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Technological advancements in many fields have led to huge increases in data
production, including data volume, diversity, and the speed at which new data is
becoming available. In accordance with this, there is a lack of conformity in the
ways data is interpreted. In-depth analyses making use of various data types and
data sources, and extracting knowledge has become one of the many challenges with
this big data. This is especially the case in life-sciences where simplification and
flattening of diverse data types often leads to incorrect predictions.

Effective applications of big data approaches in the life sciences require better,
knowledge-based, semantic models that are suitable as a framework for big data
integration, while avoiding overly extreme simplification, such as reducing various
biological data types to the gene level. A major challenge in developing such se-
mantic knowledge models, or ontologies, is the knowledge acquisition bottleneck.
Automated methods are still very limited and significant human expertise is re-
quired.

In this research, we describe a methodology to systematize this knowledge acqui-
sition and representation challenge, termed KNowledge Acquisition and Represen-
tation Methodology (KNARM). We also present how KNARM was applied on three
ontologies: BioAssay Ontology (BAO), LINCS FramEwork Ontology (LIFE) ,and
Drug Target Ontology (DTO) built for three different projects: BioAssay Ontology,
Library of Integrated Network-Based Cellular Signatures (LINCS), and [lluminating
the Druggable Genome (IDG), and how they work together in complex queries.
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CHAPTER 1

Introduction

Big Data has become one of the most popular subjects in business and research.
Many research universities, such as University of Michigan [6], Stanford University
[7], University of Virginia [8], among others are creating multidisciplinary centers
and offering various degrees related with Data Science. There is no doubt that big
data is bringing many opportunities. However, many challenges related with various
aspects of data science are also outlined in various studies [9-13]. For this research,
we define big data in life-sciences as data high in volume (terabytes or larger), too
complex (interconnected with over 25 highly accessed databases [1] and over 600
ontologies [14] that contain various types of data - from gene sequencing to cell
imaging ), and too dynamic (growing exponentially [1,15,16]) for conventional data
tools to store, manage, and analyze. Figure 1.1 shows the interconnected nature of
the different life-sciences-data resources. One should note that the resources shown
in the figure are only a partial list of tools and data resources available for life-sciences
data (i.e. tools found in the European Bioinformatics Institute (EBI) repositories).
As we take more tools and resources into account, we see these connections become
a hair-ball graph very quickly. Figure 1.2 shows the exponential increase in the
GenBank data over the years and how the data creation is still increasing.

In the era of big data, extracting and representing knowledge hidden in large
amounts of scientific data has become a daunting task [1,17]. This is only one of the
challenges of big data. Big data challenges include dealing with increasing volume,
securing the data, and creating the infrastructure that allows analysis, in addition

to extracting knowledge from available data [10-12,17]. Life-sciences data is not



only increasing in volume, but also fitting more into the description of big data as
described above. In accordance with this, challenges specific to life-sciences data,
in addition the general challenges mentioned above, arise. One of these challenges
is: currently available complex life-sciences data is not being efficiently translated
into a format that is unambiguously readable and understandable by machines and
humans. Other difficult problems are: how to organize, how to standardize, and how
to analyze the life-sciences data without flattening it (because, flattening diverse life-
sciences datasets could lead to incorrect predictions). Provided good and feasible
solutions to these problems, the vast amounts of data could reveal new knowledge
and discovery.

As the life-sciences data grows, the need to build intelligent systems that will
store, organize, and help scientists analyze the data is growing as well [1]. Ideally, in
such systems, the computer and researchers will have an unambiguous understanding
of what the data means. Furthermore, the computer system will allow the life-
scientists to connect scattered pieces of information and help them acquire new
knowledge, i.e. inference of knowledge that they didn’t possess when building the
system.

Building such systems can be accomplished by using semantic web technologies.
In the past decade, many research efforts aimed at building such systems. As a
result a significant number of ontologies have been built related with life-sciences
(the number of ontologies on Bioportal in November 2016 was 529-, in November
2017 was 665-, in February 2018 was 690.). Although there exist some studies about
different techniques and tools about building such technologies, there is still a lack of
widely-accepted methodologies, best-practices rules, and tools that could help build
effective technologies that address the challenges mentioned above.

The life-sciences do have a profound interest in building ontologies, although
most of them are not widely used. Recently, commercial communities, such as
drug companies, have developed a keen interest in them as well. The interest in
ontologies is mostly for annotation purposes. The companies and researchers use
the life-sciences related ontologies to annotate their assays, scientific papers, or even

databases.
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Figure 1.1: Data and connections among pieces of various data types in the European Bioinformatics
Institute (EBI) [1] This figure shows the inter-connectivity of the different databases and different
datasets. The figure is limited to the databases, ontologies, and other services provided by the EBI

In accordance with this, most of the ontologies built focus on creating controlled
and/or standardized vocabularies (i.e. taxonomies), not necessarily the intelligent
systems mentioned above. Thus, the majority of the methodologies for ontology
building focus on creating taxonomies. Some existing tools and methods focus on
using computers and databases alone for creating such taxonomies. While these
taxonomies are very useful for certain types of text annotation (i.e. tagging human
readable text with machine readable vocabulary) purposes, they fail to capture the
depths of the life-sciences related knowledge, and fail to utilize the computational

reasoning capabilities.
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The majority of the ontologies available focus on hierarchical relationships among
individual types of bio-molecules or life-sciences related concepts. For example, only
proteins are linked together in Protein Ontology (PRO) [18], only diseases are linked
together in Disease Ontology (DOID) [19], and only cell lines are hierarchically
described in Cell Line Ontology (CLO) [20]. Some ontologies use a limited number
of relationships (e.g. ’is a’ and "has a’, and "part of”) to formally describe the data.
Therefore, only limited aspects of the concepts can be formally represented. This
then allows limited inferences about the data.

As mentioned above, the ontologies that provide only controlled vocabulary, or
provide limited formal descriptions of data may be useful for annotating textual in-
formation such as assay descriptions and/or scientific papers. As useful as they are,
they cause problems for the scientists at times. For example, the use of the same
concept under different names results in ambiguity for the users. This repetition in
the efforts not only causes ambiguity, but also costs time and effort for the users.

The users spend time trying to identify equivalent concepts and create equivalency



relationships. If they fail to do so, then their search and analysis may not be com-
prehensive. Furthermore, many users might not know how to connect the existing
ontologies as a part or module to their own system. Either way, having unlinked
related data is a cost to the user. In addition to this, ontologies similar to the ones
listed above, fail to aid complex computational inferences and/or machine learning
applications because of their limited set of axioms.

In addition to the tools and methodologies that allow creation of taxonomies,
there are also tools which aim to combine data in databases in RDF form. These
tools make use of well known life-sciences databases in an attempt to merge scattered
life-sciences data. However, they fail to integrate insights that can be provided by the
domain experts in combining the available data. Moreover, the possible connections
can only be made for a number of well known databases. Thus, these tools cannot
be used with newly formed databases or semantic web applications.

In this study a new methodology, termed KNowledge Acquisition and Represen-
tation Methodology (KNARM) is proposed in order to help aid challenges summa-
rized above and achieve better acquisition and representation of knowledge while
avoiding over simplification. We propose this systematic, methodological approach
utilizing description logic and semantic models that addresses the knowledge acqui-
sition bottleneck. This methodology is created and used for this research project
by combining available methods for Database Management Systems (DBMS), Ob-
ject Oriented Programming (OOP), and Knowledge Acquisition Methods. It was
designed, implemented, and used based on our needs and challenges related to
our ongoing projects, namely the BioAssay Ontology (BAO), Library of Integrated
Network-Based Cellular Signatures (LINCS) project, and Illuminating the Drug-
gable Genome (IDG) projects.

KNARM is a hybrid methodology that combines human and machine capabili-
ties for extracting knowledge and representing it in an ontology. It is designed to
handle both new and existing knowledge/data and allows building ontologies with
high expressivity. The knowledge representation uses axioms in a Systematically

Deepening Modeling (SDM) approach for defining concepts in formal logic.



As mentioned above, KNARM, was created with three projects in mind: the
BioAssay Ontology (BAO), Library of Integrated Network-Based Cellular Signatures
(LINCS) project, and Illuminating the Druggable Genome (IDG) projects. All of the
projects are nation-wide projects with data creation centers outside of the University
of Miami, and are funded by National Institute of Health (NIH). Data from these
projects is not only big in size, but also varies in types of data, from cell phenotype
images to gene mutations to disease associations. Although the projects’ aims are
different, they are related (such as providing new and/or (more) effective therapeutic
solutions to existing diseases) as well as some of the data involved with the projects,
such as genes, proteins, and diseases, among other pieces of data. However, acquiring
knowledge out of the available data has proven to be a difficult task, even for a few
projects from cooperative sources. As we explored more to see what technologies and
methodologies already exist, we observed that the need for a systematic methodology
for knowledge acquisition and representation by building semantic web tools has been
pointed out in the literature several times for more than two decades.

This dissertation aims to describe details of KNARM, and showcase how KN-
ARM was used to design, implement, and update two major ontologies BioAssay
Ontology (BAO) (designed and implemented for NIH funded BioAssay Ontology
Project) and Drug Target Ontology (DTO) (designed and implemented for NIH
funded Illuminating the Druggable Genome (IDG) project) as well as small applica-
tion ontology LINCS FramEwork Ontology (LIFE) (designed and implemented for
NIH funded LINCS project). This introduction is followed by a review of related
research. We then describe details of KNARM’s steps. After the detailed description
of KNARM, details of its application over BAO, LIFE, and DTO are explained (with
documents provided in the appendices). As results, we show use cases that utilize
the three ontologies (BAO, LIFE, DTO) with their external ontologies (GO, DOID,
BRENDA to name a few). We further exemplify how they work together in queries.
We provide proof of concept results on how formal descriptions of life-sciences data
may lead to new discoveries, and new leads on drug research and discovery by using
the inference capabilities of semantic web technologies. We also describe the sys-

tematic patterns and ontology architecture we use to build the ontologies in order



to reuse parts of one another and work concurrently to help aid drug discovery.
This dissertation ends with a discussion of how to improve current results and what
future ideas could be implemented that could address challenges of big data and its

knowledge acquisition bottleneck.



CHAPTER 2

Related Research

For this research, we reviewed existing knowledge acquisition methods, general
ontology building methodologies, and reviews that combine them together. We
focused more on specialized knowledge acquisition and ontology building methods
and tools used for handling the life-sciences data. However, we also briefly review
widely accepted methodologies such as CommonKADS [21]. The reviews are listed

chronologically.

2.1 Reviews

The reviews can be viewed in two groups: The first group has relatively older
papers whose authors define and describe the basics of ontologies and how to create
one. The second group of papers are newer and they focus on the life-sciences related
ontologies in addition to the issues related with them.

Stevens et al. [22] gives an overview of ontologies and how they can be used for
bioinformatics applications. This paper can be viewed as a crash course in how to
build ontologies written more than a decade ago. It aims to better help scientists
with life-sciences background who want to make use of ontologies for their research
and applications. The paper does not provide a novel approach or a new ontology,
but a collection of existing approaches and applications. Ontology as a concept
is introduced along with the justification for why they are useful in representing
life-sciences data to be used. The authors give a brief introduction about how

ontologies can be created. They also explain ontology related concepts such as



“defined concepts “, “primitive concepts, and different types of relationships, as well

as axioms. Furthermore, they define different methodologies for building ontologies,
such as the V-model inspired methodology. The authors emphasize how biology
is rich in taxonomies. Therefore, ontologies can be used for different applications
related with biology. Consistent with their approach, they focus on ontologies that
aim to create controlled vocabularies more than ontologies that aim to generate
logical descriptions of biological concepts and processes.They continue with stating
that there exists a number of taxonomy-based ontologies. The paper also provides us
a survey of early bio-ontologies at the time, which are about 15 years old now. They
focus on RiboWeb [23], EcoCyc [24], and Gene Ontology [25]. Today, a collection of
568 (last access: July 2017) bio-ontologies can be found on BioPortal [26].

Being an early review, this study focuses on justification of using ontologies
mostly as taxonomies. As useful as these taxonomies are, they don’t provide the full
capabilities of an ontology with axioms and mappings of multiple ontologies focusing
on similar datasets.

Next, Wache et al. [27] summarized existing approaches in ontological integra-
tion of heterogeneous information sources in their review. The authors summarize
how the use of ontologies effect their architecture, how the ontology representations
can vary, how to approach ontology mapping challenges, and what are the current
development methodologies. The review contains the different languages and tools
used for ontology building, most of which are currently outdated. The tools included
KRAFT [28], Ontobroker [29], SIMS [30], and SHOE [31].

KRAFT [28] is a tool that allows ontology building based on existing database
schemas. As mentioned previously, this is a valuable automization, however con-
version of database schemas lead to oversimplification. Furthermore, It focuses on
vocabulary generation and doesn’t allow integration of domain expert knowledge di-
rectly. Ontobroker [29] focuses on generating ontologies using a meta-data descrip-
tion provided by the users. It is mainly focused on generating vocabulary rather than
knowledge based on domain experts’ knowledge and axioms. SIMS [30] is a semantic
platform that is designed to help databases communicate one another. SHOE [31]

provides a set of simple HMTL extensions which allows the world wide web authors
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to annotate their content. This review includes comparison of approaches for on-
tology evolution and determine that only the SHOE system accomplishes proper
automated approach for helping update the ontology resources.

The authors summarize that the current systems use ontologies that aim to
integrate their sources by using a similar structure. The common languages for the
ontologies are based on description logics and the systems make use of subsumption
reasoning for mapping of the ontologies. The building of the ontologies is performed
using specialized editors, such as OntoEdit [32] and SHOE’s Knowledge Annotator.

This review concludes that there is a striking lack of sophisticated methodolo-
gies for the development and use of ontologies. They suggest that such methodology
should be independent of the languages they reviewed that may be used to build
ontologies. They claim that a good methodology should also cover the evaluation
and verification of the decisions made with respect to the language and the structure
of the ontology. This conclusion that the authors’ reached is still valid today. There
is still a lack of sophisticated methodologies for development and use of ontologies.
Furthermore, the problem got bigger for life-sciences as the number of available on-
tologies increased over the years. The problem also extended to include the question:
how could we better share, reuse, and evolve these ontologies faster, better, and in
a more automated way in order to provide better analysis opportunities.

Another one of the early pointers to the conceptualization of biological data was
a Nature article [33]. Blagosklonny and Pardee define "conceptual biology” as the
information in databases that are related to the life-sciences. They refer to the
large number of databases with enormous amounts of biological data waiting to be
decoded. The authors point out how all the biological systems are interconnected
and the separation of the different biological systems is artificial. They suggest
how semantic conceptualization of the data in the scattered databases could help
connect data that is seemingly disconnected. They also point out how biology is
a hypothesis-driven discipline. They claim that currently hypotheses are based on
labor-based studies. However, one could benefit from the computational data avail-
able for the hypotheses. Additionally, the computer systems might suggest or infer
new knowledge. As addressed by Barnes, following the Blasgosklonny and Pardee
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paper, this process has a lot in common with drug discovery and related sciences by
using the existing biomedical data [34] and has been very useful for drug-discovery
related research.

As pointed out in this study, scattered life-sciences data keeps challenging re-
search and analysis efforts. Furthermore, duplication of data in different resources
with different identifiers brings about mapping and alignment problems involving
the data. Although some practice guidelines exist for some communities us as OBO
foundry [35] [36], there are no best practices approaches set.

Following that, in 2003, Corcho et al. [37] reviewed methodologies for ontology
building and reviewed the existing methods such as Cyc [38], TOVE (TOronto
Virtual Enterprise) [39], and finally METHONTOLOGY with the later generated
by the same group [40]. In their survey, they focus on methodologies that are used
for building ontologies. The authors review the above mentioned methods and the
tools that they use. They then point out the common points and differences of the
methods by creating a table.

Cyc has three phases. The first phase is to manually extract knowledge from
resources. The second and third phases involve acquiring new knowledge using
natural language or machine learning tools. The difference between the second
phase and the third phase is that the second phase is aided by tools, but requires
labor by humans, while the third phase the acquisition is mainly performed by tools.

TOVE applies a methodology inspired by the development of knowledge-based
systems using first order logic. They take possible use cases as a starting point to
identify the scope of the ontologies and the concepts of the ontology. Though it is
a robust method which takes advantage of the classical logic, it is not a fit method
for the era of big data.

METHONTOLOGY describes the ontology building process in detail. It has
three main steps: The identification of the ontology development process, a life
cycle based on evolving prototypes, and particular techniques to carry out each ac-
tivity. The ontology development process involves identifying tasks that should be
performed when building ontologies (scheduling, control, quality assurance, spec-

ification, knowledge acquisition, conceptualization, integration, formalization, im-
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plementation, evaluation, maintenance, documentation and configuration manage-
ment). The life cycle step decides on the stages through which the ontology passes
during its lifetime, as well as the inter-dependencies with the life cycle of other on-
tologies. The methodology also specifies the techniques used in each activity, the
output products that each activity and how they have to be evaluated.

Their evaluation aligns with the evaluations of Wache et al. [27]. They also
emphasize the lack of methodologies for ontology building and evolution. However,
this work is more focused on a few tools and includes only the ontology building
process, rather than focusing on all the tasks related with ontologies such as ontology
evolution, ontology re-engineering, etc.

In the review, the authors go over the steps for each methodology briefly. The
main common point of the above listed methodologies is that they are domain inde-
pendent and not designed for collaborative development. They all follow a similar
fashion as a software engineering methodology would follow. They suggest that the
approaches from different groups should be combined into a single methodology.
They also talk about the different languages, SHOE, RDF, RDFS, and OWL [41]
and their different expressiveness and reasoning capabilities. As pointed out by many
before them, they mention the importance of choosing a language for your ontology.
It is now widely accepted that choosing a language and expressiveness level to build
an ontology is one of the most important steps. They also write about ontology
building tools of the time, such as Protégé [42] and Onto Edit [32], and they claim
that they are necessary tools for the trade. Although this review makes good points
about methodology building and re-purposing existing software methodologies, the
tools and methods mentioned are now outdated.

A more genomics-data-focused review was performed by Louie et al. [2]. They
call the mosaic of life-sciences as ’genomic medicine’ and they include many different
disciplines - such as biology, chemistry, medicine, marine biology - in the mosaic.
Today we call the same data as life-sciences data. The authors also point out that
due to the dynamic nature of the data (rapidly growing and changing), it is hard to
encompass the entire scope of the data. Today, this observation still holds especially

with the introduction of new types of life-sciences data available, such as RNA se-
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quencing data. The review attempts to discuss how the data integration related to
biomedical informatics should be performed, what the challenges and future oppor-
tunities were, as well as what tools would bring the most out of the different kinds
of biomedical data.

Their main focus points were the representation of data suitable for compu-
tational inference (knowledge representation) and linking heterogeneous data sets
(data integration) for the life-sciences data. They point out that existing solutions
for data related problems can also be applied to life-sciences data. They claim that
by identifying the existing data integration techniques, and where your data lies on
an imaginary plane defined by two axes, you may find a proper approach to better
integrate life-sciences data (As shown in Figure X).

Their imaginary plane is defined by two orthogonal axes where the biomedical
data and the metadata resides, and the representation of the data and data models
(Figure 2.1). The two axes are: (1) integration architecture, i.e. where should your
data live: databases, data warehouses, peer data management systems, etc. and (2)
data and knowledge representation, i.e. relational database schema, semi-structured
data, ontology, etc. The review points out the pros and cons for each different

architecture and knowledge representation method.
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Data Browser
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PharmGKB Human Genetics:
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Genomics in Clinical
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Figure 2.1: Left: Different Tools and Their position on the axes, Right: Data Storage and Knowledge
representation options for different problems. By identifying the existing data integration techniques,
and where your data lies on an imaginary plane defined by two axes, you may find a proper approach
to better integrate life-sciences data. The two axes are: (1) integration architecture, i.e. where should
your data live: databases, data warehouses, peer data management systems, etc. and (2) data and
knowledge representation, i.e. relational database schema, semi-structured data, ontology, etc. [2].

For the first axis, the authors review the databases, database federations, and

Peer Data Management Systems (PDMS). They argue that keeping your data in
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smaller databases can help you query faster, but it may cause your data to go stale
after a while. Database federations, such as BioMediator [43], might have longer turn
around time for queries; however they have access to more current data. Finally the
authors mention the pros and cons of Peer Data Management Systems (PDMS).
The PDMS doesn’t have a complex schema like a database federation would have,
and it provides a more flexible architecture. However, it is still mostly experimental
and may provide slow queries.

For the second axis, the authors review relational schemas, semi-structured data,
and ontologies. For the relational schemas, they review the traditional database
systems. They point out that the traditional databases need precise relationships
among entities, however currently, the relationships among biological concepts are
not always precise. In addition to their observation, we can say that database
systems only represent the given information and lack the open-world assumption,
i.e. there may be more information inferred from the current data. Since currently,
most of the biological processes and experiments are treated as a “black-box™.
Therefore, having a close-world assumption fairly limits our ability to model the
exact nature of the processes and experiments. Despite this, database systems have
been the most common and familiar mediums for storing the life-sciences’ data.
Semi-structured data representation languages such as XML and RDF (in contrast to
databases) release us from trying to find rigid relationships among entities. However,
one of the most limiting aspects of XML is lacking the many to many relationships.
However, for life-sciences data, the ability to create many-to-many relationships is
crucial in modeling concepts such as pathways. For example, the PharmGKB uses
XML for its efforts to create a pharmacology related knowledge base [44] Finally
Louie et al. describe ontologies as "specification of conceptualization”. They refer to
the ontologies built in OWL and they state that ontologies represent knowledge in a
computer readable format. They mention how this allows us to utilize computers in

various ways such as complex queries and knowledge inferences. They also state how

!Because of the design of the experiments and technological shortcomings, many of the biological
and chemical processes happening in the cell and in the body have various unknowns. Therefore,
we keep records of the perturbations and the final changes in systems, however the details of how
the changes occurred is usually unknown, i.e. a black box.
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Figure 2.2: Kinds of ontologies [ [3] p. 10, changed]. This figure shows the different languages and
different kinds of ontologies that can be created. As seen in the figure, Description Logic (DL) is the
most expressive language before general logic and formal taxonomies are not as expressive as ontologies
built using DL.

different ontologies can be combined together which would allow a larger amount
of inferences and discoveries. In figures they also show that ontologies built using
OWL are the most expressive representation of knowledge (cf. Figure 2.2 ).

The authors finish their review with suggestions about what architectures should
be used for different types of data. They also address different types of open ques-
tions and emerging research. They further state some of the current issues, such as
not having standards for data collection and representation which is a major problem
stated by many before them.

