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During the past two decades, the power systems witnessed vital changes in terms of 

centralized paradigm versus more decentralized and market driven approaches; technical 

advances on communications and computation; and generation technologies which 

collectively lead to the advancement of microgrids (MGs). In this thesis, a novel dynamic 

adaptive simulations (DAS) approach is introduced for addressing major challenges in 

the operation and control of MGs, such as solving the economic and environmental load 

dispatch problem, achieving a sophisticated autonomous control of microgrids, and 

promoting the cooperation between individual microgrids to increase the power network 

reliability and energy surety. Initially, a first version of dynamic adaptive simulation was 

designed, namely DASEELD, for the efficient real-time economic and environmental load 

dispatching . The DASEELD framework was illustrated and validated via a modified IEEE-

30 bus test system and as the experiments revealed, it is capable of reducing the 

computational resource usage for the reliable power dispatch without compromising the 

quality of the solution. Moreover, for the operation and control of MGs a second version 

of DAS was developed, namely DASCONTROL, in order to speed up significantly the real-

time computation of the resource allocation and control decisions to optimize the 

operational cost, energy surety, and emissions. For validating the DASCONTROL 



framework a realistic MG was utilized to prove that DASCONTROL significantly reduces 

the computational burden of a considerably complex multi-objective problem. Finally, a 

third version of DAS was developed, namely DASSH, to provide distributed microgrids 

with a protocol of self-healing, both when they are operating collaboratively and 

competitively (in an isolated mode) while increasing the reliability of the network by 

pledging energy surety. DASSH framework was applied to a realistic case study that 

includes three microgrids and has been tested under four different emergency incidents. 

The results reveal that the cooperative collection of distributed microgrids were able to 

meet the critical and priority loads to a higher extent at all times while sacrificing from 

the less important non-critical loads. With the combination of the results from the 

different dynamic adaptive simulation versions that were created, this thesis reveals that 

DAS is a promising method to model microgrid systems as it provides means to find the 

most efficient method to optimize and enhance the microgrids’ operation and control and 

attain several benefits. 
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Modern society has come to depend on the easy and reliable flow of electricity. When 

a major power outage occurs, damages and the inability to conduct normal life operations 

cause billions of dollars in losses per day, in addition to costing human lives. America’s 

great wake-up call about the severe cost of insufficient investment and oversight in its 

electrical infrastructure came on August 14, 2003 when a widespread power outage hit 

many parts of the Northeastern and Midwestern United States as well as the Canadian 

province of Ontario. The US electrical system is so dynamic and interconnected that it’s 

impossible for human operators to make the necessary changes (sometimes needed in a 

fraction of a second) to quarantine problems in the network. When the dust finally settled, 

over 50 million people were without power, and the majority were without power for the 

adjacent two days or more. It’s estimated that this particular outage cost the North 

American economy 6 billion dollars. 

As we come into an age of even more heightened electricity usage with the advent of 

electric/hybrid cars and the like, these inadequacies in the traditional grid structure seem 

highly unlikely to be solved. In fact, it is found by some measures that the frequency has 

actually increased slightly between 1984 and 2006. One of the concerns highlighted as 

being a potential contributory factor is the high usage of high-voltage transmission lines 

used for long distance transfers. The national grid study demonstrates the increased usage 

of Transmission Loading Relief over the years. This is used as a rough measure of system 

stress which is obviously heightened as these high-voltage lines take on added loads. 

Having electricity travel such lengthy distances also comes with its share of 

inefficiencies. The share of power dissipated in transport as well as breaking down the 

giant voltages that come with high-voltage lines into domestically appropriate figures is 
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estimated to be 7% of the total power used in the US. It also makes it harder for smaller 

renewable sources to efficiently function as part of the grid leading to customers to prefer 

an “off the grid” approach in some cases. Traditional grid systems huge bulk also impede 

them from dynamically changing to meet demand as patterns of high demand develop in 

new areas. These substantial load variations lead to heightened inefficiencies in the entire 

system as energy consumption continues to evolve. 

The traditional grid system also leaves areas of extreme importance which need 

unconditionally reliable power to operate properly (military bases, hospitals, certain private 

and state services) at risk. Energy surety is of absolute importance to these enterprises 

especially in a crisis situation. Traditional power services are too unwieldy to ensure power 

to certain priority sections for these customers and so, those customers must rely on back-

up generators which can also fail. 

The lack of strict regulation and allowing the controls to be in the hands of humans, 

who may prioritize politics or profits over integrity of the system, puts all of us at risk of a 

collapse. In an effort to cope with these unfortunate situations, microgrids, especially with 

the complementary use of the Dynamic Data Driven Application System paradigm, may 

provide part of the answer. 

 

1.1. Overview of Microgrids (MGs) 

Microgrids are autonomous electricity environments that function within a larger 

electrical system. They are able to react to a crisis (or advise a human operator on how to 

react) inside the necessary time frame in order to contain local problems when necessary. 

They have potential as a mechanism to increase reliability and efficiency while also 

offering new services which are unavailable under a traditional grid system [1]. These new 
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services may include dynamic pricing [2] and distributed energy resource management [3]. 

A typical microgrid can cater to many different types of consumers including customers 

with traditional demands, customers with sensitive loads, and customers who have micro-

sources consisting of photovoltaic panels, wind turbines, fuel cells, micro-turbines, diesel 

generators, or battery storages [4]. 

More specifically, a microgrid is an energy distribution system consisting of both 

renewable and conventional power generation sources along with some form of energy 

storage. A microgrid system is capable of operating both alongside of a municipal power 

grid or as an “island” separate from the local utility grid. The purpose of a microgrid is to 

provide energy security as well as an uninterrupted source of energy for its prescribed 

customer. An added benefit of microgrids is that the use of renewable energy sources 

allows for significant cost savings in terms of utility bills. Microgrids can be conceived as 

a good example of a System of Systems. In order to meet the requirements of a System of 

Systems, a collection of systems must possess operational independence, managerial 

independence, geographic distribution, emergent behavior and evolutionary development. 

A microgrid combines software, hardware, policy, and technology to form a more reliable, 

secure, robust, and convenient alternative to its current traditional counterpart grids. 

Microgrids satisfy all of the properties of a system of systems as they include several 

operational and managerial independent component-systems such as distributed and 

renewable energy sources and energy storage that are geographically separate from each 

other. Additionally, the component-systems present emergent behavior due to the 

containment of renewable distributed energy resources that are driven by weather and are 

subject to random outages to which a microgrid must adjust. They are also highly complex 
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in that the control system must effectively manage all of the component systems, ensuring 

that each component works to the benefit of the overall system. Finally, a microgrid 

presents evolutionary development as it can accept new power generation as storages 

capabilities as they become available to either meet the increased demand needs of the 

customer or to further reduce their costs. As such, a microgrid fits perfectly into a system 

of systems construct. 

The ever-increasing demands placed on the nation’s power grid and local electrical 

utilities present significant challenges in the effective management and control of a 

microgrid. First, microgrids require sensored meters in order to measure the customer’s 

consumption and patterns of demand. Without this, the microgrid would not be able to 

effectively detect faults in the system or provide secure power to critical assets in the event 

of an emergency. Secondly, microgrids require a much more robust means of 

communication than presently in use in the local utility transmission and distribution 

networks. The controls system in a microgrid uses a great deal of telecommunications 

resources in order to send price and status signals and receive information from consumers 

in real time. The next issue is that very few local utility grids can properly handle renewable 

resources. This is due to renewable energy resources that are by nature intermittent and 

non-dispatchable. Furthermore, the system operators for existing transmission networks do 

not possess ability to manage power generation equipment not owned by their specific 

utility company. For example, an orange farm that normally receives service from a local 

utility decides to install a diesel generator to supply power to their farm. The local utility 

company cannot control how much electricity the generator produces at any given time or 

when the owner of the farm decides to turns the generator on or off. This causes problems 
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for the utility company in that the generator on the orange farm in that it reduces their 

ability to forecast how much electricity they need to generate to meet the needs of their 

customers. Also, with the generator running, customers may not be able to utilize all of the 

generated electricity leading to waste for the utility. Finally, existing local utility grids 

cannot support new technical developments such as vehicle-to-grid technology. Such 

technologies allow electrical vehicles to store energy when the grid’s demand is low and 

give back to the grid when the demand is high. 

Viewing a microgrid in terms of levels of control helps to address the implementation 

challenges associated with installing a microgrid in parallel to a local utility. There are 

three main levels of control when referring to an electrical network. These are strategic, 

tactical, and operational. The strategic level provides a high level overview of the entire 

system and provides a long-term vision for the future of the overall system. This is where 

we address the problems associated with robustness of communications systems, sensored 

meters and operators’ inability to control components outside of their network. At this level 

the microgrid controller ties into an existing electricity substation and monitors how much 

electricity the utility company is providing as well as the demand of the customers serviced 

by the microgrid. The most important aspect occurring at this level of control is the decision 

to isolate the microgrid from the local utility in the event of a power outage or national 

emergency. Component systems inside a microgrid that operate at the strategic level of 

control would be the computers mainframes and servers that oversee the overall electricity 

distribution system. Below the strategic level is the tactical level. This level is where we 

address problems stemming from the introduction of renewable energy resources into an 

electrical utility network. At this level, the microgrid determines how much electricity to 
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purchase from the local utility based upon whether or not the renewable energy resources 

meet the current consumer demand. It also determines when it is most cost effective to 

store excess energy or sell it back to the utility company using a form of net metering. The 

lowest level of control is the operational level. This is where we address the issues of 

integrating new technologies into an electrical distribution system. Component systems 

operating at the operational level would include the photovoltaic array, a wind farm, energy 

storage, and electric vehicles all of which require integration with a microgrid controller as 

well as some form of tie in to the local utility. Breaking down microgrid component 

systems into its different levels of control allow designers to effectively solve the major 

challenges associated with installing an electricity network operating both in parallel and 

separated from a local utility network. 

Traditionally, modeling techniques for the strategic, tactical and operational control 

of microgrids involves a multi-pronged approach where the development of a theory, a 

model, and a set of experiments happen in succession. 

 

1.2. Agent-based Simulation 

A great way to simulate the behavior of a system of systems such as a microgrid is 

using an agent-based simulation model. Agent-based simulation is a cutting-edge 

technique for modeling systems composed several autonomous “agents” that interact with 

one another. An agent-based simulation must contain three components: A collection of 

agents, the relationships between the agents, and the environment in which the agents 

interact. The manner in which the individual agents interact with one another influences 

the overall behavior of the system. Modeling agent interactions with each other allows 
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patterns and behaviors to emerge that were not necessarily present or pre-programmed into 

the base model. The emergent and evolutionary behavior of these multiple independent 

agent interactions distinguishes agent-based simulations from other simulation techniques 

such as discrete-event and system dynamics. Agent-based modeling offers a novel 

approach to the simulation of electricity distribution systems. This is because multiple 

independent agents (power generation resources) that interact with and feed into a larger 

network create the structure of an electricity distribution system. This larger network learns 

from their capabilities and adapts the overall system behavior to better suit the needs of its 

customers. 

Within this collection of agents, the most important characteristic of an agent is its 

ability to act without any external input. In general, agents act to achieve their own 

individually specified ends without regard for the actions of the agents in their 

environment. In terms of building a simulation model based on agents, each agent must 

possess certain characteristics. First, an agent must be individually distinguishable.  This 

means that a person can determine whether a component in the simulation model is part of 

a specific agent. All agents in the environment have features and characteristics that 

distinguish them from but make them recognizable to all other agents. Next, agents are 

autonomous. Each agent is capable of performing its prescribed function independently in 

their given environment. Individual agents detect information and translate it into outputs 

(behaviors) that impact the entire system. Agents also possess states that vary over time. 

Similar to how the overall system has a state that is the collection of its state variables, an 

agent also has associated variables that determine its present behavior over time ([5] and 

[6]). Lastly, each agent has rules defining its interactions with other agents. These rules can 
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include but are not necessarily limited to how different agents communicate with each other 

and their ability to respond to changes in the environment or other agents. In addition to 

these requirements for all agent-based simulation models, particular models, such as those 

for a microgrid, requires that agents be heterogeneous. For an agent-based microgrid 

simulation to function properly, the model must consider the full spectrum of diverse 

agents operating within the environment. The simulation model gives each agent a different 

amount or resources and will in turn produce varying amounts of energy as a result of the 

different agent interactions. 

 

1.3. Economic and Environmental Load Dispatch Problem 

The main challenge in microgrids is to solve the economic and environmental load 

dispatch problem optimally while minimizing the computational resources. The goal of the 

economic and environmental load dispatch (EELD) is to produce electricity at the lowest 

cost and emissions to reliably serve customers, while recognizing the operational limits of 

generation plants and transmission lines ([7] and [8]). The dispatching of loads is 

performed to control and allocate the total energy generation amongst the available 

resources (including both conventional and renewable sources) within a microgrid. 

The total demand of electricity is increasing day by day. For the load demand 

satisfaction a large number of thermal power plants have been utilized and the amount of 

the coal burnt keeps increasing. However, due to the aforementioned increasing amounts 

of coal being burnt, several toxic gases are emitted (such as carbon dioxide, sulphur 

dioxide, and nitrogen oxides) and significantly contribute to the pollution of the 

environment. Environmental pollution substantially impacts the global warming which in 
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turn damages the Ozone layer. To that end, it is highly desirable to produce power 

minimizing the costs while at the same time minimizing the amount of pollutants emitted. 

Hence, the study of EELD focuses on generating power on minimum costs and minimum 

emissions. 

 

1.4. Dynamic Adaptive Simulation in MGs 

In this thesis, we focus on creating framework of Dynamic Adaptive Simulations 

(DAS) by exploiting the Dynamic Data Driven Application Systems (DDDAS) paradigm 

in order to improve the operational control of microgrids, solve the EELD problem 

optimally and efficiently, and promote the cooperation between individual microgrids to 

increase the power network reliability and energy surety. DAS is a new modeling and 

control method which adaptively adjusts the fidelity of a simulation model. This paradigm 

steers the measurement process for selective data update and incorporates the real-time 

dynamic data into the executing model.  

To this end, this work contributes to the advancement of DDDAS in achieving a 

significant reduction in the computational resources required to conduct real time 

simulation. We achieve this by only looking at the detailed specifics of the system 

whenever the microgrid detects an abnormality, otherwise having the simulation in a more 

overseer mode. Combining the concepts of DAS and microgrids produces the embodiment 

of a system of systems operating at the operational level of control as each component 

system within a microgrid can operate independently for its own individual purpose. 

