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 The present work is the foundation for our line of research, looking for policy 

solutions for: order acceptance, capacity management with interruptions, pricing, and 

trade-offs between different assets. 

The first model represents an organization choosing order fitting and pricing policies for 

a service company selecting between deals and regular jobs with poisson arrivals. The 

prices for regular jobs are exogenous, whereas winning the deals depends on pricing bids. 

We derived and compared optimal pricing for two distinct order acceptance policies 

under a setting where the server had no queue. We investigated the impact of the system 

parameters on the optimal policies.  

In the second part, we extended our analysis to a server that admits queues only for the 

regular jobs. We proposed optimal state-based pricing for the deals under this setting. 

In the last part, we integrate inventory management into the order fitting policies, we 

studied optimal inventory positions for rotables at a maintenance-repair-overhaul 

company. Our study sheds light to understand trade-offs between inventories, pricing and 

capacity management. This work originated utilizing real industry cases for each of the 

models proposed, providing market driven solutions for capacity management needs. 

Keywords: order acceptance policies, capacity management, MRO, markov models, 
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Chapter 1. Introduction 

This document reflects our investigation results on studies for order acceptance when 

services firms, facing random demand, are making pricing and inventory control strategic 

positioning decisions. The analysis focuses on finding policies that lead to efficient use of 

capacity. Capacity management continues to be a critical component on most of business 

and industries. Solid understanding of demand and assets—appropriate policies to 

support sales with the right inventory level for example—is critical for the cash flow of 

most all enterprises with delivery of goods and services to customers. Particular attention 

is given to service operations where target customer selection, pricing and—in many 

cases—inventory control are crucial factors for profitability.  

 Traditional research on pricing and demand management focuses on tangible 

products. In an increasingly competitive service economy, there is a substantial need to 

direct research in this services area towards pricing jobs and in particular projects. Since 

service is usually an intangible product, typically, it is a challenge to price and to manage 

its demand. Service providers carry out their pricing—for consulting, construction,  

maintenance, etc.—usually through bidding. This is especially the case for major service 

projects that require substantial resources and time commitments. Arrivals of such project 

requests are typically infrequent yet generate considerable revenues for service 

companies. As such they constitute big deals—as they are called by some in the 

industry—for service firms.  

 As mentined previously, bidding is the process most typically employed. 

However, there are cases where a customer unexpectedly needs a service. In this case, the 
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service provider must assess carefully the implications of admitting such customers for 

service. 

 Service providers which may have steady but small size business flow may 

attempt to bid for big deals that show up at times. For example, a roof contractor that 

works on individual residential houses may face a request for proposals for maintenance 

of all houses in a large residential community, or a printer producer who satisfies its 

regular and steady demand through retailers may choose to bid for a big-deal that asks for 

replenishment, installation, and maintenance of all printers operated by a government 

branch. In fact, some firms may choose to drop all their small regular businesses and 

concentrate on chasing big deals only.  When such opportunities arise, a service provider 

should develop an optimal order acceptance policy which includes pricing and other 

business parameters to allocate its resources across regular jobs and big deals, while 

maximizing its gain.  

 The intial part of our study was primarily motivated by our research involvement 

with a major information technology (IT) firm that provided a variety of services 

including consultation for their customers. The firm maintains under its payroll teams of 

skilled experts so as to deliver such services. As such, the firm incurred high cost labor 

which it must utilize efficiently. Consequently, often times the company faces dilemmas 

in allocating its capacity across low margin yet steady flowing regular orders and “deals” 

usually generating high revenue yet displaying lumpy—that is sparse—arrivals.   

 Using Markov processes, in our first case developed in chapter 3, we derive 

optimal pricing decisions and expected revenues for two possible strategies, we call 

them; the pure and the mixed model strategies. In the former case, the firm adopts a 
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policy which only allows for chasing after big deals. This means, the firm does not accept 

ad-hoc small jobs. In the latter case, both types of jobs are admitted subject to available 

capacity. We present a detailed analysis for the impact of demand and service rates of 

both types of models and associated optimal policies and revenues. We compare both 

strategies to seek answers to some questions relevant for a service firm’s strategic fit and 

selection of markets to serve. 

 We look to provide answers to questions, like for example: How do the optimal 

pricing policies differ under two demand management policies? What are the conditions 

under which the service company prefers one policy to the other? How do the business 

parameters impact the appeal of either policy for the service provider? 

There are situations where a number of more frequent, less valuable 

activities are scheduled, and then the opportunity for a less frequent, more valuable 

project arises. The planner needs to understand the alternatives in such cases. Without 

proper tools planners may resort to naïve solutions: dismiss the customer; let go work 

at hand and take the more valuable job; perhaps pay a penalty; or increase reserved 

capacity. 

 The objective of our study is to develop and compare order acceptance policies 

for different business management settings. We consider distinctive strategy options, 

such as, one where the firm switches its allocation of capacity between regular jobs and 

deals while deciding the price it should bid for a big deal under varying business 

conditions. Our contribution should help decision makers to rationalize strategic 

questions, to understand the trade-offs among pricing, order selection and capacity 

management.  
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 All of these solutions have consequences for the company and planners need 

tools to evaluate the variables in terms of the biggest benefit for both customer 

and company while maximizing profit. In all these areas, the problem in common 

is: What types of orders to accept, what price to bid and then how to allocate resources to 

maximize gains. 

 In the first part (Chapter 3) of our study, we consider a service firm which can 

handle one customer at a time and cannot admit customers when busy. As such, the firm 

goes after big deals when capacity is available, then we set a model where the firm can 

have a mix of big deal and regular jobs. Comparing two order acceptance policies, we 

observe that either one of the policies might generate higher prices and revenues 

depending on the system parameters. Typically, the preferable strategy depends on the 

price of standard (ad-hoc) orders and the price sensitivity of the deals.  

Our conclusion is the demand rate of the deals and the service rate of the standard jobs 

are the most effective factors in policy selection decisions. Higher demand rates for the 

deals make the deals-only (pure) policy more appealing, whereas higher service rates of 

the standard orders appreciate the mixed policy.  

Our results indicate that the service rate of the deals become relevant only when the 

regular orders’ price is sufficiently low. In this case, higher service rate for the deals 

leads to the deals-only policy.  

We also find out that the demand rate of the standard orders does not impact the firm’s 

preference between the two strategy options. At the end, it all comes down to selecting 

the strategy that delivers more bang-for-the-buck for use of capacity. 
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Our analysis for pricing and demand management in the first part leads us to the 

subsequent stage (Chapter 4), where we relax the assumption of not having queues and 

analyze the optimal pricing decisions for the mixed policy. In this case, when the capacity 

is busy, standard jobs can be admitted to a single channel queue where they wait for 

service. However, due to their sizes (both in revenues and service requirements), big 

deals cannot be put on hold once the bidding is successful. As such, admitting the big 

deal, the firm cancels (or forwards to third parties) all waiting small jobs in return for 

penalties so that the firm can work on the big deal. Hence, the challenge in particular for 

the company is to assess what it takes to put aside standards jobs to bid for and deliver a 

big job.  

This is our rational for the setting, if any given time, a customer “walks” over an 

already established queue, think for a moment on those customers, who would likely 

have contract, already in queue for service. The manager will have to answer two 

questions: What would be the impact on the queue of the standard jobs (also referred to 

as the small jobs in comparison to big deals) in terms of the firm’s expected gain? Given 

a standard price for the service provided to standard jobs, how should the firm  adjust and 

bid for the premium over a big job for this special case? Here, think of premium the 

incremental price bid for the big job or big deal. Admitting a big deal may have the 

consequence of disrupting the firm’s already established schedule and customers, which 

may incur substantial costs and penalties. 

The bidding for the big deals involves pricing. Typically, higher bidding price 

diminishes the probability of winning the deal. The pricing in this case should depend on 

the system state, which can be defined as the number of standard jobs waiting to be 
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served. Pricing requires analyzing business conditions and then making a prediction if a 

given premium over the regular price could support the business to deliver a big job. 

Major projects that require substantial resources and time commitment, could 

drain the business if the expected gain is not in line with the business delivered by the 

standard jobs. On the other hand, opportunities to make a substantial gain could be under 

evaluated making the business to commit without proper cost recovery and marginal 

gain. Arrivals of such big job requests are typically infrequent yet generate considerable 

revenues for service companies, as mentioned before. In this part of the model, our 

analysis extends to state-based dymanic pricing.  

 As in the previous case, we observed that service times are the most important 

factors in developing optimal strategies and policies with big-deals and regular jobs.  

 In the later part of this work (Chapter 5), we focus on integrating inventory 

decisions into the order fitting/selection problem. Many service settings involve use of 

inventories in addition to service capacity. Typically one of the two: service rate or the 

available inventory becomes the bottleneck for the systems. An obvious example for such 

systems is the maintenance, repair and overhaul (MRO) industry. MRO services are 

composed of many and often times by complex activities with specific human resources 

assignments and spare parts usages. The reader might think on a refurbish line in the 

aeronautical industry, the MRO firm typically handles all the work that needs to be done 

to bring the equipment up to par to specifications and regulations in the normal usage of a 

commercial airplane.  

These industries, as in the previous cases, typically have standard customers with 

regular flow of demand arrivals and once now and then, unexpected arrivals of 
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emergency customers, who did not know beforehand that they were going to require 

these services. The service and the inventory management can be disrupted by the mix of 

service types in this case.  

 This part of our work is mainly motivated by our involvement with a major MRO 

company that provide MRO services for landing gear sets of commercial and military 

aircrafts. Services firms in this sector have a compliance program to make sure certain 

critical components do have a preventive maintenance, repair, and refurbishment 

schedule. This program ensures that the parts subject to fatigue are replaced or 

refurbished long before a catastrophic failure might occur(Regattieri, Gamberi, 

Gamberini, & Manzini, 2005) .  

 The MRO company can serve the customer by either overhauling the customer’s 

original equipment (repair strategy) or by exchanging the incoming equipment with an in-

stock ready-to-go equipment (exchange strategy). In the former case, the customer must 

wait until the service of its equipment is completed by the MRO process. This generally 

results with significant delays for the customer’s operations (such as the operation of an 

aircraft) since the turnover times are usually long. In the latter case, the customer’s 

equipment is immediately exchanged (or rented out) with another from the service 

provider’s inventory which virtually eliminates the turnover times for the customer. The 

customer’s original equipment—once serviced—is added to the MRO company’s 

“exchange inventory” for a future exchange with another customer. In practice such 

inventory is also known as the rotable inventory. 

The exchange strategy based on rotable inventory is usually appealing to 

customers since they eliminate the waiting time for the MRO operations by means of a 
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straightaway exchange. Typically, the downtime due to equipment overhaul is costly for 

the owners. Therefore, the equipment owners are willing to pay higher fees for quick 

turnovers, which may make the exchange option attractive also for the MRO service 

providers. On the other hand, in order to employ an “exchange” policy, the MRO service 

provider needs to continuously carry rotable inventory of overhauled equipment, which 

may incur substantial costs.  

We investigate the value of the exchange approach from the perspective of the 

MRO firm by incorporating the inventory decisions into the policy selection. We carry 

out our analysis for two policies: 1) pure exchange policy and 2) mixed policy. In the 

former case, the MRO adopts a policy on pure exchange where all arriving overhaul 

requests are responded by an exchange subject to availability of the finished rotable 

inventory. If there is no exchange equipment in the MRO company’s inventory, the 

arriving jobs cannot be accepted. In the mixed policy, once the exchange inventory is 

depleted, the subsequent job arrivals are still accepted for service, where the customer 

needs to wait for the completion of her equipment’s overhaul. Under this policy, the 

service fees depend on whether the customer receives an immediate exchange or waits 

for the overall overhauling process.  

 In the final part of this dissertation (Chapter 7) we present some discussion and 

thoughts on next steps and future extensions for our models. Many real life stiuations 

unfortunately do not present themselves with known or established demand patterns. 

Especially, in the case of big deals, demand can be quite lumpy and historical data may 

involve many zero entries for demand across past periods. Our models work under 

parameters given, but when parameters are unknown or too sparse, the pattern could not 
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be well defined, if a pattern in the demand signal can be detected, and such pattern could 

be exploited, there might be still useful in terms of providing strategic managerial 

insights for the practitioners.  

 This document is organized as follows: Chapter 2 provides a survey of the 

relevant literature. The basic model for the order fitting and big deal pricing policies is 

presented in Chapter 3. Chapter 4 extends this model to a setting where the standard jobs 

are admitted to a queue but cancelled if a big deal is won, and an optimal pricing for 

accepting such deals is provided. As such, the pricing is to be determined based on a 

state. Then Chapter 5 analyzes and compares optimal rotable inventory policies for two 

strategic order fitting policies: exchange only (pure) and mixed. 

In Chapter 6 presents conclusions and final discussion regarding the results of our study. 

In Chapter 7, we discuss future work to extend the current study. Finally, Chapter 8 

provides the the references used in this body of work. 
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Chapter 2. Literature Review 

 There is a broad body of work studying the demand management and order 

admission problems for the manufacturing and service operations. An early seminal paper 

by (Lippman & Ross, 1971) considers “the street walker” problem where the main idea is 

to model the way a street vendor manages her customers to maximize her long run 

average gain. Customer arrivals follow a Poisson process. The model is set up in a way 

that the street vendor does not have any backlog and cannot admit customers when busy 

with another one. As she is ambulating down the street she is permitted to accept a 

customer if the expected reward is above a certain threshold. Otherwise, she rejects the 

customer. Contrary to our work, in their paper, the rewards from all customers are 

assumed to be exogenous and random. The authors propose their model as an analysis 

tool for a workshop evaluating whether or not an arrived job should be admitted. 

 Other early work in this area includes (Robinson, 1978), (Nishimura, 1982), and 

(Ghoneim & Stidham Jr., 1985). Robinson studies the problem from the standpoint of a 

semi-Markov chain with countable state space and unbounded cost. The proposed model 

considers two customer types arriving at different queues but attended by the same 

server. The orders are differentiated by arrival rates, cost of wait and the service time 

distributions. The author investigates optimal policies for the state-dependent allocation 

of server to the queues. The analysis reveals that when the service time distribution of the 

queue is exponential, the priority is pre-emptive if the length of the higher priority queue 

exceeds a critical value. Nishimura presents a model with constant delivery intervals 

under a discrete-time single facility system. The optimal admission decision is based on 

knowledge of the system's work backlog, the service times, and the reward should the job 
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be accepted. They study Markov decision processes that maximize the rewards earned by 

running the system over finite and infinite horizons. Ghoneim and Sthidham also 

consider two queues both controlled by accepting or rejecting arriving customers. They 

set up the objective to maximize the expected net profit where net benefit is determined 

by exogenous random rewards.  

 In a more recent work,  (Örmeci & Burnetas, 2005) consider the problem of 

dynamic admission control in a multi-class Markovian loss system receiving random 

batches with exponential service rates and exogenous rewards. They show that the 

optimal admission policy is a sequential threshold policy with monotone thresholds. In a 

following paper, (Millhiser & Burnetas, 2013) look into the problem for the dynamic 

control of arrivals of multiple job classes in N-stage production systems with finite 

buffers and blocking. The authors show a monotonic decline on the net benefit when 

admitting jobs under system congestion. Their study identifies conditions for jobs to be 

admitted or rejected regardless of the state of the system. They also explore the blocking 

versus the admission policy effect. 

 Feng and Pang (Feng & Pang, 2010) consider the decision-making problem of 

dynamically scheduling the production of a single make-to stock (MTS) product in 

connection with the product’s concurrent sales in a spot market and a long-term supply 

channel. The spot market is run by a business-to-business (B2B) online exchange, 

whereas the long-term channel is established by a structured contract. They investigate 

optimal policies for production planning and whether or not to accept incoming demand 

in the spot market simultaneously.  
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 Similar to some of the work mentioned above, our paper considers a markov 

process based no-queue system with two types of orders, namely, regular jobs (akin to 

orders from spot market) and deals (analogous to contractual orders). However, our paper 

differs from the previously mentioned body of work as we incorporate pricing decisions 

for the deals in addition to admission decisions for the regular jobs. Clearly, pricing is a 

key strategic factor in demand management and controlling order arrivals, especially for 

the deals.  

 Cil et. al.  (Çil, Örmeci, & Karaesmen, 2009) provides an excellent review of 

models that study the relations between system parameters and queuing control 

mechanisms. They present a general framework to investigate the policy implications of 

the system parameters by using event-based dynamic programming. One such parameter 

is the pricing. Miller and Buckman (Miller & Buckman, 1987) study a service 

department's optimal transfer pricing in the context of an M/M/s/s system where no 

queuing is allowed, the authors conclude that the optimal transfer price equals the 

expected value of opportunity costs. Johansen (Johansen, 1994) studies a pricing model 

for M/G/l queuing system. The jobs are submitted by external customers or by 

other departments within the organization to which the system belongs. Requests for 

service of jobs are Poisson and the input control is exercised by announcing the price. In 

these two systems, the pricing is primarily modeled as internal transfers across 

departments and determined based on cost.  

 Gans and Savin (Gans & Savin, 2007) consider a joint dynamic admission control 

and pricing problem in a multi-server system. The authors consider a system where pre-

contracted and walk-in customers arrive to rent an item where the inter-arrival times and 
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rental durations are assumed to follow exponential distributions. The rental prices are 

exogenous (preset by the contract) for the contracted customers whereas they are 

determined by the rental firm dynamically for walk-in customers based on the state of the 

system. Upon any arrival, if the rental item is not available, the customer is lost and if the 

arrival is a contracted customer the service company is penalized. The company also has 

the option of accepting or rejecting any arriving contracted customer in return for a preset 

penalty. The main difference of our work from theirs is that our analysis has a strategic 

perspective. We compare two distinct strategic business models: mixed model with two 

customer classes and pure model with single customer class. Under the dynamic decision 

making setting, (Gans & Savin, 2007) proves monotonicity for the decision variables and 

thresholds only when the service rates are identical for all customer types.  For the 

differentiated service rates the authors could not prove monotonicity. However, at the 

strategic level that our paper considers, we do prove the monotonicity on the price 

thresholds for customer types with different service rates. In related work, Lewis et. al.  

(Lewis, Ayhan, & Foley, 2002) and Yoon and Lewis (Yoon & Lewis, 2004) also 

determine monotonicity properties of admission control and pricing problems under 

queuing settings that are different than ours.  

 Ziya et al.  (Ziya, Ayhan, & Foley, 2008) consider static pricing with multiple 

classes and show how to reduce the pricing decisions to a single-dimension optimization 

problem. Their work assumes identical service time distributions for all customer classes. 

They observe that the optimal prices are decreasing in the capacity of the common server. 

Caro and Simchi-Levi (Simchi-levi & Caro, 2012) investigate optimal static prices that 

maximize the steady-state revenue for a multiple classes of customers under a Markov 
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process of arrivals and service. While they consider endogenous pricing for all customers, 

our model integrates regular orders with exogenous prices into handling of customers for 

which the firm needs to determine the prices. Their system accepts all arrivals as long as 

there is available capacity (server) whereas our decision model exclusively considers the 

admission policies for the regular jobs.   

 In our model we employ a pricing model that maps prices into winning 

probabilities. This is a reasonable and common approach in practice Bichler et. al. (M 

Bichler, J Kalagnanam, K Katirciglu, & A J King, 2002). The winning probability can be 

interpreted as the possibility that the customer does not have a better reservation price, 

which could be a standing, bid from competition. In this regard, the competition is 

implicitly incorporated into the model. In this context, losing an arriving job is akin to the 

job request being won by the competition. In our model, we employ a price mapping that 

is based on the exponential demand function. Exponential sensitivity is commonly 

assumed in the operations management literature. A discussion and review of such 

models and other pricing approaches are reviewed by Bitran (Bitran, 2003). Some 

examples using similar mappings in different contexts include Gallego and van Rysin 

(Gallego & van Ryzin, 1994), You and Wu (You & Wu, 2007), Pachon et. al. (Pachon, 

Erkoc, & Iakovou, 2007), and Wen and Chen (Wen & Chen, 2010).  

 Currently in the literature substantial work is being done in the differentiated 

services space, especially on the last years as reviewed few paragraphs above while 

taking about or initial model and the “street walker” concept. 

 From the research body we uncover two research streams for capacity 

management, one that uses admissions controls to allocate fixed capacity, among 
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different classes of customers with the assumption that all prices are fixed, while the 

other proposes models where dynamic pricing is the tool to control acceptance see for 

example Örmeci et al.  (Örmeci & Burnetas, 2005) and Gans et al. (Gans & Savin, 2007) 

 We leverage these concepts to our model advantage, in the understanding that 

small jobs will have a published price list, implying prices are relatively fix and subject to 

change only after long periods of time if market has evolve to a different equilibrium 

only.  

