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Technological advancements in many fields have led to huge increases in data

production, including data volume, diversity, and the speed at which new data is

becoming available. In accordance with this, there is a lack of conformity in the

ways data is interpreted. In-depth analyses making use of various data types and

data sources, and extracting knowledge has become one of the many challenges with

this big data. This is especially the case in life-sciences where simplification and

flattening of diverse data types often leads to incorrect predictions.

Effective applications of big data approaches in the life sciences require better,

knowledge-based, semantic models that are suitable as a framework for big data

integration, while avoiding overly extreme simplification, such as reducing various

biological data types to the gene level. A major challenge in developing such se-

mantic knowledge models, or ontologies, is the knowledge acquisition bottleneck.

Automated methods are still very limited and significant human expertise is re-

quired.

In this research, we describe a methodology to systematize this knowledge acqui-

sition and representation challenge, termed KNowledge Acquisition and Represen-

tation Methodology (KNARM). We also present how KNARM was applied on three

ontologies: BioAssay Ontology (BAO), LINCS FramEwork Ontology (LIFE) ,and

Drug Target Ontology (DTO) built for three different projects: BioAssay Ontology,

Library of Integrated Network-Based Cellular Signatures (LINCS), and Illuminating

the Druggable Genome (IDG), and how they work together in complex queries.
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CHAPTER 1

Introduction

Big Data has become one of the most popular subjects in business and research.

Many research universities, such as University of Michigan [6], Stanford University

[7], University of Virginia [8], among others are creating multidisciplinary centers

and offering various degrees related with Data Science. There is no doubt that big

data is bringing many opportunities. However, many challenges related with various

aspects of data science are also outlined in various studies [9–13]. For this research,

we define big data in life-sciences as data high in volume (terabytes or larger), too

complex (interconnected with over 25 highly accessed databases [1] and over 600

ontologies [14] that contain various types of data - from gene sequencing to cell

imaging ), and too dynamic (growing exponentially [1,15,16]) for conventional data

tools to store, manage, and analyze. Figure 1.1 shows the interconnected nature of

the different life-sciences-data resources. One should note that the resources shown

in the figure are only a partial list of tools and data resources available for life-sciences

data (i.e. tools found in the European Bioinformatics Institute (EBI) repositories).

As we take more tools and resources into account, we see these connections become

a hair-ball graph very quickly. Figure 1.2 shows the exponential increase in the

GenBank data over the years and how the data creation is still increasing.

In the era of big data, extracting and representing knowledge hidden in large

amounts of scientific data has become a daunting task [1,17]. This is only one of the

challenges of big data. Big data challenges include dealing with increasing volume,

securing the data, and creating the infrastructure that allows analysis, in addition

to extracting knowledge from available data [10–12, 17]. Life-sciences data is not

1
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only increasing in volume, but also fitting more into the description of big data as

described above. In accordance with this, challenges specific to life-sciences data,

in addition the general challenges mentioned above, arise. One of these challenges

is: currently available complex life-sciences data is not being efficiently translated

into a format that is unambiguously readable and understandable by machines and

humans. Other difficult problems are: how to organize, how to standardize, and how

to analyze the life-sciences data without flattening it (because, flattening diverse life-

sciences datasets could lead to incorrect predictions). Provided good and feasible

solutions to these problems, the vast amounts of data could reveal new knowledge

and discovery.

As the life-sciences data grows, the need to build intelligent systems that will

store, organize, and help scientists analyze the data is growing as well [1]. Ideally, in

such systems, the computer and researchers will have an unambiguous understanding

of what the data means. Furthermore, the computer system will allow the life-

scientists to connect scattered pieces of information and help them acquire new

knowledge, i.e. inference of knowledge that they didn’t possess when building the

system.

Building such systems can be accomplished by using semantic web technologies.

In the past decade, many research efforts aimed at building such systems. As a

result a significant number of ontologies have been built related with life-sciences

(the number of ontologies on Bioportal in November 2016 was 529-, in November

2017 was 665-, in February 2018 was 690.). Although there exist some studies about

different techniques and tools about building such technologies, there is still a lack of

widely-accepted methodologies, best-practices rules, and tools that could help build

effective technologies that address the challenges mentioned above.

The life-sciences do have a profound interest in building ontologies, although

most of them are not widely used. Recently, commercial communities, such as

drug companies, have developed a keen interest in them as well. The interest in

ontologies is mostly for annotation purposes. The companies and researchers use

the life-sciences related ontologies to annotate their assays, scientific papers, or even

databases.



3

Figure 1.1: Data and connections among pieces of various data types in the European Bioinformatics
Institute (EBI) [1] This figure shows the inter-connectivity of the different databases and different
datasets. The figure is limited to the databases, ontologies, and other services provided by the EBI

In accordance with this, most of the ontologies built focus on creating controlled

and/or standardized vocabularies (i.e. taxonomies), not necessarily the intelligent

systems mentioned above. Thus, the majority of the methodologies for ontology

building focus on creating taxonomies. Some existing tools and methods focus on

using computers and databases alone for creating such taxonomies. While these

taxonomies are very useful for certain types of text annotation (i.e. tagging human

readable text with machine readable vocabulary) purposes, they fail to capture the

depths of the life-sciences related knowledge, and fail to utilize the computational

reasoning capabilities.
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Figure 1.2: GenBank growth statistics (last updated July 2017) that show that there is an exponential
increase in the data created

The majority of the ontologies available focus on hierarchical relationships among

individual types of bio-molecules or life-sciences related concepts. For example, only

proteins are linked together in Protein Ontology (PRO) [18], only diseases are linked

together in Disease Ontology (DOID) [19], and only cell lines are hierarchically

described in Cell Line Ontology (CLO) [20]. Some ontologies use a limited number

of relationships (e.g. ’is a’ and ’has a’, and ’part of’) to formally describe the data.

Therefore, only limited aspects of the concepts can be formally represented. This

then allows limited inferences about the data.

As mentioned above, the ontologies that provide only controlled vocabulary, or

provide limited formal descriptions of data may be useful for annotating textual in-

formation such as assay descriptions and/or scientific papers. As useful as they are,

they cause problems for the scientists at times. For example, the use of the same

concept under different names results in ambiguity for the users. This repetition in

the efforts not only causes ambiguity, but also costs time and effort for the users.

The users spend time trying to identify equivalent concepts and create equivalency
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relationships. If they fail to do so, then their search and analysis may not be com-

prehensive. Furthermore, many users might not know how to connect the existing

ontologies as a part or module to their own system. Either way, having unlinked

related data is a cost to the user. In addition to this, ontologies similar to the ones

listed above, fail to aid complex computational inferences and/or machine learning

applications because of their limited set of axioms.

In addition to the tools and methodologies that allow creation of taxonomies,

there are also tools which aim to combine data in databases in RDF form. These

tools make use of well known life-sciences databases in an attempt to merge scattered

life-sciences data. However, they fail to integrate insights that can be provided by the

domain experts in combining the available data. Moreover, the possible connections

can only be made for a number of well known databases. Thus, these tools cannot

be used with newly formed databases or semantic web applications.

In this study a new methodology, termed KNowledge Acquisition and Represen-

tation Methodology (KNARM) is proposed in order to help aid challenges summa-

rized above and achieve better acquisition and representation of knowledge while

avoiding over simplification. We propose this systematic, methodological approach

utilizing description logic and semantic models that addresses the knowledge acqui-

sition bottleneck. This methodology is created and used for this research project

by combining available methods for Database Management Systems (DBMS), Ob-

ject Oriented Programming (OOP), and Knowledge Acquisition Methods. It was

designed, implemented, and used based on our needs and challenges related to

our ongoing projects, namely the BioAssay Ontology (BAO), Library of Integrated

Network-Based Cellular Signatures (LINCS) project, and Illuminating the Drug-

gable Genome (IDG) projects.

KNARM is a hybrid methodology that combines human and machine capabili-

ties for extracting knowledge and representing it in an ontology. It is designed to

handle both new and existing knowledge/data and allows building ontologies with

high expressivity. The knowledge representation uses axioms in a Systematically

Deepening Modeling (SDM) approach for defining concepts in formal logic.
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As mentioned above, KNARM, was created with three projects in mind: the

BioAssay Ontology (BAO), Library of Integrated Network-Based Cellular Signatures

(LINCS) project, and Illuminating the Druggable Genome (IDG) projects. All of the

projects are nation-wide projects with data creation centers outside of the University

of Miami, and are funded by National Institute of Health (NIH). Data from these

projects is not only big in size, but also varies in types of data, from cell phenotype

images to gene mutations to disease associations. Although the projects’ aims are

different, they are related (such as providing new and/or (more) effective therapeutic

solutions to existing diseases) as well as some of the data involved with the projects,

such as genes, proteins, and diseases, among other pieces of data. However, acquiring

knowledge out of the available data has proven to be a difficult task, even for a few

projects from cooperative sources. As we explored more to see what technologies and

methodologies already exist, we observed that the need for a systematic methodology

for knowledge acquisition and representation by building semantic web tools has been

pointed out in the literature several times for more than two decades.

This dissertation aims to describe details of KNARM, and showcase how KN-

ARM was used to design, implement, and update two major ontologies BioAssay

Ontology (BAO) (designed and implemented for NIH funded BioAssay Ontology

Project) and Drug Target Ontology (DTO) (designed and implemented for NIH

funded Illuminating the Druggable Genome (IDG) project) as well as small applica-

tion ontology LINCS FramEwork Ontology (LIFE) (designed and implemented for

NIH funded LINCS project). This introduction is followed by a review of related

research. We then describe details of KNARM’s steps. After the detailed description

of KNARM, details of its application over BAO, LIFE, and DTO are explained (with

documents provided in the appendices). As results, we show use cases that utilize

the three ontologies (BAO, LIFE, DTO) with their external ontologies (GO, DOID,

BRENDA to name a few). We further exemplify how they work together in queries.

We provide proof of concept results on how formal descriptions of life-sciences data

may lead to new discoveries, and new leads on drug research and discovery by using

the inference capabilities of semantic web technologies. We also describe the sys-

tematic patterns and ontology architecture we use to build the ontologies in order
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to reuse parts of one another and work concurrently to help aid drug discovery.

This dissertation ends with a discussion of how to improve current results and what

future ideas could be implemented that could address challenges of big data and its

knowledge acquisition bottleneck.



CHAPTER 2

Related Research

For this research, we reviewed existing knowledge acquisition methods, general

ontology building methodologies, and reviews that combine them together. We

focused more on specialized knowledge acquisition and ontology building methods

and tools used for handling the life-sciences data. However, we also briefly review

widely accepted methodologies such as CommonKADS [21]. The reviews are listed

chronologically.

2.1 Reviews

The reviews can be viewed in two groups: The first group has relatively older

papers whose authors define and describe the basics of ontologies and how to create

one. The second group of papers are newer and they focus on the life-sciences related

ontologies in addition to the issues related with them.

Stevens et al. [22] gives an overview of ontologies and how they can be used for

bioinformatics applications. This paper can be viewed as a crash course in how to

build ontologies written more than a decade ago. It aims to better help scientists

with life-sciences background who want to make use of ontologies for their research

and applications. The paper does not provide a novel approach or a new ontology,

but a collection of existing approaches and applications. Ontology as a concept

is introduced along with the justification for why they are useful in representing

life-sciences data to be used. The authors give a brief introduction about how

ontologies can be created. They also explain ontology related concepts such as

8
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“defined concepts “, “primitive concepts“, and different types of relationships, as well

as axioms. Furthermore, they define different methodologies for building ontologies,

such as the V-model inspired methodology. The authors emphasize how biology

is rich in taxonomies. Therefore, ontologies can be used for different applications

related with biology. Consistent with their approach, they focus on ontologies that

aim to create controlled vocabularies more than ontologies that aim to generate

logical descriptions of biological concepts and processes.They continue with stating

that there exists a number of taxonomy-based ontologies. The paper also provides us

a survey of early bio-ontologies at the time, which are about 15 years old now. They

focus on RiboWeb [23], EcoCyc [24], and Gene Ontology [25]. Today, a collection of

568 (last access: July 2017) bio-ontologies can be found on BioPortal [26].

Being an early review, this study focuses on justification of using ontologies

mostly as taxonomies. As useful as these taxonomies are, they don’t provide the full

capabilities of an ontology with axioms and mappings of multiple ontologies focusing

on similar datasets.

Next, Wache et al. [27] summarized existing approaches in ontological integra-

tion of heterogeneous information sources in their review. The authors summarize

how the use of ontologies effect their architecture, how the ontology representations

can vary, how to approach ontology mapping challenges, and what are the current

development methodologies. The review contains the different languages and tools

used for ontology building, most of which are currently outdated. The tools included

KRAFT [28], Ontobroker [29], SIMS [30], and SHOE [31].

KRAFT [28] is a tool that allows ontology building based on existing database

schemas. As mentioned previously, this is a valuable automization, however con-

version of database schemas lead to oversimplification. Furthermore, It focuses on

vocabulary generation and doesn’t allow integration of domain expert knowledge di-

rectly. Ontobroker [29] focuses on generating ontologies using a meta-data descrip-

tion provided by the users. It is mainly focused on generating vocabulary rather than

knowledge based on domain experts’ knowledge and axioms. SIMS [30] is a semantic

platform that is designed to help databases communicate one another. SHOE [31]

provides a set of simple HMTL extensions which allows the world wide web authors
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to annotate their content. This review includes comparison of approaches for on-

tology evolution and determine that only the SHOE system accomplishes proper

automated approach for helping update the ontology resources.

The authors summarize that the current systems use ontologies that aim to

integrate their sources by using a similar structure. The common languages for the

ontologies are based on description logics and the systems make use of subsumption

reasoning for mapping of the ontologies. The building of the ontologies is performed

using specialized editors, such as OntoEdit [32] and SHOE’s Knowledge Annotator.

This review concludes that there is a striking lack of sophisticated methodolo-

gies for the development and use of ontologies. They suggest that such methodology

should be independent of the languages they reviewed that may be used to build

ontologies. They claim that a good methodology should also cover the evaluation

and verification of the decisions made with respect to the language and the structure

of the ontology. This conclusion that the authors’ reached is still valid today. There

is still a lack of sophisticated methodologies for development and use of ontologies.

Furthermore, the problem got bigger for life-sciences as the number of available on-

tologies increased over the years. The problem also extended to include the question:

how could we better share, reuse, and evolve these ontologies faster, better, and in

a more automated way in order to provide better analysis opportunities.

Another one of the early pointers to the conceptualization of biological data was

a Nature article [33]. Blagosklonny and Pardee define "conceptual biology” as the

information in databases that are related to the life-sciences. They refer to the

large number of databases with enormous amounts of biological data waiting to be

decoded. The authors point out how all the biological systems are interconnected

and the separation of the different biological systems is artificial. They suggest

how semantic conceptualization of the data in the scattered databases could help

connect data that is seemingly disconnected. They also point out how biology is

a hypothesis-driven discipline. They claim that currently hypotheses are based on

labor-based studies. However, one could benefit from the computational data avail-

able for the hypotheses. Additionally, the computer systems might suggest or infer

new knowledge. As addressed by Barnes, following the Blasgosklonny and Pardee
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paper, this process has a lot in common with drug discovery and related sciences by

using the existing biomedical data [34] and has been very useful for drug-discovery

related research.

As pointed out in this study, scattered life-sciences data keeps challenging re-

search and analysis efforts. Furthermore, duplication of data in different resources

with different identifiers brings about mapping and alignment problems involving

the data. Although some practice guidelines exist for some communities us as OBO

foundry [35] [36], there are no best practices approaches set.

Following that, in 2003, Corcho et al. [37] reviewed methodologies for ontology

building and reviewed the existing methods such as Cyc [38], TOVE (TOronto

Virtual Enterprise) [39], and finally METHONTOLOGY with the later generated

by the same group [40]. In their survey, they focus on methodologies that are used

for building ontologies. The authors review the above mentioned methods and the

tools that they use. They then point out the common points and differences of the

methods by creating a table.

Cyc has three phases. The first phase is to manually extract knowledge from

resources. The second and third phases involve acquiring new knowledge using

natural language or machine learning tools. The difference between the second

phase and the third phase is that the second phase is aided by tools, but requires

labor by humans, while the third phase the acquisition is mainly performed by tools.

TOVE applies a methodology inspired by the development of knowledge-based

systems using first order logic. They take possible use cases as a starting point to

identify the scope of the ontologies and the concepts of the ontology. Though it is

a robust method which takes advantage of the classical logic, it is not a fit method

for the era of big data.

METHONTOLOGY describes the ontology building process in detail. It has

three main steps: The identification of the ontology development process, a life

cycle based on evolving prototypes, and particular techniques to carry out each ac-

tivity. The ontology development process involves identifying tasks that should be

performed when building ontologies (scheduling, control, quality assurance, spec-

ification, knowledge acquisition, conceptualization, integration, formalization, im-
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plementation, evaluation, maintenance, documentation and configuration manage-

ment). The life cycle step decides on the stages through which the ontology passes

during its lifetime, as well as the inter-dependencies with the life cycle of other on-

tologies. The methodology also specifies the techniques used in each activity, the

output products that each activity and how they have to be evaluated.

Their evaluation aligns with the evaluations of Wache et al. [27]. They also

emphasize the lack of methodologies for ontology building and evolution. However,

this work is more focused on a few tools and includes only the ontology building

process, rather than focusing on all the tasks related with ontologies such as ontology

evolution, ontology re-engineering, etc.

In the review, the authors go over the steps for each methodology briefly. The

main common point of the above listed methodologies is that they are domain inde-

pendent and not designed for collaborative development. They all follow a similar

fashion as a software engineering methodology would follow. They suggest that the

approaches from different groups should be combined into a single methodology.

They also talk about the different languages, SHOE, RDF, RDFS, and OWL [41]

and their different expressiveness and reasoning capabilities. As pointed out by many

before them, they mention the importance of choosing a language for your ontology.

It is now widely accepted that choosing a language and expressiveness level to build

an ontology is one of the most important steps. They also write about ontology

building tools of the time, such as Protégé [42] and Onto Edit [32], and they claim

that they are necessary tools for the trade. Although this review makes good points

about methodology building and re-purposing existing software methodologies, the

tools and methods mentioned are now outdated.

A more genomics-data-focused review was performed by Louie et al. [2]. They

call the mosaic of life-sciences as ’genomic medicine’ and they include many different

disciplines - such as biology, chemistry, medicine, marine biology - in the mosaic.

Today we call the same data as life-sciences data. The authors also point out that

due to the dynamic nature of the data (rapidly growing and changing), it is hard to

encompass the entire scope of the data. Today, this observation still holds especially

with the introduction of new types of life-sciences data available, such as RNA se-
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quencing data. The review attempts to discuss how the data integration related to

biomedical informatics should be performed, what the challenges and future oppor-

tunities were, as well as what tools would bring the most out of the different kinds

of biomedical data.

Their main focus points were the representation of data suitable for compu-

tational inference (knowledge representation) and linking heterogeneous data sets

(data integration) for the life-sciences data. They point out that existing solutions

for data related problems can also be applied to life-sciences data. They claim that

by identifying the existing data integration techniques, and where your data lies on

an imaginary plane defined by two axes, you may find a proper approach to better

integrate life-sciences data (As shown in Figure X).

Their imaginary plane is defined by two orthogonal axes where the biomedical

data and the metadata resides, and the representation of the data and data models

(Figure 2.1). The two axes are: (1) integration architecture, i.e. where should your

data live: databases, data warehouses, peer data management systems, etc. and (2)

data and knowledge representation, i.e. relational database schema, semi-structured

data, ontology, etc. The review points out the pros and cons for each different

architecture and knowledge representation method.

Figure 2.1: Left: Different Tools and Their position on the axes, Right: Data Storage and Knowledge
representation options for different problems. By identifying the existing data integration techniques,
and where your data lies on an imaginary plane defined by two axes, you may find a proper approach
to better integrate life-sciences data. The two axes are: (1) integration architecture, i.e. where should
your data live: databases, data warehouses, peer data management systems, etc. and (2) data and
knowledge representation, i.e. relational database schema, semi-structured data, ontology, etc. [2].

For the first axis, the authors review the databases, database federations, and

Peer Data Management Systems (PDMS). They argue that keeping your data in
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smaller databases can help you query faster, but it may cause your data to go stale

after a while. Database federations, such as BioMediator [43], might have longer turn

around time for queries; however they have access to more current data. Finally the

authors mention the pros and cons of Peer Data Management Systems (PDMS).

The PDMS doesn’t have a complex schema like a database federation would have,

and it provides a more flexible architecture. However, it is still mostly experimental

and may provide slow queries.

For the second axis, the authors review relational schemas, semi-structured data,

and ontologies. For the relational schemas, they review the traditional database

systems. They point out that the traditional databases need precise relationships

among entities, however currently, the relationships among biological concepts are

not always precise. In addition to their observation, we can say that database

systems only represent the given information and lack the open-world assumption,

i.e. there may be more information inferred from the current data. Since currently,

most of the biological processes and experiments are treated as a “black-box”1.

Therefore, having a close-world assumption fairly limits our ability to model the

exact nature of the processes and experiments. Despite this, database systems have

been the most common and familiar mediums for storing the life-sciences’ data.

Semi-structured data representation languages such as XML and RDF (in contrast to

databases) release us from trying to find rigid relationships among entities. However,

one of the most limiting aspects of XML is lacking the many to many relationships.

However, for life-sciences data, the ability to create many-to-many relationships is

crucial in modeling concepts such as pathways. For example, the PharmGKB uses

XML for its efforts to create a pharmacology related knowledge base [44] Finally

Louie et al. describe ontologies as "specification of conceptualization”. They refer to

the ontologies built in OWL and they state that ontologies represent knowledge in a

computer readable format. They mention how this allows us to utilize computers in

various ways such as complex queries and knowledge inferences. They also state how
1Because of the design of the experiments and technological shortcomings, many of the biological

and chemical processes happening in the cell and in the body have various unknowns. Therefore,
we keep records of the perturbations and the final changes in systems, however the details of how
the changes occurred is usually unknown, i.e. a black box.
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Figure 2.2: Kinds of ontologies [ [3] p. 10, changed]. This figure shows the different languages and
different kinds of ontologies that can be created. As seen in the figure, Description Logic (DL) is the
most expressive language before general logic and formal taxonomies are not as expressive as ontologies
built using DL.

different ontologies can be combined together which would allow a larger amount

of inferences and discoveries. In figures they also show that ontologies built using

OWL are the most expressive representation of knowledge (cf. Figure 2.2 ).

The authors finish their review with suggestions about what architectures should

be used for different types of data. They also address different types of open ques-

tions and emerging research. They further state some of the current issues, such as

not having standards for data collection and representation which is a major problem

stated by many before them.

A very comprehensive review of Knowledge acquisition (KA) methods in biomedicine

is performed by Payne et al. [45]. In this paper the authors review different KA

methods from different perspectives, for example KA according to education, and

cognitive basis of KA and finally scenarios about how that existing KA methods can

be used in biomedical projects.

They define conceptual knowledge as the atomic pieces of information and the

relationships among them. They then focus on the conceptual knowledge acqui-

sition (CKA) in biomedicine as it applies to life-sciences. They acknowledge that

knowledge acquisition (KA) and conceptual knowledge acquisition (CKA) are parts

of a larger domain called knowledge engineering (KE), beyond the scope of these

research projects. There are four basic steps of knowledge engineering:

1. Acquisition of knowledge (KA)
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2. Representation of knowledge in a computable form

3. Implementation or refinement of applications that use the knowledge repre-

sentation created in the previous steps

4. Verification and validation of the tools and knowledge representation

They further elaborate on how the cognitive science literature describes two

types of knowledge: procedural and declarative knowledge. Procedural knowledge is

a process-oriented understanding of a given problem domain. Declarative knowledge

is largely synonymous with conceptual knowledge mentioned above, i.e. a combina-

tion of atomic units of information and the meaningful relationships between those

units. However, declarative knowledge consists solely of "facts” without any explicit

reference to the relationships that may exist between those "facts”.