Furthermore, the Dynamic Adaptive Simulations running within the microgrids uses 

sensors, computational resources, and various algorithms to link all of these separate 
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systems together with varying levels of control to effectively manage a complex power 

distribution system. 
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Chapter 2: Literature Review 
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The Dynamic Data Driven Application Systems (DDDAS) is a promising and 

evolving new technology with, in recent years, direct engineering and science applications 

[9]. Recently, many researchers ([10]-[15]) began to study new applications for adaptive 

simulations such as DDDAS. Park et al. develop a new method of data reduction to enhance 

data transmission for sensors used in structural health monitoring [16]. Khaleghi et al. 

propose a DDDAS framework for effective surveillance and crowd control using 

unmanned aerial and ground vehicles [17]. Blasch et al. explore the concept of an adaptive 

fine-tuning of secure communication trust analysis that aims to achieve a balance between 

standard static solutions versus dynamic data driven solutions [18]. A DDDAS assists in 

filling in the gaps of a complex (or even real world) model, while also improving itself 

semi-autonomously [19]. Each DDDAS however, must be constructed differently 

depending on the requirements of the current experiment. Electric power distribution 

networks, more specifically microgrids, are one of the application areas to make use of the 

decidedly effective measurement and control processes available by utilizing DDDAS 

modeling techniques. To this end, [20] defines a microgrid as a system of systems and 

apply the DDDAS paradigm to select the best simulation fidelity for a military microgrid. 

[21] and [22] apply a DDDAS framework to power network systems to address the 

economic load dispatch problem. Finally [23] proposes a DDDAS framework for 

automated control in microgrids. 

One challenge in modeling a microgrid using Dynamic Adaptive Simulations is 

automatically adapting the simulations when experimental data indicates that a simulation 

must change. Carnahan and Reynolds draw attention to this challenge and determined that 

the goal of the first run of every simulation is to gain insight about a particular phenomenon 
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[12]. We then use this insight to determine what new observations to collect, and then adapt 

the simulation to reflect these observations. Here, attempting to generalize software so that 

it is able to anticipate each possible way to change will significantly impact its performance 

and make its underlying code unmanageably intricate [24]. Carnahan and Reynolds, 

therefore, propose a semi-automated adaptation approach that exploits the flexibility and 

constraints of model abstraction opportunities to automate simulation adaptation [12]. 

While their study does not involve manual modification of the code or application of 

optimization methods, which can make the software extremely complex to control, it is 

still in need of human intervention to determine the most likely places of the code that 

should be changed. 

Modeling an electrical distribution system, especially one that utilizes renewable 

energy resources such as a microgrid requires the collection and processing of a substantial 

amount of sensor-based data between a variety of different devices and interface. In Thanos 

et al. and Celik et al. ([21] - [23]), changes in level of detail of data acquisition and the 

choice of certain parameters over others allow the automatic multi-fidelity adaptation in 

the simulation model. In addition to the development of interfaces to physical devices, they 

also address the creation of an infrastructure to support the communication and data 

requirements. Through a networked sensor-driven control system and integrated grid 

architecture for distributed computing, they proposed a methodology for the timely transfer 

of up to date data along the layers of the simulation model in real time. 

Integrating all of the component systems of a microgrid into a managed electrical 

network capable of tying into a local utility requires a great deal of computing power. One 

of the significant benefits of a DDDAS is its ability to reduce the computational power 
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required to accomplish its tasks. Wang et al. proposed a wide-ranging planning and control 

structure for unmanned aerial and ground based vehicles based on adaptive simulations 

[13]. In their research, Wang’s team proposed processes to update both intelligence and 

surveillance data dynamically. Additionally, their research allows operators of such 

vehicles to merge and interpret time and geographical data to facilitate improved use of 

unmanned systems for surveillance and crowd control. Their use of integrating real-time 

ever-changing data into a simulation model seamlessly ties into these methodologies for 

simulation in distributed electricity systems. This allowed them to reduce the 

computational power required for simulation without sacrificing accuracy. Moreover, Frew 

et al. applied a DDDAS to continuous detection in intricate atmospheric conditions [14]. 

Their research used novel on-board and remote wind monitoring techniques and 

capabilities. Furthermore, they developed a control framework that autonomously adapts 

their system to maximize efficiency of environmental, sensory, and computational 

resources. Their discoveries proved quite useful in efforts to combine multiple renewable 

energy sources into a dynamic model to reduce electricity costs to the customer. 

The primary purpose of a microgrid is to combine multiple energy generation and 

storage capabilities and make them seamlessly work together to provide electricity to the 

customer. For a microgrid to be completely effective, it is critical to know a service 

interruption in one energy source impacts the performance overall microgrid performance 

(and potentially other energy sources). Han and DeLaurentis research into managing the 

complicated interdependencies between component-systems also proved extremely useful 

in mitigating such issues which may result is exceeding the cost and time constraints of the 

customer [15]. In relation to research with distributed energy systems, Han and 
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DeLaurentis highlight the need to understand the capabilities and limitations of each 

component-system that composes the overall system [15]. Additionally, they emphasize 

the need to develop protocols to mitigate the risks of disruption to the overall system 

propagating from deficiencies in one or more component. In other words, when designing 

and building a microgrid, it is critical to understand not only how component systems act 

when combined as a whole, but how each component system interacts with every other. 

The aforementioned research provides a great deal of insight into how to effectively model 

a system of systems as well as methods to reduce the computational resources needed to 

model real time systems data. Our DAS approach differs from previous research in that in 

addition to collecting sensory data at given intervals; it collects more detailed data when it 

detects an abnormality in the system (not meeting demand, not enough load on a bus, etc.). 

Furthermore, this approach is the first to look at different portions of the grid in different 

levels of detail. There is no need to devote significant computational resources to portions 

of the grid that previous computations have already determined are operating efficiently 

and effectively. 

While the concept of a self-healing grid infrastructure is quite promising in improving 

the reliability of power distribution networks, there are several challenges faced during 

implementation into existing grid structures. The most crucial of these challenges is to 

identify potential vulnerabilities within the network and to decide on the appropriate 

system response. Addressing this problem, Hoffman et al. studied a symbiotic feedback 

control system to link sensing, visualizing, and modeling to reduce power system 

vulnerabilities that cause blackouts [25]. However, the scope of Hoffman’s research was 

limited to legacy power grid structures, and included limited renewable energy penetration 
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with no self-healing characteristics. This work identifies numerous potential vulnerabilities 

that may lead to blackouts, but applies them to a self-healing microgrid network with 

extensive renewable energy penetration. 

Identification and response to inherent vulnerabilities of the network in a microgrid 

environment also necessitate enhanced understanding of the complex interdependencies 

that exist within it. Electric power grids (including microgrids) contain strong 

interdependencies among their components. This results in a cascading effect on the 

remainder of the grid once an action or fault in one portion of the grid takes places. Amin 

and Giacomoni investigated the cause and effect relationships within an electrical grid in 

order to determine possible self-healing procedures that could be taken as a response to 

threats and component failures of the considered system [26]. Furthermore, Han and 

DeLaurentis stressed the importance of fully understanding the capabilities as well as 

limitations of every component and device within a network [15]. They emphasized the 

need to develop protocols to mitigate the risks of a fault in one component or portion of 

the network severely affecting the performance of the entire system. In other words, when 

designing and building a self-healing power grid, it is critical to understand how individual 

microgrids operate. However, it is just as critical to understand how they respond when 

interconnected with one another. Equally important to these two obligations in our process 

is the ability of the individual microgrids to react to major faults occurring within its 

neighboring microgrids.  

Moslehi and Kumar looked into the impact of using renewable energy resources on 

the reliability of the power network and found that, due to their intermittency, a mix of 

several renewable energy generation resources is necessary to allay the reliability 
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challenges inherent in distributed generation networks [1]. However, to achieve self-

healing among several independent microgrids there needs to be a switching method to 

prevent loss of power when the intermittency or other phenomena that may lead to a power 

outage occurs. Zhi devised a method to make power grids run continuously without losing 

load [27]. He developed a framework consisting of control circles, layers, and links to 

manage how different portions of a power grid communicate with each other.  
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Chapter 3: Dynamic Adaptive Simulation for Efficient and Optimal 

Power Dispatch in Microgrids (DASEELD) 
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Environmental and economic load dispatching for microgrids is a challenging task 

due to several reasons. First, microgrids are highly dynamic and complex in their nature 

due to the variability in their status induced by different sources of energy generation and 

their associated generation capacities, environmental emissions, frequency of changes in 

load profiles, market policies and regulations, and revenues generated, amongst many 

others [28]. Second, microgrids may operate at various scales and scopes, causing the range 

for the solution space to be considerably large. Third, the inclusion of renewable energy 

into microgrids, has resulted in additional constraints on EELD such as more unpredictable 

ramp rates and the need for additional reserves to accommodate the intermittent nature of 

the output. Furthermore, this dynamicity and complexity inherent to these problems 

enforce significant burden on the available computational resource utilization while the 

developed solution procedures are being deployed, even if they are performed at specified 

intervals or offline. This burden further frustrates the monolithic implementation of the 

methodologies presented in the literature ([29] and [30]) in a realistic setting and 

necessitates a distributed framework for effective decision making within these systems. 

In this chapter, we propose a dynamic adaptive simulation framework (DASEELD) for 

the EELD problem. The proposed framework is overviewed in Fig. 1. The overall scheme 

envisioned is a robust multi-scale federation of simulation models that enables efficient 

and optimal power dispatch in power networks. 
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Fig. 1. Overview of the proposed DASEELD  framework  

 

The proposed DASEELD  framework includes an offline discovery procedure and a real-

time decision making procedure. The offline discovery procedure incorporates algorithms 

for grid topology and clustering, multi-objective optimization, fidelity ranking; and 

databases for sub-networks and fidelities. The grid topology and clustering algorithm 

examines the structure of the power network and determines the different possible sub-

networks that may be built to compose the full power network. 

Based on the results from the topology and clustering algorithm, the different sub-

networks and their combinations are used to generate power dispatch solutions under 

various predetermined load scenarios. Performances of these power dispatches are 

evaluated based on the best-compromise solution generated for each of the sub-network 
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combinations in terms of their costs and emissions. Then, for each of the different load 

scenarios, the combinations are ranked using fuzzy logic. 

The DASEELD framework embodies a measurements database that is fed using 

electrical and environmental sensors. Given the sensory data and available computational 

resources, a state estimation algorithm, and a fidelity selection algorithm are invoked to 

determine the state of the system and fidelity that the simulation should be performed at. 

Based on the estimated system status and the selected fidelities, a multi-objective 

optimization algorithm is employed to generate a non-dominated solution set in terms of 

costs and emissions. Then, a best compromise solution is selected and sent to the actual 

power network for realization. The details of the components embedded in the proposed 

framework are presented in the following sub-sections. 

 

3.1. Multi-objective Optimization Algorithm 

The proposed DASEELD framework is employed to provide the considered power 

network with the best possible solution, which is the environmental and economic load 

dispatch (EELD) in this case. Because of the multi-objective nature of the EELD problem, 

a multi-objective optimization algorithm is incorporated into the proposed framework. The 

details of the algorithm are presented below. 

 

3.1.1.Formulation of the EELD Problem 

The EELD problem has two distinct objectives, namely, minimizing the generation 

costs and minimizing the pollutant emissions of a power network’s load dispatch while 

acknowledging the system’s limitations. The problem is formulated in eq. (1) through (7), 
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where the decision variables are the real (𝑃𝑃𝐺𝐺) and reactive (𝑄𝑄𝐺𝐺) power produced at each 

generation bus. Equations (1) and (2) present the cost and emissions objectives, where, 𝑎𝑎𝑖𝑖, 

𝑏𝑏𝑖𝑖 and 𝑐𝑐𝑖𝑖 are cost coefficients, 𝑁𝑁𝐺𝐺  is the number of generating units, 𝑃𝑃𝐺𝐺𝑖𝑖  and 𝑄𝑄𝐺𝐺𝑖𝑖 are the 

real power and reactive power generated, and 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑖𝑖, 𝛾𝛾𝑖𝑖, 𝜖𝜖𝑖𝑖 and 𝜇𝜇𝑖𝑖 are the emissions 

coefficients. 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹(𝑃𝑃𝐺𝐺) = ∑ 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑃𝑃𝐺𝐺𝑖𝑖 + 𝑐𝑐𝑖𝑖𝑃𝑃𝐺𝐺𝑖𝑖
2𝑁𝑁𝐺𝐺

𝑖𝑖=1                             (1) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸(𝑃𝑃𝐺𝐺) = ∑ [10−1�𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑃𝑃𝐺𝐺𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑃𝑃𝐺𝐺𝑖𝑖
2 � + 𝜖𝜖𝑖𝑖𝑀𝑀

𝜇𝜇𝑖𝑖𝑃𝑃𝐺𝐺𝑖𝑖]𝑁𝑁𝐺𝐺
𝑖𝑖=1           (2) 

 

The constraints of the problem are presented in eq. (3)-(7). Equation (3) represents 

the generation capacity constraint which ensures that all energy generating plants operate 

within their capacity. Equations (4)-(7) represent the power balance constraints which 

ensure that the load provided to the system meets the demand while taking energy 

transmission losses into account. 

 

𝑃𝑃𝐺𝐺𝑖𝑖
𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝑃𝑃𝐺𝐺𝑖𝑖 ≤ 𝑃𝑃𝐺𝐺𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚        ∀𝑖𝑖                  (3) 

∑ 𝑃𝑃𝐺𝐺𝑖𝑖 − 𝑃𝑃𝐷𝐷 = 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁𝐺𝐺
𝑖𝑖=1                 (4) 

𝑃𝑃𝐺𝐺𝑖𝑖 − 𝑃𝑃𝐷𝐷𝑖𝑖 − 𝑉𝑉𝑖𝑖 ∑ 𝑉𝑉𝑗𝑗[𝐺𝐺𝑖𝑖𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐�𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑗𝑗� + 𝐵𝐵𝑖𝑖𝑗𝑗𝑐𝑐𝑀𝑀𝑀𝑀 (𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑗𝑗)]𝑁𝑁𝐵𝐵
𝑗𝑗=1 = 0         ∀𝑀𝑀        (5) 

𝑄𝑄𝐺𝐺𝑖𝑖 − 𝑄𝑄𝐷𝐷𝑖𝑖 − 𝑉𝑉𝑖𝑖 ∑ 𝑉𝑉𝑗𝑗[𝐺𝐺𝑖𝑖𝑗𝑗𝑐𝑐𝑀𝑀𝑀𝑀�𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑗𝑗� + 𝐵𝐵𝑖𝑖𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑗𝑗)]𝑁𝑁𝐵𝐵
𝑗𝑗=1 = 0           ∀𝑀𝑀        (6) 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑀𝑀 ∑ 𝑔𝑔𝑘𝑘[𝑉𝑉𝑖𝑖2 + 𝑉𝑉𝑗𝑗2 − cos�𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑗𝑗�]𝑁𝑁𝐺𝐺
𝑖𝑖=1                             (7) 
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Here, 𝑃𝑃𝐺𝐺𝑖𝑖
𝑚𝑚𝑖𝑖𝑚𝑚 and 𝑃𝑃𝐺𝐺𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum operating output of unit 𝑀𝑀, 

respectively, 𝑁𝑁𝐵𝐵 is the number of buses, 𝑃𝑃𝐷𝐷𝑖𝑖 and 𝑄𝑄𝐷𝐷𝑖𝑖 represent the real and reactive loads 

at bus 𝑀𝑀, 𝑉𝑉𝑖𝑖 is the voltage magnitude at bus 𝑀𝑀, G𝑖𝑖𝑗𝑗 is the transfer conductance between buses 

𝑀𝑀 and 𝑗𝑗, 𝛿𝛿𝑖𝑖 is the voltage angle at bus 𝑀𝑀, 𝐵𝐵𝑖𝑖𝑗𝑗 are the transfer conductance and susceptance 

between bus 𝑀𝑀 and bus 𝑗𝑗, 𝑔𝑔𝑘𝑘 is the conductance of the 𝑘𝑘P

th line. 

