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A key challenge for cognitive neuroscience is the development and validation of tasks 

that capture real-world cognitive phenomena and render them suitable for investigation 

within an MRI environment. Cognitive flexibility is necessary for a range of adaptive 

behaviors and is associated with optimal life outcomes, but as a psychological construct it 

has been difficult to operationalize and validate. Crucially, psychometrically validated 

tasks must be developed prior to their application to clinical populations to investigate the 

neural substrates of cognitive inflexibility. Here, we address these limitations by adapting 

a well-validated laboratory measure of cognitive flexibility to the scanner environment 

(Study I) and applied the neuroimaging results to characterize directed functional 

connectome profiles supportive of cognitive flexibility in children (Study II). First, the 

neural substrates of cognitive flexibility in a sample of 32 neurotypical adults (19-46 

years) were characterized using task-based functional magnetic resonance imaging 

(fMRI). Results demonstrated that the fMRI-adapted task is reliable and showed 

convergent validity with the laboratory-based version of the task, which has previously 

been shown to measure cognitive flexibility. In line with our hypotheses, we observed 

activation in prefrontal, posterior parietal, insular, basal ganglia and thalamic regions in 

response to engaging cognitive flexibility, over and above low-level visual and motor 

processes. In Study II, heterogeneity in cognitive flexibility in children with a range of 



 

abilities (children with autism spectrum disorder [ASD], attention deficit/hyperactivity 

disorder [ADHD], and typically developing [TD] children) was parsed using directed 

functional connectivity profiles derived from resting-state fMRI data. Brain regions 

identified in Study I were used to guide region-of-interest (ROI) selection to estimate 

individual connectivity profiles in Study II. We expected to find at least three subgroups 

of children who differed in their network connectivity metrics and symptom measures. 

Unexpectedly, we did not find a stable or valid subgrouping solution, which suggests that 

categorical models of the neural substrates of cognitive flexibility in children may be 

invalid. Together, the results highlight the neurotypical correlates of cognitive flexibility 

in both children and adults within the frontoparietal and salience networks, and shed light 

on the validity of conceptualizing the neural substrates of cognitive flexibility 

categorically in children. Ultimately, this work may provide a foundation for the 

development of a revised nosology focused on neurobiological substrates of mental 

illness as an alternative to traditional symptom-based classification systems.
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Chapter 1. Introduction 

Cognitive flexibility is a core component of executive functions which allows 

individuals to flexibly adapt to changes in environmental demands in the context of goal-

directed behavior (Scott 1962). These skills emerge in early childhood and follow a 

protracted development through young adulthood (Anderson 2002). Intact cognitive 

flexibility is important across the lifespan, as these skills support social development and 

academic achievement in childhood and job success in adulthood (Bailey 2007, 

Diamond, Barnett et al. 2007, Hunter and Sparrow 2012, Chen, Yang et al. 2014, Engel 

de Abreu, Abreu et al. 2014). Although cognitive flexibility has received considerable 

attention in the psychological literature, at the level of observable behavior and self- and 

other-reports, the large-scale neural networks that support cognitive flexibility are still 

under investigation. Further, scant research has identified functional network alterations 

that may underlie difficulties in implementing flexible behavior (Dajani and Uddin 2015). 

To fill this gap, this dissertation sought to combine basic cognitive neuroscience 

approaches and their clinical applications to characterize brain network profiles that 

support cognitive flexibility skills in the mature brain, in adults, and in the developing 

brain, in children.  

Going beyond behavior to characterize its neural substrates is necessary to 

determine the underlying large-scale brain network interactions that give rise to cognitive 

flexibility. This work is crucial in determining whether multiple biological pathways give 

rise to flexible behavior. There are numerous lines of evidence to suggest that brain-

behavior relationships are not simply one-to-one (Pessoa 2014), emphasizing the 

importance of considering neurobiological mechanisms of behavioral constructs. This is 
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especially important in consideration of the biological substrates of cognitive 

inflexibility. As an alternative to symptom-based approaches to diagnose mental health 

disorders, the goal of the Research Domain Criteria (RDoC) is to identify individuals 

with a common biological pathway to abnormality, relying on neural circuits, instead of 

behavioral markers, as the substrate of mental illness (Insel, Cuthbert et al. 2010). 

Focusing on the level of neurobiology instead of behavior is crucial because varying 

types of functional network miswirings across development may manifest as a singular 

phenotype (Di Martino, Fair et al. 2014), suggesting that distinct brain abnormalities may 

appear behaviorally identical. Likewise, disparate genetic etiologies may lead to similar 

behavioral profiles (Dougherty, Evans et al. 2016, Pelphrey 2017). For example, autism 

spectrum disorder (ASD) encompasses a heterogeneous group of individuals who exhibit 

variability in cognitive flexibility (Gioia, Isquith et al. 2002, Blijd-Hoogewys, Bezemer et 

al. 2014). Heterogeneity in ASD extends beyond behavior to the disparate 

pathophysiological mechanisms that lead to diagnosis (Jeste and Geschwind 2014). This 

biological heterogeneity impedes researchers from identifying biomarkers for ASD 

(Cuthbert and Insel 2013). Diagnostic categories should necessarily define 

neurobiologically homogeneous groups to allow for the development of targeted 

treatments specific to a neurobiological signature of the disorder. This suggests that 

advances in mental health research necessarily rely on characterizing underlying 

neurobiological mechanisms of pathophysiology, and that psychiatry may be 

fundamentally limited as long as assessments are limited to observable phenomena (Pine 

2017). 
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The National Institute of Mental Health, who developed the RDoC framework, 

(Insel, Cuthbert et al. 2010), proposed a radical shift in clinical neuroscience research in 

order to address the gap between neuroscience research and clinical translation to 

practical changes in diagnostic criteria for sensitive and specific nosologies for mental 

health disorders. Eight years after RDoC was released, the original guiding principles 

continue to be informative for translational neuroscience research. Expanding on the 

implications of RDoC, Dr. Bruce Cuthbert clarified an important deviation from 

traditional translational research approaches: instead of first defining a mental disorder 

based on observable symptoms, then trying to identify underlying pathophysiology, 

RDoC turns that model on its head (Cuthbert 2014). First, Dr. Cuthbert argues, we should 

characterize healthy variability in a particular cognitive construct, then identify its neural 

underpinnings, and finally, seek to understand what accounts for dysfunction of these 

neural systems along the normal-to-abnormal spectrum. To accomplish this, RDoC 

promotes a dimensional model of psychopathology, thus encouraging the inclusion of the 

full range of behavior in research samples from healthy to impaired. Importantly, the 

assumption of a continuum between mental health and illness is still an unsettled 

empirical question (Garvey, Avenevoli et al. 2016), with great implications for the design 

of future diagnostic systems and treatment development (Coghill and Sonuga-Barke 

2012). Due to the promise of producing translatable findings, this dissertation used the 

RDoC framework in an initial investigation of cognitive flexibility which ultimately 

seeks to understand the neural substrates of normal to abnormal manifestations of this 

crucial skill. 
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In an effort to characterize the neural substrates of successful, developmentally 

mature cognitive flexibility, the first study aimed to identify the neural substrates of 

cognitive flexibility in neurotypical adults using a task that engages flexible behavior. 

Study II capitalized on the results of Study I, using the brain regions identified as regions-

of interest (ROIs) for estimation of individual-level connectivity profiles in children. 

Study II aimed to define subgroups of children across a wide range of abilities (including 

children with autism spectrum disorder, attention-deficit/hyperactivity disorder, and 

typically developing children) with similar network connectivity profiles which support 

cognitive flexibility. This study was undertaken in an effort to parse heterogeneity 

inherent to these neurodevelopmental disorders as a first step towards developing an 

alternative nosology that may define neurobiologically homogeneous groups of children. 

In this way, targeted treatments may be developed that correspond to specific 

neurobiological alterations. By focusing on brain networks important for cognitive 

flexibility, we can target a skill that is known to be developmentally essential and 

accelerate improvements in this ability, which may translate into better quality of life for 

children with neurodevelopmental disorders and their caregivers.  
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CHAPTER 2. STUDY I: Neural correlates of cognitive flexibility in neurotypical 
adults 

Cognitive flexibility enables an individual to work efficiently to disengage from a 

previous task, reconfigure to a new response set, and implement this new response set to 

the task at hand (Dajani and Uddin 2015). Cognitive flexibility supports the transition to 

adulthood, such as keeping and maintaining a job, navigating social relationships, and 

facilitating independent living (Bailey 2007, Kapp, Gantman et al. 2011, Burt and 

Paysnick 2012). In addition, greater cognitive flexibility is associated with greater 

resilience to negative life events and stress (Genet and Siemer 2011) and higher levels of 

creativity (Chen, Yang et al. 2014). Despite the extensive advantages of intact cognitive 

flexibility, rigorous examination of this construct has been elusive. Previous 

neuroimaging studies of cognitive flexibility have used a wide array of tasks (Konishi, 

Nakajima et al. 1998, Badre and Wagner 2006, Leber, Turk-Browne et al. 2008, 

Armbruster, Ueltzhoffer et al. 2012), some of which have never been psychometrically 

validated, leading to inconsistent results across studies. Crucially, experimental tasks 

must correspond to real-world behavior if we hope to glean insight into how the brain 

remains flexible in everyday environments, and not simply within a highly structured 

laboratory setting.  

Traditional frameworks of validity in psychology focus on construct validity and 

ecological validity to assess how well a task measures what we purport it is measuring 

and how well that translates to performance in everyday life (Brunswik 1956, Campbell 

and Fiske 1959). At the most basic level, construct validity describes how well a task 

measures what it is designed to measure (Schimmack 2010). In the case of cognitive 

neuroscience, it is important to consider whether the fMRI tasks we are using are actually 
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measuring the constructs we intend to investigate (e.g. do task-switching paradigms truly 

measure cognitive flexibility?). To answer these questions, psychometric evaluation is 

necessary for novel tasks. Tasks used in fMRI studies are almost always novel in some 

respect, given that a laboratory-based task often needs to be changed to be implemented 

in the scanner environment. Many subtypes of validity contribute to construct validity, 

including convergent and divergent (i.e., discriminant) validity (Campbell and Fiske 

1959). While convergent validity establishes which construct(s) a given task may be 

tapping, divergent validity ensures tasks tap specific constructs (e.g., cognitive flexibility) 

and not general abilities (e.g., processing speed). Ecological validity is comprised of both 

representativeness, which describes the "naturalness or artificiality" of the experimental 

environment, materials, and stimuli, and generalizability, or the degree to which the 

measured phenomenon is able to explain similar processes in everyday life (Kvavilashvili 

and Ellis 2004). Although most cognitive neuroscience research may be described as 

unrepresentative because it takes place within the confines of an fMRI scanner, 

generalizability may be achieved by demonstrating that the relationships under study hold 

under similar circumstances in everyday life. Kvavilashvili and Ellis (2004) argue that 

generalizability is more important for establishing ecological validity, and the absence of 

representativeness does not preclude ecological validity. Here, we focus on assessing the 

convergent, divergent, and ecological validity of a laboratory task of cognitive flexibility 

(Dick 2014) that was adapted to the fMRI scanning environment.  

Of paramount importance in accurately identifying the neural correlates of 

cognitive flexibility is using a valid task, and ensuring that the task is still valid once it 

has been adapted for the fMRI environment. In the laboratory, cognitive flexibility is 
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typically measured with set-shifting or task-switching behavioral paradigms (Dajani and 

Uddin 2015). These tasks require switches in either “sets” (e.g., rule or perceptual 

feature) or “tasks”, requiring individuals to first identify the appropriate rule to be 

implemented, inhibit any incorrect prepotent responses, and switch to the new rule for 

successful completion. In addition, cognitive flexibility tasks can be inductive or explicit. 

Inductive tasks require more effort to identify the appropriate rule, as these tasks require 

participants to choose the new response set to switch to, instead of being explicitly 

provided the relevant rule to complete the task (Yerys, Wolff et al. 2012). Consequently, 

inductive tasks engage participants in endogenous problem-solving strategies, requiring 

the internal generation of response sets. Prior task-based neuroimaging studies of 

cognitive flexibility have used both explicit (e.g., stimulus-response reversal paradigms, 

Cubillo, Halari et al. 2010); (dimensional change card sort, Zelazo 2006) and inductive 

set-shifting tasks (e.g., modified Wisconsin Card Sort Tasks [WCST], Konishi, Hayashi 

et al. 2002) to identify the neural correlates of cognitive flexibility. 

Systematic reviews and meta-analyses that combine inductive and explicit tasks 

suggest that cognitive flexibility is instantiated in the brain via the interplay of many 

individual brain regions within two large-scale networks: the executive control (ECN) 

and salience networks (SN, Kim, Cilles et al. 2012, Dajani and Uddin 2015). Within the 

ECN, regions activated during cognitive flexibility tasks include the ventrolateral 

prefrontal cortex (vlPFC), dorsolateral prefrontal cortex (dlPFC), inferior frontal junction 

(IFJ) and posterior parietal cortex (PPC); within the SN, regions activated include 

anterior insula (AI) and dorsal anterior cingulate cortex (dACC). Subcortical regions such 

as the caudate and thalamus are also frequently reported (Kim, Cilles et al. 2012).  
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Previous task-based neuroimaging studies provide a foundation for our 

understanding of brain regions contributing to successful cognitive flexibility. However, 

these prior studies mainly rely on explicit cognitive flexibility tasks, which bear little 

resemblance to how cognitive flexibility is implemented in everyday life. We argue that 

inductive tasks are more ecologically valid than explicit tasks. Many situations outside 

the laboratory are “open-ended” or “ill-structured” (Burgess, Alderman et al. 2006), 

therefore tasks that include many possible options, requiring the individual to choose a 

course of action, will best resemble the open-endedness of everyday experiences. This 

feature imbues inductive tasks with greater ecological validity than explicit measures of 

cognitive flexibility. The neural correlates of inductive cognitive flexibility tasks are also 

separable from their explicit counterparts: inductive tasks not only recruit “canonical” 

cognitive flexibility regions (e.g., IFJ and PPC), but additional brain regions such as the 

frontal pole, thalamus and lentiform nucleus (Kim, Cilles et al. 2012), suggesting an 

important neurobiological distinction between inductive and explicit tasks. Consequently, 

neuroimaging studies using explicit cognitive flexibility tasks may be missing meaningful 

information about how cognitive flexibility is implemented in everyday scenarios.  

