
University of Miami
Scholarly Repository

Open Access Dissertations Electronic Theses and Dissertations

2014-04-30

Short-Term Peak Demand Forecasting Using an
Artificial Neural Network with Controlled Peak
Demand Through Intelligent Electrical Loading
Jason L. Grant
University of Miami, jgrant@miami.edu

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_dissertations

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Grant, Jason L., "Short-Term Peak Demand Forecasting Using an Artificial Neural Network with Controlled Peak Demand Through
Intelligent Electrical Loading" (2014). Open Access Dissertations. 1187.
https://scholarlyrepository.miami.edu/oa_dissertations/1187

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations/1187?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F1187&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu


 
 

 
 

 
 
 
 
 
 

UNIVERSITY OF MIAMI 
 
 
 
 
 

SHORT-TERM PEAK DEMAND FORECASTING USING AN ARTIFICIAL 
NEURAL NETWORK WITH CONTROLLED PEAK DEMAND THROUGH 

INTELLIGENT ELECTRICAL LOADING 
 
 
 
 

By 
 

Jason Lee Grant 
 
 

A  DISSERTATION 
 
 

Submitted to the Faculty  
of the University of Miami 

in partial fulfillment of the requirements for  
the degree of Doctor of Philosophy 

 
 
 
 
 

Coral Gables, Florida 
 

May 2014 
 
 
 
 
 
 

 



 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

©2014 
Jason Lee Grant 

All Rights Reserved 



 
 

 
 

UNIVERSITY OF MIAMI 
 
 
 

A dissertation submitted in partial fulfillment of  
the requirements for the degree of 

Doctor of Philosophy 
 
 
 

SHORT-TERM PEAK DEMAND FORECASTING USING AN ARTIFICIAL 
NEURAL NETWORK WITH CONTROLLED PEAK DEMAND THROUGH 

INTELLIGENT ELECTRICAL LOADING 
 
 

Jason Lee Grant 
 
 
Approved:  
 
 
________________                    _________________ 
Shihab Asfour, Ph.D.             Khaled Abdel-Rahman, Ph.D. 
Professor and Associate Dean of the  Director of Academic  
College of Engineering  Computing of the College of 

Engineering 
               
________________                    _________________ 
Moataz Eltoukhy, Ph.D.                M. Brian Blake, Ph.D. 
Assistant Professor of Kinesiology   Dean of the Graduate School 
and Sport Sciences             
               
________________                      
Saman Aliari Zonouz, Ph.D.                
Assistant Professor of Electrical and                                        
Computer Engineering 
 
 
                                       

 

 

 
 

      



 
 

 
 

GRANT, JASON LEE              (Ph.D., Industrial Engineering)  

Short-Term Peak Demand Forecasting               (May 2014)           
using an Artificial Neural Network with        
Controlled Peak Demand through  
Intelligent Electrical Loading 
 
Abstract of a dissertation at the University of Miami. 
 
Dissertation supervised by Professor Shihab Asfour. 
No. of pages in text. (139) 
 
 
 
 

The power output capacity of a local electrical utility is dictated by its customers’ 

cumulative peak-demand electrical consumption.  Most electrical utilities in the United 

States maintain peak-power generation capacity by charging for end-use peak electrical 

demand; thirty to seventy percent of an electric utility’s bill.  To reduce peak demand, a 

real-time energy monitoring system was designed, developed, and implemented for a 

large government building.  Data logging, combined with an application of artificial 

neural networks (ANNs), provides short-term electrical load forecasting data for 

controlled peak demand.  The ANN model was tested against other forecasting methods 

including simple moving average (SMA), linear regression, and multivariate adaptive 

regression splines (MARSplines) and was effective at forecasting peak building electrical 

demand in a large government building sixty minutes into the future.  The ANN model 

presented here outperformed the other forecasting methods tested with a mean absolute 

percentage error (MAPE) of 3.9% as compared to the SMA, linear regression, and 

MARSplines MAPEs of 7.7%, 17.3%, and 7.0% respectively. Additionally, the ANN 

model realized an absolute maximum error (AME) of 18.2% as compared to the SMA, 

linear regression, and MARSplines AMEs of 26.2%, 45.1%, and 22.5% respectively.
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CHAPTER 1:  INTRODUCTION 

The Smart Grid 

 The term “Smart Grid” has recently entered the vernacular of most economies 

around the world.  Whether developed or developing, nations are currently focusing on 

long-term and short-term energy policy including energy sources, power conversion/ 

production, methods of transmission and distribution,  generation diversification, demand 

response, and adoption of energy conservation and efficiency initiatives in an effort to 

reduce total carbon footprint.  The electricity grid, as it currently exists, cannot 

effectively address all of these issues.  The U.S. Department of Energy’s modern grid 

initiative states that a “smart grid” integrates advanced sensing technologies, control 

methods, and integrated communications into the existing electricity grid (Rahman, 

2009).   It is important to distinguish today’s transmission grid from tomorrow’s 

comprehensive energy smart grid.  Contrary to popular belief, today’s electrical 

transmission grid in developed countries is actually efficient, smart, and intelligent.  

Distribution of electricity to customer end-use, however, is inefficient and unintelligent.  

In order to better integrate distributed power generation, more data, automation, and 

intelligent control are required.   

 The current electrical grid was designed and developed with electrical power 

flowing in only one direction.  Of the total fuel energy used for electrical power, 

approximately two-thirds are lost as waste heat and other conversion inefficiencies 

(Farhangi, 2010).  For example, transmission lines account for approximately 8% utility 

output loss while 20% of electrical generation capacity exists solely to meet peak demand 

when on average only 5% is required (Farhangi, 2010).  Additionally, since utility assets
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Fundamentally, a well designed smart grid layers intelligence over utility assets, thereby 

utilizing current assets more effectively and efficiently.   Figure 1-2 illustrates the 

fundamental building blocks of a smart grid (BChydro, 2009).   While basic lateral 

integration provides for a firm smart grid foundation, vertical integration is necessary for 

advanced smart grid function.  For example, effective demand response requires 

universal assimilation of smart meters and end-use area networks.  Given current 

infrasture design and political sentiment, smart grid evolution will undoubtedbly be 

evolutionary as opposed to revolutionary.  The current grid will be modified in steps.  

Distributed control and monitoring systems will form the basis for total system 

integration and strategic decision and policy formulation.

 

Figure 1-2 Smart grid pyramid (BChydro, 2009). 
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The closest model resembling a smart grid is the Circuit of the Future at Southern 

California Edison (Yinger, 2006). 

 The present electrical grid, for the most part, is blind, unidirectional, and passive.  

The source of generation currently receives no real-time information regarding end-

usage.  In order to maintain function during periods of peak demand, the grid has been 

engineered beyond what is truly required in order to function during periods of maximum 

anticipated peak demand.  The peak demand capacity is thus rarely utilized making the 

system intrinsically inefficient.  Additionally, expedited global capacity expansion as the 

result of soaring demand for electricity has typically neglected intelligent investment in 

utility infrastructure.  The lack of sensible planning during recent utility growth has 

undoubtedly contributed to the overall instability of the grid system.   

In North America, information and communication systems are limited to less 

than 25% of the distribution network.  Approximately 90% of all blackouts/brownouts 

occur within the distribution network realm. By addressing demand-side management 

with advanced technologies, controlled growth and development of a smart utility grid is 

possible.   

The International community is beginning to establish standards with regard to 

smart grid design and implementation.  In 2001, the Electric Power Research Institute 

(EPRI) established IntelliGrid as a technical foundation for a smart power grid that links 

electricity with communications and computer control to achieve tremendous gains in 

reliability, capacity, and customer services.  IntelliGrid’s five main components include:  

IntelliGrid architecture, fast simulation and modeling (FSM); communications for 

distributed energy resources (DER); consumer portal; and advanced monitoring systems.  
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EPRI Advanced Distribution Automation (ADA) focuses on the distribution system of 

the future.  The U.S. Department of Energy’s (DOE) Modern Grid Initiative attempts to 

standardize the modern grid as an innovatively comprehensive model of electricity 

delivery.  Also, the U.S. DOE created the GridWise program to modernize distribution 

grid infrastructure and operations by incorporating bidirectional flow of electricity and 

information.  The Advanced Grid Application Consortium (GridApps), formed by 

Concurrent Technologies Corporation and paid for by the DOE in 2005, applies utility 

technologies and practices to modernize the grid.  GridWorks, also within the DOE, 

focuses on improving the reliability of the grid by upgrading critical grid infrastructure.  

Below, Table 1-1 lists details of Title 13 (Smart Grid Section) of the U.S. Energy Policy 

and Security Act of 2007 (Saint, 2009).  

Table 1-1 Title 13 U.S. Energy Policy and Security Act of 2007 (Saint, 2009). 

Section Mandate 
1301 Establishes a federal policy to modernize the electric utility 

transmission and distribution system to maintain reliability. 
1302 Calls for DOE to report to Congress on the deployment of Smart Grid 

technologies and any barriers to deployment. 
1303 Directs DOE to establish a Smart Grid Advisory Committee and a 

Smart Grid Task Force to assist with implementation. 
1304 Directs DOE to conduct Smart Grid RD&D and to develop 

measurement strategies to assess energy savings and other aspects of 
implementation. 

1305 Directs the National Institute of Standards and Technology to establish 
protocols and standards to increase the flexibility of use for Smart 
Grid equipment and systems. 

1306 Directs DOE to create a program that reimburses 20% of qualifying 
Smart Grid investments. 

1307 Directs states to encourage utilities to employ Smart Grid technology 
and allows utilities to recover Smart Grid investments through rates. 

1308 Requires DOE to prepare a report to Congress on the effect of private 
wire laws on the development of combined heat and power facilities. 

1309 Directs DOE to report to Congress on the potential impacts of Smart 
Grid deployment on the security of electricity infrastructure and 
operating capability. 
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Distribution Vision 2010 (DV2010) addresses interruption of service as a result of 

malfunctioning and/or poorly designed feeders.  Most recently, the ANSI C12.22 

standard addresses smart meters while the IEC 61850 standard deals with substation 

automation.   The United States National Institute of Standards and Technology (NIST) 

Framework and Roadmap for Smart Grid Interoperability Standards (Framework, N. I. S. 

T., 2010) is currently identifying priority areas for standardization.  Finally, the DOE’s 

Visualizing Energy Resources Dynamically on Earth (VERDE) will provide wide-area 

grid awareness, integrating real-time sensor data, weather information and grid modeling 

with geographical information.  Both micro and macro activity can be monitored and 

analyzed simultaneously with detailed reporting on blackouts and power quality.   

So far, the prevailing technology of the Smart Grid is the Smart Meter or 

Automated Metering Infrastructure (AMI).  AMI serves as a bidirectional information 

conduit to the Home Area Network (HAN) or to Commercial/Industrial energy 

automation systems.  With AMI, end-users can select rate options based on time-of usage 

as well as benefit from rate discounts by relinquishing control of high-energy consuming 

appliances to the utility in order to reduce utility demand.  Eventually instantaneous 

pricing information will allow end-users to curtail loads either manually or through 

automation and policy set points.  For the utility, AMI provides real-time 

demand/consumption information, grid performance, remote disconnect/ reconnect 

control, and outage, blink and voltage monitoring across the grid (Saint, 2009).  The large 

amount of data from smart meters will be analyzed by operators and planners which will 

be used to achieve better reliability and asset management (Backer, 2007). 
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The smart grid of the future will become decentralized where distributed 

generation (DG) plays a critical role (Divan & Johal, 2006).  DG relies on local power 

generation where proximity to the end-user is much less compared with the current 

average distance between the end-user and the utility’s source.  Such power can be 

derived from any decentralized energy source including renewables.  Generation 

technology in a DG model is small-scale, modular, distributed, efficient, and cost 

effective.   Each DG system varies in size from a few kilowatts to hundreds of 

megawatts.  Their design focuses on efficiency, reliability, safety, security, low cost, and 

environmental impact.  Inherent in the design of a DG system is the increased utilization 

efficiency of all available energy sources.   Figure 1-3 compares the traditional power 

supply system with a distributed generation system (Wei, Yu-hui, & Jie_lin, 2009).  Also, 

when actual load differs from the computed forecasted demand, a DG system is more 

adaptable to real-time load requirements, utilizes energy sources more efficiently, and 

reduces overall negative environmental impact.  By integrating advanced metering, 

robust communications capability, extensive automation, distributed generation, and 

distributed storage,  smart grids of the future will  self-heal, provide high reliability and 

power quality, be resistant to cyber-attacks, operate with multi-directional power flow, 

increase equipment utilization, operate with lower cost, and offer customers a variety of 

service choices (Brown, 2008).  
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Figure 1-3 Current Vertical Power Generation vs. Distributed Generation (Wei et al., 

2009). 
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A critical component of the smart grid with distributed generation is peak demand 

forecasting.   Given accurate, real-time demand information, utilities are able to meet 

demand more efficiently by building appropriately sized power plants and support 

infrastructure.  Real-time demand information reduces energy wastage, thereby lessening 

the overall environmental impact of energy conversion.  The research conducted as a 

result of this dissertation aims to further develop as well as complement existing peak 

demand forecasting methodologies in an effort to better understand and control peak-

demand occurrences experienced by the end-user.   

An electrical utility’s demand charge, measured in kilowatts (KW), is the price 

charged for the peak amount of power demanded/consumed at a particular instant by an 

end-user during one billing cycle.  The KW demand charge is not to be confused with the 

more commonly known utility’s power consumption charge, which is the amount of 

power consumed over a period of time; otherwise referred to as kilowatt hours (KWH).   

The KW demand charge, commonly incurred by large buildings, industrial and 

commercial complexes, and large manufacturers but more recently also being 

incorporated into modern residential pricing structures, is the measurement of peak power 

demanded/consumed at a particular moment during one billing cycle.  For most utilities, 

KW demand is metered throughout the billing cycle in 15 or 30 minute intervals.   

Demand–related charges represent anywhere from 30 to 70 percent of most commercial 

and industrial customers' electric bills.   

Existing peak-demand forecasting research literature focuses primarily on the 

utility conversion level for aggregate demand.  This research, however, aims to further 

develop as well as complement existing peak demand forecasting methodologies in an 
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effort to better understand and control peak-demand occurrences experienced not only by 

the power utilities but more specifically by the end-user. 

