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We propose an alternative to Wi-Fi for robotic communication, as its increased use

in a competition environment has lead to highly overlapping and interfering networks.

This interference often causes unreliable transmission of data, which affects teams’

ability to coordinate complex behaviors. Our method uses fixed length Dual Tone

Multi Frequency (DTMF) messages and uses a basic packet structure designed to

reduce data corruption as a result of noise. We conducted twelve different experiments

varying the distance between robots and message format, as well as whether the robots

are walking or sitting silently. Methods for scheduling messages to avoid crosstalk

were also developed and tested. The results show that while this method appears to

be sensitive to motor noise, room reverberation and multipath effects, it has very low

data corruption rates, which makes it suitable for use in some applications.
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Chapter 1

Introduction

For most autonomous robotics tasks involving multiple robots, some level of com-

munication is crucial for coordinating complex actions to achieve a desired goal. A

popular method of communication between robots (especially in RoboCup) is Wi-Fi.

With hundreds of robots communicating on several independent overlapping Wi-Fi

networks, interference is rampant, often causing network delays of several seconds,

and in the worst cases, dropping entire connections altogether. It is therefore desirable

to have an alternative method of communication, which, while possibly inferior to a

strong Wi-Fi connection, is useful in situations where Wi-Fi has become unusable. Of

course, the usefulness of an alternative communication method extends beyond just

Wi-Fi. Any system which might encounter a catastrophic level of interference could

benefit from having a backup communication scheme.

There are a few potential candidates to consider when looking for ways to trans-

mit data from one robot to another. One possibility is using visual communication,

controlling LEDs on the robot to send data through the visible or infrared spectrum.
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This approach might actually have the greatest bandwidth between robots, as noise in

the infrared spectrum tends to be relatively low, and the sensors would not be sensi-

tive to vibrations of the robot; but these positive attributes come at a cost. The NAO

robot, a humanoid robot engineered by Aldebaran (SoftBank) robotics, has infrared

LEDs and sensors only on the front of it’s head, meaning that any communicating

pair of robots must keep their faces aligned towards each other, much like directional

antennas. This also makes it difficult to communicate between more than one robot

at a time. Panfir et al. (2013) were able to use these infrared sensors to communicate

between two NAO robots in order to coordinate their actions for manipulating large

objects. The major caveat to visual communication is that it is line-of-sight only; if

one robot moves in front of another or turns so that its LEDs are no longer visible,

the channel is interrupted. Other kinds of visual communication might even involve

using the robot’s physical movements to encode data in some way, and then recover

the pattern using a camera. This is even more problematic than the infrared commu-

nication scheme as it would require complex vision algorithms for detecting signals,

which are often not suitable when processing power is limited, not to mention the

extremely low bandwidth afforded by articulating motors and body parts. Addition-

ally, all of these methods suffer from the inability to transmit information among all

robots simultaneously, which in the fast-paced domain of robotic soccer, is certainly

desired.

Another, more favorable possibility for an alternative communication system is to

encode data as audio, and broadcast it via loudspeaker. This does not suffer from the

same problems as visual communication because sound waves travel around obstacles,
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and analyzing audio samples can be done fairly efficiently. The caveat to this approach

is that there tends to be much more noise in ambient sound waves than there are in

electromagnetic waves, especially when the microphones are attached to a moving

and vibrating robot. The channel could also be negatively affected by multi-path

effects; if the same message echoes off of a distant wall, the same message may arrive

at a receiving robot at slightly different times, causing self-interference. The method

would, however, enable robots to broadcast their state information simultaneously to

all of the other robots, without placing too many constraints on robot positioning

or alignment (the only requirement being that robots should not be too far away).

While broadcasting allows one robot to transmit to many receiving robots, it does

not permit multiple robots to share their states at the same time; messages must be

carefully timed so that they do not collide (making both messages irrecoverable).

There are numerous methods of modulating waves to carry digital information.

Some methods, such as Pase Shift Keying (PSK) and Frequency Shift Keying (FSK)

operate by modulating intrinsic properties of a carrier wave. PSK switches between

different phases of the same frequency to signal bits, and is therefore sensitive to

sudden changes that affect the perceived phase of the wave, such as the distance

between the transmitter and receiver or reflections of the signal off of nearby walls.

Unfortunately, robots tend to be moving around constantly, which makes this method

less suitable than others. FSK signals bits by switching between two (or more) fre-

quencies, and while it is less sensitive to motion, it is sensitive to unpredictably noisy

environments such as the internal noise of a robot. For our work, we choose a different

method, Dual-Tone Multi-Frequency (DTMF) signalling, because it does not exhibit
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the same sensitivity to sudden phase shifts as PSK, but should also be less sensitive

to noise, since it requires correlating multiple simultaneous frequencies to construct a

single symbol. Our research shows that the DTMF method, while unreliable in cer-

tain conditions, can be used to broadcast messages with low probability of message

corruption.

Much research has been devoted to audio signals featuring humanoid robots, espe-

cially in the past decade. Audio signals can be important sensory information as they

can be used for various purposes, whether for the communication between multiple

robots, the detection of audio cues in the environment or game events such as whistles,

using the audio signals to improve self-localization, or even detecting problems with

the robot’s own hardware. A demonstration within the RoboCup Standard Platform

League (SPL) in 2013 in Eindhoven by the team RoboEireann revealed how difficult

it is to communicate between NAOs on the soccer field in a noisy environment.

This thesis is organized as follows: we discuss relevant work in the next chapter

and describe our approach in Chapter 3. A more detailed description of the im-

plementation process is described in Chapter 4. Our experimental set-up and the

conducted robot tests is explained in Chapter 5. In Chapter 6 we briefly summarize

our work in 6.1, discuss the pros and cons of our method and its results in Section

6.2, and conclude and outline future work in the remaining Section 6.3.



Chapter 2

Related Work

When consulting the literature, one finds a number of research papers that relate

to our work. We include work that is not only related to communication, but also

work that develops audio processing techniques for sensing the environment, since

communication and sensing are inherently related. Saxena and Ng (2009) present a

learning approach for the problem of estimating the incident angle of a sound using

just one microphone not connected to a mobile robot. The experimental results show

that their approach is able to accurately localize a wide range of sounds, such as

human speech, dog barking, or a waterfall. Sound-source localization is an important

function in robot audition. Most existing research investigates sound-source local-

ization using static microphone arrays. Hu et al. (2011) propose a method that is

able to simultaneously localize a mobile robot and in addition to an unknown number

of multiple sound sources in the vicinity. The method is based on a combinatorial

algorithm of Difference of Arrival (DOA) estimation and bearing-only Simultaneous

Localization and Mapping (SLAM). Experimental results with an eight-channel mi-
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crophone array on a wheeled robot show the effectiveness of the proposed method.

Navigation is part of another study where the authors developed an audio-based robot

navigation system for a rescue robot. It is developed using tetrahedral microphone

array to guide a robot finding the target shouting for help in a rescue scenario (Sun

et al. (2011)). The approach uses speech recognition technology and a Time DOA

(TDOA) method. The authors claim that the system meets the desired outcome.

Another recent application of audio based communication has been developed by

Sauer et al. (2014) for the purpose of facilitating control and adjustment of hearing

aids by using high frequency audio signals sent from a smart phone. Their technique

involves fully redundant transmission by sending the same control signals across mul-

tiple different frequencies, so that in the case of environmental noise masking one

frequency, there is a higher chance that the control codes can still be recovered by

the earpiece.

Mullins et al. (2012) describe a method for robot navigation in a swarm using

Diffusion Limited aggregation (DLA). Their approach is inspired from the foraging

behavior of Escherichia coli bacteria, which performs a gradient search based on

the diffusion of nutrients in its environment. In order to apply this technique to

their e-puck robots, they used audio signals as the diffusion medium; the greater

the distance between two robots, the more diffuse the signals between them become.

These signals were then used in a protocol designed to allow robots with a low battery

to get assistance from neighboring robots in order to find a path back to a charging

station. Due to hardware constraints, they performed large scale tests in a simulated

audio environment. The authors offer this method as a proof of concept, showing
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that single-agent bacterial search and DLA-based collaborative search can be useful

methods in a distributed system and that audio is an acceptable medium for these

methods.