On the other hand, past studies that did capitalize on inductive cognitive 

flexibility tasks relied on tasks that introduce an additional confound: reasoning 

associated with identifying that the “rule” has switched. For tasks like the WCST or 

intradimensional/ extradimensional tasks, rule switches are signaled by experimental 

feedback. Participants must realize that the rule that they are currently using, which 

previously generated correct responses, is now generating incorrect responses, and 

therefore a new rule should be used. In short, the ability to identify a rule switch depends 
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on how amenable participants are to experimenter feedback. Because these tasks do not 

explicitly signal that the sorting principle or task has changed, errors on these tasks might 

reflect difficulty in identifying a rule switch and not cognitive flexibility per se. 

Prior neuroimaging research in cognitive flexibility is limited by the use of tasks 

with suboptimal construct validity and ecological validity, due to the disregard for 

assessing psychometric properties of newly adapted tasks and researchers’ reliance on 

explicit tasks. In this study, we overcome these limitations by adapting a 

psychometrically validated laboratory test of cognitive flexibility called the Flexible Item 

Selection Task (FIST, Jacques and Zelazo 2001). The FIST is a set-shifting task, 

requiring participants to repeatedly update the dimension by which they choose two sets 

of stimuli that “go together in one way” (e.g., the two sets of stimuli are the same color, 

Jacques and Zelazo 2001). We chose this paradigm because it capitalizes on advantages 

of explicit tasks, in instructing participants to consistently respond based on one stimulus 

type for a single selection, thereby reducing potential confounds due to difficulty in 

identifying that the rule has switched, and inductive tasks, by allowing participants to 

choose which sorting principle with which to complete the task, rendering superior 

ecological validity. The laboratory version of the FIST has already undergone rigorous 

psychometric evaluation, shown to have high internal consistency (RI = .91) and 

convergent validity with the WCST (Dick 2014). An additional benefit of the FIST is that 

it reduces demands on inhibition by limiting the influence of prepotent bias, because 

switching occurs right after establishing a set (i.e., dimension) rather than after 

maintaining the same set across several trials. Due to the numerous advantages of the 

FIST, the first aim of this study was to adapt the FIST to the fMRI environment. 
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The ultimate goal of adapting the FIST to the fMRI environment is to generate an 

accurate understanding of the brain regions important for cognitive flexibility in 

neurotypical adults. Participants completed a computer-based version to permit 

assessment of behavioral performance outside of the scanner, as well as self-report 

measures of executive function and repetitive/inflexible behaviors, followed by an fMRI-

adapted version of the FIST designed to identify brain regions that are active while 

participants engage in cognitive flexibility. We expected to observe higher activation in 

vlPFC, dlPFC, AI, dACC, posterior parietal cortex, striatum and thalamus during 

flexibility trials compared with control trials (Kim, Cilles et al. 2012).  

Methods 

Participants  

Participants were 32 adults ages 19-46 years (Mage = 25.29 years, SD = 6.42, 17 

males) recruited from the University of Miami in Coral Gables, Florida and the wider 

Miami community. Eleven participants were Hispanic/Latino and 15 were not 

Hispanic/Latino (missing data for n=6); 16 participants reported their race as ‘white’ and 

4 reported their race as ‘other’ (missing data for n=12). All participants were self-

reported right handed with no reported history of psychological disorders. Informed 

consent was obtained for all participants and they received 50 dollars in compensation for 

their participation. The University of Miami Institutional Review Board approved the 

study. 

Neuropsychological Measures 

Participants completed multiple behavior rating scales prior to FIST 

administration: the Adult Behavioral Rating Inventory of Executive Function (BRIEF-A, 
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Roth, Isquith et al. 2005), Perseverative Thinking Questionnaire (PTQ, Ehring, Zetsche et 

al. 2011), Adult Repetitive Behaviors Questionnaire-2 (RBQ-2A, Barrett, Uljarević et al. 

2015), and the Center for Epidemiologic Studies Depression Scale (CES-D, Eaton, Smith 

et al. 2004). The BRIEF-A and RBQ-2A were used in the present study. 

BRIEF-A. The Adult Behavior Rating Inventory of Executive Function (BRIEF-A) is a 

75-item self-report questionnaire used to assess executive function and self-regulation in 

adults’ day-to-day lives. The BRIEF-A consists of nine subscales: Inhibit, Self-Monitor, 

Plan/Organize, Shift, Initiate, Task Monitor, Emotional Control, Working Memory, and 

Organization of Materials (Roth, Isquith et al. 2005). The BRIEF-A subscales show good 

internal consistency (a = .73-.90), test-retest reliability (r= .82-.93), and convergent 

validity with other subjective reports of executive function in a healthy adult sample 

(Roth, Isquith et al. 2005). Importantly, this measure of EF is also ecologically valid, as 

questions probe behavior in everyday, “real-world” situations (e.g., “I leave the bathroom 

a mess” and “I have problems completing my work”). T-scores for subscales that tap 

three core distinct, but related, EFs were used in this study based on a widely accepted 

model of EF (Friedman, Miyake et al. 2011)—shift, inhibit, and working memory 

subscales. The shift subscale corresponds to cognitive flexibility skills in adults’ day-to-

day lives (e.g., “I have trouble changing from one activity or task to another”) and was 

used to assess the ecological validity of the FIST. The inhibit and working memory 

subscales were used to assess the divergent validity of the FIST. Higher T-scores indicate 

worse EF abilities and T-scores at or above 65 are considered clinically significant (Roth, 

Isquith et al. 2005).  
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RBQ-2A. The Adult Repetitive Behaviors Questionnaire-2 (RBQ-2A, Barrett, Uljarević et 

al. 2015) is a self-report measure of a core symptom of autism spectrum disorders (ASD), 

restricted and repetitive behaviors, designed for assessment in adults. Psychometric 

studies of neurotypical adults reveal two subscales that are internally consistent, correlate 

with other measures of autism traits, and distinguish between adults with and without 

ASD—repetitive motor behaviors (RMB) and insistence on sameness (IS, Barrett, 

Uljarević et al. 2015). These subscales and the total score were used as indices of 

ecological validity for the FIST because past studies have demonstrated that deficits in 

set-shifting are related to heightened RRBs in adults (Lopez, Lincoln et al. 2005, Miller, 

Ragozzino et al. 2015, Mostert, Hoogman et al. 2015). 

Flexible Item Selection Task 

  The Flexible Item Selection Task (FIST) is an adapted version of the 4-Match 

FIST (Dick 2014). This task is designed to challenge abstraction and cognitive flexibility 

skills. For each trial, participants are presented with four cards oriented vertically on 

which various stimuli are presented. Each of the cards contained images that varied along 

four dimensions: color (blue, green, red), shape (boat, flower, rabbit), size (large [1.82”], 

medium [0.83”], small [0.38”]), and number of images (one, two, three). Stimuli were 

created in Microsoft PowerPoint 2010 and were presented on white cards with a light 

grey background. For a full description of the images used and selection of dimensions, 

see Dick (2014). 

Participants were trained to choose a pair of cards that were “the same in one 

way” (i.e., a selection); participants were asked to make three selections per trial. 

Participants used a four-button rectangular button box to select cards based on their 
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location on the monitor (Figure 1). Although there were four possible matches, we only 

required that participants provide three matches to reduce task difficulty and to avoid an 

excessively long trial duration. Two versions of the 4-Match FIST were administered to 

participants: 1) a computer-based task, and 2) the fMRI-adapted task. Tasks were 

developed in E-Prime 2.0 for presentation and recording of behavioral responses. 

Computer-based task. We sought to conceptually replicate the administration of the 4-

Match FIST developed by Dick (2014). We used the same six trials used in Dick (2014), 

but switched the order of two successive trials in order to maximize differences in the 

correct button presses between consecutive trials. Additionally, our computer-based task 

differed from the Dick (2014) 4-Match in that we only required three selections per trial 

instead of four. For each trial, participants were prompted to “choose two cards that are 

the same in one way” (Jacques, 2001). Following each of the three selections, participants 

were asked “how are they [the cards] the same?” Participants were free to choose any 

three combinations of cards, and therefore were free to choose the dimension by which 

the cards matched. These trials were self-paced, and accuracy depended both on correct 

card selections (e.g., cards 1 and 2) and the respective dimension by which they match 

(e.g., “They are both blue”). In general, selections could be incorrect due to: 1) incorrect 

card pair selection (i.e., the cards did not match along any dimension), 2) choosing the 

same card pair selection more than once per trial, or 3) choosing a correct pair of cards, 

but specifying an incorrect dimension. Card selections were made by participants using 

the button box; an experimenter recorded the dimension by pressing a corresponding 

letter on a keyboard. Participants were asked to say aloud their card choices and 

dimension. For a trial to be considered correct, all three selections must have been 
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correct. E-Prime data was processed using an in-house MATLAB script to calculate 

selection-level and trial-level accuracy. Computer-based task trial-level accuracy was 

used for validity analyses.  

fMRI-adapted task. To adapt the computer-based 4-Match to the fMRI environment, 

several changes were applied (Figures 1 and 2). First, for trials indexing cognitive 

flexibility (“flexibility trials”), participants were instructed to make their three selections 

one after the other, without indicating the dimension by which they chose their selections. 

Instead, participants were asked to simply think about why the cards are the same. In 

addition, participants were instructed to choose each pair of cards as quickly as possible, 

as these trials were of fixed duration (8s, based on pilot data with four adults). These 

changes were implemented to keep task length to a minimum while still maintaining an 

event-related design. Flexibility trials were indicated by a heading at the top of the 

screen: “Now you choose”. Twenty flexibility trials were created using the same stimuli 

as for the computer-based task; all 20 trials for the fMRI task and the 6 trials for the 

behavioral task contained unique combinations of color, shape, size, and number of 

stimuli.  

Novel control trials were created for the fMRI task. These visually resembled the 

flexibility trials exactly, but participants were provided the correct responses, indicated 

by a thick black border surrounding the correct cards (Figure 1). Each correct selection, 

indicated by two cards with a thick border, appeared for 2.6s. Each trial, consisting of 

three selections, totaled 8s to match the length of flexibility trials. Because we set each 

selection duration to 2.6s, response time for control trials was not used in any analyses of 

this study. For each flexibility trial, there was a respective control trial that contained the 
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same stimuli. This allowed us to control for the visual stimuli and button presses 

necessary for completing the flexibility trials. To create each control trial, three selections 

were systematically chosen out of the four possible answers, leaving one “excluded 

dimension” for each control trial. Each dimension was excluded about the same number 

of times across control trials used for task training and the fMRI task (6-8 exclusions per 

dimension). The respective control trials corresponding to their flexibility trial (with the 

same 4 cards) were not used in the same run. For both flexibility and control trials, the 

combination of two button presses for incorrect answers (6 total combinations) were 

distributed evenly (e.g., buttons 1 and 2 indicated an incorrect response 15% of the time). 

Each participant completed 4 runs of the fMRI task, with each run consisting of 

10 flexibility and 10 control trials. Runs 1 and 3 contained the same trials but in a 

randomized order. Runs 2 and 4 also contained the same trials but in a randomized order. 

Both flexibility and control trials were 8s in duration. Optseq2 was used to determine the 

order of trial presentation and jitter for the length of fixation trials 

(https://surfer.nmr.mgh.harvard.edu/optseq/). 

Accuracy was calculated for flexibility and control trials based on recorded button 

presses; response time was also recorded for flexibility trials. For a flexibility trial to be 

accurate, a participant had to make six correct button presses (corresponding to 3 

consecutive selections of pairs of cards) within the 8s interval. The button presses were 

divided into three consecutive pairs, and each pair was assumed to correspond to one 

selection. If the participant did not make six button presses, the trial was automatically 

scored as incorrect. If a participant selected a pair of cards that did not match along any 

of the four dimensions, the trial was incorrect. Control trial accuracy was calculated at the 
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selection-level. For a control trial to be accurate, all three selections must have been 

accurate. An in-house MATLAB script was developed to calculate trial-level accuracy 

for flexibility and control trials for each run.  

A combined accuracy and response time metric was calculated to provide an 

index of flexibility for each run of the fMRI-adapted task. This metric was computed 

similar to that of the Dimensional Change Card Sort task, a measure of cognitive 

flexibility, implemented as part of the NIH Toolbox (Zelazo, Anderson et al. 2013). First, 

mean accuracy computed across flexibility trials was transformed into a 5-point scaled 

metric by dividing mean accuracy by 2 (i.e., a mean accuracy of 9 out of 10 trials 

translated into a score of 4.5). Next, response times for accurate trials were transformed 

to a 5-point scale. Across all runs and participants for correct trials only, median response 

times ranged from 3275 - 7427.5ms. Median response times were normally distributed, 

skew: -0.03-0.54 and kurtosis: -0.79-0.03, therefore no transformation was applied. The 

minimum RT value (3275 ms) was subtracted from original RT values such that new 

values ranged between 0 and 4152.5ms. Then, median response times were algebraically 

transformed to a 5-point scale and reverse-scored according to equation (1), where 4152.5 

represents the sample-specific range of median response time values in ms: 

(1)                                     5 −	$%&'()*+∗-
./-0.-

 

Based on the above equation, higher scores indicate faster response times. Finally, 

rescaled accuracy and response times were summed to constitute a singular variable 

ranging from 0 to 10, with higher scores indicating greater cognitive flexibility. This 

combined accuracy-response time metric was used as the dependent variable of interest in 

this study. 
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Experimental Procedure  

All participants were trained on the FIST by an experimenter at a desktop 

computer before completing the computer-based task and the fMRI task. All 

demonstration and practice trials were unique from trials of the computer-based and 

fMRI task. To introduce participants to the FIST, they were first shown two trials of the 

2-Match FIST (Dick 2014), an easier version of the 4-Match used in this study. Next, an 

experimenter demonstrated two trials of the 4-Match while providing a scripted verbal 

explanation of their selections to ensure the participant understood how to respond to the 

4-Match version. During these demonstration trials, experimenters presented all four 

dimensions as possible answers. Following the demonstration, participants completed 

two practice 4-Match trials on their own and were given feedback if they answered 

incorrectly. Then, participants completed the computer-based task.  