 

Demand Response 
  
 In developed economies, mostly in the western hemisphere, Electricity Markets 

were spawned as a result of deregulation with respect to power system generation 

coupled with restructuring of the power sector in general (Kirschen, 2003).  As a result of 

monopoly collapse within the energy sector, electricity markets were supposed to 

dramatically improve collective power system efficiency while reducing the cost of 

electricity to the end user (Kirschen, 2003).  Since electrical energy is a unique 

commodity which functions differently from other commodities, however, electricity 

markets do not operate similarly to others (Torriti, Hassan, & Leach, 2010).  More 

specifically, electrical energy supply and demand must always be in equilibrium (Vale, 

Pinto, Praca, & Morais, 2011).  Complicating the matter, due to technical and economic 

factors, electrical energy innately has a limited storage capacity.   

 Demand Response (DR) is one aspect of Electricity Markets that has much 

growth potential in the near future (Walawalkar, Fernands, Thakur, & Chevva, 2010).  

While delivering consumer benefits, DR encompasses many advantages for system-wide 

electric energy system management.  Due to the capital-intensive nature of power 

system’s infrastructure, DR offers a relatively inexpensive approach to improving the 

efficiency of system-wide electrical energy systems (Albadi & El-Saadany, 2008).  In 

order to deal with unexpected variances in supply and demand levels, DR technology is 

capable of providing the system operator with fixed load curtailment capacities.  Global 
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adaptation and implementation has been documented (Woo & Greening, 2010).  

Wholesale market DR is occurring in the United States (Cappers, Goldman, & Kathan, 

2010), Europe (Torriti et al., 2010), China (Wang, Bloyd, Hu, & Tan, 2010), as well as 

other places (River, 2005).  The lack of DR had contributed to difficulties with 

transitioning from a traditional regulated industry to a competitive one.  Time dependent 

pricing or real-time pricing, however, has had a positive impact on overall operation 

efficiency and industry investment (Woo et al., 2010). 

 Demand Side Management (DSM), DR, and/or load management all pertain to 

the management and actions of end-use behavior (Faria & Vale, 2011).  When a utility 

experiences high demand, these load management programs facilitate system load 

balancing by avoiding peak occurrences (Electricity Advisory Committee, 2009).   

When wholesale electricity market prices are high or when overall grid system reliability 

is compromised, DR programs offer incentives to end-users in order to affect time of use, 

instantaneous demand level, and/or aggregate electricity consumption (International 

Energy Agency, 2003). 

 Demand response are categorized into two groups: price-based and incentive-

based DR (QDR, Q. ,2006; Avci, Erkoc, Rahmani, & Asfour, 2013).  With time-of-use 

(TOU), real-time pricing (RTP), and critical-peak pricing (CPP) rate structures, price 

based DR motivates customers to alter their consumption in repsonse to fluctuations in 

their purchase prices.   

By shifting consumption from periods of higher energy prices to periods of lower energy 

prices, end users can reduce their energy cost.   It is noted that price based DR is entirely 

voluntary.   
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 Time-of-use rates typically vary over a twenty four hour cycle and are determined 

by the average cost of producing and supplying electricity during the cycle.  Rate 

information is provided one cycle, or twenty four hours, ahead. Real-time pricing follows 

wholesale prices on a much shorter cycle: typically one hour (Sioshansi & Short, 2009). 

Rate information is provided one cycle, or one hour, ahead. Critical-peak-pricing 

combines TOU and RTP.  For the most part, it is a TOU model, but with significantly 

higher peak period pricing when system integrity is jeopardized or when supply costs 

escalate dramatically. 

 Incentive-based demand response involves fixed or fluctuating time incentives 

coupled with defined electricity rates.  All players, including the district grid operators, 

load-serving entities, and/or utilities, dictate such incentives.  End-users that fail to 

respond during a peak event in a manner previously agreed upon are penalized 

financially.   

There are six typical incentive-based  DR programs: Direct Load Control (DLC), 

Interruptible/Curtailable Service (ICS), Demand Bidding/Buyback (DBB), Emergency 

Demand Response (EDR), Capacity Market (CM),  and Ancillary Services Market 

(ASM) (Faria et al., 2011).  Primarily targeted to residential and small commercial 

accounts, DLC gives a program operator the ability to remotely power down end-users’ 

electrical equipment.  Targeted towards large-scale industrial account, ICS requires an 

end-user to curtail their power demand by shutting off equipment during periods of 

extreme total system demand.   Rate discounts and bill credits serve as the incentive for 

compliance while penalties discourage failure to respond according to pre-determined 

contractual obligations.  Targeted towards large accounts in general, DBB has end-users 
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offering curtailment capacity bids.  EDR is just a combination of DLC and ICS and is 

employed whenever supply reserves are inadequate.  With CM, end-users curtail their 

loads to add to system capacity in an effort to compensate for otherwise conventional 

power generation.   And ASM is like DBB, but with direct offers made in the ancillary 

services markets.   Figure 1-4 demonstrates DR incorporation in the electric system based 

on time. 

 

Figure 1-4 DR incorporation in the electric system (U.S. Department of Energy, 2006).  

 

This research focuses primarily to augment current ICS DR programs by giving 

localized peak-demand forecasting of the end-user to the end-user.  Currently ICS DR is 

initiated based on utility side supply constraints in an effort to better manage total 

system-wide peak power production capability.  This research, however, fosters a real-

time approach to curtailment whereby action is taken by the end-user when forward 

predicted demand by the end-user approaches some predetermined peak.  Such action 

would thereby empower the end-user to lessen their overall peak-demand and its 
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corresponding cost during each billing cycle.  The goal of this research is to develop a 

new method for forecasting peak demand in large buildings using ANNs and a specified 

period of training days.  The approach is intended for medium to large-scale building 

systems, including government and corporate building campuses, where overall forward 

demand knowledge is of interest in order to facilitate effective and efficient building 

electrical utilization and loading.  A developed real-time electrical monitoring system 

prototype capable of forecasting using ANNs is applied to a large government building. 
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CHAPTER 2: LITERATURE REVIEW 

Neural Networks – History 

 Within his metaphysical writings, Aristotle (384-322 BC) embraced two 

principles of propositional logic: the Law of Excluded Middle wherein every statement is 

either true or false, and the Law of Contradiction which states that no statement is both 

true and false.  Chrysippus (280-205 BC est.) then advanced propositional logic by listing 

valid inference schemata for complex argument structure (Klement, 2005): 

1. If the first, then the second; but the first, therefore the second. 
2. If the first, then the second; but not the second; therefore, not the first. 
3. Not both the first and the second; but the first; therefore, not the second. 
4. Either the first or the second [and not both]; but the first, therefore, not the 

second. 
5. Either the first or the second; but not the second; therefore the first. 

 
Surprisingly, it then took almost another two millennia before the next major 

advancement in propositional logic. While Augustus DeMorgan (1806-1871) worked to 

create symbolic logic, it was George Boole (1815-1864) who developed a mathematical 

algebra in an attempt to update the syllogistic logic first established by Aristotle and 

Chrysippus.  Boolean logic, named after Boole, was based on binary as opposed to 

decimal arithmetic.  Such logic was before its time, however, since it was not really 

utilized until the birth of integrated circuitry which ultimately led to the microprocessor 

and the modern computer.  

 

Neural Networks – Biological History 

 A neuron, translated in Greek as nerve cell, is the most basic component of the 

brain and nervous system.  As a basic processing system, a neuron communicates with 

other neurons via filamentary input paths called dendrites.  These signals are transmitted
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 as electric impulses across a synaptic gap by means of a chemical process (Fausett, 

1994).  Dendrites are tree-like in structure and combine to form dendritic trees which are 

attached to the body of the nerve cell called the soma.  The soma, in turn, combines all 

signals being received by the dendrites.  Once an acceptable amount of information is 

receive and its threshold level has been reached, the cell then transmits a new signal, or 

action potential, via its axon to additional cells. This is performed by neurotransmitters or 

chemical messengers which are stored in vesicles. The union between a neuron’s axon 

and another neuron’s dendrite is called the contact, often referred to as the synapse which 

is comprised of the presynaptic terminal, the cleft or the synaptic junction, and the 

postsynaptic terminal (Kartalopoulos & Kartakapoulos, 1997).   Figure 2-1 demonstrates 

a generic biological neuron (Fausett, 1994) and Figure 2-2 shows synapse detail 

(Kartalopoulos et al., 1997).  Signal transmission between neurons occurs as a result of 

dynamic potassium, sodium, and chloride ion levels on opposite sides of the axon sheath 

also known as white brain matter.  This depolarization ensues once a neurotransmitter has 

crossed the synaptic junction hence changing postsynaptic potential.  Two postsynaptic 

potential states exist depending on the neurotransmitter type: excitatory (+) or inhibitory 

(-) (Kartalopoulous et al., 1996).   

Since the signal is either sent or not sent, neuron signaling is considered binary, 

although frequency timing of signal transmission can be interpreted as additional 

information.   
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Figure 2-1 Generic biological neuron. 

 

 

Figure 2-2 Generic biological synapse. 

 
 
According to Fausett, the following properties of biological neurons are incorporated into 

artificial neural networks: 

1. The processing element receives many signals. 

2. Signals may be modified by a weight at the receiving synapse. 

3. The processing element sums the weighted inputs. 

4. Under appropriate circumstances (sufficient input), the neuron transmits a 

single output. 
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5. The output from a particular neuron may go to many other neurons (the 

axon branches. 

6. Information processing is local (although other means of transmission, 

such as the action of hormones, may suggest means of overall process 

control). 

7. Memory is distributed: 

a. Long-term memory resides in the neurons’ synapses or weights. 

b. Short-term memory corresponds to the signals sent by the neurons. 

8. A synapse’s strength may be modified by experience. 

9. Neurotransmitters for synapses may be excitatory or inhibitory. 

10.  Fault tolerance 

 
 

Neural Net Applications 

 Neural nets are currently being adapted to address a plethora of problems across 

many disciplines including but not limited to: signal processing, control, optimization, 

pattern recognition, medicine, speech production, speech recognition, business processes 

and analysis, forecasting, data mining, music, and astrology.   

 

Artificial Neural Networks 

 An artificial neural network (ANN) attempts to simulate biological neural 

networks via advanced data manipulation  ANNs  were initially developed as standard 

mathematical models of human cognition or neural biology, based on the assumptions 

that (Fausett,1994): 
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1. Information processing occurs at many simple elements called neurons 

2. Signals are passed between neurons over connection links. 

3. Each connection link has an associated weight, which, in a typical neural net, 

multiplies the signal transmitted. 

4. Each neuron applies an activation function (usually nonlinear) to its net input 

(sum of weighted input signals) to determine its output signal 

According to Fausett, a neural network is characterized by: 

1. Its pattern of connection between the neurons (called its architecture) 

2. Its method of determining the weights on the connections (called its 

training, or learning algorithm 

3. Its activation function 

Hassoun describes neural networks as parallel computational models comprised of 

densely interconnected adaptive processing units (Hassoun, 1995).  In the past, 

computational programming, which follows a pre-specified set of instructions, was used 

to solve various mathematical problems.  Neural networks, unlike programming 

techniques, are adaptive in nature and learn by analyzing historical system data.  They 

can be used for pattern classification, speech synthesis and recognition, adaptive 

interfaces between humans and complex physical systems, function approximation, 

image compression, associate memory, clustering, forecasting and prediction, 

combinatorial optimization, nonlinear system modeling, and control (Hassoun, 1995).  In 

reference to pattern computation, neural network applications are capable of storing and 

recalling data or patterns, classifying patterns, performing general mappings from input 

patterns, classifying patterns, performing general mappings from input patterns to output 
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patterns, grouping similar patterns, or finding solutions to constrained optimization.  

Since neural networks can perform parallel computation, they are able to produce results 

much more quickly than comparable computational models.  According to Hassoun, 

ANNs: 

Are “neural” in the sense that they may have been inspired by neuroscience, but 
not because they are faithful models of biologic neural or cognitive phenomena.  
In fact, the majority of the network models…are more closely related to 
traditional mathematical and/or statistical models such as optimization algorithms, 
nonparametric pattern classifiers, clustering algorithms, linear and nonlinear 
filters, and statistical regression models than they are to neurobiologic models.   
 

In a neural network, there are a significant number of basic processing elements 

called neurons, units, cells, or nodes.  These nodes are interconnected, each with an 

associated weight (bias) or level of importance.  Each node can be described by its 

current state which is represented by its degree or magnitude of action.  This state status 

is continuously broadcasted from one to many other nodes.  While a node can only send 

one state signal at a time, it often sends its state status to many other nodes.  Figure 2-1 

depicts a simple neuron Y receiving input signals x1-xn from nodes X1-Xn.  The weights 

for each node’s signal are represented by w1-wn.   

The cumulative input for node Y (Ycumulative) is simply the sum of the weighted 

signals from all nodes, 

 Ycumulative=  ෍ xjwj

N

j=1 
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Figure 2-3 Basic node/neuron (artificial). 

 

Neural Network Functions 

The basic neuron model owes its widely accepted derivation from research conducted in 

1943 by McCulloch, a neurobiologist, and Pitts, a statistician (McCulloch & Pitts, 1943).  

Their neuron model is shown in Figure 2-4. 

 

Figure 2-4 Neuron Model (McCulloch et al., 1943).   

The nonlinearity function, represented as the function curve in the neuron model in 

Figure 2-4, ensures a bounded controlled output of the neuron’s actual response.   
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Depending on the algorithm employed, different nonlinearity functions are applied.  

Figure 2-5 represents typical bounded nonlinearity functions (Kartalopoulos et al., 1997). 

 

Figure 2-5 Nonlinearity functions (Kartalopoulos et al., 1997). 

Similarly, for McCulloch’s model: 

u = ෍ yjwj+θ
N

j=1 
  

Here, θ represents the bias or threshold. 
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Other net functions and neuron activation functions employed are shown in Table 2-1 and 

Table 2-2 (Hu & Hwang, 2010). 

Table 2-1 Net Functions (Hu et al., 2010). 