Payne et al. review the education literature which defines conceptual knowledge

as a combination of atomic units of information and the meaningful relationships

between those units. The education literature also describes two other types of

knowledge, procedural and strategic. Procedural knowledge is definition stays as a

process-oriented understanding of a given problem domain in this context as well.

Strategic knowledge is used to operationalize conceptual knowledge into procedural

knowledge.

Finally, the authors mention that another significant literature for KA can be

found in the computer science (CS) literature, especially regarding artificial intelli-

gence. They argue that the CS literature is more focused on procedural knowledge,

including those used in a large number of intelligent agents and decision support sys-

tems. They also point out that artificial intelligence literature is extremely sparse

with respect to KA methods intended to elicit conceptual knowledge.

The authors also look deeper into how cognitive science, psychology, and pro-

gramming languages affect knowledge acquisition methods and taxonomy creations.

They provide KA techniques from the existing literature and advise on how to best

use the different techniques. The methods reviewed in their paper can be summa-

rized as follows:
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Informal and Structured Interviewing: Interviews conducted either indi-

vidually or in groups can provide investigators with insights into the knowledge used

by domain experts.

Observations: Observations generally focus on the evaluation of expert perfor-

mance, and the implicit knowledge used by those experts by observing them perform

tasks.

Categorical Sorting: A number of categorical, or card sorting techniques have

been developed, including Q-sorts, hierarchical sorts, all-in-one sorts and repeated

single criterion sorts. The different sorting methods can be applied to the concepts

and how they should be sorted in the taxonomies created.

Repertory Grid Analysis: Repertory grid analysis is a method based on

the Personal Construct Theory (PCT). PCT argues that humans make sense of

the “information world” through the creation and use of categories. Repertory

grid analysis involves the construction of a non-symmetric matrix, where each row

represents a construct which corresponds to a distinction of interest, and each column

represents an element (e.g. unit of information or knowledge) under consideration.

Formal Concept Analysis: Formal concept analysis (FCA) has often been

applied to the tasks of developing and merging ontologies. FCA is almost exclu-

sively used for eliciting the relationships between units of information or knowledge.

FCA can be automated using different algorithms. When FCA is performed using

automated methods, large-scale KA studies are feasible. However, FCA techniques

are limited to the discovery of relationships between conceptual entities, i.e. data

already available in databases, rather than the entities themselves. Therefore, other

KA techniques must often be applied prior to FCA to determine a corpus of entities

and attributes.

Protocol and Discourse Analysis: The techniques of protocol and discourse

analysis are very closely related and similar to observation. Both techniques elicit

knowledge from individuals while they are engaged in problem-solving or reasoning

tasks.

Sub-Language Analysis: Sub-language analysis is a technique for discover-

ing units of information or knowledge, and the relationships between them within
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existing knowledge sources, including published literature or corpora of narrative

text.

Laddering: Laddering techniques involve the creation of tree structures that

hierarchically organize domain-specific units of information or knowledge. Laddering

is another example of a technique that can be used to determine both units of

information or knowledge and the relationships between those unit.

Group Techniques: Several group techniques for multi-subject KA stud-

ies have been reported, including brainstorming, nominal group studies, DELPHI

studies, consensus decision making and computer-aided group sessions. All of these

techniques focus on the elicitation of consensus-based knowledge. While consensus-

based knowledge is arguably superior to the knowledge elicited from a single expert,

conducting multi-subject KA studies can be difficult due to the need to recruit

appropriate experts and logistical challenges involved in assembling the experts.

The authors also elaborate on verification and validation step of the KE. They

define verification as the evaluation of whether a knowledge-based system meets

the requirements of end-users established prior to design and implementation. Val-

idation is defined as the evaluation of whether that system meets the realized (i.e.

“real-world”) requirements of the end-users after design and implementation. They

point out that during verification, results are compared to initial design require-

ments, whereas during validation the results are compared to the requirements for

the system that are realized after its implementation. They acknowledge that val-

idation and verification work in parallel, and that verification would address the

internal validity of the knowledge collection, while validation would address the

external validity of the knowledge collection.

The authors provide a great review for identifying relevant concepts and their

relationships. However, they do not provide any methods that will allow the users

to model and create a knowledge base using the concepts identified with the help of

knowledge formalization, such as using axioms.

CommonKADS [21] has been the widely accepted and used structured knowl-

edge engineering methodology since it was introduced over thirty years ago. Com-

monKADS aims to provide solutions for all aspects of knowledge management,
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knowledge analysis, and system development. It provides several different solutions

for problems related with knowledge engineering. However, because of the breath of

its focus, it fails to give a set of steps that can easily be followed to build practical

knowledge bases from scratch.

CommonKADS does provide different approaches for knowledge acquisition. Al-

though most of the principles introduced still hold today, CommonKADS approach

builds around how to perform interviews with the domain experts in order to un-

derstand the data. Additionally, knowledge acquisition and representation advice

is mainly about understanding whether some data is a concept, a relationship, or

an attribute. It does provide the methods to identify the different concepts lie in

different hierarchies and different philosophies for representing data can be used for

this purpose. Therefore, like all of the above mentioned methods, CommonKADS

is also about how to create taxonomies, rather than creating formal representations

and models of data using axioms.

We can say that the scope of CommonKADS is larger than what we are present-

ing with this research. Furthermore, CommonKADS aims to help a broader and

larger audience with all aspects of Knowledge Engineering. KNARM (KNowledge

Acquisition and Representation Method) that we are introducing in this study, on

the other hand, currently focuses on life-sciences related knowledge acquisition and

representation.

We should also note that CommonKADS is almost thirty years old. Today, with

the advances in computational speed and terrabytes of data created, we acquire,

formalize, and represent data for various new purposes easier. Current projects are

more interested in efficiency in acquiring and representing the knowledge. With

increased inference capabilities, we aim to better utilize computers for knowledge

acquisition and representation. Moreover, as opposed to CommonKADS’ interview

heavy approach, we are trying to identify and generate ways to automate most of

the formalization process so that we can update our knowledge bases frequently due

to the rapid changes in knowledge.

All the methods reviewed in this section lack techniques needed to review and

formally represent existing knowledge related with life-sciences data. These meth-
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ods aim at creating controlled vocabularies and taxonomies for life-sciences related

terminology. However, they fail to capture the knowledge using formal logic. Fur-

thermore, they do not offer well-defined set of steps that are useful to create a new

knowledge base or ontology from scratch. Most importantly, these methods do not

offer solutions for the fast evolving data and data structures. New methods and fast

evolving ontologies are needed to represent the new and growing data created by

life-scientists. Table 2.1 on page 21 lists all the different methodologies reviewed in

this study.

2.2 Tools

In the previous section, we have reviewed the methods and reviews of the existing

methods related with semantic web applications for managing the evolving life-

sciences data. This section focuses on existing tools that aim to utilize semantic

web technologies for life-sciences data.

One of the first approaches to conceptualizing biology was by Gottgtroy and

colleagues [46]. They created Neucom and a primitive ontology that deals with

biomedical data. Although the ideas they had are exciting, both Neucom and the

ontology they created are primitive and fail to generate practical and useful appli-

cation examples.

Their main idea is to use existing databases to create gene-disease maps [46,47].

They also summarized how the ontologies could be engineered to aid ontology learn-

ing for the evolving domain of biology. They propose to create ontologies that would

infer new knowledge and feed it back to the ontologies. Their approach also involves

using existing databases and database schemas to build ontologies in an automated

way. Integration of different databases and database schemas is a desired outcome.

This very problem has been handled by various different groups, e.g SEMEDA,

Bio2RDF (reviewed below), in different ways in the past two decades. However,

they fail to notice that integrating existing databases is not the only problem with
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conceptualizing the biological data. Another problem is conceptualizing new data

coming from new experiments.

Previously mentioned Protégé [48] was also introduced in the context of design-

ing and implementing the Gene Ontology (GO) [25]. GO has been one of the most

widely used biological ontologies. Like all ontologies, it grows and needs to be main-

tained. Therefore knowledge acquisition is essential for maintaining GO. However,

in their paper about the Knowledge Acquisition of GO [49] the authors only specify

what new concepts and relationships were introduced. They do not provide details

on how they performed the extraction of human and literature knowledge nor how

they translate the knowledge into logical axioms. They only point out that they

have to translate the knowledge under the right tree of the taxonomy. This task

was covered by CommonKADS very elegantly. While being widely used and very

useful, GO does not provide complex relationships to define the concepts it is rep-

resenting. For the purposes of GO, the two relationships (“is a” and “part of”) that

it uses are enough to represent their set of vocabulary. There is no doubt that the

GO taxonomy is very useful. However, we should note again that it does not deal

with complex formalization of the data. GO is one of the groups that advocate

using fewer relationships in ontologies. Some other OBO foundry ontologies also

agree with them. Their aim is to simplify the structure of the ontologies and their

underlying graphs. However, the life-sciences data is too complex to represent using

two relationships. Furthermore, in cases of inconsistencies and misrepresentations,

having very few relationships would cause inference and reasoning leading to in-

correct knowledge and other problems, such as not representing essential pieces of

information.

Another tool called SEMEDA for database integration using semantic web was

introduced by [50]. SEMEDA is designed as a three-tier system which aims to allow

users transfer the relationships and attributes that they have for their databases into

an ontology. It consists of a relational database backend (Oracle 8i or newer) to store

ontologies, database metadata and semantic database definitions. Java Server Pages

are used in the middle tier to dynamically generate the HTML frontend. Authors

mention that SEMEDA”s architecture allows handling of large controlled vocab-
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ularies and ontologies with a virtually unlimited number of concepts. SEMEDA

retrieves information from different databases and then uses its own custom ontol-

ogy for database integration. This created ontology is a small top level ontology,

which defines databases at the schema level. SEMEDA uses basic Semantic Web

practices in order to transfer the data and the structure of a database to an ontology.

Like all of the tools available today, SEMEDA is focusing on integrating different

databases with the help of alignments for concepts and attributes from the different

resources it uses. However, it doesn’t offer a solution for handling plain textual data

and/or new data that does not exist in databases. It also doesn’t provide a workflow

for aligning the attributes and concepts from different resources.

One of the highly cited works is the Open Biomedical Ontologies (OBO) Foundry

paper [51] in 2007. The OBO foundry aims to overcome the disconnected nature

among the existing biomedical ontologies. As the authors pointed out, the biomed-

ical ontologies increased in size and changed shape dramatically between 2003 and

2007 and they are still increasing in size and changing in shape since that time.

The OBO foundry aims to align the efforts for ontology building and connect the

different ontologies to allow information exchange. The OBO foundry designed an

ontology building language, OBO, for the purpose of easily integrable ontologies.

However, the OBO language that has been built to incorporate the different on-

tologies is not as expressive as some of the other ontology building languages, such

as OWL2DL [41]. Therefore OBO is almost obsolete within 10 years. Most of the

OBO foundry ontologies mainly contain “is a” and “part of” relationships, and are

not as expressive as some other ontologies. For example DL expressivity for the

Disease Ontology (DOID) [19] is AL while the expressivity for BAO 2.0 is SOIQ(D).

Although it is known and agreed up on that biology is a taxonomy rich discipline,

we also think that building taxonomies alone fails to capture the complexity of the

life-sciences.

OBO foundry and OBO foundry ontologies focus on finding standardized vocab-

ulary for life-sciences rather than formal definitions of the concepts. As mentioned

before, while the standardized vocabulary is important for several purposes, we think

that semantic web technologies could provide more insight to life-sciences. In this
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paper the authors review the ontologies in their early versions and explain that they

are going under revision about a decade ago. Today, most of the ontologies men-

tioned in this paper have a version in OWL. However, there are no major changes in

the expressivity levels of the ontologies, i.e. they are still standardized vocabularies.

The OBO foundry authors concluded by stating their long-term goal as gener-

ating a system that allows the data generated through biomedical research form

a single, consistent, cumulatively expanding and algorithmically tractable whole.

They acknowledge that their goal, may affect the flexibility and advancement of the

sciences. We can further argue that the rigidly structured and centralized efforts do

not take the dynamic nature of the life-sciences into account. Today, many different

biological assays and life-sciences related tools and molecules have been added to

the literature compared to ten years ago. With the advances in technology, we can

predict that the life-sciences data will keep growing and evolving. Therefore, tools,

methodologies and standards that can handle the dynamic nature of the data are

crucial.

The need to integrate scattered ontologies has also observed by the Bio2RDF

team [52] in 2008. Like the OBO foundry, it is an open source effort that aims to

create on demand knowledge base (KB) views. However, while OBO foundry fo-

cuses on creating ontologies from scratch and creating standardized vocabulary for

life-sciences, Bio2RDF focuses on integrating existing database resources to create

different knowledge views in RDF. Bio2RDF is written in JSP that perform transla-

tions to RDF. It further utilizes the Sesame open source triplestore and OWL tech-

nologies. Documents from highly cited databases such as KEGG, PDB, and several

NCBI databases can be made available in RDF file using the Bio2RDF tools.

The Bio2RDF team also recognizes the existance of tools such as SEMEDA that

aim to integrate bioinformatics related data. However, they also point out that

SEMEDA fails to make use of it. Furthermore, they claim that OWL is becoming

the standard language for life-sciences ontologies. A decade after this publication,

we can confirm this claim by looking at over 500 ontologies at the Bioportal. Con-

sequently, the authors list the lessons learned from sparse projects which they per-

formed aim to integrate partial life-sciences related data. The main lesson is that
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utilizing the semantic web approach for life-sciences data integration is currently the

most effective approach. Furthermore, integration efforts of different data sets for

several projects aim to answer specific questions for that particular project. There-

fore the integrated data is not comprehensive, i.e. not all data from all databases is

integrated. Last, but not least, Bio2RDF team points out that using and encour-

aging to use open-source tools is crucial for more comprehensive integration and

analysis purposes.

The authors describe the Bio2RDF applications by consolidating several exam-

ples of databases that they integrated by using their RDF versions. They conclude

by stating that Bio2RDF is still in progress, like all ontology related tools. They

also stated, in the future they planed to apply algorithms to see how the underlying

graphs of the databases might be related. However, this is an NP-complete problem,

and is still work in progress.

In summary, the Bio2RDF effort focuses on bringing together the diverse databases

and ontologies and creating a triple store using the different resources. They are

also concerned with the scalability, performance, and re-producibility of the results.

These are concerns that the computational biology community shares and agrees

upon. Like Bio2RDF, the data in life-sciences as well as the applications related

with them, are dynamic, changing everyday. Bio2RDF is not concerned with creat-

ing new concepts and/or ontologies. It also does not provide solutions for integrating

new information, i.e. new data available outside of publicly available databases, into

the ontologies.

One of the most recent attempts to standardize the handling of biomedical data

was the SEEK platform [53].The SEEK is a web-based resource for sharing and

exchanging Systems Biology Data and models that are used by the JERM (Just

Enough Results Model) ontology. The SEEK platform takes the different data stan-

dardizations, such as the MIBBI (Minimum Information for Biological and Biomed-

ical Investigations) guidelines. Wolstencroft et al. [53] point out that it is becoming

more important to collect and annotate data in a more standardized way. This is

a widely accepted argument at this time and many attempts have been made to

standardize the large amounts of systems biology data. They also point out the
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diverse nature of the data and the need to correctly describe and link the different

types of data by using mathematical models. However, most of the data in the

SEEK platform”s metadata” are not useful for formally describe how the assays are

performed. Important information about the assays and the assay participants are

collected by the SEEK platform. However, the data and JERM ontology fails to

model the diverse types of assays that deal with different types of data, by using

axioms, in order to model the ontology using description logic. The SEEK platform

collects the assay description in text, but do not offer solutions on how to handle

the textual assay descriptions into semantic knowledge.

The latest research related with better ontology building practices includes a set

of steps generated by He et al. called XOD (The eXtensible Ontology Development

principles) [36]. XOD focuses on ontology creation tools implemented by He Lab

and tools provided by the OBO foundry collaborators. There are four principles of

XOD are:

1. Ontology Term Reuse : This step proposes reusing terms from "reliable"

ontologies from a registered OBO foundry ontology. The proposed version of

term reuse heavily relies on He Lab’s tools such as OntoFox [54].

2. Ontology Semantic Alignment : The second principle involves aligning

imported ontology terms and newly added terms with the same or compatible

semantics. They propose to achieve such alignment by reusing the same object

properties for axioms involving imported classes. Thus, they propose to import

axioms of a concept.

3. Ontology Design Pattern- Based Ontology Development : This step

relies on having design patterns and OBO tools for a recurrent ontology design

problem. In case of a new design pattern, one can add it using OBO tools. The

process follows three steps: (1) entering new terms / annotations to a form on

the OBO tools, (2) converting the form to an Excel sheet, (3) converting excel

sheet to OWL files.
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4. Community Extensiblity : XOD recommends that a broad community of

users and developers join the ontology building process. While this might lead

to widely accepted term generation, XOD agrees that this process and this

step could be the biggest bottleneck in the ontology building process.

XOD methodology focuses on building vocabularies and reusing existing ontologies

using its principles. It relies heavily on OBO foundry tools and communities and

doesn’t offer any solutions to extracting knowledge out of the vast amounts of data.

Although the principles address important questions about ontology building, the

solutions provided are limited to the OBO foundry community. Furthermore, they

fail to address questions that involve long textual data and integration of domain

experts’ knowledge with existing tools. Finally, they don’t offer a solution or a

workflow for building an ontology from scratch.

Table 2.2 lists above mentioned tools and Table 2.3 summarizes the methods and

tools reviewed in this study.

Above mentioned studies and all the current efforts focus on how to integrate the

existing databases. Moreover, many of these current projects lack a concrete plan

for evolution of their systems, although they all agree that the available biological

data is multiplying and evolving in alarming levels. Last but not least, all these

studies listed in the table ignore the RDF integration of new experimental data that

usually comes in textual form.

2.3 Review of Related Life-Sciences Studies

In the previous sections we described the methods and tools that aim to utilize

semantic web technologies for storage, interpretation, and representation of life-

sciences data. In this section, we briefly mention relevant life-sciences studies that

create(d) data used in or related to our current research studies.

Biological components such as genes, proteins, metabolites and other molecules

work together in harmony within cells to promote growth and development of living

beings. Understanding how these interconnected components of biological pathways
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and networks is one of the biggest challenges of this era. Furthermore, a great

amount of research is being performed to understand how these components work

under various perturbations, genetic and/or environmental stressors, which may

cause disease or changes in systems. Last but not least, how the changes in molecular

and system levels effect phenotypes of the living organisms. This effort to understand

the underlying natures of interactions and changes in systems and phenotypes is then

used to develop new and/or better therapies to return perturbed systems to their

normal state.

Today, most pharmaceutical companies use High-Throughput Screening (HTS)

the primary engine driving lead discovery [55]. However, with the increased ability

in combinatorial techniques and advances in molecular biology better targets for

therapeutic intervention can be provided. BAO is aimed at helping with that goal

and is primarily designed to formally describe HTS assays.

High-throughput screening (HTS) has evolved into an industrialized process and

HTS of small molecules is one of the most important strategies to identify novel

entry points for drug discovery projects.

Until about half a decade ago, HTS and ultra-high throughput screening (uHTS)

has been primarily part of the pharmaceutical industry. In 2003, National Institute

of Health (NIH) started to make HTS and uHTS capabilities accessible to public sec-

tor research via the Molecular Libraries Initiative to advance translational research

and specifically the Molecular Libraries Program (MLP) [56]. MLP projects aim to

use various assays to develop compounds effective at alternating biological processes

and/or disease states. The program has established publicly funded screening cen-

ters along with a common screening library (the MLSMR, Molecular Libraries Small

Molecule Repository) and data repository, PubChem [57].

Since 2004, the MLPCN centers have deposited over two thousand HTS assays

testing the effects of several hundred thousand compounds. More recently a Euro-

pean effort, EU Openscreen [58], to establish small molecule screening capabilities is

being developed. Several other publicly accessible resources of screening data exist,

for example ChEMBL [59], a database that contains structure-activity relationship

(SAR) data curated from the medicinal chemistry literature [60], the Psychoac-
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tive Drug Screening Program (PDSP), which generates data from screening novel

psychoactive compounds for pharmacological activity [61], or Collaborative Drug

Discovery (CDD), a private company enabling drug discovery research collabora-

tions [62].

The rate of assay submission to PubChem and other repositories show that there

is a vast amount of textual data being produced in addition to the data being added

to the various databases for proteins and genes.

In addition to the MLP program, many other NIH funded projects started cre-

ating different assay types. One of the largest efforts is the NIH LINCS and BD2K

projects that create various assays that are interrelated.

The underlying premise of the LINCS program is that disrupting any one of the

many steps of a given biological process will cause related changes in the molecular

and cellular characteristics, behavior, and/or function of the cell – also known as the

cellular phenotype. A cellular phenotype is, in turn, intended to reflect signatures

derived for comparable assays of clinical states. Observing how and when a cell’s

phenotype is altered by specific stressors can provide clues about the underlying

mechanisms involved in perturbation and ultimately disease.

To achieve this goal, the Library of Integrated Network-based Cellular Signa-

tures (LINCS) program is developing a "library" of molecular signatures, based on

gene expression and other cellular changes that describe the response different types

of cells elicit when exposed to various perturbing agents, including small bioactive

molecules. High-throughput screening approaches are used to interrogate the cells

and mathematical approaches are used to describe the molecular changes and pat-

terns of response. LINCS data are openly available as a community resource for

researchers to address a broad range of basic research questions and to facilitate the

identification of biological targets for new disease therapies. The LINCS program

was implemented in two parts. The pilot phase took place from 2010-2013 and

focused on the following activities:

• Large-scale production of perturbation-induced molecular and cellular signa-

tures.
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• Creation of a database, common data standards, and a public user interface

for accessing the data.

• Computational tool development and integrative data analyses.

• Development of new cost-effective, molecular and cellular phenotypic assays.

Integration of existing datasets into LINCS.

The current phase of the program began in 2014 and builds on what was learned

from the pilot. This phase of the program consists primarily of LINCS Data and

Signature Generation Centers. The Centers carry out the following activities:

• Generating public datasets of cellular signatures collected in response to treat-

ment with perturbing agents.

• Developing tools to optimize the accessibility and utility of their data.

• Organizing outreach activities with the broader research community so they

can make use of LINCS data and tools.

The current phase of the LINCS program also works in synergy with the NIH Big

Data to Knowledge (BD2K) program through a BD2K-LINCS-Perturbation Data

Coordination and Integration Center (DCIC) at the Icahn School of Medicine at

Mount Sinai. Read a description of the DCIC project on the NIH Common Fund’s

BD2K Funded Research page.

The LINCS project, in contrast to traditional screening, generates extensive sig-

natures of cellular responses consisting of thousands of results for any perturbation

(such as small molecule drugs) to enable the development of better system-level dis-

ease models. Examples of LINCS screening results and assays include Landmark

gene expression signatures (L1000), Kinome-wide binding affinities (KINOMEscan),

phenotypic profiling across 1,000 cell lines, and many others, covering “omics” and

HTS data. LINCS results are currently available via participating centers and can

be queried and explored via the LINCS Information FramEwork (LIFE) developed

by our group [63].
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In addition to the assay data being generated with the MLP, LINCS, and BD2K

projects, the efforts to provide better therapeutics on molecular levels is also ad-

dressed as a challenge by the NIH.

