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We explore a set of diverse tardiness related problems for single machine preemp-

tive scheduling in their most general forms, and for each one of these problems we

compare the performance of different solution approaches. We start by comparing the

performance of two proposed heuristics versus the conventional modeling approach

for the solution of the Total Weighted Tardiness problem with and without overtime

capacity allocation. We continue the discussion focusing only on exact methods, and

we do this by comparing the performance between the conventional model and an ad-

vanced model that borrows from the aggregate planning paradigm. We conclude our

discussion by comparing the conventional and advanced modeling approaches under

a set of diverse tardiness related problems including: Total Weighed Tardiness, Total

Weighted Completion, Total Weighted Earliness and Tardiness and Total Weighted

Number of Tardy Jobs. Via numerical experimentation and analytical methods we

show that the the proposed heuristics as well as the advanced modeling approaches

are more efficient at obtaining good quality solutions than their corresponding con-

ventional models. For larger size problems, the advanced modeling approach and

the heuristics represent more efficient tools for generating optimal or near-optimal

schedules to a variety of tardiness related problems.
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CHAPTER 1

Introduction

From a purely theoretical perspective, this document can be seen as a brief collec-

tion of methodologies for the optimization of single machine (single processor) sched-

ules with the objective to minimize tardiness related measures; however, introducing

from that perspective this work wouldn’t be meaningful as it would lack the context

and practical application that such methodologies have. With that in mind, our work

is mainly motivated by the operations of a major aviation maintenance, repair and

overhaul (MRO) company, and the proposed methodologies here described can be

applied to the wide variety of services present in the MRO sector, and specifically to

the regulated MRO sub-sector where maintenance and repair operations are overseen

by regulating agencies such as the FAA, EPA or FDA among others. In what follows

we will refer to this sub sector as R-MRO.

The R-MRO sector is very particular in the sense that its services are provided

to customers with large capital investments on equipment, and service turnaround

time is also directly linked to significant revenue losses during periods of equipment

downtime. Within the R-MRO services there is a high financial sensitivity to time;

this is, two service schedules that differ on a single day of delay in the repair of a

commercial airplane, represent an average cost of 50,000.00 USD for the equipment

1
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owner and thousands in tardiness penalties to the service provider not to mention

less quantifiable costs such as good-will losses.

Considering the importance behind minimizing the losses and costs that make

part of a tardiness related event in the R-MRO sector, it seems contradicting that in

today’s practice largely sub-optimal methods like the first-come-first-served (FCFS)

rule represent the scheduling tool most commonly used; the reason for such a contra-

diction results from the complexity of the scheduling problems at hand which in the

current state of optimization sciences lack of accurate and efficient tools that allow

the generation of optimal or near optimal schedules in a reasonable amount of time.

Here we propose and study a set of methods that enhance the scheduling ability

of a maintenance service provider beyond the FCFS rule; We engage in the discussion

of approximation algorithms and exact methods (heuristics and linear programming

models) tailored to the problem of optimizing the schedule of a single processor where

the goal is to minimize a tardiness related measure. For all the tardiness related mea-

sures we discuss (also known as tardiness related problems) we assume that the pro-

cessing environment can be accurately modeled by a single processor operating under

finite capacity over a finite number of jobs with different priority levels; we represent

such a priority by means of weights where the weight of a job typically represents the

monetary penalty associated with the tardiness measure of a job. In practice, these

could include tangible costs explicitly stipulated by contracts, intangible costs tied to

loss of goodwill, or both. Also, as it is the case in practical applications, we assume

that jobs can be interrupted so that higher priority jobs can be processed, and we

will refer to this processing scheme as preemption.



3

We focus on the minimization of five tardiness related measures: total weighted

tardiness (TWT), total weighted tardiness and overtime (TWTOT), total weighted

earliness and tardiness (TWET), total weighted number of tardy jobs (TWNTJ) and

total weighted completion times (TWC). We start our discussion in chapter 2 by pre-

senting the relevant body of work that has been published in the area of optimization

for tardiness related problems; we continue in chapter 3 by presenting the nomen-

clature and problem framework for all the tardiness related problems discussed. In

chapter 4 we focus on a specific case of the TWT and TWTOT problems where these

two tardiness measures are optimized for jobs constrained to equal processing times;

the methods introduced in this chapter correspond to the two most conventional ap-

proaches used for the solution of these problems: heuristics and conventional binary

models. We continue in Chapter 5 by taking the conventional approach in chap-

ter 4 (the binary model) and compare its performance with an advanced aggregate

model; again, this comparison is done using the TWT and TWTOT problems as

test subjects. Finally we conclude our discussion by comparing the conventional and

advanced modeling approaches this time under a more general umbrella of problems

including all the tardiness related measures mentioned above for the most general

versions of the problems; this is, with variable processing times.



CHAPTER 2

Literature Review

The problem of finding an optimal job schedule on a single-machine setting has

been the center of attention of many research efforts in the last six decades; this

has led to the creation of an extensive body of knowledge with a wide diversity of

cases and extensions. For simplicity and correctness in the description of the prob-

lems here discussed, we use Graham’s notation [1] as we survey the existing litera-

ture; under this notation every problem is expressed in a three-part description as

in (Machine | Restrictions| Objective ) where the first part contains a number that

indicates the machine environment i.e. number of machines - 1 in our case. The sec-

ond part includes the restrictions and particular conditions under which the problem

is defined, and the third part includes the objective function of the problem. Any

restrictions on preemption, the processing time, release dates and due dates are com-

monly represented by pmtn, p, r and d respectively while the objective function may

include w to indicate weights associated to any tardiness measure such as tardiness

(l), completion time (C) or the number of tardy jobs (U) among others.

In the particular case of the single machine scheduling problem, a significant

number of researchers consider total weighted tardiness (TWT) as a relevant and

practical objective from which a diversity of tardiness related problems emerge. The

4
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majority of published work focuses on non-preemptive scheduling [2, 3], where it is

established that the general unrestricted TWT problem, 1 | |
∑
wili is NP-hard in

the strong sense [4], and based on the observation that every preemptive schedule can

be transformed into a non-preemptive schedule with no larger objective value [5], the

result due to [4] pertaining to complexity also applies to the general TWT problem

with preemption [6, 7].

A few papers consider preemption for the single machine TWT problem in recent

years. Most papers in this group study either tardiness with no consideration to

weights [8–10] or weighted completion times [11, 12] under the total weighted com-

pletion problem (TWC); others, branch out into tardiness related problems involving

more discrete measures of tardiness such as the total number of tardy jobs (TNTJ),

while some branch out into composite measures of performance where the objective

function involves a tardiness related measure along with other measures of perfor-

mance such as overtime or earliness as in the TWT problem with overtime (TWTOT),

or the total weighted earliness and tardiness problem (TWET). The topic of tardiness

related measures as such, encompassing total tardiness (TT), TWT, the number of

tardy jobs (NTJ) and the total weighted number of tardy jobs (TWNTJ) has only

been studied in terms of their complexity and the polynomial equivalences between

some of these problems [13]; leaving out of the research single methodological ap-

proaches that can provide timely exact solutions to the family of problems in this

group.

For the case with equal length processing times and no weights (1 | pmtn, ri, pi =

p |
∑
i

li) [8] provide a polynomial time algorithm. In their subsequent work, the au-

thors propose a pseudo-polynomial algorithm with unequal processing times for the
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case where job release (r) and due dates (d) are agreeable, i.e., ri < rj implies that

di < dj. As for the TWT problem, the computational complexity with equal-length

processing times is still open for both the non-preemptive [14] and the preemptive [15]

cases.

Integrating the overtime option into the performance measures as in the TWTOT

problem, has been studied by a number of researchers such as [16–21] under varying

settings and objectives; however, only a few consider the weighted tardiness as part of

the objective. The most closely related works are due to [17] and [20] who study the

problem of minimizing a composite cost function of overtime and total weighted tar-

diness via heuristic approaches for a single resource setting. While both papers focus

on non-preemptive schedules, we consider the more general case where preemption is

allowed.

While preemptive scheduling literature is rather rare, non preemptive literature

in the arena of composite performance functions is relatively abundant; In particular,

with the advent of the ”Just in time” paradigm (JIT) a few decades ago the problem

of minimizing total weighted earliness and tardiness (TWET) became very popular,

and received a good deal of research attention. The more general TWET problem

where no machine idle time is allowed was researched by [22], and [23] where branch

and bound algorithms and heuristics are proposed to address the problem. Other

more specific cases of the TWET problem have been independently researched leading

to a wide variety of subproblems branching out from the TWET. [24] proposes an

exact procedure for the TWET problem under precedence constraints, and evaluates

the effect of the arrangement of the due dates on the performance of the solution
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method; [25] on the other hand, presents a metaheuristic for the TWET problem

with common due dates where the due date is of restrictive character (i.e. when the

due date is greater than the sum of all job processing times), and trade-off becomes

a necessary element in the solution approach. Other efforts illustrating the diversity

of research on composite performance functions have explored the TWET problem

focusing on the case where the job weights are assigned in proportion its processing

time [26], or where tardiness is restricted under weighted earliness [27].

Research using composite functions has also branched out to exploring mixed

performance criteria involving weighted and non-weighted tardiness measures. [28]

proposed a heuristic and compared it to an exact method using branch and bound

to minimize the total weighted earliness subjected to the minimal number of tardy

jobs. Weighted tardiness measures are common in the literature, and problems like

the total weighted number of tardy jobs (TWNTJ) has also been studied, although

not extensively and in non-preemptive settings. Early work on heuristics for the NTJ

and TWNTJ introduced approximation algorithms that can be computed by hand

[29]; more recent work [30] on multi-agent scheduling to minimize the total weighted

number of tardy jobs introduced a multi-agent or customer oriented perspective into

the arena of tardiness problems; here different agents (i.e customers) are used to

represent independent interests in the optimization, and presents close resemblance

to the paradigm that we present in the aggregation models. Although this work

introduces the customers as important optimization elements it does not associate

and group them via weights as we do.

In our research context the concept of trade-off has a paramount importance, and

is constantly present in problems dealing with overtime capacity and tardiness costs
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such as in TWTOT, this concept has also been studied as it relates to the resource

allocation and the number of tardy jobs; [31] employs analytic methods to construct a

tradeoff curve between capacity allocation and the number of tardy jobs while [32] on

the other hand studies a similar situation relating to the tradeoff between the amount

of periodic maintenance and the number of tardy jobs under a scheduling setting.

Finally, to conclude the survey of problems and methodologies found in the liter-

ature, we focus on the TWC problem. Although the TWC problem is not strictly a

tardiness related problem, its structure is in deed closely related to the TWT problem;

The work on exact methods for the TWC problem has received significant coverage

in the research literature, but its extent has been limited to studying it in isolation

from the TWT problem; [33] presented a branch and bound algorithm for the TWC

problem under release constraints, and [34] built upon the existing work to produce

a branch and bound algorithm with improved performance.

While the literature in the area of tardiness related problems is vast and very

diverse, only a select minority of such work has a direct connection with the topics

and problems discussed in this document; here we have made an attempt to provide

a comprehensive survey of the applicable work in the area. From a methodological

perspective the attention received by tardiness related problems has been focused

on the development of heuristics and exact methods using branch and bound and

dynamic programming; however, research focusing on modeling approaches and single

exact methods that can be used for multiple tardiness related problems is virtually

nonexistent. From an experimental perspective research on exact methods has been

limited to instances of relatively small size (up to 50 jobs). As follows we will attempt

to fill this gap to some extent and present a piece of research that introduces efficient
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modeling approaches for tardiness related problems as well as a practical discussion

on the implementation of such models on instances of more significant size (i.e. 160

jobs). In what follows, we will proceed to present the mathematical context, and

formal versions of the tardiness related problems that we will discuss though the

remaining of this document.



CHAPTER 3

Problem Setting and Notation

We consider the single machine preemptive scheduling on a variety of tardiness

related problems. In general, our objective is to minimize a tardiness related measure

F such as the total weighted tardiness (TWT), total weighted earliness and tardiness

(TWET), total weighted completion (TWC), or the total weighted number of tardy

jobs (TWNTJ); in the particular case of the TWT problem we also consider the

objective of minimizing the TWT and overtime (TWTOT) as a special case where

overtime is an available resource. Regardless of the problem at hand, the optimization

objective is always subject to given release r and due dates d for n jobs with different

amounts of work required (pw) or with different processing times designated by the

letters p or P depending on the model used. It is assumed that the time horizon (i.e.

the schedule) is constituted by a set of discrete periods of equal length, where the time

index is represented by t, t ∈ {1, 2, . . . , T}. We represent this general optimization

problem as: 1 | pmtn, ri, di, pi | F .

We let J represent the set of customers and I denote the set of jobs, where each

customer j and each job i is assigned a weight wi, a release time ri, a due-date di

and a processing time pi. If job i is not completed by its due-date, it is considered

tardy and its tardiness (positive lateness) is captured by li. In other cases where

10
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earliness is considered is denoted by ε. Tardy jobs incur costs proportional to their

tardiness, namely, wili. In this context, the weights represent the unit tardiness costs

for the jobs negotiated beforehand with the associated customer. In the context of

preemptive scheduling, the single processor (machine) cannot process multiple jobs

concurrently, however, execution of jobs can be preempted. That is, processing of a

job can be interrupted or temporarily suspended at any moment in order to allow for

another job’s processing. In general, unlimited preemption is allowed. It is assumed

that there is no precedence relationship among jobs and the process starts for jobs

are only constrained by their own release times.

We map the maximum amount of work that can be performed on a job during

regular time at each period to αx, which measures the fraction of a job’s required

work. For example if pw = 1, αx = 0.4 indicates that if we assign the full capacity to

a particular job at a given period, 40% of that job can be completed. This implies

that the processing time, p, for the job is 2.5 periods. As such, the processing times

are allowed to take fractional values. Here, αx can take values greater than pw,

representing the cases where the processor can complete more than a single job’s

load in a period. For the TWT problem in particular we allow additional limited

and costly overtime capacity that can be employed at each period. Likewise, we

characterize the overtime limit (αv) as the maximum amount of a single job’s work

that can be completed on a single period. It should be noted for αv = 0, the problem

is reduced to a special case where there is no overtime option (TWT). We let xit or xjit

be a continuous positive variable that represents the regular time capacity assigned

to job i from customer j on period t; similarly, we let vit or vjit be the fraction of job
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i in customer j assigned to overtime capacity in period t. Clearly, both xjit and vjit

take values in [0, 1].

Basically, the overtime usage decision is driven by the trade-off between the tar-

diness and overtime costs. We assume that regular time cost is fixed over the horizon

and does not depend on the workload assigned for regular time in a given period.

In this context the regular time cost can be ignored. On the other hand, we let Ĉv

denote the cost of using all the available overtime in a period. Thus, the overtime

cost in period t for given usage amount, vit, can be computed as (Ĉv/αv) × vit. We

let cv = Ĉv/αv, which represents the overtime cost for each fraction of a job.

3.1 Problem Complexity

Problem complexity is a major area of research in Operations Research and the

Computational Sciences; the size an importance of this area of research is a direct

result from the vast diversity of problems existing and the broad impact that each

one of these problems have; take for an instance the TWT problem; although it is

generally considered a single problem, technically speaking, is a family of problems,

and the complexity of the problems in this family can go from polynomial to NP-

Hard just by changing a single problem parameter; this is, on one hand the non

preemptive TWT problem for single machine with all job processing times equal to one

period (1 | ri, di, pi = 1 |
∑
wili ) is of polynomial complexity [15], but on the other

hand just by allowing the jobs to take different processing times as in 1 | |
∑
wili

the problem becomes NP-Hard [4, 35] . Similarly each one of the tardiness related

problems discussed in this document represents a family of problems with diverse

levels of complexity.
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To keep our discussion within a manageable scope we focus only on the com-

plexity of tardiness related problems concerning with single machine operations, pre-

emptive allocation, weighted tardiness measures (F ), and unrestricted release and

due dates (i.e. 1 | pmtn, ri, di, pi | F ). Labetoulle [36] showed that the TWC prob-

lem ( 1 | pmtn, ri, di, pi |
∑
wiCi )is NP-Hard, and others [4, 35] also showed that

the non preemptive version of the TWT problem (1 | ri, di, pi |
∑
wili) is also NP-

Hard; Although in the literature the TWT problem with equal processing times

(1 | pmtn, ri, di, pi = p |
∑
wili) is currently of open complexity status [15], it can

be seen from the existing result by [36] that the 1 | pmtn, ri, di, pi |
∑
wili is funda-

mentally NP-Hard; this is, by decomposing the weighted tardiness measure
∑
wili

as

∑
wili =

∑
wi(fi − di) (3.1)

where fi = Ci + ri − 1. Here we see that the resulting tardiness expression in

terms of Ci is composed of a variable and three constant terms as in

∑
wili =

∑
wiCi +

∑
wiri − 1−

∑
widi (3.2)

from here it becomes apparent that the solution to the above TWT problem is

equivalent to the solution of its related TWC problem plus three constant terms

(
∑
wiri,−1,−

∑
widi). Under this reasoning we can see that the previous work

on the complexity of the TWC in [36] constitutes also a tool to classify our TWT

problems also as NP-Hard. Similarly, the same reasoning can be used to show that

the related TWET problem is NP-Hard; this is, if we allow the tardiness expression

in fi− di to take negative values and evaluate the weighted tardiness and earliness as
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|Ci + ri − 1 − di| = lεi we can see that it results in an equivalent tardiness measure

as in the TWT problem (
∑
wilεi)with an equivalent level of complexity to the TWC

and TWT problems; also, on a side note, in the case where preemption is not allowed

this same problem (TWET) was shown to be NP-Complete by [38].

Finally, the TWNTJ problem as in 1 | pmtn, ri, di, pi |
∑
wiUi and the TWTOT

problem as in 1 | pmtn, ri, di, pi |
∑
wili + cv

∑∑
vit are problems currently with

open complexity status; although in the case of the TWNTJ [37] showed that its non

preemptive version is NP-Hard in the ordinary sense; nonetheless, through a similar

exercise as for the TWET it can be seen that the TWNTJ problem has also NP-Hard

character; we can see this by expressing the binary tardiness measure U as

Ui =

 1 : if (Ci + ri − 1− di) > 0

0 : otherwise

(3.3)

and noting that its non zero values correspond to a solution of the TWT problem.

Now for the case of the TWTOT, its NP-Hard complexity character can be seen from

the interactions between the weights wi and the cost of overtime cv; here we see that

when the cost of overtime cv is significantly larger than the cost of tardiness wi the

optimization neglects the use of overtime and the problem turns into solving its related

TWT problem; on the other side when the cost of tardiness is significantly larger than

the cost of overtime (wi >> cv) the optimization will resort to use overtime by default,

and the capacity allocated will be enhanced by the extra overtime capacity while the

problem at heart is still the TWT. In all other cases where the costs of tardiness and

overtime are comparable the TWTOT requires the evaluation of the cost trade-off

which by its nature is more complex than any of the two previous extreme cases for

wi and cv.



CHAPTER 4

Heuristics and Conventional Models

4.1 Overview

In this chapter we study two proposed heuristics and the conventional modeling

approach for the solution of the Total Weighted Tardiness problem (TWT) with and

without overtime capacity allocation. In particular we focus on the scheduling of

a finite set of jobs on a single resource that operates under preemption, and have

associated release and due dates. Limited overtime capacity can be utilized to reduce

tardiness; however, since overtime is costly, justification of the overtime use depends

on the trade-off between the tardiness and the overtime costs. The overall objective

of the heuristics and the conventional model is to minimize the total cost of tardiness

and overtime.

We first propose a heuristic solution for the the TWT problem that allocates

workload to available capacity based on a dynamic priority rule. Basically, the pri-

ority of a job at a given time depends on its weight (tardiness cost), due date, and

the remaining workload. Later we generalize our analysis to the setting that allows

for availability of limited overtime capacity. Under a holistic approach a three-stage

heuristic is developed for minimizing the total cost of tardiness and overtime utiliza-

15
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tion. In the first stage, overtime is treated as part of the regular capacity. In other

words, it is assumed that overtime is not costly. The priority rule developed for the

base setting is employed to generate an initial non-delay schedule. In the second

stage, the overtime usage is reduced by shifting workload and generating a full-delay

schedule without altering the tardiness of jobs produced in the first stage. In the

final stage, the heuristic attempts to improve the total costs by means of extending

the tardiness of jobs in return for reduction in overtime utilization resulting with net

gains. At the end, the three-stage procedure builds a full-delay schedule that allocate

workloads among regular and overtime capacity slots based on the critical trade-off

between the tardiness and overtime costs.

Both heuristics are tested using numerical analyses, and the conventional model

(Exact MIP model) is employed as the benchmark to evaluate the performance of the

heuristics. Using computational tests, we compare the performance of our heuristics

with the upper bounds generated by the conventional model formulation. The results

show that the proposed methods are efficient in obtaining good quality solutions in

significantly short times and they can be useful as effective solution tools especially

for large size problems.

4.2 The Conventional Mathematical Model

The exact model used in this research aims to find an optimal schedule that min-

imizes the total cost of tardiness and overtime for a given set of jobs by determining

regular and overtime work allocations, finish dates, and tardiness. The nomenclature

for the decision variables is given in Table 4.1.
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Table 4.1: Decision Variables of the Exact Model

xit Fraction of a job i assigned during regular time at period t

vit Fraction of a job i assigned during overtime at period t

yit Binary variable: 1 if job i finishes on period t, 0 otherwise

fi Finish date for job i

li Number of late periods on job i

The mathematical model involves binary, continuous, and discrete decision vari-

ables. The binary variables yit track the completion time of jobs. While the continu-

ous variables determine the amount of allocations of regular capacity xit and overtime

work vit that are necessary to complete the jobs, the discrete variables are needed

to evaluate the finish date fi as well as the number of late periods li. The tardiness

cost for job i is captured by wili = wi × max{0, fi − di}. On the other hand, the

overtime capacity cost for job i in period t is given by cvvit. We can write down the

mathematical model as follows:
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minimize Ω =
n∑
i=1

wili + cv

T∑
t=1

n∑
i=1

vit (4.1)

subject to:
T∑
t=ri

yit = 1, ∀i ∈ I (4.2)

fi =
T∑
t=1

tyit, ∀i ∈ I (4.3)

li ≥ fi − di, ∀i ∈ I (4.4)
n∑
i=1

xit ≤ αx, ∀t ∈ {1, 2, . . . , T} (4.5)

n∑
i=1

vit ≤ αv, ∀t ∈ {1, 2, . . . , T} (4.6)

T∑
t=ri

(xit + vit) = 1, ∀i ∈ I, (4.7)

γ∑
t=ri

(xit + vit) ≥ yiγ, ∀i ∈ I,∀γ ∈ {ri, . . . , T}, (4.8)

xit, vit ∈ [0, 1] ; fi, li ∈ Z+; yit ∈ {0, 1} (4.9)

The objective function given in (4.1) minimizes the total cost of tardiness and

overtime capacity. As mentioned above, the weight for job i, wi, maps the unit cost

of tardiness for that job in this representations. The first set of constraints (4.2)

ensure that each job is completed by the end of the planning horizon. The second set

of constraints (4.3) capture the completion times. Given completion times, constraint

in (4.4) sets the tardiness for the jobs. Constraints (4.5) and (4.6) enforce the regular

and overtime capacity limits. Constraint (4.7) allocates all work required to complete

a job across time periods following its release date and (4.8) ensures that jobs are

not completed before all required work is done. Solution to the above model provides
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an optimal preemptive schedule for a given set of jobs with different release and due

dates.

