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ABSTRACT 

DEFECTS IN FETAL MOUTH MOVEMENT AND PHARYNGEAL PATTERNING 

UNDERLIE CLEFT PALATE CAUSED BY RETINOID DEFICIENCY 

Regina Friedl 

April 16th, 2019 

Cleft palate is a common birth defect.  Etiologic mechanisms of palate cleft 

include defects in palate morphogenesis, mandibular growth, or spontaneous 

fetal mouth movement.  Cleft palate linked to deficient fetal mouth movement has 

been demonstrated directly only in a single experimental model of loss of 

neurotransmission.  Here, using retinoid deficient mouse embryos, we 

demonstrate directly for the first time that deficient fetal mouth movement and 

cleft palate occurs as a result of mis-patterned development of pharyngeal 

peripheral nerves and cartilages. Retinoid deficient embryos were generated by 

inactivation of retinol dehydrogenase 10 (Rdh10), which is critical for production 

of Retinoic Acid (RA) during embryogenesis.  Using X-ray microtomography 

(microCT), in utero ultrasound, ex vivo culture, and tissue staining, we 

demonstrate that retinoid deficient mouse embryos lack fetal mouth movement 

owing to mis-patterning of pharyngeal cartilages and motor nerves. Findings from 

this study may indicate the earliest marker for diagnosing cleft palate.  
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

 

1.1 Secondary Palate Formation 

The palate is the physical separation of a bony dome between the nasal cavity 

and the oral cavity in humans and other mammals. Its function is to facilitate 

proper movement of food during mastication as well as allow breathing to be 

uninhibited by food intake. The palate is divided into two different portions; the 

primary palate, which develops from the fronto-nasal prominence, and the 

secondary palate, which forms from the maxillary process. The primary palate 

exists anterior to the incisive foramen, while the secondary palate, which includes 

the palatine bones and soft palate, exists posterior to the incisive foramen 

(Fig.1). 
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From: Gray’s Anatomy 

Figure 1. Schematic of the Palate and Palatine Structures 
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In mouse, formation of the secondary palate begins on day embryonic day 12.5 

(E12.5) and involves downward growth of the palatal shelves until E13.5.  Tissue 

remodeling, accompanied by horizontal outgrowth from the medial edge of the 

palate shelves occurs at E14.5, further growth towards the midline happens at 

E15.5, and finally fusion of the shelves by degradation of the midline epithelial 

seam is completed at E16.5 (Fig. 2) (Bush & Jiang, 2012; Jin et al., 2010; 

Sperber, 2002).  
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Adapted from Bush et al 2012 (used with permission) 

Figure 2. Developmental Stages of Secondary Palate Formation in Mouse 

Red arrows mark initial site of palate adhesion. MxP= maxillary Process, MNP= 

medial nasal process, PP= primary palate , PS= palate shelfs, NS=nasal septum, 

T= tongue 
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The morphogenic events of palate closure are not isolated but occur within the 

context of overall growth of the orofacial complex. As the palate shelf tissue 

remodels and grows medially, growth and expansion of the entire facial complex 

results in downward and forward displacement of the mandible and tongue, 

opening space above in which the palate shelves elevate. The decent of the 

mandible/tongue and elevation of the palate shelves occur around 8-12 weeks 

gestation in humans (Burdi & Faist, 1967; Sperber, 2002; Yoon, Chung, Seol, 

Park, & Park, 2000), or embryonic day 14.5 (E14.5) in mice (Walker, 1969).  

Concurrently, the facial muscles become innervated by the motor and sensory 

nerves, that activate the muscles that move the tongue and mandible.  In addition 

to the morphogenic growth and movement of embryonic facial structures, 

spontaneous neuromuscular movement of the mandible and tongue begins at 

this stage (de Vries, Visser, & Prechtl, 1985; Walker, 1969; Wragg, Smith, & 

Borden, 1972).  The spontaneous mouth movements involve a backwards tilt of 

the head away from the chest, opening of the mandible, and retraction and 

protrusion of the tongue. These movements coordinate the neuromuscular 

actions of swallowing amniotic fluid (J. L. Miller, Sonies, & Macedonia, 2003), 

and prepare the fetus for suckling after birth.  

1.2 Cleft Palate Birth Defects 

The complexity of the process of palate formation during embryogenesis is 

reflected in the high incidence of palate clefts.  Orofacial clefts are among the 

most common human structural birth defects. Cleft lip/palate occurs at a 

prevalence of ~1/1000 live births worldwide (Parker et al., 2010; World Health 
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Organization, 2007). Such clefts cause harsh physical limitations resulting in 

suffering to the individual in social aspects as well as imposing a fiscal burden 

the individual and family (Wehby & Cassell, 2010).  Although research has 

elucidated the cause and helped in prevention of many cleft palate etiologies, 

many causes of cleft palate that remain unidentified.  

In humans, cleft palate can occur independent of other abnormalities, or in the 

context of a syndrome, associated with a characteristic set of phenotypes. Two 

syndromes that include cleft palate are Pierre Robin sequence and 22q11.2 

deletion syndrome. In patients with Pierre Robin sequence cleft palate occurs as 

result of micrognathia, a small mandible, which crowds the tongue and obstructs 

palate shelf elevation during embryogenesis (Giudice et al., 2018). Patients with 

22q11.2 deletion syndrome, also known as DiGeorge syndrome, have a 

spectrum of abnormalities including cleft palate, orofacial malformations, and 

defects in development of the pharyngeal arch derivatives (LaMantia et al., 2016; 

McDonald-McGinn et al., 2015).  A key phenotype of this syndrome is congenital 

difficulty in feeding and swallowing, known as dysphagia (LaMantia et al., 2016; 

C. K. Miller, 2009). Transgenic mice have helped to determine that the 

mechanism of dysphagia is a hypoglossal neurotransmission defect that impairs 

swallowing function (Karpinski et al., 2014; Wang, Bryan, LaMantia, & 

Mendelowitz, 2017). 

Known etiologic mechanisms of palate cleft include defects in palate 

morphogenesis, defects in mandibular growth, and defects in spontaneous fetal 

mouth movement.  Most studies on cleft palate focus primarily on defects within 
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the palate tissues, which are considered “intrinsic” (palate defects).  A smaller 

cohort of studies have evaluated “extrinsic” palate defects such as defects in 

mandible size that can also result in cleft palate (Fig. 3).  
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Figure 3. Schematic Representation of Intrinsic vs. Extrinsic to the Palate.  If a 

defect causing cleft palate is intrinsic, it would be caused by something located 

within the purple region. An extrinsic defect would be in the yellow region or 

below (not within the purple region which depicts the palate shelf tissues). 

 

  

 

Intrinsic  Intrinsic  

Extrinsic  
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Additionally, notable defects have been identified in the development of the 

extrinsic tongue musculature, likely causing loss of tongue function, which 

correlates exactly with the prevalence of cleft palate in Hoxa2 mutant mice 

(Barrow & Capecchi, 1999).  A more recently identified defect in fetal mouth 

immobility has been directly linked to defective neurotransmission that prevents 

any movement in utero (Asada et al., 1997; Condie, Bain, Gottlieb, & Capecchi, 

1997; Culiat et al., 1995; Homanics et al., 1997; Oh, Westmoreland, Summers, & 

Condie, 2010; Tsunekawa, Arata, & Obata, 2005; Wojcik et al., 2006).  The 

existing studies on fetal mouth movement have inferred that fetal mouth 

movement is required for palate shelf formation and post-natal development.  

However, to date, only one experimental study directly demonstrates that cleft 

palate can result from fetal mouth immobility due to defective neurotransmission. 

In summary, mechanistic insights into how defects in fetal mouth movement 

contribute towards cleft palate are incompletely characterized.  

1.3 The Swallowing Apparatus 

Swallowing and mouth opening are complex processes and are essential to 

embryonic and neonatal development and post-natal survival.   Incorporating 

movements of mouth opening and tongue withdrawal, these movements require 

many anatomical elements such as muscles, bones and cartilages, as well as 

innervation of motor nerves. Many of the muscles that open and close the jaw 

are attached at the hyoid bone and thyroid and cricoid cartilages.  These same 

skeletal elements are essential to anchor muscles of the tongue. The 

hypoglossal motor nerve (CN XII) innervates the tongue and controls tongue 
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withdrawal. Cervical nerve 1(C1) innervates the geniohyoid muscle, and controls 

movement of hyoid bone during swallowing.  

Importantly, the nerves, bone, and cartilages involved in mouth movement and 

swallowing are derived from the pharyngeal arches during embryonic 

development (Fig. 4).   
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Figure 4. The Pharyngeal Arches During Development. The pharyngeal arches 

are early development structures that give rise to different anatomical elements 

of the head and neck. 1st arch gives rise to the maxilla and mandible while the 2nd 

through 6th arches gives rise to many features of the head and neck. The 

hypoglossal is the motor nerve that innervates the tongue muscles. 
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The second through sixth pharyngeal arches develop into fundamental 

components of the head and neck critical for swallowing.  It is well established 

that development of the pharyngeal arches is orchestrated by retinoid signaling, 

and that perturbation of retinoid levels results in defects of the pharyngeal arch-

derived elements (Mark, Ghyselinck, & Chambon, 2004; Wendling, Dennefeld, 

Chambon, & Mark, 2000).  

1.4 Vitamin A Metabolism 

Retinoic acid (RA) is the active metabolite of the dietary small molecule Vitamin 

A.  Collectively Vitamin A and its derivatives are known as retinoids.  The 

metabolic conversion of Vitamin A to RA is accomplished via two sequential 

oxidative reactions, the first of which is mediated in mouse embryos primarily by 

the enzyme RDH10 (Fig. 5) (Duester, 2008; K. Niederreither & Dolle, 2008; L. L. 