 Another piece of the model comes for the line of research in differentiated 

services, and the consideration for abandonment and loss probabilities (Millhiser & 

Burnetas, 2013) where the state definition has the consideration of service by customer 

class, in this model case the service for a small job delivered a much faster rate than the 

service for a big job. Taking that upon completion of service in queue optimal service 

rate does not change(Weber & Stidham, 1987) the differentiated service time analysis 

allows to have the state space expanded to account for the temporary differences between 

a small and big jobs. 

 Another important perspective to consider for order fitting strategies is the 

management of inventory. In the service industry, especially the rotable inventory in the 

MRO industry, has become an important factor in leveraging profitability for the service 

firms. Most MRO operations involve providing service for heavy and expensive 

equipment. One example is the landing gear services. Landing gear for an aircraft might 

appear to be deceivingly safe. Their robustness and massive sizes of some systems might 

suggest that this critical component has no vulnerabilities. In fact, improper maintenance 

might lead to increased overhaul costs and lower flight safety (Canada. Ministry of 
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Transport, 2009). Given the fact that the average loss of revenue of a landed airplane is 

large, more than $29,000 dollars per day per plane (Newsmax, 04/02/2011).1  

 Because the nature of the function of the landing gears it is one of the most 

prevalent areas, where failures in an aircraft are reported. There is a market for airplanes 

with non-scheduled certification for landing gear where repair would be needed. 

 On this area there are research lines deboted to planners with regular supply and 

demand patterns, the area has numerous methods and techniques they can use, queue 

theory and its standard applications, among many others. The question to be solved is, the 

results are not aligned with physical data what needs to be applied. For example, when 

the supply or the demand is lumpy under what conditions a capacity management model 

can be applied(Isken, Ward, & Littig, 2011). 

 In this area of order acceptance, there are a good number of works related, in 

particular, to the project schediling in the area of Engineering, Procurement and 

Construction (Ishii, Takano, & Muraki, 2013). The question is then, how do you go about 

handling this signal lumpiness to minimize disruption and cycle time and, as a 

consequence, maximize gross margin and profit. Specifically cycle time, and its 

connotations for service level, customer satisfaction, labor cost reduction, and asset 

management, has a strong interest from multiple parties to gain insights to help 

companies and their planners to achieve stronger results (Wu, 2003) 

 Scheduling and queuing have been used over the years with strong success to 

solve problems in diverse fields, like transportation, networking, and telecommunications 

                                                

1 Although our focus of this study is on the economic implications of landing gear maintenance, the critical 
safety aspects should not be overlooked. 
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see for example Banks (Banks, 2010). There is then sufficient work done to help us to 

understand some basic premises, such as how best identify the objective function. 

Furthermore, from these studies, we also incorporate the idea of predictable variability, 

which suggests that we can compensate for factors such as seasonal trends, business 

cycles, and customer patterns. The system design can compensate with the appropriate 

capacity. 

 Other research suggest a way to eliminate decision variables, by using data from 

other sources that can then turn into an input for the model, thus reducing the dependency 

on the forecasting of the demands—lumpy demand for example. By understanding more 

upstream conditions, unpredictable variability can be reduced with a positive impact on 

the system outcomes. (Romeijnders, Teunter, & Van Jaarsveld, 2012) 

 Variability, then, is one key factor of cycle time and has a direct relationship with 

reserved capacity. When variability is substantial, introduction of scheduled capacity is in 

itself inadvisable from current queue theory insights, unless considerable reserve capacity 

is available. With the introduction of random unpredicted variability, the problem 

worsens.  

 Our research indicates, the approach to continue to look for trade-off between 

assets, and order acceptance policies, have strong potential specially on MRO 

(Maintenance and Repairs Organizations) Industries in general and the Aviation field in 

particular, by integration of scheduled and un-scheduled part consumption (Cohen & 

Wille, 2006) 

 There are other research areas that are important in the context of this document. 

One such area is the one investigating rotables. Rotables is the coined name for a 
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maintenance replacement modules and the associated practice of proactive maintenance, 

as opposite to repairables where components are replaced by repair in a more reactive 

way. The rotables are called generically also because they tipically rotate through a 

closed loop supply chain (Arts, Flapper, & Vernooij, 2012). Rotables are very often used 

in iudstries such as Aeronautics, Trains, and Industrial Equipment for Manufacturing.  
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Chapter 3. Order Admission and Optimal Pricing for Regular 
Jobs and Big Deals at a Service Company 

3.1 Overview 

This first model then, will concentrate in providing order acceptance policies helping the 

manager to make decisions regarding whether to take small jobs when compared to a big 

job business, and the impact it will have on the business gain.  

 Traditional research on pricing and demand management focuses on tangible 

products, as we already pointed out. Since service is usually an intangible product, 

typically, it is a challenge to price and to manage its demand. Service providers carry out 

their consulting, construction, and maintenance pricing typically through bidding. This is 

especially the case for major service projects that require substantial resources and time 

commitments. Arrivals of such project requests are typically infrequent yet generate 

considerable revenues for service companies. As such they constitute big deals for such 

firms.  

Service providers that may have steady but small size business flow may attempt 

to bid for big deals that show up at times. And as represented by the roof contractor, and 

the IT firm cases mentioned before, in fact, some firms may choose to drop all their small 

regular business and concentrate on chasing big deals only.  When such opportunities 

arise, a service provider should develop an optimal pricing policy as well as the optimal 

business strategies to allocate its resources across regular jobs and big deals.  

This chapter studies optimal pricing and demand management policies for a firm that 

faces deals with random arrivals. We consider two streams of order types: one is 

composed of recurring standard or regular jobs with pre-determined prices (exogenous 
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prices) and the other involves big deals that require pricing proposals (endogenous 

prices). In the former case, the prices are determined by the market conditions. Typically, 

these jobs arrive more frequently with relatively lower service times. They are analogous 

to commodity products. On the other hand the big jobs typically arrive less frequently 

and require longer service times. The service provider needs to bid for the service prices 

to win these deals as they usually are competitive. The probability to secure the big deals 

diminishes with the quoted price, and the reason for us to employ a function dependant 

on pricing to reflect this reality.  

Remember the objective of our study is to develop and compare optimization models 

for different demand management settings. Specifically, we consider two distinct 

strategies: 1) a pure strategy in which the firm commits to bid for deals only and 2) mixed 

strategy where the firm switches its allocation of capacity between regular jobs and deals.  

Also, it is important to keep in mind we are using markov processes, we derive 

optimal pricing decisions and expected revenues for both the pure and the mixed 

strategies. Again, we present a detailed analysis for the impact of demand and service 

rates of both types of orders on the optimal policies and revenues for both strategies. And 

also we compare both strategies to seek answers to some questions relevant for a service 

firm’s strategic fit and selection of markets to serve: 

1. How do the optimal pricing policies differ under two demand management 

policies? 

2. What are the conditions under which the service company prefers one policy over 

the other? 
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3. How do the system parameters impact the appeal of either policy for the service 

provider? 

Based on observations and the modeling of the problem, our conclusion is that the 

threshold values for these accept or reject / price parameters depend primarily on the 

demand rate of the deals and the service rate of the standard jobs and as we will 

demonstrate higher demand rates for the deals make the deals-only policy more 

appealing, whereas higher service rates of the regular orders appreciate the mixed policy, 

as might be intuitively found.  

Further more we develop evidence that the service rate of the deals become relevant 

only when the regular orders’ price is sufficiently low. In this case, higher service rate for 

the deals leads to the deals-only policy.  

Also demand rate of the standard orders does not impact the firm’s preference 

between the two strategy options. 

3.2 Literature Review 

Gans and Savin (Gans & Savin, 2007) consider a joint dynamic admission control and 

pricing problem in a multi-server system. The authors consider a system where pre-

contracted and walk-in customers arrive to rent an item where the inter-arrival times and 

rental durations are assumed to follow exponential distributions.  

 The rental prices are exogenous (preset by the contract) for the contracted 

customers whereas they are determined by the rental firm dynamically for walk-in 

customers based on the state of the system. Upon any arrival, if the rental item is not 

available, the customer is lost and if the arrival is a contracted customer the service 
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company is penalized. The company also has the option of accepting or rejecting any 

arriving contracted customer in return for a preset penalty. The main difference of our 

work from theirs is that our analysis has a strategic perspective.  

 We compare two distinct strategic business models: mixed model with two 

customer classes and pure model with single customer class. Under the dynamic decision 

making setting, Gans and Savin (Gans & Savin, 2007) proves monotonicity for the 

decision variables and thresholds only when the service rates are identical for all 

customer types.   

 For the differentiated service rates the authors could not prove monotonicity. 

However, at the strategic level that our paper considers, we do prove the monotonicity on 

the price thresholds for customer types with different service rates. In related work, 

Lewis(Lewis et al., 2002) and Yoon and Lewis (Yoon & Lewis, 2004) also determine 

monotonicity properties of admission control and pricing problems under queuing 

settings that are different than ours.  

 Ziya(Ziya et al., 2008) consider static pricing with multiple classes and show how 

to reduce the pricing decisions to a single-dimension optimization problem. Their work 

assumes identical service time distributions for all customer classes. They observe that 

the optimal prices are decreasing in the capacity of the common server. Caro and Simchi-

Levi (Simchi-levi & Caro, 2012) investigate optimal static prices that maximize the 

steady-state revenue for a multiple classes of customers under a markov process of 

arrivals and service. While they consider endogenous pricing for all customers, our model 

integrates regular orders with exogenous prices into handling of customers for which the 

firm needs to determine the prices. Their system accepts all arrivals as long as there is 
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available capacity (server) whereas our decision model exclusively considers the 

admission policies for the regular jobs.   

 In our model we employ a pricing model that maps prices into winning 

probabilities. This is a reasonable and common approach in practice Bichler et. al. (M 

Bichler et al., 2002). The winning probability can be interpreted as the possibility that the 

customer does not have a better reservation price which could be a standing bid from 

competition. In this regard, the competition is implicitly incorporated into the model. In 

this context, losing an arriving job is akin to the job request being won by the 

competition. In our model, we employ a price mapping that is based on the exponential 

demand function.  Exponential sensitivity is commonly assumed in the operations 

management literature. A discussion and review of such models and other pricing 

approaches are reviewed by Bitran (Bitran, 2003). Some examples using similar 

mappings in different contexts include Gallego and van Rysin (Gallego & van Ryzin, 

1994), You and Wu (You & Wu, 2007), Pachon et. al. (Pachon et al., 2007), and Wen 

and Chen (Wen & Chen, 2010). 

3.3 Model Basic Settings 

To set up the initial model that will help us to start modeling our order acceptance 

policies, we consider a service provider that competes for jobs that have stochastic arrival 

rates and service requirements. The service provider works as a contractor who faces two 

types of jobs: 1) jobs that require pricing bids, which we refer to as the “deals” and 2) 

regular jobs that have exogenous market prices. Typically, the jobs in the first group are 

bigger in size in the sense that they require more resources and they are less frequent. The 
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service provider’s chance of winning these deals depends on the quoted price. As such, 

the winning probability decreases in the service provider’s price bid.  

 It is assumed that the service company has capacity to work on one job at a time. 

Since the demand is for service, it is assumed that an arriving demand request should be 

accepted straightaway otherwise it is lost. That is, the customers will not wait in a queue. 

Consequently, the service provider will be able to respond to demand if it has available 

capacity (i.e., not working on any current job).  

 Based on this setting, our approach is built two-fold. In the first stage, we 

determine the optimal bidding prices for arriving deals under two different job 

acceptance settings. In the first setting, we consider only deals where the service 

company does not accept any regular job. In the second case, we study the pricing 

problem where the company accepts both types of jobs (mixed policy).  

 In the second stage of our analysis, we compare the optimal strategies under both 

job acceptance settings and identify conditions under which one policy outperforms the 

other. To focus on deriving managerial insights, we assume that job requirements within 

a given type are identical. We consider markov settings where job arrival rates follow 

Poisson processes and the service times are distributed exponentially. As mentioned 

above, we focus first on the deals only case, immediately followed by the mixed policy 

case.   

3.3.1 Deals-Only: Pricing with Single Job Type 

In the first part of our analysis, we assume the inter-arrival times and service durations 

are identical across all job requests. Both times follow exponential distributions with 
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means of 1/λd and 1/µd respectively. The service company can win and execute one 

job/project at a time and as such, does not bid for other jobs while they are under a 

contract with one. Other times, when the company is not under any contract, it bids prices 

for arriving job requests. The company needs to decide on price to bid on arriving job 

requests. The winning probability of a job proposal is modeled as e-βp, where β is a 

constant that denotes the price sensitivity of the arriving job requests and p is the 

company’s price bid. Clearly, the winning probability decreases in p and as such the 

effective arrival rate for deal wins is λde-βp. It is straightforward to see that as the 

customer’s price sensitivity β increases, the winning probability for the service provider 

diminishes at the same price level. 

 The resulting Markov chain is depicted in Figure 1. Basically, under this setting 

there are two states: 1) the company is idling (So) or 2) the company is busy working on a 

“won” project (SD). Then, the transition rates from state So to SD and from SD to So are 

λde-βp and µ respectively. Using limiting probabilities, the steady state probabilities for 

both states can be computed as follows as functions of price quote: 

 𝜋! 𝑝 = !!
!!!!!!!!"

 (1) 

 𝜋! 𝑝 = !!!!!"

!!!!!!!!"
 (2) 

Where 𝜋! and 𝜋! are the steady state probabilities of So and SD respectively. Using the 

steady state probabilities, we can write the expected revenue of the company for any 

given price p, as follows:  

 𝐺! = 𝑝𝜆!𝑒!!"𝜋!(𝑝) = 𝑝 !!!!!!!"

!!!!!!!!"
 (3) 
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 Since the company bids for jobs only when its capacity is available (that is under 

So), the effective arrival to the system is 𝜆!𝑒!!"𝜋𝑜(𝑝). Consequently, the expected 

revenue is subject to this rate as laid out in the above function. We note that we ignore 

the cost of capacity maintenance in our computations (such as the labor cost) since they 

are assumed to be constant regardless of whether the company is busy or idle.  

 

Figure 1. The deals-only policy model 

 The optimal price maximizes the expected revenue given in (3). Following 

Proposition provides the optimality condition for the optimal price, which is unique. 

 Proposition 1. The expected revenue function given in (3) is unimodular in p with 

a unique maximizer. At optimality, the optimal price must satisfy the following equation:  

 𝑝!∗ = 𝛽𝜋!(𝑝!∗ ) !! (4) 

 Proof. First, we need to show that Gd has a unique maximizer for 𝑝 ≥ 0. To 

achieve this, we define y such that 𝑦 = e!!!. With this transformation, we can rewrite the 

revenue function as follows: 

 𝐺! = − !
!
ln  (𝑦) !!!"

!!!!"
 (5) 

Then the first and second derivatives with respect to y are 
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 !!!
!!

= − !!!!
!(!!!!!!)

1+ ln  (𝑦) !!
!!!!!!

 (6) 

!!!!
!!!

= −Δ! 1+ ln 𝑦 !!
!!!!!!

− Δ !!
!!!!!!

!
!
− ln  (𝑦) !!

!!!!!!
 (7) 

 Where Δ is the term in front of the parenthesis in (6). We note that at a stationary 

point, say y*, the term in the parenthesis in (6) must be zero. As such, the second 

derivative evaluated at this point is 

 !!!!(!∗)
!!!

= −Δ !!
!!!!!!∗

!
!∗
− ln  (𝑦∗) !!

!!!!!!∗
 (8) 

 Since 𝑦∗ > 0 and ln 𝑦∗ < 0, the above term returns a strictly negative value 

implying that at any stationary point the expected revenue function must be concave. 

Consequently, we conclude that the function is unimodular with a unique stationary point 

that maximizes the function. By making the first derivative given in (6) equal to zero, we 

can easily observe that the price value that satisfies (4) corresponds to the unique 

stationary point and as such, it is the optimal price for the service company to bid.◊ 

 Unfortunately, the optimality condition given in (4) does not provide a closed 

form solution for the optimal price; however, its numeric value can be computed easily 

via a line search. Under optimal price, the optimal revenue rate can be rewritten as 

 𝐺!∗ =
!
!
𝜆!𝑒!!!!

∗ . (9) 

 Using above results we can make insightful observations on the optimal pricing 

policy. First we investigate the sensitivity of the optimal price to system parameters.  

 Lemma 1. The optimal price increases in arrival rate λd and, decreases in 

service rate µd and price sensitivity β.  
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 Proof. To determine the impact of λd, we need to compute the first derivative of 

optimal price, p*. From (4) and using partial derivatives, we get 

 !"!
∗

!!!
= !

!
− !

!!
!
!"!
!!!

− − !
!!
!
!"!
!"!

∗
!"!

∗

!!!
 (10) 

Which can be rewritten as 

 !"!
∗

!!!
= !!!!!

∗

!(!!!!
!!!!

∗
)
 (11) 

 Clearly, the right hand side in the above equation is positive implying that the 

optimal price is increasing in λd. The proofs regarding the impact of µd and β can be 

obtained in similar method. ◊ 

 If the company experiences more frequent arrivals of job requests its steady state 

probabilities for working on a project increases. This provides the company with 

opportunity to increase its price as the risk of being idle diminishes with increased arrival 

frequency. On the other hand, higher service rates translate into lower prices due to the 

fact that they lead to higher turnovers. Higher turnovers help the company turn the job 

quicker and thus let them win more deals. Finally, as the price sensitivity increases, the 

probability of winning a job at the same pricing level decreases. To offset the drop in 

demand (winning probability) the company needs to lower its price. 

 By means of the Envelop Theorem it is straightforward to observe that the 

optimal revenue increases in arrival rates as expected. The same is also true for the 

service rates. Although higher service rates lead to lower bid prices, the steady state 

revenues for the company increase. This is due to the fact that the gain from increased 
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number of won deals outstrips the drop in pricing. We also observe that as the customers 

become more sensitive to prices the expected revenue goes down. 

 The joint impact of the arrival rate λd and service rate µd leads to different results 

for the optimal price and revenue. Let 𝜌! = 𝜆!/𝜇! represents the offered load for the 

system (i.e., the traffic density). Clearly, if both values increase in the same rate, the 

offered load does not change. In this case we get 𝜋!∗ = 1/(1+ 𝜌!𝑒!!𝑝𝑑
∗ ) and hence we 

observe that the steady state probability does not change as long as the offered load stays 

unchanged with the increase in both λd and µd. From (4), this implies the same thing for 

the optimal price. Consequently, we conclude that increase in λd and µd will not impact 

the optimal price as long as the rate of increase is identical for both parameters. In 

general, the optimal price decreases in the offered load. However, we cannot make the 

same conclusion regarding the optimal revenue. Since revenue increases in both the 

arrival and service rates, higher revenues will be enjoyed with increased rates even when 

the offered load stays unchanged. The relation between the optimal revenues and the 

offered load is not monotonic and depends on the factor that changes the offered load.  

 A quite interesting observation that we make is the fact that optimal winning 

probability does not change with price sensitivity. 

 Lemma 2. The optimal winning probability, 𝑒!!!!
∗
, is independent of the price 

sensitivity, β.  

 Proof. Taking the derivative of the optimal winning probability with respect to β, 

we get 

 !"!!𝑝𝑑
∗

!"
= −𝑒!!𝑝𝑑∗ 𝑝𝑑

∗ + 𝛽 !𝑝𝑑
∗

!"
 (12) 
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Using the approach employed in the proof of Lemma 1, we get 

 
!𝑝𝑑

∗

!"
= −𝑝𝑑

∗/𝛽 (13) 

 Plugging the above result in (12), we can observe that the right hand side returns 

zero implying that the winning probability under optimal pricing does not depend on β. 

◊ 

 We note that the above result implies that the steady state probabilities with 

optimal pricing are also independent of the price sensitivity. That is under optimal policy, 

the frequency of being under a contract for the company is independent of how its 

customers are sensitive to pricing. This is due to the fact that on the long run the company 

would balance the increased price sensitivity by decreasing its price. This is an interesting 

result as it points that there is a unique arrival rate (i.e., optimal effective arrival rate) that 

the company must generate through its pricing regardless of the type of its customers in 

terms of their sensitivity to price.   

3.3.2 Mixed Policy with Regular Jobs 

We extend the above model to study the optimal pricing policies when the company has a 

regular job flow in addition to the job requests as defined in the previous section. The 

company does not need to bid for regular jobs as they represent service requests from 

steady and/or existing customers. These are in general well-defined projects with 

relatively shorter processing times, more frequent arrivals and fixed exogenous prices. 

For the “deals”, we assume the similar setting described in the previous section. We 

investigate the optimal pricing bids for the deals under this policy and compare the mixed 

model and the “deals-only” strategy. 
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 We let λr and µr denote arrival and service rates for regular jobs. As in the 

previous case, we define λd and µd as the arrival and service rates for the potential deals.  