After the computer-based task administration, participants were shown examples 

of control and flexibility trials to prepare for the fMRI-adapted version. An experimenter 

first explained how to respond to a single self-paced control trial, which was followed by 

two timed practice control trials. Participants were introduced to the flexibility trials of 

the fMRI task by completing a shortened version of the fMRI task, with both flexibility 

and control trials, at a computer. Finally, participants completed the same practice fMRI 

task in the mock scanner. Prior to administering the first run of the fMRI task in the 

scanner, participants completed a “refresher” FIST task that consisted of 3 practice trials. 

This refresher was implemented midway through data collection to remind participants of 

task instructions and ensure acceptable accuracy levels for all runs of the fMRI task, 

therefore n=24 (75%) participants received this refresher. 
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MRI data acquisition 

 Task fMRI data were acquired for participants on a 3T GE Discovery 750 series 

scanner using a 32-channel head coil (TR=2s, TE=30s, flip angle=75°, 3.4mm slices, 

voxel size= 3.4 isotropic mm). The first 5 volumes were immediately discarded to 

account for magnet stabilization, resulting in 122 volumes per run. High-resolution T1-

weighted FSPGR BRAVO scans were also acquired to facilitate registration of the 

functional image to standard space (TI = 650ms, flip angle=12°, FOV=25.6cm, 1mm 

isotropic voxels). Additional structural and functional images were acquired but were not 

analyzed in this study. 

Preprocessing 

Raw functional and structural images were quality checked prior to preprocessing 

using a standardized in-house coding scheme. Preprocessing was conducted in FSL 5.0.9. 

First, structural images were brain extracted using FSL’s BET tool. Using FEAT, fMRI 

data underwent motion correction, slice time correction, smoothing with a 6mm kernel, 

high pass filtering (100s), coregistration to the structural image and normalization to the 

2mm MNI template. Data were quality checked following structural brain extraction and 

normalization steps to ensure fidelity of preprocessing steps.  

Analytic Plan 

Task validation 

All descriptive statistics, reliability, and validity analyses were computed using R 3.4.2 

(Team 2017). Code for all R-based analyses and figures are publicly available 

(https://github.com/xDinaDajani/fMRI_FIST_adult.git).  
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Reliability. Internal consistency for accuracy was computed for each run of the 

fMRI task based on trial-level accuracy using Kuder-Richardson 20 formula (KR-20), 

which is suitable for dichotomous data (Kuder and Richardson 1937). Accuracy was used 

instead of the combined accuracy-RT metric because trial-level data is necessary for 

internal consistency calculations, and accuracy-RT was calculated only at the run-level. 

KR-20 was estimated using the DescTools R package (Signorell 2017). We used 

established guidelines to identify acceptable levels of internal consistency (>.70), further 

distinguished as fair (.70-.79), good (.80-.89), or excellent (>.90) (Cicchetti and Sparrow 

1990).  

Test-retest reliability was computed across all runs of the fMRI-adapted FIST, 

measured by the intraclass coefficient (ICC), using the run-level combined accuracy-RT 

metric as the dependent variable. To compute the ICC, a two-way random effects model 

was used (i.e., ICC(2, 4), where 4 represents the number of time points the variable of 

interest will be averaged across, Shrout and Fleiss 1979), which is best-suited for test-

retest applications (Sainani 2017). We report both the ICC(2,4) formula and the ICC(2,1) 

formula, where the former represents performance averaged across all four runs and the 

latter considers reliability on any single run. The ICC was calculated using psych R 

package (Revelle 2017). Established guidelines were used to interpret ICC values: poor 

(<.40), fair (.40-.59), good (.60-.74), and excellent (.75-1.00) (Cicchetti 1994). To 

determine the minimum number of runs (m) needed to obtain a reliable mean estimate of 

task performance, the following formula was used (Shrout and Fleiss 1979), where r* is 

the minimum acceptable reliability coefficient (here, 0.75) and rL is the lower bound of 

the 95% confidence interval for the ICC(2,1) reliability estimate: 



 

 

20 

𝑚 =
𝜌∗(1 − 𝜌7)
𝜌7(1 − 𝜌∗)

 

Validity. Convergent validity can be confirmed in the measure of interest by its 

coherence with independent measurements of similar constructs; divergent validity is 

demonstrated if the measure is not highly correlated with measures from which they were 

intended to differ. The computer-based task closely resembles the psychometrically 

validated 4-Match FIST (Dick 2014). Therefore, to test the convergent validity of our 

newly adapted fMRI version of the 4-Match FIST, we correlated the accuracy-RT metric 

averaged across Runs 1-4 with the computer-based trial-level accuracy. In addition, we 

assessed the fMRI 4-Match’s ecological validity with a “real-world” measure of 

cognitive flexibility, the Shift subscale of the BRIEF-A, and with measures of restricted 

and repetitive behaviors (Barrett, Uljarević et al. 2015), which are associated with 

heightened deficits in cognitive flexibility (Lopez, Lincoln et al. 2005, Miller, Ragozzino 

et al. 2015, Mostert, Hoogman et al. 2015). Finally, to ensure the fMRI 4-Match is not 

simply a general measure of executive function, but specifically measures cognitive 

flexibility, we assessed the fMRI task’s divergent validity by correlating task accuracy-

RT with working memory and inhibition subscales of the BRIEF-A.  

Task-based fMRI data analyses 

General linear model (GLM). Flexibility and control trials (and their temporal 

derivatives) were modeled at the run-level for each subject using a gamma HRF using 

FSL. The six rigid motion estimates were included as nuisance regressors at the run-level. 

Runs were combined within-subjects using a fixed effects analysis. Finally, data were 

combined across subjects with a mixed effects design using FLAME 1 to identify brain 

regions activated for two contrasts of interest: Flexibility – Control and Control – 
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Flexibility trials. Main effects for Flexibility and Control trials were also modeled 

relative to fixation trials. Significant voxels were identified using a voxel-level threshold 

at an FWE-corrected p < .05, which adequately controls the false-positive rate (Eklund, 

Nichols et al. 2016). 

Results 

Task validation 

 Reliability. Participants completed four runs of the FIST in the scanner. Internal 

consistency for Runs 1 through 4, respectively, were 0.68, 0.81, 0.66, and 0.64. When 

reliability was assessed for Runs 1 and 2 combined, reliability reached .85 (95% CI [.84-

.87]); reliability for Runs 3 and 4 was .79 (95% CI [.76-.81]). These values indicate 

“good” and “fair” reliability, respectively. The combined accuracy-RT metric averaged 

across runs exhibited excellent test-retest reliability as indexed by the intraclass 

correlation, ICC=.89, 95% CI [.76-.95]. Individual runs still demonstrated fair to 

excellent test-retest reliability, ICC=.67, 95% CI [.44-.82]. But, to achieve excellent 

reliability for the accuracy-RT metric (i.e., ICC³.75), it is necessary to obtain a mean 

score across at least 4 runs (m=3.84). 

Validity. The fMRI-adapted FIST combined accuracy-RT metric trended towards 

a large positive correlation with computer-based task accuracy (r(30)=.33, p = .07, Figure 

3), suggesting that the fMRI-adapted version displays convergent validity with the 

original task developed by (Dick 2014). The fMRI-adapted FIST accuracy-RT metric did 

not correlate with any of the three subscales of a self-report of “real world” executive 

functions, a measure of repetitive motor behaviors, or a measure of insistence on 

sameness (p’s > .55, Table 1, Figure 4). 
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Behavioral data 

Computer-based task. Participants performed near ceiling levels on the computer-

based task (trial-level accuracy [proportion of correct trials]: M=0.88, SD=0.17, Figures 5 

and 6). A repeated-measures ANOVA demonstrated that participants performed equally 

well on all selections, F(2, 62)=1.67, p=.20 (selection 1: M=0.97, SD=0.08; selection 2: 

M=0.95, SD=0.15; selection 3: M=0.93, SD=0.09). When participants committed errors, 

they were most likely due to misidentifying the dimension by which cards match (52% of 

errors). Participants also identified cards that did not match along any dimension (31% of 

errors) and repeated their card choice (17% of errors).  

Participants identified card pairs by “color” on nearly every trial (proportion of 

trials: M=.97, SD=.06), with “shape” being identified often as well (M=.83, SD=.31, 

Figure 7). The “size” dimension was identified less frequently (M=.68, SD=.38) and the 

“number” dimension was identified on the fewest proportion of trials (M=.52, SD=.38). 

Across participants, “color” was most frequently chosen on the first selection, whereas 

“size” and “number” were more frequently chosen on the third selections (Figure 8). The 

majority of participants tended to vary the order in which they used a particular 

dimension to choose card pairs. Most participants (56%) repeated a particular pattern for 

two out of the six trials (e.g., repeating the following pattern: “color” for selection 1, 

“size” for selection 2, and “shape” for selection 3); fewer participants never repeated a 

particular selection pattern (9%); even fewer repeated a pattern for four out of the six 

trials (6%).      

fMRI-adapted task. Across all runs, participants exhibited high performance on 

both flexibility and control trials (Accuracy: Mflex=0.82, SDflex=.20, Mcontrol=0.90, 
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SDcontrol=.16; RT for correct trials (ms): Medianflex=5403, SDflex=798.37, Table 2). A two-

way repeated measures ANOVA demonstrated that for all runs, accuracy was higher for 

control trials compared with flexibility trials (F(1, 31)=7.43, p=.01, Figure 9). Further, 

there was a significant cubic trend in the accuracy-RT metric across runs, demonstrating 

an improvement in performance over time, F(1, 93)=10.61, p=.002 (Figure 10). Post-hoc 

contrasts, adjusted using Tukey’s HSD, revealed that accuracy-RT was lowest for Run 1 

(p’s < .001), similar between Runs 2 and 3 (p=.91), and highest for Run 4 (p’s < .03).   

fMRI data 

General linear model. As hypothesized, during both Flexibility and Control trials, 

activation was observed in canonical “task-positive” regions, including the posterior 

parietal cortex, lateral prefrontal cortices, dACC and anterior insula. Deactivation was 

observed in “task-negative” regions comprising the DMN (e.g., angular gyrus, anterior 

temporal lobe, posterior cingulate [PCC] and ventromedial PFC, Figure 11). The 

Flexibility – Control contrast revealed stronger and more widespread activation across 

the cortex for Flexibility trials relative to Control trials, including canonical areas of the 

dorsal attention network (DAN), ECN and SN (Table 3, Figure 12). Specifically, there 

was stronger activation in bilateral dlPFC, left IFJ, bilateral frontal eye fields, bilateral 

anterior insula, dACC/pre-SMA and bilateral inferior parietal lobule during Flexibility vs. 

Control trials. In addition, stronger activation during Flexibility trials was present 

bilaterally in the lower- and higher-order visual areas, posterior inferior temporal gyrus, 

precuneous, cerebellum, thalamus, and globus pallidus. There were also small clusters 

that showed weaker deactivation for Flexibility trials compared with Control trials in the 

precuneous, cuneus, and lingual gyrus. The Control – Flexibility contrast revealed 
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primarily weaker deactivation (i.e., stronger deactivation for Flexibility trials) in regions 

comprising the DMN including medial prefrontal, posterior cingulate, angular gyrus and 

anterior temporal regions (Table 4, Figure 12). The Control – Flexibility contrast also 

identified small clusters that had higher activation for Control relative to Flexibility trials 

in the right lateral occipital cortex, left parietal/central opercular cortex, and the right 

postcentral gyrus.   

Discussion 

The development and validation of tasks that capture real-world cognitive 

phenomena is nontrivial. Cognitive flexibility is difficult to operationalize in an MRI 

environment, and previous work has had limited success in identifying specific brain 

regions and networks that underlie this critical ability. We present an fMRI-adapted 

version of the Flexible Item Selection Task (FIST) that has been well validated in the 

behavioral literature. We confirm that this task is a reliable and valid measure of 

cognitive flexibility, despite the changes made to adapt the task to the scanner 

environment. As expected, we identified regions in canonical “task-positive” networks 

that were more active in response to trials engaging cognitive flexibility compared with a 

task controlling for visual and motor responses.  

 Cognitive neuroscience seeks to understand the neurobiological mechanisms 

underlying a variety of behaviors by asking individuals to perform highly circumscribed 

tasks within an unfamiliar environment – the bore of an fMRI scanner – while managing 

their arousal levels, response speed, and head movement. Yet, it is rarely acknowledged 

whether these tasks measure meaningful behaviors. Tests of reliability and validity can be 

used to formalize and ascertain the extent to which our artificial tasks map onto real-
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world behaviors. Here, we made several changes to a task originally designed for in-

person administration at a computer to render it suitable for the fMRI environment. 

Changes from the original behavioral task included requiring timed responses, removing 

the requirement to identify the dimension by which to choose pairs of cards that match, 

including novel control trials, and introducing a randomized jitter to the presentation and 

length of fixation trials. These changes were necessary for valid interpretation of 

neuroimaging findings, but may alter the psychometrics of the original computer-based 

task. It was therefore essential to reconfirm the reliability and validity of the task 

following fMRI-adaptation. We were able to confirm the reliability of the fMRI-adapted 

FIST, which, demonstrated fair to good internal consistency and excellent test-retest 

reliability across four runs completed on the same day. Further, a positive correlation was 

demonstrated between the computer-based administration, which had previously been 

validated (Dick 2014), and the novel fMRI-adapted version, suggesting our fMRI-

adapted version converges with an established measure of cognitive flexibility. Although 

this correlation did not reach significance in the current sample (p=.07), it is likely that a 

larger sample size and more variability in performance on the computer-based measure 

would yield the expected correlation. Given our sample size (N=32), a correlation of 

r=.33, which corresponds to a medium effect size (Cohen 1988), indicates that the fMRI-

adapted FIST displays convergent validity with the computer-based version. Future 

studies should attempt to replicate this result using a sample with at least 70 participants, 

which would be sufficient to detect a correlation of r=.33 with 80% power.  

