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Data envelopment analysis (DEA) method which is based on a mathematical 

programming approach, and stochastic frontier functions (SFF) which is based on the 

econometric regression approach are two well-known tools for performance and 

efficiency analysis for profit and non-profit organizations, called decision making units 

(DMUs).  While SFF accounts for both managerial and observational errors, DEA 

assumes that all of the errors are due to only managerial errors, which can be misleading 

to decision-makers and managers, if the data utilized is contaminated with statistical 

noise. The challenge therefore facing empirical or traditional DEA’s methodology, is 

how to account for both managerial and observational errors if present in the analysis, so 

as to determine  DEA’s “true”  or optimal frontiers.  

 

The main objective of this dissertation is to determine DEA’s “true” frontier in a totally 

nonparametric environment, by utilizing traditional DEA efficient frontiers, along with  

DEA inefficient frontiers. DEA is integrated with SFF, thus enabling the identification of 

efficient frontiers, and specifically, a machine learning technique called support vector 

machine (SVM) is employed to provide an adaptive way to estimate “true” frontiers for a 

  
 



  
 

set of input-output data, considering both managerial and observational errors/deviations. 

A ratio based on statistics for managerial and observational errors is utilized to find the 

“true” frontiers that perform in between two extremes, and the methodology developed is 

applied to a real data set where frontiers generated by SVM are compared to ones 

obtained by the neural network (NN), and ordinary least squares (OLS) regression 

approaches.  

 

The results showed that SVM outperformed NN and OLS regression by about 2-to-1 in 

estimating nonlinear functions for efficient and inefficient frontiers. Also, utlizing a ratio 

based on statistics for managerial and observational errors, SVM gave a better estimation 

of the “true” frontier for DEA than both NN and OLS.  

 

The work in this research can prevent managers and decision-makers from committing 

grievous errors relative to the allocation and distribution of the funds and resources of 

their organizations, as well as, help organizations to plan a more realistic investment by 

providing reasonable sense of benchmarking to their peers (DMUs).  
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1. CHAPTER ONE: INTRODUCTION 

 

 

 

1.1 Overview  

 

Evaluating the performance, productivity, and efficiency of organizations in both the 

public and private sector has become increasingly crucial to managers and decision-

makers. 

 

Traditionally, organizations have focused on various profitability measures to assess 

performance, productivity and efficiency of their operations such as single dimensional 

performance indicators and multiple ratios. Unfortunately, ratio analysis and performance 

indicators do not provide a significant amount of information when considering the 

effects of economies of scale, the identification of benchmarking, and the estimation of 

overall performance measures of organizations (Wu, Yang and Liang, 2006). Regression 

analysis has also been utilized and although producing many useful insights, it is 

subjected to the limitation that the estimated function represents the average as opposed 

to the best-practice input-output relationship (Chirikos and Sear, 2000). 

 

In recent years, owing to the increase in global competition, as well as, the demand 

placed upon managers and decision-makers to further drive down costs, and increase 

productivity and efficiency, the use of a linear programming technique, known as Data
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 Envelopment Analysis (DEA) has become prevalent in numerous industries (Charnes, 

Cooper, Lewin and Seiford, 1994).   

 

Data Envelopment Analysis or DEA as it is sometimes called is an extreme point, non-

parametric, linear programming technique used to assess the relative efficiency of 

decision making units (DMUs) where the presence of multiple inputs and outputs makes 

comparisons difficult. The definition of a DMU is generic and flexible and generally 

refers to any entity that is to be evaluated in terms of its abilities to convert inputs to 

outputs. DEA was originally proposed by Charnes, Cooper and Rhodes (1978), and 

subsequently extended to allow variable return to scale (VRS) by Banker, Charnes and 

Cooper (1984). 

 

Formally, DEA is a methodology, which focuses on frontiers rather than central 

tendencies such as statistical regression. Instead of attempting to fit a regression line or 

plane through the center of the data, a piecewise linear surface is floated on the data 

(Cooper, Seiford and Zhu, 2004). DEA identifies the best practices among decision 

making units (DMUs) for multiple inputs and multiple outputs, and compares each DMU 

with only the “best” DMUs; The “best” DMUs lying on an efficiency/production frontier 

and having an efficiency score of 1.00 (one). The inefficient DMUs, each having an 

efficiency score less than 1.00 (one) are enclosed by the efficiency/production envelope 

and exist beneath the frontier (Cooper, Seiford and Tone, 2000).  
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According to production and microeconomic theories, systems are more productive when 

producing more output(s) with the same or less input(s). The inefficiency identified by 

DEA model corresponds to the extent that the input variable(s) can possibly be decreased 

while producing the same level of output(s); Or the extent that the output(s) levels can 

possibly be increased while using the same level of input(s). It has been proposed that the 

efficiency of a target DMU can be calculated by solving a fractional mathematical model 

which compares the weighted multiple inputs with the weighted multiple outputs data 

(Cooper, Seiford and Zhu, 2004). This ratio which is to be maximized forms the objective 

function for the target DMU to be evaluated and for the Charnes, Cooper and Rhodes 

(CCR) DEA model introduced by Charnes, Cooper and Rhodes (1978) is written 

algebraically as: 

 

   max h0 (u, v) = ∑r ur yr0 / ∑i vi  xi0                  (1.1)    

                  subject to:           

  ∑r ur yrj / ∑i vi  xij  ≤ 1 for j = 1,…,n 

  ur ,  vi ≥ 0  for all i and r 

 

where h0 is the efficiency score of DMU0, the DMU to be targeted or evaluated; the yr0’s 

and xi0’s are the observed output and input values respectively of DMU0; and the ur’s and 

vi’s the weights of the outputs and inputs respectively. The program determines a value 

h0, the efficiency of the target DMU and the weights leading to the efficiency h0. If the 

efficiency h0 = 1.00, then the target DMU is efficient relative to the others but if h0 is less 

than 1.00 then some other DMU(s) is more efficient than the target DMU being evaluated 

  



 4
 

even when the weights are chosen to maximize DMU0’s efficiency. The fractional linear 

program DEA Model in Equation 1.1 is converted into a linear form so that linear 

programming may be applied thus making it easily solvable (Emrouznejad, 1995-2001).   

 

The linear version of the constraints in Equation 1.1 may be written as follows: 

 

   max h0 (u) = ∑r ur yr0                    (1.2)    

            subject to:           

             ∑i vi  xij  = 1 

∑r ur yrj - ∑i vi  xij  ≤ 1 for j = 1,…,n 

             ur ,  vi ≥ 0  for all i and r 

 

For the objective function in Equation 1.1 it is necessary to observe that in maximizing a 

ratio or fraction, it is the relative magnitude of the numerator and denominator that are of 

importance and not their individual values. It is thus possible to achieve the same effect 

by setting the denominator equal to a constant and maximizing the numerator giving the 

resultant linear program as in Equation 1.2 (Emrouznejad, 1995-2001).   

 

Table 1.1 contains the data for a simple 3-dimensional example adapted from a problem 

given by Dr. S. Cho for a 5 (five) manufacturing systems having 1 (one) input variable 

(i.e. Area), and 2 (two) ouput variables (i.e. Product 1 and Product 2) to show the 

application of DEA using Banxia DEA Software 3.0 (Banxia, 2007).  
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Figure 1.1 gives the DEA frontier plot for the data using Banxia for input-orientation and 

constant return to scale (CRS). Manufacturing systems 2 and 5 are on the frontier and are 

the efficient DMUs whilst manufacturing systems 1, 3, and 4 are the inefficient DMUs 

and lie beneath the frontier enclosed by the envelope. 

 

System Area (10,000 sq-ft) Product 1 (100,000 EA) Product 2 100,000 EA) 
System 1 3 40 55 
System 2 2.5 45 50 
System 3 4 55 45 
System 4 6 48 20 
System 5 2.3 28 50 

Table 1.1 Data for 5 (Five) Manufacturing Systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 DEA Frontier for 5 (Five) Manufacturing Systems (Source: Banxia DEA S/W 3.0, 2007)  
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Table 1.2 gives the efficiency scores of the 5 (five) manufacturing systems and the 

errors/deviations of the inefficient systems, namely system 1, system 3, and system 4. 

 

System Efficiency Score By DEA Deemed Errors/Deviations 
System 1 87.94% (i.e. 0.88) Inefficient 1.00 – 0.88 = 0.12 
System 2 100% (i.e. 1.00) Efficient 0.00 
System 3 76.39% (i.e. 0.76) Inefficient 1.00 – 0.76 = 0.24 
System 4 44.44% (i.e. 0.44) Inefficient 1.00 – 0.44 = 0.56 
System 5 100% (i.e. 1.00) Efficient 0.00 

Table 1.2 Efficiency Scores and Errors/Deviations for 5 (Five) Systems  

 

Empirical or traditional DEA assumes that all of the errors or deviations from the frontier  

are due to managerial inefficiencies. To the contrary, research has suggested that there  

are usually two types of errors involved in the raw input-output data for organizations and  

institutions namely, managerial errors and observational errors (Aigner, Lovell and 

Schmidt, 1977; Greene, 1990; Schmidt, 1985 and Sueyoshi, 1991). For empirical DEA, 

the latter is usually taken to be zero leaving only the former, managerial errors to account 

for all the errors which can be misleading for decision-makers (Wang, 2003). 

 

Despite DEA increasing popularity and use, a major challenge confronting it is the fact 

that the efficiency frontier calculated by DEA may be warped if the data are 

contaminated with statistical noise (Bauer, 1990). Should such errors actually exist in the 

analysis, the results obtained can mislead decision-makers to ‘over-prescribe’ or ‘under-

prescribe’ resources to improve the performance and efficiency of the less efficient units 

since the efficient frontier obtained may not be the “true” frontier for DEA.  
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This challenge presents a need therefore to improve DEA’s methodology so as to provide 

decision-makers and managers with a more accurate tool to assess and determine the 

“true” performance and efficiency for their organizations. 

 

1.2 Purpose, Scope, and Objectives of Research 

 

The main purpose of this research is to determine DEA’s “true” or optimal frontier in a 

totally non-parametric environment by integrating DEA with stochastic frontier functions 

(SFFs). By utilizing support vector machine (SVM), this research provides an adaptive 

way to estimate “true” or optimal frontiers, for a set of input-output data considering both 

managerial and observational errors/deviations.  

 

The scope of this research applies the methodology developed and provided to determine 

the “true” or optimal frontier for DEA to the data set from the original study ‘Program 

Follow Through’ by Charnes, Cooper and Rhodes (1981) for assessing the educational 

programs for disadvantaged students.  Low dimensional data, consisting of one input 

(i.e. educational level of mother = x), one output (i.e. coopersmith scores = y), for a total 

of 49 (forty-nine) data pairs in its entirety are used under DEA’s assumption of variable 

return to scale. While only the single-input, single-output, 49 (forty-nine) decision 

making units, VRS case is utilized as an example for this research, the methodology 

developed may also be applied to multiple-inputs, multiple-outputs and VRS situations 

where the total decision making units are greater than 49 (forty-nine).  
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The objectives of this research are to: 

 

(1) Utilize traditional DEA non-parametric efficient frontier but at the same time, extend 

traditional DEA by introducing DEA non-parametric inefficient frontier in order to 

determine DEA’s “true” or optimal frontier.  

 

(2) Employ machine learning, in the form of SVM to more accurately estimate nonlinear 

functions for DEA efficient and inefficient frontiers and to carry out a comparison 

with neural network (NN) and ordinary least squares (OLS) regression models. 

 

(3) Determine an average regression function non-parametrically from both efficient and 

inefficient frontier functions.  

 

(4) Integrate DEA with SFF and introduce a simple ratio statistic based upon managerial  

and observational errors to determine DEA’s “true” or optimal frontier between two 

extremes, those being best-in-practice frontiers and average frontiers. 

 

(5)  Develop and provide a simple methodology for accomplishing all of the previously 

mentioned objectives from (1) to (4). 

 

(6) Apply the developed methodology to a real data set under VRS assumptions to 

compare frontiers generated by SVM to ones obtained by the ordinary least squares 

regression approach, as well as, the neural network approach. 
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1.3 Organization of Dissertation 

 

This dissertation is divided into 6 (six) chapters, of which, Chapter One has been 

presented in the previous pages. 

 

Chapter Two gives an overview of the literature review. The intention of this chapter is to 

briefly introduce DEA relative to its CRS and VRS models. The difference between 

DEA, which utilizes mathematical programming techniques, and the SFF approach, 

which utilizes econometric regression theory is presented along with studies and research 

work carried out, most of them incorporating DEA along with neural networks in an 

attempt to better estimate or predict efficiency frontiers or nonlinear functions. Critical to 

the literature review, the chapter gives a summary of the research by Wang (2003) which 

establishes the foundation of this research and dissertation, as well as, the 

characterization of managerial errors and observational errors relative to stochastic 

production frontiers. A brief theory and literature review on machine learning, in the 

form of support vector machine (SVM) and support vector regression (SVR) is also 

presented since machine learning plays a crucial role in this research.  

 

The limitation of empirical or traditional DEA in accurately determining the “true” 

efficient frontier if the data is contaminated with statistical noise is key to the problem 

statement for this research and dissertation in Chapter Three. The 5 (five) manufacturing 

system example introduced in Chapter One is utilized to demonstrate the mistakes which 

can be made by managers and decision-makers if the data utilized to determine traditional 
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DEA frontier is indeed contaminated with statistical noise. As a result of the limitation of 

traditional DEA, the chapter concludes emphasizing the need to improve DEA’s 

methodology to more accurately determine its “true” or optimal frontier and it 

recapitulates how this overall objective would be achieved in the research.  

 

Chapter Four outlines the proposed methodology developed for determining DEA’s 

“true” or optimal frontier for the research. Although, the emphasis of the research is on 

the integration of DEA with SFF relative to support vector machine, the methodology 

also includes the neural network and ordinary least squares regression models utilized for 

comparison purposes in the research. An illustrative example explaining traditional DEA 

efficient frontiers is given and is extended to introduce DEA inefficient frontiers which is 

a paramount contribution to the research. The chapter gives a detailed methodology on 

how efficient frontiers, inefficient frontiers and their functions for DEA are obtained for 

the research by employing machine learning in the form of SVM and NN, as well as, for 

two OLS models. How the average regression functions are achieved for SVM, NN, and 

OLS models is outlined, as well as, how a ratio based on statistics for managerial and 

observational errors to determine the “true” or optimal frontier is applied for SVM, NN, 

and OLS.  

 

The methodology developed in the previous chapter is applied to a real data set from the 

original study ‘Program Follow Through’ by Charnes, Cooper and Rhodes (1981) for 

assessing the educational programs for disadvantaged students and is given in Chapter 

Five. Low dimensional data, consisting of one input (i.e. educational level of mother = x), 
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one output (i.e. coopersmith scores = y), for a total of 49 (forty-nine) data pairs in its 

entirety are used under DEA’s assumption of variable return to scale and the detailed 

results and analysis documented for SVM, NN, and the two OLS models in the research. 

By utilizing the probability density function (pdf) and the area under the curve statistics, 

benchmarking is included in the results and analysis, in order to assess the performance 

of the ratio statistic method utilized in the research. 

 

Chapter Six of the dissertation gives a general summary of the findings of the research on 

how support vector machine, neural network, and ordinary least squares regression 

performed relative to each other.  Future work, for example, in the form of applying the 

methodology to data sets consisting of multiple-inputs, multiple-outputs, larger number 

of decision making units, and other situations are suggested.  

 

 

 

 

 

 

 

 

 

 

 



 
 

2. CHAPTER TWO: LITERATURE REVIEW 

 

 

 

This chapter gives an overview of the literature review. The intention of the chapter is to 

briefly introduce DEA relative to its CRS and VRS models. The difference between 

DEA, which utilizes mathematical programming techniques, and the SFF approach, 

which utilizes econometric regression theory is presented along with studies and research 

work carried out, most of them incorporating DEA along with neural networks in an 

attempt to better estimate or predict efficiency frontiers or nonlinear functions. Critical to 

the literature review, the chapter gives a summary of the research by Wang (2003) which 

establishes the foundation of this research and dissertation, as well as, the 

characterization of managerial errors and observational errors relative to stochastic 

production frontiers. A brief theory and literature review on machine learning, in the 

form of support vector machine (SVM) and support vector regression (SVR) is also 

presented since machine learning plays a crucial role in this research.  

 

2.1 Overview  

 

Since, the introduction of Data Envelopment Analysis (DEA) by Charnes, Cooper and 

Rhodes (1978) it has proven to be a popular methodology for assessing and evaluating 

the efficiency and performance of decision making units (DMUs) within organizations 

producing multiple outputs from multiple inputs (Ruggiero, 2000). The linear
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 programming modeling for the input-oriented constant return to scale (CRS) model 

introduced by Charnes, Cooper and Rhodes (1978), also referred to as the CCR (Charnes, 

Cooper and  Rhodes, 1978) model is given by: 

 

jθmin               (2.1) 

∑
=

==
n

1j
ijijj m21ixx ,...,,θλ   

∑
=

==
n

1j
rjrjj s21ryy ,....,,λ  

n21j0j ,....,,=≥λ  

 

where jθ  is the efficiency score for the jth DMU, where there are n systems or DMUs, 

the jth DMU represents one of the n DMU under evaluation, xij and yrj are the ith input 

and rth output for the jth DMU respectively, and sλ are dual variables.  

  

The CCR model, or CRS model as it is sometimes called, assumes constant return to 

scale economies, which means that doubling output exactly doubles inputs. The CCR 

model was extended to the variable return to scale (VRS) model by Banker, Charnes and 

Cooper (1984) also referred to as the BCC (Banker, Charnes and Cooper, 1984) model. 

The VRS input-oriented model is the same as the CRS model except for the fact that the 

sum of the sλ is equal to 1 and is written as: 
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jθmin              (2.2) 

∑
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where jθ  is the efficiency score for the jth DMU, where there are n systems or DMUs, 

the jth DMU represents one of the n DMU under evaluation, xij and yrj are the ith input 

and rth output for the jth DMU respectively, and sλ are dual variables.  

  

DEA applications for assessing performance and efficiency has been utilized in many 

industries and organizations, such as hospitals, restaurants, US Air Force wings, 

universities, cities, courts, business firms, just to mention a few (Cooper, Seiford and 

Zhu, 2004; and Charnes, Lewin and Seiford, 1994). There is however, another competing 

paradigm on how to construct frontiers to evaluate and assess the performance and 

efficiency of DMUs, which is the Stochastic Frontier Function (SFF) approach (Bauer, 

1990). DEA utilizes mathematical programming techniques, whilst the SFF approach 

utilizes econometric regression theory. The major advantage of the DEA approach is that 

no assumption has to be made about the functional form other than the concavity of the 

frontier functions (Bauer, 1990). To the contrary, the SFF approach imposes an explicit 

and possibly over restrictive, functional form for the data (Bauer,1990). 
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Econometricians favor the stochastic frontier model because it separates the error 

due to inefficiency and the error due to shock or noise. However, in the operation  

research field, DEA has been popular, where all the errors or deviations are assumed to 

be due to managerial/technical inefficiencies and is denoted by u (Wang, 2003). 

Bauer (1990) stated that the DEA frontier is very sensitive to the presence of outliers and  

statistical noise and as a result, the frontier derived from traditional DEA analysis may be  

incorrect if the data is contaminated by statistical noise. Research has also suggested that  

there are usually two types of errors involved in the raw input-output data for  

organizations and institutions namely, managerial errors denoted by u and observational 

errors denoted by v (Aigner, Lovell and Schmidt, 1977; Greene, 1990; Schmidt, 1985 

and Sueyoshi, 1991).  

 

Owing to the inability of DEA to be utilized to accurately predict the performance of 

other DMUs (Wu, Yang and Liang, 2006), in recent years, the artificial neural networks  

(ANNs) were introduced as good alternatives to assist in the estimation of efficiency  

frontiers for managers and decision-makers (Wang, 2003). 

 

Athanassopoulos and Curram (1996) were the first to introduce the combination of neural 

networks and DEA for classification and/or prediction. In their study, DEA was used as a 

preprocessing methodology to screen training cases for forecasting the number of 

employees in the health care industry. After the selection of samples, the ANNs were 

trained as a tool to learn a nonlinear forecasting model. 
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In the application to the London underground efficiency analysis, Costa and Markellos 

(1997) carried out a comparison of ANNs with corrected ordinary least squares (COLS) 

and DEA. They concluded that ANNs perform better in regard of the decision-making, 

the impact of CRS versus VRS or congestion areas.  

 

DEA was utilized by Pendharkar and Rodger (2003) as a data screening approach to 

create a sub-sample training data set that was ‘approximately’ monotonic, which is a key 

property assumed in certain forecasting and prediction problems. They concluded that the 

predictive power on an ANN that is trained on the ‘efficient’ training data subset is 

stronger than the predictive performance of an ANN that is trained on the ‘inefficient 

training data subset. 

 

Wu, Yang and Liang (2006) were the first to apply a DEA-neural network approach to 

assess and evaluate branch efficiency of a large Canadian bank. They concluded that 

DEA-NN approach produces a more robust frontier and identifies more efficient units as 

a result of the exploration of more good performances and patterns. 

 

While all of the aforementioned studies lend significantly to the progress made in 

utilizing machine learning, such as neural networks to improve, estimate, and predict 

nonlinear functions and models relative to DEA, none of them have addressed the 

observational errors (v) which are not accounted for in traditional DEA and which may 

result in the DEA’s “true” frontier being inside the DEA envelope. Wang (2003) is the 
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only known research to date which attempted to account for the observational error (v) 

associated with DEA. 

 

Wang (2003) which establishes the foundation for this research work introduced an 

interesting concept which incorporated DEA, a mathematical approach, and stochastic 

frontier functions, which is based on the econometric regression approach to determine 

more accurately efficient frontiers. In the study, DEA, SFF, and neural networks were 

utilized to determine the “true” frontier. An average function, FReg(x) was first 

determined at  λ = 0; u = 0; where u is managerial error, using neural networks. 

Secondly, a maximum function FCCR(x) synonymous to the DEA frontier was determined 

at  λ = 1; v = 0; where v is observational error, using neural networks. Wang (2003) 

concluded that the “true” frontier would exist between λ= 0 and λ = 1 as represented in 

Figure 2.1 and is determined by the distribution of the errors/residuals for the function: 

 

Fλ(x) = λFCCR(x) + (1-λ)FReg(x)   for 0 < λ <  1       (2.3) 

 

 

   λ = 1 
 
   λoptimal 
 
    λ = 0 
 

Figure 2.1 Diagram of Proposed Error(s) Distributions for Lambdas (Source: Wang, 2003) 
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Wang (2003) concluded that the optimal frontier is achieved at λ where the distribution 

of the residuals/errors depicts an “Extreme-Unbalanced-Two-Tailed – EUTT” 

distribution (i.e. a discontinuous distribution/function) as may be observed in Figure 2.2 

but did not state a criterion for achieving this or for when the optimal λ is achieved. In 

the study, no assumptions were made explicitly about the distributional forms of the 

managerial errors (u) or the observational errors (v) although referral to the representation 

of  u and v as a half non-negative normal and normal distributions respectively by 

Aigner, Lovell and Schmidt (1977) and Schmidt (1985) are mentioned. However, 

according to Aigner, Lovell and  Schmidt (1977) the function or distribution is  

continuous and given by Equation 2.4  and not discontinuous such as the EUTT 

distribution presented by Wang (2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.2 Diagram of Distributions of Errors/Residuals and EUTT Residuals (Source: Wang, 2003) 
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f(ε) = 2/σ  f*(ε/σ)[1 – F*(εησ   -1)]      -∞ <  ε  <  ∞       (2.4) 

 

where σ 2 = σu
2 + σv

2 ,  η = σu / σv , and f*(*) and F*(*) are the standard normal density 

and distribution functions respectively. 

 

Although, Wang (2003) demonstrated that the combination of DEA, SFF, and neural 

networks may assist model developers in finding data envelopes which are based on the 

entire data set, rather than some extreme data points from which uncertainty information 

has been lost, it included no criterion for optimal λ. In fact, preliminary experiments 

carried out during this research showed the “EUTT” characteristics occurring at multiple 

λs.  It should be pointed out that even though Wang (2003) suggested several methods for 

the pre-processing of the data (Wang, 1992) for the training of the neural network to 

obtain FReg(x), lack of clarity on how to carry this step out specifically may give rise to 

training the neural network with incorrect central points. Due to these shortfalls and 

limitations, this research would attempt to determine “true” frontiers more accurately by 

utilizing a completely non-parametric environment, as well as, both efficient and in-

efficient frontiers where the FReg(x) is determined easily and with clarity from a 

combination of DEA non-parametric efficient frontier and DEA non-parametric 

inefficient frontier functions.  

 

To date, there has been no literature found on any study, which incorporates support 

vector machine (SVM), along with DEA and SFF to assess the efficiency and 

performance of DMUs or organizations. Neither have any literature been found which 
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incorporates DEA efficient frontiers with DEA inefficient frontiers in order to determine 

DEA “true” or optimal frontiers. While, the few studies of DEA along with artificial 

neural networks have improved the ability of managers and decision-makers to make 

better judgements and decisions. On the other hand, support vector machines (SVMs) are 

known to produce equally good, if not better, results than neural networks, while being 

computational cheaper and producing an actual mathematical function (Clarke, Griebsch 

and Simpson, 2005). Unlike Wang (2003) which did not provide a criterion for optimal λ 

for determining “true” frontiers, this research proposes a ratio based on statistics for 

managerial and observational errors to determine the optimal frontiers that perform in 

between two extremes: best-in-practice frontiers only considering managerial error and 

average DMUs.  

 

2.2 Support Vector Machine (SVM) 

 

Support Vector Machine (SVM), based on statistical learning theory (SLT) was 

developed by Vapnik (1995), and is used for both classification and regression problems 

and tasks. Support vector machines (SVMs) as they are sometimes called provide non-

linear and robust solutions, by mapping the input space into a higher dimensional feature 

space by utilizing kernel functions where the capacity of such systems are controlled by 

parameters that do not depend on the dimensionality of the feature space. 

 

The support vector machine regression problem differs from the support vector machine 

classification problem in a few ways (Vapnik, 1995; and Cristianini and Shawe-Taylor, 
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2000). The objective of classification with SVM is to make binary decisions (i.e. to 

choose in which of two classes a given point should be classified). The objective of 

regression is to approximate a function of which the solution is a function that accepts a 

data point and return a continuous value (Musicant and Feinberg, 2004). 

 

According to Gunn (1998), in empirical data modeling, data is finite and sampled with 

the sampling being non-uniform and therefore due to the high dimensional nature of the 

problem, the data will only form a sparse distribution in the input space. As a result, the 

problem is nearly always ill posed (Poggio, Torre and Koch, 1985). Neural network 

approaches have suffered difficulties with generalization, producing models that can 

overfit the data as a result of the optimization algorithms utilized for parameter selection 

and the statistical measures used to select the ‘best’ model (Gunn, 1998). SVM possesses 

great potential and performance largely due to the structural risk minimization (SRM) 

principles which has a greater generalization ability and is superior to the empirical risk 

minimization (ERM) principle as adopted in neural networks (Lint, Hoogendoorn and 

Zuylen, 2000). In SVM, the results guarantee global minima whereas ERM in the case of 

neural networks, can only locate local minima, where there may be several and not 

promised to include global minima (Wu, Wei, Su, Chang and Ho, 2003). SVMs provide 

excellent generalization capabilities, fast, robust to high input space dimension, low 

number of samples, provide sparse solutions where only the most relevant samples of the 

training data called support vectors are weighted, resulting in low computational cost and 

memory requirements (Durbha, King and Younan, 2006).  
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This research incorporates support vector regression (SVR) which is a powerful 

technique for predictive data analysis (Cherkassky and Mulier, 1998; and Vapnik, 1995) 

along with DEA. Support vector regression has been used for diverse application areas, 

some of which include drug discovery (Demiriz, Bennett, Breneman and Embrechts, 

2001), civil engineering (Dibike, Velickov and Solomatine, 2000), sunspot frequency 

prediction (Collobert and Bengio, 2001), and benchmarking time series prediction tests 

(Muller, Smola, Ratsch, Scholkppf, Kohlmorgen and Vapnik, 1997; and Cao, 2003). 

