
University of Miami
Scholarly Repository

Open Access Theses Electronic Theses and Dissertations

2012-05-07

A Music Recommendation System Based on User
Behaviors and Genre Classification
Yajie Hu
University of Miami, huyajiecn@gmail.com

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_theses

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Theses by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Hu, Yajie, "A Music Recommendation System Based on User Behaviors and Genre Classification" (2012). Open Access Theses. 336.
https://scholarlyrepository.miami.edu/oa_theses/336

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses/336?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F336&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

UNIVERSITY OF MIAMI

A MUSIC RECOMMENDATION SYSTEM BASED ON USER BEHAVIORS
AND GENRE CLASSIFICATION

By

Yajie Hu

A THESIS

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Master of Science

Coral Gables, Florida

May 2012

 Yajie Hu
 All Right Reserved

©2012

UNIVERSITY OF MIAMI

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science

A MUSIC RECOMMENDATION SYSTEM BASED ON USER BEHAVIORS
AND GENRE CLASSIFICATION

Yajie Hu

Approved:

Mitsunori Ogihara, Ph.D.
Professor of Computer Science

Terri A. Scandura, Ph.D.
Dean of the Graduate School

Hüseyin Koçak, Ph.D.
Associate Professor of Computer Science

Burton Rosenberg, Ph.D.
Associate Professor of Computer Science

adfasdfasd

HU, YAJIE (M.S., Computer Science)
(May 2012)

A Music Recommendation System
Based on User Behaviors And
Genre Classification

Abstract of a thesis at the University of Miami.

Thesis supervised by Professor Mitsunori Ogihara
Number of pages in text: (47)

This thesis presents a new approach to recommend suitable tracks from a

collection of songs to the user. The goal of the system is to recommend songs

that are preferred by the user, are fresh to the user’s ear, and fit the user’s

listening pattern. “Forgetting Curve” is used to assess freshness of a song and the

user log is used to evaluate the preference. I analyze user’s listening pattern to

estimate the level of interest of the user in the next song. Also, user behavior is

treated on the song being played as feedback to adjust the recommendation

strategy for the next one. Furthermore, this thesis proposes a method to classify

songs in the Million Song Dataset according to song genre. Since songs have

several data types, several sub-classifiers are trained by different types of data.

These sub-classifiers are combined using both classifier authority and

classification confidence for a particular instance. In the experiments, the

combined classifier surpasses all of these sub-classifiers and the SVM classifier

using concatenated vectors from all data types. Finally, I develop an application

to evaluate our approach in the real world.

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 Introduction . 1

1.1 Motivations . 1

1.2 Factors for music recommendation 2

1.3 Novel approaches . 5

1.4 Organization . 6

2 Background . 8

2.1 RapidMiner . 8

2.2 Datasets . 10

2.2.1 Million Song Dataset . 10

2.2.2 musiXmatch Dataset . 13

2.2.3 Last.fm Dataset . 13

3 Related Work . 15

4 Proposed Method . 20

4.1 Genre . 22

4.1.1 Building up the genre similarity matrix 22

4.1.2 Genre prediction for the next song 23

4.1.3 Genre classification . 26

4.2 Publish year . 29

iii

Page

iv

4.3 Freshness . 29

4.4 Favor . 31

4.5 Time pattern . 33

4.6 Integrate into the final score . 33

4.7 Cold start . 34

5 Experiment . 36

5.1 Music recommendation system 36

5.1.1 Data collection . 36

5.1.2 Results . 37

5.2 Song genre classification . 40

5.2.1 Experiment data . 40

5.2.2 Experiment results . 41

6 Conclusion . 45

REFERENCES . 46

LIST OF TABLES

Table Page

1 55 fields provided in each per-song HDF5 file in the MSD. . . . 12

2 Data sources . 41

3 Experiment result comparison 44

v

LIST OF FIGURES

Figure Page

1 The design prospective of the RapidMiner 9

2 Genius recommendation system in iTunes 16

3 Pandora recommendation system 16

4 Last.fm recommendation system 18

5 Genre Sample in AllMusic.com 23

6 Predict the next genre . 25

7 Predict the next year . 29

8 The Forgetting Curve . 30

9 The appearance of NextOne Player 37

10 Running time of recommendation function 38

11 Representing the user logs to express favordness over a month . 39

12 The distribution of continuous skips 40

13 Genre Samples in AllMusic.com 41

14 Confusion matrixes of four sub-classifiers 43

15 Confusion matrixes by all data 44

vi

Chapter 1

Introduction

1.1 Motivations

As users accumulate digital music in their digital devices, the problem

arises for them to manage the large number of tracks in their devices. If a device

contains thousands of tracks, it is difficult, painful, and even impractical for a

user to pick suitable tracks to listen to without using pre-determined

organization such as playlists. The topic of this thesis is computationally

generated recommendations. Music recommendation is significantly different

from other types of recommendations, such as those for movies, books and

electronics. Because a same song can be recommended to a same users many

times if we successfully keep from him/her bored with it.

A main purpose of a music recommendation system is to minimize user’s

effort to provide feedback and simultaneously to maximize the user’s satisfaction

by playing appropriate song at the right time. Reducing the amount of feedback

is an important point in designing recommendation systems, since users are in

general lazy. We can evaluate user’s attitude towards a song by examing whether

the user listens to the song entirely, and if not, how large a fraction he/she does.

In particular, we assume that if the user skips a recommended song, it is a bad

recommendation, regardless of the reason behind it. If the recommended song is

played completed, we infer that the user likes the song and it is a satisfying

recommendation. On the other hand, if the song is skipped while just lasting a

1

2

few seconds, we conclude that the user dislikes the song at that time and the

recommendation is less effective.