 

3.1.2. Multi-objective Optimization using Particle Filtering Algorithm 

The EELD optimization problem described in Section 3.1.1, may be alternatively 

represented by (8) and (9), where 𝑥𝑥, 𝑀𝑀, and 𝑥𝑥∗ are the decision vector, number of decision 

variables, and Pareto optimal solution set, respectively. Furthermore, 𝑓𝑓1(𝑥𝑥) and 𝑓𝑓2(𝑥𝑥) 

represent equations (1) and (2), respectively. 

 

𝑥𝑥∗ = 𝑎𝑎𝑎𝑎𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀�𝑓𝑓1(𝑥𝑥),𝑓𝑓2(𝑥𝑥)�                            (8) 

𝑥𝑥 = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑚𝑚) ∈ 𝑅𝑅𝑚𝑚                         (9) 

 

The state space model defined for the particle filtering based multi-objective 

optimization is provided in (10) and (11), and the importance density function is defined 

in (12). In these equations, 𝑥𝑥𝑘𝑘 = �𝑥𝑥𝑘𝑘,1, 𝑥𝑥𝑘𝑘,2, … , 𝑥𝑥𝑘𝑘,𝑚𝑚� is the state of the system at time 𝑘𝑘, 

𝑦𝑦𝑘𝑘 = �𝑦𝑦𝑘𝑘,1,𝑦𝑦𝑘𝑘,2, … , 𝑦𝑦𝑘𝑘,𝑚𝑚� is the measurement taken at time 𝑘𝑘, 𝑣𝑣𝑘𝑘 = �𝑣𝑣𝑘𝑘,1, 𝑣𝑣𝑘𝑘,2, … , 𝑣𝑣𝑘𝑘,𝑚𝑚� is 

the measurement noise distributed with a pdf 𝜑𝜑(⋅). 
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𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘,   (10) 

 𝑦𝑦𝑘𝑘 = 𝑓𝑓(𝑥𝑥𝑘𝑘)  −  𝑣𝑣𝑘𝑘,                    (11) 

𝑞𝑞𝑘𝑘(𝑥𝑥𝑘𝑘) = φ(𝑓𝑓(𝑚𝑚𝑘𝑘)−𝑦𝑦𝑘𝑘)𝑞𝑞𝑘𝑘−1(𝑚𝑚𝑘𝑘)
∫φ(𝑓𝑓(𝑚𝑚𝑘𝑘)−𝑦𝑦𝑘𝑘)𝑞𝑞𝑘𝑘−1(𝑚𝑚𝑘𝑘)𝑑𝑑𝑚𝑚𝑘𝑘

                                  (12) 

 

The algorithm is based on a particle filtering procedure that includes two-sampling 

stages. In the first stage, samples are taken from within the non-dominated solution set 

generated by the algorithm. In the second stage, a sampling distribution is generated using 

the solutions with the best performance in each of the separate objectives, and then samples 

are drawn from this distribution. The number of samples, an empty non-dominated set, and 

the number of iterations, are defined as the algorithm’s input. Once initialization is 

completed, the data for buses, lines, and cost are used for random sampling. The admittance 

matrix is then updated to reflect the distributed generation levels from the random dispatch, 

and the resulting loads and the equivalent resistance are calculated. In the next step, the 

resultant power generation as well as the energy transmission losses is evaluated, and the 

dispatch at the swing bus is adjusted to ensure the power balance constraints are met. Then 

the non-dominated solution set is calculated and the resampling stage is triggered. The new 

samples obtained from the resampling at each distribution level are then used to update the 

admittance matrix sequentially. Once the predefined number of iterations is reached, the 

final non-dominated solution set is calculated and the corresponding objective values are 

exported. 
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3.2. Discovery Procedure 

In the discovery procedure, the topology of the power network is explored, so that 

different potential sub-networks are identified, to guide the DASEELD with a predetermined 

set of simulation fidelities. This is achieved with a decomposition technique, through which 

the entire network under consideration is decomposed into 𝑀𝑀 non-overlapping observable 

sub-networks [31]. Furthermore, each of these sub-networks must include at least one 

source of energy generation. Once the network is decomposed, the information of all the 

sub-networks and their combinations is stored into the sub-networks database. The number 

of items stored in the database is 2𝑚𝑚 − 1, where 𝑀𝑀 is the number of sub-networks. 

Once the combinations are defined, demand levels are selected in order to generate 

different scenarios with which different fidelities will be evaluated. In this step 𝑀𝑀 levels of 

load variation are selected. Each of the sub-networks is mapped to a load with a variation 

corresponding to each of the 𝑀𝑀 levels, so that the permutation of the levels within the sub-

networks generates the number of different scenarios. At this point it is important to 

highlight that a 0% level is always included within the 𝑀𝑀 levels of load variation, and the 

simulation is not performed when the demand in all the sub-networks is at this level; thus 

the total number of scenarios is (𝑀𝑀𝑚𝑚 − 1). Based on the number of sub-network 

combinations and levels, the total number of simulations performed by the discovery 

procedure is (2𝑚𝑚 − 1)(𝑀𝑀𝑚𝑚 − 1). 

It should be noted that the selection of the demand levels have a significant role in 

the accuracy of the proposed framework. On one hand, if few but very different levels of 

load variation are selected, the predetermined fidelities may not provide a good 

approximation for the demand variations of the real-time simulation. On the other hand, if 
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many but close levels are selected, the accuracy of the fidelity selection obtained for the 

power dispatch may be optimal. However, because of the permutation involved in the 

generation of scenarios, the discovery procedure becomes unrealistic in the latter. 

A set of non-dominated solutions is generated for each of the (2𝑚𝑚 − 1)(𝑀𝑀𝑚𝑚 − 1) 

simulations based on cost and emissions. They are then ranked for each of the (2𝑚𝑚 − 1) 

sub-networks for each of the (𝑀𝑀𝑚𝑚 − 1) scenarios, based on best compromise solution, 

using fuzzy logic. Finally, the rankings are saved into the fidelities database. 

 

3.3. State Estimation Algorithm 

The real-time state estimation algorithm for computing the electricity demand is 

triggered by measurements obtained from the sensors in the real system via the interaction 

with the sub-networks and fidelities databases. Efficient state estimation is crucial in this 

study since it significantly affects the control of the power flow, fidelity selection, security 

of the system, and performance of the load dispatch. To this end, in our proposed DASEELD 

paradigm, accurate estimates of real-time electricity demands are obtained via a smart 

sampling algorithm whose seeds were planted in their earlier work (i.e., [32]). The demand 

is estimated at the distribution level from smart sampling perspective using two sub-

procedures whose operations are explained below. 

 

3.3.1.Sub-procedure I 

The goal of the first sub-procedure is to estimate the real and reactive power 

injections of the considered electricity network using environmental measurements (i.e., 

temperature readings), to incorporate the environmentally-driven impacts. To be specific, 

during cold days, temperature increments lead to a decrease in the electricity demand, due 
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to reduced heating demands, while on hot days, these temperature increments increase the 

electricity consumption due to higher cooling demands. To this end, the state-space model 

for electricity demand estimation in the first sub-procedure is given in eqs. (13) and (14). 

 

𝐷𝐷𝑘𝑘+1 = 𝛼𝛼𝐷𝐷𝑘𝑘 + 𝑈𝑈  (13) 

𝐷𝐷𝑘𝑘 = 𝛽𝛽𝑇𝑇𝑘𝑘 + 𝑉𝑉 (14) 

 

where 𝐷𝐷𝑘𝑘+1 and 𝐷𝐷𝑘𝑘 are the posterior state (i.e., demand), current state 𝑇𝑇𝑘𝑘 is the current 

temperature, 𝛼𝛼 and 𝛽𝛽 are parameters related to state evolution and observation functions 

that are statistically calculated from historical data, and 𝑈𝑈 and 𝑉𝑉 represent the process 

noises and measurement errors, respectively. 

 

3.3.2.Sub-procedure II 

For the purpose of modifying the minor variation of the estimates and increasing the 

estimation accuracy, in the second sub-procedure, the available measurements of the 

electrical parameters (i.e., voltage magnitudes, power injections, power flow, etc.) are 

employed. Then, the refined state-space model for this sub-procedure is given in eqs. (15) 

and (16) as follows: 

 

𝐷𝐷𝑘𝑘+1 = 𝛾𝛾𝐷𝐷𝑘𝑘 + 𝑈𝑈                                                  (15) 

𝐷𝐷𝑘𝑘 = 𝜇𝜇(𝐷𝐷𝑘𝑘)𝑀𝑀𝑘𝑘,𝑗𝑗 + 𝑉𝑉,      ∀𝑗𝑗 ∈ {1,2, … , 𝐽𝐽}                            (16) 

 



29 
 

 
 

Here 𝛾𝛾 is a parameter computed in a way analogous to that of 𝛼𝛼 and 𝛽𝛽 in the first sub-

procedure, 𝜇𝜇(∙) is a function relating the measurements to the power injection states, and 𝐽𝐽 

is the number of different measurements within any corresponding time interval 𝑡𝑡. 

The states of the network are set as the real and reactive power injections of the buses. 

Data collection frequency (time interval estimation) is determined on the basis of load 

variation and response times of the available energy resources. The limits of these 

frequencies are governed by the fastest possible response time of energy resources, and the 

maximum duration in which the load variation is kept unchanged. Higher frequencies of 

data collection lead to a higher estimation accuracy and lower frequencies result in lighter 

computational burdens. Consequently, data collection frequency should be decided 

considering this trade-off. Once this frequency is determined, the algorithm generates four 

state variables corresponding to real and reactive power injections for either “weekday” or 

“weekend day” for each bus. Figure 2 presents the operation of the state estimation 

algorithm. 

 
Fig. 2. Flowchart of the embedded stated estimation algorithm 
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3.4. Fidelity Selection Algorithm 

The effective culling and fidelity selection algorithm is designed to determine which 

sub-networks should be included in the DASEELD simulation and which sub-networks’ 

dispatch should remain unchanged. This way, a near optimal dispatch may be attained 

while ensuring an acceptable computational burden. 

Whenever the dispatch of the system is to be updated, either because of periodic 

revision, or because a large change in the state of the system has been predicted, the fidelity 

selection algorithm is deployed. If the demand predicted by the state estimation algorithm 

suggests that the system continues to operate under normal conditions, dispatch results 

from the simulations running at earlier fidelities can be accepted. However, if a significant 

variation is detected in any of the loads, the fidelity algorithm is employed to select a new 

simulation fidelity. Here, for each of the different sub-networks, the algorithm determines 

load variations within the sub-networks using previous dispatch and current estimated 

loads. Based on these variations, the algorithm matches each of the sub-network variations 

to the closest corresponding demand level from the fidelities database. Once all of the sub-

networks have been matched, the ranking for the corresponding fidelity is used to 

determine which sub-networks should be included in the simulation. 

Two conditions are utilized to evaluate the ranking from the fidelities database. The 

first condition excludes combinations where 1) multiple sub-networks are included and 2) 

more than 90% of all of the networks’ generation capacity is included. This condition is 

included to avoid the use of full system simulations which will incur a large computational 

burden because of the extensive search space for the optimization. The second condition 

excludes combinations where the total generation capacity of the sub-networks included is 
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inferior to 10% of the networks’ generation capacity. This condition avoids the use of 

simulations in which diverse solutions meeting the power balance conditions cannot be 

obtained due to the narrow search space. The solutions that have been avoided by the 

second condition, not only would have a large computational burden, but also would 

provide a very limited non-dominated solution set. 

 

3.5. Experiments and Results 

 

3.5.1. Modified IEEE-30 Bus System 

In order to demonstrate the validity of the proposed DASEELD framework in real-time 

load dispatching problems, a set of experiments are carried out based on a modified IEEE-

30 bus system. The original IEEE-30 bus system consists of 30 buses and 41 lines; these 

buses consist of 6 generation buses, 19 load buses, and 5 buses that neither generate nor 

request electricity. As mentioned before, the network is divided into 3 sub-networks 

according to Rakpenthai et al. [32]. To this end, 5 sources of distributed generation are 

added, arbitrarily located at buses 7, 21, 22, 23 and 27 in the modified IEEE-30 bus system, 

as shown in Fig. 3. The data regarding the characteristics of this system is obtained from 

the Power Systems Test Case Archive of the Department of Electrical Engineering at the 

University of Washington (2012), and the cost data and generation capacities are obtained 

from [33]. 
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Fig. 3. Modified IEEE-30 bus system with three sub-networks 

 

3.5.2.Discovery Procedure Simulation 

The studied network is split into three sub-networks and three levels of load variation 

(0%, 5%, and 10%) are selected. Therefore, a total of 182 different simulations were carried 

out, for 26 scenarios with 7 combinations each. The performances of the simulations are 

shown in Table 1. The combinations within each scenario are ranked based on linear 

membership functions that give equal weight for both objectives 

Table 2 presents the scenarios that correspond to different fidelities and ranks, as well 

as the probability that a certain scenario is given a certain rank. It shows that, on average, 

the best performing sub-network simulation fidelities are the combinations that include 
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only sub-network 2, only sub-network 3 and sub-networks 2 and 3. These three fidelities 

are ranked in the top three combinations in 52 of the 78 scenarios. Since the probability of 

their performances belonging to the top three among all the combinations is close to 70%, 

they are recommended as the simulation fidelity when the demand variations are difficult 

or impossible to achieve, or in extreme cases where the demand variations do not adjust to 

any of the predetermined levels of variation, and the burden of a full system simulation 

may be avoided. Except for these cases, the fidelities database obtained through the 

discovery procedure, provided in Table 3, is used as a reference, to search for the most 

suitable fidelities under different demand variation levels. 