 The revenue for each regular job is exogenous and denoted by v. As in the 

previous case, the company can receive or bid for jobs only when it is idle, that is when it 

is not under any contract. Clearly, in this case the company can be in one of the following 

three states at any time: 1) idle (So), 2) busy with a regular job (SR), or 3) busy serving a 

won deal (SD). The resulting Markov chain is depicted in Figure 2. 

Solving limiting probability equations we get 

 𝜋! 𝑝 = !!!!
!!(!!!!!)!!!!!!!!"

 (14) 

 𝜋! 𝑝 = !!!!
!!(!!!!!)!!!!!!!!"

 (15) 

 𝜋! 𝑝 = !!!!!!!"

!!(!!!!!)!!!!!!!!"
 (16) 

 Where 𝜋!(𝑝),𝜋!(𝑝) and  𝜋!(𝑝) are the steady state probabilities of So, SD, and 

SR respectively. Using the steady state probabilities, we can write the expected revenue of 

the company for this setting as follows:  

 𝐺! = 𝜇!𝜇!
!!!!!!"!!!!

!!(!!!!!)!!!!!!!!"
 (17) 
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Figure 2. The mixed policy model 

 Similar to the previous case, we prove that the above function is unimodular in p 

with a unique maximizer. Following Proposition provides the optimality condition for the 

optimal price, which is unique. 

 Proposition 2. The expected revenue function given in (17) is unimodular in p 

with a unique maximizer. At optimality, the optimal price must satisfy the following 

equation:  

 𝑝!∗ =
𝜇𝑑+𝛽𝑣𝜇𝑟𝜋𝑟
𝛽𝜇𝑑(1−𝜋𝑑)

 (18) 

 Proof. First, we need to show that Gm has a unique maximizer for 𝑝 ≥ 0. Similar 

to the proof of Proposition 1, we employ y where 𝑦 = e!!!. With this transformation, we 

can rewrite the revenue function as follows: 

 𝐺! = − !
!
ln 𝑦 𝜇!𝜋! + 𝑣𝜇!𝜋! (19) 
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 Then the first and second derivatives with respect to y are 

 !!!
!!

= − !!
!"

𝜇! + ln  (𝑦)𝜇!(1− 𝜋! + 𝛽𝑣𝜇!𝜋!) (20) 

 !!!!
!!!

= − (1−𝜋𝑑)
!

𝜕𝐺𝑚
𝜕𝑦

− !!!!
!

!!!
 (21) 

 Since at a stationary point !!!
!!

= 0, from (20) and (21), the second derivative 

evaluated at that point will be −𝜇!𝜋!!/𝛽𝑒!!!". Consequently, any stationary must be a 

local maximizer implying that there in fact is a unique stationary point that maximizes 

Gm. By making the first derivative given in (20) equal to zero and solving it for p, we can 

easily observe that the price value that satisfies (18) corresponds to the unique stationary 

point and as such, it is the optimal price for the service company to bid under the mixed 

policy. 

◊ 

 As in the previous case, we observe that the first order optimality condition does 

not result with a closed form definition for the optimal price. However, the optimal value 

can easily be found with a simple line search. Following equation gives the optimal 

average revenue: 

 𝐺!∗ =
!! !!!!!𝑝𝑚

∗
!!"!!

! !!!!!
 (22) 

 Where p* is defined by (18). Next we discuss the influence of system parameters 

on the pricing decision and the optimal revenue. 

 Lemma 3. The optimal price for deals increases in price of regular jobs, v, 

arrival rate of deals λd and, service rate for regular jobs, µs. On the other hand, the 

optimal price decreases in price sensitivity β and service rate for deals, µd.  
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 Proof. The proof can be carried out for each parameter similar to Lemma 1. 

Similar to the previous case, the optimal price is increasing in arrival rate of the deals λd, 

and decreasing in service rate of the deals µd, and price sensitivity β. In addition, we 

observe that the bidding price for deals increases in v, implying that as the price/marginal 

revenue from regular jobs increases the optimal price bid for deals also increases. The 

intuition is that the increased marginal revenue from regular jobs decreases the risk for 

loss of opportunity and hence provides the company with leverage for asking higher 

prices from the arriving deals.  

 The optimal bidding price increases in the service rate of regular jobs µr. 

Basically, this indicates that as the service for regular job becomes faster, the company 

will have the opportunity of increasing its revenues from higher turnover on these jobs. 

As such relative need for winning a deal is lesser and consequently the bidding prices can 

be increased for the deals. On the other hand, as for arrival rates of regular jobs, the 

impact may go both ways depending on the revenue margin of the regular jobs. 

Typically, when the regular jobs are priced sufficiently high, the higher arrival rates for 

regular jobs provide leverage for bidding higher prices for the deals. The increased 

revenue from regular jobs compensates the decreased winning probabilities due to price 

increase. On the other hand, higher arrival rates with low v will lead to diminished 

efficiency for the service capacity. To rectify this, the optimal price for the deals is 

lowered and thus, the share of deals on capacity usage is increased. The joint impact of λd 

and v is illustrated by Figure 3. 
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Figure 3. Join Impact  of  λs and ν on optimal pricing 

 With the mixed policy, we observe that Lemma 2 holds no more. That is, in this 

case, the optimal winning probability does depend on the price sensitivity.  

 Lemma 4. The optimal winning probability under mixed policy, 𝑒!!!!∗ , strictly 

decreases with the price sensitivity, β.  

 Proof. Using (18) and taking the derivative of the optimal winning probability 

with respect to β, we get 

 !"!!!!
∗

!"
= −𝑒!!!!∗ 𝑝!∗ + 𝛽

!!!∗

!"
 (23) 

Using the approach employed in the proof of Lemma 1, we get 

 !!!∗

!"
= −1/𝛽! (24) 

Plugging the above result in (23), we get 

 !"!!!!
∗

!"
= −𝑒!!!!∗ 𝑝!∗ −

!
!

 (25) 
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It is straightforward to observe in (18) that the term in the above parenthesis must be 

positive implying that the derivative returns a negative value. Hence the proof is 

completed. 

◊ 

 The above result indicates that the decrease in price will occur at a lower rate 

leading to a decrease in win probabilities or in other words, effective “win rates”. 

Therefore we deduce that the pricing response of the service company to increased price 

sensitivity is less aggressive compared to the “deals only” case because of the fact that 

under the mixed policy the company can enjoy revenue from regular jobs in addition to 

the deals.  

 Lemma 3 implies that the optimal bidding price increases in the offered load (ρd) 

of the deals. We also observe that for a given price, the long run capacity utilization (i.e., 

steady state probabilities) is a direct function of ρd. That is, the steady state probabilities 

do not change with the arrival and service rates of the deals as long as ρd is unchanged. 

 However, in contrast to the deals-only case, our analysis reveals that the varying 

arrival and service rates will lead to different pricing even under same ρd. As such, there 

is no direct mapping between the optimal price and the offered load.  

 Lemma 5. Under any given fixed offered load (ρd) for deals, the optimal price 

decreases as the arrival and service rates increase.  

 Proof. We first note that in order to keep the offered load unchanged the increase 

in the arrival rate and the increase in the service rate must be in same proportion. In this 

case, since the steady state probabilities stay unchanged, the first derivative given in (20) 
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decreases as both arrival and service rates increase. Since the profit function is 

unimodular with a concave peak, the optimality condition is satisfied at a decreased price.  

◊ 

 This is an interesting result in that it is optimal for the service provider to lower its 

prices with jointly increasing arrival and service rates even when the offered load does 

not change. Figure 4 illustrates the impact of offered load on the optimal pricing. Each 

curve represents an isoline that represents the points of equal traffic densities. It is clear 

from the figure that as the arrival and service rates increase the price goes down.  

 

Figure 4. Traffic density isolines and the optimal price under the mixed policy  

 At the same time, the figure shows that as the offered load increases so does the 

optimal price. As pointed out earlier, under a given price the allocation (utilization) of 

capacity on deals would not change as long as the offered load is unchanged.  

 Clearly, increased arrival and service rates present revenue opportunities for the 

company through higher turnover. In order to take advantage of the increased turnover, 

the company needs to lower its price so that more wins are realized and hence deals’ 

share of capacity increases.   
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 It is intuitive and easy to deduce that as the arrival rate for deals increases, the 

allocation of capacity to deals (i.e., proportion of time the capacity is utilized for deals) 

will also increase. Similar conclusion is straightforward for the regular jobs. On the other 

hand, the impact of service rates is not straightforward. Our numerical analysis reveals 

that the relations between the capacity usage and service rates are not strictly monotonic.  

Figure 5 demonstrates the effect of the service rate of the deals on the usage of capacity. 

 When the service rate is too low it is not efficient for the service company to 

allocate it capacity on the deals unless it charges a high price to the customer. High prices 

lead to  

 

  
Figure 5. Service rate for the “deals” and the optimal capacity allocations 

lower win probability and hence diminished need for capacity use for the deals. The 

company would rather be profitable by using its capacity on regular jobs with reasonable 

service rates. As the deals’ service rate increases, the optimal price goes down which 

boosts the win probability. As a result the share of capacity increases. After a certain 
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level, the increase in the service rate surpasses the increase in effective arrival rates 

resulting with reduction in the deals’ effective traffic density. Consequently, the server 

can process more jobs faster and the proportion of capacity needed for the deals 

decreases. 

 The effect of the service rate for regular jobs is illustrated in Figure 6. When the 

service rate is low, each regular job keeps the system busy for a longer time on the 

average. Since all regular jobs are admitted, more time spent on regular jobs lead to less 

time on the deals. As the service time increases regular jobs are processed faster and as 

such, the deals will get more capacity usage opportunity. On the other hand, as explained 

in Lemma 3, higher regular job service rates result in higher price bids for the deals.  

 After a certain level, the high service levels justify more use of capacity 

processing regular jobs due to increased revenue return while the optimal prices and 

hence, the effective arrival rates for the deals decrease. 

 
 

Figure 6. Service rate for the regular jobs and the optimal capacity allocations 
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3.4 Policy Comparisons 

In this section we compare the single job system dedicated to “deals” only and the mixed 

policy that accepts both deal-type jobs and “regular” jobs. Specifically, we seek for 

answers for the following questions: 1) How do the optimal pricing policies differ across 

two policies? 2) Under what conditions the service company prefers one policy over the 

other? 3) How do the system parameters impact the appeal of either policy for the service 

provider?  

Our first observation is due to the effect of exogenous prices of the regular jobs 

on the optimal pricing differences.  

 Proposition 3. There exists a unique threshold for v, say vt, such that 𝑝!∗ > 𝑝!∗  

and 𝐺!∗ > 𝐺!∗  if and only if 𝑣 < 𝑣!. Otherwise, 𝑝!∗ ≤ 𝑝!∗  and 𝐺!∗ ≤ 𝐺!∗ . Moreover,  

 𝑣! =
!!!

!!!!
∗

!!!
= 𝐺𝑑

∗

!!
 (26) 

 Proof. The proof is straightforward from solving Δ! = 𝑝!∗ − 𝑝!∗  and Δ! = 𝐺!∗ −

𝐺!∗  for v. Based on above result, the bidding prices in the deal-only case is higher than 

the mixed setting if and only if the marginal revenue for regular jobs (v) is below a 

unique threshold. When the revenue from regular jobs is low, the company is better off 

by spending more of its time rather on the deals. This compels the company further pull 

its bidding price down to increase the effective rate of arrivals of the deals under the 

mixed setting. In the mixed policy, capacity is shared between the deals and the regular 

jobs. When marginal gain from regular jobs is low, the company adopts lower prices for 

the deals to stimulate the effective arrivals of the deals and as such allocate more capacity 

on the deals.  
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It is interesting to observe that same threshold also applies for the optimal revenue 

comparison. When v is below the threshold, the company is better off with the deals-only 

setting. In this case, accepting regular jobs degrades the company profits by allocating 

low-revenue jobs to capacity which otherwise could be utilized for more profitable deals.  

 We can deduce from earlier analysis discussed in the previous sections and (26) 

that the threshold increases in the arrival rate of the deals (𝜆!) and the service rate of the 

deals (𝜇!). This implies that as demand base for the deals grows, the deals-only policy 

becomes more appealing for the company. Same effect is also valid for increasing service 

rates in which case revenue per unit capacity increases making the deals more profitable 

for the company. On the other hand, the threshold decreases in price sensitivity (β) and 

the service rate of the regular jobs (𝜇!). As expected, higher price sensitivity results in 

diminished margins and profitability for the deals making them less appealing for the 

company. Higher service rate for regular jobs means more revenue per capacity unit 

allocated to the regular jobs. As such, the faster the company processes the regular jobs 

the more it will lean towards the mixed policy.  

 Interestingly, we observe that the arrival rate of regular jobs does not influence 

the threshold and hence the company’s policy preference. Recall that the price of the 

regular jobs is exogenous and hence is unchanged under changing arrival rates. The 

marginal revenue contribution of the regular jobs is determined only by price (v) and the 

service rate (𝜇!). Higher service rate implies quicker returns for the regular jobs, which 

generates more bang-for-the-buck for the company. Consequently, the company’s 

optimal policy selection between the deals-only and mixed settings is independent of 𝜆!. 
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However, we note that this does not mean that the sizes of the price/revenue gaps 

between the two  

  
Figure 7. Impact of regular-job arrival rate on price (Δp) and revenue (ΔG) gaps. 

policies are independent. When the price of the regular jobs is below the threshold, 

increased demand volume enhances the positive price/revenue gap between the deals-

only and mixed policies. Above the threshold, the positive gap grows with 𝜆!. Both 

situations are illustrated in Figure 7.  

 
Figure 8. Impact of the deals service rate on the price and revenue gaps between policies.  
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As implied by the threshold expression given in (26), the difference in revenues strictly 

increases in 𝜇!. On the other hand, impact of 𝜇! on the price difference is somewhat 

ambiguous as depicted in Figure 8.  

 It is easy to observe from (26) that the mixed policy is preferable for any values of 

𝜇!, if 𝑣 ≥ 𝜆!/(𝛽𝜇!). When v is sufficiently small, the price difference increases in 𝜇! up 

to a certain level in the positive half space. Then it starts to close as 𝜇! grows.  

3.5 Commentary and Insights on Order Acceptance 

In this Chapter, we investigate the optimal strategic fit for a service company and its 

pricing policies. We consider two streams of order types; one composed of recurring 

standard or regular jobs whose prices are pre-determined in the market (exogenous 

prices) and the other involving “deals” that require pricing proposals (endogenous prices) 

from the firm. In the latter case, the probability to secure the order diminishes with the 

quoted price. The service firm faces two strategic options: 1) allocate capacity to only the 

deals or 2) admit both order types.   

 We analyze both deals-only and mix policies separately before comparing them 

for profitability. We employed Markov Chain based models to derive the optimal pricing 

decisions for both policies and determine the optimal mean revenues. In the deals-only 

policy, we show that the optimal revenue increases in demand and service rates while 

decreasing in price sensitivity of the orders. Interestingly, we observe that the optimal 

winning probability of the deals is independent of the price sensitivity on the long run 

under the deals-only setting. This is not true for the mixed policy case where the winning 
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probability strictly decreases in price sensitivity. We present a detailed analysis for the 

impact of demand and service rates on the optimal pricing and revenues for both settings.  

 We compare both policies to seek answers to some questions that are relevant for 

a service firm’s strategic fit and selection of markets to serve. We investigate 1) how the 

optimal pricing policies differ across two policies; 2) under what conditions the service 

company prefers one policy over the other; and 3) how the system parameters impact the 

appeal of either policy for the service provider. We observe that the differences between 

two strategies in terms of pricing and average gain are in accord. Under any given set of 

systems parameters, one of the strategies leads to both higher prices and revenues. 

Typically, the preferable strategy depends on the exogenous price of standard orders and 

the price sensitivity of the deals. 

 Typically, the preferable policy depends on the exogenous price of standard 

orders and the price sensitivity of the deals. Our conclusion is that the threshold values 

for these two parameters depend primarily on the demand rate of the deals and the service 

rate of the standard jobs. Higher demand rates for the deals make the deals-only policy 

more appealing, whereas higher service rates of the regular orders appreciate the mixed 

policy. Our results indicate that the service rate of the deals become relevant only when 

the regular orders’ price is sufficiently low. In this case, higher service rate for the deals 

leads to the deals-only policy. Lastly and interestingly, we find out that the demand rate 

of the standard orders does not impact the firm’s preference between the two strategy 

options. At the end, it all boils down to selecting the strategy that delivers more bang-for-

the-buck, that is, more cost effective use of capacity.   
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 We intend to extend our analysis to two relatively more general settings. In the 

first extension, we consider the allocation of multiple servers (work teams) across order 

types. Under varying cost and demand conditions we plan to compare cases with 

dedicated servers and cases where all servers work on all type of orders. For the second 

extension, we consider the case where the firm admits small jobs into a capacitated 

queue. In this case, if the company wins a deal it has the option to begin working on the 

deal immediately regardless of the state of the queue. Clearly, in this case the optimal 

bidding price is state dependent in terms of whether the bidding is taken place when the 

company is either idle or performing a regular job with others in the line. 
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Chapter 4. Order Acceptance with Queuing and State 
Dependent Pricing 

4.1 Overview 

In this chapter, we relax the no-queuing assumption of the previous chapter in two ways. 

First, we extend the space to accommodate to the fact there could be small jobs 

accumulation (queuing) except when the company is engaged in a big deal. If a big deal 

is admitted for service the small jobs queue is dispersed by cancelling the small jobs or 

forwarding them to an outsourced service, in which case a penalty is incurred. Second, 

because queing is allowed, price decisions are now state dependent. The price to be bid 

for a big deal depends on the number of small jobs that the company is currently 

engaged.  

 The system will have many states due to accumulation of the queue in opposition 

to the previous model which embodied only three possible states: idle, busy with regular 

job and busy with a big deal. The rest of the settings remains pretty much similar to that 

of the previous model. The regular jobs and big deals are distinguished by their arrival 

and service rates. In addition, while the price for regular jobs is exogenous, the big deals 

are won as a function of price bids, whom are endogenous, that is set by the decision 

maker. 

 In this setting, regular jobs will be accepted when another regular job is still being 

processed. The rational being when we have small jobs, typically, it is expected to add 

the jobs to a waiting line because their service durations are reasonably short. However 

when a big deal arrives, since the durations are longer short and as such, the capacity 

requirement, is expected to be much bigger, there is no longer—realistically—the option 
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to process small jobs nor the option of having them waiting until the big deal is 

completed. Moreover to compound the problem, mostly when a big deal is won in a 

typical industry application, all the resources will be taken to service this new request and 

as consequence if there was a small job in the queue it has to be dismissed.  

 These considerations are required to extend our space, or possibilities if you like, 

to encompass the fact that we can have multiple number of small jobs waiting while we 

process them. In our observations from practice, it is typical the queue do not go beyond 

6 to 7 jobs waiting, however we will not impose limits to this number to allow 

application of the model to other problems with similar nature.  

 Another consideration is that because the fact the queue has to be dismissed, then 

implicitly there is a sort of penalty to be paid. It could be as simple as having to return the 

payment to the customer, or even worse, take additional penalties as they could be 

stipulated by contracts. 

 Good will loses happen also in this context, and this penalty cost must consider 

them, in our particular case, since the firm under analysis was able to subcontract the 

work or lease rotable inventory, the penalty translated more than in loss of good will from 

the customer, in loss of revenue, for the customer the transaction to subcontract or lease 

was not visible, as a design of the MRO company to maintain the customer relationship 

smooth in cases like this, of course one of the reasons why the premium for the big deal 

price on the long run must support this additional cost. 

 The model in our case, for the big deal portion, considers dynamic pricing, in the 

form of a premium, to be presented to the customer. If the price is accepted by the 

customer, the provider will increase it’s expectation to obtain some gain even with 
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penalties it had to pay to those customers whose service will not be fulfilled—or as in our 

case in the form of subcontracted or leasing cost if the inventory must be made available. 

On the other hand, if the big deal customer balks a the bid, provider will still have the 

benefit of the gains coming from the small regular jobs. 

4.2 Literature Review 

Planners with regular supply and demand patterns have numerous methods and 

techniques they can use, for example, covering even cases where the results are not 

going to align with physical data. (Isken et al., 2011). If you consider the fact you will 

provide the big deal as a disruption to the regular jobs being either under process or in the 

queue. The question is then, how do you go about handling this signal lumpiness to 

minimize disruption and cycle time and, as a consequence, maximize gross margin and 

profit. 

 Specifically cycle time, and its connotations for service level, customer 

satisfaction, labor cost reduction, and asset management, has a strong interest 

from multiple parties to gain insights to help companies and their planners to achieve 

stronger results. (Wu, 2003) 

 Scheduling and queuing have been used over the years with strong success to 

solve problems in diverse fields, such as transportation, networking, and 

telecommunications (Banks, 2010). There is then sufficient work done to help us to 

understand some basic premises, such as how best identify the objective function. 