Net Functions Formula Notes 

Linear u = ∑ ௝ே௝ୀଵݕ௝ݓ  Most popular 

Higher order  

(2nd order shown) 
u = ∑ ∑ ௞ே௞ୀଵݕ௝ݕ௝௞ݓ + ே௝ୀଵߠ  

ui is a weighted linear 
combination of higher 
order polynomial terms of 
input variable.  The 
number of input terms 
equals Nd, where d is the 
order of the polynomial 

Delta ( ∑ - ∏ ) u = ∏ ௝ே௝ୀଵݕ௝ݓ  Rarely used 

 
Table 2-2 Neuron Activation Functions (Hu et al., 2010). 

Activation 
Function 

Activation Formula 

a = f(u) 

Derivatives ݂݀(ݑ)݀ݑ  

Notes 

Sigmoid  ݂(ݑ) = ଵଵା௘షೠ ೅ൗ (ݑ)݂  ሾ1 − ሿ(ݑ)݂ ܶ⁄  

Commonly used; 
derivative can be 
computed from f(u) 
directly. 

Hyperbolic 
tangent 

ቁ (1ݑቀܶ		tanh	(ݑ)݂ − ሾ݂(ݑ)ሿଶ) ܶ⁄  
T = temperature 
parameter. 

Inverse 
tangent 

(ݑ)݂  = ଶగ ଵି݊ܽݐ ቀ௨்ቁ 
ܶߨ2 ∙ 11 + ݑ) ܶ⁄ )ଶ 

Less frequently used. 

Threshold  ݂(ݑ) = ቄ		1, ݑ > 0;−1, ݑ	 < 0. No derivative at u=0  

Gaussian 
radial 
basis 

=(ݑ)݂ ݑ‖−ሾ݌ݔ݁ −݉‖ଶ ⁄ଶߪ ሿ −2(ݑ − ݉) ∙ (ݑ)݂ ⁄ଶߪ  

Used for radial basis 
neural network; m and ߪଶare parameters to be 
specified 

Linear ݂(ݑ) 	= 	ݑܽ	 + 	ܾ a  
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Neural Network Architecture 

Further expansion of the basic node by combining several unique nodes creates a simple 

neural network.  Simplistically, inputs and their respective weights yield Y’s state.  Y 

then sends signals, with respective weights (u1.,u2,…un), to the next set of nodes.  Figure 

2-5 shows a basic neural network.  Despite its simplicity, the middle (hidden node ‘Y’) 

coupled with a nonlinear action function results in a more dynamic system capable of 

solving more problems than a traditional network with only inputs and outputs. 

 

 

Figure 2-6 Basic neural network. 

Generally, input nodes may connect output nodes, nodes may mutually connect with each 

other and with reciprocal inhibition it is even possible for a node to connect to itself 

(Croall & Mason, 1992).  

 Figure 2-7 depicts a single layer neural network with one layer of weights.  Here, the 

input units (X1…Xi…Xn) capture external signals.  The single layer neural network, upon 

applying weights to the input signals, outputs its response (Y1…Yj…Ym). 
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Figure 2-7 Single layer neural network. 

 

Figure 2-8 expands the single layer neural network model to a multiple layer neural 

network wherein the ‘Z’ nodes are hidden.  As with the single layer network, input 

signals come into the network via input units (X1…Xi…Xn).  These signals are weighted 

and enter the hidden layer (Z1…Zj…Zq) for another weighted manipulation before exiting 

as output signals (Y1…Yk…Ym).  Multiple layer networks can be applied to more 

complex problems in comparison to a single layer approach.  However, with multiple 

layer networks, training is more challenging.  With effective training, multiple layer 

networks often solve problems that single layer networks cannot.   
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Figure 2-8 Multiple layer neural network. 

 

Artificial Neural Network Learning 

 In order for an ANN to learn, it is important to first understand how humans learn, 

the processes involved, the speed at which humans learn, and any impediments that might 

interfere with human learning.  Given unique learning methods which are not universal, 

behaviorists study different species, including humans, to better understand how learning 

differs.  In an attempt to mimic biological learning processes, a neural network engineer 

applies and integrates the most efficient learning process observed by behaviorists to the 

digital circuitry and logic design of the ANN.       

In a neural network, learning occurs when the network adjusts itself in response to 

a stimulus in an effort to produce a valued response.  Being a continuous classification 

process, a stimulus is both recognized and matched to a current classification in the 

network or if it is not recognized, a new classification set is created.  An ANN learns 

dynamically and responds to a stimulus by adjusting its synaptic weights in an effort to 
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make the output response converge towards the anticipated response.  In an ANN, 

learning has thus occurred and knowledge gained when actual response equals the 

anticipated response. 

 
Unsupervised ANN Learning 

An ANN that learns without instruction from a teacher has no objective output.  

The training method entails interpreting all input signals as patterns which are then 

categorized.  When new signals arrive, their pattern is compared with ones already 

classified.  If there is no match, a new category is created.  It is important to note that the 

term “unsupervised” is a bit misleading.  Despite the lack of instruction, the system does 

require a pre-defined policy for how categories are created.  Additionally, this policy may 

need to be updated even after the system is implemented.  Commonly, network 

programmers will tailor a network so that the categorization process is actually built into 

the overall network design.   

 

Supervised ANN Learning 

An ANN that learns from a teacher has an objective output.  When output differs 

from the objective output, the ANN adjusts the influence of the bias weights in order to 

make the output converge toward the objective output.  The goal is to ultimately 

eliminate any deviation from the objective output.   When humans learn to speak, we first 

hear pronunciation of a word from an instructor.  The observation of the teacher’s 

example is then stored in memory.  When the student attempts to repeat the 

pronunciation, if the deviation is too significant from the one stored in memory, another 

attempt is made.  This process continues until the deviation becomes insignificant.  The 
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overall processing power required to minimize the deviation depends on the algorithm 

used.  Many mathematical optimization techniques assist with this computation.   

 

Reinforced Learning 

Reinforced learning does implement a teacher but does not consider convergence; 

rather, reinforced learning requires a binary (true or false) indication of an input signal 

pattern matching a particular desired objective output (Kartalopoulos et al., 1997).  The 

teacher withholds the target output and simply administers a true or false response.  If the 

teacher’s response is incorrect, the network adapts by modifying its parameters until it 

responds with the desired output.  This method differs from slightly from the supervised 

method since there is no indication whether the output response is converging towards 

the desired output.  Creating boundaries prevents infinite attempts at finding the solution.   

 

Competitive Learning 

 Another derivation of supervised learning is competitive learning.  Here, there are 

multiple output neurons which all compete to produce an output nearest the desired 

objective output.  The winning output neuron is then established as the dominant neuron 

for the associated stimuli and all other output neurons discontinue their respective output.   

For each input stimulus, there is a unique dominant output neuron. 

 

Hebbian Learning 

 Hebbian learning was adopted when (Kartalopoulos et al., 1997): 

 In 1949, Donald Hebb stated that when an axon of cell A is near enough to excite 
a cell B and repeatedly or persistently takes place in firing it, some growth process or 
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metabolic change takes place in one or both cells such that A’s efficiency, as one of the 
cells firing B, is increased.  Thus, the synaptic strength (known as weight w) between cell 
A and cell B is modified according to the degree of correlated activity between input and 
output.  This type of learning is called Hebbian learning, a term encountered frequently in 
ANNs.  Anti-Hebbian learning refers to artificial neural networks where the synaptic 
contacts are inhibitory only.   
 

ANN Characteristics 

 A neural network is essentially a dynamic mathematical system that can be 

represented as a set of combined differential equations.  Similar to feedback control 

theory, modest changes to the values of the model’s parameters will result in stability, 

oscillating instability or chaotic instability.  Kartalopoulos et al. characterizes neuronal 

networks by: 

1. Collective and synergistic computation (or neurocomputing). 
a. Program is executed collectively and synergistically. 
b. Operations are decentralized. 

2. Robustness. 
a. Operation is insensitive to scattered failures. 
b. Operation is insensitive to partial inputs or inputs with inaccuracies 

3. Learning. 
a. Network makes associations automatically. 
b. Program is created by the network during learning/ 
c. Network adapts with or without a teacher; no programmer 

intervention. 
4. Asynchronous operation; biological neural nets have no explicit clock to 

synchronize their operation.  A number of ANNs require a clock. 
 

When the network continuously produces the objective output for every trained input 

signal, its performance is considered 100% effective.  Kartalopoulos et al., 1997, states 

when designing an ANN, one should focus on: 

1. Network topology 
2. Number of layers in the networks 
3. Number of neurons or nodes per layer 
4. Learning algorithm to be adopted (in the supervised case only) 
5. Number of iterations per pattern during training 
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6. Number of calculations per iteration 
7. Speed to recall a pattern 
8. Network performance 
9. Network plasticity (i.e., the number of neurons failing and the degree of 

functionality of the ANN) 
10. Network capacity, or the maximum pattern signals that the network can 

recall 
11. Degree of adaptability of the ANN (i.e., to what extent the ANN is able to 

adapt itself after training) 
12. Bias terms (occationally set a priori to some fixed value, such as +1) 
13. Threshold terms (occasionally set to some a priori fixed value, such as 0 or 

1) 
14. Boundaries of the synaptic weights (for best performance and noise 

immunity, boundaries should be determined based on the actual 
implementation of the ANN) 

15. Choice of the nonlinearity function and the range of operation of the 
neuron. 

16. Network noise immunity (i.e.,the degree of corruption of an input stimulus 
signal or the degree of signal loss (i.e., partial signal) that produces the 
desired target output pattern) 

17. Steady-state or final values of the synaptic weights (this is the program of 
the ANN) 

 

Mathematical modeling of an ANN is an attempt to describe network architecture.  

Kartalopoulos et al., 1997, states that mathematical analysis of an ANN describes the 

network’s: 

1. Complexity – how large the ANN can be in order to execute a task 
2. Capacity – how many bits of information can be stored in the ANN 
3. Paradigms choice – which ANN implementation is more suitable for the 

application 
4. Performance – which ANN performs best 
5. Learning efficiency – how fast an ANN “learns” 
6. Response – how fast an ANN provides an output from the time a stimulus 

is present 
7. Reliability – whether the ANN can reach the same desired solution for the 

same stimulus 
8. Noise sensitivity – how accurately an ANN provides the desired output at 

the presence of noise 
9. Failure sensitivity – how accurately an ANN associates if it partially fails 
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CHAPTER 3:  SYSTEM DESIGN 

Building Environment 

The research conducted within this dissertation first began as part of a research 

grant awarded on behalf of Miami-Dade County’s General Services Administration, 

Enterprise Technology Services Department, and Office of Sustainability to the 

University of Miami’s Department of Industrial Engineering.  This grant was an 

extension of the American Recovery and Reinvestment Act which included federal funds 

(appropriated by the Obama Administration and the U.S. Congress in 2009) awarded to 

local municipalities and earmarked for green energy initiatives.  Part of the federal 

funding awarded to Miami-Dade County included $12.5 million for 13 different 

sustainability projects.  In an effort to reduce energy consumption, Miami-Dade County 

planned to employ advanced smart meter technologies throughout several county-owned 

and operated buildings.  In conjunction with the smart meter hardware installation, 

Miami-Dade County awarded a grant to the University of Miami with the following 

milestones for several major county buildings: 

1. Install electrical data-logging sensors at the main service entrance and 

motor control center levels to monitor building energy consumption. 

2. Perform comprehensive building energy assessment 

3. Verify and validate new smart meter hardware 

4. Provide education and training for electrical data-logging 

5. Suggest methods for energy use behavior modification  

While the University of Miami, Department of Industrial Engineering studied 

multiple county buildings under the awarded grant, the research conducted in this
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dissertation focused on one building; The Richard E. Gerstein Justice Building (REGJB) 

– Figure 3-1.  Located at 1351 North West 12th Street, Miami, FL 33125, this Miami-

Dade County building serves the community with the following services: 

1. Criminal Court – Felony Cases 

2. District Court – Hearings 

3. Jury Service 

4. Traffic Violations and Misdemeanor Cases 

 

Figure 3–1 – REGJB Miami, FL. 

Constructed at a cost of $8.5 million, when it opened in 1962, it was known as the Metro 

Justice Building.  In 1992 it was renamed to honor the late Richard E. Gerstein; Dade 

County's 6-term State Attorney who held office from 1956 to 1977.  Before being 

formally educated or beginning his career, Gerstein served in World War II, and for his 

valor he received a Distinguished Flying Cross and a Purple Heart.  At the end of the war, 

he earned his undergraduate and law degrees from The University of Miami.  He then 



33 
 

 
 

went on, according to The Miami Herald, to become, "the most powerful, controversial, 

durable and well-known politician in [Miami] Dade County."  Gerstein gained national 

prominence in 1973 by winning the first conviction in the Watergate scandal that would 

eventually force the resignation of President Richard Nixon. Gerstein's conviction of 

Bernard Barker on money-laundering charges in Miami linked the White House directly 

with the 1972 burglary at the Democratic Party's headquarters in the Watergate complex 

in Washington, D.C.  During his career, he prosecuted several other high-profile case 

while relentless crusading against deep corruption which was at that time rampant 

throughout the Miami political and regulatory landscape.  

 The REGJB is built on a 2.11 acre parcel located within a few miles of downtown 

metropolitan Miami.  It is an eleven story building comprised of approximately 500,000 

square feet of internal air-conditioned space described in Table 3-1.   

Table 3-1 REGJB Composition by Floor. 

Floor(s) Usage 

Basement 
Parking, Electrical Service Entrance, 

Chillers’ Mechanicals 

1 
Main Entrance, Building Management, 

Parking Violations, Cafeteria 
2-4 Courtrooms 
5-7 Judges Chambers 
8-9 Administrative 
10 HVAC Mechanicals 

 

Due to its size, the REGJB utilizes industrial sized equipment to service the building.  

The building’s heating, ventilation, and air conditioning (HVAC) system includes one 

200-ton centrifugal chiller, two 200-ton screw chillers, two 300-ton cooling towers, ten 

75-horsepower (HP) air handling units, four 25-HP chiller water pumps, and four 7.5-HP 
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air compressors for pneumatic control.  The building is traversed by three main elevators, 

two freight elevators, and two sets of escalators.  There are also four 5-HP water pumps  

in the building.   Figures 3-2 and 3-3 shows the building’s three main chillers.   

 

Figure 3-2 200-ton centrifugal chiller.   