Audio communication is also useful in some underwater applications as shown by

Wills et al. (2006), who developed an acoustic modem for low power communication of

underwater seismic sensor networks. Their approach involves using an Atmel ATmega

128L microcontroller and other specialized hardware to send packets by modulating

underwater acoustic waves using Frequency Shift Keying (FSK). In order to adhere

to their low power constraint, they use a wake-up signal of 18kHz so that they do

not need to run the controller continuously, but only when an incoming message is

imminent.

Nakamura et al. (2012) present a framework of 3D Sound Source Localization

(SSL) by Multiple Signal Classification achieving both high-resolution and real-time

processing and apply it to a robot. They use a trilinear interpolation to their previ-

ously published Frequency- and Time-Domain Linear Interpolation. This extension

generates transfer functions in 3D space with desired resolution by a small number of

pre-measured 3D transfer functions in low resolution. Athanasopoulos et al. (2012)

describe a TDOA-based sound-source localization method that successfully addresses

the influence of a robot’s shape on the sound-source localization. The evaluation is

made with the humanoid robot NAO. The authors state that this approach allows to

achieve reliable sound-source location.

ASIMO, the remarkable humanoid developed by HONDA also uses the auditory

system for its tasks. An early paper from 2002 introduces the use of a commercial
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speech recognition and synthesis system on ASIMO. The authors state that the audio

quality and intonation of voice need more work and that they are not yet satisfactory

for use on the robot (Sakagami et al. (2002)). Okuno et al. (2011) present a later

version of ASIMO’s ability to use the auditory system for tasks at hand. They use

the HARK open-source robot audition software (Nakadai et al. (2010)) and made

experiments with speech and music. The authors claim that the active audition

improves the localization of the robot with regard to the periphery.

Speech/dialogue based approaches for the NAO also exist. Kruijff-Korbayová

et al. (2011), e.g., present a conversational system using an event-based approach for

integrating a conversational Human-Robot Interaction (HRI) system. The approach

has been instantiated on a NAO robot and is used as a test bed for investigating child-

robot interaction. The authors come to the conclusion that the fully autonomous

system is not yet mature enough for end-to-end usability evaluation.

More recent work, such as the paper by Wrede et al. (2013) suggest that significant

background noise presented in a real HRI setting makes auditory tasks challenging.

The authors introduced a conversational HRI dataset with a robot inducing inter-

active behavior with and between humans. The paper however does not discuss the

auditory methods used in detail. We assume that the authors use the standard audi-

tory recognition that comes with the NAO.

Carrara and Adams (2014) have shown that audio communication between ma-

chines is possible and practical for covert transmission of data in an office environment

between computers in a manner which is imperceptible to humans. By using frequen-

cies just above the human hearing range of about 20kHz - 20.5kHz they were able
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to transmit data at a rate of 140 bps, and were able to achieve 6.7 kbps when using

audible frequencies between 500Hz and 18kHz.

Very recent work by Guri et al. (2016) shows how data can be exfiltrated from an

air-gapped computer with no installed audio hardware by controlling the armature

of the computer’s hard drive. The disk’s read/write head is oscillated to produce

audible frequencies, which can be picked up by a nearby mobile device. This was

achieved by examining the anatomy of the hard drive and analyzing its acoustical

properties. The authors were able to transmit data at a rate of 180 bits per minute

over a distance up to two meters away.

Kirovski and Malvar (2001) have developed a robust, covert communication

method over a public audio channel for the purposes of watermarking. Since there

are numerous methods of trying to remove a watermark from a digital file, the au-

thors wanted to make a watermark embedding and detection method that could

still recover the information after any of these distortions had been applied. They

accomplished this by using both a spread-spectrum technique, and psycho-acoustic

frequency masking.

All mentioned approaches and techniques so far differ from our approach (a) in the

method used, (b) in the application of the audio recognition, and (c) the RoboCanes

framework, a robotics framework developed by the RoboCanes robotic soccer team

at the University of Miami. Here, all audio modules have been implemented from

scratch and run within the framework’s system loop.

Nguyen and Bushnell (2004) have suggested that acoustic communication using

DTMF is, in general not, recommended for mobile robot applications due to the
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unreliability in acoustical integrity of the signal during transmission. While their

transmission methods are similar, there are key differences in the recognition methods

used: the frequencies used in their experiments are the generic set of frequencies used

in telecommunications (which lie in a range prone to environmental noise). We sought

to experiment with different sets of frequencies, chosen for specific empirical reasons,

and to overcome signal degradation through robust filters.

Other uses of DTMF technology for robotic communication have been explored

apart from acoustical environments. Srivastava et al. (2014) and Aswath et al. (2013)

have used DTMF with mobile phones for long range control of robots. Each of these

works uses a mobile phone directly connected to embedded hardware and the signal

is transmitted through RF, not acoustically.



Chapter 3

Approach

3.1 General Approach

There are many methods for transferring data over analog media, but most are not

suitable for communicating over the open air waves with a moving, noisy robot. Some

of the challenges presented by this domain are relatively high noise levels (which can

be unpredictable, especially in a robotics competition environment), interference from

the internal vibrations of the robot (such as motors, fans, and stressed plastic), and

unknown/changing distance between communicating robots. The latter of the above

challenges means that using a Phase Shift Keying (PSK) method would likely perform

poorly, since the data is embedded in the phase of the carrier wave. As a robot moves

closer or further away from the sender, the distance – and thus the phase of a signal

– will drift. This effect would be particularly prominent in systems which use high

frequency carrier waves, as their wavelengths are very short and thus sensitive to

small changes in distance. Frequency Shift Keying (FSK) handles the problem of the

11
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robots moving around since humanoid robots rarely reach speeds that would affect

the frequencies via the Doppler effect, but they have a different weakness since single

tones are modulated between two or more frequencies. Interference on one of those

frequencies is likely to cause a data corruption error.

The Dual-Tone Multi-Frequency (DTMF) signaling method was developed at Bell

Labs and was used in push-button telephones starting in 1963. It uses eight different

frequencies, divided equally into two groups: four low pitched tones and four high

pitched tones (Dodd (2002)). Symbols are transmitted by combining one frequency

from the set of low frequency tones and one frequency from the set of high frequency

tones using additive synthesis followed by a short period of silence and playing the

resulting signal through a loudspeaker. The number of bits which can be transmitted

through one symbol for a generalized DTMF scheme with a frequency groups, each

with b frequencies is log2 b
a. Since we use the typical two groups of four frequencies

each, we can send log2 42 = 4 bits at a time. Sending arbitrary bytes of data is

convenient, since bytes can be broken into two four-bit codes, which allow a direct

mapping to the sixteen possible symbols of DTMF.

This method is less prone to errors than FSK in noisy environments because if the

probability of random noise coinciding with a chosen frequency f is P (f) , then prob-

ability of random noise emulating two chosen frequencies f1 and f2 simultaneously

is P (f1) · P (f2). This assumes that the probability of random noise producing each

of the two frequencies is independent of each other. However, frequencies in open-

air environments are often not independent; while many sounds have a fundamental

frequency, they are often accompanied by harmonic frequencies. Usually, the higher
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the multiple of the fundamental frequency a harmonic is, the lower the amplitude of

that harmonic. This means that the most highly correlated frequencies in any noisy

environment tend to be ratios whose numerator and denominator are small integers;

since either f is the fundamental frequency, or f is some harmonic fn of some other

fundamental frequency f1 = 1
n
fn, and is related to the other harmonics of f1 by

fk = k
n
fn.

Since the frequencies present in general noisy environments are not known before-

hand, we cannot choose frequencies which avoid the harmonics present in the signals.

We can, however choose frequencies whose ratios are not fractions with a small nu-

merator and denominator. To achieve this, we divide our window length ws by prime

numbers p in the range of 2 ≤ p ≤ ws

2
in order to determine the appropriate number

of samples per period for the low and high tones. The frequency is then calculated

by dividing the sample rate by the number of samples per wavelength. This method

of selecting frequencies ensures that they share only distant harmonics while making

sure that there are at least two periods of each frequency per window.