The NIH funded IDG (Illuminating Druggable Genome) initiative is one of such

efforts. The IDG project is to evaluate, organize and prioritize the potential disease-

linked drug targets based on available data, knowledge and algorithms, for four

protein families: G-protein -coupled receptors (GPCR), nuclear receptor (NR), ion

channels (IC) and kinases.

The IDG drug targets are categorized as four super families with respect to the

depth of investigation from a clinical, biological and chemical standpoint [64]:

1. Tclin (i.e. clinical) are targets for which a molecule in advanced stages of

development, or an approved drug, exists, and is known to bind to that target

with high potency.

2. Tchem (i.e. early stage) are proteins for which no approved drug or molecule

in clinical trials is known to bind with high potency, but which can be specif-

ically manipulated with small molecules in vitro.

3. Tbio are targets that do not have known drug or small molecule activities that

satisfy the Tchem activity thresholds, but were the targets annotated with a

Gene Ontology Molecular Function or Biological Process with an Experimental

Evidence code, or targets with confirmed OMIM phenotype(s) [43].

4. Tdark (i.e. no prior information) refers to proteins that have been described

at the sequence level, do not satisfy Tclin/Tchem/Tbio criteria, and meet two

of the following three conditions: a fractional PubMed publications count [44]

below 5, three or more NCBI Gene RIF annotations [45], or 50 or more com-

mercial antibodies, counted from data made available by the Antibodypedia

database [46].

5. Tclin are targets for which a molecule in advanced stages (Phase I clinical

trials and beyond) of development, or an approved drug, exists, and is known

to bind to that target with high potency;
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6. Tchem (i.e. early stage) are proteins for which no approved drug or molecule

in clinical trials is known to bind with high potency, but which can be specifi-

cally manipulated with small molecules in vitro; typically, the small molecule

will have been developed in the context of some interesting target related bi-

ology;

7. Tbio are targets do not have known drug or small molecule activities that

satisfy the activity thresholds detailed below AND satisfy one or more of the

following criteria: target is above the cutoff criteria for Tdark, or target is

annotated with a Gene Ontology Molecular Function or Biological Process

leaf term(s) with an Experimental Evidence code, or target has confirmed

OMIM phenotype(s);

8. Tdark (i.e. no prior information) refers to proteins that have been described

at the sequence level and no further studies have been disclosed. To gain more

in -sights on those drug targets, it is necessary to link the proteins to their

genomic data, structure data, publicly available small molecule data, as well

as the gene expression data in cell lines and tissues.

With the help of these new classifications, IDG aims to shed a light on the poorly

understood proteins of the four important gene families (i.e. kinases, GPCRs, hor-

mone receptors, and ion channels) and foster basic research by accumulating genomic

data to inform our knowledge of the proteome. In this way, help the pharmaceutical

industry with the ability to design novel therapeutics to increase human health.

Despite being publicly available, current data repositories for assays and bi-

ological molecules suffer from structural, syntactic, and semantic inconsistencies,

complicating data integration, interpretation and analysis. As one of the largest

and first repositories of public drug screening data, PubChem, has been essential to

illustrate the need for clear metadata standards to describe drug and chemical probe

discovery assays and screening results [65]. To address these prevailing issues; we

have previously developed the first version of the BioAssay Ontology (BAO) [66].

This first version was developed iteratively based on domain expertise and available
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assay data, primarily from the MLP, which we annotated using evolving versions of

BAO.

Since the first release of BAO, we have engaged with several more groups in public

research projects such as the LINCS, BD2K, and IDG projects, and in pharmaceuti-

cal companies and the biomedical ontology community. We aligned the organization

of BAO with existing efforts as much as possible, most importantly at the Novartis

Institutes of BioMedical Research, and we have significantly extended the terminol-

ogy and axioms in BAO to cover a broader range of assays and related concepts.

Engaging in several other projects also brought the need to develop other ontolo-

gies such as LIFE and DTO as well as the need to update the ontologies frequently

because of the frequent updates of input data.

In order to handle the challenges that come with creating multiple related on-

tologies and evolve them frequently we developed a methodology, KNARM. We are

currently using the methodology for building LINDO (LIncs meta-Data Ontology).
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CHAPTER 3

Approach

In this chapter we describe KNowledge Acquisition and Representation Method-

ology (KNARM) and how KNARM was applied to build the ontologies in this study:

BioAssay Ontology (BAO) 2.0, LINCS Information FramEwork (LIFE) ontology,

and Drug Target Ontology (DTO). The ontologies built were designed to share data

among themselves in order to avoid duplicating existing work. They also import

data from existing ontologies without disturbing their own integrity. Furthermore

they are designed to accommodate minor updates and the fluidity of the data coming

from the LINCS and IDG projects that are currently in progress.

3.1 KNowledge Acqusition Methodology

(KNARM)

Effective applications of big data approaches in the life sciences require better,

knowledge-based, semantic models that are suitable as a framework for big data

integration, while avoiding overly extreme simplification, such as reducing various

biological data types to the gene level. A huge hurdle in developing such semantic

knowledge models, or ontologies, is the knowledge acquisition bottleneck. Manual

methodologies require too much time, are prone to human errors, and fail to help

the need when there is large amounts of data production. Automated methods are

still very limited and significant human expertise is required.

36
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To systematize this knowledge acquisition and representation challenge, we cre-

ated a new methodology called KNowledge Acquisition and Representation Method-

ology (KNARM) is created and used for this research project by combining methods

for Database Management Systems, Object Oriented Programming, and Knowledge

Acquisition Methods. KNARM is a hybrid method for both acquiring new and

existing knowledge and building ontologies with high expressivity. The methodol-

ogy aims to represent the knowledge acquired from textual data, data available in

databases, and ontologies. The Knowledge Representation uses axioms in a system-

atic, structured, deepening-layering approach for defining concepts in formal logic.

We showcase ontologies built using KNARM, explain the details about how it helps

better formalize the data with the help of domain experts’ insights and use comput-

ers’ reasoning capabilities to infer new knowledge.

With KNARM, we provide a set of steps that allow the acquisition of the knowl-

edge out of the raw data. We start with the analysis of textual data. This is followed

by the acquisition of knowledge out of the existing resources, such as databases and

ontologies that is related to the textual data. We then suggest using description

languages and formal logic to represent the processed data as well as the existing

databases and ontologies. During this process, we suggest two check points for val-

idation of the knowledge acquired and represented in a formal way. It is an agile

methodology allowing updates after each iteration, and semi-automated so that each

iteration can contain minimum amount of errors and the iterations can be performed

fast.

The methodology may be generalized for any big data, but currently it is de-

scribed for handling biomedical big data. Here is the summary of the steps per-

formed:

1. Sub-language Analysis

2. In-House Unstructured Interview

3. Sub-language Recycling

4. Meta-Data Creation and Knowledge Modeling
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5. Structured Interview

6. Knowledge Acquisition (KA) Validation

7. Database Formation

8. Semi-Automated Ontology Building

9. Ontology Validation

3.1.1 Sub-language Analysis

Sub-language analysis is a technique for discovering units of information or

knowledge, and the relationships between them within existing knowledge sources,

including published literature or corpora of narrative text [45]. As the first step of

formalization of the data we recommend starting with the existing literature and/or

reports for the data. While reading the text data, it is desired to try creating use

cases and taking notes aiming to identify patterns and the units of information,

concepts and facts in data, that have a recurring pattern. A unit of information is

a concept, relationship or data property contained in the data in hand. A use case

is a list of actions, event steps that users might follow, questions that can be asked

by users, and/or scenarios that users may find themselves in. Example use cases are

as follows:

• Search for proteins are in the same kinase branch as target X where there were

validated chemical hits from external or internal sources.

• One has an assay X, find the other assays that have the same design but

different targets

• Which assay technologies have been used against my kinase? Which cell lines?

After identifying units of information, patterns, and listing some possible use

cases the ontology engineers can introduce the domain experts to their preliminary

analysis, or continue to work with them towards the next steps of the methodology.
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3.1.2 In-House Unstructured Interview

After identification of the key concepts and units of information during Sub-

language analysis, we perform an interview with the domain experts that are closest

to us, who work in the same team. This step can be a performed separately after

the sub-language analysis or in a hybrid fashion with the previous step. The un-

structured interview is aimed at understanding the data and their purposes better

with the help of the domain experts. It can be performed in a more directed fashion

by using the previously identified knowledge units or could be treated as a separate

process. Together with the previous step, this step also help identify the knowledge

units and key concepts of the data.

3.1.3 Sub-language Recycling

Following the identification of knowledge units through the textual data of the

assays, literature, and unstructured interview with the domain experts, we per-

form a search on the existing ontologies and databases. The aim of the search on

the databases and ontologies is to ascertain the already formalized knowledge units

that are identified. We perform and encourage reuse of existing -relevant, and well-

maintained- ontologies, aligning them with our ontologies, and using cross-references

(annotated as Xref in the ontology) to the various databases that contain the same

knowledge units and concepts that we determined to formalize. By recycling the

sub-language, not only we save time and effort, but also reuse widely accepted con-

ceptualization of knowledge. In this way, we also aim to help life-scientists by sparing

them the painful data alignment practices, and by helping them avoid redundant

and/or irrelevant data available in different data resources.

3.1.4 Meta-Data Creation and Knowledge Modeling

In this step, we combine the knowledge units and essential concepts identified

with those recycled from the existing databases and ontologies to create the meta-

data describing the domain of the data to be modeled. The metadata creation can
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be a cumbersome task that could be performed in different levels by defining subsets

of metadata on various details of the data. For example, with our systematically

deepening approach of formalization (i.e. Systematically-Deepening-Modeling ap-

proach (SDM)), we started with the metadata for proteins and genes, followed by

metadata for diseases, tissues and small molecules. The SDM approach allows us

to focus on one aspect at a time and extract more detailed (i.e. deeper) metadata,

which later allows creating more complex axioms (i.e. modeling of concepts).

In combination with the metadata creation comes a very important step in knowl-

edge acquisition and representation: knowledge modeling. Here, we define knowledge

modeling as using axioms to define concepts and aim to help infer new knowledge

based on existing data using this axiomatic modeling of concepts. While model-

ing, we focus on one aspect at a time and create more complex axioms as going

deeper into the knowledge. The detailed metadata extracted is utilized on different

levels to create axioms that can be modeled without overwhelming the reasoners

and other semantic web technologies by creating nested axioms. By dividing the

knowledge into detail levels and representing different detail levels of the knowledge

in different ontologies, we allow reuse of concepts and axioms easily as well (also

see modular architecture in Semi-Automated Ontology Building section). This step

can be performed within the team first and then can be discussed with the collabo-

rators and other scientists. Alternatively, a bigger initiative can be set up to agree

on the metadata, axioms, and knowledge models (examples include OBO Foundry

ontologies [35])

3.1.5 Structured Interview

Structured Interview consists of close ended questions that are aimed at the do-

main experts. For our purposes we use metadata created for the knowledge obtained

so far in order to perform an interview with the collaborators who are involved in

the data creation as well as the scientists who are not involved in the data creation.

The aim of the structured interview is to identify any important points that might

have missed by the knowledge engineers and the domain experts so far.
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In this step, the metadata identified for the data is presented by the knowledge

engineers. The data could be dissected based on the metadata identified and the

dissected information could also be presented to the collaborators.

3.1.6 Knowledge Acquisition Validation

This step could be considered the first feedback. In this step, the sub-language

identified and recycled, the metadata, and the data dissected based on the metadata

is presented to the domain experts by the knowledge engineer. It could also be

presented to a small group of users based on the use cases. The aim in this step is to

identify any knowledge that is missed or misinterpreted. If such knowledge exists,

we recommend starting from the first step and reiterating the steps listed above.

3.1.7 Database Formation

After validating the knowledge acquired is correct and consistent, we start build-

ing the backbone for the representation of the knowledge. The first step is to create

a database to collect the data in a schema that will facilitate the knowledge en-

gineering. Typically, this will be a relational database. The domain experts may

prefer to use different means of handling and editing their data, such as a set of

flat files, but we recommend using a database as the main data feed to the ontology

that will be created as the final product. The details of the database are designed

based on the acquired metadata and data types collected and their relations (see

Figure 4.15 for an example database schema). Ideally, the databases should contain

the metadata as well as the knowledge units and the key concepts identified in the

knowledge acquisition steps. Information that the database may not hold directly

includes specific relationships or axioms involving the different knowledge units and

key concepts that are identified during the knowledge acquisition. We placed the

relationships among the pieces of data in the next step during the ontology building

process.
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3.1.8 Semi-Automated Ontology Building

After placing the data dissected based on the metadata as well as the metadata

into the database, we convert the data to a more meaningful format that allows infer-

ence of new knowledge that is not explicit in the flat representation in the database.

This is achieved using semantic web technologies, mainly an ontology. Building an

ontology is particularly relevant for representing complex knowledge involving hi-

erarchies of concepts (i.e. classes in ontology) and many specific relationships (i.e.

object properties in ontology) among concepts and their data properties (i.e. data

properties in ontology). In this way, flat data obtained can be used to create axioms

that represent current knowledge. With the help of DL reasoners, inference of new

knowledge and performing complex queries for analysis and exploration becomes

possible and easily operable.

We follow the modular architecture that we presented [67–69] while building the

ontology. The modular architecture allows easier management and sharing of on-

tology files, standardized vocabularies and axiomatic representations of knowledge.

Modular architecture also allows us to create inter-operable pieces of knowledge that

we can easily share, manipulate, and assemble into diverse knowledge environments.

Modularization and ontology development can be performed manually. However,

especially while building DTO, we improved our approach by adding automation.

We created all vocabulary files and some of the axioms using the database back

end and a Java application, OntoJog [68], adding a layer into the modularization

and separating the axioms that are automatically created by a software that we

implemented and the axioms that are manually added to the ontology.

In order the create the modular architecture first, we determine the abstract hori-

zon between TBox and ABox. TBox, terminological component, contains modules,

which define the conceptualization without dependencies. ABox is the assertion

component of the ontology, where instances of concepts defined in the TBox are

added.

Vocabularies and modules in the core TBox are self-contained and well-defined

with respect to the domain and they contain concepts, relations, and individuals. In
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this research, self-contained means that there is no outside term or relationship in

the files; well-defined means the terms, relationships, and individuals are generated

unambiguously.We can have n of these vocabularies and/or module files in the TBox.

Second, after the n files of modules and/or vocabularies are defined, the modules

with axioms that can be generated automatically are created. These new modules

created have interdependent axioms. At this level one could create any number of

gluing modules, which import other modules without dependencies or with depen-

dencies.For the ontology’s core file, these modules need to be self-contained.

Third level contains axioms created manually, however the axioms generated are

independent and self-contained. The manual modules are an optional level and they

inherit the axioms created automatically.

Forth, at this level we can design modules that import modules from our domain

of discourse, and also from third party ontologies. Third party ontologies could

be large, therefore a suitable module extraction method (e.g., OWL API) can be

used to extract only part of those ontologies (vide supra). We would model this

in the ontology-complete level. We can have one ontology-complete file or multiple

files, each may be modeled for a different purpose, e.g., tailored for various research

groups. Once these ontologies are imported, the alignment takes place. The align-

ments are defined for concepts and relations using equivalence or subsumption DL

constructs. The alignment depends on the domain experts and/or cross-references

made in the ontologies.

Fifth, release the TBox based on the modules created from the third phase.

Depending on the end-users, the modules are combined without loss of generality.

With this methodology we make sure that we only send out physical files that contain

our (and the absolute necessary) knowledge.

Sixth, at this level, the necessary modules ABoxes are created. ABoxes can be

loaded to a triple store or to a distributed file system (Hadoop DFS [70]) in a way

that one could achieve pseudo-parallel reasoning.

At the seventh level, using modules, we define views on the knowledge base.

These are files that contain imports (both direct and indirect) from various TBoxes



44

and ABoxes modules for the end-user. It can be seen as a view, using database

terminology.

Our modular architecture for the ontologies improved over the span of this re-

search. The modular architecture described for BAO [4] was relying on manual

axioms and manual vocabulary additions. Because of the difference in data increase

and rapid update requirements as well as the automated steps integrated during

implementation, we added a new layer in which we only generate modules that are

built using the automated process. We then add the modules that are manually

created with the help of a domain expert (see Figure 3.2 for the current modular

architecture of DTO).

3.1.9 Ontology Validation and Evoluation

The final step in the proposed workflow is the ontology validation. The domain

experts as well as the knowledge engineer performs different tests in order to find out

if the information in the ontology is accurate. In addition, different reasoners can

be run on the ontology to check its consistency. Additional software can be imple-

mented to test the different aspects of the ontology (for example java programs that

compare the database with the ontology classes, object properties, data properties,

etc.) Finally, queries for the different use cases can be run to check if the ontology

implementation answers questions it was meant to answer. If there are any incon-

sistencies or inaccuracies in the ontology, the knowledge engineer and the domain

expert should try to go back to the ontology building step. If the inconsistencies

are fundamental, we recommend starting from the first step and retracing the steps

that lead to the inconsistent knowledge. Domain experts and ontology engineers

can also choose to go back to the Metadata Creation and Knowledge Modeling or

Sub-language Recycling step.
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Language 
Analysis
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(3) Sub-
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(4) Meta Data 
Creation and 
Knowledge 
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(5) Structured 
Interview

(6) KA Validation 

(9) Ontology 
Validation

(7) Database 
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(8) Semi-
Automated 
Ontology 
Building

Methodology step

Methodology flow to the next step

Alternate checkpoint and flow to the next step

Figure 3.1: The steps of KNowledge Acquisition and Representation Methodology (KNARM). The
figure aims to emphasize the continuous development cycle and agile nature of the methodology. The
inner cycle can be repeated as many times as required by the domain experts and ontology engineers
so that the knowledge can be captured and modeled without flattening the data while making sure
that it’s accurate. One should note that the inner cycle is more manual, relying more traditional KA
methods. The outer cycle is composed of more automated steps, aiding faster building of ontologies.
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Figure 3.2: Modular Architecture for the Drug Target Ontology. As described our modular architecture
for the ontologies improved over the span of this research. The modular architecture described for BAO
[4] was relying on manual axioms and manual vocabulary additions. Because of the difference in data
increase and rapid update requirements as well as the automated steps integrated during implementation,
we added a new layer in which we only generate modules that are built using the automated process.
We then add the modules that are manually created with the help of a domain expert.



CHAPTER 4

Methods and Applications of KNARM

In this chapter, how KNARM (KNowledge Acquisition and Representation Method-

ology) was formed, matured dynamically and how KNARM is used for three ontolo-

gies - the BioAssay Ontology (BAO), LIncs FramEmework Ontology (LIFE), and

Drug Target Ontology (DTO)- is described.

KNARM started to form based on our need to build better and concordant

ontologies in a systematic way, more efficiently, and harmoniously. The following

subsections give the details of how each step of KNARM was performed while build-

ing BAO, LIFE, and DTO along with other design and implementation details for

the three ontologies.

4.1 LINCS Information FramEwork (LIFE) and

The BioAssay Ontology (BAO) 2.0:

4.1.1 Sub-language Analysis and Unstructured Interview for

BAO and LIFE

As described above the first step, sub-language analysis, is focused on discovering

and defining units of information, i.e. concepts and relationships. This is the first

step towards identifying meta data information.

BAO [5] was designed and implemented to axiomize knowledge about bioassays.

The first version of BAO was designed and implemented with PubChem assays in

47
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Figure 4.1: Overview of Modeling of BAO, LIFE, and DTO using KNARM. This figure shows how we
built concordant ontologies using KNARM as a consistent methodology and our modular architecture
which allowed us to reuse and align parts from different ontologies. This conceptual description shows
that relationship among some core concepts in the ontologies.

mind, therefore the modeling of the assays and the concepts created in BAO were a

reflection of this dataset (see Figure 4.1 for the Overview of Modeling in BAO 1.0)

With the introduction of the The Library of Integrated Network-Based C ellular

Signatures (LINCS) project, we worked on integrating the new LINCS assays into

the existing BAO. In this step, we reviewed textual descriptions of LINCS assays with

domain experts. Starting with the initial concepts identified in BAO’s first version,

we tried to identify key concepts from the LINCS assays and the bio-entities used

in the assays that will allow us to perform key queries. We quickly realized that,

BAO’s structure and modeling was not designed to handle the changes. Thus, we

decided to take a more systematic approach for modeling of the LINCS assays in

BAO.
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Figure 4.2: Overview of Modeling of BAO assays in BAO1.0 [5]. This modeling of the bioassay
concept was based on the bioassays submitted to PubChem. PubChem requires users to enter certain
fields of information before they can upload their textual descriptions of assays.

The Library of Integrated Network-Based C ellular Signatures (LINCS) project

aims to use computational tools to integrate this diverse information into a compre-

hensive view of normal and disease states that can be applied for the development

of new biomarkers and therapeutics (See Figure 4.3 for the different datasets). [71]

Figure 4.3: Diversity of LINCS assays

The diverse datasets in this project are created by running various assays with

different types of molecules such as proteins and genes. Each assay uses these bi-

ological molecules in different roles in order understand how these molecules react
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under varied circumstances and perturbagens. The assays that are reviewed during

the Sublanguage Analysis and Unstructured Interview are as follows (also see Figure

4.5):

• KinomeSCAN KinomeSCAN assay measures a group proteins after a group

of perturbagens were introduced to the biochemical model system. [72]

• KiNativ KiNativ assay observes proteins in the presence of small molecule

perturbagens in Lysates. [73]

• L1000 Assay The L1000 platform pairs ligation-mediated amplification (LMA)

with a Luminex-bead based detection system to allow the quantitation of 1000

mRNA transcripts per well. The L1000 assay is an extension of a previously re-

ported method for expression profiling based on Luminex bead technology [74]

to create a 1000-plex profiling solution. By using this platform, certain genes

are over-expressed and under- expressed, and based on the expression levels

signatures are created. [75]

• 2-3 Color Apoptosis The 2-Color and the 3-Color Apoptosis assays use

different markers to illuminate different cell lines and observe which cells are

going through apoptosis in the presence of small molecule perturbagens. [76]

• Cell Cycle State Assays These assays are called Proliferation/Mitosis Assay

and Mitosis/Apoptosis Assay by the data creator, Harvard Medical School.

The two assays use different markers to identify the cell-cycle states and apop-

tosis. [76]

• Cell Growth Assay In this assay cell growth and apoptosis is observed after

using perturbagens on different cells. Cell nuclei is stained and cell division is

measured and reported. [76]

• Cue Signal Response (CSR) Assay The CSR Assay measures the cytokine

secretion and phosphorilation levels in different cell lines after introducing

small molecule and biological molecule perturbagens to the model system. [76]
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Figure 4.4: LINCS assays currently described in BAO. This figure shows how the assays connect via
perturbagens and other participants in the modeling.

As briefly described above, these assays aim to measure different biological pro-

cesses and/or molecular functions. Furthermore, the assays use different biomolecules,

such as proteins, genes, as well as their mutated variations, small molecules, cell lines,

and various other participants.

An unambiguous description the assays is essential for the LINCS project in

order to help both the researchers who are participating in the LINCS project and

those who are using the LINCS findings to aid projects outside. In order to provide

an unambiguous, formal description, we generated a new set of meta-data for the

second version of BAO.