 

Figure 3-3 200-ton screw chiller.   

Figure 3-4 demonstrates one of the chiller pump motors while Figure 3-4 depicts 1 of 2 

200-ton cooling towers for the building’s HVAC system.   
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Figure 3-4 25 HP chiller pump motor. 
 

 
 
Figure 3-5 200-ton HVAC cooling tower.   

Figure 3-6 shows one of ten 75 HP HVAC air handling units.  And, Figure 3-7 depicts 

the four 7.5HP air compressors with two compressors mounted on each of two 240 gallon 

air storage receivers.    
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Figure 3-6 75 HP HVAC air handling unit. 
 

 
 
Figure 3-7 4 x 7.5 HP air compressors. 
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Electrical Distribution 

The building includes three main electrical service entrances which are three 

phase, three wire Delta configuration, 480 Volt.  Two entrances supply 3000 amp service, 

while one supplies 1200 amp service.  For Delta configuration, as opposed to WYE 

configuration, there is no neutral; therefore, the voltage is always a line to line 

measurement.  One advantage of a Delta configuration is that it does not have a neutral 

and therefore if a phase winding should fail the phase voltage at the load remains 

constant.  Figure 3-2 depicts this delta configuration. 

 

Figure 3-8 – 480 Volt Delta Configuration Circuit. 
 

The main service entrances also supply power to two motor control centers which support 

the HVAC system.  One is rated at 1600 amp capacity while the second is rated at 600 

amp capacity.   

The original service entrance, Main Service Entrance #1 (MSE1), installed when 

the building was first built services the entire building excluding the building’s HVAC 

and backup generator systems.  This service entrance provides lighting and receptacle 

power to all floors of the building.  It also powers the elevators and escalators.  It 
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includes three large transformers which convert voltage from 480 volt to 208/120 volt.  

MSE1 is shown in Figure 3-3.   

 

Figure 3-9 – Main Service Entrance #1 (480V, 3000amp). 
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Main Service Entrance #2 (MSE2), installed relatively recently and before this research 

commenced, services the entire HVAC system including the chillers and Motor Control 

Center #1 (MCC1) located on the basement floor as well as Motor Control Center #2 

(MCC2) located on the tenth floor.  MSE2 is shown in Figure 3-4.  Main Service 

Entrance #3 (MSE3) services the emergency backup generator and its support equipment.  

MSE3 is shown in Figure 3-5.  MCC1, seen in Figure 3-6, powers ancillary HVAC 

equipment located in the basement.  MCC1 serves chiller and water pumps in the 

basement while MCC2 serves the air handlers and cooling towers on the 10th floor.  

 

Figure 3-11 – Main Service Entrance #2 (480V, 3000amp). 
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Figure 3-13 – Main Service Entrance #3 (480V, 1200amp). 

 

Figure 3-14 – Motor Control Center #1 (480V, 600amp). 
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Figure 3-16 – Motor Control Center #2 (480V, 1600amp). 
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Table 3-2 shows all circuits for MSE1.  Circuits highlighted in red have been 

disconnected and are not in use.  Circuit descriptions are as labeled on site.  

Table 3-2 – MSE1 Circuits. 

 

Table 3-3 shows all circuits for MSE2.  Circuits highlighted in red have been 

disconnected and are not in use.   Circuit descriptions are as labeled on site.  Table 3-4 

shows MSE3’s circuit.  Table 3-5 shows circuits for MCC1.  Circuits highlighted in red 

Location Circuit Circuit Description Amp  # Phases Volt
Gerstein MSE1 1 Breaker E4 / Panel E1 / First Floor East 100 3 208/120
Gerstein MSE1 2 Breaker E6 / Panel CR / CR Snack Bar 50 3 208/120
Gerstein MSE1 3 Breaker E7 / Fan Coil Unit This Room (Xcont) 15 3 208/120
Gerstein MSE1 4 Breaker E1 / Mech.RM.Exh.Fans / MC1-1 NO.23 24 50 3 208/120
Gerstein MSE1 5 Breaker E2 / Panel E2C 50 3 208/120
Gerstein MSE1 6 Breaker E3 / Panel E2 / First Floor West 125 3 208/120
Gerstein MSE1 7 Breaker E5 / Panel BE / Mech Rm Entrance 70 3 208/120
Gerstein MSE1 8 Breaker EH2 / Primary T3 High Side 200 3 480
Gerstein MSE1 9 Breaker EH4 / Panel EP / Elevator 1-2-3 225 3 480
Gerstein MSE1 10 Compressor Big 50 3 480
Gerstein MSE1 11 Breaker EH3 / Panel 1HE / First Flr East 100 3 480
Gerstein MSE1 12 Breaker EH5 Fire Pump 70 3 480
Gerstein MSE1 13 Breaker EH6 Sump Pumps 50 3 480
Gerstein MSE1 14 Main 10th FL UPS / Feed PNL "RC" / 10th Floor 50 3 480
Gerstein MSE1 15 Emergency Main #1 / EH1 Main / Feeds ATS No.1 600 3 480
Gerstein MSE1 16 Breaker H10 / West Escalator 90 3 480
Gerstein MSE1 17 Breaker H11 / East Escalator 90 3 480
Gerstein MSE1 18 Main #1 / Breaker H1 / Lighting & Reop.Main 3000 3 480
Gerstein MSE1 19 Breaker H6 / Buss Riser 600 3 480
Gerstein MSE1 20 Breaker H7 / Panel 1HB 70 3 480
Gerstein MSE1 21 Breaker H5 / Panel 1HA 100 3 480
Gerstein MSE1 22 Breaker H3 / Primary T2 High Side 600 3 480
Gerstein MSE1 23 Breaker H8 / East Freight Elevator / Jail Elev. #8 CKT8 30 3 480
Gerstein MSE1 24 Breaker H9 / West Freight Elevator / Mail Elev. Room / Elev #5 CKT9 30 3 480
Gerstein MSE1 25 Breaker H4 / Panel BHA 200 3 480
Gerstein MSE1 26 Breaker H2 / Primary T1 High Side 1000 3 480
Gerstein MSE1 27 5 Floor Main / Breaker I3 / Panel 5HA 400 3 480
Gerstein MSE1 28 3 Floor Main / Breaker I2 / Panel 5HA 400 3 480
Gerstein MSE1 29 No Label 225 3 208/120
Gerstein MSE1 30 Breaker L-11 / Buss Riser / T1 Low Side 1600 3 208/120
Gerstein MSE1 31 Breaker L-1 / Spare 100 3 208/120
Gerstein MSE1 32 Breaker L-2 / Spare 100 3 208/120
Gerstein MSE1 33 Breaker L-3 100 3 208/120
Gerstein MSE1 34 Breaker L-4 / Panel KC / Kitchen P 100 3 208/120
Gerstein MSE1 35 Breaker L-5 / Panel BA / Mech RM Entrance 100 3 208/120
Gerstein MSE1 36 Breaker L-6 / Kitchen / Kit Dish Washer Booster (Do Not Operate) 3 208/120
Gerstein MSE1 37 Breaker L-7 / Panel BF / Pool Lights / Motors / Southwall / Basement 100 3 208/120
Gerstein MSE1 38 Breaker L-8 / Panel 1A 175 3 208/120
Gerstein MSE1 39 Breaker L-10 / Panel KP & KL 400 3 208/120
Gerstein MSE1 40 Breaker L-9 / Panel 1B 200 3 208/120
Gerstein MSE1 41 T2 Low Side 1000 3 208/120
Gerstein MSE1 42 T3 Low Side 1000 3 208/120
Gerstein MSE1 43 Plant T 400 3 480
Gerstein MSE1 44 9B - #1 Condenser Water Pump 400 3 480
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have been disconnected and are not in use.   Circuit descriptions are as labeled on site 

Table 3-6 shows circuits for MCC2.  Circuits highlighted in red have been disconnected 

and are not in use.   Circuit descriptions are as labeled on site 

Table 3-3 – MSE2 Circuits. 

 
 
Table 3-4 – MSE3 Circuit. 
 

 
 
Table 3-5 – MCC1 Circuits. 
 

 
 
 
 
 

Location Circuit Circuit Description Amp  # Phases Volt
Gerstein MSE2 1 Main Breaker 3000 3 480
Gerstein MSE2 2 MCC-2 1600 3 480
Gerstein MSE2 3 MCC-1 600 3 480
Gerstein MSE2 4 Chiller #1 600 3 480
Gerstein MSE2 5 Chiller #2 600 3 480
Gerstein MSE2 6 Chiller #3 600 3 480
Gerstein MSE2 7 Spare 600 3 480

Location Circuit Circuit Description Amp  # Phases Volt
Gerstein MSE3 1 Main Breaker 1200 3 480

Location Circuit Circuit Description Amp  # Phases Volt
Gerstein MCC1 1 MCC #1 MSE 600 3 480
Gerstein MCC1 2 Feeds XMR 45 3 480
Gerstein MCC1 3 Feeds Panel MCL-1 60 3 208/120
Gerstein MCC1 4 CWP #1 70 3 480
Gerstein MCC1 5 CWP #3 70 3 480
Gerstein MCC1 6 CHWP #1 100 3 480
Gerstein MCC1 7 CHWP #2 125 3 480
Gerstein MCC1 8 Comp Sys #1 20 3 480
Gerstein MCC1 9 Oil Pump 15 3 480
Gerstein MCC1 10 CWP #2 70 3 480
Gerstein MCC1 11 CWP #4 150 3 480
Gerstein MCC1 12 CHWP #3 125 3 480
Gerstein MCC1 13 CHWP #4 125 3 480
Gerstein MCC1 14 Domestic Pumps 40 3 480
Gerstein MCC1 15 Spare Breaker (Xcont) 100 3 480
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Table 3-6 – MCC2 Circuits. 
 

 
 
 

Hardware Sensors and Design 
 

 Electrical consumption data was captured for every building circuit using 

National Instruments data acquisition hardware and Magnelab current sensor 

transformers.  At each circuit breaker a current sensor transformer was installed around 

each phase of power.   A current transformer (CT) has a primary winding, a magnetic 

core, and a secondary winding.   A magnetic field in the core is produced with alternating 

current flows through the primary winding thereby inducing a current in the secondary 

winding circuit.   Transformers are designed to ensure that primary and secondary circuits 

Location Circuit Circuit Description Amp  # Phases Volt
Gerstein MCC2 1 Toilet Exhaust No.3 60 2 480
Gerstein MCC2 2 Toilet Exhaust No.2 60 3 480
Gerstein MCC2 3 Toilet Exhaust No.1 60 3 480
Gerstein MCC2 4 Kitchen Exhaust Fan 20 3 480
Gerstein MCC2 5 Air Unit No. 1 70 3 480
Gerstein MCC2 6 Air Unit No. 3 70 3 480
Gerstein MCC2 7 XFMR Control 40 3 480
Gerstein MCC2 8 Washer Pump West (Xcont) 480
Gerstein MCC2 9 Air Unit No. 8 70 3 480
Gerstein MCC2 10 Cooling Tower Fan No. 1 70 3 480
Gerstein MCC2 11 Cooling Tower Fan No. 2 70 3 480
Gerstein MCC2 12 Washer Pump East (Xcont) 480
Gerstein MCC2 13 Air Unit No. 2 110 3 480
Gerstein MCC2 14 Air Unit No. 6 150 3 480
Gerstein MCC2 15 Air Unit No. 7 70 3 480
Gerstein MCC2 16 Air Unit No. 5 70 3 480
Gerstein MCC2 17 Air Unit No. 4 150 3 480
Gerstein MCC2 18 Air Unit No. 9 150 3 480
Gerstein MCC2 19 Air Unit No. 10 150 3 480
Gerstein MCC2 20 XFMR Control Lowside 100 3 208/120
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are efficiently coupled, so that there is an accurate relationship between the primary and 

secondary current. 

The most common design of CT consists of a length of wire wrapped many times 

around a silicon steel ring passed over the circuit being measured.  The CT's primary 

circuit therefore consists of a single 'turn' of conductor, with a secondary of many tens or 

hundreds of turns.  The primary winding may be a permanent part of the current 

transformer, with a heavy copper bar to carry current through the magnetic core. 

Window-type current transformers (aka zero sequence current transformers, or ZSCT) are 

also common, which can have circuit cables run through the middle of an opening in the 

core to provide a single-turn primary winding.  When conductors passing through a CT 

are not centered in the circular (or oval) opening, slight inaccuracies may occur. 

Shapes and sizes can vary depending on the end user or switchgear manufacturer. Typical 

examples of low voltage single ratio metering current transformers are either ring type or 

plastic moulded case.  High-voltage current transformers are mounted on porcelain 

bushings to insulate them from ground.  Some CT configurations slip around the bushing 

of a high-voltage transformer or circuit breaker, which automatically centers the 

conductor inside the CT window. 

The primary circuit is largely unaffected by the insertion of the CT.  The rated 

secondary current is commonly standardized at 1 or 5 amperes. For example, a 4000:5 

CT would provide an output current of 5 amperes when the primary was passing 4000 

amperes. The secondary winding can be single ratio or multi ratio, with five taps being 

common for multi ratio CTs. The load, or burden, of the CT should be of low resistance. 
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If the voltage time integral area is higher than the core's design rating, the core goes into 

saturation towards the end of each cycle, distorting the waveform and affecting accuracy.  

The MagNelab current sensor transformers used for this research are single turn 

CTs with burden resistors to product a low-voltage output.  Figure 3-9 shows a basic 

current sensor transformers diagram together with input current vs. output voltage.   

 

  

Figure 3-18 current sensor transformers diagram and input current vs. output voltage.   
 
 

For example, a 400 amp rated current sensor transformer would output 0.333 Volt across 

its two differential lead wires (black and white) when the 400amp current is detected 

through the sensor.  On the same 400 amp sensor, if 160 amps of power were being 

sensed, the output voltage would be 0.133 Volts.  For each circuit, an amp sensor rated at 

or close to the breaker’s amp rating was used.  Figure 3-9 illustrates an example of how 

the current sensor transformers were installed on one particular circuit.    