Another limitation of which frequencies can be used is the Nyquist limit, which

is the maximum representable frequency based on a certain sample rate (Nyquist

(1928)). Nyquist himself was interested in the maximum transmission rate of tele-

graph messages The Nyquist limit is precisely half of the sample rate, since to rep-

resent an oscillation, at least one sample is needed for a crest, and another for a

trough; each wavelength must therefore be composed of at least two samples. Since

our sample rate is 48kHz, the Nyquist limit is 24kHz. This is why the upper limit for

usable primes is ws

2
, as the buffer cannot represent frequencies with wavelengths that
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are shorter than two samples. As can be seen in Table 3.1, our highest frequency was

less than 13kHz, because the microphones in our NAO robots have poor frequency

response above that range.

Table 3.1 also shows the chosen prime numbers for dividing the window length,

which is 2,400 samples, as well as the number of samples per wavelength, µ. Notice

that the frequencies are well below the Nyquist limit, thus the chosen frequencies

can be properly represented at the chosen sample rate. Also, with between 500

and 600 wavelengths per window, we should expect to get accurate readings for our

magnitudes.

f p µ Hz

l1 503 4.771 10,060
l2 521 4.606 10,420
l3 541 4.436 10,820
l4 557 4.309 11,140
h1 571 4.203 11,420
h2 587 4.089 11,740
h3 599 4.007 11,980
h4 607 3.954 12,140

Table 3.1: Frequencies Used for the Low and High Frequency Groups

3.2 DTMF Transmitter

The transmitter sends encoded data as DTMF symbols through open-air sound waves.

The encoded data can easily be converted to playable waveforms by isolating four bit

segments of the message (conveniently represented as a hexadecimal-digit) and then

using table 3.2 to determine the appropriate frequency pair for that symbol. The two

frequencies are combined using additive synthesis. Each waveform is pre-computed

and simply indexed by each four bit section of the message. The gain of each DTMF
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tone is gently faded at the end as to avoid discontinuities which result in undesirable

pops and clicks in the resulting audio signal resulting from waveforms ending with

non-zero samples.

h1 h2 h3 h4

l1 0 1 2 3
l2 4 5 6 7
l3 8 9 A B
l4 C D E F

Table 3.2: Frequency/Hexadecimal Encoding/Decoding Table
li and hi indicate the low and high frequency groups.

3.3 DTMF Receiver

The receiver works very differently from the transmitter. This is mostly due to the

fact that everything has to work in reverse: going from audio samples to decoded

digital data. The process is illustrated in Fig 3.1. Recorded audio is passed in

windows of samples through a series of Goertzel filters (Goertzel (1958)) to isolate

the desired frequency magnitudes. This is done continuously on the new recorded

samples, which generates a stream of vectors of frequency magnitudes (see Fig. 3.2).

This stream of Goertzel responses is then analyzed in two more steps. First, we need

to identify sequences in the magnitudes that have enough similarity with a message.

If a sequence has been identified as message, the symbols are decoded and the robot

has received a message.

The first step is to capture audio data from the robot’s microphones. We acquire

our audio samples from the Advanced Linux Sound Architecture (ALSA) (van de Pol

et al. (n.d.)), and use a 2,400 sample sliding window, advancing the window by half
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Figure 3.1: Illustration of the decoding process

of its length after each analysis step. With a sample rate of 48,000, this means we are

effectively performing 40 analysis steps per second of audio data. The window length

was chosen such that it would not overlap two separate DTMF symbols. The part of

the waveform corresponding to a symbol is referred to as the mark, the other part of

the waveform is called the space. We have chosen the lengths of the mark and space

to each have durations of 100ms, so both take up 4,800 samples. Thus, the window

lies either completely in mark, completely in space, or some combination of the two,

but will never span the gap and include samples from unrelated symbols. Since the

window advances by half of its width after each step, we are guaranteed that at least

one window will be completely filled with samples from the mark.

Before measuring the frequencies, we pass the samples through a Hann window-

ing function to reduce aliasing, which is when two different frequencies, sampled
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periodically, yield the same magnitudes (Harris (1978)). Such signals would be indis-

tinguishable to a Discrete Cosine Transform (DCT), so if one of these frequencies is

present in an incoming signal, the DCT would measure higher magnitudes for both

frequencies. Without a window function, the effective window is rectangular. Since

the DCT needs to fit this non-periodic shape with periodic functions, many higher

frequencies must be used together to approximate the rectangular shape, even though

those frequencies might not exist in the raw continuous signal. The Hann window is

very effective at reducing aliasing, which is why we chose it for this application.

The next step is to perform frequency analysis on the windowed data. It would

be sufficient to perform a DCT on the sample window, but there are only eight

frequencies used in the messages. Therefore, it is more efficient to use multiple passes

of the Goertzel algorithm, one for each frequency. This leaves us with a vector of

magnitudes for the eight frequencies.
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Figure 3.3: Peaks corresponding to output of the comb filter

We keep a history of the last several seconds of magnitudes and also keep a record

of the sum of the magnitudes of each frequency over time. We use these frequency

sums in order to detect the presence of a message before using the individual frequency

magnitudes to decode the message. A comb filter with delay equal to the separation

between DTMF symbols and length equal to the number of symbols per message is

used to detect when a message is heard. The comb filter is a Finite Impulse Response

filter which adds a delayed version of the signal to itself (Smith (2010)). This is a filter

that has the strongest response if the sum of the magnitudes of the eight frequencies

are high in exactly the positions selected by the comb filter.

Since the comb filter accumulates the magnitudes of the tones until the end of

the message, when the comb filter begins to discard older tones, the sums develop a

triangular pattern consisting of distinctive peaks in ascending and descending mag-

nitudes as in Fig. 3.3. The overall shape formed by the peaks can be evaluated for
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symmetry. If one peak exceeds a defined threshold and the surrounding peaks are

close enough to the triangular shape, the message is accepted.

The position of the maximum peak is exactly the end position of the message.

We can find all measured frequency magnitudes at the message marks at the corre-

sponding positions in the buffer relative to the end of the message. The appropriate

magnitude vectors can be revisited and evaluated for the maximum low and high

frequencies to decode the message.



Chapter 4

Implementation

4.1 Tools

Leading up to the full implementation of the communication system, a few tools are

critical for prototyping and developing an audio based data channel. These include

both external libraries and and tools which were created specifically for this work.

Of primary importance in this regard, has been ALSA, which allows access to and

control of any installed audio devices, including microphones and speakers. ALSA

supports many advanced configurations of these devices, which unfortunately greatly

complicates its interface. For this reason, we found it useful to create C++ wrap-

per classes to encapsulate the desired functionalities (reading microphone data and

controlling the speakers) in order to avoid juxtaposing signal processing code with

yet more complicated library calls. These wrapper classes were used throughout the

project whenever control of an audio device was needed.

20
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Another important tool is the “Fastest Fourier Transform in the West” (FFTW)

library for frequency analysis of the incoming audio signal. FFTW is indeed currently

the fastest implementation of the Fast Fourier Transform, which was desired due to

the limited processing power of the NAO Robot, and the 48kHz sample rate required

to clearly resolve the high frequency tones used for transmission.

The RoboCanes framework allowed for the integration of this communication sys-

tem into several modules for the purpose of providing an backup for Wi-Fi. The

framework is used as an organizational tool, but also serves the purpose of a platform

for this system to run on. Indeed there is little need for a backup communication

system if there isn’t an agent to use it.

The tools discussed above had already contributed to the success of a previous

project regarding the recognition of a whistle used to signal the beginning of play for

robotic soccer matches in RoboCup’s Standard Platform League. For this task, we

used logistic regression, using the frequencies from FFTW as features. This worked

very well, since whistles have many harmonic frequencies that allow them to be easily

differentiated from other kinds of sounds. Following the success of that project, we

decided that the same tools should be used to implement the communication system.

After gaining more familiarity with the problem of transmitting data over broad-

cast audio signals, we realized that the Goertzel Algorithm for computing individual

DCT coefficients of a signal would be more efficient than a full FFT, since we only

needed to analyze eight frequencies. The use of the Goertzel Algorithm for analyzing

frequency amplitudes also improved the accuracy of the analysis, since it can compute

the magnitude of a specific frequency band directly, instead of using the coefficient
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of the nearest FFT bucket, as would be required for the FFTW based approach.