A very comprehensive review of Knowledge acquisition (KKA) methods in biomedicine
is performed by Payne et al. [45]. In this paper the authors review different KA
methods from different perspectives, for example KA according to education, and
cognitive basis of KA and finally scenarios about how that existing KA methods can
be used in biomedical projects.

They define conceptual knowledge as the atomic pieces of information and the
relationships among them. They then focus on the conceptual knowledge acqui-
sition (CKA) in biomedicine as it applies to life-sciences. They acknowledge that
knowledge acquisition (KA) and conceptual knowledge acquisition (CKA) are parts
of a larger domain called knowledge engineering (KE), beyond the scope of these

research projects. There are four basic steps of knowledge engineering:

1. Acquisition of knowledge (KA)
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2. Representation of knowledge in a computable form

3. Implementation or refinement of applications that use the knowledge repre-

sentation created in the previous steps
4. Verification and validation of the tools and knowledge representation

They further elaborate on how the cognitive science literature describes two
types of knowledge: procedural and declarative knowledge. Procedural knowledge is
a process-oriented understanding of a given problem domain. Declarative knowledge
is largely synonymous with conceptual knowledge mentioned above, i.e. a combina-
tion of atomic units of information and the meaningful relationships between those
units. However, declarative knowledge consists solely of "facts” without any explicit
reference to the relationships that may exist between those "facts”.

Payne et al. review the education literature which defines conceptual knowledge
as a combination of atomic units of information and the meaningful relationships
between those units. The education literature also describes two other types of
knowledge, procedural and strategic. Procedural knowledge is definition stays as a
process-oriented understanding of a given problem domain in this context as well.
Strategic knowledge is used to operationalize conceptual knowledge into procedural
knowledge.

Finally, the authors mention that another significant literature for KA can be
found in the computer science (CS) literature, especially regarding artificial intelli-
gence. They argue that the CS literature is more focused on procedural knowledge,
including those used in a large number of intelligent agents and decision support sys-
tems. They also point out that artificial intelligence literature is extremely sparse
with respect to KA methods intended to elicit conceptual knowledge.

The authors also look deeper into how cognitive science, psychology, and pro-
gramming languages affect knowledge acquisition methods and taxonomy creations.
They provide KA techniques from the existing literature and advise on how to best
use the different techniques. The methods reviewed in their paper can be summa-

rized as follows:
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Informal and Structured Interviewing: Interviews conducted either indi-
vidually or in groups can provide investigators with insights into the knowledge used
by domain experts.

Observations: Observations generally focus on the evaluation of expert perfor-
mance, and the implicit knowledge used by those experts by observing them perform
tasks.

Categorical Sorting: A number of categorical, or card sorting techniques have
been developed, including Q-sorts, hierarchical sorts, all-in-one sorts and repeated
single criterion sorts. The different sorting methods can be applied to the concepts
and how they should be sorted in the taxonomies created.

Repertory Grid Analysis: Repertory grid analysis is a method based on
the Personal Construct Theory (PCT). PCT argues that humans make sense of
the “information world” through the creation and use of categories. Repertory
grid analysis involves the construction of a non-symmetric matrix, where each row
represents a construct which corresponds to a distinction of interest, and each column
represents an element (e.g. unit of information or knowledge) under consideration.

Formal Concept Analysis: Formal concept analysis (FCA) has often been
applied to the tasks of developing and merging ontologies. FCA is almost exclu-
sively used for eliciting the relationships between units of information or knowledge.
FCA can be automated using different algorithms. When FCA is performed using
automated methods, large-scale KA studies are feasible. However, FCA techniques
are limited to the discovery of relationships between conceptual entities, i.e. data
already available in databases, rather than the entities themselves. Therefore, other
KA techniques must often be applied prior to FCA to determine a corpus of entities
and attributes.

Protocol and Discourse Analysis: The techniques of protocol and discourse
analysis are very closely related and similar to observation. Both techniques elicit
knowledge from individuals while they are engaged in problem-solving or reasoning
tasks.

Sub-Language Analysis: Sub-language analysis is a technique for discover-

ing units of information or knowledge, and the relationships between them within
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existing knowledge sources, including published literature or corpora of narrative
text.

Laddering: Laddering techniques involve the creation of tree structures that
hierarchically organize domain-specific units of information or knowledge. Laddering
is another example of a technique that can be used to determine both units of
information or knowledge and the relationships between those unit.

Group Techniques: Several group techniques for multi-subject KA stud-
ies have been reported, including brainstorming, nominal group studies, DELPHI
studies, consensus decision making and computer-aided group sessions. All of these
techniques focus on the elicitation of consensus-based knowledge. While consensus-
based knowledge is arguably superior to the knowledge elicited from a single expert,
conducting multi-subject KA studies can be difficult due to the need to recruit
appropriate experts and logistical challenges involved in assembling the experts.

The authors also elaborate on verification and validation step of the KE. They
define verification as the evaluation of whether a knowledge-based system meets
the requirements of end-users established prior to design and implementation. Val-
idation is defined as the evaluation of whether that system meets the realized (i.e.
“real-world”) requirements of the end-users after design and implementation. They
point out that during verification, results are compared to initial design require-
ments, whereas during validation the results are compared to the requirements for
the system that are realized after its implementation. They acknowledge that val-
idation and verification work in parallel, and that verification would address the
internal validity of the knowledge collection, while validation would address the
external validity of the knowledge collection.

The authors provide a great review for identifying relevant concepts and their
relationships. However, they do not provide any methods that will allow the users
to model and create a knowledge base using the concepts identified with the help of
knowledge formalization, such as using axioms.

CommonKADS [21] has been the widely accepted and used structured knowl-
edge engineering methodology since it was introduced over thirty years ago. Com-

monKADS aims to provide solutions for all aspects of knowledge management,
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knowledge analysis, and system development. It provides several different solutions
for problems related with knowledge engineering. However, because of the breath of
its focus, it fails to give a set of steps that can easily be followed to build practical
knowledge bases from scratch.

CommonKADS does provide different approaches for knowledge acquisition. Al-
though most of the principles introduced still hold today, CommonKADS approach
builds around how to perform interviews with the domain experts in order to un-
derstand the data. Additionally, knowledge acquisition and representation advice
is mainly about understanding whether some data is a concept, a relationship, or
an attribute. It does provide the methods to identify the different concepts lie in
different hierarchies and different philosophies for representing data can be used for
this purpose. Therefore, like all of the above mentioned methods, CommonKADS
is also about how to create taxonomies, rather than creating formal representations
and models of data using axioms.

We can say that the scope of CommonKADS is larger than what we are present-
ing with this research. Furthermore, CommonKADS aims to help a broader and
larger audience with all aspects of Knowledge Engineering. KNARM (KNowledge
Acquisition and Representation Method) that we are introducing in this study, on
the other hand, currently focuses on life-sciences related knowledge acquisition and
representation.

We should also note that CommonKADS is almost thirty years old. Today, with
the advances in computational speed and terrabytes of data created, we acquire,
formalize, and represent data for various new purposes easier. Current projects are
more interested in efficiency in acquiring and representing the knowledge. With
increased inference capabilities, we aim to better utilize computers for knowledge
acquisition and representation. Moreover, as opposed to CommonKADS’ interview
heavy approach, we are trying to identify and generate ways to automate most of
the formalization process so that we can update our knowledge bases frequently due
to the rapid changes in knowledge.

All the methods reviewed in this section lack techniques needed to review and

formally represent existing knowledge related with life-sciences data. These meth-
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ods aim at creating controlled vocabularies and taxonomies for life-sciences related
terminology. However, they fail to capture the knowledge using formal logic. Fur-
thermore, they do not offer well-defined set of steps that are useful to create a new
knowledge base or ontology from scratch. Most importantly, these methods do not
offer solutions for the fast evolving data and data structures. New methods and fast
evolving ontologies are needed to represent the new and growing data created by
life-scientists. Table 2.1 on page 21 lists all the different methodologies reviewed in

this study.

2.2 Tools

In the previous section, we have reviewed the methods and reviews of the existing
methods related with semantic web applications for managing the evolving life-
sciences data. This section focuses on existing tools that aim to utilize semantic
web technologies for life-sciences data.

One of the first approaches to conceptualizing biology was by Gottgtroy and
colleagues [46]. They created Neucom and a primitive ontology that deals with
biomedical data. Although the ideas they had are exciting, both Neucom and the
ontology they created are primitive and fail to generate practical and useful appli-
cation examples.

Their main idea is to use existing databases to create gene-disease maps [46,47].
They also summarized how the ontologies could be engineered to aid ontology learn-
ing for the evolving domain of biology. They propose to create ontologies that would
infer new knowledge and feed it back to the ontologies. Their approach also involves
using existing databases and database schemas to build ontologies in an automated
way. Integration of different databases and database schemas is a desired outcome.
This very problem has been handled by various different groups, e.g SEMEDA,
Bio2RDF (reviewed below), in different ways in the past two decades. However,

they fail to notice that integrating existing databases is not the only problem with
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conceptualizing the biological data. Another problem is conceptualizing new data
coming from new experiments.

Previously mentioned Protégé [48] was also introduced in the context of design-
ing and implementing the Gene Ontology (GO) [25]. GO has been one of the most
widely used biological ontologies. Like all ontologies, it grows and needs to be main-
tained. Therefore knowledge acquisition is essential for maintaining GO. However,
in their paper about the Knowledge Acquisition of GO [49] the authors only specify
what new concepts and relationships were introduced. They do not provide details
on how they performed the extraction of human and literature knowledge nor how
they translate the knowledge into logical axioms. They only point out that they
have to translate the knowledge under the right tree of the taxonomy. This task
was covered by CommonKADS very elegantly. While being widely used and very
useful, GO does not provide complex relationships to define the concepts it is rep-
resenting. For the purposes of GO, the two relationships (“is a” and “part of”) that
it uses are enough to represent their set of vocabulary. There is no doubt that the
GO taxonomy is very useful. However, we should note again that it does not deal
with complex formalization of the data. GO is one of the groups that advocate
using fewer relationships in ontologies. Some other OBO foundry ontologies also
agree with them. Their aim is to simplify the structure of the ontologies and their
underlying graphs. However, the life-sciences data is too complex to represent using
two relationships. Furthermore, in cases of inconsistencies and misrepresentations,
having very few relationships would cause inference and reasoning leading to in-
correct knowledge and other problems, such as not representing essential pieces of
information.

Another tool called SEMEDA for database integration using semantic web was
introduced by [50]. SEMEDA is designed as a three-tier system which aims to allow
users transfer the relationships and attributes that they have for their databases into
an ontology. It consists of a relational database backend (Oracle 8i or newer) to store
ontologies, database metadata and semantic database definitions. Java Server Pages
are used in the middle tier to dynamically generate the HTML frontend. Authors
mention that SEMEDA”s architecture allows handling of large controlled vocab-
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ularies and ontologies with a virtually unlimited number of concepts. SEMEDA
retrieves information from different databases and then uses its own custom ontol-
ogy for database integration. This created ontology is a small top level ontology,
which defines databases at the schema level. SEMEDA uses basic Semantic Web
practices in order to transfer the data and the structure of a database to an ontology.
Like all of the tools available today, SEMEDA is focusing on integrating different
databases with the help of alignments for concepts and attributes from the different
resources it uses. However, it doesn’t offer a solution for handling plain textual data
and/or new data that does not exist in databases. It also doesn’t provide a workflow
for aligning the attributes and concepts from different resources.

One of the highly cited works is the Open Biomedical Ontologies (OBO) Foundry
paper [51] in 2007. The OBO foundry aims to overcome the disconnected nature
among the existing biomedical ontologies. As the authors pointed out, the biomed-
ical ontologies increased in size and changed shape dramatically between 2003 and
2007 and they are still increasing in size and changing in shape since that time.
The OBO foundry aims to align the efforts for ontology building and connect the
different ontologies to allow information exchange. The OBO foundry designed an
ontology building language, OBO, for the purpose of easily integrable ontologies.
However, the OBO language that has been built to incorporate the different on-
tologies is not as expressive as some of the other ontology building languages, such
as OWL2DL [41]. Therefore OBO is almost obsolete within 10 years. Most of the
OBO foundry ontologies mainly contain “is a” and “part of” relationships, and are
not as expressive as some other ontologies. For example DL expressivity for the
Disease Ontology (DOID) [19] is AL while the expressivity for BAO 2.0 is SOIQ(D).
Although it is known and agreed up on that biology is a taxonomy rich discipline,
we also think that building taxonomies alone fails to capture the complexity of the
life-sciences.

OBO foundry and OBO foundry ontologies focus on finding standardized vocab-
ulary for life-sciences rather than formal definitions of the concepts. As mentioned
before, while the standardized vocabulary is important for several purposes, we think

that semantic web technologies could provide more insight to life-sciences. In this
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paper the authors review the ontologies in their early versions and explain that they
are going under revision about a decade ago. Today, most of the ontologies men-
tioned in this paper have a version in OWL. However, there are no major changes in
the expressivity levels of the ontologies, i.e. they are still standardized vocabularies.

The OBO foundry authors concluded by stating their long-term goal as gener-
ating a system that allows the data generated through biomedical research form
a single, consistent, cumulatively expanding and algorithmically tractable whole.
They acknowledge that their goal, may affect the flexibility and advancement of the
sciences. We can further argue that the rigidly structured and centralized efforts do
not take the dynamic nature of the life-sciences into account. Today, many different
biological assays and life-sciences related tools and molecules have been added to
the literature compared to ten years ago. With the advances in technology, we can
predict that the life-sciences data will keep growing and evolving. Therefore, tools,
methodologies and standards that can handle the dynamic nature of the data are
crucial.

The need to integrate scattered ontologies has also observed by the Bio2RDF
team [52] in 2008. Like the OBO foundry, it is an open source effort that aims to
create on demand knowledge base (KB) views. However, while OBO foundry fo-
cuses on creating ontologies from scratch and creating standardized vocabulary for
life-sciences, Bio2RDF focuses on integrating existing database resources to create
different knowledge views in RDF. Bio2RDF is written in JSP that perform transla-
tions to RDF. It further utilizes the Sesame open source triplestore and OWL tech-
nologies. Documents from highly cited databases such as KEGG, PDB, and several
NCBI databases can be made available in RDF file using the Bio2RDF tools.

The Bio2RDF team also recognizes the existance of tools such as SEMEDA that
alm to integrate bioinformatics related data. However, they also point out that
SEMEDA fails to make use of it. Furthermore, they claim that OWL is becoming
the standard language for life-sciences ontologies. A decade after this publication,
we can confirm this claim by looking at over 500 ontologies at the Bioportal. Con-
sequently, the authors list the lessons learned from sparse projects which they per-

formed aim to integrate partial life-sciences related data. The main lesson is that
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utilizing the semantic web approach for life-sciences data integration is currently the
most effective approach. Furthermore, integration efforts of different data sets for
several projects aim to answer specific questions for that particular project. There-
fore the integrated data is not comprehensive, i.e. not all data from all databases is
integrated. Last, but not least, Bio2RDF team points out that using and encour-
aging to use open-source tools is crucial for more comprehensive integration and
analysis purposes.

The authors describe the Bio2RDF applications by consolidating several exam-
ples of databases that they integrated by using their RDF versions. They conclude
by stating that Bio2RDF is still in progress, like all ontology related tools. They
also stated, in the future they planed to apply algorithms to see how the underlying
graphs of the databases might be related. However, this is an NP-complete problem,
and is still work in progress.

In summary, the Bio2RDF effort focuses on bringing together the diverse databases
and ontologies and creating a triple store using the different resources. They are
also concerned with the scalability, performance, and re-producibility of the results.
These are concerns that the computational biology community shares and agrees
upon. Like Bio2RDF, the data in life-sciences as well as the applications related
with them, are dynamic, changing everyday. Bio2RDF is not concerned with creat-
ing new concepts and/or ontologies. It also does not provide solutions for integrating
new information, i.e. new data available outside of publicly available databases, into
the ontologies.

One of the most recent attempts to standardize the handling of biomedical data
was the SEEK platform [53].The SEEK is a web-based resource for sharing and
exchanging Systems Biology Data and models that are used by the JERM (Just
Enough Results Model) ontology. The SEEK platform takes the different data stan-
dardizations, such as the MIBBI (Minimum Information for Biological and Biomed-
ical Investigations) guidelines. Wolstencroft et al. [53] point out that it is becoming
more important to collect and annotate data in a more standardized way. This is
a widely accepted argument at this time and many attempts have been made to

standardize the large amounts of systems biology data. They also point out the
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diverse nature of the data and the need to correctly describe and link the different
types of data by using mathematical models. However, most of the data in the
SEEK platform”s metadata” are not useful for formally describe how the assays are
performed. Important information about the assays and the assay participants are
collected by the SEEK platform. However, the data and JERM ontology fails to
model the diverse types of assays that deal with different types of data, by using
axioms, in order to model the ontology using description logic. The SEEK platform
collects the assay description in text, but do not offer solutions on how to handle
the textual assay descriptions into semantic knowledge.

The latest research related with better ontology building practices includes a set
of steps generated by He et al. called XOD (The eXtensible Ontology Development
principles) [36]. XOD focuses on ontology creation tools implemented by He Lab
and tools provided by the OBO foundry collaborators. There are four principles of
XOD are:

1. Ontology Term Reuse : This step proposes reusing terms from 'reliable’
ontologies from a registered OBO foundry ontology. The proposed version of

term reuse heavily relies on He Lab’s tools such as OntoFox [54].

2. Ontology Semantic Alignment : The second principle involves aligning
imported ontology terms and newly added terms with the same or compatible
semantics. They propose to achieve such alignment by reusing the same object
properties for axioms involving imported classes. Thus, they propose to import

axioms of a concept.

3. Ontology Design Pattern- Based Ontology Development : This step
relies on having design patterns and OBO tools for a recurrent ontology design
problem. In case of a new design pattern, one can add it using OBO tools. The
process follows three steps: (1) entering new terms / annotations to a form on
the OBO tools, (2) converting the form to an Excel sheet, (3) converting excel

sheet to OWL files.
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4. Community Extensiblity : XOD recommends that a broad community of
users and developers join the ontology building process. While this might lead
to widely accepted term generation, XOD agrees that this process and this

step could be the biggest bottleneck in the ontology building process.

XOD methodology focuses on building vocabularies and reusing existing ontologies
using its principles. It relies heavily on OBO foundry tools and communities and
doesn’t offer any solutions to extracting knowledge out of the vast amounts of data.
Although the principles address important questions about ontology building, the
solutions provided are limited to the OBO foundry community. Furthermore, they
fail to address questions that involve long textual data and integration of domain
experts’ knowledge with existing tools. Finally, they don’t offer a solution or a
workflow for building an ontology from scratch.

Table 2.2 lists above mentioned tools and Table 2.3 summarizes the methods and
tools reviewed in this study.

Above mentioned studies and all the current efforts focus on how to integrate the
existing databases. Moreover, many of these current projects lack a concrete plan
for evolution of their systems, although they all agree that the available biological
data is multiplying and evolving in alarming levels. Last but not least, all these
studies listed in the table ignore the RDF' integration of new experimental data that

usually comes in textual form.

2.3 Review of Related Life-Sciences Studies

In the previous sections we described the methods and tools that aim to utilize
semantic web technologies for storage, interpretation, and representation of life-
sciences data. In this section, we briefly mention relevant life-sciences studies that
create(d) data used in or related to our current research studies.

Biological components such as genes, proteins, metabolites and other molecules
work together in harmony within cells to promote growth and development of living

beings. Understanding how these interconnected components of biological pathways
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and networks is one of the biggest challenges of this era. Furthermore, a great
amount of research is being performed to understand how these components work
under various perturbations, genetic and/or environmental stressors, which may
cause disease or changes in systems. Last but not least, how the changes in molecular
and system levels effect phenotypes of the living organisms. This effort to understand
the underlying natures of interactions and changes in systems and phenotypes is then
used to develop new and/or better therapies to return perturbed systems to their
normal state.

Today, most pharmaceutical companies use High-Throughput Screening (HTS)
the primary engine driving lead discovery [55]. However, with the increased ability
in combinatorial techniques and advances in molecular biology better targets for
therapeutic intervention can be provided. BAO is aimed at helping with that goal
and is primarily designed to formally describe HTS assays.

High-throughput screening (HTS) has evolved into an industrialized process and
HTS of small molecules is one of the most important strategies to identify novel
entry points for drug discovery projects.

Until about half a decade ago, HTS and ultra-high throughput screening (uHTS)
has been primarily part of the pharmaceutical industry. In 2003, National Institute
of Health (NIH) started to make HT'S and uHTS capabilities accessible to public sec-
tor research via the Molecular Libraries Initiative to advance translational research
and specifically the Molecular Libraries Program (MLP) [56]. MLP projects aim to
use various assays to develop compounds effective at alternating biological processes
and/or disease states. The program has established publicly funded screening cen-
ters along with a common screening library (the MLSMR, Molecular Libraries Small
Molecule Repository) and data repository, PubChem [57].

Since 2004, the MLPCN centers have deposited over two thousand HTS assays
testing the effects of several hundred thousand compounds. More recently a Euro-
pean effort, EU Openscreen [58], to establish small molecule screening capabilities is
being developed. Several other publicly accessible resources of screening data exist,
for example ChEMBL [59], a database that contains structure-activity relationship
(SAR) data curated from the medicinal chemistry literature [60], the Psychoac-
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tive Drug Screening Program (PDSP), which generates data from screening novel
psychoactive compounds for pharmacological activity [61], or Collaborative Drug
Discovery (CDD), a private company enabling drug discovery research collabora-
tions [62].

The rate of assay submission to PubChem and other repositories show that there
is a vast amount of textual data being produced in addition to the data being added
to the various databases for proteins and genes.

In addition to the MLP program, many other NIH funded projects started cre-
ating different assay types. One of the largest efforts is the NIH LINCS and BD2K
projects that create various assays that are interrelated.

The underlying premise of the LINCS program is that disrupting any one of the
many steps of a given biological process will cause related changes in the molecular
and cellular characteristics, behavior, and/or function of the cell — also known as the
cellular phenotype. A cellular phenotype is, in turn, intended to reflect signatures
derived for comparable assays of clinical states. Observing how and when a cell’s
phenotype is altered by specific stressors can provide clues about the underlying
mechanisms involved in perturbation and ultimately disease.