 

 

2.2.1 Brief Theory on Support Vector Regression (SVR) 

 

There are two basic aims of SVR. Firstly, to find a function f(x, w) that has at most ε 

deviations from each of the targets of the training inputs, and secondly and at the same 

time, would like this function to be as flat as possible (Clarke, Griebsch and Simpson, 

2005; and Smola, Scholkopf and Muller, 1998). 

 

In SVR, the input vector x is first mapped onto a m-dimensional feature space using some 

fixed (nonlinear) mapping, and then a linear model is constructed in this feature space 

given by: 

 

∑
=
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m
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ii bxgwwxf )(),(      (2.5) 
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where gi(x),  i =1, ……m denotes the set of nonlinear transformations; b and wi are 

unknown coefficients; and yx,  is a dot product in m-dimensional feature space. 

 

The following regularized risk function given by Equation 2.6 is used to compute the 

unknown coefficient b and wi: 

 

             ∑
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+=
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2
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2
R(w) εζβ                      (2.6)  

 

where 0wxfy ii ≥−= βζ ),,( ,  is a regularization constant to control the trade-off 

between model accuracy and complexity and 
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is the ε-insensitive loss function (Vapnik, 1995). It has been shown that the regression 

estimate that minimizes the risk function (2.6) has the form (Vapnik, 1995): 
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Lagrangian multipliers satisfy conditions and is a 

kernel function, satisfying Mercer’s condition which corresponds to a dot product in 

feature space given by Equation 2.9: 

*
, ii αα ,, * 0ii >αα 0ii =*αα ),( yxK

 

                         (2.9) )()(),( ygxgcyxK ii

m

i
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where are positive coefficients.  0ci >

 

The parameter determines the trade-off between the model complexity (flatness) and 

the degree to which deviations larger than 

c

ε  are tolerated in optimization formulation. If 

 is too large (infinity), the objective is to minimize the empirical risk only, without 

regard to model complexity part in the optimization formulation. 

c

 

The parameter ε  controls the width of the ε -insensitive zone, used to fit the training 

data. The value of ε  can affect the number of support vectors used to construct the  

regression function. The bigger ε , the fewer support vectors are selected. On the other 

hand, bigger ε  values result in more ‘flat’ estimates. Therefore, both and c ε  values 

affect model complexity in a different way.  
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Figure 2.3 gives a simple illustration of a non-linear SVR solution with ε -insensitive 

zone. The constraints of the problem allow the regression function to lie inside the ε -

tube giving no penalty to those samples inside the ε -tube. 

 

 
Figure 2.3 Simple Example of Non-linear SVR with Epsilon-Insensitive Zone  

(Source: Pozdnoukhov and Kanevski, 2006) 
 

Table 2.1 shows a few examples of valid kernel functions that can be used satisfying 

Mercer’s condition. 

 

NAME  

Linear yxyxK T=),(  

Polynomial dyxyxK .),( =  

Gaussian radial base function (RBF) 
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Table 2.1 Examples of Some Valid Kernels 
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2.3 The Stochastic Production Frontiers and Errors 

 

The stochastic production frontier by Aigner, Lovell and Schmidt (1977), Battese and 

Corra (1977), and Meeusen and Van den Broeck (1977) is motivated by the idea that 

deviations from the frontier may not be entirely under the control of the production unit 

under study. These models allow for technical inefficiency but also accommodate the 

possibility that the relative performance of a production unit may also be affected by 

random shock such as measurement errors and other factors, such as weather, machinery 

performance, even luck etc. outside of its control (Kebede, 2001).  

 

An appropriate formulation of a stochastic frontier model in terms of a general 

production function for the ith  production unit is given by Wang (2003): 

 

                        iiiiii xfuvxfy εββ −=−−= ),(),(       (2.10) 

 

where vi is the two-sided noise component, and ui is the nonnegative technical 

inefficiency component of the error term. The noise component vi is assumed to be 

independently and identically distributed (iid) and symmetric, distributed independently 

of ui . Thus, the error term εi = vi + ui is not symmetric since ui > 0. 

 

Bauer (1990), Bravo-Ureta and Pinheiro (1993), and Coelli (1995) observed that most 

applied papers describe estimation of stochastic frontier models with errors composed of 

a normal and half-normal random variable, where the errors vi and ui are assumed to 
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follow a normal distribution and half-normal distribution respectively. Other assumptions 

for the errors in stochastic frontier models include normal-exponential, normal-gamma, 

and exponential-truncated normal (Kebede, 2001). 

 

The distribution function of the sum of a symmetric normal random variable and a half-

normal random variable as utilized by Aigner, Lovell and Schmidt (1977) in estimating 

stochastic frontier models is given by Equation 2.4. The density function is continuous 

and is asymmetric around zero. The density function of ui > 0 for three different values of 

the standard deviation parameter is given in Figure 2.4. 

 

 
Figure 2.4 Diagram of Half Normal Distributions for Three Different SD Parameter 
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In a study on stochastic frontier analysis by PWC Consulting (2001), the observational 

errors vi and the managerial errors ui were assumed to be normal and half-normal 

respectively and are illustrated individually in Figure 2.5 along with the summation of 

both. 

 

 

• Sum of the two distributions. 
Its degree of symmetry 
reveals the relative 
importance of the 
observational error 

 

• Managerial error (u) 
always causes costs to be 
higher. Therefore, it can be 
captured by an asymmetric 
(half-normal) distribution 

• Observational error (v) may 
be positive or negative with 
equal likelihood. Therefore, 
they can be captured by 
symmetric distribution 

Figure 2.5 Diagram of Normal and Half Normal Distribution Summation  
(Source:PWC Consulting, 2001) 
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2.4 Summary of Chapter Two 

 

In this chapter, the literature review for the research and dissertation was outlined. While 

the entire literature review is important, this section recaps briefly some portions which 

are significant to the research.  

 

The initial DEA model by Charnes, Cooper and Rhodes (1978), the CRS model or CCR 

model as it is sometimes called, which assumes constant return to scale was differentiated 

from the extended variable return to scale (VRS) model, the model assumed for applying 

the methodology developed in this research. We saw that while doubling the output 

exactly doubled the inputs for the CRS case, in the VRS case, outputs and inputs have a 

nonlinear increasing or decreasing relationship.  

 

We learnt that DEA which utilizes a mathematical programming technique, and assumes 

that all the errors and deviations are due to managerial/technical inefficiencies is popular 

in the operations research arena. Whereas, the competing paradigm, SFF which separates 

the error due to inefficiency and the error due to shock or noise is favored by 

econometricians. Research suggested that there are usually two types of errors involved 

in the raw input-output data for organizations and institutions namely, managerial errors 

 denoted by u and observational errors denoted by v (Aigner, Lovell and Schmidt, 1977; 

 Greene, 1990; Schmidt, 1985 and Sueyoshi, 1991).  

 

While several studies were presented which attempted to improve, estimate, and predict 
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nonlinear functions and models relative to DEA by incorporating machine learning, in the 

form of neural networks, Wang (2003) which establishes the foundation of this research 

was mentioned to have introduced an interesting concept, where DEA was incorporated 

with SFF and neural networks to determine DEA “true” optimal frontier. In the study, 

Wang (2003) firstly determined an average function, FReg(x) at  λ = 0; u = 0; where u is 

managerial error, using neural networks, followed by the determining of a maximum 

function FCCR(x) synonymous to the DEA frontier was determined at  λ = 1; v = 0; where 

v is observational error, using neural networks. Wang (2003) concluded that the “true” 

frontier existed between λ= 0 and λ = 1 and was achieved when distribution of the 

residuals/errors depicted an “Extreme-Unbalanced-Two-Tailed – EUTT” discontinuous 

distribution. We observed that while Wang (2003) made no assumptions explicitly about 

the distributional forms of the managerial errors (u) or the observational errors (v)  

referral to the representation of  u and v as a half non-negative normal and normal 

distributions respectively by Aigner, Lovell and Schmidt (1977) and Schmidt (1985) 

were mentioned, however, according to Aigner, Lovell and  Schmidt (1977) the function 

or distribution is continuous. 

 

In the chapter, a brief review on SVM was given since in this research it is to be utilized 

to estimate and predict nonlinear functions for efficient and inefficient frontiers. It was 

pointed out, that while the few studies of DEA along with artificial neural networks have 

improved the ability of managers and decision-makers to make better judgements and 

decisions. On the other hand, support vector machines (SVMs) were known to produce 

equally good, if not better, results than neural networks, while being computational 
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cheaper and producing an actual mathematical function (Clarke, Griebsch and Simpson, 

2005). In the chapter it was stated, that neural network approaches have suffered 

difficulties with generalization, producing models that can overfit the data as a result of 

the optimization algorithms utilized for parameter selection and the statistical measures 

used to select the “best” model (Gunn, 1998). On the other hand, SVM possessed great 

potential and performance largely due to the structural risk minimization (SRM) 

principles which has a greater generalization ability and is superior to the empirical risk 

minimization (ERM) principle as adopted in neural networks (Lint, Hoogendoorn and 

Zuylen, 2000). For SVM, the results guaranteed global minima whereas (empirical risk 

minimization (ERM) in the case of neural networks, can only locate local minima, where 

there may be several and not promised to include global minima (Wu, Wei, Su, Chang 

and Ho, 2003).  

 

The chapter concluded with a very important topic area to this research, by looking at 

stochastic production frontiers and their error components.  It outlined that the stochastic 

production frontier according to Aigner, Lovell and Schmidt (1977), Battese and Corra 

(1977), and Meeusen and Van den Broeck (1977) was motivated by the idea that 

deviations from the frontier may not be entirely under the control of the production unit 

under study. Their models while they allowed for technical inefficiency also 

accommodated the possibility that the relative performance of a production unit may also 

be affected by random shock such as measurement errors and other factors, such as 

weather, machinery performance, even luck etc. outside of its control (Kebede, 2001). 

The observational errors vi was characterized to be the two-sided noise component, and 
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the managerial error ui the nonnegative technical inefficiency component of the error 

term. The noise component vi was assumed to be independently and identically 

distributed (iid) and symmetric, distributed independently of ui . Thus, they concluded 

that the error term εi = vi + ui was not symmetric since ui > 0. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

3. CHAPTER THREE: PROBLEM STATEMENT 

 

 

 

This chapter briefly outlines the limitation of empirical or traditional DEA in accurately 

determining the “true” efficient frontier if the data is contaminated with statistical noise. 

The 5 (five) manufacturing system example introduced in Chapter One is utilized to 

demonstrate the mistakes which can be made by managers and decision-makers if the 

data utilized to determine traditional DEA frontier is indeed contaminated with statistical 

noise. As a result of the limitation of traditional DEA, the chapter concludes emphasizing 

the need to improve DEA’s methodology to more accurately determine its “true” or 

optimal frontier and recapitulates how this overall objective would be achieved in the 

research.  

 

3.1 Overview  

 

For decades keen interest has centered on improving existing performance and efficiency 

measurement methods, as well as, creating new methods to assess the performance, 

productivity, and efficiency of organizations.  

 

The most commonly used efficiency measurement methods are Ordinary Least Squares 

(OLS), Corrected Ordinary Least Squares (COLS), Stochastic Frontier Analysis (SFA), 

and Data Envelopment Analysis (DEA) as illustrated in Figure 3.1. The first three are

 33
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 parametric in nature requiring an assumption for the functional form, meaning that mis-

specification of the functional form can result in catastrophic results, but the latter, DEA 

is non-parametric and requires no assumption of the functional form (Sarafidis, 2002).  

Of the entire group, SFA and DEA are the two competing paradigms on efficiency 

analysis (Wang, 2003).  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 Diagram Contrasting Alternative Efficiency Assessment Methods  
(Source: Thanassoulis, 2007) 

 

 

More recently, DEA has become increasingly popular as result of its multiple 

inputs/outputs capability and more importantly because of its non-parametric approach, 
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where no assumption has to be made of the functional form compared to the parametric 

approach of SFA. Unlike SFA, which accounts for errors due to shock or noise (i.e.. 

observational errors) as well as, errors due to inefficiency (i.e. managerial errors), 

empirical DEA assumes that all the errors or deviations from the frontier are due to 

managerial inefficiencies. To the contrary, research has suggested that there  

are usually two types of errors involved in the raw input-output data for organizations and  

institutions namely, managerial errors and observational errors (Aigner, Lovell and 

Schmidt, 1977; Greene, 1990; Schmidt, 1985 and Sueyoshi, 1991). For empirical DEA, 

the latter is usually taken to be zero leaving only the former, managerial errors to account 

for all the errors which can be misleading for decision-makers (Wang, 2003). 

 

Despite DEA increasing popularity and use, a major challenge confronting it, is the fact, 

that the efficiency frontier calculated by DEA may be warped if the data are 

contaminated with statistical noise (Bauer, 1990). Should such errors actually exist in the 

analysis, the results obtained can mislead decision-makers to ‘over-prescribe’ or ‘under-

prescribe’ resources to improve the performance and efficiency of what may be thought 

to be the less efficient units, since the efficient frontier obtained may not be the DEA’s 

“true” frontier. In other words, the “true” efficiency frontier may exist inside/below the 

traditional DEA’s envelope/frontier and those units which are deemed efficient may 

already be over-resourced, whilst those deemed as inefficient may be more efficient than 

the results convey.  
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The possibility therefore for managers and decision-makers to thus draw incorrect 

conclusions from empirical or traditional DEA can lead them into committing grievous 

errors in how they allocate and distribute the funds and resources of their organizations, 

which can only result in reduced efficiency, effectiveness, and profitability.  

 

3.2 The 5 (Five) Manufacturing System DEA Example Revisited 

 

Revisiting the DEA example for the 5 (five) manufacturing systems in Figure 1.1. 

Utilizing traditional DEA, managers and decision-makers would conclude that Systems 2 

(two) and 5 (five) are on the efficient frontier, whilst Systems 1 (one), 3 (three) and 4 

(four) are inefficient and are below the frontier. Some of the actions, which may be taken 

as a result, include reducing the area for System 1 (one) by 12.1% from 3 (10,000 sq-ft) 

to 2.64 (10,000 sq-ft). Secondly, reducing the area of System 3 by 23.6%, as well as 

targeting an increase in the output of Product 2 (two) by System 3 (three) by 

approximately 35.8% to 61.11 (100,000 EA). Lastly, reducing the area of System 4 (four) 

by 55.6% to 2.67 (10,000 sq-ft) as well as targeting an increase in the output of Product 2 

(two) by 166.7% to 53.33 (100,000 EA). 

 

Traditional DEA gives the total potential improvement as may be viewed in Figure 3.2 to 

include a 31.06% reduction in the input (i.e. area) as well as, a possible increase in the 

output of Product 2 (two) of 68.94%.  
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In this example, if the efficiency frontier is indeed inside the envelope or below the 

frontier and not as illustrated by empirical DEA then these decisions would be incorrect 

and have drastic consequences for organizations and their decision-makers. This could 

result in the possibility that Systems 2 (two) and 5 (five) do not exist on the “true” 

frontier and may already be over-resourced and instead, one or of the other systems or a 

combination of the others may be efficient and exist on the “true” frontier. This simple 

example cannot emphasize enough the need for managers and decisions-makers to be 

equipped with more accurate methods so as to better assess and determine “true” 

production/efficiency frontiers. 

 

 

 

 

 

Figure 3.2 Total Potential Improvements for 5 (Five) Manufacturing System DEA Example  
(Source: Banxia DEA S/W 3.0, 2007) 
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3.3 How Research Plans to Deal with Problem 

 

To avoid the possible dilemma therefore posed by empirical DEA, the overlying 

objective of this research is to provide a more accurate tool for managers and decision-

makers to assess the performance, productivity, and efficiency of their organizations, and 

to enable them to determine efficiency/production frontiers more accurately.  

 

Although, Wang (2003) which establishes the foundation for this research work, 

demonstrated that the combination of DEA, SFF, and neural networks may assist model 

developers in finding data envelopes which are based on the entire data set, rather than 

some extreme data points from which uncertainty information has been lost, it included 

no criterion for optimal λ. In fact, preliminary experiments carried out during this 

research showed the “EUTT” characteristics occurring at multiple λs.  It should be 

pointed out that even though Wang (2003) suggested several methods for the pre-

processing of the data (Wang, 1992) for the training of the neural network to obtain 

FReg(x), lack of clarity on how to carry this step out specifically may give rise to training 

the neural network with incorrect central points. Due to these shortfalls and limitations, 

this research would attempt to determine “true” frontiers more accurately by utilizing a 

completely non-parametric environment, as well as, both efficient and inefficient 

frontiers where the FReg(x) is determined easily and with clarity from a combination of 

DEA non-parametric efficient frontier and DEA non-parametric inefficient frontier 

functions.  
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To date, there has been no literature found on any study, which incorporates support 

vector machine (SVM), along with DEA and SFF to assess the efficiency and 

performance of DMUs or organizations as would be performed in this research and 

dissertation. Neither have any literature been found which incorporates DEA efficient 

frontiers with DEA inefficient frontiers in order to determine DEA “true” or optimal 

frontiers. While, the few studies of DEA along with artificial neural networks have 

improved the ability of managers and decision-makers to make better judgements and 

decisions. On the other hand, support vector machines (SVMs) are known to produce 

equally good, if not better, results than neural networks, while being computational 

cheaper and producing an actual mathematical function (Clarke, Griebsch and Simpson, 

2005). Unlike Wang (2003) which did not provide a criterion for optimal λ for 

determining “true” frontiers, this research proposes a ratio based on statistics for 

managerial and observational errors to determine the optimal frontiers that perform in 

between two extremes: best-in-practice frontiers only considering managerial error and 

average DMUs.  

 

Recapping the research and dissertation purpose, scope, and objectives as outlined in 

Chapter One. They are as follows: 

 

• The main purpose of this research is to determine DEA’s “true” or optimal frontier in 

a totally non-parametric environment by integrating DEA with stochastic frontier 

functions (SFFs). By utilizing support vector machine (SVM), this research provides 
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an adaptive way to estimate “true” or optimal frontiers, for a set of input-output data 

considering both managerial and observational errors/deviations.  

 

• The scope of this research applies the methodology developed and provided to 

determine the “true” or optimal frontier for DEA to the data set from the original 

study ‘Program Follow Through’ by Charnes, Cooper and Rhodes (1981) for 

assessing the educational programs for disadvantaged students.  Low dimensional 

data, consisting of one input (i.e. educational level of mother = x), one output (i.e. 

coopersmith scores = y), for a total of 49 (forty-nine) data pairs in its entirety are 

used under DEA’s assumption of variable return to scale. While only the single-

input, single-output, 49 (forty-nine) decision making units, VRS case is utilized as an 

example for this research, the methodology developed may also be applied to 

multiple-inputs, multiple-outputs and VRS situations where the total decision making 

units are greater than 49 (forty-nine).  

 

• The objectives of this research are to: 

 

(1) Utilize traditional DEA non-parametric efficient frontier but at the same time, 

extend traditional DEA by introducing DEA non-parametric inefficient frontier in 

order to determine DEA’s “true” or optimal frontier.  

 

(2) Employ machine learning, in the form of SVM to more accurately estimate 

nonlinear functions for DEA efficient and inefficient frontiers and to carry out a 
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comparison with neural network (NN) and ordinary least squares (OLS) 

regression models. 

 

(3) Determine an average regression function non-parametrically from both efficient 

and inefficient frontier functions.  

 

(4) Integrate DEA with SFF and introduce a simple ratio statistic based upon 

managerial and observational errors to determine DEA’s “true” or optimal 

frontier between two extremes, those being best-in-practice frontiers and average 

frontiers. 

 

(5) Develop and provide a simple methodology for accomplishing all of the 

previously mentioned objectives from (1) to (4). 

 

(6) Apply the developed methodology to a real data set under VRS assumptions to 

compare frontiers generated by SVM to ones obtained by the ordinary least 

squares regression approach, as well as, the neural network approach. 

 

3.4 Summary of Chapter Three 

 

The chapter began by presenting some of the most commonly used efficiency 

measurement methods. We learnt that OLS, COLS, and SFA are parametric in nature and 

require an assumption of the functional form, meaning that mis-specification of the 
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functional form can result in catastrophic results, whereas, DEA is non-parametric and 

requires no assumption of the functional form (Sarafidis, 2002). 

 

It was pointed out, that despite DEA increasing popularity and use, a major challenge 

confronting it, is the fact, that the efficiency frontier calculated by DEA may be warped if 

the data are contaminated with statistical noise (Bauer, 1990). Should such errors actually 

exist in the analysis, the results obtained can mislead decision-makers to ‘over-prescribe’ 

or ‘under-prescribe’ resources to improve the performance and efficiency of their 

organizations. The 5 (five) manufacturing system example was revisited and the results 

obtained by traditional DEA were used to illustrate how decision-makers and managers 

can make drastic decisions if indeed the efficient frontier is incorrect. 

 

The chapter concluded by recapping the main purpose and overlying objective of the 

research and dissertation, along with its scope, and its itemized objectives, which are as 

follows: 

 

• The main purpose of this research is to determine DEA’s “true” or optimal frontier in 

a totally non-parametric environment by integrating DEA with stochastic frontier 

functions (SFFs). By utilizing support vector machine (SVM), this research provides 

an adaptive way to estimate “true” or optimal frontiers, for a set of input-output data 

considering both managerial and observational errors/deviations.  
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• The scope of this research applies the methodology developed and provided to 

determine the “true” or optimal frontier for DEA to the data set from the original 

study ‘Program Follow Through’ by Charnes, Cooper and Rhodes (1981) for 

assessing the educational programs for disadvantaged students.  Low dimensional 

data, consisting of one input (i.e. educational level of mother = x), one output (i.e. 

coopersmith scores = y), for a total of 49 (forty-nine) data pairs in its entirety are 

used under DEA’s assumption of variable return to scale. While only the single-

input, single-output, 49 (forty-nine) decision making units, VRS case is utilized as an 

example for this research, the methodology developed may also be applied to 

multiple-inputs, multiple-outputs and VRS situations where the total decision making 

units are greater than 49 (forty-nine).  

 

• The objectives of this research are to: 

 

(1) Utilize traditional DEA non-parametric efficient frontier but at the same time, 

extend traditional DEA by introducing DEA non-parametric inefficient frontier in 

order to determine DEA’s “true” or optimal frontier.  

 

(2) Employ machine learning, in the form of SVM to more accurately estimate 

nonlinear functions for DEA efficient and inefficient frontiers and to carry out a 

comparison with neural network (NN) and ordinary least squares (OLS) 

regression models. 
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(3) Determine an average regression function non-parametrically from both 

efficient and inefficient frontier functions.  

 

(4) Integrate DEA with SFF and introduce a simple ratio statistic based upon 

managerial and observational errors to determine DEA’s “true” or optimal 

frontier between two extremes, those being best-in-practice frontiers and 

average frontiers. 

 

(5) Develop and provide a simple methodology for accomplishing all of the 

previously mentioned objectives from (1) to (4). 

 

(6) Apply the developed methodology to a real data set under VRS assumptions 

to compare frontiers generated by SVM to ones obtained by the ordinary least 

squares regression approach, as well as, the neural network approach. 

 

 

 

 

 

 

 

 

 



 
 

4. CHAPTER FOUR: METHODOLOGY 

 

 

 

In this chapter, the proposed methodology for this research is developed and presented 

for determining DEA’s “true” or optimal frontier, from a totally non-parametric 

environment by utilizing efficient, as well as, inefficient frontiers, and residuals’ 

distributions. Although, the emphasis of the research is on the integration of DEA with 

SFF relative to support vector machine, the methodology also includes the neural 

network and ordinary least squares regression models to be utilized for comparison 

purposes in the research. An illustrative example explaining traditional DEA efficient 

frontiers is given and is extended to introduce DEA inefficient frontiers, which is a 

paramount contribution to the research. Included inside the detailed methodology is also 

how efficient frontiers, inefficient frontiers and their functions for DEA are obtained in 

the research by employing machine learning in the form of SVM and NN, as well as, for 

two OLS models. It also explains in detail, how the average regression functions are 

achieved for SVM, NN, and the OLS models OLS1 and OLS2, as well as, how a ratio 

based on statistics for managerial and observational errors to determine the “true” or 

optimal frontier is applied for SVM, NN, and OLS.
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4.1 Overview 

 

 

The methodology for determining DEA’s “true” frontier from a totally non-parametric 

environment by utilizing efficient, as well as, inefficient frontiers, and residuals’ 

distributions is the cornerstone for this research.  

 

The methodology is applied to the data set from the original study ‘Program Follow 

Through’ by Charnes, Cooper and Rhodes (1981) for assessing the educational programs 

for disadvantaged students and may be viewed in Appendix A1. Low dimensional data, 

consisting of one input (i.e. educational level of mother = x), one output (i.e. coopersmith 

scores = y), with a total of 49 (forty-nine) data pairs in its entirety are used under DEA’s 

assumption of variable return to scale.  

 

DMUs on the DEA’s efficient frontier, F(Eff) for the 49 (forty-nine) data pairs are 

determined under the VRS case by linear programming as in Equation 2.2 or by DEA 

software, with the efficiency score criterion for these DMUs being 1.00 (one) or 100% 

(one-hundred percent). The DMUs on the DEA’s inefficient frontier, F(Ineff) for the 49 

(forty-nine) data pairs are determined under the VRS case by modifying the linear 

programming in Equation 2.2, where the efficiency score criterion for these DMUs is also 

denoted by 1.00 (one) or 100% (one-hundred percent). 

 

 

  



 47
 

4.1.1 Illustrative Example for Calculating Efficient and Inefficient Frontiers 

 

While the literature, linear programming, and software for determining DEA’s efficient 

frontier is prevalent, determining DEA’s inefficient frontier is not. This research and its 

methodology is the only known instance of which DEA’s inefficient frontier is 

introduced and will be calculated.   

 

The following example for the 4 (four) DMUs, each with a single input and a single 

output, is utilized to demonstrate easily how to calculate DEA’s efficient and inefficient 

frontiers. The example’s objective is input-oriented and aims to obtain the maximum 

output from the least amount of input in the efficient frontier case, and aims to obtain the 

minimum output from the greatest amount of input in the inefficient frontier case. The 

data for the example is given in Table 4.1. 

 

DMU Input Output 
DMU1 1 2 
DMU2 3 7 
DMU3 4 6 
DMU4 2 6 

Table 4.1 Input-Output Data for 4 (four) DMUs DEA Example 

 

Efficiency in traditional measure is expressed as:  

Input
OutputEfficiency =  
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Therefore the efficiencies of the 4 (four) DMUs  as a ratio of unit output to unit input are: 

003
2
64DMUofEfficiency

501
4
63DMUofEfficiency

332
3
72DMUofEfficiency

002
1
21DMUofEfficiency

.

.

.

.

==

==

==

==

 

 

From these results, DMU4 is the most efficient, since each unit of its input produces 3 

units of output. Also, DMU3 is the least efficient, since for each unit of its input, it only 

produces 1.50 units of output. Hence, DMU4 is utilized as the base or reference DMU for 

determining the efficiency score of DMUs for efficient frontier, and DMU3 as the base or 

reference DMU for determining the efficiency score of DMUs for inefficient frontier. 

Therefore, in the CRS case as mentioned in Section 2.1, the efficiency scores for the 

DMUs considering efficient frontier or traditional DEA frontier are calculated as follows: 

 

For DMU1: 

670
6
4

61
22

4DMU
1DMUscorefrontierEfficient .

*
* ====
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For DMU2: 

780
18
14

63
27

4DMU
2DMUscorefrontierEfficient .

*
* ====

 

For DMU3: 

500
24
12

64
26

4DMU
3DMUscorefrontierEfficient .

*
* ====

 

For DMU4: 

001
12
12

62
26

4DMU
4DMUscorefrontierEfficient .

*
* ====

 

Utilizing Equation 2.1 and Lingo Version 10.0 for the CRS case, the linear programming 

to determine the efficiency score of the DMUs for efficient frontier is written as follows 

and gives the following objective functions, which are the same as those calculated 

previously and may be viewed in Appendix B.  