 Contrary to our hypotheses, our fMRI-adapted FIST did not correlate with a self-

reported measure of “real-world” executive functions or repetitive/inflexible behaviors, 
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precluding evidence for ecological validity of the FIST. Importantly, this was the first 

study to assess the ecological validity of the FIST. Several factors may have led to these 

null associations. First, the measure of ecologically valid EF used in this study, the 

BRIEF-A, has been shown in previous studies to correlate with other questionnaires (i.e., 

subjective measures) but not with laboratory-based (i.e., objective) measures of executive 

function (Toplak, West et al. 2013). This may not reflect an inherent defect in either the 

BRIEF nor in objective measures such as the FIST. In fact, researchers acknowledge that 

subjective and objective measures of executive function measure distinct constructs 

(Toplak, West et al. 2013, Silver 2014). Using the FIST, we captured information at the 

level of efficiency of cognitive flexibility available to an individual within the context of 

a structured setting (a laboratory environment where the goal was explicitly provided to 

the individual to “choose two cards that go together in one way”). Therefore, tasks such 

as the FIST focus mainly on performance at the level of neurobiological function and 

behavioral impairment (Chan, Shum et al. 2008). This is on par with the goal of cognitive 

neuroscience, which seeks to understand the neurobiological underpinnings of successful 

cognitive flexibility. On the other hand, rating scales such as the BRIEF most likely 

reflect information about success in rational goal pursuit in complex environments where 

many executive functions may be required in multi-step tasks. For this reason, individuals 

may perform well on an objective measure despite known executive dysfunction because 

they are being tested in an optimally structured environment. Based on these data, it may 

be beneficial to use objective measures of executive function to disentangle the neural 

correlates of executive subdomains, whereas subjective measures may be more beneficial 



 

 

27 

in clinical settings where disability or social participation levels are of interest (Chan, 

Shum et al. 2008). 

Further validating our novel adaptation of the FIST, we observed increased 

activation in regions comprising the superordinate fronto-cingulo-parietal network during 

cognitive flexibility over and above basic visual and motor processes. Replicating 

findings from a previous meta-analysis of cognitive flexibility tasks, we identified greater 

activation in the IFJ, dlPFC, AI, dACC, IPL/IPS, posterior temporal cortex, extrastriate 

cortex and thalamus (Kim, Cilles et al. 2012). As is expected during externally oriented 

cognition (Anticevic, Cole et al. 2012), regions of the DMN decreased in activation 

compared with control trials.  

The IFJ and IPL have been implicated in domain-general switching processes 

(across perceptual, response/rule, and endogenous switching paradigms), and are 

suggested to contribute to representing and updating task sets (Derrfuss, Brass et al. 2005, 

Kim, Cilles et al. 2012). Perceptual switching paradigms, like the FIST, tend to engage 

fusiform, inferior temporal, and occipital cortices more so than response- or task-

switching paradigms (Kim, Cilles et al. 2012), which may explain their engagement 

during the FIST. Endogenous switching paradigms, in comparison with explicit tasks, 

have been shown to specifically activate the frontopolar cortex, implicating its role in the 

internal generation of cognitive representations (Kim, Cilles et al. 2012). Accordingly, 

we also observed higher activity in the left frontal pole. The dlPFC has most notably been 

associated with working memory (Petrides 2000), and has specifically been shown to 

elicit sustained activation during working memory tasks, suggesting its primary role is in 

maintenance of information as opposed to updating or manipulation (Cohen, Perlstein et 
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al. 1997). Consistent with the neuroimaging evidence for the role of the dlPFC in 

working memory maintenance, behavioral studies demonstrate that there are unique 

contributions of cognitive flexibility and working memory to FIST performance, and 

working memory maintenance contributes to item difficulty for the FIST (Dick 2014).  

We observed activation of bilateral posterior parietal cortices (PPC) in response to 

flexibility trials. Evidence from a neuropsychological model of executive function 

suggests that all executive function tasks require the contribution of “common EF”, or 

ongoing task monitoring and maintenance (Friedman, Miyake et al. 2011). Conjunction 

analyses across an array of executive function tasks have demonstrated few regions 

involved in common EF, restricted to the PPC, including the SPL and IPS (Collette, Van 

der Linden et al. 2005). Therefore, we surmise the role of the PPC in cognitive flexibility 

is attending to salient stimuli in the service of maintaining task set representations (Kim, 

Cilles et al. 2012). 

Regions that are a part of canonical task-positive networks, including the DAN 

(Fox, Corbetta et al. 2006) and SN (Seeley, Menon et al. 2007) displayed stronger 

activation in response to Flexibility trials while controlling for visual and motor 

processes. The AI and dACC are the major nodes of the SN, which is implicated in 

detecting behaviorally relevant stimuli. Specifically, the AI has been linked to initiating 

neural switches between engagement of the ECN and DMN, guiding externally oriented 

cognition (Uddin 2015). Bilateral frontal eye fields, which are core nodes of the DAN 

(Fox, Corbetta et al. 2006), were also engaged during flexibility trials, which may have 

enabled externally directed attention towards the stimulus features necessary to complete 

the task. FEF activity cannot simply be explained by saccades to the particular pair of 
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cards chosen by participants, since this was also required for successful completion of 

control trials, where the “correct” card pairs were provided. Therefore, we suggest that 

heightened FEF activity during flexibility trials is driven by switches in spatial attention 

to the specific perceptual features of the stimuli guiding successful trial completion.  

We also observed flexibility-specific activity in the left dorsal IFG. In a functional 

parcellation study of the right IFG, the dorsal portion dissociated into functionally 

distinct anterior and posterior areas, corresponding to bilateral co-activation patterns that 

mapped on to executive functions and spatial attention, respectively (Hartwigsen, Neef et 

al. 2018). Difficulty in switching between card pair choices on the FIST can be attributed 

to two processes: attentional inertia, the need to shift away from the previously attended 

dimension, and negative priming, the need to shift towards the previously ignored 

dimension. Hartwigsen et al. (2018) suggest the anterior dorsal IFG may be particularly 

important for overcoming the effects of attentional inertia. The posterior dorsal IFG is 

functionally connected to regions comprising the DAN, and may be particularly 

important for top-down attentional orienting (Hartwigsen, Neef et al. 2018).  

Although multiple meta-analyses of cognitive flexibility tasks report activation in 

subcortical structures including the thalamus, basal ganglia, and cerebellum (Wager, 

Jonides et al. 2004, Kim, Cilles et al. 2012, Niendam, Laird et al. 2012), relatively little 

attention is paid to the contribution of these subcortical structures to cognitive flexibility. 

In line with these previous meta-analyses, we identified higher activation in response to 

flexibility trials in bilateral thalamus, globus pallidus, and cerebellum. The globus 

pallidus and cerebellum are thought to contribute to cognition through their projections to 

the dlPFC via distinct thalamic nuclei (Middleton and Strick 2000). In accord, a 
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neuroimaging study of cognitive flexibility demonstrated that the globus pallidus 

modulated top-down attentional biasing by the IFG on visual regions in the service of a 

perceptual switching task (van Schouwenburg, den Ouden et al. 2010). Further, (van 

Schouwenburg, Onnink et al. 2014) demonstrated that white matter integrity within the 

globus pallidus and cerebellum related to optimal cognitive flexibility in a mixed sample 

of healthy adults and individuals with ADHD. These data provide evidence for the role of 

the globus pallidus in mediating cognitive flexibility via associative basal ganglia loops. 

Comparatively, the role of the cerebellum and thalamus in executive function is 

not well known. Recently, the potential role of the thalamus in executive functions has 

been acknowledged based on dense connections between its mediodorsal nucleus (MD) 

and the ACC, dlPFC, and premotor cortex (Halassa and Kastner 2017). Further, lesions to 

the MD (and internal medullary lamina) are associated with reduced cognitive flexibility 

(Van der Werf, Witter et al. 2000). While we are unable to distinguish individual 

thalamic nuclei in this study due to spatial resolution limitations and spatial smoothing, 

based on past studies and the use of the oxford thalamic connectivity probabilistic atlas, 

we infer that thalamic regions projecting to PFC were engaged during the FIST. The 

cerebellum is hypothesized to contribute not only to postural and sensorimotor functions, 

but also to higher-level cognition such as language, emotion, and executive functions 

(Schmahmann 1991). In a meta-analysis of task-based neuroimaging studies, (Stoodley 

and Schmahmann 2009) reported an anterior to posterior gradient underlying 

sensorimotor and cognitive/emotional functions, respectively. Here, we identified clusters 

with higher activity in response to flexibility trials distributed bilaterally across both 

anterior (lobules I-IV) and posterior portions (crus I, crus II, VIIb, and VI) of the 
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cerebellum. It is likely that activity in the posterior cerebellum, which projects to dlPFC, 

was related to working memory and/or cognitive flexibility, whereas activity in anterior 

regions, which project to primary motor cortex, reflects automatization of motor 

responses necessary to complete the FIST (Kelly and Strick 2003).  

Several limitations of this study should be noted. This was the first study to 

examine the psychometric properties of the fMRI-adapted version of the FIST, and one of 

the few cognitive neuroscience studies to assess psychometric properties of an fMRI task. 

In this initial effort, we used a sample size that is considered small for psychometric 

studies. This small sample size may have led to the failure to detect relationships between 

the FIST and self-report measures of executive function and ritualistic behavior, as the 

sample size needed to detect a medium effect (r=.30) with 80% power is 85. Therefore, 

future studies should follow up on the psychometric properties of this task, especially 

concerning validity and the task’s relationship to objective measure of cognitive 

flexibility and other executive functions with a larger sample size. We are confident that 

this task taps cognitive flexibility in adults, but it is likely that other executive functions, 

including working memory and inhibition, are also engaged in response to the FIST’s 

flexibility trials. To isolate these processes, one potential strategy would be to define 

contrasts between selections within a trial, as an alternative to defining contrasts at the 

trial-level. In the present study, we sought to minimize working memory demands by 

making selections occur one after the other, without intervening fixation trials, which 

would have increased trial length and subsequent working memory demands. 

Unfortunately, this design precluded the analysis of within-trial contrasts. Future studies 

may seek to optimize this task design in order to allow within-trial contrasts, which 
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isolate cognitive flexibility processes from abstraction skills and provide the ability to 

parametrically model working memory load across selections.   

For the first time, we adapted a laboratory-based inductive cognitive flexibility 

task, the FIST, to the fMRI environment. We provide evidence that the fMRI-adapted 

task is reliable when collecting four runs per participant, and report preliminary evidence 

of the task’s convergent validity with the laboratory-based version of the task. We also 

found strong evidence for validity of the task based on robust activation of canonical 

regions of the executive control, salience and subcortical networks in response to 

flexibility trials. These results provide support for using the FIST in future cognitive 

neuroscience studies seeking to understand the neural correlates of cognitive flexibility.  
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CHAPTER 2. STUDY II: Parsing heterogeneity in autism spectrum disorder and 
attention-deficit/hyperactivity disorder using neural substrates of cognitive 
flexibility  
 

Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder 

(ADHD) are prevalent neurodevelopmental disorders most commonly diagnosed in the 

United States according to a symptom-based classification system, the Diagnostic and 

Statistical Manual of Mental Health Disorders 5 (DSM-5, American Psychiatric 

Association 2013). Although these disorders are characterized by separate core deficits 

(in ASD, social communication deficits and restricted and repetitive behaviors [RRBs]; in 

ADHD, primarily inattentive and/or hyperactive and impulsive symptoms), overlap in 

behavioral presentation and biological substrates obfuscate the distinctions between these 

diagnostic categories. In particular, there is significant variability among children with 

ASD and ADHD concerning deficits in a subdomain of executive function (EF) – 

cognitive flexibility (Dajani, Llabre et al. 2016). Mixed evidence for distinct diagnostic 

categories suggests an alternative diagnostic system focusing on the full range of 

variation in behavior (i.e., Research Domain Criteria [RDoC], Cuthbert and Insel 2013) 

may be better-suited to identify individuals with a common biological pathway to 

abnormality. As a first step towards developing an improved nosology for 

neurodevelopmental disorders, this study aims to use individual connectome mapping to 

identify children with altered brain network connectivity that may contribute to impaired 

cognitive flexibility. 

Cognitive flexibility undergoes protracted development across childhood to young 

adulthood (Anderson 2008), supporting a wide range of behaviors that impact life 

outcomes (Diamond and Lee 2011). In childhood, effective cognitive flexibility predicts 
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better math and reading abilities (Bull, Espy et al. 2008) and social-emotional 

development such as false belief understanding (Farrant, Maybery et al. 2012). Deficits in 

cognitive flexibility can occur in healthy children and adults without accompanying 

mental illness, but deficits are more prevalent in almost every psychiatric population, 

such as autism spectrum disorder, attention-deficit/hyperactivity disorder, conduct 

disorder, depression, obsessive-compulsive disorder, substance abuse and schizophrenia 

(Diamond and Lee 2011, McTeague, Goodkind et al. 2016). Heightened rigidity in 

cognition and behavior may predispose individuals to poorer psychiatric morbidity, as 

evidenced by higher relapse rates in schizophrenia (Chen, Hui et al. 2005). On the other 

hand, behavioral interventions that improve cognitive flexibility have shown to also ease 

associated psychiatric symptoms (Tamm, Nakonezny et al. 2014). The ramifications of 

deficits in cognitive flexibility cannot be ignored. It is therefore imperative that we 

understand the neural underpinnings of this essential skill across the lifespan.  

Traditional diagnostic systems for mental illnesses are limited in that they define 

diagnostic categories that have high biological and behavioral heterogeneity, allow for 

high between-category overlap, and cannot accurately predict treatment responsiveness or 

prognosis. Person-centered studies, which take into account within-population 

heterogeneity, substantiate evidence that the majority of (but not all) children with ASD 

and ADHD exhibit severe cognitive flexibility deficits (Gioia, Isquith et al. 2002, Fair, 

Bathula et al. 2012). Deficits in cognitive flexibility are particularly concerning because 

they are related to higher levels of core symptomatology in both ASD and ADHD: 

elevated RRBs in children with ASD and worse hyperactive-impulsive symptoms, 

oppositional defiant disorder symptoms, and lower intelligence in children with ADHD 
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(Lopez, Lincoln et al. 2005, D'Cruz, Ragozzino et al. 2013, Roberts, Martel et al. 2013). 

In addition, there are high rates of comorbidity between diagnostic groups, with rates of 

comorbid ADHD in children with ASD ranging from 37-85% (Leitner 2014). Numerous 

studies have demonstrated the detrimental impact of comorbidity between ASD and 

ADHD diagnoses, citing poorer adaptive functioning, health-related quality of life 

(Sikora, Vora et al. 2012) and higher rates of clinically impaired cognitive inflexibility 

than children with either disorder alone (Yerys, Wallace et al. 2009, Dajani, Llabre et al. 