To achieve this goal, the Library of Integrated Network-based Cellular Signa-
tures (LINCS) program is developing a '"library" of molecular signatures, based on
gene expression and other cellular changes that describe the response different types
of cells elicit when exposed to various perturbing agents, including small bioactive
molecules. High-throughput screening approaches are used to interrogate the cells
and mathematical approaches are used to describe the molecular changes and pat-
terns of response. LINCS data are openly available as a community resource for
researchers to address a broad range of basic research questions and to facilitate the
identification of biological targets for new disease therapies. The LINCS program
was implemented in two parts. The pilot phase took place from 2010-2013 and

focused on the following activities:

e Large-scale production of perturbation-induced molecular and cellular signa-

tures.



31

e Creation of a database, common data standards, and a public user interface

for accessing the data.
e Computational tool development and integrative data analyses.

e Development of new cost-effective, molecular and cellular phenotypic assays.

Integration of existing datasets into LINCS.

The current phase of the program began in 2014 and builds on what was learned
from the pilot. This phase of the program consists primarily of LINCS Data and

Signature Generation Centers. The Centers carry out the following activities:

e Generating public datasets of cellular signatures collected in response to treat-

ment with perturbing agents.
e Developing tools to optimize the accessibility and utility of their data.

e Organizing outreach activities with the broader research community so they

can make use of LINCS data and tools.

The current phase of the LINCS program also works in synergy with the NIH Big
Data to Knowledge (BD2K) program through a BD2K-LINCS-Perturbation Data
Coordination and Integration Center (DCIC) at the Icahn School of Medicine at
Mount Sinai. Read a description of the DCIC project on the NIH Common Fund’s
BD2K Funded Research page.

The LINCS project, in contrast to traditional screening, generates extensive sig-
natures of cellular responses consisting of thousands of results for any perturbation
(such as small molecule drugs) to enable the development of better system-level dis-
ease models. Examples of LINCS screening results and assays include Landmark
gene expression signatures (L1000), Kinome-wide binding affinities (KINOMEscan),
phenotypic profiling across 1,000 cell lines, and many others, covering “omics” and
HTS data. LINCS results are currently available via participating centers and can
be queried and explored via the LINCS Information FramEwork (LIFE) developed

by our group [63].
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In addition to the assay data being generated with the MLP, LINCS, and BD2K
projects, the efforts to provide better therapeutics on molecular levels is also ad-
dressed as a challenge by the NIH.

The NIH funded IDG (Illuminating Druggable Genome) initiative is one of such
efforts. The IDG project is to evaluate, organize and prioritize the potential disease-
linked drug targets based on available data, knowledge and algorithms, for four
protein families: G-protein -coupled receptors (GPCR), nuclear receptor (NR), ion
channels (IC) and kinases.

The IDG drug targets are categorized as four super families with respect to the

depth of investigation from a clinical, biological and chemical standpoint [64]:

1. Tclin (i.e. clinical) are targets for which a molecule in advanced stages of
development, or an approved drug, exists, and is known to bind to that target

with high potency.

2. Tchem (i.e. early stage) are proteins for which no approved drug or molecule
in clinical trials is known to bind with high potency, but which can be specif-

ically manipulated with small molecules in vitro.

3. Thbio are targets that do not have known drug or small molecule activities that
satisfy the Tchem activity thresholds, but were the targets annotated with a
Gene Ontology Molecular Function or Biological Process with an Experimental

Evidence code, or targets with confirmed OMIM phenotype(s) [43].

4. Tdark (i.e. no prior information) refers to proteins that have been described
at the sequence level, do not satisfy Tclin/Tchem/Thio criteria, and meet two
of the following three conditions: a fractional PubMed publications count [44]
below 5, three or more NCBI Gene RIF annotations [45], or 50 or more com-
mercial antibodies, counted from data made available by the Antibodypedia

database [46].

5. Tclin are targets for which a molecule in advanced stages (Phase I clinical
trials and beyond) of development, or an approved drug, exists, and is known

to bind to that target with high potency;
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6. Tchem (i.e. early stage) are proteins for which no approved drug or molecule
in clinical trials is known to bind with high potency, but which can be specifi-
cally manipulated with small molecules in vitro; typically, the small molecule

will have been developed in the context of some interesting target related bi-

ology;

7. Tbio are targets do not have known drug or small molecule activities that
satisfy the activity thresholds detailed below AND satisfy one or more of the
following criteria: target is above the cutoff criteria for Tdark, or target is
annotated with a Gene Ontology Molecular Function or Biological Process
leaf term(s) with an Experimental Evidence code, or target has confirmed

OMIM phenotype(s);

8. Tdark (i.e. no prior information) refers to proteins that have been described
at the sequence level and no further studies have been disclosed. To gain more
in -sights on those drug targets, it is necessary to link the proteins to their
genomic data, structure data, publicly available small molecule data, as well

as the gene expression data in cell lines and tissues.

With the help of these new classifications, IDG aims to shed a light on the poorly
understood proteins of the four important gene families (i.e. kinases, GPCRs, hor-
mone receptors, and ion channels) and foster basic research by accumulating genomic
data to inform our knowledge of the proteome. In this way, help the pharmaceutical
industry with the ability to design novel therapeutics to increase human health.

Despite being publicly available, current data repositories for assays and bi-
ological molecules suffer from structural, syntactic, and semantic inconsistencies,
complicating data integration, interpretation and analysis. As one of the largest
and first repositories of public drug screening data, PubChem, has been essential to
illustrate the need for clear metadata standards to describe drug and chemical probe
discovery assays and screening results [65]. To address these prevailing issues; we
have previously developed the first version of the BioAssay Ontology (BAO) [66].

This first version was developed iteratively based on domain expertise and available
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assay data, primarily from the MLP, which we annotated using evolving versions of
BAO.

Since the first release of BAO, we have engaged with several more groups in public
research projects such as the LINCS, BD2K, and IDG projects, and in pharmaceuti-
cal companies and the biomedical ontology community. We aligned the organization
of BAO with existing efforts as much as possible, most importantly at the Novartis
Institutes of BioMedical Research, and we have significantly extended the terminol-
ogy and axioms in BAO to cover a broader range of assays and related concepts.
Engaging in several other projects also brought the need to develop other ontolo-
gies such as LIFE and DTO as well as the need to update the ontologies frequently
because of the frequent updates of input data.

In order to handle the challenges that come with creating multiple related on-
tologies and evolve them frequently we developed a methodology, KNARM. We are
currently using the methodology for building LINDO (LIncs meta-Data Ontology).
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CHAPTER 3

Approach

In this chapter we describe KNowledge Acquisition and Representation Method-
ology (KNARM) and how KNARM was applied to build the ontologies in this study:
BioAssay Ontology (BAO) 2.0, LINCS Information FramEwork (LIFE) ontology,
and Drug Target Ontology (DTO). The ontologies built were designed to share data
among themselves in order to avoid duplicating existing work. They also import
data from existing ontologies without disturbing their own integrity. Furthermore
they are designed to accommodate minor updates and the fluidity of the data coming

from the LINCS and IDG projects that are currently in progress.

3.1 KNowledge Acqusition Methodology
(KNARM)

Effective applications of big data approaches in the life sciences require better,
knowledge-based, semantic models that are suitable as a framework for big data
integration, while avoiding overly extreme simplification, such as reducing various
biological data types to the gene level. A huge hurdle in developing such semantic
knowledge models, or ontologies, is the knowledge acquisition bottleneck. Manual
methodologies require too much time, are prone to human errors, and fail to help
the need when there is large amounts of data production. Automated methods are

still very limited and significant human expertise is required.

36
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To systematize this knowledge acquisition and representation challenge, we cre-
ated a new methodology called KNowledge Acquisition and Representation Method-
ology (KNARM) is created and used for this research project by combining methods
for Database Management Systems, Object Oriented Programming, and Knowledge
Acquisition Methods. KNARM is a hybrid method for both acquiring new and
existing knowledge and building ontologies with high expressivity. The methodol-
ogy aims to represent the knowledge acquired from textual data, data available in
databases, and ontologies. The Knowledge Representation uses axioms in a system-
atic, structured, deepening-layering approach for defining concepts in formal logic.
We showcase ontologies built using KNARM, explain the details about how it helps
better formalize the data with the help of domain experts’ insights and use comput-
ers’ reasoning capabilities to infer new knowledge.

With KNARM, we provide a set of steps that allow the acquisition of the knowl-
edge out of the raw data. We start with the analysis of textual data. This is followed
by the acquisition of knowledge out of the existing resources, such as databases and
ontologies that is related to the textual data. We then suggest using description
languages and formal logic to represent the processed data as well as the existing
databases and ontologies. During this process, we suggest two check points for val-
idation of the knowledge acquired and represented in a formal way. It is an agile
methodology allowing updates after each iteration, and semi-automated so that each
iteration can contain minimum amount of errors and the iterations can be performed
fast.

The methodology may be generalized for any big data, but currently it is de-
scribed for handling biomedical big data. Here is the summary of the steps per-

formed:

1. Sub-language Analysis
2. In-House Unstructured Interview
3. Sub-language Recycling

4. Meta-Data Creation and Knowledge Modeling
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5. Structured Interview

6. Knowledge Acquisition (KA) Validation
7. Database Formation

8. Semi-Automated Ontology Building

9. Ontology Validation

3.1.1 Sub-language Analysis

Sub-language analysis is a technique for discovering units of information or
knowledge, and the relationships between them within existing knowledge sources,
including published literature or corpora of narrative text [45]. As the first step of
formalization of the data we recommend starting with the existing literature and/or
reports for the data. While reading the text data, it is desired to try creating use
cases and taking notes aiming to identify patterns and the units of information,
concepts and facts in data, that have a recurring pattern. A unit of information is
a concept, relationship or data property contained in the data in hand. A use case
is a list of actions, event steps that users might follow, questions that can be asked
by users, and/or scenarios that users may find themselves in. Example use cases are

as follows:

e Search for proteins are in the same kinase branch as target X where there were

validated chemical hits from external or internal sources.

e One has an assay X, find the other assays that have the same design but

different targets
e Which assay technologies have been used against my kinase? Which cell lines?

After identifying units of information, patterns, and listing some possible use
cases the ontology engineers can introduce the domain experts to their preliminary

analysis, or continue to work with them towards the next steps of the methodology.
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3.1.2 In-House Unstructured Interview

After identification of the key concepts and units of information during Sub-
language analysis, we perform an interview with the domain experts that are closest
to us, who work in the same team. This step can be a performed separately after
the sub-language analysis or in a hybrid fashion with the previous step. The un-
structured interview is aimed at understanding the data and their purposes better
with the help of the domain experts. It can be performed in a more directed fashion
by using the previously identified knowledge units or could be treated as a separate
process. Together with the previous step, this step also help identify the knowledge

units and key concepts of the data.

3.1.3 Sub-language Recycling

Following the identification of knowledge units through the textual data of the
assays, literature, and unstructured interview with the domain experts, we per-
form a search on the existing ontologies and databases. The aim of the search on
the databases and ontologies is to ascertain the already formalized knowledge units
that are identified. We perform and encourage reuse of existing -relevant, and well-
maintained- ontologies, aligning them with our ontologies, and using cross-references
(annotated as Xref in the ontology) to the various databases that contain the same
knowledge units and concepts that we determined to formalize. By recycling the
sub-language, not only we save time and effort, but also reuse widely accepted con-
ceptualization of knowledge. In this way, we also aim to help life-scientists by sparing
them the painful data alignment practices, and by helping them avoid redundant

and/or irrelevant data available in different data resources.

3.1.4 Meta-Data Creation and Knowledge Modeling

In this step, we combine the knowledge units and essential concepts identified
with those recycled from the existing databases and ontologies to create the meta-

data describing the domain of the data to be modeled. The metadata creation can
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be a cumbersome task that could be performed in different levels by defining subsets
of metadata on various details of the data. For example, with our systematically
deepening approach of formalization (i.e. Systematically-Deepening-Modeling ap-
proach (SDM)), we started with the metadata for proteins and genes, followed by
metadata for diseases, tissues and small molecules. The SDM approach allows us
to focus on one aspect at a time and extract more detailed (i.e. deeper) metadata,
which later allows creating more complex axioms (i.e. modeling of concepts).

In combination with the metadata creation comes a very important step in knowl-
edge acquisition and representation: knowledge modeling. Here, we define knowledge
modeling as using axioms to define concepts and aim to help infer new knowledge
based on existing data using this axiomatic modeling of concepts. While model-
ing, we focus on one aspect at a time and create more complex axioms as going
deeper into the knowledge. The detailed metadata extracted is utilized on different
levels to create axioms that can be modeled without overwhelming the reasoners
and other semantic web technologies by creating nested axioms. By dividing the
knowledge into detail levels and representing different detail levels of the knowledge
in different ontologies, we allow reuse of concepts and axioms easily as well (also
see modular architecture in Semi-Automated Ontology Building section). This step
can be performed within the team first and then can be discussed with the collabo-
rators and other scientists. Alternatively, a bigger initiative can be set up to agree
on the metadata, axioms, and knowledge models (examples include OBO Foundry

ontologies [35])

3.1.5 Structured Interview

Structured Interview consists of close ended questions that are aimed at the do-
main experts. For our purposes we use metadata created for the knowledge obtained
so far in order to perform an interview with the collaborators who are involved in
the data creation as well as the scientists who are not involved in the data creation.
The aim of the structured interview is to identify any important points that might

have missed by the knowledge engineers and the domain experts so far.



41

In this step, the metadata identified for the data is presented by the knowledge
engineers. The data could be dissected based on the metadata identified and the

dissected information could also be presented to the collaborators.

3.1.6 Knowledge Acquisition Validation

This step could be considered the first feedback. In this step, the sub-language
identified and recycled, the metadata, and the data dissected based on the metadata
is presented to the domain experts by the knowledge engineer. It could also be
presented to a small group of users based on the use cases. The aim in this step is to
identify any knowledge that is missed or misinterpreted. If such knowledge exists,

we recommend starting from the first step and reiterating the steps listed above.

3.1.7 Database Formation

After validating the knowledge acquired is correct and consistent, we start build-
ing the backbone for the representation of the knowledge. The first step is to create
a database to collect the data in a schema that will facilitate the knowledge en-
gineering. Typically, this will be a relational database. The domain experts may
prefer to use different means of handling and editing their data, such as a set of
flat files, but we recommend using a database as the main data feed to the ontology
that will be created as the final product. The details of the database are designed
based on the acquired metadata and data types collected and their relations (see
Figure 4.15 for an example database schema). Ideally, the databases should contain
the metadata as well as the knowledge units and the key concepts identified in the
knowledge acquisition steps. Information that the database may not hold directly
includes specific relationships or axioms involving the different knowledge units and
key concepts that are identified during the knowledge acquisition. We placed the
relationships among the pieces of data in the next step during the ontology building

process.
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3.1.8 Semi-Automated Ontology Building

After placing the data dissected based on the metadata as well as the metadata
into the database, we convert the data to a more meaningful format that allows infer-
ence of new knowledge that is not explicit in the flat representation in the database.
This is achieved using semantic web technologies, mainly an ontology. Building an
ontology is particularly relevant for representing complex knowledge involving hi-
erarchies of concepts (i.e. classes in ontology) and many specific relationships (i.e.
object properties in ontology) among concepts and their data properties (i.e. data
properties in ontology). In this way, flat data obtained can be used to create axioms
that represent current knowledge. With the help of DL reasoners, inference of new
knowledge and performing complex queries for analysis and exploration becomes
possible and easily operable.

We follow the modular architecture that we presented [67-69] while building the
ontology. The modular architecture allows easier management and sharing of on-
tology files, standardized vocabularies and axiomatic representations of knowledge.
Modular architecture also allows us to create inter-operable pieces of knowledge that
we can easily share, manipulate, and assemble into diverse knowledge environments.

Modularization and ontology development can be performed manually. However,
especially while building DTO, we improved our approach by adding automation.
We created all vocabulary files and some of the axioms using the database back
end and a Java application, OntoJog [68], adding a layer into the modularization
and separating the axioms that are automatically created by a software that we
implemented and the axioms that are manually added to the ontology.

In order the create the modular architecture first, we determine the abstract hori-
zon between TBox and ABox. TBox, terminological component, contains modules,
which define the conceptualization without dependencies. ABox is the assertion
component of the ontology, where instances of concepts defined in the TBox are
added.

Vocabularies and modules in the core TBox are self-contained and well-defined

with respect to the domain and they contain concepts, relations, and individuals. In
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this research, self-contained means that there is no outside term or relationship in
the files; well-defined means the terms, relationships, and individuals are generated
unambiguously.We can have n of these vocabularies and /or module files in the TBox.

Second, after the n files of modules and/or vocabularies are defined, the modules
with axioms that can be generated automatically are created. These new modules
created have interdependent axioms. At this level one could create any number of
gluing modules, which import other modules without dependencies or with depen-
dencies.For the ontology’s core file, these modules need to be self-contained.

Third level contains axioms created manually, however the axioms generated are
independent and self-contained. The manual modules are an optional level and they
inherit the axioms created automatically.

Forth, at this level we can design modules that import modules from our domain
of discourse, and also from third party ontologies. Third party ontologies could
be large, therefore a suitable module extraction method (e.g., OWL API) can be
used to extract only part of those ontologies (vide supra). We would model this
in the ontology-complete level. We can have one ontology-complete file or multiple
files, each may be modeled for a different purpose, e.g., tailored for various research
groups. Once these ontologies are imported, the alignment takes place. The align-
ments are defined for concepts and relations using equivalence or subsumption DL
constructs. The alignment depends on the domain experts and/or cross-references
made in the ontologies.

Fifth, release the TBox based on the modules created from the third phase.
Depending on the end-users, the modules are combined without loss of generality.
With this methodology we make sure that we only send out physical files that contain
our (and the absolute necessary) knowledge.

Sixth, at this level, the necessary modules ABoxes are created. ABoxes can be
loaded to a triple store or to a distributed file system (Hadoop DFS [70]) in a way
that one could achieve pseudo-parallel reasoning.

At the seventh level, using modules, we define views on the knowledge base.

These are files that contain imports (both direct and indirect) from various TBoxes
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and ABoxes modules for the end-user. It can be seen as a view, using database
terminology.

Our modular architecture for the ontologies improved over the span of this re-
search. The modular architecture described for BAO [4] was relying on manual
axioms and manual vocabulary additions. Because of the difference in data increase
and rapid update requirements as well as the automated steps integrated during
implementation, we added a new layer in which we only generate modules that are
built using the automated process. We then add the modules that are manually
created with the help of a domain expert (see Figure 3.2 for the current modular

architecture of DTO).

3.1.9 Ontology Validation and Evoluation

The final step in the proposed workflow is the ontology validation. The domain
experts as well as the knowledge engineer performs different tests in order to find out
if the information in the ontology is accurate. In addition, different reasoners can
be run on the ontology to check its consistency. Additional software can be imple-
mented to test the different aspects of the ontology (for example java programs that
compare the database with the ontology classes, object properties, data properties,
etc.) Finally, queries for the different use cases can be run to check if the ontology
implementation answers questions it was meant to answer. If there are any incon-
sistencies or inaccuracies in the ontology, the knowledge engineer and the domain
expert should try to go back to the ontology building step. If the inconsistencies
are fundamental, we recommend starting from the first step and retracing the steps
that lead to the inconsistent knowledge. Domain experts and ontology engineers
can also choose to go back to the Metadata Creation and Knowledge Modeling or
Sub-language Recycling step.
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Methodology step

_— Methodology flow to the next step

—>»— — - — - Alternate checkpoint and flow to the next step

Figure 3.1: The steps of KNowledge Acquisition and Representation Methodology (KNARM). The
figure aims to emphasize the continuous development cycle and agile nature of the methodology. The
inner cycle can be repeated as many times as required by the domain experts and ontology engineers
so that the knowledge can be captured and modeled without flattening the data while making sure
that it's accurate. One should note that the inner cycle is more manual, relying more traditional KA
methods. The outer cycle is composed of more automated steps, aiding faster building of ontologies.
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As described our modular architecture
for the ontologies improved over the span of this research. The modular architecture described for BAO
[4] was relying on manual axioms and manual vocabulary additions. Because of the difference in data
increase and rapid update requirements as well as the automated steps integrated during implementation,
we added a new layer in which we only generate modules that are built using the automated process.
We then add the modules that are manually created with the help of a domain expert.



CHAPTER 4

Methods and Applications of KNARM

In this chapter, how KNARM (KNowledge Acquisition and Representation Method-
ology) was formed, matured dynamically and how KNARM is used for three ontolo-
gies - the BioAssay Ontology (BAO), LIncs FramEmework Ontology (LIFE), and
Drug Target Ontology (DTO)- is described.

KNARM started to form based on our need to build better and concordant
ontologies in a systematic way, more efficiently, and harmoniously. The following
subsections give the details of how each step of KNARM was performed while build-
ing BAO, LIFE, and DTO along with other design and implementation details for

the three ontologies.

4.1 LINCS Information FramEwork (LIFE) and
The BioAssay Ontology (BAO) 2.0:

4.1.1 Sub-language Analysis and Unstructured Interview for

BAO and LIFE

As described above the first step, sub-language analysis, is focused on discovering
and defining units of information, i.e. concepts and relationships. This is the first
step towards identifying meta data information.

BAO [5] was designed and implemented to axiomize knowledge about bioassays.

The first version of BAO was designed and implemented with PubChem assays in

47
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Figure 4.1: Overview of Modeling of BAO, LIFE, and DTO using KNARM. This figure shows how we
built concordant ontologies using KNARM as a consistent methodology and our modular architecture
which allowed us to reuse and align parts from different ontologies. This conceptual description shows
that relationship among some core concepts in the ontologies.

mind, therefore the modeling of the assays and the concepts created in BAO were a
reflection of this dataset (see Figure 4.1 for the Overview of Modeling in BAO 1.0)

With the introduction of the The Library of Integrated Network-Based C ellular
Signatures (LINCS) project, we worked on integrating the new LINCS assays into
the existing BAO. In this step, we reviewed textual descriptions of LINCS assays with
domain experts. Starting with the initial concepts identified in BAQO’s first version,
we tried to identify key concepts from the LINCS assays and the bio-entities used
in the assays that will allow us to perform key queries. We quickly realized that,
BAO’s structure and modeling was not designed to handle the changes. Thus, we
decided to take a more systematic approach for modeling of the LINCS assays in
BAO.
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Figure 4.2: Overview of Modeling of BAO assays in BAO1.0 [5]. This modeling of the bioassay
concept was based on the bioassays submitted to PubChem. PubChem requires users to enter certain
fields of information before they can upload their textual descriptions of assays.