 

3.5.3.DASEELD Evaluation 

In order to evaluate DASEELD framework, the state estimation algorithm has been used 

to generate 10 different cases where the environmental sensory data has been randomly 

generated. The fidelities selection database has been used by the DASEELD framework in the 

fidelity selection and culling algorithm. For each case, the DASEELD searches for the closest 

scenario by comparing the estimated demand changes with the three demand change levels. 

Once the corresponding scenario is identified, simulations are performed for the two top 

ranked sub-network combinations. This general rule bears two main exceptions that 

include the simulation of sub-network combinations with all of the sub-networks and the 

combination with only sub-network 3. 
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Table 1: Best compromise solutions from the discovery procedure 

Demand 

Change 

(%) 

Simulated Sub-Networks (All Potential Combinations of Sub-Networks) 

1 2 3 1,2 1,3 2,3 1,2,3 

1 2 3 Cost Emission Cost Emis. Cost Emis. Cost Emis. Cost Emis. Cost Emis. Cost Emis. 

0 0 5 605.8 0.26730 595.4 0.26730 579.92 0.26733 569.6 0.26736 583.5 0.26732 520.5 0.26744 595.00 0.26732 

0 0 10 636.6 0.26725 591.8 0.26731 592.77 0.26730 634.1 0.26726 635.7 0.26726 580.3 0.26733 592.11 0.26732 

0 5 0 651.8 0.26724 591.8 0.26731 589.40 0.26731 655.0 0.26723 600.3 0.26729 611.5 0.26727 639.06 0.26726 

0 5 5 590.2 0.26730 629.8 0.26724 611.98 0.26727 614.6 0.26728 636.0 0.26723 634.6 0.26723 628.68 0.26724 

0 5 10 639.4 0.26723 613.4 0.26727 580.82 0.26733 606.9 0.26727 620.3 0.26725 612.7 0.26727 582.07 0.26733 

0 10 0 642.2 0.26724 603.1 0.26728 577.22 0.26733 612.7 0.26728 659.9 0.26723 547.8 0.26739 645.95 0.26726 

0 10 5 658.1 0.26723 587.3 0.26731 622.96 0.26725 643.1 0.26723 643.0 0.26724 600.6 0.26729 617.23 0.26726 

0 10 10 646.0 0.26723 612.7 0.26727 638.92 0.26722 659.1 0.26722 645.0 0.26721 653.0 0.26719 636.89 0.26724 

5 0 0 645.7 0.26722 591.7 0.26731 627.43 0.26724 611.0 0.26726 655.1 0.26722 595.9 0.26730 660.65 0.26722 

5 0 5 664.3 0.26720 597.5 0.26729 626.06 0.26724 634.4 0.26724 627.8 0.26724 612.5 0.26727 708.32 0.26718 

5 0 10 652.9 0.26720 653.3 0.26719 594.85 0.26730 651.8 0.26721 687.0 0.26718 630.0 0.26724 645.87 0.26722 

5 5 0 633.3 0.26724 649.1 0.26720 644.07 0.26721 629.3 0.26724 648.1 0.26720 654.2 0.26719 632.48 0.26724 

5 5 5 645.9 0.26721 653.2 0.26719 608.95 0.26727 638.0 0.26721 669.7 0.26717 649.7 0.26720 673.38 0.26719 

5 5 10 696.1 0.26717 650.3 0.26720 665.07 0.26717 626.5 0.26725 705.2 0.26716 637.8 0.26722 657.77 0.26722 

5 10 0 662.1 0.26719 651.9 0.26720 645.42 0.26721 661.3 0.26719 668.6 0.26719 581.3 0.26732 660.00 0.26718 

5 10 5 669.0 0.26718 661.1 0.26718 613.88 0.26726 650.5 0.26719 687.4 0.26717 655.3 0.26719 647.11 0.26720 

5 10 10 694.1 0.26715 619.3 0.26725 636.31 0.26722 694.2 0.26716 682.8 0.26716 667.5 0.26717 667.11 0.26718 

10 0 0 677.5 0.26717 626.6 0.26724 648.91 0.26720 640.7 0.26721 655.9 0.26719 663.5 0.26718 692.85 0.26719 

10 0 5 700.8 0.26715 621.5 0.26725 656.43 0.26719 677.7 0.26718 678.6 0.26717 661.8 0.26718 658.82 0.26718 

10 0 10 684.7 0.26715 670.8 0.26716 655.30 0.26719 707.9 0.26715 702.5 0.26712 691.8 0.26713 699.08 0.26714 

10 5 0 671.2 0.26717 658.2 0.26719 623.85 0.26725 681.9 0.26718 706.9 0.26715 673.5 0.26716 672.25 0.26717 

10 5 5 685.2 0.26714 658.1 0.26719 657.63 0.26719 675.5 0.26717 659.2 0.26718 693.6 0.26712 695.22 0.26714 

10 5 10 689.8 0.26714 679.1 0.26715 683.42 0.26714 661.5 0.26718 695.5 0.26714 692.1 0.26713 657.09 0.26718 

10 10 0 679.6 0.26714 679.0 0.26715 635.80 0.26723 688.4 0.26714 699.1 0.26713 687.1 0.26714 690.79 0.26715 

10 10 5 716.9 0.26710 676.7 0.26715 660.30 0.26718 694.2 0.26714 699.7 0.26711 665.8 0.26717 688.11 0.26713 

10 10 10 732.5 0.26710 699.8 0.26711 687.80 0.26713 694.4 0.26712 717.9 0.26710 705.9 0.26710 667.06 0.26716 
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Table 2: Discovery procedure combination ranking 

                         Rank     

 Combination                  
1 2 3 4 5 6 7 

1 1  -    3.8% 2  -    7.7% 2  -    7.7% 2  -    7.7% 5  -  19.2% 11  -  42.3% 3  -  11.5% 

2 5  -  19.2% 5  -  19.2% 8  -  30.8% 7  -  26.9% 1  -    3.8% 0   -   0.0% 0  -    0.0% 

3 4  -  15.4% 7  -  26.9% 5  -  19.2% 6  -  23.1% 4  -  15.4% 0   -   0.0% 0  -    0.0% 

1,2 5  -  19.2% 1  -    3.8% 0  -    0.0% 3  -  11.5% 6  -  23.1% 4   - 15.4% 7  -  26.9% 

1,3 5  -  19.2% 2  -    7.7% 1  -    3.8% 1  -    3.8% 4  -  15.4% 8   - 30.8% 5  -  19.2% 

2,3 3  -  11.5% 5  -  19.2% 10 -  38.5% 4  -  15.4% 3  -  11.5% 0   -   0.0% 1  -    3.8% 

1,2,3 3  -  11.5% 4  -  15.4% 0  -    0.0% 3  -  11.5% 3  -  11.5% 3   - 11.5% 10 -   38.5% 

 

Table 3: Fidelities database  

Demand Change (%) Ranking Demand Change (%) Ranking 

1 2 3 1 2 3 4 5 6 7 1 2 3 1 2 3 4 5 6 7 

0 0 5 2 1,3 1 3 1,2,3 1,2 2,3 5 5 10 3 2 2,3 1,2 1,2,3 1 1,3 

0 0 10 3 2 2,3 1,2,3 1 1,3 1,2 5 10 0 1,2,3 2 3 1,2 2,3 1 1,3 

0 5 0 1,3 2,3 3 2 1,2 1 1,2,3 5 10 5 1,2 1,2,3 2 2,3 3 1 1,3 

0 5 5 2,3 1 2 1,2,3 3 1,3 1,2 5 10 10 2,3 3 2 1,2,3 1,3 1 1,2 

0 5 10 1,2 1,3 2,3 2 3 1 1,2,3 10 0 0 1,3 1,2 3 2,3 2 1 1,2,3 

0 10 0 2 3 2,3 1,2 1 1,3 1,2,3 10 0 5 1,2,3 3 2,3 2 1,3 1,2 1 

0 10 5 3 1,2,3 2,3 2 1,2 1,3 1 10 0 10 2 3 2,3 1 1,3 1,2,3 1,2 

0 10 10 2,3 3 1,3 2 1 1,2,3 1,2 10 5 0 2 3 2,3 1 1,3 1,2,3 1,2 

5 0 0 1,2 3 2 2,3 1 1,3 1,2,3 10 5 5 1,3 1 2,3 2 3 1,2 1,2,3 

5 0 5 3 2,3 2 1,3 1,2 1 1,2,3 10 5 10 1,2,3 2 2,3 3 1,2 1 1,3 

5 0 10 2 2,3 1 3 1,2,3 1,2 1,3 10 10 0 1 2,3 2 3 1,2 1,3 1,2,3 

5 5 0 1,3 2 3 2,3 1,2 1 1,2,3 10 10 5 1,3 1,2,3 2 3 2,3 1 1,2 

5 5 5 1,2 2,3 2 3 1 1,3 1,2,3 10 10 10 1,2 1,2,3 3 2 2,3 1,3 1 
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In Table 4, the 7 combinations were run and ranked for each of the 10 cases, in order 

to further evaluate the effectiveness of the proposed DASEELD framework. T choice of the 

two fidelities chosen by the DASEELD can be benchmarked against this ranking.  

 

Table 4: Fidelity ranking for the experimental cases 

Case Demand Change (%) Ranking 

 1 2 3 1 2 3 4 5 6 7 

1 0.39 1.50 1.32 1,2,3 2 2,3 1,3 1,2 3 1 

2 0.99 0.54 3.77 2 2,3 3 1,2,3 1,3 1 1,2 

3 0.32 2.74 2.27 1,2,3 1,3 2,3 1,2 2 3 1 

4 3.90 1.69 0.39 1,3 1,2,3 1 2,3 2 3 1,2 

5 2.26 0.10 2.60 1,3 1,2 2 1 2,3 3 1,2,3 

6 2.55 4.56 6.70 1,3 2,3 2 1 3 1,2,3 1,2 

7 5.74 3.48 1.38 1,2,3 2,3 1,3 1,2 3 2 1 

8 7.40 0.45 2.28 1,3 2,3 1,2,3 1,2 2 3 1 

9 4.50 3.45 12.39 1,2,3 1 2 1,3 3 1,2 2,3 

10 10.36 6.24 4.26 2,3 1 2 3 1,2 1,2,3 1,3 

 

Table 5 shows combinations selected by the DASEELD framework for each of the 10 

cases, their rankings, and a comparison between the best sub-network combination 

obtained through experimental simulation and the suggested fidelity by the DASEELD  for 

case 3. The table shows that the selected fidelities rank among the top two combinations in 

five of the cases and among the top three in eight of them. In the embedded figure, blue 
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dots represent experimental compromise solutions for case 3, red dot is the best solution 

found from the experimental simulations (i.e., combinations of sub-network 1, 2, and 3), 

and green dot is the result obtained via the suggested simulation 1 (i.e., combinations of 1 

and 2). It is shown that the red and green dots are close to each other, meaning that there is 

no significant difference between the performances of these two combinations. Therefore, 

it can be concluded that the proposed DASEELD is able to provide a good compromise 

solution without utilizing great computational resources.  

 

Table 5: Proposed sub-network simulation configuration from simulation culling 

 

 

 

Case Demand Change (%) 
Discovery 

Case 

Suggested 

Simulation 1 

Suggested 

Simulation 2 

 

  1 2 3 
Sub-

Networks 
Rank 

Sub-

Networks 
Rank 

1 0.39 1.50 1.32 0,0,0* 1,3 4 2,3 3 

2 0.99 0.54 3.77 0,0,5 2 1 1,3 5 

3 0.32 2.74 2.27 0,5,0 1,3 2 2,3 3 

4 3.90 1.69 0.39 5,0,0 1,2 7 3 6 

5 2.26 0.10 2.60 0,0,5 2 4 1,3 1 

6 2.55 4.56 6.70 5,5,5 1,2 7 2,3 2 

7 5.74 3.48 1.38 5,5,0 1,3 3 2 6 

8 7.40 0.45 2.28 5,0,0 1,2 6 3 5 

9 4.50 3.45 12.39 5,5,10 3 5 2 3 

10 10.36 6.24 4.26 10,5,5 1,3 7 1 2 
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0.26726 0.26728 0.2673 0.26732
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Chapter 4: Microgrid Automated Control and Optimization using 

Dynamic Adaptive Simulation DASCONTROL   
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A major challenge for microgrids with distributed generation is the technical 

difficulties related to control of a substantial number of micro-sources. Additionally, the 

demand for extensive advance in fast sensors and complex control from a central point 

creates bigger problems. The major concern about a complex control system is that a failure 

of a single component can bring the system down. Microgrids need to be capable to address 

events autonomously using only local data and information. In emergency circumstances 

where faults, blackouts or brownouts have occured, there is a requirement for an immediate 

change in the output power control of the micro-generators as well as an efficient 

management and isolation of regions within the microgrid to avoid further escalation of 

the problem. 

To address the autonomous control in microgrids, in this chapter, we present a novel 

dynamic adaptive simulation  framework (DASCONTROL) for the operation and control of 

MGs that speeds up the real-time computation of the resource allocation and significantly 

control decisions while optimizing the operational cost, energy surety and emissions. As 

illustrated in Fig. 4, our framework includes: 1) a database receiving data from electrical 

and environmental sensors, 2) a fault detection algorithm, 3) an agent-based simulation of 

the MG system that includes separate modules for energy storage, and energy generation 

from solar, wind, and diesel sources, 4) an optimal computing budget allocation (OCBA)-

based control design selection algorithm, and 5) a multi-objective optimization algorithm 

for optimizing the decisions of the real MG.  



40 
 

 
 

  

Fi
g.

 4
. A

 D
A

S 
fr

am
ew

or
k 

fo
r a

ut
om

at
ed

 c
on

tro
l i

n 
m

ic
ro

gr
id

s (
D

A
SC

O
N

TR
O

L ) 



41 
 

 
 

A high level description of the framework follows. The real system is equipped with 

sensors that feed the database of our framework with electrical and environmental data. 

More specifically, the database is collecting wind speed, solar irradiance, temperature, 

voltage, current, and frequency data from the real microgrid. The collected data is crucial 

for the framework since the environmental data is responsible for the forecasting of the 

energy generation from renewable sources and the electrical data is responsible for the 

proper operation of the microgrid and the smooth transition from the normal operation 

mode to the islanded mode. These data are then used by the fault detection and isolation 

algorithm (FDI) to discover liabilities and potential hazards within the MG. After the FDI 

algorithm scans the system, its results are provided to the agent-based simulation model. 

The agent-based simulation of the MG system imitates the real system under several 

different control designs. The simulation model approaches the MG as a system of systems 

and each agent simulates a sub-system within the overarching system. The goal of the 

simulation is to evaluate the performance of different control designs by isolating the most 

appropriate regions in the system and by finding an optimal resource allocation that 

minimizes the operational cost while also maximizing the energy surety of the system. To 

this end, a performance evaluation module is embedded in the model to swiftly evaluate 

the designs. The simulation model communicates with the OCBA-based control design 

selection algorithm that makes real-time decisions on which designs need to be simulated 

and on how many replications. The simulation is used to calculate the performance of 

various control designs (in an iterative manner) and, subsequently, the OCBA-based 

control design selection algorithm ranks these control designs based on their calculated 
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performance. Once the best control design is selected, the problem is solved using the 

proposed multi-objective optimization algorithm which is described in Section 4.3. 