Using this idea we propose a method to automatically recommend music

in a user’s device as the next song to be played. In order to keep small the

computation time for calculating recommendation, the method is based on user

behavior and high-level features but not on content analysis. Which song should

be played next can be determined based on various factors. In this paper, we use

five factors: favor, freshness, time pattern genre and year.

1.2 Factors for music recommendation

Obviously, the favorite songs are supposed to have high priority in

recommending music. Hence, favor is a significant factor to decide what song

should be recommended.

However, if the favorite songs are recommended again and again in a short

time, the user is bound to be bored. Freshness is thus introduced to the

recommendation system. The system recommends fresh music to users. The

freshness means that there is no record of playing the song to the user or the user

has not been played it for a long time. The fresh music is more likely to attract

user’s attention and to give the user joyful experience.

Users have different tastes and preferences at different times. For instance,

a user may prefer relaxing music in the afternoon and he/she may be keen on

listening to exciting music in the evening. Similarly, the preference may change

from weekdays to weekends. The time pattern therefore should be placed an

3

emphasis in the recommendation system in order to follow the variation of user

taste according to the time pattern.

The difference from state-of-the-art recommendation methods is denying

the assumption that user would like songs with similar genre. Some users prefer

songs from a single genre while some others love songs from mixed genre. Hence,

our recommendation system recognizes the change pattern of user taste according

to song genre using time series analysis method. The genre of the next song is

predicted by the change pattern instead of the similarity to the genre of the

current song.

Most of song files record the genre in the header of files in the ID3v1 and

ID3v2 formats. However, some songs have an invalid header. For example, the

web site that provides the song would like to paste its URL as the genre tag in

the file’s header. In music recommendation, many methods see song genre as

important metadata for retrieving songs. It is necessary to detect the invalid

genre and complement it by automatically genre classification.

There is no genre dataset huge enough to cover mostly songs. However,

other music dataset with various kinds of metadata and acoustic features are

available. As the largest currently available dataset, the Million Song Dataset

(MSD) is a collection of audio features and metadata for a million contemporary

popular music tracks. The musiXmatch partners with MSD and provides a large

collection of song lyrics in bag-of-word format. All of these lyrics are directly

associated with MSD tracks. The Last.fm dataset is currently the largest

4

collection of song-level tags that can be used for research. We use these datasets

to classify songs in terms of song genre.

Some papers have discussed the importance of using multiple data sources

in genre classification and have proposed methods to use them. Most of these

methods concatenated features from different data sources into a vector to

represent a song [McKay et al., 2010]. However, for a very large dataset, it is

impossible to ensure that every instance has valid data in all data sources. It is

inevitable for the classification results to be reduced due to missing data

influence in the concatenated vector.

If we have multiple classifiers and aggregate their assertions by voting, the

accuracy of each classifier represents the authority of the “expert”. Because the

types of input data are different, the views of experts are not uniform. Therefore,

the confidences to make a correct decision regarding a particular item are also

different. Hence, the voting result of an instance is related to both the authority

of the classifier and the confidence of the classifier to classify the particular

instance.

We extract features from audio, artist terms, lyrics and social tags to

represent songs and train sub-classifiers. The trained sub-classifiers are combined

to predict song genre. The songs with missing data in certain data types are

classified using only available data.

The genre dataset is able to complement song genre when the genre tag of

the song is invalid.

5

Similarly, the recommendation system also predicts the year of the next

song using time series analysis method.

Finally, these five factors have dynamic weights to influence the

recommendation results since a user has different emphasis on these factors in

different time. We propose an algorithm to adjust the weights based on the user’s

feedback.

1.3 Novel approaches

In the recommendation system presented in this theses, several novel

methods are proposed. These novel methods focus on music recommendation in

the real world to adapt users’ playing habit and meet the challenge of huge data.

1. Breaking the assumption that the next song must be similar to the current

song. Instead of the assumption, this recommendation system predicts the

next song’s genre and publish year by time series analysis. This approach is

better to accord with the change in the user’s preference.

2. Considering the time pattern of playing behaviors. The time background of

the playing behaviors is taken into consideration. In different time, users

perhaps have different favorite music. The change partly depends on the

time pattern of users’ playing behaviors.

3. Dynamic weights of factors to recommend the next song. This thesis

proposes a new approach to dynamically adjust the weights of five factors

since users’ taste is static. The weights of factors are able to converge to

6

the users’ taste when the taste changes. The taste changes are realized by

the user’s feedback.

4. Classifying song genre using sub-classifiers based on both sub-classifiers’

authority and classification confidence. In order to achieve a desired level of

performance, we collect different types of song feature and train several

sub-classifiers. The predictions of test samples by these sub-classifiers are

integrated by sub-classifiers authority and confidence.

1.4 Organization

Chapter 2 introduces the tool and some datasets used in this thesis.

The major methods and applications of music recommendation are

presented in Chapter 3. The methods and applications are categorized in

different views. Each type of recommendation method has its own advantages

and disadvantages and fit to some particular situations. Chapter 3 presents these

methods and discusses their characteristics.

In Chapter 4, the proposed recommendation method and song genre

classification approach are described. The recommendation method estimates the

probability of a song to be recommended from five perspectives: song genre,

publish year, freshness, favor and time pattern. These factors are integrated by a

proposed algorithm. Because the genre tag of a song file is sometimes invalid, a

genre classification method automatically classifies songs in a huge dataset. The

classification result is stored as a song-genre table in order to complement the

genre data when the song file has no genre tag. This classification method applies

7

several sub-classifiers to deal with different types of the data source and then

calculates the final classification result from the results of these sub-classifiers.