 

For DMU1 - CRS Case Linear Programming (Using Lingo 10.0): 
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For DMU2 - CRS Case Linear Programming (Using Lingo 10.0): 

78077780frontierefficientforgivenfunctionObjective
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For DMU3 - CRS Case Linear Programming (Using Lingo 10.0): 
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For DMU4 - CRS Case Linear Programming (Using Lingo 10.0): 

00100001frontierefficientforgivenfunctionObjective
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Hence, it is concluded that only DMU4 exist on the DEA’s efficient frontier, F(Eff) since it 

is the only DMU determined under the CRS case to fulfill the efficiency score criterion, 

that being 1.00 (one) or 100% (one-hundred percent).  

 

Utilizing Equation 2.2 and Lingo Version 10.0 for the VRS case, the linear programming 

to determine the efficiency score of the DMUs for efficient frontier is written as follows 

and gives the following objective functions as also may be viewed in Appendix C.  
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For DMU1 - VRS Case Linear Programming (Using Lingo 10.0): 
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For DMU2 - VRS Case Linear Programming (Using Lingo 10.0): 
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For DMU3 - VRS Case Linear Programming (Using Lingo 10.0): 

50050000frontierefficientforgivenfunctionObjective
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For DMU4 - VRS Case Linear Programming (Using Lingo 10.0): 

00100001frontierefficientforgivenfunctionObjective
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Hence, it is concluded that DMU1, DMU2, and DMU4 exist on the DEA’s efficient 

frontier, F(Eff) since they are the only DMUs determined under the VRS case to fulfill the 

efficiency score criterion, that being 1.00 (one) or 100% (one-hundred percent).  
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In the CRS case as mentioned in Section 2.1, the efficiency scores for the DMUs 

considering inefficient frontier using DMU3 as the base or reference DMU are calculated 

as follows: 

 

For DMU1: 

331
6
8

61
42

3DMU
1DMUscorefrontiertInefficien .

*
* ====

 

For DMU2: 

561
18
28

63
47

3DMU
2DMUscorefrontiertInefficien .

*
* ====

 

For DMU3: 

001
24
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3DMU
3DMUscorefrontiertInefficien .

*
* ====

 

For DMU4: 

002
12
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3DMU
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*
* ====

 

Therefore, under the CRS condition, the efficiency scores of DMUs for inefficient 

frontier are determined by modifying Equation 2.1 and is given by: 

 

jθmax              (4.1) 

∑
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ijijj m21ixx ,...,,θλ   
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∑
=

=≤
n

1j
rjrjj s21ryy ,....,,λ  

n21j0j ,....,,=≥λ  

 

Utilizing Equation 4.1 and Lingo Version 10.0 for the CRS case, the linear programming 

to determine the efficiency score of the DMUs for inefficient frontier is written as follows 

and gives the following objective functions, which are the same as those calculated 

previously and may be viewed in Appendix D.  

 

For DMU1 - CRS Case Linear Programming (Using Lingo 10.0): 
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For DMU2 - CRS Case Linear Programming (Using Lingo 10.0): 
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For DMU3 - CRS Case Linear Programming (Using Lingo 10.0): 
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For DMU4 - CRS Case Linear Programming (Using Lingo 10.0): 

00200002frontiertinefficienforgivenfunctionObjective
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Hence, it is concluded that only DMU3 exist on the DEA’s inefficient frontier, F(Ineff) 

since it is the only DMU determined under the CRS case to fulfill the efficiency score 

criterion, that being 1.00 (one) or 100% (one-hundred percent). 

 

Likewise, under the VRS condition, the efficiency scores of DMUs for inefficient frontier 

are determined by modifying Equation 2.2 and is given by: 

 

jθmax               (4.2) 
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Utilizing Equation 4.2 and Lingo Version 10.0 for the VRS case, the linear programming 

to determine the efficiency score of the DMUs for inefficient frontier is written as follows 

and gives the following objective functions as also may be viewed in Appendix E. 
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For DMU1 - VRS Case Linear Programming (Using Lingo 10.0): 
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For DMU2 - VRS Case Linear Programming (Using Lingo 10.0): 
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For DMU3 - VRS Case Linear Programming (Using Lingo 10.0): 
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For DMU4 - VRS Case Linear Programming (Using Lingo 10.0): 
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Hence, it is concluded that DMU1 and DMU3 exist on the DEA’s inefficient frontier, 

F(Ineff) since they are the only DMUs determined under the VRS case to fulfill the 

efficiency score criterion, that being 1.00 (one) or 100% (one-hundred percent). 
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As this research only examines the VRS case on the selected data set in Appendix A1,  

those DMUs on the efficient frontier F(Eff), and inefficient frontier F(Ineff) are expanded 

utilizing both Minitab 12.23 and Datafit Version 8.2 to plot and generate DEA’s efficient 

and inefficient piecewise frontiers so as to further generate a total set of 20 (twenty) 

DMUs each for efficient frontier F(Eff) expanded data set, and inefficient frontier F(Ineff) 

expanded data set to allow for the training and testing of both neural networks and 

support vector machines. Each additional data pair, which is included in the expanded 

data set obtained from the actual DEA’s efficient and inefficient frontiers using Datafit 

8.2 is added into Equation 2.2 and Equation 4.2 with the original data used to initially 

calculate efficient frontier and inefficient frontier. Each data pair included in the 

expanded data set to 20 (twenty) DMUs must fulfill the efficiency score criterion of 1.00 

and monotonicity.  

 

Datafit 8.2 is an easy to use curve-fitting software and would fit a curve or produce a line 

plot, connecting all the data pairs of a set to be examined. It also has a feature which 

allows the user to position the pointer anywhere along the fitted curve or line plot and  

would give the xy data coordinates or pair at the pointer’s position.  

 

Therefore, for the illustrated example, the DMUs which are on the efficient frontier F(Eff) 

and the inefficient frontier F(Ineff)  in the VRS case are as follows: 

F(Eff)   = {DMU1, DMU2, DMU4} 

F(Ineff) = {DMU1, DMU3} 
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The 3 (three) DMUs on the efficient frontier F(Eff) are used in Minitab and Datafit to plot 

the DEA’s piecewise efficient frontier, so as to allow the set to be expanded to a total of 

20 (twenty) DMUs, including the original 3 (three) DMUs on the efficient frontier. The 2 

(two) DMUs on the inefficient frontier F(Ineff)  are used in Minitab and Datafit to plot the 

DEA’s piecewise inefficient frontier, so as to allow the set to be expanded to a total of 20 

(twenty) DMUs, including the original 2 (two) DMUs on the inefficient frontier. It is 

these expanded data sets, each consisting of 20 (twenty) DMUs total each, for both the 

efficient frontier F(Eff) and inefficient frontier F(Ineff) which are used to train and test both 

neural networks and support vector machines. 

 

4.1.2 Machine Learning 

 

In order to train and test neural networks and support vector machines satisfactorily, there 

must be a sufficient amount of data, which give rise to the need for the expanded data set 

mentioned in Section 4.1.1. It is common that for the training and testing of neural 

networks and support vector machines, that the expanded data set mentioned be 

preprocessed or scaled so as to facilitate the nonlinear estimation process for both 

techniques. The reason for scaling the data, is that the use of very high or low numbers, 

or series with a few very high or very low outliers, can cause underflow or overflow 

problems, with the computer stopping, or as Judd (1998) points out, the computer 

continuing by assigning a value of zero to the values being minimized. For this research, 

the expanded data sets consisting of 20 (twenty) DMUS each for both efficient frontier 

F(Eff) and inefficient frontier F(Ineff) are subsequently scaled before being split randomly 
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into a 70% (seventy percent) set for training both neural networks and support vector 

machines, and a 30% (thirty percent) set for testing both neural networks and support 

vector machines. The same 70% (seventy percent) set which is used to train neural 

networks to obtain a function, is the exact same set used to train support vector machines 

to obtain a function. Likewise, the same 30% (thirty percent) set used to test the neural 

networks’ function, is the exact same set used to test the support vector machines’ 

function. 

 

This research allows the software used to determine the optimal parameters for the 

support vector machine model. For the neural network architecture however, the number 

of hidden nodes are determined by a more common heuristic for smaller sample sizes, 

that being twice the number of input nodes+1 (Bhattacharyya and Pendharkar, 1998; and 

Pendharkar, 2001). Subsequent to this, the software is allowed to determine the optimal 

hidden activation and output activation functions for the neural network architecture as 

determined by the number of hidden node heuristic. 

 

4.1.3 Ordinary Least Squares Regression Models for Comparison 

 

In order to assist in the evaluations of the non-parametric neural network and support 

vector machine models for the research, two ordinary least squares regression models are 

created.  
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The first model, OLS1 utilizes the same expanded data sets for both efficient frontier 

F(Eff) and inefficient frontier F(Ineff)  as mentioned in Section 4.1.2. The same 70% (seventy 

percent) randomly selected scaled data pairs used to train the neural network and support 

vector machine is the exact same 70% (seventy percent) used to create the regression 

functions for both efficient and inefficient frontiers. The same 30% (thirty percent) 

randomly selected scaled data pairs used to test the neural network and support vector 

machine are the exact same 30% used to test the OLS1 regression functions for efficient 

and inefficient frontiers. 

 

The second regression model, OLS2 utilizes the conventional approach initially, by 

fitting a regression function to all original 49 (forty-nine) data pairs. For the original 49 

(forty-nine) data pairs in Appendix A1, the x-input values are scaled between 0.000 and 

1.000, and the y-output values between 0.200 and 0.800 .  The model is then extended to 

include the efficient frontier F(Eff) as for NN, SVM, and OLS1. The same 70% (seventy 

percent) randomly selected scaled data pairs used to train the neural network and support 

vector machine are the exact same 70% (seventy percent) used to obtain the regression 

function for the efficient frontier F(Eff). The same 30% (thirty percent) randomly selected 

scaled data pairs used to test the neural network and support vector machine are the exact 

same 30% (thirty percent)  used to test the OLS2 regression function for the efficient 

frontier F(Eff). The OLS2 model does not include the inefficient frontier as NN, SVM, and 

OLS1. 
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4.1.4 Frontier Analysis 

 

4.1.4.1 Determining the Average Regression Function FReg(X) Non-parametrically 

 

This research utilizes a completely non-parametric approach to determine DEA’s “true” 

frontier. In order to achieve this, an average regression function FReg(X) is obtained from 

functions obtained by training and testing neural networks and support vector machines 

for non-parametric efficient frontier and non-parametric inefficient frontier. The average 

function FReg(X) is achieved by varying theω  in Equation 4.3 until a normal or 

approximate normal distribution of the residuals is realized (i.e. where the sum of the 

residuals on the left hand side and the right hand side equal 0). The ω at which this is 

achieved, is the optimal ω  for FReg(X) and determines the average regression function 

FReg(X) found non-parametrically at λ = 0 for the research and as illustrated in Figure 

4.1. 

 

FReg(X) = ω F(Eff)(X) + (1-ω )F(Ineff)(X)      for 0 < ω  <  1              (4.3) 
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Figure 4.1 Simplified Diagram to Calculate FReg(X) Non-parametrically 

F(Eff)(X) @ ω = 1 

FReg(X) @ ω (Optimal) 

F(Ineff)(X) @ ω = 0 

 

4.1.4.2 Determining the Average Regression Function FReg(X) Parametrically 

 

The two ordinary least squares regression models to be used for comparison purposes 

compute the average regression function FReg(X) in Equation 4.3 parametrically. In order 

to achieve this, for the first model OLS1, an average regression function FReg(X) is 

obtained from ordinary least squares regression functions obtained with the exact same 

expanded data sets used for the training and testing of neural networks and support vector 

machines for non-parametric efficient frontier and non-parametric inefficient frontier. 

The average function FReg(X) for model OLS1 is achieved parametrically by varying 

theω  in Equation 4.3 until a normal or approximate normal distribution of the residuals 

is realized (i.e. where the sum of the residuals on the left hand side and the right hand 

side equal 0). The ω at which this is achieved, is the optimal ω  for FReg(X) and 

determines the average regression function FReg(X) found parametrically at λ = 0 for 

model OLS1 in this research and as illustrated in Figure 4.2. 
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F(Eff)(X) @ ω = 1 

FReg(X) @ ω (Optimal) 

F(Ineff)(X) @ ω = 0 

Figure 4.2 Simplified Diagram to Calculate FReg(X) Parametrically for Model OLS1 

 

For the second model OLS2, an average regression function FReg(X) is obtained by fitting 

an ordinary least squares regression function for the original 49 (forty-nine) data pairs of 

which the x-input values are scaled between 0.000 and 1.000, and the y-ouput values 

between 0.200 and 0.800. Equation 4.3 for efficient frontier, and inefficient frontier are 

not utilized in this model for determining FReg(X). This FReg(X) determines the average 

regression function FReg(X) found parametrically at λ = 0 for model OLS2 in this 

research and as illustrated in Figure 4.3. 
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FReg(X)  

Figure 4.3 Simplified Diagram to Calculate FReg(X) Parametrically for Model OLS2 

 

4.1.4.3 Determining DEA’s “true” Frontier Or Optimal Frontier at Fλ 

 

DEA’s “true” frontier is determined by varying the λ in the combined function in 

Equation 4.4 between the average function FReg(X) at λ = 0, and the efficient frontier 

function F(Eff)(X) at λ = 1 for both neural networks and support vector machines and a 

ratio based on the statistics for the residuals (i.e. managerial and observational errors) is 

utilized to determine the optimal frontier. The ordinary least squares regression models 

created for comparison purposes also utilize Equation 4.4 and the same methodology as 

for neural networks and support vector machines in determining DEA’s “true” frontier. 

 

Fλ(X) = λF(Eff)(X) + (1-λ)FReg(X)   for 0 < λ <  1         (4.4) 
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4.2 Research Method for Determining Efficient Frontier F(Eff) DMUs 
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The low dimensional raw data set, consisting of one input (i.e. educational level of 

mother = x), one output (i.e. coopersmith scores = y), for the 49 (forty-nine) DMUs in 

Appendix A1 are utilized in DEA software or Equation 2.2 under the variable return to

scale (VRS) assumption to determine the DMUs on the efficient frontier F(Eff). Those 
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Since the goal is to train and test neural networks and support vector machines which 

require a large data set, the limitation imposed by the small data set of 49 data pairs for 

the DMUs, makes it necessary for the data set to be expanded. The DMUs determined t

be on the efficient frontier by DEA’s software or Equation 2.2 are used inside Mi

12.23 and Datafit Version 8.2, so as to enable the efficient frontier data set to be 

expanded to a total of 20 (twenty) data pairs or DMUs. Each additional data pair or D

obtained from the actual plotted DEA’s piecewise efficient frontier by Minitab and 

Datafit is imputted inside the DEA’s software or Equation 2.2 along with the original 4

(forty-nine) data pairs for the DMUs and is only added to the expanded data set if the 

e
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4.3 Research Method for Determining Inefficient Frontier F(Ineff) DMUs 

 in 

he 

ing the efficiency score criterion of being 1.00 (one) or 

00% (one-hundred percent). 

 

al 

is only 

data set if the efficiency score criterion of 1.00 (one) and 

onotonicity are met. 

 

The low dimensional raw data set, consisting of one input (i.e. educational level of 

mother = x), one output (i.e. coopersmith scores = y), for the 49 (forty-nine) DMUs

Appendix A1 are utilized in Equation 4.2 under the variable return to scale (VRS) 

assumption to determine the DMUs on the inefficient frontier F(Ineff). Those DMUs on t

inefficient frontier F(Ineff) fulfill

1

 

Since the goal is to train and test neural networks and support vector machines which 

require a large data set, the limitation imposed by the small data set of 49 data pairs for 

the DMUs, makes it necessary for the data set to be expanded. The DMUs determined to

be on the inefficient frontier by Equation 4.2 are used inside Minitab 12.23 and Datafit 

Version 8.2, so as to enable the inefficient frontier data set to be expanded to a total of 20 

(twenty) data pairs or DMUs. Each additional data pair or DMU obtained from the actu

plotted DEA’s piecewise inefficient frontier by Minitab and Datafit is imputted inside 

Equation 4.2 along with the original 49 (forty-nine) data pairs for the DMUs and 

added to the expanded 

m
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4.4 Research Method for Machine Learning  

g 

oosing 

ircumstance, determining the optimal values to use for the parameters. 

 of 

ges 

-

g 

, such as 

 the 

 

The major challenges facing researchers when carrying out studies with machine learnin

software include the difficult and time-consuming “trial and error” process of ch

the right architecture of the neural network and in the support vector machines 

c

 

This research utilizes Statistica Version 8.0 Machine Learning Module, which includes 

Statistica Automated Neural Networks (SANN), and Statistica Support Vector Machines 

(SSVM). Statistica, is a comprehensive application capable of designing a wide range

neural network architectures and support vector machine models by employing both, 

widely-utilized and highly-specialized training algorithms. It alleviates the challen

facing researchers which require the determination of the correct neural network 

architecture by specifically doing it all for the user. In the case of neural networks, 

Statistica includes traditional learning algorithms, such as backward propagation and 

sophisticated training algorithms such as Conjugate Gradient Descent and Levenberg

Marquardt iterative procedures, just to mention a few. It has an Intelligent Problem 

Solver that utilizes heuristics and sophisticated optimization strategies for determinin

the best neural network architecture and walks the researcher through a step-by-step 

analysis. The Intelligent Problem Solver compares different neural network types

linear, radial basis function, multi-layer perceptron, and bayesian networks, and 

determines the number of hidden nodes, as well as, chooses the smoothing factor in
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case of radial basis function networks.  In the case of support vector machines, the 

rk and support 

ector machine. As suggested by Wang (1992), the raw x-input values are scaled between 

 

DMUs or data 

airs for efficient frontier F(Eff) are placed with the original raw x-input values for the 

 

t 

MUs or data 

airs for inefficient frontier F(Ineff) are placed with the original raw x-input values for the 

original 49 (forty-nine) DMUs and are scaled between 0.200 and 0.800. 

 

Intelligent Problem Solver will determine the optimal parameters to use for the data set. 

 

As mentioned inside Section 4.1.2, the expanded data set in Section 4.2 and Section 4.3, 

for both efficient frontier DMUs and inefficient frontier DMUs require scaling or 

preprocessing for the successful training and testing of both neural netwo

v

0.000 and 1.000, and the raw y-output values between 0.200 and 0.800. 

 

The raw x-input values of the expanded data set totaling the 20 (twenty) DMUs or data

pairs for efficient frontier F(Eff)  in Section 4.2 are placed with the original raw x-input 

values for the original 49 (forty-nine) DMUs and are scaled between 0.000 and 1.000. 

The raw y-input values of the expanded data set totaling the 20 (twenty) 

p

original 49 (forty-nine) DMUs and are scaled between 0.200 and 0.800 

 

The raw x-input values of the expanded data set totaling the 20 (twenty) DMUs or data

pairs for inefficient frontier F(Ineff)  in Section 4.3 are placed with the original raw x-inpu

values for the original 49 (forty-nine) DMUs and are scaled between 0.000 and 1.000. 

The raw y-input values of the expanded data set totaling the 20 (twenty) D

p
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As mentioned in Section 4.1.2 for the neural network architecture, the number of hidden 

nodes is determined by the common heuristic used for smaller sample size that being 

twice the number of the input nodes+1. 

 

Utilizing Statistica, the expanded scaled data set of Section 4.2 totaling the 20 (twenty) 

DMUs or data pairs for efficient frontier F(Eff) are randomly split into a 70% (seventy 

percent) set for training both neural network and support vector machines, and a 30% 

(thirty percent) set for testing both neural networks and support vector machines. The 

optimal neural network model in accordance with the hidden node heuristic for the  

expanded scaled data set, along with the optimal support vector machine model given by 

Statistica are then compared utilizing a sum of squares algorithm. The optimal neural 

network model for efficient frontier F(Eff) gives the function F(Eff-NN) (X) for efficient 

frontier at ω NN = 1, and the optimal support vector machine model for efficient frontier 

F(Eff) gives the function F(Eff-SVM) (X) for efficient frontier at ω SVM = 1. 

 

Utilizing Statistica, the expanded scaled data set of Section 4.3 totaling the 20 (twenty) 

DMUs or data pairs for inefficient frontier F(Ineff) are randomly split into a 70% (seventy 

percent) set for training both neural networks and support vector machines, and a 30% 

(thirty percent) set for testing both neural networks and support vector machines. The 

optimal neural network model in accordance with the hidden node heuristic for the 

expanded scaled data set, along with the optimal support vector machine model given by 

Statistica are then compared utilizing a sum of squares algorithm. The optimal neural 

network model for inefficient frontier F(Ineff) gives the function F(Ineff-NN) (X) for 
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inefficient frontier at ω NN= 0, and the optimal support vector machine model for 

inefficient frontier F(Ineff) gives the function F(Ineff-SVM) (X) for inefficient frontier at 

ω SVM= 0. 

 

4.5 Research Method for OLS Regression Models for Comparison 

 

Utilizing Minitab Version 12.23, the exact same 70% (seventy percent) scaled and 

randomly split data pairs used for training both neural network and support vector 

machines for the efficient frontier F(Eff) in Section 4.4 are used to create a linear and 

quadratic regression model. The model with the highest R2 value is selected as the 

optimal regression model for efficient frontier F(Eff)  and gives the function F(Eff-OLS1) (X) 

for efficient frontier at ω OLS1 = 1 for the OLS1 regression model, as well as, the function 

F(Eff-OLS2) (X) for efficient frontier at ω OLS2 = 1 for the OLS2 regression model. The exact 

same 30% (thirty percent) scaled and randomly split data pairs used for testing both 

neural network and support vector machines in for the efficient frontier F(Eff) in Section 

4.4 are the exact same 30% (thirty percent) used to test the regression functions F(Eff-OLS1) 

(X) and F(Eff-OLS2) (X)  for regression models OLS1 and OLS2 for efficient frontier F(Eff). 

 

Utilizing Minitab Version 12.23, the exact same 70% (seventy percent) scaled and 

randomly split data pairs used for training both neural network and support vector 

machines for the inefficient frontier F(Ineff) in Section 4.4 are used to create a linear and 

quadratic regression model for the OLS1 regression model. The model with the highest 

R2 value is selected as the optimal regression model for inefficient frontier F(Ineff)  and 
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gives the function F(Ineff-OLS1) (X) for inefficient frontier at ω OLS1 = 0 for the OLS1 

regression model. No inefficient frontier function is determine for the second regression 

model OLS2 as its average function is determined in the traditional regression manner as 

mentioned inside Section 4.1.4.2. The exact same 30% (thirty percent) scaled and 

randomly split data pairs used for testing both neural network and support vector 

machines for the inefficient frontier F(Ineff) in Section 4.4 are the exact same 30% (thirty 

percent) used to test the regression functions F(Ineff-OLS1) (X) for regression models OLS1 

inefficient frontier F(Ineff). Utilizing a sum of squares algorithm as in Section 4.5 for 

neural networks and support vector machines, the regression model OLS1 is compared 

with the neural network and support vector machine models in Section 4.5. 

 

4.6 Research Method for Frontier Analysis 

 

4.6.1 Determining Average Regression Function FReg(X) Non-parametrically 

 

This research utilizes a completely non-parametric approach to determine DEA’s “true” 

frontier. In order to achieve this, an average regression function for neural network and 

support vector machine are obtained by combining the functions obtained by training and 

testing neural networks and support vector machines for non-parametric efficient frontier 

and non-parametric inefficient frontier as in Section 4.4. The average function for neural 

network FReg-NN(X) is achieved non-parametrically by varying theω NN in Equation 4.5 

until a normal or approximate normal distribution of the residuals is realized. To assist in 

determining this, this is achieved when the sum of the residuals for all the data points of 
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the left hand half and the right hand half of the distribution are equal zero or 

approximately zero. Theω NN at which this is achieved, is the optimal ω NN for FReg-NN(X) 

and determines the average regression function obtained non-parametrically for neural 

network FReg-NN(X) at λ = 0 for the research and as illustrated in Figure 4.4. 

 

FReg-NN(X) = ω NNF(Eff-NN)(X) + (1-ω NN)F(Ineff-NN)(X)     for 0 < ω NN <  1     (4.5)  

 

 

 

 

 

 

 

 

  

Figure 4.4 Simplified Diagram to Calculate FReg-NN(X) Non-parametrically 

F(Eff-NN)(X) @ ω NN= 1

FReg-NN(X) @ ω NN(Optimal) 

F(Ineff-NN)(X) @ ω NN= 0 

 

The average function for support vector machine FReg-SVM(X) is achieved non-

parametrically by varying theω SVM in Equation 4.6 until a normal or approximate normal 

distribution of the residuals is realized. To assist in determining this, this is achieved 

when the sum of the residuals for all the data points of the left hand half and the right 

hand half of the distribution are equal zero or approximately zero. Theω SVM at which this 

is achieved, is the optimal ω SVM for FReg-SVM(X) and determines the average regression 
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function obtained non-parametrically for support vector machine FReg-SVM(X) at λ = 0 for 

the research and as illustrated in Figure 4.5. 

 

FReg-SVM(X) = ω SVMF(Eff-SVM)(X) + (1-ω SVM)F(Ineff-SVM)(X)  for 0 < ω SVM <  1     (4.6) 

  

 

 

 

 

 

 

 

  

 

 

F(Eff-SVM)(X) @ ω SVM= 1

FReg-SVM(X) @ω SVM (Optimal) 

F(Ineff-SVM)(X) @ ω SVM= 0 

Figure 4.5 Simplified Diagram to Calculate FReg-SVM(X) Non-parametrically 

 

4.6.2 Determining Average Regression Function FReg(X) Parametrically 

 

As the two ordinary least squares regression models OLS1 and OLS2 created for 

comparison purposes are parametric in nature, the average function FReg(X) for each of 

the models are referred to as being obtained parametrically as well. 
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For the first model OLS1, the average function FReg-OLS1(X) is achieved parametrically by 

varying theω OLS1 in Equation 4.7 until a normal or approximate normal distribution of 

the residuals is realized. To assist in determining this, this is achieved when the sum of 

the residuals for all the data points of the left hand half and the right hand half of the 

distribution are equal zero or approximately zero. Theω OLS1 at which this is achieved, is 

the optimal ω OLS1 for FReg-OLS1(X) and determines the average regression function 

obtained parametrically for regression model OLS1 FReg-OLS1(X) at λ = 0 for the research 

and as illustrated in Figure 4.6. 

 

FReg-OLS1(X) = ω OLS1F(Eff-OLS1)(X) + (1-ω OLS1)F(Ineff-OLS1)(X)  for 0 < ω OLS1 <  1    (4.7)  

 

 

 

 

 

 

 

 

  

 

 

F(Eff-OLS1)(X) @ ω OLS1= 1

FReg-OLS1(X) @ω OLS1 (Optimal) 

F(Ineff-OLS1)(X) @ ω OLS1= 0 

Figure 4.6 Simplified Diagram to Calculate FReg-OLS1(X) Parametrically 
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For the second model OLS2, the average function FReg-OLS2(X) is achieved parametrically 

by utilizing Minitab Version 12.23 to fit a linear and a quadratic regression curve to the 

original 49 (forty-nine) data pairs for the DMUs which are scaled as mentioned in Section 

4.1.4.2. Whichever of the linear or quadratic model gives the highest R2 value determines 

the average regression function obtained parametrically for regression model OLS2 FReg-

OLS2(X) at λ = 0 for the research and as illustrated in Figure 4.7. 

 
 

FReg-OLS2(X) 

Figure 4.7 Simplified Diagram to Calculate FReg-OLS2(X) Parametrically 

 

4.6.3 Determining DEA’s “true” Frontier Or Optimal Frontier at Fλ 

 

DEA’s “true” frontier using neural network is determined by combining the function in 

Section 4.4 for neural network F(Eff-NN) (X) for efficient frontier at λ NN = 1 with the  

average function obtained non-parametrically for neural network FReg-NN(X) at λNN = 0 in 

Section 4.6.1 and as is represented in Equation 4.8. 
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 Fλ-NN(X) = λNN F(Eff-NN)(X) + (1-λNN)FReg-NN(X)   for 0 < λNN <  1     (4.8) 

  

DEA’s “true” frontier using support vector machine is determined by combining the 

function in Section 4.4 for support vector machine F(Eff-SVM) (X) for efficient frontier at 

λ SVM= 1 with the non-parametric average function for support vector machine  

FReg-SVM(X) at λSVM = 0 in Section 4.6.1 and as is represented in Equation 4.9. 