Sandell, Lynn, Inman, McDowell, & Trainor, 2012; L. L. Sandell et al., 2007).  
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Figure 5.  Vitamin A Metabolism. This is a schematic representation of the 

Vitamin A metabolic pathway.  Vitamin A or retinol is converted into its active 

form, RA, via two oxidation reactions. The first reaction is a critical regulatory 

step in this pathway and is mediated by the enzyme RDH10 which converts 

retinol into the intermediate metabolite, retinaldehyde (all-trans-retinal).  
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RA is an important signaling molecule that regulates many aspects of adult 

health and embryonic development. One developmental role of RA that has been 

extensively studied is the regulation of embryonic anterior-posterior patterning, 

which occurs largely via transcriptional regulation of Hox gene family members 

(Aida Halilagic et al., 2007; A. Halilagic, Zile, & Studer, 2003; Hernandez, Putzke, 

Myers, Margaretha, & Moens, 2007; Rhinn & Dolle, 2012; Ribes, Wang, Dolle, & 

Niederreither, 2006; Schneider, Hu, Rubenstein, Maden, & Helms, 2001; Sirbu, 

Gresh, Barra, & Duester, 2005).  

Homeostatic levels of RA must be tightly controlled within embryonic tissues, as 

excess or insufficiency both disrupt embryogenesis (Cunningham & Duester, 

2015; Metzler & Sandell, 2016; K. Niederreither & Dolle, 2008).  RA is a well-

known teratogen (Hand, 2012; McCaffery, Adams, Maden, & Rosa-Molinar, 

2003; Piersma, Hessel, & Staal, 2017).  Malformations resulting from RA 

perturbation include defects in pharyngeal arch derived tissues (Mark et al., 

2004; Wendling et al., 2000) and cleft palate (Hale, 1935; Aida Halilagic et al., 

2007; Lohnes et al., 1994; L. L. Sandell et al., 2007; Josef Warkany, 1945; J. 

Warkany, Nelson, & Schraffenberger, 1943; Wilson, Roth, & Warkany, 1953; 

Zhang et al., 2014).  There are many proposed mechanisms for cleft palate 

occurrence under RA excess, some of which offer conflicting insights, leaving 

room for further investigation on this topic (Hu, Gao, Liao, Tang, & Lu, 2013; 

Huang, Lu, Chen, & Liao, 2003; Nelson, Levi, & Longaker, 2011; Okano, Suzuki, 

& Shiota, 2007; Okano, Udagawa, & Shiota, 2014).  
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Cleft palate resulting from RA excess has been well documented (Hu et al., 

2013; Huang et al., 2003; Nelson et al., 2011; Okano et al., 2007). However, the 

developmental mechanisms of palate formation that are disrupted when RA is 

insufficient are still unknown.  Despite the lack of understanding the 

developmental mechanisms of palate formation due to insufficient RA signaling, 

many studies have shown that deprivation of Vitamin A, and therefore reduced 

RA, will produce cleft palate (Hale, 1935; Josef Warkany, 1945; J. Warkany et 

al., 1943; Wilson et al., 1953). Because RA production is regulated by enzymatic 

reactions, we can manipulate this pathway in order to elucidate the endogenous 

role of RA in palate development and possible new mechanisms causing cleft 

palate.  Here we use conditional Rdh10 transgenic mice to investigate the link 

between pharyngeal neuro-skeletal morphogenesis, fetal mouth movement, and 

palate formation. 
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Mouse Strains  

All experiments within this study that involved mice were performed in 

accordance to the protocol that was approved by the institutional animal care and 

use committee (IACUC) at the University of Louisville. The approval number for 

the same is #18727.  All mouse strains used are listed with official names in 

Table 1.  The Rdh10 mutant strains used in this study have been previously 

described (L. L. Sandell et al., 2012).  All mutant Rdh10 alleles derived from 

Rdh10Bgeo/+ ES cells were obtained from the trans-NIH Knockout Mouse Project 

(KOMP) Repository, a NCRR-NIH supported strain repository (www.komp.org; 

email service@komp.org).  For the experiments described in this study the 

Rdh10flox/flox, and Rdh10delta/+ mice were bred extensively to FVB/NJ such that 

their background is mixed with significant contribution of FVB/NJ.  Additional 

mouse strains used were FVB/NJ, RARE-LacZ, and Cre-ERT2, all obtained from 

Jackson Laboratories and maintained at the University of Louisville. Genotyping 

of all Rdh10 alleles and transgenes, from tissue samples of embryos and adult 

breeder animals, was performed by the commercial genotyping service 

Transnetyx using primer sequences described by Sandell et al, 2012 (L. L. 

Sandell et al., 2012). 

 



17 
 

 

 

 

Table 1. Rdh10 Mutant Strains and Transgenic Alleles used in this Study 

Strain Background Reference 

Rdh10flox/flox  mixed (primarily 

FVB/NJ) 

(L. L. Sandell et al., 

2012) 

Rdh10delta/+ mixed (primarily 

FVB/NJ) 

(L. L. Sandell et al., 

2012) 

Cre-ERT2 

Gt(ROSA)26Sortm1(cre/ERT2)Tyj 

mixed (Ventura et al., 

2007) 

RARE-LacZ Tg(RARE-

Hspa1b/LacZ)12Jrt 

mixed (Rossant, Zirngibl, 

Cado, Shago, & 

Giguere, 1991) 
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2.2 Genetic Crosses and Conditional Rdh10 Inactivation by Tamoxifen 

Administration 

In order to obtain embryos at specific developmental stages, we set timed 

matings. The appearance of a vaginal plug was considered embryonic day 0.5.   

The Rdh10 alleles used in this study include Rdh10+, which denotes the wild type 

allele, Rdh10delta, which denotes a targeted knockout null allele with exon2 

deleted, and Rdh10flox, a floxed allele in which exon2 is excised upon exposure 

to Cre recombinase, thereby converting to Rdh10delta (L. L. Sandell et al., 2012). 

With the exception of the ultrasound analysis, we used the following genetic 

cross for all experiments in this study to produce control and mutant embryos.   

Homozygous Rdh10flox/flox; Cre ERT2/Cre ERT2 mice were paired with 

Rdh10delta/+ mice.  In litters resulting from these crosses 50% of embryos were 

Rdh10flox/+ “control” embryos that were heterozygous for the haplosufficient wild 

type allele of Rdh10, and 50% of embryos were Rdh10delta/flox “mutant”, 

heterozygous for a deleted allele and a conditional floxed allele of Rdh10.  In 

these crosses all embryos had a single copy of Cre-ERT2. For the ultrasound 

experiment, the crosses performed included Rdh10flox/flox Cre ERT2/Cre ERT2 

mated with Rdh10flox/flox, yielding litters in which 100% of embryos were 

Rdh10flox/flox “mutant” with a single copy of Cre-ERT2.  For the ultrasound 

experiments control embryos were obtained by crossing Rdh10+/+ by Rdh10+/+, 

yielding litters in which 100% of embryos were Rdh10+/+ “control”.   

For all time mated animals, a single dose of tamoxifen was administered at E8.5 

via maternal oral gavage to activate Cre recombinase and delete Rdh10 exon 2 
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in embryos carrying the Rdh10flox allele.   Each pregnant dam was administered 

an oral gavage dose of 5 mg of tamoxifen + 2 mg progesterone in 250 µl of corn 

oil. Tamoxifen was prepared as follows: 20 mg/ml of Tamoxifen (Sigma-Aldrich- 

#T5648), was dissolved first at a concentration of 500 µg/µl in absolute ethanol 

and subsequently diluted to a final concentration of 20 mg/ml in Corn Oil (VWR-

#700000-136). The solution was vortexed every 30 minutes and incubated at 

55°C until crystals were dissolved (~3-4 hours). Once tamoxifen was dissolved, 

progesterone (Sigma Aldrich-# P3972) was added to a final concentration 8 

mg/ml, and the mixture was incubated at 55°C, with vortexing every 15 minutes 

until progesterone dissolved (~30 minutes). The solution was then aliquoted into 

single dose tubes and stored at -20°C for up to two weeks. 

2.3 Nuclear Fluorescent Imaging of Palate Tissues. 

Morphology of whole mount palates and maxillary explants were imaged by 

nuclear fluorescent staining and fluorescent stereomicroscopy (Lisa L. Sandell, 

Kurosaka, & Trainor, 2012).  Whole mount specimens were fixed in 4% 

paraformaldehyde overnight, rinsed in PBS, and stained in DAPI dilactate to final 

working dilution concentration of 10 nM in PBS solution at room temp, with gentle 

rocking overnight.  DAPI stained specimens were then imaged using a UV light 

source on a Leica stereomicroscope. 

2.4 Histology by Hematoxylin and Eosin Staining 

For paraffin sectioning and histology, embryos were harvested and fixed 

overnight in 4% paraformaldehyde, followed by dehydration through a series of 

increasingly concentrated ethanol solutions, 25%, 50%, 70%, and 100%. 
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Embryos were processed into paraffin, embedded, and sectioned. Prior to 

staining, slides with embryo sections were deparaffinized, baked for 30 min at 

58°C, followed by rehydration through xylene and ethanol into phosphate 

buffered saline (PBS). For hematoxylin and eosin staining, samples were 

immersed in hematoxylin stain (VWR-#15204-152) for 8 minutes. Sections were 

placed under running tap water for 5 minutes, and then into acid alcohol (VWR-

#15204-234) for 30 seconds. Slides were rinsed again under running tap water 

for 2 minutes, transferred to lithium carbonate for 45 seconds, and finally washed 

under tap water for 5 minutes. Sections were dipped in 80% ethanol 10 times, 

then stained in eosin for 40 seconds, followed by dehydration back through an 

ethanol series into xylenes.  Finally, Permount Mounting Medium (VWR-

#100496-550) was applied and specimens were covered with coverslips.  