We evaluate the recommendation method and song genre classifier

performance in Chapter 5. A recommendation system is implemented and used

by volunteers. The evaluation result of the recommendation method is satisfied.

We build a collection of songs with genre tags from AllMusic.com as the ground

truth. The genre classification result in this ground-truth data surpasses the

baselines and is competitive to the results in similar tasks.

Chapter 6 summarizes the recommendation method and the song genre

classification method.

Chapter 2

Background

This chapter introduces the tool and datasets that are used in this thesis.

2.1 RapidMiner

This thesis uses RapidMiner to test several classification methods and

classify songs according to song genre.

RapidMiner provides data mining and machine learning procedures

including: data loading and transformation (ETL), data preprocessing and

visualization, modeling, evaluation, and deployment [RapidMiner, 2012]. The

data mining processes can be made up of arbitrarily nestable operators, described

in XML files and created in RapidMiner’s graphical user interface (GUI).

RapidMiner is written in the Java programming language. It also integrates

learning schemes and attributes evaluators of the Weka machine learning

environment [Weka, 2012] and statistical modeling schemes of the R-Project.

Available functionalities include:

• Bypassing its data mining functions and generating its own figures.

• Exploring data in the Microsoft Excel format (“knowledge discovery”).

• Constructing custom data analysis workflows.

• Calling RapidMiner functions from programs written in other

languages/systems (e.g. Perl).

8

9

Figure 1: The design prospective of the RapidMiner

Features:

• Broad collection of data mining algorithms such as decision trees and

self-organization maps.

• Overlapping histograms, tree charts and 3D scatter plots.

• Many varied plugins, such as a text plugin for doing text analysis.

RapidMiner provides major of classification methods and the parameters

of these methods are able to be edited. It is very convenient do classification

experiments and test different classification methods. What the user needs to do

is to replace the corresponding module of the classifier and run the system again.

The modeling design makes the process quite clear, understandable and flexible

as shown in Figure 1.

In the Figure 1, the grey modules are other candidate classifiers and we

can test these classifiers.

10

2.2 Datasets

In this thsis, we need to cover most of songs and label genre tags for them.

If a song file doesn’t have genre tags, the system will retrieve the song’s genre

from the song-genre table. There does not exist publicly accessible large dataset

with song genre, but there are very large datasets with other types of data. The

song genre could be recognized from these types of data. The datasets that will

be used in Chapter 4 are listed below.

2.2.1 Million Song Dataset

The Million Song Dataset is a freely-available collection of audio features

and metadata for a million contemporary popular music tracks.

Its purposes are:

• To encourage research on algorithms that scale to commercial sizes

• To provide a reference dataset for evaluating research

• To provide a shortcut alternative to creating a large dataset with APIs (e.g.

the Echo Nest APIs)

• To help new researchers get started in the MIR field

The core of the dataset is the feature analysis and metadata for one

million songs, provided by a company, The Echo Nest. The MSD contains audio

features and metadata for a million contemporary popular music tracks. It

contains:

11

• 280GB of data

• 1,000,000 songs/files

• 44,745 unique artists

• 7,643 unique terms (Echo Nest tags)

• 2,321 unique musicbrainz tags

• 43,943 artists with at least one term

• 2,201,916 asymmetric similarity relationships

• 515,576 dated tracks starting from 1922

Each song is described by a single file, whose contents are listed in Table

1 [Bertin-Mahieux et al., 2011].

The acoustic features related to song genre are extracted, such as bar

starts, bar confidences, beats confidences, section starts, section confidences,

segment loudness max, segment pitches, segment timbres and tempo. Each of

them is a series of real values to represent the variance of the song in terms of

certain kind of feature. The sequences of these features cannot be directly used

in a vector to represent the song in a classifier. Therefore, we use the statistical

measures of the sequences instead of the sequences to generate the vector, such as

the mean, the variance, the Q values. Q(0) is the minimum value of the

sequence. Q(1) is the one quarter quality factor of the sequence. Q(2) is the

intermediate quality factor of the sequence. Q(3) is the three quarters quality

12

Table 1: 55 fields provided in each per-song HDF5 file in the MSD.

analysis sample rate artist 7digitalid artist familiarity
artist hotttnesss artist id artist latitude
artist location artist longitude artist mbid
artist mbtags artist mbtags count artist name
artist playmeid artist terms artist terms freq

artist terms weight audio md5 bars confidence
bars start beats confidence beats start
danceability duration end of fade in

energy key key confidence
loudness mode mode confidence
num songs release release 7digitalid

sections confidence sections start segments confidence
segments loudness max segments loudness max time segments loudness start

segments pitches segments start segments timbre
similar artists song hotttnesss song id

start of fade out tatums confidence tatums start
tempo time signature time signature confidence
title track 7digitalid track id
year

factor of the sequence and Q(4) is the maximum value of the sequence. The

vector that consists of statistical measures has 46 real values. Most of values in a

vector are non-zero.

The artist terms are extracted because artist terms describe the style of

the artist and are related to the song genre. After cleaning and stemming, the

user terms represent the artist in the bag-of-words format. The feature is binary

and set to 1 if the term corresponding to the feature appears in the artist terms.

The length of the artist terms vector is the number of total terms and reaches

1011. Most of the features are zero and a vector has average 25.74 non-zero

features. The vector is very sparse.