 From this body of work we utilize the concepts of reserved capacity,  (Allsop, 

1972) defined as capacity above demand, which might be required to honor the booked 
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commitments, as the idea is that if we have information about variability we can then 

make some decisions regarding capacity and reserved capacity. Also, by working 

with their internal processes, the planner can reduce cycle time variability by 

categorizing activities, products, and customers, etc. Gans et al.  (Gans & Savin, 2007) 

propose ways that reduce cycle time variability, eliminating unpredictable variability 

and gaining efficiency in the allocated resources. Such body of research is represented by 

models to manage and schedule projects at minimum cost. Ishii (Ishii et al., 2013) is a 

very recent example in this field. 

 This line of research looks for optimal results by reformulating the model to 

encompass parameters to make the variability as predictable as possible. By taking this 

action if the model does take into consideration that causality, then it will behave as 

if that variability is predictable. For example in the recent flu epidemic in the US in 

the winter of 2012-2013, even though is known that there is an increase in 

respiratory ailments in winter months,  (Blaisdell et al., 2002) if the model does not 

have ways to acquire information about variability, it behaves as unpredictable, thus 

some regions within the US ran out of vaccines. In a similar way, the arrival variability 

and competition response is captured by the price sensitivity parameter in our pricing 

function. Variability, is one key factor of cycle time and has a direct relationship with 

reserved capacity.  

 For our own particular application when variability is substantial, introduction of 

scheduled capacity is in itself inadvisable from current queue theory insights, unless 

considerable reserve capacity is available. With the introduction of random 

unpredicted variability, the problem worsens. Our proposal is to provide what is 
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the minimum reserved capacity allowing a feasible solution that evolves dynamically 

and presents a flexible solution. Understanding reserved capacity, either by letting 

customer go due to the acceptance of a major job and reflecting that as a penalty or 

compensation for the loss of the small jobs if needed, reserved capacity for us can be 

expressed in different assets, in our case we will apply the concept further with our 

implementation in Chapter 5. 

 For the moment, we go back to our setting, a how much is worth a big deal, given 

a number of steady small jobs in queue or with a brisk arrival rate, for us to dedicate our 

entire resources to winning and taking the arriving big deal. 

4.3 Model, Assumptions and Methods 

A service provider that competes for jobs who have a deterministic schedule and 

constitute their regular business under a long term contract structure, these firms also 

have stochastic arrival rates and service requirements driven by incidents. We call them 

big deals or from non-contract customers, who walk-in with a sizeable revenue generating 

deal. 

 We relax the no-queue assumption. This assumption relaxation is motivated to 

account for different job requirements coming from the big jobs—or namely “walk-

ins”. Then it is assumed t h a t  the company can win and execute one job/project at a 

time and as such, does not bid for other jobs while they are under a contract with one 

big job. Other times, when the company is not under any contract it bids prices for 

arriving job requests. The company needs to decide on the bidding prices for the big 

deals. This bidding price must take into consideration what the expected queue of small 
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jobs is and what if any penalty must be paid so when winning the big job the service 

provider will make money. 

 The service times are described as a whole number of days. The number is used to 

calculate the proportions of customers within buckets of different cycle times that iare big 

jobs—which is one by definition—and those of the small jobs with no capacity 

reservation. Our model will use probability theory, under Markovian settings, to quantify 

variability of cycle times and from there translate into the capacity requirements. In the 

first part of our analysis, we assume that the inter-arrival times and the service 

durations follow exponential distributions with rates λsmall, λbig for the demand, and 

µsmall, 𝜇big for the service time respectively. We continue employing this assumption. 

 We recall that when establishing the framework on the first model in the previous 

chapter, we indicate this business environment for service companies such as rentals 

companies considered by Gans and Savin(2007). Particular consideration for the model is 

to recognize that there are significantly different service times. Other complexities of real 

life operations in a given company will be set aside for the moment, as right now our 

interest is mostly to extend the basic model for small vs. big jobs. 

 So initially we will start with the unrealistic assumption that there is 

unlimited capacity in the shop so all demand can be meet in small jobs, and all 

capacity is taken when a big job has been won. Finally, with respect customers arriving 

for small or big job we will assume that their cycle time is essentially different, 

independent and identically distributed. 

 Also, for the purposes of this model we will consider a flow of small jobs that 

come from regular (standard) customers who are willing to join a queue as needed. 
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Finally every day also—whole units of time—for that matter, some of these engagements 

are finished successfully leaving the system; we assume the system behaves holistically 

within a steady state determined probability distribution. 

 Later in Chapter 6, we will comment on how our results help us extend the model 

to a more realistic scenario such as capacity bounds and re-scheduling if possible when 

no capacity is available. In most of the reported work in the literature the models seem to 

be built in two ways, by leaving holes in the agenda or by adding extra capacity (Gallivan 

et al. (Gallivan, Utley, Treasure, & Valencia, 2002), keeping in mind the similarities on 

equipment, parts, failure modes, are opportunities to relax the independence assumption. 

 Continuing with our model defintition, small jobs needs and characteristics are 

assumed to be homogeneous, which means that their processes take similar cycle times 

and probability distribution even when coming from different customers or sources. 

Cycle times are assumed to be independent of one another and independent of the number 

of units under process in the system, and the occupied capacity. Another assumption is 

that there is no re-scheduling and preemption in procesing. Jobs that are already initiated 

must be completed. However, the queues can be dispersed in return for a penalty that is 

proportional to the size of the queue.  

 When a customer big job is won, the assumption is that no small jobs will be 

interrupted; only the next available slot will be allocated to the big job if price 

tender—price premium as defined—is accepted. Another assumption is that next job to 

be executed after the big deal will be the next job on the arrived into a new schedule 

program that is new small jobs queue will re-start.  
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4.3.1 Notation 

In these early stages, our model is fairly unsophisticated, just enough to understand 

the dynamics between what we consider the key factors of: regular jobs, on the 

other hand the sparsed events big deals. 

We need the following parameters and assumptions: 

1. Small job event arrival rate 

2. Big job—lumpy event—as arrival data 

3. Server does not experience any break downs 

4. Labor/skill is available 

5. Theree is a penalty for cancelling each waiting small job, U 

6. Revenue, r, for each small job is exogenous 

7. Premium to be bid for the big deal is the decision variable denoted by 𝒫! where x 

is the state related to the number of small jobs waiting at the time of the big job 

arrival. 

 All demand, once taken, will then use the equipment and labor for a 

number of complete time units—no fractions at this time although if needed the time 

fraction is a natural extension—the demand is associated with a customer. So all 

variables have a value when a demand is present. 

 We describe 𝜋i as the probability of the state space. Arrival rates are random 

independent variables with a Poisson distribution for the equipment taken by the 

customer for a number of units of time. Later build up on this variable could be 

done, to differentiate the types of equipment, for the moment it represents the same 

equipment. 
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 For the moment let’s call this equipment the server, and we will have one unit 

available for the model, this equipment can work with small jobs (s) and lumpy—

random, non-scheduled—demand or big jobs (B). 

The small jobs (s) have a different smaller service time that b i g  jobs ( B ) that take 

longer to service as previously stated. 

 Arrival rates for the s jobs are much more frequent than arrival rates for jobs 

B. There could be multiple s jobs waiting, but no B jobs. Once a B job arrives, it has 

higher priority than the s job, no s jobs can wait in queue meanwhile the B job is 

completed. 

4.3.2 Model Description and Analysis 

Let’s say each of the arrival events are described as a markov chain with service 𝜇s, 𝜇B and 

𝜆s, 𝜆B rate for the arrivals of small jobs and big jobs respectively. The probability 𝜋i, 

denotes the steady state probability of the system by the existing number of customers’ s 

and B at the system and as later will be shown is always a function of the regular price r.  

 As mentioned B customers have higher priority over regular customers and the 

system can only have one B customer at a given state/time. Any B customers that find the 

server busy walk away. The system could have as many regular customers as they arrive, 

who can also wait while other jobs are processed.  

 Figure 9 represents the model schematic of the state spaces. Matrix given in (27) 

has the state space variables for the to calculate the transition probabilities for the model. 
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𝑄 =

0 𝜆!𝑒!𝒫"# 𝜆!
𝜇! 0 0
0 𝜆!𝑒!𝒫"# 0

0 0 ⋯
0 0 ⋯
𝜆! 0 0 ⋯

⋯ 𝜆!𝑒!𝒫"# 𝜇!
𝜆!𝑒!𝒫"# 0

⋯ ⋮ 0

0 𝜆! 0
𝜇! 0 𝜆!
0 𝜇! 0

…

⋮ 0 0 𝜇!
⋮ ⋮ ⋮ ⋱

 (27) 

 In the matrix Q, we express the effective transition rates. Let’s bring back now the 

pricing we defined for our first model in Chapter 3, namely the decision on price to bid 

on arriving job requests. The winning probability of a job proposal is still modeled as 

𝑒!!  𝒫, where β is a constant that denotes the price sensitivity of the arriving job requests. 

Now when the company bids for big deals it uses a premium 𝒫 as in lieu of price, which, 

in this case depends on the state of the system.  

 Clearly, the winning probability decreases in r and 𝒫, and as such the effective 

arrival rate for wins is λB  𝑒!𝒫" for big deals (B). We recall that as customer’s price 

sensitivity β increases, the winning probability for the service provider diminishes at the 

same price level. For small jobs (s) even thought there is also a correlation between price 

and customer arrival, the work continues in the understanding that r is exogenous to the 

company driven by the market, so the arrival rates 𝜆s already have some form of erosion, 

but from the model stand point it is already considered in the variable.  

 The state space will be Si, j = (i, j), with probability Pi,j for the transition from state 

i to state j, then we have matrix Q defined (27), from the depicted model in figure 9 

starting with an infinitesimal generator matrix Q of dimensions n x n. Each node 

connection will be represented by row with the column index the number of the node to 

where the transaction connects following the diagram in Figure 9. 
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Figure 9. The small and big job policy model 

 The connections represented follow the markovian assumption the system steady 

state probabilities. These definitions help to understand the state space for the probability 

distribution of the random variable X(t) over the state space S, since the markov variable 

is {X(t), t ∈ T} with T in the Reals. Let’s assume X(t) is memory less, irreducible and 

time homogeneous, so when transition out of state i happens, with probability Pi,j 

reaching state j, defining then for i ≠ j, i, j ∈ S,  

 𝑃𝑟(𝑋(𝑡 + 𝑑𝑡) = 𝑗|  𝑋(𝑡) = 𝑖)   =   𝑞!,!𝑑𝑡 + 𝑜(𝑑𝑡) (28) 

Now by applying the theorem for the Markov steady state probability distribution,  

 lim!→! 𝑃𝑟(𝑋(𝑡) = 𝑥!|  𝑋(0) = 𝑥!) = 𝜋!    (29) 
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and then 𝜋! , 𝑥! ∈ 𝑆  exists, thus k will represent both the number of transition 

probabilities and 2 regions within the space; idle region on State (i) where i = 0, no 

customers in the server, s region State (i), where i = 2, 3, 4, …, n small customers only 

(s), B region State (i), where i = 1, with one Big deal under service and no big or small 

customers waiting, n = i - 1 also represents s small customers waiting in each state 

𝑖 = 2,3,… , 𝑠,  plus the small customers in the system in process or waiting, and finally n 

= 1, if a Big deal customer is on the system,. See figure 9 again for a diagram 

representing the model. 

 Since both s customers and B customers generate revenue rs and 𝒫! where 

𝑖 = 2,3,… , 𝑠,  respectively, we define πi for i = 1 for B and πi for s customers. Continuing 

from our matrix Q definition, let’s define the diagonal elements to ensure the sum of 

elements is zero, to represent the fact that only one Big job can be processed at the server 

at any given time.  

 𝑞!,! = − 𝑞!,!!
!∈  !  (30) 

 To maintain the global balance on the model equations we will equate the flows 

into a node to the flows out of that node.  

 𝜋!× 𝑞!,! = (𝜋!×𝑞!,!)!!∈!,!!!!!∈!,!!!  (31) 

and rearranging terms we have this matrix equation. Note the bold typography denotes 

matrices 

 𝝅  𝑸 = 𝟎 (32)  
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 The overall probability must be 1 by definition; 𝜋!!!∈! = 1. If needed any 

textbook on Matrix Analysis Queuing will help the reader, see for example (Hillston, 

2005), this brief summary was added for completeness.  

 Taking the equations stated above into the Ax = b format defines the solution for 

the 𝜋! probability unknowns. First we move Q to the first position of the equation by 

transposing it, we will denote QT its transpose matrix. We now normalize by replacing 

the last row with ones, and eliminate the redundant global balance equation; the matrix 

will be designated 𝑸!! , finally the solution vector denoted en will be a column vector with 

all zeros and, in the last row of the column a one. This can be solved with a simple linear 

solution in vector πn extracted from the solution of the linear equation set in the form of 

Ax = b as stated few lines above. 

 𝐐!!   𝜋 = 𝒆! (33) 

 With our transition probability in vector πn—recall that probability πn(r) is a 

function of the premium price, although some times not explicitly mentioned for 

simplicity on the notation—let’s compute the steady state probabilities for idle, s, and B. 

with Idle region defined as probability 𝜋!. 

Thus probability of s region can be then defined as,  

 𝜋! = 𝜋!!
!!! 𝑓𝑜𝑟  𝑖   =   2, 3, 4,… ,𝑛, (34) 

while for the B region is  

 𝜋! = 𝜋!   𝑓𝑜𝑟  𝑖   =   1 (35) 

Then, the busy probability will be 1− 𝜋! or,  

 1− 𝜋! = 𝜋! + 𝜋! (36) 
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and thus the probability to be able to accept a big deals will then be the sum of 𝜋! + 𝜋!, 

that is,  

 1− 𝜋! = 𝜋! + 𝜋! (37) 

while small jobs can be received in any other state, with exception when there is a big 

deal in the server. All of these probabilities are in fact functions of the premium price for 

big deals, with the following notation, 𝜋! 𝒫!   ,𝜋! 𝒫! 𝑓𝑜𝑟  𝑥   =   1, 2, 3… and 𝜋! 𝒫! , 

𝜋! 𝒫! ,𝜋! 𝒫! ,… ,𝜋! 𝒫! ,… ,𝜋! 𝒫! , for simplicity is that we are calling them 

𝜋! ,𝜋!  and 𝜋!,𝜋!,𝜋!…𝜋!. 

 With the definintion of the winnig probability, λB  𝑒!𝒫"# is the effective arrival 

rate for big deals (B). We recall again that as customer’s price sensitivity β increases, the 

winning probability for the service provider diminishes at the same price level. For the 

regular jobs the price is denoted by r and is the company’s regular price bid, as such the 

effective arrival rate for wins is λs for small jobs. 

Following observations into the problem, we have r as price set by a market thus 

for the effects of this work a given parameter. For us the premium 𝒫 is an internal 

decision variable and the one the decision maker would like to obtain given certain 

factors and conditions in both the market price and the business dynamic expressed by 

factors such as wining deals arriving, the service rate for them, and the arriving regular 

customers and their corresponding service rate.  

Finally a penalty U is paid each time a customer was on the queue and then is 

rejected once big job arrives and is accepted. 

From (33) we now obtained the 𝜋! distribution for all the state space, then 
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 𝐿! = 𝑖𝜋!!
!!!  (38) 

To find the price at which the decision maker wish to enter the market, with the 

acknowledge there could be penalties (U) for all those regular customers already in 

queue, when the big deal arrives. Let’s then proceed to define our Gain function as 

follows: 

𝐺!&! = (𝒫! − x𝑈)𝜆!𝑒!!  𝒫! 𝜋!(𝒫)!
!!! + 𝑟𝜆!(1− 𝜋!(𝒫))  𝑓𝑜𝑟  𝑥 ≠   1. (39) 

Then the first derivative of the gain for the premium variable with respect of Gain is 

defined as the optimal value of the function, with a unique maximizer 𝒫∗ at: 

 𝐺!&!∗   𝑤ℎ𝑒𝑛   !"
!𝒫
= 0 (40) 

We now follow the process to make partial derivatives for each element of the eq. (39).  

 !
!𝒫
𝐺!&! = 𝒫!𝜆!𝑒!!  𝒫! 𝜋!(𝒫) + (𝒫! − x  𝑈)𝜆!𝑒!!  𝒫! 𝜋!!!(𝒫)!

!!!  

+𝑟𝜆!(1− 𝜋!)   =   0  .  Where 𝑥 = 1..n             (41) 

Doing simultaneous equations of the following partial derivatives 

!𝒫!!!!!!  𝒫! !!(𝒫)
!𝒫!

= ((𝒫! − x  𝑈)𝜆!𝑒!!  𝒫!) 𝜋!(𝒫)
! +    𝜋!(𝒫) ((𝒫! − x  𝑈)𝜆!𝑒!!  𝒫!

!)+

  ((𝒫! − x  𝑈) 𝜋!(𝒫) )𝜆!𝑒!!  𝒫!
! + (𝜆!𝑒!!  𝒫!(𝒫! − x  𝑈)) 𝜋!(𝒫)

! +

(𝜆!𝑒!!  𝒫! 𝜋!(𝒫) )(𝒫! − x  𝑈)! + ((𝒫! − x  𝑈)𝜆!𝑒!!  𝒫!) 𝜋!(𝒫)
!
 (42) 

for all y ≠ 0, Then 

 !(!!!(!!!!(𝒫)))
!𝒫!

= −𝑟𝜆![𝜋!(𝒫)]′ for all x (43) 

 Proposition 4. There are solutions for each of the equations on the partial 

derivatives indicated 

 !
!𝒫!

𝐺!&! = 0  where  x   =   1,2,3,n  has  an  optimal  𝒫!∗ (44) 
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Such as 𝒫!∗ =   
! !"#! !!!

!
 with 𝛽𝛼! < 1 and 𝛼 = 𝛽 !!

!!!!!!
 

 Proof. The solution set will be obtained in the form. For all states 

   𝒫! =
!"# !  !!

!
  where 𝑥 = 0, 1, 2,…   (45) 

 And solution for state 1, the one from the definition of our state space contains the 

big deals, thus is 𝒫! =   𝒫!  , that is the premium when in state 1 (see model diagram in 

fig. 9) the value of pricing will be recommended. Although it has been defined no other 

big deals can be accepted once the big deal is in process, still to allow generalization of 

the model to other situations we will include this state, also will help us to confirm eq. 

(40). 

 Lets start our process by using the flow equations by node we know each equation 

has a solution in the form stated in eq. (33) and each probability in the node relates with 

Pn=  𝛼nP0, so from the state = 0 we have 

 (𝜆! + 𝜆!𝑒!!  𝒫!)𝜋! = 𝜇!𝜋! + 𝜇!𝜋! (46) 

From the flow equation deploying the variables and rearranging we obtain 

 𝒫! =
! !"# !  !!

!
 where 𝛼 =   1  since. P0=  𝛼0P0 (47) 

Now from the state = 1 we also get the equation for 𝒫! =   𝒫! with P1=  𝛼1P0 

 𝜇!𝜋! = 𝜆!𝑒!!  𝒫!𝜋! + 𝜆!𝑒!!  𝒫!𝜋! +⋯+ 𝜆!𝑒!!  𝒫!𝜋!!! (48) 

 !!
!!
− 𝑒!!  𝒫!𝛼!! = 𝑒!!  𝒫!  𝛼 +⋯+ 𝑒!!  𝒫!  𝛼! (49) 

The general theorem for Dirichlet series definition, see Clark(2010) gets the appropriate 

solution to the multiplicative factor by applying the following identify 

𝑒!!  𝒫!  𝛼 +⋯+ 𝑒!!  𝒫!  𝛼! = 𝑒!!  𝒫!  𝛼!!
!!!   𝑓𝑜𝑟   𝛼 < 1  𝑎𝑛𝑑  𝑅𝑒(𝛽) (50) 
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 lim!→!
!"# !!

!  𝒫!!!
= 1 (51) 

As k goes to infinity in the long run, the function will take the value of one. 

From eq. (50) then by applying Dirichlet theorem in eq. (46) we can now go for the 

solution 

 !!
!!
− 𝑒!!  𝒫!𝛼!! = 𝑒 (52) 

By combining eq. (52) with eq. (47) we now can get the value of the multiplier 𝛼 

 !!
!!
− 𝑒!!

! !"# !  !!

! 𝛼!! = 𝑒 with 𝛼 =   𝛽 !!
!!!!!  !

   (53) 

Since from comparison to eq. (45) by replacing values in eq. (53). We now have the 

value for 𝒫!  for 𝛽𝛼! <1 

◊  

 Lemma 6. The equations for nodes n >2 are 𝒫!∗ =
! !"#! !!!!!

!
 with 𝛽𝛼!!! ≤

  1   ∈ ℛ 

 Proof. From the flow equations for state = 2, please note from now on we will be 

using the index number of the variable 𝒫! as the number of customers in the queue to 

simplify notation, so from state = 2 on, x = state – 1, so when 𝒫!, that would be the price 

for a state where there is 1 customer in the system, 𝒫!, when there are two and so on. 