4.3 Total Weighted Tardiness (TWT) Heuristic

In this section, we first introduce an efficient heuristic method for the base case,

where overtime capacity is not explicitly considered in the problem. That is, we as-

sume either no overtime capacity is available or it does not incur any additional cost.

In this case, the problem reduces to the conventional single machine scheduling prob-

lem, i.e., 1|pmtn, ri, pi = p|
∑
i

wili. The solution approach for the general case will

later be built on this heuristic in the following section. The proposed heuristic dynam-

ically prioritizes the jobs based on their weights, remaining processing times (RPT),

and remaining available times (RAT). It allocates available capacity (αx) to the high-

est ranked job from the subset of jobs that have been released and have not been

completed (IR). Ranking is updated at the beginning of each period or at the time

a job is completed based on the priority rule calculated by wi/max{RPTit, RATit}

for each released job i. Higher values signify higher priorities for the jobs. In what

follows, we present the formal definitions for the components of this priority rule

and rationalize its effectiveness on minimizing the total weighted tardiness for the

preemptive scheduling problem.

Definition 1 Remaining Available Time (RAT) is the time to due date for

a job at any given period in a given partial schedule. Specifically, RATit represents

the remaining time for job i as of time t until its due date and as such, RATit =

max{0, di − t+ 1}.
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Definition 2 Remaining Processing Time (RPT) is the amount of remaining

time required to complete the processing of a job in a partial schedule. Specifically,

for job i at the beginning of period t, RPTit = (1−
∑t−1

z=ri
xiz)/αx.

We note that at period t, both RATit and RPTit are defined only for any job i

such that ri ≤ t (i.e., job is released) and fi ≥ t (i.e., job is not completed yet).

Definition 3 Remaining Slack (RS) is the slack time for a given job at a given

period in a given partial schedule and calculated by the difference between the RAT

and the RPT . Specifically, for job i at time t, RSit = max{0, RATit −RPTit}.

Based on above definitions, we can rewrite the priority of job i at time t, Ψit, as

follows:

Ψit =
wi

RPTit +RSit
(4.10)

It is clear in (4.10) that slack time (RS) influences a job’s priority only when it

is strictly positive. When RSit = 0 in a partial schedule, it is realized that at time t

job i cannot be completed before its due date. At his point, the priority is a function

of the job’s weight and RPT. To explain the priority rule for this instant, consider

the general case where all jobs will be tardy, i.e., fj ≥ dj for all j. In this case, the

objective function for these jobs can be rewritten as

∑
j

wjlj =
∑
j

wj(fj − dj) =
∑
j

wjfj −
∑
j

wjdj (4.11)

We note that since due date values are exogenous, the optimization reduces to the

minimization of
∑

j wjfj. This observation leads to the following conclusion:
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Corollary 1 When the due dates are sufficiently tight so that no job can be completed

before its due date, the Total Weighted Tardiness (TWT) problem reduces to the Total

Weighted Completion (TWC) problem.

This relationship between the TWT problem and the TWC problem is significant

in that it is shown by [39] that priority rule wi/RPTit results in an optimal local

ranking among released jobs in a partial preemptive schedule. Consistently, our

method is reduced to this rule when RSit = 0 for all i ∈ IR(t). In this context,

local optimality at time t is signified by a schedule among available jobs which makes

the smallest possible contribution to the objective function provided that all other

jobs released after time t are ignored.

On the other hand, when RSit > 0, the slackness must be exclusively included in

the priority rule so as to incorporate the due date factor. To rationalize the inclusion

of positive RS, we first make the following observation:

Proposition 1 Consider a partial schedule at time t, where for all available jobs the

remaining slack is strictly positive. That is, RSjt > 0 for all j ∈ IR(t). The ranking

obtained based on the priority rule given in (4.10) does not violate local optimality.

Proof: Suppose Ω(IR(t)) represents the locally optimal total weighted tardiness

among all jobs in IR(t). Moreover, let k represent the index for the job with the

highest priority in IR(t) calculated based on equation (4.10) at time t. To make

the proof, it is sufficient to observe that if we delay the preemption of job k by a

sufficiently short time interval, say δ time units, where IR(t) ≡ IR(t + δ), Ω(IR(t))

can still be obtained. This is due to the fact that unlimited numbers of preemption

are allowed.
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The above result is demonstrated in figure 4.1. Suppose job k is released at rk

and has higher priority at that time. As such it preempts job i based on the priority

rule (Schedule A). At this point, jobs i and k have strictly positive slacks, namely,

di− rk−2 = 1 and dk− rk = 6 respectively. Alternatively, if we delay the preemption

point by one period (Schedule B), same total weighted tardiness can still be attained

since, at this point, both jobs still have strictly positive slacks (di − rk − 2 = 1 and

dk − rk − 1 = 5 respectively).

Figure 4.1: Schedule A - Preemption at rk, Schedule B - Preemption at rk + 1

As indicated by Corollary 1 and Proposition 1, the critical part of the priority

ranking by heuristic is predicated upon the comparisons between the jobs with no

slack and those with positive slack. On one hand, a job may have no slack but more

remaining work. On the other hand, a job with less remaining work may have a large

amount of remaining slack time until its due date. Clearly, the proposed priority rule

attempts to efficiently capture the interplay between such jobs. The joint impact of

the RPT and RAT on the priority level of a job, which has no capacity allocation

until period z, is illustrated in Figure 4.2 across time periods.
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Figure 4.2: Illustration of the priority rule wi/max{RPTit, RATit}

4.3.1 Computational Experiments

We design and perform numerical analysis so as to evaluate the computational

performance of the TWT Heuristic. We aim to determine the computational per-

formance of the heuristic with respect to the exact method as the number of jobs

changes. Therefore, in our experiment, we include a varying problem sizes. Specifi-

cally, we consider seven scenarios based on problem sizes of 7, 10, 15, 20, 30, 40, and

80 jobs.

We use a set of expressions to generate all the parameters necessary to create the

problem instances. To be consistent with the existing literature, we borrow the ex-

pressions from earlier work due to [20] and modify them to our context. Main random

variables that are used to generate the parameter space follow uniform distributions

in order to enable diversity across all instances. Table 4.2 lists the specific parame-

ter generating expressions used in our analysis. For each scenario, 20 instances were
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generated. As a result, a total of 140 instances are obtained to test the performance

of the heuristic and the exact model. All instances were solved using a PC with an

I7-3770 Processor with 3.40 GHz and 16 GB of RAM.

Table 4.2: Parameter Generating Expressions

Parameters Expressions

Time horizon - T rlast + n/αR

Release date - ri UNIF(1, n)

Due date - di ri + 1/αR+UNIF(0, a2)

Tardiness penalty (weight) - wi UNIF(1, a1)

Regular time capacity - αR UNIF(0.1, 0.9)

a1 = 2n/3, a2 = 2

For the exact model given in Section 4.2, CPLEX 12.0 is used as the solver.

However, due to the computational complexity, not all the instances lead to exact

solutions in reasonable amounts of time. Therefore, we set a fixed time limit for the

execution of the exact model. Specifically, the computational runs are set to initi-

ate a time-out sequence at 7200 seconds (2 hours). Once the time-out sequence is

initiated, we observe that it takes about additional 3 minutes in average to finalize

the current iteration. In cases where exact solutions are obtained, we contrast these

optimal solutions to the heuristic solutions, and in cases where the exact solution is

not reached, we compare the best feasible solution converged by the solver with the

solution provided by the heuristic.
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4.3.2 Computational Results

We investigate the results of all 140 instances (20 for each problem size) on each

solution approach totaling 280 runs. In our numerical analysis, we divide the solution

sets into two groups. In the first group, we evaluate the cases where the optimal solu-

tions are obtained by the exact model within the given time frame. The instances in

this case make 31% of all the instances (i.e., 43 of the 140 instances) all corresponding

to the problem sizes with 7, 10 and 15 jobs. In 34 of these 43 instances, the TWT

heuristic also produced the optimal solutions. In general, the heuristic achieved near

optimal solutions with an average gap of 1.07%. The computational performances

are summarized for this case in Table 4.3.

Table 4.3: Group 1 - Optimal Instances

Exact Model Heuristic

Comp. Time (sec) Comp. Time (sec) Percent Error (%)

Jobs OPT Min Avg Max Min Avg Max Min Avg Max

7 20 0.209 22.32 172.1 0.004 0.005 0.008 0.00 0.29 3.33

10 14 2.46 294.4 3208 0.001 0.003 0.030 0.00 1.55 7.51

15 9 2.887 1792 4989 0.005 0.006 0.008 0.00 1.36 7.41

Unfortunately, optimal solutions cannot be reached within the given time frame

for the rest of the instances; these are assigned to the second group of solution sets.

While the exact model reported optimal solutions for most of the instances of the

smaller problem sizes (7 and 10 jobs), all of the instances for problem sizes 20 and

above did not converge to optimality before the 2-hour time-out threshold. Due to

lack of the optimal solutions and good quality lower bounds, we compare the results

of our heuristic with the timed-out (TO) solutions obtained by the exact solution

method for this group. Overall, in this group, the proposed heuristic resulted with
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smaller weighted total tardiness values compared to those obtained by solver in 77 of

the 97 instances (79%). Specifically, the heuristic resulted with better solutions in all

instances for problem sizes 40 and 80 jobs. The summary of the results are provided

in Table 4.4.

Table 4.4: Group 2 - Timed-Out Instances

Exact Model Heuristic

Comp. Time (sec) Comp. Time (sec) Percent Difference (%)

Jobs TO Min Avg Max Min Avg Max Worst Avg Best

10 6 7207 7229 7326 0.001 0.002 0.004 0.05 0.01 0.0

15 11 7206 7766 9034 0.006 0.020 0.112 0.80 -0.13 -1.72

20 20 7203 7719 9062 0.002 0.006 0.011 7.00 -0.65 -5.63

30 20 7203 7876 8544 0.004 0.009 0.017 3.10 -2.54 -7.20

40 20 7207 7864 8468 0.006 0.015 0.040 -1.88 -4.20 -7.71

80 20 7202 7711 9039 0.010 0.020 0.050 -4.49 -16.1 -40.2

We observed that as the problem size increases, the convergence performance de-

grades significantly for the exact model. The average optimality gap stays above 44%

for more than 20 jobs with a worst case performance of 89.1% gap. Consequently,

as the problem size increases the quality of the heuristic solution shows an increas-

ing improvement over the timed-out exact model. On average, the TWT heuristic

generates solutions with 0.13%, 0.65%, 2.54%, 4.24%, and 16.16% reduction in total

weighted tardiness in comparison to the best feasible solutions obtained by the exact

model after two hours of run time for 15, 20, 30, 40, and 80 jobs respectively. A

summary of the relative improvement of the heuristic with respect to the timed-out

exact model is depicted in Figure 4.3.

In terms of computational times, the gap is significant between the two cases. For

the 40 instances with 7, 10 and 15 job problems, the average computational time for
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Figure 4.3: TWT heuristic average performance vs. exact model

obtaining the optimal solution with the exact solution method is 702 seconds (about

5 minutes) on average with a maximum value of 83 minutes. On the other hand, it

takes only a small fraction of a second for the heuristic to produce a solution. In

general, the solutions are reached within time frames of milliseconds in all instances

by the TWT heuristic as summarized in Tables 4.3 and 4.4.

4.4 Total Weighted Tardiness and Overtime

(TWTOT) Heuristic

The presence of overtime option offers opportunities to reduce the total tardiness

in a schedule. However, typically, this option is costly and limited. As such, overtime

capacity and associated cost must be explicitly incorporated into the scheduling pro-

cess, which aims at optimally balancing the costs due to tardiness and overtime usage.

Here, we present a holistic procedure that achieves this. The proposed procedure is
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built on the concepts and observations related to the TWT algorithm introduced

in the previous sections. For the TWTOT problem at hand, we adopt the compact

and relax principle introduced by [20] to solve the non-preemptive version. In this

approach, ignoring the overtime cost, a non-delay schedule is built using all available

overtime capacity as needed in the initial (compact) phase. In the second (relax)

phase, the initial schedule is ”relaxed” by shifting the schedule to the right and thus,

reducing the overtime usage subject to cost improvements.

Although the principle employed in our approach is similar to that of [20], the

specifics of the proposed procedure are quite different. The difference is mainly due

to the presence of the preemption option for all jobs, which does not necessarily lead

to a strict sequence of jobs. First, we build our initial schedule based on the TWT

heuristic developed particularly for the preemptive scheduling problem. Second, in

contrast to [20], our ”relax” phase is not built based on a fixed sequence of jobs.

Clearly, in a preemptive schedule, a fraction of a job can be shifted beyond other

scheduled jobs. This requires a procedure that must efficiently evaluate a higher

number of different ”relaxing” options.

The proposed TWTOT heuristic is implemented in three stages. The first stage

corresponds to the ”compact” phase where an initial schedule is generated via the

TWT heuristic utilizing all available overtime capacity as needed. The second and

third stages compose the ”relax” phase. The second stage generates the schedule

that minimizes the total overtime cost under the tardiness constraints imposed by the

initial schedule. Finally, the third stage incorporates the tardiness and overtime cost

trade-offs and evaluate schedule improvements that reduce the total cost of tardiness

and overtime usage. In what follows the details of these stages are discussed.



29

Stage 1: Initial Schedule

As mentioned above, an initial schedule is constructed in this stage by employing

the TWT heuristic introduced in the previous section. The TWT heuristic in this

stage does not assume any cost for the overtime capacity. Therefore, the regular and

overtime capacities are indistinguishable and they are simply stacked together in a

given period. Consequently, the per period capacity is updated by α̂x = αx + αv

before the TWT heuristic is implemented as described in the previous section. In

the rest of the chapter, we let ΩTWT denote the value of the objective function (4.1)

obtained at the end of this stage.

Stage 2: Full-Delay Schedule

In this stage, we attempt to reduce overtime usage as much as possible without

impacting the tardiness of jobs determined by the initial schedule. In other words, the

goal is to come up with an alternative schedule that achieves the same total weighted

tardiness with minimum overtime capacity usage. To achieve that, we modify the

non-delay schedule generated by the TWT heuristic into a full-delay schedule, where

the jobs are delayed as much as possible without violating their first stage tardiness

outcomes. A full-delay scheduling approach is introduced by [40] to minimize the

total earliness with hard deadlines and no preemption in a different context. We

employ a modified approach tailored to our context where preemption is allowed. We

replace the due dates of the jobs with the maximum of their original due dates and

finished dates obtained by the TWT heuristic. That is, for job i, d̂i = max{di, fi}.

The schedule then is shifted towards the available downstream regular time slots so

as to reduce the overtime usage while disallowing any tardiness with respect to the
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updated due dates. To explain the details of this process, we first need to introduce

the following definition:

Definition 4 Resulting Regular Time Slack (RTS) is the amount of unused regular

time capacity that can be assigned to a job without altering its tardiness or any other

job’s tardiness in a given schedule. For any job i,

RTS(i) = (d̂i − fi + 1)αx −
d̂i∑
t=fi

∑
j∈I

xjt (4.12)

To help understand what actually RTS captures, consider the schedule given in

Figure 4.4. We note that in this schedule, for ease of presentation, each slot represents

capacity that can process one ninth of a job. As such, αx = 1/3 and αv = 1/9.

Suppose that job 2 is originally due by the end of period 12 and both jobs 3 and 4

are released in period 7 with due dates of 10. Here, it is clear that f2 = 6, f3 =

9, and f4 = 11. Then, applying (4.12), the updated due dates become d̂2 = 12,

d̂3 = 10, and d̂4 = 11. To calculate RTS(2), first visually observe that there are

5 available regular time slots between the period in which job 2 is completed and

the period at which the job is due. Other slots are allotted to jobs 3 and 4. As

such, RTS(2) = (12− 6 + 1)/3− 16/9 = 5/9 implying that there is available regular

time capacity enough to process five ninths of job 2 before its deadline. For job 4,

RTS(4) = (11−11+1)/3−2/9 = 1/9 implying that the slack for this job is equivalent

to one ninth of its required workload. For job 3, on the other hand, RTS(3) is clearly

0 because there is no unused regular capacity between periods 9 (f3) and 10 (d̂3).

Capturing RTS is significant as it gives us indications for potential overtime re-

duction. For example, in the example given in Figure 4.4, we realize that overtime

use for jobs 1, 2, and 4 can be reduced by shifting workloads from overtime capacity
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Figure 4.4: Regular Time Slack (RTS)

to available regular capacity without increasing tardiness of any job. Specifically,∑
iRTS(i) gives us the upper bound on overtime reduction that can be achieved

without delaying jobs beyond their updated due dates. This value is used as a crite-

rion in our full-delay (FD) algorithm. We let It denote the set of jobs for workload

scheduled in period t and TL denote the last period with any scheduled workload.

The steps of the FD algorithm are presented in Table 4.5.

Table 4.5: The Full-Delay Algorithm

Step 0 t← TL.
Step 1 If t = 0 stop. Else, compute RTS(i) for all i ∈ It.
Step 2 Identify the job with the highest RTS value in It: j ← arg max

i∈It
RTS(i).

Step 3 If RTS(j) = 0 or It = {∅} then t← t− 1 and go to Step 1.
Else, starting with all current overtime allocations, wherever feasible,
shift all upstream workload to all unused downstream regular capacity

on or before d̂j. Go to Step 1.

To illustrate the algoritm, consider again the non-delay schedule in Figure 4.4. The

FD algorithm starts with period 11, where only job 4 is scheduled with RTS(4) = 1/9.

Positive RTS indicates that workload related to this job can be shifted to the right.

It should be noted that primarily all overtime workloads related to this job must be

shifted to unused regular capacity. And the shift cannot extend beyond d̂4 = 11. This

results with the schedule given in Figure 4.5. We observe that in the new schedule

while RTS becomes 0 for jobs 3 and 4, and RTS(2) = 4/9. Consequently, executing
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t = 6, the algorithm generates the schedule in Figure 4.6. The algorithm results with

an overtime reduction of four periods at the end.

Figure 4.5: Schedule after first pass of the FD algorithm

Figure 4.6: Final schedule generated by the FD algorithm

We let ΩFD
TWT denote the value of objective function produced by applying the FD

algorithm to the compact schedule generated by the TWT algorithm and make the

following conclusion:

Proposition 2 ΩFD
TWT ≤ ΩTWT always holds. Moreover, assuming that satisfying the

updated due date is a hard constraint for each job, ΩFD
TWT is optimal.

Proof: The first part directly follows from two observations: First, the TWT

heuristic does not distinguish overtime capacity from regular capacity and generates

a non-delay schedule. Second, the FD algorithm maintains the same total weighted

tardiness cost and attempts to reduce the overtime usage. For the second part of the

proposition, note that the FD algorithm generates a full-delay schedule where RTS

values for all jobs are zero. As such, any reduction in overtime usage is possible only

if at least one job is completed after its updated due date.
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Stage 3: Tardiness Relaxation

While the TWT heuristic of Stage 1 ignores the overtime costs and focuses on min-

imizing the total tardiness cost, the FD algorithm in Stage 2 concentrates only on

reducing the total overtime cost under fixed tardiness costs. To complete the loop,

Stage 3 aims to minimize the sum of both costs predicated upon the cost trade-offs

between the tardiness and the overtime costs. The full-delay schedule obtained in the

previous stage will be the initial schedule in this stage. As in the previous cases, we

introduce key definitions that help us build the tardiness relaxation procedure in this

stage.

Definition 5 A Local Full-Delay (LFD) Block is defined as a schedule block in which

there is no unused regular time capacity and for every job with allocated workload in

this block RTS is zero.

We note that a LFD block is only relevant for a full-delay schedule. To illustrate,

consider the schedule in Figure 4.7. Suppose release periods are 2, 2, 3, and 6 for jobs

1-4 respectively. Moreover, the weights are 3, 4, 2, and 7, and updated due dates are

5, 4, 4, and 7 respectively. Observe that this is a full-delay schedule. Based on the

above definition, jobs 1, 2, and 3 form a LFD block. Job 4 is not in this block because

there is an unused regular capacity slot between this job and the others. As such, it

forms a separate block. We let E represent the set of local full-delay blocks and Ek

represent the set of jobs in block k. Hence, in the given example E = {{(1, 2, 3), 4},

E1 = {1, 2, 3}, and E2 = {4}. We also let t̂k,0 and t̂k,1 be the beginning and ending

periods for block k.

Proposition 3 All workload associated with any given job can be enclosed by exactly

one LFD block in a full-delay schedule.
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Figure 4.7: Local Full-Delay Blocks

The proof is straightforward from the fact that if a job is split into multiple blocks,

the workload scheduled in an upstream block can be shifted to the right which is not

possible in a full-delay schedule. The above observation reveals that LFD blocks are

mutually exclusive in that a job exists in exactly one block. This helps us with our

next definition:

Definition 6 Tardiness-Overtime Payback (TOP) measures the maximum possible

net gain in the total cost function by increasing the tardiness of a job which results

with reduction in overtime usage. Specifically, TOPn(i) represents the upper bound

on net gain by increasing the tardiness of job i by n periods in block k, where,

TOPn(i) = cv min{(αxn−
d̂i+n∑
t=d̂i+1

∑
j∈Ek

xjt),

fi∑
t=t̂k,0

∑
j∈Ek

vj,t} − win (4.13)

The TOP value is useful in assessing the trade-off between tardiness and the

overtime usage. As reflected in (4.13), the upper bound on overtime reduction implied

by a job in LFD block is limited by the minimum of the total overtime usage in the

interval that spans from the beginning of the block to the completion time of the

job and the regular time capacity that becomes available after the job’s tardiness is

increased. If the potential reduction is larger than the cost of the increase in tardiness,

i.e., if TOP is positive, then delaying this job should be considered. Recall the
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schedule in Figure 4.7. Suppose that cv = 15. Then, in the second block, TOP1(4) =

−7, which indicates that there is no potential gain in increasing the tardiness of job

4. On the other hand, in the first block, TOP1(3) = 3− 2 = 1. Since the TOP value

is positive for this job, there is a potential to reduce the total cost by delaying it.

Basically, the tardiness relaxation (TR) algorithm developed for this stage builds on

this principle.

The TR algorithm employs a backward pass and begins with the latest LFD block.

A backward pass is preferred because a shift in a downstream block has potential to

open up more unused regular capacity for the upstream blocks. At each pass, the

algorithm computes the TOP values for all jobs in the current block. If all the TOP

values return negative values no tardiness relaxation is attempted. Otherwise, we

let E+
k represent the set of all jobs in block k with strictly positive TOP values.

Using the greedy approach, the tardiness option with the highest positive payback

is selected from this set each time to evaluate tardiness relaxation. Each time an

increased tardiness is applied, the algorithm checks whether block formations change.