2016). Further, there is strong evidence for shared heritability of ASD and ADHD 

(Ghirardi, Brikell et al. 2018). An alternative nosology based on neurobiologically 

homogeneous subgroups will aid in the ultimate goal to identify children who stand to 

benefit from targeted treatments specific to their brain network connectivity alterations 

(Cuthbert 2014). Due to the controversies surrounding the separability of ASD and 

ADHD diagnostic categories based on both biological and behavioral characteristics, we 

propose that children with one disorder or the other should be considered together in an 

effort to develop an alternative nosology. This conceptualization is in line with the RDoC 

approach, which advocates for single studies to span multiple diagnostic groups (Cuthbert 

2014).  

One unresolved issue in psychiatry is whether psychopathology should be 

conceptualized categorically, similar to traditional systems, or dimensionally, including 

the full range of behavior from normal to abnormal (Coghill and Sonuga-Barke 2012). 

While a categorical approach implies that mental disorders are qualitatively different 

from typical behavior, dimensional approaches assume that mental disorders are an 

extreme on a continuum of behavior represented across the population. Although many 
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studies have attempted to find homogeneous, categorical subgroups within ASD and 

ADHD diagnostic categories using psychological or brain imaging data (e.g., van der 

Meer, Oerlemans et al. 2012, Gates, Molenaar et al. 2014, Costa Dias, Iyer et al. 2015, 

Kernbach, Satterthwaite et al. 2018), very few studies explicitly compare categorical and 

dimensional fits of the data using taxometric or factor mixture modeling. These few 

available studies have only focused on symptom-based and neuropsychological measures, 

demonstrating that ASD is a discrete category distinct from typical social communication 

and repetitive behaviors (Frazier, Youngstrom et al. 2010, Frazier, Youngstrom et al. 

2012) and suggest the presence of three subgroups within the ASD category (Georgiades, 

Szatmari et al. 2013). Conversely, studies have consistently demonstrated a dimensional 

structure for ADHD symptoms in children (Haslam, Williams et al. 2006, Frazier, 

Youngstrom et al. 2007, Lubke, Hudziak et al. 2009, Marcus and Barry 2011), though 

one notable exception found a categorical fit using measures of EF and reward processing 

tasks (Stevens, Pearlson et al. 2018). Other studies focusing on resting state functional 

connectivity of large-scale brain networks report that ASD and ADHD symptomatology 

comprise both categorical and dimensional aspects, but did not explicitly test model fit 

(Chabernaud, Mennes et al. 2012, Elton, Alcauter et al. 2014, Elton, Di Martino et al. 

2016). Therefore, it remains an open question whether the structure of 

neurodevelopmental disorders is categorical or dimensional at the neurobiological level.  

One well-replicated finding in clinical psychology is a hierarchical taxonomy of 

psychopathology that exists dimensionally across healthy and patient populations (Lahey, 

Krueger et al. 2017). This ‘p’ factor encapsulates the propensity to develop any form of 

psychopathology, including anxiety, depression, substance use disorders, and 
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schizophrenia. In individuals with a diagnosed mental health disorder, the ‘p’ factor 

describes the severity, chronicity, and comorbidity of symptoms. In children, the ‘p’ 

factor extends to symptoms characteristic of neurodevelopmental disorders, including 

ADHD and ASD (Neumann, Pappa et al. 2016, Martel, Pan et al. 2017). Further, in 

children, this general liability to develop psychopathology has been related to poorer EF 

abilities, poorer effortful control, and is heritable via single-nucleotide polymorphisms 

(Neumann, Pappa et al. 2016, Martel, Pan et al. 2017). Dimensional structures at the 

symptom-level do not necessarily imply the same structure at the brain network-level, but 

initial neuroimaging findings support dimensional models of psychopathology. 

Dysfunctional activation and functional connectivity of networks important for EF 

underlie this ‘p’ factor in children and adolescents (Shanmugan, Wolf et al. 2016, Liu, 

Liao et al. 2018).  

Similar to the ‘p’ factor models, the RDoC framework opts to model behavior 

dimensionally, but moves away from focusing on DSM symptoms and towards 

neurobiologically validated functional constructs, such as EF (Garvey, Avenevoli et al. 

2016). Deficits in EF are a transdiagnostic marker of psychopathology, meaning deficits 

can be detected in children without any traditional diagnoses, and across diagnostic 

groups such as ASD and ADHD (Dajani, Llabre et al. 2016, McTeague, Goodkind et al. 

2016). The current study focuses on a specific aspect of EF, cognitive flexibility, because 

cognitive flexibility is impacted in various neurodevelopmental disorders (Dajani, Llabre 

et al. 2016) and these impairments relate to worse symptom severity and lower academic 

achievement in youth (Lopez, Lincoln et al. 2005, D'Cruz, Ragozzino et al. 2013, 

Roberts, Martel et al. 2013). Moreover, established flexibility-specific interventions exist 
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that improve deficits in children with ASD and ADHD (Kenworthy, Anthony et al. 2014, 

Tamm, Nakonezny et al. 2014). EF deficits that are left untreated may persist and impact 

social competence and friendship quality in adolescence (Rosenthal, Wallace et al. 2013, 

Lieb and Bohnert 2017). Thus, it is imperative that researchers develop a reliable method 

to identify children who exhibit the most severe flexibility deficits.  

As a basis for an alternative nosology, we leverage the strength of neurobiological 

variables due to the many limitations of behavior-based classifications (Waterhouse and 

Gillberg 2014). Most notably, behavior does not map one-to-one to underlying 

neurobiology (Pessoa 2014), meaning many disparate brain alterations may manifest as a 

singular phenotype (referred to as redundancy, see Licinio and Wong 2013). This is 

especially problematic if treatments only benefit subgroups of children with similar 

underlying neurobiological deficits (Loth, Spooren et al. 2016). Our group recently 

demonstrated that subgrouping approaches applied only to behavioral variables do not 

map well onto neurobiologically defined metrics. We developed an EF-based 

classification system based on parent-report and behavioral measures. This behavior-

based classification system did not produce neurobiologically distinct subgroups, as 

assessed by functional connectivity metrics indexing the integrity of large-scale 

functional brain networks important for cognition (Dajani, Burrows et al., 

https://www.biorxiv.org/content/early/2018/08/22/396317). These data underscore the 

importance of moving beyond behavioral observations and focusing to a greater extent on 

differences in underlying neurobiological mechanisms of these disorders. Therefore, in 

this study we leverage large-scale neural networks as the foundation for developing an 

alternative nosology for two prevalent neurodevelopmental disorders. 
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Here, we focus on functional connectivity approaches estimated with resting-state 

fMRI data due to the large body of work implicating fronto-parietal functional networks 

in cognitive flexibility (Kim, Cilles et al. 2012). Specifically, we aim to investigate 

functional brain networks important for cognitive flexibility using the triple network 

model of psychopathology (Menon 2011), focusing on the frontoparietal (FPN), salience 

(SN), and default mode networks (DMN). We use a sample of children with ASD, 

ADHD and TD children with a wide range of EF abilities to identify subgroups with 

similar brain network connectivity profiles or “connectomes”. This study applies a 

cutting-edge method to construct individual-level connectomes by combining structural 

equation modeling (SEM) and unsupervised machine learning to rs-fMRI data called 

Group Iterative Multiple Model Estimation (GIMME, Gates and Molenaar 2012).  

Most studies intending to characterize the neurobiological underpinnings of ASD 

and ADHD do not aim to understand heterogeneity inherent to each disorder, but instead 

effectively treat this variability as noise (Lenroot and Yeung 2013). As a result, only two 

published studies have investigated subgroups of children with ADHD based on 

functional connectivity metrics, and no study has examined brain network connectivity-

based subgroups in ASD. In ADHD, 5 subgroups have been found that differ in 

connectivity of fronto-parietal regions (Gates, Molenaar et al. 2014), whereas 3 

subgroups emerged that differed in connectivity of reward-related networks (i.e., nucleus 

accumbens-whole brain connectivity Costa Dias, Iyer et al. 2015). We previously showed 

that three subgroups exist amongst children with ASD, ADHD, and TD children differing 

in their levels of cognitive flexibility (Dajani, Llabre et al. 2016), therefore, we predict at 
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least three subgroups will emerge that differ on network connectivity profiles important 

for implementing cognitive flexibility.  

Following the results of our previous study (Dajani, Llabre et al. 2016), we 

hypothesize that one subgroup will include predominantly older TD children with 

average to above average EFs and low levels of psychopathology. This subgroup may 

exhibit network connectivity that resembles mature, adult-like networks, characterized by 

strong, positive connectivity within the FPN, negative functional connectivity between 

the DMN and FPN (Fair, Nigg et al. 2012, Satterthwaite, Wolf et al. 2013), and 

integration between SN, FPN and subcortical nodes (Marek, Hwang et al. 2015, Morgan, 

White et al. 2018). We expect another subgroup to include predominantly younger TD 

children with less mature network profiles, including weaker within-network connectivity 

(Bassett, Xia et al. 2018), stronger between-network connectivity, and weaker integration 

between task-positive networks. In line with the delayed maturation hypothesis (Rubia 

2018), we expect this group to also include older children with ADHD who have intact 

EFs. Children with ASD without elevated comorbid ADHD symptomatology may also 

comprise this subgroup. Finally, we expect a third subgroup will include children with 

ADHD and ASD with impaired EFs, elevated general psychopathology (Martel, Pan et 

al. 2017) and aberrant modular architecture of brain networks (Xia, Ma et al. 2018), 

which may present as weak connectivity within the FPN and higher FPN-DMN 

connectivity (Zhong, Rifkin-Graboi et al. 2014, Stevens, Pearlson et al. 2018).  
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Methods 

Participants 

Participants ages 8 to 13 years (N=132, Table 5) included a subset of children 

used in our previous study investigating heterogeneity in EF ability in TD, ADHD and 

ASD groups (Dajani, Llabre et al. 2016). Written informed consent was obtained from all 

legal guardians and written assent was obtained from all children. All procedures were 

approved by the Institutional Review Board at the Johns Hopkins School of Medicine and 

all methods were carried out in accordance with the approved guidelines.  

Diagnostic and neuropsychological measures 

Community diagnoses of ASD were confirmed with the Autism Diagnostic 

Observation Schedule (ADOS-G, Lord, Risi et al. 2000 or ADOS-2, Lord, Rutter et al. 

2012, based on study enrollment date) and Autism Diagnostic Interview-Revised (ADI-R, 

Rutter, Le Couteur et al. 2005). All ASD participants scored ≥7 on the total score on the 

ADOS-2 or the communication and social interaction score on the ADOS-G. All ASD 

participants with data for the ADI-R (n=34, 94% of ASD sample) met criteria for ASD 

based on established cutoffs on the ADI-R (≥10 for social interaction, ≥8 for 

communication/language and ≥3 for RRBs) except for one ASD participant. This 

participant was still included in the ASD group because they met criteria based on the 

ADOS-G (communication and social interaction score: 13).  

The Diagnostic Interview for Children and Adolescents IV (Reich, Welner et al. 

1997) was used to confirm community ADHD diagnoses, determine whether children 

with ASD had comorbid ADHD, and for exclusionary purposes. Community diagnoses 

of ADHD were also confirmed with the Conners’ Parent Rating Scales (CPRS-R:L, 
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Conners 1997 or CPRS-3, Conners 2008, based on study enrollment date) and the ADHD 

Rating Scale IV, Home version (DuPaul, Power et al. 1998). All participants with ADHD 

met criteria based on the DICA-IV, except for one child who had missing data. This child 

met criteria based on both the CPRS-3 and the ADHD Rating Scale IV. TD participants 

all had T-Scores <65 on both the Hyperactive/Impulsive or Inattentive scales of the 

Conners’ and only met criteria for £3 symptoms on either the Hyperactive/Impulsive or 

Inattention scales of the ADHD Rating Scale IV. In accordance with the RDoC 

framework, participants with comorbid psychiatric disorders were not excluded. See 

Table 6 for detailed diagnostic information. 

CBCL. The Child Behavior Checklist (Achenbach 1991) is a parent-report of children’s 

emotional and behavioral problems. The social problems subscale was used to index 

social communication and interaction symptoms that are a hallmark of ASD. This 

subscale is internally consistent (a = .82), test-retest reliable (r = .90), and validly 

distinguish between children with and without an ASD diagnosis (Achenbach and 

Rescorla 2001, Mazefsky, Anderson et al. 2011). T-scores between 67 and 69 represent 

the borderline clinical range; T-scores≥70 are considered clinically elevated. 

RBS-R. The Repetitive Behavior Scale-Revised (RBS-R, Bodfish, Symons et al. 2000) is 

a parent-report of six domains of RRBs: rituals, sameness, self-injurious behavior, 

stereotypic behavior, compulsive behavior, and restricted interests. The subscales have 

poor to good interrater reliability (.55-.78) and test-retest reliability (.52-.96). Total RRBs 

and a subdomain of RRBs, insistence on sameness, have been shown to be correlated 

with deficits in cognitive flexibility in ASD (Lopez, Lincoln et al. 2005, Miller, 
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Ragozzino et al. 2015), therefore the total score and sameness indices were used in this 

study. Higher scores indicate greater impairment. 

Conners’ PRS. The Conners’ Parent Rating Scales-Revised, Long Version (CPRS-R:L, 

Conners 1997) is a parent report of children’s ADHD symptoms, oppositional defiant 

disorder and conduct disorder. Here, we used the T-scores from the DSM-IV 

inattentiveness and hyperactive/impulsive symptom subscales. Higher scores indicate 

greater impairment. 

BRIEF. The Behavior Rating Inventory of Executive Function (BRIEF, Gioia, Isquith et 

al. 2000) is a parent-report of EF impairment of children 5-18 years of age. All T-score 

subscales will be used to assess EF impairment: inhibition, shift, emotional control, 

initiate, working memory, plan/organize, organization of materials and monitor. To avoid 

redundant analyses, we did not analyze the composite scores, which are combinations of 

the subscales (Behavioral Regulation Index, Metacognition Index, and Global Executive 

Composite). The subscales are reliable in normative (r = .76-.85) and clinical samples (r 

= .72-.84) and can distinguish clinical populations from TD children (Gioia, Isquith et al. 

2000). Higher scores indicate greater impairment, with T-scores ≥65 indicating clinical 

impairment. 