4.1.2 Sub-language Recycling for BAO and LIFE

As described previously, this step involves searching and discovering units of

information that already exists in other ontologies and databases. We aim to adopt

as many concepts as possible from existing ontologies, given the logical (or in the

cases of taxonomies textual) descriptions of the concepts align with our needs. This

also helps avoid duplication of efforts and reuse of previously established vocabulary

for the terms. We also aim to accomplish community suppor and cross-reference
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Figure 4.5: Basic Conceptual Modeling in BAO 2.0 and beyond. This figure shows how the current
modeling of assays differ from the modeling in BAO1.0. Systematically Deepening Modeling (SDM)
adds a layer to the basic concepts such as genes and proteins by giving them different roles in different
assays. While this modeling is very comprehensive and accurate in terms of philosophical view of
concepts, sometimes this deepening modeling causes problems with computation of inferences.

and/or map existing efforts. Using Bioportal [14] or contacting with ontology groups

(such as OBO foundry) we search for assay related terms. So far we have used the

following ontologies:

1. Biological process and molecular function terms were extracted from the Gene

Ontology (GO) [25]

2. A number of relationships are extracted from Relationship Ontology (RO) [35]

3. All the organism names are extracted from NCBI Taxonomy Ontology (NCBITaxon)

[77]

4. Most of the Cell Lines are extracted from Cell Line Ontology [20]

5. Diseases from the Disease Ontology(DOID) [19]

6. Units from Unit Ontology (UO) [78]
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7. Chemical entities and roles from ChEBI [79]
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Figure 4.6: BAO Modularization. This modularization assumes that all axioms are added manually.

We also used well-established databases such as UniProt and ENTREZ for in-

formation related with bio-molecules such as proteins and genes. For example all

the protein names are extracted from UniProt and cross references to UniProt and

ENTREZ IDs are contained in the ontologies.
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4.1.3 Meta-Data Creation snd Knowledge Modeling for BAO

and LIFE

Based on the Sub-language Analysis, the In House Unstructured Interview and

Sub-language Recycling, the next step in formalizing the assays is creating a set of

meta-data.

The meta-data creation step is a combination of analyzing the standards already

existing,i.e. widely used data integration standards such as Minimum Information

for Biological and Biomedical Investigations (MIBBI) Standards, and understanding

the patterns of the data in hand.

For the LINCS assays, we were able to identify patterns among the assays and

created a sheet with meta-data (see Figures 13 and 14 for details of metadata and

modeling and an example modeling of an assay based on metadata defined). This

meta-data then served as the modeling pattern for the assays. In this way, a uni-

form modeling was identified. We axiomize the reoccurring components for all of

the assays as follows:

Assay Participants: In the LINCS project, even though all assays are related

with and complementary of each other, each assay deals with a diverse group of

molecular entities. The molecular entities that take place in the different assays are

defined as a ’participant’ of the assay.

Model System: Inspired by the model organisms, we started using the term Model

System to identify the assay mediums that are used while performing the assays.

This term is a generalized version of previously used BAO term ’bioassay format’.

Perturbagen: One of the most important part of the assays is the perturbing

agent. While many assays used small molecules as perturbagens, we also had assays

that use hormones, or other biological molecules as perturbagens in order to detect

different cellular responses.
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Assay Design Method: The Assay Design Method describes how a biological or

physical process screened / investigated in the model system is translated into a

detectable signal.

Biological Process or Molecular Function: According to the Gene Ontology (GO)

[25] a biological process is any process specifically pertinent to the functioning of

integrated living units: cells, tissues, organs, and organisms. A process is a collection

of molecular events with a defined beginning and end. In addition, a molecular

function is defined as elemental activities, such as catalysis or binding, describing

the actions of a gene product at the molecular level. A given gene product may

exhibit one or more molecular functions.
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Figure 4.7: Main Classes and Basic Object Properties for Modeling bioassay concept in BAO 2.0. As
seen in the figure even for a single concept, the relationships and modeling becomes a highly connected
graph.

At its core, the assay aims to measure responses for a biological process or

a molecular function. Since the LINCS assays are complementing each other in

various ways, we decided that it is crucial to capture which biological processes

and/or molecular functions the assays are involved with. In this way, we could
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easily query and reason assays that are involved with the same biological processes

and/or molecular functions. Since GO is widely used by many different databases

such as UniProt [80], Reactome [81], and ChEBI [79], we chose to extract terms

from the GO, and use the GO terms in our logical axioms.

Measured Entity: In the assays that we modeled, the same molecular entities are

used in different roles. For example, one protein could be the end product in one

assay, while it is a byproduct in another. In order to model in a clear and concise

fashion, we decided to logically axiomize the roles of the participants in the assays, as

opposed to having multiple upper classes to the same entity. The concept Measured

Entity is a product of such need. It is modeled as a role. The entity that has the

measured entity role is the output of a biological reaction or process that is quantized

either directly (by the presence of a tag or probe) or indirectly in a coupled reaction.

Assay Detection Method: Assay Detection Method refers to the physical method

or technology that generates a readout for the effect caused by a perturbagen in the

assay. The assay detection method could be an instrument or a combination of in-

struments, tags, and/or dyes.

Detected Entity: This concept is being recorded because of the need to differ-

entiate between what is measured in the assay and what captured by the detection

method. Detected Entity is the immediate entity that is detected by using the de-

tection method. In some cases, detected entity can be the measured entity, however,

in other cases detected entity acts as a bridge for what we are aiming to measure

with our assay.

Endpoint: An endpoint, alternatively called result, is a quantitive or qualitative

representation of a perturbation (change from a defined reference state of the model

system) that is measured by the bioassay.

The creation of meta-data further allowed us to find a solution for difficult mod-

eling problems such as the modeling of assay endpoint vs. measure group.We had
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Figure 4.8: An example modeling and metadata of Cell Viability Assay in BAO.

previously introduced the concept measure group to link multiple endpoints to the

same bioassay [82] (See Figure 4.9). We have now generalized this model so that

measure group can be derived from one or more measure groups. This allows the

formal and iterative construction of more complex assays and endpoints that are

derived from multiple measurements.

4.1.4 Structured Interview for BAO and LIFE

Based on the meta-data created, I have interviewed the researchers at the LINCS

data creation centers and outside of the group, mainly the data creation group at

Harvard Medical School.

This step is to confirm that the interpretation of the text data is correct and

accurate. Additionally, this step can be used in combination with other methods in

order to decide on a concept’s proper name. With this step, the aim is to finalize

names and types of concepts used in the meta-data. Furthermore, it is to make sure
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Figure 4.9: Modeling of Measure Goup Concept in BAO.

that the ontology engineer is on the same page as the domain experts before starting

to write the axioms into the ontology. Therefore, this step can be combined with

the next step, i.e. Knowledge Acquisition Validation.

4.1.5 Knowledge Acquisition Validation (KA Validation) for

BAO and LIFE

In this case after the metadata creation and after the various interviews and

reviews of the data the forms I have designed were filled. Before the axiomization of

the assays, the forms were shared with the research scientists inside and outside of

the SchÃ1
4hrer Lab in order to make sure that the information contained was valid.

Corrections if necessary were made on the excel sheet provided and sent back to

me. Please see appendices for documents created working with the Harvard Medical

School for the Structured Interview and KA Validation steps.
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4.1.6 Database Formation for BAO and LIFE

This step of KNARM provides a basis for the semi-automated ontology building.

Initially for the second version of BAO, a database was not created. This was because

previously BAO concepts and axioms have been created manually and there wasn’t

a big demand in adding various new concepts at once. A new database is being built

for generating BAO vocabulary in an automated fashion by the SchÃ1
4hrer Lab as

a result of the full application of this methodology (i.e. KNARM), and as the need

for regular updates for the BAO project increased.

For the LINCS data a database was created by the software group at the CSS

for keeping the LINCS data and providing the back-end for the LIFEwrx web-based

software (see Figure 4.10). However, the database was used to extract the data as

Excel files for semi-automated ontology building.

Figure 4.10: Use of Database and the LIFE ontology for the LIFEwrx software (Courtesy of Schührer
Lab)

4.1.7 Semi-Automated Ontology Building for BAO and LIFE

As mentioned above, most of the data for the LIFE and BAO ontologies were

collected and formed via excel sheets. Therefore, I used Java and OWL API to

process the excel files and convert them to RDF in order to build parts of the

ontology in an automated fashion.The modular architecture formed for BAO was

adopted for LINCS, but no formal changes were made to the architecture.
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Figure 4.11: LIFE Modularization following the same principles followed for BAO modularization

4.1.8 Ontology Validation for BAO and LIFE

LIFE ontology was not published to the community, so the only validation it

had was through the various reasoners. BAO, on the other hand, is a widely used

ontology with lots of applications, such as BioAssay Express (BAE) of Collabora-

tive Drug Discovery (CDD), pharmaceutical companies (Astra-Zeneca, Roche, etc.),

and government facilities, such as Environment Protection Agency (EPA), and gov-

ernment funded projects, such as BARD, LINCS, BD2K, using it as their primary

ontology for annotating their bioassays. The need to update BAO for the needs of

different users urged us to identify a systematic and consistent routine for updating.

An initial updating routine was implemented via a joint effort between CDD and

SchÃ1
4hrer Lab and a new NIH grant is awarded for further implementation of tools

for efficient semi-automated ontology validation and updating process.

The key steps for ontology validation and update using the BAE tool are as

follows:
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1. Create BAE Absence Report (generated at: http://www.bioassayexpress.

com/BioAssayExpress/diagnostics/absence.jsp)

2. Absence reported is exported to Excel, and then reviewed by a content (do-

main) expert to QC, filter for unique new terms, which are then exported to a

new-term template to further clarify by adding required fields–definitions, par-

ent BAO class, relevant references/ hyperlinks. This List of Requested Terms

is then shared with University of Miami (BAO team).

3. A survey of content experts could be used to decide on the final labels for

terms. (Currently this step is not performed) The links to surveys are in a

document and they live in SurveysAndResults folder in Google Drive

4. The List of Requested Terms from Step 2 above is divided and transformed into

appropriate separate .csv files by a University of Miami BAO domain expert

along with the ontology engineer, inputting the new BAO ID to be assigned

and the appropriate BAO parent class ID, using a predefined template.

5. Attention must be paid to terms that already exist in external ontologies (but

need to be added to BAO) and terms for which BAO needs to coordinate with

external ontologies (e.g.DOID, CLO) to request external IDs.

6. Output files are created in .owl format by the ontology engineer at UM

7. Output files are merged with the appropriate vocabulary files by the ontology

engineer in UM and merged into BAO complete for initial check-up and QC

run by the Java Programs and Pipeline Pilot Scripts. Manual check is also

performed using Protege.

8. After final corrections (changes may be needed, iterating back to step 4 and

performing steps 4,5,6 again or manually editing the .owl files), final bao_complete.owl

is created (as per KNARM).

9. After the finalized BAO_complete is created, all files are updated on GitHub

and the BioAssay homepage for BioPortal to collect the new version by the

ontology engineer at UM.
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Figure 4.12: Left: Current workflow for evolving BAO, Right: Ideal Workflow for Evolution of BAO

4.2 Drug Target Ontology (DTO):

As a part of the IDG project, we designed and implemented the Drug Target

Ontology (DTO), advancing the ontology architecture that we used for the BAO and

LIFE ontologies. The goal of the IDG project is to improve our understanding of

the proteins that belong to the four most commonly drug-targeted protein families

properties and yet are not annotated with as many details as the commonly used

drug-targets. In its pilot phase the program aims to create a data resource center,

the Knowledge Management Center (KMC) that will catalog known information

about the four protein families and obtain additional information about their func-

tion(s). Ultimately, the KMC aims to have methods that allow the life-scientists

to identify and prioritize the poorly annotated proteins for further study [64]. The

major difference between the previously defined LINCS and the IDG projects’ data

is that IDG focuses on biomolecules and their tissue and disease relationships while

LINCS main focus on the different assays that they create and run. The IDG data

is mainly composed of drug-targeted protein families: G-protein coupled receptors

(GPCR), nuclear receptors, ion channels, and protein kinases. Therefore, we fo-
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cused more on modeling the biological and chemical molecules, changes that they

have been through such as modifications, mutations, etc., rather than the assays

they were used in.

KNARM finalized before the implementation of DTO and all the steps have been

followed while building the Drug Target Ontology.

4.2.1 Sub-language Analysis and In-House Unstructured In-

terview for DTO

Different communities have been using the term ’drug target’ ambiguously with

no formal generally accepted definition. The DTO is aimed at developing a formal

semantic model for drug targets including various related information such as pro-

tein, gene, protein tissue localization, disease associations, and many other types of

information. The initial interviews and sub-language analysis steps involved deter-

mining the different classifications of the drug targets and the properties of them.

Recently the IDG project defined drug target as a native (gene product) protein or

protein complex that physically interacts with a therapeutic drug (with some bind-

ing affinity) and where this physical interaction is (at least partially) the cause of a

(detectable) clinical effect. DTO defined a DTO specific term drug target role to be

used in axioms related with the proteins listed in DTO. The text definition of drug

target role is a role that is beared in a material entity, such as native (gene prod-

uct) protein, protein complex, microorganism, DNA , etc., that physically interacts

with a therapeutic or prophylactic drug (with some binding affinity) and where this

physical interaction is (at least partially) the cause of a (detectable) clinical effect.

At the current phase, DTO focuses on protein targets.

The IDG drug targets are categorized as four super families with respect to the

depth of investigation from a clinical, biological and chemical standpoint:

1. Tclin are targets for which a molecule in advanced stages of development, or an

approved drug, exists, and is known to bind to that target with high potency
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2. Tchem are proteins for which no approved drug or molecule in clinical trials is

known to bind with high potency, but which can be specifically manipulated

with small molecules in vitro

3. Tbio are targets that do not have known drug or small molecule activities that

satisfy the Tchem activity thresholds, but were the targets annotated with a

Gene Ontology Molecular Function or Biological Process with an Experimental

Evidence code, or targets with confirmed OMIM phenotype(s)

4. Tdark refers to proteins that have been described at the sequence level and no

further studies have been disclosed

DTO proteins have been classified into various categories based on their struc-

tural (sequence/domains) or functional similarity. A high-level summary of the

classifications for Kinases, Ion Channels, GPCRs, and Nuclear Receptors.

Most of the 578 kinases covered in the current version of DTO are protein kinases.

These 514 PKs are categorized in 10 groups that are further subcategorized in 131

families and 82 subfamilies.

The 62 non-protein kinases are categorized in 5 groups depending upon the

substrate that are phosphorylated by these proteins. These 5 groups are further

sub-categorized in 25 families and 7 subfamilies. There are two kinases that have

not been categorized yet in any of the above types or groups.

The 334 Ion channel proteins (out of 342 covered in the current version of DTO)

are categorized in 46 families, 111 subfamilies, and 107 sub-subfamilies. Similarly,

the 827 GPCRs covered in the current version of DTO are categorized in 6 classes,

61 families and 14 subfamilies. The additional information whether any receptor has

a known endogenous ligand or is currently orphan is mapped with the individual

proteins. Finally, the 48 nuclear hormone receptors are categorized in 19 NR families.

Following my reviews of the free-form text about the data in hand, the domain

experts in the group provided help with answering my questions. At times, the

reviews of the free-form text was performed together with the domain experts. This

process is defined as the unstructured interview, because there are no predefined set

of questions asked to the domain expert. The questions are asked in a conversation-
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Figure 4.13: Protein Classes in DTO

like environment in order to understand the assays better and identify a pattern

among the various kinds of bio-molecules and their uses as well as their structure

and functions in drug discovery related assays and projects.

Above classifications of the data are performed by the domain experts and pro-

vided to me in excel sheets. We have further discussed other classification issues such

as how one could classify mutated and modified proteins.I proposed some modeling

solutions. It was decided that the best way to classify them was as a subclass of

their wild-type proteins.

The following information about the protein classes are also identified as prop-

erties to model and axiomize.

• Kinase relationships

protein-gene relationships

protein-disease relationships

protein-tissue relationships

target development level relationships
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has quality pseudokinase relationships

• GPCR relationships

protein-gene relationships

protein-disease relationships

protein-tissue relationships

target development level relationships

has-ligand-type relationships

• IC relationships

protein-gene relationships

protein-disease relationships

protein-tissue relationships

target development level relationships

has channel activity

has gating mechanism

has quaternary organization

has topology

• NR relationships

protein-gene relationships

protein-disease relationships

protein-tissue relationships

target development level relationships

These different properties identified in the first step are later used to create

meta-data, model the knowledge, and axiomize in the ontology building process.
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4.2.2 Sub-language Recycling for DTO

While designing the ontology, we decided to add the UniProt IDs for the proteins

and the ENTREZ IDs [83] for the genes. In addition to this, we wanted to include

the textual definitions for the genes and the proteins. We also cross-referenced the

synonymous names and symbols for the molecules that already exist in different

databases. Because we want the Drug Target Ontology to be as comprehensive as

possible with existing information about the biological and chemical molecules that

the DTO contains. In this way, we aim to help the life-scientists query and retrieve

knowledge derived for the different drug targets that they are working on. To do

that, we wrote various scripts using Java to retrieve information from databases.

These databases include UniProt and NCBI databases for ENTREZ IDs for the

genes.

In addition to the publicly available databases and data, we also used the collab-

orators’ databases (TCRD and Jensen Lab’s databases) in order retrieve information

about proteins, genes and their related target development levels( TDLs), as well as

the tissue and disease information.

The information on the Jensen Lab’s database is retrieved through text mining

and has a scoring system [84].The lab also has information about the protein-disease,

and protein-tissue relationships and scores based on lab experiments. We retrieved

the proteins, with their tissue and disease relationships with the confidence scores

that are given to the relationships. We put this data into our database and use

this information while creating the ontology’s axioms that refer to the probabilistic

values of the relationships.

In addition to the larger scale information downloads from the databases men-

tioned above, a vast amount of manual curation for the proteins and genes is per-

formed in the team by the domain experts. Most significantly improved drug target

classification for kinases, ion channels, nuclear receptors, and GPCRs. For most pro-

tein kinases we followed the phylogenetic tree classification originally proposed by

Sugen and the Salk Institute (available from http://www.kinase.com/). Protein ki-

nases not covered by this resource were manually curated and classified mainly based
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on information in UniProt and also the literature. Non-protein were curated and

classified based on their substrate chemotypes. We also added pseudokinases, which

are characterized by a catalytically inactive kinase domain and which are increas-

ingly recognized and relevant drug targets. For 44 kinases we are still in the process

of completing manual annotations and classification. Nuclear receptors were orga-

nized following the IUPHAR classification. GPCRs were classified based on infor-

mation from several sources primarily using GPCRDB (http://www.gpcr.org/7tm/)

and IUPHAR as we have previously implemented in our GPCR ontology. However,

not all GPCRs were covered and we are aligning GPCR ontology with other re-

sources to complete classification for 33 receptors. We are also incorporating ligand

chemotype-based classification. A basic classification of ion channels is available in

IUPHAR. However, a better classification is required including domain functions,

subunit topology, and heteromer and homomer formation. We curated much of this

information and are currently completing the classification based on this informa-

tion. This manual classification is in progress for 342 ion channels.

Protein domains were annotated using the Pfam Web Service. The domain se-

quences and domain annotations were extracted using custom scripts. Several of

the kinase domains were manually curated based on their descriptions. For nuclear

receptors we identified and annotated the ligand binding domains, which are most

relevant as drug targets. For GPCRs we identified 7tm domains for majority (780

out of 827) of GPCRs. Further work is needed to identify domains of interest for

the remaining GPCRs. Ion channel domains were annotated and trans-membrane

domains were identified; additional ion channel domains, such as regulatory and

ligand binding are also relevant for ion channel drug targets. Further curation is

required to classify and annotate them. In addition to the curated drug target

family function-specific domain annotations, we generated comprehensive Pfam do-

main annotations for all TCRD drug targets and extracted domain sequences. The

domain sequences were compared to the PDB chain sequences by BLAST and e-

values were calculated. For significant hits we computed domain identities using

the EMBOSS software suite. These results are currently processed and filtered to

restrict the results to those domains that were identified as most relevant for each
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target family. The domains are classified manually based on curated annotations to

generate meaningful interpretable assertions in DTO.

4.2.3 Meta-Data Creation and Knowledge Modeling for DTO

Based on the Sub-language Analysis, the In House Unstructured Interview and

Sub-language Recycling, the next step in formalizing the assays is creating a set of

meta-data.

The meta-data creation step is a combination of analyzing the standards already

existing, e.g. PFam annotations, and understanding the patterns of the data in

hand. For the first version of the DTO, we decided the add the following axioms for

the different protein classes:

• Kinase relationships

protein-gene relationships

protein-disease relationships

protein-tissue relationships

target development level relationships

has quality pseudokinase relationships

• GPCR relationships

protein-gene relationships

protein-disease relationships

protein-tissue relationships

target development level relationships

has-ligand-type relationships

• IC relationships

protein-gene relationships

protein-disease relationships
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protein-tissue relationships

target development level relationships

has channel activity

has gating mechanism

has quaternary organization

has topology

• NR relationships

protein-gene relationships

protein-disease relationships

protein-tissue relationships

target development level relationships

Target development levels (TDL) were assigned using has target development

method relationship and based on the following criteria:

1. Tclin are proteins targeted by approved drugs as they exert their mode of

action. The Tclin proteins are designated drug targets under the context of

IDG.

2. Tchem are proteins that can specifically be manipulated with small molecules

better than bioactivity cutoff values (30 nM for kinases, 100 nM for GPCRs and

NRs, 10 uM for ICs, and 1 uM for other target classes), which lack approved

small molecule or biologic drugs. In some cases, targets have been manually

migrated to Tchem through human curation, based on small molecule activities

from sources other than ChEMBL or Drug Central.

3. Tbio are proteins that do not satisfy the Tclin or Tchem criteria, which are

annotated with a Gene Ontology Molecular Function or Biological Process

with an Experimental Evidence code, or targets with confirmed OMIM phe-

notype(s), or do not satisfy the Tdark criteria detailed in 4).
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4. Tdark refers to proteins that have been described at the sequence level and

have very few associated studies. They do not have any known drug or small

molecule activities that satisfy the activity thresholds detailed in 2), lack

OMIM and GO terms that would match Tbio criteria, and meet at least two

of the following conditions:

• A PubMed text-mining score is less than five

• less than or equal to three Gene RIFs

• less than or equal to 50 antibodies available per Antibodypedia [85]

Each protein has a target development level (TDL), i.e., Tclin, Tchem, Tbio and

Tdark. The protein is linked to gene by has gene template relation (see the details

of modeling in Figure 4.14).

The gene is associated with disease based on evidence from the DISEASES

database. The protein is also associated with some organ, tissue, or cell line us-

ing some evidence from TISSUES database. Important disease targets by inference

based on the protein - disease association, which were modeled as strong-, at least

some-, or at least weak- evidence using subsumption. DTO uses the following hierar-

chical relations to declare the relation between a protein and the associated disease

extracted from the DISEASES database. In the DISEASES database, the associ-

ated disease and protein are measured by a Z-Score. In DTO the relationships are

translated as follows:

• has associated disease with at least weak evidence from DISEASES (translated

for Z-Scores between zero and 2.4)

• has associated disease with at least some evidence from DISEASES (translated

for Z-Scores between 2.5 and 3.5)

• has associated disease with strong evidence from DISEASES (translated for

Z-Scores between 3.6 and 5)
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Figure 4.14: This figure shows how metadata is used for an example modeling of a protein. The
relationships described above are added to their respective classes. In the figure it can be observed that
the protein’s hierarchy and its relationships are modeled based on the previous steps of KNARM

4.2.4 Structured Interview for DTO

Based on the meta-data created, I have interviewed the researchers in the group

and outside of the group. This step is to confirm that the interpretation of the text

data is correct and accurate. Additionally, this step can be used in combination

with other methods in order to decide on a concept’s proper name. In this case, we

chose to use existing names in well-known databases such as UniProt.

