation distance by aligning gap distance with respect 

to pixel length (467 pixels = 1 μm).  Three gap distance lines were drawn and filled per 

captured image: (1) largest possible value, (2) smallest possible value, and (3) the 

operator’s best fit representation of the distance.  From these three measurements, mean 

gap size (X̅) and standard deviation (S.D.) was calculated and displayed per image per 

orientation per sample for Groups 1 and 2.   

Image acquisition resulted in 119 images for Group 1, 119 images for Group 2, and 

738 data points in total for analysis.  The mean, standard deviation, best fit, smallest, and 

largest values were inputted and saved into a Microsoft Excel spreadsheet, and data was 



 
 

21 
 

transferred and entered into free SPS Statistics software (Version 17.0) downloaded on 

Windows 7.  All calculation entry into SPSS code occurred by guidance of a biostatistician. 

 
NOTE: An analysis of variance comparison between the mean margin and best fit margin 

was generated to determine the least biased metric for successive calculations.  The average 

gap exhibited greater statistical significance in two-way and one-way ANOVA calculations 

over the operator’s best fit margin.  Therefore, the average (mean) gap, which accounted 

for the largest, smallest, and best fit value, was utilized in all calculations requiring the 

mean statistic. 
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Reference Images 
 

 
(1) An in vitro diagnostic cast of the maxillary right central incisor.  The ceramic cast 
was prepared 1.5 mm incisally, 0.5 mm cervically, and 0.7 mm facially. 
 

 
(2) Final custom trays of the diagnostic cast.  Custom trays were prepared using Triad 
TruTray material and TruWax baseplate wax, cured for dryness, and polished using a 
carbide acrylic bur and pumice wheel. 
 

 
(3) Light and heavy body PVS impressions of the typodont.  Conventional impressions 
were sent for stone casting and high translucency IPS e.max press. 
 
 
 
 
 

 



 
 

23 
 

 
(4) Complete arch digital impressions (Lava COS) of the dentoform.  Impressed 
veneers were sent for virtual IPS e.max CAD/CAM milling and processing. 
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(5) Marginal integrity testing using a stereomicrosope (45X).  All veneers were fitted 
on the cast using wax moldings for normal resting position during imaging. 
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(6) Orientations of fitted veneers in buccal (B), palatal (P), mesial (M), distal (D) 
position.  Specimens were not cemented for any measurement. 

 

 
(7) Calibrated scale indicating gap distance (1 mm = 1000 µm) at 45X.   

ImageJ standardized gap distance with respect to pixel length (467 pixels = 1 μm).   
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(8) Calculated gap distance using three image frames per orientation. Largest, 
smallest, and best fit values shown.  Mean gap size and standard deviation displayed. 
Buccal | Palatal Mid-point, one full image frame right and left of pen marking. 
Mesial | Distal Mid-point, one full frame above and below pen marking. 
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III. STATISTICAL ANALYSIS 
 

Summary statistics, which included the mean, standard deviation, maximum, 

minimum, and number of samples, were generated for gap measures (µm) stratified by 

impression technique and location.  All recorded images were utilized in the generation of 

this table.  Average gap measures were measured (1) between digital and conventional 

impressions, with subsequent outliers and (2) between impression technique and their 

locations, accounting for ± 2 standard error bars. 

Summary statistics for the mean gap measures (µm) per sample were generated and 

graphed comparing all image positions and penmark positions (P1, M1, D1, and B1).  The 

smallest mean gap measure (μm) at individual positions was tabulated and graphed for all 

ten samples per impression technique. 

The frequency of mean gap cutoffs by impression technique was calculated using 

two distance thresholds at ≥ 120 µm and < 120 µm.  With respect to these cutoffs, the mean 

frequency was displayed in numerical tally and percentage format for (1) digital, (2) 

conventional, and (3) digital + conventional conditions. 

 
Analysis of Variance (ANOVA) 

 
A repeated measures mixed-effects (RMME) model was utilized to calculate two-

way analysis of variance (ANOVA) between groups and groups and their locations.  Fixed 

effects included impression technique and location, while random effects included the 
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sample.  An additional covariance term for repeated measures included location 

(orientation) to determine significant differences between impression techniques.   

The RMME model was defined in the following form: 𝒚𝒎𝒆𝒂𝒏 =  𝝁 +  𝜶𝒊 + 𝜷𝒋 +

 (𝜶𝜷)𝒊𝒋, where µ was the overall mean, α was the main effect of groups, β was the main 

effect of positions, and αβ was the interaction effect between groups and positions.  The 

source, sum of squares, degree of freedom, mean square, F value, and significance (α = 

0.05) was calculated to determine if a location effect exists on impression technique 

differences.  If significant (p < 0.05), the impression technique effect was analyzed 

separately with location by testing contrasts within the interaction model. 

One-way analysis of variance (ANOVA) within individual groups and their 

positions was calculated.  The model was defined in the following form: 𝒚𝒎𝒆𝒂𝒏 =  𝝁 +  𝜶𝒊, 

where µ is the overall mean and α was the main effect of position.  The source, sum of 

squares, degree of freedom, mean square, F value, and significance (α = 0.05) was 

calculated to determine whether there is a location effect on individual impression 

techniques. 

 
T-Test 
 

A t-test was conducted on both groups to (1) determine whether the means of 

impression techniques were statistically significant and (2) accept or reject the study’s null 

hypothesis.  The null hypothesis (Ho) stated that digitally impressed veneers exhibited an 

average gap distance ≥ 120 µm compared to conventionally impressed veneers, while the 

alternative hypothesis (HA) stated that digitally impressed veneers exhibited an average 

gap distance < 120 µm compared to conventionally impressed veneers.  Statistical 

significance (α = 0.05) was calculated from t-values for each impression technique.  If 



 
 

29 
 

significant (p < 0.05), the null hypothesis was rejected and the alternative hypothesis was 

accepted.  If not significant (p > 0.05), the null hypothesis was not rejected and the 

alternative hypothesis could not be accepted. 