By employing National Instruments data acquisition hardware, the voltages produced by 

the current sensor transformers were accurately metered. Specifically, National 

Instrument’s Compact Real Time Input & Output (cRIO) 9022 and 9014 devices, 
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configurable embedded control and acquisition systems, together with National 

Instruments C-Series 9206 16 channel analog input module and 9211 4 channel 

thermocouple input module, were used for data capture.  A four slot module chassis was 

used with the cRIO 9022 while a 9144 EtherCAT slave chassis connected to the cRIO 

9022 served to connect additional input modules.  The cRIO 9014 was connected to an 

eight slot chassis. Figures 3-16 through 3-20 show the cRIOs, cRIO chassis, cRIO 

EtherCAT slave chassis, 16 channel voltage input module, and the 4 channel 

thermocouple differential analog input module.  The thermocouple module was 

connected to two thermocouples that metered interior and exterior building temperatures. 

 

Figure 3-19 400 amp current sensor transformers phases a,b,& c.. 

     

Figure 3-20 National Instruments cRIO 9022 & cRIO 9014.  
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Figure 3-21 National Instruments cRIO 8-slot & 4-slot module chassis. 

 

Figure 3-22 National Instruments 9144 EtherCAT slave chassis for cRIO 9022. 
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Figure 3-23 National Instruments 9206 16 channel analog voltage input module. 

 

 

Figure 3-24 National Instruments 9144 4 channel thermocouple differential analog input 
module. 
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Figure 3-21 depicts the control box for the National Instruments hardware and physical 

wire connections from the Magnelab current transformer sensors and communications 

cables that connect to the workstation running National Instruments software (detailed in 

next section).   

 

Figure 3-25 National Instruments hardware control box with cRIO and EtherCAT. 
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Approximately 5,000 feet of 18 gauge insulated and shielded wire was used to connect 

the physical leads from the Magnelab current transformer sensors to the National 

Instruments data acquisition hardware.  Additionally, approximately 1,000 feet of Cat 6 

Ethernet cable was used to connect the National Instruments data acquisition hardware to 

the main computer workstation running the National Instruments software (see next 

section).  By metering every single circuit in the building, a high resolution of electrical 

consumption data is achieved.   Figure 3-27 demonstrates the NI hardware configuration. 

 

 

Figure 3-26 Sensors and communications cabling. 
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Figure 3-27 National Instruments hardware configuration. 

 

Software Design Programming 

 The software employed to meter and record data emanating from the Magnelab 

current transformer sensors and National Instruments data acquisition hardware was 

National Instruments LabVIEW 2011 SP1.  LabVIEW, through its comprehensive system 

design environment, unique graphical programming language, built-in engineering-
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specific libraries of software functions and hardware interfaces; and data analysis, 

visualization, and sharing features, facilitated the data capture for this research.  For this 

application, LabVIEW was installed on a Dell OptiPlex 990 64-bit Intel Core i5-2400 

CPU @ 3.10 GHz, 8 GB RAM, running Windows 7 64-bit operating system. 

 The first step with LabVIEW begins by setting up the data acquisition hardware.   

All data acquisition hardware devices were connected to the Dell workstation via 

Ethernet over a local area network.   Within the National Instruments Measurement & 

Automation Explorer, each cRIO device is configured with the correct software, static 

local area network IP addresses, and their internal clocks are set to the correct day and 

time.  Figure 3-23 shows the hardware communication connections for the local area 

network; 192.168.1.XXX.   

 The second step in LabVIEW involves software programming which allows the 

user to program precise control over the data acquisition hardware.  This begins by 

creating a LabVIEW project.  Once a project has been created, the user then adds the data 

acquisition hardware to the newly created project.  For this project, the cRIO 9022, cRIO 

9014, 8 slot cRIO chassis, 4 cRIO slot chassis, EtherCAT chassis, and input modules 

were added.  Figure 3-28 shows the project with added hardware in LabVIEW. 
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Figure 3-28 Local area network hardware communication connections.  



59 
 

 
 

 

Figure 3-29 LabVIEW project with added Hardware. 
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 The final step in LabVIEW is the creation of virtual instruments (VIs).  Virtual 

instruments are program files using National Instruments LabVIEW’s graphical 

programming interface.  Multiple VIs serve to precisely capture and record data.  Figure 

3-29 depicts the data capture flow chart methodology.  All graphical LabVIEW VIs  

programed to capture and record data are detailed in Appendix A.  All VIs’ display 

interfaces are also depicted in Appendix A.   The entire project with all VIs is shown in 

Figure 3-30. 
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Figure 3-29 Data capture flow chart.  
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Figure 3-30 Entire LabVIEW project will all Vis. 
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Measurement & Verification 

 Measurement and & Verification took place upon hardware installation of the 

system.  A Fluke 434 Power Quality Analyzer was employed to measure and verify each 

individual current transformer sensor against the observed sensor reading within the 

LabVIEW environment.  A few sensors and/or lead wires had to be adjusted and/or 

replaced.  Additionally, throughout the data capture, a random sampling of circuits was 

periodically conducted to verify that the sensor readings being captured in the LabVIEW 

environment were accurate.
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CHAPTER 4:  METHODOLOGY 

Introduction to Neural and Adaptive Systems 

The study of neural and adaptive systems is a unique and growing 

interdisciplinary field that considers adaptive, distributed, and mostly nonlinear systems.  

They will complement effectively present engineering design principles and help build 

the preprocessors to interface with the real world and ensure the optimality needed in 

complex systems.  When applied correctly, a neural or adaptive system may considerably 

outperform other methods.  Neural and adaptive systems are used in many important 

engineering applications, such as signal enhancement, noise cancellation, and 

classification of input patterns, system identification, prediction, and control.  They are 

used in many commercial products such as modems, image-processing and recognition 

systems, speech recognition, front-end signal processors and biomedical instrumentation 

(Principe & Euliano, 1999).  

The leading characteristic of neural and adaptive systems is their adaptability, 

which brings a totally new system design style, Figure 4-1.  Instead of being built a priori 

from specification, neural and adaptive systems use external data to automatically set 

their parameters.  This means that neural systems are parametric.  It also means that they 

are made "aware" of their output through a performance feedback loop that includes a 

cost function.  The performance feedback is utilized directly to change the parameters 

through systematic procedures called learning or training rules, so that the system output 

improves with respect to the desired goal (Principe et al., 1999).
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Figure 4-1 Adaptive system's design (Principe et al., 1999). 

This chapter describes the application of neural network for the prediction of the 

peak demand and represents the results obtained from that network comparing it with the 

experimental data measured from the site of interest. 

The system designer has to specify just a few crucial steps in the overall process: 

he has to decide the system topology, choose a performance criterion, and design the 

adaptive algorithms.  In neural systems, the parameters are often modified in a selected 

set of data called the training set and are fixed during operation.  The designer thus has to 

know how to specify the input and desired response data and when to stop the training 

phase.  In adaptive systems, the system parameters are continuously adapted during 

operation with the current data.  

  The problem of data fitting is one of the oldest in experimental science.  The real 

world tends to be very complex and unpredictable, and the exact mechanisms that 

generate the data are often unknown.  Moreover, when we collect physical variables, the 

sensors are not ideal (of finite precision, noisy, with constrained bandwidth, etc.), so the 
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measurements do not represent the real phenomena exactly.  One of the quests in science 

is to estimate the underlying data model.  

The importance of inferring a model from the data is to apply mathematical 

reasoning to the problem.  The major advantage of a mathematical model is the ability to 

understand, explain, predict, and control outcomes in the natural system (Principe et al., 

1999). 

Figure 4-2 illustrates the data-modeling process.  The most important advantage of the 

existence of a formal equivalent model is the ability to predict the natural system's 

behavior at a future time and to control its outputs by applying appropriate inputs.  

 

Figure 4-2 Natural Systems and formal models (Principe et al., 1999). 

 
What is a Neural Network? 

A neural network is an adaptable system that can learn relationships through 

repeated presentation of data, and is capable of generalizing to new, previously unseen 

data. Some networks are supervised, in that a human must determine what the network 
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should learn from the data. Other networks are unsupervised, in that the way they 

organize information is hard-coded into their architecture . 

Neural networks are used for both regression and classification. In regression, the 

outputs represent some desired, continuously valued transformation of the input patterns. 

In classification, the objective is to assign the input patterns to one of several categories 

or classes, usually represented by outputs restricted to lie in the range from 0 to 1, so that 

they represent the probability of class membership.  For regression, it can be shown that 

neural networks can learn any desired input-output mapping if they have sufficient 

numbers of processing elements in the hidden layer(s).  For classification, neural 

networks can learn the Bayesian posterior probability of correct classification . 

 

Multilayer Perceptron 

The multilayer perceptron (MLP) is one of the most widely implemented neural 

network topologies.  The MLP is capable of approximating arbitrary functions which has 

been important in the study of nonlinear dynamics, and other function mapping problems.  

The multilayer perceptron is trained with error correction learning, which means 

that the desired response for the system must be known.  In pattern recognition, this is 

normally the case, since we have our input data labeled, i.e. we know which data belongs 

to which experiment.  
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Error correction learning works in the following way:  From the system response 

at  the  nonlinear processing element, PE i at iteration n,  yi(n), and the desired response  

di(n) for a given input pattern an instantaneous error ei (n) is defined by  

ei(n)= di(n)- yi(n) (1) 

 

Using the theory of gradient descent learning, each weight in the network can be 

adapted by correcting the present value of the weight with a term that is proportional to 

the present input and error at the weight, i.e.  

wij(n+1)= wij(n)+ηδi(n)xj(n) (2) 

  

The local error δi(n) can be directly computed from ei(n) at the output PE or can 

be computed as a weighted sum of errors at the  internal PEs. The constant  η is called the 

step size.  This procedure is called the back propagation algorithm.  Back propagation 

computes the sensitivity of a cost functional with respect to each weight in the network, 

and updates each weight proportional to the sensitivity. 

The advantage of the procedure is that it can be efficiently implemented with 

local information and requires just a few multiplications per weight.  Momentum learning 

is an improvement to the straight gradient descent in the sense that a memory term (the 

past increment to the weight) is used to speed up and stabilize convergence.   
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In momentum learning the equation to update the weights becomes:  

wij(n+1)= wij(n)+ ηδi(n)xj(n)+ α(wij(n)- wij(n-1)) (3) 

where α is the momentum.  Normally α should be set between 0.1 and 0.9.  

Training can be implemented by presenting all the patterns in the input file (an epoch), 

accumulate the weight updates, and then update the weights with the average weight 

update. This is called batch learning.  

We start by loading an initial value for each weight (normally a small random 

value) to start back propagation and proceed until one of these three stopping criterion is 

met which are: to cap the number of iterations, to threshold the output mean square error 

or to use cross validation.  Cross validation is the most powerful of the three since it stops 

the training at the point of best generalization (i.e. the performance in the test set) is 

obtained.  In our study, cross validation is used; thus, a small part of the training data is 

used to see how the trained network is doing.  Cross validation computes the error in a 

test set at the same time that the network is being trained with the training set.  When the 

performance starts to degrade in the validation set, training should be stopped.  

 A learning curve is developed during the training procedure to show how the 

mean square error evolves with the training iteration.  When the learning curve is flat, the 

step size is to be increased to speed up learning.  When the learning curve moves up and 

down the step size should be decreased.  An important point that should be considered in 

order to decrease the training time and provide better performance is the normalization of 

the training data.  
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  The performance of the MLP in the test set to be limited by the relation N>W/e , 

where N is the number of training epochs, W the number of weights and  e  the 

performance error.  Training continues until the mean square error is less than e /2 

(Youssef, Al-Makky, & Abd-Elwahab, 2003).  

 

Learning Curve 

This plot shows the mean squared error (MSE) of the network after each epoch of 

data.  The epoch number is shown on the X-axis and the MSE is shown on the Y-axis. 

The MSE of the training set is shown in red and the MSE of the cross-validation  set  (if 

included) is shown in blue.  A network that is trained well should have a constantly 

decreasing slope of the training MSE (typically an exponential decay).  As long as the 

training set learning curve is decreasing, the network is still training.  If the training set 

learning curve is increasing or bouncing up and down, the network is probably not 

training well (try decreasing the learning rates)  (Principe et al., 1999).  

   The specified data sets are Training, Cross Validation and Testing.  Training data 

is the portion of the data used to actually train the network.  This is normally the largest 

portion of data.  

   Cross Validation data is used to intermittently validate the training.  Periodically 

testing the network (no weight changes during cross validation) during training can help 

avoid overspecializing on the training data.  Cross validation data is data set aside to test 

the network during training (the network parameters are not directly updated/trained with 

this data).  It is used to stop the network training when the network starts to specialize too 

much on the training data.   
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Testing data is used to further validate the results of a trained network.  Although 

the network was not trained with the cross validation data, the training may have been 

stopped using it.  Therefore, the cross validation data is not truly “out-of-sample”.   The 

testing data is data set aside to test the network after it has been trained and is truly “out-

of-sample”.      

The developed neural network in Figure 4-3 is called a Multi-Layer Perceptron 

(MLP).  It is the most common supervised neural network.   It consists of multiple layers 

of processing elements (PEs) connected in a feed forward fashion.  The PEs in the 

developed network are the orange circular icons and are called axons.  The connections 

between the PEs are the icons with horizontal and diagonal lines between the axons and 

are called synapses.  Back propagation of errors is used to train the MLP.  The smaller 

icons on top of the axons and synapses are called back propagation components and pass 

the error backwards from the end of the network to the beginning. The green axons on 

top of the back-propagation components are called gradient search components and 

adjust the weights contained in the synapses and axons.  

 

Figure 4-3 Layout of peak demand neural network. 

 

The 2nd axon from the right is the output axon and generates the actual network 

outputs.  The 1st axon on the left is called the input axon and it does nothing but accept 

the input from the file component.  
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Each neural component encapsulates the functionality of a particular piece of a 

neural network.  A working neural network simulation requires the interaction of many 

different components. 

As mentioned before, adaptive learning using gradient descent focuses on using 

the error between the system output and the desired system output to train the system. 

The learning algorithm adapts the weights of the system based on the error until the 

system produces the desired output.  

 The goal of the developed network is for the system output to be the same as the 

desired output, so we want to minimize the mean squared error.  The method used to do 

this is called error back propagation.  This is done through three main steps; first, the 

input data is propagated forward through the network to compute the system output.  

Next, the error is computed and propagated backward through the network.  And lastly, 

the error is used to modify the weights.  