4.2 A Standalone Program

Instead of developing the audio communication system directly on our robot’s modu-

lar framework, we decided to start by creating a smaller stand-alone program designed

specifically with audio processing in mind. This meant we could focus more on the

issues specific to our goal, while being insulated from the extra complexity of de-

veloping and testing from within the RoboCanes framework. The resulting program

was called ALSA DTMF, combining the acronyms of the library used and the imple-

mented method of transmission, Dual-Tone Multi-Frequency coding. ALSA DTMF

proved to be a quite versatile program, with various usage modes; it could behave as

a transmitter and receiver, as well as numerous other functionalities such as recording

and playing audio to and from files in the WAV format, or analyzing recorded audio

files for messages.

The architecture of the ALSA DTMF program was designed to have an input

module and an output module. The input module’s purpose was to provide the audio

stream data; multiple implementations of this module were developed to be able to

produce an audio signal from different sources: microphones, WAV files, and binary

messages to be transmitted. The output module’s purpose was to process the audio

stream, and, similar to the input module, multiple implementations were made to

cover range of functions, including playing the stream through the speakers, writing

it to a file, or decoding the audio signal back into binary messages. Any pair of input
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and output modules can work together, allowing for numerous useful combinations.

The program can behave as a transmitter by connecting the data input module with

the audio output module, or as a receiver by using the microphone input module

and the detector output module. A few other useful combinations exist, like the

data input module paired with the detector output, which tests data recovery after

converting it into an audio signal, but without the noise of broadcasting the signal

over the air.

One problem arises from using these independent input and output modules

though, and that is one of timing. The audio input module must repeatedly read

data off of the audio device to prevent a buffer overrun, and similarly the audio

output module must provide a signal to the speakers periodically to avoid a buffer

underrun. Since the relative timings of these modules are independent of other mod-

ules which read from a file or analyze incoming signals, we decided that it would

make sense to have the input and output modules run in separate threads. Using the

producer/consumer model of concurrency, each module is given access to a common

queue and a mutex which regulates which thread is allowed to modify the queue.

While some modules perform a fairly trivial task, such as reading from or writing

data to a file, two modules are worth explaining further as they encapsulate the

transmitter and receiver code. The former’s purpose is to convert raw binary data

into an audio signal that can be broadcast, and the latter’s purpose is to perform

the inverse: to reconstruct the original message from an incoming signal. However,

before we can get into the inner workings of these modules, we must first take a look

at some of the program’s initialization.
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When the program is started, it reads a configuration file to determine which

frequencies to use (four “low” frequencies and four “high” frequencies), how long it

should play each symbol (this is called the “mark”), and how much space to leave

between them (appropriately named, “space”). For efficiency, the symbols are pre-

computed in this initialization step, since computing each sample of each waveform

requires calling the trigonometric sine function which would be too slow to perform in

real time. A symbol is made from two pure sine waves, one with a frequency selected

from the low set of frequencies, and the other selected from the set of high frequencies.

These sine waves are then added together; this process is called additive synthesis,

and is what allows us to perceive multiple tones being sounded at the same time.

This is enough to produce an audible tone, but when the symbol terminates, and the

speaker begins playing silence, a loud click will be heard. This is because the last

sample of the symbol leaves the speaker cone in a position that is probably far away

from where it will be when it is playing silence, causing the cone to rapidly move to

the “zero” position. It is this rapid adjustment that causes the click. We wish to

remove this click, as it can interfere with frequency analysis, and can also be quite

annoying to humans. A simple solution is to multiply each sample by an attenuation

factor that is linearly interpolated from 1.0 to 0.0 near the end of the tone. This

way, no matter what amplitude the wave form terminates with, the sample values

will approach 0 by the end of the tone. Listing 4.1 shows the code that generates the

waveforms corresponding to each symbol.
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void Common::generate_tone_buffer() {

// for each pair of low and high frequencies

for(int i = 0; i < num_low_freqs; i++) {

for(int j = 0; j < num_high_freqs; j++) {

float f1 = lower_freq[i];

float f2 = higher_freq[j];

// for each sample in the current tone buffer (leaving space for

channels)

int total_samples = MARK_SAMPLES * CHANNELS

for(int k = 0, x = 0; k < total_samples; k += CHANNELS, x++) {

// calculate the angle for a 1hz signal

float unit_hz = 2 * M_PI * x / SAMPLE_RATE;

// compute k_th sample, the sum of both signals at time x

// amp_low and amp_high are adjustable magnitude coefficients for

each frequency

tone_buffer[i][j][k] = (short)amp_low [i] * sin(f1 * unit_hz);

tone_buffer[i][j][k] += (short)amp_high[j] * sin(f2 * unit_hz);

// fade out samples near the end of the buffer

float dist_to_end = total_samples - x;

float fade = 1.0;

if(dist_to_end < FADE_LENGTH){

fade = dist_to_end/FADE_LENGTH;

}

tone_buffer[i][j][k] *= fade;

// copy k_th sample to the remaining channels

for(int l = k + 1; l < k + CHANNELS; l++) {

tone_buffer[i][j][l] = tone_buffer[i][j][k];

}

}

}

}

}

Listing 4.1 Code that generates each of the 16 DTMF symbols
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Now that we have explained how the waveforms for each symbol are initialized, the

signal generation module is actually quite simple to implement. Since there are a total

of sixteen DTMF symbols, each symbol represents exactly four bits of information.

The module receives a byte of data from its input stream and breaks this byte into

two four bit codes. The first code (with the most significant bits of the original byte)

is used to index into the precomputed symbol buffer so that each code maps to a

unique DTMF symbol. Following this first symbol is a period of silence before the

whole process is repeated for the second half of the byte. This is repeated for every

byte in the input stream until there are no more data to send.

The recovery of this signal is a much more difficult process, as we must filter

out noise, obtain the amplitudes of the desired frequencies, detect impulses in those

frequencies over time and correlate them with each other to determine the alignment

of the message, and finally reconstruct the original stream of data. In the following

paragraphs we will justify our chosen solutions to these challenges.

Filtering noise and performing frequency analysis are closely related. Since we

wish to focus on the changes of specific frequencies over time, we could simply use

our implementation of the Goertzel algorithm to extract that frequency’s magnitude,

but we will then have problems with what is called Aliasing. Aliasing is a problem

that arises when sampling a signal; if two specific frequencies are sampled periodically,

the sampled signals may appear to be identical, even though they are quite different

in reality. Thankfully, there are methods to reduce aliasing, such as using a Hann

window instead of the default rectangular window. A Hann window reduces aliasing

at the expense of local frequency resolution; that is, the magnitudes of frequencies
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nearby to our desired pitch will leak into its measured magnitude, while frequencies

that are far from the selected frequency will tend not to interfere. This reduces

aliasing because signals which alias to the same sample values tend to be distant

from each other in the frequency domain.

Having passed the time domain samples through the Hann window, it is now time

to perform the frequency analysis, which we accomplish by using the aforementioned

Goertzel algorithm. We show an unoptimized version of our implementation of the

Goertzel algorithm in Listing 4.2. The Goertzel algorithm uses a type of Infinite

Impulse Response filter, which means that all previously encountered samples (within

the current frame of analysis) play at least some role in the filter’s output, as opposed

to a Finite Impulse Response filter, in which only a fixed number of samples contribute

to the filter’s output. The algorithm only needs to access each sample once, making it

much more efficient than a full DCT. In our implementation of the Goertzel algorithm

we attempt to further improve performance in practice by unrolling its loop by a factor

of 50 to reduce the overhead involved in incrementing index variables and testing exit

conditions.