13

2.2.2 musiXmatch Dataset

The musiXmatch dataset brings a large collection of song lyrics in

bag-of-words format [musiXmatch, 2012]. All of these lyrics are directly

associated with MSD tracks. The musiXmatch is able to resolve over 77% of the

MSD tracks and releasing lyrics for 237,662 tracks. The other tracks were

omitted for various reasons, including:

• Diverse restrictions, including copyrights

• Instrumental tracks

• The numerous MSD duplicates were skipped as much as possible

Since the lyrics describe the semantic content of the song, the content has

the indirect relationship to the song genre. For example, the lyrics content of a

rap song could be different from the lyrics content of a country song. Each track

is described as the word-counts for a dictionary of the top 5,000 words across the

set. The 5,000 words in the dataset account for 50,607,582 occurrences and there

are 237,662 tracks. A track hence has average 212.94 words but the vector has

5,000 features.

2.2.3 Last.fm Dataset

The Last.fm Dataset brings the largest research collection of song-level

tags and pre-computed song-level similarity [Last.fm, 2012]. All the data is

associated with MSD tracks. Selected features of the Last.fm dataset are as

follows:

14

• 943,347 matched tracks MSD and Last.fm

• 505,216 tracks with at least one tag

• 584,897 tracks with at least one similar track

• 522,366 unique tags

• 8,598,630 (track - tag) pairs

• 56,506,688 (track - similar track) pairs

Although tracks have many noisy tags, some tags related to song genre are

able to explicitly point out the genre of the song. The social tags of the Last.fm

dataset are therefore used to classify songs according to song genre in this thesis.

Chapter 3

Related Work

Various music recommendation approaches have been developed. We can

categorize these approaches in several classes.

• Automatical playlist generation focuses on recommending songs that are

similar to chosen seeds to generate a new playlist. Ragno et

al. [Ragno et al., 2005] provided an approach to recommend music that is

similar to chosen seeds as a playlist. Similarly, Flexer et

al. [Flexer et al., 2008] provided a sequence of songs to form a smooth

transition from the start to the end. These approaches ignore user’s

feedback when the user listens to the songs in the playlist. They have an

underlying problem that all seed-based approaches produce excessively

uniform lists of songs if the dataset contains lots of music cliques. In

iTunes, Genius employs similar methods to generate a playlist from a seed

as shown in Figure 2.

• Dynamic music recommendation improves automatic play-list generation

by considering the user’s feedback. In the method proposed by Pampalk et

al. [Pampalk et al., 2005], playlist generation starts with an arbitrary song

and adjusts the recommendation result based on user feedback. This type

of method is similar to Pandora shown in Figure 3.

15

16

Figure 2: Genius recommendation system in iTunes

Figure 3: Pandora recommendation system

17

• Collaborative-filtering methods recommend pieces of music to a user based

on rating of those pieces by other users with similar

taste [Cohen and Fan, 2000]. However, collaborative filtering methods

require many users and many ratings and are unable to recommend songs

that have no ratings. Hence, users have to be well represented in terms of

their taste if they need effective recommendation. This principle has been

used by various social websites, including Last.fm (Figure 4), myStrands.

• Content-based methods compute similarity between songs, recommend

songs similar to the favorite songs, and remove songs that are similar to the

skipped songs. In an approach proposed by Cano et al. [Cano et al., 2005],

acoustic features of songs are extracted, such as timbre, tempo, meter and

rhythm patterns. Furthermore, some work expresses similarity according to

songs emotion. Cai et al. [Cai et al., 2007] recommends music based only

on emotion.

• Hybrid approaches, which combine music content and other information, are

receiving more attention lately. Donaldson [Donaldson, 2007] leverages

both spectral graph properties of an item-base collaborative filtering as well

as acoustic features of the music signal. Shao et al. [Shao et al., 2009] use

both content features and user access pattern to recommend music.

• Context-based methods take context into consideration. Liu et

al. [Liu et al., 2009] take the change in the interests of users over time into

18

Figure 4: Last.fm recommendation system

19

consideration and add time scheduling to the music playlist. Su et

al. [Su and Yeh, 2010] improve collaborative filtering using user grouping

by context information, such as location, motion, calendar, environment

conditions and health conditions, while using content analysis assists

system to select appropriate songs.

The music recommendation of this thesis belongs to dynamic music

recommendation and is similar to Pandora in terms of the way pieces are

reccommended. However, the factors that are taken into consideration are

different from state-of-the-art methods.

Chapter 4

Proposed Method

We determine whether a song is to be recommended as the next one in the

playlist from five perspectives genre, year, favor, freshness and time pattern.

From genre and year perspectives, we use time series analysis to predict

the genre and year of the next song rather than selecting the song with similar

genre and year to the current song. The reason is that some users like listening

similar songs according to genre and year while others perhaps love mixing songs

and the variance on genre and year. Also, one user may have different

preferences. We does not assume that a similar song to the current one can be

reasonably seen as a good choice for recommendation. Prediction using time

series analysis method caters to a user’s taste better than the assumption.

Song genre is available in the header of MP3 file, like ID3v1 or ID3v2

tags. However, some songs have an empty header or their genre tags are invalid.

For instance, the genre tag is some advertisements or other irrelevant content. If

the recommendation system analyzes the acoustic features of the song, the

computation complexity would make the system impractical. Users cannot wait

for a recommendation result over several seconds, even though the

recommendation result is just one the user love. Hence, the song genre is

supposed to be pre-computed and stored in a table. The system is then able to

retrieve the genre of a song from the table if the song has no valid genre tag.

20

21

In order to cover most of songs, the system needs a huge genre dataset but

so far the dataset is unavailable. The system has to collect other large datasets

and use them to classify the songs according to song genre. A song has several

types of features, such as acoustic features, lyrics, social tags, artist information

and so forth. Obviously, the more useful information is considered into the

classification, the higher performance could be reached. As a result, it is

necessary to propose an approach to integrate these types of feature.