The Library of Integrated Network-Based C ellular Signatures (LINCS) project
aims to use computational tools to integrate this diverse information into a compre-

hensive view of normal and disease states that can be applied for the development

of new biomarkers and therapeutics (See Figure 4.3 for the different datasets). [71]

LINCS generates diverse multidimensional signatures
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P100 Assay MEMA
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_ ) e
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Figure 4.3: Diversity of LINCS assays

The diverse datasets in this project are created by running various assays with
different types of molecules such as proteins and genes. Each assay uses these bi-

ological molecules in different roles in order understand how these molecules react
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under varied circumstances and perturbagens. The assays that are reviewed during

the Sublanguage Analysis and Unstructured Interview are as follows (also see Figure

4.5):

KinomeSCAN KinomeSCAN assay measures a group proteins after a group

of perturbagens were introduced to the biochemical model system. [72]

KiNativ KiNativ assay observes proteins in the presence of small molecule

perturbagens in Lysates. [73]

L1000 Assay The L1000 platform pairs ligation-mediated amplification (LMA)
with a Luminex-bead based detection system to allow the quantitation of 1000
mRNA transcripts per well. The L1000 assay is an extension of a previously re-
ported method for expression profiling based on Luminex bead technology [74]
to create a 1000-plex profiling solution. By using this platform, certain genes
are over-expressed and under- expressed, and based on the expression levels

signatures are created. [75]

2-3 Color Apoptosis The 2-Color and the 3-Color Apoptosis assays use
different markers to illuminate different cell lines and observe which cells are

going through apoptosis in the presence of small molecule perturbagens. [76]

Cell Cycle State Assays These assays are called Proliferation/Mitosis Assay
and Mitosis/Apoptosis Assay by the data creator, Harvard Medical School.
The two assays use different markers to identify the cell-cycle states and apop-

tosis. [76]

Cell Growth Assay In this assay cell growth and apoptosis is observed after
using perturbagens on different cells. Cell nuclei is stained and cell division is

measured and reported. [76]

Cue Signal Response (CSR) Assay The CSR Assay measures the cytokine
secretion and phosphorilation levels in different cell lines after introducing

small molecule and biological molecule perturbagens to the model system. [76]
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Figure 4.4: LINCS assays currently described in BAO. This figure shows how the assays connect via
perturbagens and other participants in the modeling.

As briefly described above, these assays aim to measure different biological pro-
cesses and /or molecular functions. Furthermore, the assays use different biomolecules,
such as proteins, genes, as well as their mutated variations, small molecules, cell lines,
and various other participants.

An unambiguous description the assays is essential for the LINCS project in
order to help both the researchers who are participating in the LINCS project and
those who are using the LINCS findings to aid projects outside. In order to provide
an unambiguous, formal description, we generated a new set of meta-data for the

second version of BAO.

4.1.2 Sub-language Recycling for BAO and LIFE

As described previously, this step involves searching and discovering units of
information that already exists in other ontologies and databases. We aim to adopt
as many concepts as possible from existing ontologies, given the logical (or in the
cases of taxonomies textual) descriptions of the concepts align with our needs. This
also helps avoid duplication of efforts and reuse of previously established vocabulary

for the terms. We also aim to accomplish community suppor and cross-reference
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Figure 4.5: Basic Conceptual Modeling in BAO 2.0 and beyond. This figure shows how the current
modeling of assays differ from the modeling in BAO1.0. Systematically Deepening Modeling (SDM)
adds a layer to the basic concepts such as genes and proteins by giving them different roles in different
assays. While this modeling is very comprehensive and accurate in terms of philosophical view of
concepts, sometimes this deepening modeling causes problems with computation of inferences.

and/or map existing efforts. Using Bioportal [14] or contacting with ontology groups
(such as OBO foundry) we search for assay related terms. So far we have used the

following ontologies:

1. Biological process and molecular function terms were extracted from the Gene

Ontology (GO) [25]
2. A number of relationships are extracted from Relationship Ontology (RO) [35]

3. All the organism names are extracted from NCBI Taxonomy Ontology (NCBITaxon)
[77]

4. Most of the Cell Lines are extracted from Cell Line Ontology [20]
5. Diseases from the Disease Ontology(DOID) [19]

6. Units from Unit Ontology (UO) [78]
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7. Chemical entities and roles from ChEBI [79]
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Figure 4.6: BAO Modularization. This modularization assumes that all axioms are added manually.

We also used well-established databases such as UniProt and ENTREZ for in-
formation related with bio-molecules such as proteins and genes. For example all
the protein names are extracted from UniProt and cross references to UniProt and

ENTREZ IDs are contained in the ontologies.
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4.1.3 Meta-Data Creation snd Knowledge Modeling for BAO
and LIFE

Based on the Sub-language Analysis, the In House Unstructured Interview and
Sub-language Recycling, the next step in formalizing the assays is creating a set of
meta-data.

The meta-data creation step is a combination of analyzing the standards already
existing,i.e. widely used data integration standards such as Minimum Information
for Biological and Biomedical Investigations (MIBBI) Standards, and understanding
the patterns of the data in hand.

For the LINCS assays, we were able to identify patterns among the assays and
created a sheet with meta-data (see Figures 13 and 14 for details of metadata and
modeling and an example modeling of an assay based on metadata defined). This
meta-data then served as the modeling pattern for the assays. In this way, a uni-
form modeling was identified. We axiomize the reoccurring components for all of

the assays as follows:

Assay Participants: In the LINCS project, even though all assays are related
with and complementary of each other, each assay deals with a diverse group of
molecular entities. The molecular entities that take place in the different assays are

defined as a 'participant’ of the assay.

Model System: Inspired by the model organisms, we started using the term Model
System to identify the assay mediums that are used while performing the assays.

This term is a generalized version of previously used BAO term ’bioassay format’.

Perturbagen: One of the most important part of the assays is the perturbing
agent. While many assays used small molecules as perturbagens, we also had assays
that use hormones, or other biological molecules as perturbagens in order to detect

different cellular responses.
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Assay Design Method: The Assay Design Method describes how a biological or
physical process screened / investigated in the model system is translated into a

detectable signal.

Biological Process or Molecular Function: According to the Gene Ontology (GO)
[25] a biological process is any process specifically pertinent to the functioning of
integrated living units: cells, tissues, organs, and organisms. A process is a collection
of molecular events with a defined beginning and end. In addition, a molecular
function is defined as elemental activities, such as catalysis or binding, describing
the actions of a gene product at the molecular level. A given gene product may

exhibit one or more molecular functions.
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Figure 4.7: Main Classes and Basic Object Properties for Modeling bioassay concept in BAO 2.0. As
seen in the figure even for a single concept, the relationships and modeling becomes a highly connected
graph.

At its core, the assay aims to measure responses for a biological process or
a molecular function. Since the LINCS assays are complementing each other in
various ways, we decided that it is crucial to capture which biological processes

and/or molecular functions the assays are involved with. In this way, we could
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easily query and reason assays that are involved with the same biological processes
and /or molecular functions. Since GO is widely used by many different databases
such as UniProt [80], Reactome [81], and ChEBI [79], we chose to extract terms

from the GO, and use the GO terms in our logical axioms.

Measured Entity: In the assays that we modeled, the same molecular entities are
used in different roles. For example, one protein could be the end product in one
assay, while it is a byproduct in another. In order to model in a clear and concise
fashion, we decided to logically axiomize the roles of the participants in the assays, as
opposed to having multiple upper classes to the same entity. The concept Measured
Entity is a product of such need. It is modeled as a role. The entity that has the
measured entity role is the output of a biological reaction or process that is quantized

either directly (by the presence of a tag or probe) or indirectly in a coupled reaction.

Assay Detection Method: Assay Detection Method refers to the physical method
or technology that generates a readout for the effect caused by a perturbagen in the
assay. The assay detection method could be an instrument or a combination of in-

struments, tags, and/or dyes.

Detected Entity: This concept is being recorded because of the need to differ-
entiate between what is measured in the assay and what captured by the detection
method. Detected Entity is the immediate entity that is detected by using the de-
tection method. In some cases, detected entity can be the measured entity, however,
in other cases detected entity acts as a bridge for what we are aiming to measure

with our assay.

Endpoint: An endpoint, alternatively called result, is a quantitive or qualitative
representation of a perturbation (change from a defined reference state of the model
system) that is measured by the bioassay.

The creation of meta-data further allowed us to find a solution for difficult mod-

eling problems such as the modeling of assay endpoint vs. measure group.We had
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Figure 4.8: An example modeling and metadata of Cell Viability Assay in BAO.

previously introduced the concept measure group to link multiple endpoints to the
same bioassay [82] (See Figure 4.9). We have now generalized this model so that
measure group can be derived from one or more measure groups. This allows the
formal and iterative construction of more complex assays and endpoints that are

derived from multiple measurements.

4.1.4 Structured Interview for BAO and LIFE

Based on the meta-data created, I have interviewed the researchers at the LINCS
data creation centers and outside of the group, mainly the data creation group at
Harvard Medical School.

This step is to confirm that the interpretation of the text data is correct and
accurate. Additionally, this step can be used in combination with other methods in
order to decide on a concept’s proper name. With this step, the aim is to finalize

names and types of concepts used in the meta-data. Furthermore, it is to make sure
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that the ontology engineer is on the same page as the domain experts before starting

to write the axioms into the ontology. Therefore, this step can be combined with

the next step, i.e. Knowledge Acquisition Validation.

4.1.5 Knowledge Acquisition Validation (KA Validation) for
BAO and LIFE

In this case after the metadata creation and after the various interviews and

reviews of the data the forms I have designed were filled. Before the axiomization of

the assays, the forms were shared with the research scientists inside and outside of

the SchAihrer Lab in order to make sure that the information contained was valid.

Corrections if necessary were made on the excel sheet provided and sent back to

me. Please see appendices for documents created working with the Harvard Medical

School for the Structured Interview and KA Validation steps.
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4.1.6 Database Formation for BAO and LIFE

This step of KNARM provides a basis for the semi-automated ontology building.
Initially for the second version of BAO, a database was not created. This was because
previously BAO concepts and axioms have been created manually and there wasn’t
a big demand in adding various new concepts at once. A new database is being built
for generating BAO vocabulary in an automated fashion by the SchAlhrer Lab as
a result of the full application of this methodology (i.e. KNARM), and as the need
for regular updates for the BAO project increased.

For the LINCS data a database was created by the software group at the CSS
for keeping the LINCS data and providing the back-end for the LIFEwrx web-based
software (see Figure 4.10). However, the database was used to extract the data as

Excel files for semi-automated ontology building.

SAF (4MS), JSON (Broac) 15 data, triples 10s BSON
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Figure 4.10: Use of Database and the LIFE ontology for the LIFEwrx software (Courtesy of Schiihrer
Lab)

4.1.7 Semi-Automated Ontology Building for BAO and LIFE

As mentioned above, most of the data for the LIFE and BAO ontologies were
collected and formed via excel sheets. Therefore, I used Java and OWL API to
process the excel files and convert them to RDF in order to build parts of the
ontology in an automated fashion.The modular architecture formed for BAO was

adopted for LINCS, but no formal changes were made to the architecture.
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Figure 4.11: LIFE Modularization following the same principles followed for BAO modularization

4.1.8 Ontology Validation for BAO and LIFE

LIFE ontology was not published to the community, so the only validation it
had was through the various reasoners. BAO, on the other hand, is a widely used
ontology with lots of applications, such as BioAssay Express (BAE) of Collabora-
tive Drug Discovery (CDD), pharmaceutical companies (Astra-Zeneca, Roche, etc.),
and government facilities, such as Environment Protection Agency (EPA), and gov-
ernment funded projects, such as BARD, LINCS, BD2K, using it as their primary
ontology for annotating their bioassays. The need to update BAO for the needs of
different users urged us to identify a systematic and consistent routine for updating.
An initial updating routine was implemented via a joint effort between CDD and
SchAihrer Lab and a new NIH grant is awarded for further implementation of tools
for efficient semi-automated ontology validation and updating process.

The key steps for ontology validation and update using the BAE tool are as

follows:
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. Create BAE Absence Report (generated at: http://www.bioassayexpress.

com/BioAssayExpress/diagnostics/absence. jsp)

. Absence reported is exported to Excel, and then reviewed by a content (do-
main) expert to QC, filter for unique new terms, which are then exported to a
new-term template to further clarify by adding required fields—definitions, par-
ent BAO class, relevant references/ hyperlinks. This List of Requested Terms
is then shared with University of Miami (BAO team).

. A survey of content experts could be used to decide on the final labels for
terms. (Currently this step is not performed) The links to surveys are in a

document and they live in SurveysAndResults folder in Google Drive

. The List of Requested Terms from Step 2 above is divided and transformed into
appropriate separate .csv files by a University of Miami BAO domain expert
along with the ontology engineer, inputting the new BAO ID to be assigned
and the appropriate BAO parent class ID, using a predefined template.

. Attention must be paid to terms that already exist in external ontologies (but
need to be added to BAO) and terms for which BAO needs to coordinate with

external ontologies (e.g.DOID, CLO) to request external IDs.
. Output files are created in .owl format by the ontology engineer at UM

. Output files are merged with the appropriate vocabulary files by the ontology
engineer in UM and merged into BAO complete for initial check-up and QC
run by the Java Programs and Pipeline Pilot Scripts. Manual check is also

performed using Protege.

. After final corrections (changes may be needed, iterating back to step 4 and
performing steps 4,5,6 again or manually editing the .owl files), final bao__complete.owl

is created (as per KNARM).

. After the finalized BAO_ complete is created, all files are updated on GitHub
and the BioAssay homepage for BioPortal to collect the new version by the
ontology engineer at UM.
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Figure 4.12: Left: Current workflow for evolving BAO, Right: Ideal Workflow for Evolution of BAO

4.2 Drug Target Ontology (DTO):

As a part of the IDG project, we designed and implemented the Drug Target
Ontology (DTO), advancing the ontology architecture that we used for the BAO and
LIFE ontologies. The goal of the IDG project is to improve our understanding of
the proteins that belong to the four most commonly drug-targeted protein families
properties and yet are not annotated with as many details as the commonly used
drug-targets. In its pilot phase the program aims to create a data resource center,
the Knowledge Management Center (KMC) that will catalog known information
about the four protein families and obtain additional information about their func-
tion(s). Ultimately, the KMC aims to have methods that allow the life-scientists
to identify and prioritize the poorly annotated proteins for further study [64]. The
major difference between the previously defined LINCS and the IDG projects’ data
is that IDG focuses on biomolecules and their tissue and disease relationships while
LINCS main focus on the different assays that they create and run. The IDG data
is mainly composed of drug-targeted protein families: G-protein coupled receptors

(GPCR), nuclear receptors, ion channels, and protein kinases. Therefore, we fo-
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cused more on modeling the biological and chemical molecules, changes that they
have been through such as modifications, mutations, etc., rather than the assays
they were used in.

KNARM finalized before the implementation of DTO and all the steps have been

followed while building the Drug Target Ontology.

4.2.1 Sub-language Analysis and In-House Unstructured In-
terview for DTO

Different communities have been using the term ’drug target’ ambiguously with
no formal generally accepted definition. The DTO is aimed at developing a formal
semantic model for drug targets including various related information such as pro-
tein, gene, protein tissue localization, disease associations, and many other types of
information. The initial interviews and sub-language analysis steps involved deter-
mining the different classifications of the drug targets and the properties of them.
Recently the IDG project defined drug target as a native (gene product) protein or
protein complex that physically interacts with a therapeutic drug (with some bind-
ing affinity) and where this physical interaction is (at least partially) the cause of a
(detectable) clinical effect. DTO defined a DTO specific term drug target role to be
used in axioms related with the proteins listed in DTO. The text definition of drug
target role is a role that is beared in a material entity, such as native (gene prod-
uct) protein, protein complex, microorganism, DNA | etc., that physically interacts
with a therapeutic or prophylactic drug (with some binding affinity) and where this
physical interaction is (at least partially) the cause of a (detectable) clinical effect.

At the current phase, DTO focuses on protein targets.

The IDG drug targets are categorized as four super families with respect to the

depth of investigation from a clinical, biological and chemical standpoint:

1. Telin are targets for which a molecule in advanced stages of development, or an

approved drug, exists, and is known to bind to that target with high potency
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2. Tchem are proteins for which no approved drug or molecule in clinical trials is
known to bind with high potency, but which can be specifically manipulated

with small molecules in vitro

3. Thio are targets that do not have known drug or small molecule activities that
satisfy the Tchem activity thresholds, but were the targets annotated with a
Gene Ontology Molecular Function or Biological Process with an Experimental

Evidence code, or targets with confirmed OMIM phenotype(s)

4. Tdark refers to proteins that have been described at the sequence level and no

further studies have been disclosed

DTO proteins have been classified into various categories based on their struc-
tural (sequence/domains) or functional similarity. A high-level summary of the
classifications for Kinases, Ion Channels, GPCRs, and Nuclear Receptors.

Most of the 578 kinases covered in the current version of DTO are protein kinases.
These 514 PKs are categorized in 10 groups that are further subcategorized in 131
families and 82 subfamilies.

The 62 non-protein kinases are categorized in 5 groups depending upon the
substrate that are phosphorylated by these proteins. These 5 groups are further
sub-categorized in 25 families and 7 subfamilies. There are two kinases that have
not been categorized yet in any of the above types or groups.

The 334 Ion channel proteins (out of 342 covered in the current version of DTO)
are categorized in 46 families, 111 subfamilies, and 107 sub-subfamilies. Similarly,
the 827 GPCRs covered in the current version of DTO are categorized in 6 classes,
61 families and 14 subfamilies. The additional information whether any receptor has
a known endogenous ligand or is currently orphan is mapped with the individual
proteins. Finally, the 48 nuclear hormone receptors are categorized in 19 NR families.

Following my reviews of the free-form text about the data in hand, the domain
experts in the group provided help with answering my questions. At times, the
reviews of the free-form text was performed together with the domain experts. This
process is defined as the unstructured interview, because there are no predefined set

of questions asked to the domain expert. The questions are asked in a conversation-
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Figure 4.13: Protein Classes in DTO

like environment in order to understand the assays better and identify a pattern
among the various kinds of bio-molecules and their uses as well as their structure
and functions in drug discovery related assays and projects.

Above classifications of the data are performed by the domain experts and pro-
vided to me in excel sheets. We have further discussed other classification issues such
as how one could classify mutated and modified proteins.I proposed some modeling
solutions. It was decided that the best way to classify them was as a subclass of
their wild-type proteins.

The following information about the protein classes are also identified as prop-

erties to model and axiomize.

e Kinase relationships
protein-gene relationships
protein-disease relationships
protein-tissue relationships

target development level relationships
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has quality pseudokinase relationships

e GPCR relationships
protein-gene relationships
protein-disease relationships
protein-tissue relationships
target development level relationships

has-ligand-type relationships

e IC relationships
protein-gene relationships
protein-disease relationships
protein-tissue relationships
target development level relationships
has channel activity
has gating mechanism
has quaternary organization

has topology

e NR relationships
protein-gene relationships
protein-disease relationships
protein-tissue relationships

target development level relationships

These different properties identified in the first step are later used to create

meta-data, model the knowledge, and axiomize in the ontology building process.
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4.2.2 Sub-language Recycling for DTO

While designing the ontology, we decided to add the UniProt IDs for the proteins
and the ENTREZ IDs [83] for the genes. In addition to this, we wanted to include
the textual definitions for the genes and the proteins. We also cross-referenced the
synonymous names and symbols for the molecules that already exist in different
databases. Because we want the Drug Target Ontology to be as comprehensive as
possible with existing information about the biological and chemical molecules that
the DTO contains. In this way, we aim to help the life-scientists query and retrieve
knowledge derived for the different drug targets that they are working on. To do
that, we wrote various scripts using Java to retrieve information from databases.
These databases include UniProt and NCBI databases for ENTREZ IDs for the
genes.

In addition to the publicly available databases and data, we also used the collab-
orators’ databases (TCRD and Jensen Lab’s databases) in order retrieve information
about proteins, genes and their related target development levels( TDLs), as well as
the tissue and disease information.

The information on the Jensen Lab’s database is retrieved through text mining
and has a scoring system [84].The lab also has information about the protein-disease,
and protein-tissue relationships and scores based on lab experiments. We retrieved
the proteins, with their tissue and disease relationships with the confidence scores
that are given to the relationships. We put this data into our database and use
this information while creating the ontology’s axioms that refer to the probabilistic
values of the relationships.

In addition to the larger scale information downloads from the databases men-
tioned above, a vast amount of manual curation for the proteins and genes is per-
formed in the team by the domain experts. Most significantly improved drug target
classification for kinases, ion channels, nuclear receptors, and GPCRs. For most pro-
tein kinases we followed the phylogenetic tree classification originally proposed by
Sugen and the Salk Institute (available from http://www.kinase.com/). Protein ki-

nases not covered by this resource were manually curated and classified mainly based
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on information in UniProt and also the literature. Non-protein were curated and
classified based on their substrate chemotypes. We also added pseudokinases, which
are characterized by a catalytically inactive kinase domain and which are increas-
ingly recognized and relevant drug targets. For 44 kinases we are still in the process
of completing manual annotations and classification. Nuclear receptors were orga-
nized following the IUPHAR classification. GPCRs were classified based on infor-
mation from several sources primarily using GPCRDB (http://www.gpcr.org/7tm/)
and [TUPHAR as we have previously implemented in our GPCR ontology. However,
not all GPCRs were covered and we are aligning GPCR ontology with other re-
sources to complete classification for 33 receptors. We are also incorporating ligand
chemotype-based classification. A basic classification of ion channels is available in
IUPHAR. However, a better classification is required including domain functions,
subunit topology, and heteromer and homomer formation. We curated much of this
information and are currently completing the classification based on this informa-
tion. This manual classification is in progress for 342 ion channels.

Protein domains were annotated using the Pfam Web Service. The domain se-
quences and domain annotations were extracted using custom scripts. Several of
the kinase domains were manually curated based on their descriptions. For nuclear
receptors we identified and annotated the ligand binding domains, which are most
relevant as drug targets. For GPCRs we identified 7tm domains for majority (780
out of 827) of GPCRs. Further work is needed to identify domains of interest for
the remaining GPCRs. ITon channel domains were annotated and trans-membrane
domains were identified; additional ion channel domains, such as regulatory and
ligand binding are also relevant for ion channel drug targets. Further curation is
required to classify and annotate them. In addition to the curated drug target
family function-specific domain annotations, we generated comprehensive Pfam do-
main annotations for all TCRD drug targets and extracted domain sequences. The
domain sequences were compared to the PDB chain sequences by BLAST and e-
values were calculated. For significant hits we computed domain identities using
the EMBOSS software suite. These results are currently processed and filtered to

restrict the results to those domains that were identified as most relevant for each
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target family. The domains are classified manually based on curated annotations to

generate meaningful interpretable assertions in DTO.