The Goertzel filter is applied to a set of samples, produces the magnitude of

the desired frequency, and then is applied again with the window shifted forward in

time by half of the window length. This is to ensure some continuity in the output

magnitudes and also improves accuracy, since parts of the signal near the edges of the

window are rather severely attenuated by the Hann window function. This is because

samples near the end of the window in one frame of analysis end up in the middle of

the window for the next frame once the window has been advanced.
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double Detector::goertzel(TwoBuffer &buf, double frequency, int x, int

length) {

// variables for the Infinite Impulse Response filter (IIR)

double q0, q1, q2;

q0 = q1 = q2 = 0;

// coefficient derived from frequency

double coef = 2 * cos((PI_2 / SAMPLE_RATE) * frequency);

double scale = messageLength / 2.0;

double min = 100000;

double max = -100000;

double val;

// find the min and max sample magnitudes in the window

// these are used to transform the range of sample magnitudes

// to between 0.0 and 1.0

for(int i = x; i < x + length; i++) {

val = buf.get(i * CHANNELS);

min = (val < min ? val : min);

max = (val > max ? val : max);

}

// pass the IIR filter over the sample buffer

for(int i = x; i < x + length; i++) {

q0 = ((buf.get(i * CHANNELS) - min) / (max - min)) + (coef * q1) - q2;

q2 = q1;

q1 = q0;

}

// final calculation of magnitude

return ((q1*q1 + q2*q2 - q1*q2*coef) / (scale*scale));

}

Listing 4.2 Our unoptimized implementation of Goertzel’s algorithm

The detection of impulses in the incoming signal is performed by dividing the fre-

quency magnitudes obtained from Goertzel’s algorithm by the maximum magnitude

for that frequency in the last ten message lengths. This is done because the magni-

tudes of the different frequencies often have different scales, and assuming that the

loudest magnitude in the buffer was caused by a DTMF tone, magnitudes near that

maximum will result in a value close to (and at most) 1.0, indicating that it is also

probably a DTMF tone. This data can be more easily thresholded, since all values
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are on a scale from 0 to 1, though a loud impulse of noise on one of the frequencies,

will likely reduce its sensitivity temporarily. These calculated values are summed up

across each frequency and stored in another ring-buffer for the purpose of discovering

the message alignment.

In order to obtain the message alignment, we pass this ring-buffer through a comb

filter, summing values separated by the amount of time between symbols for the

number of symbols expected in a message. As a message comes into alignment with

the filter, the filter output higher and higher values, until it reaches a maximum when

the message and filter are optimally aligned. Subsequently, the filter output reduces

gradually as the message moves further from its proper alignment. The output of this

filter as it passes over a message therefore takes a triangular shape. We detect the

peak of this triangular shape by measuring the symmetry of the surrounding values.

The symmetry of the values is measured by first taking a discrete derivative of the

last five samples, and negating the second half of the resulting four values. Then

the error between corresponding symmetric elements (values that are opposite each

other across the center of the triangle) is obtained by taking the sum of the absolute

values of their differences. We assume that the error in symmetry is Gaussian, so

we pass the error value through a Gaussian filter with a standard deviation of 0.5.

We then multiply this value by the product of all of the derivative values. This final

number is somewhat of a confidence factor; if the symmetry error is high, then the

Gaussian function will give a very low value, ensuring the current alignment will not

be considered. However, if the values do not take a triangular shape and instead

are flat (with very little deviation), the Gaussian filter is likely to give a high value,
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which is why we multiply by the product of the differences of the magnitudes; if

the differences are small, the confidence value will also be very low. When a peak

is detected in the last three confidence values, and the peak is above a threshold of

0.25, then we consider the message to be properly aligned.

Once the message alignment has been determined, the only remaining step is to

recover the encoded data into binary. For each set of magnitudes that align with a

symbol in the message, the two largest values and their corresponding frequencies are

determined. If the frequencies correspond to a valid DTMF tone combination – that

is, one of the lower frequencies combined with one of the upper frequencies – then

the four bit value is placed in the next sequential position in the output buffer. In

the case of the ALSA DTMF program, this output buffer is simply printed to the

standard output, but for this method to be useful to RoboCanes, the output needs

to be decoded so that it can update different representations and beliefs. Similarly,

the data to be transmitted via the audio signal must be determined from within the

agent.

4.3 Integration into the RoboCanes Framework

Integrating the modules from ALSA DTMF into the RoboCanes framework proved

to have its own challenges. One problem is that if multiple robots attempt to trans-

mit information at the same time, then the messages will interfere with each other,

and often neither message will be received by the other robots. It is important to

mitigate this source of interference, so we have tried two scheduling strategies. The
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first approach does not assume time synchronization between all robots. Instead

each robot calculates its next transmission time based on the ID of the most recent

message’s sender. The second strategy assigns each robot a dedicated time slot in

which only that robot is allowed to transmit. This second strategy does require time

synchronization before it can work properly, but it does ensure that the robots will

not transmit at the same time.

The first scheduling strategy defines an transmission queue ordered by the robot’s

ID, and selects an initial robot as the first transmitter. After a short delay to ensure

all robots have initialized, the first robot transmits a message. Ideally, all of the

other robots hear this transmission and, based on the ID of the sending robot, can

calculate the expected time before it is their turn to transmit. For example, if the

third robot receives a message from the first robot in the schedule, it knows that it

needs to wait for the second robot’s transmission before it can safely send a message.

Even if the third robot does not receive the second robot’s transmission, it can still

transmit at the appropriate time. This process continues through the list of robots

and wraps back around to the first robot once all other robots have transmitted. One

of the benefits to this solution is that it takes little setup; there is not synchronization

required. Though the robots sometimes miss messages or transmit at inappropriate

times, the schedule tends to self correct. Often, enough robots are able to hear enough

correlated messages to establish a new schedule if the old schedule has been violated.

The second and more successful scheduling method is actually simpler, but re-

quires that the robots’ clocks be synchronized before playing. In this case, the robots

can directly calculate a shared transmission schedule, again based on the robot’s ID,
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but even if a robot’s microphones are inoperative, rendering it unable to receive a

signal, it can still participate in communication, since it does not need knowledge

of other robots’ messages. The obvious caveat to this approach is that if the syn-

chronization step is not performed before a game, then there is almost no hope for a

properly functioning shared communication channel.

For the purposes of testing, a third scheduling mode was developed which simply

uses one robot to continually transmit messages separated by a short period of silence,

while all other robots are only listening for messages. This allowed for more controlled

experiments; the transmitting robot would remain stationary and the experimental

variations (such as varying the distance, or the activity level) could be applied to just

the receiving robot.

4.4 Room Acoustics Simulation

Once we had performed our first experiments, we sought to explain some of the phe-

nomena we observed. Particularly, we observed an unexpected relationship between

the distance to the receiver and the number of dropped messages. It was expected

that the furthest robot would have the most difficulty receiving messages, yet the

experiment indicated that the mid-range robot experienced the most error. We hy-

pothesized that this was due to the echoing and reverberation of sounds throughout

the room, but without a multitude of microphones or robots, this hypothesis would

be difficult to confirm. The solution we found was to create a (rough) 2-dimensional

simulation of the testing conditions.
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The simulation consists of 800 grid points initialized to small random values, a

sound source (a “speaker”) and three “microphones”. The geometry of the room

was modeled by setting grid points that occur within obstacles and walls to zero;

these are the boundary conditions. The speaker and microphones were placed in the

same positions which were used for the experiments. The simulation was carried out

by applying the discretized wave equation to each grid point for every time step,

enforcing the boundary conditions and then repeating. The speaker works by driving

one of the grid points with an oscillation pattern similar to those produced by the

robots.

The simulation allows us to observe the kinds of interactions of the transmitted

waves and the geometry of the room, and also the effects of these interactions on

the signals that were picked up by the microphones. That said, the simulation does

not attempt to model the room’s acoustics exactly; such a simulation would need

to be extremely complex, modeling the space in three spatial dimensions, as well as

the energy absorption and materials of the walls, floor, and ceiling. Furthermore, the

acoustical properties of the physical robot are not considered, as they are too complex

and variable to model with any accuracy.



Chapter 5

Experiments and Results

We have conducted our experiments to determine the effectiveness of DTMF as a

communication method between robots that are different distances apart (Fig. 5.1),

while also measuring the effect of internal noise while the receiving robot is walking.

For each of the stationary experiments, 500 fixed length messages were sent, 7 bytes

each. For the experiments involving a walking robot, only 200 messages were sent, due

to limitations of battery and motor temperature. For each of the distances separating

the robots and the different activities of the robots, two kinds of messages were tested.

The first method uses random blocks of data that span the entire message length,

and the second method uses a short header, including a checksum of the message, the

transmitting robot’s ID, and the ID of the robot from which the transmitter has last

received, followed by random data.