The connection amongst the four major components of our framework is 

demonstrated in Fig. 5 as the following. 

 

 
Fig. 5. Connection of the components of DASCONTROL  

 

4.1.   Algorithm I: Fault Detection and Isolation 

Fault detection and isolation is a crucial element of numerous operations management 

automation systems. Fault detection is defined as the identification of a situation that a 

problem has occurred, even if the origin cause is not yet known. Fault diagnosis, also 

known as fault isolation, on the other hand, is responsible for locating the origin causes of 

problems, allowing the system to take the appropriate corrective actions. Automated fault 

detection and diagnosis prominently relies on the input of sensors or calculated 

performances of the system [34]. In application systems, the most common faults 
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encountered are sensor failures, and as a result, a major focus in fault detection and 

isolation is to identify these problems and address the challenge of distinguishing them 

from process problems [35]. 

Fault detection and isolation using equation-based analytical models involves and 

necessitates a static set of state variables and measurements. In matrix-based techniques 

particularly, every time that the fault detection and isolation analysis is performed, all state 

variables are recalculated, updated, and stored. This process does not scale well to large 

systems where an immense collection of state variables and sensors exists. Other 

approaches, such as the generalized discriminant analysis (GDA) or the kernel GDA [36], 

decrease the computational burden by only transmitting noteworthy new information, but 

even then, every state variable in the system still has to be defined and preserve space for 

storage. 

On the other hand, event-driven systems do not require a predetermined storage size to 

represent the system’s state. A specific event might occur several times, and events that do 

not occur necessitate no storage. Events contain some attributes including but not limited 

to an event category, an associated object that might reveal the root cause of the problem, 

and a time stamp that is tied with the exact time that the problem is observed. When the 

system is monitored in the highest fidelity, recent events are often stored in the RAM (rapid 

access memory) for brisk retrieval. 
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Table 6: List of events in fault detection and isolation  

Measured 
Variable Event Possible Fault 

Voltage 

Increased Voltage 
Decreased Voltage  
Neutral Voltage 
Negative Voltage 

Load-shedding 
Short-circuit/Motor Start-up 
Ground-fault 
Sensor Fault 

Current 
Overcurrent 
Differential Current 
Negative Current 

Overload/Short Circuit 
Short Circuit 
Sensor Fault 

Impedance 
Low Impedance 
Abnormal Ratio X/R 

Short-circuit 
Short-circuit/ Sensor Fault 

Frequency Low Frequency 
High Frequency 

Increased Load/Sensor Fault 
Loss of Load/Sensor Fault 

Phase Angle Phase Angle Change Short-circuit/Sensor Fault 

Temperature 
Increased Temperature 
Decreased Temperature 
Negative Temperature 

Overload 
Short-circuit 
Sensor Fault 

Power 

Active Power in Zero-
Sequence Component 
Change of Direction of 
Power Flow 

Short-circuit/Sensor Fault 
 
Ground-fault/Sensor Fault 

Speed Change of Oil Flow in 
Transformer  Overload/Short-circuit 

Solar 
Irradiance 

Abnormal Solar 
Irradiance Sensor Fault 

Wind Speed Abnormal Wind Speed Sensor Fault 
 

The possible events that may be reported in our model are listed in Table 6. When a 

measured variable gets a suspicious value then the corresponding event is created and a 

possible fault is associated with it. If there is a sensor error, the system stops acquiring data 

from this source and, concurrently, increases the details of the microgrid control design. 
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4.2. Algorithm II: OCBA-based Control Design Selection 

This algorithm addresses the design selection problem from a finite set of control 

design alternatives with stochastic constraints in MG simulations for the allocation of the 

simulation replications. The real microgrid has several segregation points which are used 

to isolate specific areas or even individual buildings. Our framework automatically controls 

sets of these points and isolates regions accordingly when needed. For example, as shown 

in Fig. 6 for a group of 22 buildings, we may have a design where the buildings are 

partitioned into two subgroups, each controlled by a segregation point (Design A), or 4 

subgroups and segregation points (Design B) or 22 subgroups and segregation points 

(Design C), etc. These different control designs are predetermined to fit the real system 

that is simulated. The goal of this algorithm is to select the most appropriate design and 

provide it to the multi-objective optimization algorithm as an input. Using this design, the 

multi-objective optimization algorithm provides a Pareto solution while saving 

significantly from the computational time. 

Fig. 6. Different designs for a group of buildings 

 

Three demand categories, namely critical, priority, and non-critical are used to 

prioritize buildings within the microgrid. Critical demand areas are comprised of required 

areas for the administration and community control; priority demand areas cover the 

Design A: 2 partitions Design B: 4 partitions Design C: 22 partitions  
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buildings in which typical day-to-day functions take place; and non-critical demand 

buildings include the recreation, housing, and shopping facilities. There are also three 

different generation sources within the considered microgrid: diesel generators, 

photovoltaic arrays, and wind turbines.  

For the proposed OCBA-based control design selection algorithm, the simulation 

performance of the system is formulated as a single maximization objective function as 

shown in eq. (17). This single objective function combines the average percentage of 

satisfaction for different load types and total operational cost of the MG during the 

simulation time. 

 

𝑓𝑓(𝑋𝑋) = 𝛼𝛼 ⋅ 𝑃𝑃𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 + 𝛽𝛽 ⋅ 𝑃𝑃𝑝𝑝𝑐𝑐 + 𝛾𝛾 ⋅ 𝑃𝑃𝑚𝑚𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 + 𝛿𝛿 ⋅ 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚−𝑐𝑐
𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

                   (17) 

 

where X is the design for which the performance is evaluated, 𝑃𝑃𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐, 𝑃𝑃𝑝𝑝𝑐𝑐, and 𝑃𝑃𝑚𝑚𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 are the 

percentages of energy surety of the critical, priority and non-critical loads respectively, 

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum cost calculated so far between all replications and designs, 𝑐𝑐 is the 

cost of the current replication for design X and 𝛼𝛼, 𝛽𝛽, 𝛾𝛾, and 𝛿𝛿 are the coefficients of the 

percentages of energy surety/cost and correspond to the priority that is given to the different 

objectives. 

We assign simulation replications to design alternatives utilizing the aforementioned 

performance function and the OCBA technique [37]-[41]. As the simulation proceeds, we 

compute the mean and variance of the MG’s performance using the data which are 

collected up to that stage. The algorithm is presented in Fig. 7. 
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Fig. 7. Operations of the isolated MG control design algorithm 

[Step 1]: Input data 
(1) Define k (number of alternative designs), N (required probability of correct selection), ∆ 

(available budget for one iteration of the algorithm), n0 (initial replications for each 
design), and l (current iteration in OCBA) 

(2) Set  l ← 0; 
(3) Set  n1l =  n2l = ⋯ =  nkl =  n0 
While (𝑷𝑷{𝑪𝑪𝑪𝑪} <  𝐍𝐍) repeat Steps [2]-[5] 
[Step 2]: Performance calculation 
(1) Calculate the mean of MG’s performance for each design: 

fi̅ =  
1
nil

 � fij

ni
l

j=1

 ,         i = 1,2, … , k 

(2) Calculate the corresponding standard deviations: 

 sfi =  �� (fij −  fı�)2
ni
l

j=1
nil − 1�  ,         i = 1,2, … , k 

[Step 3]: Replication Calculation 

Calculate the new replications for MG designs (n1l+1, n2l+1, … , nkl+1) using the following 
equations and rounding them to the nearest integer (b represents design with best performance): 

   
nil+1

njl+1
= �sfi  �fb̅ − fȷ�� sfj  (fb̅ −  fi̅)� �

2
 , for i > j, i, j ≠ b 

nbl+1 =  sfb  � � �nil+1 sfi� �
2

k

i=1 ,i≠b

 

[Step 4]: Simulation 

(1) Perform �max�nil+1 −  nil , 0�� replications for all design i 
(2) Set  l ← l + 1. 
[Step 5]: Probability of Correct Selection Calculation 
(1) Calculation of the approximate probability of correct selection using the Bonferroni 

inequality (𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴 − 𝐵𝐵):  
𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴 − 𝐵𝐵 ≡ 1 −  ∑ 𝑃𝑃 {𝑓𝑓𝑏𝑏 < 𝑓𝑓𝑖𝑖}𝑘𝑘

𝑖𝑖=1,𝑖𝑖≠𝑏𝑏   
(2) Calculation of the approximate probability of correct selection in a product form: 

𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴 − 𝑃𝑃 ≡  ∏ 𝑃𝑃 {𝑓𝑓𝑏𝑏 > 𝑓𝑓𝑖𝑖}𝑘𝑘
𝑖𝑖=1,𝑖𝑖≠𝑏𝑏   

(3) Both 𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴 − 𝐵𝐵 and 𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴 − 𝑃𝑃 result in the approximate lower bound of 𝑃𝑃{𝐴𝐴𝐴𝐴}. 
Therefore,  

𝑃𝑃{𝐴𝐴𝐴𝐴} = max(𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴 − 𝐵𝐵 ,𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴 −  𝑃𝑃) 
*In order to obtain 𝑃𝑃 {𝑓𝑓𝑏𝑏 < 𝑓𝑓𝑖𝑖} pairwise Student’s t-test is used 
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In the OCBA-based control design selection algorithm, the best design (𝑏𝑏) may 

change in each iteration (𝑙𝑙). As the simulation proceeds by increasing the number of 

iterations, the best design in most cases converges to the optimal design as 𝑙𝑙 goes to infinity 

(the probability of correct selection approaches very close to 1). In order to conduct OCBA 

appropriately, the initial number of replications (𝑀𝑀0), and one-time increment (∆) should 

not be too small to avoid a poor estimation of the mean and variance. 

 

4.3. Algorithm III: Multi-objective Optimization 

The multi-objective optimization algorithm aims to determine the decision variables 

of the MG real system with accuracy. Thus, given a set of segregation points, demand in 

each building, and renewable generation, the multi-objective optimization algorithm 

defines the region that will be disconnected as well as the generation sources that will be 

initiated to satisfy the demand. The goal of this algorithm is to maximize energy surety 

while at the same time minimize the total operational cost. Our model also considers the 

environmental factors by minimizing the emissions of carbon oxides (𝐴𝐴𝑂𝑂2), oxides of 

nitrogen (𝑁𝑁𝑂𝑂𝑚𝑚), and sulfur oxides (𝐴𝐴𝑂𝑂2). The notation of the problem is provided in Table 

7. 
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Table 7: Summary of Notation and Formulation of the Problem 

Parameters Explanation 
𝑑𝑑𝑖𝑖 Demand in building i 
𝑝𝑝𝑊𝑊 Production from wind turbines 
𝑝𝑝𝑆𝑆 Production from photovoltaic solar panels 
𝑀𝑀 Number of buildings in MG 
𝑀𝑀 Number of segregation points 
𝑙𝑙𝑗𝑗 Number of buildings controlled by point j 
𝑐𝑐𝑗𝑗 Indices of buildings associated with point j 
𝑘𝑘 Number of diesel generators 

𝑃𝑃𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 Maximum operating power of generator z 
𝑐𝑐𝑧𝑧 Operation and maintenance cost of generator z 
𝑎𝑎𝑦𝑦 Cost of emission type y 
𝑀𝑀𝑧𝑧𝑦𝑦 Emission factor of generator z for type y 
𝑓𝑓𝑐𝑐 Fuel cost per liter 
𝑡𝑡1 Weight of critical demand 
𝑡𝑡2 Weight of priority demand 
𝑡𝑡3 Weight of non-critical demand 

𝑢𝑢𝑧𝑧, 𝑣𝑣𝑧𝑧, 𝑤𝑤𝑧𝑧 Parameters of diesel generator z 

𝑐𝑐𝑎𝑎𝑖𝑖 �        1,                            if bulding i is critical
        0,                                                otherwise 

𝑝𝑝𝑎𝑎𝑖𝑖 �        1,                           if bulding i is priority
0,                                                otherwise 

Binary variables  

𝑥𝑥𝑖𝑖 �        1,                      if bulding i is connected
        0,                                                otherwise 

𝑔𝑔𝑗𝑗 �        1,                      if switch in point j is on
0,                                               otherwise 

Continuous variables  
Pz Production from diesel generator z 

 

The mathematical formulation of the objectives of the problem is given in eqs. (18)-

(20). 𝑍𝑍1 represents the operational cost of the microgrid, 𝑍𝑍2 the emissions and 𝑍𝑍3 the energy 

surety. 

 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍1 = ∑ 𝑓𝑓𝑐𝑐(𝑢𝑢𝑧𝑧 + 𝑣𝑣𝑧𝑧𝑃𝑃𝑧𝑧 + 𝑤𝑤𝑧𝑧𝑃𝑃𝑧𝑧2)𝑘𝑘
𝑧𝑧=1                                           (18) 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍2 = ∑ ∑ 𝑎𝑎𝑦𝑦𝑀𝑀𝑧𝑧𝑦𝑦𝑃𝑃𝑧𝑧3
𝑦𝑦=1

𝑘𝑘
𝑧𝑧=1                                                              (19) 
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𝑀𝑀𝑎𝑎𝑥𝑥 𝑍𝑍3 = ∑ 𝑡𝑡1𝑐𝑐𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑑𝑑𝑖𝑖 + 𝑡𝑡2𝑚𝑚
𝑖𝑖=1 𝑝𝑝𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑑𝑑𝑖𝑖 + 𝑡𝑡3(1 − 𝑐𝑐𝑎𝑎𝑖𝑖 − 𝑝𝑝𝑎𝑎𝑖𝑖)𝑥𝑥𝑖𝑖𝑑𝑑𝑖𝑖        (20) 

 

The constraints of the problem are shown in eqs. (21)-(25). 