 

 Fλ-SVM(X) = λSVM F(Eff-SVM)(X) + (1-λSVM)FReg-SVM(X)  for 0 < λSVM <  1     (4.9) 

 

Determining DEA’s “true” frontier for the two regression models created for comparison 

purposes utilizes similar equations to Equation 4.8 and Equation 4.9 for neural network 

and support vector machine. 

 

For regression model OLS1, DEA’s “true” frontier is determined by combining the 

function in Section 4.5 F(Eff-OLS1) (X) for efficient frontier at λ OLS1= 1 with the p

average function FReg-OLS1(X) at λOLS1 = 0 in Section 4.6.2 and as is represented 

Equation 4.10.  

arametric 

in 

 

Fλ-OLS1(X) = λOLS1 F(Eff-OLS1)(X) + (1-λOLS1)FReg-OLS1(X)  for 0 < λOLS1 <  1   (4.10) 

 

For regression model OLS2, DEA’s “true” frontier is determined by combining the 

function in Section 4.5 F(Eff-OLS2) (X) for efficient frontier at λ OLS2= 1 with the parametric 
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average function FReg-OLS2(X) at λOLS2 = 0 in Section 4.6.2 and as is represented 

Equation 4.11.  

in 

 

Fλ-OLS2(X) = λOLS2 F(Eff-OLS2)(X) + (1-λOLS2)FReg-OLS2(X)  for 0 < λOLS2 <  1   (4.11) 

 

Under the assumptions that the managerial errors (u) are a positive half-normal 

distribution, and the observational errors (v) are a normal distribution. The λ value in  

Equation 4.8, Equation 4.9,  Equation 4.10, and Equation 4.11 for neural network, 

support vector machine, OLS1 regression model, and OLS2 regression model 

respectively are reduced in steps of 0.01 from λ= 1 to λ = 0 and a ratio based on the 

statistics of the residuals (i.e. managerial and observational errors) is utilized to determine 

DEA’s “true” or optimal frontier for the neural network and support vector machine 

methodologies, as well as, the regression models OLS1 and OLS2 used in this research 

for comparison purposes. Figure 4.8 illustrates how the ratio is to be applied to the 

managerial and observational errors. 
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Figure 4.8 Application of Ratio to Managerial and Observational Errors 

 

RHS = |B| 

u+v

LHS = |A|

-v
 
• Sum of the two distributions. Its 

degree of symmetry reveals the 
relative importance of the 
observational error 

 
• Managerial error (u) always causes 

costs to be higher. Therefore, it can be 
captured by an asymmetric (half-
normal) distribution 

 
• Observational error (v) may be 

positive or negative with equal 
likelihood. Therefore, they can be 
captured by symmetric distribution 

 

As λ is varied in steps of 0.01, for each value of λ, the ratio of  |A|/|B| is plotted relative 

to λ for the neural network, support vector machine, OLS1, and OLS2 case. Starting at 

λ=1.00, the plot should initially depict an almost constant curve or slope then eventually 

a profound shift in slope. The ratio statistic should also be constant or repetitive starting 

from λ=1.00 then its constant or repetitive characteristic should change. When the shift is 

observed, the λ value at which it occurs is noted as the optimal lambda, thus conveying 

that DEA’s optimal frontier or “true” frontier has been achieved. Therefore for the 

residuals at λ = 0  (i.e. managerial errors (u) = 0; at an approximate normal/normal 
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distribution) for the ratio statistic used, |A|/|B| should be equal to approximately 1.00 

(one) for the neural network, support vector machine, OLS1, and OLS2 case. 

 

4.7 Summary of Chapter Four 

 

In this chapter, a detailed methodology was developed and provided for determining 

DEA “true” or optimal frontiers non-parametrically for neural networks and support 

vector machines, as well as, parametrically for two ordinary least squares regression 

models, OLS1 and OLS2. While the focus of the research includes utilizing SVM to 

estimate or predict nonlinear functions for DEA efficient and inefficient frontiers, the 

neural network, and OLS models were incorporated into the research for comparison 

purposes. 

 

An illustrative example was given, introducing DEA inefficient frontier and explaining 

how the efficiency score is determined for each DMU by modifying Equation 2.1 and 

Equation 2.2 for the CRS and VRS cases respectively. We learnt that the efficiency score 

of those DMUs being on the inefficient frontier must fulfill a criterion score of 1.00. 

 

Owing to the small size of the real data set to be utilize on the proposed methodology. 

Also, since SVM and NN require a reasonable amount of data pairs to be trained and 

tested, a detailed outline on how the data set for efficient and inefficient frontiers are to 

be expanded utilizing Datafit 8.2 and Minitab 12.23 was given. The importance of 

allowing Statistic 8.0 initially to randomly select 70% (seventy percent) of the expanded 
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data set to train the NN and 30% (thirty percent) for testing the NN was pointed out. The 

importance of utilizing the exact same 70% (seventy percent) and 30% (thirty percent) 

data set for the training and testing respectively of SVM, and the OLS models for both 

efficient and inefficient frontiers was emphasized. 

 

The general Equation 4.3 was given for calculating the average regression function 

FReg(X) non-parmetrically for NN and SVM, as well as, the OLS model OLS1 whereas, 

for OLS2, the average regression function was specified to be calculated utilizing the 

traditional OLS regression method on the original 49 (forty-nine) data pairs after they are 

scaled. The equations for calculating the average regression function specifically for NN, 

SVM, and OLS1 were given by Equations 4.5, 4.6, and 4.7 respectively. 

 

The chapter concluded by giving Equation 4.4 as a general equation for calculating 

DEA’s “true” frontier for NN, SVM, OLS1, and OLS2 utilizing a ratio based on the 

statistics for managerial error and observational errors. The equations for calculating 

DEA’s “true” or optimal frontier specifically for NN, SVM, OLS1, and OLS2 were given 

by Equations 4.8, 4.9, 4.10, and 4.11 respectively. 

 

 

 

 

 

 



 
 

5. CHAPTER FIVE: ANALYSIS AND RESULTS 

 

 

 

This chapter contains the results for applying a real data set to the proposed methodology 

developed in Chapter Four for determining DEA’s “true” or optimal frontier. Although, 

the central focus of the research incorporates DEA with SFF and utilizes support vector 

machines, this chapter also includes the results for neural network, and two OLS models, 

OLS1 and OLS2 for comparison purposes.  The chapter also includes a detailed analysis 

of all four models, those being, SVM, NN, OLS1, and OLS2. 

 

5.1 Overview 

 

The methodology outlined in Chapter Four is applied to the data set from the original 

study ‘Program Follow Through’ by Charnes, Cooper and Rhodes (1981) for assessing 

the educational programs for disadvantaged students and may be viewed in Appendix A1. 

Low dimensional data, consisting of one input (i.e. educational level of mother = x), one 

output (i.e. coopersmith scores = y), with a total of 49 (forty-nine) data pairs in its 

entirety are used under DEA’s assumption of variable return to scale. The scatter plot for 

the data set may be viewed in Figure 5.1.
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Figure 5.1 Scatter Plot for Original 49 DMUs Input-Output Low Dimensional Data Pairs 
 

Section 5.2 assigns the efficiency scores for the original 49 DMUs for traditional DEA or 

efficiency frontier under the VRS case. The DMUs on the DEA’s efficient frontier, F(Eff) 

for the 49 (forty-nine) data pairs are determined under the VRS case by linear 

programming as in Equation 2.2 and by DEA software, with the efficiency score criterion 

for these DMUs being 1.00 (one) or 100% (one-hundred percent).  Using Minitab 

Version 12.23 and Datafit Version 8.2, the DMU set on the efficient frontier is extended 

in order to achieve the expanded data set of 20 DMUs total, so as to facilitate the training 

and testing of neural network and support vector machine, as well as, for the creation of 

two parametric ordinary least squares regression models, OLS1 and OLS2 in Section 5.5 

for comparison purposes. 

 

The efficiency scores for the 49 DMUs based upon DEA’s inefficient frontier and under 

the VRS case are determined in Section 5.3. The DMUs on the DEA’s inefficient 
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frontier, F(Ineff) for the 49 (forty-nine) data pairs are also given under the VRS case by 

modifying the linear programming in Equation 2.2 and as given in Equation 4.2, where 

the efficiency score criterion for these DMUs is also denoted by 1.00 (one) or 100% (one-

hundred percent). Utilizing  Minitab Version 12.23 and Datafit Version 8.2, the DMU set 

on the inefficient frontier is extended in order to achieve the expanded data set of 20 

DMUs total for the inefficient frontier, so as to enabled the training and testing of neural 

network and support vector machine in Section 5.4, as well as, for the creation of the 

parametric ordinary least squares regression model OLS1 in Section 5.5 for comparison 

purposes. 

 

In Section 5.6.1, the average functions for neural network FReg-NN(X), and  support vector 

machine FReg-SVM(X) are determined non-parametrically by varying theω  in Equation 4.5 

and Equation 4.6 respectively until a normal or approximate normal distribution of the 

residuals is realized (i.e. sum of residuals = 0). This is determined to occur at an optimal 

ω  which is also synonymous to or set to λ = 0 and is used in the determination of DEA’s 

“true” frontier in Section 5.6.3. 

 

In Section 5.6.2, the average functions for the two parametric ordinary least squares 

regression models OLS1 and OLS2 are determined. For OLS1, the average function FReg-

OLS1(X) is determined parametrically by varying theω  in Equation 4.7 until a normal or 

approximate normal distribution of the residuals is realized (i.e. sum of residuals = 0). 

This is determined to occur at an optimal ω  which is also synonymous to or set to λ = 0 

and is used in the determination of DEA’s “true” frontier in Section 5.6.3. For OLS2, the 
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average function FReg-OLS2(X) is determined parametrically by fitting an optimal 

regression curve to the original 49 (forty-nine) data pairs which have been scaled for the 

research.  

 

In Section 5.6.3, DEA’s “true” frontier for the neural network and support vector 

machine methodologies utilized for this research are determined. The λ value in both 

Equation 4.8 and Equation 4.9 are reduced in steps of 0.01, from λ= 0 to λ = 1 and a ratio 

based on the statistics for the residuals (i.e. managerial and observational errors) is 

utilized to determine DEA’s “true” or optimal frontier for neural network and support 

vector machine.  

 

The “true” frontier for the two parametric ordinary least squares regression models OLS1 

and OLS2, are also determined for comparison purposes. As performed for neural 

network and support vector machine, the λ value in both Equation 4.10 and Equation 

4.11 are reduced in steps of 0.01, from λ= 0 to λ = 1 and a ratio based on the statistics for 

the residuals (i.e. managerial and observational errors) is utilized to determine DEA’s 

“true” or optimal frontier for both parametric models.  

 

The chapter concludes with employing the probability density function and the area under 

the curve statistics, in order to perform benchmarking to assess the performance of the 

ratio statistic method used for the research. 
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5.2 Efficiency Scores of All DMUs and DMUs On the Efficient Frontier F(Eff)  

 

The low dimensional raw data set, consisting of one input (i.e. educational level of 

mother = x), one output (i.e. coopersmith scores = y), for the 49 (forty-nine) DMUs in 

Appendix A1 were entered into both EMS DEA’s software and Equation 2.2 under the 

variable return to scale (VRS) assumption to determine the efficiency scores of all 49 

DMUs and the DMUs on the efficient frontier F(Eff). Those DMUs on the efficient frontier 

F(Eff) fulfilling the efficiency score criterion of being 1.00 (one) or 100% (one-hundred 

percent) are recorded in Table 5.1 and the efficiency scores for all 49 DMUs may be 

viewed in Appendix F1. 

 

DMU 
 

 

Educational Level 
Of Mother 

(X-Input values) 

Coopersmith 
Scores 

(Y-Output values) 

Efficiency 
Scores 

 
DMU15 4.29 14.33 1.00 
DMU44 39.79 63.11 1.00 
DMU48 3.24 9.02 1.00 

Table 5.1 DMUs On Efficient Frontier F(Eff) and Efficiency Scores for VRS Case 

 

Since the goal is to train and test neural networks and support vector machines with 

DMUs on the efficient frontier, which requires a large data set, the three DMUs on the 

efficient frontier in Table 5.1, those being DMU15, DMU44, and DMU44 require 

expansion to a total of twenty DMUs. In other words, 17 (seventeen) additional data pairs 

or DMUs has to be created to expand the existing three DMUs to a total set of twenty 

DMUs on the efficient frontier F(Eff). 
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In order to enable the three DMUs on the efficient frontier in Table 5.1 to be expanded to 

a total of twenty DMUs, Minitab Version 12.23 and Datafit Version 8.2 curve fitting and 

plotting softwares were utilized.  The x-input and y-output data pairs for DMU15, 

DMU44, and DMU48 were entered into each software so as to produce the DEA 

piecewise efficient frontier for the three DMUs so as to allow for the expanded data set.   

 

The DEA piecewise efficient frontier for the three DMUs’ data may be viewed in Figure 

5.2. 
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Figure 5.2 DEA Piecewise Efficient Frontier For 3 DMUs On Efficient Frontier  
 
 

Using Figure 5.2 and Datafit Version 8.2 pointer co-ordinate feature, the three DMU set 

on the efficient frontier was expanded to a total of twenty DMUs, making certain that for 

each of the (17) seventeen additional DMU or data pair added, each met the efficiency 

score criterion of 1.00 when placed into Equation 2.2 relative to the original 49 (forty-
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nine) DMUs. Also making certain that monotonicity was maintained for the complete 

expanded data set consisting of the total twenty DMUs on the efficient frontier and as is 

in Table 5.2. 

 

DMU Educational Level 
Of Mother 

(X-Input values) 

Coopersmith 
Scores 

(Y-Output values) 

Efficiency 
Scores 

 

Original data 
Or 

Expanded data 
DMU15 4.29 14.33 1.00 Original data 
DMU44 39.79 63.11 1.00 Original data 
DMU48 3.24 9.02 1.00 Original data 

DMU1Eff-expanded 3.75 11.98 1.00 Expanded data 
DMU2Eff-expanded 5.75 16.35 1.00 Expanded data 
DMU3Eff-expanded 7.08 18.29 1.00 Expanded data 
DMU4Eff-expanded 8.06 19.55 1.00 Expanded data 
DMU5Eff-expanded 10.54 22.93 1.00 Expanded data 
DMU6Eff-expanded 12.15 25.22 1.00 Expanded data 
DMU7Eff-expanded 15.27 29.42 1.00 Expanded data 
DMU8Eff-expanded 18.12 33.42 1.00 Expanded data 
DMU9Eff-expanded 20.28 36.31 1.00 Expanded data 

DMU10Eff-expanded 22.55 39.49 1.00 Expanded data 
DMU11Eff-expanded 23.67 40.99 1.00 Expanded data 
DMU12Eff-expanded 25.03 42.88 1.00 Expanded data 
DMU13Eff-expanded 26.67 45.09 1.00 Expanded data 
DMU14Eff-expanded 28.70 47.88 1.00 Expanded data 
DMU15Eff-expanded 30.75 50.69 1.00 Expanded data 
DMU16Eff-expanded 33.37 54.29 1.00 Expanded data 
DMU17Eff-expanded 37.01 59.30 1.00 Expanded data 

Table 5.2 Expanded Data Set Of  N = 20 DMUs/Data Pairs On Efficient Frontier F(Eff) 

 

5.3 Efficiency Scores of All DMUs and DMUs On the Inefficient Frontier F(Ineff)  

 

The low dimensional raw data set, consisting of one input (i.e. educational level of 

mother = x), one output (i.e. coopersmith scores = y), for the 49 (forty-nine) DMUs in 

Appendix A1 were entered into Equation 4.2 under the variable return to scale (VRS) 

assumption to determine the efficiency scores of all 49 DMUs and the DMUs on the 
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inefficient frontier F(Ineff). Those DMUs on the inefficient frontier F(Ineff) fulfilling the 

efficiency score criterion of being 1.00 (one) or 100% (one-hundred percent) are recorded 

in Table 5.3 and the efficiency scores for all 49 DMUs may be viewed in Appendix F2. 

 

DMU 
 

 

Educational Level 
Of Mother 

(X-Input values) 

Coopersmith 
Scores 

(Y-Output values) 

Efficiency 
Scores 

 
DMU1 86.13 38.16 1.00 
DMU5 11.62 5.37 1.00 

DMU32 6.30 4.99 1.00 
DMU36 31.08 13.91 1.00 

Table 5.3 DMUs On Inefficient Frontier F(Ineff) and Efficiency Scores for VRS Case 

 

Since the goal is to train and test neural networks and support vector machines with 

DMUs on the inefficient frontier which requires a large data set, the four DMUs on the 

efficient frontier in Table 5.3, those being DMU1, DMU5, DMU32, and DMU36 require 

expansion to a total of twenty DMUs. In other words, 16 (sixteen) additional data pairs or 

DMUs has to be created to expand the existing four DMUs to a total set of twenty DMUs 

on the inefficient frontier F(Ineff). 

 

In order to enable the four DMUs on the inefficient frontier in Table 5.3 to be expanded 

to a total of twenty DMUs, Minitab Version 12.23 and Datafit Version 8.2 curve fitting 

and plotting softwares were utilized.  The x-input and y-output data pairs for DMU1, 

DMU5, DMU32, and DMU36 were entered into each software so as to produce the DEA 

piecewise inefficient frontier for the four DMUs so as to allow for the expanded data set.  

The DEA piecewise inefficient frontier for the four DMUs’ data may be viewed in Figure 

5.3. 
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Figure 5.3 DEA Piecewise Inefficient Frontier For 4 DMUs On Inefficient Frontier 

 

Using Figure 5.3 and Datafit Version 8.2 pointer coordinate feature, the four DMU set on 

the inefficient frontier was expanded to a total of twenty DMUs, making certain that for 

each of the (16) sixteen additional DMU or data pair added, each met the efficiency score 

criterion of 1.00 when placed into Equation 4.2 relative to the original 49 (forty-nine) 

DMUs. Also making certain that monotonicity was maintained for the complete 

expanded data set consisting of the total twenty DMUs on the inefficient frontier and as is 

in Table 5.4. 
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DMU Educational Level 
Of Mother 

(X-Input values) 

Coopersmith 
Scores 

(Y-Output values) 

Efficiency 
Scores 

 

Original data 
Or 

Expanded data 
DMU1 86.13 38.16 1.00 Original data 
DMU5 11.62 5.37 1.00 Original data 

DMU32 6.30 4.99 1.00 Original data 
DMU36 31.08 13.91 1.00 Original data 

DMU1Ineff-expanded 7.39 5.05 1.00 Expanded data 
DMU2Ineff-expanded 8.73 5.13 1.00 Expanded data 
DMU3Ineff-expanded 13.53 6.20 1.00 Expanded data 
DMU4Ineff-expanded 15.74 7.17 1.00 Expanded data 
DMU5Ineff-expanded 19.77 8.94 1.00 Expanded data 
DMU6Ineff-expanded 24.56 11.03 1.00 Expanded data 
DMU7Ineff-expanded 32.53 14.54 1.00 Expanded data 
DMU8Ineff-expanded 35.55 15.87 1.00 Expanded data 
DMU9Ineff-expanded 37.90 16.91 1.00 Expanded data 

DMU10Ineff-expanded 39.43 17.58 1.00 Expanded data 
DMU11Ineff-expanded 42.12 18.76 1.00 Expanded data 
DMU12Ineff-expanded 47.11 20.96 1.00 Expanded data 
DMU13Ineff-expanded 52.10 23.15 1.00 Expanded data 
DMU14Ineff-expanded 59.58 26.46 1.00 Expanded data 
DMU15Ineff-expanded 68.03 30.18 1.00 Expanded data 
DMU16Ineff-expanded 78.57 34.82 1.00 Expanded data 

Table 5.4 Expanded Data Set Of  N = 20 DMUs/Data Pairs On Inefficient Frontier F(Ineff) 

 

5.4 Machine Learning 

 

5.4.1 Preprocessing and Scaling of Data for NN and SVM 

 

As mentioned in Section 4.4, the expanded data set of  N = 20 DMUs/data pairs on the 

efficient frontier F(Eff) in Table 5.2 in Section 5.2 were scaled so as to facilitate the 

satisfactory training and testing of both neural network and support vector machine. The 

x-input values of the of the 17 (seventeen) additional data pairs on the efficient frontier 

F(Eff)  were combined with the original 49 (forty-nine) x-input values and scaled between 

0.000 (zero) and 1.000 (one). The y-input values of the of the 17 (seventeen) additional 
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data pairs on the efficient frontier F(Eff)  were combined with the original 49 (forty-nine) 

y-input values and scaled between 0.200 and 0.800.  The resultant expanded scaled 20 

(twenty) data pairs for the efficient frontier F(Eff)  may be viewed in Table 5.5. 

 

DMU Educational Level 
Of Mother 

(X-Input values) 

Coopersmith 
Scores 

(Y-Output values) 

Efficiency 
Scores 

 

Original data 
Or 

Expanded data 
DMU15 0.013 0.296 1.00 Original data 
DMU44 0.441 0.800 1.00 Original data 
DMU48 0.000 0.242 1.00 Original data 

DMU1Eff-expanded 0.006 0.272 1.00 Expanded data 
DMU2Eff-expanded 0.030 0.317 1.00 Expanded data 
DMU3Eff-expanded 0.046 0.337 1.00 Expanded data 
DMU4Eff-expanded 0.058 0.350 1.00 Expanded data 
DMU5Eff-expanded 0.088 0.385 1.00 Expanded data 
DMU6Eff-expanded 0.107 0.409 1.00 Expanded data 
DMU7Eff-expanded 0.145 0.452 1.00 Expanded data 
DMU8Eff-expanded 0.180 0.493 1.00 Expanded data 
DMU9Eff-expanded 0.206 0.523 1.00 Expanded data 

DMU10Eff-expanded 0.233 0.556 1.00 Expanded data 
DMU11Eff-expanded 0.246 0.572 1.00 Expanded data 
DMU12Eff-expanded 0.263 0.591 1.00 Expanded data 
DMU13Eff-expanded 0.283 0.614 1.00 Expanded data 
DMU14Eff-expanded 0.307 0.643 1.00 Expanded data 
DMU15Eff-expanded 0.332 0.672 1.00 Expanded data 
DMU16Eff-expanded 0.363 0.709 1.00 Expanded data 
DMU17Eff-expanded 0.407 0.761 1.00 Expanded data 

Table 5.5 Expanded Scaled Data Set Of  20 DMUs/Data Pairs On Efficient Frontier F(Eff) 

 

As mentioned in Section 4.4, the expanded data set of  N = 20 DMUs/data pairs on the 

inefficient frontier F(Ineff) in Table 5.4 in Section 5.3 were scaled so as to facilitate the 

satisfactory training and testing of both neural network and support vector machine. The 

x-input values of the of the 16 (sixteen) additional data pairs on the inefficient frontier 

F(Ineff)  were combined with the original 49 (forty-nine) x-input values and scaled between 

0.000 (zero) and 1.000 (one). The y-input values of the of the 16 (sixteen) additional data 
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pairs on the inefficient frontier F(Ineff)  were combined with the original 49 (forty-nine) y-

input values and scaled between 0.200 and 0.800.  The resultant expanded scaled 20 

(twenty) data pairs for the inefficient frontier F(Ineff)  may be viewed in Table 5.6. 

 

DMU Educational Level 
Of Mother 

(X-Input values) 

Coopersmith 
Scores 

(Y-Output values) 

Efficiency 
Scores 

 

Original data 
Or 

Expanded data 
DMU1 1.000 0.542 1.00 Original data 
DMU5 0.101 0.204 1.00 Original data 

DMU32 0.037 0.200 1.00 Original data 
DMU36 0.336 0.292 1.00 Original data 

DMU1Ineff-expanded 0.050 0.201 1.00 Expanded data 
DMU2Ineff-expanded 0.066 0.201 1.00 Expanded data 
DMU3Ineff-expanded 0.124 0.212 1.00 Expanded data 
DMU4Ineff-expanded 0.151 0.223 1.00 Expanded data 
DMU5Ineff-expanded 0.199 0.241 1.00 Expanded data 
DMU6Ineff-expanded 0.257 0.262 1.00 Expanded data 
DMU7Ineff-expanded 0.353 0.299 1.00 Expanded data 
DMU8Ineff-expanded 0.390 0.312 1.00 Expanded data 
DMU9Ineff-expanded 0.418 0.323 1.00 Expanded data 

DMU10Ineff-expanded 0.437 0.330 1.00 Expanded data 
DMU11Ineff-expanded 0.469 0.342 1.00 Expanded data 
DMU12Ineff-expanded 0.529 0.365 1.00 Expanded data 
DMU13Ineff-expanded 0.589 0.387 1.00 Expanded data 
DMU14Ineff-expanded 0.680 0.422 1.00 Expanded data 
DMU15Ineff-expanded 0.782 0.460 1.00 Expanded data 
DMU16Ineff-expanded 0.909 0.508 1.00 Expanded data 

Table 5.6 Expanded Scaled Data Set Of  20 DMUs/Data Pairs On Inefficient Frontier F(Ineff) 

 

5.4.2 Efficient Frontiers and their Functions for NN and SVM 

 

5.4.2.1 Efficient Frontier and Function for NN 

 

Using the common heuristic for determining the neural network architecture in Section 

4.4 for the single input and single output data pairs used in this research, the neural 
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network architecture was determined to be 1-3-1, that being, 1(one) input node, 3 (three) 

hidden nodes, and 1 (one) output node. 

 

Utilizing Statistica 8.0 as mentioned in Section 4.4, the 20 (twenty) expanded scaled data 

pairs on the efficient frontier F(Eff)  in Table 5.5 were entered into the Statistica 

Automated Neural Network Module.  The interactive interface was set to randomly select 

70% (seventy percent – 14 data pairs) of the expanded scaled data set for training the 

neural network, and randomly select 30% (thirty percent – 6 data pairs) of the expanded 

scaled data set for testing the neural network. The input node was set at 1 (one), the 

hidden node at 3 (three), and the output node at 1 (one).  The software was ran to 

generate the optimal neural network model for the randomly selected training and testing 

data pairs and the specifications entered and shortly thereafter, outputted the optimal 

model or function for the efficient frontier for neural network  

F(Eff-NN) which was saved. The optimal model and function along with its parameters 

given by Statistica 8.0 for efficient frontier for the neural network function F(Eff-NN) (X) 

were as follows: 

 

1. The neural network architecture was a three layer, 1-3-1 multi-layer perceptron model. 

2. The training algorithm which gave the optimal neural network was BFGS (i.e. Quasi-

Newton Back Propagation by Broyden, Fletcher, Goldfarb, and Shanno (BFGS)) 

(Hagen, Demuth, and Beale, 1996; and Haykin, 2000). 

3. The hidden activation was Tanh, and the output activation Tanh. 

4. The error function was sum of squares (SOS). 
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The 14 (fourteen) data pairs or 70% (seventy percent) of the data pairs in Table 5.5 which 

were randomly selected by SANN to train the neural network for the efficient frontier 

function F(Eff-NN) (X) are given in Table 5.7. The 6 (six) data pairs or 30% (thirty percent) 

of the data pairs in Table 5.5 which were randomly selected by SANN to test the neural 

network for efficient frontier function F(Eff-NN)(X)  are given in Table 5.8.  