34
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Figure 5.1: Robot placement on a 4 × 6 meter field
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For both block and packet messages, random data were generated by the trans-

mitting robot and sent via the robot’s loudspeakers. The same data were then saved

to a file for later comparison. The receiving robot, upon obtaining a block message,

records it in a file, however, upon receiving a packet message, the packet is verified

using its checksum. If the packet is valid, only the data portion of the packet is writ-

ten to a file; otherwise the entire packet is discarded, with none of its contents being

written. After each test, the message files are copied from the robots for analysis.

This experimental set-up is shown in Figure 5.2. The analysis commonly performed

on communication channels is the Hamming distance between the sent data and the

received data. However, this metric is inappropriate in this case; it does not account

for errors involving insertions or deletions, only substitutions. This is a concern be-

cause there is a relatively high probability of dropping messages. If the Hamming

distance were to be used, the data would become misaligned after the first message

drop, resulting in incorrect error rates. Besides that, the Hamming distance is not

defined for data of different length. For these reasons we use the Levenshtein distance

(Navarro (2001)), also known as the edit distance. This metric allows for measuring

error due to the insertion, deletion, and substitution of symbols, as it counts the min-

imum number of such edits to transform one string into another. Here it is defined

in a recursive form for two strings a and b as follows:
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leva,b(i, j) =



max(i, j) if min(i, j) = 0,

min



leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + 1(ai 6=bj)

otherwise.

where i and j are prefix lengths of a and b respectively.

Because the Levenshtein distance measures the minimum number of insertions,

deletions, or substitutions needed to convert one string into another, we can also

count the number of each kind of error. This information can give valuable insight

as to the possible causes for different kinds of errors. For example, if the majority

of errors were of the substitution variety, then one conclusion might be that there

is a great deal of perplexity between symbols, meaning that they are difficult to

distinguish. Similarly, a great deal of insertions might indicate that the system overly

sensitive: trying to decode a signal when none is present. If the majority of errors

are deletions, then it would seem likely that the system has difficulty detecting the

presence of the signal, thus ignoring incoming messages.
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Figure 5.2: Experimental setup

For the first round of experiments, both robots were kept inactive to prevent the

internal noise of motors from interfering with the signals. The transmitting robot was

placed in the keeper’s position on the field (between the goal posts). The receiving

robot was then placed 0.5 meters (on the penalty box) in front of the transmitting

robot, so that the two robots were facing each other. In this position, 500 fixed

length randomized messages were sent from the transmitting robot to the receiving

robot twice; once for the random block method and once for the random packet

method (note that for the random packet method, the header is not randomized).
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Set Distance Mode Bits Sent Error Bits Error Rate

1 0.5 block 28,000 2,392 0.0854
2 0.5 packet 20,000 880 0.0440
3 3.0 block 28,392 5,948 0.2094
4 3.0 packet 20,000 10,200 0.5100
5 5.5 block 28,000 5,759 0.2056
6 5.5 packet 20,000 2,338 0.1169

Table 5.1: Results for Silent Robots

The above procedure was then repeated for distances of 3 meters (midfield) and 5.5

meters (opponent’s penalty box) as shown in figure 5.1. The results of these tests can

be seen in table 5.1.

For the second round of experiments, in order to simulate game-like conditions,

the receiving robot was made to walk in such a way that it’s average position remains

at distance d from the transmitting robot, while all other variables were kept the

same as in the above experiments. These results can be seen in table 5.2. We can

see from these results, presented in Figure 5.3, that walking has the most detrimental

effect on the channel of all of the experimental variables.

Set Distance Mode Bits Sent Error Bits Error Rate

7 0.5 block 11,200 6,440 0.5750
8 0.5 packet 8,080 4,680 0.5792
9 3.0 block 11,200 7,056 0.6300
10 3.0 packet 8,000 5,080 0.6350
11 5.5 block 11,200 6,552 0.5850
12 5.5 packet 8,000 4,400 0.5500

Table 5.2: Results for Walking Robots



40

Since the Levenshtein distance counts three different types of errors (or edits),

and it seems reasonable enough that these different kinds of errors might be caused

by different acoustical phenomena, we sought to count the occurrences of each type of

error, hoping that this would give additional insight. Though the number of each type

of error is not directly recoverable from the data, the Levenshtein distance algorithm

can be modified to output the minimal set of edits to produce the received message

from the error-free original.

We can clearly see in Tables 5.3 and 5.4 that the vast majority of errors through

the channel are deletions, with the occasional insertion or substitution. Table 5.4

takes this to an extreme, indicating that for all of the walking trials there was not a

single symbol insertion or substitution; all errors for those trials were deletions. This

strongly indicates that the difficulty for this approach is primarily in detecting the

presence of a message; if a message is not detected, then all of the symbols count as

deletions.

Set Distance Mode Substitutions Insertions Deletions

1 0.5 block 0.0334 0.273 0.694
2 0.5 packet 0.0 0.0 1.00
3 3.0 block 0.00168 0.000168 0.998
4 3.0 packet 0.0 0.0 1.00
5 5.5 block 0.0366 0.0295 0.932
6 5.5 packet 0.00342 0.00214 0.994

Table 5.3: Errors by Type for Silent Robots
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Set Distance Mode Substitutions Insertions Deletions

7 0.5 block 0.0 0.0 1.00
8 0.5 packet 0.0 0.0 1.00
9 3.0 block 0.0 0.0 1.00
10 3.0 packet 0.0 0.0 1.00
11 5.5 block 0.0 0.0 1.00
12 5.5 packet 0.0 0.0 1.00

Table 5.4: Errors by Type for Walking Robots
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Figure 5.3: Bits of error per bits sent vs. transmission distance

Figure 5.3 visualizes the error curve as a function of distance between robots. An

interesting observation is that the 3 meter trial yielded poorer results than the 5.5

meter trial. We expected that the channel’s error should be positively correlated with

the transmission distance. Figure 5.3 clearly shows that there must be some other

phenomenon which affects the channel quality more than distance does. It seemed

likely that such behavior could be explained by reverberation and echo throughout

the room, but this hypothesis is difficult to test without a lot of expensive equipment.

We decided to try simulating the acoustics of the testing conditions, using a dis-
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cretized version of the 2-dimensional wave equation:

ul+1
i,j = 2uli,j − ul−1i,j + r2(uli−1,j + uli+1,j + uli,j−1 + ui,j+1 − 4uli,j) (5.1)

= 2uli,j − ul−1i,j + [∆u]li,j (5.2)

where uli,j denotes the scalar value at grid point i, j at time l. However this equation

does not model the decay in the signal as it passes through the air; this is an important

property for the simulation, otherwise the system would never lose any of its energy

as more and more energy is pumped in via the oscillating speaker. To account for

decay of a wave, we use a coefficient λ on the (linearly approximated) derivative:

ul+1
i,j = uli,j + λ(uli,j − ul−1i,j ) + [∆u]li,j (5.3)

so that if we set λ to some value close to 1 such as 0.9, we observe a reasonable

decay of the wave as it propagates about the room. Note that this assumes that

reflections absorb none of the wave’s energy, which is not expected in practice, but

for the purposes of this simulation, it is close enough to the highly reflective and

hard surfaced walls found in our lab. If we wanted to model the reflections more

accurately, we would need to carefully choose a different set of boundary conditions

(which are more difficult to enforce than simply setting the boundaries to 0), but we

did not deem it to be necessary for our purposes. The simulation is conducted over

a rectangular lattice with dimensions 80 × 100 over a period of 800 time steps. The

walls of the lab are simulated by imposing that u = 0 as the boundary conditions,
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causing waves to be reflected back into the room. Similarly, internal columns and

other geometries are modeled by setting u = 0 for all grid points that lie within these

obstacles. Speakers can be simulated by oscillating one grid point of the simulation

over time, and microphones are similarly modeled by simply recording the scalar

values of a single grid point over time. We did not attempt to model the ambient

noises in the room, such as the sounds produced by the air vents in the room, nor did

we try to model the internal noise of the receiving robot. Therefore the test is most

comparable to the trials involving a silent, seated robot.

We chose to simulate the interactions of two different symbols, one after the other,

to observe how reverberation might affect the signal. Figures 5.4 and 5.5 shows a

selection of frames from the simulation, where the blue dot represents the position of

the speaker, the three red dots represent the positions of the microphones on the field,

and the gray rectangles represent the shapes and positions of walls and a column in

the testing environment. For a smooth video playback of the simulation, please visit

the following link: video. We can thus directly observe the waves as they pass over

the microphones, bounce off the walls, and interfere with other parts of the signal.