 

𝑝𝑝𝑊𝑊 + 𝑝𝑝𝑆𝑆 + ∑ 𝑃𝑃𝑧𝑧𝑘𝑘
𝑧𝑧=1 =  ∑ 𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖𝑚𝑚

𝑖𝑖=1                  (21) 

𝑃𝑃𝑧𝑧𝑚𝑚𝑖𝑖𝑚𝑚 < 𝑃𝑃𝑧𝑧 < 𝑃𝑃𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚          ∀𝑀𝑀 = 1, … ,𝑘𝑘                                              (22) 

𝑔𝑔𝑗𝑗 =  
∑ 𝑚𝑚𝑖𝑖𝑖𝑖∈𝑠𝑠𝑗𝑗

𝑙𝑙𝑗𝑗
                      ∀𝑗𝑗 = 1, … ,𝑀𝑀                                             (23) 

𝑥𝑥𝑖𝑖  ∈ {0,1}                          ∀ 𝑀𝑀 = 1, … , 𝑀𝑀                                              (24) 

𝑔𝑔𝑗𝑗  ∈ {0,1}                          ∀ 𝑗𝑗 = 1, … ,𝑀𝑀                                            (25) 

 

In our framework, each segregation point is associated with a specific set of buildings 

depending on the topology of the microgrid. When the fidelity level of the control design 

becomes higher, so does the number of segregation points. Therefore, the number of 

buildings that is associated with each point becomes smaller. In particular, in the highest 

possible fidelity, each segregation point controls a single building. As each segregation 

point is represented in the problem’s mathematical formulation with a binary variable, 

when the fidelity level is higher, the multi-objective optimization algorithm has to deal 

with a much more complex problem. This is because the solution space of the problem is 

exponential to the number of the segregation points. Hence, if there are 𝑁𝑁 segregation 

points, the solution space contains O(2𝑁𝑁) different solutions. As illustrated in Fig. 8, if a 

small group of 3 buildings is controlled by a single segregation point, then the solution 

space contains only 2 potential solutions. However, if each building is controlled by a 

unique segregation point, then the solution space contains 8 potential solutions.  
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Fig. 8. Segregation points and solution space complexity 

 

It must be noted here that when the control of the isolation mechanism within the MG 

becomes less intensive, the algorithm may end up with decisions that are sub-optimal 

sacrificing from energy surety, cost, and emissions. To this end, it is crucial to effectively 

select the fidelity level for the control mechanism in order to speed up the computational 

time while also producing near-optimal decisions for the system. 

Our multi-objective optimization algorithm utilizes the ϵ-constraint method which 

has multiple advantages over the weighting method in cases where there exist multiple 

objectives:  

1 segregation point 

2 options 

8 options 

Connected building Disconnected building 

3 segregation points 
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- It can produce unsupported efficient solutions for multi-objective integer 

programming problems. 

- There is no need to scale the objective functions in order to obtain a weighted sum. 

- The total number of efficient solutions can be controlled by adjusting the number of 

grid points [42]-[44]. 

The appropriate ϵ for each constraint can be acquired by a parametrical variation of 

the right-hand-side part of each constraint. In order to prevent redundant or dominated 

solutions, a range for each objective is calculated using the payoff table. The payoff table 

is created using the results from the individual optimization of each objective function 

using the other objectives as constraints. After the calculation of the payoff table, the ranges 

of the values of the objectives can be divided in an arbitrary number of intervals. 

 

4.4. Agent Based Simulation 

One of the most promising ways to simulate the behavior of a microgrid is using an 

agent-based simulation model. Agent-based simulation is a pioneering technique for 

modeling systems that contains several autonomous components that interact with one 

another. Agent-based modeling is a novel approach to the simulation of power network 

systems due to the multiple independent agents (power generation resources) that interact 

with and feed into a larger network that can realistically represent the structure of an 

electricity distribution system. This larger network learns from their ever-increasing data-

collection and adapts the overall system behavior to better suit the needs of its customers. 

In our case, when creating the microgrid simulation model, agents are designed for 

the loads, wind turbines, photovoltaic arrays, and diesel generators. Our simulation model 
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is built using a Java based software that brings together system dynamics, discrete event 

and agent based methods within a single model development environment. Figure 9 

illustrates the main class of the microgrid simulation model in the aforementioned software. 

 

 

Fig. 9. Main class of agent based simulation model of a microgrid 

 

Details of the major agents are described in the following sections. 

 

4.4.1.Demand Agent 

For each building on the microgrid area, a demand agent is created. The agent reads 

its parameters from the database’s corresponding tables. To this end, it reads the type of 

demand (critical, priority, non-critical), the type of load (residential, commercial, or 
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industrial), the peak demand of the building, as well as the transformer that feeds the 

building. By using a power factor plot for the load, the current demand is calculated per 

second. More specifically, following the values of the power factor in the schedule, the 

current demand is calculated by also adding a Gaussian noise. This agent contains an event 

that is triggered each second and calculates the new demand and total power. 

 

4.4.2.Solar Agent 

A photovoltaic cell (PV) transforms the solar irradiance into electricity. In our 

simulation model, the solar generator agent is designed to simulate each solar farm in the 

system each consisting of several PV cells. To this end, the agent utilizes the area and 

efficiency of each cell along with the total number of cells. It then uses the embedded 

functions to calculate the power output. Each second, the simulation triggers an event and 

calculates the power output for the solar farm using the solar radiation measurements. 

Equation (26) allows for the calculation of the power output from PV system with an area 

𝐴𝐴 (𝑀𝑀2) when the total solar irradiance of 𝐼𝐼𝑎𝑎 �𝑘𝑘𝑊𝑊ℎ
𝑚𝑚2 � is incident on the PV surface [45],[46]: 

 

 𝑃𝑃 = 𝐼𝐼𝑎𝑎 ∙ 𝜂𝜂 ∙ 𝐴𝐴        (26) 

 

where η denoted the system efficiency and ηm the module efficiency and are defined in 

eqs. (27) and (28). 

 

𝜂𝜂 = 𝜂𝜂𝑚𝑚 ∙ 𝜂𝜂𝑝𝑝𝑐𝑐 ∙ 𝑃𝑃𝑓𝑓      (27) 

𝜂𝜂𝑚𝑚 = 𝜂𝜂𝑐𝑐 ∙ �1 − 𝛽𝛽(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑐𝑐)�      (28) 
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where ηr is the manufacturer’s reported efficiency, ηpc is the power conditioning 

efficiency, Pf is the packing factor, β is the array temperature coefficient, 𝑇𝑇𝑐𝑐 is the reference 

temperature for the cell efficiency, and 𝑇𝑇𝑐𝑐 is the current temperature. Figure 10 is the state 

chart for the solar agent used in this simulation. 

 

 

Fig. 10. State chart and considered parameters in the solar generator agent 

 

4.4.3.Wind Generator Agent 

Wind power is increasing in popularity primarily due to the fact that it does not 

produce greenhouse gas emissions while it uses a relatively insignificant amount of space. 

Wind turbines are responsible for transforming wind energy into electricity. In the 

proposed simulation model, a wind generator agent is designed to compute the power 

output of the wind farms over short periods of time (on the order of seconds). The agent 

takes into consideration the real time measurements of the wind speed, the number of wind 

http://en.wikipedia.org/wiki/Greenhouse_gas
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turbines, their efficiency, and their rated power output to calculate the overall power output. 

Equation (29) is used for the actual power output of a wind turbine [46]:  

 

𝑃𝑃 = 𝑃𝑃𝑊𝑊 ⋅ 𝐴𝐴𝑊𝑊 ⋅ 𝜂𝜂     (29) 

 

where 𝑃𝑃𝑊𝑊 is the power output, 𝐴𝐴𝑊𝑊 is the total swept area, and η is the efficiency of the 

wind turbine generator.  

In the simulation model, for each second, the simulation triggers an event and 

calculates the power output of the wind farm using the wind speed measurements and the 

given parameters of the wind turbines. 

 

4.4.4.Diesel Generator Agent 

Diesel backup generators offer an uninterruptible source of electricity when all other 

resources of electricity fail. In our simulation model, the diesel generator agent acts as a 

stand-by system that activates automatically whenever the system detects a lack of power. 

When a power loss occurs, the microgrid controller signals the generator or generators 

needed depending on the estimated amount of electricity needed. When power is restored 

or renewables are again able to meet the demand, the controller automatically transfers the 

electrical load back to the utility or the renewables respectively. The microgrid then sends 

a signal to the generators to power down and to return to standby mode to wait for the next 

power outage. 
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4.5. Validation of the Individual Components of DASCONTROL 

In order to validate the performance of the proposed framework, we first test the 

performance of its crucial components in isolation (before they are all embedded into our 

proposed decision framework).  To this end, we first validate the OCBA-based control 

design selection algorithm by testing the total number of replications needed from the 

simulation to reach the desired probability of correct selection of the best design in the 

considered case study microgrid. We compare the total number of replications acquired by 

the proposed algorithm against those obtained from traditional approaches, including equal 

allocation (EA) and proportional to variance (PTV) algorithms, with 3 different 

predetermined control design sets. The first, second, and third control design sets includes 

5, 25, and 125 different designs (i.e., fidelities), respectively. In EA, the replications of the 

simulation are equally allocated among all of the design candidates [37]. PTV can be 

regarded as a sequential version of the two-stage procedure of Rinott [47] where the 

computing budget is allocated proportionally to the estimated sample variances. The details 

of the experiments and the results obtained from the proposed approach in comparison with 

those obtained from the traditional approaches are provided in Figs. 11-13.  

MG structure with 5 fidelities: The results of this experiment show that the OCBA-

based control design selection algorithm reaches a probability of correct selection of 98.5% 

after 35 replications while the PTV and EA algorithms need 55 and 65 replications to reach 

the same P{CS} (see Fig. 11). Therefore, the OCBA-based Control Design Selection 

Algorithm performs approximately 60% and 85% better than PTV and EA algorithms 

respectively. 
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Fig. 11. Comparison of OCBA, PTV and EA in a 5-fidelity microgrid 

 

MG structure with 25 fidelities: The results shown in Fig. 12 reveal that 500 and 750 

replications of the OCBA-based control design selection algorithm lead to a 97.9% and 

99.8% probability of correct selection, respectively. On the other hand, using PTV and EA 

algorithms results in the same P{CS} after 2250 and 2500 replications. These results 

illustrate that using the proposed algorithm is approximately four times faster than PTV 

and EA. 
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Fig. 12. Comparison of OCBA, PTV and EA in a 25-fidelity microgrid 

 

MG structure with 125 fidelities: Figure 13 shows that the OCBA-based control 

design selection algorithm reaches the 94.5% and 98.45% probability of correct selection 

after 4500 and 6500 replications respectively. Conversely, using EA and PTV algorithms 

only resulted in 93% probability of correct selection after 36500, and 40500 replications, 

respectively. 
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Fig. 13. Comparison of OCBA, PTV and EA in a 125-fidelity microgrid 

 

To validate the effectiveness of the proposed multi-objective optimization algorithm, 

we compare the quality of the solutions by solving the problem of (2)-(9) within the 

considered microgrid when the control fidelity is 3 and 5, with 25 and 186 segregation 

points, respectively. 

The objectives considered in the multi-objective optimization algorithm are to 

maximize the total energy surety by giving priority to the critical and priority loads, 

minimize the operational cost, and minimize the amount of emissions by allocating the 

generation resources and controlling the segregation points. All solutions were obtained 

using GAMS (General Algebraic Modeling System) with SCIP solver version 2.1.1. The 

experiments were conducted on a computer with 3.40 GHz processor and 8.00 GB memory 

(RAM). 

In order to use the 𝜖𝜖-constraint method in the optimization problem described in 
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Section III.C., the optimization problem was first solved for each objective function 

separately by considering the rest of the objective functions as constraints. The results 

obtained from that procedure led to a minimum and maximum value for each objective 

function. These maximum and minimum values were then used for the creation of 10 

intervals for both the cost and emissions objective functions. The minimum and maximum 

of every interval represents values of 𝜖𝜖𝑖𝑖 for the objective functions. In the last step, the 

objective function with the highest priority (i.e. energy surety objective) was considered as 

the only objective function of the problem, and the cost/emission objectives were added as 

constraints allowing them to take values only within the intervals described above. Since 

for both the cost and emissions objectives 10 intervals were created, their combination 

resulted in 100 different optimization problems and, respectively, in 100 distinct Pareto 

solutions. However, some of the obtained solutions were non-feasible while some others 

were not in the Pareto frontier. In Fig. 14 we illustrate the obtained Pareto frontier solutions 

solving the problem in fidelity 5 (left) and in fidelity 3 (right), respectively. 

 

Fig. 14. Set of Pareto solutions for fidelity 5 (left) and fidelity 3 (right). 
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The large (and bold) and small dots represent the Pareto solutions, and their 

projections on the axis-planes, respectively. The x-, y-, and z-axis represent the operational 

cost of the microgrid, the emissions, and the amount of satisfied demand, respectively.  

The challenge in comparing the solutions here is that the solutions in each case 

correspond to a different optimization model, while both models are using the same input 

data and are optimizing the same objectives. While the highest fidelity model includes 

substantially more binary variables and hence, acquires more solutions in the Pareto 

frontier, considering the fact that we have to choose only one solution (for the microgrid 

operation and control) and that the energy surety is the most important objective, we should 

focus on the solutions that maximize the z-axis (energy surety). We can see that in both 

cases of fidelity 3 and 5, we acquire several Pareto solutions, but when the control of the 

segregation points is limited, we acquire less Pareto solutions. This is expected since in the 

second case the number of the binary decision variables is significantly limited. However, 

for the Pareto solutions that are acquired in the space region where the most important 

objective is optimized (z-axis for energy surety objective), in both cases, the 𝜖𝜖-constraint 

method leads to the same efficiency. 

 

4.6. Validation of DASCONTROL  

Our proposed framework is applied to the considered microgrid for a period of 24 

hours starting at 12 am for validation purposes. The microgrid under investigation suffers 

from a blackout and is isolated using only its own generation resources to satisfy the 

demand. 
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The main goal of the framework is to significantly speed up the computational time 

of solving the aforementioned problem. To this end, the simulation model is used for the 

selection of the most appropriate control/design mechanism, and then, the problem is 

solved with the multi-objective optimization algorithm of the framework using the best 

selected control design as an input.  

In order to validate the framework, we compare the computational time needed for 

solving the problem using the proposed framework to the computational time needed for 

solving the problem as a plain multi-objective optimization problem without considering 

any smart control design selection that would reduce the complexity. In Table 8, the time 

in seconds is shown for both of these considered cases. Even though the proposed 

framework utilizes the simulation and the OCBA-based control design selection algorithm, 

the total time of solving the framework is significantly reduced. This occurs since with the 

proposed framework the complexity of the multi-objective optimization problem 

substantially drops. As discussed in Section II.C, the solution space is exponential to the 

number of segregation points. To this end, with the proposed framework the number of 

segregation points is much smaller, and thus, the Multi-objective Optimization Algorithm 

solves the problem much faster. 
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Table 8: Computational time comparison for the framework validation 

Hour 
Time (s) 
(Plain 

Optimization) 

Time (s) 
(Framework) 

Simulation& 
OCBA Optimization Total 

1 105 13 1 105 
2 118 15 2 118 
3 80 13 3 80 
4 82 12 4 82 
5 124 12 5 124 
6 81 14 6 81 
7 81 12 7 81 
8 122 13 8 122 
9 119 13 9 119 
10 76 15 10 76 
11 136 16 11 136 
12 75 13 12 75 
13 76 13 13 76 
14 124 14 14 124 
15 119 15 15 119 
16 78 16 16 78 
17 77 16 17 77 
18 77 14 18 77 
19 83 14 19 83 
20 76 12 20 76 
21 77 12 21 77 
22 73 16 22 73 
23 75 13 23 75 

 

The total computational time needed to solve the problem using the proposed 

framework in comparison to solve it as a plain multi-objective optimization problem is 

shown in Fig. 15. Here, the dashed black line illustrates the amount of time it takes to solve 

the problem as a plain optimization problem. This time also corresponds to the 

computational time of solving the considered problem using our framework in the 

maximum possible control fidelity. The solid black line is the computational time it takes 

to solve the problem using our proposed DASCONTROL  framework, and this time includes the 
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time required for the simulation to acquire the best possible control design.  