 
Chi Square Test 
 

Pearson’s Chi Square test was calculated to determine (1) degree of significance 

and (2) whether the frequency distribution within a certain event (gap variance) observed 

in each sample was consistent with a particular theoretical distribution (impression 

technique).  A 2 x 2 table was generated between impression technique and its binary 

marginal gap using distance cutoffs ≥ 120 µm and < 120 µm.  The χ2 statistic value 

generated a p-value significance term.  If significant (p < 0.05), observed differences 

between categorical data arose by chance and significant association existed between an 

impression technique and its gap.  If not significant (p > 0.05), observed differences 

between categorical data did not arise by chance and there was insignificant association 

between an impression technique and its gap. 

 
Odds Ratio 
 

The odds ratio measured effect size and strength of association between two binary 

distance cutoffs ≥ 120 µm and < 120 µm.  The 2 x 2 table generated an odd-ratio (OR) 

statistic value and corresponding p-value significance between impression techniques.  If 

significant (p < 0.05), the presence or absence of property A (≥ 120 µm) was closely 

associated with the presence or absence of property B (< 120 µm) in a given group.  If not 

significant, (p > 0.05), the presence or absence of property A (≥ 120 µm) was not closely 

associated with the presence or absence of property B (< 120 µm) in a given group.
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IV. RESULTS 
 
The mean marginal gap measurements within digital and conventional impressions 
were statistically significant between impression techniques and all locations. 
 
 

A summary of two-way ANOVA for average gap (X̅) and best fit gap size between 

impression technique and their positions is depicted in Table 1.  Compared to the best fit, 

the mean measurement was (1) equally significant at all images per position and (2) more 

significant at penmark locations between positions (p = 0.025) and groups and their 

positions (p = 0.000).  A summary of one-way ANOVA in Table 2 compared digital and 

conventional groups separately at all images per position, generating a similar trend.  The 

average gap was as significant (p = 0.000) for digital impressions and more significant (p 

= 0.004) for conventional impressions than the best fit measurement. 

Overall mean gap measures (μm) by impression technique are depicted in Table 3 

and Table 4 at all positions and mid-point penmark positions.  At all positions, digital 

impressions recorded an overall average gap size of 148.8 μm, while conventional 

impressions recorded an overall average gap size of 103.6 μm, a distance difference of 

approximately 45 μm.  At penmark positions, digital impressions recorded an overall 

average gap size of 135.9 µm, while conventional impressions recorded an overall average 

gap size of 95.8, a distance difference of approximately 40 µm.   
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Compared to conventional impressions, digital impressions exhibited greater mean 
gap distances at all orientations. 
 
 

Figure 1 graphically displays the overall mean gap measure for digital and 

conventional samples at all positions.  Digital impressions, despite larger overall gap size, 

produced only one outlier value at 380.7 μm within all ranges of sample distances.  In 

contrast, conventional impressions produced eight outliers through its sample set with 

extremes spanning 307-464 μm.  Figure 3 and Figure 4 graphically displays average mean 

gap (µm) measures at all positions and penmark positions by impression technique for each 

sample.  Digital impressions, on average, exhibited larger mean gap distances at all 

orientations compared to conventional impressions. 

 
As a clinical indicator, digital impressions reported fewer “good fit” locations and 
gap frequencies. 
 
 

A summary of average gap measures (μm) by impression technique and individual 

location is depicted in Table 5 and graphically in Figure 2.  In digital impressions, the 

average gap size in microns for palatal, buccal, mesial, and distal measuring locations were 

215.9 (± 74.9), 130.9 (± 50.6), 116.8 (± 91.9), and 130.9 (± 81.8). In conventional 

impressions, the average gap size in microns for palatal, buccal, mesial, and distal 

measuring locations were 71.3 (± 109.4), 57.0 (± 25.2), 117.0 (± 107.5), and 168.2 (± 85.4).  

The smallest overall mean gap was reported at the mesial position (116.8 μm) for digital 

impressions and at the buccal position (57.0 μm) at conventional impressions.  Using a gap 

distance less than 120 μm as an indicator of good fit, digital impressions only reported one 

average good fit at the mesial location, whereas conventional impressions reported three 

average good fits at palatal, buccal, and mesial locations. 
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A frequency of mean gap cutoffs by impression technique for digital impressions, 

conventional impressions, and digital + conventional impressions is displayed in Table 6.  

Using gap cutoffs of ≥ 120 µm and < 120 µm, digital groups reported 55% ≥ 120 µm and 

44.5% < 120 µm, while conventional groups reported 27.7% ≥ 120 µm and 72.3% < 120 

µm.  Tallied together, digital plus conventional impressions reported 41.8% ≥ 120 µm and 

58.2% < 120 µm. 

 
Compared to conventional veneers, digitally impressed veneers underperformed at 
the smallest reported mean gap measures. 
 
 

The smallest mean gap measure (µm) at each position across all samples by 

impression technique is depicted in Table 7.  In digital impressions, the smallest mean gap 

measure across all samples was reported at the mid-point mesial penmark at 77.6 µm.  In 

conventional impressions, the smallest mean gap measure across all samples was reported 

at the upper buccal mark at 48.63 µm and mid-point buccal penmark at 49.4 µm.  The 

smallest mean gap measures (µm) across all samples at mid-buccal (D: 132.4, C: 49.4, ΔGap 

= 83.0), mid-desial (D: 119.6, C: 170.5, ΔGap = 50.9), mid-mesial (D: 77.6, C: 95.8, ΔGap = 

18.1), and mid-palatal (D: 213.8, C: 67.5, ΔGap = 146.3) penmarks is displayed in Table 8.  

The largest mean gap differential between groups was observed at mid-palatal (146.3 µm) 

locations. 

 
With respect to impression technique and location, digital and conventional 
impressions were statistically significant between groups and within groups. 
 
 

Two-way analysis of variance of mean gap measures by impression technique and 

location was depicted in Table 9.  At all images per position, the main effects of groups (p 
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= 0.000), positions (p = 0.016), and between groups and their positions (p = 0.000) were 

statistically significant at α = 0.05 level of significance.  At mid-buccal, mid-distal, mid-

palatal, and mid-mesial penmarks, the main effects of groups (p = 0.023), positions (p = 

0.025), and between groups and their positions (p = 0.000) were statistically significant at 

α = 0.05 level of significance.  One-way analysis of variance of mean gap measures by 

impression technique was depicted in Table 10 using positions as a source.  At all images 

per position, both digital impressions (p = 0.000) and conventional impressions (p = 0.004) 

were statistically significant at α = 0.05 level of significance. 