So for state = 2, we then have  𝒫! and the following from the flow equations 

 (𝜇! + 𝜆! + 𝜆!𝑒!!  𝒫!)𝜋! = 𝜆!𝜋! + 𝜇!𝜋! (54) 

 𝒫! =
! !"#!!!

!!(!!!!!)!!!!!
!!!!

!
 (55) 

since  previous  state  is  n = 1, !!!
!!(!!!!!)!!!!!

!!!!
= 𝛽 𝛽 !!

!!!!!  !

!
 (56) 
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From here on nodes n = 3 … n are all the same with the following analysis, 

 (𝜇! + 𝜆! + 𝜆!𝑒!!  𝒫!)𝜋! = 𝜆!𝜋! + 𝜇!𝜋! (57) 

 𝒫! =
! !"#!!!

!!(!!!!!)!!!!
!!!

!
 (58) 

Since previous in this case previous state is 3 then  x = 2, 𝒫!!!!! 

 !!!!!(!!!!!)!!!!
!!!

= 𝛽 𝛽 !!
!!!!!  !

!
 (59) 

For node = 4, we then have x = 3, we take the flow equations too and obtain the solutions 

following the same rational for the indexes 

 𝒫! =
! !"#!!!

!!(!!!!!)!!!!
!!!

!
 (60) 

With the multiplying factor defined as 

 !!!!!(!!!!!)!!!!
!!!

= 𝛽 𝛽 !!
!!!!!  !

!
 (61) 

With Node n = 4 and those previous observations now we have the solution for all the 

remaining eq. for x = 1, 2, 3, 4,… 

 𝒫!∗ =
!!"#! ! !!!!

!
 (62) 

 𝛼!!! = 𝛽 !!
!!!!!  !

!!!
 (63) 

Where 𝛼!!! is defined by eq. (63) again with x =1, 2, 3, 4, …  

Replacing 𝒫!∗in eq. (44) !
!𝒫!

𝐺!&! = 0 𝑓𝑜𝑟   𝛼 < 1  𝑎𝑛𝑑  𝑅𝑒(𝛽), when 𝑥 → ∞, the proof is 

complete. 

◊  
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4.4 Model Evaluation and Numerical Analysis 

In our numerical analysis, we vary the parameters for all given variables U from 100 to 

500, small jobs arrival rates 5 to 40, big jobs arrival rates 1 to 3, small jobs service rates 

from 10 to 40, and exogenous price r from 100 to 500. Big jobs service rate is kept 

constant at 1. With that we created a synthetic data set to evaluate the correspondent 

premiums and from those observations look for policies to apply to the decision-making 

problem.  

Figure 10 helps us to confirm that the faster you process small jobs, the fewer 

number of customers will be affected once a big job shows up, which drives the overall 

tendency of the pricing. The case we are using, leads to a queue of about 10 customers, 

when the service capacity for small jobs is low, and will decrease as more service 

capacity for small jobs is added. This case also will have a low payment r = 100, while 

the penalty is 5 times the standard price. 

 

Figure 10. Expected queue as function of the small jobs service 

The idea is to set the model in a extreme position, that yet could be typical in 

some businesses where the cancelation of a job might not be only return the money to the 
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customer, but imply expenses already made and the fulfillment of contractual obligations 

such as outsourcing or legal penalties. 

 It is worth to note on eq. 53 the factor for the pricing grows with the arrival rates 

on the big deals, regulated by the sensitivity and with the resolution of the service rate for 

big jobs limiting the overall delivery 𝛽 !!
!!!!!  !

 thus more, small business arrivals and 

service capacity only playing the role in the gain function when no big deal is around, 

which is limited by e from the lim!→!
!"# !!

!  𝒫!!!
= 1 

 We will standardize our big deal prices by dividing them for the price when the 

server is idle, that is 𝒫!
𝒫!

 where x = 1, 2, 3, 4,… The next observation is depicted on Figure 

11 and does show a significant trait  

 

Figure 11. Pricing by state (first 7 states only for clarity) 

 First, on the state 0 when the plant is idle, the suggested premium, keeps up with 

the differential in queue size showed in the 10 as expected, the driver of this variation is 

the server for big deals going from low capacity in 1 to high capacity in 5, suggesting the 

price could go up and down just with the capacity availability, that is an important feature 
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as if there is available capacity you would like to account for that by offering an attractive 

price. Then after state 2—that is, one or more customers in queue—price  has a power 

factor at play depending upon the arrival rates, and the service rate, for small jobs also, 

that will determine the size of the queue and in turn that will drive the amount and size of 

the penalties to contemplate within the pricing, in other words, premium will be at par 

after certain initial value with what is expected to be the penalty of the queue.  

 Even each of the prices depicted on the figure has a range to account for the 

variation on the big deal service capacity, still overall the tendency of the prices goes up 

as the number of customers in queue increases represented by x index and axes in the 

chart. 

 Each of the price points can be analyzed to understand more about their 

sensibility, since it is important to understand pricing in terms of available capacity. For 

example in Figure 12 we now set every variable constant except for 𝜇!, that is the big  

 

Figure 12 a and b. Pricing evolution with one customer as the big deal service level increases 
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deal service level, as it starts to go from 1 to 5—in relative terms this is a huge capcity for 

big deals, there is an interesting play, remember again, we set up the policy no more than 

one big deal. This in effect since the driver for this price is !!
!!!!!  !

 , so when capacity for 

the service level is low, yet more than the necessary for some big deals with probability 

𝑒!!  𝒫!, even with that service levels, some deals get processed, allowing small jobs to be 

taken and delivered as well. Then the bidding price will be high enough as to account for 

the queue on small jobs.  

 Playing with the factors coming from the service rate 𝜇!, when service rate is 

equal to the arrival of the big deals 𝜆!times e, there is no more capacity left, also the 

queue is the lowest (see Figure 12b) and you get then into the optimal price for this state. 

but then in the long run, if capacity of big deal continues to increase, it will support an 

increase in the big deal prices as well. It is only when at capacity and in relation to the 

small job business dynamics the system can support lower the prices for big deals.  

 This insight suggest that the policy will do good for a certain established capacity, 

but once that capacity is full, premiums must account for the small job business dynamic, 

either by the brisky pace of the delivery or by the extension of the queue. Both cases will 

call for higher price quotes for the big deal pricing. 

 The structure of the premium for state 1 is quite interesting in that the capacity to 

service is increasing and in this state we have the expectation to have at least one small 

job in the queue. Since the server is busy, premium first goes down up to around 9. By 

inspection premium 1 defined by eq. 78, we notice that the actual driver is very close to 
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1/𝛽, thus making in effect the qualifier for the big job arrivals close to 1. The model was 

running for n = 10 . 

We note that although more customers will be in queue on the hgher states, the 

likehood of those is remote.  The need to set up the premium could be so high to 

overcome U penalties such that the probability of winning the big deal approaches to 

zero. 

Figure 11 gives again the idea on how important is that first customer in place and 

the premium we can charge for the next big job. The gain curve follows of that first 

premium. 

 

Figure 13. Queue impact by switching small job to big job service rate. 

 

Figure 14. Optimal derivatives vector evaluated on the optimal price. 
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The model is meant to work under the assumption that once a customer comes 

with a big job any other job in queue will be dropped. Figure 13 shows the effect on what 

the difference between the faster small job service rate will be to the big job rate if the 

whole system is now processing at the lower rate. It does confirm the fact that the faster 

your 

 

Figure 15. Gain function derivative sensitivity when n = ∞ at 0, this figure example has n = 14. 

small job service, the more noticeable will be to customers once you accept the big job.  

 Figure 14 above shows the solution vector for each partial derivative of G when it 

is optimal. And it does show a strong fit for the established conditions in eq. (44) 

!
!𝒫!

𝐺!&! = 0 𝑓𝑜𝑟   𝛼 < 1  𝑎𝑛𝑑  𝑅𝑒(𝛽), when 𝑥 → ∞, while figure 15, shows a sensitivity 

analysis for the vector when all the variables of eq. (44) were evaluated over the range +/- 

5% on the setting of the values for optimal G.  
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Figure 16. Price vs big deal service rate when there is 1 small customer x=1 

 When the capacity of the service rate for big deals varies, there are 3 major 

regions that we can observed, with the limit set on lim!→!
!"# !!

!  𝒫!!!
= 1, which in turn 

influences the denominator for the pricing for the multiplicative factor !!
!!!!!  !

 .  

i) When the small jobs service rate is much bigger than the small jobs arrival 

rate, queue for the small jobs does not built up and thus the need for increased 

big deal prices goes away, as depicted in Figure 16, so the pricing remains flat 

despite the increased capacity as no benefit is derived on processing faster the 

big deals.. 

ii) When small job service rate is equal to their arrival rate, there there is a small 

build up, on the queue, and as the capacity increases, the fact the server can 

finish the big deals, and work on either generating r 𝜆! revenue or preventing 

x U penalties, makes the pricing come down until the point big deal service 

rate is equal to the limited capacity on the big deal arrival rate set also by 

!!
!!!!!  !

. 
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iii) When small jobs service rate smaller than their arrival rate, the queue 

increases driving up the prices further 

 The final observation is the capacity of the server, just to confirm what was 

commented on figure 13. The capacity gets constrained when 𝜇! ≤ 𝜆!, but the effect that 

𝜇! ≤ 𝜆! weights in terms of the overall capacity is negligible, as per the policy we have 

that once a big deal is taken, no other big deals, no other small jobs can be taken.   

 

Figure 17 a and b. Capacity vs service rates 

4.5 Discussion on the Order Acceptance with Differentiated Services Model 

There are insights we like to highlight from the model.  

1) Differentiated service, adds riches to the model to help guide the decision maker 

with business conditions on setting prices for big deals. The major driver for the 

price setting is the sensitivity β, that drives the initial consideration for big deal 

price, under the 𝑒!!  𝒫! wining probability. In our model we employ a pricing 

model that maps prices into winning probabilities. This is a reasonable and 

common approach in practice, competition is already set up in the model from the 

interpretation as the possibility that the customer does not have a better 
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reservation price which could be a standing bid from competition. Losing an 

arriving job is akin to the job request being won by the competition. A discussion 

and review of such models and other pricing approaches are reviewed by Bitran 

and Caldentey (2003). Some examples using similar mappings in different 

contexts include Bichler et. al. (2002)., Gallego and van Rysin (1994), You and 

Wu (2007), Pachon et. al. (2007), and Wen and Chen (2010). Setting the initial 

price with parameter 𝛽, will then be both addressing the competition and the 

wining probability. 

2) Capacity set up for small jobs will improve pricing offering for big jobs. 𝜇! ≥ 𝜆! 

3) Big job service capacity will improve pricing until capacity equals the 

lim!→!
!"! !!

!  𝒫!!!
= 1 or expressed in terms of service rate  𝜇! ≤ 𝑒  𝜆! 

4) Pricing will be optimal and minimum in the same limit for any given condition at 

lim!→!
!"# !!

!  𝒫!!!
= 1,  𝜇! = 𝑒  𝜆! for 𝛼! < 1  𝑎𝑛𝑑  𝛽 ∈ ℛ, Thus 𝒫!   will be an 

ascending progression where k is equal to the number of big jobs waiting in 

queue.  

 Once the small vs. big job model is now complete, we move on into a model that 

will now propose a potential capacity setting with a trade off between two possibilities 

while a disruption is created by a “walk-in” customer., hold an asset from prompt 

response to a customer or use the resources to set up capacity to work and deliver to the 

customer scheduled . 
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Chapter 5. Order Acceptance For Service Systems with 
Exchange Inventory 

5.1 Overview 

The rest of this document will be referring to inspections, repairs, refurbishing for 

systems and sub-assembly collectively as: repairs. We note that in the specialized 

literature, there are several types of spare parts; those so called spare parts repairable, 

and those designated by the name of  rotables. 

 The rotables are those modules that typically are proactively replaced from large 

systems such as ships, planes, trains, industrial production manufacturing, to avoid 

catastrophic failure of the components within the module. The repairs are then conducted 

at the module level either by maintenaince prescriptive, or proactive maintenances, or by 

repair due to observation of the out of specification parameter of the spare part during 

inspection. 

 This document motivation, then continues to be, the formulation of models and 

policies needed to provide efficient turnaround to a critical rotables—in this particular 

example for aircrafts parts or modules when, for any reason, the component within the 

module, was not part of a scheduled repair. 

 In such conditions our modeling and contribution differs from the literature to 

recognize some business applications, where a rotable needs service or out of the 

proactive maintenance scheduled for repair, in other words a disruption of the programed 

process.  

 This is especially the case for major service job of a landing gear that will require 

resources and time commitment. Arrivals of such requests are typically infrequent yet 
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generate considerable revenues for service MRO companies, this also is true in other 

service providers outside of those in the aeronautics industry such as train maintenance 

facilities, mass transportation, large industrial installations. 

 The definition of the landing gear is the undercarriage of an airplane. By landing 

gear we designate the structure that supports an aircraft on the ground and allows it to 

move—or taxi in the airlines lingo—takeoff—initiate flight—and land—finish flight. The 

components of the landing gear are typically: shock absorbing devices with oleo fluid 

levels, linkages, trusses and members, retracting and locking mechanisms, hydraulic 

lines, electrical systems, wheels, bearings, tires, brakes, and for some vehicles, other 

mechanisms, besides wheels are used, such as: skids, skis, floats or a combination of 

these and other elements. 

 At the operational level, most of the Aeronautical industry has extensive programs 

and schedules in place to ensure that every plane does have their components—for  

example landing  gears—reviewed  at the end of a prescribed period. The maintenance is 

usually done at the end, because if the review is done before, the timing for the next 

schedule resets, basically eliminating a number of useful days in the system. Ghobbar et. 

al. (Ghobbar & Friend, 2003) documented how significant a factor is the cost per day 

without operation of a plane. Thus the value of the program is to have the most useful 

hours of operation in the system, while avoiding days without operation. 

 Scheduling process for Certifications needs to be carried out according to federal 

regulations, all aerial and space vehicles are subject to a specific set of requirements to 

prove their airworthiness Title 14, part 39 (FAA, 2012) describes the conditions where an 
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aircraft is considered capable for flight; the process conducted to achieve this is called the 

certification process. 

 The certification process requires Service Providers to have trained technicians, 

facilities and resources, capable to perform inspections to any maintenance, preventive 

maintenance, rebuilding, and alteration done on any of the prescribed systems, 

components and parts deemed critical for the safe operation of an airplane. 

 The cited FAA regulation prescribes certain preventive maintenance that must be 

executed according to plan, after the aircraft has operated a predetermined number of 

hours. For example, Part 43 paragraph e, describes what each inspecting person is 

mandated to do during the annual or 100-hour inspection, while reviewing the 

components of the landing gear group. This involves scrutiny of diverse components such 

as: components’ appearance, working order, insecure attachments, obvious or apparent 

defects, fluid levels, stress or wear, excessive wear, cracks, cuts, fatigue, distortion, 

proper operation mechanism verification, electrical systems checks.  

 The process for the preventive maintenance part is very well tuned for 

deterministic scheduling; it lends itself to be managed in this particular deterministic 

way.  

 Nevertheless, there could be complications that might disrupt the schedule and 

require the landing gear to be repaired, to keep certification.  

 These disruptions, coming from regular landing and departure operations 

originated from environmental factors, whose tendency is to result in non-linear behavior 

have the potential to complicate committed plans thus making them difficult to 

accommodate events using a deterministic scheduling program.  
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 The issue is originated since this events are caused by serveral complications with 

sthocastic sources. 

 The first potential complication is the result of material failures. Some of those 

mechanisms and components of the landing gear, for being subjected to the wear of 

materials, stress and fatigue—all this natural phenomena—related to the material 

composition, crystalline structures, and such micro components.  A material dependent 

failure mechanism is known to be(Roth, Yanishevsky, & Beaudet, 1992) non-linear and 

stochastic in nature. 

 The second complication is related to landing gear deployment. Another 

stochastic source of landing gear certification needs is actual unpredictability of the 

operation of the aircraft, sometimes airplanes land without having deployed the landing 

gear. These phenomena are difficult to predict; still it is known to happen often, as many 

as 790 in 17,310 reported incidents (Aviation Safety Reporting System, 2012). All of 

these incidents require certification of the whole system or some of its components. 

 The third and fourth potential complications are derived from chapter 8 page 16 

(Federal Aviation Administration, 2012), which describes two special inspections, which 

might trigger the need for a repair process for certification and airworthiness. Overweight 

landing, one of the two stochastic conditions that might require special inspections forces 

the reengagement of the landing gear certification process, in this condition a plane with 

passengers or cargo overload is flown and the landing gear subject to extreme operational 

conditions. Since this type of condition come in the course of daily operations, with 

multiple causes for the error, the behavior and presence of the issue is stochastic and non-

linear as well. 
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 Finally, the fourth and last complication is: the hard landing. The landing gear in 

this condition is subject to heightened stress due to the high speed and wrong angle / 

direction of the plane hitting the airport’s tarmac while landing. Since those forces will 

depend of random factors, the behavior of this issue will be stochastic and non-linear too. 

 We focus on solving the need those repair stations—service providers or 

providers for simplicity—have to deliver prompt and cost effective service, on a non-

scheduled landing gear certification. We provide models composed for the provider who 

performs these non-scheduled landing gear certifications, to make the most profitable 

decision to support the certification of these components.  

 The models will help to clarify the distinction between two approaches; the first 

maintaining a mixed an inventory and scheduled facility at minimum cost, minimum 

gain, and the second maintaining an inventory on hand which allows the provider to 

capture these non-scheduled customers—walk in’s. The provider could in the second case 

command a premium price and thus realize significant gain, if proper consideration is 

done to the asset and investment cost, when they can provide immediate exchange. 

 We use markov chains modeling; first to propose what a Pure Exchange model 

will look like. By Pure Exchange we understand a facility that has a number of landing 

gears in stock and when one customer shows up, the landing gear is exchanged for 

another one, in this model there is not waiting, neither backlog is allowed, there are no 

landing gear inspection, rebuild and certification workstations available. 

 Second, we will entertain the idea of a Mixed Model where we have a number of 

workstations for landing gear repairs and we can provide some on hand stock. In this 

particular model constrains are relaxed on only exchange, and now, once the exchange 



 

 

 

78 

inventory is exhausted, make some workstations available. If there are landing gears or 

workstations available, landing gears can be accepted. 

Think of this model as a way to generalize it to a case where you have stock on hand up 

to a point, but then once the inventory or the capacity are exhausted you can then have 

backlog. Capacity is represented by the number of workstations available for repair in 

conjuction with the stock available for exchange. This model we called it Mixed Model, 

with its results at hand we will have two data sets—pure and mixed models—available 

for analysis. Thus allowing the comparison in subchapter 5.5 for the models under 

different business conditions, this will allow us to get insights and provide answers to 

different business velocities—arrivals, reactions, and capacities. 

 Continuing in our model progression, in our previous case service providers that 

may have a steady but small size business flow and could attempt to receive a big job that 

shows up at times, the company have a steady business with scheduled repairs for small 

customers, if a big job requiring repair and the usage of some capacities shows up, the 

question is if the customer is to be taken.  

 In our aeronautical company example, we might think as what the proper price set 

to compensate the firm for providing this customer with an acceptance and with 

inmediate accessible inventory. In fact same as in our previous analysis, the firm may 

choose to drop all repair capacity and offer only exchange if the price is right.  

 This model is the continuation of our progression to better understand order 

acceptance policies for big deals vs. regular jobs. In the previous chapters models help to 

understand pricing of big deals vs. small jobs, then relaxing models’ assumptions, we  

reflected the fact that small jobs might be waiting in queue when a big job arrived and 
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policies were derived to evaluate business conditions and make a decision based on 

parameters such as; arrivals, services rates, penalties, regular job prices. As a result 

policies where provided to help the decision maker to get maximum gain by describing 

the situation to the model based on those parameters. 

 With this new model now the idea is to bring the adquired knowledge into yet 

another possible situation. In this occasion the decision maker needs to execute into a 

situation, where big deals will turn into cases were there is a interruption to an established 

schedule—also called walk-ins—and providing product for exchange in this conditions 

can command a premium as long as they are immediately available, and the decision 

maker wishes to know if the business conditions are such that if holding inventory at a 

certain premium will generate additional gains over the possibility to have their money 

invested in expanded capacity to handle more work.  

 For these opportunities we developed the model on subchapter 5.3 to look for the 

optimal premium, and the resource allocation policies under this light, it is a continuation 

on studies for optimal premiums for pricing, demand and order acceptance policies for a 

firm that faces deals under a markov chain setting. The objective of the study is to 

develop and compare optimization models for different demand management settings by 

pricing. Specifically, we consider two different strategies: 1) a pure strategy in which the 

firm commits to bid inventory exchanges only; 2) mixed strategy where the firm switches 

its allocation of capacity between inventory exchange and repair capacity. 