Obviously, the system should recommend users’ favorite songs to them.

The amount of times of actively playing a song and the amount of times of

completely listening a song can infer the strength of favor to the song. We

collected user’s behavior to analyze the favor of songs and the playing behavior is

seen as the feedback to the song. The partition of playing the song is considered

as the score of the song.

In a common sense, a few users like listening to a song again and again in

a short time, even though the song could be the user’s favorite. On the other

hand, songs that used to be popular, like Wavin’ Flag, Waka Waka, and that a

user loved to listen to may be now old and a little bit insipid. However, if the

system recommends them at a right time, the user may feel it is fresh and enjoy

the experience. Consequently, we take freshness of songs into consideration.

Due to the work time and biological clock, users have different tastes in

choosing music. In a different period of a day or a week, users tend to select

different styles of songs. For example, in afternoon, a user may like a soothing

22

kind of music for relaxation and switch to energetic songs in evening. In this

thesis, we use Gaussian Mixture Model to represent the time pattern of listening

and compute the probability of playing a song at that time.

Finally, these factors should be integrated and the system should use the

integrated score of these factors to determine which song should be the next song.

4.1 Genre

Recent playing sequence of a user represents the user’s habit of listening

so I analyze the playing sequence using a time series analysis method to predict

the genre of the next song. The system records 16 recent songs that were played

for duration over to their half-time mark. Since the ID3v1 or ID3v2 tags, are

noisy, we developed a web wrapper to collect genre information from

AllMusic.com, a popular music information website, and use that information to

retrieve songs’ genres. ID3v1 or ID3v2 tags will be used unless AllMusic.com

has no information about the song. If both are not available, the system will

retrieve the song’s genre from the song-genre table.

4.1.1 Building up the genre similarity matrix

Furthermore, AllMusic.com not only has a hierarchical taxonomy on

genre but also provides subgenres with related genres. The hierarchical taxonomy

and related genres are shown in Figure 5.

We use the taxonomy to build an undirected distance graph, in which

each node represents a node and each edge’s value represents the distance

between two genres. The values of the graph are initialized by a maximum value.

23

Figure 5: Genre Sample in AllMusic.com

An edge’s value is set to 1.0, if two genres are connected by the edge are related.

The parent relationship is valued at a different distance, which varies by the

depth in the taxonomy, that is, high level corresponds to larger distance while

low level corresponds to smaller distance. We thus assume the distance is

transitive and update the distance graph as follows until there is no cell update.

Eij = min
k

(Eij, Eik + Ekj) , (1)

where Eij is the value of edge ij. Therefore, we obtain the similarity between any

two kinds of genre and the maximum value in the matrix is 6.

4.1.2 Genre prediction for the next song

In this part, we try to predict the possible genre of the next song to fit the

user’s pattern rather than assuming the next genre is similar.

Now, the system converts the series of genres of recent songs into a series

of similarity between neighbor genres using the similarity matrix. The series of

similarity will be seen as the input for time series analysis method and we can

24

estimate the next similarity. Then, the current genre and the estimated similarity

will give us genre candidates.

Autoregressive Integrated Moving Average

(ARIMA) [Box and Pierce, 1970] is a general class of models in time series

analysis. An ARIMA(p, d, q) model can be expressed by following polynomial

factorization.

Φ (B) (1−B)dyt = δ +Θ(B) εt (2)

Φ (B) = 1−
p∑

i=1

φiB
i (3)

Θ (B) = 1 +

q∑
i=1

θiB
i, (4)

where yt is the tth value in the time series of data Y and B is the lag operator. φ

and θ are the parameters of the model, which are calculated in analysis. p and q

are orders of autoregressive process and moving average process, respectively. d is

a unitary root of multiplicity.

The first step of building ARIMA model is model identification, namely,

estimating p, d and q by analyzing observations in time series. Model

identification is beneficial to fit the different pattern of time series. The second

step is to estimate parameters of the model. Then, the model can be applied to

forecast the value at t+ τ . As an illustration consider forecasting the

ARIMA(1, 1, 1) process

25

Figure 6: Predict the next genre

(1− φB) (1−B) yt+τ = (1− θB) εt+τ (5)

ε̂t = yt −
[
δ +

p+d∑
i=1

φiyt−i −
q∑

i=1

θiε̂t−i

]
(6)

Considering the benefit of ARIMA, the system employs it to fit the series

of similarity and to predict the next similarity. The process is shown in Figure 6.

We use Gaussian distribution to evaluate the probability of the next genre

as the score for the genre candidates. The genre, whose distance to the current

genre is equal to the estimated distance, has the biggest probability.

p (gt) =
1

σ
√
2π

e−
(s(gt,gt−1)−ε̂t)

2σ2 , (7)

where p (gt) is the possibility that the next song’s genre is gt. s (gt, gt−1) describes

the similarity between the genre gt and the genre gt−1. It is obtained from the

genre similarity matrix built by the genre taxonomy of AllMusic.com. ε̂t is the

predicted similarity estimated by ARIMA.

26

4.1.3 Genre classification

Data types in genre classification

In order to cover most songs, it is necessary to build up a huge song-genre

table. Hence, we need huge datasets to guarantee the table is practical and useful

in this recommendation system. We used the several datasets introduced in

Chapter 2.

Genre classification by sub-classifiers

Each type of features has individual characteristics so we apply each data

source to respectively train a sub-classifier. It is possible to choose a particular

classification method to train the sub-classifier for each data source. The

classification method adapts to the type of features, like high sparsity or low

dimensions.