 
The null hypothesis was not rejected for digital impressions, whereas the alternative 
hypothesis was accepted for conventional impressions. 
 
 

A t-test of the null hypothesis (Ho: µ ≥ 120) and alternative hypothesis (H1: µ < 

120) by impression technique is depicted in Table 11.  Digital impressions (t = 3.686, p = 

0.990) were not statistically significant from the null hypothesis, and Ho = µm ≥ 120 was 

not rejected.  Conventional impressions (t = -1.820, p = 0.035) were statistically significant 

from the null hypothesis, and Ho = µm ≥ 120 was rejected.  The alternative hypothesis (H1 

= µm < 120) was accepted for conventional impressions. 

 
Compared to conventional impressions, digital impressions were three times more 
likely to exhibit gap distances greater than 120 µm. 
 
 
Pearson’s Chi Square test using gap cutoffs (≥ 120 µm and < 120 µm) by impression 

technique is displayed in Table 12.  Pearson’s Chi Square test reported χ2 = 14.77.  Odds 

ratio reported a 3.040 score with 95% CI and p < 0.05.  The odds of gap distances ≥ 120 
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µm were approximately 300% more likely to occur in digital impressions compared to 

conventional impressions, and this result was statistically significant. 
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VI. DISCUSSION 
 

Within the possible limitations of this study, digitally impressed, virtually designed 

veneers exhibited statistically significant, larger marginal gap compared to conventionally 

impressed veneers.  Using 120 µm as the maximum and acceptable clinical indicator, 

digital impressions, in conjunction with computer-aided designed and computer-assisted 

manufacturing, were shown in vitro to display inferior marginal fit when compared to 

conventional technique.  The null hypothesis, stating digitally impressed veneers would 

exhibit an average marginal gap greater than or equal to 120 μm, could not be rejected.  

An effort was made in creating the most effective, standardized in vitro model to 

measure accuracy in the laboratory.  Veneers manufactured from both impressions were 

blindly grouped and marked in numbers by the mentor without any prior communication 

to the operator.  Ideal standardization in experimental design and execution was aimed at 

eliminating as many potential variances and biases during the image acquisition process 

and statistical analysis.  All images were recorded in a single laboratory sessions using the 

same microscopic set-up to eliminate variances in lighting, magnification, or resolution 

clarity.  

Beyond the original mid-point positions at buccal, distal, palatal, and mesial 

locations, the veneer’s orientation was measured in two additional areas surrounding the 

proximity of that penmark.  This approach yielded three images per orientation per sample 

and ultimately produced a similar average gap trend at all positions versus penmark 

positions.  Added locations for measurement reinforced the power sample, enhanced an 
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impression’s strength of significance, and compounded association between impression 

technique and its gap outcome.  With the exception of two images recording unreadable 

gap distances out of frame or too tightly pressed against the veneer, all images and data 

points were utilized in analyzing impression techniques. 

Preliminary images displayed mild gap inconsistencies across an image and in 

observing the smallest and largest gap scores.  Thus, it was deemed appropriate to test 

whether the mean or operator’s best fit would most accurately eliminate gap discrepancies 

and ideally represent gap distance within each sample.  Before data analysis, the statistical 

significance between the mean, utilizing the largest and smallest value, and the operator’s 

best fit margin, reflecting the most consistent gap distance, was compared for all recorded 

images.  For all statistical analysis measures, the mean gap measurement per image was 

utilized in lieu of the best fit margin.  However, it is safe to assume that any statistically 

significant results generated in this study could be replicated using the operator’s best fit 

marginal score – the significance (p < 0.05) for two-way and one-way ANOVA between 

impression technique and gap outcome were observed in either approach. 

 As an in vitro model, digitally impressed, virtually designed, and milled ceramic 

veneers exhibited inferior marginal gap against conventional samples by deviating 

significantly from a clinical gap cutoff.  The overall mean gap in digitally impressed 

veneers exceeded the 120 µm threshold at all frameshift images and lone penmark 

positions.  Digital samples displayed a gap distance 45 μm and 40 μm greater than 

conventional samples at all positions and penmark positions, respectively.   

Inferior margins within digital samples arose at all measured orientations besides 

the mesial location, which barely fulfilled the theoretical clinical threshold.  In contrast, 
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conventionally impressed veneers performed significantly under 120 μm at three 

orientations, the one exception being the distal location.  Digital veneers, while less 

marginally accurate, were collectively very precise – only one digital outlier value existed 

in the entire study, compared to multiple outliers observed within conventional samples 

with noticeable extremes.  This behavior lends credence to the idea that intraoral scanners, 

despite inferior accuracy for anterior veneers in an in vitro study, can reliably duplicate a 

consistent (albeit larger) gap distance for in vitro restorations. 

The palatal orientation was the most inaccurate marginal gap displayed within 

digital impressions, yielding 96 µm above the gap threshold.  This inaccuracy can be 

attributed to the difficulty in which a Lava COS scanner acquired and captured data points 

at the palatal position on the dentoform.  Conventionally impressed veneers significantly 

outperformed digital samples at the palatal and buccal orientation, an anticipated outcome 

for PVS material pressing tightly on sides adjacent to the palate or inside the cheek. 

Changes in gap distance at the mid-point penmark between impression techniques 

offered a unique perspective on the intraoral scanning coverage of a veneer model.  

Digitally impressed veneers underperformed against conventional samples at the smallest 

observed mid-buccal and mid-palatal positions by 83 μm and 146 μm, respectively.  

However, digital veneers outperformed conventional veneers at the smallest observed mid-

distal and mid-mesial positions by 51 μm and 18 μm.  This behavior suggests that digitally 

impressed veneers in vitro can be reliably fit at mid-points toward the arch midline. 

Variance analysis and t-testing effectively supported the statistically significant 

difference required to accept or reject the study’s null hypothesis.  Since digitally 

impressed veneers exhibited an average marginal gap greater than or equal to 120 μm, the 
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null hypothesis could not be rejected for digital samples.  On the contrary, the null 

hypothesis was rejected for conventional impressions, and the alternative hypothesis that 

conventionally impressed veneers exhibited an average marginal gap less than 120 μm was 

accepted. 