2.5 Immunostaining of Paraffin Sectioned and Whole Mount Embryos 

Immunostaining of paraffin and whole mount tissues was carried out as 

previously described (Abashev, Metzler, Wright, & Sandell, 2017).  For sections, 

antigen retrieval was performed and specimens were blocked in 5% lamb serum 

for 2 hours. Specimens were stained with primary antibodies overnight, washed, 

and stained with secondary antibodies for 1 hour.  After washing off secondary 

antibodies, slides were stained 10 minutes with DAPI.  Stained slides were 

mounted in Prolong Gold (Thermo Fisher P36930) and covered with coverslips.  

For whole mount immunostain, embryos were first permeabilized for 2 hours in in 

Dent’s bleach (methanol:30% H2O2: DMSO, 4:1:1).  After permeablization, 

embryos were, re-hydrated through a graded series of methanol solutions into 
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PBS.  Samples were blocked in whole mount blocking solution (0.1 M Tris pH7.5, 

0.15 M NaCl with blocking reagent (Perkin Elmer FP1020)). Primary antibody 

hybridization was performed in blocking solution overnight 4oC with rocking.  The 

next day, unbound primary antibody was removed with a series of 5 X 1 hour 

washes in PBS at room temperature.  Specimens were then incubated overnight 

in fluorescently conjugated secondary antibody in whole mount blocking solution 

at 4oC with rocking.  Unbound secondary antibody was removed by 3 x 20 

minutes washes in PBS, followed by 4 hours nuclear stain with DAPI. Whole 

mount specimens were then post-fixed in 4% paraformaldehyde for 20 minutes.  

Stained embryos were then dehydrated through a graded series of methanol 

solutions into 100% methanol.  Tissues were cleared by placing specimens in 

BABB (Benzyl alcohol: Benzyl benzoate, 1:2).  Fluorescently immunostained 

embryos were then imaged by confocal microscopy on a Leica SP8 confocal 

microscope. 

Primary antibodies used were Anti-SOX9 (Abcam, #185966) 1:200, Anti-myosin 

(DSHB, #BF-G6) 1:5, and Neuronal Class III β-Tubulin Monoclonal antibody 

(BioLegend-# 801201) 1:1000. Secondary antibodies were fluorescently 

conjugated: AlexaFluor 660 (Invitrogen), and AlexaFluor 546 (Invitrogen), each 

used at 1:300.  

2.6 Assessment of Palate Fusion in Ex Vivo Cultured Maxillary Explants 

Maxillary explant specimens from E13.5 embryos were micro-dissected free of 

mandible, tongue, and brain tissues. 1 to 3 explants were placed in a glass 

scintillation vial with 6 ml of BGJb culture medium (Thermo Fisher- # 12591038) 
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supplemented with 2.8 mg/ml glutamine, 6 mg/ml BSA and 1% Penicillin and 

streptomycin. The scintillation vial was flushed with a gas mixture of (50% O2, 

45% N2, and 5% CO2), and sealed using a silicone plug. The plugged vials were 

incubated on a Wheaton Mini Bench-top roller bottle system at a speed of 25 

rpm, in a humidified 37°C incubator for 3 days.  Each day, vials were re-flushed 

with the gas mixture for two minutes. At the end of the 3 day culture period, 

explants were fixed in 4% paraformaldehyde.  Following fixation, specimens were 

whole mount stained with DAPI, and were imaged by fluorescent microscopy 

(Lisa L. Sandell et al., 2012).  

2.7 MicroCT Analysis of Embryos 

Whole E14.5 embryos were fixed in 4% paraformaldehyde overnight. Embryos 

were then equilibrated in 50% ethanol overnight, transferred to 70% ethanol for 

2.5 hours, and then stained in phosphotungstic acid (PTA) stain for 8 days.  The 

PTA stain solution is a heavy X-ray dense molecule that produces high contrast 

for soft tissues in X-ray analysis.  After PTA staining, samples were then placed 

in 70% ethanol for 2 hours and then transferred to 100% ethanol for scanning. 

PTA stock solution was prepared as follows: 1 gram of dry PTA dry powder 

(VWR- #AA40116-22) was dissolved in 100 ml of distilled water to make 1% PTA 

stock solution.  30 ml of 1% PTA stock solution was dissolved in 70 ml of 100% 

ethanol to make a 0.3% PTA in 70% ethanol working stain solution. 

For scanning, embryos were mounted inside a 1000 µl tapered pipette tip, sealed 

with paraffin wax at the bottom and filled with 100% ethanol. The embryo was 

gently wedged by gravity into the tapered end of the pipette, and 100% ethanol 
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was filled to the top of the pipette, which was then sealed with wax film. Another 

pipette tip was cut in half and wedged into sculptor’s clay on the microCT 

platform to serve as a holder. The embryo in pipette tip was placed in the holder 

on the rotating platform of a Bruker micro-CT SkyScan 1174v2 compact X-ray 

micro-CT scanner. The settings used for scanning are as follows: Pixel size 

small, 6.84 µm, rotation of 0.3° with an average of 3 fames, 50 kV and 800 µA; 

no filter was used. CT-an analysis software by Bruker was used for multi axis 

analysis of microCT scans dataset files.  Additionally, Imaris software was used 

for surface rendering of isolated tongue volumes from the microCT data sets of 

control and mutant embryos. 

2.8 X-gal Staining to Assess RARE-LacZ Reporter Gene Expression 

To evaluate the tissue distribution of RA signaling, embryos carrying the RARE-

lacZ reporter transgene were stained for β-galactosidase activity as whole mount 

specimens, imaged, and then processed and embedded through paraffin for 

sectioning. For whole mount staining, E10.5 RARE-LacZ reporter mouse 

embryos were harvested into ice cold PBS and fixed whole mount in 2% formalin 

plus 0.2% glutaraldehyde for 75 minutes on ice. After fixation, embryos were 

rinsed with β-galactosidase tissue rinse solution A (Millipore # BG-6-G), then 

washed in solution A for 30 minutes at room temperature. Embryos were then 

rinsed with β-galactosidase tissue rinse solution B (Millipore # BG-7-G) and then 

washed in solution B for 5 minutes at room temperature. Fixed embryos were 

then drained and placed in stain solution:  β-galactosidase tissue stain base 

solution (Millipore #BG-8C) plus 1 mg/ml X-gal (Sigma-Aldrich #B4252-250MG). 
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Embryos were stained overnight at room temperature protected from light, then 

post-fixed in 4% paraformaldehyde overnight. Sections were counterstained with 

Nuclear Fast Red (VWR-#JTS635-1).  After whole mount imaging, embryos were 

processed into paraffin and sectioned. 

2.9 qPCR 

Gene expression levels in cervical tissues were quantified by qPCR. Cervical 

tissues including the posterior pharyngeal arches (2nd-6th) were dissected out of 

E10.5 embryos via microdissection.  Tissues were homogenized in RLT lysis 

buffer (Qiagen # 79216) with a syringe and needle. RNA was extracted from the 

isolated tissue using RNeasy Mini kit (Qiagen #74104) and converted to cDNA 

using SuperScript III First-Strand Synthesis System (Invitrogen #18080-051) 

using random hexamer primers. The gene specific qPCR primers listed below 

were used for amplification of RNA.  All primer pairs used were validated to have 

efficiency between 90%-110%. Gapdh was used for normalization of gene 

expression.  Data was evaluated by the 2-CT method (Livak & Schmittgen, 

2001).  Significance was evaluated by two tailed Student’s T-test assuming equal 

variance.  
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Table 2. Primers used for qPCR Gene Expression Analysis 

Gapdh F: 5’ ACAGTCCATGCCATCACTGCC 3’, 

R: 5’ GCCTGCTTCACCACCTTCTTG 3’ 

Hoxa1 F: 5’ CCCAGACGGCTACTTACCAGA 3’, 

R: 5’ CATAAGGCGCACTGAAGTTCT 3’ 

Hoxb1 F: 5’GCCCCAACCTCTTTTCCCC3’, 

R: 5’ GACAGGATACCCCGAGTTTTG 3’ 

Tbx1 F: 5’ CTGTGGGACGAGTTCAATCAG 3’ 

R: 5’ TTGTCATCTACGGGCACAAAG 3’ 

Hoxa2 F: 5’ CTGAGTGCCTGACATCTTTTCC 3’ 

R: 5’ GTGTGAAAGCGTCGAGGTCTT 3’ 

Hoxa3 F: 5’ GGAGGACAATTCGTCTCTTGG 3’ 

R: 5’ AGAACTTGTGGTTTGGACACTTC 3’ 
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2.10 Skeletal Stain with Alizarin Red and Alcian Blue 

For skeletal staining of bone and cartilage, embryos were harvested at E16.5, 

and heads removed.  Skin and organs were left intact.  Embryos were rinsed in 

PBS and placed in ice cold 95% ethanol for one hour. Specimens were then 

transferred to fresh ethanol and rocked overnight at room temperature. 