 

 
DMU Educational Level 

Of Mother 
(X-Input values) 

Coopersmith 
Scores 

(Y-Output values) 
DMU48 0.000 0.242 

DMU1Eff-expanded 0.006 0.272 
DMU15 0.013 0.296 

DMU2Eff-expanded 0.030 0.317 
DMU4Eff-expanded 0.058 0.350 
DMU5Eff-expanded 0.088 0.385 
DMU7Eff-expanded 0.145 0.452 
DMU8Eff-expanded 0.180 0.493 

DMU10Eff-expanded 0.233 0.556 
DMU11Eff-expanded 0.246 0.572 
DMU12Eff-expanded 0.263 0.591 
DMU13Eff-expanded 0.283 0.614 
DMU14Eff-expanded 0.307 0.643 

DMU44 0.441 0.800 
Table 5.7 SANN’s Randomly Selected (14) Fourteen Data Pairs for Training NN Efficient Frontier 

 
 

DMU Educational Level 
Of Mother 

(X-Input values) 

Coopersmith 
Scores 

(Y-Output values) 
DMU3Eff-expanded 0.046 0.337 
DMU6Eff-expanded 0.107 0.409 
DMU9Eff-expanded 0.206 0.523 

DMU15Eff-expanded 0.332 0.672 
DMU16Eff-expanded 0.363 0.709 
DMU17Eff-expanded 0.407 0.761 

Table 5.8 SANN’s Randomly Selected (6) Six Data Pairs for Testing NN Efficient Frontier 
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The actual output values and the predicted output values given by the neural network 

efficient frontier function F(Eff-NN)(X)  on the training and test tests in Table 5.7 and Table 

5.8 are given in Table 5.9 and 5.10 respectively. The actual values and the predicted 

values given by the neural network efficient frontier function F(Eff-NN)(X) for the original 

49 (forty-nine) DMUs or data pairs may be viewed in Appendix G1. 

 

DMU Educational Level 
Of Mother 

(X-Input values) 

Actual Coopersmith 
Scores 

(Y-Output values) 

Predicted Coopersmith
Scores 

(Y-Output values) 
DMU48 0.000 0.242 0.265216 

DMU1Eff-expanded 0.006 0.272 0.273979 
DMU15 0.013 0.296 0.284096 

DMU2Eff-expanded 0.030 0.317 0.308160 
DMU4Eff-expanded 0.058 0.350 0.346182 
DMU5Eff-expanded 0.088 0.385 0.384732 
DMU7Eff-expanded 0.145 0.452 0.452875 
DMU8Eff-expanded 0.180 0.493 0.492839 
DMU10Eff-expanded 0.233 0.556 0.553951 
DMU11Eff-expanded 0.246 0.572 0.569474 
DMU12Eff-expanded 0.263 0.591 0.590233 
DMU13Eff-expanded 0.283 0.614 0.615333 
DMU14Eff-expanded 0.307 0.643 0.646204 

DMU44 0.441 0.800 0.781291 
Table 5.9 Predicted Outputs for NN Efficient Frontier Function F(Eff-NN)(X)  on Training Set 

 

 

DMU Educational Level 
Of Mother 

(X-Input values) 

Actual Coopersmith 
Scores 

(Y-Output values) 

Predicted Coopersmith
Scores 

(Y-Output values) 
DMU3Eff-expanded 0.046 0.337 0.330134 
DMU6Eff-expanded 0.107 0.409 0.408086 
DMU9Eff-expanded 0.206 0.523 0.522507 
DMU15Eff-expanded 0.332 0.672 0.678476 
DMU16Eff-expanded 0.363 0.709 0.716471 
DMU17Eff-expanded 0.407 0.761 0.759974 

Table 5.10 Predicted Outputs for NN Efficient Frontier Function F(Eff-NN)(X)  on Test Set 
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The sum of the squared errors for the output values for the efficient frontier for the neural 

network function F(Eff-NN)(X) on the training set was 0.001151.  

 

The sum of the squared errors for the output values for the efficient frontier for the neural 

network function F(Eff-NN)(X) on the test set was 0.000147. 

 

The total sum of the squared errors for the output values for the efficient frontier for the 

neural network function F(Eff-NN)(X) on both training and test set was 0.001298. 

 

5.4.2.2 Efficient Frontier and Function for SVM 

 

Utilizing Statistica 8.0 as mentioned in Section 4.4, the 14 (fourteen) randomly selected 

data pairs by SANN in Table 5.7 used for training the efficient frontier function for 

neural network, were entered into the Statistica Support Vector Machine Module for the 

training of SVM.  Likewise, the 6 (six) randomly selected data pairs by SANN in Table 

5.8 used for testing the efficient frontier function for neural network, were entered into 

the Statistica Support Vector Machine Module for the testing of SVM. The interactive 

interface C value was set between a minimum of 0 (zero) and a maximum of 100 (one-

hundred) and a step increase set at 1.00 (one), the ε  value was set between a minimum of 

0 (zero) and a maximum of 5 (five), the Nu value was set to 0 (zero) since performing 

epsilon support vector machine, and the V-fold cross-validation feature selected. The 

software was ran 6 (six) times for a gamma value of 0 (zero), 1 (one), 2 (two), 3 (three), 4 

(four), and 5 (five) to generate the optimal support vector machine model for the 

randomly selected training and testing data pairs and the specifications entered. It 
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outputted an optimal model for each of the gamma values, with the optimal model or 

function among the 6 (six)  for the efficient frontier  F(Eff-SVM) being that with a gamma 

value of 5 (five). This model or function was saved. The optimal model and function 

along with its parameters given by Statistica 8.0 for efficient frontier for the support 

vector function F(Eff-SVM) (X) were as follows: 

 

1. The support vector type was Regression Type 1, also referred to as epsilon-svm. 

2. The optimal kernel type was a radial basis function of gamma value 5 (five). 

3. The number of support vectors was 13 (thirteen) with 2 (two) bounded. 

4. The optimal C value was 68 (sixty-eight). 

5. The optimal ε  (epsilon) value was 0.0015 

 

The actual output values and the predicted output values given by the support vector 

machine efficient frontier function F(Eff-SVM)(X)  on the training and test tests in Table 5.7 

and Table 5.8 are given in Table 5.11 and 5.12 respectively. The actual values and the 

predicted values given by the support vector machine efficient frontier function  

F(Eff-SVM)(X) for the original 49 (forty-nine) DMUs or data pairs may be viewed in 

Appendix G2. 
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DMU Educational Level 
Of Mother 

(X-Input values) 

Actual Coopersmith 
Scores 

(Y-Output values) 

Predicted Coopersmith
Scores 

(Y-Output values) 
DMU48 0.000 0.242 0.261021 

DMU1Eff-expanded 0.006 0.272 0.272002 
DMU15 0.013 0.296 0.284363 

DMU2Eff-expanded 0.030 0.317 0.312203 
DMU4Eff-expanded 0.058 0.350 0.351388 
DMU5Eff-expanded 0.088 0.385 0.386447 
DMU7Eff-expanded 0.145 0.452 0.448653 
DMU8Eff-expanded 0.180 0.493 0.490546 
DMU10Eff-expanded 0.233 0.556 0.556823 
DMU11Eff-expanded 0.246 0.572 0.572635 
DMU12Eff-expanded 0.263 0.591 0.592837 
DMU13Eff-expanded 0.283 0.614 0.616080 
DMU14Eff-expanded 0.307 0.643 0.643839 

DMU44 0.441 0.800 0.802128 
Table 5.11 Predicted Outputs for SVM Efficient Frontier Function F(Eff-SVM)(X)  on Training Set 

 

DMU Educational Level 
Of Mother 

(X-Input values) 

Actual Coopersmith 
Scores 

(Y-Output values) 

Predicted Coopersmith
Scores 

(Y-Output values) 
DMU3Eff-expanded 0.046 0.337 0.335544 
DMU6Eff-expanded 0.107 0.409 0.406928 
DMU9Eff-expanded 0.206 0.523 0.523152 
DMU15Eff-expanded 0.332 0.672 0.673527 
DMU16Eff-expanded 0.363 0.709 0.712169 
DMU17Eff-expanded 0.407 0.761 0.767217 

Table 5.12 Predicted Outputs for SVM Efficient Frontier Function F(Eff-SVM)(X)  on Test Set 

 

The sum of the squared errors for the output values for the efficient frontier for the 

support vector machine function F(Eff-SVM)(X) on the training set was 0.000555.  

 

The sum of the squared errors for the output values for the efficient frontier for the 

support vector machine function F(Eff-SVM)(X) on the test set was 0.000057. 
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The total sum of the squared errors for the output values for the efficient frontier for the 

support vector machine function F(Eff-SVM)(X) on both training and test set was 0.000613. 

 

5.4.3 Inefficient Frontiers and their Functions for NN and SVM 

 

5.4.3.1 Inefficient Frontier and Function for NN 

 

Using the common heuristic for determining the neural network architecture in Section 

4.4 for the single input and single output data pairs used in this research, the neural 

network architecture was determined to be 1-3-1, that being, 1(one) input node, 3 (three) 

hidden nodes, and 1 (one) output node. 

 

Utilizing Statistica 8.0 as mentioned in Section 4.4, the 20 (twenty) expanded scaled data 

pairs on the inefficient frontier F(Ineff)  in Table 5.6 were entered into the Statistica 

Automated Neural Network Module.  The interactive interface was set to randomly select 

70% (seventy percent – 14 data pairs) of the expanded scaled data set for training the 

neural network, and randomly select 30% (thirty percent – 6 data pairs) of the expanded 

scaled data set for testing the neural network. The input node was set at 1 (one), the 

hidden node at 3 (three), and the output node at 1 (one).  The software was ran to 

generate the optimal neural network model for the randomly selected training and testing 

data pairs and the specifications entered and shortly thereafter, outputted the optimal 

model or function for the inefficient frontier for neural network F(Ineff-NN) which was 

saved. The optimal model and function along with its parameters given by Statistica 8.0 

for inefficient frontier for the neural network function F(Ineff-NN) (X) were as follows: 
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1. The neural network architecture was a three layer, 1-3-1 multi-layer perceptron 

model. 

2. The training algorithm which gave the optimal neural network was BFGS (i.e. Quasi-

Newton Back Propagation by Broyden, Fletcher, Goldfarb, and Shanno (BFGS)) 

(Hagen, Demuth, and Beale, 1996; and Haykin, 2000). 

3. The hidden activation was Tanh, and the output activation Identity. 

4. The error function was sum of squares (SOS) 

 

The 14 (fourteen) data pairs or 70% (seventy percent) of the data pairs in Table 5.6 which 

were randomly selected by SANN to train the neural network for the inefficient frontier 

function F(Ineff-NN) (X) are given in Table 5.13. The 6 (six) data pairs or 30% (thirty 

percent) of the data pairs in Table 5.6 which were randomly selected by SANN to test the 

neural network for inefficient frontier function F(Ineff-NN)(X)  are given in Table 5.14.  
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DMU Educational Level 
Of Mother 

(X-Input values) 

Coopersmith 
Scores 

(Y-Output values) 
DMU32 0.037 0.200 

DMU1Ineff-expanded 0.050 0.201 
DMU2Ineff-expanded 0.066 0.201 

DMU5 0.101 0.204 
DMU4Ineff-expanded 0.151 0.223 
DMU5Ineff-expanded 0.199 0.241 

DMU36 0.336 0.292 
DMU7Ineff-expanded 0.353 0.299 
DMU9Ineff-expanded 0.418 0.323 

DMU10Ineff-expanded 0.437 0.330 
DMU11Ineff-expanded 0.469 0.342 
DMU12Ineff-expanded 0.529 0.365 
DMU13Ineff-expanded 0.589 0.387 

DMU1 1.000 0.542 
Table 5.13 SANN’s Randomly Selected (14) Fourteen Data Pairs for Training NN Inefficient Frontier 

 
 
 

DMU Educational Level 
Of Mother 

(X-Input values) 

Coopersmith 
Scores 

(Y-Output values) 
DMU3Ineff-expanded 0.124 0.212 
DMU6Ineff-expanded 0.257 0.262 
DMU8Ineff-expanded 0.390 0.312 

DMU14Ineff-expanded 0.680 0.422 
DMU15Ineff-expanded 0.782 0.460 
DMU16Ineff-expanded 0.909 0.508 

Table 5.14 SANN’s Randomly Selected (6) Six Data Pairs for Testing NN Inefficient Frontier 

 

The actual output values and the predicted output values given by the neural network 

inefficient frontier function F(Ineff-NN)(X)  on the training and test tests in Table 5.13 and 

Table 5.14 are given in Table 5.15 and 5.16 respectively. The actual values and the 

predicted values given by the neural network inefficient frontier function F(Ineff-NN)(X) for 

the original 49 (forty-nine) DMUs or data pairs may be viewed in Appendix G3. 
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DMU Educational Level 
Of Mother 

(X-Input values) 

Actual Coopersmith 
Scores 

(Y-Output values) 

Predicted Coopersmith
Scores 

(Y-Output values) 
DMU32 0.037 0.200 0.191623 

DMU1Ineff-expanded 0.050 0.201 0.195637 
DMU2Ineff-expanded 0.066 0.201 0.200625 

DMU5 0.101 0.204 0.211717 
DMU4Ineff-expanded 0.151 0.223 0.227980 
DMU5Ineff-expanded 0.199 0.241 0.244038 

DMU36 0.336 0.292 0.292035 
DMU7Ineff-expanded 0.353 0.299 0.298190 
DMU9Ineff-expanded 0.418 0.323 0.322060 

DMU10Ineff-expanded 0.437 0.330 0.329128 
DMU11Ineff-expanded 0.469 0.342 0.341112 
DMU12Ineff-expanded 0.529 0.365 0.363808 
DMU13Ineff-expanded 0.589 0.387 0.386716 

DMU1 1.000 0.542 0.540999 
Table 5.15 Predicted Outputs for NN Inefficient Frontier Function F(Ineff-NN)(X)  on Training Set 

 

 

DMU Educational Level 
Of Mother 

(X-Input values) 

Actual Coopersmith 
Scores 

(Y-Output values) 

Predicted Coopersmith
Scores 

(Y-Output values) 
DMU3Ineff-expanded 0.124 0.212 0.219138 
DMU6Ineff-expanded 0.257 0.262 0.263987 
DMU8Ineff-expanded 0.390 0.312 0.311715 

DMU14Ineff-expanded 0.680 0.422 0.421629 
DMU15Ineff-expanded 0.782 0.460 0.460596 
DMU16Ineff-expanded 0.909 0.508 0.508112 

Table 5.16 Predicted Outputs for NN Inefficient Frontier Function F(Ineff-NN)(X)  on Test Set 

 

The sum of the squared errors for the output values for the inefficient frontier for the 

neural network function F(Ineff-NN)(X) on the training set was 0.000198.  

 

The sum of the squared errors for the output values for the inefficient frontier for the 

neural network function F(Ineff-NN)(X) on the test set was 0.000055. 
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The total sum of the squared errors for the output values for the inefficient frontier for the 

neural network function F(Ineff-NN)(X) on both training and test set was 0.000254. 

 

5.4.3.2 Inefficient Frontier and Function for SVM 

 

Utilizing Statistica 8.0 as mentioned in Section 4.4, the 14 (fourteen) randomly selected 

data pairs by SANN in Table 5.13 used for training the inefficient frontier function for 

neural network, were entered into the Statistica Support Vector Machine Module for the 

training of SVM.  Likewise, the 6 (six) randomly selected data pairs by SANN in Table 

5.14 used for testing the inefficient frontier function for neural network, were entered into 

the Statistica Support Vector Machine Module for the testing of SVM. The interactive 

interface C value was set between a minimum of 0 (zero) and a maximum of 100 (one-

hundred) and a step increase set at 1.00 (one), the ε  value was set between a minimum of 

0 (zero) and a maximum of 5 (five), the Nu value was set to 0 (zero) since performing 

epsilon support vector machine, and the V-fold cross-validation feature selected. The 

software was ran 6 (six) times for a gamma value of 0 (zero), 1 (one), 2 (two), 3 (three), 4 

(four), and 5 (five) to generate the optimal support vector machine model for the 

randomly selected training and testing data pairs and the specifications entered. It 

outputted an optimal model for each of the gamma values, with the optimal model or 

function among the 6 (six) for the inefficient frontier F(Ineff-SVM) being that with a gamma 

value of 3 (three). This model or function was saved. The optimal model and function 

along with its parameters given by Statistica 8.0 for inefficient frontier for the support 

vector function F(Ineff-SVM) (X) were as follows: 

 

  



 103
 

The support vector type was Regression Type 1, also referred to as epsilon-svm. 

The optimal kernel type was a radial basis function of gamma value 3 (three). 

The number of support vectors was 12 (twelve) with 1 (one) bounded. 

The optimal C value was 69 (sixty-nine). 

The optimal ε  (epsilon) value was 0.0000 

 

The actual output values and the predicted output values given by the support vector 

machine inefficient frontier function F(Ineff-SVM)(X)  on the training and test tests in Table 

5.13 and Table 5.14 are given in Table 5.17 and 5.18 respectively. The actual values and 

the predicted values given by the support vector machine inefficient frontier function  

F(Ineff-SVM)(X) for the original 49 (forty-nine) DMUs or data pairs may be viewed in 

Appendix G4. 

 

 
DMU Educational Level 

Of Mother 
(X-Input values) 

Actual Coopersmith 
Scores 

(Y-Output values) 

Predicted Coopersmith
Scores 

(Y-Output values) 
DMU32 0.037 0.200 0.197237 

DMU1Ineff-expanded 0.050 0.201 0.198730 
DMU2Ineff-expanded 0.066 0.201 0.201081 

DMU5 0.101 0.204 0.208066 
DMU4Ineff-expanded 0.151 0.223 0.221818 
DMU5Ineff-expanded 0.199 0.241 0.238183 

DMU36 0.336 0.292 0.292339 
DMU7Ineff-expanded 0.353 0.299 0.299141 
DMU9Ineff-expanded 0.418 0.323 0.324465 

DMU10Ineff-expanded 0.437 0.330 0.331637 
DMU11Ineff-expanded 0.469 0.342 0.343504 
DMU12Ineff-expanded 0.529 0.365 0.365292 
DMU13Ineff-expanded 0.589 0.387 0.387081 

DMU1 1.000 0.542 0.543215 
Table 5.17 Predicted Outputs for SVM Inefficient Frontier Function F(Ineff-SVM)(X)  on Training Set 
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DMU Educational Level 
Of Mother 

(X-Input values) 

Actual Coopersmith 
Scores 

(Y-Output values) 

Predicted Coopersmith
Scores 

(Y-Output values) 
DMU3Ineff-expanded 0.124 0.212 0.213896 
DMU6Ineff-expanded 0.257 0.262 0.260479 
DMU8Ineff-expanded 0.390 0.312 0.313704 

DMU14Ineff-expanded 0.680 0.422 0.421623 
DMU15Ineff-expanded 0.782 0.460 0.463142 
DMU16Ineff-expanded 0.909 0.508 0.514007 
Table 5.18 Predicted Outputs for SVM Inefficient Frontier Function F(Ineff-SVM)(X)  on Test Set 

 

The sum of the squared errors for the output values for the inefficient frontier for the 

support vector machine function F(Ineff-SVM)(X) on the training set was 0.000047.  

 

The sum of the squared errors for the output values for the inefficient frontier for the 

support vector machine function F(Ineff-SVM)(X) on the test set was 0.000055. 

 

The total sum of the squared errors for the output values for the inefficient frontier for the 

support function F(Ineff-SVM)(X) on both training and test set was 0.000102. 

 

5.4.3.3 Analysis of Efficient/Inefficient Frontiers and Functions for NN and SVM   

 

The summary of the sum of squared errors for the efficient frontier functions and the 

inefficient frontier functions for NN and SVM may be viewed in Table 5.19. 
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 NN 

Train 
NN 
Test 

NN 
Total 

SVM 
Train 

SVM 
Test 

SVM 
Total 

Efficient 
frontier 

0.001151 0.000147 0.001298 0.000555 0.000057 0.000613 

Inefficient 
frontier 

0.000198 0.000055 0.000254 0.000047 0.000055 0.000102 

Efficient 
Frontier 

+ 
Inefficient 

frontier 

 
 

0.001349 

 
 

0.000202 

 
 

0.001552 
 

 
 

0.000602 

 
 

0.000112 

 
 

0.000715 

Table 5.19 Summary of SOS Errors for Efficient and Inefficient Frontier for NN and SVM 

 

The sum of squared errors on the training and test sets for the efficient frontier function, 

inefficient frontier function, and efficient frontier function + inefficient frontier function 

for support vector machine is less than half that for neural network. Support vector 

machine outperformed neural network by more than 2-to-1 in estimating a nonlinear 

function and both efficient and inefficient frontiers for the VRS case in this research. 

 

5.5 OLS Regression Models for Comparison Purposes 

 

5.5.1 Efficient Frontier and Functions for OLS Regression Models OLS1 and OLS2 

 

Utilizing Minitab 12.23, as mentioned in Section 4.5, the 14 (fourteen) randomly selected 

data pairs by SANN in Table 5.7 used for training the efficient frontier function for both 

neural network and support vector machine, were entered into a Minitab spreadsheet and 

a linear and quadratic regression model for the 14 (fourteen) data pairs created so as to 

determine the efficient frontier function for model OLS1 and model OLS2. The linear 

and quadratic models created are shown in Figure 5.4 and Figure 5.5 respectively. 
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Figure 5.4 Linear Regression Plot and Model for Efficient 14 (fourteen) Training Data Pairs  

 

  
Figure 5.5 Quadratic Regression Plot and Model for Efficient 14 (fourteen) Training Data Pairs  
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The linear regression model had a R2 = 99.6% and the quadratic regression model had a 

R2 = 99.7% for the 14 (fourteen) training data pairs used for both neural network and 

support vector machine. Since, the R2 value for the quadratic regression model was the 

highest of the two models, the quadratic model was determined to be the optimal model 

or function for the efficient frontier F(Eff-OLS1)(X)  for model OLS1, and F(Eff-OLS2)(X) for 

model OLS2. Both functions are identical and exactly the same for both models  

(i.e. F(Eff-OLS1)(X) = F(Eff-OLS2)(X)). This quadratic regression model or function was saved 

and was given as: 

 

Y =  0.267222 + 1.30248X - 0.233956X**2 

 

Likewise, the 6 (six) randomly selected data pairs by SANN in Table 5.8 used for testing 

the efficient frontier function for neural network and support vector machine, were 

entered into the quadratic efficient frontier function for OLS1 and OLS2 to test the 

function. 

 

The actual output values and the predicted output values given by the OLS1 efficient 

frontier function F(Eff-OLS1(X)  and the OLS2 efficient frontier function F(Eff-OLS2)(X) on the 

training and test tests in Table 5.7 and Table 5.8 are given in Table 5.20 and 5.21 

respectively. The actual values and the predicted values given by the OLS1 efficient 

frontier function F(Eff-OLS1)(X) and the OLS2  efficient frontier function  F(Eff-OLS2)(X) for 

the original 49 (forty-nine) DMUs or data pairs may be viewed in Appendix H1. 
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DMU Educational Level 
Of Mother 

(X-Input values) 

Actual Coopersmith 
Scores 

(Y-Output values) 

Predicted Coopersmith
Scores 

(Y-Output values) 
DMU48 0.000 0.242 0.267222 

DMU1Eff-expanded 0.006 0.272 0.275028 
DMU15 0.013 0.296 0.284115 

DMU2Eff-expanded 0.030 0.317 0.306086 
DMU4Eff-expanded 0.058 0.350 0.341979 
DMU5Eff-expanded 0.088 0.385 0.380028 
DMU7Eff-expanded 0.145 0.452 0.451163 
DMU8Eff-expanded 0.180 0.493 0.494088 
DMU10Eff-expanded 0.233 0.556 0.557999 
DMU11Eff-expanded 0.246 0.572 0.573474 
DMU12Eff-expanded 0.263 0.591 0.593592 
DMU13Eff-expanded 0.283 0.614 0.617087 
DMU14Eff-expanded 0.307 0.643 0.645033 

DMU44 0.441 0.800 0.796116 
Table 5.20 Predicted Outputs for OLS1 and OLS2 Efficient Frontier Function on Training Set 

 

 

DMU Educational Level 
Of Mother 

(X-Input values) 

Actual Coopersmith 
Scores 

(Y-Output values) 

Predicted Coopersmith
Scores 

(Y-Output values) 
DMU3Eff-expanded 0.046 0.337 0.326641 
DMU6Eff-expanded 0.107 0.409 0.403909 
DMU9Eff-expanded 0.206 0.523 0.525605 
DMU15Eff-expanded 0.332 0.672 0.673858 
DMU16Eff-expanded 0.363 0.709 0.709194 
DMU17Eff-expanded 0.407 0.761 0.758577 

Table 5.21 Predicted Outputs for OLS1 and OLS2 Efficient Frontier Function on Test Set 

 

The sum of the squared errors for the output values for the efficient frontier for the two 

OLS models’ function, where F(Eff-OLS1)(X) = F(Eff-OLS2)(X), on the training set was 

0.001038.  

 

The sum of the squared errors for the output values for the efficient frontier for the two 

OLS models’ function, where F(Eff-OLS1)(X) = F(Eff-OLS2)(X), on the test set was 0.000149. 
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The total sum of the squared errors for the output values for the efficient frontier for the 

two OLS models’ function, where F(Eff-OLS1)(X) = F(Eff-OLS2)(X), on both training and test 

set was 0.001188. 

 

5.5.2 Inefficient Frontier and Function for OLS Regression Model OLS1 

 

Utilizing Minitab 12.23, as mentioned in Section 4.5, the 14 (fourteen) randomly selected 

data pairs by SANN in Table 5.13 used for training the inefficient frontier function for 

both neural network and support vector machine, were entered into a Minitab spreadsheet 

and a linear and quadratic regression model for the 14 (fourteen) data pairs created so as 

to determine the inefficient frontier function for OLS1 model. No inefficient frontier 

function was computed for the OLS2 model. The linear and quadratic models created are 

shown in Figure 5.6 and Figure 5.7 respectively. 
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Figure 5.6 Linear Regression Plot and Model for Inefficient 14 (fourteen) Training Data Pairs 

 
 

 

 
Figure 5.7 Quadratic Regression Plot and Model for Inefficient 14 (fourteen) Training Data Pairs 
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The linear regression model had a R2 = 99.7% and the quadratic regression model had a  

R2 = 99.8% for the 14 (fourteen) training data pairs used for both neural network and 

support vector machine. Since, the R2 value for the quadratic regression model was the 

highest of the two models, the quadratic model was determined to be the optimal model 

or function for the inefficient frontier F(Ineff-OLS1)(X)  for model OLS1. This quadratic 

regression model or function was saved and was given as: 

 

Y =  0.179220 + 0.325992X + 3.85E-02X**2 

 

Likewise, the 6 (six) randomly selected data pairs by SANN in Table 5.14 used for 

testing the inefficient frontier function for neural network and support vector machine, 

were entered into the quadratic inefficient frontier function for OLS to test the function. 

 

The actual output values and the predicted output values given by the OLS1 inefficient 

frontier function F(Ineff-OLS1(X)  on the training and test tests in Table 5.13 and Table 5.14 

are given in Table 5.22 and 5.23 respectively. The actual values and the predicted values 

given by the OLS1 inefficient frontier function F(Ineff-OLS1)(X) for the original 49 (forty-

nine) DMUs or data pairs may be viewed in Appendix H2. 
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DMU Educational Level 
Of Mother 

(X-Input values) 

Actual Coopersmith 
Scores 

(Y-Output values) 

Predicted Coopersmith
Scores 

(Y-Output values) 
DMU32 0.037 0.200 0.191334 

DMU1Ineff-expanded 0.050 0.201 0.195616 
DMU2Ineff-expanded 0.066 0.201 0.200903 

DMU5 0.101 0.204 0.212538 
DMU4Ineff-expanded 0.151 0.223 0.229323 
DMU5Ineff-expanded 0.199 0.241 0.245617 

DMU36 0.336 0.292 0.293100 
DMU7Ineff-expanded 0.353 0.299 0.299093 
DMU9Ineff-expanded 0.418 0.323 0.322212 

DMU10Ineff-expanded 0.437 0.330 0.329031 
DMU11Ineff-expanded 0.469 0.342 0.340579 
DMU12Ineff-expanded 0.529 0.365 0.362444 
DMU13Ineff-expanded 0.589 0.387 0.384586 

DMU1 1.000 0.542 0.543712 
Table 5.22 Predicted Outputs for OLS1 Inefficient Frontier Function on Training Set 

 
 

DMU Educational Level 
Of Mother 

(X-Input values) 

Actual Coopersmith 
Scores 

(Y-Output values) 

Predicted Coopersmith
Scores 

(Y-Output values) 
DMU3Ineff-expanded 0.124 0.212 0.220235 
DMU6Ineff-expanded 0.257 0.262 0.265543 
DMU8Ineff-expanded 0.390 0.312 0.312213 

DMU14Ineff-expanded 0.680 0.422 0.418697 
DMU15Ineff-expanded 0.782 0.460 0.457689 
DMU16Ineff-expanded 0.909 0.508 0.507359 

Table 5.23 Predicted Outputs for OLS1 Inefficient Frontier Function on Test Set 

 

The sum of the squared errors for the output values for the inefficient frontier for the  

regression model OLS1 function F(Ineff-OLS1)(X) on the training set was 0.000258.  