Figure 4-4 represents the structure of the developed neural network, in which the 

inputs for the developed neural networks are the different energy channels, such as 

Chiller, AC units, lighting, motors, etc. The output of the network is the peak demand. 
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Figure 4-4 Artificial neural network structure. 

 

The Main Parts of the Developed Neural Network 

Input Axon 

This component is a place holder axon that simply accepts the inputs to the 

system and passes it on to the rest of the neural network. The file component on the 

bottom-left is used to read the data from the file system. These components make up the 

first hidden layer of the neural network, Figure 4-5. 

First Hidden Layer 

 

Figure 4-5 First Hidden Layer. 
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The synapse, is the first component in the box and makes the connection between each 

input and each processing element (PE) in the hidden layer.  The synapse, Figure 4-6, 

contains the connections and the trainable weights for each connection.  

 

Figure 4-6 The Synapse. 

The second component is the tanh axon. This component has the processing 

elements for the hidden layer, each of which sums the weighted connections from the 

inputs, Figure 4-7. 

 

Figure 4-7 The tanh axon.		
The green components on top of the axon and synapse are the momentum 

gradient search components, Figure 4- 8. 

 

Figure 4-8 The momentum. 
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Second Hidden Layer 

These components in Figure 4-9 make up the second hidden layer of the neural 

network.       

 

Figure 4-9 The second hidden layer 

Output Layer (Classification) 

The output layer is also made up of the same two components, the synapse and 

the tanh axon, Figure 4-10. 

 

Figure 4-10 The output layer. 

There is one output PE for each desired output specified in the desired file.  The 

desired file is shown in the file component on the right side of the criterion.  

 

Criterion 

The criterion accepts the output(s) of the network and the desired output(s) and 

compares them, Figure 4-11.  It computes the error and passes this error to the back 
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Bias Axon 

The Bias Axon simply provides a bias term, which may be adapted, Figure 4-13.  
 

 

Figure 4-13 The bias axon. 

 

Gaussian Axon 

The Gaussian Axon implements a radial basis function layer. The Gaussian Axon 

only responds significantly to a local area of the input space (where the peak of the 

Gaussian is    located), Figure 4-14.  It is therefore considered to be a local function 

approximator.  

The center of the Gaussian is controlled using the bias weight inherited from the 

Bias Axon, and its width using the β parameter inherited from the Linear Axon. 

 

Figure 4-14 The Gaussian axon. 
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The Tanh axon. 

The Tanh Axon applies a bias and tanh function to each neuron in the layer. This 

will squash the range of each neuron in the layer to between -1 and 1. Such nonlinear 

elements provide a network with the ability to make soft decisions, Figure 4-15.  

 

Figure 4-15 The tanh axon. 

 

Artificial Neural Network Modeling, Training, Learning, & Initial Prediction 

The software used for analysis is Neural Solutions from NeuralDimension, Inc.   

Established in 1995, NeuroSolutions is a leading edge neural network development 

software that combines a modular, icon-based network design interface with an 

implementation of advanced learning procedures, such as Levenberg-Marquardt and back 

propagation through time.  

For the initial proof of concept analysis, one work week of data were captured.  

Every circuit detailed in chapter three was individually captured.  Data sampling occurred 

every 15 seconds for a time period of one work week (five like business days Monday 

through Friday).  For this proof of concept, a total of 28,800 data points for each circuit 

was recorded.    

Two tests were conducted to prove the concept.  First, a summation of all circuits’ 

data for each data instance was computed to generate a cumulative output for the main 

service entrance #1, main service entrance #2, motor control center #1, and motor control 
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center #2.  From this data peak Kilowatt consumption was computed.  This data together 

with internal and external temperature data was used for the first neural network model.   

 

Table 4-1 depicts an example of two fifteen second instances of recorded data.   

Table 4-1 Example of recorded data for proof of concept. 

 

 

During the training phase of the neural network, the mean squared error (MSE) 

was cross validated against the run of test data or Epoch, Figure 4-16.  The data used for 

testing was the last 1,000 iterations of the initial one work week data capture.  The 

predicted results were then compared against actual as seen in Figure 4-17.  Performance 

output is detailed in Table 4-3.  The average calculated error for this first neural network 

model resulted at 0.25%.  The low error rate is attributed to the discrete nature of this 

particular analysis.  Since peak demand is the summation of all circuits, by analyzing the 

main service entrances and motor control centers which are essentially a summation of all 

circuits, the neural network prediction error is low.   This model essentially serves as the 

test validation for the artificial neural network methodology. 
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Figure 4-16  Model 1 training mean squared error vs. cross validation epoch 

Table 4-2 Model 1 training mean squared error vs. cross validation epoch 

Best Networks Training Cross Validation
Epoch # 1000 441 
Minimum MSE 0.000102985 2.16631E-05 
Final MSE 0.000102985 2.20178E-05 
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Figure 4-17 Model 1predicted output vs. actual recorded  
 
Table 4-3 Model 1 performance output: mean square error, nominal mean square error, 
mean average error, minimum absolute error, maximum absolute error, and r 
 

Performance PEAK KW 
MSE 14.29485496 
NMSE 0.018011282 
MAE 3.155394438 
Min Abs Error 0.002136219 
Max Abs Error 8.591848246 
r 0.99401406 

 

The second neural network model, the true practical approach, included a subset 

of all data captured including data captured for the three chillers, all circuits of motor 

control center # 1, and all circuits of motor control center #2.  This subset represents large 

variable loads within the building environment while ignoring a large portion of static 

loads within the building environment.  Internal and external temperatures and peak 

Kilowatt consumption data (summation of all building circuits) were also used.    
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Figure 4-18 depicts the training mean squared error vs. cross validation epoch for 

this second model.  The average calculated error for this second neural network model 

resulted at 3.2% 

 

 

Figure 4-18 Model 2 training mean squared error vs. cross validation epoch 

Table 4-4 Model 2 training mean squared error vs. cross validation epoch 

Best Networks Training Cross Validation 
Epoch # 1000 1000 
Minimum MSE 0.002160264 0.001668815 
Final MSE 0.002160264 0.001668815 
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Figure 4-19 Model 2 predicted output vs. actual recorded  
 

Table 4-5 Model 2 performance output: mean square error, nominal mean square error, 
mean average error, minimum absolute error, maximum absolute error, and r 
 
Performance PEAK KW 
MSE 964.5406142 
NMSE 1.219810211 
MAE 26.88390465 
Min Abs Error 0.186057105 
Max Abs Error 64.1891482 
r 0.557225002 
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Full Experiment 

 Lessons learned from the initial proof of concept experiment were incorporated 

into the full experiment.   Following full data capture, statistical analysis was conducted 

on all model inputs and only those inputs demonstrating statistical significance (p < 0.05) 

during cross-validation were incorporated into the final model.  Due to the local climate 

of the building location, humidity data from the U.S. National Climate Data Center were 

also added as an input to the model in an effort to increase accuracy.   Lastly, two weeks 

of data instead of one were used for the testing period.   

 

Data Collection 

 Using the same methodology described in the proof of concept experiment, the 

full experiment captured approximately four months of continuous uninterrupted data at 

the REGJB.  In the initial proof of concept phase, each main service entrance electrical 

consumption was calculated as a sum of its respective sub circuits.  For the full 

experiment, however, additional hardware was installed allowing for the direct data 

capture of main service entrance electrical consumption.   All new hardware additions to 

the system were calibrated and validated to ensure proper function.  The main service 

entrance data was used for output data fed to the ANN during the training and cross-

validation stage.   

 

Advanced Artificial Neural Network Analysis 

 For the main research analysis, several subsets of data were tested.  Variable vs. 

fixed electrical loads were analyzed to determine which inputs were statistically 
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significant enough to incorporate into the ANN forecasting model.  Input variables 

chosen as having a direct impact on building electrical peak load are detailed as follows: 

   

Heating, Ventilation and Air-Conditioning KW:  The large government building under 

study has two basic building loads.  First, the base load consists of all lighting and 

receptacle power throughout the building.  Given the building’s purpose and usage 

schedule, the base load was observed as being mostly static.  The second load, or variable 

load, is comprised entirely of the building’s HVAC system.  The HVAC load with its 

inherent variability, coupled with additional factor inputs listed below, resulted in 

accurate forecasting using the ANN strategy.    

 

Day Type:  Intuitively, an electrical load forecast is contingent on the time and the day 

for which the prediction is being made.  In the proposed model, type of day served as an 

input.  Day type was established as a number input of 1-7 where 1 represents Monday 

and 7 represents Sunday.  By doing so, input data were thus classified according to day 

type.  In the building being studied, all Mondays were mostly similar, as were Tuesdays, 

Wednesdays, and so on.  Day types also help classify weekends separate from weekdays, 

and holidays which fall on a weekday are classified as a weekend day type.  Also, any 

day types that were entirely abnormal (i.e. power blackout, major HVAC failure, etc.) 

were filtered out.   

 

Time of Day:   As with type of day, time of day also served as a unique classifier.  Since 

electrical building loading varies throughout the day, time of day is an effective input.   
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Exterior Temperature:  There are several possible inputs related to weather which could 

be used as predictive indicators in the ANN architecture.  Exterior weather conditions 

including but not limited to solar intensity, cloudiness, temperature, humidity, 

precipitation, wind speed, and barometric pressure are possibilities.  Of these, however, 

exterior temperature is of most interest since it affects power consumption throughout the 

HVAC system [18].  The proposed ANN structure therefore only considers exterior 

temperature.   

 

Humidity:  Due to the specific local climate of the test building, humidity was also 

included as an input.  Humidity data was acquired from the U.S. National Climate Data 

Center.   

 

The output variable is detailed as follows: 

Total Building Electrical KW Demand:  Comprised of total electrical load, the building’s 

KW demand is the ultimate forecast goal. 

 

    Figure 4-20 represents the final structure of the developed neural network, in 

which the inputs for the developed neural networks are: HVAC KW, day type, time of 

day, exterior temperature, and humidity.  The output of the network is the total building 

electrical demand KW.  The second hidden layer was added during initial testing of the 

ANN in order to reduce the output error during training.   
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Figure 4-20 Final ANN Design. 

 

 

Figure 4-21  NeuroSolutions Multi-Layer Perceptron Supervised Neural Network. 

 

Final ANN model changes: 

• Aggregate HVAC KW (Chillers, Air-Handlers, Cooling Towers, HVAC motors 

& pumps) consumption used as one input. 

• Interior Temperature eliminated (statistical significance) 

• Lighting  eliminated (statistical significance) 

• Non-HVAC motors eliminated  (statistical significance) 

• Humidity added as input 

• Second Hidden Layer added (reduced forecasting error) 

• Two week testing period 
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Up to this point, the developed neural network was designed to forecast total 

building electrical KW demand at time ࢚ given time ࢚’s day type, time period, HVAC 

KW, and exterior temperature.   In order to avoid a peak electrical demand occurrence 

through preemptive building management action, however, sixty-minute forecasting had 

to be built into the ANN.  This was accomplished by shifting the recorded total electrical 

KW demand data in the 90-day ANN data set by one hour.  More specifically, for each 

HVAC KW, day type, time of day, and exterior temperature input given to the ANN, the 

corresponding electrical demand output fed to the ANN training and cross-validation 

procedures was the total electrical KW demand of the building one hour into the future.  

Or put another way, for every KW demand output fed to the ANN training process, its 

corresponding HVAC KW, day type, time of day, exterior temperature, and humidity 

inputs are from one hour prior.  By doing so, sixty-minute forward prediction is built into 

the developed ANN model.   

 

Alternate Prediction Methodology vs. ANNs 

 In order to measure the performance of the developed ANN, several other 

statistical methods were employed.  Specifically, linear regression, multi-adaptive 

regression splines (MARSplines), and simple moving average (SMA) were used to 

analyze the same data in an effort to predict total building electrical KW Demand.  

 

Controlled Peak Demand Through Simulated Intelligent Electrical Loading 

 In an effort to smooth out the experienced peak demand during each billing cycle, 

simulated intelligent electrical loading using an electrical loading policy was adopted.  
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During periods of experienced peak demand, those electrical loads that could be 

mitigated or reduced were targeted.  
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CHAPTER 5:  RESULTS AND DISCUSSION 

 

The performance of the ANN forecast method for predicting total building KW 

demand in a large government building is presented in this chapter.  Additionally 

comparative analysis between the developed ANN model and other forecasting methods 

including linear regression, MARSplines, and SMA is also detailed in this chapter.  

Approximately ninety days of uninterrupted data, at a sample rate of 15 seconds, were 

captured at the large government building.  Due to nature of the building’s daily 

operations schedule, peak demand events were only observed occurring during the work 

week; specifically Monday through Friday.  Since there was never a chance of a peak 

event occurring on a weekend day, it was only necessary to test the ANN for peak 

demand on working weekdays.  The data was tested for acceptable randomness and the 

residual plots for KW are shown in Figure 5-1.  

Using the testing data set, a sixty-minute forward forecast using the ANN model 

was tested for each workday day type in a given work week (Monday – Friday) for two 

weeks.  In an effort to validate the neural network performance during unique periods of 

experienced demand of each workday day type, testing was conducted every hour (240 

data points, 15 sec sampling) beginning Monday 12:00am of week one through Friday 

11:59pm of week two.   During the training phase of the final neural network, the mean 

squared error (MSE) was cross validated against the run of test data or Epoch as can be 

seen in Figure 5-2.  The gradient slope and convergence towards zero between the 

training MSE and cross validation demonstrates effective training and cross validation of 

the ANN.
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Figure 5-2 Final model training mean squared error vs. cross validation epoch. 

Two work weeks of data were tested using the developed ANN.  Figures 5-3 

through 5-7 show the desired output versus actual network output for each workday type.  

For each tested workday, the desired output and actual network output were averaged 

between the two tested weekdays.  Table 5-1 depicts the average sixty-minute ANN 

forecasting errors realized for both work weeks.    
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Figure 5-3 Desired output and actual network output (Monday). 

 

Figure 5-4 Desired output and actual network output (Tuesday). 
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Figure 5-5 Desired output and actual network output (Wednesday). 

 

 

Figure 5-6  Desired output and actual network output (Thursday). 
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Figure 5-7  Desired output and actual network output (Friday). 