 This final question is addressed by the model mixing both concepts holding 

inventory and then once it is gone, continue to receive customers at a lower price in 

standard repair workstations.  
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We then, by the end of the chapter, wecompare what are those conditions that make the 

Pure Exchange policy more succeful than a Mixed policy, and by concequence when the 

opposite is true, and comment on the strategies insights with the support of different 

models developed as relaxations from the basic model. 

5.2 Literature Review  

Think off a facility—to illustrate the problem disruptions into the service queue—of an 

Aeronautical company working on landing gears certification, and the customers that 

request a non-scheduled service we called disruptions to the plan. These disruptions, 

coming from regular landing and departure, and other environmental factors originated 

from operations, whose tendency is to result in non-linear behavior have the potential to 

complicate committed plans thus making them difficult to accommodate events using a 

deterministic scheduling program. 

 The research in this area is extensive, starting with supply chain models for spare 

parts. There are several ways to categorize this research see for example Muckstadt 

(Muckstadt, 2005) for an extensive coverage in spare parts and repairables.  The 

extensive research started with works such as those of Scarf with early work since 1962 

(Clark & Scarf, 2004) and Iglehart (Iglehart, 1964) has also focused in the inventory 

management for the spare parts and the unique demand conditions for some of the 

components. 

 More recent work in the area of MRO in general has being done for trains such as 

those applications for models for deterministic scheduling without disruptions by Arts 

(Arts et al., 2012) Looking to present a solution for the resources planning and 
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maintenance with the particular case of rotables in the Netherlands. Or those also in train 

transportation for the resource programming and scheduling with disruptions were Chen 

et al (Chen, Yan, & Chen, 2010) working for the mass transit authority in Taiwan 

developed a model to schedule mixed deterministic and stochastic demands for the 

planning of carriage maintenance manpower supply. 

 The models very complete, tackle the problem from the stand point of a facility 

that has resources dedicated to internal maintenance and repairs of the transportation 

systems. Similar to what our model is looking yet their approach is from the operational 

level. In our case we continue to look for models in the strategic level, to answer to 

questions if makes sense, for example, to have rotables rather than repairs, to offer the 

product or service to external customers, and what should be the order acceptance 

policies to accept or reject. 

 These, questions have partial solutions from the third leg of research and the 

common subject of the different models depicted out of this document for the order 

acceptance policies. In this area the objective is to find conditions on the business 

typically expressed in markov chains, or queue theory, with underlying probability 

distributions and memory less states, where at any given business condition, there is a 

blocking probability and an optimal business performance that maximizes gain, if 

admission policies are set up to get into the optimal result. Work in this area has been 

done by Millhiser et al. (Millhiser & Burnetas, 2013) 

 From our document stand point, it is the combination of these three lines of 

research that give us the model we are looking after, that will help to answer in addition 

to the other formulated questions; At what price should it be bid?, finally if there are 
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conditions, when having an asset of one kind is recommend over another asset (think for 

example on the trade off between inventory vs. repair capability). 

 The contribution of our models will help to clarify the distinction between two 

approaches; the first maintaining a mixed facility at minimum cost, maximum gain, and 

the second maintaining an inventory on hand only facility, both of whom allow the 

provider to capture these non-scheduled customers—walk in’s. The provider command a 

premium price and thus realize significant gain, if proper consideration is done to the 

asset and investment cost, when they can provide immediate exchange. 

5.3 Basic Settings for the Models 

We consider a MRO service provider that receives jobs with random intervals. An 

arriving job is an equipment or device that requires maintenance and overhaul. The MRO 

company can serve the customer by either overhauling the customer’s original equipment 

(repair strategy) or by exchanging the incoming equipment with an in-stock ready-to-go 

equipment (exchange strategy). In the former case, the customer must wait until the 

service of its equipment is completed by the MRO process. This generally results with 

significant delays for the customer’s operations (such as the operations of an aircraft) 

since the turnover times are usually long. In the latter case, the customer’s equipment is 

immediately exchanged (or rented out) with another from the service provider’s 

inventory which virtually eliminates the turnover times for the customer. The customer’s 

original equipment - once serviced - is added to the MRO company’s “exchange 

inventory” for a future exchange with another customer (or returned to the original owner 

and the rented equipment is returned back to the service provider’s inventory). In practice 
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such inventory is also referred to as the rotable inventory. In this study, we use terns 

exchange inventory and rotable inventory exchangeably.  

 The exchange strategy based on rotable inventory is usually appealing to 

customers since they can bypass the waiting time for the MRO operations by means of a 

straightaway exchange. Typically, the downtime due to equipment overhaul is costly for 

the owners. Therefore, the equipment owners are willing to pay higher fees for quick 

turnovers, which may make the exchange option attractive also for the MRO service 

providers. On the other hand, in order to employ an “exchange” policy, the MRO service 

provider needs to continuously carry rotable inventory of overhauled equipment, which 

may incur substantial costs.  

 We investigate the value of the exchange approach form the perspective of the 

MRO firm. We study the threshold between the exchange strategy and the conventional 

overhaul strategy. We carry out our analysis for two policies: 1) pure exchange policy 

and 2) mixed policy. In the former case, the MRO adopts a policy on pure exchange 

where all arriving overhaul requests are responded by an exchange subject to availability 

of the finished rotable inventory. If there is no exchange equipment in the MRO 

company’s inventory, the arriving jobs cannot be accepted. In the mixed policy, once the 

exchange inventory is depleted, the subsequent job arrivals are still accepted for service, 

where the customer needs to wait for the completion of her equipment’s overhaul. Under 

this policy, the service fees depend on whether the customer receives an immediate 

exchange or waits for the whole overhaul process.  

 For illustration effects reader can think on the Avionics business where different 

landing gears and configurations have significantly different service times, however 
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initially many of the complexities of real life operations in the Avionics company 

will be for the moment set aside, as right now our interest is mostly to extend the 

basic model. So initially we will start with the unrealistic assumption that there is 

unlimited capacity in the shop so all demand can be meet. 

 Also, for the purposes of this model we will consider a class of regular and 

standard customers that are already programmed for repair and refurbishment. Every 

day also, some of these engagements are finished successfully leaving the system. 

Systems or products under this process are assumed to remain in the process for 

whole number of days; we assume the system behaves holistically within a steady 

state determined probability distribution.  

 Equipment with similar refurbish and repair needs and characteristics is 

assumed to be homogeneous, which means that their processes take similar cycle 

times and probability distribution. 

 However, cycle times are assumed to be independent of one another and 

independent of the number of units under process in the system, the occupied capacity. 

Also we will need to quantify the effects such as the weekend activity build up and 

the staff availability by skill. 

 Another consideration will be that there is no re-scheduling. Jobs are executed, 

and once initiated, they have to be finished. Re-scheduling is possible when no 

capacity is available, and the buffer could be done in two ways, by leaving holes in 

the agenda or by adding extra capacity in the reserve. 

 When we have a customer walk-in, we assume that no jobs will be interrupted, 

only the next available slot will be allocated to the walk in if price tender—price 
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considerations are beyond the scope of this model—is accepted. Another assumption 

is that next job to be executed after the walk-in will be the next job on the scheduled 

program. Both assumptions will later be relaxed to allow insight on re-schedules and 

delivery issues. 

 In our analysis, we assume that the MRO requests arrive following a Poisson 

Process with an arrival rate denoted by λ. We also assume that the service time is 

exponential with a service rate denoted by µ. We consider a model with multiple servers 

where arriving jobs can be processed in parallel. We let c represent the number of parallel 

service lines operating under this setting. To model the resulting queuing system, we 

define the system state based on the number of exchange units in inventory, S.  

Figure 18. The Pure Exchange and Mixed order policy models. 
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5.3.1 Pure Exchange Model 

We first investigate optimal policies for the pure exchange strategy, where the service 

requests are accepted only when exchange inventory is available. The service provider 

charges a fee, denoted by r, for each accepted demand for service. We consider a MRO 

service provider who maintains a rotable inventory position for equipment exchange. We 

represent this quantity by S. The inventory position is composed of finished (overhauled) 

equipment inventory, Sf, and the work-in-process inventory, Sw. As such, the company 

has at all times S=Sf+Sw units of equipment in the system. Each unit of equipment in 

inventory costs company h per time unit. In this section, we first propose a model to find 

optimal inventory position given exogenous parameters such as the arrival rate (λ), the 

service rate (µ), the number of service lines (c), and revenue per exchanged equipment 

(r). To avoid pathological cases, we assume that 𝑟 ∗min 𝜆, 𝜇 > ℎ.  

 The markov process that represents the pure exchange setting depends on the 

comparison between the inventory position (S) and the number of service lines (c).  

Clearly, if S ≤ c, the number of busy service lines cannot exceed S. Consequently, the 

service system effectively operates with S servers since demand beyond S will not be 

accepted by the service provider under this model. Moreover, there will be no service 

queue for the in-service exchange inventory.  

 On the other hand, if S > c, for Sw > c, there will be a queue for the service that 

replenishes (turns over) the exchange inventory. Based on this observation, we need to 

consider two different chains as depicted in Figure 18. We first solve the steady state 

parameters to generate the long run profit function for the server provider assuming 

abundant capacity (i.e., S ≤ c), which is followed by the analysis of the case with scarce 
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capacity (S > c). Comparing two cases, we investigate optimality conditions for the 

server provider’s exchange inventory position. 

 When capacity is abundant, the pure exchange policy turns into a truncated queue 

where no line forms. Using Kendall notation, we can denote this system as M/M/c/c, in 

such systems the steady-state probability distribution is captured by Erlang’s first 

formula, namely, 

 𝜋! =
!!

!! !!
!!

!
!!!

            (0 ≤ 𝑛 ≤ 𝑆), (64) 

 Where 𝜌 = 𝜆/𝜇, which is understood to be the traffic intensity and πn denotes the 

probability that there are n units of equipment in service (i.e., Sc = n). The expected profit 

function depends on the effective arrival rate. As pointed out earlier, incoming orders are 

accepted as long as there is available inventory for exchange. When Sc = S, all inventory 

position is in service implying that no order can be accepted in this state. From (64), this 

probability is captured by 𝜋! and referred to as the blocking probability. Consequently, 

the effective arrival rate is 𝜆(1− 𝜋!) and the associated revenue is  𝑟𝜆(1− 𝜋!). Using 

eq.(64), we can write the profit function as follows 

 𝐺!!! = 𝑟𝜆 !!!!
(!!/!!)!!!!!

  − ℎ𝑆 (65) 

where 

 𝐴! =
!!

!!
!
!!!  (66) 

 In Eq. (65), the first term is the expected revenue whereas the second term is the 

cost of the inventory position We first show that 𝐺!!! is concave in S. 

 Lemma 7. The steady state profit function 𝐺!!! is concave in S for S ≥ 1. 
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 Proof. To complete the proof, it is sufficient to show that !!!!
(!!/!!)!!!!!

 is concave 

in S. First we note that this term is a discrete function of S. A discrete function, f(n) is 

concave in n a given region if for any n in the said region the following holds: 

 𝑓 𝑛 + 1 + 𝑓 𝑛 − 1 − 2𝑓 𝑛 ≤ 0. (67) 

Therefore, for concavity we need  

 
!!
!!!!

+ !!!!
!!!!

− 2 !!!!
!!

≤ 0 (68) 

It is straightforward to observe that the left hand side of the above inequality returns a 

negative value for any S > 1 and ρ > 0 using a three dimensional graphl. For the case 

where S = 1, the above inequality reduces to 

   − !

!!ρ !!ρ! !
! ρ!

 (69) 

Which is clearly negative for ρ > 0. Consequently, we conclude that 𝐺!!! is concave in S 

for S ≥ 1. 

◊  

 This result indicates that the profit function given in Eq. (65) has a unique 

maximizer and can be easily obtained using a line search. It is interesting to observe that 

the steady-state probability formula given in Eq. (64) is independent of the service 

distribution type and only depends on the average service time (Gross & Harris, 1998). 

As such, the optimal inventory position obtained from Eq. (65) is valid for any service 

time distribution. 



 

 

 

89 

 When the number of service lines is small, (that is, assuming S > c) the resulting 

system becomes an M/M/c/S queue. In this queue, the blocking probability, where the 

entire inventory position is in-service (that is, Sc = S and S0 = 0), is 

 𝜋! =
(!/!)!

!!!!!
𝜋! (70) 

Where 

 𝜋! = 1/ !!

!!
!!!
!!! + !

𝑐!𝑐−𝑐
!
!

!!
!!!  (71) 

 From Eq. (70) and Eq. (71) we can re-write the blocking probability. Defining 

𝑧 = 𝜌/𝑠, we get 

 𝜋! =
!!(!!!)!!

!! !!! !!!!!!(!!!!!)
 (72)  

 Hence, the expected profit function is 

 𝐺!!! = 𝑟𝜆 1 − !!(!!!)!!

!! !!! !!!!!!(!!!!!)
  − ℎ𝑆 (73) 

Next, we show that the above function is unimodular in S. 

 Lemma 8. The steady state profit function 𝐺!!! is unimodular with a unique 

maximizer for S > 0.  

 Proof. To prove unimodularity, we show that at any stationary point for S>0 in 

(10), the second derivative returns a negative value implying that there must be a unique 

stationary point which maximizes the function. First let 𝑋 = 𝑐! (1− 𝑧)𝐴! + 𝑧!!!𝑐!. 

Then the first derivative of 𝐺!!! with respect to S is 

 𝐺!!!! = 𝑟𝜆 − 𝑐𝑐(1−𝑧)𝑙𝑛(𝑧)𝑧𝑆𝑋

𝑋−𝑐𝑐𝑧 𝑆+1 2   − ℎ (74) 

 At any stationary point, the above function should return zero. Now we look at the 

second derivative: 



 

 

 

90 

 𝐺!!!!! = 𝑟𝜆 − 𝑐𝑐 1−𝑧 𝑙𝑛 𝑧 2𝑧
𝑆
𝑋(𝑋+𝑐𝑐𝑧 𝑆+1 )

𝑋−𝑐𝑐𝑧 𝑆+1 3    (75) 

 Evaluated at the stationary point (say S=S*), the second derivative will return the 

following: 

 𝐺!!!!! (𝑆 = 𝑆∗) = ℎ
𝑋+𝑐𝑐𝑧 𝑆

∗+1

𝑋−𝑐𝑐𝑧 𝑆
∗+1

3 𝑙𝑛  (𝑧) (76) 

 First suppose 𝑐 ≥ 𝜌. In this case, since 𝑧 ≤ 1, 𝑙𝑛  (𝑧) ≤ 0 and both the numerator 

and the denominator inside the above parenthesis are nonnegative. As such, the overall 

function returns a non-positive value. When 𝑐 < 𝜌, 𝑧 > 1 which implies that 𝑙𝑛 𝑧 > 0. 

In this case, it is straightforward to see that the denominator inside the parenthesis is 

strictly negative since 𝑐 ≤ 𝑆∗. We need to take a closer look at the numerator to make 

conclusions about its sign. Using the incomplete upper gamma function, we can rewrite 

the numerator as follows: 

  𝑋 + 𝑐!𝑧 !∗!! = 1 − 𝑧 𝑒!Γ(𝑐 + 1, 𝜌) + 𝑐! 𝑧!!! + 𝑧 !∗!!  (77) 

From the Gauss’s continued fraction expansion of the incomplete gamma function(Jones, 

Thron, & Waadeland, 1982) we can observe that Γ 𝑐 + 1,𝜌 < 𝜌!!!𝑒!!/(𝜌 − 𝑐). 

Consequently, since 𝑧 > 1, 

 𝑋 + 𝑐!𝑧 !∗!! > 1 − 𝑧 !!!!

!!!
+ 𝑐! 𝑧!!! + 𝑧 !∗!!  (78) 

 Where the right hand side reduces to 𝜌!!!/𝑐!!!!!. Since this term is a lower 

bound for (77) and strictly positive, we can conclude that the equation in (77) always 

returns a positive value. Hence, the overall function in (76) must be strictly negative.  

As such, we observe that any stationary point must be maximizing for the profit function 

implying that it must be unique. 
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◊ 

 From (65) and (73), now we can write the expected profit function for the MRO 

service provider in general form: 

 𝐺(𝑆) = 𝐺!!! , if  𝑆 ≤ 𝑐
𝐺!!! , if  𝑆 > 𝑐 (79) 

Given (79), we can investigate the optimal inventory position for the service provider. 

We first need the following result: 

 Lemma 9. At S = c, the slope of 𝐺!!! is lower than the slope of 𝐺!!!. 

  Proof. To see this result holds, we first note that at S = c both functions intersect. 

Second, beyond this point (i.e., S > c) 𝐺!!! always returns higher values since this 

function is constructed based on the assumption that the maximum number of busy 

servers is S whereas in 𝐺!!! this number is c. As such the profit curve for the latter 

function should always be above the former one for any S such that S > c. This implies 

that at S = c, 𝐺!!! must have a lower slope than that of 𝐺!!!. 

◊  

  

𝐺!!!  

𝐺!!!  

𝐺!!!  

𝐺!!!  
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Figure 19. Expected gain curves.  

 The above result helps us deduce the possible scenarios for optimal inventory 

positioning. Basically, Lemma 9 implies that one of the three cases should occur:  

at S = c, either i) both curves are decreasing or ii) both curves are increasing or iii) while 

𝐺!!! is increasing, 𝐺!!! is decreasing. All three cases are illustrated in Figure 19.  In the 

first case, clearly the optimal inventory position is below c and computed based on 𝐺!!!. 

In this case, the service provider’s optimal exchange inventory is lower than the number 

of available servers and as such, there will be no queue for service. In the second case, 

the optimal inventory position must be above c implying that the optimal inventory level 

is above the number of available servers. The last case implies that at optimality, the 

exchange inventory level exactly matches the number of available service lines.   

 Based on this observation, we can derive the optimal inventory policies for the 

MRO service provider. We let 𝑆!∗ and 𝑆!∗  represent the integer inventory position values 

that maximize 𝐺!!!. and 𝐺!!! respectively. 

𝐺!!!  

𝐺!!!  

𝐺!!!  

𝐺!!!  
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 Proposition 5. For given arrival rates (λ), service rates (µ), and number of servers 

(c) the optimal inventory position, 𝑆∗, is such that 

i)   𝑆∗ = 𝑆!∗ where 𝑆!∗ < c, if and only if 
 ℎ 𝑟 > 𝜆 !!!!

!!
− !!!!

!!!!
 (80) 

ii)  𝑆∗ = 𝑐 if and only if 

𝜆 !!!!
!!

− !!!!
!!!!

≥ ℎ 𝑟 ≥ 𝜆𝑐!𝑧! !!!!!!!!!(!!!)!!
!!!! !!!!!!!!!!!

 (81) 

iii) 𝑆∗ = 𝑆!∗ , where 𝑆!∗ > 𝑐,  if and only if 

 ℎ 𝑟 < 𝜆𝑐!𝑧! !!!!!!!!!(!!!)!!
!!!! !!!!!!!!!!!

 (82) 

 Proof. The inequality (80) is derived from G!!! c− 1 − G!!! c > 0. That is, 

the inequality holds if and only if the profit with S = c -1 is higher compared to S = c.  

This clearly indicates that in the latter case the profit function has a negative slope. Form 

Lemma 9, we can conclude that G!!! must have a negative slope as well. Since both 

functions are known to be unimodular (as shown by Lemmas 7 and 8), the optimal 

inventory position must be strictly below s and hence, the optimal solution should be 

determined based on (65). If the inequality does not hold, from concavity, it is 

straightforward to see that optimal inventory position must be equal to or greater than s. 

Hence, the first part (i) holds. 

 The proof of part (iii) is similar. The inequality in (82) is directly reduced from 

𝐺!!! 𝑐 + 1 − 𝐺!!! 𝑐 > 0. That is, the inequality holds if and only if the profit defined in 

(73) with S = c +1 is higher compared to S = c. This implies that at the latter point the 

profit function has a positive slope and as such, from Lemma 9, 𝐺!!! must have a 

positive slope as well. Since both functions are unimodular, the optimal inventory 
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position must be strictly above c and hence, the optimal solution should be determined 

based on (73). If the inequality does not hold, from concavity, it is straightforward to see 

that optimal inventory position must be equal to or lower than c. 

 The deduction obtained in the proofs of parts (i) and (iii) clearly implies that when 

(81) holds, the optimal inventory position is equal to the number of service lines.  

◊  

 The above result sums up the optimal inventory policy for the service provider, 

which depends on the ratio between the holding cost and revenue. As expected, when this 

ratio is above a threshold, the optimal inventory position will be below the available 

service lines, leading to a system with no queues and redundant servers. On the other 

hand, if the ratio is below another threshold, the optimal policy requires that the inventory 

level will be above the number of service lines.  