 

 

Fig. 15. Comparison of computational time for solving the problem 

 

The time required to solve the considered problem using our proposed framework is 

significantly less than that of solving the problem as a plain optimization problem. The 

95% confidence interval reduction in the computational time is 50.38% ± 11.09%; where 

in some cases even a reduction of up to 70% is observed. 
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Chapter 5: Self-healing of Distributed Microgrids using Dynamic 

Adaptive Simulations (DASSH) 
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During severe weather and other disasters, some damages to physical infrastructure 

is unavoidable but a microgrid with the ability to respond to faults and isolate regions could 

alleviate the impact of the fault and improve the speed of recovery. Moving toward a 

smarter, self-healing power grid serves to improve the reliability of an electrical network 

by reducing the frequency and duration that a power event or outage affects its customers. 

In order to be able to mitigate the impact of such power events, self-healing power grids 

must be able to dynamically diagnose and assess the status of each sub-grid within the 

overall topology in a timely and efficient manner. Such a timely status assessment and 

system control could be facilitated through the selection of the best control strategy that 

enables the communication between the different segments of the considered smart grid. 

This is necessary so that, when a fault occurs in one portion of the grid, that area can be 

isolated to break the cascading events’ series and reallocate resources to the affected area 

in order to minimize its negative impacts on its customers. Smarter grid technologies use 

several interaction strategies to achieve the needs of their specific function, namely, 

isolated self-healing strategy, centralized self-healing strategy, and cooperative self-

healing strategy. Figure 16 demonstrates the self-healing microgrid environment utilizing 

different system interaction strategies. 
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Fig. 16. Self-healing microgrids under different interaction strategies ((a) isolated self-

healing; (b) centralized self-healing; (c) cooperative self-healing) 

 

Interconnected microgrid systems use an isolated interaction strategy to detect, 

isolate, and recover from faults or other issues within its boundaries. An isolated microgrid 

controller can identify the amount of energy produced by its distributed generation 

resources as well as the status of electricity coming in from its servicin1g local utility. 
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However, a drawback of employing isolated system control in microgrids is that it does not 

allow self-healing as energy resources are limited to what the local utility and distributed 

generation resources within its boundaries can provide. Conceptually, this type of 

interaction strategy would be best utilized in microgrids that are housed on campus-like 

facilities such as universities, military bases, and business centers. Additionally, since there 

is no external connection to detect faults or transfer resources outside of its designated 

substations, microgrids operating under isolated control are not suitable for large-scale 

smart grid topologies. They may, however, serve as the ideal building blocks.  

In Fig. 16 (a), each microgrid controller solely manages all loads within their purview. 

Nonetheless, they cannot interact with the other microgrids although they share a local 

utility. Hence, for the purposes of real-time decision making and control, each microgrid 

is modeled as a separate simulation that is capable of running their own DASSH. The 

sensors attached to each of the renewable generation resources enable the microgrid to 

dynamically determine how much, if any, energy to purchase from the local utility. Here, 

each microgrid is able to dynamically detect abnormalities (i.e., power events) with the 

local utility. Once such a condition is detected, each individual microgrid controller can 

isolate its site from the local utility and rely solely on its distributed generation to meet the 

demand needs of its customers. 

On the other hand, a centralized method of interaction in microgrids utilizes an 

external controller to monitor and regulate the interactions of each microgrid within the 

self-healing grid topology. Each microgrid acts almost exactly as it would in an isolated 

interaction strategy with the exception that the external grid controller detects 

abnormalities or faults occurring either from the local utility or from a particular microgrid. 
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It then uses DASSH to determine which microgrids provide support to the microgrid/grids 

experiencing the fault. The central controller can also detect abnormalities occurring from 

the feed to the local utility and isolate all the microgrids from the local utility to prevent 

the fault from propagating to the equipment in each microgrid.  

A centralized interaction strategy (Fig. 16 (b)) takes the DASSH concept of the local 

interaction strategy and then adds a central controller that dynamically monitors and 

collects data from the individual microgrids as well as the local utility. The DASSH 

controller then uses that data to determine whether or not to isolate the microgrids from the 

local utility as well as to select which microgrids share energy with each other at any given 

time. A centralized interaction strategy’s main advantage is that is allows a single controller 

to view the entire smart grid network at one time. The primary disadvantage of a centralized 

control strategy is that as the network of microgrids grows, so does the time needed to 

respond to abnormalities within the network. Also, adding separate controllers outside of 

the microgrids adds considerable equipment and labor costs to the network. 

The third possible interaction strategy that can be applied between microgrids is the 

cooperative. In many ways, a cooperative interaction strategy (Fig. 16 (c)) is similar to the 

cases of isolated and centralized interaction strategies. Each microgrid manages its own 

distributed generation and optimizes the amount of energy purchased from the local utility 

to reduce costs under normal conditions. There is one thing about the cooperative 

interaction strategy however, that makes it more useful than the other two in a number of 

tasks. This is its ability to communicate with each of the other microgrids within the 

topology. 
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A cooperative interaction strategy fits into the DASSH framework as each of the 

microgrid controllers receives real time status updates from each of the other microgrids in 

the topology. It then uses that information to determine whether or not to share its energy 

with the microgrid experiencing the anomaly. The main advantage of a cooperative 

interaction is that it allows a grid to self-heal by sharing energy without the added cost of 

building a separate control system. However, this system uses a lot more computational 

resources than the local interaction strategy and, similarly to a centralized strategy, 

necessitates some form of sophisticated way to reduce the computational burden. 

 

5.1. Adaptive Energy Routing Mechanism using DASSH 

In order to effectively address the real time monitoring and control of self-healing 

power grids, a powerful Dynamic Adaptive Simulation technique (DASSH) has been 

applied. Within the framework, a vast amount of data is collected, several procedures and 

protocols are utilized, and a complex multi-objective problem is addressed. Initially, we 

provide the formulation of this multi-objective problem, namely economic emission load 

dispatch (EELD). The EELD is solved within every microgrid in order to acquire the 

optimal resource allocation (i.e. simultaneous minimization of the cost as well as total 

output of emissions). Then, we present the details of the investigated DASSH framework 

for self-healing microgrids. This framework includes a cooperative system and control. 

Finally, we describe the elements of the considered case study, which demonstrates the 

structure of the realistic model created and all of the feeder and agent therein. To this end, 

we explore a realistic, notional microgrid network consisting of three separate microgrids 
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(University, Civic, and Military) with different features, priority sets, and renewable power 

sources.  

 

5.2. Self-healing in Microgrids 

The primary goal in the self-healing networking structure in this work is to ensure 

that the most important electrical needs are satisfied while; the total cost incurred is 

minimized.  Cooperative system interaction is identified as the backbone of the described 

structure. In an abnormal situation where one or more microgrids suffer from power events, 

the cooperative communication and control facilitates the meeting of requested demands 

within each individual microgrid by their very own generation sources first, and then 

searches for neighboring microgrids or the enclosed utility service for back-up.  This is 

performed in order to avoid jeopardizing the microgrid’s stability and security starting with 

its critical loads. 

In order to improve the efficiency of the self-healing structure, each individual 

microgrid is assigned a priority number which determines the importance of satisfying the 

loads within this system. For instance, a microgrid with priority 1 is given higher attention 

in serving the loads than a microgrid with priorities 2 or 3. Here, we also define energy 

excess in a microgrid as the renewable energy that remains after satisfying all the loads 

within the same microgrid, without taking into account the energy bought from the utility 

provider. While it is quite rare for the renewables to exceed the energy needs in a microgrid, 

sharing that amount of energy reduces the total cost in the interconnected microgrid system 

significantly. In the event that no power event is observed in any of the interconnected 

microgrids and a microgrid has excess energy, it sends a signal sequentially to the rest of 
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the other connected microgrids. If there are multiple simultaneous requests to utilize this 

excess energy, then it is sent to the requester microgrid that is closest to the microgrid that 

hosts this excess energy so that the transmission losses are minimized. 

When a microgrid is suffering a blackout, it sends a signal for aid. Then, the 

microgrids around it check the current frequency value (i.e. the oscillations of the 

alternating current (AC) of the power grid). We note here that different microgrids may be 

connected to different utility providers, and thus, the frequencies might vary. Examining 

the frequency of a power network can produce valuable information about its state. The 

normal value of the frequency in the USA is 60 Hz, and values that differ significantly 

from that value indicate problems in the main grid. The system frequency is actually 

illustrating the dissimilarity between generation and consumption and thus, is a crucial 

factor for load control. The trend dictates that if an unanticipated increase between the 

ratios of the energy consumption over the energy generation occurs caused by either a 

failure in the transmission system or of the main generators, the frequency drops. On the 

other hand, the system frequency rises if the total system generation is steady, but an 

interconnected system (e.g. microgrid) disconnects.  

The microgrids check the frequency in order to determine in which way they may aid 

the microgrid that suffers the blackout. If the frequency value is in its normal range (59.6 

Hz - 60.4 Hz) the closest microgrid acts as an intermediary between its utility provider and 

the microgrid that suffers the blackout. On the other hand, if the frequencies are in a critical 

range (i.e. outside of the normal range) then the utility providers cannot be used for buying 

additional energy without risking the security of the power network. Thus, in this case, the 

microgrids with the lower priorities consecutively disconnect their non-critical loads and 
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share that amount of energy with the microgrid that suffers the blackout. This ensures that 

the critical and priority loads are satisfied first. In this way, the amount of energy bought 

from the utility provider does not increase, and the system as a whole is not put into 

jeopardy.  

Finally, in cases of extreme crisis when multiple microgrids are suffering blackouts, 

the system manages the renewable energy generation and the diesel generators within their 

boundaries in order to satisfy only critical and priority demands of the microgrids with the 

higher priority. The protocol for the actions of the interconnected microgrids is illustrated 

in Fig. 17.  

 

 

Fig. 17. Self-healing procedure for an interconnected microgrid topology 
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5.3. Details of the Considered Case Study 

To further illustrate the concept of a self-healing power grid, this case study utilizes 

a notional network of three interconnected microgrids employing a distributed 

communications strategy The three notional microgrids represent a military base (MBM), 

a local university (LU), and a government center (GCM). The entire compilation includes 

308 buildings and 11 feeders. The average annual demand for the MBM is 130.6 GWh; the 

average annual demand for the LU is 67.8 GWh; and the average annual demand for the 

GCM is 84.8 GWh. In addition, the buildings within each microgrid are also prioritized 

into critical, priority, and non-critical demand categories. Critical demand areas include 

areas that are required for the administration and control of the community within the 

microgrid. Examples of these types of areas are city hall for the GCM, the school 

administration building for the LU, and major headquarters for the MBM. Also included 

in the critical demand areas are buildings that house first responders and medical treatment 

facilities. Priority demand includes the buildings in which typical day-to-day functions take 

place. Examples of these facilities include drivers’ license offices for the municipal 

microgrid, research laboratories for the university and logistics facilities for the military 

base. Finally, non-critical demand buildings for all three microgrid types include the 

recreation, housing, and shopping facilities. The MBM being the most critical has the 

largest diversity of distributed generation resources. These resources include solar, wind, 

wave, and backup diesel generation. The GCM is next highest in priority but is also the 

most limited in terms of land area. Because of this the GCM only contains solar power 

generation. Lastly, the LU is third in terms of priority, but because of its location it is able 
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to support both solar and wind generation. Table 9 shows the average annualized demand 

for each demand type of the 3 microgrids appearing in the simulation. 

 

Table 9: Average Annualized Demand by Type (in GWh) 

 MBM LU GCM 

Critical 31.7 16.1 37.4 

Priority 40.1 23.6 26.2 

Non-Critical 58.8 28.1 21.2 

Total 130.6 67.8 84.8 

 

In the aforementioned notional network, agent based modeling and simulation provides an 

outstanding method to apply the DASSH framework to self-healing power grids. There are 

three distinct areas that define an agent-based simulation: a series of agents, the 

relationships between the agents, and the environment in which the agents interact ([5] and 

[6]). In this case study, each building, distributed generation resource, and local utility are 

represented as agents. The agents interact with one another by giving and receiving 

electrical power. The distributed generation resources and the local utility agents meet the 

demand requirements of the building agents. Additionally, each microgrid works as an 

independent system that contains several components that are independent as well. All 

these components interact with each other within the same self-healing smart grid 

environment.  

In order to simulate every singular component of the system, its behavior, and to fully 

capture its interactions with all other units, having an agent for each node is ideal. To this 
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end, there is an individual agent to represent the electricity demand for each of the 308 

buildings and another agent to represent each of the 11 power distribution feeders in the 

self-healing power grid network. Additionally, the simulation uses an agent for the 

Photovoltaic arrays located at each microgrid, an agent representing the wind farm at the 

MBM and the LU, and finally, an agent to represent the wave generator at the MBM. 

In each microgrid, electricity is delivered to the end users by way of the feeders that 

are connected to the substation. The electricity channeled through those feeders is then 

distributed to the different types of users receiving electricity from that particular 

substation. The MBM has 5 feeders delivering power to 186 buildings from the substation 

to its customers. The LU has 3 feeders delivering power to 64 buildings from the substation 

to its customers. The GCM has 3 feeders delivering power to 58 buildings from the 

substation to its customers. Figure 18 shows the self-healing smart grid framework 

developed for this case study. 
 

 

Fig. 18. An exemplary energy routing framework 
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The data collected for this study consists of real data collected over a period of 2 

years by the National Renewable Energy Laboratory from sensors located approximately 

60 miles from Panama City, Florida for solar irradiance and wind speed.  Additionally, a 

buoy located along the coast of Destin, FL provided data for the wave generator. As the 

model received this data, it filtered it using a Fault Detection, Fault Isolation, and Recovery 

(FDIR) algorithm to check the system at different levels of detail in order to limit the 

computational burden while solving the EELD problem for each microgrid. Finally, if the 

model detected a fault in the system, the microgrids are programmed to share energy in 

order to self-heal the power network as a whole and satisfy the highest possible amount of 

critical loads. 