Specimens were then stained for cartilage and bone using Alcian Blue and 

Alizarin Red.  The stain mixture was prepared in two separate stock solutions 

that were combined into a working mixture prior to staining.  The stock solution of 

0.4% Alcian blue in 70% ethanol was prepared as follows: 0.4 g of Alcian blue 

(VWR- #200063-912) was first added to 10 ml of 50% ethanol and placed in a 

37°C water bath, with occasional swirling until dissolved. When Alcian blue was 

dissolved, 25 ml of water, and 65 ml of 95% ethanol were added.  The stock 

solution of 0.5% Alizarin red S in water was prepared as follows: 0.5 g of Alizarin 

red S (VWR- #97062-616) was added to 100ml of water and swirled until 

dissolved. The combined working stain solution was then prepared from the two 

separate stock solutions. For 100ml of working stain solution, 5 ml of 0.4% Alcian 

blue in 70% ethanol was combined with 5 ml of glacial acetic acid (VWR-

#BDH3098-3.8L), 70 ml of 95% ethanol, 20 ml of water, and 1 ml of 0.5% Alizarin 

red stock solution. Specimens were placed in the working stain solution for up to 

8 days. At the completion of staining period, specimens were rinsed in water. The 

non-bone and cartilage tissues were cleared by incubating in a series of 

potassium hydroxide (VWR-#BDH9262-500G) and glycerol (VWR-#AAAA16205-

AP) solutions for the following times: 4 hours in 2% KOH, then 30 minutes in 



27 
 

0.25% KOH, overnight in 20% glycerol/0.25% KOH, overnight in 33% 

glycerol/0.25% KOH and finally, overnight in 50% glycerol/0.25% KOH. Once 

specimens were cleared to reveal bone and cartilage, mandibles were carefully 

dissected away from the skull.  Specimens were then imaged on a Leica 

stereomicroscope, and measured with Leica imaging software.  Angle 

measurements were performed by analysis of images with Bruker Skyscan 

CT-an analysis program. 

2.11 Ultrasound Imaging 

Using a 2% concentration of isoflurane anesthesia, a pregnant mouse at E14.5 

was placed in the supine position, a rectal temperature probe was placed, fur 

was removed and pre-warmed ultrasound gel was placed on the dam’s 

abdomen. Once the dam’s heart rate reached 500 bpm and the body 

temperature was 37°C, a 10-minute window was observed to allow equilibration 

to the isoflurane.  Using the VisualSonics 770 ultrasound system, an RMV 707B 

probe was placed on the ultrasound gel covering the dam’s abdomen. A sagittal-

positioned embryo was located, and then monitored for a 20 minute period, 

during which the dam’s body temperature was monitored and maintained. During 

this time, any movement of the embryo, namely, mouth opening or backward 

extension of the head and neck was documented. For each dam, only one 

embryo was monitored.  

2.12 Statistical Analysis 

Statistical analyses performed on the data were done using Excel software. 

Student’s two-tailed T-test were used to compare two groups and significance 
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was determined by a P value of less than 0.05. Additionally, Chi Square test for 

Independence and Fisher’s Exact Test for Independence in the case where an 

input value was zero, were used with P of less than or equal to 0.05 being 

significant. Results were presented as an average of values ± standard error of 

the mean.  
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CHAPTER 3: RESULTS 

 

3.1 Stage-Specific Inactivation of Rdh10 Induces Secondary Cleft Palate 

Vitamin A metabolism and RA production are essential for viability at early 

organogenesis stages of development, and deficiency of RA signaling from 

inception can result in embryonic lethality prior to palate morphogenesis (K 

Niederreither, Subbarayan, Dollé, & Chambon, 1999; L. L. Sandell et al., 2012; 

See, Kaiser, White, & Clagett-Dame, 2008; White et al., 1998).  Therefore, in 

order to understand the requirement for Vitamin A metabolism and RA signaling 

during palate development, we performed stage-specific inactivation of Rdh10 

using a conditional allele (L. L. Sandell et al., 2012).  Stage specific inactivation 

of Rdh10 was achieved by Cre-mediated excision of a floxed allele of Rdh10 via 

the tamoxifen-inducible Cre-ERT2 (Ventura et al., 2007).   

Disruption of RA production at different embryonic stages can produce a variety 

of phenotypes (See et al., 2008; White et al., 1998).  In a previous study, Rdh10 

was conditionally eliminated by Cre-ERT2 with tamoxifen administered at E7.5 to 

study the role of RA signaling in nasal airway development (Kurosaka, Wang, 

Sandell, Yamashiro, & Trainor, 2017). In the current study, we utilize the same 

mouse strains to conditionally inactivate RDH10 function by administration of 
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tamoxifen at E8.5. These experimental conditions, with tamoxifen administered at 

E8.5, have been previously validated to completely eliminate Rdh10 RNA by 

E10.5, which attenuates RA signaling activity to 30% in comparison to the RA 

level in control embryos by E11.5 (Metzler et al., 2018). 

To determine if RDH10 and endogenous RA are important for secondary palate 

formation, we assessed palate morphology in Rdh10flox/+ control and 

Rdh10delta/flox mutant embryos at E16.5. Palates of embryos, with mandibles 

removed, were visualized by nuclear fluorescent staining (Fig. 6).  Cleft of the 

secondary palate was observed in 36% of Rdh10delta/flox mutant embryos (Fig. 6 

B) (n=36). In contrast, cleft palate was not observed in any Rdh10flox/+ control 

embryos (Fig. 6 A) (n=37).   
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Figure 6. Morphological Comparison of Control Mutant Embryos.  Nuclear 

florescent imaging of Rdh10flox/+ control (A) and Rdh10delta/flox mutant (B) embryos 

at E16.5 reveals complete cleft of the secondary palate in mutant embryos. (C) 

The Rdh10delta/flox conditional inactivation model produces cleft palate at a 

frequency of 36% at E16.5 which is significant based off Fisher’s Exact Test for 

Independence p≤0.05. Data generated in conjunction with Swetha Raja. 
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Overall cranial morphology of the Rdh10delta/flox mutant embryos resembled that 

of Rdh10flox/+ control littermates (Fig. 7).  Bone and cartilage staining of E16.5 

embryos revealed that most of the cranial skeletal elements were present in 

mutant embryos.  However, a notable difference was detected in the palatine 

bones of mutant embryos.  In all control embryos the two opposing palatine 

bones had a feathery outgrowth that almost touched at the midline (Fig. 7 A, 

yellow arrowhead) (n=11/11).  In contrast, in 50% of Rdh10delta/flox mutant skulls, 

the feathery medial growth of the palatine bones was lacking and did not 

approach the midline (Fig. 7 B, yellow arrow) (n=4/8).  
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Figure 7. Bone and Cartilage Staining with Alizarin Red and Alcian Blue of E16.5 

embryos. (A) Palatine bones of control embryos have grown towards the midline 

with feathering outgrowths (n=11/11). (B) In contrast, palatine bones of a subset 

of Rdh10delta/flox mutant embryos remain lateral with no medial growth of bone 

towards the midline (n= 4/8). 
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To gain insight about the tissue architecture in cleft palates of Rdh10delta/flox 

mutant embryos, we performed hematoxylin and eosin staining of paraffin 

sections (Fig. 8). At E13.5, the palate shelf morphology of Rdh10delta/flox mutant 

embryos resembled that of Rdh10flox/+ control littermates, with palate shelves 

aligned vertically on either side of the tongue (Fig. 8 A, B). By E16.5, the palate 

shelves of Rdh10flox/+ control embryos have elevated and fused at the midline 

(Fig. 8 C, E, G).  In contrast, the palate shelves of ~40% of Rdh10delta/flox mutant 

embryos appear elevated but not grown towards the midline (Fig. 8 D, F, H).  

Together, these data reveal that Rdh10delta/flox mutant embryos administered 

tamoxifen at E8.5 have reproducible cleft palate, demonstrating that this 

conditional inactivation model can be used to study the role of endogenous 

vitamin A and RA signaling in palate development.  
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Figure 8. Histological Analysis of Control and Rdh10delta/flox Mutant Embryos.  

Mid-palate coronal sections stained with hematoxylin and eosin reveal that 

control (A) and mutant (B) specimens are similar at E13.5, with palate shelves 

vertically oriented on either side of the tongue. (C-H) Hematoxylin and eosin 

stained sections of E16.5 embryos reveals the cleft palate defect in mutant 

embryos.  At this stage palate shelves of control embryos have elevated, grown 
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towards the midline and fused in the posterior (C), middle (E), and anterior (G) 

palate.  In contrast, palate shelves of mutant embryos are open and unfused in 

the posterior (D), middle (F), and anterior (H) palate.   Black asterisks denote 

lack of medial contact of mutant palate shelves. Data generated in conjunction 

with Swetha Raja. 
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3.2 Culture of Isolated Maxillae Ex Vivo Suggests Extrinsic Defect Underlies 

Retinoid Deficient Cleft Palate 

Cleft palate can be caused by defects intrinsic to the palate shelves, or by 

defects in other tissues that indirectly prevent palate closure.  To determine 

whether cleft palate in retinoid deficiency occurs by a mechanism intrinsic or 

extrinsic to the palate shelves, we assessed fusion of maxillary explants cultured 

independently of the tongue and mandible. Maxillary tissues were isolated from 

E13.5 embryos, prior to shelf elevation (Fig. 9 A), and were placed in a rolling 

suspension culture for 72 hours to allow fusion to take place (Lan, Zhang, Liu, 

Xu, & Jiang, 2016). Under these conditions, palate shelf elevation and medial 

contact occurred in 79% of the maxillary explants from Rdh10flox/+ control 

embryos (Fig. 9 B, D) (n=19).  Similarly, the maxillary explants from Rdh10delta/flox 

mutant embryos also elevated and made medial contact at a rate of 77% (Fig. 9 

C, D) (n=22). The two experimental groups are not statistically different, (Chi 

squared, p > 0.05).  
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Figure 9. Three Day Ex Vivo Culture of Control and Mutant Maxillary Explants.  