A song has much possible genre so the classifier must determine the song

to assign into a class among multiple classes. In order to reduce the classification

complexity, the multi-class classification problem is reduce to a series of two-class

classification problems, like Pop/Non-Pop, Blues/Non-Blues, Jazz/Non-Jazz, and

so on. Then, the classification confidence for a particular class is used to

determine which class the song belongs to. The class whose classification

confidence is the highest one among these binary classification results is seen as

the final classification result.

The main issue here is how to integrate the results predicted by the

sub-classifiers into a final result.

27

Some voting methods use the authority of sub-classifiers to integrate

results. The authority of a sub-classifier is estimated by a validation test. The

sub-classifiers that have higher performance in the validation test are given higher

authority values. The results are weighted by the authority of the corresponding

sub-classifier. The integrated result is voted by these weighted results.

If we look into the voting methods, they are based on a subtle assumption

that a particular sub-classifier has stable classification performance for every test

sample. Hence, for any sample, the results have static weights. However, the fact

is not as simple as the assumption shows.

For example, a sub-classifier trained by social tags classifies a sample with

a genre tag, like “Rock”. Even though the sub-classier doesn’t have a high

authority, the sub-classifier absolutely ensures that the song genre of this sample

is “Rock”. In other word, the sub-classifier has a full confidence to determine a

particular sample into a class and so it must play a crucial role in this voting for

the sample.

Based on this idea, this thesis proposes a method to integrate results

based on both the sub-classifier authority and the classification confidence.

Let C be a classifier set that contains some n sub-classifiers, namely,

C = {c1, c2, . . . , cn}. Suppose that songs are distributed into some m genres,

G = {g1, g2, . . . , gm}. The voting result is shown in Equation 8 below.

G (Ik) = argmax
gj

⎧⎨
⎩

|C|∑
i=1

[Auth (ci) · Conf (ci, gj, Ik)]
⎫⎬
⎭ (8)

28

Auth (ci) denotes the authority of the classifier ci and varies between 0.0

and 1.0. Auth (ci) is estimated by the accuracy of the classification in the

validation test.

Conf (ci, gj, Ik) is the confidence of the classifier ci to classify the instance

Ik to genre gj. The confidence value is in the interval [0.0, 1.0], where 1.0 means

the classifier has no doubt to classify a sample into a class and 0.0 means the

classifier denies assigning the sample into the class. 0.5 shows the classifier is not

sure to make a decision. Note that the sum of the confidence for the two classes

of a binary classifier, is always 1.0. Different classification methods have different

measures to estimate the classification confidence. The following list discusses the

measures for the classification methods that are employed in this thesis.

• Näıve Bayes. For Näıve Bayes, the posterior probability is seen as the

confidence for a class.

• Neural Net. Neural Net has normalized real value output from -1.0 to 1.0.

A positive value means the confidence to assign the instance to a positive

label.

• Logistic Regression. We employ the approach proposed by Lee [Lee, 2010]

to estimate the confidence for logistic regression.

• Support Vector Machines. The margin from the instance location to the

classification hyper plane is considered to be the confidence of the SVM

classifier.

29

Figure 7: Predict the next year

The confidence values of classifiers are normalized into [0.0, 1.0]. The

confidence for invalid data is set to 0.0, in order to avoid negative effect caused

by invalid data.

4.2 Publish year

The publish year is similar to genre so we use ARIMA to predict the next

possible publish year and compute the probability of a publish year. Figure 7

shows the prediction process.

4.3 Freshness

As a new approach of this thesis, we take freshness of a song for a user

into consideration. Many recommendation systems, such as the one [Logan, 2004]

is based on metadata of music, do not keep record of what pieces are

recommended before or user response, and many repeatedly recommend the same

music over and over again. Furthermore, if the system keeps track of the count of

plays while ignoring user feed back, songs that are recommended over and over

again may be recognized as favorite songs. The iteration makes users fall into a

“favorite trap” and feel bored. Therefore, an intelligent recommendation system

should avoid recommending a same set of songs many times in a short period.

30

Figure 8: The Forgetting Curve

On the other hand, the system is supposed to recommend some songs that have

not been played for a long time because these songs are fresh for users even

though they once listened to them multiple times.

Freshness can be considered as the strength of strangeness or the amount

of forgetting part in mind. Hence, we apply the Forgetting

Curve [Ebbinghaus, 1913] to evaluate the freshness of a song for a user. The

Forgetting Curve is calculated by Equation 9.

R = e−
t
S , (9)

where R is the memory retention, S is the relative strength of memory and t is

time.

The Forgetting Curve is plotted as shown in Figure 8. Theses curves show

the memory fade out in different strength of memory.

31

Lesser the amount of memory retention of a song in a user’s mind is, more

fresh the song is for the user. In our work, S is defined as playing times and t is

the period from the last time of playing the song till current. The reciprocal of

memory retention is normalized to represent the freshness.

This metric contributes towards selecting fresh songs as recommendation

results rather than recommending a small set of songs repetitively.

4.4 Favor

The strength of favor for a song plays a rather important role in

recommendation. In playing songs, the system should give priority to user’s

favorite songs. User behavior can be implied to estimate how favored the user

feels about the song based on a simple assumption. A user tends to listen to a

favorite song more frequently than the others and thus he/she listens to a large

portion that the others, if he/she does not listen to it entirely.

In this thesis, we see the feedbacks as rating behaviors. If the user listens

a song completely, the rating to the song is positive and set to 1.0. If the user

skips the song at the beginning of the song, the behavior implies the rating is 0.0.