Data acquisition 

Children completed a mock scanning session prior to fMRI data collection to 

acclimatize them to the scanning environment. rs-fMRI data were acquired for 

participants on a Phillips 3T scanner using an 8-channel head coil (TR=2.5s, flip 

angle=70°, sensitive encoding acceleration factor=2, 3mm slices, voxel size= 2.7x2.7x3 

mm, 156 volumes). The first 10 volumes were immediately discarded to account for 
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magnet stabilization. For the rs-fMRI data acquisition, children were asked to relax with 

their eyes open and focus on a crosshair while remaining as still as possible. High-

resolution T1-weighted scans were also acquired to facilitate registration of the functional 

image to standard space (TR=8.0ms, TE=3.7ms, 1mm isotropic voxels). Participants 

were asked to withhold stimulant medication (e.g., Adderall) on the day of MRI 

scanning, similar to prior neuroimaging studies comparing children with ASD and 

ADHD (Di Martino, Zuo et al. 2013, Dennis, Jahanshad et al. 2014). Non-stimulant 

medications were continued as prescribed (e.g., antidepressants, allergy medication). TD 

children were not taking any psychotropic medications. 

Preprocessing 

There were systematic differences in the length of resting-state scans by 

diagnostic group (n=16 ASD children were scanned using a 128-volume protocol, while 

only n=1 TD and n=1 ADHD child were scanned using this shorter scan length protocol). 

To maximize power to estimate connectivity maps, which is dependent on the length of 

the timecourse, only participants with the longer protocol (156 volumes) were included in 

this study. Participants with maximum absolute motion in any of the six rigid directions 

>3mm/degrees were excluded. Preprocessing was conducted using a combination of FSL 

5.0.9 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/doc/). First, structural images were brain extracted 

using FSL’s BET tool. Using SPM12 and custom MATLAB scripts, structural images 

underwent resampling to the EPI image resolution, coregistration to the subject’s mean 

EPI, and segmentation into grey matter, white matter (WM), and CSF components. These 

WM and CSF masks were used to compute average WM and CSF timecourses to be used 
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as nuisance regressors at a later preprocessing step. Using FSL’s FEAT, raw fMRI data 

underwent motion correction, 4D intensity normalization, smoothing with a 6mm kernel, 

and estimation of linear and non-linear warping parameters to normalize to the MNI152 

2mm template. Next, independent component analysis-based automatic removal of 

motion artifacts (ICA-AROMA) was used to remove motion-related artifacts in native 

space (Pruim, Mennes et al. 2015). ICA-AROMA works by running an individual-level 

ICA for each subject, classifying motion-related components as noise, and regressing out 

motion-related components’ signals from the individual’s 4D time course. The residual 

time course (with motion-related signal regressed out) was used for subsequent analyses. 

The denoised data underwent additional nuisance regression (WM, CSF, and linear 

trends) and band-pass filtering (.01-.10 Hz). Finally, warping parameters generated at an 

earlier step using FSL were used to normalize the data to the MNI 152 2mm template.  

Region of interest selection 

 The ideal set of regions of interest (ROIs) for this study would be regions that are 

consistently activated when engaging cognitive flexibility in children, identified by a 

meta-analysis of neuroimaging studies that used psychometrically validated cognitive 

flexibility tasks. Unfortunately, no current meta-analyses of cognitive flexibility tasks 

exist that are specific to middle childhood. Further, the meta-analyses of cognitive 

flexibility that do exist for adults include a mix of explicit and inductive tasks that were 

not psychometrically validated (e.g., (Kim, Cilles et al. 2012). Individual neuroimaging 

studies of cognitive flexibility in children report inconsistent results regarding regions 

engaged, and are therefore not ideal to guide ROI selection (Dajani and Uddin 2015). 

Despite the use of the FIST in adults in Study I, due to the numerous advantages of the 
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task, including its established reliability and validity, we opted to use the neuroimaging 

results of Study I to inform ROI selection for Study II. Further supporting the FIST’s use 

in guiding ROI selection, the laboratory-based version of the FIST has been validated in 

children (Dick 2014) and has previously been used in a study of children with ASD 

(Yerys, Wolff et al. 2012). 

Using an fMRI-adapted version of the Flexible Item Selection Task, we identified 

cortical and subcortical brain regions that were activated over-and-above basic visual and 

motor processes associated with the task (Flexibility > Control contrast). Additionally, to 

define regions within the DMN, which generally deactivate when engaging in cognitive 

flexibility, we identified regions that were more active during the visual-motor control 

than for the flexibility trials (Control > Flexibility contrast). To facilitate network 

analyses and interpretations, the Power (2011) parcellation (Power, Cohen et al. 2011) 

scheme was used to assign ROIs to networks. Nodes within four large-scale networks 

integral to cognitive flexibility were included: frontoparietal network (FPN), salience 

network (SN), DMN and the subcortical network (SUB) (Niendam, Laird et al. 2012, 

Vatansever, Manktelow et al. 2016). Specific nodes were chosen based on their activation 

or deactivation in response to the Flexible Item Selection Task (Figure 13, Table 7). 

Within the FPN, we included the left inferior frontal junction (lIFJ), bilateral frontal eye 

fields (FEF) and bilateral superior parietal lobule (SPL). Within the SN, we included 

bilateral anterior insula (AI) and the dorsal anterior cingulate cortex (dACC). Within the 

DMN, we included the ventromedial prefrontal cortex (vmPFC), posterior cingulate 

cortex (PCC), and bilateral temporal poles. Finally, within SUB, we included bilateral 

globus pallidus and thalamus. The SEM-based connectivity analysis utilized here 
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(GIMME) does not perform well with large numbers of ROIs. Accordingly, to reduce the 

total number of ROIs included, cingulo-opercular, dorsal attention, ventral attention, 

primary sensory and cerebellar networks were excluded from this analysis. ROIs were 

centered on the coordinates listed in Table 7 with a 4mm-radius sphere. Timecourses 

were averaged within each ROI and carried forward for estimation of network 

connectivity maps using the ‘gimme’ package (version: 0.4) in R (version: 3.3.1) (Gates, 

Lane et al. 2017, Lane and Gates 2017).  

Group-, subgroup-, and individual-level connectivity map estimation 

 GIMME (Gates, Lane et al. 2017) capitalizes on the strengths of the unified SEM 

framework (uSEM, Kim, Zhu et al. 2007, Gates, Molenaar et al. 2011), which is an 

extension of SEM to timeseries applications. As part of GIMME, uSEM is used to 

estimate effective connectivity between pre-specified ROIs on the group-, subgroup- and 

individual-levels. The uSEM framework incorporates both contemporaneous (t) and time-

lagged (t-1) information between brain regions, which reliably recovers both the 

existence of a connection and its directionality (Kim, Zhu et al. 2007). Directed 

connections are estimated contemporaneously, controlling for lagged and autoregressive 

effects (AR). AR effects indicate the relationship between activity in a single region at 

time t and t-1. The benefit of including AR effects, in addition to aiding in reliable 

estimation of contemporaneous effects for a given brain region, is the ability to estimate 

path directionality. Using a Granger causality framework (Granger 1969), a brain region 

η1 is said to Granger-cause activity in another region η2 if η1 explains variance in η2 

beyond the variance explained in η2 by its AR term. Lagged directed connections are also 

estimated to reduce the chance for spurious contemporaneous effects, but these are not 
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considered to represent underlying neural signal as the temporal resolution of fMRI data 

is much lower (i.e., seconds) compared to that of neural activity (i.e., milliseconds, 

Smith, Miller et al. 2011). Instead, when using fMRI data, directional information due to 

underlying neural signal is best captured in contemporaneous effects (Granger 1969). For 

this reason, we focus our analysis of network features on contemporaneous effects. The 

uSEM model is illustrated below, where A is a matrix of contemporaneous effects, F is 

the matrix of lagged effects with AR effects along the diagonal, η is the observed time 

series for a given region of interest, and ζ is the residual for each point in time t. 

ηt = Aηt + Fηt−1 + ζt 

The GIMME algorithm begins by first conducting a group-level search starting with an 

initial null model, and paths are iteratively added which contribute to better model fit 

according to multiple modification indices for the majority of participants in the sample, 

as defined by the user (here, set at 75%). Specifically, GIMME iteratively counts the 

number of participants whose model would significantly improve if that path were freely 

estimated, and the path with the highest count is then added to the group-level model. 

Typically, this process begins by estimating all AR effects first, as this leads to the best 

performing model search procedure (Gates, Lane et al. 2017). The search procedure 

continues until there are no paths that would significantly improve the majority of 

individuals’ models. Next, if the subgroup option is enabled, subgroups consisting of 

individuals with similar network connectivity patterns are identified using the Walktrap 

community detection algorithm computed on a sparse count similarity matrix that takes 

into account the presence of a path and its sign (i.e., positive or negative). The sparse 

count similarity matrix decidedly outperforms correlation-based similarity matrices 



 

 

49 

according to simulation studies (Gates, Lane et al. 2017). Subgroup-level maps are 

constructed using an iterative path-adding approach similar to the group-level approach, 

using the group-level effects as a prior. GIMME adds paths that improve the model for 

the greatest number of individuals in the subgroup, which must be at least the majority of 

the sample (here, 51%). Simulation studies demonstrate that given a sample size of at 

least 75 participants, GIMME accurately recovers up to four subgroups even in cases 

where subgroup size is unequal (Gates, Lane et al. 2017). The final step estimates 

individual-level models by adding any additional paths to the group- and subgroup-level 

paths to best explain that individual’s data. The individual-level model search procedure 

stops after meeting criteria for excellent model fit for two of four fit indices: comparative 

fit index (CFI≥.95), non-normed fit index (NNFI≥.95), root-mean-square error of 

approximation (RMSEA≤.05), and the standardized root-mean-square residual 

(SRMR≤.05) (Brown 2006). These criteria were also used to identify good individual-

level model fit in the current study.  

Cluster validation 

 To determine the validity of the cluster solution arrived at using the Walktrap 

hierarchical clustering algorithm within the GIMME framework, stability and validity of 

the cluster solution was evaluated using the R package perturbR (Gates, Fisher et al. 

2018). This algorithm incrementally introduces noise to network edges while maintaining 

the original graph’s overall properties and compares resulting cluster solutions with the 

solution for the original network (i.e., using the full sample). A stable solution will not 

change drastically given small changes to the network. Quantitatively, a cluster solution 

is said to be stable if the graph had 20% or more of its edges perturbed before the cluster 
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solution for the rewired graph is as different as when 20% of the nodes are randomly 

placed into different clusters. This is quantified by two distinct, but complementary, 

metrics that describe the degree to which two community solutions differ: Hubert-Arabie 

Adjusted Rand Index (ARI) and Variation of Information (VI). To ensure the 

subgrouping solution is not simply capitalizing on chance where no true subgroups exist, 

a relative measure of cluster solution quality (i.e., modularity) was used to compare the 

original cluster solution’s quality with a solution obtained from a random graph that 

contains no clusters. The cluster solution was considered valid if modularity for the 

original solution is greater than or equal to the 95th percentile of modularity obtained 

from random graphs.  

Subgroup characterization: network features 

Multiple network metrics were calculated for each individual derived from their 

connectome data produced by GIMME. Prior work implicates the right anterior insula 

(rAI) as a hub of causal outflow, interacting with the dACC, dorsolateral prefrontal 

cortex (dlPFC), ventrolateral prefrontal cortex (vlPFC), and posterior parietal cortex 

(PPC) (Uddin, Supekar et al. 2011, Supekar and Menon 2012). Therefore, we assessed 

subgroup differences in out-degree of the rAI normalized by the in-degree (i.e., the 

number of nodes with which the rAI has an ‘outward’ contemporaneous connection 

minus the number of contemporaneous connections that terminate on the rAI). Out- and 

in-degree was calculated using the R package ‘igraph’ (Csardi and Nepusz 2006). To 

characterize whether subgroups were “hyperconnected” or “hypoconnected” relative to 

one another, total number of contemporaneous connections were compared. Within- and 

between-network connectivity was calculated as the number of contemporaneous ROI-
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ROI connections within- and between-networks, respectively. Integration was indexed 

with a graph metric called the participation coefficient (PC), which describes the relative 

distribution of between- and within-network connections for a given node (Guimera and 

Amaral 2005). A PC approaching 1 indicates that the node’s connections are evenly 

distributed among all networks and a PC of 0 indicates that all of a node’s connections 

are within-network. PC was calculated for each node and averaged within network, 

resulting in a mean PC value for each network, following the methods of a recent 

network development study (Marek, Hwang et al. 2015). PC was calculated using the R 

package ‘brainGraph’ (Watson 2018).  

Results 

Preliminary analyses 

 To quantify the relationship between in-scanner head motion and demographic 

variables of interest, we characterized the relationship between mean framewise 

displacement FD (Power, Barnes et al. 2012) for data following ICA-AROMA, age, and 

diagnostic group. A 2x1 repeated-measures ANOVA demonstrated a significant decrease 

in mean FD following preprocessing, demonstrating the efficacy of this preprocessing 

pipeline, F(1, 260)=33.00, p<.001 (raw: M(SD)= 0.20 (0.11), AROMA: M(SD)= 0.04 

(0.02), Figure 14). There was no difference between ASD, ADHD, and TD groups in 

mean FD for ICA-AROMA-preprocessed data (F(2,129)=0.57, p=.57). Similarly, there 

was no association between age and motion following preprocessing (r(124)=.01, p=.89). 

Using the full sample (N=132), the GIMME-derived subgroups (which did not align with 

diagnostic subgroups) differed significantly in mean FD for preprocessed data 

(F(1,130)=16.23, p<.001). Therefore, GIMME with subgrouping was rerun using a low 
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motion subsample to reduce potential confounding effects of motion on subgroup 

formation. This subsample (n=99) included participants who were at or below the 

sample’s 75th percentile of mean FD (≤0.239). This analysis resulted in subgroups who 

did not differ on motion for preprocessed data (F(2,96)=0.14, p=.87). Below are the 

results of subgroup-GIMME with the low motion subsample (n=99). 

Subgroup-GIMME results using low motion sample 

The group-level model included AR effects for all ROIs, one lagged effect from the right 

pallidum to the right thalamus, and two contemporaneous effects: right pallidum à right 

thalamus and lSPL à rSPL (Figure 15). These paths were estimated for all 132 

participants.  

Model fit. According to approximate fit indices, 98 out of 99 participants’ models had 

good model fit (CFI: M(SD)= 0.95 (0.004), NNFI: M(SD)= 0.92 (0.007), RMSEA: 

M(SD)= 0.08 (0.007), SRMR: M(SD)=.03 (0.004)). The one remaining participant’s 

model had excellent model fit according only to SRMR, demonstrating overall acceptable 

model fit (CFI=.91, NNFI=.86, RMSEA=.11, SRMR=.05). 