4.2.3 Meta-Data Creation and Knowledge Modeling for DTO

Based on the Sub-language Analysis, the In House Unstructured Interview and
Sub-language Recycling, the next step in formalizing the assays is creating a set of
meta-data.

The meta-data creation step is a combination of analyzing the standards already
existing, e.g. PFam annotations, and understanding the patterns of the data in
hand. For the first version of the DTO, we decided the add the following axioms for

the different protein classes:

e Kinase relationships
protein-gene relationships
protein-disease relationships
protein-tissue relationships
target development level relationships

has quality pseudokinase relationships

e GPCR relationships
protein-gene relationships
protein-disease relationships
protein-tissue relationships
target development level relationships

has-ligand-type relationships

e [C relationships
protein-gene relationships

protein-disease relationships



70

protein-tissue relationships

target development level relationships
has channel activity

has gating mechanism

has quaternary organization

has topology

e NR relationships
protein-gene relationships
protein-disease relationships
protein-tissue relationships

target development level relationships

Target development levels (TDL) were assigned using has target development

method relationship and based on the following criteria:

1. Telin are proteins targeted by approved drugs as they exert their mode of
action. The Tclin proteins are designated drug targets under the context of

IDG.

2. Tchem are proteins that can specifically be manipulated with small molecules
better than bioactivity cutoff values (30 nM for kinases, 100 nM for GPCRs and
NRs, 10 uM for ICs, and 1 uM for other target classes), which lack approved
small molecule or biologic drugs. In some cases, targets have been manually
migrated to Tchem through human curation, based on small molecule activities

from sources other than ChEMBL or Drug Central.

3. Thio are proteins that do not satisfy the Tclin or Tchem criteria, which are
annotated with a Gene Ontology Molecular Function or Biological Process
with an Experimental Evidence code, or targets with confirmed OMIM phe-
notype(s), or do not satisfy the Tdark criteria detailed in 4).
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4. Tdark refers to proteins that have been described at the sequence level and
have very few associated studies. They do not have any known drug or small
molecule activities that satisfy the activity thresholds detailed in 2), lack
OMIM and GO terms that would match Thio criteria, and meet at least two

of the following conditions:

e A PubMed text-mining score is less than five
e less than or equal to three Gene RIFs

e less than or equal to 50 antibodies available per Antibodypedia [85]

Each protein has a target development level (TDL), i.e., Tclin, Tchem, Thio and
Tdark. The protein is linked to gene by has gene template relation (see the details
of modeling in Figure 4.14).

The gene is associated with disease based on evidence from the DISEASES
database. The protein is also associated with some organ, tissue, or cell line us-
ing some evidence from TISSUES database. Important disease targets by inference
based on the protein - disease association, which were modeled as strong-, at least
some-, or at least weak- evidence using subsumption. DTO uses the following hierar-
chical relations to declare the relation between a protein and the associated disease
extracted from the DISEASES database. In the DISEASES database, the associ-
ated disease and protein are measured by a Z-Score. In DTO the relationships are

translated as follows:

e has associated disease with at least weak evidence from DISEASES (translated

for Z-Scores between zero and 2.4)

e has associated disease with at least some evidence from DISEASES (translated

for Z-Scores between 2.5 and 3.5)

e has associated disease with strong evidence from DISEASES (translated for
Z-Scores between 3.6 and 5)
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Figure 4.14: This figure shows how metadata is used for an example modeling of a protein. The
relationships described above are added to their respective classes. In the figure it can be observed that
the protein's hierarchy and its relationships are modeled based on the previous steps of KNARM

4.2.4 Structured Interview for DTO

Based on the meta-data created, I have interviewed the researchers in the group
and outside of the group. This step is to confirm that the interpretation of the text
data is correct and accurate. Additionally, this step can be used in combination
with other methods in order to decide on a concept’s proper name. In this case, we
chose to use existing names in well-known databases such as UniProt.

With this step, the aim is to finalize names and types of concepts used in the
meta-data. Furthermore, it is to make sure that the ontology engineer is on the same
page as the domain experts before starting to write the axioms. Therefore, this step

can be combined with the next step, i.e. Knowledge Acquisition Validation.



73

4.2.5 Knowledge Acquisition Validation (KA Validation) for
DTO

In this case after the metadata creation and after the various interviews and
reviews of the data the forms I have designed were filled. Before the axiomization
of the assays, the forms were shared with the research scientists inside and outside
of the SchAihrer group, especially with the scientists in the IDG project in order to
make sure that the information contained was valid. Corrections if necessary were

made on the excel sheets provided and sent back to me.

4.2.6 Database Formation for DTO

The previous experience in the LIFE ontology, the dealings with Excel files pro-
vide a very poor way of keeping track of the related data and updates. Furthermore,
the frequency of the need for updates for DTO was higher than the need for updates
for BAO and LIFE ontologies. It quickly became apparent that an efficient and
less error-prone way to update the ontology was crucial. For the DTO, a new small
MySQL database was formed to handle the data. Drug Target Ontology (DTO)
uses various external databases and ontologies to retrieve information. The informa-
tion from these databases is retrieved via web-based applications and in-house-built
scripts. The data that is used to build DTO is then housed in our internal MySQL
database.

The database schema below (Figure 4.15) is provided for the DTO ontologies
staging database created by me. This database then used to automate some of the

ontology creation and was used to extract data for the ontology’s axioms.
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Figure 4.15: This is the Database Schema for the initial database created for building DTO 0.1. It
was designed based on the different protein classes in DTO and the relationships and metadata that we
wanted to capture for the ontology. This database was used to build the ontology in a semi-automated
way. The data saved in this simple (un-optimized) MySQL database was queried and used for building
the ontology using Java and OWL API.

4.2.7 Semi-Automated Ontology Building for DTO

4.2.7.1 Knowledge Modeling of the Drug Target Ontology:

In BAO, the formal descriptions of assays are axiomized. LIFE formally describes
the participants and their relationships to the LINCS assays. DTO, which is created
for the IDG project, focuses on the bio-molecules and their natural properties, such
the specific ions for ion-channeling proteins, as well as their relationships to the
specific diseases and tissues.

The goal of the IDG project is to improve our understanding of the proteins that
belong to the four most commonly drug-targeted four protein families (G-protein
coupled receptors (GPCR), nuclear receptors, ion channels, and protein kinases), and
yet, are not annotated with as many details as the commonly used drug-targets. In
its pilot phase the program aims to create a data resource center, the Knowledge

Management Center (KMC) that will catalog known information about the four
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protein families and obtain additional information about their function(s). Ulti-
mately, the KMC aims to have methods that allow the life-scientists to identify and
prioritize the poorly annotated proteins for further study.

The major difference between the previously defined LINCS and the IDG projects’
data is that IDG focuses on biomolecules and their tissue and disease relationships
while LINCS main focus on the different assays that they create and run. There-
fore, we focused more on modeling the biological and chemical molecules, changes
that they have been through such as modifications, mutations, etc., rather than the
assays they were used in.

As described above, we build modular ontologies for different life-sciences projects
such as BAO and LINCS. However, the IDG project presented a new challenge which
was massive amounts of data on protein and genes that we wanted to express as
classes and axioms in OWL. Not only the amount of data, but also the frequency of
data updates have been overwhelming. Therefore we had to automate the ontology
building process as much as possible and the come up with a new way of modulariza-
tion. We use Java, OWL API and Jena to build the ontology in a semi-automated
way by using our local database in a new modularization architecture given in detail

below.

4.2.7.2 A New Modular Architecture for the Drug Target Ontology:

The modular architecture of the DTO is advanced over the modular architecture
of BAO [4]. Because of the difference in data and the automated steps during
implementation, we added a new layer in which we only generate modules that are
built using the automated process. We then add the manually created modules with
the help of a domain expert.

First, we determine the abstract horizon between TBox and ABox. TBox contains
modules, which define the conceptualization without dependencies. These modules
are self contained and well defined with respect to the domain and they contain

concepts, relations, and individuals. We can have n of these modules.



76

details )
per DTO details
micro-molecule per
increase assay

increases

Figure 4.16: Building of our concordant ontologies was made possible by using KNARM and the same
modular architecture consistently, and using the systematically deepening- modeling (SDM) approach
with the three ontologies. Using this approach, we modeled bioassay related data in the BioAssay.
For example we modeled and axiomized various bioassay related concepts such as assay format, assay
design method, assay detection method and instruments in BAO. We added axioms that specify the
assay participants for LINCS assays in LIFE ontology, such as kinases for KiNativ and KinomeSCAN
assays. We modeled and axiomized various details about drug targets in the DTO ontology, such as
their related diseases, tissues, and mutation information. With the help of our modularization approach
and modular architecture we were able to align the drug targets in DTO with the various participants
used in LINCS assays and LINCS assays with the general assay related concepts by using BAO. With
this systematically deepening modeling approach, we aim to model and query knowledge without over-
simplifying the knowledge and overwhelming the reasoners that help infer new knowledge.

Second, once the n modules are defined, the modules with axioms that can be
generated automatically are created. Those modules have interdependent axioms.
At this level one could create any number of gluing modules, which import other
modules without dependencies or with dependencies. It also is self-contained. This
means that there is no outside term or relationship in the files.

Third level contains axioms created manually, however the axioms generated are
independent and self-contained. The manual modules are an optional level and they
inherit the axioms created automatically. A good example of axioms that may be
seen in this level are axioms for protein modifications and mutations, which have
been challenging modeling questions. At this level, the self-contained DTO_core is

also generated with the existing modules.
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Figure 4.17: DTO Modularization. The modular architecture of the DTO is advanced over the
modular architecture of BAO [4]. Because of the difference in data and the automated steps during
implementation, we added a new layer in which we only generate modules that are built using the
automated process. We then add the manually created modules with the help of a domain expert.

Forth, at this level we can design modules that import modules from our domain
of discourse, and also from third party ontologies. Third party ontologies could be
large, therefore a suitable module extraction method ( e.g., OWL API) can be used
to extract only part of those ontologies ( wvide supra). We would model this in the
DTO_ complete level. We can have one DTO _complete file or multiple files, each
may be modeled for a different purpose, e.g. tailored for various research groups.

Once these ontologies are imported, the alignment takes place. The alignments
are defined for concepts and relations using equivalence or subsumption DL con-
structs. The alignment depends on the domain experts and/or cross- references
made in the ontologies. For DTO, the most significant alignment made is between
UBERON and BRENDA ontologies for the tissue information.

Fifth, release the TBox based on the modules created from the third phase.

Depending on the end-users, the modules are combined without loss of generality.
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With this methodology we make sure that we only send out physical files that contain
our (and the absolute necessary) knowledge.

Sixth, at this level, the necessary modules ABoxes (again 1...n ABoxes) are
created. ABoxes can be loaded to a triple store or to a distributed file system
(Hadoop DFS [70]) in a way that one could achieve pseudo-parallel reasoning,.

At the seventh level, using modules, we define wviews on the knowledge base.
These are files that contain imports (both direct and indirect) from various TBoxes
and ABoxes modules for the end-user. It can be seen as a wview, using database

terminology.
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Figure 4.18: This figure shows a conceptual example modeled by using the concepts from BAO,
LIFE and DTO as well as their connections to the external ontologies such as the Disease Ontology
(DOID) and UBERON tissue ontology. As mentioned above with our Sub-language Recycling step,
we try to reuse as many concepts as we could from existing ontologies. In this way we aim to utilize
existing efforts, align our vocabulary with already established resources, and avoid duplication of efforts
to reduce ambiguity for users.

4.2.8 Ontology Validation for DTO

After I created DTO 0.1, the ontology was shared with the larger IDG community
for feedback. We also had an in-house feedback loop headed by Stephan Schiirer
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and Yu Lin. Based on the updates, the concept drug target is defined and Pfam
domains are added to the ontology. Version 1.0 of DTO is publicly available on its
web page [68] and on Bioportal. A paper introducing the first public version is also

submitted [68] (with Hande Kiiciikk-McGinty and Saurabh Mehta as first co-authors).



CHAPTER 5

Results

In this chapter, some questions that could be answered by using the three on-
tologies and their modular implementation are showcased. This section can also be
viewed as part of the Ontology Validation step of the KNARM.

Figures and results for select SPARQL examples are presented and explained
in detail to show how/which inferences lead to the results. Since BAO, LIFE, and
DTO use a modular approach for modeling drug-discovery related data, we are
able to create different views that would help concentrate on their parts of interest,
i.e. concepts and relationships directly related with use cases. Using ontologies’
modular architecture, we extracted the LINCS assays from BAO by using Jena, and
OWL API, used the cell line module from LIFE. While extracting the LINCS assays
from BAO, the concepts used in the axioms for these assays were also extracted
based on the RDF graph. The Drug Target Ontology (DTO) was combined with
the parts from BAO and LIFE,in order to query the following use cases. The use
cases described below were performed using various tools together. The system

architecture used for performing these queries is described in Figure 5.1.
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Figure 5.1: Various Tools are used to perform the queries described below. This diagram shows how
the different tools and data were combined in order to retrieve results. The data used for the queries are
extracted from the LINCS Data Portal, designed and implemented by Schiirer Lab. The data extracted
is aligned with the staging databases designed for BAO and DTO. Using the ontologies, the database
alignments, the reasoners available, and the triple store on UM CS servers the query results are retrieved
as tables.

5.1 Use Case Examples

5.1.1 Example Query 1

Find LINCS assays that measure protein binding.

PREFIX bao: <http://www.bioassayontology.org/bao#>

PREFIX obo: <http://purl.obolibrary.org/obo/>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.o0rg/2002/07/owl#>

PREFIX dto: <http://www.drugtargetontology.org/dto/>

SELECT DISTINCT ?subject_label WHERE {

#LINCS assays involving binding

?subject rdfs:subClass0f ?sl .

7obj rdfs:subClass0f <http://purl.obolibrary.org/obo/G0_0005488> .

?s1 owl:onProperty bao:BA0_0003107; owl:someValuesFrom 7obj
?subject rdfs:label ?subject_label

¥
LIMIT 100

Listing 5.1: SPARQL query
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This is a simple query that works with one external ontology (Gene Ontology

(GO) ) and classes from BioAssay Ontology. The inference and query result is based

on T-Box reasoning based on the axioms.

First, we determine an abstract horizon between the A-box and the T-Box

What are the LINCS assays measuring protein binding?

Legend

() prociass
() BrOCclass
() poDciass
; LINDO class
() coclass

DTO individual
: BAO individual
<> 0o indwvidual
@ LNDO individual

. Inferred individual

-~

More subclasses

Primitive/defined class

=»
bl

s
==

BAO relation

DTO relation

Subclassftype relation
Class/individual datatype property

Inferred relation/type

Figure 5.2: Abstract horizon between A-Box and T-Box is denoted by dotted line. T-Box contains
axioms while A-box contains individuals
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Second, we determine the classes that we need for this particular question.

What are the LINCS assays measuring protein binding?

GO: biological
process

subClassOf

subClassOf  subClassOf

/ \ GO: protein
binding

BAO: BAO:

Legend

() prociass

() BrOclass z
Q DOID class . DOID individual — Subclassftype relation

DTO individual More subclasses = & BAOrelation
BAO individual & Primitive/defined class -y DTO relation

: LINDO class LINDO individual = <> Class/individual datatype property
() coclass Inferred individual = Inferred relationftype

Figure 5.3: Figure shows the classes from BAO and GO that are related with this query.
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The reasoner uses the axioms and individuals asserted for these classes (as seen in
the figure) to determine the result set. The axioms in this case are already asserted

in the ontology. Individuals are added for demonstration purposes.

What are the LINCS assays measuring protein binding?

GO: biological
process

subClassOf

bao:
involves
biological
= process

bao:
involves
= = = biological

process

A-Box

assa\l%\nd\“g

Legend
() prociss z DTO individual More subclasses = BAO relation

() BrOClass BAO individual L& Primiive/defined class gy DTO relation

() popciass <« oD individual = Subclassftype relation

; LINDO class . LINDO individual = <> Class/individual datatype property
) coclass . Inferred individual = Inferred relation/type

Figure 5.4: Classes from BAO and GO with their relationships (object properties) and their individuals.
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5.1.2 Example Query 2

Find proteins participated in LINCS binding assays and has target development
Tdark.

This is s slightly more complicated query generated based on the query defined in
Query 1 above. This query depends on the axioms used above, i.e. which assays from
the LINCS project (found in BAO and LIFE module extracted) and the participants
of these assays (extracted from the LINCS Data Portal) are added as individuals to
the A-Box.

The individuals added as participants of these assays are linked to DTO vocab-
ulary based on their UniPort IDs. In this way, these individuals related with LIFE
also become connected with DTO.

The resulting participants are found based on A-Box reasoning, while their target
developmental level (TDL) (in this case Tdark) is found in the T-Box axioms. The
T-Box axioms related with TDL are found in DTO. The axioms are asserted between

protein classes and the TDL vocabulary classes.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX dto: <http://www.drugtargetontology.org/dto/>

#proteins participated in LINCS binding assays and has target development Tdark
SELECT DISTINCT ?subject_label WHERE {

#LINCS assays involving binding
7?subject rdfs:subClass0f 7s3 .
7obj rdfs:subClass0f <http://purl.obolibrary.org/obo/G0_0005488> .
753 owl:onProperty bao:BA0_0003107; owl:someValuesFrom ?7obj .
7?subject rdfs:subClass0f 7s1 .
#has target development Tdark

?s1 owl:onProperty <http://www.drugtargetontology.org/dto/DT0_91000020>; owl:someValuesFrom dto:DT0_00400004

7}

LIMIT 10000

Listing 5.2: SPARQL query
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5.1.3 Example Query 3

Find the kinases used in the LINCS assays that are measuring protein binding

and have evidence that associates them with cancer.

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX dto: <http://www.drugtargetontology.org/dto/>
PREFIX bao: <http://www.bioassayontology.org/bao#>

#What are the kinases used in the LINCS assays measuring protein binding
#and have evidence that associates them with cancer
#and has target development Tchem?
SELECT DISTINCT ?subject_label WHERE {
?subject rdfs:subClass0f ?7s4 .
?s4 owl:onProperty bao:BA0_0090013; owl:someValuesFrom bao:BA0_0002908 .
#have evidence that associates them with cancer
?subject rdfs:subClass0f ?7s3 .
7obj rdfs:subClassOf* <http://purl.obolibrary.org/obo/DOID_162> .
?s3 owl:onProperty dto:DT0_90100014; owl:someValuesFrom ?obj .
?subject rdfs:subClass0f ?sl .
#has target development Tchem
?sl owl:onProperty <http://www.drugtargetontology.org/dto/DT0_91000020>; owl:someValuesFrom dto:DT0_00400002

7subject rdfs:label 7subject_label

Listing 5.3: SPARQL query

This query works in two parts. In the first part we use the molecular function
that is measured (i.e. protein binding) to infer the bioassays of interest. We then
identify the kinases used in these assays. Finally, we get the intersection of this
subgraph (i.e. subset of kinases) with the kinases that have strong evidence for
associations with cancer.

This query aims to retrieve assay specific proteins based on the assays of interest.
Assays with their molecular functions of interest are axiomized in BAO. Kinases
have assay related axioms in LIFE which we retrieve as the second step in the query.
We then explore more about the proteins by using the axioms related with their
associated disease information encoded in the DTO.

First, we determine an abstract horizon between the A-box and the T-Box




What are the kinases used in the LINCS assays measuring protein binding and have evidence that associates them with cancer?
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Figure 5.5: Abstract horizon between A-Box and T-Box

Second, we determine the classes that we need for this particular

question.
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What are the kinases used in the LINCS assays measuring protein binding and have evidence that associates them with cancer?
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; LINDO class. . LINDO individual = =B Class/individual datatype property
() coolass . Inferred individual = Inferred relation/type

Figure 5.6: Classes from BAO, DTO, DOID and GO



89

What are the kinases used in the LINCS assays measuring protein binding and have evidence that associates them with cancer?
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Figure 5.7: Reasoned sub-abstract classes that help for the ultimate
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What are the kinases used in the LINCS assays measuring protein binding and have evidence that associates them with cancer?
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Figure 5.8: Query Result
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5.1.4 Example Query 4

Find proteins associated with lung with weak evidence and has target development
Tchem.

This query builds on Query 2 above. It is slightly more complicated because it
adds an external ontology component, similar to Query 3. This query is generated
based on the Query 2 and aims to showcase how ontologies work together as we keep
adding components of interest as different ontology modules.

This query depends on the axioms related with assays from the LINCS project
(found in BAO and LIFE module extracted) and the participants of these assays
(extracted from the LINCS Data Portal) are added as individuals to the A-Box.

The individuals added as participants of these assays are linked to DTO vocab-
ulary based on their UniPort IDs. In this way, these individuals related with LIFE
also become connected with DTO.

The resulting participants are found based on A-Box reasoning, while their target
developmental level (T'DL) (in this case Tchem) is found in the T-Box axioms. The
T-Box axioms related with TDL are found in DTO. The axioms are asserted be-
tween protein classes and the TDL vocabulary classes. This query also takes tissue
association axioms into account during inferences with T-Box reasoning, which are

axioms between protein classes of DTO and BRENDA tissues extracted for DTO.

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf -syntax-ns#>

PREFIX owl: <http://www.w3.o0rg/2002/07/owl#>

PREFIX dto: <http://www.drugtargetontology.org/dto/>

#proteins associated with lung with weak evidence and has target development Tchem

SELECT DISTINCT ?subject_label WHERE {

#proteins associated with lung with weak evidence

7?subject rdfs:subClass0f 7?7s3 .

7s3 owl:onProperty dto:DT0_90100006; owl:someValuesFrom <http://purl.obolibrary.org/obo/BT0_0000763> .
?subject rdfs:subClass0f ?s1 .

#has target development Tchem

?s1 owl:onProperty <http://www.drugtargetontology.org/dto/DT0_91000020>; owl:someValuesFrom dto:DT0_00400002

7?subject rdfs:subClass0f 7s2 .

#has strong evidence for disease glycogen storage disease

7s2 owl:onProperty <http://www.drugtargetontology.org/dto/DT0_90100015>; owl:someValuesFrom <http://purl.
obolibrary.org/obo/DOID_2747> .

7?subject rdfs:label 7subject_label .




23| LIMIT 10000
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Listing 5.4: SPARQL query
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5.1.5 Example Query 5

Given participants of LINCS assays KinomeScan, L1000, and Cell Viability, find
new possible drug targets for diseases of interest.