This happens when two consecutive blocks mesh with each other and form a single

block because the unused regular capacity gap is closed between the two following

the tardiness relaxation. The process repeats until no improvement can be obtained

in the objective function given in (4.1). The steps of the algorithm are presented in

Table 4.6.

To illustrate the TR algorithm consider again the example in Figure 4.7. Recall

that the updated due dates for jobs 1-4 are 5, 4, 4, and 7 respectively. The algorithm

starts with the second and the last block. The only job in this block, namely job 4,

has a TOP value of −7. Therefore, no tardiness relaxation is attempted for this block.
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Table 4.6: The Tardiness Relaxation Algorithm

Step 0 Identify all LFD blocks. M ← |E|; k ←M .

Step 1 Compute the TOP value of extending tardiness to period t̂k,1 + 1 for
each job i in Ek.

Step 2 If E+
k = {∅} or

∑fi
t=t̂k,0

∑
j∈Ek

vj,t = 0, then k ← k − 1 and go to Step 4.

Else, j ← arg max
i∈E+

k

TOPt̂k,1+1−d̂i(i); Go to Step 3.

Step 3 Apply the FD algorithm to the current schedule assuming d̂j = t̂k,1 + 1.
If the objective function improves, replace the current schedule with

the new one; update t̂k,0 and t̂k,1 for LFD block k; d̂j ← t̂k,1 + 1.
Go to Step 1.
Otherwise, keep the current schedule; E+

k ← E+
k − {j}; Go to Step 2.

Step 4 If k = 0 stop.

Else, compute the TOP value for period t̂k,1 + 1 for each job i in Ek.

Step 5 If E+
k = {∅} or

∑fi
t=t̂k,0

∑
j∈Ek

vj,t = 0 then k ← k − 1 and go to Step 4.

Else, j ← arg max
i∈E+

k

TOPt̂k,1+1−d̂i(i); Go to Step 6.

Step 6 Apply the FD algorithm to the current schedule assuming d̂j = t̂k,1 + 1.
If the objective function improves, replace the current schedule with

the new one; d̂j ← t̂k,1 + 1; Go to Step 7.
Otherwise, keep the current schedule; E+

k ← E+
k − {j}; Go to Step 5.

Step 7 If t̂k,1 + 1 = t̂k−1,0 then a new block is formed; Go to Step 8.

Else, update t̂k,0 and t̂k,1 for LFD block k; Go to Step 4.
Step 8 If k = M − 1, go to Step 0.

Else, update t̂k,0 and t̂k,1 for LFD block k; Go to Step 4.

In block 1, the TOP values that result with moving the finish date to period 6 return

0, −5, and 1 for jobs 1, 2, and 3 respectively. Consequently tardiness relaxation is

attempted only for job 3. Applying the FD algorithm assuming that the due date for

job 3 is extended to period 6, we get a new full-delay schedule depicted in Figure 4.8.

In the new schedule, the objective function is reduced by 1 unit because the overtime

in period 4 is eliminated. Therefore, we adopt the new schedule with the improved

objective function value and now, d̂3 = 6. Observe in the figure that because the

regular capacity gap is closed, blocks 1 and 2 are joined to become a single block.

Hence, since this block is the only block now, the algorithm restarts with it.
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Figure 4.8: Improved schedule after the first pass

Now, the algorithm attempts to improve the objective function by considering

shifting the block to the right, no more than one period at each pass. In the new

schedule, extending the completion time to period 8 for jobs 1-4 results with TOP

values of −3, −10, 2, and −1 respectively. Returning the only positive value, job

3 is again the candidate for the next shift. Assuming now its due date is period 8

and applying the FD algorithm, we get the full-delay schedule in Figure 4.9. The

objective function is improved by 2 units with the new schedule. As such, we adopt

the new schedule with the improved objective function value and let d̂3 = 8. Since,

overtime usage is eliminated in the new schedule, we stop the process. Clearly, in

many instances, overtime usage cannot be completely eliminated. In such cases, the

algorithm terminates when no more improvement is gained.

Figure 4.9: Improved schedule after the second pass
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4.4.1 Computational Experiments

In order to test the effectiveness of the TWTOT Heuristic via computational ex-

periments, a numerical analysis is designed and implemented. Similar to our compu-

tational experiments for the TWT heuristic, we consider seven problem sizes with 7,

10, 15, 20, 30, 40 and 80 jobs resulting with 140 instances. To generate our instances,

we employ again the parameter generating expressions in Table 4.2. In addition, we

use UNIF(0.1, a3) to generate costs for overtime, where a3 = 0.8w̄ and w̄ represents

the average weight (marginal cost of tardiness) over all jobs. For determining the

overtime capacity in each instance, we employ UNIF(0.1, αR/3) if αR ≥ 1/3, and

UNIF(0.1, αR) otherwise. This way, we limit the overtime capacity below one third

of the regular capacity to be more consistent with real conditions.

As in the previous case, all instances were solved by using a PC with an I7-3770

Processor with 3.40 GHz and 16 GB of RAM. For the exact model, AMPL and

CPLEX 12.6.1 were used. Due to the computational complexity of the TWTOT

problem, not all the instances are solvable in reasonable amounts of time. Therefore,

we maintain a time limit for the execution of the exact model of 7200 seconds (2

hours). Following the same format used for the TWT heuristic, in cases where in-

stances were solved optimally by the exact model we compare the heuristic solutions

to the optimal solutions, and in cases where the exact model did not reach optimal-

ity, we compare the best feasible solution obtained after two hours with the solution

provided by the heuristic. The TWTOT heuristic was implemented using MATLAB

R2016a.
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4.4.2 Computational Results

We investigate the results of all all 140 instances (20 for each problem size) on

each solution approach (280 runs). In our numerical analysis we tracked the number

of instances that were solved optimally through each approach within the given time

frame. The exact model was able to find the optimal solution in 32% of the instances

(45 of the 140 instances) while the heuristic produced 21 optimal solutions.

While the exact model reports optimal solutions for most of the instances of the

smaller problem sizes (7, 10 and 15 jobs), no optimal solutions are achieved for the

instances with 20, 30, 40 and 80 jobs after two hours. Conversely, and similarly to

the TWT heuristic, the TWTOT heuristic was able to reach near optimal solutions

(gap < 5%) on 26 out of the 45 optimal instances and a smaller total tardiness cost

than the exact model in 74 out of the 95 instances that timed out.

The computational time performances and the percent error resulting from the

the heuristic approach as compared with the exact solution are summarized in in

tables 4.7 and 4.8 as they relate to the number of instances solved optimally (OPT)

and the number of instances that timed out (TO). Measures of computational time

performance are presented in seconds and classified by the minimum, average, and

maximum time values observed across all problem sizes while the heuristic error is

presented via the minimum, average and maximum values of the error relative to

the optimal result (for instances solved optimally) and relative to the best solution

reached by the exact model (for instances that timed out).

Again, the results indicate a significant difference between the heuristic and the

exact model in terms of computational times. In relatively small size problems (i.e.

7, 10 and 15 jobs), while it takes on average 6.5 minutes for the exact model to reach
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Table 4.7: Optimal Instances

Exact Model Heuristic

Comp. Time (sec) Comp. Time (sec) Percent Error (%)

Jobs OPT Min Avg Max Min Avg Max Min Avg Max

7 20 0.172 47.88 696.9 0.006 0.016 0.104 0.00 0.93 9.48

10 15 1.17 152.9 1548 0.005 0.014 0.089 0.00 3.51 14.61

15 10 1.248 999.3 3666 0.007 0.008 0.010 0.00 2.36 5.43

Table 4.8: Timed-Out Instances

Exact Model Heuristic

Comp. Time (sec) Comp. Time (sec) Percent Error (%)

Jobs TO Min Avg Max Min Avg Max Worst Avg Best

10 5 7204 7500 8040 0.007 0.010 0.019 2.31 1.26 0.52

15 10 7205 8073 8997 0.007 0.017 0.070 3.30 0.18 -2.48

20 20 7202 7750 8818 0.007 0.010 0.016 8.91 -0.57 -4.09

30 20 7201 7678 8176 0.008 0.013 0.021 10.97 -2.47 -11.6

40 20 7206 7720 8389 0.011 0.018 0.027 0.92 -5.18 -11.1

80 20 7211 7533 8360 0.016 0.048 0.136 -2.94 -17.6 -39.7

optimality, the heuristic achieves the same result or near within a fraction of a second.

As the problem size increases, the convergence performance degrades significantly for

the exact model. The average optimality gap stays above 35% for more than 20

jobs with a worst case performance of 90.3% gap. On the other hand, similarly to

the TWT heuristic as the problem size increases the quality of the heuristic solution

shows a relative improvement over the upper bound provided by the exact solution

method; that is, the heuristic solution is on average 5.18% and 17.61% better than the

best solutions obtained by the timed-out exact model for 40 and 80 jobs respectively.

The summary of the relative improvement of the heuristic with respect to the exact
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solution is depicted in Figure 4.10. It is clear from the figure that the effectiveness of

the proposed heuristic becomes more significant as the problem size grows.

Figure 4.10: TWTOT Heuristic average performance vs. exact model

4.5 Conclusions

This chapter tackles the single machine preemptive scheduling problem that aims

to minimize a composite cost function of weighted total tardiness and overtime capac-

ity utilization. The fact that preemption is allowed requires a different methodology

compared to its non-preemptive equivalent reported in the literature. In this setting,

the workload associated with each job can be allocated across regular and overtime

capacities throughout the planning horizon without following strict sequences thanks

to the preemption option. We first present a MIP model that can be used to generate

optimal schedules for relatively small size problems. Later we propose a heuristic

(TWT Heuristic) based on a priority rule for the version of the problem that does
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not consider the overtime capacity option. In this method, the priorities of the jobs

are determined by their weights (cost of tardiness), due dates, and remaining work-

load to complete. The heuristic priority rule was tested against the MIP model both

in terms of computational performance and quality of the solutions. It was shown

that the simple priority rule proposed in this chapter is effective in obtaining efficient

schedules. The priority rule can be easily used for generating quick results for large

size problems.

A holistic approach (TWTOT Heuristic) is developed to tackle the general version

where overtime capacity option is available. The developed method generates a full-

delay schedule that allocate workloads among regular and overtime capacity slots

based on the critical trade-off between the tardiness and overtime costs. The method

is carried out in three stages. In the first stage, the TWT algorithm is applied treating

all overtime capacity as regular and hence, ignoring the overtime costs. Second stage

reduces the overtime usage by generating a full-delay schedule without altering the

tardiness of jobs produced in the first stage (FD Algorithm). Finally, the third stage

improves the total costs by extending the tardiness of jobs in return for overtime

reduction as long as a net gain is realized (TR Algorithm). The computational tests

are repeated for this method and contrasted with the MIP model solutions. The

results show that the proposed method can serve as an efficient tool for obtaining

good quality solutions in significantly shorter time duration.

An intended extension to our work is to study the multi-resource version of this

problem. In this extension, the workloads can be allocated among parallel resources

(or work teams) in a given period. This problem may be studied under various

settings. For example, the scheduling approach can be influenced by whether the
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job allocations are allowed to switch across resources or whether workloads can be

simultaneously split to different processors.



CHAPTER 5

Conventional vs. Advanced Models

5.1 Overview

In this chapter, we introduce two mixed integer programming models using two

different approaches for the problem of finding a preemptive schedule that minimizes

the total cost of tardiness and overtime for a set of jobs with identical processing

times on a single processor. The first approach views the problem mainly from the

perspective of scheduling (the conventional approach). As such, the ensuing model

lends itself to the scheduling paradigm where it aims to identify optimal start and

finish times for all jobs. Here we develop a mixed integer programming model with

binary scheduling variables, which is referred to as the Binary Preemptive Scheduling

(BPS) Model .

The second modeling approach (the advanced model) employs the workload plan-

ning view; here, existing capacity is distributed among jobs where jobs are aggregated

based on their weights as workloads to be fulfilled. In that regard, the approach

borrows from the aggregate planning paradigm; this modeling approach eliminates

binary variables and provides significant improvement in computational performance.

As such, we refer to it as the Aggregate Preemptive Scheduling (APS) Model.

44
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We demonstrate with numerical experimentation and analytical methods that

the advanced modeling approach (APS) is more efficient and computes better lower

bounds than the conventional model; also, we validate such results by using the APS

model in a real industry case where we compute well under four seconds the optimal

overhaul schedule for 82 jobs under four different customers. Overall findings show

that the proposed advanced model is an effective tool for generating optimal or near-

optimal schedules reasonably quick for real life applications.

5.2 The BPS Model for TWTOT

The BPS optimization model aims to find an optimal schedule that minimizes the

total cost of tardiness and overtime for a given set of jobs by determining regular

and overtime work allocations, finish dates, and tardiness. The nomenclature for the

decision variables of the model is given in Table 5.1.

Table 5.1: Decision Variables of the BPS Model

xit Fraction of a job i assigned during regular time at period t

vit Fraction of a job i assigned during overtime at period t

yit Binary variable: 1 if job i finishes on period t, 0 otherwise

fi Finish date for job i

li Number of late periods on job i

The BPS model involves binary, continuous, and discrete decision variables. The

binary variables yit track the periods in which jobs are completed. While the continu-

ous variables determine the amount of allocations of regular capacity xit and overtime

work vit that are necessary to complete the jobs, the discrete variables are needed to

evaluate the finish date fi as well as the number of late periods li. The tardiness cost



46

for job i is captured by wili = wi×max{0, fi−di}. Consequently, we can write down

the mathematical model as follows:

minimize
n∑
i=1

wili + cv

n∑
i=1

T∑
t=1

vit (5.1)

subject to:
T∑
t=ri

yit = 1, ∀i ∈ I, (5.2)

fi =
T∑
t=1

tyit, ∀i ∈ I, (5.3)

li ≥ fi − di, ∀i ∈ I, (5.4)
n∑
i=1

xit ≤ αx, ∀t ∈ {1, 2, . . . , T}, (5.5)

n∑
i=1

vit ≤ αv, ∀t ∈ {1, 2, . . . , T}, (5.6)

T∑
t=ri

(xit + vit) = 1, ∀i ∈ I, (5.7)

ri−1∑
t=1

(xit + vit) = 0, ∀i ∈ I, (5.8)

γ∑
t=ri

(xit + vit) ≥ yiγ, ∀i ∈ I, ∀γ ∈ {ri, . . . , T}, (5.9)

xit, vit ∈ [0, 1] ; fi, li ∈ Z+; yit ∈ {0, 1}. (5.10)

The objective function given in (5.1) minimizes the total cost of tardiness and

overtime capacity. As mentioned above, the weight for job i, wi, maps the unit cost

of tardiness for that job in this representations. The first set of constraints (5.2)

ensure that each job is completed by the end of the planning horizon. The second set

of constraints (5.3) capture the completion times. Given completion times, constraint

in (5.4) sets the tardiness for the jobs. Constraints (5.5) and (5.6) enforce the regular
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and overtime capacity limits. Constraints (5.7) and (5.8 ) allocate all work required

to complete 100% of the work on each job across time periods following its release

date and (5.9) ensures that jobs are not completed before all required work is done.

Solution to the above model provides an optimal preemptive schedule for a given set

of jobs with different release and due dates.

The above model is the product of a conventional modeling approach for the

scheduling problems. As expected, the complexity introduced by the combination of

the binary outcomes adversely affects the computational performance. To improve

the computational efficiency, we employ an approach borrowed from the aggregate

planning and develop an alternative model that eliminates the binary variables.

5.3 The APS Model for TWTOT

The proposed aggregate preemptive scheduling (APS) model eliminates the binary

variables by aggregating all jobs that have the same weights into a single mutually

exclusive set. From a practical perspective, each set may represent the work orders

of a single customer, where customers carry differing significance for the processor.

This is in fact the case in the MRO industry, where the criticality of customers vary

depending on the contract requirements, business volume, and long-run relations.

We let J represent the set of job clusters (or customers) and Mj is the subset of jobs

that are aggregated under cluster j (j ∈ J). We assume that the jobs in set Mj are

sequenced in nondecreasing order of their due dates and denote the order of job i in

Mj with Ωj(i).

As mentioned above, each cluster in set J consists of jobs that have the same

weight. For example, for n = 6 jobs, if a weight vector is given by W = {2, 1, 5, 2, 1, 1}



48

for jobs 1 through 6 respectively then the first job and fourth job belong to the

same cluster. Likewise, second, fifth, and sixth jobs are aggregated into a single

cluster, and third job falls in a separate cluster. Thus, the set of clusters becomes

J = {1, 2, 3} with the new aggregated weight vector W = {1, 2, 5} that maps the

weights of job clusters 1, 2, and 3 respectively. Also suppose that the due-date vector

is d = {6, 7, 6, 8, 7, 9} for jobs 1 to 6 respectively in this above example. Consequently,

M1 = {2, 5, 6}, M2 = {1, 4}, and M3 = {3}.

While the BPS model employs a one-dimensional array to specify the due date for

each job, the APS model requires two-dimensional arrays that specify a job cluster

and the dates on which its jobs are due. We introduce Djt which denotes the total

number of jobs belonging to cluster j that are due at time t. In the above example

D1,7 = 2 since cluster 1 has two jobs, namely jobs 2 and 5, that are due at time 7.

Thus, D1,9 = D2,6 = D2,8 = D3,6 = 1, and Djt = 0 for all other (j, t) pairs.

We modify the decision variables in accord with the proposed approach (Table

5.2). Similar to BPS model, we measure Xjt and Vjt as the fraction of work required

to complete a single job. We introduce two new variables, namely Ejt and Bjt, that

capture the fraction of the completed work before the due date and the incomplete

work past due for cluster j at time t, respectively. These two variables are mapped

to the number of late jobs Ljt.

Table 5.2: Decision Variables of the APS Model

Xjt Fraction of work assigned to cluster j during regular time at period t

Vjt Fraction of work assigned to cluster j during overtime at period t

Ejt Fraction of completed work by deadline for cluster j in period t

Bjt Fraction of unfulfilled work past due for cluster j in period t

Ljt Number of late jobs in period t corresponding to cluster j
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The mathematical model is

minimize
∑
j∈J

T∑
t=1

wjLjt + cv
∑
j∈J

T∑
t=1

Vjt (5.11)

subject to:

Bj1 − Ej1 = Dj1 −Kj1, ∀j ∈ J (5.12)

Bjt − Ejt = Djt +Bjt−1 −Kjt − Ejt−1, ∀j; t ∈ {2, 3, ., T} (5.13)

Kjt = Xjt + Vjt, ∀j ∈ J,∀t ∈ {1, 2, . . . , T} (5.14)∑
j∈J

Xjt ≤ αx, ∀t ∈ {1, 2, . . . , T} (5.15)

∑
j∈J

Vjt ≤ αv, ∀t ∈ {1, 2, . . . , T} (5.16)

rji−1∑
t=1

(Xjt + Vjt) ≤ (Ωj(i)− 1), ∀j ∈ J ; i ∈Mj (5.17)

Ljt ≥ Bjt, ∀j ∈ J ; t ∈ {1, 2, . . . , T} (5.18)

Xjt, Vjt, Bjt, Ijt ∈ R+, ∀j ∈ J ; t ∈ {1, 2, . . . , T} (5.19)

Ljt ∈ Z+, ∀j ∈ J ; t ∈ {1, 2, . . . , T} (5.20)

In the above model, the first two constraints are the work balance equations.

These constraints are needed to capture the fraction of late work for the job clus-

ters. Constraints (5.15) and (5.16) enforce the regular and overtime capacity limits.

Constraint (5.17) ensures that no work is assigned for a job before its release date.

Constraint (5.18) captures the number of late jobs in job clusters on each period.

Similar to the BPS model, solution to the above model provides a feasible optimal

preemptive schedule for a given set of jobs with different release and due dates.

The use of aggregation in the APS model takes advantage of the fact that in

practical applications job schedules contain multiple jobs that belong to a single

customer (class). It does not only eliminate the binary variables but also reduces the
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problem size compared to the BPS model. For example, consider a set of 20 jobs

that must be scheduled over a time horizon T . Suppose also that, of this 20 jobs, 15

belong only to 3 customers while the remaining 5 jobs belong to 5 other customers.

In this case, while the BPS model would generate an array of 20×T decision variables

xit (regular time work assignment), the APS model would only necessitate an array

of 8 × T for decision variable Xjt. It is expected that the elimination of the binary

variable ameliorates the combinatorial nature of the problem by relaxing the solution

space. In what follows we demonstrate the computational efficiency of the proposed

model via analytic methods and extensive numerical analysis.

5.4 Analytical Comparison of Models

In this part of our discussion we continue the comparison of the presented models

this time under a mathematical umbrella. The sections ahead are targeted to examine

three different aspects that provide the foundations to the characteristic performance

of both models; the first section shows that the BPS as well as the APS model are

equivalent models therefore they provide the same solution to the same problem;

the second section takes a look at the solution space of both models and shows

the differences that make the APS model a faster model. Finally the last section we

explore the APS and BPS model structure to explain why the APS model consistently

provides better lower boundaries (i.e smaller optimallity gaps) than the BPS model.

5.4.1 Model Equivalency

From a mathematical perspective we show that the BPS and APS models are

equivalent in terms of the objective functions and constraints and that they both
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solve the same Problem. Our approach is a basic one, and lies on showing that both

models have equivalent objective functions and equivalent constraints that result in

matching optimal solutions.

From evaluating each one of the terms in the objective functions we can see that

the tardiness cost variables (li and Ljt) don not map directly from one model to the

other. While in the BPS model li represents the actual number of tardy periods of

job i, the variable Ljt in the APS model only tracks the individual periods in which

a job i in customer j is actually late.

BPS :
n∑
i=1

wili + cv

n∑
i=1

T∑
t=1

vit

APS :
∑
j∈J

T∑
t=1

wjLjt + cv
∑
j∈J

T∑
t=1

Vjt

For both objective functions to match one-to-one, the tardiness expressions
∑T

t=1 Ljt

and li must be equivalent as shown in expression (5.21).

li =
T∑
t=1

Ljt (5.21)

In order to validate the equivalence in (5.21) the summation of Ljt over t must

amount to the same tardiness represented by li = fi−di in the BPS model; therefore,

T∑
t=1

Ljt = fi − di (5.22)

Since Ljt ≥ Bjt as listed in constraints (5.18) of the APS model, it is clear that

each tardy period Ljt is tied to periods in which there is pending work (Bjt > 0);

furthermore, Bjt is constrained to satisfy the work balance equation Bjt − Ejt =
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Djt + Bjt−1 −Xjt − Vjt − Ejt−1 where the variables Ejt cannot be greater than zero

on periods t where Bjt ≥ 0 and Ejt cannot be greater than zero on periods t ≥

argmaxt∈{1,2,...T}(Djt). Being the precise period when a job is due td represented by:

td = argmaxt∈{1,2,...T}(Djt) (5.23)

and the value of B when the job is due Bjtd is

Bjtd = Djtd − (Xjtd + Vjtd + Ejtd−1) (5.24)

Where Bjtd ∈ [0, Djtd ] and Xjtd , Vjtd ∈ [0, Djtd ].