Based on results from a consistent and thorough experimental design, the frequency 

distribution within a certain event, gap variance, was strongly associated with a theoretical 

distribution, fabrication technique, in all samples.  Any observed trends in marginal gap 

between impression techniques were not affected by external, confounding variables 

beyond operator control.  This finding is noteworthy, considering dental literature 

implementing in vitro models often decrease their study’s value by producing outcomes 

influenced by outward factors such as room conditions or skillset factors such as imprecise 

measurement.  Additionally, while the odds ratio alone would not singularly suffice to 

indicate strength of association, it further supplemented the presence or absence of a 

particular gap outcome within impression groups.  Digitally impressed veneers were 

approximately three times more likely to exhibit the presence of a marginal distance greater 

than or equal to 120 μm in the absence of a marginal distance less than 120 μm. 

Two minor limitations existed in this study.  First, the baseplate wax indentations 

for each resting position accounted for only forces of gravity after the ceramic veneer was 

placed.  This proved to be difficult in measuring samples at certain orientations, particularly 

in veneers not seated as tightly as possible without additional finger pressure, which created 

omissions – one measurement in palatal region for conventional samples due to the veneer 

pressing so tightly against the sample, another in the buccal region for digital samples due 

to the veneer falling out of frame.  Second, in taking digital impressions, titanium dioxide 
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ESPE Lava scanpowder was required to optimize scan coverage by contrasting surface 

medium, but its administration did not guarantee that unexposed margins could be properly 

acquired within a time limit.  The influence of scanning powder on precision is currently 

unexplored; although the Lava COS algorithm created real-time images by overlapping 

data points, any miniscule coverage errors resulting from unreached areas scored a larger 

gap distance and influenced inaccurate milling.  However, these limitations were both 

beyond operator control and should not serve as a deterrent to the statistically significant 

results produced between groups. 

To consider these findings as a concrete indication for the inferior quality of 

digitally impressed, virtually designed, and milled veneers is impossible to conclude with 

certainty.  The digital samples in this study followed three central steps differing from 

conventional technique, which included (1) an intraoral scanner used by an operator rather 

than material pressed against a tooth surface, (2) electronically transmitted data scans for 

virtual design of veneers instead of a wax-up to full contour, and (3) milling of a final 

restoration at a remote production center in lieu of investment and pressing of ceramic by 

a technician.  Virtual-to-manufacturing limitations are common when sharp, abrasive 

diamond-cutting instruments become compromised from heavy, previous usage, causing 

marginal cheapening of ceramic material.  Since veneers demand a scrupulous geometric 

reduction, any shortcoming in these manufacturing steps affected the delivered marginal 

integrity of digital casts.   

Optimal margins from digital design closely correlate with the competency of a 

laboratory technician operating this milling equipment.  Tsitrou et al. addressed the 

limitations of machining by investigating a dental material’s chipping factor with respect 
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to its brittleness index; in evaluating composite material (Paradigm MZ100), feldpsathic 

(VITA MKII), leucite reinforced glass ceramic (ProCAD), and lithium silicate glass 

ceramic (IPS e.max CAD), lithium silicate glass ceramic exhibited the highest brittleness 

index and the greatest chipping factor – an indicator more likely to produce inferior 

marginal indicators during the milling process (Tsitrou et al., 2007).  Giannetopoulos et al. 

assessed the average chipping factors between lithium disilicate IPS e.max CAD copings 

of CEREC inEos and EVEREST systems based on differing bevel angles.  Only CEREC 

software was shown to significantly produce a greater chipping factor from a 60-degree 

bevel compared to lower angles (30-degree and 0-degree bevels, respectively).  However, 

this observation is only partially supported, suggesting that (1) subtractive methods 

between CAD/CAM systems are inconsistent and (2) finish line preparation with acute 

beveling potentially disrupts marginal integrity and longevity (Giannetopoulos et al., 

2010).  Anadioti found that lithium disilicate crowns fabricated from Lava COS/IPS e.max 

CAD (73 µm) exhibited statistically comparable mean marginal gap to PVS/IPS e.max 

CAD technique (76 µm), indicating that either impression can be reliably applied in a 

clinical setting when virtual milling is the final manufacturing consideration.  However, 

when comparing Lava COS/IPS e.max CAD with PVS/IPS e.max press (39 µm), a 

digitally-impressed, virtually-designed crown still underperformed in marginal gap against 

complete conventional technique (Anadioti et al., 2014).  These findings support the results 

in this veneer study, suggesting that a digital workflow requires substantial preparation, 

design, and milling improvements to compete with a conventional workflow involving 

PVS materials.  Moreover, these factors bring to attention the possible, evolving definition 
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of “good fit” for CAD/CAM restorations and whether the clinical limit should be elevated 

to more properly validate clinical outcomes for the anterior region. 

Aside from machining limitations, a cast-free, digital workflow for restorations 

inherently restricts fine detailing and surface techniques from a laboratory technician, 

limits thickness and shading metrics, and demands a steeper learning curve against standard 

hot-pressing or feldspathic-layering methods (Zandinejad et al., 2015).  Over time, 

computer-assisted design and manufacturing will be improved as digital protocols become 

streamlined and commercially popular in practice for prosthodontists to utilize in anterior 

restorations.  With respect to this study, the reproducibility and dimensional repeatability 

of a maxillary right central incisor with Lava COS is promising and reliable in vitro.  

Balakrishnama et al. produced 25 intraoral scans of one prepared anterior and one posterior 

copper die, analyzing scans for dimensional surface area deviations.  Lava COS exhibited 

anterior repeatability ≤ 5.8 µm and posterior repeatability ≤ 10.9 µm, displaying clinical 

acceptability for crown or bridge restorations (Balakrishnama et al., 2009).  While there is 

confidence that both experimental groups omitted confounding variables from tooth 

preparation, scanning design, and milling, successive in vitro veneers studies would aid in 

advancing our results. 

As the digital workflow evolves, the impact of proper faculty instruction on 

graduate dental students is vital to the transition of digital impressions and CAD/CAM 

software in aesthetic dentistry.  Supervised prosthodontic clinics should reflect CAD/CAM 

as an alternative workflow to conventional wax-up and not as a direct replacement when 

considering possible treatment plans in high-esthetic restorations (Zandinejad et al., 2015).  