As mentioned above, the example queries in this section could be viewed as part
of the Ontology Validation step. In accordance with this, we realized that in order
to explore from different angles, we need to connect small molecules , cell lines, and
kinases and the assays that they participate in are added at the A-Box level. We
further added diseases and tissues at the A-Box level and added the relationships
they have with kinases and cell lines. In this way we went back to the Meta-Data
Creation and Knowledge Modeling step and added relationships for better acquisition
of knowledge and inferences based on data asserted.

With the help of A-Box and newly added relationship assertions on the A-Box

level, we obtained inferences based on tissues and diseases of interest.

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.o0org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX dto: <http://www.drugtargetontology.org/dto/>

SELECT DISTINCT ?subject_label WHERE {

?subject rdfs:subClass0f ?s3 .
?s3 owl:onProperty dto:DT0_90100006; owl:someValuesFrom <http://purl.obolibrary.org/obo/BT0_0000763> .
?subject rdfs:subClass0f 7s1 .

?sl owl:onProperty <http://www.drugtargetontology.org/dto/DT0_91000020>; owl:someValuesFrom dto:DT0_00400002

7?subject rdfs:subClass0f 7s2 .

7s2 owl:onProperty <http://www.drugtargetontology.org/dto/DT0_90100015>; owl:someValuesFrom <http://purl.
obolibrary.org/obo/DOID_2747> .

?subject rdfs:label 7subject_label .

7?subject rdfs:subClass0f 7s1 .

?s4 owl:onProperty <http://purl.obolibrary.org/obo/R0_0000087>; owl:someValuesFrom dto:DT0_00000002 .

7?subject2 rdfs:label ?subject_label2 .

7?subject2 owl:equivalentClass 7s5 .

7?85 owl:intersectionOf 7?7list .

?list rdf:rest*/rdf:first 71 .

?1 owl:onProperty dto:DT0_90000020; owl:allValuesFrom 7k .

7k rdfs:subClassO0f* dto:DT0_61000000 .

7k rdfs:subClass0f?s3 .

783 owl:onProperty dto:DT0_90100056; owl:someValuesFrom <http://purl.obolibrary.org/obo/BT0_0000763> .

Listing 5.5: SPARQL query
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Given participants of LINCS assays, could we identify new possible drug targets for diseases of interest?

Legend
() prociass DTO individual More subclasses = & BAO relation

() BrOClass : BAO individual L Primitive/defined lass  m g DTO relation

() pomiass . DOID individual — Subclassitype relation

: LINDO class . LINDO individual = =B Class/individual datatype property
D GO class . Inferred individual == Inferred relation/type

Figure 5.9: First we designate an abstract horizon between A-Box and T-Box. In this way we aim to
better show which pieces of data was added on which level so that we can trace the inferences better
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Given participants of LINCS assays, could we identify new possible drug targets for diseases of

interest?
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Figure 5.10: In this figure we are showing which TBox components already existed when we started
thinking about this query. This is before we went back to the Meta-Data Creation and Knowledge
Modeling step and added relationships for better acquisition of knowledge and inferences based on data

asserted.
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Given participants of LINCS assays, could we identify new possible drug targets for diseases of

interest?
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We used FaCT ++ 1.6.5 reasoner to reason the ontologies and queries that we
created. We used Virtuoso as our local triple store and Apache Jena Fuseki as our
SPARQL server to provide REST-style SPARQL HTTP Update.

FaCT++ reasoner was chosen because FaCT-++ was able to handle all the on-
tologies used and the high expressivity levels of the ontologies. It was also chosen,
because it is one of the reasoners provided by Protege. We wanted the users to be
able to reuse and recreate the reasonings and queries. Furthermore, FaCT++ is an
open source reasoner.

Virtuoso was used as the local triple store because of Virtuoso’s ease of use
with RDF data (loading and querying) and its scalability. We have explored other
triple stores such as Apache Jena Fuseki for our server in the CS department of
University of Miami. I also tried using Neo4j as an alternative because of the vi-
sualization options provided by Neo4j. However, Neodj doesn’t provide a variety of
options available in Virtuoso. For example uploading RDF data is not a straightfor-
ward process. Moreover, the RDF data gets distorted and/or lost while uploading
data. In addition to that, SPARQL queries are not supported on Neo4j. Neo4j has
strong querying options, however, we wanted to have queries that are accessible and
reusable for all ontology users. Virtuoso seems like the platform that can handle
most of the demands of queries. However, there are still problems with some of the
complex queries. Therefore I had to create various datasets for the triple stores so
that queries can be performed without overwhelming the system. More research and
exploration needs to be done in this area.

Our results showed us that with the three ontologies, BAO, LIFE, and DTO, we
are able to connect different components about drug-discovery related data. Despite
some problems with some complex queries, we are able to see that the three ontolo-
gies can provide various views of the knowledge based on the users’ needs. We were
also able to query information and retrieve related data based on different pieces of
information such as assays, proteins, diseases, cell lines, etc. because of the modular
architecture. This was possible because the uniform modular architecture allows us

to combine different modules and create different views in order to reach the compo-
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nents of interest faster. We may also choose to connect different ontologies in order
to connect different pieces of data and create more meaningful pictures in the end.

BAO and DTO ontologies continue to grow both in the number of concepts
(currently BAO has 7,125 concepts, DTO has 10077), and in the axioms (BAO has
98,010 and DTO has 137,648 axioms). Further axioms are waiting to be modeled
and added to these ontologies, such as phosphorylation. As we add more axioms
that formally define concepts, we aim to continue to help life-scientists understand,

and analyze their data of interest better.



CHAPTER 6

Conclusion

6.1 Discussion and Conclusions

Life-sciences data keeps growing and fitting into the description of big data be-
cause it has become high in volume, too complez, and too dynamic for conventional
data tools to store, manage, and analyze. As the growth continues, the need for
building intelligent systems that will store, organize, and help scientists analyze
the data is growing as well. Furthermore, challenges outlined for big data are also
becoming challenges related to life-sciences data. These challenges include dealing
with increasing volume, securing the data, and creating the infrastructure that al-
lows analysis, in addition to extracting knowledge from available data [10-12,17].
Ideally in intelligent systems that will store, organize, and help scientists analyze
life-sciences data can provide an unambiguous understanding of what the data means
by extracting the knowledge and providing semantic models related with the data;
help build tools that could better aid life-scientists’ need connect scattered pieces
of information and acquire new knowledge,inference of knowledge that they didn’t
possess while building their tools and models —and achieve better acquisition and
representation of knowledge while avoiding over simplification.

In this study we describe the KNowledge Acquisition and Representation Method-
ology (KNARM), as a guided approach involving domain experts and knowledge
engineers, to build useful, comprehensive, and consistent ontologies that will enable
big data approaches while avoiding oversimplification. This methodology is designed

to help with the challenge of acquiring and representing knowledge in a systematic,
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semi-automated way. This methodological approach utilizing description logic and
semantic models addresses the knowledge acquisition bottleneck. KNARM is cre-
ated and used for this research project by combining available methods for Database
Management Systems (DBMS), Object Oriented Programming (OOP), and Knowl-
edge Acquisition Methods. KNARM is designed, implemented, and used based on
our needs and challenges related to our ongoing projects, however it can be applied
and /or reused for different types of data or projects. KNARM is a hybrid method-
ology that combines human and machine capabilities for extracting knowledge and
representing it in an ontology in a dynamic, semi-automated way. It is designed to
handle both new and existing knowledge/data and allows building ontologies with
high expressivity. The knowledge representation uses axioms in a systematically
deepening modeling (SDM) approach for defining concepts in formal logic, detailed
in sections five and six.

In this dissertation we outlined the existing efforts in generating widely accepted
methodologies and best-practices principles in semantic web application and life-
sciences data management domains. Although there exists some focused studies
(such as OBO community tools and methodologies), we have seen that there is still
room for best-practices approaches and methodologies, as this need was mentioned
repeatedly in studies [2,27,33,36,37]. This review of the literature is followed by
the details of KNARM’s steps and how they were applied on three different projects
and their respective ontologies: BioAssay Ontology (BAO), and two nationwide
projects, the Library of Integrated N etwork-Based Cellular Signatures (LINCS)
project [71] (and its LIFE ontology) and the Illuminating Druggable Genome [64]
project and its (Drug Target Ontology (DTO)), which are currently creating data
via wet-lab experiments and computers.

We then described the details of this methodology and its applications (i.e. the
ontologies built:BAO, LIFE, and DTO). This study and applications can be viewed
as a proof of concept study dealing one of the aspects related to big data: better
extraction of knowledge by utilizing standardized vocabulary and description logic

in order to aid analysis.
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Building of our concordant ontologies was made possible by using KNARM and
the same modular architecture consistently, and using the systematically deepening-
modeling (SDM) approach with the three ontologies. Using this approach, we mod-
eled bioassay related data in the BioAssay. For example we modeled and axiomized
various bioassay related concepts such as assay format, assay design method, assay
detection method and instruments in BAO. We added axioms that specify the assay
participants for LINCS assays in LIFE ontology, such as kinases for KiNativ and Ki-
nomeSCAN assays. We modeled and axiomized various details about drug targets in
the DTO ontology, such as their related diseases, tissues, and mutation information.
With the help of our modularization approach and modular architecture we were
able to align the drug targets in DTO with the various participants used in LINCS
assays and LINCS assays with the general assay related concepts by using BAO.
With this systematically deepening modeling approach, we aim to model and query
knowledge without over- simplifying the knowledge and overwhelming the reasoners
that help infer new knowledge. We exemplified some of these connections in the
previous section for results. Further connections can be made using this data. One
such connection would be combining the cell line and disease association information
from the LINCS project with the disease, tissue, and protein information from the
IDG project. In this way, we can provide more information about the cell lines from
the IDG project by using the information that we acquired from the LINCS project,
in an attempt to help life-scientists discover new information about their data.

Our modular architecture and SDM approach also allowed us to combine data
from several related ontologies (e.g. Gene Ontology [25], Disease Ontology [19],
Relationship Ontology [35]) and databases (e.g. UniProt [80], DISEASES Database
[86], and TISSUES Database [87] ). Our aim was to build manageable chunks of
information that are related or complementary based on the experiments performed
by the data centers. By organizing the data into the modules we are able to make
changes to the knowledge base easier, reuse and share the pieces of the ontologies
better. Furthermore, we can use various upper ontologies, such as Basic Formal
Ontology (BFO) [88] Suggested Upper Ontology (SUMO) [89], in order to merge
existing efforts with our ontologies. An attempt to map BAO under BFO showed us
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that there are pros and cons to using upper ontologies. The biggest motivation for
using an upper ontology like BFO was to enable easier mapping of concepts from
BAO to its related ontologies, for example OBI [35], better and faster, preferably
in an automated way. However, there were challenges presented in our attempt to
map concepts under the BFO upper ontology. The main challenge was not being
able to conserve the core concepts related to BAO. This challenge was one of the
reasons that led us to the build a modularization approach for BAO. This modular
approach is improved for other ontologies such as LIFE and DTO. Another main
challenge was the difference in the modeling approach.

In BAO we use SDM approach and model with core concepts. However, many of
the taxonomy-like ontologies use sentence-like concept names while modeling their
data. This difference in the approach was combined with the general approach of
ontology building: i.e. more philosophical vs. more practical ontologies. In the
philosophical approach used in BFO, concepts are grouped based on whether they
are continuant or occurrent. This is different from our approach to model and classify
concepts and knowledge based on their relation to one another and to their domain
of interest.By using the shared modular approach, we were able to share and reuse
data as well as mapping related data, for example our efforts to map UBERON
data to BRENDA data helped us connect the tissue and organ information in the
LINCS cell lines to the tissue information related with drug targets in the IDG
project. The three projects, BAO, LINCS, and IDG present related data sets on
different levels of detail. In their respective ontologies: BAO models the assays,
LIFE provide more information about the bio-molecules and their related LINCS
assays, and DTO provides details about the biomolecules and their related tissues
and diseases by providing probabilistic information on the relationship level. With
this semantic modeling approach, we were able to query complex information that
we were not able to query before (see Use Cases section).

We demonstrated in the Results section how they work together in harmony with
different queries varying in complexity from simple to complex. In simple queries
we demonstrate how standardized and well-described knowledge be obtained over

multiple ontologies. For example in a simple query, such as extracting LINCS assays
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measuring certain biological processes or molecular functions, we demonstrated how
TBox reasoning could be enough to create smaller new hierarchies of terms. In more
complex queries such as finding proteins that were described as Tdark (identified
using DTO axioms) also participated in LINCS assays (extracted via using axioms in
BAO and LIFE), we aimed to show how possible new drug targets could be identified
further in wet-lab environments via using the inferences and axioms presented in the
ontologies. In most complex queries, multiple internal and external ontologies are
utilized on both TBox and ABox levels. Such queries, for example identifying new
possible drug targets using the disease associations found for different proteins and
the protein associations found for different diseases, we wanted to demonstrate that
given better connected data, we can jump between the pieces of data in order to
retrieve new knowledge via inferences based on data provided in the ontologies.

In addition to the queries in the Results section, we performed a small scale
experiment about the scalibility issues. During reasoning and querying we have
observed that when we increase the size of the TBox and ABox, the time required for
reasoning increased. We have quantified this observation in the tables given below.
This experiment was aimed at understanding the possible bottlenecks in reasoning
and querying of the ontologies. We used seven ontologies varying DL expressivity,
size, and OWL version (please see Table 6.1 for different OWL versions, Table 6.2
for details of the ontologies and their ontology metrics). We used six reasoners,
namely ELK 0.4.3 [90], FaCT++1.6.5 [91,92], HermiT 1.3.8.413 [93], Pellet [94],
Konclude [95], and KAON2 [96], to measure reasoning times over the seven ontologies
as seen in Table 6.3. The capabilities of reasoners used in this experiment are briefly

summarized below:

e ELK 0.4.3 : ELK is described as a high performance reasoner for OWL
EL ontologies. The EL classification procedures, however, have several other
strong indicators pointing to a good practical performance. Unlike conven-
tional tableau-based procedures, which test unknown subsumptions by trying
to construct counter-models, the EL procedures derive new subsumptions ex-
plicitly using inference rules. Although modern tableau-based reasoners, such

as HermiT, FaCT++-, Pellet, and RacerPro, incorporate many optimizations
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that can reduce the number of subsumption tests and reuse the results of
computations between the tests [34, 74, 104], they still cannot achieve the

performance of specialized EL reasoners on EL ontologies

FaCT++1.6.5 : FaCT++ implements a tableaux decision procedure for the
well known SHOZQ description logic, with additional support for datatypes,
including strings and integers. The system employs a wide range of perfor-
mance enhancing optimisations, including both standard techniques (such as
absorption and model merging) and newly developed ones (such as ordering
heuristics and taxonomic classification). FaCT++ can, via the standard DIG
interface, be used to provide reasoning services for ontology engineering tools

supporting the OWL DL ontology language.

HermiT 1.3.8.413 : HermiT is the first publicly-available OWL reasoner
based on a novel hypertableau calculus which provides much more efficient
reasoning than any previously-known algorithm. Ontologies which previously
required minutes or hours to classify can often by classified in seconds by
HermiT, and HermiT is the first reasoner able to classify a number of ontologies
which had previously proven too complex for any available system to handle.
HermiT uses direct semantics and claims that it passes all OWL 2 conformance

tests for direct semantics reasoners.

Pellet : Pellet is the first sound and complete OWL-DL reasoner with ex-
tensive support for reasoning with individuals (including nominal support and
conjunctive query), user-defined datatypes, and debugging support for ontolo-
gies. It implements several extensions to OWL-DL including a combination
formalism for OWL-DL ontologies, a non-monotonic operator, and preliminary
support for OWL/Rule hybrid reasoning. Pellet is written in Java and is open

source.

Konclude : Konclude is a high-performance reasoner for the Description
Logic SROZQYV . The supported ontology language is a superset of the logic

underlying OWL 2 extended by nominal schemas, which allows for expressing
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arbitrary DL-safe rules. Konclude’s reasoning core is primarily based on the
well-known tableau calculus for expressive Description Logics. In addition,
Konclude also incorporates adaptations of more specialised procedures, such
as consequence-based reasoning, in order to support the tableau algorithm.
Konclude is designed for performance and uses well-known optimisations such

as absorption or caching.

e KAON2 : KAON2 does not implement the tableaux calculus. Reasoning
in KAON2 is implemented by novel algorithms which reduce a SHZQ(D)
knowledge base to a disjunctive datalog program. Unfortunately KAON2 is
not compatible with OWL2, which is the OWL version used for the three

ontologies in this study.

All reasoners except for Konclude and KAON2 were chosen based on their avail-
ability in Protege. In addition to their availability in Protege, reasoners were se-
lected because of the difference in their capabilities and the algorithms they use in
the background. Among all FaCT++ is the most up-to-date reasoner. Addition-
ally, all the rest of the reasoners stated a comparison to FaCT++ reasoner, which
lead us think that it’s one of the state-of-the-art reasoners. One observation is that
most of the reasoners available are not well maintained, last update was more than
two years ago, websites and packages are not updated recently, packages can only
work with previous versions of Java, web site contains broken links to interfaces and
publications.

Reasoning times of the different ontologies showed a direct correlation between
reasoning time and complexity. Additionally as the axiom count increases, the rea-
soning time increases. This was especially obvious in the ontologies we created for
use cases. When we added axioms to classes related with assay participants to the
ontologies (i.e. increased the size of TBox), the reasoning time was slower than when
we added the same annotations as individuals and their respective annotations (i.e.
increased the size of ABox). This brought up the idea of adding some of the classes,
especially in DTO - for example classes created for specific proteins, as individuals.

This might be especially efficient for an ontology used primarily for querying. Also
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with this experiment, we have observed that some reasonings we expected to see
(especially related with relationships that has inverses) are not computed based.
We need to perform further experiments to identify the root of the problem, how-
ever, possible reasons for this lack of computations may be related to the size of the
TBox and/or the way the semantic models were implemented (most classes included
descriptive axioms to the primitive classes as opposed to defined classes). It’s note-
worthy to mention that reasoners that utilize OWL EL instead of OWL DL (such as
ELK and Konclude) perform better in reasoning time. However, certain reasoning
computations are affected by this, such as transitive relationships that we created
to describe and reason over phosphorylation cascades.

Our overall aim has been to acquire the knowledge and represent it systematically
in a fashion that is uniform and understandable by the many different data centers
as well as the computers. In addition, we have implemented frameworks that will
allow the life scientists to query, understand, and aid further analysis of their data.
We understand that the most efficient way for analysis of data in this study (and
big data in general) may not be using ontologies on their own. However, we believe
that creating ontologies that artificial intelligence services and algorithms could use
for inferences may lead to important findings. This aim is beyond the scope of
this study. For the data frameworks, we collated data from the LINCS and IDG
projects that complement and complete each other. Furthermore, we have reused
extracted-data from the existing sources such as UniProt [80], Gene Ontology [25],
and Disease Ontology [19]. Both LINCS and IDG projects use similar biological and
chemical entities in their experiments. This allows us to combine, cross-validate, and
understand data about the various entities used, such as proteins, genes, and small
molecules, as well as their assays. More importantly, we aim to help life-scientists
discover new data about their experiments and the experimental entities by using
computer inference.

The amount of time between the public releases of the first version of BAO [82],
and its second version [4] was three years. With the knowledge acquisition method-
ology, KNowledge Acquisition and Representation Methodology (KNARM) and

the semi-automated workflow we created, we are now able to revise and rebuild
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the ontologies, and their reusable modules within months. With this drastic im-
provement on ontology building process, we are now able to collaborate, revise, and
improve more efficiently. On the Github location, it can be seen that various releases
are only months apart [97]. Furthermore, we are leading the newly emerging assay
informatics era to help scientists understand the available experimental data better
and provide guidance for their challenge to link the experimental data and drugs to
molecules, and molecules to phenotypes, diseases, and tissues. BAO provided the
base line for the emerging assay informatics field. BAO was used in the BioAssay
Research Database (BARD) software system and it was used in several projects and
organizations after we initially demonstrated its use in the semantic software appli-
cation BAOSearch (http://baosearch.ccs.miami.edu/). We have also used BAO to
describe omics profiling assays in the LINCS program via the LINCS Information
Framework (LIFE) (http://life.ccs.miami.edu/). DTO provides a formal classifica-
tion of four protein families based on function and phylogenetic information. DTO
describes their clinical classifications and relations to diseases and tissue expression.
DTO is already used in the IDG main Portal Pharos (https://pharos.nih.gov/) and
the TinX software application (http://newdrugtargets.org/) to prioritize drugs by
novelty and importance. DTO is publicly available at http://drugtargetontology.org/,
where it can be visualized and searched.

While technological innovations continue to drive the increase of data generation
in the biomedical domains across all dimensions of big data, novel bioinformatics
and computational methodologies will facilitate better integration and modeling of
complex data and knowledge. Although the methodology described in this study
is still a work in progress, it provided a systematic process for building concordant
ontologies such as BioAssay Ontology (BAO) and Drug Target Ontology (DTO).
The proposed method helps to find a starting point and facilitates the practical
implementation of an ontology. The interview steps in our methodology, which
involve domain experts’ manual contributions are crucial to acquire the knowledge
and formalize it accurately and consistently.

A critical current effort is to further formalize and automate this approach. Be-

yond the methodology for knowledge acquisition and semi-automated ontology build-
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ing, we are also developing new tools to improve the interaction between ontology
developers and users. This effort is because of rapidly advancing knowledge and the
need for a more dynamic environment in which user requests can be incorporated in

real time via direct information exchange with ontology developers.

6.2 Future Work

There is a growing interest in ’big data’ research. Many research universities,
such as University of Michigan [6], Stanford University [7], University of Virginia [8],
among others are creating multidisciplinary centers for Data Science. There are
many possible directions for the KNARM methodology and the ontologies built
using this methodology.

This study and applications can be viewed as a proof of concept study dealing
one of the aspects related to big data: better extraction of knowledge by utilizing
standardized vocabulary and description logic in order to aid analysis. Here we de-
scribed possible use cases in order to showcase how multiple modules and different
pieces of data and knowledge could be used together to extract knowledge out of
the bigger collection of data available. We believe that it’s essential to describe
methodologies that will develop pieces of standardized vocabulary and knowledge
models that could be pluged-in to work together harmoniously. The first step be-
fore reapplying it on a new ontology would be integrating solutions for scaling the
data so that more complex queries could be performed. Furthermore, based on the
knowledge represented infer new and interesting knowledge.