In light of the above premises (expressions 5.23, 5.24) we can express the total

tardiness of a job i in j as

T∑
t=1

Ljt + td − td =
T∑
t=1

dBjte+ td − td (5.25)

Where on the left side
∑T

t=1 Ljt + td is equivalent to the finish date which we

label as tf and on the right side can be broken down into the summation of B values

before the due period (t ≤ td − 1), between the due period and the finish period

(td ≤ t ≤ tf − 1), and after the finish period (t ≥ tf )

T∑
t=1

Bjt =

td−1∑
t=1

Bjt +

tf−1∑
t=td

Bjt +
T∑

t=tf

Bjt (5.26)

Here the first and last term on the right side are equivalent to zero and the middle

term represents the equivalent non-integer expression for tardiness where
∑tf−1

t=td
Bjt+

td represents the non-integer expression for the finish date, and showing that the

amount of tardiness is directly equivalent from one model to another as in (5.27)
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li =

tf−1∑
t=td

dBjte+ td − td (5.27)

Further inspection of the objective functions in both models reveals that the sec-

ond terms representing the overtime cost allocation have a full direct correspondence

between the models; however, outside of the objective function the regular time and

overtime work allocation variables (xit, Xjt, vit, and Vjt) do not map directly from one

model to the other; this is, the value of an xit in the BPS model does not necessarily

corresponds to the value of Xjt in the APS model due to the aggregation of jobs i

into the clusters j - similarly for vit and Vjt; however, this technical detail does not

interfere with the correspondence of the work allocation constraints (5.5, 5.6, and

5.15, 5.16) since in the binary model the sum of different work allocations of overtime

capacity vit over the same period t is directly equivalent to the sum of overtime work

allocated Vjt over the same period. Similarly the total regular time work allocation

over a period t corresponds directly to the total regular time work allocated Xjt over

t. Using this correspondence the following constraints can be confirmed to be equal:

∀t :
n∑
i=1

xit =
∑
j∈J

Xjt

∀t :
n∑
i=1

vit =
∑
j∈J

Vjt

In terms of preventing work allocations before the release date, constraints (5.8)

and (5.17) perform an equivalent function in the BPS and APS models respectively;

in the BPS model (5.8) explicitly guarantees that no work allocations are done before

the release dates ri while in the APS model constraint (5.17) tracks each job i in
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cluster j not to violate the release date by making sure that the total amount of work

performed before such a job corresponds to the job order (Ωj(i)− 1); this is:

rji−1∑
t=1

(Xjt + Vjt) ≤ (Ωj(i)− 1) ∀j ∈ J ; i ∈Mj (5.28)

Thus far we have shown how the BPS and APS models are equivalent in terms

of the work allocation and objective functions; however, the different modeling ap-

proaches used imply that the arrangements of constraints do not necessarily map

one-to-one across models. Such is the case of the correspondence between the work

balance equations in the APS model and the following constraint (5.9) in the BPS

model:

γ∑
t=ri

(xit + vit) ≥ yiγ, ∀i ∈ I, ∀γ ∈ {ri, . . . , T} (5.29)

As it is the case, each model resorts to a different approach to guarantee that the

work allocated does not violate the allocation limits set by the release and finish dates.

In the case of the APS model the work balance equations automatically guarantee

that the allocated work fulfills all the jobs demand by the time the job is finished. In

the case of the BPS model, due to the lack of work balance equations and the fact

that the variables yit, xit, and vit are totally independent, constraint (5.29) above

is required to serve as coupling between the work performed tracked by xit, and vit

and the finish date yit. Mathematically, constraint (5.29) represents a breakdown of

constraint (5.7) where γ controls the different subsets of periods in between [ri, T ]

that must be satisfied. Given that γ ∈ {ri, ri + 1, ri + 2, . . . , T} there is a γ such that

γ = tf and yitf = 1. In this particular period, constraints (5.29, must be satisfied as

follows
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tf∑
t=ri

(xit + vit) ≥ 1

T∑
t=ri

(xit + vit) = 1

forcing constraint 5.29 to bind the binary value of 1. and the interval complements∑ri−1
t=1 (xit + vit) and

∑T
t=tf+1(xit + vit) must be equal to zero therefore performing an

analogous function to work balance equations in the APS model.

This analysis shows that both models solve the same problem not only by having

equivalent objective functions but also by having sets of constraints that define an

equivalent solution space across both models.

5.4.2 Solution Space and Model Performance

In this section we use the solution space as an indicator of the computational

burden in each model; in particular, we show why the APS model possesses a lower

computational burden than the BPS model which results in faster solutions. We

initiate this discussion using the BPS model to computing the size of its solution

space; this is, the number of possible combinations of independent variables required

to generate a single feasible solution. In this particular case a single feasible solution

with a cost

ψ =
n∑
i=1

wili + cv

n∑
i=1

T∑
t=1

vit (5.30)

Being T the total number of periods in the planning horizon and n the total

number of jobs in the set of jobs I; the model must compute the lateness for each one
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of the n jobs (i.e. li : i ∈ {1, 2, . . . , n} ) where li = fi − di and fi =
∑T

t=1 tyit subject

to
∑T

t=1 yit = 1,∀i ∈ I. Considering this, to produce a single feasible value for li

the independent binary variable yit must try from a combination of binary options

in the elements of a vector t̂ =< a1, a2, . . . , aT > where each element at ∈ {0, 1} for

t ∈ {1, 2, . . . , T}. Given T binary digits in each job there are only T feasible options

for yit to take the value of 1 only once within t̂ ; for an instance, if T = 3 there

will only be three possible options for yit to take the value of 1. this is illustrated as

follows in figure 5.1

Figure 5.1: Sample feasible and unfeasible options for yit

Here the total number of possible non-zero value options ST (feasible and unfea-

sible) for an independent variable like yit on a single job is:
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ST = T +
T !

2!(T − 2)!
+

T !

3!(T − 3)!
+ · · ·+ T !

T !(T − T )!

ST =
T∑
k=1

T !

k!(T − k)!

ST =
T∑
k=1

(
T

k

)
In addition to the number of options ST for yit, variables xit, vit are also inde-

pendent, and there are also ST possible non-zero value options for each one of these.

Considering that for a single feasible solution the solution space created by xit, yit, vit

is determined by ST number of options we have that for a single job the solution

sub-space in the BPS model SSjob is given by :

SSjob = ST × ST × ST = (ST )3 (5.31)

and for a group of n jobs the BPS model solution space SSBPS is:

SSBPS = n(ST )3 (5.32)

Analogously, from the variables in the APS model it can be noted that only Xjt, Vjt

are independent. Following the same logic from the binary model the number of non-

zero value options for Xjt and Vjt is also given by ST , and since there are only two

independent variables in the APS model we can conclude that the total solution space

for the APS model is given by SSAPS
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SSAPS = n(ST )2 (5.33)

which indicates that the solution space for the BPS model is ST times larger than

the one for the APS; furthermore, we can conclude that since the variables Xjt and

Vjt map directly to the variables xit and vit in the BPS model, the APS solution space

is contained in the BPS solution space:

SSAPS ⊂ SSBPS � (5.34)

5.4.3 Lower Boundaries and Model Accuracy

The expected difference in the performance between the models is primarily the

result of each models ability to produce a lower bound. In this section we show that

the APS model can produce equal or better lower bounds than the BPS model. We

start the discussion by defining the lower bound for each model using the definition

of an integer relaxation; for this we use LBBPS, and LBAPS to designate the BPS

and APS model lower bounds respectively with relaxed variables ŷ and L̂

LBBPS = h(ŷ) : ŷ ∈ (0, 1)

LBAPS = g(L̂) : L̂ ∈ R+

and their corresponding objective functions
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LBBPS =
n∑
i=1

wil̂i + cv

n∑
i=1

T∑
t=1

vit where l̂i = f(ŷ)

LBAPS =
∑
j∈J

T∑
t=1

wjL̂jt + cv
∑
j∈J

T∑
t=1

Vjt

We can see that the second terms on both expressions are equivalent to each other

and do not depend on the relaxation of any discrete variable; therefore, any difference

between the LBBPS, and LBAPS does not result from any of these terms and can be

ignored in our analysis. Both of the model definitions show that the effect of a linear

relaxation would be determined by the relaxation of yit in the case of the BPS model

and by Ljt in the case of the APS model. In the particular case of the BPS model,

the relaxed variables impact the objective function as follows:

ŷit = yit : yit ∈ (0, 1) (5.35)

f̂i =
∑T

t=1 tŷit (5.36)

l̂i =
∑T

t=1 tŷit − di (5.37)

Resulting in the lower bound below

LBBPS =
n∑
i=1

wi(
T∑
t=1

tŷit − di) (5.38)

For the APS model the relaxation of the integer variable Ljt implies that the

lateness on an individual period needs to bind the variable Bjt as follows

L̂jt = Bjt ∀j ∈ J, and ∀ t ∈ {1, 2, . . . , T}
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Resulting in the following bound

LBAPS =
∑
j∈J

T∑
t=1

wjBjt

which can also be expressed in terms of the finish date using the due date dji as

follows

LBAPS =
∑
j∈J

wj

 T∑
t=1

Bjt +
∑
i∈Mj

dji −
∑
i∈Mj

dji

 (5.39)

From evaluation of the lower boundaries from each model (Expressions 5.38, and

5.39) it can be seen that their different values are determined by how the relaxed finish

dates are computed in each model (fAPS, fBPS); therefore, showing that the relaxed

finish date for any job in the APS model is larger or equal than the corresponding

relaxed finish date calculated by the BPS model suffices to show that LBBPS ≤

LBAPS. To this end we focus our discussion on the expressions that determine the

value of the relaxed finish dates for a single given job i, and since clustering is not

relevant in the context of an individual job we present the expressions for the relaxed

finish dates without regard to the j indices representing each cluster.

fBPS =
T∑
t=1

tŷit

fAPS =
T∑
t=1

Bit + di
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Before breaking down each one of the relaxed finish dates above, we define the

context and notation that will be used through the remaining of this section. In terms

of the context or the situation used to frame our reasoning, we know that for any

given a job there are three possible schedule scenarios depending on the relationship

between the start si and finish dates fi with respect to the due date di; listed as follows:

Scenario 1: The job is early si < fi ≤ di

Scenario 2: The job is partially late si ≤ di < fi

Scenario 3: The job is completely late di < si < fi

For the sake of simplicity we start by showing the difference between the finish

dates above using a single job argument under Scenario 3 where preemption is ig-

nored, and then conclude our discussion by showing that any of the other scenarios

with or without preemption will produce a larger difference between the relaxed fin-

ish dates computed by each model. We use the third scenario as the context of our

mathematical argument as this scenario represents the schedule conditions in which

the relaxed finish dates (fAPS, fBPS) are forced to be in close proximity to each other

(i.e they tend to the limiting case fAPS = fBPS).

Let us start the discussion focusing on the BPS model. When a single job is

started under the third scenario in the BPS model, full allocation takes place in every

period t so as to complete the total amount work to finish each job pw as soon as

possible (in this particular case pw = 1 for all jobs); this means that the regular time

work allocation is xit = αx and the relaxed allocation of ŷit comply with constraint
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(5.9) in the model, and the minimization objective in the model forces the value of

ŷit to bind the allocated amounts of regular time work as follows:

ŷiγ =

γ∑
t=ri

xit ∀γ ∈ {ri, . . . , T} (5.40)

The allocation of values for ŷit continues in every period t until the model con-

straint (5.2) is satisfied and reaches the value of 1. This process of allocation is

illustrated in figure 5.2

Figure 5.2: Allocation of values for ŷit. (pw = 1)

The finish date produced by the BPS model under relaxed conditions can be

summarized in expression 5.41.

fBPS =

(
αx
pw

)
s+ 2

(
αx
pw

)
(s+ 1) + · · ·+ nk

(
αx
pw

)
(s+ nk − 1)︸ ︷︷ ︸

A

+no

(
αx
pw

)
(s+ nk)︸ ︷︷ ︸

B

(5.41)
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The braces labeled (A) and (B) indicate two distinctive groups of expressions

in fBPS. On one side, expression (A) represents all the terms whose coefficients fit

the characteristics of an arithmetic progression ({an}nk

n=1 = {1, 2, 3, . . . , nk−1, nk}),

while expression (B) indicates the last term in fBPS for which no does not necessarily

follows the integrality requirements of the arithmetic progression formed by the rest

of the terms in A. This is, no ≤ nk + 1. Also expression (B) can be interpreted as

the amount necessary (α
′
x) for ŷit to satisfy the constraint that guarantees that each

job is finished
∑T

t=ri
ŷit = 1 ; however since this constraint needs to be satisfied the

value of no is given by the sum of the elements in the arithmetic progression formed

by the s-terms present in equation (5.41); this is

T∑
t=ri

ŷit =

(
αx
pw

)
n(n+ 1)

2
(5.42)

where in order to satisfy BPS constraint (5.2) the expression in (5.42) must be

equal to 1 as in (5.43)

(
αx
pw

)
no(no + 1)

2
= 1 (5.43)

Solving for no produces the value of no that satisfies constraint (5.2) where dnoe =

nk + 1

no =

√(
αx

pw

)2
+ 8

(
αx

pw

)
−
(
αx

pw

)
2
(
αx

pw

) (5.44)

Using expression (5.43) and rewriting it in terms of nk and no we obtain

(
αx
pw

)
no +

(
αx
pw

) nk∑
n=1

n = 1 (5.45)
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Knowing the coefficients in (A) that follow the arithmetic progression {an}nk

n=1

it can be condensed into their corresponding partial series
∑nk

n=1 an =
∑nk

n=1 n =

nk(nk + 1)/2 we can use equation (5.45) to solve for
(
αx

pw

)
no and obtain a new

expression for (B) in fBPS in terms of nk

B =

[
1−

(
αx
pw

) nk∑
n=1

n

]
(s+ nk) (5.46)

Reworking the terms in the group of expressions (A) by factoring
(
αx

pw

)
and using

the series formed by the progression of coefficients we have:

A =

(
αx
pw

)
[s+ 2(s+ 1) + 3(s+ 2) + · · ·+ nk(s+ nk − 1)] (5.47)

Then expanding and regrouping the elements alike in the progression of coefficients

A =

(
αx
pw

)s+ 2s+ 3s+ · · ·+ nks︸ ︷︷ ︸
C

+ 1(0) + 2(1) + 3(2) + · · ·+ nk(nk − 1)︸ ︷︷ ︸
D


(5.48)

where the groups of terms (C ) and (D) can be condensed and expressed as

A =

(
αx
pw

)s
nk∑
n=1

n︸ ︷︷ ︸
C

+

nk∑
n=1

n(n− 1)︸ ︷︷ ︸
D

 (5.49)

here summation (D) can be expanded into
∑nk

n=1 n
2 −

∑nk

n=1 n resulting into

A =

(
αx
pw

)[
s

nk∑
n=1

n+

nk∑
n=1

n2 −
nk∑
n=1

n

]
(5.50)

The term
∑nk

n=1 n
2 can be expressed in terms of its formula nk(nk + 1)(2nk + 1)/6

which in turn can be rewritten in terms of
∑nk

n=1 n as
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A =

(
αx
pw

)[
s

nk∑
n=1

n+

(
(2nk + 1)

3

) nk∑
n=1

n−
nk∑
n=1

n

]
(5.51)

factoring
∑nk

n=1 n we get

A =

(
αx
pw

nk∑
n=1

n

)[
s+

(
2nk + 1

3

)
− 1

]
(5.52)

Using the expanded expressions for (A) and(B) to work out an expression for

fBPS = A+B we have

A = s
(
αx

pw

)∑nk

n=1 n+
(
αx

pw

)∑nk

n=1 n
(
2nk+1

3

)
−
(
αx

pw

)∑nk

n=1 n (5.53)

B = −s
(
αx

pw

)∑nk

n=1 n+ s+ nk − nk
(
αx

pw

)∑nk

n=1 n (5.54)

Notice that the first terms in expressions (A) and (B) cancel each other in fBPS =

A+B and the coefficients
(
αx

pw

)∑nk

n=1 n can be factored to produce a more compact

expression for fBPS

fBPS = s+ nk +

(
αx
pw

nk∑
n=1

n

)[(
2nk + 1

3

)
− 1− nk

]
(5.55)

after working on the expressions within the brackets in (5.55) we obtain

fBPS = s+ nk −

(
αx
pw

nk∑
n=1

n

)[
nk + 2

3

]
(5.56)

which can be expressed in terms of dnoe by using the equation dnoe = nk + 1

fBPS = s− 1 + dnoe −

αx
pw

dnoe−1∑
n=1

n

(dnoe+ 1

3

)
(5.57)

Using the formula to calculate the progression of n numbers applied to dnoe − 1

we convert the summation term in (5.57) to produce
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fBPS = s− 1 + dnoe −
(
αx
pw

)(
dnoe(dnoe − 1)

2

)(
dnoe+ 1

3

)
(5.58)

which after grouping the expressions within the last two parenthesis in (5.58)

produce a final expression for fBIN

fBPS = s− 1 + dnoe −
(
αx
pw

)(
dnoe3 − dnoe

6

)
(5.59)

With a compact expression for fBPS now we move to the APS model; in this case,

when a single job is started under the third scenario, again full allocation takes place

in every period so as to complete the total work pw as soon as possible; therefore, the

regular time work allocation is xit = αx and the relaxed allocation of L̂it, as we showed

earlier becomes Bit. Under the third scenario the required pending work Bit remains

constant (i.e. equal to 1) after the due date until regular time work is allocated xit,

and the amount of pending work decreases until the job is finished. This process is

illustrated in figure 5.3.

Analyzing the expression fAPS =
∑T

t=1Bit+di we see that the term
∑T

t=1Bit in a

late job is composed of a constant region and a variable (decreasing) region denoted

by the superscripts Con. and V ar. respectively; this is
∑T

t=1Bit =
∑s−1

t=1 B
Con.
it +∑T

t=sB
V ar.
it . The constant part is the part from periods t = [d, s− 1] which amounts

for
∑s−1

t=1 B
Con.
it = 1× (si − di) while the variable part is in periods t = [s, f − 1]; this

leads to a new expression for fAPS in terms of s

fAPS =
T∑
t=1

BV ar.
it + si (5.60)

where
∑T

t=1B
V ar.
it can be expanded as follows
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Figure 5.3: Allocation of values for Bit. (pw = 1)

fAPS = s+

[
1− 1

(
αx
pw

)]
+

[
1− 2

(
αx
pw

)]
+ · · ·+

[
1−

(⌈
pw
αx

⌉
− 1

)(
αx
pw

)]
(5.61)

where dpw
αx
e− 1 represents the number of periods from t = [s, f − 1] corresponding

to
∑T

t=1B
V ar.
it . Regrouping similar terms and applying the summation formula to the

arithmetic progression formed by the coefficients {1, 2, 3, . . . ,
(
dpw
αx
e − 1

)
} we obtain

fAPS = s+

(⌈
pw
αx

⌉
− 1

)
−
(
αx
pw

) (⌈pw
αx

⌉
− 1

)⌈
pw
αx

⌉
2

(5.62)

which can be rearranged as
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fAPS = (s− 1) +

⌈
pw
αx

⌉
−
(
αx
pw

)
(⌈

pw
αx

⌉2
−
⌈
pw
αx

⌉)
2

(5.63)

Now with expressions for the relaxed finish dates on each model fAPS and fBPS

we can evaluate if the difference fAPS − fBPS ≥ 0 is satisfied in order to prove that

the lower bound generated by the APS model is generally larger (better) than the

one generated by the BPS model. To this end we evaluate the difference and subtract

the finish date on (5.59) from (5.63)

fAPS − fBPS =

⌈
pw
αx

⌉
−
(
αx
pw

)
(⌈

pw
αx

⌉2
−
⌈
pw
αx

⌉)
2

− dnoe+

(
αx
pw

)(
dnoe3 − dnoe

6

)
(5.64)

where dnoe can be expressed in terms of
(
pw
αx

)
using equation (5.44); for this we

introduce a new variable Z to represent Z =
(
pw
αx

)
such that Z ≥ 1 in order to restrict

the relationship between pw and αx and not allow the processing of jobs in less than

a single time period.

dnoe =


√(

1
Z

)2
+ 8

(
1
Z

)
−
(
1
Z

)
2
(
1
Z

)
 (5.65)

rearranging equation (5.65) we obtain

dnoe =


√

1 + 8Z − 1

2

 (5.66)

rewriting fAPS − fBPS in terms of dZe and dnoe = f(Z) we have
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fAPS−fBPS = dZe−dnoe+
(

1

Z

)(
dnoe3 − dnoe

6

)
−
(

1

Z

)(
(dZe2 − dZe)

2

)
(5.67)

Analysis of the terms dZe and dnoe show that dZe = dnoe ∀Z ∈ [0, 2]; we use this

property to restrict the analysis of fAPS−fBPS to the range Z ∈ [0, 2] by substituting

dnoe for dZe

fAPS − fBPS = dZe − dZe+

(
1

Z

)(
dZe3 − dZe

6

)
−
(

1

Z

)(
(dZe2 − dZe)

2

)
(5.68)

rearranging equation (5.68) we obtain

fAPS − fBPS =

(
1

Z

)(
dZe3 − 3dZe2 + 2dZe

6

)
(5.69)

From which the coefficient
(
1
Z

)
> 0 and the polynomial dZe3 − 3dZe2 + 2dZe has

roots {0, 1, 2}, is positive for Z > 2, and displays upwards concavity for values Z ≥ 1;

al this indicating that fAPS − fBPS = 0 ∀Z ∈ (1, 2] and fAPS − fBPS ≥ 0 ∀Z ≥ 2.

This shows that the lower boundary for the APS model is equal or greater than the

one for the BPS model. �

Keep in mind that up to this point we showed that the lower boundary for the APS

model is equal or greater than the one for the BPS model, but we have done so only

under the context of Scenario 3 and under no preemption; to complete our discussion

on the lower boundaries and extend the results obtained so far to cover Scenarios 1

and 2 under preemption we present the following mathematical arguments.

Proposition 4 Under preemtion, the relaxed finish dates of a given job (fAPS and

fBPS) maintain the relationship fAPS − fBPS ≥ 0.
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Proof: From the definition of preemtion we know that any preempted job i will

be forced to increase the number of periods by δi between the start si and finish dates

fi; therefore introducing a delay equivalent to δi on the finish dates fAPS and fBPS

does not change the relationship between the relaxed finish dates as follows where

the value of δi is not relevant to the inequality fAPS + δi ≥ fBPS + δi .

Proposition 5 the relationship fAPS − fBPS ≥ 0 is also maintained when the due

date di is located between the start si and finish dates fi (Scenario 2) and when the

due date di is in a period equal or later than the finish date fi (Scenario 1).