 

h/r 

S*>c 

S* = c 

S*<c 
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Figure 20. Threshold lines as functions of the number of servers 

 In between thresholds it is optimal for the service provider to match the inventory 

level precisely with the number of servers. In general, the optimal inventory position is 

non-decreasing in per unit revenue (r) and non-increasing in holding cost (h) as expected.  

 The threshold curves are illustrated in Figure 20. Typically, for a given ratio, as 

the number of server lines increases the optimal inventory level is realized below the 

number of server lines. Interestingly, in some cases while the optimal inventory level first 

matches the number of server lines, as the number of servers increases the optimal 

inventory will be first above the number of servers then back to be equal to the number of 

servers and finally falls below it. This case is illustrated by the middle dash line in Figure 

20. This implies that the relation between the number of server lines and the optimal 

inventory level is not necessarily monotonic. The impact of system parameters on the 

choice of optimal inventory level is investigated in detail using a numerical analysis in 

the next section. 

5.3.2 Exchange Model Numerical Examples. 

In this section, we investigate the impact of model parameters on optimal inventory 

policies using a numerical analysis. To carry out the analysis, we compute optimal 

solutions for about 2,500 instances. We utilize the numerical instances to support our 

sensitivity analysis on varying value combinations across arrival rates, service rates, 

number of servers and holding cost.   
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Figure 21. Optimal inventory as function of number of servers (𝜇 = 4.5 and h = 25) 

 Figure 21 illustrates the impact of the number of servers on the optimal inventory 

levels for varying values of the arrival rates. The optimal inventory curves indicate that 

for sufficiently low arrival rates the inventory level is non-decreasing with the number of 

servers. On the other hand, for relatively higher arrival rates the optimal inventory level 

first increases and then decreases. In all cases, the optimal inventory level converges to 

𝑆!∗. Basically, when there is limited number of servers, the service rather than the 

inventory becomes the bottleneck for the system. Increasing the number of servers 

enables more return on inventory investment up to a certain point. After that point, when 

service rate becomes less of a bottleneck for the system due to increased number of 

servers, fewer inventories are needed since inventory can be replenished rather quickly. 

 It is interesting to observe that when there are few servers, higher arrival rates 

lead to lower inventory units and when there are sufficiently high numbers of servers 

opposite is true. As mentioned above, in the former case service rate becomes more of a 

bottleneck as the arrival rates increases, which lowers the turnover for the inventory 
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leading to a decrease in inventory units. In the latter case, since there are sufficiently high 

number of servers higher arrival rates lead to higher inventory turnovers which results 

with increased inventory units. When the number of service lines is neither low nor high, 

the relation between the arrival rates and the optimal inventory is non monotonic.  In 

order to better understand this pattern we first make the following observation regarding 

the trade-off between the arrival rates and the optimal inventory: 

 Lemma 10. Assuming 𝑟𝜇 > ℎ, as λ → ∞, 𝑆∗ → 𝑐. 

 Proof. First, note that as the arrival rate grows too large there is always demand 

for any completed job. Therefore, the effective demand is as high as the throughput of the 

overall service system.  As such the effective demand rate is Sµ when S<c and cµ when 

𝑆 ≥ 𝑐. In the former case, the mean profit increases in S since 𝑟𝜇 > ℎ whereas in the 

latter case it decreases with S since the revenue is a function of c while the total holding 

cost is increasing with S. Consequently, optimal inventory position, 𝑆∗, converges to the 

number of service lines, c. ◊  

 This result implies that with sufficiently high demand rate, the optimal inventory 

position converges to the number of servers. This is intuitive in that at high arrival rate 

the system can admit arrivals as fast as its maximum throughput and as such, the service 

company cannot be better off by maintaining an inventory position either below or above 

c. In general, the impact of arrival rates on the optimal exchange inventory is illustrated 

in Figure 22. 
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Figure 22. Arrival rate vs. optimal inventory (c = 9, 𝜇= 4.5, h = 25 

 Given that all other parameters are constant, the optimal inventory first increases 

with λ to a certain point and then decreases until it converges to c. When the demand 

arrival rate is sufficiently low but increasing, the service company needs to increase its 

exchange inventory position in order to cope with increased demand. However once the 

traffic density reaches a tipping point (usually around 𝜆/(𝑐𝜇) = 1), the arrival rates 

become too dense that the work-in-process inventory (Sw) and thus, the service queue 

inflate. In the steady state, the system will rarely have ready-to-exchange finished 

inventory (i.e., Sf ~0). Consequently, the overall service rate becomes the bottleneck for 

the system rather than the inventory. In this case, additional inventory will be rarely used 

and thus incur more cost than revenue. As the arrival rate further increases, the inventory 

level will converge to the number of servers. 

 Figure 23 provides another picture for the impact of number of servers. It depicts 

the optimal inventory curves for varying values of service rate, µ. Consistent to the 
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pattern present in Figure 21, optimal inventory level is first increasing and then 

decreasing with the number of servers, eventually converging to 𝑆!∗ in all cases. 

 

Figure 23. Optimal inventory as function of number of servers (𝜆 = 20 and h = 25) 

 When few service lines are available, higher service rate results with higher 

inventory levels. Opposite is observed when the number of service lines is sufficiently 

high. In the former case, increasing service rate enables the use of more inventory units. 

With high number of service lines and increasing service rates leads the utilization will be 

too low to justify higher inventory levels. As such, the increase in replenishment rates 

result with lower inventory. Similar to the case with arrival rates, when the number of 

servers is neither low nor high the relation is non monotonic.   

 Further studying the influence of service rates, we first observe that the inventory 

level converges to one as service rate becomes too big.  

 Lemma 11. Assuming 𝑟𝜆 > ℎ, as µμ → ∞, 𝑆∗ → 1. 
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 Proof. The proof is straightforward from the fact that an infinite service rate 

implies instantaneous overhaul and hence replenishment of the exchange rate and as 

such, there will be no need to carry more than a single unit of inventory. ◊  

Consistent to Lemma 11, in general, the optimal inventory level decreases as the service 

rate increases. However, as illustrated in Figure 24,  

 

Figure 24. Service rate vs. optimal inventory (c = 9,  𝜆= 25, h = 25) 

 

in some cases when the service rate is too low, the inventory level increases first with the 

service level to a certain point. This is especially the case when the arrival rate is high, 

which as explained above, leads to lower finished overhaul inventory due to relatively 

slow turnover in service. At this point, as the high arrival rates are balanced by the 

increasing service rates additional inventory brings more turnover and hence revenues. 

 Consequently, higher inventory position improves the revenue. As the service rate 

continues to increase, effective utilization in the system and hence, the need for higher 

inventory position decreases.  
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 In general, we conclude that the optimal inventory level is relatively lower with 

low and high loads. Typically, need for inventory peaks for intermediate load levels. 

When the system load (or traffic density) is too low, the return on investment in inventory 

does not justify keeping high number of equipment units for exchange. On the other 

hand, when the load is too large, service becomes a bottleneck for the system and 

substantially long replenishment times do not allow for turnover of large inventory at 

steady state.  

5.3.3 The Mixed Policy for Exchange and Service 

 In this stage, we consider a mixed model that allows for conventional service 

where the customer needs to wait through the service process. As in the previous case, 

the service firm maintains a rotable inventory for exchange. Moreover, when the whole 

rotable inventory is work-in-process (that is, Sf = 0 and Sw = S), any arriving customer’s 

equipment will be directly admitted into the service process. This customer will receive 

the first equipment that comes out of the service process. Customers who receive 

conventional service instead of equipment exchange are charged αr where α ∈ (0,1). As 

such, these customers pay a portion of the full exchange service fee since their service is 

not instant as in the case of direct exchange. It is assumed that all customers are willing to 

take the exchange option if available and are also willing to wait for service only if direct 

exchange is not possible in return of a discounted rate set by α.   

 

 This setting translates into an M/M/c/∞ queuing system, where the service firm 

needs to determine the optimal inventory level for exchange. Similar to the previous case, 
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the long run gain function is conditional on whether the inventory level is below the 

number of servers or not. We first consider the case S ≤ c. Revenue from direct exchange 

is realizable when there is at least one finished inventory available for exchange. As such, 

the effective rate for exchange revenue is 𝜆 𝜋!!!!
!!! .  Since S ≤ c, the steady state 

probabilities in that range are 

 𝜋! =
!!

!!
𝜋! (83) 

where. 

 𝜋! = 1/ !!

!!
!!!
!!! + !

𝑐!𝑐−𝑐
!
!

!!
!!!  (84) 

Consequently, we can write the gain function for the mixed model as fallows: 

 𝐺!!!! = 1 − 𝛼 𝑟𝜆𝐴!!!𝜋! + 𝛼𝑟𝜆 − ℎ𝑆 (85) 

where  Ax is defined in (66). In contrast to the pure exchange case, the above gain 

function is not always concave. As explained below, concavity is attained under certain 

conditions and it mainly depends on the traffic density. 

 Lemma 12. The steady state profit function 𝐺!!!!  is concave in S for S ≥ ρ. The 

function is strictly convex for S in [0,ρ). 

 Proof. When we apply the inequality given in (67), we obtain the following 

condition for concavity: 

 𝐴! + 𝐴!!! − 2𝐴!!! ≤ 0. (86) 

It is straightforward to observe that the above inequality reduces to S ≥ ρ. As such, the 

function is concave for S ≥ ρ and strictly convex otherwise. S = ρ is the saddle point. ◊  
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 The above result implies that the optimal solution is not necessarily identified by 

the stationary point in the gain curve. Let 𝑆!!∗ denote the optimal inventory level for the 

mixed policy where S ≤ c. 

 Lemma 13. There exists a threshold value for ℎ/(1 − 𝛼)𝑟, say 𝜛!, such that if 

ℎ/(1 − 𝛼)𝑟 > 𝜛 then 𝑆!!∗ = 0. Otherwise, optimal inventory level is the stationary point 

that corresponds to the inventory point above ρ, that is,  𝑆!!∗ > ρ. 

 Proof. We first note that the result of Lemma 12 implies that the gain function is 

either i) strictly decreasing in S ∈ [0,∞) or ii) first decreasing, then increasing and then 

decreasing, or iii) first increasing and then decreasing. Clearly, in the first case the 

optimal inventory level is zero and in the third case the unique stationary point 

maximizes the gain function. In the second case, there are two stationary points: one is a 

local minimizer and the other a local maximizer. Clearly, the latter one is also the global 

maximum if and only if the value of the gain function is greater than 𝐺!!!! (𝑆 = 0). At the 

stationary point we get 

 1 − 𝛼 𝑟𝜆𝐴!!!! 𝜋! = ℎ (87) 

 Let S* be the inventory level that satisfies the above equation which is also greater 

than ρ (i.e., S* is the local maximizer). For this inventory level to be the global 

maximizer, the following inequality must hold: 

 𝐺!!!! 𝑆 = 𝑆∗ − 𝐺!!!! 𝑆 = 0 =    !!!∗!!!!
!∗

≥ ℎ/ 1 − 𝛼 𝑟 (88) 

 It is straightforward to observe from (87) that 𝑆∗ decreases with h/(1-α)r since the 

function is concave at this point. Suppose that the inequality (88) holds. Then it can be 

shown that the left hand side is non-increasing in h/r. If the inequality does not hold, the 
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left hand side increases with h/(1-α)r with a lower rate (since 𝐴!!! is concave in this 

region). Consequently, we conclude that there is a unique threshold for h/(1-α)r above 

which 𝑆!!∗ = 0 and below which 𝑆!!∗ = 𝑆∗. Moreover, we know from Lemma 12 that S 

= ρ  is a saddle point implying that 𝑆∗ > 𝜌 must be true.  

◊ 

 The above result indicates that when the ratio between the holding cost and 

revenue is above a unique threshold, the firm is better off with not offering any direct 

exchange service. We note the threshold itself is a function of h, r, and α, since these 

parameters determine the optimal inventory level. As expected, this threshold in general 

decreases in α or in other words it decreases as the revenue gap between direct exchange 

and conventional service closes up. Unfortunately we cannot derive a closed form 

equation for ϖL, however its numerical computation is fairly easy. 

For the case of S > c, the steady state revenue rate and hence the long run gain function 

change as what follows: 

 𝐺!!!! = 1 − 𝛼 𝑟𝜆𝜋! 𝐴!!! +
!!

!!!!!!
!!!
!!! + 𝛼𝑟𝜆 − ℎ𝑆, (89) 

which can be rewritten as 

 𝐺!!!! = 1 − 𝛼 𝑟𝜆𝜋! 𝐴!!! +
!!

!!
!!!!!

!!!
+ 𝛼𝑟𝜆 − ℎ𝑆. (90) 

Here, as earlier, z is defined as !
!
. In what follows we show that the above function is 

strictly concave in S for 𝑧 < 0. 

 Lemma 14. The steady state gain function 𝐺!!!!  is strictly concave in S for z < 0.  

Proof . We prove the concavity from the second order derivative. The second 

derivative of 𝐺!!!!  with respect to S is 
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 !!!!!!
!

!"!
= −(1 − 𝛼)𝑟𝜆𝜋!

!!(!" !)!!!

!! !!! !
. (91) 

Clearly, since α < 1, the above function always returns a strictly negative value if and 

only if z < 1. Hence, for these value ranges, 𝐺!!!!  is strictly concave in S. 

◊  
 Similar to the S ≤ c case, this function leads to a non-zero optimal inventory level 

if h/(1-α)r is below a threshold. 

 Lemma 15. There exists a threshold value for ℎ/(1 − 𝛼)𝑟, say ϖH, such that if 

ℎ/(1 − 𝛼)𝑟 > 𝜛 then 𝐺!!!!  results leads to zero inventory at optimality. Otherwise, 

optimal inventory level is the stationary point that corresponds to the inventory point 

above c. 

 Proof. The proof is similar to that of Lemma 13. With a closed form definition for 

ϖH. 

◊  

 From (85) and (90), we can lay out the overall expected gain function for the 

MRO service provider as follows: 

 𝐺!(𝑆) =
𝐺!!!! , if  𝑆 ≤ 𝑐
𝐺!!!! , if  𝑆 > 𝑐 (92) 

Given (92), now we investigate the optimal inventory position for the service provider 

and derive the following conclusion. For the next result, we let 𝜑 = 𝜆𝜋0𝜌𝑐/𝑐! 

 Proposition 6. For given arrival rates (λ), service rates (µ), and number of 

servers (c) the optimal inventory position, 𝑆!∗, is such that 
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i) 𝑆!∗ = 0 if and only if  
 !

(!!!)!
>   𝜛! (93) 

ii) 𝑆!∗ = 𝑆!∗ where 𝑆!∗ ∈ { 𝜌 , 𝜌 + 1 , 𝜌 + 2 ,… , 𝑐}, if and only if 
 𝜛! ≥

!
(!!!)!

≥ 𝜑 (94) 

iii)  𝑆!∗ = argmax!∈{ ! , ! } 𝐺!!!! (𝑆 = 𝑥) where y= 
!" !!!(!!!)

!!! !!!!!(! !" !)

!"  (!)
 if and only if 

 !
(!!!)!

< min 𝜑,𝜛!  (95) 

 Proof. We first note from Lemma 13 that keeping inventory is not optimal if (93) 

holds. Now, we show that at S=c, both 𝐺!!!!  and 𝐺!!!!  are either increasing or decreasing 

together. We can easily see that at S=c 

𝐺!!!! 𝑆 = 𝑐 + 1 − 𝐺!!!! 𝑆 = 𝑐 = 𝐺!!!! 𝑆 = 𝑐 + 1 − 𝐺!!!! 𝑆 = 𝑐 =    1 − 𝛼 𝑟𝜆𝜋!
ρ!

!!
− ℎ. (96) 

We can deduce from the above result that both functions are increasing or decreasing at c. 

Noting that c >ρ, at S=c, both functions are concave. Therefore, if equation (96) returns a 

non-positive value optimal inventory level must be at or below c. From (96), this happens 

only when ℎ/(1− 𝛼)𝑟 ≥ 𝜑. From Lemma 13, we know that if ℎ/(1− 𝛼)𝑟 is below 

threshold ϖ, then the optimal inventory is in (𝜌, 𝑐]. The ordering between 𝜑 and ϖ is not 

monotonic. Consequently, 𝑆!∗ must be strictly greater than c if and only if ℎ/(1− 𝛼)𝑟 is 

below both 𝜑 and ϖ. In this case, the exact value of the optimal inventory is the next 

integer value that is either below of above y, which is computed from the first order 

optimality condition of 𝐺!!!! .  

◊  

 The above result indicates that the optimal inventory level is either zero or above 

the traffic density (ρ) depending on the trade-off between the holding cost, base price and 

premium for the exchange service. As expected, optimal inventory level increases in 
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service fee (r), and decreases in holding cost (h) and the discount rate (1-α). Figure 25 

illustrates all three scenarios.  When the holding cost or revenue from non-exchange 

services is sufficiently high, there is no incentive to keep any inventory for exchange. 

 

Figure 25. Expected gain curves under the mixed policy with optimal inventory levels of Sm*=0, Sm*≤ c, and 
Sm*>c. 

 The cost of inventory and/or the premium for exchange does not justify the 

exchange policy. As the cost decreases or the gap for the exchange revenue increases, it 

is optimal for the firm to keep rotable inventory for exchange. In this case, as shown in 

Lemma 13, it is never optimal for the firm to keep an inventory level that is below ρ. The 

c=3 

Sm*= 7 

c=5 

Sm*= 0 

c=5 

Sm*= 4 
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intuition is that at steady state, the probability that there will be less than ρ jobs is almost 

zero. This implies that if the inventory level is kept below ρ, on the long run, the firm 

will perform an exchange service almost never. Finally, when holding cost is sufficiently 

low or the premium from the exchange service is sufficiently high, the optimal inventory 

level extends beyond the number of servers.  

 As pointed out in the above discussion, the optimal solution depends on two types 

of thresholds whose orderings are not monotonic. That is, there are cases where one is 

larger than the other. The relation between 𝜑 and ϖL is non-linear in ρ. In general, as ρ 

gets bigger, 𝜑 becomes larger than ϖ. In the rest of the paper we will abuse the notation 

by representing both ϖ! and ϖ! with ϖ. We recall that while the former one applies to 

𝐺!!!! , the latter one is used for 𝐺!!!! . The trade-off is further investigated in the next 

section.  

5.3.4 Mixed Model Numerical Examples 

In order to investigate the impact of system parameters on the optimal inventory policies 

under the mixed model, we further our study with a numerical study. More than 7,000 

instances for various combinations of the arrival rate, service rate, revenue coefficient for 

non-exchange services, holding cost, and number of servers were generated. 

 Looking, first,  the impact of the arrival rate (λ). Clearly, a higher arrival rate 

implies higher demand for service. Everything else is fixed, this also means higher load 

and lower 𝜋! for the overall system. Consequently, the impact of λ is not obvious for the 

optimal policy. Figure 26 depicts a typical relation between λ and the thresholds 

presented in Proposition 6. The dashed curve sets the boundary for positive inventory. 
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 When h/(1-α)r is above this curve the firm is better off with carrying no inventory 

for exchange. The other curve sets the boundary between 𝑆!∗ ≤ 𝑐 and 𝑆!∗ > 𝑐. Thus, 

for any h/(1-α)r that falls in between these two curves, the optimal inventory level will be 

positive but no more than the number of servers. For other values, which fall under both 

curves, the inventory level will exceed the number of servers.  

 

Figure 26. Threshold curves as functions of the arrival rate (r=100, h=55, α=0.7, µ=4.5, c=5). 

 In general we observe two patterns: 1) the ordering of the thresholds changes as λ 

increases and specifically 𝜑 becomes larger than the zero-inventory threshold (ϖ), and 2) 

both thresholds first increase and then decrease with λ.  
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Figure 27. Threshold curves and optimal inventory levels as functions of the arrival rate (r=100, h=55, 
α=0.5, 

 The first observation can be generalized to the traffic density of the system. 

Typically, 𝜑 becomes larger than the zero-inventory threshold as z increases. The second 

observation hints that for very low and very large values of λ, the optimal inventory must 

be zero. This pattern is confirmed by our numerical results and illustrated in Figure 27. 

 Clearly, when the arrival rate is too low (that is, demand is very infrequent), high 

inventory cost does not justify the risk of carrying inventory for the exchange service. 