 

Also using the same test data, the ANN model’s performance was compared 

against three other benchmark models: SMA, linear regression, and MARSplines.  Table 

2 also depicts the entire work week’s sixty-minute forecasting errors for the SMA, linear 

regression, and MARSplines benchmark models for both weeks.   The average of both 

testing work week’s sixty-minute forecasting errors for all models are also plotted in 

Figure 6.  Table 3 depicts twenty-four hour period MAPEs amd AMEs for the ANN and 

benchmarking models during both testing weeks.   For the developed ANN model, the 

MAPE and AME for all tested day types was 3.9% and 18.2% respectively.  The 

benchmark models and their respective forecast errors are detailed next.     

 

 

 

0
100
200
300
400
500
600
700
800
900

1
29

0
57

9
86

8
11

57
14

46
17

35
20

24
23

13
26

02
28

91
31

80
34

69
37

58
40

47
43

36
46

25
49

14
52

03
54

92

O
ut

pu
t

Exemplar

Desired Output and Actual Network Output 
(Friday)

Demand KW

Demand KW Output



96 
 

 
 

Simple Moving Average (SMA)  

A SMA benchmark model was created for performance comparison to the 

developed ANN.  The SMA was limited to sixty minutes of past data to predict sixty 

minutes into the future.  The SMA model was tested using the same two week testing 

period and the average and maximum forecast error for all tested day types using the 

SMA model was 7.7% and 26.2% respectively.  Table 5-1 depicts the average sixty-

minute SMA forecasting errors realized for both work weeks.    

 

 

Figure 5-8 Desired output and predicted SMA output (Monday). 
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Figure 5-9 Desired output and predicted SMA output (Tuesday). 

 

 

Figure 5-10 Desired output and predicted SMA output (Wednesday). 
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Figure 5-11 Desired output and predicted SMA output (Thursday). 

 

Figure 5-12 Desired output and predicted SMA output (Friday). 
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Linear Regression 

For another benchmark performance comparison model, linear regression using 

Minitab ver. 16.2.4 was applied to the original 90-day data set.  The regression equation 

resulted as: 

 Demand KW = 128 – (0.00799 * Time Type)  
– (15.8 * Day Type)  
+ (1.44 * HVAC KW)  
+ (1.35 * Exterior Temperature) 
+ (1.41 * Humidity) 
 
 

The regression equation was then applied to the same twenty-four hour data test 

periods with respective forecast errors depicted in Table 2.  The average and maximum 

forecast error for all tested day types using linear regression was 17.3% and 45.1% 

respectively.  Table 5-1 depicts the average sixty-minute linear regression forecasting 

errors realized for both work weeks.    

 

Figure 5-13 Desired output and predicted Linear Regression output (Monday). 
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Figure 5-14 Desired output and predicted Linear Regression output (Tuesday). 

 

Figure 5-15 Desired output and predicted Linear Regression output (Wednesday). 
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Figure 5-16 Desired output and predicted Linear Regression output (Thursday). 

 

Figure 5-17 Desired output and predicted Linear Regression output (Friday). 
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Multivariate Adaptive Regression Splines (MARSplines) 

 Also, for ANN model performance testing, Multivariate Adaptive Regression 

Splines (MARSplines) were implemented using StatSoft’s STATISTICA ver. 12 and 

were applied to the original 90-day data set.   MARSplines, developed by Friedman in 

1991, were used here as a nonparametric regression procedure and do not assume any 

functional relationship between the dependent and independent variables.  Rather, 

MARSplines relate the dependent and independent variables using a set of coefficients 

and basis functions derived directly from the regression data.  MARSplines create 

regression equations for multiple unique regions within the input space.  Furthermore, 

when the relationship between the predictors and the dependent variables is non-

monotone and difficult to approximate with parametric models, MARSplines are capable 

of creating effective forecast models.    

 

The STATISTICA MARSplines Regression equation resulted as: 

Demand KW = 959.2215 + 4.8276 * MAX(0, HVAC KW – 298.9255)  
– 4.1129 * MAX (0, 298.9255 – HVAC KW)  
– 0.0098 * MAX (0, Time Type – 2038)  
– 0.1079 * MAX (0, 2038 – Time Type)  
– 16.1355 * MAX (0, Day Type – 1)  
– 2.5124 * MAX (0, HVAC KW – 215.9989)  
– 0.8278 * MAX (0, External Temperature – 62.1023)  
– 0.9916 * MAX (0, 62.1023 – External Temperature)  
– 0.7992 * MAX (0, Humidity – 33.512)  
– 0.8891 * MAX (0, 33.512 – Humidity)  
– 0.0721 * MAX (0, Time Type -2695)  
+ 0.0655 * MAX (0, Time Type – 4775)  
– 3.0973 * MAX (0, HAVAC KW – 348.6209)  
– 4.9213 * MAX (0, External Temperature – 67.428)  
+ 3.6512 * MAX(0, External Temperature – 73.9144)  
– 4.1132 * MAX (0, Humidity – 37.128)  
+ 3.7511 * MAX(0, Humidity – 41.212) 

 
 

The MARSplines equation was then applied to the same twenty data test periods 

with respective forecast errors depicted in Table 2.  The average and maximum forecast 
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error for all tested day types using MARSplines was 7.0% and 22.5%   respectively.  

Table 5-1 depicts the average sixty-minute MARSpines forecasting errors realized for 

both work weeks.    

 

 

Figure 5-18 Desired output and predicted MARSplines output (Monday). 
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Figure 5-19 Desired output and predicted MARSplines output (Tuesday). 

 

 

Figure 5-20 Desired output and predicted MARSplines output (Wednesday). 
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Figure 5-21 Desired output and predicted MARSplines output (Thursday). 

 

 

Figure 5-22 Desired output and predicted MARSplines output (Friday). 
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Table 5-1.  Sixty-minute forecast errors (%) of electrical KW demand vs. actual. 
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Monday                          
 SMA 1.5 1.9 17.2 22.3 13.4 17.5 10.4 5.9 3.5 2.3 2.9 3.5 4.1 11.3 12.9 10.5 6.9 12.1 8.2 5.5 4.9 3.5 4.1 5.9 
 Regression 45.1 43.2 42.1 22.1 7.2 6.2 10.5 17.2 18.4 11.2 15.4 12.9 9.7 9.2 5.4 7.2 12.1 15.4 16.2 17.2 25.4 28.2 31.5 39.5 
 MARSplines 6.5 12.2 19.2 7.2 2.1 2.1 8.2 8.5 4.2 2.5 5.4 2.5 2.9 3.1 8.2 7.5 9.2 11.2 16.3 11.5 14.1 15.2 14.8 22.5 
 ANN 0.8 2.2 4.9 3.9 5.2 5.3 3.9 5.1 4.2 4.5 3.9 3.3 2.1 1.9 3.6 3.7 3.5 3.5 4.1 3.2 2.1 2.3 2.9 2.1 

Tuesday                           

  SMA 6.2 5.2 15.2 26.2 18.2 17.2 9.1 5.5 7.9 3.5 3.9 3.2 4.5 8.2 10.2 10.8 6.2 11.2 7.5 3.9 4.1 7.9 3.1 2.9 

  Regression 37.1 37.3 38.2 33.1 5.9 10.2 16.2 15.9 16.3 12.2 17.2 13.2 10.8 7.9 3.9 3.8 8.2 7.2 19.2 22.2 22.4 22.1 32.1 29.2 

  MARSplines 6.9 11.2 15.1 15.2 5.9 6.2 10.2 7.9 2.9 8.2 10.2 2.5 2.9 1.3 3.9 5.9 6.1 2.2 7.2 5.9 7.2 8.0 14.2 10.2 

  ANN 3.2 4.1 5.5 3.9 1.1 1.9 3.2 3.5 3.2 3.3 3.9 4.1 4.0 3.2 5.0 4.2 5.2 3.2 6.8 4.6 4.2 4.1 4.2 3.0 

Wednesday                           

  SMA 3.5 4.5 19.2 23.1 13.2 12.2 9.2 5.2 2.9 2.9 3.9 4.2 4.3 7.2 11.2 13.8 7.2 9.2 9.3 5.5 5.9 5.2 4.9 2.2 

  Regression 33.2 38.2 25.2 19.8 19.2 12.0 13.2 15.1 12.3 15.4 15.2 12.2 10.9 10.7 5.5 5.2 5.3 7.5 15.2 17.2 21.2 25.4 23.1 33.2 

  MARSplines 2.8 6.5 6.5 6.3 5.9 7.8 11.0 9.0 5.9 4.2 2.9 2.8 3.8 4.1 4.2 5.2 7.5 6.9 5.9 7.2 6.2 8.2 6.0 11.2 

  ANN 2.0 1.4 3.2 4.2 8.2 8.1 6.2 4.9 3.3 3.3 3.5 2.2 2.1 2.1 2.1 2.2 6.2 7.1 7.2 5.4 4.2 4.5 4.9 5.4 

Thursday                           

  SMA 2.7 4.9 17.2 21.0 13.2 13.9 9.1 4.4 3.8 1.9 2.2 2.8 3.8 7.2 11.2 11.6 12.2 11.4 7.2 4.8 3.9 3.8 3.8 2.2 

  Regression 32.1 30.2 24.3 15.2 5.5 7.2 18.2 20.1 22.1 21.2 18.2 17.2 16.5 15.4 7.2 4.9 5.3 9.2 12.5 17.2 17.1 16.8 18.1 25.2 

  MARSplines 5.9 5.3 4.9 5.9 6.2 8.2 11.5 10.2 9.2 4.9 4.7 5.9 6.1 5.9 5.3 5.9 5.8 5.9 4.9 4.2 5.1 5.2 4.2 4.2 

  ANN 2.9 2.7 2.7 3.5 6.5 7.6 6.1 2.9 1.1 1.2 1.0 1.0 0.9 0.8 0.7 3.3 5.1 4.9 7.1 7.2 7.2 7.6 6.4 4.9 

Friday                                                   

  SMA 1.9 11.1 18.2 17.2 13.5 13.2 6.9 2.5 3.5 3.9 4.2 3.0 3.0 6.5 9.5 10.2 6.2 10.2 8.2 3.2 2.0 2.1 2.4 3.7 

  Regression 26.6 28.2 19.2 9.2 6.2 10.2 19.2 22.1 22.1 23.5 22.1 17.2 15.1 14.5 9.2 5.0 5.1 5.2 9.1 15.2 14.9 14.5 14.2 17.2 

  MARSplines 6.4 4.2 5.2 6.1 7.1 12.5 11.2 11.3 6.9 6.7 7.4 4.9 4.9 6.2 4.9 4.7 5.2 5.8 5.8 3.9 5.9 5.7 5.2 4.9 

  ANN 3.3 3.2 4.1 5.9 7.1 8.2 8.2 2.9 1.9 1.1 1.1 1.2 3.1 3.2 3.9 4.2 4.1 3.9 3.8 3.7 2.9 2.8 3.2 3.9 
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 The average forecast errors for the two week testing period for all tested methods 

are depicted in Figure 5-22.  Additionally, the average sixty-minute forecast errors (%) 

for each weekday type are described in table 5-2. 
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Figure 5-23.  Two week forecast errors predicted electrical KW demand vs. actual. 
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Table 5-2.  Average sixty-minute forecast errors (%) (twenty four-hour period) electrical 

KW demand vs. actual. 

    SMA Regression MARSplines ANN 

Monday        

  Average 8.0 19.5 9.0 3.4 

  Max 22.3 45.1 22.5 11.3 

Tuesday       

  Average 8.4 18.4 7.4 3.9 

  Max 26.2 38.2 15.2 12.8 

Wednesday       

  Average 7.9 17.1 6.2 4.3 

  Max 23.1 38.2 11.2 14.2 

Thursday       

  Average 7.5 16.5 6.1 4.0 

  Max 21.0 32.1 11.5 16.6 

Friday       

  Average 6.9 15.2 6.4 3.8 

  Max 18.2 28.2 12.5 18.2 

Week 
      

  Week Average 7.7 17.3 7.0 3.9 

  Week Max 26.2 45.1 22.5 18.2 

 

 

Controlled Peak Demand Through Simulated Intelligent Electrical Loading 

Using the successfully developed ANN with acceptable forecast error 

performance, an attempt was made at controlling peak demand through simulated 

intelligent electrical loading.  As was discovered during the development of the ANN, the 

HVAC load consumption was variable and comprised approximately forty percent of 

total building electrical demand (approximately 300 KW).   Peak demand occurrences 

observed during the data logging demonstrated constant and full use of the HVAC system 

and its respective subcomponents.  By staggering the main chillers and their 
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subcomponents on a 30 minute cycle through simulation, 150 KW (approximately 40%) 

of total building load was theoretically curtailable.  Given possible extra loading on the 

single chiller during the 30 minute cycle, it was conservatively estimated that 

approximately 12.5% of total building KW could be shed during periods of experienced 

peak demand.   

 

 

Figure 5-24.  Controlled peak demand simulated (Monday). 
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Figure 5-25.  Controlled peak demand simulated (Tuesday). 

 

 

Figure 5-26.  Controlled peak demand simulated (Wednesday). 
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Figure 5-27.  Controlled peak demand simulated (Thursday). 

 

Figure 5-28.  Controlled peak demand simulated (Friday). 
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CHAPTER 6:  CONCLUSION 

 

This research proposes a real-time energy monitoring system prototype to forecast 

peak demand in a large government building in an effort to augment current ICS DR 

programs.  The proposed methodology aims to predict total building power KW demand 

sixty minutes into the future, thereby giving building management ample time to 

temporarily curtail a portion of building power consumption in order to minimize 

experienced peak demand (KW) during a given billing cycle.   To achieve this, the model 

collects detailed electrical consumption data in a large government building over a 

ninety-day time period which are then fed to an ANN for training, cross-validation, and 

finally prediction.   

 The approach in this research used ANNs because of the extraordinary ability of 

ANNs to make sense of complicated or imprecise non-linear, non-stationary, and/or 

chaotic data which cannot be easily modeled.  ANNs can extract patterns, detect complex 

trends, do not require a priori problem space assumptions, and do not require information 

regarding statistical distribution.   ANNs also demonstrate adaptability to new situations 

through adaptive learning.  ANNs produce unique representations of the information 

during its learning process, operate in real-time, and are capable of parallel computation.   