We can clearly see significant reverberation throughout the period of silence between

symbols and into the next symbol.

We replicated our testing conditions within this simulation, placing a speaker in

the position of the transmitting robot, and microphones in the positions of the receiv-

ing robots. We can observe several useful properties from the simulated microphone

readings (shown in Figure 5.6), including the propagation delay between microphones

and the interference caused by the symbol bouncing off of the walls. It becomes diffi-

http://web.cs.miami.edu/home/kyle/room_acoustics_simulation_v3.webm
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(a) Frame 60 (b) Frame 120

(c) Frame 180 (d) Frame 240

(e) Frame 300 (f) Frame 360

Figure 5.4: Visualization of Room Acoustics Simulation
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(a) Frame 420 (b) Frame 480

(c) Frame 540 (d) Frame 600

(e) Frame 660 (f) Frame 720

Figure 5.5: Visualization of Room Acoustics Simulation (continued)
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cult to distinguish between the reverberation and the second symbol, which at least

partly confirms the notion that reverberation is the main source of error apart from

the internal noise of walking.

Figure 5.4, plot (a) shows the environment just as the first symbol is passing

through the nearest microphone. We can see that even as early as plot (b), there is

significant interference as the wave bounces off of the nearby walls, though the part

of the wave now passing over the middle microphone appears undisturbed. By the

time the signal has reached the third and most distant microphone in plot (c), some

of the distortion arising from early collisions with the north wall seem to be affecting

the signal near that microphone’s location. In Figure 5.4, plot (d), we can see waves

propagating radially from the column just south of the field; while in the same plot,

the speaker has finished transmitting the first symbol. The remaining plots in Figure

5.4 and plot (a) of Figure 5.5 show the reflections of the waves without additional

input from the speaker.

With plot (b) of Figure 5.5 we see that the speaker has already begun transmitting

the second symbol, but this time, there are significant echoes of the previous symbol

still prevalent throughout the room. These waves must necessarily interfere with the

new symbol since they are made up of the same set of frequencies. The frequencies

used by the two symbols need not be the same for interference to take place, since

it is the relative magnitudes of all of the frequencies that affects the recovery of the

signal. As the waves of the new symbol continue to propagate, the pattern of waves is

far more obscure and less predictable than the first symbol which started with a quiet

room. The results of this simulation seems to indicate that the effects of reverberation
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are highly nonlinear (especially in an enclosed room), and that it seems plausible that

this could be a factor in the results we observed from our physical experiments.

Figure 5.6: These are the simulated microphone readings for the distances of 0.5,
3.0 and 5.5 meters respectively.

One method of measuring the usefulness of the channel is to measure the number

of corrupted messages (messages which contained at least one error) compared to the

number of messages recovered in total. Figure 5.7 shows a plot of Merror/Mreceived for

each of the experimental trials. We can see from this data that very few successfully

transmitted messages contain any errors at all, and when the packet header is used,

the remaining corrupted messages can be filtered out almost completely. This shows

that especially with the use of the packet header, a received message is actually quite

reliable, confirming that the majority of error through the channel is not due to
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Figure 5.7: Corrupted messages per message sent vs. transmission distance

corrupted symbols, but rather a difficulty in separating a message from the noise.

Comparing Figure 5.7 to Figure 5.3, we see that the high transmission error rates

observed at the three meter mark for silent robots (sending packets) is not present

for the same trial when considering only messages received. This indicates that the

source of error is not from incorrectly demodulating the signal, but rather from not

detecting the presence of the signal. Since these messages are not detected, they each

contribute significantly to the measured channel error. It seems that the message

drops are related to the geometry of the room; some positions experience stronger

echos than others.

We had multiple opportunities to test our communication method in a live game

in a competition environment. Our first live game played with audio communication

was at the RoboCup U.S. Open in Brunswick, Maine in May 2016. Table 5.5 shows

the successful transmission rates between each pair of communicating robots for that
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Figure 5.8: Kyle Poore talking about audio communication at the RoboCup U.S.
Open in Brunswick, Maine

game. Figure 5.8 shows us talking about our method just prior to the game. This

test was most comparable to the experiment conducted on walking robots while using

packets, though there were significant additional challenges posed by the acoustic con-

ditions present at the competition. The test was held in a (mostly) quiet and empty

hockey arena with very high ceilings and concrete walls. This posed unique chal-

lenges for the communication system that had not been encountered during testing.

For example, the hard surfaces cause sounds to reflect well, causing significant echo

and reverberation. The large distance between walls in the arena cause reflections

to be delayed, meaning that one symbol might continue echoing for several seconds,



50

R1 R2 R3 R4

T1 - 0.216 0.225 0.153
T2 0.145 - 0.382 0.145
T3 0.056 0.157 - 0.037
T4 0.314 0.362 0.190 -

Table 5.5: Transmission Rates from a Live Game at the U.S. Open in Brunswick,
Maine in 2016

affecting the measurements of future symbols.

Figure 5.9: Testing audio communication in a live game at RoboCup in Leipzig,
Germany

Our next opportunity to make a live test was in July at RoboCup 2016 in Leipzig,

Germany, whose results are shown in Table 5.6. Figure 5.9 shows the game in progress;

for a video of the game, please visit the following link: video. This test took place

in a large conference center, again with hard, distant walls, though the acoustic

environment behaved very differently. The room also held numerous competitions

for the other robotic soccer leagues, and many spectators and participants. The

ambient sounds were particularly different from the tests made in Brunswick in that

there was a significant amount of noise due to the activities in the conference center.

http://www.cs.miami.edu/home/visser/rc-video/AudioTest2016.mp4
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R1 R2 R3

T1 - 0.425 0.297
T2 0.145 - 0.473
T3 0.370 0.352 -

Table 5.6: Transmission Rates from a Live Game at the 2016 RoboCup Competition
in Leipzig, Germany

Additionally the large number of people in the room absorbed many frequencies,

diminishing the effect of reverberation.

These games showed that our method can indeed handle some of the challenges

that a noisy competition environment poses for audio based messaging. For both

of the live tests, we collected the transmitted and received messages from all five

playing robots, and calculated the transmission accuracy for each pair by comparing

the number of correctly received messages to the number of messages which were sent

by each robot. The data we collected shows that several of the messages were correctly

transmitted, though most others were dropped. These message drops were most likely

due to the internal noise from the robot’s motors, and since the robots are scattered

throughout the field, the success rate between some pairs of robots are much higher

than for other, more distant pairs. The performance of the communication channel

performed noticeably better in the noisy conference center than it did in the quiet

hockey arena. This can be explained by the excessive reverberation in the empty

hockey arena, as opposed to the full conference center’s dampening effects. Despite

the conference center being much noisier than the quiet arena, the communication

system performed better in the noisier environment. This seems to indicate that

the reverberation of symbols has a greater impact on channel quality than does even

high levels of ambient noise. This explanation makes sense, because the Goertzel
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filters have a very narrow receptive range around the desired frequency, thus most

ambient noise is easily rejected. However, when the same frequencies emitted for

communication echo back to the robots, delayed due to the further distance traveled,

they frequently interfere with subsequent symbols, since they are made up of the same

set of component frequencies.



Chapter 6

Summary and Future Work

6.1 Summary

We set out to create a backup communication system for the RoboCanes agent so that

in the event of a Wi-Fi failure the agent is still able to share its beliefs of the state of

the game with its team members. After reviewing the NAO robot’s capabilities and

hardware, we observed that transmitting and receiving audio signals via the speakers

and microphones was the most promising method available to use for achieving this

goal.

We consulted literature to develop a method of open-air audio signal transmis-

sion. We concluded that Phase Shift Keying (PSK) would be too sensitive to Doppler

shifts and too difficult to recover with the available hardware, and that Frequency

Shift Keying (FSK) would be too susceptible to external noise. The Dual-Tone Multi-

Frequency approach did not seem to exhibit either of these issues. We then imple-

mented a standalone program as a proof of concept and tested the method and refined

53
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it before integrating it into the RoboCanes framework.