The rating score depends on the amount of the partition of the song played and

the region is [0.0, 1.0].

The average score or the sum score is not a reasonable approach to

estimate the song’s favor to a user. Let simplify the score to 0.0 or 1.0 to analyze

the rating approach. For instance, a song A has been played 50 times and has 40

positive scores, namely 1.0, and 10 times negative scores, namely 0.0. A song B

32

has been played 5 times and all of these scores are 1.0. Which song is more

favorite one? The average score of B is higher than that of A. However, the sum

of the scores of A is further more than that of B. The great number of positive

scores make the system have strong confidence to conclude that A is a favorite.

On the other hand, the small number of playing B cannot solidly support the

conclusion that the user prefers B to A.

We refers to the approach applied by the Internet Movie Database

(IMDb) [IMDB, 2012], an online database of information related to movies,

television shows, actors and so on.

The approach is based on the Bayesian probability on user ratings. The

rating of a movie is calculated by a true Bayesian estimate:

WR =
v

v +m
R +

m

v +m
C, (10)

where R is the average rating for the movie, v denotes the number of votes for

the movie. m is the minimum votes required to be listed in the Top 250

(currently 3000) and C is equal to the mean vote across the whole report

(currently 6.9). WR is the weighted rating of the song.

In this thesis, R is set to the mean partition of songs playing, v the

number of playing for the song, m the minimum number of playing required to be

listed in the top 20% songs, C and the mean partition of song playing across the

whole songs.

33

This approach help avoid a situation in which a song with a few playing is

always rated a low score or radical fluctuations. Songs are expected to be rated

an almost equal much of times, hence, the rating is added a mean score C with a

minimum number of the ratings in the top 20% songs. When the song has a very

few ratings, the weighted rating is close to the mean score C. When the song has

plenty of ratings, the weighted rating is approximately equal to the rating of the

score R.

4.5 Time pattern

Since users have different habits or tastes in different period of a day or a

week, our recommendation system takes time pattern into consideration based on

user log. The system records the time of the day and week those songs are

played. Then, Gaussian Mixture Model is employed to estimate the probability

of playing at a specific time. The playing history of a song in different periods

trains the model using Expectation Maximization algorithm. When the system

recommends songs, the model is used to estimate the probability of the song

being played at that time.

4.6 Integrate into the final score

A song is assessed whether it is a fit for recommendation as the next song

from the aforementioned five perspectives. In order to rank results and select a

song as the next song, the scores should be integrated into a final score. At first,

the scores are normalized into the same scale. Since different users have different

tastes, these five factors are assigned different weights in integration. We

34

calculate these weights using Gradient Descent so at to the system

recommendation close to the user’s needs. However, it is silly to offer many

possible recommendation results and determine how to descent based on user’s

interaction. We use the recent recommendation results to adjust the weights,

which is initialized by (1.0, 1.0, 1.0, 1.0, 1.0), as shown in Algorithm 1.

4.7 Cold start

Cold start is an important problem for building recommendation systems.

At the beginning, the system has no idea what kinds of songs users like or dislike,

it hardly gives any valuable recommendation. As a result, in the cold start, the

system randomly picks a song as the next song and records the user’s interaction,

which is similar to Pampalk et al.’s work [Pampalk et al., 2005]. After 16 songs,

the system uses the metadata of these songs and user behavior to recommend a

song as the next one.

35

Algorithm 1: Adjust weights based on recent recommendation results

Input: Recent k recommendation results �t (Rt−k+1, Rt−k+2, . . . , Rt−1, Rt)
at time t.
Ri contains user interaction of this recommendation χi, which is like or
dislike, and the score of each factor of the first recommendation, Λi, and
that of the second one, Λ′

i.
Descent step Δ, which is positive.
Current factor weights, W.
Output: New factor weights, W′.
Process:
if χt = dislike then

Initialize an array F to record the contribution of each factor.
for Rt−k+1 to Rt do

ΔΛi = Λi −Λ′
i

max = argmax
j

(Δλj)

min = argmin
j

(Δλj)

if χi = Like then
Fmax = Fmax + 1

end
else

Fmax = Fmax − 2
Fmin = Fmin + 1

end

end
inIndex = argmax

i
(F)

w′
inIndex = winIndex +Δ

w′
i,i �=inIndex = wi −Δ/(dimension− 1)

deIndex = argmin
i

(F)

w′
deIndex = w′

deIndex −Δ
w′

i,i �=deIndex = w′
i +Δ/(dimension− 1)

end
else

W′ = W
end
return W′

Chapter 5

Experiment

This part presents the performance of the genre classification method

comparing to some baselines methods.

5.1 Music recommendation system

5.1.1 Data collection

An application system, called NextOne Player1, is developed to collect

run-time data and user behavior for this experiment. It is developed in .NET

Framework 4.0 using Windows Media Player Component 1.0. In addition to the

functions of Windows Media Player, NextOne Player provides recommendation

function using the approach described in Chapter 4 and also collects data for

performance evaluation. The recommendation will work when the current song in

the playlist ends or NextOne button is clicked. The appearance of the application

is shown in Figure 9. The Like it and Dislike it buttons are used to collect

user feedback. The proportion of a song played is recorded and viewed as the

measure of satisfaction of a user for the song.

In order to compare our method with random selection, the player selects

one of the two methods when it is loaded. The probability of running each

method is 0.5. Everything is exactly same except the recommendation method.

In the contrasting experiment, users cannot realize which method is selected.

1Available at http://sourceforge.net/projects/nextoneplayer/

36

37

Figure 9: The appearance of NextOne Player

We have collected data from 11 volunteers. They consist of 9 graduate

students and 2 professors and include 3 female students. They use the

application in their devices which recommend songs from their own collections so

the experiment is run on open datasets.