Obtaining satisfactory data points with an intraoral scanner, particularly from rotating the 



 

50 
 

scanning wand in multiple orientations, presents advanced training beyond normal skillsets 

acquiring interproximal margins from PVS impression materials (Abdel-Azim et al., 

2015).  At the very least, an improved efficiency workflow can justify introducing 

contemporary technology to pre-doctoral students during faculty instruction.  The 

significantly reduced delivery time in scanning a preparation, opposing dentition, and its 

closed-jaw bite registration should serve as a promising starting point to its usage in clinical 

settings. 

Recent trends in technology suggest that modern prosthodontists support digital 

scanners in practice and can effectively compensate for any potential setbacks seating a 

digitally impressed ceramic restoration in the posterior or anterior region.  Regardless of 

shortcomings presented with digital workflow, a marginal gap larger than 120 µm, while 

deemed unacceptable in dental academia, may not be very critical to long-term, restorative 

success in veneers when using adhesive resin cements.  Literature indicates that Cercon 

zirconia crowns against conventional IPS Empress II ceramic and metal crowns exhibit 

comparable margins within 120 µm acceptability – a distance variance that may be 

shortened using greater adhesive luting-agent viscosity, corrected luting space settings on 

CAD/CAM systems  (Baig et al., 2010), and an acceptable modulus of elasticity during 

masticatory forces (Shahrbaf et al., 2014).  Brawek et al. compared the marginal fit of 

digitally-impressed Lava COS (51 µm) and CEREC (81 µm) posterior crowns, stating that 

gap discrepancies from intraoral scanner competitors may not be clinically relevant if 

fitting occurs under 120 µm (Brawek et al., 2013).  However, dental literature does not 

address (1) whether a maximum, tolerable limit of 120 µm in veneers can be offset with 

compensatory techniques, (2) whether optimal function is maintained in veneers deviating 



 

51 
 

above 120 µm, and (3) if wider margins recorded from digital workflow ultimately hinders 

long-term clinical outcome in anterior restorations. 

In terms of all-ceramic veneers, future in vitro avenues include testing the marginal 

and internal fit for conventional/press, conventional/CAD, digital/press, and digital/CAD 

conditions in lithium disilicate veneers.  Determining an interaction, if any, between 

combinations of impression material and fabrication technique would offer clinicians 

greater flexibility in customizing anterior restorations independent of fixed protocols, 

potentially melding a hybrid workflow.  Another consideration would include using digital 

shape scanning and processing (DSSP) to virtually measure 3D and 2D margins on a master 

die with processing software in lieu of a manual stereomicroscope by an operator. 

This in vitro study requires future in vivo follow-up to compare the longevity of 

veneer restorations fabricated from digital work flow – digital scanning, virtual design, and 

milling – in comparison to conventional technique.   These considerations, along with the 

findings in this study, can create a powerful argument towards the progression of digital 

design in practice and academia. 
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VII. CONCLUSIONS 
 
Within the possible limitations of this study, the following conclusions were drawn: 

 
1. Digitally impressed, virtually designed, and milled lithium disilicate veneers 

exhibited significantly larger marginal gaps than conventionally impressed, pressed 

veneers.   

2. Digitally impressed, virtually designed, and milled lithium disilicate veneers 

exhibited statistically significant margins greater than or equal to 120 µm compared 

to conventionally impressed, pressed veneers. 

 
Using 120 µm as the maximum and acceptable clinical indicator, digital samples were 

shown in vitro to display inferior marginal fit when compared to conventional samples.  

The null hypothesis, stating cast-free, fabricated veneers would exhibit an average marginal 

gap greater than or equal to 120 μm, could not be rejected. 
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VIII. CLINICAL APPLICATIONS 
 

This in vitro study does not account for any obstacles or limitations faced within an 

in vivo environment.  Factors such as salivary flow, impression placement, treatment 

complications and adverse biomaterial response, and patient compliance may affect a 

statistically significant marginal fit between impression techniques.  Using 120 µm as a 

clinical indicator, a cast-free technique in vitro to fabricate anterior lithium disilicate 

veneers would not be considered a suitable alternative to conventional technique.  Future 

in vivo studies should be conducted to more precisely evaluate the results of this study and 

in a clinical application.
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APPENDIX A 
 