Our method was extensively tested on the robots in lab conditions, taking message

type, distance, and robot activity into account, and measured the error rates for each

scenario. We also tested this method in multiple live games to verify that the method

would work in the competition environment, and measured the message success rate

between each pair of communicating robots.

6.2 Discussion

While the DTMF communication method seems to work relatively well between short

range, quiet robots, the performance deteriorates drastically as the distance between

the robots is increased. That said, we should expect that the error rates would be

proportional to the inverse-square of the distance between the robots as the attenua-

tion due to the lost intensity reduces the signal to noise ratio, but this is not observed

in our experiments. Our best explanation for this is room reverberation. The exper-

iments were performed in a room with hard, parallel walls, resulting in a significant

echo. As these reverberations propagate and reflect about the room, the waves un-

dergo constructive and destructive interference, contributing to the non-uniformity of

the error curve in Fig 5.3.

The factor which seemed to adversely affect the communication performance the

most was the robots’ walking. The actuation of motors within the body of the robot

contribute greatly to the noise level internal to the robot, most of which is inaudible

to an observer. Other physical sources of noise on the robot stem from the creaking
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of the plastic covers as they deform as a result of movement and stress. These sources

of noise are far from random, much less uniformly random. It is certainly possible

that these internal noises interfere with one or more of the chosen DTMF frequencies.

For this reason, we suggest that future methods be developed to automatically select

frequencies which are not subject to as much interference from internal noise.

In Fig. 5.3, the bit error rate is relatively high for all but the short range, silent

transmission experiments, but this can be misleading. Particularly in the domain of

robotic soccer, message accuracy takes priority over reliable transmission. In fact it

is for this reason that we do not bother to retransmit missed messages; it is simply

better to wait for the next message from that robot. Similarly, we wanted to keep

messages short to minimize the time between transmissions of a particular robot.

This is why we did not use error correction codes; they most certainly would have

improved message accuracy, but at too much a cost in the time taken to send the

longer messages. Most of the error bits are bits that have been dropped due to either

failure to recognize a message, or due to packet rejection because the checksum failed.

As shown in Fig. 5.7, all of the received messages contained no bit corruption errors.

We consider a message corrupted if as little as one bit of that message has been

flipped. Such messages are completely rejected, since they are unusable by the agent.

The effect is that error rates tend to be rather high. If we had counted only the

erroneous bits, the error rate would certainly be significantly lower, but would not

capture the effective performance of the channel.

Some of our previous work has shown excellent recognition of whistle signals, which

used a logistic regression classifier on the result of an FFT (Poore et al. (2014)), how-
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ever, this method is not suitable for this application because it is too computationally

expensive. For this system to work properly, the receiver must be able to demodulate

the signal just as fast as the transmitter can generate it. Furthermore, the mentioned

approach is less appropriate for detecting/recognizing DTMF tones because it takes

advantage of the presence of the many harmonic components of whistle-like signals,

whereas for DTMF we specifically choose frequencies to mitigate harmonics for the

reduction of interference between frequencies. The whistle detector also benefits from

requiring low temporal resolution, allowing for longer analysis windows, while DTMF

must reach a balance between temporal and frequency resolution.

One improvement that seems promising is to employ a frequency hopping tech-

nique that was developed to prevent torpedo control signals from being jammed during

WWII by George and Kiesler (1942). The main idea behind this technique is that

if an enemy detected the control signals for the torpedo and attempted to jam that

set of frequencies, the control signals would already have switched to using a new set

of frequencies, rendering the jamming attempt unsuccessful. A similar idea can be

used for our purposes, since the effects of reverberation essentially constitute a self-

jamming signal; usually the first symbol sent does not encounter much interference,

but the reflections of that symbol negatively impacts the next few symbols until the

wave has had enough time to decay sufficiently. We could use the frequency hop-

ping technique to prevent the self-interference of our signal. It would require that we

choose a larger set of frequencies; specifically, it should be an integer multiple of the

number of distinct tones needed for DTMF. Our same frequency selection method

could be used, choosing 8k primes instead of only 8, where k is the number of differ-
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ent frequency sets to be used. Additionally, k should be chosen so that the period of

frequency hopping outlasts the period of decay for a single symbol. After sending our

first symbol, we would continue to cycle through each different set of frequencies with

each subsequent symbol. This should ensure that each symbol has had enough time

to decay, so that when the same set of frequencies are used again (several symbols

later), the reverberation from the first symbol has subsided.

Perhaps it is possible to combine the efficiency of only using a small number

of frequencies with a machine learning technique – perhaps Reinforcement Learning

(RL) or Deep Learning (DL) – which could possibly be trained to reduce the error

rate. van den Oord et al. (2016) show very promising results with WaveNet in the

application of DL to the generation of raw audio signals, and are able to reproduce

sounds such as human voices or classical music, though their method does not yet

work for real-time applications such as ours. This new approach would have to learn

its own protocol instead of being given an inflexible coding scheme. For example

it might learn to make symbols easily distinguishable from common internal noise

patterns, or it might be able to learn the difference between a direct signal and its

echo. Such a technique might also be used to improve other aspects that are important

to communication, such as its bit rate, or even the scheduling of messages.

Both of the message scheduling methods we used are ignorant to the state of the

soccer game. That is, whereas humans tend to communicate through context based

messages, the robots are restricted to updating a fixed set of beliefs and states. Ideally,

communication would be focused between robots which are performing a coordinated

task, because there would be less time spent waiting for irrelevant or non-local players
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to perform a broadcast of their beliefs. The less latency there is between cooperating

robots, the more effectively they may be able execute strategies. If the message

transmission accuracy is improved enough, then it may become possible to design

more adaptive message scheduling methods to allow these kinds of optimizations.

6.3 Conclusion

We have presented an approach for audio based broadcast communication between

robots, using different states of activity and different message styles over multiple

distances. The approach is based on fixed length DTMF messages. The results show

that for short ranges, and robots with low activity levels, the method works well;

however, with increased separation or activity levels, the message reliability rapidly

deteriorates. The corruption of successful messages seems to stay relatively low,

especially for the packet mode of operation, where the corruption rate is virtually

zero, thanks to the use of a checksum. It is suspected that in the case of increased

distance, the performance decline is more closely related to room reverberation; in a

larger room, or outside, the method is expected to perform better.

It seems that automatic frequency calibration is a must, given the varying and

unpredictable nature of ambient and internal frequencies. This could be achieved

by the robot taking a sample of audio for several seconds both while motionless and

while walking prior to being used in a new environment. The frequency data would

then be collected from each robot to determine the least interfering frequencies, which

themselves do not have any harmonic frequencies in common.



59

To increase the bandwidth, it might be possible to extend the number of high and

low frequencies from four to perhaps eight each. This modified scheme could transmit

82 = 64 different symbols, representing six bits of information each. Alternatively,

one could double the number of frequency groups, yielding 44 = 256 unique symbols;

able to represent an entire byte of data. The problem with increasing the number

of used frequencies is that it becomes difficult to prevent interference between them.

The required frequency separation to achieve this would lead to the signal taking up

much of the audible range of humans, which would be rather unsatisfying.

Beyond the limitations of the NAO robot’s audio hardware, it is possible to ex-

tend the frequency ranges above 20kHz, enabling truly inaudible communication.

This would be a highly desirable property whenever humans are present or working

alongside robots, as the loud beeping can be irritating to people when listening for

long periods. It is likely that microphones with better frequency response would allow

us to use even higher frequencies closer to the 24kHz Nyquist limit admitted by the

48kHz sampling rate.

Other possibilities for future work might take inspiration from the ways that birds

communicate. These kinds of communication have already passed the tests of millions

of years of natural selection, and exhibit many properties that are desirable in the field

of robotics. For instance, birds usually emit vocalizations that are easily recognizable

or distinguishable from the noises in their environment. They learn to recognize these

sound patterns despite them occurring at different frequencies, speeds, volumes, or

distances. Birds also seem to avoid transmitting raw data through their songs, instead

opting for event based communication, such as alerting the presence of a predator, or
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searching for a mate.

The challenges of communicating via open air sound waves are as plentiful as its

potential rewards, and as robots and humans continue on a converging path into the

future, the use of audio as a natural method of interaction will only prove more and

more beneficial.
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