(A) E13.5 maxillary explants with unfused palate shelves were dissected free of 

brain, mandible and tongue prior to ex vivo suspension culture. (B-C) Nuclear 

florescent imaging of cultured maxillary explants of Rdh10flox/+ control (B) and 

Rdh10delta/flox mutant (C) embryos reveals apparent fusion of palate shelves 

following 72-hour culture period. (D) Graphical representation of frequency of 

apparent fusion for control and mutant explants. Chi square test for 

independence indicates the frequency of apparent fusion was not different 

between control and mutant explants, p ≥ 0.05. Data generated in conjunction 

with Swetha Raja. 
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To determine if fusion occurred in cultured maxillae, subsets of cultured maxillary 

explants were examined histologically. Complete fusion with breakdown of the 

midline epithelial seam was observed in both Rdh10flox/+ control palate explants 

(Fig. 10 C) (n=2/6) and Rdh10delta/flox mutant palate explants (Fig. 10 D) (n=5/6). 

Appearance of the midline epithelial seam, indicating a lack of complete fusion 

was apparent in Rdh10flox/+ control palate explants (Fig. 10 A) (n=4/6) and 

Rdh10delta/flox mutant palate explants (Fig. 10 B) (n=1/6). 
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Figure 10. Histological Analysis of Control and Rdh10delta/flox Mutant Embryos 

after Three-Day Culture.  Hematoxylin and eosin staining of coronal sections 

through the cultured maxillae reveals complete fusion with breakdown of midline 

epithelial seam in some specimens. For sectioned control specimens 4/6 

retained the midline epithelial seam (A), while 2/6 had evidence of fusion and 

loss of epithelial seam (C).  For sectioned mutant specimens 1/6 retained the 

midline epithelial seam (B), while 5/6 had evidence of fusion and loss of epithelial 

seam (D).  Data generated in conjunction with Swetha Raja. 
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These experiments do not unequivocally rule out a maxillary tissue defect as 

some biological processes might be altered by removing the mandible and 

tongue.  However, an explant culture with the mandible and tongue removed is 

the best experiment available in the field to demonstrate that cleft palate is not 

caused by a defect intrinsic to the maxilla.  The most likely explanation of these 

experiments is that these data indicate that the underlying mechanism of cleft 

palate in Rdh10delta/flox mutant embryos is extrinsic to the palate shelves. 

3.3 Retinoid Deficient Embryos do not Exhibit Micrognathia 

One known extrinsic defect that can cause cleft palate is micrognathia, in which 

the small mandible crowds the tongue in the back of the oral cavity, preventing 

palate closure.  In order to evaluate if retinoid deficiency causes micrognathia, 

we analyzed mandible size. After staining head specimens for bone and cartilage 

with Alizarin red and Alcian blue, mandibles were isolated by microdissection, 

imaged, and mandible length, width, and angle were measured (Fig. 11 A).  

Representative images of Rdh10flox/+ control (Fig. 11 B)and Rdh10delta/flox mutant 

embryos at E16.5 (Fig 11 C) are shown.   

No difference in mandible length was observed in Rdh10delta/flox mutant embryos 

relative Rdh10flox/+ control littermates (Fig. 12 A).   The mandibles of Rdh10delta/flox 

mutant embryos had a very small but significant increase in width of the mandible 

relative to Rdh10flox/+ control littermates (Fig. 12 B).  The increased width was 

reflected in a slight increase in angle of the mutant mandibles relative to controls 

(Fig. 12. C).  No obvious differences were noted in bone or cartilage morphology 
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between the two groups.  The similar size of mandibles of Rdh10delta/flox mutant 

embryos and Rdh10flox/+ controls demonstrates that the retinoid deficient 

embryos do not have micrognathia.  Thus, reduced mandible size is not the 

cause of secondary cleft palate in retinoid deficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

 

 

 

 

 

 

 

 

 

Figure 11.  Alizarin Red and Alcian Blue Stain for Mandibular Analysis. (A) 

Mandibles were isolated from E16.5 embryos and stained with Alcian blue and 

Alizarin red to reveal bone and cartilage. Stained mandibles were imaged and 

measured for length, width, and angle.  Mandible from an Rdh10flox/+ control (B) 

and Rdh10delta/flox mutant embryos (C).    
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Figure 12. Measurements for Mandibular Size Analysis. The length of mandibles 

from mutant embryos was not significantly different from that of control embryos 

(A). Mutant mandibles were slightly wider than controls (B), with a larger interior 

angle measurement (C), p ≤0.05, based on Student t-test. 
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3.4 The Tongue of Rdh10delta/flox Mutant Embryos Obstructs Shelf Elevation 

In order to gain insight about the causative morphological defects preceding cleft 

palate in retinoid deficient embryos, we performed microCT analysis on 

Rdh10flox/+ control and Rdh10delta/flox mutant embryos at E14.5 (Fig. 13).  

Reconstructed 3D matrix files were rendered to reveal sagittal, coronal, and 

transverse section images. Comparison of sagittal sections of Rdh10flox/+ control 

(Fig. 13 A) and Rdh10delta/flox mutant (Fig. 13 B) embryos revealed a difference in 

tongue position. Tongues of control embryos were relatively flat (single blue 

arrow, n=4/4), while tongues of mutant embryos were arched in the posterior 

(double blue arrows, n= 5/5). In control embryos palate shelves were visible 

along their length, indicating that the shelves had grown toward the midline, 

whereas in mutant embryos, posterior palate shelves were not visible near the 

midline. Comparison of coronal sections revealed that the palate shelves of 

Rdh10flox/+ control embryos (Fig. 13 C, C’) were elevated horizontally above the 

flattened tongues (n=3/4 both shelves elevated, n=1/4 one shelf elevated), 

whereas Rdh10delta/flox mutant embryos (Fig. 13 D, D’) had vertical palate shelves 

trapped on either side of the arched tongue (n=4/5 both shelves vertical and 

trapped). Transverse sections at the level of the tongue of the control embryo 

(Fig. 13 E) reveals that the tongue was elongated and lying completely under the 

palate shelves, which were out of view. In contrast, in Rdh10delta/flox mutant 

embryo’s (Fig. 13 F) palate shelves were visibly trapped at the posterior aspect 

of the tongue.  Together these data reveal that Rdh10delta/flox mutant embryos 

have mal-positioned tongues that obstruct palate elevation at E14.5. 
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Figure 13.  Analysis of Embryo Morphology by microCT.  Scans reveals 

Rdh10delta/flox mutants have abnormally positioned tongues that obstruct palate 

shelf elevation.  MicroCT scans of E14.5 Rdh10flox/+ control (A, C, C’ and E) and 

Rdh10delta/flox mutant (B, D, D’ and F) embryos. Sagittal view at the midline shows 

the tongue of control embryo lies flat under the posterior palate shelf (A, single 
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blue arrow, n=5/5), while the mutant embryo tongue is arched in the back of the 

oral cavity (B, double blue arrow, n=6/6), with no overlying palate shelf visible.  

(C) Coronal view of control embryo shows that palate shelves have elevated over 

the tongue and contact at the midline (single yellow arrowhead, n=4/5 both 

shelves elevated, n=1/5 one shelf elevated).  (D) In contrast, coronal view of 

mutant embryo reveals the palate shelves oriented vertically, appearing 

obstructed by the arched tongue (double yellow arrowhead, n=5/6). (C’) Color 

coded image of (C) with blue palate shelves elevated over a yellow flattened 

tongue.  (D’) Color coded image of (D) with blue palate shelves trapped vertically 

on each side of the tongue.  (E) Transverse section at the level just above the 

tongue reveals control tongue has flattened out underneath the palate shelves 

that are elevated out of view (single yellow arrowhead).  (F) Transverse section 

above mutant tongue reveals the posterior palate shelves wedged laterally on 

either side of the tongue (double yellow arrowhead). 
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To determine if the tongue obstruction in that Rdh10delta/flox mutant embryos 

resulted from increased tongue volume, we measured tongue volume in control 

and mutant embryos by volume rendering microCT datasets (Fig. 14).   

Volumetric analysis showed that Rdh10delta/flox mutant tongues ((Fig. 14 B, D, F) 

were smaller than the tongues of control (Fig. 14 A, C, E) littermates (Fig. 14 G). 

These data indicate that tongue obstruction of the palate shelves is not caused 

by increase tongue volume.  
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Figure 14. Volumetric Analysis of Control and Mutant Tongues. Volume 

rendering of the control (A, C, E) and mutant (B, D, F) tongues gives a sagittal 

(A, B), dorsal (C, D) and posterior view (E, F) of the tongue morphology.  (G) The 

volumetric analysis shows the mutant tongues are smaller in volume, p≤0.05.  

Yellow scale bars in tongue volumetric analysis (G-L) are 200 µm in length.   
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Our observation of abnormal arched and contracted appearance of tongues in 

Rdh10delta/flox mutant embryos led us to evaluate the intrinsic tongue muscles 

(Fig. 15). We performed immunostaining for the muscle marker myosin on 

coronal sections of E14.5 Rdh10delta/flox mutant (Fig. 15 B) and Rdh10flox/+ control 

(Fig. 15 A) embryos.  No defect was observed in the intrinsic tongue muscles in 

mutant embryos relative to control littermates. All intrinsic muscles of the tongue, 

as well as the genioglossus fibers, appeared to be present and normal in the 

Rdh10delta/flox mutant embryos. 
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Figure 15. Muscle Morphology Analysis of Control and Mutant Embryos. 

Immunofluorescent staining for myosin on E14.5 coronal sections of control (A) 

and mutant (B) tongues, reveals mutant tongue musculature is grossly normal. 

White scale bars are 1 mm in length. 
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Collectively, these results indicate the morphogenesis of tongue musculature is 

grossly normal in retinoid deficient embryos, suggesting the abnormal tongue 

shape does not result from aberrant muscle morphogenesis. 