TABULATED RAW DATA 
 

Group Sample Position Smallest Best Fit Largest Mean SD 
G1 S1-P1 P1 113.98 146.24 184.95 148.39 35.53 
G1 S1-P2 P2 113.98 135.48 163.44 137.63 24.8 
G1 S1-P3 P3 103.23 176.34 176.34 151.97 42.22 
G1 S1-B1 B1 27.96 49.46 53.76 43.73 13.83 
G1 S1-B2 B2 51.61 126.88 163.44 113.98 57.02 
G1 S1-B3 B3 27.96 32.26 73.12 44.44 24.93 
G1 S1-M1 M1 19.36 30.11 32.26 27.24 6.91 
G1 S1-M2 M2 32.26 58.07 62.37 50.9 16.28 
G1 S1-M3 M3 23.66 32.26 36.56 30.82 6.57 
G1 S1-D1 D1 27.96 40.86 70.97 46.5 22.07 
G1 S1-D2 D2 32.26 96.77 113.98 81 43.08 
G1 S1-D3 D3 17.2 23.66 23.66 21.51 3.73 
G1 S2-P1 P1 300.43 311.16 347.64 319.74 24.75 
G1 S2-P2 P2 308.17 320.83 339.83 322.94 15.94 
G1 S2-P3 P3 303.95 314.5 341.94 320.13 19.61 
G1 S2-B1 B1 211.07 238.51 280.73 243.44 35.08 
G1 S2-B2 B2 179.41 192.08 230.07 200.52 26.36 
G1 S2-M1 M1 19.31 38.63 64.38 40.77 22.61 
G1 S2-M2 M2 364.22 381.47 396.55 380.75 16.18 
G1 S2-M3 M3 178.11 182.4 184.55 181.69 3.38 
G1 S2-D1 D1 189.66 211.21 226.29 209.05 18.41 
G1 S2-D2 D2 298.28 330.37 332.62 320.46 19.23 
G1 S2-D3 D3 64.38 120.17 128.76 104.44 34.96 
G1 S3-P1 P1 166.75 170.97 187.86 175.19 11.17 
G1 S3-P2 P2 160.42 175.19 194.19 176.6 16.93 
G1 S3-P3 P3 139.49 186.7 199.57 175.25 32.64 
G1 S3-B1 B1 115.88 124.46 128.76 123.03 5.56 
G1 S3-B2 B2 98.71 148.07 90.09 145.92 46.18 
G1 S3-B3 B3 72.96 109.44 137.34 106.58 32.28 
G1 S3-M1 M1 19.31 55.79 126.61 67.24 54.56 
G1 S3-M2 M2 62.5 112.07 127.16 100.58 33.83 
G1 S3-M3 M3 40.77 60.09 81.55 60.8 20.4 
G1 S3-D1 D1 167.38 170.23 175.96 170.24 4.96 
G1 S3-D2 D2 118.03 182.8 195.28 165.24 41.39 
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G1 S3-D3 D3 85.84 118.03 139.49 114.45 27 
G1 S4-P1 P1 139.49 175.97 184.55 166.67 23.93 
G1 S4-P2 P2 139.49 141.63 171.67 150.93 18 
G1 S4-P3 P3 171.67 178.11 199.57 183.12 14.61 
G1 S4-B1 B1 83.69 105.15 137.34 108.73 27 
G1 S4-B2 B2 92.28 156.65 169.53 139.49 41.39 
G1 S4-B3 B3 77.25 113.73 115.88 102.29 21.71 
G1 S4-M1 M1 25.75 51.5 90.13 55.79 32.4 
G1 S4-M2 M2 55.79 124.46 137.34 105.87 43.84 
G1 S4-M3 M3 32.18 36.48 64.38 44.35 17.48 
G1 S4-D1 D1 98.71 107.3 111.59 105.87 6.56 
G1 S4-D2 D2 87.98 90.13 90.13 89.41 1.24 
G1 S4-D3 D3 79.4 100.86 122.32 100.86 21.46 
G1 S5-P1 P1 92.28 103 130.9 108.73 19.94 
G1 S5-P2 P2 94.42 107.3 124.46 108.73 15.07 
G1 S5-P3 P3 92.28 115.88 122.32 110.16 15.82 
G1 S5-B1 B1 55.79 113.73 120.17 96.57 35.36 
G1 S5-B2 B2 81.55 135.19 141.63 119.46 32.99 
G1 S5-B3 B3 30.17 71.12 94.83 65.37 32.71 
G1 S5-M1 M1 25.75 45.06 55.79 42.2 15.22 
G1 S5-M2 M2 34.34 66.52 94.42 65.09 30.07 
G1 S5-M3 M3 19.31 30.04 75.11 41.49 29.61 
G1 S5-D1 D1 45.06 51.5 66.52 54.43 11.01 
G1 S5-D2 D2 55.79 96.57 135.19 95.85 39.7 
G1 S5-D3 D3 32.19 62.23 75.11 56.51 22.02 
G1 S6-P1 P1 233.41 237.69 254.82 241.97 11.33 
G1 S6-P2 P2 224.84 235.55 248.39 236.26 11.79 
G1 S6-P3 P3 237.69 259.1 269.81 255.53 16.36 
G1 S6-B1 B1 113.49 124.2 156.32 131.34 22.29 
G1 S6-B2 B2 94.22 137.05 169.17 133.48 37.6 
G1 S6-B3 B3 81.37 137.05 177.73 132.05 48.37 
G1 S6-M1 M1 126.34 158.46 167.02 150.61 21.45 
G1 S6-M2 M2 139.19 171.31 214.13 174.88 37.6 
G1 S6-M3 M3 203.43 220.56 254.82 226.27 26.17 
G1 S6-D1 D1 216.27 235.55 248.39 233.4 16.17 
G1 S6-D2 D2 231.26 321.2 353.32 301.93 63.27 
G1 S6-D3 D3 139.19 149.89 201.29 163.46 33.2 
G1 S7-P1 P1 158.46 184.15 216.27 186.3 28.97 
G1 S7-P2 P2 169.17 184.15 192.72 182.01 11.92 
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G1 S7-P3 P3 171.31 209.85 230.69 206.28 33.33 