With this step, the aim is to finalize names and types of concepts used in the

meta-data. Furthermore, it is to make sure that the ontology engineer is on the same

page as the domain experts before starting to write the axioms. Therefore, this step

can be combined with the next step, i.e. Knowledge Acquisition Validation.
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4.2.5 Knowledge Acquisition Validation (KA Validation) for

DTO

In this case after the metadata creation and after the various interviews and

reviews of the data the forms I have designed were filled. Before the axiomization

of the assays, the forms were shared with the research scientists inside and outside

of the SchÃ1
4hrer group, especially with the scientists in the IDG project in order to

make sure that the information contained was valid. Corrections if necessary were

made on the excel sheets provided and sent back to me.

4.2.6 Database Formation for DTO

The previous experience in the LIFE ontology, the dealings with Excel files pro-

vide a very poor way of keeping track of the related data and updates. Furthermore,

the frequency of the need for updates for DTO was higher than the need for updates

for BAO and LIFE ontologies. It quickly became apparent that an efficient and

less error-prone way to update the ontology was crucial. For the DTO, a new small

MySQL database was formed to handle the data. Drug Target Ontology (DTO)

uses various external databases and ontologies to retrieve information. The informa-

tion from these databases is retrieved via web-based applications and in-house-built

scripts. The data that is used to build DTO is then housed in our internal MySQL

database.

The database schema below (Figure 4.15) is provided for the DTO ontologies

staging database created by me. This database then used to automate some of the

ontology creation and was used to extract data for the ontology’s axioms.
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Figure 4.15: This is the Database Schema for the initial database created for building DTO 0.1. It
was designed based on the different protein classes in DTO and the relationships and metadata that we
wanted to capture for the ontology. This database was used to build the ontology in a semi-automated
way. The data saved in this simple (un-optimized) MySQL database was queried and used for building
the ontology using Java and OWL API.

4.2.7 Semi-Automated Ontology Building for DTO

4.2.7.1 Knowledge Modeling of the Drug Target Ontology:

In BAO, the formal descriptions of assays are axiomized. LIFE formally describes

the participants and their relationships to the LINCS assays. DTO, which is created

for the IDG project, focuses on the bio-molecules and their natural properties, such

the specific ions for ion-channeling proteins, as well as their relationships to the

specific diseases and tissues.

The goal of the IDG project is to improve our understanding of the proteins that

belong to the four most commonly drug-targeted four protein families (G-protein

coupled receptors (GPCR), nuclear receptors, ion channels, and protein kinases), and

yet, are not annotated with as many details as the commonly used drug-targets. In

its pilot phase the program aims to create a data resource center, the Knowledge

Management Center (KMC) that will catalog known information about the four
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protein families and obtain additional information about their function(s). Ulti-

mately, the KMC aims to have methods that allow the life-scientists to identify and

prioritize the poorly annotated proteins for further study.

The major difference between the previously defined LINCS and the IDG projects’

data is that IDG focuses on biomolecules and their tissue and disease relationships

while LINCS main focus on the different assays that they create and run. There-

fore, we focused more on modeling the biological and chemical molecules, changes

that they have been through such as modifications, mutations, etc., rather than the

assays they were used in.

As described above, we build modular ontologies for different life-sciences projects

such as BAO and LINCS. However, the IDG project presented a new challenge which

was massive amounts of data on protein and genes that we wanted to express as

classes and axioms in OWL. Not only the amount of data, but also the frequency of

data updates have been overwhelming. Therefore we had to automate the ontology

building process as much as possible and the come up with a new way of modulariza-

tion. We use Java, OWL API and Jena to build the ontology in a semi-automated

way by using our local database in a new modularization architecture given in detail

below.

4.2.7.2 A New Modular Architecture for the Drug Target Ontology:

The modular architecture of the DTO is advanced over the modular architecture

of BAO [4]. Because of the difference in data and the automated steps during

implementation, we added a new layer in which we only generate modules that are

built using the automated process. We then add the manually created modules with

the help of a domain expert.

First, we determine the abstract horizon between TBox and ABox. TBox contains

modules, which define the conceptualization without dependencies. These modules

are self contained and well defined with respect to the domain and they contain

concepts, relations, and individuals. We can have n of these modules.
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Figure 4.16: Building of our concordant ontologies was made possible by using KNARM and the same
modular architecture consistently, and using the systematically deepening- modeling (SDM) approach
with the three ontologies. Using this approach, we modeled bioassay related data in the BioAssay.
For example we modeled and axiomized various bioassay related concepts such as assay format, assay
design method, assay detection method and instruments in BAO. We added axioms that specify the
assay participants for LINCS assays in LIFE ontology, such as kinases for KiNativ and KinomeSCAN
assays. We modeled and axiomized various details about drug targets in the DTO ontology, such as
their related diseases, tissues, and mutation information. With the help of our modularization approach
and modular architecture we were able to align the drug targets in DTO with the various participants
used in LINCS assays and LINCS assays with the general assay related concepts by using BAO. With
this systematically deepening modeling approach, we aim to model and query knowledge without over-
simplifying the knowledge and overwhelming the reasoners that help infer new knowledge.

Second, once the n modules are defined, the modules with axioms that can be

generated automatically are created. Those modules have interdependent axioms.

At this level one could create any number of gluing modules, which import other

modules without dependencies or with dependencies. It also is self-contained. This

means that there is no outside term or relationship in the files.

Third level contains axioms created manually, however the axioms generated are

independent and self-contained. The manual modules are an optional level and they

inherit the axioms created automatically. A good example of axioms that may be

seen in this level are axioms for protein modifications and mutations, which have

been challenging modeling questions. At this level, the self-contained DTO_core is

also generated with the existing modules.
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Figure 4.17: DTO Modularization. The modular architecture of the DTO is advanced over the
modular architecture of BAO [4]. Because of the difference in data and the automated steps during
implementation, we added a new layer in which we only generate modules that are built using the
automated process. We then add the manually created modules with the help of a domain expert.

Forth, at this level we can design modules that import modules from our domain

of discourse, and also from third party ontologies. Third party ontologies could be

large, therefore a suitable module extraction method ( e.g., OWL API) can be used

to extract only part of those ontologies ( vide supra). We would model this in the

DTO_complete level. We can have one DTO_complete file or multiple files, each

may be modeled for a different purpose, e.g. tailored for various research groups.

Once these ontologies are imported, the alignment takes place. The alignments

are defined for concepts and relations using equivalence or subsumption DL con-

structs. The alignment depends on the domain experts and/or cross- references

made in the ontologies. For DTO, the most significant alignment made is between

UBERON and BRENDA ontologies for the tissue information.

Fifth, release the TBox based on the modules created from the third phase.

Depending on the end-users, the modules are combined without loss of generality.
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With this methodology we make sure that we only send out physical files that contain

our (and the absolute necessary) knowledge.

Sixth, at this level, the necessary modules ABoxes (again 1 . . . n ABoxes) are

created. ABoxes can be loaded to a triple store or to a distributed file system

(Hadoop DFS [70]) in a way that one could achieve pseudo-parallel reasoning.

At the seventh level, using modules, we define views on the knowledge base.

These are files that contain imports (both direct and indirect) from various TBoxes

and ABoxes modules for the end-user. It can be seen as a view, using database

terminology.
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Figure 4.18: This figure shows a conceptual example modeled by using the concepts from BAO,
LIFE and DTO as well as their connections to the external ontologies such as the Disease Ontology
(DOID) and UBERON tissue ontology. As mentioned above with our Sub-language Recycling step,
we try to reuse as many concepts as we could from existing ontologies. In this way we aim to utilize
existing efforts, align our vocabulary with already established resources, and avoid duplication of efforts
to reduce ambiguity for users.

4.2.8 Ontology Validation for DTO

After I created DTO 0.1, the ontology was shared with the larger IDG community

for feedback. We also had an in-house feedback loop headed by Stephan Schürer
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and Yu Lin. Based on the updates, the concept drug target is defined and Pfam

domains are added to the ontology. Version 1.0 of DTO is publicly available on its

web page [68] and on Bioportal. A paper introducing the first public version is also

submitted [68] (with Hande Kücük-McGinty and Saurabh Mehta as first co-authors).



CHAPTER 5

Results

In this chapter, some questions that could be answered by using the three on-

tologies and their modular implementation are showcased. This section can also be

viewed as part of the Ontology Validation step of the KNARM.

Figures and results for select SPARQL examples are presented and explained

in detail to show how/which inferences lead to the results. Since BAO, LIFE, and

DTO use a modular approach for modeling drug-discovery related data, we are

able to create different views that would help concentrate on their parts of interest,

i.e. concepts and relationships directly related with use cases. Using ontologies’

modular architecture, we extracted the LINCS assays from BAO by using Jena, and

OWL API, used the cell line module from LIFE. While extracting the LINCS assays

from BAO, the concepts used in the axioms for these assays were also extracted

based on the RDF graph. The Drug Target Ontology (DTO) was combined with

the parts from BAO and LIFE,in order to query the following use cases. The use

cases described below were performed using various tools together. The system

architecture used for performing these queries is described in Figure 5.1.

80
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Figure 5.1: Various Tools are used to perform the queries described below. This diagram shows how
the different tools and data were combined in order to retrieve results. The data used for the queries are
extracted from the LINCS Data Portal, designed and implemented by Schürer Lab. The data extracted
is aligned with the staging databases designed for BAO and DTO. Using the ontologies, the database
alignments, the reasoners available, and the triple store on UM CS servers the query results are retrieved
as tables.

5.1 Use Case Examples

5.1.1 Example Query 1

Find LINCS assays that measure protein binding.
1 PREFIX bao: <http :// www. bioassayontology .org/bao#>

PREFIX obo: <http :// purl. obolibrary .org/obo/>

3 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>

5 PREFIX owl: <http :// www.w3.org /2002/07/ owl#>

PREFIX dto: <http :// www. drugtargetontology .org/dto/>

7 SELECT DISTINCT ? subject_label WHERE {

# LINCS assays involving binding

9 ? subject rdfs: subClassOf ?s1 .

?obj rdfs: subClassOf <http :// purl. obolibrary .org/obo/ GO_0005488 > .

11 ?s1 owl: onProperty bao: BAO_0003107 ; owl: someValuesFrom ?obj .

? subject rdfs: label ? subject_label .

13
}

15 LIMIT 100

Listing 5.1: SPARQL query
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This is a simple query that works with one external ontology (Gene Ontology

(GO) ) and classes from BioAssay Ontology. The inference and query result is based

on T-Box reasoning based on the axioms.

First, we determine an abstract horizon between the A-box and the T-Box

T-Box

A-Box

Legend

More subclasses+

Primitive/defined class

Subclass/type relation

Class/individual datatype property

Inferred relation/type

BAO relation

DTO relation

DTO class

BAO class

DOID class

LINDO class

Inferred individual

BAO individual

DTO individual

LINDO individual

DOID individual

What are the LINCS assays measuring protein binding? 

GO class

Figure 5.2: Abstract horizon between A-Box and T-Box is denoted by dotted line. T-Box contains
axioms while A-box contains individuals
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Second, we determine the classes that we need for this particular question.

T-Box

A-Box

Legend

More subclasses+

Primitive/defined class

Subclass/type relation

Class/individual datatype property
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BAO relation
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DTO class
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BAO individual
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DOID individual

What are the LINCS assays measuring protein binding? 

GO class

BAO: bioassay
+

BAO: 
KinomeScan

+ BAO: 
KiNativ

+

subClassOf subClassOf

GO: biological 
process

+

GO: protein
 binding 

subClassOf

Figure 5.3: Figure shows the classes from BAO and GO that are related with this query.



84

The reasoner uses the axioms and individuals asserted for these classes (as seen in

the figure) to determine the result set. The axioms in this case are already asserted

in the ontology. Individuals are added for demonstration purposes.

T-Box
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More subclasses+
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Class/individual datatype property

Inferred relation/type
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+
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biological 
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Query 1

Type
Type

Figure 5.4: Classes from BAO and GO with their relationships (object properties) and their individuals.
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5.1.2 Example Query 2

Find proteins participated in LINCS binding assays and has target development

Tdark.

This is s slightly more complicated query generated based on the query defined in

Query 1 above. This query depends on the axioms used above, i.e. which assays from

the LINCS project (found in BAO and LIFE module extracted) and the participants

of these assays (extracted from the LINCS Data Portal) are added as individuals to

the A-Box.

The individuals added as participants of these assays are linked to DTO vocab-

ulary based on their UniPort IDs. In this way, these individuals related with LIFE

also become connected with DTO.

The resulting participants are found based on A-Box reasoning, while their target

developmental level (TDL) (in this case Tdark) is found in the T-Box axioms. The

T-Box axioms related with TDL are found in DTO. The axioms are asserted between

protein classes and the TDL vocabulary classes.
1 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>

3 PREFIX owl: <http :// www.w3.org /2002/07/ owl#>

PREFIX dto: <http :// www. drugtargetontology .org/dto/>

5 # proteins participated in LINCS binding assays and has target development Tdark

SELECT DISTINCT ? subject_label WHERE {

7
# LINCS assays involving binding

9 ? subject rdfs: subClassOf ?s3 .

?obj rdfs: subClassOf <http :// purl. obolibrary .org/obo/ GO_0005488 > .

11 ?s3 owl: onProperty bao: BAO_0003107 ; owl: someValuesFrom ?obj .

? subject rdfs: subClassOf ?s1 .

13 #has target development Tdark

?s1 owl: onProperty <http :// www. drugtargetontology .org/dto/ DTO_91000020 >; owl: someValuesFrom dto: DTO_00400004

.

15

17 }

LIMIT 10000

Listing 5.2: SPARQL query
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5.1.3 Example Query 3

Find the kinases used in the LINCS assays that are measuring protein binding

and have evidence that associates them with cancer.
PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>

2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>

PREFIX owl: <http :// www.w3.org /2002/07/ owl#>

4 PREFIX dto: <http :// www. drugtargetontology .org/dto/>

PREFIX bao: <http :// www. bioassayontology .org/bao#>

6
#What are the kinases used in the LINCS assays measuring protein binding

8 #and have evidence that associates them with cancer

#and has target development Tchem ?

10 SELECT DISTINCT ? subject_label WHERE {

? subject rdfs: subClassOf ?s4 .

12 ?s4 owl: onProperty bao: BAO_0090013 ; owl: someValuesFrom bao: BAO_0002908 .

#have evidence that associates them with cancer

14 ? subject rdfs: subClassOf ?s3 .

?obj rdfs: subClassOf * <http :// purl. obolibrary .org/obo/DOID_162 > .

16 ?s3 owl: onProperty dto: DTO_90100014 ; owl: someValuesFrom ?obj .

? subject rdfs: subClassOf ?s1 .

18 #has target development Tchem

?s1 owl: onProperty <http :// www. drugtargetontology .org/dto/ DTO_91000020 >; owl: someValuesFrom dto: DTO_00400002

.

20 ? subject rdfs: label ? subject_label

}

Listing 5.3: SPARQL query

This query works in two parts. In the first part we use the molecular function

that is measured (i.e. protein binding) to infer the bioassays of interest. We then

identify the kinases used in these assays. Finally, we get the intersection of this

subgraph (i.e. subset of kinases) with the kinases that have strong evidence for

associations with cancer.

This query aims to retrieve assay specific proteins based on the assays of interest.

Assays with their molecular functions of interest are axiomized in BAO. Kinases

have assay related axioms in LIFE which we retrieve as the second step in the query.

We then explore more about the proteins by using the axioms related with their

associated disease information encoded in the DTO.

First, we determine an abstract horizon between the A-box and the T-Box
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Figure 5.5: Abstract horizon between A-Box and T-Box

Second, we determine the classes that we need for this particular question.
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Figure 5.6: Classes from BAO, DTO, DOID and GO
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5.1.4 Example Query 4

Find proteins associated with lung with weak evidence and has target development

Tchem.

This query builds on Query 2 above. It is slightly more complicated because it

adds an external ontology component, similar to Query 3. This query is generated

based on the Query 2 and aims to showcase how ontologies work together as we keep

adding components of interest as different ontology modules.

This query depends on the axioms related with assays from the LINCS project

(found in BAO and LIFE module extracted) and the participants of these assays

(extracted from the LINCS Data Portal) are added as individuals to the A-Box.

The individuals added as participants of these assays are linked to DTO vocab-

ulary based on their UniPort IDs. In this way, these individuals related with LIFE

also become connected with DTO.

The resulting participants are found based on A-Box reasoning, while their target

developmental level (TDL) (in this case Tchem) is found in the T-Box axioms. The

T-Box axioms related with TDL are found in DTO. The axioms are asserted be-

tween protein classes and the TDL vocabulary classes. This query also takes tissue

association axioms into account during inferences with T-Box reasoning, which are

axioms between protein classes of DTO and BRENDA tissues extracted for DTO.
1 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>

3 PREFIX owl: <http :// www.w3.org /2002/07/ owl#>

PREFIX dto: <http :// www. drugtargetontology .org/dto/>

5 # proteins associated with lung with weak evidence and has target development Tchem

SELECT DISTINCT ? subject_label WHERE {

7

9 # proteins associated with lung with weak evidence

? subject rdfs: subClassOf ?s3 .

11 ?s3 owl: onProperty dto: DTO_90100006 ; owl: someValuesFrom <http :// purl. obolibrary .org/obo/ BTO_0000763 > .

? subject rdfs: subClassOf ?s1 .

13 #has target development Tchem

?s1 owl: onProperty <http :// www. drugtargetontology .org/dto/ DTO_91000020 >; owl: someValuesFrom dto: DTO_00400002

.

15 ? subject rdfs: subClassOf ?s2 .

#has strong evidence for disease glycogen storage disease

17 ?s2 owl: onProperty <http :// www. drugtargetontology .org/dto/ DTO_90100015 >; owl: someValuesFrom <http :// purl.

obolibrary .org/obo/DOID_2747 > .

? subject rdfs: label ? subject_label .

19

21
}
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23 LIMIT 10000

Listing 5.4: SPARQL query
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5.1.5 Example Query 5

Given participants of LINCS assays KinomeScan, L1000, and Cell Viability, find

new possible drug targets for diseases of interest.

As mentioned above, the example queries in this section could be viewed as part

of the Ontology Validation step. In accordance with this, we realized that in order

to explore from different angles, we need to connect small molecules , cell lines, and

kinases and the assays that they participate in are added at the A-Box level. We

further added diseases and tissues at the A-Box level and added the relationships

they have with kinases and cell lines. In this way we went back to the Meta-Data

Creation and Knowledge Modeling step and added relationships for better acquisition

of knowledge and inferences based on data asserted.

With the help of A-Box and newly added relationship assertions on the A-Box

level, we obtained inferences based on tissues and diseases of interest.
1 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>

3 PREFIX owl: <http :// www.w3.org /2002/07/ owl#>

PREFIX dto: <http :// www. drugtargetontology .org/dto/>

5
SELECT DISTINCT ? subject_label WHERE {

7

9 ? subject rdfs: subClassOf ?s3 .

?s3 owl: onProperty dto: DTO_90100006 ; owl: someValuesFrom <http :// purl. obolibrary .org/obo/ BTO_0000763 > .

11 ? subject rdfs: subClassOf ?s1 .

?s1 owl: onProperty <http :// www. drugtargetontology .org/dto/ DTO_91000020 >; owl: someValuesFrom dto: DTO_00400002

.

13 ? subject rdfs: subClassOf ?s2 .

?s2 owl: onProperty <http :// www. drugtargetontology .org/dto/ DTO_90100015 >; owl: someValuesFrom <http :// purl.

obolibrary .org/obo/DOID_2747 > .

15 ? subject rdfs: label ? subject_label .

? subject rdfs: subClassOf ?s1 .

17 ?s4 owl: onProperty <http :// purl. obolibrary .org/obo/ RO_0000087 >; owl: someValuesFrom dto: DTO_00000002 .

? subject2 rdfs: label ? subject_label2 .

19 ? subject2 owl: equivalentClass ?s5 .

?s5 owl: intersectionOf ?list .

21 ?list rdf:rest */rdf: first ?l .

?l owl: onProperty dto: DTO_90000020 ; owl: allValuesFrom ?k .

23 ?k rdfs: subClassOf * dto: DTO_61000000 .

?k rdfs: subClassOf ?s3 .

25 ?s3 owl: onProperty dto: DTO_90100056 ; owl: someValuesFrom <http :// purl. obolibrary .org/obo/ BTO_0000763 > .

27 }

Listing 5.5: SPARQL query
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T-Box

A-Box

Legend

More subclasses+

Primitive/defined class

Subclass/type relation

Class/individual datatype property

Inferred relation/type

BAO relation

DTO relation

DTO class

BAO class

DOID class

LINDO class

Inferred individual

BAO individual

DTO individual

LINDO individual

DOID individual

Given participants of LINCS assays, could we identify new possible drug targets for diseases of interest?

GO class

Figure 5.9: First we designate an abstract horizon between A-Box and T-Box. In this way we aim to
better show which pieces of data was added on which level so that we can trace the inferences better
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DTO class
BAO class
DOID class
LIFE class
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Given participants of LINCS assays, could we identify new possible drug targets for diseases of 
interest?

BRENDA class

BAO: bioassay
+

BAO: 
KinomeScan

+ BAO: 
L1000

+

subClassOf subClassOf

bao: 
expressed 
in tissue

bao: 
iexpressed 

in tissue

BAO: small 
molecule

protein
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protein
+

BRENDA:  skin
+

BRENDA:   
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breast cancer
+

disease
+

subClassOf
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cell line
+
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associated 

disease

bao: has 
associated 

disease

bao: has 
participant

Bao:has 
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BRENDA individual

Figure 5.10: In this figure we are showing which TBox components already existed when we started
thinking about this query. This is before we went back to the Meta-Data Creation and Knowledge
Modeling step and added relationships for better acquisition of knowledge and inferences based on data
asserted.
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Figure 5.11: Reasoned sub-abstract classes which is provided based on the newly added assertions
into the ABox and inferences in TBox and ABox levels
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We used FaCT ++ 1.6.5 reasoner to reason the ontologies and queries that we

created. We used Virtuoso as our local triple store and Apache Jena Fuseki as our

SPARQL server to provide REST-style SPARQL HTTP Update.

FaCT++ reasoner was chosen because FaCT++ was able to handle all the on-

tologies used and the high expressivity levels of the ontologies. It was also chosen,

because it is one of the reasoners provided by Protege. We wanted the users to be

able to reuse and recreate the reasonings and queries. Furthermore, FaCT++ is an

open source reasoner.

Virtuoso was used as the local triple store because of Virtuoso’s ease of use

with RDF data (loading and querying) and its scalability. We have explored other

triple stores such as Apache Jena Fuseki for our server in the CS department of

University of Miami. I also tried using Neo4j as an alternative because of the vi-

sualization options provided by Neo4j. However, Neo4j doesn’t provide a variety of

options available in Virtuoso. For example uploading RDF data is not a straightfor-

ward process. Moreover, the RDF data gets distorted and/or lost while uploading

data. In addition to that, SPARQL queries are not supported on Neo4j. Neo4j has

strong querying options, however, we wanted to have queries that are accessible and

reusable for all ontology users. Virtuoso seems like the platform that can handle

most of the demands of queries. However, there are still problems with some of the

complex queries. Therefore I had to create various datasets for the triple stores so

that queries can be performed without overwhelming the system. More research and

exploration needs to be done in this area.