Proof: From the expressions representing fAPS and fBPS

fBPS =
T∑
t=1

tŷit

fAPS =
T∑
t=1

Bit + di

we can see that the relaxed finish date fAPS cannot take values smaller than di while

the value of fAPS is independent of the due date. Under the conditions present in

Scenario 2 (si ≤ di < fi) the relaxed finish date on the APS model will result on

a value equal or larger than di while fBPS remains unchanged therefore maintaining

the relationship fAPS − fBPS ≥ 0 and biasing it towards producing values of fAPS

relatively larger than fBPS; furthermore, since fAPS cannot take values smaller than

di under the conditions present in scenario 1 (si < fi ≤ di) the value of fAPS will

always be larger than fBPS therefore producing a consistent inequality between the

relaxed finish dates (fAPS − fBPS > 0).
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5.5 Computational Experiments

We design and perform numerical analysis so as to evaluate the computational

performance of the BPS and the APS models. We aim to determine the computa-

tional performance of both models with respect to the number of jobs, the model

parameters, and the job aggregation (clustering) level. Our goal is to demonstrate

that the proposed APS model significantly improves the computational performance.

To this end we perform three sets of numerical experiments that test both models

under different conditions using the number of optimal solutions, computational time

and optimality gap as reference measures. In our first numerical experiment, we in-

clude in our analysis a varying number of jobs and the aggregation levels. Specifically,

we consider five problem sizes with 10, 20, 40, 80, and 160 jobs and test them under

different levels of aggregation classified into four groups. In the first group, all jobs are

assigned unequal weights and as such aggregation is not possible; in this group both

models are tested side by side; In the second group, the same instances from group

1 are used but assigned different weights to produce a different aggregation - in this

case at most two jobs can have the same weights and as such, each job cluster (e.g.,

customer) has at most two members. Similarly, in groups 3 and 4, the same instances

are used under different aggregation to make sure each job cluster includes 3 to 5

and 5 to 8 jobs respectively. Since the same instances used in group 1 are adapted to

generate groups 2 through 4, and since the BPS model does not use aggregation, the

BPS model is not run again in groups 2 through 4 to avoid redundancy in the data

reported. Overall the first set of experiments involve 20 different scenarios.

Following the first numerical tests, we proceed with numerical experiments focused

only on the APS model. in particular, we use numerical tests to explore how the
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performance of the APS model changes depending on how the release and due dates

are arranged in the schedule; with this aim we produced four scenarios in which we

test the combinations between two levels of release dates (i.e. Condensed Release

Dates and Sparse Release Dates) and two levels of due dates determined by the slack

added to the jobs (i.e. Constant Slack and Proportional Slack). The four resulting

scenarios are tested on the APS model under no aggregation for 20 and 40 jobs. The

decision to evaluate the APS model only under the arrangement of release and due

dates, on one side, follows observations made by [33] and [24] on the proximity and

arrangement of the release and due dates on the complexity of the instance, and on

the other, is mostly the result of multiple observations made over extensive testing

of the effect of different schedule parameters on the performance of the models; The

effect of other parameters like αx, and T are implicitly tested under the different job

levels, and other parameters like αv and wi do not demand additional testing as their

relationship to the complexity of the instances is more intuitively understood.

Finally, the third set of numerical tests focuses on the special case of the gen-

eralized problem 1|pmtn, ri, pi = p|
∑
i

wili + cv
∑
i,t

vit where the overtime capacity is

eliminated (i.e αv = 0 and the general problem reduces to the TWT problem. In this

particular set of tests we use four problem sizes with 10, 20, 30, and 40 jobs and test

them under only two different levels of aggregation corresponding to groups 1 and

group 4 on the first set of numerical tests. Again, we aim to evaluate the performance

of both models under such particular conditions. For all the numerical experiments

the lower bound from the APS model is used as reference to produce the optimal-

ity gaps in both models; this is necessary due to the tendency of the BPS model to

generate artificially small lower boundaries even when the reached feasible solution
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is actually close to the optimal. This is discussed in more detail in the analytical

comparison of the models Section 5.4.3.

To produce the three phases of numerical experiments described above we use

a set of expressions to generate all the parameters necessary to create the problem

instances. To be consistent with the existing literature, we borrowed the expressions

from earlier research [20] and modified them to our context. Main random variables in

the system are generated by a uniform distribution in order to enable diversity across

all instances. To avoid trivial cases, the number of jobs n and the maximum allowed

regular time capacity αx are preset and incorporated as input parameters in the

problem instance generation process. Table 5.3 lists the specific parameter generating

expressions used in our analysis. For each scenario combination, 20 instances were

generated. As a result, a total of 400 instances are obtained to test the comparative

performance of the APS model vs. the BPS (first numerical experiment) and a total of

80 instances to evaluate the performance of the APS model under different release and

due date combinations (second numerical experiment). All instances generated for the

BPS and APS models were solved using AMPL and CPLEX 12.6. All computations

were performed on a PC with an I7-3770 Processor with 3.40 GHz and 16 GB of

RAM.

Due to computational complexity, not all the instances are solvable in reasonable

amounts of time; therefore, we set a fixed time limit for the execution of both models.

Specifically, the computational runs are set to initiate a time-out sequence at 3600

seconds (1 hour). Although a time limit is present, we observe that the amount of

time to produce a feasible integer solution for the instances that time-out can vary
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depending on the model used and the size of the instance. We compare the optimality

gap and convergence between the two models for all problem instances.

Table 5.3: Parameter Generating Expressions

Model Parameters Expressions

Time horizon - T rlast + round(n/αx)

Release date - ri UNIF(1, round(n/2)) Condensed Release

UNIF(1, 2n) Sparse Release

Due date - di ri + d1/αxe+UNIF(0, a2) Constant Slack

ri + d1/αxe+UNIF(a2, a3) Prop. Slack

Tardiness penalty - wi UNIF(1, a1) 1 job/customer

UNIF(1, da1/2e) 2 Jobs/customer

UNIF(1, da1/4e) 3-4 Jobs/customer

UNIF(1, da1/8e) 5-8 Jobs/customer

Capacity - αx UNIF(0.1, 0.9)

Cost of overtime - cv UNIF(2a4, 6a4)

Overtime capacity - αv UNIF(0.1, αx/3) if αx ≥ 0.333 else
UNIF(0.1, αx)

a1 = n, a2 = 2, a3 = d2/αxe, a4 = w/αx

5.5.1 Performance Testing: The BPS vs. APS model

We investigate the results of all all 400 instances; 100 of them tested under both

models, and 300 tested only under the APS model for a total of 500 runs. In our

numerical analysis we tracked the number of instances that were solved optimally

by each model within the given time frame. The BPS model was able to find the

optimal solution in 45% of the instances (45 of the 100 instances) while the APS

model produced optimal solutions in 72% of the instances with no aggregation (72

instances out of 100) and 75% over all the instances including aggregation and no

aggregation . Figure 5.4 illustrates these observations in more detail. As expected,
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in both cases, the number of optimally solved instances decreases as the problem size

(i.e., the number of jobs) increases.

Figure 5.4: Count of optimal and timed-out instances for Group 1 (No aggregation)

While the APS model reported optimal solutions for all instances of the small-

est problem size (10 jobs), one of the instances for this problem size did not reach

optimality with the BPS model within the preset time limit. The gap between two

models in this respect further increases with 20 and more jobs; this is, on average the

APS model produced seven more optimal solutions than the BPS model on instances

equal or larger than 20 jobs indicating a superior computational performance.

Looking at the impact of aggregation on the performance of the APS model (tables

5.6 through 5.8) we see, as expected, that the number of instances solved optimally

gradually increases as there is more aggregation, and the average computational time

is reduced. More specifically, the APS model went from 72% of optimally solved

instances under no aggregation to 80% of optimally solved instances when aggregation

is present at a level of 5 to 8 jobs per customer (Group 4).
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The computational time performances and optimality gaps between both models

also show significant differences. Measures of computational time performance repre-

sented by the minimum, average, and maximum values observed across all problem

sizes show that the APS model converges to an optimal or integer feasible solution

in a lower average time. Under no aggregation, the average computational time of

the APS model is between 49% to 99% faster than the BPS model, and this time is

further reduced as aggregation is increased to the APS model. The average computa-

tional time improves by an average of 40.1% as aggregation is increased to 5 to 8 jobs

per customer. Similarly the optimality gap is represented via the minimum, average

and maximum values. The optimality gap results indicate a significant difference in

computational time performances where the APS model significantly dominates the

BPS model in all instances. We observe that under no aggregation even with rela-

tively small size problems (i.e., 10 jobs), while it takes minutes for the BPS model to

reach at optimality, the APS achieves the same result within a fraction of a second

on average. As the problem size increases, the convergence performance degrades

significantly for the BPS model where the average optimality gap grows up to 19.65%

for 160 jobs with a worst case performance of 55.1% gap. On the other hand, the

largest observed optimality gap with the APS model is well below 3% and with a

worst case performance of 6.23% on one of the instances with no aggregation for 160

jobs. Figure 5.5 summarizes these observations for all job levels. As expected, the

performance of the APS model improves in terms of optimality gap as the number

of job clusters decreases (i.e. as the number of jobs per cluster increases); this is

reflected in the last group where 5 to 8 jobs per customer are possible (Table 5.8),

and where the APS improved the optimality gaps with respect to the first group by at
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least 14.23%. A more detailed description of the specific results for each aggregation

group and models is summarized in tables 5.4 through 5.8.

Figure 5.5: Optimality gap by problem size in Group 1 (No aggregation)

Table 5.4: Group 1 - BPS No aggregation (100 instances)

BPS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 1 0.03 598.4 3606 0.00 0.00 0.01

20 7 0.27 1286 3828 0.00 0.74 4.20

40 12 1.93 2275 3949 0.00 3.01 12.2

80 16 9.91 2999 3651 0.00 5.13 27.5

160 19 852.1 8173 43619 0.00 19.6 55.1

5.5.2 Special Case: No Overtime Option

In this section, we investigate the performance of the BPS and the APS models for

the special case where the overtime capacity is zero. This special case of the problem
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Table 5.5: Group 1 - APS No aggregation (100 instances)

APS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 0 0.030 0.614 3.259 0.00 0.00 0.01

20 2 0.078 373.5 3644 0.00 0.12 1.32

40 5 0.390 1145 4240 0.00 0.40 2.67

80 8 4.774 1623 4341 0.00 0.95 5.09

160 13 16.62 2515 4164 0.00 2.60 6.23

Table 5.6: Group 2 - 2 Jobs per Customer (100 instances)

APS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 0 0.031 0.395 1.232 0.00 0.00 0.01

20 2 0.063 363.8 3639 0.00 0.11 1.42

40 4 0.280 784.3 4076 0.00 0.37 2.46

80 8 2.527 1575 4384 0.00 0.86 6.04

160 14 11.46 2694 3961 0.00 3.24 7.79

is denoted by 1|pmtn, ri, pi = p|
∑
i

wili. Although availability of overtime capacity is

in general consistent with the real life applications, there may be cases where such

option does not exist. Moreover, from the research point of view, we are interested

in examining whether the lack of overtime capacity affects the computational perfor-

mance for the scheduling models under study. To this end we reduce the testing to

only 15 instances per scenario, four job levels (10, 20, 30 and 40 jobs), and perform

the side by side testing along two aggregation groups used in section 5.5.1 (Group 1 -

No aggregation, and Group 2 - 5 to 8 jobs per cluster). In this case the same instances
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Table 5.7: Group 3 - 3 to 4 Jobs per Customer (100 instances)

APS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 0 0.031 0.215 0.686 0.00 0.00 0.01

20 2 0.047 380.6 3988 0.00 0.17 2.17

40 4 0.249 753.8 3875 0.00 0.30 1.94

80 7 2.246 1410 4204 0.00 1.02 5.28

160 12 22.18 2401 3883 0.00 2.63 6.24

Table 5.8: Group 4 - 5 to 8 Jobs per Customer (100 instances)

APS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 0 0.032 0.410 2.465 0.00 0.00 0.01

20 0 0.031 35.44 483.6 0.00 0.00 0.01

40 4 0.187 731.7 3603 0.00 0.17 1.03

80 6 0.375 1303 3967 0.00 0.43 4.60

160 10 5.160 1890 4065 0.00 2.23 6.64

that are used to test the APS model in aggregation Group 2 are also solved under

the BPS model to provide a side-by-side view of the performance of both models.

In our analysis, the overtime capacity limit is set to zero, namely, setting αv = 0.

The results of these runs are summarized in Tables 5.9 through 5.12. From the 120

instances tested, the BPS model led to optimal solutions in 24 instances (20%) within

the 1-hour time frame while the APS model managed to solve 82 out of the 120 (68%)

instances optimally. In terms of the optimality gap, the APS model performed signif-

icantly better than the BPS, similar to the general case. While the relative gap did

not exceed 2.44% in the worst case for the APS model, the convergence performance
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for the BPS model, again, degrades significantly as the problem size increases. Our

results do not indicate any considerable difference in computational performance be-

tween the special case where overtime capacity is not available and the general case

that incorporates any positive overtime capacity. Overall, the APS model provides

significant gains in computational performance for the total weighted tardiness single

machine preemptive scheduling problem with release dates and identical processing

times.

Table 5.9: Group 1 - BPS No aggregation (60 instances)

BPS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 1 0.094 471.7 3606 0.00 0.00 0.00

20 15 3605 4295 5007 0.00 1.55 6.61

30 15 3602 3970 5043 1.94 3.98 7.36

40 15 3600 3805 4191 3.21 5.33 7.37

Table 5.10: Group 1 - APS No aggregation (60 instances)

APS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 0 0.043 2.500 11.82 0.00 0.00 0.00

20 4 11.08 1424 3787 0.00 0.63 2.44

30 14 4.071 3539 4105 0.00 1.52 2.30

40 15 3603 3876 4185 0.68 1.57 2.08

5.5.3 Extended Testing for the APS Model

Numerical experiments focused on the APS model show how the performance

of the APS model is affected by the arrangement of release and due dates in the
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Table 5.11: Group 4 - BPS Model no Aggregation (60 instances)

BPS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 5 0.125 1262 3608 0.00 0.03 0.44

20 15 3606 3977 5161 0.00 0.32 1.43

30 15 3605 4006 4797 0.16 1.76 4.21

40 15 3605 3765 4065 1.53 3.08 5.10

Table 5.12: Group 4 - 5 to 8 Jobs per Customer on APS Model (60 instances)

APS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 0 0.027 0.115 0.617 0.00 0.00 0.00

20 0 0.057 1.532 6.993 0.00 0.00 0.00

30 3 0.793 743.5 3603 0.00 0.06 0.42

40 2 1.674 711.5 3603 0.00 0.04 0.49

schedule; The two levels of problem sizes (20 and 40 Jobs) consistently show that

instance complexity increases also as a function of the relative arrangement of the

release dates and due dates. Across the release date arrangements it is observed that

the number of instances solved optimally decreases when the jobs are released in close

proximity to each other (i.e. Condensed Release Dates : ri = UNIF(1, round(n/2)));

in particular the effect of condensed release dates is noted more dramatically under the

group of 40 jobs where the number of optimally solved instances goes from an average

of 16 (Table 5.16)to an average of 1 (Table 5.15); as expected, the computational time

and the optimality gap also change dramatically as the release dates are arranged

closer together. On average the computational time triples and the optimality gap

quadruples with the condensed arrangement.
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Across the due date arrangements a similar pattern is observed however less dra-

matic; the number of instances solved optimally also decreases when the due dates

on the jobs is further constrained by a narrow constant slack (i.e. Constant due date

Slack : ri + d1/αxe + UNIF(0, a2)), and the computational time reflects a marginal

change as the due date slack is decoupled from the job duration. A more significant

impact nonetheless is observed on the optimality gap where the constant due date

slack produces about of twice as large gaps as the ones observed on the proportional

slack group. Overall, the impact of constrained release and constant due date slack

arrangements proves to be consistent with the expected intuitive outcome, and the

complexity increases as the schedule is made tighter. A detailed summary of the spe-

cific results for each test group is summarized in tables 5.13 through 5.16 where the

abbreviation CS stands for Constant due date Slack , and PS stands for Proportional

due date Slack.

Table 5.13: APS Testing - 20 Jobs No aggregation (40 instances)

Condensed Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 6 1.056 1194 3861 0.01 0.50 2.28

PS 4 0.550 801.9 3818 0.00 0.20 1.66

Table 5.14: APS Testing - 20 Jobs No aggregation (40 instances)

Sparse Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 2 0.078 373.5 3644 0.00 0.12 1.32

PS 2 0.109 432.7 3653 0.00 0.06 0.71
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Table 5.15: APS Testing - 40 Jobs No aggregation (40 instances)

Condensed Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 20 3602 3775 4090 0.06 1.70 3.35

PS 18 56.18 3438 4211 0.01 1.10 2.73

Table 5.16: APS Testing - 40 Jobs No aggregation (40 instances)

Sparse Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 5 0.390 1145 4240 0.00 0.40 2.67

PS 3 0.172 685.6 4098 0.00 0.25 1.96

5.6 Case Study: Overhaul Scheduling

Numerical experiments done so far show how the performance of the APS model

is substantially better than the BPS model. In this section we validate previous

observations by using the APS model on a real industry case; we do this by using

the model to compute an optimal schedule on the upcoming contracts of a local

landing gear overhaul company, and observing the benefits and limitations of using

this method in this particular industry.

The business of landing gear overhaul services operates within a very competitive

market where failure to meet deadlines represents significant losses for airlines, and in

turn loss of business for the overhaul service provider (OSP); the demand of overhaul

services has the particularity that is known with anticipation as the time between

overhauls (TBO) is dictated by the aircraft manufacturer and enforced by the regu-

latory agency (FAA); this produces a deterministic set of dates in which the airlines
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deliver and expect to receive a landing gear back from an OSP. In a perfect world, the

overhaul start and finish dates always stay within with the airline’s scheduled time

frame; however, capacity limitations from the OSP sometimes require the airline to

modify such dates against their financial interests. Commonly, the date in which

a landing gear is delivered back to the airline (Overhaul finish date) is considered

a hard constraint and is not violated as it represents significant financial losses for

airlines whereas the date in which a landing gear is delivered for service to a OSP

(overhaul received date) is a soft constraint that can be violated by the OSP, but not

without financial loses proportional to the loss of TBO produced to the airline - this

is because any reduction to the TBO translates into a loss in the financial return the

airline expects from the asset.

In this case study we optimize the overhaul schedule for a local OSP; the sched-

ule consists of 82 jobs expected to be received between the month of November of

2017 and the end of the first quarter of 2019; jobs are unevenly distributed among

4 airlines where the received and due dates are known for each job. The due dates

are considered hard constraints while the received dates are soft constraints; this is,

the OSP can request the airline to deliver a landing gear earlier than expected, but

not without incurring into earliness penalties. We assume that the processes in the

OSP shop can be accurately represented by a preemptive single machine model as

the majority of the overhaul processes are sequential and can be interrupted in favor

of higher priority work. The objective is to produce an overhaul schedule that mini-

mizes the cost of earliness and overtime incurred by the OSP. Although the problem

configuration in this case study is not strictly a tardiness problem, the earliness con-

figuration of the OSP schedule in fact represents a mirror case of a tardiness problem;
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using this problem property, we transform the OSP received and due dates into their

mirror equivalents to generate the equivalent tardiness problem and solve it via the

APS model. The mirror transformation is done about the value for the magnitude of

the time horizon T , and mirror values for the received, due, and finish dates (rm, dm

fm respectively) are obtained from the due, received, and start dates (da, ra, sa re-

spectively) from the actual OSP schedule. Figure 5.6 illustrates two mirror schedules

transformed by Expressions 5.70 through 5.72.

Figure 5.6: Schematic of the date correspondence between actual and mirror schedules

rm = T − da + 1 (5.70)

dm = T − ra + 1 (5.71)

fm = T − sa + 1 (5.72)

The processing time for all jobs is assumed to be constant; as the OSP uses the

same amount of time on performing standard overhaul services on equivalent landing

gears - in this case all the 82 jobs are known to belong to equivalent aircrafts. In order
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to quantify the earliness penalties incurred by the OSP, we compute the prorated cost

of the overhaul service over the number of days lost from the TBO due to an early

start of the overhaul, and we give additional weight to such penalty proportional to

the size of the business given by the airline i.e. the number of jobs present for the

same airline. Using the same nomenclature as in the APS model description we let

the index i represent each job, J represent the set of job clusters (or airlines) and

Mj is the subset of jobs that are aggregated under cluster j (j ∈ J) where |Mj|

represents the number of jobs from airline j. The parameter generating expression

for the earliness penalty as well as other parameters used in this case are listed in

Table 5.17 the superscripts (m) and (a) are used to denote parameters corresponding

to the mirror and actual schedule respectively.

Table 5.17: Parameters Generating Expressions - Case Study

Mirror Model Parameters Expressions

Time horizon - Tm 755 Periods

Release date - rmji T − daji + 1; ∀j, i : i ∈ j

Due date - dmji T − raji + 1; ∀j, i : i ∈ j

Tardiness penalty (weight) - wj (OCj/TBOj)× |Mj | ∀j ∈ J

$2, 288 - For airline 1 |M1| = 41

$568 - For airline 2 |M2| = 16

$1, 216 - For airline 3 |M3| = 13

$828 - For airline 4 |M4| = 12

Allowed Regular Time Capacity - αx 0.1905 - Based on 16 hours regular time

Cost of overtime - cv 31, 500 - Per unit of overtime capacity used

Allowed Overtime capacity - αv 0.0476 - Based on 4 hours of overtime

t0 = Present day, OC = Overhaul Cost

Results from the optimization produced an optimal overhaul schedule in less than

four seconds of run time. The model data was processed using AMPL and CPLEX



87

12.6. All computations were performed on a PC with an I7-3770 Processor with 3.40

GHz and 16 GB of RAM. The optimal schedule indicates that earliness penalties and

overtime capacity are required in order to fulfill the orders expected during the end

of 2017 and the first quarter of 2019; in particular, a total cost in earliness penalties

of $12,008.00 is required to cover the six periods lost from the TBO of two of the

airlines, and a total of $17,892.00 of overtime capacity is necessary to avoid further

earliness penalties. A breakdown of the optimization costs is presented in Table 5.18.

Table 5.18: Cost Breakdown - Optimal Overhaul Schedule

Cost Breakdown

Total Schedule Cost $29, 900.00

Cost of Earliness Penalties $12, 008.00

Five early periods for Airline 1 $11, 440

One early period for Airline 2 $568

Cost of Overtime Capacity Used $17, 892.00

$7, 493.85 on Airline 1

$4, 400.55 on Airline 2

$0.00 on Airline 3

$5, 997.60 on Airline 4

In addition to provide an estimate of the upcoming costs due to penalties and

overtime, the optimization exercise provides the OSP a picture of the expected ca-

pacity utilization. Figures 5.7 through 5.9 illustrate the regular and overtime capacity

utilization as well as the periods in which earliness penalties are expected. The arrow

pointing down in Figures 5.8 and 5.9 corresponds to the time period in which regular

time work is assigned to the first overhaul job.

In general, the APS modeling approach proves to be a quick and versatile tool

geared to assist the OSP management team with specific information that can be used
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to make decisions and prepare for upcoming costs; however, the use of aggregation

has a small inherent drawback when it comes to provide detailed information on the

capacity allocated to every individual job; this is, the use of aggregation produces a

job schedule determined by the capacity allocated to each customer and not to each

job; therefore, for more tactical decisions and specific information on the start and

finish dates of each job, additional post-processing (dissaggregation) of the results is

required.