3.5 Rdh10delta/flox Mutant Embryos have Defects in Motor Nerves of the Posterior 

Pharyngeal Arches 

Having observed that Rdh10delta/flox mutant embryos had mal-positioned tongues 

obstructing palate shelf elevation, we next investigated the possibility that the 

mutant arched tongue phenotype was associated with defects in tongue motor 

nerves.  To assess motor nerve development in control and mutant embryos we 

performed whole mount immunostaining for TUBB3 neurons of E11.5 embryos 

(Fig 16, Fig. 17). 
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Figure 16.  Schematic of Nerve Staining of an E10.5 Embryo. Wild type E11.5 

embryo immunostained whole mount for TUBB3 reveals all nerves.  Yellow box 

defines pharyngeal region shown in following figures. 
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The muscles of the tongue are innervated by the hypoglossal nerve (CN XII), 

which supplies their motor function.  CN XII outgrows from the ventral neural tube 

anterior to cervical spinal nerve 1 (C1). C1 travels posteriorly to plex with the 

ventral rami of the cervical spinal nerves (C1-C4) before climbing to give motor 

supply to structures of the pharyngeal region involved in swallowing.  In 

Rdh10flox/+ control embryos (Fig. 17 A, C) CN XII fibers were clearly visible as an 

independent tract outgrowing toward the tongue, with C1 traveling posteriorly and 

disappearing behind the anterior dorsal root ganglion to join the cervical plexus.  

In contrast, Rdh10delta/flox mutant embryos (Fig. 17 B, D) exhibited a dysmorphic 

outgrowth of CN XII, which fused abnormally with C1.  In such cases C1 did not 

travel posteriorly to join the cervical plexus, but rather, fused directly with CN XII.  

This abnormal fusion of C1 and CN XII was observed in 50% of the mutant 

nerves (n=4/8), while it was never found in the control littermate nerves (n=0/14) 

(Fig. 17 E).  
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Figure 17. Nerve Outgrowth Analysis of CN XII and C1. (A) In Rdh10flox/+ control 

embryos (A, C) motor nerve C1 routes posteriorly to plex with other cervical 

nerves behind the anterior-most dorsal root ganglion before climbing superiorly 

(yellow arrowhead). (B) In Rdh10delta/flox mutant embryos (B, D) the motor nerve 

C1 does not track posteriorly behind the anterior-most dorsal root ganglion, but is 

mis-routed to fuse directly with CN XII (white arrow).  (C, D) Color coded images 

of control (C) and mutant (D) embryos to highlight the mis-routing of C1 fusing 

with CN XII in mutant embryos. (E) The frequency of aberrant fusion of C1 to CN 

XII was 50% of mutant nerves (n=4/8). Aberrant fusion was never observed in 

nerves of control embryos (n=0/14). All scale bars are 100 µm in length. 
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The dysmorphic fusion of C1 to CN XII likely affects function of the muscles 

innervated by these nerves. Direct targets of CN XII include the muscles of the 

tongue, and direct targets of C1 include the geniohyoid and thyrohyoid muscles, 

which work synergistically to move the hyoid bone and larynx during swallowing.  

These data suggest that abnormal motor nerve patterning could impact 

movement of the tongue and pharyngeal swallowing apparatus. 

3.6 Retinoid Deficient Embryos Develop Defects in the Pharyngeal Skeleton 

The observation that mal-positioning of the tongue obstructs palate shelf 

elevation in Rdh10delta/flox mutants, prompted us to investigate the pharyngeal 

skeleton; the hyoid bone, and the thyroid and cricoid cartilages, which function to 

anchor the muscles of the tongue, mandible, and pharynx.  We examined the 

pharyngeal skeleton in E16.5 Rdh10delta/flox mutant (Fig. 18 B) and Rdh10flox/+ 

control (Fig. 18 A) embryos by Alcian blue staining. Rdh10delta/flox mutant embryos 

had morphological defects in all pharyngeal skeletal elements, including ectopic 

fusion of the hyoid primordium to the laryngeal prominence of the thyroid 

cartilage, and an abnormal gentle “M” shaped hyoid primordium (Fig. 18 B, black 

arrow). The striking pharyngeal skeleton phenotypes observed Rdh10delta/flox 

mutant embryos parallel those previously described for other models of retinoid 

deficiency (Luo, Sucov, Bader, Evans, & Giguere, 1996; See et al., 2008; 

Vermot, Niederreither, Garnier, Chambon, & Dolle, 2003).  
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Figure 18. Pharyngeal Skeleton Analysis with Alcian Blue Staining. Rdh10delta/flox 

mutant embryos have defects in pharyngeal skeletal primordia.  Skeletal 

preparation of isolated pharyngeal cartilages from Rdh10flox/+ control embryos (A) 

and Rdh10delta/flox mutant embryos (B) at E16.5. (B) In mutant embryos the 

laryngeal prominence of the thyroid cartilage was abnormally fused to the 

primordium of the hyoid bone (black arrow).  (B) Abnormal fusion of the thyroid 

cartilage to hyoid primordium was observed in all mutant embryos (n=9/10), but 

was never detected in control samples (n=0/12), (Fischer’s Exact test for 

independence, p≤0.05).  (B) In addition to the abnormal fusion, the hyoid 

primordia in mutant embryos also had a distinctive “M” shape (black arrow, 

n=9/10), compared to the hyoid of control embryos, which were straighter 

between the horns (n=0/12), (Fischer’s Exact test for independence, p≤0.05). 

Hy=hyoid bone primordium, Thy=thyroid cartilage primordium, Cr=cricoid 

cartilage primordium, gh= greater horn of the hyoid bone primordium. 

 

 

A B 



58 
 

 

 

Table 3. Frequencies of Pharyngeal Cartilage Defects 
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We next examined the attachment of the tongue muscles to the pharyngeal 

cartilages in control and Rdh10delta/flox mutant embryos via paraffin section and 

immunostaining (Fig. 19).   E14.5 embryos were sectioned transversely at the 

level of the hyoid bone, and stained for myosin to visualize muscle primordia, and 

SOX9 to visualize cartilage primordia. In control embryos (Fig. 19 A), myosin 

positive fibers were directed toward, and abutted into, the greater horn of the 

hyoid, suggesting muscle attachment to the bone primordium (Yellow 

arrowheads). In contrast, in Rdh10delta/flox mutant embryos (Fig. 19 B), myosin 

positive fibers did not appear to contact the greater horn of the hyoid primordium 

(Yellow astericks). The lack of definitive muscle contact to the malformed hyoid 

primordium suggests that the muscle anchoring attachment could be impaired in 

mutant embryos.   
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Figure 19. Muscle Attachment Analysis of Tongue Musculature to the Hyoid 

Bone.  Transverse sections through tongues of E14.5 control (A) and mutant 

embryos (B) were immunostained with antibodies against myosin (muscle 

primordia) and SOX9 (cartilage primordia).  (A) In control embryos, muscle 

contact to the greater horn of the hyoid was detected (yellow arrowheads).  In 

contrast, in mutant embryos, muscle contact to the dysplastic greater horns of 

the hyoid was not evident (B, yellow asterisks).  Black scale bars are 500 µm in 

length. Yellow scale bars are 100 µm in length.  
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The observation that Rdh10delta/flox mutant embryos have dysplastic pharyngeal 

cartilages, with reduced or absent muscle contact, suggests that defects in 

patterning the pharyngeal skeleton could hinder movement of the tongue and 

mandible in these embryos. 

3.7 Conditional Inactivation of Rdh10 Disrupts Pharyngeal Anterior-Posterior 

Pattering Genes, Consistent with Other RA Deficiency Models. 

Deficient RA signaling is known to disrupt expression of pharyngeal patterning 

genes. To validate that Rdh10delta/flox embryos, have reduced RA signaling and 

altered patterning gene expression in pharyngeal tissues, we examined the 

spatial location of RA signaling, and expression of Hoxa1, Hoxb1, and Tbx1, in 

control and mutant embryos. 

For the experimental Rdh10delta/flox mutant system utilized here, in which 

tamoxifen is administered at E8.5, we have previously demonstrated that RA 

signaling is attenuated to 30% that of control embryos by E11.5 (Metzler et al., 

2018). Here we use the RARE-LacZ reporter transgene to assess the spatial 

distribution of RA signaling activity at E10.5 (Fig. 20).   Comparison of whole 

mount RARE-LacZ staining in Rdh10flox/+ control embryos (Fig. 20 A, C) with 

Rdh10delta/flox mutants (Fig. 20 B, D) reveals that mutant embryos have reduced 

RA signaling, particularly in the ventral tissues (n=3 mutant embryos). Analysis of 

paraffin sections reveals a reduction of RA signaling in somitic mesoderm and 

posterior pharyngeal arch mesenchyme in mutant embryos (Fig. 20 F, H) relative 

to controls (Fig. 20 E, G).  
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Figure 20. RARE LazC Analysis with Whole Mount Specimens and Histology. 