Our results showed us that with the three ontologies, BAO, LIFE, and DTO, we

are able to connect different components about drug-discovery related data. Despite

some problems with some complex queries, we are able to see that the three ontolo-

gies can provide various views of the knowledge based on the users’ needs. We were

also able to query information and retrieve related data based on different pieces of

information such as assays, proteins, diseases, cell lines, etc. because of the modular

architecture. This was possible because the uniform modular architecture allows us

to combine different modules and create different views in order to reach the compo-
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nents of interest faster. We may also choose to connect different ontologies in order

to connect different pieces of data and create more meaningful pictures in the end.

BAO and DTO ontologies continue to grow both in the number of concepts

(currently BAO has 7,125 concepts, DTO has 10077), and in the axioms (BAO has

98,010 and DTO has 137,648 axioms). Further axioms are waiting to be modeled

and added to these ontologies, such as phosphorylation. As we add more axioms

that formally define concepts, we aim to continue to help life-scientists understand,

and analyze their data of interest better.



CHAPTER 6

Conclusion

6.1 Discussion and Conclusions

Life-sciences data keeps growing and fitting into the description of big data be-

cause it has become high in volume, too complex, and too dynamic for conventional

data tools to store, manage, and analyze. As the growth continues, the need for

building intelligent systems that will store, organize, and help scientists analyze

the data is growing as well. Furthermore, challenges outlined for big data are also

becoming challenges related to life-sciences data. These challenges include dealing

with increasing volume, securing the data, and creating the infrastructure that al-

lows analysis, in addition to extracting knowledge from available data [10–12, 17].

Ideally in intelligent systems that will store, organize, and help scientists analyze

life-sciences data can provide an unambiguous understanding of what the data means

by extracting the knowledge and providing semantic models related with the data;

help build tools that could better aid life-scientists’ need connect scattered pieces

of information and acquire new knowledge,inference of knowledge that they didn’t

possess while building their tools and models –and achieve better acquisition and

representation of knowledge while avoiding over simplification.

In this study we describe the KNowledge Acquisition and Representation Method-

ology (KNARM), as a guided approach involving domain experts and knowledge

engineers, to build useful, comprehensive, and consistent ontologies that will enable

big data approaches while avoiding oversimplification. This methodology is designed

to help with the challenge of acquiring and representing knowledge in a systematic,

99
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semi-automated way. This methodological approach utilizing description logic and

semantic models addresses the knowledge acquisition bottleneck. KNARM is cre-

ated and used for this research project by combining available methods for Database

Management Systems (DBMS), Object Oriented Programming (OOP), and Knowl-

edge Acquisition Methods. KNARM is designed, implemented, and used based on

our needs and challenges related to our ongoing projects, however it can be applied

and/or reused for different types of data or projects. KNARM is a hybrid method-

ology that combines human and machine capabilities for extracting knowledge and

representing it in an ontology in a dynamic, semi-automated way. It is designed to

handle both new and existing knowledge/data and allows building ontologies with

high expressivity. The knowledge representation uses axioms in a systematically

deepening modeling (SDM) approach for defining concepts in formal logic, detailed

in sections five and six.

In this dissertation we outlined the existing efforts in generating widely accepted

methodologies and best-practices principles in semantic web application and life-

sciences data management domains. Although there exists some focused studies

(such as OBO community tools and methodologies), we have seen that there is still

room for best-practices approaches and methodologies, as this need was mentioned

repeatedly in studies [2, 27, 33, 36, 37]. This review of the literature is followed by

the details of KNARM’s steps and how they were applied on three different projects

and their respective ontologies: BioAssay Ontology (BAO), and two nationwide

projects, the Library of Integrated N etwork-Based Cellular Signatures (LINCS)

project [71] (and its LIFE ontology) and the Illuminating Druggable Genome [64]

project and its (Drug Target Ontology (DTO)), which are currently creating data

via wet-lab experiments and computers.

We then described the details of this methodology and its applications (i.e. the

ontologies built:BAO, LIFE, and DTO). This study and applications can be viewed

as a proof of concept study dealing one of the aspects related to big data: better

extraction of knowledge by utilizing standardized vocabulary and description logic

in order to aid analysis.



101

Building of our concordant ontologies was made possible by using KNARM and

the same modular architecture consistently, and using the systematically deepening-

modeling (SDM) approach with the three ontologies. Using this approach, we mod-

eled bioassay related data in the BioAssay. For example we modeled and axiomized

various bioassay related concepts such as assay format, assay design method, assay

detection method and instruments in BAO. We added axioms that specify the assay

participants for LINCS assays in LIFE ontology, such as kinases for KiNativ and Ki-

nomeSCAN assays. We modeled and axiomized various details about drug targets in

the DTO ontology, such as their related diseases, tissues, and mutation information.

With the help of our modularization approach and modular architecture we were

able to align the drug targets in DTO with the various participants used in LINCS

assays and LINCS assays with the general assay related concepts by using BAO.

With this systematically deepening modeling approach, we aim to model and query

knowledge without over- simplifying the knowledge and overwhelming the reasoners

that help infer new knowledge. We exemplified some of these connections in the

previous section for results. Further connections can be made using this data. One

such connection would be combining the cell line and disease association information

from the LINCS project with the disease, tissue, and protein information from the

IDG project. In this way, we can provide more information about the cell lines from

the IDG project by using the information that we acquired from the LINCS project,

in an attempt to help life-scientists discover new information about their data.

Our modular architecture and SDM approach also allowed us to combine data

from several related ontologies (e.g. Gene Ontology [25], Disease Ontology [19],

Relationship Ontology [35]) and databases (e.g. UniProt [80], DISEASES Database

[86], and TISSUES Database [87] ). Our aim was to build manageable chunks of

information that are related or complementary based on the experiments performed

by the data centers. By organizing the data into the modules we are able to make

changes to the knowledge base easier, reuse and share the pieces of the ontologies

better. Furthermore, we can use various upper ontologies, such as Basic Formal

Ontology (BFO) [88] Suggested Upper Ontology (SUMO) [89], in order to merge

existing efforts with our ontologies. An attempt to map BAO under BFO showed us
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that there are pros and cons to using upper ontologies. The biggest motivation for

using an upper ontology like BFO was to enable easier mapping of concepts from

BAO to its related ontologies, for example OBI [35], better and faster, preferably

in an automated way. However, there were challenges presented in our attempt to

map concepts under the BFO upper ontology. The main challenge was not being

able to conserve the core concepts related to BAO. This challenge was one of the

reasons that led us to the build a modularization approach for BAO. This modular

approach is improved for other ontologies such as LIFE and DTO. Another main

challenge was the difference in the modeling approach.

In BAO we use SDM approach and model with core concepts. However, many of

the taxonomy-like ontologies use sentence-like concept names while modeling their

data. This difference in the approach was combined with the general approach of

ontology building: i.e. more philosophical vs. more practical ontologies. In the

philosophical approach used in BFO, concepts are grouped based on whether they

are continuant or occurrent. This is different from our approach to model and classify

concepts and knowledge based on their relation to one another and to their domain

of interest.By using the shared modular approach, we were able to share and reuse

data as well as mapping related data, for example our efforts to map UBERON

data to BRENDA data helped us connect the tissue and organ information in the

LINCS cell lines to the tissue information related with drug targets in the IDG

project. The three projects, BAO, LINCS, and IDG present related data sets on

different levels of detail. In their respective ontologies: BAO models the assays,

LIFE provide more information about the bio-molecules and their related LINCS

assays, and DTO provides details about the biomolecules and their related tissues

and diseases by providing probabilistic information on the relationship level. With

this semantic modeling approach, we were able to query complex information that

we were not able to query before (see Use Cases section).

We demonstrated in the Results section how they work together in harmony with

different queries varying in complexity from simple to complex. In simple queries

we demonstrate how standardized and well-described knowledge be obtained over

multiple ontologies. For example in a simple query, such as extracting LINCS assays
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measuring certain biological processes or molecular functions, we demonstrated how

TBox reasoning could be enough to create smaller new hierarchies of terms. In more

complex queries such as finding proteins that were described as Tdark (identified

using DTO axioms) also participated in LINCS assays (extracted via using axioms in

BAO and LIFE), we aimed to show how possible new drug targets could be identified

further in wet-lab environments via using the inferences and axioms presented in the

ontologies. In most complex queries, multiple internal and external ontologies are

utilized on both TBox and ABox levels. Such queries, for example identifying new

possible drug targets using the disease associations found for different proteins and

the protein associations found for different diseases, we wanted to demonstrate that

given better connected data, we can jump between the pieces of data in order to

retrieve new knowledge via inferences based on data provided in the ontologies.

In addition to the queries in the Results section, we performed a small scale

experiment about the scalibility issues. During reasoning and querying we have

observed that when we increase the size of the TBox and ABox, the time required for

reasoning increased. We have quantified this observation in the tables given below.

This experiment was aimed at understanding the possible bottlenecks in reasoning

and querying of the ontologies. We used seven ontologies varying DL expressivity,

size, and OWL version (please see Table 6.1 for different OWL versions, Table 6.2

for details of the ontologies and their ontology metrics). We used six reasoners,

namely ELK 0.4.3 [90], FaCT++1.6.5 [91, 92], HermiT 1.3.8.413 [93], Pellet [94],

Konclude [95], and KAON2 [96], to measure reasoning times over the seven ontologies

as seen in Table 6.3. The capabilities of reasoners used in this experiment are briefly

summarized below:

• ELK 0.4.3 : ELK is described as a high performance reasoner for OWL

EL ontologies. The EL classification procedures, however, have several other

strong indicators pointing to a good practical performance. Unlike conven-

tional tableau-based procedures, which test unknown subsumptions by trying

to construct counter-models, the EL procedures derive new subsumptions ex-

plicitly using inference rules. Although modern tableau-based reasoners, such

as HermiT, FaCT++, Pellet, and RacerPro, incorporate many optimizations
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that can reduce the number of subsumption tests and reuse the results of

computations between the tests [34, 74, 104], they still cannot achieve the

performance of specialized EL reasoners on EL ontologies

• FaCT++1.6.5 : FaCT++ implements a tableaux decision procedure for the

well known SHOIQ description logic, with additional support for datatypes,

including strings and integers. The system employs a wide range of perfor-

mance enhancing optimisations, including both standard techniques (such as

absorption and model merging) and newly developed ones (such as ordering

heuristics and taxonomic classification). FaCT++ can, via the standard DIG

interface, be used to provide reasoning services for ontology engineering tools

supporting the OWL DL ontology language.

• HermiT 1.3.8.413 : HermiT is the first publicly-available OWL reasoner

based on a novel hypertableau calculus which provides much more efficient

reasoning than any previously-known algorithm. Ontologies which previously

required minutes or hours to classify can often by classified in seconds by

HermiT, and HermiT is the first reasoner able to classify a number of ontologies

which had previously proven too complex for any available system to handle.

HermiT uses direct semantics and claims that it passes all OWL 2 conformance

tests for direct semantics reasoners.

• Pellet : Pellet is the first sound and complete OWL-DL reasoner with ex-

tensive support for reasoning with individuals (including nominal support and

conjunctive query), user-defined datatypes, and debugging support for ontolo-

gies. It implements several extensions to OWL-DL including a combination

formalism for OWL-DL ontologies, a non-monotonic operator, and preliminary

support for OWL/Rule hybrid reasoning. Pellet is written in Java and is open

source.

• Konclude : Konclude is a high-performance reasoner for the Description

Logic SROIQV . The supported ontology language is a superset of the logic

underlying OWL 2 extended by nominal schemas, which allows for expressing
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arbitrary DL-safe rules. Konclude’s reasoning core is primarily based on the

well-known tableau calculus for expressive Description Logics. In addition,

Konclude also incorporates adaptations of more specialised procedures, such

as consequence-based reasoning, in order to support the tableau algorithm.

Konclude is designed for performance and uses well-known optimisations such

as absorption or caching.

• KAON2 : KAON2 does not implement the tableaux calculus. Reasoning

in KAON2 is implemented by novel algorithms which reduce a SHIQ(D)

knowledge base to a disjunctive datalog program. Unfortunately KAON2 is

not compatible with OWL2, which is the OWL version used for the three

ontologies in this study.

All reasoners except for Konclude and KAON2 were chosen based on their avail-

ability in Protege. In addition to their availability in Protege, reasoners were se-

lected because of the difference in their capabilities and the algorithms they use in

the background. Among all FaCT++ is the most up-to-date reasoner. Addition-

ally, all the rest of the reasoners stated a comparison to FaCT++ reasoner, which

lead us think that it’s one of the state-of-the-art reasoners. One observation is that

most of the reasoners available are not well maintained, last update was more than

two years ago, websites and packages are not updated recently, packages can only

work with previous versions of Java, web site contains broken links to interfaces and

publications.

Reasoning times of the different ontologies showed a direct correlation between

reasoning time and complexity. Additionally as the axiom count increases, the rea-

soning time increases. This was especially obvious in the ontologies we created for

use cases. When we added axioms to classes related with assay participants to the

ontologies (i.e. increased the size of TBox), the reasoning time was slower than when

we added the same annotations as individuals and their respective annotations (i.e.

increased the size of ABox). This brought up the idea of adding some of the classes,

especially in DTO - for example classes created for specific proteins, as individuals.

This might be especially efficient for an ontology used primarily for querying. Also
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with this experiment, we have observed that some reasonings we expected to see

(especially related with relationships that has inverses) are not computed based.

We need to perform further experiments to identify the root of the problem, how-

ever, possible reasons for this lack of computations may be related to the size of the

TBox and/or the way the semantic models were implemented (most classes included

descriptive axioms to the primitive classes as opposed to defined classes). It’s note-

worthy to mention that reasoners that utilize OWL EL instead of OWL DL (such as

ELK and Konclude) perform better in reasoning time. However, certain reasoning

computations are affected by this, such as transitive relationships that we created

to describe and reason over phosphorylation cascades.

Our overall aim has been to acquire the knowledge and represent it systematically

in a fashion that is uniform and understandable by the many different data centers

as well as the computers. In addition, we have implemented frameworks that will

allow the life scientists to query, understand, and aid further analysis of their data.

We understand that the most efficient way for analysis of data in this study (and

big data in general) may not be using ontologies on their own. However, we believe

that creating ontologies that artificial intelligence services and algorithms could use

for inferences may lead to important findings. This aim is beyond the scope of

this study. For the data frameworks, we collated data from the LINCS and IDG

projects that complement and complete each other. Furthermore, we have reused

extracted-data from the existing sources such as UniProt [80], Gene Ontology [25],

and Disease Ontology [19]. Both LINCS and IDG projects use similar biological and

chemical entities in their experiments. This allows us to combine, cross-validate, and

understand data about the various entities used, such as proteins, genes, and small

molecules, as well as their assays. More importantly, we aim to help life-scientists

discover new data about their experiments and the experimental entities by using

computer inference.

The amount of time between the public releases of the first version of BAO [82],

and its second version [4] was three years. With the knowledge acquisition method-

ology, KNowledge Acquisition and Representation Methodology (KNARM) and

the semi-automated workflow we created, we are now able to revise and rebuild
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the ontologies, and their reusable modules within months. With this drastic im-

provement on ontology building process, we are now able to collaborate, revise, and

improve more efficiently. On the Github location, it can be seen that various releases

are only months apart [97]. Furthermore, we are leading the newly emerging assay

informatics era to help scientists understand the available experimental data better

and provide guidance for their challenge to link the experimental data and drugs to

molecules, and molecules to phenotypes, diseases, and tissues. BAO provided the

base line for the emerging assay informatics field. BAO was used in the BioAssay

Research Database (BARD) software system and it was used in several projects and

organizations after we initially demonstrated its use in the semantic software appli-

cation BAOSearch (http://baosearch.ccs.miami.edu/). We have also used BAO to

describe omics profiling assays in the LINCS program via the LINCS Information

Framework (LIFE) (http://life.ccs.miami.edu/). DTO provides a formal classifica-

tion of four protein families based on function and phylogenetic information. DTO

describes their clinical classifications and relations to diseases and tissue expression.

DTO is already used in the IDG main Portal Pharos (https://pharos.nih.gov/) and

the TinX software application (http://newdrugtargets.org/) to prioritize drugs by

novelty and importance. DTO is publicly available at http://drugtargetontology.org/,

where it can be visualized and searched.

While technological innovations continue to drive the increase of data generation

in the biomedical domains across all dimensions of big data, novel bioinformatics

and computational methodologies will facilitate better integration and modeling of

complex data and knowledge. Although the methodology described in this study

is still a work in progress, it provided a systematic process for building concordant

ontologies such as BioAssay Ontology (BAO) and Drug Target Ontology (DTO).

The proposed method helps to find a starting point and facilitates the practical

implementation of an ontology. The interview steps in our methodology, which

involve domain experts’ manual contributions are crucial to acquire the knowledge

and formalize it accurately and consistently.

A critical current effort is to further formalize and automate this approach. Be-

yond the methodology for knowledge acquisition and semi-automated ontology build-
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ing, we are also developing new tools to improve the interaction between ontology

developers and users. This effort is because of rapidly advancing knowledge and the

need for a more dynamic environment in which user requests can be incorporated in

real time via direct information exchange with ontology developers.

6.2 Future Work

There is a growing interest in ’big data’ research. Many research universities,

such as University of Michigan [6], Stanford University [7], University of Virginia [8],

among others are creating multidisciplinary centers for Data Science. There are

many possible directions for the KNARM methodology and the ontologies built

using this methodology.

This study and applications can be viewed as a proof of concept study dealing

one of the aspects related to big data: better extraction of knowledge by utilizing

standardized vocabulary and description logic in order to aid analysis. Here we de-

scribed possible use cases in order to showcase how multiple modules and different

pieces of data and knowledge could be used together to extract knowledge out of

the bigger collection of data available. We believe that it’s essential to describe

methodologies that will develop pieces of standardized vocabulary and knowledge

models that could be pluged-in to work together harmoniously.The first step be-

fore reapplying it on a new ontology would be integrating solutions for scaling the

data so that more complex queries could be performed. Furthermore, based on the

knowledge represented infer new and interesting knowledge.

Our aim in this study has been to acquire the knowledge and represent it system-

atically in a fashion that is uniform and understandable by the many different data

centers as well as the computers. In addition, we have implemented frameworks that

will allow the life scientists to query, understand, and aid further analysis of their

data. We understand that the most efficient way for analysis of data in this study

(and big data in general) may not be using ontologies on their own. However, we

believe that creating ontologies that artificial intelligence services and algorithms
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could use for inferences may lead to important findings. This aim is beyond the

scope of this study.

Recently developed BioAssay Express (BAE) technology streamlines the conver-

sion of human-readable assay descriptions to computer-readable information. BAE

uses semantic standards to mark up bioprotocols, which unleashes the full power of

informatics technology on data that could previously only be organized by crude text

searching [98]. One of several annotation-support strategies within BAE is the use of

machine learning models to provide statistically backed "suggestions" to the curator.

We will describe our efforts to complement these models by applying axioms that

are embedded within the underlying ontologies, which include the BioAssay On-

tology (BAO), Gene Ontology (GO), Drug Target Ontology (DTO) and Cell Line

Ontology (CLO). These axioms are a largely untapped resource that can be used to

draw connections between biological concepts, thereby improving both curation and

quality control. We have already created a resource of 3500 carefully curated assays

from the PubChem collection, which we are using as a training set. We will explore

how this resource will be used, in conjunction with models and axiom support, to

encourage further semantic annotation of publicly available bioassay protocol data.

These efforts are timely and important, as such datasets (released by both public

and private organizations) are only increasing, with the volume already exceeding

the ability of individual scientists to manage productively.

The outer circle of KNARM methodology , semi-automated evolving the ontol-

ogy based on ontology validation, is already awarded a grant from NIH. University

of Miami, Stanford University, and CDD are working together to further standard-

ize the templates created for this work. Furthermore, the systematic approach we

followed is being followed by the OBO foundry groups and we’re in the process of

aligning ontology design and development efforts.

Last but not least, the semi-automated ontology building and knowledge acqui-

sition based on ontologies is patented with the BAE efforts. CDD is now attracting

big pharmaceutical companies such as Astra-Zeneca and Pfizer with their assay in-

formatics tools and their integrative approach.
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Further experiments could be performed to better observe and compare reasoning

times of the different ontologies created for this study. As mentioned above, in

the experiment performed for this study, we have observed that some reasonings

we expected to see (especially related with relationships that has inverses) are not

computed based. Further experiments to identify the root of this problem could be

performed. These could include comparing computations related to the size of the

TBox and/or the way the semantic models were implemented (currently most classes

included descriptive axioms to the primitive classes as opposed to defined classes).

An idea for improving reasoning times would be employing parallel reasoning for the

merged ontologies. In this was reasoners such as Hermit might perform better.

The long-term prospect is a global dynamic knowledge framework to integrate

and model increasingly big datasets to help solving the most challenging biomedical

research problems. With this methodology, KNARM, we can try to apply it to

different projects and their ontologies. The aim would be to better integrate and

model increasingly big datasets to help solving the most challenging biomedical

research problems.
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.1 In-House Structured Interview and Meta-Data
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.1.1 LINCS Assay data
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.2 Structured Interview - Feedback from Harvard

Medical School for Aligning their definitions

with ours for LIFE and BAO
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LINCS Data Levels
LINCS DSGC and BD2K-LINCS DCIC (support at lincs-dcic.org) 
{working version: last modified May 16 2016} 
{document content will reside in:  http://www.lincsproject.org/data/} 
 
The LINCS Data and Signature Generation Centers (DSGCs) produce a variety of data for the library. For such data to be 

standardized, integrated, and coordinated in a manner that promotes consistency and allows comparison across different cell types, 

assays and conditions, the BD2K-LINCS DCIC together with the DSGCs develop and employ data standards. 

Once collected, LINCS data is made available to the research community in various formats so that it can be used in different types of 

analyses. 

The data standards page describes the data structures that are being developed by the LINCS Data Working Group. 

The data releases page describes the collections of data released and planned to be released to the public by the LINCS consortia with 

instruction on how to access, download and cite it. 

Data Levels
The LINCS resource (and the resulting data matrix) has three dimensions: cell types, perturbations, and assay types.  LINCS 

approaches this problem using tools from systems biology, chemical biology, computational biology, and other disciplines, including 

both high-throughput experimentation and sophisticated mathematical analysis. The concept of data levels is also borrowed from the 

success of this approach by The Cancer Genome Atlas (TCGA) project. Definitions for data levels for all the LINCS assays are 

currently being developed by the BD2K-LINCS DCIC and the LINCS DSGCs and will be posted here soon. 

Data Levels per assay type 
 

Assay Type Center Data Level Result Type File Type Important Metadata 

1 
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KINOMEScan HMS LINCS 2 Relative kinase 
inhibition (normalized 
to negative control) 

API; Download 
(xlsx, csv) 

● Small molecules 
● Proteins 

KINOMEScan HMS LINCS 3 Kds were determined 
using 11 serial 
threefold dilutions of 
test compound and a 
DMSO control. 

API; Download 
(xlsx, csv) 

● Small molecules 
● Proteins 

KiNativ HMS LINCS 2 Protein binding profile API; Download 
(xlsx, csv) 

● Cell lines 
● Small molecules 
● Proteins 

L1000 mRNA 
profiling assay 

Broad T LINCS 1 Raw, unprocessed 
flow cytometry data 
from Luminex 
scanners. One LXB 
file is generated for 
each well of a 384-well 
plate, and each file 
contains a 
fluorescence intensity 
value for every 
observed analyte in 
the well 

LXB ● Cell lines 
● Genes 
● Small molecules 

L1000 mRNA 
profiling assay 

Broad T LINCS 2 Gene expression 
values per 1,000 
genes after 
de-convolution from 
Luminex beads 

GEX ● Cell lines 
● Genes 
● Small molecules 

L1000 mRNA 
profiling assay 

Broad T LINCS 3 Gene expression 
profiles of both directly 
measured landmark 
transcripts plus 
imputed genes. 