After a tipping point, the inventory level typically increases with the arrival rate. Once 

the arrival rate is too high, in which case, the system load (z) is approaching to 100%, the 

firm will hardly have any occasion for exchange as it will have not much chance to 

process the equipment for inventory. Most equipment that come out of the MRO service 

process will be delivered to a customer that has already arrived earlier and waiting in the 

line. As such, the frequency of exchange services and thus the return from exchange 

inventory diminishes to a point that does not offset the inventory cost. Consequently, 

beyond another tipping point, the optimal inventory level jumps down to zero. We note 

that the optimal inventory level may jump down to zero before reaching to the 𝑆!∗ > 𝑐 

range. This happens especially when α is large, where the added revenue margin for the 

exchange service revenue is slim. We note that the observation for the mixed policy 

regarding the impact of λ is consistent with the pure exchange case in some sense. In the 

pure exchange case, we observe that the optimal inventory decreases in λ once λ becomes 

large. However, the optimal inventory converges to the number of servers instead of zero 

as is the case for the mixed policy.  
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 Clearly, in the former case, the firm earns money only from the exchange service 

and high demand requires that all servers are utilized. In this case, the large demand can 

generate revenue via the conventional service with continuous flow of customers as such 

carrying costly inventory is not needed to enhance overall revenues.  

 In general, long-run gains increase with the arrival rate. However, interestingly, 

we observe that there are exceptions. Figure 28.a illustrates a case where higher demand 

in fact degrades company profits in a brief region, where 𝑆!∗ > 𝑐. To help understand 

this better, Figure 28.b provides a closer look for the turnover of the exchange inventory.  

 As mentioned above, when the arrival rates become large, the system will be 

crowded with service requests, which result in lower turns for the exchange inventory. 

After a point, the frequency of exchange services decrease with λ, which leads to lower 

bang-for-buck for the inventory. The diminished returns from inventory reach to an 

extent that hurts the overall profits. As shown in the Figure, with further increase in λ, the 

optimal inventory drops to zero and after that point gains continue to increase absent 

exchange services. We note that, optimal 𝐺!!!!  exhibits a quasi-concave pattern with λ in 

general. That is, as demonstrated in Figure 28, it is decreasing in λ after reaching to its 

peak.  

However, in most cases, the optimal policy enters into the zero-inventory zone 

before the peak is reached. The situation demonstrated in Figure 28 arises when α is 

small (that is, the premium for exchange services is high) which elongates the region for 

𝑆!∗ > 𝑐.   
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Figure 28.a. Arrival rate vs. optimal gain Figure 28.b. Arrival rate vs. exchange probability 

Figure 28. Impact of the arrival rate on the optimal gain (r=100, h=55, α=0.5, µ=4.5, c=5). 

   

 Next, we investigate the influence of the service rate (µ). Similar to the pure 

exchange case, we can have the following general conclusion regarding the mixed policy 

for high service rates: 

 Lemma 16. Assuming, (1-α)𝑟𝜆 > ℎ, as 𝜇 → ∞, 𝑆!∗ → 1. 

 Proof. As explained in the pure exchange case, when the service rate becomes 

sufficiently high, the service is performed almost instantaneously, where π0 approaches to 

1. As such, more than often times, the firm serves to a single customer at each time. Since 

α ≤ 1, it is optimal for the firm to carry only one exchange inventory which can be turned 

as fast as λ (rate with which the orders arrive). In other words, the mixed policy 

converges to a pure exchange policy in this case. 

◊  
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Figure 29. Threshold curves as functions of the service rate (r=100, h=70, α=0.7, λ=20, c=4). 

 The numerical results suggest that it is not optimal to carry any exchange 

inventory if the service rate is too low. This is indicated by the threshold curves in Figure 

29. Typically, when the service is slow, both threshold values are too low leading to 

𝑆!∗ = 0. Small µ causes the system load to be high and hence, the firm experiences the 

conditions discussed above for large λ. The low turnover on equipment does not justify 

the risk of carrying any inventory for exchange. Consistent to our previous observations, 

as µ increases the system load decreases and as such, the thresholds first increase and 

then decrease as shown in Figure 29. This leads to a pattern in optimal inventory levels 

illustrated by Figure 30.  
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Figure 30. Service rate and optimal exchange inventory (r=100, h=70, α=0.7, λ=20, c=4). 

 As the service gets faster, the inventory level jumps up, after which it 

monotonically declines eventually converging to 1. We note that the optimal inventory 

level may not always jump to the 𝑆!∗ > 𝑐 region. This is typically the case when the 

holding cost, α, and/or the number of servers are high. The firm profits always increase 

as the service gets faster.  

 The impact of the number of servers is a bit more ambiguous. A typical case 

demonstrating the influence of the number of servers on the threshold curves is given in 

Figure 31.  
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Figure 31. Threshold curves as functions of number of servers (r=100, h=40, α=0.5, λ=20, µ=4.5). 

 Basically, small number of servers implies higher load on the system, which 

results with 𝜑 being larger than ϖ, indicating that the optimal solution is realized either at 

𝑆!∗ = 0 or 𝑆!∗ > 𝑐. The exact starting point (e.g., at c = 1) depends on h/(1-α)r. As the 

number of servers increases 𝜑 typically decreases while ϖ increases. This implies that 

the optimal inventory eventually enters into the 𝑆!∗ ≤ 𝑐 region. Since in this region 𝐺!!!!  

is concave, it can be easily deduced from (85) that 𝑆!∗ increases in c. Consequently, we 

can make the following conclusion:  

 Lemma 17. As 𝑐 → ∞, the optimal inventory converges to a unique level that 

solves the following equation: 

 1 − 𝛼 𝑟𝜆𝐴!!!! = ℎ (97) 

 Proof. We first note that 𝑐 → ∞ means 𝜌 → 0 and π! → 1. Since c is too large, 

the long-run gains are captured by 𝐺!!!! . In this case, all feasible inventory choices will be 

greater than ρ, which from Lemma 6 implies that 𝐺!!!!  is strictly concave for S > 0. 
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Consequently, 𝐺!!!!  reduces to the function given in (85) with π! = 1. Equation (97) is 

simply the first order optimality condition for this function. 

◊  

 As in the case of service rate, the optimal gain always increases with the number 

of servers. In general, keeping traffic density (ρ) at a constant level, increase in the arrival 

and service rates lead to higher profits and inventory levels. As shown in Figure 32 with 

both thresholds increasing, the gap between 𝜑 and ϖ grows.  

 

Figure 32. Threshold curves under same rate increases in λ and µ (r=100, h=25, α=0.5, c=5, ρ=2). 

5.4 Pure Exchange vs. Mixed Model Comparison 

Direct comparison with the two models will help us to understand better the insight 

captured in the observations of our previous section. The two models agree in a 

significant number of cases where both models suggest the same solution. As stated in 

the gain functions G depends on S. The dependent variable axis in Figure 33 indicates the 
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gain denoted by G(S*) in the Mix Model, against the corresponding G (S*) in the 

Exchange Model on the abscises axis.  

Figure 33. Gains Mixed vs. Exchange Models evaluated on I*  

 Although the figure is busy, it gives an idea where the 17,000+ combinations of 

arrivals, service rates and other parameters lie. There are 3 identifiable areas that emerge 

which we will comment. Looking to the figure, it allows the observation of two 

distinctive regions coming from the results from both models, each model has a whole 

optimal region.  First region, encircled by an ellipse see red area in figure 33, all of these 

cases, above the line that would be demarked by a diagonal black straight line represent 

those cases where the Mix Model will bring better results. Along the line, the second 

area, the two models deliver similar solutions as commented and observed in the previous 

section. The region in the bottom represented by the ellipse in the blue area, under 
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identical business conditions, the Pure Exchange model delivered more gains than the 

Mix Model. 

 As expected, the gain increases with inventory available for exchange. It is 

important to observe that the gain is limited after a number of pieces in inventory to a 

maximum gain, then if business conditions expressed by arrival rate, service rate, cost, 

price and premium assume certain values, additional inventory will actually be 

detrimental to the gains. 

 One obvious factor that determines the trade-off between the pure exchange and 

mixed service policies is the premium that the customers pay for the exchange service, 

namely (1-α)r.  

 

Figure 34. Trade-off between Pure and Mix Policy (𝝀,𝝁,𝒉, 𝒄  𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕)   

 As such, as α increases the incremental benefit of the exchange service 

diminishes. In one extreme, as α approaches to 1, the exchange service becomes 
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indistinguishable from the conventional service. Clearly, then, there is no need to carry 

any inventory which is costly. On the other hand, when α is too small, conventional 

service brings very low income while keeping the system busy. In this case, the firm is 

should focus on the exchange service by not accepting customers for non-exchange 

services.  

 

Figure 35. Effect of Δ  𝐺!"#∗   𝑣𝑠.𝐺!"#$∗  at high and low levels of discount. 

 Consequently, given that all other parameters are equal, we can easily conclude 

that there is a single threshold for α, above which the firm is better off with the mixed 

policy. The pure exchange policy is preferable if the opposite is true.  See for example 

figure 34 to illustrate the threshold holding constant diferent values of 𝜆, 𝜇, ℎ,𝑎𝑛𝑑  𝑐 

going from 𝛼 =   0.1  𝑡𝑜  0.7, you can observe that Pure exchange performs at 0.1, even 

though in this particular case the hold cost is set a the high value of 70. 
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 The insight then is that indeed, a policy where holding inventory is prescribed 

could be useful if a proper Premium is set for such a service, under a given business 

traffic density, and will help the decision maker to obtain additional gains otherwise not 

available. 

 For small λ, as observed in figure 35. mixed policy generates higher profits as it 

does not require risk of carrying inventory which faces low turnover. As λ grows pure 

exchange becomes more profitable as the firm can be focused on more revenue 

generating exchange services. The overall gains become close at high λ as α gets bigger. 

See figure 36 to see a similar effect caused by increasing cost.  When λ is small the 

inventory levels are close. When it is neither small nor large, the mixed policy leads to 

higher inventory levels.  

 

Figure 36. Δ  𝐺!"#∗   𝑣𝑠.𝐺!"#$∗ for different arrival rates and high and low cost levels 

 The risk of carrying inventory is alleviated by the opportunity of receiving income 

from regular services. In the pure exchange case, as arrival rates get too big the inventory 
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count converges to the number of servers whereas in the mixed policy it drops all the way 

down to zero. This situation creates advantage towards the pure exchange policy. So the 

bottom line is, the pure exchange policy is especially appealing when the demand is 

relatively high or low service levels are in place. 

 As the service rate increases, the mixed policy converges to the pure exchange 

policy. 

 

Figure 37. Service rate vs alpha Mix Model and Pure Ex S* amd G(S*) 

Under low service, see figure 37, pure exchange may have an edge against the mixed 

service since the system load becomes large. This is consistent with the case of large 

arrival rates. In both cases the system load is high. Consequently, we can conclude that 

the pure exchange policy is especially attractive when the offered load for the system is 
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high (under high demand and/or slow service). Consequently pure exchange seems like a 

good option when service is either very slow or very fast. In between it depends on α. In 

general, mixed policy results with higher inventory levels except when service is fast 

when pure exchange may result with higher inventory under high α conditions. 

 In general, the inventory level is higher in the mixed policy with the increase in 

the number of servers. When α is sufficiently small the pure exchange is better with 

lower number of servers. In fact, in general, the difference between the mixed strategy 

gains and pure exchange gains increases with the number of servers. That is as the firm 

has more servers available mixed strategy becomes more attractive. This is consistent 

with above observations as the system load gets lower.  

5.5 Discussion on the Order Acceptance with Walk-in Model 

This model provides, from Proposition 1 and 6, three readily available insights, when 

parameters are provided and the amount of inventory to maximize gain is determined. 

Although we only have a closed form solution when S > c, a simple line search on Eq. 

(82) delivers the optimal amount for S ≤ c. 

 When 𝜇 > 𝜆, the range of 𝜌 < 1, the model estimates what quantities (S landing 

gears, by reminding the reader this was our particular motivation for the model) it would 

be better to stock and deliver for exchange at a premium. 

 For the case with 𝜌 > 1 there is full capacity and enough business at hand to 

spread the cost, thus the model suggests the gain will be at most the in house repair 

capacity, as no trade off between stock cost and capacity wasted exists. 
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 For the case with S > c the mixed model provides results for those cases where 

additional servers come into play. In such cases S could be found as an optimal result 

directly from Eq. (103) with S ∈	  reals. 

 The application of the model helps to support decisions for exchange or repair. 

The model is especially tuned to the typical business dynamic for high value, high margin 

items, whose arrival rate resembles the dynamic portrayed in the Pure Exchange Model. 

Optimal S increase as premium increases, that is 1− 𝛼, but up to a point delimited by 

carrying cost, price and repair capacity—represented by variables, h, r, c, and z in the 

model. 

 One implication of the model for the Pure Exchange is that inventory is limited 

and only a number of walk-ins will be accepted. All other clients must be rejected once 

the exchange inventory is gone. Those accepted will have immediate access to a repaired 

part. On the other hand, with the Mixed Model representing repair in house, all clients are 

accepted, although all of them must face additional waiting until the repair is completed. 

 If Pure Exchange is the only policy chosen, it is recommended only for businesses 

with the highest margin, as premium will be a major player on the model, the restricted 

capacity either because low service rate or high arrival rate as compare to capacity tend to 

favor the results on the Pure Exchange model as reviewed, as such those conditions make 

for a superb application of the model. High arrival rates, coupled with high service rate, 

low margin business should apply mixed models better as another alternative available, 

as the more capacity the business has the better the Mixed Model will perform. 

 As more and more businesses, try to minimize their asset foot print, either by 

subcontracting capacity or by reducing overall investment, a pure exchange strategy 
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might be a good fit for the business, as the model will help the decision maker compose 

appropriate response to the business conditions, with certitude of the outcome. Also the 

implementation allows for daily or weekly review of the policy if the frequency of the 

business so requires as the computation for policies is straight forward and fast. 
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Chapter 6. Comments and Conclusions 

The present work is the foundation to continue this line of research, looking for policy 

solutions to order acceptance problems, in the variants of using dynamic premiums in 

combination of differentiated services, to provide to customers.  

 The policies uncovered so far, allowed the decision-making regarding accepting 

small jobs and when faced with uncertain conditions to receive more profitable big jobs. 

 In our three cases we have gone from:  

 1) representing a constrained reality to understand the monotonicity and prove it, 

when a decision needs to be made and we found you can have a unique miximizer and an 

optimal result, setting the price for a big deal vs. small jobs.  

 2) We then extended our work to find an optimal way to set up the premiums of 

the big job, under small job conditions and find the optimal pricing solutions based on the 

arrival rates for the small and big jobs, their differentiated service rates, and the number 

of customers waiting. This allows the decision-maker to have a set of premiums that can 

be charged tanking into consideration the loss of the steady business and the price 

sensitivity.  

3) In our final model, we took our knowledge on the previous models and developed a 

optimal solution to the question of whether or not, when facing big job conditions, would 

it be adequate to hold inventory, and in choosing to do so, in which optimal quantity. 

This model could help us, to set up a trade off with different assets—in  the utilization of 

the scarce monetary resources, between when to hold inventories vs. capacity for 

example as was in our demonstration. Our main finding and contribution is that under 

given business conditions, might be advisable to hold inventory and if when the decision 
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maker needs to resort to a mix usage, of inventory and capacity, how the policy can be 

implemented with optimal overall gain results. 

 Given the fact these order acceptance policies apply to different settings, we like 

to think we still have a great challenge and opportunity ahead to continue bringing 

optimal solutions to order acceptance problems. 
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Chapter 7. Next Steps 

During the execution of this line of research, we have encounter multiple instances where 

the business dynamics, specially the arrival rates, become very sparse, and in some 

instances showed, skewedness of the values, towards low values, with sudden picks.  

 When the demand or arrivals are represented by multiple number of zeros, high 

variability and nervousness, the exponential distribution models whose results are 

contained in this work, might not apply, due to their generalization (Ross, 2003) they are 

too ample to ensure a narrow solutions as the necessity to have large t on the periods to 

ensure the normal distribution convergence discussed on the chapter 5, page 326 of the 

Ross probability book.  

 So our work applies, as long as those conditions are in place since the markov 

theory is supported by this important factor. 

 The walk-in we so far have analyzed in this work, and some of the order 

acceptance policies, could be considered lumpy, if certain conditions are in place, yet 

those conditions must ensure large t periods and the normal distribution convergence.  

 Doing a relatively modest Literature Review in the subject, there are some 

pointers of what is considered, by most authors, a random and lumpy phenomena—by 

following the definition of long tail and multiple instances where you find 0 as value, 

one such definition proposes lumpy as the point where there is equal probability than 

non-zero and zero values showing up on the frequency distribution (Cornacchia & 

Shamir, 2012)—since a natural extension of these work directly applies to situations 

where customer demand is not frequent, no-shows and similar events could also be 

treated as lumpy demand events in our models—to be able to get useful insights. 
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Such insights might be as simple as tests for statistical modeling to fine tune parameters 

for solution applications. 

 Also, during the review it was our impression there are several sources for 

lumpiness. The first source for lumpiness lies in the decision criteria that sets the size for 

the order driven by when the when the product or service will be needed. This customer 

demand is not frequent. (Donald S. Allen, 1996) 

 Second source of lumpiness, might be coming from systematic patterns, people 

unconsciously executes during a period of time, for example the time when e-mails are 

read, or send, the placement of orders during the day, with unconscious decision driven 

by work schedules, or work place management. (Malmgren, Hofman, Amaral, & Watts, 

2009) 

 Third source for lumpiness, this one is associated the probability that a certain 

timing will be lapsed before an order at given price, the delivery time actually offered, 

and monetary reserves of the ordering party at the time of the order, with this factors in 

addition to the typical factors of lumpiness considered in the spare parts and maintenance 

environment.(Kukreja & Schmidt, 2005) 

 Even from our own observation in setting the pricing sensibility function (see for 

example page 23 for our treatment for e-βp). The pricing function in itself another 

exponential, frequently used to describe customer reaction to prices.  

 Many of these authors have a consensus in that, all the functions representing the 

phenomena, are similar in nature, and that most if not all of them can be represented by 

poisson arrivals. Also, most of the authors concluded, the variables in their works could 

be treated as compound poisson arrivals. 
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 So for us then has become clear that lumpiness, if all of these three sources are 

exponential can then all be represented by poisson arrivals, and compound poissons to 

model its variability and nervousness. 

 With that we have come to the idea to entertain the questions: Is there a model we 

can use to describe mass probability distribution for lumpy events where few and sparse 

events might not have long histories? Can they be explained by compound poisson, 

poisson arrivals and exponential functions? This we wonder: Can they then, be 

represented by the long tail distribution associated with Yule-Simon and all of them 

parameters can then be represented by a compound poisson?  

 As such we continue to look for solutions on the Order Acceptance Policy and the 

“Street Walker” tradition with models and parameters, which typically represent lumpy 

demand conditions 

 Other research suggest two other ways to eliminate decision variables and relax 

some assumptions, by using data from other sources that can then turn into an input 

for the model, thus reducing the dependency on the forecasting of the lumpy demand. 

By understanding more upstream conditions, unpredictable variability can be 

reduced with a positive impact on the system outcomes. (Romeijnders et al., 2012)  

 Also, keeping in mind the similarities on equipment, parts, failure modes, if 

data characteristics accommodate for this possibility, that is dropping the identical 

assumption, could then it be relaxed in the model to help to understand the 

lumpy demand effects on cycle time variability.(Gallivan et al., 2002) 

For the future models when doing labor planning there is the need to quantify the 

effects such as the weekend activity build up and the staff availability by skill. This will 
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relay heavily on the research done in the area of rotables Arts et al. (Arts et al., 2012), 

where we would like to expand the service differentiation by category.  

 Along the resource management line, both assumptions in our last model in 

chapter 4, no job is interrupted and new queue starts on small jobs when a big deal is 

accepted, that is all customers are drop until big deal is finish. Can latter be relaxed to 

allow insight on re-schedules and delivery issues. 

 All the demand once taken will then use the equipment and labor for a 

number of units of time, although if needed, the time fraction is a natural extension—

the demand is associated with a customer. These additions will help to develop a very 

robust model for “walk-in”, unexpected arrivals and continue to provide tools for order 

acceptance policies in this area. 

 Adding the price sensitivity restriction to premiums is another opportunity area, 

since the mathematical work support premiums per state, this could actually limit the 

number of states under consideration, as the infeasibility of a too high or two low 

premiums will then help to restrict the space to analyze. 

 Furthermore, from some of the studies mentioned, we also incorporate the 

idea of predictable variability, which suggests that we can compensate for factors 

such as seasonal trends, business cycles, and customer patterns. If in the system design 

such data can be found, it can the be used to minimize asset usage or compensate with the 

appropriate capacity and of course that would be another area of interest to expand.  

 Just to reiterate over the point made about the relaxation of some other 

assumptions, by using data from other sources that can then turn into an input for 
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the model replace variables, thus might have an impact on reducing the dependency on 

the forecasting of the variables.  

 Also in particular to extend the work done on the Pure vs. Mix Model work, again 

in chapter 5, a natural extension is to make a consideration for the system capacity. For 

example, make a relevant policy regarding the number of orders admitted and link the 

acceptance to the discount, capacity and pricing decisions. 

 Due to the nature of the MRO business, another potential extension also falls 

naturally in understanding the effect of multiple products using the available servers 

(workstations for repair). 
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