Consistent with RA deficiency models Rdh10delta/flox inactivation reduces RA 

signaling and modifies expression of Hoxa1, Hoxb1 and Tbx1 in pharyngeal 

tissues.  E10.5 embryos carrying the RARE-LacZ reporter transgene were 

stained whole mount with x-gal to show the pattern of RA signaling.  (A, C) 

Rdh10flox/+ control embryo in side (A) and dorsal view (C).  (B, D) Diminished RA 

signaling in Rdh10delta/flox mutants is evident in side view (B).  (E-H) Whole mount 

stained embryos were sectioned to view the distribution of RA signaling in 

pharyngeal arch tissues. In the control embryo, RA signaling is active in the 

somitic mesoderm and pharyngeal mesenchyme (E, G).  In contrast, in 

Rdh10delta/flox mutant embryos, somitic mesoderm and pharyngeal mesenchyme 

are predominantly negative for RA signaling (F, H). Black scale bars are 1 mm in 

length.  Blue scale bars are 100 µm in length. 
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RA is known to regulate expression of pharyngeal patterning genes (Bel-Vialar, 

Itasaki, & Krumlauf, 2002; Deschamps & van Nes, 2005; Diez del Corral & 

Storey, 2004; Gavalas et al., 1998; White, Highland, Kaiser, & Clagett-Dame, 

2000; White et al., 1998).  To understand the etiology of the pharyngeal 

abnormalities in retinoid deficient embryos, we examined expression of key 

pharyngeal patterning genes in control and mutant embryos (Fig. 22).  To that 

end we performed qPCR for Hoxa1, Hoxb1, and Tbx1 on isolated cervical tissues 

that included the 2nd-6th arches of E10.5 embryos (Fig. 21).   
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Figure 21. Schematic Representation of the Region that was used for qPCR 

Analysis. 
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Hoxa1 and Hoxb1, both of which are directly regulated by RA signaling, were 

significantly downregulated in Rdh10delta/flox mutant embryos to 60% that of 

controls (Fig. 22 A, B). Conversely, Tbx1, a transcription factor known to be 

negatively regulated by RA signaling, was increased in Rdh10delta/flox mutant 

pharyngeal tissues to 130% the level of controls (Fig. 22 C). We also examined 

expression of Hoxa3, a gene required for development pharyngeal cartilages 

(Chojnowski, Trau, Masuda, & Manley, 2016; Mulder, Manley, & Maggio-Price, 

1998), however, no significant difference was observed (data not shown).  
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Figure 22. Expression of Pharyngeal Anterior-Posterior Pattering Genes.  (A-C) 

Expression of pharyngeal patterning genes in cervical tissues was assessed by 

qPCR.  Cervical tissue was isolated from E10.5 embryos by micro-dissection.  In 

Rdh10delta/flox mutant embryos Hoxa1 and Hoxb1 is reduced to 60% that of control 

embryos (A, B), while Tbx1 is increased to 130% relative to control embryos (C).  

All gene expression differences, p ≤ 0.01 based off Student T-Test.   
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These data, demonstrating reduced pharyngeal RA signaling and altered 

expression of key pharyngeal patterning genes, suggest a molecular mechanism 

for the pharyngeal skeletal and motor nerve defects observed in Rdh10delta/flox 

mutant embryos. 

3.8 In Utero Spontaneous Mouth Movement is Restricted in Rdh10delta/flox Mutant 

Embryos  

The combined evidence of the disrupted tongue morphology, the mis-patterned 

motor nerves, and abnormal development of the pharyngeal skeleton, led us to 

hypothesize that retinoid deficient embryos have a problem with mouth and 

tongue movement in utero. Vertebrate embryos begin spontaneous 

neuromuscular movement of the mandible and tongue before birth (Walker, 

1969; Wragg et al., 1972).  In mouse, these movements begin at E14.5.  To 

determine if retinoid deficient embryos have a defect in spontaneous 

mandible/tongue movement, we evaluated embryo movement in utero via 

ultrasound (Fig. 23, Fig. 24).  In order to have certainty regarding the genotype of 

embryos analyzed in utero, the ultrasound experiments were performed on 

pregnant dams crossed homozygous such that every embryo of the litter was 

either Rdh10flox/flox mutant, or every embryo was Rdh10+/+ control.  In each case 

tamoxifen was administered at E8.5, consistent with all previous experiments in 

this study.  

Ultrasound analysis was performed on E14.5 Rdh10+/+ control and Rdh10flox/flox 

mutant embryos in utero.  For each pregnant dam, a single embryo, oriented with 
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a sagittal profile suitable for viewing, was analyzed for a 20 minute period.  In 

both control and mutant embryos, periodic spontaneous movements were 

observed.  In both groups, the head would jerk quickly back away from the 

abdominal cavity creating space for the mandible to depress. In control embryos 

each head movement was accompanied by opening of the mandible and a 

retraction of the tongue (Fig. 23 A) (See movie 1).   
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Figure 23. Control Ultrasound Still and Movement Schematic.  Ultrasound 

analysis reveals that spontaneous mouth movement is restricted in Rdh10delta/flox 

mutant embryos.  Ultrasound was performed on E15.5 embryos in utero to 

evaluate spontaneous fetal mouth movement.  Spontaneous movement of the 

head was detected in both control and mutant embryos, but mouth opening and 

tongue withdrawal was only observed in control embryos.  (A) Still image from an 

ultrasound of an Rdh10+/+ control embryo. Schematic drawing depicts movement 

observed in control embryos.  Each movement event in control embryos includes 

opening of the mandible and withdrawal of tongue (blue arrows), simultaneous 

with backwards extension of the head (yellow arrow) (see movie 1) 
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In contrast, in mutant embryos, the backward head extension movement was not 

accompanied by mouth opening.  Instead, the jaw remained closed and tongue 

appeared inactive (Fig. 24 A) (See movie 2).  
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Figure 24. Mutant Ultrasound Still and Movement Schematic. (A) Still image from 

an ultrasound of an Rdh10flox/flox mutant embryo.  Schematic drawing depicts 

movement observed Rdh10flox/flox mutant embryos.  Mutant embryo movement is 

limited to backwards extension of the head (yellow arrow).  Mandible opening 

and tongue withdrawal are not observed in mutant embryos (see movie 2). 

 

A 



73 
 

In control embryos, backwards head extension with accompanying 

mandible/tongue movement was observed with an average frequency of 7 

openings per 20 minute observation interval (Fig. 25 A, B).  Mutant embryos 

exhibited backward head extension only without mandible/tongue movement, at 

an average frequency of 2.5 openings per 20-minute observation interval (Fig. 25 

A, B).  For one mutant embryo, spontaneous head movement was not detected, 

although the embryo did have a viable heartbeat. 
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Figure 25. Statistical Comparison of Ultrasound Movements. Both control and 

mutant embryos exhibited backwards head motion with an average frequency of 

2.5 – 7 movements per 20 minute observation interval.  The frequency of head 

movement was not significantly different between control and mutant embryos.  

(A) Control embryos exhibited mouth opening and tongue withdrawal with each 

head movement (average frequency 7 openings per 20 minute observation 

interval).  (B) No mouth opening or tongue withdrawal was observed in mutant 

embryos.  The difference in frequency of mouth opening was significantly 

different between control and mutant embryos using Fischer’s Exact Test for 

independence p≤ 0.01. 
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 These data demonstrate that Rdh10 and RA signaling are not essential for 

spontaneous fetal backward head extension, but are necessary for functional 

opening of the mandible and withdrawal of the tongue. 
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CHAPTER 4: DISCUSSION 

 

4.1 Identifying the Role of Retinoic Acid in Palate Development 

The results from this study have identified the mechanism of cleft palate in 

retinoid deficiency, thus identifying the requirement of endogenous RA signaling 

in palate formation during embryonic development. This study documents that 

known patterning defects, specific to the caudal pharyngeal arch and arising from 

aberrant RA signaling in the posterior pharyngeal arch endoderm, result in many 

abnormalities to the pharyngeal arch derived elements. These defective 

pharyngeal arch derivatives affect a critical mechanical mechanism that is 

important for palate formation.  During retinoid deficiency, morphology of the 

pharyngeal skeleton and nerves are disrupted, resulting in lack of spontaneous 

mouth movement at stage E14.5 in mouse.  

The well reported role of RA signaling function in hind brain and neural crest 

patterning lends itself to the explanation of defects observed in this study. RA is 

known to regulate expression of the Hox gene family members. These genes 

pattern the anterior-posterior axis and body plan of the embryo.  Lack of RA 

signaling in the model we describe, gives rise to gene expression changes in Hox 

genes. This disruption in gene expression that arises from aberrant RA signaling 
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likely gives rise to defects in hindbrain patterning which may well contribute to the 

neural and cartilage defects observed within this study.  

Using an Rdh10delta/flox mutant mouse model, this study demonstrates that 

endogenous RA is required for spontaneous mouth movement which is a 

prerequisite to elevation of the palate shelves and that this movement is only 

possible through proper development of pharyngeal arches. Lack of proper arch 

development results in vertically oriented palate shelves with the tongue residing 

between the shelves and obstructing their elevation. 

We propose a new model linking RA signaling to palatogenesis via regulation of 

anterior-posterior patterning, which is crucial for formation of the neuro-structural 

anatomy of the pharyngeal region.  The peripheral motor nerves, CN XII and C1, 

and the pharyngeal skeleton, including the hyoid bone, the thyroid and cricoid 

cartilages, work synergistically to anchor and move the muscles of the tongue 

and mandible (Fig. 26).  
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Figure 26.  Schematic Drawing of the Pharyngeal Arch Elements that are 

Involved in Swallowing.  Motor nerves and cartilages that allow mandible and 

tongue movement must be properly patterned via RA signaling to enable palate 

closure during embryogenesis.  Elements of the pharyngeal arches involved in 

mouth movement and swallowing include the hyoid bone, the thyroid and cricoid 

cartilages, CN XII and C1, and muscles that attach the tongue and mandible to 

the pharyngeal skeleton. 
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Mouth opening and tongue withdrawal begins simultaneously with palate 

elevation during embryogenesis (Walker, 1969).  At this time CN XII establishes 

connection to the tongue and initiates motor nerve activity (Wragg et al., 1972).  