Q2NORM ● Cell lines 
● Genes 
● Small molecules 

2 
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Normalized using 
invariant set scaling 
followed by quantile 
normalization 

L1000 mRNA 
profiling assay 

Broad T LINCS 4 Signatures with 
differentially 
expressed genes 
computed by robust 
z-scores for each 
profile relative to 
population control 

GCTX ● Cell lines 
● Genes 
● Small molecules 

RNA-Seq LINCS consolidated 1 Raw sequence (fastq) 
and aligned 
sequences (bam) 

FASTQ 
BAM 

● Antibodies 
● Primary cells 
● Small molecules 

RNA-Seq LINCS consolidated 3 All feature expression 
summaries (raw 
counts, and any other 
version of counts data) 

 ● Antibodies 
● Primary cells 
● Small molecules 

RNA-Seq LINCS consolidated 4 Differential feature 
expression profiles 
(log fold change, 
p-values,...) 

 ● Antibodies 
● Primary cells 
● Small molecules 

      

      

 
 
References and relevant links 
LINCS Metadata Specifications 
LINCS Project Website 
BD2K LINCS Website 

3 
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DWG Data Level Site (includes various document and comments) 
TCGA Data Levels and Data Types 
NCI Data Level Classification 
L1000 Data Levels 
EPA ToxCast workflow 
ToxCast Analysis Presentation (including data their data levels) 
AGM Book Chapter Data Standardization for Results Management 
 
 
 

4 
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.3 Ontology Validation and Evolution Related doc-

uments - Reports on Protocols for Updating

BAO and DTO



Manual Steps for Creating a new BAO Version  
Summary of Key Steps (As of February 2017) 
1. Original BAE Absence Report is generated at: 

http://www.bioassayexpress.com/BioAssayExpress/diagnostics/absence.jsp  
 

2. Absence reported is exported to Excel, and then reviewed by a content (domain) expert to QC, filter 
for unique new terms, which are then exported to a ‘new term template’ 
(BAO_newterm_template.xlsx  with link : 
https://drive.google.com/open?id=0B2oTJxSU7CWrTllYdXZsbndoX0U ) to further clarify by adding 
required fields--definitions, parent BAO class, relevant references/ hyperlinks.  This List of Requested 
Terms is then shared with University of Miami BAO. 

 
3. A survey of content experts could be used to decide on the final labels for terms.  
       Attention: Currently this step is not performed! 

The links to surveys are in a document and they live in ‘SurveysAndResults’ folder in Google Drive 
(https://drive.google.com/open?id=0B2oTJxSU7CWrOFlBQ2MwSTdhR1k) 
 

4. The List of Requested Terms from Step 2 above is divided and transformed into appropriate 
separate .csv files by a University of Miami BAO domain expert along with the ontology engineer, 
inputting the new BAO ID to be assigned and the appropriate BAO parent class ID, using the 
template (bao_vocab_template.csv) which lives under the GitHub location: 
(https://github.com/BioAssayOntology/BAO/tree/master/BAOdev/InputFiles).  

a. Attention must be paid to terms that already exist in external ontologies (but need to be 
added to BAO) and terms for which BAO needs to coordinate with external ontologies (e.g., 
DO, CLO) to request external IDs.  All .csv files are placed in the same ‘InputFiles’ folder on 
GitHub above  (See Part B.2 for input file creations for existing external ontology terms). 

 
5. Output files are created in .owl format by the ontology engineer at UM and they live in 

‘OutputFiles’ (https://github.com/BioAssayOntology/BAO/tree/master/BAOdev/OutputFiles ) and 
external ontology files are added to ../BAOdev/OutputFilesForExternalOntologyImport ( see Part 
B.2) 

 
6. A checklist of steps for the BAO update process is prepared by the domain expert and the ontology 

engineer working together.  An example called “Example_BAO_building_QC_sheet” is under this 
link (just to clarify, this is an example document, it should be edited for the current updates as 
needed): 
https://docs.google.com/spreadsheets/d/1Ty1OY48ask1XkKLh1a7WIGPHHMXTvqDY9eH2Ympkf9c/
edit?usp=sharing 

 
7. Output files are merged with the appropriate vocabulary files by the ontology engineer in UM (per 

mapping here: 
https://docs.google.com/spreadsheets/d/1tsxq-j5vLvqTb8FbCW6En8Ei9TDyPYB3IW24HYW4rB4/edi
t?usp=sharing ) are uploaded to the BAO GitHub (https://github.com/BioAssayOntology) and 
merged into BAO complete for initial check-up and QC run by the Java Programs and Pipeline Pilot 
Scripts. Manual check is also performed using Protege. 
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8. After final corrections (changes may be needed, iterating back to step 4 and performing steps 4,5,6 
again or manually editing the .owl files),  final bao_complete.owl is created. 

 
9. After the finalized BAO_complete is created, all files are updated on GitHub and the BioAssay 

homepage (bioassayontology.org) for BioPortal to collect the new version by the ontology engineer 
at UM. 

 
Background/ Detailed Steps 
This document below describes the detailed steps taken to update BAO 2.2.2 with new terms 
arising from the BAE (BioAssay Express) project--into BAO 2.3.1. It is intended to capture all 
major steps required to update BAO with new terms and/or other revisions from any source.  
 
We should note that much of the work to compile and merge these new terms spanned from 
August 2016 to Dec 2016, with the initial resulting merged updated BAO--called BAO2.3 at the 
time--released onto BioPortal 12/16/16 (though listed as ‘2.0’ on BioPortal). Although all the new 
terms worked for BAE, we found multiple errors in this build, which ultimately appeared to derive 
from previous issues in the reference BAO files into which the new terms were merged. Thus in 
January 2017, a major effort was undertaken by all at UM to identify and ‘clean up’ / restore the 
previous BAO version that had been on BioPortal since 11/18/14 (BAO 2.0--see 
https://sites.google.com/site/baocollaborativedevelopment/home/operational-process/timeline  
This restored version was exhaustively and comprehensively QC’d, called BAO 2.2.2, and 
uploaded to BioPortal 1/27/17. 
 
The update reviewed here was based on the BAE Absence Reports created during the curation 
of 3500 PubChem assays using the BioAssay Express (http://www.bioassayexpress.com/ ). In 
the course of this curation project, curators would make suggestions for terms they thought 
were absent from, and merited adding to, BAO.  The complete set of these is found in the 
‘Absence Report’.  This Absence Report requires significant filtering and review by a content 
expert (in both BAO and biology/ HTS assays):   some ‘suggestions’ may not be necessary 
(either already exist in BAO, are synonymous/ redundant, or may be too detailed and can be 
adequately covered by a different term.)  The net result of 4 ‘sets’ of Absence Reports 
(snapshots) was a total of ~200 new terms (which includes core and external ontologies). 
 
To perform the updates on BAO, one should ensure that the baseline, i.e. the version of BAO 
that is currently in use, is usable for updates (which means the current version is free of bugs 
and inconsistencies).  Currently the only repository and version control is done via GitHub 
(https://github.com/bioassayontology ). 
 
The process described below will be slightly modified with the introduction of BAO database 
which keeps the BAO vocabulary. With the introduction of BAO database, a check for 
overlapping IDs should no longer be required.  However, there should be a check for using the 
correct ID ranges (for the ID ranges please refer to this document: 
https://drive.google.com/open?id=1BjUcJTqbvoVpCutI_wRxK56WuXVyDFVMH8n8Kqpro5A). 
 
Overview of 3-step process (summer 2016) 

A. Extract Terms from BAE; Triage/Analyze for Content; Prepare ‘Proposed Terms’ 
Template 
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B. New terms from single template spreadsheet → Divide into multiple Input (csv) files, 
based on class/ vocabulary modules→ Generate individual output (owl) files  

C. Merge ‘new term owl files’ with existing BAO vocab files to generate complete owl file 
and release (to BioPortal via bioassayontology.org) 

 
Above steps A-C were documented (by each responsible party) as separate Word docs, which 
are compiled below.  
Part A:  Extract Terms from BAE; Triage/Analyze for Content; Prepare ‘Proposed Terms’ 
Template (by Janice Kranz, CDD) 
 
1. Go to BAE Absence Report 

http://www.bioassayexpress.com/BioAssayExpress/diagnostics/absence.jsp  
2. Export to xls (via ‘Copy to Clipboard’ or Select/ Copy All) 
3. In Excel: sort by date 

a. ‘discard’ all covered in previous updates 
4. Save remaining= current (unprocessed) set 
5. Sort by 

a. Absence Type (i.e., ‘needs checking’ vs. ‘requires term’) 
b. Assignment (CAT field/ class) 
c. Description (to group multiple AIDs w same proposed term) 
d. Date 
e. PubChem AID 

6. Select ‘Absence Type=Needs Checking’ 
a. Create new set 
b. Needs QC (Jan or other curator) 

7. Select ‘Assignment = Target’ 
a. Create new set 
b. Ignore (or could use ‘fauxtology’ to assign) 
c. Reasoning:  Target updates in DTO are being done by UM group more efficiently by 

protein class (eg., enzymes, phosphatases…)  Targets await creation of RDF triples. 
8. Remaining set= candidates for new terms. “x# terms no targets”  Now do manual ‘triage’ 

a. In a new column, note ‘x’ to select a ‘representative’ row (i.e., PubChem AID) to 
generate a set of unique terms 

i. Note that often there are instances of copy/ paste  or small typos/ errors, or 
just different curators noting the same concept/ term that preclude machine 
auto-detection…I’ve found 6 ‘flavors’ of the same term 

b. Filter based on this ‘x’ column (select all x’s; ignore blanks) 
9. Remaining set= unique list of candidate terms (1 row per term) 
10. Manual triage 

a. In a new column, categorize with 1 of 4 flags: 
i. a = already updated (i.e, term included in previous update list) 
ii. b = needs checking (by Jan/ curator; e.g., likely to be covered by existing 

BAO term)→QC 
iii. c = likely needed as a new term in BAO 
iv. d = needs discussion with domain experts and/or BAO 

11. For subset ‘c’:  Prepare Term List using BAO Update Template 
a. This is the labor-intensive step 
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b. Template is here (excel file named ‘BAO_new_term_template.xlsx’) 
Screenshot of example: 
(green=required by BAO for input; light green= optional; blue=for our 
reference (from Absence Report)) 

 
If cell line 

i. Check in CLO    http://purl.bioontology.org/ontology/CLO 
ii. If in CLO (and not in BAO) 

1. Note CLO IRI 
2. Term will be added to BAO with CLO IRI 

iii. If not in CLO 
1. Do ‘detective work’ 

a. Find PubMed and /or other hyperlinks for reference 
i. can check BTO or Cellosaurus 

b. Write definition 
2. Term will be added to BAO 
3. BAO will share with CLO for CLO to incorporate into CLO 

a. CLO needs as much info as possible (relevant PMIC or 
PMCID, PubChem AID(s), Cellosaurus or other URLs) 

4. If/when CLO assigns an IRI, they will notify BAO; BAO will update; 
should not affect BAO-assigned IRI 

c. If disease 
i. Check in Disease Ontology   http://disease-ontology.org/  
ii. If in DO 

1. Note DOID 
2. Term will be added to BAO (or, actually, DTO??)  with DOID 

iii. If not in DO (THIS IS RARE!!  Make Sure to check for synonyms) 
1. Do ‘detective work’ 

a. Find PubMed and /or other hyperlinks for reference (OMIM, 
Wikipedia…) 

b. Write definition 
2. Term will be added to BAO (or, actually, DTO??) with BAO ID 
3. BAO will share with CLO for CLO to incorporate into CLO 
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4. If/when CLO assigns an IRI, they will notify BAO; BAO will update; 
should not affect BAO-assigned IRI 

d. If organism 
i. Check in NCBI Taxon 
ii. Should be foundin NCBI Taxon  http://www.ontobee.org/ontology/NCBITaxon 

1. Note NCBI Taxon ID 
2. **For parent (superclass):  use abbreviated superclass structure from 

BAO (to spare having dozens of layers deep) 
a. Check in BAO in BioPortal: (expand organism tree) 
b. Write BAO ID and/or name of BAO organism superclass in 

template 
3. Term will be added to BAO with NCBI Taxon ID AND with BAO 

parentID 
iii. If not in NCBI Taxon:  highly highly unlikely! 

e. All other fields 
i. Evaluate provided ‘description’ (refer to BAE record and PubChem for context 

if needed) 
ii. If new term fits into existing BAO superclass 

1. Specify proposed new term 
2. Note name of existing BAO superclass (parent) to which it should be 

placed under 
3. Write a definition for the new term (use Google liberally!) 
4. Provide hyperlink(s) for reference if useful 

iii. If new term requires a new superclass 
1. Create a new row in the template for the proposed new superclass 

a. Enter the new superclass term 
b. Enter the existing BAO superclass (parent) to which it should 

be placed under 
c. Write a definition for the new term (use Google liberally!) 
d. Provide hyperlink(s) for reference if useful 

2. Immediately below this new proposed superclass, continue with the 
new term (as in 11.d.ii), noting the name of the new superclass 

12. Send file to Joe/ Hande for next step(s) 
 
Example for ‘Set3’ of Terms: 
1368 terms from Absence Report 
660 terms unprocessed (not included in sets 1-2) 
586 terms excluding ‘target’ type (33) and ‘needs checking’ (41) 
145 unique terms  
48 terms (a)—covered in sets 1-2 
27 terms (b)—needing QC/ likely exist in BAO 
68 terms (c)—candidates for BAO 
  2 terms (d)—need further discussion 
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Part B:  BAO development documentation: New terms → Input files → Output files 
pipeline (by Joseph Ostrow) 
 
UniqueBAOTerms_090816BAE Report_093016.xlsx (Example new term spreadsheet) 
 

 
 

1. Begninng with above spreadsheet of new terms, organize terms into separate files 
based on existing vocabulary “input” files: 
https://github.com/BioAssayOntology/BAO/tree/master/BAOdev/InputFilesForExternalOn
tologyImport/bao_vocabulary_dev 

a. If term does not classify as a child of one the existing vocabulary files, refer to 
“Log for last IDs used in vocab files” spreadsheet on Google Drive and confer 
with group 

b. For example, above terms would be appended to existing 
bao_vocabulary_assaykit_dev.csv 

 
Creating an input file from spreadsheet of new terms (refer to Sample input .csv below): 

2. Add ‘Term ID’ column (column A) 
a. Use vocabulary ID ranges from ‘Log for Last IDs used in vocab files’ to assign 

IDs to terms in form: http://www.bioassayontology.org/bao#BAO_xxxxxxx, 
beginning with the ID after the last one used  
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3. Add BAO parent ID based on existing parent class in BAO (use ID already assigned in 
ontology) 

a. If parent class is also a new term, use its newly generated ID 
4. Add ‘Class Type’ column (Column I) 

a. Assign each term the class type ‘subclass’ or ‘equivalent’ based on their 
definitions in ‘Template Strings’ document here: 
https://github.com/ontodev/robot/blob/master/docs/template.md#template-strings\ 

5. If “Date from CDD” is blank, add in date of .owl file creation (this column is essentially a 
way to track the most recent additions) 

6. Add header row (highlighted in below table)  
7. **These headers identify which columns will be interpreted by the Robot command line 

tool and included in the final .owl file. There are columns in the above spreadsheet (e.g. 
“Description” or “Notes”) with comments not to include in the final .owl file. I have deleted 
these in the .csv below for clarity’s sake, but one could keep them and just not add a 
header to that column, and they still would not be included in the final .owl output file. 

8. Scan text for special characters or symbols (e.g. ®) and delete them, as these often are 
not interpreted correctly when file is exported 

9. Export as .csv  
10. Upload the .csv files to GitHub to this folder: 

https://github.com/BioAssayOntology/BAO/tree/master/BAOdev/InputFiles 
Sample input .csv 

 
  
 
Using Robot tool to create .owl output file from input file: 

1. Follow the instructions here to download the Robot command line tool: 
https://github.com/ontodev/robot. This will convert the .csv input file into the vocabulary 
.owl file (“output file”), which ultimately will be merged with the complete BAO .owl file. 

2. Navigate to the directory of your .csv input file (i.e. 
../BAO/BAOdev/InputFiles/bao_vocabulary_dev) 

3. Run the following command (inserting correct file and vocabulary names) to create the 
.owl file: 

 
robot template --template bao_vocabulary_assaykit_dev.csv 
--ontology-iri 
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"http://www.bioassayontology.org/bao/bao_vocabulary_assaykit_dev.owl" 
--output ../OutputFiles/bao_vocabulary_assaykit_dev.owl 
 

a. --template specifies the input file template you are using to create the .owl 
file 

b. --ontology-iri specifies the unique ontology IRI  (IRI standard for vocabulary 
http://www.bioassayontology.org/bao/bao_vocabulary_ fileName_dev.owl ) 

c. --output specifies the name and location of the .owl file you want to create 
4. Confirm .owl file has been generated. 
5. Open .owl file in Protege and compare with input .csv to confirm all information is correct 
6. Commit changes to GitHub to this location: 

https://github.com/BioAssayOntology/BAO/tree/master/BAOdev/OutputFiles 
 
Developer Note: 
 

1. The robot tool is used for BAO_core vocabularies only. BAO_external 
vocabularies are created using OntoFox 

2. Previously the OntoRat tool was used, but we found it was not very stable (was 
unavailable for weeks), so the robot tool was used locally. 

Example files are here (please note that these are not up-to-date files and are linked for 
example purposes only): 
1. Joe transforms the Absence Report into OntoRat input files which live under ‘OntoRatInputFiles’ 

folder in the CDD-UM Google Drive 
(https://drive.google.com/open?id=0B2oTJxSU7CWrTFdLSlFHYnNtMkU) 
 

2. OntoRat output files are created by Joe and they live in ‘OntoRatOutputFiles’ folder 
(https://drive.google.com/open?id=0B2oTJxSU7CWrZ1FYNlFfQ2NSTDQ) 

 
Part B.2 Creation of External Ontology Extractions using OntoFox (by Hande 
Kucuk-McGinty) 

1. Use the existing input files for OntoFox (currently in GitHub under 
https://github.com/BioAssayOntology/BAO/tree/master/BAOdev/InputFilesForExternalOn
tologyImport  ) 

2. add the new terms from external ontologies such as DOID or CLO to the list 
3. save and upload to GitHub to this location: 

https://github.com/BioAssayOntology/BAO/tree/master/BAOdev/InputFilesForExternalOn
tologyImport  

4. upload the input files to Ontofox site (ontofox.hegroup.org) to create the .owl files 
5. save and upload .owl files to here: 

https://github.com/BioAssayOntology/BAO/tree/master/BAOdev/OutputFilesForExternal
OntologyImport  
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Part C.  Merge ‘new term owl files’ with existing BAO vocab files to generate complete 
owl file and release  (by Hande Kucuk-McGinty) 
 
Developer Note:  
 
Before the merging,we previously suggested to perform surveys for finalizing labels for the new terms. 
But currently this step is not performed! 

The surveys have not been out yet, the link to surveys are in a document and they live in 
‘SurveysAndResults’ folder in Google Drive 
(https://drive.google.com/open?id=0B2oTJxSU7CWrOFlBQ2MwSTdhR1k) 
 

 
Merging Details: 
Output files are merged with vocabulary files that live at the BAO GitHub 
(https://github.com/BioAssayOntology)  (changes maybe done going back to Part B and performing 
re-creation of input and output files again or manually) 
 
For the merging, see more detailed notes on BAO2.3.1 Update: 
https://sites.google.com/site/baocollaborativedevelopment/home/operational-process/bao-updates  
(assumes starting with new terms from BAE in template) 
 

1. Assuming the input (.csv files) and output files (bao_vocabulary_x_dev.owl) are correct,  merge 
“x_x_dev.owl” vocab files with appropriate vocab file from most recent BAO build. 
 
See Table for mappings: 

 
 

Development File (new terms to be added) 

BAO Vocabulary (form most recent 
BAO release on git) 

bao_vocabulary_cellline_dev.owl 
bao_vocabulary_biology.owl/ 
BAO_CLO_import.owl 

bao_vocabulary_method_dev.owl bao_vocabulary_method.owl 
bao_vocabulary_format_dev.owl bao_vocabulary_biology.owl 
bao_vocabulary_assaykit_dev.owl bao_vocabulary_assaykit.owl 
bao_vocabulary_assay_dev.owl bao_vocabulary_assay.owl 
bao_vocabulary_detection_dev.owl bao_vocabulary_detection.owl 

bao_module_organism_dev.owl 
bao_vocabulary_biology.owl/ 
BAO_NCBITaxon_import.owl 

bao_vocabulary_result_dev.owl bao_vocabulary_result.owl 
bao_vocabulary_instrument_dev.owl bao_vocabulary_instrument.owl 
bao_vocabulary_screenedentity_dev.owl bao_vocabulary_screenedentity.owl 
bao_vocabulary_unit_dev BAO_UO_import.owl 
bao_module_disease_dev.owl bao_vocabulary_biology.owl/ 
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BAO_DOID_import.owl 
 
For this exercise, BAO base version is BAO2.2.2 

○ 1.1 Open _dev file and BAO2.2.2 vocab file in Protege 
○ 1.2 In Protege while viewing BAO2.2.2 vocab file, click on 'Direct Imports' (+)--> hit '+' 

and import the _dev owl file 
○   1.3  View to check (check number of classes) 
○ 1.4 Under 'Refactor'--> choose 'Merge' (select the 2; merge into existing ontology) 
○ Check; now delete the import of the _dev file 
○ Save as the bao_vocabulary_x.owl 

 
                  For the 3 external vocabs 

1. Cell Lines 
■ Merge bao_vocabulary_cellline_dev.owl into BAO2.2.2 

1. Note: this vocab contains cell lines assigned BAO IDs (not (yet) in CLO) 
■ Merge (from BAO/BAOdev/OutputFiles/) BAO2.3_CLO_import.owl into above 

merged file 
1. Note:  this CLO import file contains cell lines found in BAE that were in 

CLO but need to be added to BAO 
2. Disease 

■ Merge bao_vocabulary_DISEASE_dev.owl into BAO2.2.2 
1. Note: this vocab contains cell lines assigned BAO IDs (not (yet) in DOID) 

■ Merge (from BAO/BAOdev/OutputFiles/) BAO2.3_DOID_import.owl into above 
merged file 

1. Note:  this DOID import file contains cell lines found in BAE that were in 
DOID but need to be added to BAO 

3. Organism (NCBI Taxon) 
4. Open bao_external.owl (from BAO2.2.2) 

■ Merge with above 3 files  
To create complete_merged 

5. Open bao_core 
■ Control if the bao_core.owl contains(imports) all the vocabulary files and make 

sure all the files are imported correctly. 
6. Open bao_external.owl and bao_complete.owl 
7. bao_complete_merged.owl shoudl contain the bao_core, bao_external and 

bao_metadata. 
8. Edit all files to contain new version, release date, names, best way to do this using a text 

editor that can replace in multiple files at once. 
9. Edit Release Notes doc and add to developer note folder 
10. Commit onto git : https://github.com/BioAssayOntology/BAO 
11. Publish as PRE-RELEASE on github: BAO2.3.1 
12. After running QC with Java code and Stephan’s QC scripts, confirm with Stephan to 

release and confirm. 
■ If not a confirm, one might have to go back to Part B and perform Part B and Part 

C for another round of QC. 
 