Cluster validation. Using the Walktrap hierarchical clustering algorithm, three subgroups 

emerged (n=26, n=41, n=32; Figure 15). According to VI, ARI, and modularity, the 

cluster solution attained was not stable nor valid (Figure 16). Based on VI and ARI, only 

1% of edges had to be perturbed before 20% of participants were placed into different 

clusters than the original solution, demonstrating that minor perturbations to the data 

caused large changes in the clustering solution (Figure 16a and b). Modularity attained 

(0.02) was not better than expected by chance (95th%ile of random graphs=0.063, Figure 

16c), suggesting that clusters are not well defined and participants in different clusters 
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may have more in common than expected if clusters were truly distinct. Based on these 

results, we concluded that the clustering solution was untrustworthy. Therefore, we do 

not report subgroup differences in network nor behavioral features.  

Discussion 

 To contribute to an improved nosology for neurodevelopmental disorders, we 

attempted to characterize subgroups of children across ASD, ADHD, and TD groups 

differentiated by the topography of directed functional connectomes as an alternative to 

traditional, symptom-based diagnostic systems. Unexpectedly, we were unable to 

uncover a reliable or valid categorical scheme based on connectomes important for 

cognitive flexibility in a heterogeneous group of children who ranged from above average 

to clinical impairment in EF. These unanticipated results highlight the heterogeneity of 

the topology and strength of connectivity of connectomes important for cognitive 

flexibility in children with and without neurodevelopmental disorders. Further, these 

results may suggest that the neural substrates of cognitive flexibility in children may not 

differ categorically and individual differences in children’s cognitive flexibility may be 

better represented dimensionally.  

The results of the GIMME analysis, which included 16 ROIs and potentially 256 

contemporaneous paths to be estimated, identified only two contemporaneous paths 

common to all 132 participants: from the left to right SPL and from the right pallidum to 

right thalamus. Unsurprisingly, these two paths are within-network connections (within 

the FPN and subcortical networks, respectively), which strengthen from middle 

childhood to early adulthood (Fair, Nigg et al. 2012). Given this result occurred across a 

heterogeneous sample of children with ASD, ADHD, and TD children, these connections 
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may be foundational to network topology in middle childhood, regardless of 

psychopathology present. The bilateral SPL group-level path is an example of functional 

homotopy, which is evident throughout the healthy brain and across the lifespan (Zuo, 

Kelly et al. 2010). Surprisingly, functional homotopy was not observed for the majority 

of children in the other bilateral regions included in this study: FEF, AI, temporal poles, 

pallidum, and thalamus. This suggests that there is heterogeneity in functional homotopy 

in childhood that may be moderated by levels of psychopathology.  

Strikingly, an additional 475 subgroup- and individual-level paths were estimated. 

The paucity of group-level paths highlights the extreme heterogeneity in network 

topology among children with and without a diagnosed mental health disorder. This is in 

contrast with many group-based studies of the development of the undirected functional 

connectome, which conclude that network topology is stable by about 8 years of age 

(Fair, Nigg et al. 2012, Marek, Hwang et al. 2015). Of note, this result cannot simply be 

attributed to the mixed diagnostic status of the sample. For example, had all TD children 

exhibited a similar network topology, a stable subgroup would likely have formed to 

reflect that. Using a novel individual directed connectome estimation technique, we were 

able to identify large differences in both within- and between-network topology in middle 

childhood. These results echo recent calls to regard heterogeneity among healthy and 

patient populations as not only ubiquitous, but adaptive, due to evolutionary processes 

which result in many “optimal” brain network profiles (Holmes and Patrick 2018). 

The large amount of heterogeneity apparent in the directed functional topography 

of networks important for cognitive flexibility across a mixed group of children may have 

impeded the formation of a stable clustering solution in this study, which may be 
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overcome in future studies with a much larger sample size. Simulation studies 

demonstrate that with a sample size of 75, subgroup recovery is good to excellent using 

GIMME for up to four subgroups (higher subgroup number was not tested, Gates, Lane et 

al. 2017). Unfortunately, we had to decrease our sample size from 132 to 99 subjects 

because the initial clustering solution on the full sample primarily led to clustering based 

on in-scanner motion. This highlights the importance of considering subgroup differences 

in nuisance variables such as motion to ensure unsupervised algorithms do not produce 

subgroups driven by artifacts (Bassett, Xia et al. 2018). Nonetheless, based on the 

simulation studies it is unlikely that a larger sample size was needed to recover subgroups 

accurately unless the number of subgroups exceeded 4. This may certainly have been the 

case, given two DSM-defined diagnostic groups were included, each of which may 

include multiple subgroups (Georgiades, Szatmari et al. 2013, Stevens, Pearlson et al. 

2018). Therefore, the present results do not preclude the existence of 5 subgroups or more 

within this heterogeneous sample.  

Another potential source of the large heterogeneity in functional connectomes 

observed is spatial variability in the precise location of network nodes across children 

(Dickie, Ameis et al. 2018). Using templates derived from healthy, young adult samples, 

Dickie et al. (2018) showed that children show marked variation in the precise location of 

network nodes and that children with ASD deviate even more than children without a 

psychiatric diagnosis. Thus, applying ROI coordinates using the Power et al. (2012) 

parcellation may have led to “missing” true connections due to poor ROI specification on 

an individual-level, leading to fewer than expected group-level paths.  
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Despite the above explanations for the unexpected results of this study, a more 

parsimonious account may be that individual differences in the directed functional 

connectomes important for cognitive flexibility may best be represented dimensionally 

instead of categorically. Here, we assumed a categorical structure would best parse 

heterogeneity in cognitive flexibility in children based on previous studies that identified 

subgroups present within ASD and ADHD diagnostic categories, which differed in 

functional connectivity and/or behavioral metrics. For example, subgroups have been 

shown to exist within children who have ADHD based on differences in functional 

connectivity of fronto-parietal and reward-related networks (Gates, Molenaar et al. 2014, 

Costa Dias, Iyer et al.). Subgroups within both ADHD and ASD categories have been 

demonstrated based on disorder-specific symptoms (Georgiades, Szatmari et al.),  

neuropsychological task performance (Rommelse, van der Meer et al. 2016, Feczko, 

Balba et al. 2017), and parent-reports of children’s executive functions (Dajani, Llabre et 

al. 2016). Moreover, neurodevelopmental disorders are traditionally characterized as 

distinct, categorical entities, which is practical for clinical translation, where categorical 

decisions must be made to diagnose and provide treatment (Coghill and Sonuga-Barke).  

On the other hand, the traditional categorical approach has recently been 

challenged by mounting evidence for a dimensional taxonomy of psychopathology 

(Lahey, Krueger et al. 2017). Studies focusing on parent-report and neuropsychological 

measures of ADHD symptoms consistently conclude that inattention and 

hyperactivity/impulsivity are dimensional by nature (Haslam, Williams et al. 2006, 

Frazier, Youngstrom et al. 2007, Lubke, Hudziak et al. 2009, Marcus and Barry 2011). 

Further, neuroimaging studies demonstrate that psychopathology, conceptualized as a 
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transdiagnostic ‘p’ factor, dimensionally relates to FPN hypoactivation during a working 

memory task (Shanmugan, Wolf et al. 2016) and a loss of segregation between the DMN 

and the FPN and SN at rest (Xia, Ma et al. 2018). Xia et al. (2018) also found a specific 

relationship between externalizing symptoms (i.e., inattention, hyperactivity/impulsivity, 

and oppositional defiant symptoms) and stronger SN-FPN coupling at rest. Resting-state 

fMRI studies focusing on individual disorders have found support for a hybrid 

categorical/dimensional model in ASD and ADHD based on functional connectivity data 

(Chabernaud, Mennes et al. 2012, Elton, Alcauter et al. 2014, Elton, Di Martino et al. 

2016).  

In sum, there is support for both categorical and dimensional models of 

psychopathology at the behavioral and large-scale neurobiological levels. But, there is a 

major limitation of the majority of these studies presented, which employ factor or cluster 

analyses. In these cases, a dimensional or categorical structure is assumed to fit the data 

well, without any formal quantitative tests to determine whether one model is superior to 

the other. Further complicating matters, clustering algorithms are prone to producing 

false positives, meaning clusters are produced even in cases where none truly exist. These 

shortcomings limit the validity of past factor and cluster-based studies of 

psychopathology. Currently, the only methods that formally determine whether 

dimensional or categorical models best fit data are taxometric analyses and factor mixture 

models, which have never before been applied to neuroimaging data, limiting our 

understanding of how psychopathology should be modeled in consideration of the large-

scale neural substrates of behavior. With advances in methodology, future studies may 

begin to tackle whether a dimensional or categorical model is supported at the brain 
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network level by applying taxometric or factor mixture modeling studies to functional 

connectome data.  

It is important to note that the unreliable and non-modular clustering results 

presented here are specific to the a priori brain regions supplied to the GIMME 

algorithm. There are many advantages that the GIMME tool has to offer, including 

individual-level connectome estimation without contamination by group averaging and 

the estimation of path direction, but this method is not completely data-driven in that only 

a limited number of ROIs can be used. Thus, researchers are required to use prior 

literature to guide ROI selection, possibly leading to missed information about functional 

network topology outside of the networks examined. It is possible that stable subgroups 

may have been identified using a different set of ROIs, and thus does not preclude the 

existence of a categorical structure of psychopathology in consideration of other regions 

and/or functional networks. 

Towards an effort to understand whether psychopathology is best represented 

categorically or dimensionally at the neurobiological level, several future directions are 

notable. First, in order to construct an alternative nosology that captures the full range of 

psychopathology, studies should opt to include a wider swath of diagnostic groups to 

identify relationships beyond ASD and ADHD symptoms, such as frequently comorbid 

internalizing symptoms (Zald and Lahey 2017). By capturing multiple symptom types, 

researchers can test whether the neural substrates of psychopathology operate at multiple 

hierarchical levels from symptoms to the general ‘p’ factor (Zald and Lahey 2017). 

Considering that neurodevelopmental disorders unfold across age, it may be more fruitful 

to investigate developmental trajectories in place of cross-sectional studies (Morgan, 
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White et al. 2018). Recent advances in neuroimaging allow for different modalities such 

as structural, functional, and diffusion-weighted images to be combined in multilayer 

networks, which may be more informative than one modality alone (Morgan, White et al. 

2018). 

This study was one of the first to use functional connectome data estimated at the 

individual level for a heterogeneous group of children spanning TD, ASD, and ADHD 

diagnoses to test whether the neural substrates of EF and psychopathology follow a 

categorical or dimensional pattern. Results demonstrated high levels of heterogeneity in 

the topography of directed functional connectomes important for cognitive flexibility in 

children with a range of EF abilities. Further, our results did not support a categorical 

scheme. These results may suggest a dimensional model may better describe individual 

differences in the neural substrates of cognitive flexibility in children. 
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Chapter 4. Summary and conclusions 

My previous work and numerous other studies have characterized the distribution 

of cognitive flexibility skills across development, from above-average to impaired levels 

(Dajani and Uddin 2015, Dajani, Llabre et al. 2016, Buttelmann and Karbach 2017). In 

accordance with the guiding principles of RDoC, this dissertation took the next logical 

step to characterize the neural substrates of cognitive flexibility in a healthy sample of 

adults with no reported mental illness. Even within this “neurotypical” sample, there was 

great variation in performance on a laboratory-based task of cognitive flexibility and in 

self-reported measures of cognitive flexibility, some even scoring in the clinically 

impaired range. Group-averaged task-based activation analyses robustly identified the 

neural substrates of mature cognitive flexibility skills among regions within the 

frontoparietal, salience, subcortical, and cerebellar networks, consistent with findings 

from past neuroimaging studies (Niendam, Laird et al. 2012). Findings based on 

neurotypical samples such as these can be used to draw conclusions of healthy brain 

function and be extended to studies of children and typical development. Further, these 

findings can be used as a benchmark for comparison to draw conclusions of deviations 

from healthy brain and behavioral development. Accordingly, I capitalized on the results 

of Study I by using the neurotypical correlates of cognitive flexibility to parse 

heterogeneity in this crucial skill in children who ranged from impaired to above average 

in their cognitive flexibility in Study II. The results overwhelmingly demonstrated the 

heterogeneity in the topology of directed functional brain networks supportive of 

cognitive flexibility in children with a wide range of executive function skills. Further, 
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we did not find evidence for a valid subgrouping system according to these directed 

functional connectomes among a heterogenous group of children.  

In consideration of past literature demonstrating the viability of a dimensional and 

transdiagnostic model of psychopathology across the lifespan (Lahey, Krueger et al. 

2017), the results of this dissertation may suggest that, at the large-scale functional brain 

network level, categorical models of psychopathology may not best describe the data 

(Frazier, Youngstrom et al. 2007, Neumann, Pappa et al. 2016, Friedman and Miyake 

2017, Elliott, Romer et al. 2018, Xia, Ma et al. 2018). Future studies should directly test 

whether dimensional models of ASD symptoms, ADHD symptoms and executive 

function are supported by directed functional connectome data in children. In the future, 

this work may guide development of treatments to improve cognitive flexibility in 

children, regardless of their DSM-based diagnosis.  
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Tables 

Table 1. Study I: Tests of ecological and divergent validity of the FIST. Zero-order 
correlations between “real-world” measures of executive function, restricted and 
repetitive behaviors and the average accuracy-RT metric derived from the fMRI-adapted 
FIST. 

Variable M SD 1 2 3 4 5 6 
         
1. Average Acc-
RT 6.50 1.58             

2. BRIEF-A Shift 45.1
9 9.87 -

.06           

    
[-

.40, 
.29] 

          

3. BRIEF-A 
Inhibition 

46.4
4 10.27 .07 .22         

    
[-

.29, 
.41] 

[-.14, 
.53]         

4. BRIEF-A 
Working Memory 

48.4
1 9.07 -

.11 .56** .60**       

    
[-

.44, 
.25] 

[.26, 
.76] 

[.32, 
.78]       

5. RBQ-2A RMB 1.47 0.47 .10 .35* .80** .61**     

    
[-

.26, 
.43] 

[.00, 
.62] 

[.62, 
.90] 

[.34, 
.79]     

6. RBQ-2A IS 1.30 0.30 -
.04 .67** .44* .71** .55**   

    
[-

.38, 
.32] 

[.42, 
.83] 

[.11, 
.68] 

[.48, 
.85] 

[.26, 
.76]   

7. RBQ-2A Total 1.32 0.29 .05 .53** .70** .73** .87** .86** 

    
[-

.31, 
.39] 

[.22, 
.74] 

[.46, 
.84] 

[.51, 
.86] 

[.74, 
.93] 

[.73, 
.93] 

Note. Values in square brackets indicate the 95% confidence interval for each correlation. 
* indicates p < .05. ** indicates p < .01. RBQ-2A: Adult Repetitive Behavior 
Questionnaire-2. RMB: repetitive motor behaviors. IS: insistence on sameness. 
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Table 2. Study I: Behavioral data from fMRI-adapted FIST task. 