Our aim in this study has been to acquire the knowledge and represent it system-
atically in a fashion that is uniform and understandable by the many different data
centers as well as the computers. In addition, we have implemented frameworks that
will allow the life scientists to query, understand, and aid further analysis of their
data. We understand that the most efficient way for analysis of data in this study
(and big data in general) may not be using ontologies on their own. However, we

believe that creating ontologies that artificial intelligence services and algorithms
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could use for inferences may lead to important findings. This aim is beyond the
scope of this study.

Recently developed BioAssay Express (BAE) technology streamlines the conver-
sion of human-readable assay descriptions to computer-readable information. BAE
uses semantic standards to mark up bioprotocols, which unleashes the full power of
informatics technology on data that could previously only be organized by crude text
searching [98]. One of several annotation-support strategies within BAE is the use of
machine learning models to provide statistically backed "suggestions" to the curator.
We will describe our efforts to complement these models by applying axioms that
are embedded within the underlying ontologies, which include the BioAssay On-
tology (BAO), Gene Ontology (GO), Drug Target Ontology (DTO) and Cell Line
Ontology (CLO). These axioms are a largely untapped resource that can be used to
draw connections between biological concepts, thereby improving both curation and
quality control. We have already created a resource of 3500 carefully curated assays
from the PubChem collection, which we are using as a training set. We will explore
how this resource will be used, in conjunction with models and axiom support, to
encourage further semantic annotation of publicly available bioassay protocol data.
These efforts are timely and important, as such datasets (released by both public
and private organizations) are only increasing, with the volume already exceeding
the ability of individual scientists to manage productively.

The outer circle of KNARM methodology , semi-automated evolving the ontol-
ogy based on ontology validation, is already awarded a grant from NIH. University
of Miami, Stanford University, and CDD are working together to further standard-
ize the templates created for this work. Furthermore, the systematic approach we
followed is being followed by the OBO foundry groups and we’re in the process of
aligning ontology design and development efforts.

Last but not least, the semi-automated ontology building and knowledge acqui-
sition based on ontologies is patented with the BAE efforts. CDD is now attracting
big pharmaceutical companies such as Astra-Zeneca and Pfizer with their assay in-

formatics tools and their integrative approach.
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Further experiments could be performed to better observe and compare reasoning
times of the different ontologies created for this study. As mentioned above, in
the experiment performed for this study, we have observed that some reasonings
we expected to see (especially related with relationships that has inverses) are not
computed based. Further experiments to identify the root of this problem could be
performed. These could include comparing computations related to the size of the
TBox and/or the way the semantic models were implemented (currently most classes
included descriptive axioms to the primitive classes as opposed to defined classes).
An idea for improving reasoning times would be employing parallel reasoning for the
merged ontologies. In this was reasoners such as Hermit might perform better.

The long-term prospect is a global dynamic knowledge framework to integrate
and model increasingly big datasets to help solving the most challenging biomedical
research problems. With this methodology, KNARM, we can try to apply it to
different projects and their ontologies. The aim would be to better integrate and
model increasingly big datasets to help solving the most challenging biomedical

research problems.



APPENDICES

.1 In-House Structured Interview and Meta-Data

Creation Documents for LIFE and BAO
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.1.1 LINCS Assay data



LINCS-specific secondary name (LIFEo, BAO optic LINCS datasets (how they are called i

KiNativ KiNativ
KINOMEScan KINOMEScan
Apoptosis and Mitosis assay (Michison) Tang Mitosis/Apoptosis
Tang Proliferation/Mitosis
Apoptosis and Mitosis assay (Michison) Moerke 2 Color Apoptosis
Moerke 3 Color Apoptosis
Cell growth inhibition assay (MGH / Sanger) MGH (CMT) Growth Inhibition
L1000 assay (Broad) L1000 Transcriptional Response
CSR assay (Sorger) Cue Signal Response

Tabs in LIFEwrx

Protein:

In addition to Uma's comments either change the name of proteins, or remove the modificatior
add organism after ID

Do we want to search with Kinase family, group, domain, etc?

Kinase category = other ?? - just leave blank or say N/A

Cell Line

In addition to Uma's comments:
Like Uma said DOID+Disease

Do we need "type"?

Gene
Organism : why are they numbers? We need names of organisms.

Assay level: put markers?

Assay tab, either to left most, and data right most or put Data and Assay next to each other

117
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Tabs in LIFEwrx

Protein, Compound, Assay, Data (we have cell line info for this, where do we see it?, when we load)
Protein, Compound, Assay, Data

Cell line, Compound, Assay, Data, markers ?

Cell line, Compound, Assay, Data, markers ?

Cell line, Compound, Assay, Data, markers ?

Cell line, Compound, Assay, Data, markers ?

Cell line, Compound, Assay, Data

Cell line, Gene, Compound, Assay, Data

Cell line, Protein, Ligand, Compound, Assay, Data

modification and mutation



HMS LINCS Dataset Descriptions---January 21, 2014

KINOMEscan Assay: The HMS LINCS Database currently holds 150 KINOMEscan
datasets—95 datasets run at a single dose and 55 datasets run as dose response
experiments. The KINOMEscan assay is run as a service by DiscoveRx
(http://www.discoverx.com/services/drug-discovery-development-
services/kinase-profiling/kinomescan) and measures small molecule (drug) binding
to the ATP-binding site of purified kinase domains via a competition assay. A panel
of >400 kinases is tested for each dataset. A typical single dose KINOMEscan
experiment is described at https://lincs.hms.harvard.edu/db/datasets/20020/; a
typical dose response KINOMEscan assay is described at
https://lincs.hms.harvard.edu/db/datasets/20146/.

KiNativ Assay: The HMS LINCS Database currently holds 19 KiNativ assay results—
6 datasets run as dose response experiments and 13 run at a single dose. The
KiNativ assay is run as a service by KiNativ (http://www .kinativ.com/) and
measures small molecule (drug)-kinase interactions in cell lysates using mass spec.
Binding to ~200-300 independent kinase binding sites is monitored in each
experiment. A typical dose-response KiNativ assay is described at
https://lincs.hms.harvard.edu/db/datasets/20087/. A typical single dose KiNativ
experiment is described at https://lincs.hms.harvard.edu/db/datasets/20093/.

ELISA assay: The HMS LINCS Database currently holds 2 datasets from plate-based
ELISA assays:

-Dataset # 20137 https://lincs.hms.harvard.edu/db/datasets/20137/

-Dataset # 20140 https://lincs.hms.harvard.edu/db/datasets/20140/

Microscopy/Imaging Assay: HMS LINCS DB currently holds 6 datasets produced
using high throughput microscopy/imaging assays where cells were fixed and
stained with fluorescent dyes and/or immunostained in order to monitor various
cell properties (shape, size, nuclear area) or protein levels (in the
immunofluorescence experiments). The 6 datasets are:

-Dataset # 20001 https://lincs.hms.harvard.edu/db/datasets/20001/

-Dataset # 20002 https://lincs.hms.harvard.edu/db/datasets/20002/

-Dataset # 20003 https://lincs.hms.harvard.edu/db/datasets/20003/

-Dataset # 20004 https://lincs.hms.harvard.edu/db/datasets/20004/

-Dataset # 20138 https://lincs.hms.harvard.edu/db/datasets/20138/

-Dataset # 20139 https://lincs.hms.harvard.edu/db/datasets/20139/

Analysis dataset: Currently the HMS LINCS DB holds one dataset that is the product
of re-analysis of experimental drug dose-response data published by non-LINCS
investigators. Data in this analysis dataset were published in Fallahi-Sichani et al.
(2013) Nature Chemical Biology. PMID: 24013279 and can be found at
https://lincs.hms.harvard.edu/db/datasets/20120/.
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MGH-CMT Growth Inhibition Assay: The CMT platform uses a DNA stain or
Resazurin based assay to determine cell viability following 72H compound
treatment. For most compounds, the effects on cell growth for hundreds of cell line
are reported; compounds were tested at either 3 or 9 different doses. A typical
MGH-CMT Growth Inhibition assays from the HMS LINCS DB is described at
https://lincs.hms.harvard.edu/db/datasets/20010/main.

Microfluidic Assay: Three datasets produced using a single-cell microfluidics assay
are present in the HMS LINCS DB, all produced by the Yale LINCS UO1 Center and
described in Lu, et al. (2013) Analytical Chem. PMID: 23339603:

-Dataset # 20121 https://lincs.hms.harvard.edu/db/datasets/20121/

-Dataset # 20122 https://lincs.hms.harvard.edu/db/datasets/20122/

-Dataset # 20123 https://lincs.hms.harvard.edu/db/datasets/20123/

Bead-based ELISA assay: Three datasets produced using bead-based ELISA assays
(Luminex) monitoring phosphorylation state of intracellular proteins in liver cells
after perturbation are available for download via the HMS LINCS website:

-Liver CSR 1 dataset: http://lincs.hms.harvard.edu/data/repository/liver-csr-1-2/
-Liver CSR 2 dataset: http://lincs.hms.harvard.edu/data/repository/liver-csr-1-2/
-Liver CSR 3 dataset: http://lincs.hms.harvard.edu/data/repository/liver-csr-3/
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.2 Structured Interview - Feedback from Harvard
Medical School for Aligning their definitions
with ours for LIFE and BAO



HMS LINCS Dataset Descriptions---January 21, 2014

KINOMEscan Assay: The HMS LINCS Database currently holds 150 KINOMEscan
datasets—95 datasets run at a single dose and 55 datasets run as dose response
experiments. The KINOMEscan assay is run as a service by DiscoveRx
(http://www.discoverx.com/services/drug-discovery-development-
services/kinase-profiling/kinomescan) and measures small molecule (drug) binding
to the ATP-binding site of purified kinase domains via a competition assay. A panel
of >400 kinases is tested for each dataset. A typical single dose KINOMEscan
experiment is described at https://lincs.hms.harvard.edu/db/datasets/20020/; a
typical dose response KINOMEscan assay is described at
https://lincs.hms.harvard.edu/db/datasets/20146/.

KiNativ Assay: The HMS LINCS Database currently holds 19 KiNativ assay results—
6 datasets run as dose response experiments and 13 run at a single dose. The
KiNativ assay is run as a service by KiNativ (http://www.kinativ.com/) and
measures small molecule (drug)-kinase interactions in cell lysates using mass spec.
Binding to ~200-300 independent kinase binding sites is monitored in each
experiment. A typical dose-response KiNativ assay is described at
https://lincs.hms.harvard.edu/db/datasets/20087/. A typical single dose KiNativ
experiment is described at https://lincs.hms.harvard.edu/db/datasets/20093/.

ELISA assay: The HMS LINCS Database currently holds 2 datasets from plate-based
ELISA assays:

-Dataset # 20137 https://lincs.hms.harvard.edu/db/datasets/20137/

-Dataset # 20140 https://lincs.hms.harvard.edu/db/datasets/20140/

Microscopy/Imaging Assay: HMS LINCS DB currently holds 6 datasets produced
using high throughput microscopy/imaging assays where cells were fixed and
stained with fluorescent dyes and/or immunostained in order to monitor various
cell properties (shape, size, nuclear area) or protein levels (in the
immunofluorescence experiments). The 6 datasets are:

-Dataset # 20001 https://lincs.hms.harvard.edu/db/datasets/20001/

-Dataset # 20002 https://lincs.hms.harvard.edu/db/datasets/20002/

-Dataset # 20003 https://lincs.hms.harvard.edu/db/datasets/20003/

-Dataset # 20004 https://lincs.hms.harvard.edu/db/datasets/20004/

-Dataset # 20138 https://lincs.hms.harvard.edu/db/datasets/20138/

-Dataset # 20139 https://lincs.hms.harvard.edu/db/datasets/20139/

Analysis dataset: Currently the HMS LINCS DB holds one dataset that is the product
of re-analysis of experimental drug dose-response data published by non-LINCS
investigators. Data in this analysis dataset were published in Fallahi-Sichani et al.
(2013) Nature Chemical Biology. PMID: 24013279 and can be found at
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MGH-CMT Growth Inhibition Assay: The CMT platform uses a DNA stain or
Resazurin based assay to determine cell viability following 72H compound
treatment. For most compounds, the effects on cell growth for hundreds of cell line
are reported; compounds were tested at either 3 or 9 different doses. A typical
MGH-CMT Growth Inhibition assays from the HMS LINCS DB is described at
https://lincs.hms.harvard.edu/db/datasets/20010/main.

Microfluidic Assay: Three datasets produced using a single-cell microfluidics assay|
are present in the HMS LINCS DB, all produced by the Yale LINCS U01 Center and
described in Lu, et al. (2013) Analytical Chem. PMID: 23339603:

-Dataset # 20121 https://lincs.hms.harvard.edu/db/datasets/20121/

-Dataset # 20122 https://lincs.hms.harvard.edu/db/datasets/20122/

-Dataset # 20123 https://lincs.hms.harvard.edu/db/datasets/20123/

Bead-based ELISA assay: Three datasets produced using bead-based ELISA assays
(Luminex) monitoring phosphorylation state of intracellular proteins in liver cells
after perturbation are available for download via the HMS LINCS website:

-Liver CSR 1 dataset: http://lincs.hms.harvard.edu/data/repository/liver-csr-1-2/
-Liver CSR 2 dataset: http://lincs.hms.harvard.edu/data/repository/liver-csr-1-2/
-Liver CSR 3 dataset: http://lincs.hms.harvard.edu/data/repository/liver-csr-3/
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LINCS Data Levels

LINCS DSGC and BD2K-LINCS DCIC (support at lincs-dcic.org)
{working version: last modified May 16 2016}
{document content will reside in: http://www.lincsproject.org/data/}

The LINCS Data and Signature Generation Centers (DSGCs) produce a variety of data for the library. For such data to be
standardized, integrated, and coordinated in a manner that promotes consistency and allows comparison across different cell types,

assays and conditions, the BD2K-LINCS DCIC together with the DSGCs develop and employ data standards.

Once collected, LINCS data is made available to the research community in various formats so that it can be used in different types of

analyses.
The data standards page describes the data structures that are being developed by the LINCS Data Working Group.

The data releases page describes the collections of data released and planned to be released to the public by the LINCS consortia with

instruction on how to access, download and cite it.

Data Levels

The LINCS resource (and the resulting data matrix) has three dimensions: cell types, perturbations, and assay types. LINCS
approaches this problem using tools from systems biology, chemical biology, computational biology, and other disciplines, including
both high-throughput experimentation and sophisticated mathematical analysis. The concept of data levels is also borrowed from the
success of this approach by The Cancer Genome Atlas (TCGA) project. Definitions for data levels for all the LINCS assays are
currently being developed by the BD2K-LINCS DCIC and the LINCS DSGCs and will be posted here soon.

Data Levels per assay type

Assay Type Center | Data Level | Result Type File Type Important Metadata
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KINOMEScan HMS LINCS Relative kinase API; Download e Small molecules
inhibition (normalized | (xisx, csv) e Proteins
to negative control)

KINOMEScan HMS LINCS Kds were determined | API; Download e Small molecules
using 11 serial (xIsx, csv) e Proteins
threefold dilutions of
test compound and a
DMSO control.

KiNativ HMS LINCS Protein binding profile | API; Download o Celllines

(xIsx, csv) e Small molecules
e Proteins

L1000 mRNA Broad T LINCS Raw, unprocessed LXB e Celllines

profiling assay flow cytometry data e Genes
from Luminex e Small molecules
scanners. One LXB
file is generated for
each well of a 384-well
plate, and each file
contains a
fluorescence intensity
value for every
observed analyte in
the well

L1000 mRNA Broad T LINCS Gene expression GEX e Celllines

profiling assay values per 1,000 e Genes
genes after e Small molecules
de-convolution from
Luminex beads

L1000 mRNA Broad T LINCS Gene expression Q2NORM e Celllines

profiling assay profiles of both directly e Genes

measured landmark
transcripts plus
imputed genes.

Small molecules
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Normalized using
invariant set scaling
followed by quantile
normalization

L1000 mRNA Broad T LINCS 4 Signatures with GCTX
profiling assay differentially
expressed genes
computed by robust
z-scores for each
profile relative to
population control

Cell lines
Genes
Small molecules

(log fold change,
p-values,...)

RNA-Seq LINCS consolidated | 1 Raw sequence (fastq) | FASTQ e Antibodies
and aligned BAM e Primary cells
sequences (bam) e Small molecules

RNA-Seq LINCS consolidated |3 Al feature expression e Antibodies
summaries (raw e Primary cells
counts, and any other e Small molecules
version of counts data)

RNA-Seq LINCS consolidated |4 Differential feature e Antibodies
expression profiles e Primary cells

Small molecules

References and relevant links
LINCS Metadata Specifications

LINCS Project Website
BD2K LINCS Website
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DWG Data Level Site (includes various document and comments)
TCGA Data Levels and Data Types

NCI Data Level Classification

L1000 Data Levels

EPA ToxCast workflow

ToxCast Analysis Presentation (including data their data levels)
AGM Book Chapter Data Standardization for Results Management




134

.3 Ontology Validation and Evolution Related doc-
uments - Reports on Protocols for Updating

BAO and DTO
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Manual Steps for Creating a new BAO Version

Summary of Key Steps (As of February 2017)
1. Original BAE Absence Report is generated at:
http://www.bioassayexpress.com/BioAssayExpress/diagnostics/absence.js|

2. Absence reported is exported to Excel, and then reviewed by a content (domain) expert to QC, filter
for unique new terms, which are then exported to a ‘new term template’
(BAO_newterm_template.xlIsx with link :
https://drive.google.com/open?id=0B20TIxSU7CWrTIYdXZsbndoX0U ) to further clarify by adding
required fields--definitions, parent BAO class, relevant references/ hyperlinks. This List of Requested
Terms is then shared with University of Miami BAO.

3. A survey of content experts could be used to decide on the final labels for terms.
Attention: Currently this step is not performed!
The links to surveys are in a document and they live in ‘SurveysAndResults’ folder in Google Drive
(https://drive.google.com/open?id=0B20TJxSU7CWrOFIBQ2MwSTdhR1k)

4. The List of Requested Terms from Step 2 above is divided and transformed into appropriate
separate .csv files by a University of Miami BAO domain expert along with the ontology engineer,
inputting the new BAO ID to be assigned and the appropriate BAO parent class ID, using the
template (bao_vocab_template.csv) which lives under the GitHub location:
(https://github.com/BioAssayOntology/BAO/tree/master/BAOdev/InputFiles).

a. Attention must be paid to terms that already exist in external ontologies (but need to be
added to BAO) and terms for which BAO needs to coordinate with external ontologies (e.g.,
DO, CLO) to request external IDs. All .csv files are placed in the same ‘InputFiles’ folder on
GitHub above (See Part B.2 for input file creations for existing external ontology terms).

5. Output files are created in .owl format by the ontology engineer at UM and they live in
‘OutputFiles’ (https://github.com/BioAssayOntology/BAO/tree/master/BAOdev/OutputFiles ) and
external ontology files are added to ../BAOdev/OutputFilesForExternalOntologylmport ( see Part
B.2)

6. A checklist of steps for the BAO update process is prepared by the domain expert and the ontology
engineer working together. An example called “Example_BAO_building_QC_sheet” is under this
link (just to clarify, this is an example document, it should be edited for the current updates as
needed):
https://docs.google.com/spreadsheets/d/1Ty10Y48ask1XkKLh1a7WIGPHHMXTvqDY9eH2Ympkf9c/
edit?usp=sharing

7. Output files are merged with the appropriate vocabulary files by the ontology engineer in UM (per
mapping here:
https://docs.google.com/spreadsheets/d/1tsxq-j5vLvqTb8FbCW6EN8EI9TDYPYB3IW24HYWA4rB4/edi
t?usp=sharing ) are uploaded to the BAO GitHub (https://github.com/BioAssayOntology) and
merged into BAO complete for initial check-up and QC run by the Java Programs and Pipeline Pilot
Scripts. Manual check is also performed using Protege.
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8. After final corrections (changes may be needed, iterating back to step 4 and performing steps 4,5,6
again or manually editing the .owl files), final bao_complete.owl is created.

9. After the finalized BAO_complete is created, all files are updated on GitHub and the BioAssay
homepage (bioassayontology.org) for BioPortal to collect the new version by the ontology engineer
at UM.

Background/ Detailed Steps

This document below describes the detailed steps taken to update BAO 2.2.2 with new terms
arising from the BAE (BioAssay Express) project--into BAO 2.3.1. It is intended to capture all
major steps required to update BAO with new terms and/or other revisions from any source.

We should note that much of the work to compile and merge these new terms spanned from
August 2016 to Dec 2016, with the initial resulting merged updated BAO--called BAO2.3 at the
time--released onto BioPortal 12/16/16 (though listed as ‘2.0’ on BioPortal). Although all the new
terms worked for BAE, we found multiple errors in this build, which ultimately appeared to derive
from previous issues in the reference BAO files into which the new terms were merged. Thus in
January 2017, a major effort was undertaken by all at UM to identify and ‘clean up’ / restore the
previous BAO version that had been on BioPortal since 11/18/14 (BAO 2.0--see
https://sites.google.com/site/baocollaborativedevelopment/home/operational-process/timeline
This restored version was exhaustively and comprehensively QC’d, called BAO 2.2.2, and
uploaded to BioPortal 1/27/17.

The update reviewed here was based on the BAE Absence Reports created during the curation
of 3500 PubChem assays using the BioAssay Express (http://www.bioassayexpress.com/ ). In
the course of this curation project, curators would make suggestions for terms they thought
were absent from, and merited adding to, BAO. The complete set of these is found in the
‘Absence Report’. This Absence Report requires significant filtering and review by a content
expert (in both BAO and biology/ HTS assays): some ‘suggestions’ may not be necessary
(either already exist in BAO, are synonymous/ redundant, or may be too detailed and can be
adequately covered by a different term.) The net result of 4 ‘sets’ of Absence Reports
(snapshots) was a total of ~200 new terms (which includes core and external ontologies).

To perform the updates on BAO, one should ensure that the baseline, i.e. the version of BAO
that is currently in use, is usable for updates (which means the current version is free of bugs
and inconsistencies). Currently the only repository and version control is done via GitHub
(https://github.com/bioassayontology ).

The process described below will be slightly modified with the introduction of BAO database
which keeps the BAO vocabulary. With the introduction of BAO database, a check for
overlapping IDs should no longer be required. However, there should be a check for using the
correct ID ranges (for the ID ranges please refer to this document:
https://drive.google.com/open?id=1BjUcJTgbvoVpCutl wRxK56WuXVyDFVMH8n8Kqpro5A).