 

The sum of the squared errors for the output values for the inefficient frontier for the 

regression model OLS1 function F(Ineff-OLS1)(X) on the test set was 0.000097. 
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The total sum of the squared errors for the output values for the inefficient frontier for the 

regression model OLS1 function F(Ineff-OLS1)(X) on both training and test set was 0.000355. 

 

5.5.3 Analysis of Efficient/Inefficient Frontiers and Functions for OLS/NN/SVM   

 
The summary of the sum of squared errors for the efficient and inefficient frontier 

functions for OLS1, NN, and SVM may be viewed in Table 5.24. 

 

Table 5.24 SOS Errors for Efficient/Inefficient Frontier for OLS, NN, and SVM  
 

The sum of squared errors for the parametric ordinary least squares regression model 

OLS1 and the sum of squared errors for the non-parametric neural network model for 

efficient frontier, inefficient frontier, and efficient frontier + inefficient frontier are 

almost equal for both the training and test sets. The sum of squared errors however for 

the support vector machine is less than half that for the training and test set of both  

OLS1, as well as, the neural network. Support vector machine outperformed both 

ordinary least squares regression, as well as, neural network by more 2-to-1 in estimating 

a nonlinear function, and efficient and inefficient frontiers for the VRS case in this 

research. 
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5.6 Frontier Analysis 

 

5.6.1 Determining Average Regression Function FReg(X) Non-parametrically 

 

5.6.1.1 Determining NN Average Regression Function FReg-NN(X)  

 

As mentioned in Section 4.6.1, the neural network function for the non-parametric 

efficient frontier F(Eff-NN)(X) determined in Section 5.4.2.1 at ω NN = 1, and the neural 

network function for the non-parametric inefficient frontier F(Inff-NN)(X) determined in 

Section 5.4.3.1 at ω NN = 0 were combined as in Equation 4.5 to determine the average 

function FReg-NN(X) non-parametrically for neural network. 

 

Utilizing Equation 4.5 and starting at ω NN = 0, the ω NN value was increased in steps of 

0.1 or smaller as necessary until a normal or approximate normal distribution of the 

residuals was achieved, this being achieved when the sum of the left hand half and the 

right hand half equaled to zero or approximately zero. The average function for neural 

network was determined non-parametrically to be at ω NN = 0.307. At this optimal ω NN 

for the neural network’s average function FReg-NN(X), the function was also set 

synonymously at λ = 0 so as to determine the optimal λ  value at which the “true” DEA 

frontier is achieved later on in the research. The residual distributions for ω NN values of 

0.000, 0.100, 0.200, 0.300, 0.400, and the optimal ω NN value of 0.307 are depicted in 

Figure 5.8, Figure 5.9, Figure 5.10, Figure 5.11, Figure 5.12, and Figure 5.13 

respectively. 
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Sum of residuals = -4.857 at ω NN  = 0.000                 Sum of residuals = -3.273 at ω NN  = 0.100 

Figure 5.8 Residual Distribution at ω NN = 0.000     Figure 5.9 Residual Distribution at ω NN = 0.100 
 
 
Sum of residuals = -1.688 at ω NN = 0.200       Sum of residuals = -0.104 at ω NN = 0.300  

Figure 5.10 Residual Distribution at ω NN = 0.200    Figure 5.11 Residual Distribution at ω NN = 0.300 
 
Sum of residuals = 1.480 at ω NN = 0.400     Sum of residuals = 0.000 at ω NN = 0.3066 

Figure 5.12 Residual Distribution at ω NN = 0.400  Figure 5.13 Residual Distribution at ω NN = 0.3066 

OPTIMAL  
ω NN = 0.307 
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5.6.1.2 Determining SVM Average Regression Function FReg-SVM(X)  

 

As mentioned in Section 4.6.1, the support vector machine function for the non-

parametric efficient frontier F(Eff-SVM)(X) determined in Section 5.4.2.2 at ω SVM = 1, and 

the support vector machine function for the non-parametric inefficient frontier  

F(Inff-SVM)(X) determined in Section 5.4.3.2 at ω SVM = 0 were combined as in Equation 

4.6 to determine the average function FReg-SVM(X) non-parametrically for neural network. 

 

Utilizing Equation 4.6 and starting at ω SVM = 0, the ω SVM value was increased in steps 

of 0.1 or smaller as necessary until a normal or approximate normal distribution of the 

residuals was achieved, this being achieved when the sum of the left hand half and the 

right hand half equaled to zero or approximately zero. The average function for support 

vector machine was determined non-parametrically to be at ω SVM = 0.328. At this 

optimal ω SVM for the support vector machine’s average function FReg-SVM(X), the 

function was also set synonymously at λ = 0 so as to determine the optimal λ  value at 

which the “true” DEA frontier is achieved later on in the research. The residual 

distributions for ω SVM values of 0.000, 0.100, 0.200, 0.300, 0.400, and the optimal ω SVM 

value of 0.328 are depicted in Figure 5.14, Figure 5.15, Figure 5.16, Figure 5.17, Figure 

5.18, and Figure 5.19 respectively. 
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Sum of residuals = -4.844 at ω SVM = 0.000     Sum of residuals = -3.367 at ω SVM = 0.100 

Figure 5.14 Residual Distribution at ω SVM = 0.000 Figure 5.15 Residual Distribution at ω SVM =0.100 
 
Sum of residuals = -1.890 at ω SVM = 0.200                  Sum of residuals = -0.413 at ω SVM = 0.300 

Figure 5.16 Residual Distribution at ω SVM = 0.200 Figure 5.17 Residual Distribution at ω SVM =0.300 
 
Sum of residuals = 1.065 at ω SVM = 0.400      Sum of residuals = 0.000 at ω SVM = 0.3279 

Figure 5.18 Residual Distribution at ω SVM = 0.400Figure 5.19 Residual Distribution at ω SVM=0.3279 

OPTIMAL  
ω SVM = 0.328 
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5.6.1.3 Analysis of Average Regression Function for NN and SVM   

 

The summary of the optimal ω  value for the average regression function found non-

parametrically for both neural network and support vector machine from non-parametric efficient 

frontier function and the inefficient frontier functions are listed in Table 5.25. 

 
 
 NN 

ω NN 

SVM 
ω SVM 

Optimal ω  0.307 0.328 

Table 5.25 Summary of Optimal ω  for Average Regression Function for NN and SVM 

 

The summary of the residual distributions for the optimal ω  value for the average 

regression function found non-parametrically for neural network FReg-NN(X) at ω NN = 0.307, and 

the optimal ω  value for the average regression function found non-parametrically for support 

vector machine FReg-SVM(X) at ω NN = 0.328 are given in Figure 5.20(a) and Figure 5.20(b).  
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Sum of residuals = 0.000 at ω NN = 0.3066                Sum of residuals = 0.000 at ω SVM = 0.3279 
Residual Distribution at ω NN = 0.3066   Residual Distribution at ω SVM = 0.3279 

Figure 5.20(a)Residual Distribution@ω NN=0.307 Figure 5.20(b)Residual Distribution@ω SVM=0.327 

OPTIMAL  
ω SVM = 0.328 

OPTIMAL  
ω NN = 0.307 

 

The optimal ω  value of support vector machine, ω SVM = 0.328 for the average 

regression function is a more accurate estimation of the average regression function non-

parametrically than that of neural network ω NN = 0.307 because as concluded in Section 

5.4.3.3, support vector machine outperformed neural network by more than 2-to-1. 

 

The lack of normality of the residual distributions for the average regression functions for 

both neural network and support vector machine are attributed possibly to errors incurred 

during the initial data collection for the study ‘Program Follow Through’ by Charnes, 

Cooper and Rhodes (1981). This is validated in some way by observing the scatter plot in 

Figure 5.1 for the 49 (forty-nine) original single-input, single-output data pairs. Viewing 

the scatter plot it can be observed that there are 4 (four) DMUs namely DMU1, DMU8, 

DMU16, and DMU44 which appear to be outliers considering the remaining 45 (forty-

five) DMUs. Fitting to mention, the residuals of 3 (three) out of the  
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4 (four) of these DMUs, namely DMU8, DMU16, and DMU44 stand out in the residual 

distributions for the average regression function for both neural network and support 

vector machine. There is also a possibility that there is noise in the data set which also 

affected the normality of the residual distributions. 

 

Finally, comparing both residual distributions in Figures 5.20(a) and 5.20(b), that for the 

support vector machine appears to be more symmetric than that for neural network.  

 

5.6.2 Determining Average Regression Function FReg(X) Parametrically 

 

5.6.2.1 Determining OLS1 Average Regression Function FReg-OLS1(X)  

 

As mentioned in Section 4.6.2, the ordinary least squares regression model OLS1 

function for the parametric efficient frontier F(Eff-OLS1)(X) determined in Section 5.5.1 at 

ω OLS1 = 1, and the OLS1 function for the parametric inefficient frontier F(Inff-OLS1)(X) 

determined in Section 5.5.2 at ω OLS1 = 0 were combined as in Equation 4.7 to determine 

the average function FReg-OLS1(X) parametrically for OLS1. 

 

Utilizing Equation 4.7 and starting at ω OLS1 = 0, the ω OLS1 value was increased in steps 

of 0.1 or smaller as necessary until a normal or approximate normal distribution of the 

residuals was achieved, this being achieved when the sum of the left hand half and the 

right hand half equaled to zero or approximately zero. The average function for OLS1 

was determined parametrically to be at ω OLS1 = 0.273. At this optimal ω OLS1 for the 
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OLS1’s average function FReg-OLS1(X), the function was also set synonymously at λ = 0 

so as to determine the optimal λ  value at which the “true” DEA frontier is achieved later 

on in the research. The residual distributions for ω OLS1 values of 0.000, 0.100, 0.200, 

0.300, 0.250, and the optimal ω OLS1 value of 0.273 are depicted in Figure 5.21, Figure 

5.22, Figure 5.23, Figure 5.24, Figure 5.25, and Figure 5.26 respectively. 

 

Sum of residuals = -4.831 at ω OLS1 = 0.000                 Sum of residuals = -3.062 at ω OLS1 = 0.100 

Figure 5.21 Residual Distribution at ω OLS1=0.000  Figure 5.22 Residual Distribution at ω OLS1=0.100 
 
 Sum of residuals = -1.294 at ω OLS1 = 0.200                 Sum of residuals = 0.474 at ω OLS1 = 0.300 

Figure 5.23 Residual Distribution at ω OLS1=0.200  Figure 5.24 Residual Distribution at ω OLS1=0.300 
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 Sum of residuals = -0.410 at ω OLS1 = 0.250             Sum of residuals = 0.000 at ω OLS1 = 0.2732 

Figure 5.25 Residual Distribution at ω OLS1=0.250Figure 5.26 Residual Distribution at ω OLS1=0.2732 

OPTIMAL  
ω OLS1 = 0.273 

 
 
5.6.2.2 Determining OLS2 Average Regression Function FReg-OLS2(X)  

 

As mentioned in Section 4.6.2, the ordinary least squares regression model OLS2 

function for the average regression function FReg-OLS2(X) was determined using Minitab 

12.23.  

 

For the original 49 (forty-nine) data pairs in Appendix A1, the x-input values were scaled 

between 0.000 and 1.000, and the y-output values scaled between 0.200 and 0.800 as in 

Appendix A2. Utilizing Minitab 12.23, the original 49 (forty-nine) scaled data pairs in 

Appendix A2, were entered into a Minitab spreadsheet and a linear and quadratic 

regression model for the 49 (forty-nine) scaled data pairs were created so as to determine 

the average regression function determined parametrically for the OLS2 model. The 

linear and quadratic models created are shown in Figure 5.27 and Figure 5.28 

respectively.  
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Figure 5.27 Linear Regression Plot and Model for Average Regression Function for OLS2 
 

 

 
Figure 5.28 Quadratic Regression Plot and Model for Average Regression Function for OLS2 
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The linear regression model had a R2 = 56.1% and the quadratic regression model had a  

R2 = 61.4% for the original 49 (forty-nine) scaled data. Since, the R2 value for the 

quadratic regression model was the highest of the two models, the quadratic model was 

determined to be the optimal model or average regression function FReg-OLS2(X)  for the 

OLS2 model. This quadratic regression model or function was saved and was given as: 

 

Y = 0.198604 + 0.785125X - 0.430650X**2 

 

This optimal OLS2’s average regression function FReg-OLS2(X), was also set 

synonymously at λ = 0 so as to determine the optimal λ  value at which the “true” DEA 

frontier is achieved later on in the research for OLS2. The residual distribution for the 

OLS2 average regression function FReg-OLS2(X) at this λ = 0 value, which is synonymous 

to the average regression functions found for NN, SVM, and OLS1 is depicted in Figure 

5.29. The average function FReg-OLS2(X) did not have an ω  value as OLS1, NN, and 

SVM. 

 

Figure 5.29 Residual Distribution for FReg-OLS2(X) 
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5.6.2.3 Analysis of Average Regression Function for OLS, NN, and SVM   

 

The summary of the optimal ω  value for the average regression function found non-

parametrically for both neural network and support vector machine, and that found parametrically 

for OLS1 are listed in Table 5.26. 

 
 
 OLS1 

ω OLS1 

NN 
ω NN 

SVM 
ω SVM 

Optimal ω  0.273 0.307 0.328 

Table 5.26 Summary of Optimal ω  for Average Regression Function for OLS1, NN and SVM 

 

The summary of the residual distributions for the optimal ω  value for the average 

regression function found for neural network FReg-NN(X) at ω NN = 0.307, support vector 

machine FReg-SVM(X) at ω NN = 0.328, FReg-OLS1(X) at ω NN = 0.273, and FReg-OLS2(X) are 

given in Figures 5.30(a), 5.30(b), 5.30(c), and 5.30(d).  

 

Sum of residuals = 0.000 at ω NN = 0.3066                 Sum of residuals = 0.000 at ω SVM = 0.3279 
Residual Distribution at ω NN = 0.3066  Residual Distribution at ω SVM = 0.3279 

Figure 5.30(a)Residual Distribution@ω NN=0.307 Figure 5.30(b)Residual Distribution@ω SVM=0.328 

OPTIMAL  
ω SVM = 0.328 

OPTIMAL  
ω NN = 0.307 
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Sum of residuals = 0.000 at ω OLS1 = 0.2732 
Residual Distribution at ω OLS1 = 0.2732      Residual Distribution for FReg-OLS2(X) 

Figure 5.30(c)Residual Distribution@ω OLS1=0.2732 Figure 5.30(d)Residual Distribution-FReg-OLS2(X) 

OPTIMAL  
ω OLS1 = 0.273 

 
 
 
The optimal ω  value of support vector machine, ω SVM = 0.328 for the average 

regression function determined non-parametrically, is a more accurate estimation of the 

average function than that of neural network ω NN = 0.307, as well as ω OLS1 = 0.273. 

This conclusion is made because as noted in Section 5.5.3, support vector machine 

outperformed both neural network and the parametric ordinary least squares regression 

models OLS1 and OLS2 by more than 2-to-1. 

 

The lack of normality of the residual distributions for the average regression functions for 

OLS1, OLS2, neural network, and support vector machine are attributed possibly to 

errors incurred during the initial data collection for the study ‘Program Follow Through’ 

by Charnes, Cooper and Rhodes (1981). This is validated in some way by observing the 

scatter plot in Figure 5.1 for the 49 (forty-nine) original single-input, single-output data 

pairs. Viewing the scatter plot it can be observed that there are 4 (four) DMUs namely 

DMU1, DMU8, DMU16, and DMU44 which appear to be outliers considering the 
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remaining 45 (forty-five) DMUs. Fitting to mention, the residuals of 3 (three) out of the 4 

(four) of these DMUs, namely DMU8, DMU16, and DMU44 stand out in the residual 

distributions for the average regression function for OLS1, OLS2, neural network and 

support vector machine. There is also a possibility that there was noise in the data set 

which also affected the normality of the residual distributions. 

 

Comparing all 4 (four) of the residual distributions in Figure 5.30(a), Figure 5.30(b), 

Figure 5.30(c), and Figure 5.30(d), if they were to be ranked for symmetry, the support 

vector machine would take the number 1(one) position, neural network number 2 (two) 

position, with OLS1 and OLS2 taking the number 3 (three) position.  

 

5.6.3 Determining DEA’s “true” Frontier Or Optimal Frontier at Fλ  
 
 
5.6.3.1 Determining DEA’s “true” Frontier Or Optimal Fλ-NN(X) for NN 

 
 
As mentioned in Section 4.6, the neural network function for efficient frontier F(Eff-NN)(X)  

at λ NN = 1 determined in Section 5.4.2.1, and the average regression function for neural  

network FReg-NN(X) at ω NN = 0.307 synonymously at λ NN= 0, determined in  

Section 5.6.1.1 were combined together in Equation 4.8. Under the assumptions that the 

managerial errors (u) are a positive half-normal distribution, and the observational errors 

(v) are a normal distribution. The λNN value in Equation 4.8 for neural network was 

reduced in steps of 0.01 from λ NN = 1 to λ NN = 0 and the ratio based statistics for the 

residuals |A|/|B| as depicted in Figure 4.8 was calculated at each step. The results of the 

ratio statistic for eachλ NN value are given in Table 5.27. 
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λ NN Value Ratio Statistic λ NN Value Ratio Statistic λ NN Value Ratio Statistic 

1.00 0.00 0.66 0.03 0.32 0.13 
0.99 0.00 0.65 0.03 0.31 0.14 
0.98 0.00 0.64 0.03 0.30 0.14 
0.97 0.00 0.63 0.03 0.29 0.15 
0.96 0.00 0.62 0.03 0.28 0.16 
0.95 0.00 0.61 0.04 0.27 0.16 
0.94 0.01 0.60 0.04 0.26 0.17 
0.93 0.01 0.59 0.04 0.25 0.18 
0.92 0.01 0.58 0.04 0.24 0.19 
0.91 0.01 0.57 0.04 0.23 0.20 
0.90 0.01 0.56 0.05 0.22 0.21 
0.89 0.01 0.55 0.05 0.21 0.22 
0.88 0.01 0.54 0.05 0.20 0.23 
0.87 0.01 0.53 0.05 0.19 0.25 
0.86 0.01 0.52 0.06 0.18 0.26 
0.85 0.01 0.51 0.06 0.17 0.28 
0.84 0.01 0.50 0.06 0.16 0.30 
0.83 0.01 0.49 0.06 0.15 0.31 
0.82 0.01 0.48 0.07 0.14 0.34 
0.81 0.01 0.47 0.07 0.13 0.36 
0.80 0.01 0.46 0.07 0.12 0.38 
0.79 0.01 0.45 0.08 0.11 0.41 
0.78 0.01 0.44 0.08 0.10 0.44 
0.77 0.01 0.43 0.08 0.09 0.47 
0.76 0.02 0.42 0.09 0.08 0.51 
0.75 0.02 0.41 0.09 0.07 0.55 
0.74 0.02 0.40 0.09 0.06 0.59 
0.73 0.02 0.39 0.10 0.05 0.65 
0.72 0.02 0.38 0.10 0.04 0.70 
0.71 0.02 0.37 0.11 0.03 0.77 
0.70 0.02 0.36 0.11 0.02 0.84 
0.69 0.02 0.35 0.11 0.01 0.91 
0.68 0.02 0.34 0.12 0.00 1.00 
0.67 0.03 0.33 0.13   

Table 5.27 Ratio Statistic for λ NN Values for Neural Network 

The curve plot of the lambda values versus the ratio statistic for neural network is shown 

in Figure 5.31.  
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Figure 5.31 Plot of Lambda versus Ratio Statistic for NN 
 

 

In intervals of 0.05, the slope from 1.00 to 0.00 for the curve plot for the lambda value 

λ NN versus the ratio statistic for neural network in Figure 5.31 is given in Table 5.28. 
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Interval Slope Interval Slope 

1.00 – 0.95 0.00 0.50 – 0.45 0.40 

0.95 – 0.90 0.20 0.45 – 0.40 0.20 

0.90 – 0.85 0.00 0.40 – 0.35 0.40 

0.85 – 0.80 0.00 0.35 – 0.30 0.60 

0.80 – 0.75 0.20 0.30 – 0.25 0.80 

0.75 – 0.70 0.00 0.25 – 0.20 1.00 

0.70 – 0.65 0.20 0.20 – 0.15 1.60 

0.65 – 0.60 0.20 0.15 – 0.10 2.60 

0.60 – 0.55 0.20 0.10 – 0.05 4.20 

0.55 – 0.50 0.20 0.05 – 0.00 7.00 

Table 5.28 Slope in Intervals of 0.05 for Lambda versus Ratio Statistic for NN 

 

Viewing the plot in Figure 5.31, as well as, the slopes for the various intervals in Table 

5.28, moving from λ NN = 1 towards λ NN = 0, the slopes are almost constant, changing 

only by approximately 0.20 as the intervals change until interval 0.20 – 0.15, where the 

slope changes significantly by 0.60. Due to this significant change in slope the optimal 

lambda must have occurred before the interval 0.20 – 0.15. Observing the ratio statistics 

for the λ NN values in Table 5.27, starting a λ NN = 1, the ratio statistic is observed to be 

repetitive and fairly consistent up until λ NN = 0.27 where the final repetitive 

characteristic is observed, thereafter the repetitiveness ceases. Hence, the optimal λ NN 

value for DEA’s “true” frontier for neural network is determined to be at λ NN = 0.26, 

which is the first λ NN value after the final repetitive ratio statistic characteristic ceases.  

Viewing the plot in Figure 5.31, the curve is observed to turn or shift distinctively while 

moving between interval 0.30 to 0.25 from the λ NN = 1 direction, which concurs with the 

optimal λ NN value determined. 
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5.6.3.2 Determining DEA’s “true” Frontier Or Optimal Fλ-SVM(X) for SVM 

 

 
As mentioned in Section 4.6, the support vector machine function for efficient frontier 

F(Eff-SVM)(X) at λ SVM = 1 determined in Section 5.4.2.2, and the average regression 

function for support vector machine network FReg-SVM(X) at ω SVM = 0.328 synonymously 

at λ SVM = 0, determined in Section 5.6.1.2 were combined together in Equation 4.9. 

Under the assumptions that the managerial errors (u) are a positive half-normal 

distribution, and the observational errors (v) are a normal distribution. The λSVM value in 

Equation 4.9 for support vector machine was reduced in steps of 0.01 from λ SVM = 1 to 

λ SVM = 0 and the ratio based statistics for the residuals |A|/|B| as depicted in Figure 4.8 

was calculated at each step. The results of the ratio statistic for eachλ SVM value are given 

in Table 5.29. 

 

 

 

 

 

 

 

 

 

 

 

  



 132
 

λ SVM Value Ratio Statistic λ SVM Value Ratio Statistic λ SVM Value Ratio Statistic 

1.00 0.01 0.66 0.04 0.32 0.16 
0.99 0.01 0.65 0.04 0.31 0.17 
0.98 0.01 0.64 0.04 0.30 0.17 
0.97 0.01 0.63 0.04 0.29 0.18 
0.96 0.01 0.62 0.05 0.28 0.19 
0.95 0.01 0.61 0.05 0.27 0.20 
0.94 0.01 0.60 0.05 0.26 0.21 
0.93 0.01 0.59 0.05 0.25 0.22 
0.92 0.01 0.58 0.05 0.24 0.23 
0.91 0.01 0.57 0.06 0.23 0.24 
0.90 0.01 0.56 0.06 0.22 0.25 
0.89 0.01 0.55 0.06 0.21 0.26 
0.88 0.02 0.54 0.06 0.20 0.27 
0.87 0.02 0.53 0.07 0.19 0.29 
0.86 0.02 0.52 0.07 0.18 0.30 
0.85 0.02 0.51 0.07 0.17 0.32 
0.84 0.02 0.50 0.08 0.16 0.34 
0.83 0.02 0.49 0.08 0.15 0.36 
0.82 0.02 0.48 0.08 0.14 0.38 
0.81 0.02 0.47 0.09 0.13 0.40 
0.80 0.02 0.46 0.09 0.12 0.43 
0.79 0.02 0.45 0.09 0.11 0.46 
0.78 0.02 0.44 0.10 0.10 0.49 
0.77 0.02 0.43 0.10 0.09 0.52 

0.76 0.02 0.42 0.11 0.08 0.55 
0.75 0.03 0.41 0.11 0.07 0.59 
0.74 0.03 0.40 0.11 0.06 0.64 
0.73 0.03 0.39 0.12 0.05 0.68 
0.72 0.03 0.38 0.12 0.04 0.74 
0.71 0.03 0.37 0.13 0.03 0.79 
0.70 0.03 0.36 0.13 0.02 0.86 
0.69 0.03 0.35 0.14 0.01 0.93 
0.68 0.03 0.34 0.15 0.00 1.00 
0.67 0.04 0.33 0.15   

Table 5.29 Ratio Statistic for λ SVM Values for Support Vector Machine 

 

The curve plot of the lambda values versus the ratio statistic for support vector machine 

is shown in Figure 5.32.  
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Figure 5.32 Plot of Lambda versus Ratio Statistic for SVM 
 

 

In intervals of 0.05, the slope from 1.00 to 0.00 for the curve plot for the lambda value 

λ SVM versus the ratio statistic for support vector machine in Figure 5.32 is given in Table  

5.30. 

 

Interval Slope Interval Slope 

1.00 – 0.95 0.00 0.50 – 0.45 0.20 

0.95 – 0.90 0.00 0.45 – 0.40 0.40 

0.90 – 0.85 0.20 0.40 – 0.35 0.60 

0.85 – 0.80 0.00 0.35 – 0.30 0.60 

0.80 – 0.75 0.20 0.30 – 0.25 1.00 

0.75 – 0.70 0.00 0.25 – 0.20 1.00 

0.70 – 0.65 0.20 0.20 – 0.15 1.80 

0.65 – 0.60 0.20 0.15 – 0.10 2.60 

0.60 – 0.55 0.20 0.10 – 0.05 3.80 

0.55 – 0.50 0.40 0.05 – 0.00 6.40 

Table 5.30 Slope in Intervals of 0.05 for Lambda versus Ratio Statistic for SVM 
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Viewing the plot in Figure 5.32, as well as, the slopes for the various intervals in Table 

5.30, moving from λ SVM = 1 towards λ SVM = 0, the slopes are almost constant, changing  

by 0.20 at most as the intervals change until interval 0.40 – 0.35, then between interval 

0.30 – 0.25 it changes by 0.40 then remained constant for interval 0.30 – 0.25 then the 

slope changes significantly by 0.80 at interval 0.20-0.15. Due to this significant change in 

slope the optimal lambda must have occurred before the interval 0.20 – 0.15. Observing 

the ratio statistics for the λ SVM values in Table 5.30, starting a λ SVM = 1, the ratio statistic 

is observed to be repetitive and fairly consistent up until λ SVM = 0.30 where the final 

repetitive characteristic is observed, thereafter the repetitiveness ceases. Hence, the 

optimal λ SVM value for DEA’s “true” frontier for support vector machine is determined 

to be at λ SVM = 0.29, which is the first λ SVM value after the final repetitive ratio statistic 

characteristic ceases.  Viewing the plot in Figure 5.32, the curve is observed to turn or 

shift distinctively while moving between interval 0.30 to 0.25 from the λ SVM = 1 

direction, which concurs with the optimal λ SVM value determined. 