 

5.4. Experiments and Results 

One of the purposes of implementing a self-healing grid is to reduce costs of energy. 

For this reason, the added material and labor costs of a separate controller make the 

centralized control strategy unfeasible. The DASSH model developed as part of this work 

simulates a local and distributed control strategy. Furthermore, given the current state of 

the existing main power grid, the DASSH seeks to determine the percentage of each demand 

type able to be satisfied under the following scenarios: 
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 Scenario A: A deliberate cyber-attack is directed toward the local utility, which 

renders it inoperable for a period of 24 hours. 

 

 Scenario B: A major hurricane completely wipes out power to the GCM for 48 

hours. However during that time frame, workers in critical buildings must come to 

work to facilitate the clean-up effort. 

 

 Scenario C: A terrorist attack within the borders of the LU forces the MBM to 

isolate from the local utility for a period of 2 hours until the threat has passed. 

However, the attack damaged the LU link to the local utility and it will require 6 

hours to repair. 

 

 Scenario D: While building a new research facility, construction crews cut the LU’s 

link to the local utility. The link to the local utility will require 24 hours to fully 

restore services. 

 

The results obtained from the simulation model executing based self-healing of a 

local and distributed smart grid configuration under the aforementioned scenarios are 

presented below: The results show what percentage of the demand the DASSH is able to 

meet for the local and distributed control strategies. Table 10 shows the percentage of self-

healing that can be achieved when using either a local control strategy or distributed 

control. 
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Table 10: Self-healing Percentages under Local Control (Left) and Distributed Control 

(Right) 

Scenario 

 

MBM Loads LU Loads GCM Loads 

Critical Priority 
Non-

critical 
Critical Priority 

Non-

critical 
Critical Priority 

Non-

critical 

A 96.5/97.2 48/47.8 0/0 57.3/57.4 4.1/4 0.2/0 29.7/29.6 0/0 0/0 

B 100/100 100/100 100/95.7 100/100 100/93.2 100/27.9 46/100 0/0 0/0 

C 97.6/98.6 79/94 66.4/66.4 45.2/97 4/41.1 0/6 100/99 100/52.1 100/26 

D 100/100 100/100 100/75.9 57.5/100 4/90.1 0.2/8.6 100/98.4 100/81.3 100/28.2 

 

From Table 10 we can see that in scenario A, the local and distributed control 

strategies yield the same result. This is because when the local utility is taken out of the 

picture, each microgrid is forced to rely solely on their distributed generation resources to 

supply power to meet their demands. When this occurs there is no excess energy as each 

microgrid is using its full capability to meet its own critical demands. One resolution to 

this would be to install enough renewable energy resources in combination with backup 

diesel generation to satisfy their critical demand needs. All microgrids in this simulation 

model lack the required land area to add additional renewable resources, leaving additional 

diesel generation as the only viable option. Table 11 shows updated results for scenario A 

when an additional 7 MW diesel generator is added to the MBM or LU. 
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Table 11: Self-healing Percentages under Local Control/Distributed Control with 

additional 7MW of Diesel Generation at the MBM/LU 

 

MBM Loads LU Loads GCM Loads 

Critical Priority 
Non-

critical 
Critical Priority 

Non-

critical 
Critical Priority 

Non-

critical 

MBM 

Local 

Control 
100 100 50.1 51.7 4.1 0 31.6 0 0 

Distributed 

Control 
100 99.8 0 41.9 4.1 0 70.4 26.8 7.9 

LU 

Local 

Control 
93.9 57.9 0.5 100 95.6 58.6 35.3 0 0 

Distributed 

Control 
94.4 82.4 7.4 100 83 9.6 40.9 8.9 1.7 

 

Based on prioritization, when the extra 7MW diesel generator is added to the MBM, 

under distributed control, the GCM is able to see a significant increase in its ability to meet 

its critical and priority demands even though the GCM is still experiencing a significant 

energy deficit for all its demand categories. When the same 7MW diesel generator is 

instead installed at the LU, the MBM experiences a significant increase in meeting its 

priority demand requirements. The GCM, while seeing some increase in the percentage of 

the demand it is able to meet, is still experiencing significant outages. 

In scenario B, when the hurricane destroyed the local utilities connection to GCM, it 

was only able to meet 46 % of its demand requirements with its onsite renewable generation 

under the local control strategy. However, in the distributed control strategy, the LU and 
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MBM were able to disconnect some of their less critical buildings to ensure the needed 

facilities within the GCM were fully functional. 

With scenario C, after the terrorist attack the MBM was able to meet over 97% of its 

critical demands and a large majority or its priority and non-critical demand under the local 

control strategy. However, the LU was only able to satisfy 45.2% of its critical demands 

and almost none of its others. Also, the GCM was largely unaffected under local control. 

Conversely, when utilizing the distributed control strategy the MBM was able to achieve a 

greater percentage of its priority loads and the LU was able to meet 97% of its critical 

loads. On the other hand, the GCM was only able to satisfy approximately half of its 

priority and one fourth of its non-critical loads. 

Finally, in scenario D the LU suffered significantly utilizing the local control strategy 

as only 57.5% of its critical loads and almost none of its other loads were able to be 

satisfied. However, under the distributed control strategy, the MBM and GCM were able 

to disconnect non-critical and priority loads to assist in fully restoring the critical loads and 

partially restoring the priority loads of the LU. 
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Chapter 6: Conclusions and Future Work  

 

 

 

 

 

 

 

 

 

 

 

 



84 
 

 
 

Microgrids are pioneering systems that offer managerial independence, operational 

independence, emergent behavior, geographic distribution, and evolutionary development. 

This dissertation reveals that Dynamic Adaptive Simulation is a promising method to 

model such systems as it provides means to find the most efficient method to optimize and 

enhance the microgrids’ operation and control and attain several benefits. The focus on this 

thesis is to solve the economic and environmental load dispatch problem optimally and 

efficiently, to achieve a sophisticated autonomous control of microgrids, and to promote 

the cooperation between individual microgrids to increase the power network reliability 

and energy surety. 

For addressing the challenge of solving the EELD problem in power networks 

efficiently, a DASEELD framework has been designed. The decision making capability of 

the framework resides in its algorithms developed for grid topology exploration and 

clustering, multi-objective optimization, state estimation, and fidelity selection. The 

framework also encompasses three databases for storing information related to sub-

networks, fidelities, and measurements. The proposed DASEELD framework has been 

demonstrated on a modified version of the IEEE-30 bus system. The presented results 

consistently reveal that the proposed framework is able to assess the system status and 

determine a simulation fidelity leading to a compromise solution which ranks among the 

global best possible solutions, while saving significantly from the computational resource 

utilization. Future ventures of this research include both methodological and technological 

extensions to the proposed framework. Methodological extensions can be performed in the 

development of the fidelity selection and culling algorithm, combining the current selection 

procedure with an advanced optimal computing budget allocation (OCBA) algorithm to 
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improve the quality of the solutions, while ensuring that a realistic computational threshold 

is respected. Furthermore, the effect of the variation in demand levels within the discovery 

procedure may be investigated to determine an optimal and feasible range. 

Technologically, the impact of integrating the DASEELD framework with high-speed sensor 

networks on the system’s overall performance may be studied.  

In order to achieve autonomous control of the operation of microgrids, a novel 

dynamic adaptive simulation framework DASCONTROL has been created that significantly 

accelerates the real-time computation of the resource allocation and controls decisions to 

optimize the operational cost, energy surety, as well as emissions per MW. This version of 

the DAS framework includes a database responsible for collecting data from electrical and 

environmental sensors; a fault detection/isolation algorithm that identifies liabilities as well 

as potential threats within the microgrid; an agent-based simulation of the microgrid system 

that includes modules for energy generation from renewable and fuel sources, and a 

heuristic algorithm for fast optimization in terms of cost and demand satisfaction; an 

optimal computing budget allocation-based control design selection algorithm that uses the 

agent-based simulation to select the best control design of the microgrid; and a multi-

objective algorithm for optimizing the decisions of the microgrid given the best control 

design. The DASCONTROL framework is quite promising in determining the optimal level of 

detail to analyze a system while minimizing the simulation time and required 

computational resources involved therein. For validation purposes a realistic case study 

microgrid has been utilized. The results show that the computational time is significantly 

reduced (50.3% on average) while the quality of the solutions is not compromised. 

Nowadays, with the available parallel computing and super computing capabilities, a 
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decrease in the computational complexity of the magnitude of 50% might seem negligible. 

However, the more computational capabilities that are available, the more complex and 

detailed the simulated systems become and hence, a decrease in the computational 

complexity is always significant. In the future, this work can expand to apply these 

concepts to multiple microgrids simultaneously. As new renewable energy sources become 

available and more efficient, the simulation can add a robust storage element to store excess 

electricity for future use. Additionally the DASCONTROL framework can be applied to an 

even more complex microgrid system where there are more sources of renewable 

generation as well as electric vehicles. Finally in our future venues is the idea of embedding 

an optimization genetic algorithm within the simulation that will use the Optimal Costing 

Budget Allocation technique to rank the produced solutions in every iteration. 

Finally, a version of the DAS framework has been developed to provide distributed 

microgrids with a protocol of self-healing, both when they are operating collaboratively 

and competitively (in an isolated mode) while increasing the reliability of the network by 

pledging energy surety (DASSH). In DASSH framework, an analytical protocol is built to 

guide the considered microgrids’ responses in the event of emergencies such as severe 

weather phenomena, damaged infrastructure, or cyber-attacks. This framework has been 

applied to a realistic case study that includes three microgrids and has been tested under 

four different emergency incidents. The results reveal that the cooperative collection of 

distributed microgrids were able to meet the critical and priority loads to a higher extent at 

all times while sacrificing from the less important non-critical loads, hence accomplishing 

a significantly improved management of energy resources. While this protocol is not able 

to meet 100 percent of all demands in the modeled scenarios, it does ensure that the most 
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critical facilities of an organizational structure have the electricity to perform their most 

essential tasks in times of crisis. While this framework focused on self-healing of electrical 

infrastructure based on the predicted total demand from buildings in the microgrid 

construct, it does not have a way to segment the demands within particular buildings. 

Future work in this area would determine a method to dynamically model the demands for 

individual rooms or sectors in a building. Similar to how each building is assigned a 

priority, each room within a building can also be assigned a priority. One can safely assume 

that not all the demand requirements located within a critical building are indeed critical. 

Similarly some priority buildings may house some critical assets. Furthermore, dynamic 

modeling of different demand priorities within a building and adjust those priorities in real-

time given factors such as time of day/week/month/year, is amongst the future venues of 

this research in order to fully satisfy the critical demands and a much larger proportion of 

the priority demand requirements. 
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import java.util.*; 
import java.io.*; 
 
public class MicrogridOCBA 
{  
private static int ND; 
private static int ADD_BUDGET; 
private static int[] n; 
private static int[] an; 
private static int b; 
 
public static void ocba(double[] mean,double[] var, int nd,int[] n,int add_budget,int type) 
/* 
This subroutine determines how many additional runs each design will should have for 
next iteration of simulation. 
s_mean[i]: sample mean of design i, i=0,1,...,ND-1 
s_var[i]: sample variance of design i, i=0,1,...,ND-1 
nd: the number of designs 
n[i]: number of simulation replications of design i, i=0,1,...,ND-1 
add_budget; the additional simulation budget 
an[i]: additional number of simulation replications assigned to design i, i=0,1,...,ND-1 
type: type of opitmization problem. type=1, MIN problem; type=2, MAX problem 
*/ 
{ 
  int i,s,budget,remainingBudget; 
  double[] ratio=new double[nd];  /* Ni/Ns */ 
  double totalRatio; 
  double temp=0; 
  boolean[] moreRun=new boolean[nd]; 
  boolean moreAllocation=true; 
   
  if(type==2) /*MAX problem*/ 
  { 
   for(i=0;i<nd;i++) mean[i]=-mean[i]; 
  } 
 
  b=best(mean,nd); 
  s=second_best(mean,nd,b); 
  ratio[s]=1; 
  
  for(i=0;i<nd;i++) 
  { 
       
   if(i!=s && i!=b) 
      { 
       ratio[i]=Math.pow((mean[b]-mean[s])/(mean[b]-mean[i]),2)*var[i]/var[s]; 
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      } /* calculate ratio of Ni/Ns */  
   if(i!=b) temp+=ratio[i]*ratio[i]/var[i]; 
 } 
   ratio[b]=Math.sqrt(var[b]*temp); 
    
   /* calculate NB */ 
   budget=add_budget; 
  for(i=0;i<nd;i++)        
  { 
      budget+=n[i]; 
      moreRun[i]=true; 
   } 
   remainingBudget=budget; 
    
   while(moreAllocation) 
   { 
        moreAllocation=false; 
        totalRatio=0; 
        for(i=0;i<nd;i++)  
        { 
            if(moreRun[i]) totalRatio+=ratio[i]; 
        } 
     
        for(i=0;i<nd;i++) 
        { 
            if(moreRun[i]) an[i]=(int)(remainingBudget*ratio[i]/totalRatio); 
            /*disable those design which have been run too much */ 
            if(an[i]<n[i]) 
            { 
                an[i]=n[i]; 
                moreRun[i]=false; 
                moreAllocation=true; 
            } 
        } 
        if(moreAllocation) 
        { 
            remainingBudget=budget; 
            for(i=0;i<nd;i++) 
            {  
                if(moreRun[i]==false) remainingBudget-=an[i]; 
            } 
        } 
   }  /*end of WHILE */ 
         /*calculate the difference */ 
   remainingBudget=an[0]; 
   for(i=1;i<nd;i++) remainingBudget+=an[i]; 
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   an[b]+=(budget-remainingBudget); /* give the difference to design b */ 
   for (i=0;i<nd;i++) an[i]-=n[i];     
} 
public static int best(double[] mean, int nd) 
 
 /* This function determines the best design based on current simulation results */ 
 /* t_s_mean[i]: temporary array for sample mean of design i, i=0,1,...,ND-1 
 nd: the number of designs */ 
  { 
   int min_index=0; 
   for(int i=0;i<nd;i++) 
     { 
      if(mean[i]<mean[min_index]) 
        { 
          min_index=i; 
        } 
      } 
   return min_index; 
   } 
  
 public static int second_best(double[] t_s_mean,int nd,int b) 
 /* This function determines the second best design based on current simulation results */ 
 /* t_s_mean[i]: temporary array for sample mean of design i, i=0,1,...,ND-1 
  nd: the number of designs. 
  b: current best design determined by function best() */ 
  { 
   int i, second_index; 
   if(b==0) second_index=1; 
   else second_index=0; 
   for(i=0;i<nd;i++) 
     { 
         if(t_s_mean[i]<t_s_mean[second_index] && i!=b) 
        { 
          second_index=i; 
         } 
      } 
   return second_index; 
  } 
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