Overview of 3-step process (summer 2016)
A. Extract Terms from BAE; Triage/Analyze for Content; Prepare ‘Proposed Terms’
Template
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B. New terms from single template spreadsheet — Divide into multiple Input (csv) files,
based on class/ vocabulary modules— Generate individual output (owl) files

C. Merge ‘new term owl files’ with existing BAO vocab files to generate complete owl file
and release (to BioPortal via bioassayontology.org)

Above steps A-C were documented (by each responsible party) as separate Word docs, which
are compiled below.

Part A: Extract Terms from BAE; Triage/Analyze for Content; Prepare ‘Proposed Terms’
Template (by Janice Kranz, CDD)

1.

2.
3.

9.
10.

1.

Go to BAE Absence Report
http://www.bioassayexpress.com/BioAssayExpress/diagnostics/absence.js|
Export to xls (via ‘Copy to Clipboard’ or Select/ Copy All)
In Excel: sort by date
a. ‘discard’ all covered in previous updates
Save remaining= current (unprocessed) set
Sort by
a. Absence Type (i.e., ‘needs checking’ vs. ‘requires term’)
b. Assignment (CAT field/ class)
c. Description (to group multiple AIDs w same proposed term)
d. Date
e. PubChem AID
Select ‘Absence Type=Needs Checking’
a. Create new set
b. Needs QC (Jan or other curator)
Select ‘Assignment = Target’
a. Create new set
b. Ignore (or could use ‘fauxtology’ to assign)
c. Reasoning: Target updates in DTO are being done by UM group more efficiently by

protein class (eg., enzymes, phosphatases...) Targets await creation of RDF triples.

Remaining set= candidates for new terms. “x# terms no targets” Now do manual ‘triage’
a. Inanew column, note ‘X’ to select a ‘representative’ row (i.e., PubChem AID) to
generate a set of unique terms
i. Note that often there are instances of copy/ paste or small typos/ errors, or
just different curators noting the same concept/ term that preclude machine
auto-detection...I've found 6 ‘flavors’ of the same term
b. Filter based on this ‘x’ column (select all x’s; ignore blanks)
Remaining set= unique list of candidate terms (1 row per term)
Manual triage
a. Inanew column, categorize with 1 of 4 flags:
i. a = already updated (i.e, term included in previous update list)
ii. b =needs checking (by Jan/ curator; e.g., likely to be covered by existing
BAO term)—-QC
ii. ¢ = likely needed as a new term in BAO
iv. d = needs discussion with domain experts and/or BAO
For subset ‘c’: Prepare Term List using BAO Update Template
a. This is the labor-intensive step
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b. Template is here (excel file named ‘BAO_new_term_template.xIsx’)
Screenshot of example:
(green=required by BAO for input; light green= optional; blue=for our
reference (from Absence Report))

existing
BAO class
for Notes (optional)—hese are
Description from BAE  proposed proposed super cass justfor Joo/ Hande; do not date.
PubChem curator(JONOT  (super)  BAO parent for proposed term upload; can provide to Sorganizati
proposed term's iame  AID UPLOAD) class ) (optional) definition hyperlinks outside ontologies, though on.
The GripTite 293 MSR celllne s a proprietary genetically
enginered HEK2S3 cel ine that exprsses the human
293MSRCellUne  immortal o
263 GrigTite MR cells 602478 (invitrogen #R795-07) _ celllne cell standard tissue culture plates. erfcatalog/product/R79507 NOTin CLO or other ontology.  9/30/16
SU-DHL-10 (3ka DHL-10) s an immortal human
immortal non 10
SU-DHL10 cell 493058 DHL10 Cells celllne cell Hodgkin lymphoma 0037059 in CL0; notin BAO 930/16
utp/ o
primate species bioassayon
needed: thesus and tology.org/b
ynomolgus, bush 20#8A0_00 hitp://purl bioontology.org/ontolog
Macaca fasiculars 1190 baby, treeshrew  mammalian 00362 ‘oynomolgus monkey; long tailed macaque VINCBITAXON/3541 9/30/16
Under viral nfectious
disease: "marburg 0 DOID but needs to be
Marburg hemorrhagic fever 720532 hemorrhagic fever”. _ disease DoID:4327 added o DTO 930/16
Under binding assay. g/ Changes in protein thermal stabilty can be induced by.
“ligand-induced bioassayon Higand binding, and this thermodynamic stabilzation can
thermodynamic binding  tology.org/b be measured by a variety of methods,often reported as
thermal shif assessment stabilzation of assessment 20#BAO_00 defta Tm (or change Inthe melting temperature of the
method 651658 protein’? method 00123 protein). 930/16
An assay for deubiquitination activit, employing a
reporter enzyme fused to ublquitin (making the reporter
catalytcally nactive). Following cleavage of the Ub-
reporter system by the isopepticase, the
(ufesensors Inc) 652174 (Ufesensor, Inc) assay kit free reporter can act upon s fluorescent substrate. 930/16

If cell line
i. Checkin CLO http://purl.bioontology.org/ontology/CLO
ii. Ifin CLO (and not in BAO)
1. Note CLO IRI
2. Term will be added to BAO with CLO IRI
ii. If notin CLO
1. Do ‘detective work’
a. Find PubMed and /or other hyperlinks for reference
i. can check BTO or Cellosaurus
b. Write definition
2. Term will be added to BAO
3. BAO will share with CLO for CLO to incorporate into CLO
a. CLO needs as much info as possible (relevant PMIC or
PMCID, PubChem AID(s), Cellosaurus or other URLs)
4. If/when CLO assigns an IRI, they will notify BAO; BAO will update;
should not affect BAO-assigned IRI

c. If disease
i. Check in Disease Ontology http://disease-ontology.ora/
ii. IfinDO
1. Note DOID
2. Term will be added to BAO (or, actually, DTO??) with DOID
ii. If notin DO (THIS IS RARE!! Make Sure to check for synonyms)
1. Do ‘detective work’
a. Find PubMed and /or other hyperlinks for reference (OMIM,
Wikipedia...)
b. Write definition
2. Term will be added to BAO (or, actually, DTO??) with BAO ID
3. BAO will share with CLO for CLO to incorporate into CLO
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4. Ifiwhen CLO assigns an IRI, they will notify BAO; BAO will update;
should not affect BAO-assigned IRI
d. If organism
i. Check in NCBI Taxon
ii. Should be foundin NCBI Taxon http://www.ontobee.org/ontology/NCBITaxon
1. Note NCBI Taxon ID
2. **For parent (superclass): use abbreviated superclass structure from
BAO (to spare having dozens of layers deep)
a. Check in BAO in BioPortal: (expand organism tree)
b. Write BAO ID and/or name of BAO organism superclass in
template
3. Term will be added to BAO with NCBI Taxon ID AND with BAO
parentlD
ii. If notin NCBI Taxon: highly highly unlikely!
e. All other fields
i. Evaluate provided ‘description’ (refer to BAE record and PubChem for context
if needed)
ii. If new term fits into existing BAO superclass
1. Specify proposed new term
2. Note name of existing BAO superclass (parent) to which it should be
placed under
3. Write a definition for the new term (use Google liberally!)
4. Provide hyperlink(s) for reference if useful
ii. If new term requires a new superclass
1. Create a new row in the template for the proposed new superclass
a. Enter the new superclass term
b. Enter the existing BAO superclass (parent) to which it should
be placed under
c. Write a definition for the new term (use Google liberally!)
d. Provide hyperlink(s) for reference if useful
2. Immediately below this new proposed superclass, continue with the
new term (as in 11.d.ii), noting the name of the new superclass
12. Send file to Joe/ Hande for next step(s)

Example for ‘Set3’ of Terms:
1368 terms from Absence Report
660 terms unprocessed (not included in sets 1-2)
586 terms excluding ‘target’ type (33) and ‘needs checking’ (41)
145 unique terms
48 terms (a)—covered in sets 1-2
27 terms (b)—needing QC/ likely exist in BAO
68 terms (c)—candidates for BAO
2 terms (d)—need further discussion
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Part B: BAO development documentation: New terms — Input files — Output files

pipeline (by Joseph Ostrow)

UniqueBAOTerms_090816BAE Report_093016.xIsx (Example new term spreadsheet)

A 5 < o € G 3 H i )
existing. Notes (optionall—these are
BAO dass proposed super just for Joe/ Hande; do not
' Pubche DescriptionfomBAE __for . BAO parent dlass for proposed __upload; canprovide to __|Batefromi
. ~lm a1 ~] curator (00 NoT UPLOAD) ~ lproposed ~ 1D~ ionall ~  definition. - hyperlinks [Foutside thoug~ Jepp |~ |
COPStar alkaline COP-Star chemiluminescent COP-Star is a chemiluminescent
substrate of alkaline phosphatase,
48 |system 518 Biolabs #N70015) assay kit compatible with both membrane- 9/30/2016
Enzolyte 520 Protease Assay An assay kit for measuring
Sensolyte 520 HCV Kit (Anaspec) hepatitts C virus (HCV) Ns3/4A
Protease Assay Kit (htp://oroanaspec.com/p gas-
45 | (Anaspec) 623964 roducts/product asp?id=301 assay kit 73 9/30/2016
An absorbance-based assay system
for measuring aspartate
transaminase (known as serum
EnzyChrom Aspartate glutamic oxaloacetic transaminase
Transaminase Assay Kit (GOT) or aspartate
(BioAssay Systems) aminotransferase (ASAT/AAT)),
Enzych st
T Kt by AST.In
50 |(BioAssay Systems) 743184 Assay-Kithtml assay kit this assay, oxaloacetate and NADH _ Kithtml 9/30/2016
Fluozin-2 AM is a cell-permeant
(acetoxymymethyl (AM))fluorescent
Fluozin2 AM indicator designed to detect Zn2+
fluorescent assay of concentrations that are present in
51 2inc concentration 623952 Fluozin-2 AM assay kit synaptic vesicles and released in 9/30/2016
This homogeneous (HTRF) phospho-
ERK assay is based on a TRFRET
Sandwich immunoassay format
comprising two specific monoclonal
2nti-pERK1/2 antibodies
Phospho-ERK1/2 (recognizing the phosphorylated
(Thr202/Tyr204) residue (Thr202/Tyr204), one
Cellular Assay Kit HTRE CelluIERK Kit (Cisbio, labeled with Eu3-+-crypate (donor)
52 |(Cisbio) 624053 MA) assay kit and the other labeled with 62 9/30/2016
IMAP (immabilized Metal lon
Afinity Particle] technology is a non
antibody-based assay for protein
IMAP Assay of Kinases in which a fluorescently
kit labeled peptide substrate that is
53 |(Molecular Devices) 624076 Molecular Devices assay kit phosphorylated by a kinase is 9/30/2016
This Insulin ELISA it is an FOA
registered in vitro diagnostic tool
for the quantification of human
insulin. it uses a dual-monoclonal
54 [insulin ELISA kit (Alpeo) | 488951 insulin ELISA Kt (Alpco)  assay kit antibody sandwich ELISA format, 9/30/2016

1. Begninng with above spreadsheet of new terms, organize terms into separate files
based on existing vocabulary “input” files:
https://github.com/BioAssayOntology/BAO/tree/master/BAOdev/InputFilesForExternalOn
tologylmport/bao_vocabulary_dev

a. If term does not classify as a child of one the existing vocabulary files, refer to
“Log for last IDs used in vocab files” spreadsheet on Google Drive and confer
with group

b. For example, above terms would be appended to existing
bao_vocabulary_assaykit_dev.csv

Creating an input file from spreadsheet of new terms (refer to Sample input .csv below):
2. Add ‘Term ID’ column (column A)
a. Use vocabulary ID ranges from ‘Log for Last IDs used in vocab files’ to assign
IDs to terms in form: http://www.bioassayontology.org/baoc#BAO_xxxxxxx
beginning with the ID after the last one used
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3. Add BAO parent ID based on existing parent class in BAO (use ID already assigned in
ontology)

a. If parent class is also a new term, use its newly generated ID

4. Add ‘Class Type’ column (Column I)

a. Assign each term the class type ‘subclass’ or ‘equivalent’ based on their
definitions in ‘Template Strings’ document here:
https://github.com/ontodev/robot/blob/master/docs/template. md#template-strings\

5. If “Date from CDD” is blank, add in date of .owl file creation (this column is essentially a
way to track the most recent additions)

6. Add header row (highlighted in below table)

7. **These headers identify which columns will be interpreted by the Robot command line
tool and included in the final .owl file. There are columns in the above spreadsheet (e.g.
“Description” or “Notes”) with comments not to include in the final .owl file. | have deleted
these in the .csv below for clarity’s sake, but one could keep them and just not add a
header to that column, and they still would not be included in the final .owl output file.

8. Scan text for special characters or symbols (e.g. ®) and delete them, as these often are
not interpreted correctly when file is exported

. Export as .csv

10. Upload the .csv files to GitHub to this folder:

https://github.com/BioAssayOntology/BAO/tree/master/BAOdev/InputFiles
Sample input .csv

A B 5 [) E E 3 H 1 1

1 [TermiD Term ID Term ID existing BAO Class BAO parentID  proposed super class definition hyperlinks Class Type Date from COD.
2 |iD Ardislabel AIAO:0000119 a AIAO:0000 A TAO:0000 CLASS_TYPEA 1A0:0000116
3 |htp: ba0HBAO_0140009  Cy lo (Promega) 435031 assay kit hitp: by PrcCytoTox-Glhttp: subclass  6/22/2016
4 |itp://uwny bioassayontology.ora/bactBAD_0140010  CATELISA (Roche/ Sigma-Al 628301 assay kit The CAT subclass  6/1/2016

5 ) 0140011 a 651719 assay kit This assay http://code subcl 6/7/2016
s ) 0140012 cellTiter-Blue Cell Viability 1063 assay kit #8 Th subclass  5/27/2016
7 ) 0140013 Gal-Screen 2788 assay kit The Gal-Scr https subclass  6/22/2016

s ) 0140014 per 504907 assay kit hitp://wnnbioass PCR system Real-time P https://ww subclass  6/26/2016

s ) 0140015  TagMan i ass 720492 assay kit hitp://wnnbioass PCR system Real-time P https://ww subclass  6/13/2016
10 ) 0140016 Detectic 488901 assay kit for Glo (Pre is subclass  6/26/2016
1 ) 0140017 ('6lo) As 624307 assay kit (Prom subclass  6/1/2016
12 0000690 v hitps//wnnbioass Luciferase-based (Glo') Assay System (Prome( subclass | 6/1/2016
EE) ) 0000685 i cell viabili (Glo') Assay System (Prome;subclass  6/1/2016
14 http://wnwbioassayentology.org/baoHBAO_000DES7  Beta-Glo Assay System hitps//wi.bioass Luciferase-based (Glo') Assay System (Prome; subclass | 6/1/2016

Using Robot tool to create .owl output file from input file:

1. Follow the instructions here to download the Robot command line tool:
https://github.com/ontodev/robot. This will convert the .csv input file into the vocabulary
.owl file (“output file”), which ultimately will be merged with the complete BAO .owl file.

2. Navigate to the directory of your .csv input file (i.e.
../BAO/BAOdev/InputFiles/bao_vocabulary_dev)

3. Run the following command (inserting correct file and vocabulary names) to create the
.owl file:

robot template --template bao_vocabulary assaykit dev.csv
--ontology-iri
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"http://www.bioassayontology.org/bao/bao_vocabulary assaykit dev.owl"
--output ../OutputFiles/bao vocabulary assaykit dev.owl

a. --template specifies the input file template you are using to create the .owl
file
b. --ontology-iri specifies the unique ontology IRI (IRl standard for vocabulary

http://www.bioassayontology.org/bao/bao_vocabulary_ fileName_dev.owl )
c. --output specifies the name and location of the .owl file you want to create

4. Confirm .owl file has been generated.

Open .owl file in Protege and compare with input .csv to confirm all information is correct

6. Commit changes to GitHub to this location:
https://github.com/BioAssayOntology/BAO/tree/master/BAOdev/OutputFiles

o

Developer Note:

1. The robot tool is used for BAO_core vocabularies only. BAO_external
vocabularies are created using OntoFox
2. Previously the OntoRat tool was used, but we found it was not very stable (was
unavailable for weeks), so the robot tool was used locally.
Example files are here (please note that these are not up-to-date files and are linked for
example purposes only):
1. Joe transforms the Absence Report into OntoRat input files which live under ‘OntoRatInputFiles’
folder in the CDD-UM Google Drive
(https://drive.google.com/open?id=0B20TIxSU7CWrTFALSIFHYnNtMkU)

2. OntoRat output files are created by Joe and they live in ‘OntoRatOutputFiles’ folder
(https://drive.google.com/open?id=0B20TIxSU7CWrZ1FYNIFfQ2NSTDQ)

Part B.2 Creation of External Ontology Extractions using OntoFox (by Hande
Kucuk-McGinty)

1. Use the existing input files for OntoFox (currently in GitHub under
https://github.com/BioAssayOntology/BAO/tree/master/BAOdev/InputFilesForExternalOn
tologylmport )

2. add the new terms from external ontologies such as DOID or CLO to the list

3. save and upload to GitHub to this location:
https://github.com/BioAssayOntology/BAO/tree/master/BAOdev/InputFilesForExternalOn
tologylmport

4. upload the input files to Ontofox site (ontofox.hegroup.org) to create the .owl files

5. save and upload .owl files to here:
https://github.com/BioAssayOntology/BAO/tree/master/BAOdev/OutputFilesForExternal

Ontologylmport
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Part C. Merge ‘new term owl files’ with existing BAO vocab files to generate complete
owl file and release (by Hande Kucuk-McGinty)

Developer Note:

Before the merging,we previously suggested to perform surveys for finalizing labels for the new terms.

But currently this step is not performed!
The surveys have not been out yet, the link to surveys are in a document and they live in
‘SurveysAndResults’ folder in Google Drive
(https://drive.google.com/open?id=0B20TIxSU7CWrOFIBQ2MwSTdhR1k)

Merging Details:
Output files are merged with vocabulary files that live at the BAO GitHub

(https://github.com/BioAssayOntology) (changes maybe done going back to Part B and performing
re-creation of input and output files again or manually)

For the merging, see more detailed notes on BAO2.3.1 Update:
https://sites.google.com/site/baocollaborativedevelopment/home/operational-process/bao-updates
(assumes starting with new terms from BAE in template)

1. Assuming the input (.csv files) and output files (bao_vocabulary_x_dev.owl) are correct, merge
“x_x_dev.owl” vocab files with appropriate vocab file from most recent BAO build.

See Table for mappings:

BAO Vocabulary (form most recent
Development File (new terms to be added) BAO release on git)

bao_vocabulary_biology.owl/
bao_vocabulary_cellline_dev.owl! BAO_CLO_import.owl
bao_vocabulary_method_dev.owl bao_vocabulary_method.owl
bao_vocabulary_format_dev.owl bao_vocabulary_biology.owl|
bao_vocabulary_assaykit_dev.owl! bao_vocabulary_assaykit.ow!
bao_vocabulary_assay_dev.owl bao_vocabulary_assay.owl
bao_vocabulary_detection_dev.owl! bao_vocabulary_detection.ow!

bao_vocabulary_biology.owl/
bao_module_organism_dev.owl BAO_NCBITaxon_import.owl|
bao_vocabulary_result_dev.owl bao_vocabulary_result.owl!
bao_vocabulary_instrument_dev.owl| bao_vocabulary_instrument.owl
bao_vocabulary_screenedentity_dev.owl bao_vocabulary_screenedentity.owl
bao_vocabulary_unit_dev BAO_UO_import.owl!
bao_module_disease_dev.owl bao_vocabulary_biology.owl/
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BAO_DOID_import.owl

For this exercise, BAO base version is BAO2.2.2
o 1.1 Open _dev file and BAO2.2.2 vocab file in Protege
o 1.2 In Protege while viewing BAO2.2.2 vocab file, click on 'Direct Imports' (+)--> hit '+'
and import the _dev owl file
1.3 View to check (check number of classes)
1.4 Under 'Refactor'--> choose 'Merge' (select the 2; merge into existing ontology)
Check; now delete the import of the _dev file
Save as the bao_vocabulary_x.owl

o O O O

For the 3 external vocabs
1. Cell Lines
m  Merge bao_vocabulary_cellline_dev.owl into BAO2.2.2
1. Note: this vocab contains cell lines assigned BAO IDs (not (yet) in CLO)
m  Merge (from BAO/BAOdev/OutputFiles/) BAO2.3_CLO_import.owl into above
merged file
1. Note: this CLO import file contains cell lines found in BAE that were in
CLO but need to be added to BAO
2. Disease
m  Merge bao_vocabulary_DISEASE_dev.owl into BAO2.2.2
1. Note: this vocab contains cell lines assigned BAO IDs (not (yet) in DOID)
m  Merge (from BAO/BAOdev/OutputFiles/) BAO2.3_DOID_import.owl into above
merged file
1. Note: this DOID import file contains cell lines found in BAE that were in
DOID but need to be added to BAO
3. Organism (NCBI Taxon)
4. Open bao_external.owl (from BAO2.2.2)
m  Merge with above 3 files
To create complete_merged
5. Open bao_core
m  Control if the bao_core.owl contains(imports) all the vocabulary files and make
sure all the files are imported correctly.
6. Open bao_external.owl and bao_complete.ow!
7. bao_complete_merged.owl shoudl contain the bao_core, bao_external and
bao_metadata.
8. Edit all files to contain new version, release date, names, best way to do this using a text
editor that can replace in multiple files at once.
9. Edit Release Notes doc and add to developer note folder
10. Commit onto git : https://github.com/BioAssayOntology/BAO
11. Publish as PRE-RELEASE on github: BAO2.3.1
12. After running QC with Java code and Stephan’s QC scripts, confirm with Stephan to
release and confirm.
= If not a confirm, one might have to go back to Part B and perform Part B and Part
C for another round of QC.

3. BAO release (by Caty Chung, taken from GoogleSite page here)

URL Description ‘ State ‘
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http://web.ccs.miami.edu/repos/

UM svn

2.0.x

https://github.com/BioAssayOntology/BAO/releases

git

2.31

1.- Commit a release: https://github.com/BioAssayOntology/BAO/releases

2.- FTP files to http://www.bioassayontology.org/bao/[file name]

Update release notes:

https://docs.google.com/document/d/1Vf4BEejEZ7vuEdTLQNAUIRBpRpuPHSDdOde1S

wHjSr4/edit

3.- Check http://www.bioassayontology.org/bao
4.- BioPortal has a routine job to pick up new files, the core file needs to be updated:
http://www.bioassayontology.org/bao/bao_complete.owl

5.- Check BioPortal
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