 

5.6.3.3 Determining DEA’s “true” Frontier Or Optimal Fλ-OLS1(X) for Model OLS1 

 

As mentioned in Section 4.6, the parametric ordinary least squares regression model 

OLS1 function for efficient frontier F(Eff-OLS1)(X) at λ OLS1 = 1 determined in Section  

5.5.1, and the average regression function for model OLS1 FReg-OLS1(X) at ω OLS1 = 0.273 

synonymously at λ OLS1= 0, determined in Section 5.6.2.1 were combined together in 

Equation 4.10. Under the assumptions that the managerial errors (u) are a positive half-

normal distribution, and the observational errors (v) are a normal distribution. The λOLS1 
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value in Equation 4.10 for model OLS1 was reduced in steps of 0.01 fromλ OLS1 = 1 to 

λ OLS1 = 0 and the ratio based statistics for the residuals |A|/|B| as depicted in Figure 4.8 

was calculated at each step. The results of the ratio statistic for eachλ OLS1 value are given 

in Table 5.31. 
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λ OLS1 Value Ratio Statistic λ OLS1 Value Ratio Statistic λ OLS1 Value Ratio Statistic 

1.00 0.00 0.66 0.02 0.32 0.12 
0.99 0.00 0.65 0.03 0.31 0.12 
0.98 0.00 0.64 0.03 0.30 0.13 
0.97 0.00 0.63 0.03 0.29 0.14 
0.96 0.00 0.62 0.03 0.28 0.14 
0.95 0.00 0.61 0.03 0.27 0.15 
0.94 0.00 0.60 0.03 0.26 0.16 
0.93 0.00 0.59 0.03 0.25 0.16 
0.92 0.00 0.58 0.04 0.24 0.17 
0.91 0.00 0.57 0.04 0.23 0.18 
0.90 0.00 0.56 0.04 0.22 0.19 
0.89 0.01 0.55 0.04 0.21 0.20 
0.88 0.01 0.54 0.04 0.20 0.21 
0.87 0.01 0.53 0.05 0.19 0.23 
0.86 0.01 0.52 0.05 0.18 0.24 
0.85 0.01 0.51 0.05 0.17 0.25 
0.84 0.01 0.50 0.05 0.16 0.27 
0.83 0.01 0.49 0.06 0.15 0.29 
0.82 0.01 0.48 0.06 0.14 0.31 
0.81 0.01 0.47 0.06 0.13 0.33 
0.80 0.01 0.46 0.06 0.12 0.35 

0.79 0.01 0.45 0.07 0.11 0.38 
0.78 0.01 0.44 0.07 0.10 0.42 
0.77 0.01 0.43 0.07 0.09 0.45 
0.76 0.01 0.42 0.08 0.08 0.49 
0.75 0.01 0.41 0.08 0.07 0.54 
0.74 0.01 0.40 0.08 0.06 0.58 
0.73 0.02 0.39 0.09 0.05 0.64 
0.72 0.02 0.38 0.09 0.04 0.69 
0.71 0.02 0.37 0.10 0.03 0.76 
0.70 0.02 0.36 0.10 0.02 0.83 
0.69 0.02 0.35 0.10 0.01 0.91 
0.68 0.02 0.34 0.11 0.00 1.00 
0.67 0.02 0.33 0.11   

Table 5.31 Ratio Statistic for λ OLS1 Values for OLS Model OLS1 

 

The curve plot of the lambda values versus the ratio statistic for ordinary least squares 

regression model OLS1 is shown in Figure 5.33.  
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Figure 5.33 Plot of Lambda versus Ratio Statistic for OLS1 

 

In intervals of 0.05, the slope from 1.00 to 0.00 for the curve plot for the lambda value 

λ OLS1 versus the ratio statistic for model OLS1 in Figure 5.33 is given in Table  5.32. 

 

Interval Slope Interval Slope 

1.00 – 0.95 0.00 0.50 – 0.45 0.40 

0.95 – 0.90 0.00 0.45 – 0.40 0.20 

0.90 – 0.85 0.20 0.40 – 0.35 0.40 

0.85 – 0.80 0.00 0.35 – 0.30 0.60 

0.80 – 0.75 0.00 0.30 – 0.25 0.60 

0.75 – 0.70 0.20 0.25 – 0.20 1.00 

0.70 – 0.65 0.20 0.20 – 0.15 1.60 

0.65 – 0.60 0.00 0.15 – 0.10 2.60 

0.60 – 0.55 0.20 0.10 – 0.05 4.40 

0.55 – 0.50 0.20 0.05 – 0.00 7.20 

Table 5.32 Slope in Intervals of 0.05 for Lambda versus Ratio Statistic for OLS1 

 

Viewing the plot in Figure 5.33, as well as, the slopes for the various intervals in Table 

5.32, moving from λ OLS1 = 1 towards λ OLS1 = 0, the slopes are almost constant, 

changing by 0.20 at most as the intervals change until interval 0.30 – 0.25, then between 
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interval 0.25 – 0.20 it changes by 0.40 then the slope changes significantly by 0.60 at 

interval 0.20-0.15. Due to this significant change in slope the optimal lambda must have 

occurred before the interval 0.20 – 0.15. Observing the ratio statistics for the λ OLS1 values 

in Table 5.31, starting a λ OLS1 = 1, the ratio statistic is observed to be repetitive and f

consistent up until 

airly 

λ OLS1  0.25 where the final repetitive characteristic is observ

thereafter the repetitiveness ceases. Hence, the optimal 

= ed, 

λ OLS1 value for DEA’s “true” 

frontier for model OLS1 is determined to be at λ OLS1 = .24, which is the first  0 λ OLS1 

lue after the final repetitive ratio statistic characteristic ceases.  Viewing the plot in 

Figure 5.33, the curve is observed to turn or shift distinctively while moving between 

interval 0.25 to 0.20 from the 

va

λ OLS1 = 1 direction, which concurs with the optimal λ OLS1 

value determined. 

 

5.6.3.4 Determining DEA’s “true” Frontier Or Optimal Fλ-OLS2(X) for Model OLS2 

 

As mentioned in Section 4.6, the parametric ordinary least squares regression model 

OLS2 function for efficient frontier F(Eff-OLS2)(X) at λ OLS2 = 1 determined in Section 

5.5.1, and the average regression function for model OLS1 FReg-OLS2(X) at λ OLS2 = 0, 

determined in Section 5.6.2.2 were combined together in Equation 4.11. Under the 

assumptions that the managerial errors (u) are a positive half-normal distribution, and the 

observational errors (v) are a normal distribution. The λOLS2 value in Equation 4.11 for 

model OLS2 was reduced in steps of 0.01 fromλ OLS2 = 1 to λ OLS2 = 0 and the ratio based 

statistics for the residuals |A|/|B| as depicted in Figure 4.8 was calculated at each step. 

The results of the ratio statistic for each λ OLS2 value are given in Table 5.33. 
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λ OLS2 Value Ratio Statistic λ OLS2 Value Ratio Statistic λ OLS2 Value Ratio Statistic 

1.00 0.00 0.66 0.02 0.32 0.11 
0.99 0.00 0.65 0.02 0.31 0.12 
0.98 0.00 0.64 0.02 0.30 0.12 
0.97 0.00 0.63 0.03 0.29 0.13 
0.96 0.00 0.62 0.03 0.28 0.14 
0.95 0.00 0.61 0.03 0.27 0.14 
0.94 0.00 0.60 0.03 0.26 0.15 
0.93 0.00 0.59 0.03 0.25 0.16 
0.92 0.00 0.58 0.03 0.24 0.16 
0.91 0.00 0.57 0.04 0.23 0.17 
0.90 0.01 0.56 0.04 0.22 0.18 
0.89 0.01 0.55 0.04 0.21 0.19 
0.88 0.01 0.54 0.04 0.20 0.20 
0.87 0.01 0.53 0.04 0.19 0.21 
0.86 0.01 0.52 0.05 0.18 0.23 
0.85 0.01 0.51 0.05 0.17 0.24 
0.84 0.01 0.50 0.05 0.16 0.26 
0.83 0.01 0.49 0.05 0.15 0.27 
0.82 0.01 0.48 0.06 0.14 0.29 
0.81 0.01 0.47 0.06 0.13 0.32 
0.80 0.01 0.46 0.06 0.12 0.34 

0.79 0.01 0.45 0.06 0.11 0.37 
0.78 0.01 0.44 0.07 0.10 0.39 
0.77 0.01 0.43 0.07 0.09 0.43 
0.76 0.01 0.42 0.07 0.08 0.46 
0.75 0.01 0.41 0.08 0.07 0.50 
0.74 0.01 0.40 0.08 0.06 0.55 
0.73 0.02 0.39 0.08 0.05 0.60 
0.72 0.02 0.38 0.09 0.04 0.66 
0.71 0.02 0.37 0.09 0.03 0.73 
0.70 0.02 0.36 0.10 0.02 0.81 
0.69 0.02 0.35 0.10 0.01 0.89 
0.68 0.02 0.34 0.10 0.00 1.00 
0.67 0.02 0.33 0.11   

Table 5.33 Ratio Statistic for λ OLS2 Values for OLS Model OLS2 

 

The curve plot of the lambda values versus the ratio statistic for ordinary least squares 

regression model OLS2 is shown in Figure 5.34.  
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Lambda Value versus Ratio Statistic for OLS2
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Figure 5.34 Plot of Lambda versus Ratio Statistic for OLS2 
 

 

In intervals of 0.05, the slope from 1.00 to 0.00 for the curve plot for the lambda value 

λ OLS2 versus the ratio statistic for model OLS2 in Figure 5.34 is given in Table  5.34. 

 

Interval Slope Interval Slope 

1.00 – 0.95 0.00 0.50 – 0.45 0.20 

0.95 – 0.90 0.20 0.45 – 0.40 0.40 

0.90 – 0.85 0.00 0.40 – 0.35 0.40 

0.85 – 0.80 0.00 0.35 – 0.30 0.40 

0.80 – 0.75 0.00 0.30 – 0.25 0.80 

0.75 – 0.70 0.20 0.25 – 0.20 0.80 

0.70 – 0.65 0.00 0.20 – 0.15 1.40 

0.65 – 0.60 0.20 0.15 – 0.10 2.40 

0.60 – 0.55 0.20 0.10 – 0.05 4.20 

0.55 – 0.50 0.20 0.05 – 0.00 8.00 

Table 5.34 Slope in Intervals of 0.05 for Lambda versus Ratio Statistic for OLS2 
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Viewing the plot in Figure 5.34, as well as, the slopes for the various intervals in Table 

5.34, moving from λ OLS2 = 1 towards λ OLS2 = 0, the slopes are almost constant, 

changing by 0.20 at most as the intervals change until interval 0.35 – 0.30, then between 

interval 0.30 – 0.25 it changes by 0.40 then remained constant for interval 0.25 – 0.20 

then the slope changes significantly by 0.60 at interval 0.20-0.15. Due to this significant 

change in slope the optimal lambda must have occurred before the interval 0.20 – 0.15. 

Observing the ratio statistics for the λ OLS2 values in Table 4.33, starting a λ OLS2 = 1, the 

ratio statistic is observed to be repetitive and fairly consistent up until λ OLS2 = 0.24 

where the final repetitive characteristic is observed, thereafter the repetitiveness ceases. 

Hence, the optimal λ OLS2 value for DEA’s “true” frontier for model OLS2 is determined 

to be at λ OLS2 = 0.23, which is the first λ OLS2 value after the final repetitive ratio statistic 

characteristic ceases.  Viewing the plot in Figure 5.34, the curve is observed to turn or 

shift distinctively while moving between interval 0.25 to 0.20 from the λ OLS2 = 1 

direction, which concurs with the optimal λ OLS2 value determined. 

 

5.6.3.5 Analysis of  DEA’s “true” Frontier for OLS, NN, and SVM   

 

The summary of the optimal λ  value for DEA’s “true” frontier for the two ordinary least 

squares regression models OLS1 and OLS2, neural network and support vector machine are 

listed in Table 5.35. 

 
 

 OLS1 
λ OLS1 

OLS2 
λ OLS2 

NN 
λ NN 

SVM 
λ SVM 

Optimal λ  0.24 0.23 0.26 0.29 

Table 5.35 Summary of Optimal λ  for DEA’s “true” Frontier Function Fλ for OLS1, NN and SVM 
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λ  value versus the ratio statistic for OLS1, OLS2, neural The summary of the curves for 

network, and support vector machine are given in Figure 5.35.  

 

The optimal λ values for DEA’s “true” frontier determined for the two parametric 

ordinary least squares regression models λ OLS1 and λ OLS2 were observed to be almost 

equal, whereas that for neural network λ NN was closer to λ OLS1 than it was to the 

optimal λ  for support vector machine λ SVM. 

 

These results conclude that considering managerial errors, as well as, observational 

errors, the latter which are often not taken under consideration for traditional DEA, the 

“true” frontier for DEA may be well below the traditional DEA frontier. SVM was 

observed to outperform both neural network and ordinary least squares regression models 

in this research, while the performance of neural network and ordinary least squares 

regression were almost the same. 
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Figure 5.35 Summary of curves for λ value versus the ratio statistic for OLS1, OLS2, NN, and SVM 
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λ OLS1 = 0.24 OPTIMAL 

λ OLS2 = 0.23 OPTIMAL 

λ NN = 0.26 OPTIMAL 

λ SVM = 0.29 OPTIMAL 
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5.6.4 Benchmarking for Ratio Statistic Method 

 

applied in Section 5.6.3 to 

ine DEA’s “true” frontier for neural network, support vector machine, OLS1 and 

In order to assess the performance of the ratio statistic 

determ

OLS2, some form of benchmarking is necessary. To achieve this benchmarking, the 

probability density function (pdf) and the area under the curve statistics are applied to the 

residuals obtained at the optimal λ  for NN, SVM, OLS1, and OLS2.  The residual 

distributions for the optimal λ  values for NN ( λ NN = 0.26), SVM ( λ SVM = 0.29), OLS1 

( λ OLS1 = 0.24), and OLS2 ( λ OLS2 = 0.23) are depicted in Figure 5.36, Figure 5.37, Figure 

Figure 5.38, and Figure 5.39 respectively. 

 
Residual Distribution for Optimal λ NN = 0.26  Residual Distribution for Optimal λ SVM = 0.29 

Figure 5.36 Residual Distribution@ λ NN = 0.26        Figure 5.37 Residual Distribution@ λ SVM = 0.29 
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λ OLS1 = 0.24  Residual Distribution for Optimal λ OLS2 = 0.23 Residual Distribution for Optimal

Figure 5.38 Residual Distribution@ λ OLS1 = 0.24      Figure 5.39 Residual Distribution@ λ OLS2 = 0.23 
 

pplying the probability density function and the area under the curve to the residual 

n 

ximately 11.54% (percent) above the optimal lambda 

ded 

A

distribution for neural network given in Figure 5.36, the ratio of the frequency count o

the left hand side to that of the right hand side is: 

 11/49 * 49/38 = 11/38 = 0.29 

This benchmark value is appro

value determined by the ratio statistic method used for the research which was conclu

to be λ NN = 0.26. 

 

Applying the probability density function and the area under the curve to the residual 

 

to the optimal lambda value determined by the ratio 

distribution for support vector machine given in Figure 5.37, the ratio of the frequency

count on the left hand side to that of the right hand side is: 

 11/49 * 49/38 = 11/38 = 0.29 

This benchmark value is equal 

statistic method used for the research which was concluded to be λ SVM = 0.29. 

  



 146
 

Applying the probability density function and the area under the curve to the residual 

distribution for OLS1 given in Figure 5.38, the ratio of the frequency count on the left 

hand side to that of the right hand side is: 

 10/49 * 49/39 = 10/39 = 0.26 

This benchmark value is approximately 8.33% (percent) above the optimal lambda value 

determined by the ratio statistic method used for the research which was concluded to 

be λ OLS1 = 0.24. 

 

Applying the probability density function and the area under the curve to the residual 

distribution for OLS2 given in Figure 5.39, the ratio of the frequency count on the left 

hand side to that of the right hand side is: 

 8/49 * 49/41 = 8/41 = 0.20 

This benchmark value is approximately 13.04% (percent) below the optimal lambda 

value determined by the ratio statistic method used for the research which was concluded 

to be λ OLS2 = 0.23. 

 

5.6.4.1 Analysis of Benchmarking Versus Ratio Statistic Results 

 

The summary of the optimal λ  value for DEA’s “true” frontier for the two ordinary least 

squares regression models OLS1 and OLS2, neural network and support vector machine 

determined by the ratio statistic method employed in this research, and those determined by the 

benchmarking method are listed in Table 5.36. 
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 OLS1 
λ OLS1 

OLS2 
λ OLS2 

NN 
λ NN 

SVM 
λ SVM 

Ratio Statistic 
Optimal λ  

0.24 0.23 0.26 0.29 

Benchmarking 
Optimal λ  

0.26 0.20 0.29 0.29 

PERCENTAGE 
ERROR 

+8.33% -13.04% +11.54% 0.00% 

Table 5.36 Summary of Ratio Statistic and Benchmarking Optimal λ s for DEA’s “true” Frontier 
Function Fλ for OLS1, NN and SVM 

 

These results conclude that the application of the ratio statistic compared to the area 

under the curve benchmarking method used for this research were equal in determining 

the optimal λ  value for DEA’s “true” frontier for support vector machine. The 

comparisons also showed the OLS1 model outperforming NN which came in third, as 

well as, the OLS2 model which placed last.  

 

Once again, the results are consistent with the initial findings in this research in Section 

5.5.3, which concluded that SVM outperformed both ordinary least squares regression, as 

well as, neural network in estimating a nonlinear function, and efficient and inefficient 

frontiers for the VRS case in this research. However, more importantly in this section, the 

results showed that the method utilized, those being OLS1, OLS2, NN, or SVM also 

affected the accuracy of the ratio statistic utilized in this research in order to determine 

DEA’s “true” or optimal frontier. 

 

 

 

 

  



 148
 

5.7 Summary of Chapter Five 

 

In this chapter, we observed the proposed methodology developed in Chapter Four to 

determine DEA’s “true” or optimal frontier applied on a real data set, from the original 

study ‘Program Follow Through’ by Charnes, Cooper and Rhodes (1981) for assessing 

the educational programs for disadvantaged students and as may be viewed in Appendix 

A1. Low dimensional data, consisting of one input (i.e. educational level of mother = x), 

one output (i.e. coopersmith scores = y), with a total of 49 (forty-nine) data pairs in its 

entirety were used under DEA’s assumption of variable return to scale. A summary of the 

main results and analysis are as follows: 

 

1. Three DMUs, namely DMU15, DMU44, and DMU48 were determined to exist on 

empirical or traditional DEA efficient frontier F(Eff). 

2.  Four DMUs, namely DMU1, DMU5, DMU32, and DMU36 were determined to exist 

on the newly introduced DEA inefficient frontier F(Ineff) in this research.  

3. Utilizing the common heuristic to determine the neural network architecture in 

Section 4.4 for a single-input and single-output data pairs, the neural network 

architecture was determined to be a 1-3-1 (i.e. 1(one) input node, 3(three) hidden 

nodes, and 1(one) output node) for the efficient frontier for neural network F(Eff-NN). 

The optimal model and function along with its parameters given by Statistica 8.0 for 

the neural network function for efficient frontier F(Eff-NN)(X) were: 

• The neural network architecture was a three layer, 1-3-1 multi-layer 

perceptron model. 
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• The training algorithm which gave the optimal neural network was BFGS (i.e. Quasi-

Newton Back Propagation by Broyden, Fletcher, Goldfarb, and Shanno (BFGS)) 

(Hagen, Demuth, and Beale, 1996; and Haykin, 2000). 

• The hidden activation was Tanh, and the output activation Tanh. 

• The error function was sum of squares (SOS). 

4. The sum of the squared errors for the output values for the efficient frontier for the 

neural network function F(Eff-NN)(X) on the training set was 0.001151.  The sum of the 

squared errors for the output values for the efficient frontier for the neural network 

function F(Eff-NN)(X) on the test set was 0.000147. The total sum of the squared errors 

for the output values for the efficient frontier for the neural network function F(Eff-

NN)(X) on both training and test set was 0.001298. 

5. The optimal model and function along with its parameters given by Statistica 8.0 for 

the support vector machine function for efficient frontier F(Eff-SVM)(X) were: 

• The support vector type was Regression Type 1, also referred to as epsilon-

svm. 

• The optimal kernel type was a radial basis function of gamma value 5 (five). 

• The number of support vectors was 13 (thirteen) with 2 (two) bounded. 

• The optimal C value was 68 (sixty-eight). 

• The optimal ε  (epsilon) value was 0.0015. 

6. The sum of the squared errors for the output values for the efficient frontier for the 

support vector machine function F(Eff-SVM)(X) on the training set was 0.000555. The 

sum of the squared errors for the output values for the efficient frontier for the 

support vector machine function F(Eff-SVM)(X) on the test set was 0.000057. The total 
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sum of the squared errors for the output values for the efficient frontier for the 

support vector machine function F(Eff-SVM)(X) on both training and test set was 

0.000613. 

7. Utilizing the common heuristic to determine the neural network architecture in 

Section 4.4 for a single-input and single-output data pairs, the neural network 

architecture was determined to be a 1-3-1 (i.e. 1(one) input node, 3(three) hidden 

nodes, and 1(one) output node) for the inefficient frontier for neural network F(Ineff-

NN). The optimal model and function along with its parameters given by Statistica 8.0 

for the neural network function for inefficient frontier F(Ineff-NN)(X) were: 

• The neural network architecture was a three layer, 1-3-1 multi-layer 

perceptron model. 

• The training algorithm which gave the optimal neural network was BFGS (i.e. 

Quasi-Newton Back Propagation by Broyden, Fletcher, Goldfarb, and Shanno 

(BFGS)) (Hagen, Demuth, and Beale, 1996; and Haykin, 2000). 

• The hidden activation was Tanh, and the output activation Identity. 

• The error function was sum of squares (SOS). 

8. The sum of the squared errors for the output values for the inefficient frontier for the 

neural network function F(Ineff-NN)(X) on the training set was 0.000198. The sum of 

the squared errors for the output values for the inefficient frontier for the neural 

network function F(Ineff-NN)(X) on the test set was 0.000055. The total sum of the 

squared errors for the output values for the inefficient frontier for the neural network 

function F(Ineff-NN)(X) on both training and test set was 0.000254. 
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9. The optimal model and function along with its parameters given by Statistica 8.0 for 

the support vector machine function for inefficient frontier F(Ineff-SVM)(X) were: 

• The support vector type was Regression Type 1, also referred to as epsilon-

svm. 

• The optimal kernel type was a radial basis function of gamma value 3 (three). 

• The number of support vectors was 12 (twelve) with 1 (one) bounded. 

• The optimal C value was 69 (sixty-nine). 

• The optimal ε  (epsilon) value was 0.0000. 

10. The sum of the squared errors for the output values for the inefficient frontier for the 

support vector machine function F(Ineff-SVM)(X) on the training set was 0.000047.  The 

sum of the squared errors for the output values for the inefficient frontier for the 

support vector machine function F(Ineff-SVM)(X) on the test set was 0.000055. The total 

sum of the squared errors for the output values for the inefficient frontier for the 

support function F(Ineff-SVM)(X) on both training and test set was 0.000102. 

11. The optimal model and function given for the parametric ordinary least squares 

regression models OLS1 and OLS2 for efficient frontier F(Eff-OLS1)(X) = F(Eff-OLS2)(X) 

was quadratic and given as: 

• Y =  0.267222 + 1.30248X - 0.233956X**2 

12. The sum of the squared errors for the output values for the efficient frontier for the 

two OLS models’ function, where F(Eff-OLS1)(X) = F(Eff-OLS2)(X), on the training set 

was 0.001038. The sum of the squared errors for the output values for the efficient 

frontier for the two OLS models’ function, where F(Eff-OLS1)(X) = F(Eff-OLS2)(X), on the 

test set was 0.000149. The total sum of the squared errors for the output values for the 
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efficient frontier for the two OLS models’ function, where F(Eff-OLS1)(X) = F(Eff-

OLS2)(X), on both training and test set was 0.001188. 

13. The optimal model and function given for the parametric ordinary least squares 

regression model OLS1 for inefficient frontier F(Inff-OLS1)(X) was quadratic and given 

as: 

• Y =  0.179220 + 0.325992X + 3.85E-02X**2 

14. The sum of the squared errors for the output values for the inefficient frontier for the  

regression model OLS1 function F(Ineff-OLS1)(X) on the training set was 0.000258. The 

sum of the squared errors for the output values for the inefficient frontier for the 

regression model OLS1 function F(Ineff-OLS1)(X) on the test set was 0.000097. The total 

sum of the squared errors for the output values for the inefficient frontier for the 

regression model OLS1 function F(Ineff-OLS1)(X) on both training and test set was 

0.000355. 

15. There was no inefficient frontier function for the parametric ordinary least squares 

regression model OLS2. 

16. The sum of squared errors for the parametric ordinary least squares regression model 

OLS1, and the sum of squared errors for the non-parametric neural network model for 

efficient frontier, inefficient frontier, and efficient frontier + inefficient frontier were 

almost equal for both the training and test sets. The sum of squared errors however 

for the support vector machine was less than half that for the training and test set of 

both  OLS1, as well as, the neural network. Support vector machine outperformed 

both ordinary least squares regression, as well as, neural network by more 2-to-1 in 
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estimating a nonlinear function, and efficient and inefficient frontiers for the VRS 

case in this research. 

17. The optimal value of ω  determined for the average regression functions for NN, 

SVM, and OLS1 were ω NN = 0.307, ω SVM = 0.328, and ω OLS1 = 0.273 respectively. 

18. The optimal model and function given for the parametric ordinary least squares 

regression model OLS2 for the average regression function FReg-OLS2(X) was 

quadratic and given as: 

• Y = 0.198604 + 0.785125X - 0.430650X**2 

19. The optimal ω  value of support vector machine, ω SVM = 0.328 for the average 

regression function determined non-parametrically, was concluded to be a more 

accurate estimation of the average function than that of neural network ω NN = 0.307, 

as well as ω OLS1 = 0.273. This conclusion was made because as noted in Section 

5.5.3, support vector machine outperformed both neural network and the parametric 

ordinary least squares regression models OLS1 and OLS2 by more than 2-to-1. 

20. The lack of normality of the residual distributions for the average regression functions 

for OLS1, OLS2, neural network, and support vector machine were attributed 

possibly to errors incurred during the initial data collection for the study ‘Program 

Follow Through’ by Charnes, Cooper and Rhodes (1981). This was validated in some 

way by observing the scatter plot in Figure 5.1 for the 49 (forty-nine) original single-

input, single-output data pairs. Viewing the scatter plot it was observed where there 

were 4 (four) DMUs namely DMU1, DMU8, DMU16, and DMU44 which appear to 

be outliers considering the remaining 45 (forty-five) DMUs. Fitting to mention, the 

residuals of 3 (three) out of the 4 (four) of these DMUs, namely DMU8, DMU16, and 
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DMU44 stood out in the residual distributions for the average regression function for 

OLS1, OLS2, neural network and support vector machine. There was also a 

possibility that there was noise in the data set which also affected the normality of the 

residual distributions. 

21. Comparing all 4 (four) of the residual distributions in Figure 5.30(a), Figure 5.30(b), 

Figure 5.30(c), and Figure 5.30(d), if they were to be ranked for symmetry, the 

support vector machine would take the number 1(one) position, neural network 

number 2 (two) position, with OLS1 and OLS2 taking the number 3 (three) position.  

22. The ratio statistic optimal λ  value determined for DEA’s “true” or optimal frontier 

for NN, SVM,  OLS1, and OLS2 were λ NN = 0.26, λ SVM = 0.29, λ OLS1 = 0.24, and  

λ OLS2 = 0.23 respectively. 

23. The ratio optimal λ values for DEA’s “true” frontier determined for the two 

parametric ordinary least squares regression models λ OLS1 and λ OLS2 were observed 

to be almost equal, whereas that for neural network λ NN was closer to λ OLS1 than it 

was to the optimal λ  for support vector machine λ SVM. 