Furthermore, ANNs have inherent built-in fault tolerance as a result of redundant 

information coding.    

The real-time energy monitoring system developed to capture the building’s 

electrical consumption demonstrated high resolution capability of recording every main 

service entrance and HVAC circuit’s (3-phase) power consumption in the building under 
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study with a sample rate of 15 seconds.  Operating within a customized LAN, Magnelab 

current transformer sensors, National Instruments DAQ devices, and National 

Instruments LabVIEW served as the backbone of the developed real-time energy 

monitoring system.  

 To examine and demonstrate the effectiveness of this research approach, 

experimental analysis was conducted on electrical consumption data recorded over a 

three-month period.   Dynamic HVAC KW loads were able to offer accurate forecasting 

of total building demand.  By also incorporating day type, time of day, exterior 

temperature, and humidity data into the developed ANN, the forecast error was 

minimized even further.  Model performance was consistent throughout the test runs.  

Also, the developed ANN model was compared with alternate methods of prediction 

including SMA, linear regression and multivariate adaptive regression splines 

(MARSplines) and consistently performed better with an MAPE of 3.9% and AME of 

18.2%.  The SMA model performed well due to the static nature of the building’s power 

consumption, but the MAPE was quite high at 26.2 %.  Performing similarly, the 

MARSplines approach had an MAPE of 7.0% and AME of 22.5%. Finally, linear 

regression had the highest MAPE of 17.3% and highest AME of 45.1%.  

 Given sixty-minute forecast ability with low error using the ANN approach, it is 

theoretically possible for building management to temporarily curtail a portion of the 

building load whenever approaching a predetermined peak in demand.   Due to 

seasonality effects on the building’s HVAC load, acceptable peak demand loads differ 

from month to month.  It is thus necessary for building management to determine an 

acceptable peak demand load maximum for each billing cycle.  The real-time energy 
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monitoring system together with the sixty-minute ANN forecast signals an upcoming 

breach of the predetermined peak demand load maximum.  Building curtailment policy 

sheds unnecessary loads during these events in order to control overall peak loading and 

prevent an unwanted peak demand occurrence.  Depending on building management, 

curtailment is manual and/or automated.   This ANN model would be particularly useful 

for efficient and cost-effective peak demand energy management of multiple government 

or corporate building complexes (i.e. municipalities, corporate campuses, hospitals, 

universities, etc.) already under or capable of operating under one centralized energy 

management or building management system.  The proposed model is entirely scalable 

and can be implemented for multi-building peak demand control.  Existing sub-meters at 

such sites would serve to provide pertinent real-time and historical data to the ANN 

model and control procedures.   Overall reduced peak demand would have a noticeable 

and beneficial financial impact on such building systems.  If implemented on a large 

scale across many building systems including city municipalities and other large energy 

end-users, there would be added benefit to the electric utility provider and environment 

through efficient and reduced power generation capacity.  Such reduction and efficient 

usage of power generation would undoubtedly contribute to the energy sustainability of 

local municipalities and their communities.   

   Finally, the model developed in this research was implemented and tested during 

one of two major local weather periods.  The model proved effective during the particular 

weather period studied with similar performance expected during similar future weather 

periods.  In order to measure the model’s robustness during a dissimilar weather period, 

additional testing and data capture during the other weather period type is necessary.   
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Future Work 

Much work remains with regard to electrical peak demand reduction.  In addition 

to ANNs, several other forecasting techniques currently exist and several new techniques 

are being explored, developed, and/or refined. 

The ultimate goal of this research was to develop a practical method for 

predicting electrical peak demand to be employed by a building’s end-user management.  

Ideally, the ANN approach proposed here would be most suited for those environments 

with some to a lot of variability with respect to peak demand (i.e. manufacturing).  Here 

the building load present as mostly static with a variable HVAC Load.  Another approach 

using a controlled-load policy approach may also be effective with controlling overall 

experienced peak demand.  A comparison between a forecasting approach and load-

control policy approach would be useful.  With a load-control approach, however, peak-

demand control would have to be automated; whereas, with an ANN forecasting 

approach, peak demand control could be accomplished through manual control.   

Testing of the developed ANN during a unique weather period would also be 

beneficial in validating the model across unique weather periods.  Additional testing in 

different weather locations would also be useful. 
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APPENDIX A 
 

DESCRIPTION                 PAGE 
 
LabVIEW VI data capture main loop chillers example.    120 

LabVIEW VI time stamp and conversion to excel decimal format.   121 

LabVIEW VI current transformer sensor signal acquisition; calculated   122 
voltage, amp, & KW; and data record to file. 

LabVIEW VI root mean square of voltage signal to calculate line voltage.  123 

LabVIEW VI calculated amp and KW based on CT size and line voltage.  124 

LabVIEW VI write to file.        125 

LabVIEW VI copy data files from cRIOs to local desktop at time 00:00.  126 

LabVIEW VI MSE1 480 volt circuits real-time graphical display   127 

LabVIEW VI MSE1 208 volt circuits real-time graphical display   128 

LabVIEW VI MCC1 480 volt circuits real-time graphical display   129 

LabVIEW VI MCC2 480 volt circuits real-time graphical display   130 

LabVIEW VI Chiller 480 volt circuits real-time graphical display   131 

LabVIEW VI MSE1 208 transformer circuits real-time graphical display  132
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APPENDIX B 
 

DESCRIPTION                 PAGE 
 
VBA EXCEL Data Clean         134 
 
VBA EXCEL Combine Channels        137
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Sub DC() 
 
    Dim strFilename As String 
    Dim strSaveAs As String 
    Dim strPath As String 
    Dim wbkTemp As Workbook 
    Dim strFull As String 
      
    Dim i As Integer 
    i = 1 
    Dim j As Integer 
    j = 1 
    Dim k As Integer 
    k = 0 
    Dim l As Integer 
    l = 1 
    Dim pos As Integer 
    pos = 2 
    Dim total As Integer 
    total = 0 
    Dim count As Integer 
    count = 0 
      
   Application.ScreenUpdating = False 
        
    strPath = "C:\Users\JLG\Desktop\ExcelTest\20\" 
    strFilename = Dir(strPath & "*.csv") 
      
    Do While Len(strFilename) > 0 
        Set wbkTemp = Workbooks.Open(strPath & strFilename) 
        i = 1 
        total = 0 
        pos = 2 
        count = 0 
        If strFilename = "TEMPS.csv" Then 
            wbkTemp.Sheets(1).Columns(1).Insert 
            wbkTemp.Sheets(1).Columns(1).Insert 
        ElseIf strFilename = "MCC10_1.csv" Then 
            wbkTemp.Sheets(1).Columns(1).Insert 
        End If 
         
        Do While wbkTemp.Sheets(1).Range("F1").Offset(i - 1, 0) > 0 
            total = total + 1 
            i = i + 1 
        Loop 
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        For j = 1 To total - 1 
            wbkTemp.Sheets(1).Range("G1").Offset(j, 0).Value = 
wbkTemp.Sheets(1).Range("F1").Offset(j, 0).Value - 
wbkTemp.Sheets(1).Range("F1").Offset(j - 1, 0).Value 
        Next j 
             
             
        For j = 1 To total 
            k = wbkTemp.Sheets(1).Range("G1").Offset(pos - 1, 0).Value / 0.000173 
            If k > 1.9 Then 
                For l = 1 To k - 1 
                    wbkTemp.Sheets(1).Rows(pos + l - 1).EntireRow.Insert 
                Next l 
                wbkTemp.Sheets(1).Rows(pos - 1).Copy 
                wbkTemp.Sheets(1).Rows(pos & ":" & pos + k - 2).PasteSpecial 
                count = 0 
                For l = 1 To k 
                    wbkTemp.Sheets(1).Range("F1").Offset(pos + l - 2).Value = 
wbkTemp.Sheets(1).Range("F1").Offset(pos + l - 3) + 0.0001736 
                    count = count + 1 
                Next l 
                pos = pos + count 
                wbkTemp.Sheets(1).Range("G1").Offset(pos - 2).Value = 
wbkTemp.Sheets(1).Range("F1").Offset(pos - 2).Value - 
wbkTemp.Sheets(1).Range("F1").Offset(pos - 3).Value 
                Else 
                    pos = pos + 1 
                End If 
        Next j 
         
        If InStr(1, wbkTemp.Sheets(1).Range("F1").Value, ".") Then 
            wbkTemp.Sheets(1).Rows(1).Copy 
            wbkTemp.Sheets(1).Range("A1").EntireRow.Insert 
            wbkTemp.Sheets(1).Range("F1").Value = Int(wbkTemp.Sheets(1).Range("F1")) 
        End If 
         
        If pos = 5760 Then 
            wbkTemp.Sheets(1).Rows(5759).Copy 
            wbkTemp.Sheets(1).Rows(5760).EntireRow.Insert 
            wbkTemp.Sheets(1).Range("F5760").Value = 
wbkTemp.Sheets(1).Range("F5759").Value + 0.0001736 
        End If 
                     
        wbkTemp.Sheets(1).Columns(1).Delete 
        wbkTemp.Sheets(1).Columns(6).Delete 
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        wbkTemp.Date1904 = True 
        wbkTemp.Sheets(1).Columns(5).NumberFormat = "mm/dd/yyyy hh:mm:ss 
AM/PM" 
         
        If strFilename = "TEMPS.csv" Then 
            wbkTemp.Sheets(1).Columns(1).Delete 
            wbkTemp.Sheets(1).Columns(1).Delete 
        ElseIf strFilename = "MCC10_1.csv" Then 
            wbkTemp.Sheets(1).Columns(1).Delete 
        End If 
                 
        strFull = strPath & strFilename 
        strFull = Replace(strFull, ".csv", ".xlsx") 
        wbkTemp.SaveAs Filename:=strFull, FileFormat:=51 
        strFilename = Dir 
        wbkTemp.Close True 
         
     Loop 
 
End Sub 
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Sub x() 
 
    Dim strFilename As String 
    Dim strSaveAs As String 
    Dim strPath As String 
    Dim wbkTemp As Workbook 
  
     
    Dim i As Integer 
    i = 4 
    Dim j As Integer 
    j = 1 
    Dim k As Integer 
    k = 4 
      
    Application.ScreenUpdating = False 
      
    Set NewBook = Workbooks.Add 
    With NewBook 
        .Title = "ALL DAY DATA" 
        .Subject = "Data" 
        .SaveAs 
Filename:="C:\Users\JLG\Desktop\ExcelTest\all\ALLDAYDATA_20.xlsx" 
    End With 
     
    
    strPath = "C:\Users\JLG\Desktop\ExcelTest\20\" 
    strFilename = Dir(strPath & "*.xlsx") 
 
    Do While Len(strFilename) > 0 
        Set wbkTemp = Workbooks.Open(strPath & strFilename) 
            If strFilename = "MCC10_1.xlsx" Then 
                wbkTemp.Sheets(1).Columns(4).Copy 
                NewBook.Sheets(1).Range("A1").PasteSpecial 
                wbkTemp.Sheets(1).Columns("A:C").Copy 
                NewBook.Sheets(1).Range("B1").PasteSpecial 
                NewBook.Sheets(2).Range("A1").Value = Replace(strFilename, ".xlsx", "") 
            ElseIf strFilename = "TEMPS.xlsx" Then 
                wbkTemp.Sheets(1).Columns("A:B").Copy 
                NewBook.Sheets(1).Range("A1").Offset(0, i).PasteSpecial 
                NewBook.Sheets(2).Range("A1").Offset(0, j).Value = Replace(strFilename, 
".xlsx", "") 
            Else 
                wbkTemp.Sheets(1).Columns("A:D").Copy 
                NewBook.Sheets(1).Range("A1").Offset(0, i).PasteSpecial 
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                NewBook.Sheets(2).Range("A1").Offset(0, j).Value = Replace(strFilename, 
".xlsx", "") 
            End If 
            j = j + 1 
            i = (j * 4) - 3 
            Application.CutCopyMode = False 
            wbkTemp.Close True 
            strFilename = Dir 
             
    Loop 
          
        NewBook.Sheets(1).Columns(5).Delete 
        NewBook.Sheets(2).Columns(2).Delete 
        NewBook.Sheets(1).Rows(1).Insert 
        NewBook.Sheets(1).Range("A1").Value = "Time" 
        NewBook.Sheets(1).Range("B1").Value = NewBook.Sheets(2).Range("A1").Value 
& " KW" 
        NewBook.Sheets(1).Range("C1").Value = NewBook.Sheets(2).Range("A1").Value 
& " PHA" 
        NewBook.Sheets(1).Range("D1").Value = NewBook.Sheets(2).Range("A1").Value 
& " PHB" 
         
         
        For i = 2 To j - 2 
            NewBook.Sheets(1).Range("A1").Offset(0, k).Value = 
NewBook.Sheets(2).Range("A1").Offset(0, i - 1).Value & " KW" 
            k = k + 1 
            NewBook.Sheets(1).Range("A1").Offset(0, k).Value = 
NewBook.Sheets(2).Range("A1").Offset(0, i - 1).Value & " PHA" 
            k = k + 1 
            NewBook.Sheets(1).Range("A1").Offset(0, k).Value = 
NewBook.Sheets(2).Range("A1").Offset(0, i - 1).Value & " PHB" 
            k = k + 1 
            NewBook.Sheets(1).Range("A1").Offset(0, k).Value = 
NewBook.Sheets(2).Range("A1").Offset(0, i - 1).Value & " PHC" 
            k = k + 1 
        Next 
         
        NewBook.Sheets(1).Range("A1").Offset(0, k).Value = 
NewBook.Sheets(2).Range("A1").Offset(0, i - 1).Value & " Exterior" 
        k = k + 1 
        NewBook.Sheets(1).Range("A1").Offset(0, k).Value = 
NewBook.Sheets(2).Range("A1").Offset(0, i - 1).Value & " Interior" 
        k = k + 1 
        For i = 1 To 306 
            NewBook.Sheets(1).Columns(i).AutoFit 
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        Next i 
         
                 
        NewBook.Sheets(1).Columns(1).NumberFormat = "mm/dd/yyyy hh:mm:ss 
AM/PM" 
        NewBook.Date1904 = True 
        NewBook.Save 
        NewBook.Close 
 
     
End Sub 
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