G1 S7-B1 B1 134.9 134.9 143.47 137.76 4.95 
G1 S7-B2 B2 102.78 115.63 175.59 131.34 38.86 
G1 S7-B3 B3 98.5 130.62 154.18 127.77 27.95 
G1 S7-M1 M1 27.84 83.51 119.91 77.09 46.37 
G1 S7-M2 M2 17.13 36.4 44.97 32.83 14.26 
G1 S7-M3 M3 81.37 100.64 109.21 97.07 14.26 
G1 S7-D1 D1 21.41 27.84 29.98 26.41 4.46 
G1 S7-D2 D2 25.7 130.62 241.97 132.76 108.15 
G1 S7-D3 D3 25.7 34.26 68.52 42.83 22.66 
G1 S8-P1 P1 263.53 329.76 329.76 308.35 37.09 
G1 S8-P2 P2 331.91 338.33 349.04 339.76 8.65 
G1 S8-P3 P3 286.94 291.22 316.92 298.36 16.21 
G1 S8-B1 B1 132.76 134.9 152.03 139.9 10.56 
G1 S8-B2 B2 141.33 154.18 199.14 164.88 30.36 
G1 S8-B3 B3 173.45 175.59 188.44 179.16 8.11 
G1 S8-M1 M1 128.48 156.32 209.85 164.88 41.36 
G1 S8-M2 M2 219.83 336.21 415.95 323.99 98.63 
G1 S8-M3 M3 209.89 226.95 263.28 233.45 27.34 
G1 S8-D1 D1 60.09 109.44 156.65 108.73 48.29 
G1 S8-D2 D2 214.59 300.43 326.18 280.4 58.43 
G1 S8-D3 D3 51.61 75.27 122.58 83.15 36.14 
G1 S9-P1 P1 152.69 178.5 189.25 173.48 18.79 
G1 S9-P2 P2 165.59 187.1 212.9 188.53 23.69 
G1 S9-P3 P3 150.54 172.04 184.95 169.18 17.83 
G1 S9-B1 B1 58.07 90.32 129.03 92.47 35.53 
G1 S9-B2 B2 62.37 88.17 133.33 94.62 35.92 
G1 S9-B3 B3 45.16 66.67 70.97 60.93 13.83 
G1 S9-M1 M1 55.91 86.02 148.39 96.77 47.17 
G1 S9-M2 M2 79.57 116.13 150.54 115.14 35.49 
G1 S9-M3 M3 23.66 25.81 38.71 29.39 8.14 
G1 S9-D1 D1 45.16 49.46 70.97 55.2 13.83 
G1 S9-D2 D2 83.87 107.53 161.29 117.56 39.67 
G1 S9-D3 D3 189.25 191.4 232.26 204.3 24.24 
G1 S10-P1 P1 283.87 311.83 333.33 309.67 24.8 
G1 S10-P2 P2 294.62 305.38 305.38 301.79 6.21 
G1 S10-P3 P3 298.93 333.33 339.79 324.01 21.97 
G1 S10-B1 B1 182.8 210.75 230.11 207.89 23.79 
G1 S10-B2 B2 184.95 251.61 290.32 242.29 53.3 
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G1 S10-B3 B3 141.94 200 163.44 168.46 29.36 
G1 S10-M1 M1 17.2 51.61 92.47 53.76 37.68 
G1 S10-M2 M2 178.5 232.26 279.57 230.11 50.57 
G1 S10-M3 M3 154.84 225.81 232.26 204.3 42.96 
G1 S10-D1 D1 150.54 197.85 210.57 186.38 31.7 
G1 S10-D2 D2 156.99 230.11 232.26 206.45 42.85 
G1 S10-D3 D3 12.9 64.52 70.97 49.46 31.83 
G2 S1-P1 P1 38.67 47.21 60.08 48.64 10.8 
G2 S1-P2 P2 17.17 25.75 42.92 28.61 13.11 
G2 S1-P3 P3 32.19 34.34 49.36 38.62 13.11 
G2 S1-B1 B1 30.04 60.09 96.57 62.23 33.31 
G2 S1-B2 B2 23.22 52.77 90.76 55.58 33.86 
G2 S1-B3 B3 64.37 87.98 107.3 86.55 21.49 
G2 S1-M1 M1 109.44 118.74 167.38 118.74 44.73 
G2 S1-M2 M2 62.23 109.22 150.12 107.3 44.03 
G2 S1-M3 M3 199.57 251.78 319.74 251.79 61.62 
G2 S1-D1 D1 90.13 143.77 298.28 177.4 108.07 
G2 S1-D2 D2 79.4 130.9 242.48 150.93 83.37 
G2 S1-D3 D3 135.19 180.27 266.09 193.19 66.5 
G2 S2-P1 P1 10.73 27.9 62.23 33.62 26.22 
G2 S2-P2 P2 32.19 42.92 60.86 45.06 14.07 
G2 S2-P3 P3 30.04 45.06 62.23 45.78 16.11 
G2 S2-B1 B1 55.79 70.82 122.32 82.97 34.89 
G2 S2-B2 B2 70.81 111.61 165.25 90.61 47.36 
G2 S2-B3 B3 55.79 81.54 115.88 84.41 30.14 
G2 S2-M1 M1 45.06 130.91 156.65 110.87 58.42 
G2 S2-M2 M2 141.63 197.42 300.43 141.63 80.56 
G2 S2-M3 M3 77.25 107.29 167.38 117.31 45.89 
G2 S2-D1 D1 171.67 214.59 281.11 222.46 55.14 
G2 S2-D2 D2 85.84 156.65 186.69 143.06 51.78 
G2 S2-D3 D3 201.72 266.09 300.43 256.08 50.12 
G2 S3-P1 P1 8.62 19.4 28.02 18.68 9.72 
G2 S3-P2 P2 17.16 27.9 32.19 25.75 7.73 
G2 S3-P3 P3 4.3 12.93 28.02 15.09 12 
G2 S3-B1 B1 38.79 49.57 56.03 48.13 8.71 
G2 S3-B2 B2 43.1 101.29 140.09 94.83 48.81 
G2 S3-B3 B3 19.4 25.86 28.07 24.43 4.49 
G2 S3-M1 M1 99.14 116.39 122.85 112.79 12.26 
G2 S3-M2 M2 109.44 113.73 171.67 131.62 34.76 