 Min  Max  Mean  SD  
Run 1 

Flexibility Accuracy  0  1.00  0.72  0.23  
Control Accuracy  0.10  1.00  0.76  0.23  
Flexibility Median RT (ms)  4295.00  7428.00  5744.00  837.00  
Flexibility Accuracy-RT  0.00  8.27  5.57  1.94  

Run 2 

Flexibility Accuracy  0 1.00  0.84  0.22  
Control Accuracy  0.80  1.00  0.95  0.07  
Flexibility Median RT (ms)  3884.00  7095.00  5317.00  729.00  
Flexibility Accuracy-RT  0.00  9.27  6.66  1.92  

Run 3 

Flexibility Accuracy  0.20  1.00  0.83  0.18  
Control Accuracy  0.70  1.00  0.94  0.09  
Flexibility Median RT (ms)  4003.00  7036.00  5441.00  718.00  
Flexibility Accuracy-RT  1.47  8.93  6.53  1.59  

Run 4 

Flexibility Accuracy  0.40  1.00  0.88  0.16  
Control Accuracy  0.60  1.00  0.95  0.09  
Flexibility Median RT (ms)  3275.00  6556.00  5068.00  789.00  
Flexibility Accuracy-RT  4.19  9.50  7.22  1.36  
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Table 3. Study I: Brain regions with significant activation for the Flexibility - Control 
contrast 

Brain region Cluster size Peak Z Peak MNI 
      x y z 

R medial cerebellar crus II 1174 8.07 6 -70 -30 
preSMA/dACC 601 7.85 -2 24 38 
L inferior parietal lobule 2314 7.67 -36 -48 38 
L temporal occipital fusiform 1293 7.62 -34 -46 -22 
R cerebellar crus I 1341 7.49 28 -60 -36 
L anterior insula 334 7.40 -32 18 -4 
L dlPFC 553 7.31 -50 32 26 
L FEF 249 7.29 -26 10 56 
Medial occipital cortex 912 6.97 4 -72 8 
R anterior insula 295 6.88 32 26 -6 
R inferior parietal lobule 332 6.81 34 -66 40 
L thalamus 44 6.71 -12 -12 8 
L IFJ 10 6.51 -46 10 30 
R thalamus 201 6.41 10 -8 8 
R globus pallidus 8 6.39 16 -4 -2 
R thalamus 2 6.34 10 -16 12 
R dlPFC 18 6.06 44 36 16 
R FEF 19 6.03 26 14 48 
R hippocampus 5 5.89 24 -24 -8 
L frontal pole 2 5.81 -48 44 8 
R cerebellar crus I 2 5.80 14 -78 -20 
R dlPFC 1 5.79 50 38 18 

Note. Results are voxel-level thresholded at FWE-corrected p<.05. Clusters defined 
using FSL's "cluster" command using a Z>5.75 threshold (except for two clusters 
which required a higher threshold, Z>6.3, to break up into anatomically distinct 
regions: IFJ/dlPFC and R thalamus/L thalamus/basal ganglia). Coordinates in white 
matter, brainstem, or outside of brain are not included in this table. Results are 
organized by peak Z value in descending order. 
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Table 4. Study I: Results for the Control - Flexibility contrast 

Brain region Cluster size Peak Z Peak MNI 

      x y z 

L cerebellar crus II 174 6.99 -22 -78 -36 
L STG 2382 6.86 -52 0 -14 
mPFC/frontal pole 4002 6.73 4 56 14 
L angular gyrus 990 6.58 -56 -58 28 
L PCC 585 6.32 -8 -46 26 
R cerebellar crus II 47 6.18 26 -78 -36 
R hippocampus 164 6.01 24 -8 -24 
L hippocampus 67 5.72 -24 -12 -22 
L planum temporale 157 5.41 -64 -24 12 
R precentral gyrus 123 5.32 2 -30 58 
L temporal pole 17 5.26 -34 4 -22 
L temporal pole 1 4.79 -28 2 -26 
L temporal pole 1 4.69 -40 8 -22 
L cingulate gyrus 90 5.25 0 -22 42 
R frontal pole 7 5.07 22 62 28 
R temporal pole 1 4.76 28 8 -28 
L central opercular cortex 1 4.69 -40 8 -22 
Note. Results are voxel-level thresholded at FWE-corrected p<.05. Clusters 
defined using FSL's "cluster" command using a Z>5.75 threshold. Coordinates in 
white matter, brainstem, or outside of brain are not included in this table. Results 
are organized by peak Z value in descending order.  
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Table 5. Study II: Sample demographics   

 
  

Diagnostic groups   

 

TD ADHD ASD P 
value n=53 n=43 n=36 

Sex 39 M/14 F 32 M/11 F 28 M/8 F .90 
Age 10.37 (1.04) 9.93 (1.22) 10.52 (1.38) .09 
  range [8.00 - 12.58] [8.00 - 12.33] [8.00 - 12.92]  

Racea 7, 4, 9, 33 7, 0, 8, 28 2, 0, 3, 29 .10 
Ethnicity, No. 
Hispanic/Latino 1 5 4 .14 

FSIQb 118.23 (13.25) 109.00 (11.95) 103.17 (12.45) <.001 
  range [90 - 147] [87 - 136] [73 - 131]  

Motionc 0.17 (0.09) 0.22 (0.12) 0.21 (0.12) .11 
Handednessd, No. L,A,R 4, 1, 47 5, 0, 38 4, 0, 31 .74 
a: Numbers for each of the following racial categories presented in the following 
order: African American, Asian, Biracial, Caucasian, b: FSIQ: WISC-IV full-scale 
IQ, c: Mean framewise displacement for raw rs-fMRI data calculated in FSL, d: 
Number of children with left, ambidextrous, right handedness. 
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Table 6. Study II: Diagnostic information 

 
  

  Primary diagnosis 

 

TD ADHD ASD 
n=53 n=43 n=36 

Secondary Dx, No. (%) 1 (1.9%)a 20 (46.5%) 30 (83.3%) 
  ADHD-I 0 8 (18.6%) 9 (25.0%) 
  ADHD-C 0 34 (79.1%) 12 (33.3%) 
  ODD 0 18 (41.9%) 9 (25.0%) 
  Simple Phobia 1 (1.9%) 5 (11.6%) 8 (22.2%) 
  GAD 0 0 5 (13.9%) 
  OCD 0 0 4 (11.1%) 
  Dysthymia 0 0 1 (2.8%) 
  
CD,MDD,Mania,Panic,Som,Sep
Axb 

0 0 0 

ADHD Measuresc, M (SD) 
[range]    
  Conners Hyper/Impulsive 47.79 (5.51) 70.55 (12.54) 66.22 (10.85) 
  Conners Inattention 45.35 (4.71) 73.02 (8.2) 66.78 (10.7) 
  Conners 3 Hyper/Impulsive 44.93 (7.15) 75.50 (11.74) 80.00 (9.55) 
  Conners 3 Inattention 43.00 (8.82) 77.20 (9.57) 83.50 (4.85) 

  ADHD Hyperactivity 0.22 (0.59) [0-
3] 

4.00 (2.89) [0-
9] 

3.76 (2.23) [0-
8] 

  ADHD Inattention 0.17 (0.53) [0-
3] 

7.00 (1.91) [2-
9] 

5.76 (2.75) [0-
9] 

ASD Measures, M (SD)    
  ADI A -- -- 21.03 (5.91) 
  ADI B -- -- 15.71 (4.99) 
  ADI C -- -- 6.21 (2.09) 
  ADOS-2 Social Affect -- -- 7.06 (3.25) 
  ADOS-2 RRB -- -- 4.41 (1.23) 
  ADOS-G CS -- -- 11.9 (2.90) 
  ADOS-G RRB -- -- 3.42 (1.68) 
aOne TD participant had a past simple phobia of dogs, bNo child had a diagnosis of 
conduct disorder, major depressive disorder, mania or hypomania, panic disorder, 
somatization disorder, or separation anxiety disorder. cReporting n=104 for Conners 
(1997) and n=26 with Conners-3 (2008); missing data on Conners n=2; Missing data 
on ADHD Home Rating Scale IV n=3; missing data on ADI for n=2 ASD participants; 
n=17 ASD participants have ADOS-2 data and n=19 ASD participants have ADOS-G 
data. 
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Table 7. Study II: Regions of interest used in GIMME analysis 

  Brain region MNI 
  x y z 

ROI# Frontoparietal network    
1 L SPL -28 -58 48 
2 R SPL 33 -53 44 
3 L IFJ -47 11 23 
4 L FEF -23 11 64 
5 R FEF 32 14 56 
 Salience network    
6 L anterior insula -35 20 0 
7 R anterior insula 36 22 3 
8 dorsal ACC 5 23 37 
 Default mode network    
9 vmPFC 6 54 16 

10 R temporal pole 46 16 -30 
11 L temporal pole -53 3 -27 
12 PCC 8 -48 31 

 Subcortical network    
13 L pallidum -15 4 8 
14 R pallidum 15 5 7 
15 L thalamus -10 -18 7 
16 R thalamus 9 -4 6 

Note. All regions in the FPN, SN, and subcortical network 
were active in response to flexibility trials during the 
Flexible Item Selection Task (Study I). Regions within the 
DMN were more active for control trials compared with 
flexibility trials. Specific coordinates were chosen from the 
Power et al. (2011) parcellation. 
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Figures 

Figure 1. Study I: fMRI-adapted 4-Match FIST. Participants were asked to choose 3 
successive pairs of cards that “go together in one way” (“Now you choose”). During 
control trials, the correct card pairs were highlighted by a thick black border, eliminating 
the need to enable cognitive flexibility, while still controlling for lower-level visual and 
motor processes (“Follow along”). Fixation trials had jittered presentation times 
optimized for a fast event-related design. The computer-based task included only 
flexibility trials. 
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Figure 2. Study I: A schematic of the fMRI-adapted 4-Match FIST.  
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Figure 3. Study I: Convergent validity between fMRI-adapted and computer-based 4-
Match FIST. r(30)=.33, p = .07. 
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Figure 4. Study I: Ecological validity of the fMRI-adapted 4-Match FIST. The Acc-RT 
metric from the fMRI-adapted FIST is plotted against self-reported cognitive flexibility 
(blue), working memory (black), and inhibition scores (red; measured with the BRIEF T 
scores). All correlations are non-significant (p > .05).
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Figure 5. Study I: Selection-level computer-based task accuracy. A box plot of trial-level 
accuracy for each selection. Horizontal bars indicate the median and dots represent 
outliers, whose values lie outside of the interquartile range of the sample. An accuracy 
score of 6 represents a perfect score (100%).  
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Figure 6. Study I: Trial-level computer-based task accuracy. Histogram of trial-level 
accuracy where the blue dashed line represents the sample mean. An accuracy score of 18 
represents a 100% accuracy across all selections.  
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Figure 7. Study I: Frequency of dimension choice. A boxplot based on data from the 
computer-based FIST is displayed: the number of trials that included a selection of a 
particular dimension type (in grey, outliers black points) and number of trials where a 
particular dimension was chosen for each selection (in color, only interquartile range 
displayed). Color was most frequently chosen on the first selection. Number was least 
frequently chosen for any given trial, and if chosen, was most frequently chosen on the 
third selection. 
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Figure 8. Study I: Frequency of dimension choice per selection. Box plot of the number 
of trials that participants chose a particular dimension for selections 1, 2 and 3.  
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Figure 9. Study I: Accuracy for flexibility and control trials for fMRI-adapted 4-Match 
FIST. Violin plot (in color) with overlay of boxplot (in white) displayed. 
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Figure 10. Study I: Accuracy-RT scores for each run of the fMRI-adapted FIST. Scores 
changed across runs in a cubic fashion, demonstrating an improvement in performance 
over time. Red diamonds indicate mean scores for each run. 
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Figure 11. Group activation maps for the main effect of flexibility and control trials. Z-
maps are voxel-level thresholded at an FWE-corrected p<.05. The “overlap” panel 
displays thresholded maps that include both activations and deactivations. 
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Figure 12. Study I: Group activation maps for the Flexibility – Control and Control – 
Flexibility contrasts. Z-maps are voxel-level thresholded at an FWE-corrected p<.05. 
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Figure 13. Study II: Regions of interest. 
 

 
Sixteen regions of interest used in the GIMME network connectivity analysis. Regions 
were chosen based on their activation (Flexibility > Control) or deactivation (Control > 
Flexibility) in response to the Flexible Item Selection Task (Study I). Specific 
coordinates were based on the Power et al. (2011) parcellation to facilitate categorization 
within large-scale brain networks (frontoparietal, salience, default mode, and 
subcortical). Brain nodes in upper panel were visualized with BrainNet Viewer 
(http://www.nitrc.org/projects/bnv/, Cao, Wang et al. 2014). 
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Figure 14. Study II: Differences in motion estimates in raw and pre-processed data. 
AROMA denotes data that has undergone motion artifact removal with ICA-AROMA. 
Data shown for the entire sample (N=132). 
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Figure 15. Study II: Subgroup-GIMME network models for each subgroup. 
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Figure 16. Study II: Cluster validation. Results from both VI and ARI demonstrate that 
the clustering solution is not stable. For panels A and B, the black horizontal line 
represents the point at which 20% of participants were placed into different clusters than 
the original solution (20% of nodes perturbed). The dashed vertical line identifies the 
point at which the perturbed graph reached 20% of nodes perturbed. Black dots represent 
the perturbed graph based on the original clustering solution while the red dots represent 
a perturbed random graph. Panel C demonstrates that modularity for the original 
clustering solution (0.02) was not better than expected by chance (>.06), suggesting this 
clustering solution is not valid. 
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