 
 
 
3. BAO release (by Caty Chung, taken from GoogleSite page here) 
 

 URL  Description   State  
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 http://web.ccs.miami.edu/repos/  UM svn  2.0.x 

 https://github.com/BioAssayOntology/BAO/releases  git  2.3.1 

 
1.-  Commit a release:  https://github.com/BioAssayOntology/BAO/releases 
2.-  FTP files to http://www.bioassayontology.org/bao/[file name] 
      Update release notes: 
https://docs.google.com/document/d/1Vf4BEejEZ7vuEdT1QNAUlRBpRpuPHSDdOde1S
wHjSr4/edit 
3.-  Check http://www.bioassayontology.org/bao/ 
4.-  BioPortal has a routine job to pick up new files, the core file needs to be updated: 
http://www.bioassayontology.org/bao/bao_complete.owl 
5.-  Check BioPortal 

 
 

145



146



147



Bibliography

[1] C. E. Cook, M. T. Bergman, R. D. Finn, G. Cochrane, E. Birney, and R. Ap-
weiler, “The european bioinformatics institute in 2016: data growth and inte-
gration,” Nucleic acids research, vol. 44, no. D1, pp. D20–D26, 2015.

[2] B. Louie, P. Mork, F. Martin-Sanchez, A. Halevy, and P. Tarczy-Hornoch,
“Data integration and genomic medicine,” Journal of biomedical informatics,
vol. 40, no. 1, pp. 5–16, 2007.

[3] G. J. O. R. I. Grauch, “Rare earth element mines, deposits, and occurrences,”
2002.

[4] S. Abeyruwan, U. D. Vempati, H. Küçük-McGinty, U. Visser, A. Koleti, A. Mir,
K. Sakurai, C. Chung, J. A. Bittker, P. A. Clemons et al., “Evolving bioas-
say ontology (bao): modularization, integration and applications,” Journal of
biomedical semantics, vol. 5, no. Suppl 1, p. S5, 2014.

[5] U. Visser, S. Abeyruwan, U. Vempati, R. P. Smith, V. Lemmon, and S. C.
Schürer, “Bioassay ontology (bao): a semantic description of bioassays and
high-throughput screening results,” BMC bioinformatics, vol. 12, no. 1, p. 1,
2011.

[6] U. of Michigan, “Michigan Institute for Data Science,” last Visted on
12/04/2017. [Online]. Available: http://midas.umich.edu/

[7] S. University, “Stanford Data Science Initiative,” last Visted on 12/04/2017.
[Online]. Available: https://sdsi.stanford.edu/

[8] U. of Virginia, “Data Science Institute,” last Visted on 12/04/2017. [Online].
Available: https://dsi.virginia.edu/

[9] V. Marx, “Biology: The big challenges of big data,” 2013.

[10] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges, tech-
niques and technologies: A survey on big data,” Information Sciences, vol. 275,
pp. 314–347, 2014.

[11] A. Katal, M. Wazid, and R. Goudar, “Big data: issues, challenges, tools and
good practices,” in Contemporary Computing (IC3), 2013 Sixth International
Conference on. IEEE, 2013, pp. 404–409.

148



149

[12] V. C. Storey and I.-Y. Song, “Big data technologies and management: What
conceptual modeling can do,” Data & Knowledge Engineering, vol. 108, pp.
50–67, 2017.

[13] Z. Lv, H. Song, P. Basanta-Val, A. Steed, and M. Jo, “Next-generation big
data analytics: State of the art, challenges, and future research topics,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 4, pp. 1891–1899, 2017.

[14] N. F. Noy, N. H. Shah, P. L. Whetzel, B. Dai, M. Dorf, N. Griffith, C. Jonquet,
D. L. Rubin, M.-A. Storey, C. G. Chute et al., “Bioportal: ontologies and
integrated data resources at the click of a mouse,” Nucleic acids research, p.
gkp440, 2009.

[15] L. Hunter, Z. Lu, J. Firby, W. A. Baumgartner, H. L. Johnson, P. V. Ogren, and
K. B. Cohen, “Opendmap: an open source, ontology-driven concept analysis
engine, with applications to capturing knowledge regarding protein transport,
protein interactions and cell-type-specific gene expression,” BMC bioinformat-
ics, vol. 9, no. 1, p. 1, 2008.

[16] L. Cao, “Data science: Challenges and directions,” Commun. ACM,
vol. 60, no. 8, pp. 59–68, Jul. 2017. [Online]. Available: http:
//doi.acm.org/10.1145/3015456

[17] V. Marx, “Biology: The big challenges of big data,” 2013.

[18] C. J. Bult, H. J. Drabkin, A. Evsikov, D. Natale, C. Arighi, N. Roberts, A. Rut-
tenberg, P. D’Eustachio, B. Smith, J. A. Blake et al., “The representation of
protein complexes in the protein ontology (pro),” BMC bioinformatics, vol. 12,
no. 1, p. 1, 2011.

[19] W. A. Kibbe, C. Arze, V. Felix, E. Mitraka, E. Bolton, G. Fu, C. J.
Mungall, J. X. Binder, J. Malone, D. Vasant, H. Parkinson, and L. M.
Schriml, “Disease ontology 2015 update: an expanded and updated database
of human diseases for linking biomedical knowledge through disease data,”
Nucleic Acids Research, vol. 43, no. D1, pp. D1071–D1078, 2015. [Online].
Available: http://nar.oxfordjournals.org/content/43/D1/D1071.abstract

[20] S. Sarntivijai, Z. Xiang, T. F. Meehan, A. D. Diehl, U. Vempati, S. C. Schürer,
C. Pang, J. Malone, H. E. Parkinson, B. D. Athey et al., “Cell line ontology:
Redesigning the cell line knowledgebase to aid integrative translational infor-
matics.” ICBO, vol. 833, pp. 25–32, 2011.

[21] G. Schreiber, Knowledge engineering and management: the CommonKADS
methodology. MIT press, 2000.

[22] R. Stevens, C. A. Goble, and S. Bechhofer, “Ontology-based knowledge rep-
resentation for bioinformatics,” Briefings in bioinformatics, vol. 1, no. 4, pp.
398–414, 2000.



150

[23] R. B. Altman, M. Buda, X. J. Chai, M. W. Carillo, R. O. Chen, and N. F.
Abernethy, “Riboweb: An ontology-based system for collaborative molecular
biology,” IEEE Intelligent Systems and Their Applications, vol. 14, no. 5, pp.
68–76, 1999.

[24] I. M. Keseler, J. Collado-Vides, S. Gama-Castro, J. Ingraham, S. Paley, I. T.
Paulsen, M. Peralta-Gil, and P. D. Karp, “Ecocyc: a comprehensive database
resource for escherichia coli,” Nucleic acids research, vol. 33, no. suppl_1, pp.
D334–D337, 2005.

[25] T. G. O. Consortium, “Gene ontology consortium: going forward,” Nucleic
Acids Research, vol. 43, no. D1, pp. D1049–D1056, 2015. [Online]. Available:
http://nar.oxfordjournals.org/content/43/D1/D1049.abstract

[26] P. L. Whetzel, N. F. Noy, N. H. Shah, P. R. Alexander, C. Nyulas, T. Tudorache,
and M. A. Musen, “Bioportal: enhanced functionality via new web services
from the national center for biomedical ontology to access and use ontologies in
software applications,” Nucleic acids research, vol. 39, no. suppl 2, pp. W541–
W545, 2011.

[27] H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann,
and S. Hübner, “Ontology-based integration of information-a survey of existing
approaches,” in IJCAI-01 workshop: ontologies and information sharing, vol.
2001. Citeseer, 2001, pp. 108–117.

[28] P. M. Gray, A. Preece, N. Fiddian, W. Gray, T. J. Bench-Capon, M. J. Shave,
N. Azarmi, I. Wiegand, M. Ashwell, M. Beer et al., “Kraft: Knowledge fu-
sion from distributed databases and knowledge bases,” in Database and Expert
Systems Applications, 1997. Proceedings., Eighth International Workshop on.
IEEE, 1997, pp. 682–691.

[29] S. Decker, M. Erdmann, D. Fensel, and R. Studer, “Ontobroker: Ontology based
access to distributed and semi-structured information,” in Database Semantics.
Springer, 1999, pp. 351–369.

[30] Y. Arens, C.-N. Hsu, and C. A. Knoblock, “Query processing in the sims infor-
mation mediator,” Advanced Planning Technology, vol. 32, pp. 78–93, 1996.

[31] S. Luke, L. Spector, D. Rager, and J. Hendler, “Ontology-based web agents,” in
Proceedings of the first international conference on Autonomous agents. ACM,
1997, pp. 59–66.

[32] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke, “On-
toedit: Collaborative ontology development for the semantic web,” ISWC 2002,
p. 221235, 2002.

[33] M. V. Blagosklonny and A. B. Pardee, “Conceptual biology: unearthing the
gems,” Nature, vol. 416, no. 6879, pp. 373–373, 2002.



151

[34] J. C. Barnes, “Conceptual biology: a semantic issue and more,” Nature, vol.
417, no. 6889, pp. 587–588, 2002.

[35] A. Bandrowski, R. Brinkman, M. Brochhausen, M. H. Brush, B. Bug, M. C.
Chibucos, K. Clancy, M. Courtot, D. Derom, M. Dumontier et al., “The on-
tology for biomedical investigations,” PloS one, vol. 11, no. 4, p. e0154556,
2016.

[36] Y. He, Z. Xiang, J. Zheng, Y. Lin, J. A. Overton, and E. Ong, “The extensi-
ble ontology development (xod) principles and tool implementation to support
ontology interoperability,” Journal of biomedical semantics, vol. 9, no. 1, p. 3,
2018.

[37] O. Corcho, M. Fernández-López, and A. Gómez-Pérez, “Methodologies, tools
and languages for building ontologies. where is their meeting point?” Data &
knowledge engineering, vol. 46, no. 1, pp. 41–64, 2003.

[38] D. B. Lenat and R. V. Guha, Building large knowledge-based systems; represen-
tation and inference in the Cyc project. Addison-Wesley Longman Publishing
Co., Inc., 1989.

[39] M. Uschold and M. King, Towards a methodology for building ontologies. Cite-
seer, 1995.

[40] A. Gómez-Pérez, M. Fernández, and A. d. Vicente, “Towards a method to
conceptualize domain ontologies,” 1996.

[41] WWW3, “The owl 2 web ontology language document overview,” last visited
on 11/01/2013. [Online]. Available: http://www.w3.org/TR/owl2-overview/

[42] N. F. Noy, R. W. Fergerson, and M. A. Musen, “The knowledge model of
protege-2000: Combining interoperability and flexibility,” in Knowledge Engi-
neering and Knowledge Management Methods, Models, and Tools. Springer,
2000, pp. 17–32.

[43] K. Wang, P. Tarczy-Hornoch, R. Shaker, P. Mork, J. F. Brinkley et al., “Bio-
mediator data integration: beyond genomics to neuroscience data.” in AMIA,
2005.

[44] T. E. Klein, J. T. Chang, M. K. Cho, K. L. Easton, R. Fergerson, M. Hewett,
Z. Lin, Y. Liu, S. Liu, D. Oliver et al., “Integrating genotype and phenotype
information: an overview of the pharmgkb project,” The pharmacogenomics
journal, vol. 1, no. 3, pp. 167–170, 2001.

[45] P. R. Payne, E. A. Mendonça, S. B. Johnson, and J. B. Starren, “Conceptual
knowledge acquisition in biomedicine: A methodological review,” Journal of
biomedical informatics, vol. 40, no. 5, pp. 582–602, 2007.



152

[46] P. Gottgtroy, R. Modaini, N. Kasabov et al., “Building evolving ontology maps
for data mining and knowledge discovery in biomedical informatics,” in Pro-
ceedings of the third Brazilian symposium on mathematical and computational
biology (BIOMATIII), Rio de Janeiro, Brazil, vol. 1, 2003, pp. 309–328.

[47] P. Gottgtroy, N. Kasabov, and S. Macdonell, “An ontology engineering ap-
proach for knowledge discovery from data in evolving domains,” 2004.

[48] “Protégé,” last visited on 06/10/2015. [Online]. Available: http://protege.
stanford.edu/

[49] I. Yeh, P. D. Karp, N. F. Noy, and R. B. Altman, “Knowledge acquisition,
consistency checking and concurrency control for gene ontology (go),” Bioin-
formatics, vol. 19, no. 2, pp. 241–248, 2003.

[50] J. Köhler, S. Philippi, and M. Lange, “Semeda: ontology based semantic inte-
gration of biological databases,” Bioinformatics, vol. 19, no. 18, pp. 2420–2427,
2003.

[51] B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W. Ceusters, L. J. Gold-
berg, K. Eilbeck, A. Ireland, C. J. Mungall et al., “The obo foundry: coordi-
nated evolution of ontologies to support biomedical data integration,” Nature
biotechnology, vol. 25, no. 11, pp. 1251–1255, 2007.

[52] F. Belleau, M.-A. Nolin, N. Tourigny, P. Rigault, and J. Morissette, “Bio2rdf:
towards a mashup to build bioinformatics knowledge systems,” Journal of
biomedical informatics, vol. 41, no. 5, pp. 706–716, 2008.

[53] K. Wolstencroft, S. Owen, O. Krebs, W. Mueller, Q. Nguyen, J. L. Snoep, and
C. Goble, “Semantic data and models sharing in systems biology: The just
enough results model and the seek platform,” in International Semantic Web
Conference. Springer, 2013, p. 212227.

[54] H. Group, “OntoFox,” last visited on 11/01/2013. [Online]. Available:
http://ontofox.hegroup.org/

[55] R. P. Hertzberg and A. J. Pope, “High-throughput screening: new technology
for the 21st century,” Current Opinion in Chemical Biology, vol. 4, no. 4, pp.
445 – 451, 2000.

[56] C. P. Austin, L. S. Brady, T. R. Insel, and F. S. Collins, “Nih molecular libraries
initiative,” Science, vol. 306, no. 5699, pp. 1138–1139, 2004.

[57] E. E. Bolton, Y. Wang, P. A. Thiessen, and S. H. Bryant, “Pubchem: inte-
grated platform of small molecules and biological activities,” Annual reports in
computational chemistry, vol. 4, pp. 217–241, 2008.

[58] R. Frank, “Eu-openscreen–a european infrastructure of open screening plat-
forms for chemical biology,” ACS chemical biology, vol. 9, no. 4, pp. 853–854,
2014.



153

[59] A. Gaulton, L. J. Bellis, A. P. Bento, J. Chambers, M. Davies, A. Hersey,
Y. Light, S. McGlinchey, D. Michalovich, B. Al-Lazikani et al., “Chembl: a
large-scale bioactivity database for drug discovery,” Nucleic acids research,
vol. 40, no. D1, pp. D1100–D1107, 2012.

[60] A. Gaulton, L. J. Bellis, A. P. Bento, J. Chambers, M. Davies, A. Hersey,
Y. Light, S. McGlinchey, D. Michalovich, B. Al-Lazikani, and J. P. Overington,
“ChEMBL: a large-scale bioactivity database for drug discovery,” Nucleic Acids
Research, vol. 40, no. D1, pp. D1100–D1107, jan 2012.

[61] N. H. Jensen and B. L. Roth, “Massively parallel screening of the receptorome,”
Combinatorial Chemistry & High Throughput Screening, vol. 11, pp. 420–426,
2008.

[62] M. Hohman, K. Gregory, K. Chibale, P. J. Smith, S. Ekins, and B. Bunin,
“Novel web-based tools combining chemistry informatics, biology and social
networks for drug discovery,” Drug Discovery Today, vol. 14, no. 5–6, pp. 261
– 270, 2009.

[63] S. Lab, “Library of Integrated Network-based Cellular Signatures (LINCS)
Information FramEwork,” last visited on 11/01/2013. [Online]. Available:
http://life.ccs.miami.edu/life/

[64] NIH, “Illuminating the Druggable Genome | NIH Common Fund,” last visited
on 06/06/2015. [Online]. Available: https://commonfund.nih.gov/idg/index

[65] R. K. G. James Inglese, Caroline E Shamu, “Reporting data from high-
throughput screening of small-molecule libraries,” Nature Chemical Biology,
no. 8, pp. 438–441, 2007.

[66] U. D. Vempati, M. J. Przydzial, C. Chung, S. Abeyruwan, A. Mir, K. Saku-
rai, U. Visser, V. P. Lemmon, and S. C. Schürer, “Formalization, Annotation
and Analysis of Diverse Drug and Probe Screening Assay Datasets Using the
BioAssay Ontology (BAO),” PLoS ONE, vol. 7, no. 11, November 2012.

[67] H. Küçük-Mcginty, S. Metha, Y. Lin, N. Nabizadeh, V. Stathias, D. Vidovic,
A. Koleti, C. Mader, J. Duan, U. Visser, and S. Schurer, “It405: Building
concordant ontologies for drug discovery,” in International Conference
on Biomedical Ontology and BioCreative (ICBO BioCreative 2016), ser.
Proceedings of the Joint International Conference on Biological Ontology
and BioCreative (2016), ICBO and BioCreative. ICBO and BioCreative,
08/01/2016 2016. [Online]. Available: http://icbo.cgrb.oregonstate.edu/

[68] Y. Lin, S. Mehta, H. K. McGinty, J. P. Turner, D. Vidovic, M. Forlin, A. Koleti,
D.-T. Nguyen, L. J. Jensen, R. Guha et al., “Drug target ontology to classify
and integrate drug discovery data,” bioRxiv, p. 117564, 2017.

[69] S. Abeyruwan, A. Seekircher, and U. Visser, “Dynamic Role Assignment using
General Value Functions,” in Proceedings of Autonomous Agents and Multi-
Agent Systems, Workshop on Adaptive Learning Agents, 2013.



154

[70] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed
File System,” in Proceedings of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST). Washington, DC, USA: IEEE Computer
Society, 2010, pp. 1–10.

[71] NIH, “Library of Integrated Network-Based Cellular Signatures (NIH
LINCS) program,” last visited on 06/06/2015. [Online]. Available: http:
//www.lincsproject.org/

[72] H. M. School, “KiNativ, In Situ Kinase Profiling,” last visited on 06/06/2015.
[Online]. Available: http://www.kinativ.com/

[73] ——, “KiNativ, In Situ Kinase Profiling,” last visited on 06/06/2015. [Online].
Available: http://www.kinativ.com/

[74] D. Peck, E. D. Crawford, K. N. Ross, K. Stegmaier, T. R. Golub, and J. Lamb,
“A method for high-throughput gene expression signature analysis,” Genome
biology, vol. 7, no. 7, p. R61, 2006.

[75] B. Institute, “1000 Genomes,” last visited on 06/06/2015. [Online]. Available:
https://www.broadinstitute.org/science/projects/1000-genomes

[76] H. M. School, “HMS LINCS Database,” last visited on 06/09/2015. [Online].
Available: https://lincs.hms.harvard.edu/data/

[77] A. G. McArthur, N. Waglechner, F. Nizam, A. Yan, M. A. Azad, A. J. Baylay,
K. Bhullar, M. J. Canova, G. De Pascale, L. Ejim et al., “The comprehensive
antibiotic resistance database,” Antimicrobial agents and chemotherapy, vol. 57,
no. 7, pp. 3348–3357, 2013.

[78] G. V. Gkoutos, P. N. Schofield, and R. Hoehndorf, “The units ontology: a tool
for integrating units of measurement in science,” Database, vol. 2012, p. bas033,
2012.

[79] K. Degtyarenko, P. De Matos, M. Ennis, J. Hastings, M. Zbinden, A. McNaught,
R. Alcántara, M. Darsow, M. Guedj, and M. Ashburner, “Chebi: a database
and ontology for chemical entities of biological interest,” Nucleic acids research,
vol. 36, no. suppl 1, pp. D344–D350, 2008.

[80] T. U. Consortium, “Uniprot: a hub for protein information,” Nucleic
Acids Research, vol. 43, no. D1, pp. D204–D212, 2015. [Online]. Available:
http://nar.oxfordjournals.org/content/43/D1/D204.abstract

[81] D. Croft, A. F. Mundo, R. Haw, M. Milacic, J. Weiser, G. Wu, M. Caudy,
P. Garapati, M. Gillespie, M. R. Kamdar et al., “The reactome pathway knowl-
edgebase,” Nucleic acids research, vol. 42, no. D1, pp. D472–D477, 2014.

[82] U. Visser, S. Abeyruwan, U. Vempati, R. Smith, V. Lemmon, and S. Schurer,
“BioAssay Ontology (BAO): a semantic description of bioassays and high-
throughput screening results,” BMC Bioinformatics, vol. 12, no. 1, pp. 257+,
2011.



155

[83] D. Maglott, J. Ostell, K. D. Pruitt, and T. Tatusova, “Entrez gene: gene-
centered information at ncbi,” Nucleic acids research, vol. 33, no. suppl 1, pp.
D54–D58, 2005.

[84] S. Pletscher-Frankild, A. Pallejà, K. Tsafou, J. X. Binder, and L. J. Jensen,
“Diseases: Text mining and data integration of disease–gene associations,”
bioRxiv, 2014.

[85] E. Bjorling and M. Uhlen, “Antibodypedia, a portal for sharing antibody and
antigen validation data,” Molecular & Cellular Proteomics, vol. 7, no. 10, pp.
2028–2037, 2008.

[86] S. Pletscher-Frankild, A. Palleja, K. Tsafou, J. X. Binder, and L. J. Jensen,
“Diseases: Text mining and data integration of disease–gene associations,”
Methods, vol. 74, pp. 83–89, 2015.

[87] A. Santos, K. Tsafou, C. Stolte, S. Pletscher-Frankild, S. I. ODonoghue,
and L. J. Jensen, “Comprehensive comparison of large-scale tissue expression
datasets,” PeerJ, vol. 3, p. e1054, 2015.

[88] B. F. Ontology, “Basic Formal Ontology (BFO) Project,” last visited on
11/01/2013. [Online]. Available: http://www.ifomis.org/bfo

[89] A. Pease, I. Niles, and J. Li, “The suggested upper merged ontology: A large
ontology for the semantic web and its applications,” in Working notes of the
AAAI-2002 workshop on ontologies and the semantic web, vol. 28, 2002.

[90] Y. Kazakov, M. Krötzsch, and F. Simančík, “The incredible elk,” Journal of
automated reasoning, vol. 53, no. 1, pp. 1–61, 2014.

[91] D. Tsarkov and I. Horrocks, “Fact++ description logic reasoner: System
description,” in International Joint Conference on Automated Reasoning.
Springer, 2006, pp. 292–297.

[92] D. Tsarkov, “Incremental and persistent reasoning in fact++.” in ORE, 2014,
pp. 16–22.

[93] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang, “Hermit: an owl 2
reasoner,” Journal of Automated Reasoning, vol. 53, no. 3, pp. 245–269, 2014.

[94] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical
owl-dl reasoner,” Web Semantics: science, services and agents on the World
Wide Web, vol. 5, no. 2, pp. 51–53, 2007.

[95] A. Steigmiller, T. Liebig, and B. Glimm, “Konclude: system description,” Web
Semantics: Science, Services and Agents on the World Wide Web, vol. 27, pp.
78–85, 2014.

[96] B. Motik and U. Sattler, “Practical dl reasoning over large aboxes with kaon2,”
Submitted for publication, 2006.



156

[97] “BAO GitHub,” last visited on 12/04/2017. [Online]. Available: https:
//github.com/BioAssayOntology/BAO

[98] A. M. Clark, N. K. Litterman, J. E. Kranz, P. Gund, K. Gregory, and B. A.
Bunin, “Bioassay templates for the semantic web,” PeerJ Computer Science,
vol. 2, p. e61, 2016.


	University of Miami
	Scholarly Repository
	2018-05-06

	KNowledge Acquisition and Representation Methodology (KNARM) and Its Applications
	Hande Küçük McGinty
	Recommended Citation


	dissertation_05_06_18.pdf