This initiation of tongue movement prepares the embryo for swallowing, and also 

functions to make room for palate shelf elevation. This study links RDH10-

mediated metabolism of vitamin A and RA regulation of genes which pattern the 

anterior-posterior axis of the embryo, to an anatomical mechanism of 

spontaneous fetal mouth movement which is critical for palate shelf elevation 

(Fig. 27). 
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Figure 27. Schematic Drawing of Proposed Mechanism for the Role of Vitamin A 

and RA in Palate Formation. During embryogenesis, RA signaling, which 

depends on Rdh10-mediated retinol metabolism, is essential for proper 

regulation of pharyngeal patterning genes, includingTbx1, Hoxa1 and Hoxb1. 

These genes are critical for pattering the anterior-posterior axis during embryonic 

development.  The pattering of the pharyngeal region allows for proper 

development of the motor nerves, cartilage and muscle attachments that enable 

spontaneous fetal mouth movement.  This movement allows the resting tongue 

(yellow) to depress and retract (hatched grey).  The retraction moves the tongue 

out of the way of the palate shelves, giving them room to elevate and fuse to 

close the dome of the oral cavity.  
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Tongue interference with palate shelf closure has been suggested in previous 

mouse models of cleft palate.  Increased tongue height has been posited to play 

a role in inhibiting the palate shelves from elevating (Song et al., 2013).  The 

microCT analysis of retinoid deficient embryos presented here sheds a new light 

on the 3D morphology of the tongue in the context of obstructing palate shelf 

elevation.  In mutant embryos, tongues are statistically smaller by volume, but 

have a heightened posterior aspect. The 3D rendering reveals that a heightened 

appearance could be the result of posterior tongue contraction caused by a 

defect in neuro-structural ability of the embryo to depress the tongue. These 

observations suggest that interpretation of tongue height from 2D histological 

sections should be made with caution. 

4.2 Novel Identification of Fetal Mouth Immobility  

To date, there are three categories to which the etiology of cleft palate is 

classified under: 1) Defect intrinsic to the palate shelf tissues, 2) defect extrinsic 

to the palate tissues such as reduced size of the mandible, 3) defective in utero 

spontaneous mouth movement.  However, there has only been one 

experimental, direct demonstration of defective spontaneous mouth movement 

leading to cleft palate, which concludes that neurotransmitter defects are the 

cause.  Contrary to many popular models of secondary cleft palate, this study 

determines that the cause of cleft palate in retinoid deficiency is not due to an 

intrinsic defect, nor is it due to a micrognathic mandible.    
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It has been postulated since the early 20th century that fetal mouth movement 

plays an intimate role with formation of the secondary palate (His, 1901).  

Defects in spontaneous fetal mouth movement as a cause of cleft palate have 

been previously documented (Tsunekawa et al., 2005; Walker, 1969).  However, 

mouth immobility as a cause of cleft palate has been shown in terms of defects in 

neurotransmission.  Although a few additional studies infer that lack of mouth 

movement impacts palate formation, sufficient documentation depicting lack of in 

utero mouth movement is lacking. 

This study expands the scope of defects that can disrupt spontaneous mouth 

movement and shows a direct demonstration of mouth immobility leading to cleft 

palate.  Anterior-posterior patterning function of RA is needed for proper 

formation of the nerves and skeletal elements that enable fetal mouth movement, 

without which, lead to fetal mouth immobility and cleft palate. The finding that 

pharyngeal defects can be a cause of cleft palate by restricting fetal mouth 

movement identifies the previously unknown etiology and describes the 

requirement for endogenous RA signaling during embryonic development.  

4.3 Cleft Palate in Rdh10delta/flox Mutant Embryos is likely caused by a 

Combination of Defects in Nerve Routing and Muscle Attachment 

Pediatric Dysphagia is a human condition that inhibits such processes as feeding 

and swallowing in early post-natal life. This disorder is a key phenotype of 

DiGeorge Syndrome.  Two mouse mutant models which recapitulate DiGeorge 

Syndrome are the LgDel mutant model and the Tbx1 mutant model (LaMantia et 
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al., 2016; Wang et al., 2017).  It has been demonstrated that both the LgDel 

model and the Tbx1 mutant model exhibit hyoid defects. However, the LgDel 

model of 22q11.2 deletion syndrome also possessed hypoglossal 

neurotransmitter defects which were correlated to feeding and swallowing 

difficulties during the neonatal period.  These more severe nerve defects were 

not observed in the Tbx1 model for 22q11.2 deletion syndrome. The conclusions 

of these studies emphasize the importance of proper function of the nerves that 

innervate muscles involved in feeding and swallowing as well as show that loss 

of nerve function can be a sole cause swallowing difficulties in early post-natal 

life. (Wang et al., 2017).  

The development of muscles involved in swallowing and anchoring structures 

supporting them, is required for initiation of swallowing and development of the 

secondary palate.  Mutant mouse lines for Hoxa2 and Hoxa1 demonstrate that 

disruptions in these patterning genes produce phenotypes in the origin/insertion 

of the extrinsic tongue musculature. These defects in the extrinsic tongue 

muscles are directly correlated to cleft palate concluding that tongue immobility is 

the cause of cleft palate in these mutant specimens. The conclusions of this 

study emphasize the importance of proper pattering of the extrinsic tongue 

musculature and show that defects in muscle morphogenesis are the sole cause 

of cleft palate. This study does not conclude that nerve defects are the cause of 

cleft palate in Hoxa2 mutants (Barrow & Capecchi, 1999). 

We infer from these two separate models, that in Rdh10delta/flox mutant embryos, 

either defects in function of the hypoglossal nerve or in the attachment of the 
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tongue muscles to the dysplastic pharyngeal cartilage can cause cleft palate 

shown by defective spontaneous fetal mouth movement. Here we directly 

demonstrate for the first time that spontaneous fetal mouth movement is inhibited 

in RDH10 mutants, likely owing to a combination of aberrant nerve patterning 

and extrinsic tongue muscle morphogenesis.  We reach this conclusion by 

showing abnormalities in the pharyngeal skeleton as well as patterning of nerves 

which control swallowing function.  

Previous studies documenting mouth immobility as a cause of cleft palate utilized 

mutations that disrupt neurotransmitter signaling (Asada et al., 1997; Condie et 

al., 1997; Culiat et al., 1995; Homanics et al., 1997; Wojcik et al., 2006).   

Neurotransmitter defects associated with cleft palate can originate specifically in 

the central nervous system (Oh et al., 2010), and can be traced to a lack of 

spontaneous fetal mouth movement (Tsunekawa et al., 2005).  The lack of mouth 

movement we describe here parallels that observed in the neurotransmitter 

models.  However, in the retinoid deficient embryos, the defect in mouth 

movement results from mis-patterning of peripheral motor nerves rather than a 

loss of neurotransmitter function.  Moreover, the mouth movement defect 

described here was isolated to the mandible and tongue, while backwards head 

extension remained active. 
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4.4 RA Deficiency Etiology in Cleft Palate Make Have Implications in Other 

Contexts 

 In human cleft palate patients and mouse models, pharyngeal defects have 

been observed in association with cleft palate.  Abnormalities in location and 

formation of the hyoid bone have been observed in human cleft palate 

populations (Rajion et al., 2006; Wahaj, Gul e, & Ahmed, 2014).  22q11.2 

deletion syndrome in human patients includes pediatric dysphagia and defects in 

development of the pharyngeal arches, heart, and palate (Scambler, 2010).  

Defects in cranial nerve patterning and neurotransmission have been noted in 

mouse models of 22q11.2 deletion syndrome (Karpinski et al., 2014; Wang et al., 

2017).  We hypothesize that, in some cases, these pharyngeal defects may be a 

causal factor in the etiology of cleft palate.  

The major cause of 22q11.2 deletion syndrome is loss of Tbx1, which is inversely 

regulated by RA signaling (Merscher et al., 2001; Roberts, Ivins, James, & 

Scambler, 2005; Scambler, 2010; Yutzey, 2010).  A link between 22q11.2 

deletion syndrome and perturbation of RA signaling has been well established 

(Yutzey, 2010). Mouse models with disrupted RA signaling have phenotypes 

reminiscent of 22q11.2 deletion syndrome (K. Niederreither et al., 2003; Vermot 

et al., 2003).  Excess RA downregulates Tbx1 expression, while reduced RA 

results in overexpression of Tbx1 (Roberts et al., 2005; Ryckebusch et al., 2010).  

Because pharyngeal arch development depends on a precise balance between 

Tbx1 and RA, we suspect that the cause of cleft palate in 22q11.2 deletion 

syndrome may be related to pharyngeal patterning defects similar to those we 
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observe in the retinoid deficient Rdh10flox/delta mutant embryos.  Perhaps 

correlation of cleft palate and pharyngeal arch defects in other models like 

22q11.2 deletion syndrome can be understood through evaluating the presence 

of spontaneous mouth movement in utero.  
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CHAPTER 5: CONCLUSIONS 

 

The data presented in our study show that RA is critical for palate development, 

not for a role within the palate shelf primordia, but rather its well established role 

in the formation of pharyngeal elements responsible for moving the mouth and 

tongue. This is demonstrated by lack of movement at E14.5 and defects in 

morphology of the peripheral motor nerves, cartilage, muscle attachment and 

position of the tongue in retinoid deficient embryos.  This study, may be 

applicable to cleft palate etiology in humans.  Although there are structural 

differences between mouse and human palate shelves during development (Yu, 

Deng, Naluai-Cecchini, Glass, & Cox, 2017), it seems plausible that insufficient 

fetal tongue movement could obstruct palate shelf elevation in humans as it does 

in mice. Further investigation of this mechanism is important as it may have 

ramifications for preventing birth defects. More attention must be given to the 

optimization of RA levels during pregnancy as counseling objectives may be 

improved through modulation of this dynamic and sensitive signaling pathway.  
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