Figure 5.7: Optimal regular time capacity utilization - A, B, C indicate periods with low demand

5.7 Conclusions

We propose two mixed integer programming models for the single machine pre-

emptive scheduling problem that minimizes a composite cost function of total tar-

diness and overtime capacity utilization. Following the convention of scheduling, we
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Figure 5.8: Optimal overtime capacity utilization

first build a model using binary variables that identifies completion times of a fi-

nite set of jobs with varying release times, due dates, and identical processing times.

In this approach, which we referred to as the Binary Preemptive Scheduling (BPS)

model, jobs are allocated to available time intervals offered by the existing regular

and overtime capacity. The second model, which we call the Aggregate Preemptive

Scheduling (APS) model, employs the capacity allocation view and adopts the ag-

gregate planning approach. In this case, existing capacity is distributed among jobs,

where jobs are aggregated across their weights as workloads to be fulfilled. With this

approach, all binary variables can be eliminated.

In order to test and compare both models in computational efficiency, we evalu-

ated both models using analytical methods and designed and performed a numerical

analysis. Our analysis aimed at determining the computational performance of both

models with respect to the number of jobs and the job aggregation (clustering) levels.
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Figure 5.9: Optimal earliness by period

We observed that the BPS model was outperformed with clear lead in all instances.

Results of our analysis demonstrate improved lower bounds, strong computational

performance and convergence of the APS model and its patent dominance to the

BPS model. Overall, the study reveals that APS model is a promising tool for gen-

erating optimal or near-optimal schedules and capacity allocation plans reasonably

quick for real industry applications.



CHAPTER 6

Advanced Models for Tardiness Problems

6.1 Overview

In this chapter, we explore a set of diverse tardiness related measures in their

most general form (i.e. with variable processing times). For each one of the measures

we present, we compare the performance of two preemptive modeling approaches: a

conventional modeling approach side by side to its corresponding advanced model.

From the conventional modeling standpoint we use binary variables that keep track

of the finish times for all jobs, while adjusting the model to account for the differ-

ent tardiness related measures; similarly, from the advanced modeling standpoint we

apply the aggregate planning paradigm to the different tardiness related problems

while maintaining equivalency with its corresponding conventional model. The tar-

diness related measures we explore include: Total Weighed Tardiness (TWT), Total

Weighted Completion (TWC), Total Weighted Earliness and Tardiness (TWET) and

Total Weighted Number of Tardy Jobs (TWNTJ). We demonstrate with numerical

experimentation and analytic methods that the aggregate modeling approach provides

a more efficient platform for model performance therefore representing a promising

91
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tool for generating optimal or near-optimal schedules reasonably quickly for industry

applications.

6.2 The Total Weighted Tardiness Problem (TWT)

6.2.1 The BPS Model for TWT

The general BPS optimization model aims to find an optimal schedule that mini-

mizes the total cost of weighted tardiness for a given set of jobs by determining work

allocations, finish dates, and tardiness. The nomenclature for the decision variables

of the model is given in Table 6.1.

Table 6.1: Decision Variables of the BPS Model Applied to the TWT Problem

xit Fraction of a job i assigned during regular time at period t

yit Binary variable: 1 if job i finishes on period t, 0 otherwise

fi Finish date for job i

li Number of late periods on job i

The BPS model involves binary, continuous, and discrete decision variables. The

binary variables yit track the completion time of jobs. While the continuous vari-

ables determine the amount of allocations of regular capacity xit that are necessary

to complete the jobs; the discrete variables are needed to evaluate the finish date fi

as well as the number of late periods li. The tardiness cost for job i is captured by

wili = wi × max{0, fi − di}. Consequently, we can write down the mathematical

model as follows:
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minimize:
n∑
i=1

wili (6.1)

subject to:

T∑
t=ri

yit = 1, ∀i ∈ I (6.2)

fi =
T∑
t=1

tyit, ∀i ∈ I (6.3)

li ≥ fi − di, ∀i ∈ I (6.4)

n∑
i=1

xit ≤ αx, ∀t ∈ {1, 2, . . . , T} (6.5)

T∑
t=ri

xit = pi, ∀i ∈ I (6.6)

γ∑
t=ri

xit ≥ piyiγ, ∀i ∈ I, ∀γ ∈ {ri, . . . , T} (6.7)

xit ∈ [0, 1] ; fi, li ∈ Z+; yit ∈ {0, 1} (6.8)

The objective function given in (6.1) minimizes the total cost of weighted tardiness.

As mentioned above, the weight for job i, wi, maps the unit cost of tardiness for

that job in this representations. The first set of constraints (6.2) ensure that each

job is completed by the end of the planning horizon. The second set of constraints

(6.3) capture the completion time of each one of the jobs. Given completion times,

constraint in (6.4) sets the tardiness for the jobs. Constraints (6.5) enforces the regular

capacity limit designated as αx. Constraint (6.6) allocates all the work required pi to

complete a job across time periods following its release date, and (6.7) ensures that

jobs are not deemed as complete before all required work is done. Solution to the
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above model provides an optimal preemptive schedule for a given set of jobs with

different release and due dates.

The above model is the product of a conventional modeling approach for the

scheduling problems. As expected, the complexity introduced by the combination of

the binary outcomes adversely affects the computational performance. To improve

the computational efficiency, we employ an approach borrowed from the aggregate

planning and develop an alternative model that eliminates the binary variables.

6.2.2 The APS Model for TWT

The proposed aggregate preemptive scheduling (APS) model eliminates the binary

variables by aggregating all jobs that have the same weights into a single mutually

exclusive set. From practical perspective, each set represents the work orders of a

single customer, where different customers carry different significance for the proces-

sor. We let J represent the set of job clusters (or customers) and Mj is the subset of

jobs that are aggregated under cluster j (j ∈ J). We assume that the jobs in set Mj

are sequenced in non-decreasing order of their due dates.

As mentioned above, each cluster in set J consists of jobs that have the same

weight. For example, for n = 6 jobs, if a weight vector is given by W = {2, 1, 5, 2, 1, 1}

for jobs 1 through 6 respectively then the first job and fourth job belong to the

same cluster. Likewise, second, fifth, and sixth jobs are aggregated into a single

cluster, and third job falls in a separate cluster. Thus, the set of clusters becomes

J = {1, 2, 3} with the new aggregated weight vector W = {1, 2, 5} that maps the

weights of job clusters 1, 2, and 3 respectively. Also suppose that the due-date vector
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is d = {6, 7, 6, 8, 7, 9} for jobs 1 to 6 respectively in this above example. Consequently,

M1 = {2, 5, 6}, M2 = {1, 4}, and M3 = {3}.

While the BPS model employs a one-dimensional array to specify the due date

for each job, the APS model requires a three-dimensional array for each job cluster

in order to indicate the dates on which its jobs are due. We introduce Djit which

denotes the due period t of the job i belonging to cluster j. In the above example

D1,1,7 = 1 since the first job in cluster 1 is due at time 7. Thus, D1,2,7 = D1,3,9 = 1,

and D1it = 0 for all other (i, t) pairs.

We modify the decision variables in accord with the proposed approach (Table 6.2).

Similar to BPS model, we define Xjit to track the work assigned to each job; however,

in this model Xjit does not represent the fraction of work required to complete a single

job, but instead it represents the percent of work required to complete the full amount

of work corresponding to a job Pji. We introduce two new variables, namely Ejit and

Bjit, that capture the percent of the completed work before the due date and the

incomplete work past due for job i in cluster j at time t, respectively. These two

variables are mapped to the late periods Ljit.

Table 6.2: Decision Variables of the APS Model Applied to the TWT Problem

Xjit Percent of work assigned to job i in cluster j at period t

Ejit Percent of work completed by the deadline for job i in cluster j in period t

Bjit Percent of unfulfilled work after the deadline for job i in cluster j in period t

Ljit Late periods corresponding to job i in cluster j
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minimize
∑
j∈J

∑
i∈Mj

T∑
t=1

wjLjit (6.9)

subject to:

Bji1 − Eji1 = Dji1 −Xji1, ∀j ∈ J,∀i ∈Mj (6.10)

Bjit − Ejit = Djit +Bjit−1 −Xjit − Ejit−1, ∀j, i;∀t ∈ {2, 3, ., T} (6.11)∑
j∈J

∑
i∈Mj

PjiXjit ≤ αx, ∀t ∈ {1, 2, . . . , T} (6.12)

∑
t∈T

Xjit ≤ 1, ∀j ∈ J ;∀ i ∈Mj (6.13)

rji−1∑
t=1

Xjit ≤ 0, ∀j ∈ J,∀i ∈Mj (6.14)

Ljit ≥ Bjit, ∀j ∈ J,∀i ∈Mj∀ t ∈ {1, 2, . . . , T} (6.15)

Xjit, Bjit, Ejit ∈ [0, 1] , ∀j ∈ J,∀t ∈ {1, 2, . . . , T} (6.16)

Ljit ∈ Z+, ∀j ∈ J∀t ∈ {1, 2, . . . , T} (6.17)

In the above model, the first two constraints are the work balance equations which

capture the fraction of late work for each job in each cluster. Constraint (6.12) enforce

the capacity limit. Constraint (6.13) ensures that no job is assigned more work than

what is required to complete 100% of the work. Constraint (6.14) ensures that work

is not assigned to a job on periods prior to its release date. Constraint (6.15) captures

each one of the periods in which a job is late. Similar to the BPS model, solution

to the above model provides a feasible optimal preemptive schedule for a given set of

jobs with different release and due dates.
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6.2.3 Computational Experiments

We design and perform numerical analysis so as to evaluate the computational

performance of the BPS and the APS models for total weighted tardiness. We aim to

determine the computational performance of both models with respect to the size of

the instance (i.e. number of jobs). Our goal is to demonstrate that the proposed APS

model significantly improves the computational performance. To this end we perform

two sets of numerical experiments that test both models under different conditions

using the number of optimal solutions, computational time and optimality gap as

reference measures. In our first numerical experiment we consider five problem sizes

with 10, 20, 40, 80, and 160 jobs which we solve side by side using each model.

Following the first numerical tests, we proceed with numerical experiments focused

only on the APS model. in particular, we use numerical tests to explore how the

performance of the APS model changes depending on how the release and due dates

are arranged in the schedule; with this aim we produced four scenarios in which we

test the combinations between two levels of release dates (i.e. Condensed Release

Dates and Sparse Release Dates) and two levels of due dates determined by the slack

added to the jobs (i.e. Constant Slack and Proportional Slack). The four resulting

scenarios are tested on the APS model for 20 and 40 jobs. The decision to evaluate the

APS model only under the arrangement of release and due dates, on one side, follows

observations made by [33] and [24] on the effect of the proximity and arrangement

of the release and due dates on the complexity of the instance, and on the other, is

mostly the result of multiple observations made over extensive testing of the effect of

different schedule parameters on the performance of the models; The effect of other

parameters like αx, and T are implicitly tested under the different job levels, and other
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parameters like αv and wi do not demand additional testing as their relationship to

the complexity of the instances is more intuitively understood.

To produce the two phases of numerical experiments described above we use a

set of expressions to generate all the parameters necessary to create the problem

instances. To be consistent with the existing literature, we borrowed the expressions

from earlier research [20] and modified them to our context. Main random variables in

the system are generated by a uniform distribution in order to enable diversity across

all instances. To avoid trivial cases, the number of jobs n and the maximum allowed

regular time αx are preset and incorporated as input parameters in the problem

instance generation process. Table 6.3 lists all the specific parameter generating

expressions used in our analysis. For each scenario combination, 20 instances are

generated. As a result, a total of 400 instances are obtained to test the comparative

performance of the APS model vs. the BPS (first numerical experiment) and a total of

80 instances to evaluate the performance of the APS model under different release and

due date combinations (second numerical experiment). All instances generated for

the BPS and APS models are solved using AMPL and CPLEX 12.6. All computations

are performed on a PC with an I7-3770 Processor with 3.40 GHz and 16 GB of RAM.

Due to computational complexity, not all the instances are solvable in reasonable

amounts of time. Therefore, we set a fixed time limit for the execution of both mod-

els. Specifically, the computational runs are set to initiate a time-out sequence at

3600 seconds (1 hour). Although a time limit is present, we observe that the amount

of time to produce a feasible integer solution for the instances that time-out can vary

depending on the model used and the size of the instance.
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Table 6.3: Parameter Generating Expressions

Model Parameters Expressions

Time horizon - T rlast + round(n/αx)

Release date - ri UNIF(1, round(n/2)) Condensed Release

UNIF(1, 2n) Sparse Release

Due date - di ri + d1/αxe+UNIF(0, a2) Prop. Slack

ri + d1/αxe+UNIF(0, a3) Constant Slack

Tardiness penalty (weight) - wi UNIF(1, a1)

Capacity - αx UNIF(0.15, 0.5)

Required Work - pi UNIF(0.6, 1.4)

a1 = n, a2 = dpi/αxe, a3 = 2

We compare the optimality gap and convergence between the two models for all

problem instances. For all the numerical experiments the lower bound from the APS

model is used as reference to produce the optimality gaps in both models; this is

necessary due to the tendency of the BPS model to generate artificially small lower

boundaries even when the reached feasible solution is actually close to the optimal.

The same test methodology described above is applied to all tardiness related tests,

while using the same problem instances across all problems; this is, the same set of

instances used to test the models under the TWT problem are again used for the

TWC, TWET and TWNTJ. In the particular case of the TWC problem the due date

of the instances is modified and made equal to the release dates in order to keep

the same model structure for weighted tardiness while solving a weighted completion

problem. With the exception of the extended testing on the APS models all instances

are produced under the criterion established for Sparse Release Dates so as to produce

more realistic combination of job release dates over the schedule.
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6.2.4 Computational Results

We investigate the results of all 100 instances on each model (200 runs total). In

our numerical analysis we tracked the number of instances that were solved optimally

by each model within the given time frame. The BPS model was able to find the

optimal solution in 18% of the instances (18 of the 100 instances) while the APS model

produced optimal solutions in 40% (40 instances out of 100). Figure 6.1 illustrates

these observations in more detail separated by the release date scenarios. As expected,

in both cases, the number of optimally solved instances decreases as the problem size

(i.e., the number of jobs) increases.

Figure 6.1: Count of optimal and timed-out instances under the TWT problem

While the APS model reported optimal solutions for all instances of the smallest

problem size (10 jobs), some portion of the instances for this problem size did not

reach optimality with the BPS model within the preset time limit. The gap between

two models in this respect further increases with 20 jobs. The BPS model provided
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no optimal solutions for the instances with 40 and 80 jobs. Whereas, the APS model

was able to reach optimality on some instances with 40 jobs within the 1 hour time

frame indicating a superior computational performance.

Next, we compare the computational time performances and optimality gaps be-

tween both models. Measures of computational time performance include the mini-

mum, average, and maximum number of seconds used to reach an optimal solution;

similarly the optimality gap is represented via the minimum, average and maximum

percent error as calculated from the lower boundary produced by the APS problem

relaxation. The comparison is performed for each instance size and summarized in

tables 6.4 and 6.5.

The results indicate a significant difference in computational time performances

where the APS model dominates the BPS model in all instances. We observe that even

with relatively small size problems (i.e., 10 jobs), while it takes several minutes for the

BPS model to reach at optimality, the APS achieves the same result within a matter

of seconds on average. As the problem size increases, the convergence performance

degrades significantly for the BPS model. The average optimality gap stays above

9.0% for more than 20 jobs with a worst case performance of 91.2% gap in cases

where a feasible integer solution was not found by the solver after a period of one

hour. By contrast, the average optimality gap with the APS stays under 28% even

for instances of 160 jobs, and for instances of 80 jobs or less the maximum optimality

gap resulting from any instance is well below 10%.
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Table 6.4: Results for the BPS Model on the TWT Problem (100 instances)

BPS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 6 0.20 1207 3611 0.00 0.06 0.95

20 16 5.15 3020 4027 0.00 1.99 10.1

40 20 3602 3638 4118 0.98 9.19 18.0

80 20 3600 3664 4076 13.9 27.1 48.2

160 20 3609 3612 3616 85.0 88.7 91.2

Table 6.5: Results for the APS Model on the TWT Problem (100 instances)

APS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 0 0.031 9.95 135.2 0.00 0.00 0.00

20 3 0.717 685.5 3820 0.00 0.42 3.67

40 17 356.4 3573 4420 0.00 2.99 5.53

80 20 3601 4085 5110 2.17 5.28 8.68

160 20 3601 3687 4189 1.71 27.68 95.15

6.2.4.1 Extended Testing for the APS Model

Numerical experiments focused on the APS model implemented on the TWT

problem show how its performance is affected by the arrangement of release and due

dates in the schedule; The two levels of problem sizes (20 and 40 Jobs) consistently

show that instance complexity increases also as a function of the relative arrangement

of the release dates; specifically, in the case of 20 jobs, the total number of instances

solved optimally drops from 30 to 12, and in the group of 40 jobs (Tables 6.8 and

6.9) this metric goes from a total of 3 to 0; this is, in both groups the number of

instances solved optimally decreases when the jobs are released in close proximity to
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each other (i.e. Condensed Release Dates : ri = UNIF(1, round(n/2))). As expected,

the average computational time also changes as the release dates are arranged closer

together; this is more noticeable in the 20-jobs group than in the 40-jobs group due

to the larger number of instances solved optimally. In terms of the optimality gap,

the results observed for the group with 20 jobs fall in line with the performance

described above where optimality gaps are smaller when its release dates are spread

apart; however, the optimality gaps on the 40-jobs group do not fit the same pattern,

and the optimality gap appears to increase as the release dates are separated.

From the perspective of the due date arrangements the total number of instances

solved optimally slightly decreases when the due dates on the jobs are constrained by

a narrow constant due date slack, although this is only noticeable under the 20-job

scenario; similarly the computational time and optimality gaps reflect only a marginal

change as the due date slack is decoupled from the job duration, and a noticeable

change is only noticed in the 20-jobs group where the total average optimality gap

(including condensed and sparse release values) goes from 0.8% under proportional

slack to 1.03% under constant slack. A more detailed summary of the specific results

for each test group is summarized in tables 6.6 through 6.9.

Table 6.6: APS Extended Testing - Condensed Release Dates on 20 Jobs (40 instances)

Condensed Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 13 89.28 2805 3886 0.00 1.20 3.29

PS 15 329.2 3188 4077 0.00 1.17 3.59
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Table 6.7: APS Extended Testing - Sparse Release Dates on 20 Jobs (40 instances)

Sparse Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 7 0.751 1358 4031 0.00 0.87 3.82

PS 3 0.717 685.5 3820 0.00 0.42 3.67

Table 6.8: APS Extended Testing - Condensed Release Dates on 40 Jobs (40 instances)

Condensed Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 20 3614 3941 4180 1.17 1.78 2.85

PS 20 3601 3920 4113 1.17 1.83 2.35

6.2.5 Special Case: Overtime Available

As an extension of the TWT, here we compare the conventional and advanced

modeling approaches in cases when the use of overtime capacity is available; we refer

to this tardiness measure as TWTOT. The models used in this section correspond to

the BPS and APS models used in sections 6.2.1 and 6.2.2, which have been updated

to account for the cost and use of overtime capacity; this is, the models contain a

second term in the objective function corresponding to the cost of overtime use and

the work constrains are modified to account for the allocated overtime capacity. The

implementation of each model to the TWTOT problem is as follows.
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Table 6.9: APS Extended Testing - Sparse Release Dates on 40 Jobs (40 instances)

Sparse Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 17 168.6 3572 4466 0.00 3.20 10.34

PS 17 356.4 3573 4420 0.00 2.99 5.53

BPS Model:

minimize:
n∑
i=1

wili + cv
∑
iinI

T∑
t=1

vit (6.18)

subject to:

T∑
t=ri

yit = 1, ∀i ∈ I (6.19)

fi =
T∑
t=1

tyit, ∀i ∈ I (6.20)

li ≥ fi − di, ∀i ∈ I (6.21)

n∑
i=1

xit ≤ αx, ∀t ∈ {1, 2, . . . , T} (6.22)

n∑
i=1

vit ≤ αv, ∀t ∈ {1, 2, . . . , T} (6.23)

T∑
t=ri

(xit + vit) = pi, ∀i ∈ I (6.24)

γ∑
t=ri

(xit + vit) ≥ piyiγ, ∀i ∈ I, ∀γ ∈ {ri, . . . , T} (6.25)

xit, vit ∈ [0, 1] ; fi, li ∈ Z+; yit ∈ {0, 1} (6.26)
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APS Model:

minimize
∑
j∈J

∑
i∈Mj

T∑
t=1

wjLjit + cv
∑
j∈J

∑
i∈Mj

T∑
t=1

PjiVjit (6.27)

subject to:

Bji1 − Eji1 = Dji1 −Kji1, ∀j ∈ J,∀i ∈Mj (6.28)

Bjit − Ejit = Djit +Bjit−1 −Kjit − Ejit−1, ∀j, i;∀t ∈ {2, 3, ., T} (6.29)

Kjit = Xjit + Vjit, ∀j ∈ J,∀i ∈Mj∀ t ∈ {1, 2, . . . , T} (6.30)∑
j∈J

∑
i∈Mj

PjiXjit ≤ αx, ∀t ∈ {1, 2, . . . , T} (6.31)

∑
j∈J

∑
i∈Mj

PjiVjit ≤ αv, ∀t ∈ {1, 2, . . . , T} (6.32)

∑
t∈T

Xjit + Vjit ≤ 1, ∀j ∈ J ;∀ i ∈Mj (6.33)

rji−1∑
t=1

Xjit + Vjit ≤ 0, ∀j ∈ J,∀i ∈Mj (6.34)

Ljit ≥ Bjit, ∀j ∈ J,∀i ∈Mj∀ t ∈ {1, 2, . . . , T} (6.35)

Xjit, Vjit, Kjit, Bjit, Ejit ∈ [0, 1] , ∀j ∈ J,∀t ∈ {1, 2, . . . , T} (6.36)

Ljit ∈ Z+, ∀j ∈ J,∀t ∈ {1, 2, . . . , T} (6.37)

To stay consistent with the nomenclature we use the same overtime nomenclature

used in Chapter 5. Here the variables vit and Vjit represent the amount of overtime

capacity used; in the case of the BPS model vit corresponds directly to the units of

capacity while in the APS model Vjit represents the fraction from the total capacity

Pji that uses overtime. In both models the parameter cv represents the cost per
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unit of overtime, and αv corresponds to the maximum overtime capacity that can be

allocated on a given period.

For simplicity, the testing performed in this section does not include instances

with 160 jobs as these are not expected to reach any optimal solution, and instances

with 80 jobs suffice to illustrate the performance of both models under relatively large

instances. Numerical analysis done to both models (total of 80 instances - 20 instances

per job-size) shows that the BPS model was able to find the optimal solution in 17% of

the instances (14 of the 80 instances) while the APS model produced optimal solutions

in 69% (55 instances out of 80). As expected, in both cases, the number of optimally

solved instances decreases as the problem size (i.e., the number of jobs) increases.