 

67 
 

G2 S3-M3 M3 116.38 140.09 140.09 145.12 31.55 
G2 S3-D1 D1 130.9 190.99 298.28 206.72 84.79 
G2 S3-D2 D2 21.55 36.64 101.29 53.16 42.36 
G2 S3-D3 D3 214.59 296.13 324.03 278.26 56.87 
G2 S4-P1 P1 25.86 45.26 84.05 51.72 29.63 
G2 S4-P2 P2 32.33 38.79 49.57 40.23 8.71 
G2 S4-P3 P3 25.86 49.57 56.03 43.82 15.89 
G2 S4-B1 B1 36.64 45.26 60.35 47.41 12 
G2 S4-B2 B2 21.55 49.57 75.43 48.85 26.95 
G2 S4-B3 B3 30.17 38.79 60.35 43.1 15.54 
G2 S4-M1 M1 32.33 34.48 45.26 37.36 6.93 
G2 S4-M2 M2 12.93 28.02 32.33 24.43 10.19 
G2 S4-M3 M3 66.81 68.97 84.05 73.28 9.39 
G2 S4-D1 D1 153.02 191.81 196.12 180.32 23.74 
G2 S4-D2 D2 206.9 230.6 237.07 224.86 15.89 
G2 S4-D3 D3 51.72 114.22 165.95 110.63 57.2 
G2 S5-P1 P1 17.24 25.86 45.26 29.45 14.35 
G2 S5-P2 P2 23.71 45.26 56.03 41.67 16.46 
G2 S5-P3 P3 19.4 23.71 25.86 22.99 3.29 
G2 S5-B1 B1 28.02 36.64 79.74 48.13 27.71 
G2 S5-B2 B2 68.97 114.22 153.02 112.07 42.07 
G2 S5-B3 B3 25.86 25.86 34.48 28.74 4.98 
G2 S5-M1 M1 17.24 25.86 32.33 25.14 7.57 
G2 S5-M2 M2 19.4 23.71 36.64 26.58 8.97 
G2 S5-M3 M3 32.33 51.72 88.36 57.47 28.46 
G2 S5-D1 D1 221.98 262.93 308.19 264.37 43.12 
G2 S5-D2 D2 256.46 334.05 400.86 330.46 72.27 
G2 S5-D3 D3 198.28 226.29 245.69 223.42 23.84 
G2 S6-P1 P1 25.86 28.02 32.33 28.74 3.29 
G2 S6-P2 P2 10.78 17.24 19.4 15.81 4.47 
G2 S6-P3 P3 19.4 21.55 60.35 33.76 23.05 
G2 S6-B1 B1 30.17 36.67 49.57 38.79 9.88 
G2 S6-B2 B2 64.66 81.9 159.48 102.01 50.51 
G2 S6-B3 B3 30.17 32.33 45.26 35.92 8.16 
G2 S6-M1 M1 17.24 28.02 30.17 25.14 6.93 
G2 S6-M2 M2 49.57 115.38 150.86 105.6 51.5 
G2 S6-M3 M3 21.55 51.72 58.19 43.82 19.56 
G2 S6-D1 D1 278.02 280.17 284.48 280.89 3.29 
G2 S6-D2 D2 286.64 314.55 321.12 307.47 18.33 
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G2 S6-D3 D3 99.14 109.91 114.22 107.76 7.77 
G2 S7-P1 P1 8.62 28.12 32.33 22.99 12.63 
G2 S7-P2 P2 15.09 38.79 45.26 33.05 15.89 
G2 S7-B1 B1 15.09 43.1 51.72 36.64 19.16 
G2 S7-B2 B2 21.55 49.57 60.35 43.82 20.03 
G2 S7-B3 B3 19.4 23.71 30.17 24.43 5.42 
G2 S7-M1 M1 19.4 30.17 45.26 31.61 12.99 
G2 S7-M2 M2 6.47 17.24 25.86 16.52 9.72 
G2 S7-M3 M3 183.19 219.83 241.38 214.8 29.42 
G2 S7-D1 D1 105.6 174.57 215.52 165.23 55.55 
G2 S7-D2 D2 36.64 45.26 92.67 58.19 30.17 
G2 S7-D3 D3 237.07 243.53 299.57 260.06 34.37 
G2 S8-P1 P1 30.04 45.06 60.09 45.06 15.02 
G2 S8-P2 P2 51.5 60.09 68.67 60.09 8.59 
G2 S8-P3 P3 23.6 40.77 70.86 45.06 23.9 
G2 S8-B1 B1 19.4 34.48 51.72 35.2 16.18 
G2 S8-B2 B2 17.24 28.02 40.95 28.74 11.87 
G2 S8-B3 B3 38.63 66.63 98.71 67.95 30.07 
G2 S8-M1 M1 32.19 64.38 109.44 68.67 38.67 
G2 S8-M2 M2 87.98 143.78 182.43 138.05 47.47 
G2 S8-M3 M3 96.57 124.46 182.4 134.47 43.79 
G2 S8-D1 D1 12.87 55.79 145.92 71.53 67.91 
G2 S8-D2 D2 21.46 90.13 152.36 87.98 65.48 
G2 S8-D3 D3 83.69 163.09 225.32 157.37 70.99 
G2 S9-P1 P1 332.62 358.37 405.58 365.52 37 
G2 S9-P2 P2 422.75 467.81 502.15 464.23 39.82 
G2 S9-P3 P3 278.01 309.58 349.78 312.59 35.54 
G2 S9-B1 B1 21.46 27.89 49.36 32.9 14.61 
G2 S9-B2 B2 17.17 57.94 169.54 81.55 78.88 
G2 S9-B3 B3 10.73 27.89 47.21 28.61 18.25 
G2 S9-M1 M1 364.81 399.14 439.91 401.28 37.6 
G2 S9-M2 M2 377.16 396.55 454.74 409.48 40.38 
G2 S9-M3 M3 263.95 300.43 444.21 336.19 95.3 
G2 S9-D1 D1 10.73 42.91 105.15 52.93 48 
G2 S9-D2 D2 23.6 40.77 103 55.79 41.78 
G2 S9-D3 D3 17.24 23.71 25.86 22.27 4.49 
G2 S10-P1 P1 19.31 30.04 45.06 31.47 12.93 
G2 S10-P2 P2 15.02 25.75 55.79 32.19 21.13 
G2 S10-P3 P3 27.89 51.5 66.52 48.64 19.47 
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G2 S10-B1 B1 32.18 66.52 87.98 62.23 28.14 
G2 S10-B2 B2 40.77 60.09 115.88 72.24 39 
G2 S10-B3 B3 49.35 57.94 79.4 62.23 15.47 
G2 S10-M1 M1 19.31 25.75 34.35 26.47 7.54 
G2 S10-M2 M2 36.48 47.21 60.09 47.92 11.82 
G2 S10-M3 M3 23.61 30.04 38.63 30.76 7.54 
G2 S10-D1 D1 55.79 85.83 109.44 83.84 26.89 
G2 S10-D2 D2 92.28 130.92 208.17 143.79 59 
G2 S10-D3 D3 150.22 167.38 212.45 176.68 32.14 
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APPENDIX B 
 
STEREOMICROPE IMAGES – DIGITAL 
 
GROUP 1: SAMPLE 1 
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GROUP 1: SAMPLE 2 
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GROUP 1: SAMPLE 7 
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GROUP 1: SAMPLE 10 
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APPENDIX C 
 
STEREOMICROPE IMAGES – CONVENTIONAL 
 
GROUP 2: SAMPLE 1 
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GROUP 2: SAMPLE 2 
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GROUP 2: SAMPLE 3 
 

 

 

 
P          B      M               D 

 
 



 

 
 

83 

GROUP 2: SAMPLE 4 
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GROUP 2: SAMPLE 5 
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GROUP 2: SAMPLE 6 
 

 

 

 
P          B      M               D 

 
 
 



 

 
 

86 

GROUP 2: SAMPLE 7 
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GROUP 2: SAMPLE 8 
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GROUP 2: SAMPLE 9 
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GROUP 2: SAMPLE 10 
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