24. The benchmarking optimal λ  value determined for DEA’s “true” or optimal frontier 

for NN, SVM,  OLS1, and OLS2 were λ NN = 0.29, λ SVM = 0.29, λ OLS1 = 0.26, and  

λ OLS2 = 0.20 respectively. 

25.  The application of the ratio statistic compared to the area under the curve 

benchmarking method used for this research were equal in determining the optimal λ  

value for DEA’s “true” frontier for support vector machine. The comparisons also 

showed the OLS1 model outperforming NN which came in third, as well as, the 

OLS2 model which placed last.  
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26.  The benchmarking results were consistent with the initial findings in Section 5.5.3, 

which concluded that SVM outperformed both ordinary least squares regression, as 

well as, neural network in estimating a nonlinear function, and efficient and 

inefficient frontiers for the VRS case in this research. However, more importantly, the 

benchmarking results showed that the method utilized, those being OLS1, OLS2, NN, 

or SVM also affected the accuracy of the ratio statistic utilized in this research in 

order to determine DEA’s “true” or optimal frontier. 

 

These results conclude that considering managerial errors, as well as, observational 

errors, the latter which are often not taken under consideration for traditional DEA, the 

“true” frontier for DEA may be well below the traditional DEA frontier. SVM was 

observed to outperform both neural network and ordinary least squares regression models 

in this research, while the performance of neural network and ordinary least squares 

regression were almost the same. 

 

 

 

 

 

 

 

 

 



 
 

6. CHAPTER SIX: CONCLUSIONS AND FUTURE WORK 

 

 

 

This chapter contains a general summary of the findings of the research on how support 

vector machine, neural network, and ordinary least squares regression performed relative 

to each other.  Future work, for example, in the form of application of the proposed 

methodology developed to data sets consisting of multiple-inputs, multiple-outputs, 

larger number of decision making units, and other situations are also suggested in this 

chapter. 

 

6.1 Conclusions 

 

This research showed by the utilization of the data set from the original study ‘Program 

Follow Through’ by Charnes, Cooper and Rhodes (1981) for one input (i.e. educational 

level of mother = x), one output (i.e. coopersmith scores = y), under DEA’s VRS 

assumptions, that support vector machine outperformed both ordinary least squares  

regression and neural network models in predicting and estimating a non-linear function 

for efficient frontier, inefficient frontier, and efficient + inefficient frontiers. In fact, the 

performance of neural network was observed to be almost identical to that of ordinary 

least squares regression with neural network performance being only marginally better 

than ordinary least squares regression.

156  
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While researchers known to date, such as Wang (2003), have attempted to determine an 

average regression function for traditional DEA, how this may be determined with clarity 

has been addressed by this research. This research and it’s results showed that by 

combining non-parametric efficient frontier and non-parametric inefficient frontier, this 

average regression function can be determined in a totally non-parametric environment 

with no assumptions whatsoever. The optimal ω  value was determined for ordinary least 

squares regression, neural network, and support vector. Based upon the first experiments 

carried out and the results obtained in the research on the performance of these models, it 

is concluded that the optimal ω  determined by support vector machine is a more accurate 

estimation than the value determined by OLS and NN for determining the optimal 

average regression function in this research.  The lack of normality of the residual 

distributions for the average regression function for ordinary least squares regression, 

neural network, and support vector machine in this research is attributed to the possibility 

of errors which may have occurred in the data collection process by Charnes, Cooper and 

Rhodes (1981) as outliers for 4 (four) DMUs are salient in the scatter plot for the original 

49 (forty-nine), single-input, single-output data pairs for the DMUs. 

 

This research provided and tested a methodology for determining DEA’s “true” or 

optimal frontier for OLS, NN, and SVM by combining the average regression function 

and efficient frontier function, then applying a ratio statistic based upon the residuals for 

the absolute values for observational errors and managerial errors while varying the λ 

value. The results showed that the optimal λ for neural network was closer to the optimal 

λ value for OLS than to the optimal λ obtained for SVM. Based upon the first 
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experiments carried out and the results obtained in the research on the performance of 

these models, it is concluded that the optimal λ determined by support vector machine is 

a more accurate estimation than the value determined by OLS and NN for determining 

the “true” or optimal DEA frontier or function in this research.  

 

The key finding in the research results, in the determination of an optimal λ value very 

much lower than that of the traditional DEA frontier at λ = 1, may benefit managers and 

decision-makers by assisting them in making better judgements and decisions relative to: 

 

• How they allocate their company’s or organization’s resources. 

• How they assess performance, productivity, and efficiency more accurately. 

• How they may compete more profitably and effectively both in a national, as well as, 

an increasingly global environment. 

 

6.2 Future Work 

 

This research utilized the data set from the original study ‘Program Follow Through’ by 

Charnes, Cooper and Rhodes (1981) for assessing the educational programs for 

disadvantaged students.  Low dimensional data, consisting of one input (i.e. educational 

level of mother = x), one output (i.e. coopersmith scores = y), with a total of 49 (forty-

nine) data pairs in its entirety were used under DEA’s assumption of variable return to 

scale.  As this research only considered a single-input and a single-output for 49 (forty 

nine) DMUs under the VRS case, future research on single-input and single-output, for a 
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larger number of DMUs, such as possibly 100 (one-hundred) DMUs, 500 (five-hundred) 

DMUs, and 1000 (one-thousand) DMUs should be carried out to determine whether the 

methodology is applicable across both small and large numbers of DMUs. The CRS 

assumptions can be examined and investigated as well. 

 

Further research utilizing multiple-inputs and single-output, multiple-outputs and single 

input, as well as, multiple-inputs and multiple-outputs would also be beneficial to 

determine if the methodology may be applicable in such cases as well. These may also be 

expanded to incorporate larger numbers of DMUs as mentioned in the previous 

paragraph, as well as, the CRS case. 

 

While Statistica 8.0 was allowed to optimize the parameters for the neural network and 

support vector machine functions and models in this research, further research may 

explore the possibility of whether these optimal functions and models determined may be 

fine-tuned to give better or improved results. For the ordinary least squares regression 

models, instead of utilizing only a linear or quadratic regression function, other 

regression functions such as those included in Datafit 8.2 could be examined to determine 

whether they would improve the regression functions or models in this research.  

 

Finally, the single-input, single-output data set used in this research was partially skewed 

as was observed in the scatter plot. Future research, may wish to apply the research 

methodology to a ‘highly’ normally distributed data set which is obtained by very careful 
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collection, or by utilizing a data set which is known to be normally distributed, so as to 

see how the results compare to those in this research.  
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APPENDIX A: 
Raw Original 49(forty-nine) Single-Input, Single-Output Data Pairs 
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Appendix A1:Original Raw 49(forty-nine) Single-Input, Single-Output Data Pairs 
(Source:Charnes, Cooper and Rhodes, 1981) 

DMU Educational 
Level Of Mother 
(X-Input values) 

Coopersmith 
Scores 

(Y-Output values)

DMU Educational 
Level Of Mother 
(X-Input values) 

Coopersmith 
Scores 

(Y-Output values) 
DMU1 86.13 38.16 DMU26 41.40 31.16 
DMU2 29.26 26.02 DMU27 27.20 25.03 
DMU3 43.12 28.51 DMU28 23.92 18.30 
DMU4 24.96 16.19 DMU29 10.62 6.16 

DMU5 11.62 5.37 DMU30 12.48 15.68 
DMU6 11.88 12.84 DMU31 19.32 14.42 
DMU7 32.64 17.82 DMU32 6.30 4.99 
DMU8 20.79 33.16 DMU33 46.62 39.10 
DMU9 34.40 26.29 DMU34 38.95 31.05 
DMU10 61.74 35.20 DMU35 61.60 39.22 
DMU11 52.92 30.29 DMU36 31.08 13.91 
DMU12 36.00 25.35 DMU37 19.35 15.30 
DMU13 39.20 26.54 DMU38 11.20 7.22 
DMU14 14.60 7.47 DMU39 34.40 29.80 
DMU15 4.29 14.33 DMU40 35.55 17.15 
DMU16 27.25 38.19 DMU41 30.53 25.30 
DMU17 22.63 12.07 DMU42 25.44 17.56 
DMU18 28.00 20.44 DMU43 26.66 27.54 
DMU19 53.56 36.54 DMU44 39.79 63.11 
DMU20 25.42 23.34 DMU45 8.32 8.85 
DMU21 31.57 27.44 DMU46 59.78 34.61 
DMU22 16.34 16.52 DMU47 39.22 28.42 
DMU23 44.28 38.97 DMU48 3.24 9.02 
DMU24 19.74 16.54 DMU49 7.14 15.82 
DMU25 24.40 22.43    
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Appendix A2:Original 49(forty-nine) Scaled Single-Input, Single-Output Data Pairs 
                        
DMU Educational 

Level Of Mother 
(X-Input values) 

Coopersmith 
Scores 

(Y-Output values)

DMU Educational 
Level Of Mother 
(X-Input values) 

Coopersmith 
Scores 

(Y-Output values) 
DMU1 1.000 0.542 DMU26 0.460 0.470 
DMU2 0.314 0.417 DMU27 0.289 0.407 
DMU3 0.481 0.443 DMU28 0.249 0.337 
DMU4 0.262 0.316 DMU29 0.089 0.212 

DMU5 0.101 0.204 DMU30 0.111 0.310 
DMU6 0.104 0.281 DMU31 0.194 0.297 
DMU7 0.355 0.332 DMU32 0.037 0.200 
DMU8 0.212 0.491 DMU33 0.523 0.552 
DMU9 0.376 0.420 DMU34 0.431 0.469 
DMU10 0.706 0.512 DMU35 0.704 0.553 
DMU11 0.599 0.461 DMU36 0.336 0.292 
DMU12 0.395 0.410 DMU37 0.194 0.306 
DMU13 0.434 0.422 DMU38 0.096 0.223 
DMU14 0.137 0.226 DMU39 0.376 0.456 
DMU15 0.013 0.296 DMU40 0.390 0.326 
DMU16 0.290 0.543 DMU41 0.329 0.410 
DMU17 0.234 0.273 DMU42 0.268 0.330 
DMU18 0.299 0.359 DMU43 0.283 0.433 
DMU19 0.607 0.526 DMU44 0.441 0.800 
DMU20 0.268 0.389 DMU45 0.061 0.240 
DMU21 0.342 0.432 DMU46 0.682 0.506 
DMU22 0.158 0.319 DMU47 0.434 0.442 
DMU23 0.495 0.551 DMU48 0.000 0.242 
DMU24 0.199 0.319 DMU49 0.047 0.312 
DMU25 0.255 0.380    
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Lingo 10.0 Codes and Printouts for Illustrative Example for CRS Case for  

Efficient Frontier  
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Appendix B1:Lingo 10.0 Code and Printout - DMU1 CRS Case Efficient Frontier 
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Appendix B2:Lingo 10.0 Code and Printout - DMU2 CRS Case Efficient Frontier  
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Appendix B3:Lingo 10.0 Code and Printout – DMU3 CRS Case Efficient Frontier 
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Appendix B4:Lingo 10.0 Code and Printout – DMU4 CRS Case Efficient Frontier 
 

 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX C: 
Lingo 10.0 Codes and Printouts for Illustrative Example for VRS Case for  

Efficient Frontier  
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Appendix C1:Lingo 10.0 Code and Printout – DMU1 VRS Case Efficient Frontier 
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Appendix C2:Lingo 10.0 Code and Printout – DMU2 VRS Case Efficient Frontier 
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Appendix C3:Lingo 10.0 Code and Printout – DMU3 VRS Case Efficient Frontier 
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Appendix C4:Lingo 10.0 Code and Printout – DMU4 VRS Case Efficient Frontier 
 

 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX D: 
Lingo 10.0 Codes and Printouts for Illustrative Example for CRS Case for  

Inefficient Frontier  
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Appendix D1:Lingo 10.0 Code and Printout - DMU1 CRS Case Inefficient Frontier 
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Appendix D2:Lingo 10.0 Code and Printout – DMU2 CRS Case Inefficient Frontier 
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Appendix D3:Lingo 10.0 Code and Printout – DMU3 CRS Case Inefficient Frontier 
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Appendix D4:Lingo 10.0 Code and Printout – DMU4 CRS Case Inefficient Frontier 
 

 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX E: 
Lingo 10.0 Codes and Printouts for Illustrative Example for VRS Case for  

Inefficient Frontier  
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Appendix E1:Lingo 10.0 Code and Printout – DMU1 VRS Case Inefficient Frontier 
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Appendix E2:Lingo 10.0 Code and Printout – DMU2 VRS Case Inefficient Frontier 
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Appendix E3:Lingo 10.0 Code and Printout – DMU3 VRS Case Inefficient Frontier 
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Appendix E4:Lingo 10.0 Code and Printout – DMU4 VRS Case Inefficient Frontier 
 

 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX F: 
VRS Efficiency Scores for 49(forty-nine) DMUs for  

Efficient and Inefficient Frontiers 
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Appendix F1: VRS Efficiency Scores for 49(forty-nine) DMUs – Efficient Frontier 
   

DMU Efficiency Score DMU Efficiency Score 
DMU1 0.25 DMU26 0.40 
DMU2 0.44 DMU27 0.44 
DMU3 0.34 DMU28 0.30 
DMU4 0.23 DMU29 0.31 
DMU5 0.28 DMU30 0.42 
DMU6 0.34 DMU31 0.23 
DMU7 0.21 DMU32 0.51 
DMU8 0.87 DMU33 0.48 
DMU9 0.38 DMU34 0.42 

DMU10 0.32 DMU35 0.36 
DMU11 0.30 DMU36 0.14 
DMU12 0.34 DMU37 0.26 
DMU13 0.34 DMU38 0.29 
DMU14 0.22 DMU39 0.45 
DMU15 1.00 DMU40 0.18 
DMU16 0.79 DMU41 0.40 
DMU17 0.17 DMU42 0.26 
DMU18 0.31 DMU43 0.52 
DMU19 0.38 DMU44 1.00 
DMU20 0.43 DMU45 0.39 
DMU21 0.44 DMU46 0.32 
DMU22 0.36 DMU47 0.37 
DMU23 0.50 DMU48 1.00 
DMU24 0.30 DMU49 0.75 
DMU25 0.42   
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Appendix F2: VRS Efficiency Scores for 49(forty-nine) DMUs – Inefficient Frontier 
   

DMU Efficiency Score DMU Efficiency Score 
DMU1 1.00 DMU26 1.70 
DMU2 2.00 DMU27 2.07 
DMU3 1.49 DMU28 1.72 
DMU4 1.45 DMU29 1.26 
DMU5 1.00 DMU30 2.81 
DMU6 2.41 DMU31 1.67 
DMU7 1.22 DMU32 1.00 
DMU8 3.60 DMU33 1.85 
DMU9 1.72 DMU34 1.80 

DMU10 1.29 DMU35 1.40 
DMU11 1.29 DMU36 1.00 
DMU12 1.58 DMU37 1.77 
DMU13 1.52 DMU38 1.41 
DMU14 1.12 DMU39 1.95 
DMU15 7.47 DMU40 1.08 
DMU16 3.16 DMU41 1.86 
DMU17 1.19 DMU42 1.55 
DMU18 1.64 DMU43 2.33 
DMU19 1.54 DMU44 2.16 
DMU20 2.06 DMU45 2.35 
DMU21 1.96 DMU46 1.31 
DMU22 2.26 DMU47 2.52 
DMU23 1.95 DMU48 6.15 
DMU24 1.88 DMU49 4.96 
DMU25 2.07   

                      
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX G: 
Actual and Predicted Y-Output Values for NN and SVM Efficient Frontier 

Function and Inefficient Frontier Function 
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Appendix G1:Actual and Predicted Output Values for 49(forty-nine) DMUs for NN     
Efficient Frontier Function F(Eff-NN)(X) 

                        
DMU Coopersmith 

Scores Actual 
(Y-Output 

values) 

Coopersmith 
Scores Predicted 

(Y-Output values)

DMU Coopersmith 
Scores Actual 

(Y-Output 
values) 

Coopersmith 
Scores Predicted 

(Y-Output values) 

DMU1 0.542 0.800 DMU26 0.470 0.789 
DMU2 0.417 0.655 DMU27 0.407 0.623 
DMU3 0.443 0.794 DMU28 0.337 0.573 
DMU4 0.316 0.589 DMU29 0.212 0.386 

DMU5 0.204 0.401 DMU30 0.310 0.413 
DMU6 0.281 0.404 DMU31 0.297 0.509 
DMU7 0.332 0.707 DMU32 0.200 0.318 
DMU8 0.491 0.529 DMU33 0.552 0.798 
DMU9 0.420 0.731 DMU34 0.469 0.776 
DMU10 0.512 0.800 DMU35 0.553 0.800 
DMU11 0.461 0.800 DMU36 0.292 0.684 
DMU12 0.410 0.750 DMU37 0.306 0.509 
DMU13 0.422 0.778 DMU38 0.223 0.395 
DMU14 0.226 0.444 DMU39 0.456 0.731 
DMU15 0.296 0.284 DMU40 0.326 0.745 
DMU16 0.543 0.624 DMU41 0.410 0.675 
DMU17 0.273 0.555 DMU42 0.330 0.596 
DMU18 0.359 0.636 DMU43 0.433 0.615 
DMU19 0.526 0.800 DMU44 0.800 0.781 
DMU20 0.389 0.596 DMU45 0.240 0.350 
DMU21 0.432 0.691 DMU46 0.506 0.800 
DMU22 0.319 0.468 DMU47 0.442 0.778 
DMU23 0.551 0.796 DMU48 0.242 0.273 
DMU24 0.319 0.514 DMU49 0.312 0.331 
DMU25 0.380 0.580    
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Appendix G2:Actual and Predicted Output Values for 49(forty-nine) DMUs for 
SVM Efficient Frontier Function F(Eff-SVM)(X) 

                        
DMU Coopersmith 

Scores Actual 
(Y-Output 

values) 

Coopersmith 
Scores Predicted 

(Y-Output values)

DMU Coopersmith 
Scores Actual 

(Y-Output 
values) 

Coopersmith 
Scores Predicted 

(Y-Output values) 

DMU1 0.542 0.465 DMU26 0.470 0.815 
DMU2 0.417 0.652 DMU27 0.407 0.623 
DMU3 0.443 0.823 DMU28 0.337 0.576 
DMU4 0.316 0.592 DMU29 0.212 0.388 

DMU5 0.204 0.401 DMU30 0.310 0.411 
DMU6 0.281 0.404 DMU31 0.297 0.508 
DMU7 0.332 0.702 DMU32 0.200 0.323 
DMU8 0.491 0.531 DMU33 0.552 0.811 
DMU9 0.420 0.729 DMU34 0.469 0.793 
DMU10 0.512 0.554 DMU35 0.553 0.556 
DMU11 0.461 0.715 DMU36 0.292 0.678 
DMU12 0.410 0.753 DMU37 0.306 0.508 
DMU13 0.422 0.796 DMU38 0.223 0.395 
DMU14 0.226 0.440 DMU39 0.456 0.729 
DMU15 0.296 0.284 DMU40 0.326 0.746 
DMU16 0.543 0.624 DMU41 0.410 0.670 
DMU17 0.273 0.558 DMU42 0.330 0.599 
DMU18 0.359 0.635 DMU43 0.433 0.616 
DMU19 0.526 0.702 DMU44 0.800 0.802 
DMU20 0.389 0.599 DMU45 0.240 0.355 
DMU21 0.432 0.686 DMU46 0.506 0.584 
DMU22 0.319 0.464 DMU47 0.442 0.796 
DMU23 0.551 0.823 DMU48 0.242 0.270 
DMU24 0.319 0.514 DMU49 0.312 0.337 
DMU25 0.380 0.583    
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Appendix G3:Actual and Predicted Output Values for 49(forty-nine) DMUs for NN 
Inefficient Frontier Function F(Ineff-NN)(X) 

                        
DMU Coopersmith 

Scores Actual 
(Y-Output 

values) 

Coopersmith 
Scores Predicted 

(Y-Output values)

DMU Coopersmith 
Scores Actual 

(Y-Output 
values) 

Coopersmith 
Scores Predicted 

(Y-Output values) 

DMU1 0.542 0.541 DMU26 0.470 0.338 
DMU2 0.417 0.284 DMU27 0.407 0.275 
DMU3 0.443 0.346 DMU28 0.337 0.261 
DMU4 0.316 0.266 DMU29 0.212 0.208 

DMU5 0.204 0.212 DMU30 0.310 0.215 
DMU6 0.281 0.213 DMU31 0.297 0.242 
DMU7 0.332 0.299 DMU32 0.200 0.192 
DMU8 0.491 0.248 DMU33 0.552 0.362 
DMU9 0.420 0.307 DMU34 0.469 0.327 
DMU10 0.512 0.432 DMU35 0.553 0.431 
DMU11 0.461 0.391 DMU36 0.292 0.292 
DMU12 0.410 0.314 DMU37 0.306 0.242 
DMU13 0.422 0.328 DMU38 0.223 0.210 
DMU14 0.226 0.223 DMU39 0.456 0.307 
DMU15 0.296 0.184 DMU40 0.326 0.312 
DMU16 0.543 0.276 DMU41 0.410 0.290 
DMU17 0.273 0.256 DMU42 0.330 0.268 
DMU18 0.359 0.279 DMU43 0.433 0.273 
DMU19 0.526 0.394 DMU44 0.800 0.331 
DMU20 0.389 0.268 DMU45 0.240 0.199 
DMU21 0.432 0.294 DMU46 0.506 0.422 
DMU22 0.319 0.230 DMU47 0.442 0.328 
DMU23 0.551 0.351 DMU48 0.242 0.182 
DMU24 0.319 0.244 DMU49 0.312 0.195 
DMU25 0.380 0.263    
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Appendix G4:Actual and Predicted Output Values for 49(forty-nine) DMUs for 
SVM Inefficient Frontier Function F(Ineff-SVM)(X) 

                        
DMU Coopersmith 

Scores Actual 
(Y-Output 

values) 

Coopersmith 
Scores Predicted 

(Y-Output values)

DMU Coopersmith 
Scores Actual 

(Y-Output 
values) 

Coopersmith 
Scores Predicted 

(Y-Output values) 

DMU1 0.542 0.543 DMU26 0.470 0.340 
DMU2 0.417 0.283 DMU27 0.407 0.273 
DMU3 0.443 0.348 DMU28 0.337 0.257 
DMU4 0.316 0.262 DMU29 0.212 0.205 

DMU5 0.204 0.208 DMU30 0.310 0.210 
DMU6 0.281 0.209 DMU31 0.297 0.236 
DMU7 0.332 0.300 DMU32 0.200 0.197 
DMU8 0.491 0.243 DMU33 0.552 0.363 
DMU9 0.420 0.308 DMU34 0.469 0.329 
DMU10 0.512 0.432 DMU35 0.553 0.431 
DMU11 0.461 0.391 DMU36 0.292 0.292 
DMU12 0.410 0.316 DMU37 0.306 0.236 
DMU13 0.422 0.331 DMU38 0.223 0.207 
DMU14 0.226 0.218 DMU39 0.456 0.308 
DMU15 0.296 0.196 DMU40 0.326 0.314 
DMU16 0.543 0.274 DMU41 0.410 0.290 
DMU17 0.273 0.251 DMU42 0.330 0.265 
DMU18 0.359 0.277 DMU43 0.433 0.271 
DMU19 0.526 0.394 DMU44 0.800 0.333 
DMU20 0.389 0.265 DMU45 0.240 0.200 
DMU21 0.432 0.295 DMU46 0.506 0.422 
DMU22 0.319 0.224 DMU47 0.442 0.331 
DMU23 0.551 0.353 DMU48 0.242 0.195 
DMU24 0.319 0.238 DMU49 0.312 0.198 
DMU25 0.380 0.260    

 
 
 

 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX H: 
Actual and Predicted Y-Output Values for Ordinary Least Squares regression 
Models OLS1 and OLS2 Efficient Frontier Function and Inefficient Frontier 

Function 
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Appendix H1:Actual and Predicted Output Values for 49(forty-nine) DMUs for 
OLS1 and OLS2 Efficient Frontier Function F(Eff-OLS1)(X) = F(Eff-OLS2)(X) 

                        
DMU Coopersmith 

Scores Actual 
(Y-Output 

values) 

Coopersmith 
Scores Predicted 

(Y-Output values)

DMU Coopersmith 
Scores Actual 

(Y-Output 
values) 

Coopersmith 
Scores Predicted 

(Y-Output values) 

DMU1 0.542 1.336 DMU26 0.470 0.817 
DMU2 0.417 0.653 DMU27 0.407 0.624 
DMU3 0.443 0.840 DMU28 0.337 0.577 
DMU4 0.316 0.592 DMU29 0.212 0.381 

DMU5 0.204 0.396 DMU30 0.310 0.409 
DMU6 0.281 0.400 DMU31 0.297 0.511 
DMU7 0.332 0.700 DMU32 0.200 0.315 
DMU8 0.491 0.533 DMU33 0.552 0.884 
DMU9 0.420 0.724 DMU34 0.469 0.785 
DMU10 0.512 1.070 DMU35 0.553 1.068 
DMU11 0.461 0.963 DMU36 0.292 0.678 
DMU12 0.410 0.745 DMU37 0.306 0.511 
DMU13 0.422 0.788 DMU38 0.223 0.390 
DMU14 0.226 0.441 DMU39 0.456 0.724 
DMU15 0.296 0.284 DMU40 0.326 0.740 
DMU16 0.543 0.625 DMU41 0.410 0.670 
DMU17 0.273 0.559 DMU42 0.330 0.599 
DMU18 0.359 0.636 DMU43 0.433 0.617 
DMU19 0.526 0.972 DMU44 0.800 0.796 
DMU20 0.389 0.599 DMU45 0.240 0.346 
DMU21 0.432 0.685 DMU46 0.506 1.047 
DMU22 0.319 0.467 DMU47 0.442 0.788 
DMU23 0.551 0.855 DMU48 0.242 0.267 
DMU24 0.319 0.517 DMU49 0.312 0.328 
DMU25 0.380 0.584    
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Appendix H2:Actual and Predicted Output Values for 49(forty-nine) DMUs for 
OLS1 Inefficient Frontier Function F(Ineff-OLS1)(X) 

                        
DMU Coopersmith 

Scores Actual 
(Y-Output 

values) 

Coopersmith 
Scores Predicted 

(Y-Output values)

DMU Coopersmith 
Scores Actual 

(Y-Output 
values) 

Coopersmith 
Scores Predicted 

(Y-Output values) 

DMU1 0.542 0.544 DMU26 0.470 0.337 
DMU2 0.417 0.285 DMU27 0.407 0.277 
DMU3 0.443 0.345 DMU28 0.337 0.263 
DMU4 0.316 0.267 DMU29 0.212 0.209 

DMU5 0.204 0.213 DMU30 0.310 0.216 
DMU6 0.281 0.214 DMU31 0.297 0.244 
DMU7 0.332 0.300 DMU32 0.200 0.191 
DMU8 0.491 0.250 DMU33 0.552 0.360 
DMU9 0.420 0.307 DMU34 0.469 0.327 
DMU10 0.512 0.429 DMU35 0.553 0.428 
DMU11 0.461 0.388 DMU36 0.292 0.293 
DMU12 0.410 0.314 DMU37 0.306 0.244 
DMU13 0.422 0.328 DMU38 0.223 0.211 
DMU14 0.226 0.225 DMU39 0.456 0.307 
DMU15 0.296 0.183 DMU40 0.326 0.312 
DMU16 0.543 0.277 DMU41 0.410 0.291 
DMU17 0.273 0.258 DMU42 0.330 0.269 
DMU18 0.359 0.280 DMU43 0.433 0.275 
DMU19 0.526 0.391 DMU44 0.800 0.330 
DMU20 0.389 0.269 DMU45 0.240 0.199 
DMU21 0.432 0.295 DMU46 0.506 0.419 
DMU22 0.319 0.232 DMU47 0.442 0.328 
DMU23 0.551 0.350 DMU48 0.242 0.179 
DMU24 0.319 0.246 DMU49 0.312 0.195 
DMU25 0.380 0.265    
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