While the APS model reported optimal solutions for all instances of 10 and 20 jobs, a

large portion of these instances for these problem sizes did not reach optimality with

the BPS model within the preset time limit. The gap between two models in this

respect is maintained with 40 jobs. The BPS model provided no optimal solutions

for the instances with 40 and 80 jobs; whereas the APS model was able to reach

optimality on 14 of the instances with 40 jobs and one of the instances with 80 jobs

indicating a superior computational performance. these results are summarized in

tables 6.10 and 6.11.

The results indicate a significant difference in computational time performances

where the APS model dominates the BPS model in all instances. We observe that

even with relatively small size problems (i.e., 10 jobs), while it takes several minutes

for the BPS model to reach at optimality, the APS achieves the same result within

fractions of a second on average. As the problem size increases, the convergence

performance degrades significantly for the BPS model. The average optimality gap
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reaches 13% for 80 jobs with a worst case performance of 58.5% gap in cases where

a feasible integer solution was not found by the solver after a period of one hour. By

contrast, the average optimality gap with the APS stays under 4% even for the worst

of the instances of 80 jobs.

Table 6.10: Results for the BPS Model on the TWTOT Problem (80 instances)

BPS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 8 0.110 1683 3606 0.00 0.00 0.01

20 18 24.86 3251 3607 0.00 0.55 2.71

40 20 3600 3627 4074 0.01 2.16 6.69

80 20 3603 3611 3673 1.85 13.27 58.52

Table 6.11: Results for the APS Model on the TWTOT Problem (80 instances)

APS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 0 0.078 0.876 2.559 0.00 0.00 0.01

20 0 0.343 23.99 223.9 0.00 0.01 0.01

40 6 6.817 1563 4364 0.00 0.42 2.49

80 19 3062 3838 4485 0.00 1.54 3.90

6.3 The Total Weighted Completion Problem (TWC)

6.3.1 The BPS Model for TWC

The implementation of the BPS model to the TWC problem does not require any

changes to the model itself - it is the same model used in Section 6.2.1; however, the
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due dates for all the jobs are made equal to the release dates; this way all jobs are

essentially late and the minimization process is be determined only by the completion

times of each job. The nomenclature for the decision variables of the model is given

in Table 6.12.

Table 6.12: Decision Variables of the BPS Model Applied to the TWC Problem

xit Fraction of a job i assigned during regular time at period t

yit Binary variable: 1 if job i finishes on period t, 0 otherwise

fi Finish date for job i

Ci Number of periods to complete job i

Similarly to the implementation of the BPS model to the TWT problem, this

model implementation involves binary, continuous, and discrete decision variables.

The binary variables yit track the completion time of jobs. While the continuous

variables determine the amount of allocation of capacity xit necessary to complete

the jobs, the discrete variables are needed to evaluate the finish date fi as well as the

number of late periods li - in this case Ci. The tardiness cost for job i is captured by

wili = wimax{0, fi − di}. Since we allowed di = ri the expression for the tardiness

cost becomes equivalent to the completion cost for job i as wiCi = wi(fi− ri)} where

Ci represents the periods used to complete job i. Consequently, we can write down

the mathematical model as follows:
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minimize
n∑
i=1

wiCi (6.38)

subject to:

T∑
t=ri

yit = 1, ∀i ∈ I (6.39)

fi =
T∑
t=1

tyit, ∀i ∈ I (6.40)

Ci ≥ fi − di, ∀i ∈ I (6.41)

n∑
i=1

xit ≤ αx, ∀t ∈ {1, 2, . . . , T} (6.42)

T∑
t=ri

xit = pi, ∀i ∈ I (6.43)

γ∑
t=ri

xit ≥ piyiγ, ∀i ∈ I, ∀γ ∈ {ri, . . . , T} (6.44)

xit ∈ [0, 1] ; fi, Ci ∈ Z+; yit ∈ {0, 1} (6.45)

The objective function given in (6.38) minimizes the total cost of weighted com-

pletion. As mentioned above, the weight for job i, wi, maps the unit cost of time used

for that job in this representations. The first set of constraints (6.39) ensure that each

job is completed by the end of the planning horizon. The second set of constraints

(6.40) capture the completion time of each one of the jobs. Given completion times,

constraint in (6.41) sets the completion times (also tardiness) for the jobs. Con-

straints (6.42) enforces the regular capacity limit designated as αx. Constraint (6.43)

allocates all the work required (pi) to complete a job across time periods following

its release date, and (6.44) ensures that jobs are not deemed as completed before all
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required work is done. Solution to the above model provides an optimal preemptive

schedule for the TWC problem.

6.3.2 The APS Model for TWC

Similarly to the implementation of the BPS model on the TWC problem, the

implementation of the APS model to the TWC problem does not require any model

changes. All the variables model remain the same with the tardiness variable now

being the variable accounting for the completion times of all the jobs; this results

from the re-purposing of the due dates after making them equal to the release dates.

The decision variables for this model are listed in Table 6.13. We measure Xjit as

the percent of the total work Pji required to complete a single job. In this particular

model the variables representing the work done before the due date become irrelevant;

this is, Ejit while Bjit captures the percent of the work completed after the release

date for job i in cluster j at time t; this variable is also mapped to the periods used

in the completion of a job Cjit.

Table 6.13: Decision Variables of the APS Model Applied to the TWC Problem

Xjit Percent of work assigned to job i in cluster j at period t

Ejit Percent of work completed by the deadline for job i in cluster j in period t

Bjit Percent of unfulfilled work after the deadline for job i in cluster j in period t

Cjit Work periods corresponding to job i in cluster j
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The mathematical model is

minimize
∑
j∈J

∑
i∈Mj

T∑
t=1

wjCjit (6.46)

subject to:

Bji1 − Eji1 = Dji1 −Xji1, ∀j ∈ J,∀i ∈Mj (6.47)

Bjit − Ejit = Djit +Bjit−1 −Xjit − Ejit−1, ∀j, i;∀t ∈ {2, 3, ., T} (6.48)∑
j∈J

∑
i∈Mj

PjiXjit ≤ αx, ∀t ∈ {1, 2, . . . , T} (6.49)

∑
t∈T

Xjit ≤ 1, ∀j ∈ J ;∀ i ∈Mj (6.50)

rji−1∑
t=1

Xjit ≤ 0, ∀j ∈ J,∀i ∈Mj (6.51)

Cjit ≥ Bjit, ∀j ∈ J,∀ t ∈ {1, 2, . . . , T} (6.52)

Xjit, Bjit, Ejit ∈ [0, 1] , ∀j ∈ J∀t ∈ {1, 2, . . . , T} (6.53)

Cjit ∈ Z+, ∀j ∈ J∀t ∈ {1, 2, . . . , T} (6.54)

Similarly to the TWT model, the first two constraints are the work balance equa-

tions which capture the percent of work done after the release of each job in each

cluster. Constraint (6.49) enforce the capacity limit. Constraint (6.50) ensures that

no job is assigned more work than what is required to complete 100% of the work.

Constraint (6.51) ensures that work is not assigned to a job on periods prior to its

release date. Constraint (6.52) captures each one of the periods required to complete

a job. Similar to the BPS model, solution to the above model provides a feasible

optimal preemptive schedule for the TWC problem.
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6.3.3 Computational Experiments

For the testing of the APS and BPS modeling approaches as they are implemented

to solve the TWC problem we follow the same methodology used during the testing

of the models on the TWT problem - Section 6.2.3. For experimental consistency

throughout the research, here we perform the same two sets of numerical experiments

and solve the same instances used in Section 6.2; although, part of the extended

testing done to the APS model is not really relevant for the TWC problem; this is

because the nature of the TWC problem does not depend on the due dates, and the

scenarios created to explore the effect of the due date slack do not have an effect on

the model performance; nonetheless, we consider pertinent to present this results.

6.3.4 Computational Results

Numerical analysis on all 100 instances (20 for each problem size) on each model

(200 runs) revealed the number of instances that were solved optimally by each model

within the given time frame. The BPS model was able to find the optimal solution in

20% of the instances (20 of the 100 instances) while the APS model produced optimal

solutions in 36% (36 instances out of 100). Figure 6.2 illustrates these observations

in more detail. As expected, in both cases, the number of optimally solved instances

decreases as the problem size (i.e., the number of jobs) increases.

While the APS model reported optimal solutions for all instances of the smallest

problem size (10 jobs), some portion of the instances for this problem size did not

reach optimality with the BPS model within the preset time limit. The gap between

the two models in this respect is also noticeable with 20 jobs. The BPS model as well
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Figure 6.2: Count of optimal and timed-out instances under the TWC problem

as the APS provided no optimal solutions for the instances larger than 20 jobs within

the 1 hour time frame. Although the performance difference between the models is

not apparent on larger instances (40, 80, and 160 jobs) as compared with respect

to the number of time-outs, the percent optimality gap reveals that the superior

performance of the APS model is present even under larger size problems. These

results are summarized in tables 6.14 and 6.15.

Table 6.14: Results for the BPS Model on the TWC Problem (100 instances)

BPS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 4 0.14 1033 3640 0.00 0.01 0.23

20 16 11.59 2971 4830 0.00 0.99 8.04

40 20 3602 3628 3989 2.63 6.45 13.03

80 20 3603 3648 3919 5.68 16.8 41.14

160 20* 3620 3636 3652 72.04 75.79 81.25

*Only 4 out of the 20 instances reached a feasible integer solution
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Table 6.15: Results for the APS Model on the TWC Problem (100 instances)

APS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 0 0.109 24.51 258.7 0.00 0.00 0.00

20 4 3.040 1010 4071 0.00 0.43 3.73

40 20 3623 4031 4417 2.34 3.56 5.57

80 20 3601 3985 4795 2.06 4.65 6.84

160 20 3604 3694 4077 2.94 45.25 96.61

In terms of computational time, we observe that even with relatively small size

problems (i.e., 10 jobs), while it takes minutes for the BPS model to reach at opti-

mality, the APS achieves the same result within a fraction of a second on average. As

the problem size increases, the convergence performance on the BPS model degrades

significantly, and the average optimality gap stays above 16% for more than 40 jobs

with a worst case performance of 81.25%. On the other hand, the optimality gap

with the APS model remains under 7% on instances of upto 80-jobs with a worst case

performance of 96.61% on 160 jobs. In terms of the maximum values reported for

the optimality gap with 160 jobs, the BPS model appears to produce slightly lower

values than the APS model (81.25% vs. 96.61% respectively); this data artifact is

the result of the lack of actual data from the BPS runs for 160 jobs which resulted in

only 4 instances with feasible integer solutions and 16 instances for which the time

limit was surpassed withouth the solver reaching an integer feasible solution.

6.3.4.1 Extended Testing for the APS Model

Here, the effect of the arrangement of release and due dates in the schedule is

explored for the implementation of the APS model on the TWC problem; In terms of
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the timed-out instances, the 20-jobs group shows that instance complexity increases

also as a function of the relative arrangement of the release dates; in particular, the

number of optimally solved instances goes from an average of 29 to an average of 5;

as expected, the computational time for this group also changes from an average of

1232 seconds under sparse release dates to an average time-out value of 3449 seconds

under condensed release, and the optimality gap increases from an average of 0.53%

to 1.14% also from sparse to condensed release respectively. The pattern observed

in the 20-jobs group is consistent in showing the higher complexity produced by the

condensed release dates; however, this observation cannot be made on the 40-jobs

group where virtually all instances timed out without an optimal solution, and the

optimality gaps show an increase in value from 1.68% under condensed release to

3.22% under sparse release dates.

From the perspective of the due date arrangements, as expected, no discernible

pattern is observed; this is because the data reflects the imperviousness of the TWC

problem to the due date slack where no significant change is noticed as the instances

were tested under constant or proportional due date slack. A detailed summary of

the results for each test group is summarized in tables 6.16 through 6.19.

Table 6.16: APS Extended Testing - Condensed Release Dates on 20 Jobs (40 instances)

Condensed Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 16 77.35 3249 4142 0.00 1.08 2.64

PS 19 1181 3648 4404 0.00 1.20 2.57
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Table 6.17: APS Extended Testing - Sparse Release Dates on 20 Jobs (40 instances)

Sparse Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 7 1.493 1455 3927 0.00 0.62 3.10

PS 4 3.040 1010 4071 0.00 0.43 3.73

Table 6.18: APS Extended Testing - Condensed Release Dates on 40 Jobs (40 instances)

Condensed Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 20 3607 3959 4260 1.13 1.67 2.36

PS 20 3601 3992 4222 1.27 1.68 2.48

6.4 The Total Weighted Earliness and Tardiness

Problem (TWET)

6.4.1 The BPS Model for TWET

The BPS optimization model for the total weighted earliness and tardiness, also

known as just-in-time, aims to find an optimal schedule that minimizes the total cost

of earliness and tardiness for a given set of jobs by determining work allocations that

reach the completion of jobs as close as possible to their due dates. Here we consider

that the earliness and tardiness penalties are equal for the same job; this is, one

period of earliness on a job is as costly as one period of tardiness on the same job.

The nomenclature for the decision variables of the model is given in Table 6.20.

Similarly to the implementation of the BPS model to the TWT problem, this

model uses the binary variables yit to track the completion time of jobs while the
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Table 6.19: APS Extended Testing - Sparse Release Dates on 40 Jobs(40 instances)

Sparse Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 19 1964 3946 4661 0.00 2.87 5.06

PS 20 3623 4031 4417 2.34 3.56 5.57

Table 6.20: Decision Variables of the BPS Model Applied to the TWET Problem

xit Fraction of a job i assigned during regular time at period t

yit Binary variable: 1 if job i finishes on period t, 0 otherwise

fi Finish date for job i

ei Number of early periods on job i

li Number of late periods on job i

continuous variables determine the amount of allocations of regular capacity xit that

are necessary to complete the jobs. Discrete variables are used to evaluate the finish

date fi as well as the number of early or late periods ei or li respectively. The ear-

liness or tardiness cost for job i is captured by a single cost rate per period wi as in

wi(ei + li) = wi ×max{di − fi, fi − di}. Consequently, the mathematical model is as

follows:
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minimize
n∑
i=1

wi(ei + li) (6.55)

subject to:

T∑
t=ri

yit = 1, ∀i ∈ I (6.56)

fi =
T∑
t=1

tyit, ∀i ∈ I (6.57)

li ≥ fi − di, ∀i ∈ I (6.58)

ei ≥ di − fi, ∀i ∈ I (6.59)

n∑
i=1

xit ≤ αx, ∀t ∈ {1, 2, . . . , T} (6.60)

T∑
t=ri

xit = pi, ∀i ∈ I (6.61)

γ∑
t=ri

xit ≥ piyiγ, ∀i ∈ I, ∀γ ∈ {ri, . . . , T} (6.62)

xit ∈ [0, 1] ; fi, li ∈ Z+; yit ∈ {0, 1} (6.63)

The objective function given in (6.55) minimizes the total cost of weighted earliness

and tardiness. Similarly to all the previous BPS models, the weight for job i, wi, maps

the unit cost of earliness or tardiness for that job. The first set of constraints (6.56)

ensure that each job is finished by the end of the planning horizon. The second set

of constraints (6.57) capture the completion times of each one of the jobs. Given

the completion times, constraints (6.58) and (6.59) determine the number of early or

tardy periods for each one of the jobs. Constraints (6.60) enforce the capacity limit

designated as αx. Constraints (6.61) allocates all the work required pi to complete a

job across time periods following its release date, and (6.62) ensures that jobs are not
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completed before all required work is done. Solution to the above model provides an

optimal preemptive schedule to minimize the earliness and tardiness for a given set

of jobs with different release dates.

6.4.2 The APS Model for TWET

While maintaining all the same model structure used in the previous APS models,

the implementation of the APS model on the TWET problem requires a few changes

to incorporate earliness measurements into the model. All the variables in the model

remain the same for the most part while the variable Rjit is introduced to capture

the number of early periods on a job i belonging to customer j. Since the aggregate

structure of the model does not provide a direct measure for Rjit, we included two

intermediate integer variables Vjit and Kjit intended to capture the number of periods

with work done in advance (i.e. inventory) and the number of periods with assigned

capacity respectively. The difference between these two variables lead to the earliness

measure. The complete list of decision variables for this model are listed in Table

6.21 and the mathematical model is next.

Table 6.21: Decision Variables of the APS Model Applied to the TWET Problem

Xjit Percent of work assigned to job i in cluster j at period t

Kjit Periods in which job i in cluster j is using work capacity Xjit

Ejit Percent of work completed by the deadline for job i in cluster j in period t

Vjit Periods in which job i in cluster j has work completed Ejit

Bjit Percent of unfulfilled work after the deadline for job i in cluster j in period t

Rjit Early periods corresponding to job i in cluster j

Ljit Late periods corresponding to job i in cluster j
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minimize
∑
j∈J

∑
i∈Mj

T∑
t=1

wj(Rjit + Ljit) (6.64)

subject to:

Bji1 − Eji1 = Dji1 −Xji1, ∀j ∈ J,∀i ∈Mj (6.65)

Bjit − Ejit = Djit +Bjit−1 −Xjit − Ejit−1, ∀j, i;∀t ∈ {2, 3, ., T} (6.66)∑
j∈J

∑
i∈Mj

PjiXjit ≤ αx, ∀t ∈ {1, 2, . . . , T} (6.67)

∑
t∈T

Xjit ≤ 1, ∀j ∈ J ;∀ i ∈Mj (6.68)

rji−1∑
t=1

Xjit ≤ 0, ∀j ∈ J,∀i ∈Mj (6.69)

Ljit ≥ Bjit, ∀j ∈ J,∀ t ∈ {1, 2, . . . , T} (6.70)

Vjit ≥ Ejit, ∀j ∈ J,∀ t ∈ {1, 2, . . . , T} (6.71)

Kjit ≥ Xjit, ∀j ∈ J,∀ t ∈ {1, 2, . . . , T} (6.72)

Rjit = Vjit −Kjit, ∀j ∈ J,∀ t ∈ {1, 2, . . . , T} (6.73)

Xjit, Bjit, Ejit ∈ [0, 1] , ∀j ∈ J,∀t ∈ {1, 2, . . . , T} (6.74)

Ljit, Rjit, Kjit, Vjit ∈ Z+, ∀j ∈ J,∀t ∈ {1, 2, . . . , T} (6.75)

Similarly to the previous APS models, the first two constraints represent the work

balance equations which capture the percent of work done after the release of each

job in each cluster. Constraint (6.67) enforce the capacity limit. Constraint (6.68)

ensures that no job is assigned more work than what is required to complete 100%

of the work. Constraint (6.69) ensures that work is not assigned to a job on periods

prior to its release date. Constraint (6.70) captures each one of the periods in which

a job is late, similarly constraints (6.71)and (6.72) capture each one of the periods
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in which a job has work done in advance and assigned work respectively. Solution

to the above model provides a feasible optimal preemptive schedule for the TWET

problem.

6.4.3 Computational Experiments

We test the APS and BPS modeling approaches as they are implemented to solve

the TWC problem using the same methodology used during the testing of the models

on the TWT problem - Section 6.2.3. Here we perform the same two sets of numerical

experiments and solve the same instances as in Section 6.2; keeping the same format

we test first the performance of both models under five different problem sizes (10,

20, 40, 80, and 160 jobs) followed by tests to evaluate the effect of the arrangement

of release and due dates on the APS model. The results of these tests are as follows.

6.4.4 Computational Results

Results from solving 100 instances (20 for each problem size) on each model (200

runs) show that the BPS model was able to find the optimal solution in 20% of the

instances (20 of the 100 instances) while the APS model produced optimal solutions

in 40% (40 instances out of 100). Figure 6.3 illustrates these observations in more

detail. As expected, in both cases, the number of optimally solved instances decreases

as the problem size (i.e., the number of jobs) increases.

While the APS model reported optimal solutions for all instances of the smallest

problem size (10 jobs), a large portion of these instances did not reach optimality with

the BPS model within the preset time limit. The gap between the two models in this
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Figure 6.3: Count of optimal and timed-out instances under the TWET problem

respect is also noticeable with 20 and 40 jobs. The BPS model provided 4 optimal

solutions for instances with 20 jobs, and no optimal solutions for the instances 40 jobs

or larger. The APS model, on the contrary, was able to reach optimality on most of

the instances with 20 jobs (17 out of 20), and 3 of the instances with 40 jobs. As

we compare the computational time performances and optimality gaps between both

models we see a significant difference. In terms of computational time performances

the APS model we observe that even with relatively small size problems (i.e., 10 jobs),

while it takes on average 18 minutes for the BPS model to reach at optimality, the

APS achieves the same result in a matter of 12 seconds. As the problem size increases,

the convergence performance degrades significantly for the BPS model. The average

optimality gap quickly rises to 19.5% for 40 jobs and continues to increase with larger

sizes with a worst case performance of 85.5% gap on one of the instances wiht 160

jobs. On the contrary, the optimality gap with the APS model is well below 5% in
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the case of 40 jobs and it increases up to about 32% for 160 jobs. Numeric details on

the comparison is summarized in tables 6.22 and 6.23.

Table 6.22: Results for the BPS Model on the TWET Problem (100 instances)

BPS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 4 0.05 1093 3607 0.00 0.00 0.00

20 16 3.28 2941 3604 0.00 1.29 8.17

40 20 3600 3605 3635 0.43 19.5 50.5

80 20 3600 3611 3648 44.7 63.8 82.9

160 20 3611 3758 3968 75.25 81.66 85.54

Table 6.23: Results for the APS Model on the TWET Problem (100 instances)

APS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 0 0.093 11.91 149.8 0.00 0.00 0.00

20 3 3.040 840.2 3991 0.00 0.50 4.18

40 17 583.6 3587 4255 0.00 3.06 6.21

80 20 3601 3638 3676 1.97 8.21 18.1

160 20 3606 3663 4076 2.46 31.95 97.16

6.4.4.1 Extended Testing for the APS Model

Similarly to the extended testing performed on the APS model under the TWC

and TWT problems, numerical experiments show how the model performance under

the TWET is also affected by the arrangement of release and due dates in the schedule;

Similar to the TWT, here the two levels of problem sizes (20 and 40 Jobs) consistently

show that instance complexity increases also as a function of the relative arrangement
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of the release dates and due dates. Across the release date arrangements it is observed

that the number of instances solved optimally decreases when the jobs are released

in close proximity to each other; the effect of condensed release dates is noted more

dramatically under the group of 20 jobs where the total number of optimally solved

instances goes from 30 to 11; as expected, the computational time also change as the

release dates are arranged closer together, and on average the computational time

for 20 jobs goes from 1113 seconds to 3041. In the case of 40 jobs this trend is not

observed as the larger number of timed out instances forced most of the computational

times to be near the time out limit (3600 Seconds). In terms of the optimality gap

the results for the 20-jobs group are consistent with the results on the number of

time outs and computational times; here the average gap grows from 0.72% to 1.34%

as the release dates are more compact. A not so consistent and conclusive pattern

is observed in the optimality gaps for the 40-jobs group where the optimality gaps

change, by contrast, from 1.89% to 3.02% as the release dates are spread apart.

Across the due date arrangements a similar pattern is observed for the 20-jobs

group although in a less significant way. The number of instances that timed out,

the computational times, and the optimality gaps reflect a consistent change in their

magnitude in the direction of more dense arrangements of release dates and due dates;

this is, the number of timed out instances grows from 18 to 21, the computational

time changes from an average of 2031 seconds to 2123, and the optimality gaps go

from 0.92% to 1.14% all as due date slack is restricted within a small constant range;

for 40-jobs, again, the results are not conclusive; here the total number of timed out

instances, the average computational times and the optimality gaps do not reflect a



126

significant change as the due date slack changes. A detailed account of the specific

results for each test group is summarized in tables 6.24 through 6.27.

Table 6.24: APS Extended Testing - Condensed Release Dates on 20 Jobs (40 instances)

Condensed Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 14 91.62 2859 3861 0.00 1.33 3.39

PS 15 351.5 3222 4145 0.00 1.34 3.97

Table 6.25: APS Extended Testing - Sparse Release Dates on 20 Jobs (40 instances)

Sparse Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 7 4.830 1387 3981 0.00 0.95 3.71

PS 3 3.040 840.2 3991 0.00 0.50 4.18

Table 6.26: APS Extended Testing - Condensed Release Dates on 40 Jobs (40 instances)

Condensed Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 20 3614 3905 4126 1.14 1.83 2.56

PS 20 3604 3863 4129 1.39 1.96 2.67
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Table 6.27: APS Extended Testing - Sparse Release Dates on 40 Jobs (40 instances)

Sparse Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 16 491.2 3365 4197 0.00 2.97 9.76

PS 17 583.6 3587 4255 0.00 3.06 6.21

6.5 The Total Weighted Number of Tardy Jobs

Problem (TWNTJ)

6.5.1 The BPS Model for TWNTJ

The optimization models for the total weighted number of tardy jobs differently

from the TWT model, as its name implies, are only concerned with the jobs that are

tardy regardless of how large the tardiness is; consequently, the BPS model does not

require a tardiness variable lit; instead it requires an additional binary variable Ui

indicating if a job i is late or not. The nomenclature for the decision variables of the

model is given in Table 6.28.

Table 6.28: Decision Variables of the BPS Model Applied to the TWNTJ Problem

xit Fraction of a job i assigned during regular time at period t

yit Binary variable: 1 if job i finishes on period t, 0 otherwise

Ui Binary variable: 1 if job i is late, 0 otherwise

fi Finish date for job i

Similarly to the previous models this model involves binary, continuous, and dis-

crete decision variables. The two binary variables yit and Ui track respectively the

completion time of jobs, and whether jobs are late or not. The continuous variables

determine the amount of allocations of regular capacity xit that are necessary to com-
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plete the jobs while the discrete variables track the finish dates fi . The mathematical

model is as follows:

minimize
n∑
i=1

wiUi (6.76)

subject to:

TUi ≥ fi − di, ∀i ∈ I (6.77)

T∑
t=ri

yit = 1, ∀i ∈ I (6.78)

fi =
T∑
t=1

tyit, ∀i ∈ I (6.79)

n∑
i=1

xit ≤ αx, ∀t ∈ {1, 2, . . . , T} (6.80)

T∑
t=ri

xit = pi, ∀i ∈ I (6.81)

γ∑
t=ri

xit ≥ piyiγ, ∀i ∈ I, ∀γ ∈ {ri, . . . , T} (6.82)

xit ∈ [0, 1] ; fi ∈ Z+; yit, Ui ∈ {0, 1} (6.83)

The objective function given in (6.76) minimizes the total cost of tardy jobs

weighted by different amounts wi where the weight for job i, wi, maps the cost

incurred when job i is late. The first set of constraints (6.77) identifies when a par-

ticular job is late; this is done via the helping parameter T which represents the total

number of periods in the planning horizon. The following constraints (6.78) ensures

that each job is finished by the end of the planning horizon, and constraints (6.79)

capture the completion times of each one of the jobs. Constraints (6.80) enforces the
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capacity limit designated as αx. Constraint (6.81) allocates all the work required pi to

complete a job across time periods following its release date, and (6.82) ensures that

jobs are not completed before all required work is done. Solution to the above model

provides an optimal preemptive schedule to minimize the total number of tardy jobs

weighted by different cost amounts.

6.5.2 The APS Model for TWNTJ

The implementation of the APS model on the TWNTJ problem although very

similar to the TWT problem requires a few constraint changes to incorporate the

count of tardy jobs into the model. Similarly to the BPS model, the amount of tar-

diness is not relevant; therefore, the variable Ljit is replaced by a binary variable Uji

that tracks whether a job is late or not. The rest of the variables in the model remain

the same. The complete list of decision variables for this model are listed in Table 6.21.

Table 6.29: Decision Variables of the APS Model Applied to the TWNTJ Problem

Xjit Percent of work assigned to job i in cluster j at period t

Ejit Percent of work completed by the deadline for job i in cluster j in period t

Bjit Percent of unfulfilled work after the deadline for job i in cluster j in period t

Uji 1 if job i in cluster j is late, 0 otherwise
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minimize
∑
j∈J

∑
i∈Mj

wjUji (6.84)

subject to:

TUji ≥
∑
t∈T

Bjit, ∀j ∈ J,∀ i ∈Mj (6.85)

Bji1 − Eji1 = Dji1 −Xji1, ∀j ∈ J,∀i ∈Mj (6.86)

Bjit − Ejit = Djit +Bjit−1 −Xjit − Ejit−1, ∀j, i;∀t ∈ {2, 3, ., T} (6.87)∑
j∈J

∑
i∈Mj

PjiXjit ≤ αx, ∀t ∈ {1, 2, . . . , T} (6.88)

∑
t∈T

Xjit = 1, ∀j ∈ J ; ∀ i ∈Mj (6.89)

rji−1∑
t=1

Xjit ≤ 0, ∀j ∈ J,∀i ∈Mj (6.90)

Xjit, Bjit, Ejit ∈ [0, 1] , ∀j ∈ J∀t ∈ {1, 2, . . . , T} (6.91)

Uji ∈ {0, 1} ∀j ∈ J,∀i ∈Mj (6.92)

The first constraint (6.85) tracks via the binary variable Uji all the jobs that are

being completed after the due date (i.e. jobs that contain pending work Bjit > 0);

again, this is done via a helping parameter T representing the total number of periods

in the planning horizon. The two following constraints (6.86, 6.87) represent the work

balance equations; constraints (6.88) enforce the capacity limit. Constraint (6.89)

ensures that no job is assigned more work than what is required to complete 100%

of the work. Constraint (6.90) ensures that work is not assigned to a job on periods

prior to its release date. Solution to the above model provides a feasible optimal

preemptive schedule to minimize the total number of weighted tardy jobs.
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6.5.3 Computational Experiments

The testing of the APS and BPS modeling approaches as they are implemented

to solve the TWNTJ problem follows the same methodology used during the testing

of the TWT problem - Section 6.2.3. For experimental consistency throughout the

research, regardless of the relevance of the results, here we perform and discuss the

same two sets of numerical experiments as in Section 6.2.

6.5.4 Computational Results

A total of 100 instances (20 for each problem size) on each model (200 runs) show

via numerical analysis that the number of instances that were solved optimally by each

model was again significantly different; however, the total number of instances solved

optimally was significantly higher than the number of optimal instances reported for

the TWT, TWC and TWET problems. The BPS model was able to find the optimal

solution in 50% of the instances (50 of the 100 instances) while the APS model

produced optimal solutions in 88% (88 instances out of 100). Figure 6.4 illustrates

these observations in more detail. As expected, in both cases, the number of optimally

solved instances decreases as the problem size (i.e., the number of jobs) increases.

While the APS model reported optimal solutions for all instances of problem size

of 80 jobs or less, the BPS model did not find the optimal solution on some portion

of these instances. The gap between the two models in this respect is also apparent

with 160 jobs. The BPS model provided no optimal solutions for instances with 80

jobs or higher whereas the APS model was able to reach optimality on some of the

instances with 160 jobs. Results are summarized in tables 6.30 and 6.31.
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Figure 6.4: Count of optimal and timed-out instances under the TWNTJ problem

In terms of computational time, we observe that even with 20-jobs size problems

the BPS model reaches optimality after about 17 seconds on average while the APS

achieves the same result within a fraction of a second on average. As the problem

size increases, the convergence performance on the BPS model degrades although

not as dramatically as in the previous tardiness related problems, and the average

optimality gap goes to up to 8.63% for 160 jobs with a worst case performance of

14.02% gap. In the case of the APS model, the optimality gap is not much different

with an average value under 8% and a worst case performance of 54.93% on 160

jobs. In terms of the maximum values reported for the optimality gap with 160 jobs,

the BPS model appears to produce significantly lower values than the APS model

(14.02% vs. 54.93% respectively); this data artifact is the result of the lack of feasible

solutions from the BPS runs which resulted in only 4 instances with feasible integer

solutions and 16 instances for which the time limit was surpassed without the solver

reaching any integer feasible solution.
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Table 6.30: Results for the BPS Model on the TWNTJ Problem (100 instances)

BPS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 0 0.05 0.96 2.28 0.00 0.00 0.00

20 0 1.06 17.30 132.2 0.00 0.00 0.00

40 10 18.51 2111 3995 0.00 0.49 5.81

80 20 3602 3683 4267 0.00 1.38 8.76

160 20* 3620 3624 3632 4.68 8.63 14.02

*Only 4 out of the 20 instances reached a feasible integer solution

Table 6.31: Results for the APS Model on the TWNTJ Problem (100 instances)

APS

Computational Time (sec) Relative Gap (%)

Jobs TO Min Avg Max Min Avg Max

10 0 0.015 0.116 0.281 0.00 0.00 0.00

20 0 0.078 0.920 2.888 0.00 0.00 0.00

40 0 2.263 9.436 32.17 0.00 0.00 0.00

80 0 13.04 315.2 2671 0.00 0.00 0.00

160 12 554.8 2475 3636 0.00 7.89 54.93

6.5.4.1 Extended Testing for the APS Model

As observed in the previous section, the performance of the models under the

TWNTJ is significantly better than what we observed on other problems; conse-

quently, the numerical experiments focused on the APS model for the two levels of

problem sizes (20 and 40 Jobs) consistently show a larger number of optimally solved

instances than in previous experiments. In this case, the availability of useful data

on the performance of the APS model as it is affected by the arrangement of release

and due dates is somewhat hindered by the better performance of the model; this
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is, across the release date arrangements it is observed that the number of instances

that timed out in the 20 and 40 job groups is virtually zero, and this is also reflected

on the optimality gaps where all the values were zero. With respect to the compu-

tational time and the release date arrangement, the data also shows no significant

differences where for 20 and 40 jobs the average amount of time required to reach

optimal solutions was virtually unchanged by the different arrangements of release

dates.

Across the due date arrangements a similar situation is observed; the number of

instances solved optimally as well as the computational times and optimality gaps

do not offer a clear view of the effect produced by the arrangement of the due dates.

Overall, the impact of the release and due date slack arrangements under the TWNTJ

problem did not provide major insights on the sensitivity of the model to these factors.

A summary of the results for each test group is summarized in tables 6.32 through

6.35.

Table 6.32: APS Extended Testing - Condensed Release Dates on 20 Jobs (40 instances)

Condensed Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 0* 0.400 0.811 1.970 0.00 0.00 0.00

PS 0 0.437 1.091 2.930 0.00 0.00 0.00

* 3 out of the 20 instances were infeasible

6.6 Analytical Comparison of Models

From a practical perspective the overall superior performance of the APS modeling

approach has been shown via numerical testing. In this part of our discussion we
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Table 6.33: APS Extended Testing - Sparse Release Dates on 20 Jobs (40 instances)

Sparse Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 0 0.090 0.903 1.995 0.00 0.00 0.00

PS 0 0.078 0.920 2.888 0.00 0.00 0.00

Table 6.34: APS Extended Testing - Condensed Release Dates on 40 Jobs (40 instances)

Condensed Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 0* 1.627 9.389 29.79 0.00 0.00 0.00

PS 0 4.773 10.16 23.41 0.00 0.00 0.00

* 1 out of the 20 instances was infeasible

continue the comparison of the presented approaches and models but this time under

a more analytic umbrella. The sections ahead are targeted to examine two different

aspects that support the claims made after the numerical testing; the first section

shows that the BPS as well as the APS modeling approaches as applied to the different

tardiness related measures are equivalent at providing the same solution to the same

problem; the second section takes a look at the solution space of both models and

shows how the differences in the size of the solution spaces correlate to the differences

in performance.

6.6.1 Model Equivalency

A closer look at all the model implementations in sections 6.2 through 6.5 shows

that for each modeling approach (APS or BPS) the core modeling structure remains

the same regardless of the tardiness measure being addressed; this is, for the BPS
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Table 6.35: APS Extended Testing - Sparse Release Dates on 40 Jobs (40 instances)

Sparse Release Dates

Computational Time (sec) Relative Gap (%)

Slack TO Min Avg Max Min Avg Max

CS 0 1.346 16.03 111.9 0.00 0.00 0.00

PS 0 2.263 9.436 32.17 0.00 0.00 0.00

models as they are applied to the TWT, TWC, TWET and TWNTJ the parameters

(r, d, x, αx and p) constitute a set of controlling constraints that remain invariable

from problem to problem; similarly the APS models in all tardiness measures uses

the same work balance equations and controlling constraints throughout all problems;

furthermore, a closer look between the APS and BPS model implementations on any

one of the problems reveals that each of the core set of constraints in the BPS model

has a direct equivalent within the core set of constraints in the APS model.

In general, for all tardiness related measures it is possible to see that the APS and

BPS models are equivalent when comparing their core set of constraints; however,

such equivalency is not as straight forward when comparing their objective functions;

therefore, model equivalence in this context is mainly concerned with the equivalency

between the representations of the tardiness measures in each model (i.e. the objective

functions in each model ). With this in mind, here we show model equivalency from

an objective function perspective; to this end we use the TWT problem as our core

problem to show equivalency between its BPS and APS objective functions; then

we show that these results are also applicable to show the equivalency between the

models in all the remaining problems.

From evaluating the terms in the objective functions of the models in the TWT

problem, we can see that the tardiness variables (li and Ljit) don not map directly
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from one model to the other. While in the BPS model li represents the actual number

of tardy periods of job i, the variable Ljit in the APS model only tracks the individual

periods in which a job i in customer j is actually late.

BPS :
n∑
i=1

wili

APS :
∑
j∈J

∑
i∈I

T∑
t=1

wjLjit

For both objective functions to match one-to-one the tardiness expressions
∑T

t=1 Ljit

and li must be equivalent as shown in expression (6.93).

li =
T∑
t=1

Ljit (6.93)

In order to validate the equivalence in (6.93) the summation of Ljit over t must

amount to the same tardiness represented by li = fi−di in the BPS model; therefore,

T∑
t=1

Ljit = fi − di (6.94)

Since Ljit ≥ Bjit as listed in constraints (6.15) of the APS model, it is clear

that each tardy period Ljit is tied to periods in which there is pending work Bjit;

furthermore, Bjit is constrained to satisfy the work balance equation Bjit − Ejit =

Djit + Bjit−1 − Xjit − Ejit−1 where the variables Ejit cannot be greater than zero

on periods t where Bjit ≥ 0 and Ejit cannot be greater than zero on periods t ≥

argmaxt∈{1,2,...T}(Djit). Being the precise period when a job is due td represented by:

td = argmaxt∈{1,2,...T}(Djit) (6.95)
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and the value of B on the due date Bjitd

Bjitd = Djitd − (Xjitd + Ejitd−1) (6.96)

Where Bjitd ∈ [0, Djitd ] and Xjitd ∈ [0, Djtd ].

In light of the above premises (expressions 6.95, 6.96) we can express the total

tardiness of a job i in j as

T∑
t=1

Ljit + td − td =
T∑
t=1

dBjite+ td − td (6.97)

Where on the left side
∑T

t=1 Ljit + td is equivalent to the finish date which we

label as tf and on the right side can be broken down into the summation of B values

before the due period (t ≤ td − 1), between the due period and the finish period

(td ≤ t ≤ tf − 1), and after the finish period (t ≥ tf )

T∑
t=1

Bjit =

td−1∑
t=1

Bjit +

tf−1∑
t=td

Bjit +
T∑

t=tf

Bjit (6.98)

Here the first and last term on the right side are equivalent to zero and the middle

term represents the equivalent non-integer expression for tardiness where
∑tf−1

t=td
Bjit+

td represents the non-integer expression for the finish date, and showing that the

amount of tardiness is directly equivalent from one model to another as in (6.99)

li =

tf−1∑
t=td

dBjite+ td − td (6.99)

As the tardiness related measures studied in this document are derived from the

TWT problem, the equivalency between the APS and BPS models in the TWT

problem can be easily used to derive the equivalency of the objective functions in the
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remaining problems; this is, in the case of the TWC problem the equivalency between

the tardiness variables li =
∑T

t=1 Ljit remain unchanged as these same variables are

used to represent completion times Ci and Cjit when all jobs are defined as tardy;

in the case of the TWET a new variable is added to each model to account for the

earliness however it can be seen that this does not change the equivalency as in (6.100)

(li + ei) =
T∑
t=1

(Ljit +Rjit) (6.100)

Finally, it can be seen how the objective functions in the TWNTJ directly follow

equivalency as a result of the new variable U where the specific amounts of lateness

are not relevant and equivalency is based simply on the presence or absence of lateness

which as shown above are also equivalent.

6.6.2 Solution Space and Model Performance

The size of the solution space as an indicator of the computational burden is also a

way of estimating the overall performance of a model; in particular, here we show that

the APS model possesses a lower computational burden than the BPS model which

results in faster solutions. By solution space, in this context, we mean the number of

possible combinations that the independent variables can take in order to generate a

single feasible solution. We use the TWT models as basis for comparison, and since

the model structure does not change for the different tardiness related measures, the

results from this section can be extended to all the other tardiness related problems

(TWET, TWC and TWNTJ). We initiate this discussion using the BPS model to

compute the size of its solution space; in this particular case a single feasible solution

with a cost ψ equal to:
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ψ =
n∑
i=1

wili (6.101)

Being T the total number of periods in the planning horizon and n the total

number of jobs in the set of jobs I; the model must compute the lateness for each one

of the n jobs (i.e. li : i ∈ {1, 2, . . . , n} ) where li = fi − di and fi =
∑T

t=1 tyit subject

to
∑T

t=1 yit = 1,∀i ∈ I. Considering this, to produce a single feasible value for li the

binary variable yit must try from a combination of binary options in the elements of

a vector t̂ =< a1, a2, . . . , aT > where each element at ∈ {0, 1} for t ∈ {1, 2, . . . , T}.

Given T binary digits in each job there are only T feasible options for yit to take

the value of 1 only once within t̂ ; for an instance, if T = 3 there will only be three

possible options for yit to take the value of 1. this is illustrated as follows in figure

6.5

Figure 6.5: Sample feasible and unfeasible options for yit

Here the total number of possible non-zero value options ST (feasible and unfea-

sible) for an independent variable such as yit on a single job is:
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ST = T +
T !

2!(T − 2)!
+

T !

3!(T − 3)!
+ · · ·+ T !

T !(T − T )!

ST =
T∑
k=1

T !

k!(T − k)!

ST =
T∑
k=1

(
T

k

)
In addition to yit, the BPS model also contains xit as an independent variable;

therefore using a similar rationale we can see that there are also ST possible non-zero

value options for xit. By combining the available options for all the independent

variables in the BPS model we can see that for every single job the solution sub-space

in the BPS model SSjob is given by :

SSjob = ST × ST = (ST )2 (6.102)

and for a group of n jobs the BPS model solution space SSBPS is:

SSBPS = n(ST )2 (6.103)

Analogously, by looking at the model variables in the APS model, it can be noted

that only Xjit represents an independent variable. Following the same logic from the

binary model the number of non-zero value options for Xjit is also given by ST , and

since there is only one independent variable in the APS model we can conclude that

the total solution space for the APS model is given by SSAPS
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SSAPS = n(ST ) (6.104)

which indicates that the solution space for the BPS model is ST times larger than

the one for the APS; furthermore, we can conclude that since the variables Xjit map

directly to the variables xit in the BPS model, the APS solution space is contained

in the BPS solution space:

SSAPS ⊂ SSBPS � (6.105)

6.7 Conclusions

We propose two modeling approaches that can be used to solve a variety of tar-

diness related problems on a single machine layout where preemption is allowed.

Following the conventional modeling approach, we first build a model using binary

variables that identify completion times of a finite set of jobs with varying release

times, due dates, and processing times - we refer to this model as the Binary Pre-

emptive Scheduling (BPS) model. The second model, which we call the Aggregate

Preemptive Scheduling (APS) model, employs adopts the aggregate planning ap-

proach while binary variables are eliminated producing more efficient and advanced

models.

In order to test and compare both models for computational efficiency, we de-

sign and perform two sets of numerical tests. First we determine and compare the

computational performance of both models with respect to the number of jobs for all

tardiness related measures. Here we observe that the BPS model was outperformed

by the APS model in all the different tardiness measures. Second, we explore the
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performance and sensitivity of the APS models to different arrangements of release

and due dates, again, for all tardiness related measures; through the extended testing

on the APS model, a pattern is noticed where effect of condensed release dates on

40 jobs produced inconclusive results. Aside from the TWNTJ problem where most

of the optimality gaps are zero (optimal), the TWT, TWC and TWET problems

show an increase in the relative gap as the release dates were spread apart (i.e. re-

laxed). From an empirical perspective we can only speculate that the difference in

the behavior of the optimality gap for 20 and 40 jobs implies that a strong interac-

tion is present between the range used for the release dates and the instance size;

we know that if the number of jobs in an instance increases but their release dates

stays constrained to a narrow range the problem complexity is likely to be reduced;

as n tends to infinity and the release date range stays constant, the problem tends

to be trivial where a polynomial time solution can be obtained by scheduling the

jobs in non-decreasing order of their weights. Aside from the explanations we can

provide at this moment we recognize that more research is required in order to fully

understand the interaction between problem size and release dates. Overall, results

of our analysis demonstrate the strong computational performance and convergence

of the APS model and its patent dominance over the BPS model. The study reveals

that APS model is a promising tool for generating optimal or near-optimal schedules

and capacity allocation plans reasonably quick.



CHAPTER 7

Concluding Remarks

We present three alternative methodologies for the solution of tardiness related

problems: heuristics, conventional modeling and advanced modeling approaches each

one with a distinctive performance and application. We show how heuristic ap-

proaches represent a quick and fairly accurate alternative to the conventional mod-

eling approach, and how the advanced modeling approach represents a quicker and

more accurate method than the conventional modeling approach for the solution of

tardiness related optimization; furthermore, from a practical perspective, by demon-

strating the accuracy and efficiency of the advanced modeling approach we offer a

single method that can be used in a variety of tardiness related problems for applica-

tions with up to 160 jobs. From an academic perspective, here we also contribute to

fill an existing void in the literature on preemptive scheduling; we do this by present-

ing a research that focuses on preemptive problems and uses modeling as the center

of the solution approach.
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