5.1.2 Results

First, we show the running time of recommendation function as it is

known to have a major influence on the user experience. The running time

results appear to be in an acceptable range. We run the recommendation system

for different magnitudes of the song library and at each size the system

recommends 32 times2. Figure 10 shows the variation in running time with the

corresponding variations to the size of song library. We observe that the running

time increases linearly with the increase in size of the song library. In order to

2CPU: Intel i7, RAM: 4GB, OS: Windows 7

38

Figure 10: Running time of recommendation function

provide a user-friendly experience, the recommendation results are processed near

the end of the current song that is playing, and the result is generated when the

next song begins.

From Figure 10, it is reasonable to conclude that the system has an

acceptable running time in personal devices since the scale of the song data is not

too large.

In order to evaluate the approach, the system records the playing behavior

of the user. We collected the user logs from volunteers and calculated the average

proportion of playing song length, which means how much partition of a song is

played before it is skipped. Under the assumption that the partition implies the

“favoredness” of the song for a user, we evaluate the recommendation approach

by the partition as shown in Figure 11, where the histograms represent the

number of songs that were played on a day. The curves in the graph represent

the variation of the “playing proportion”. The range of these two curves is

39

Figure 11: Representing the user logs to express favordness over a month

[0.0, 1.0] and 1.0 is the best performance of the experiments.

In Figure 11, the histograms represent the number of songs that were

played on a day. The curves in the graph represent the variation of the “playing

partition”.

Let us define a skip be changing to the next track by the user before

playing 5% of the length of the current track. If a recommendation system

cannot recommend proper songs so many times that the user skips songs again

and again, the system will lose the user’s interest. Continuous skips therefore

have a significant negative influence on the user experience. It is almost

inevitable for a recommendation system to mismatch the user’s current taste but

the capability to adjust the recommendation strategy quickly represents the

robustness and intelligence of the system. An intelligent recommendation system

is supposed to cater to the user’s taste in a few unsatisfied recommendations. We

use the number of continuous skips to measure the robustness and intelligence of

40

Figure 12: The distribution of continuous skips

the recommendation system. Figure 12 shows the distribution of continuous skips

using our method and random selection.

From Figures 11 and 12, we can conclude that the recommendation

approach surpasses the baseline and our recommendation is effective. Our

approach is able to fit to a user’s taste, and adjust the recommendation strategy

quickly whenever user skips a song.

5.2 Song genre classification

5.2.1 Experiment data

In our experiment, we applied MSD, MusiXmatch and Last.fm tag

datasets to extract features, as shown in Table 2. The records in these data

sources are matched via trackID.

41

Table 2: Data sources

Name Extracted information Number of records
MSD Audio features, 1,000,000

artist terms
MuisXmatch Lyrics features 237,662
Last.fm tags Social tags 505,216

Figure 13: Genre Samples in AllMusic.com

AllMusic.com provides genre taxonomy, which consists of 10 major genres

with sample songs. Some music or radio service websites organize songs by

similar genre classes. Thus, this song genre taxonomy is rational and practical

and this thesis classifies songs according to this genre taxonomy. 1,138 songs are

collected from AllMusic.com and they have valid records in MSD as the ground

truth. The distribution of the songs according to genre is shown in Figure 13.

5.2.2 Experiment results

In order to improve classification performance, we convert multi-class

classification into a series of binary classifications. Thus, the classification result

42

of a song is a vector of confidence to classify the song into a particular genre.

The predicted genre is the one whose confidence is highest.

We extract features from different data sources and trained individual

classifiers by each type of features using Näıve Bayes, Rule Induction, LDA,

Neural Net, Logistic Regression and SVM, respectively. The classifiers

performance is evaluated by 5-folder cross validation. The best performance

classifiers in different types of features are listed.

• Acoustic Feature: Neural Net

• Artist Terms: Neural Net

• Lyrics: Logistic Regression

• Social: Tags Näıve Bayes

The results of these genre sub-classifiers generate confusion matrixes as

shown in Figure 14. The best confusion matrix is expected to be a diagonal

matrix.

The four sub-classifiers are combined based on the sub-classifier authority

and the classification confidence. The resulting combined classifier is significantly

better than each sub-classifier. Also, the combined classifier surpasses the SVM

classifier using concatenated vectors from four data sources as shown in Figure

15. The classification accuracies of these classifiers are summarized in Table 3.

The result is encouraging regarding to the result of genre classification task in

43

52

36

0

2

21

1

20

17

7

3

38

75

1

0

18

0

43

21

1

3

1

0

2

0

0

0

6

1

0

0

1

1

1

4

2

0

3

1

0

1

24

17

1

2

56

5

14

6

2

1

1

0

0

0

3

0

4

1

0

0

30

62

9

4

14

5

252

46

13

9

13

15

2

1

9

0

34

16

3

3

6

2

3

1

1

1

11

6

22

3

3

2

0

0

0

0

4

6

0

7
Bules

Country

Electronic

International

Jazz
Latin

Pop/Rock

R&B
Rap

Reggae

Bules

Country

Electronic

International

Jazz

Latin

Pop/Rock

R&B

Rap

Reggae

(a) Neural Net by audio features

140

6

0

0

2

0

6

3

0

0

2

185

1

0

0

1

16

0

0

0

0

0

13

1

0

0

1

0

0

0

1

1

0

8

3

0

11

0

0

0

5

0

1

2

110

4

7

2

1

1

4

1

0

1

2

5

77

10

1

4

6

14

4

2

6

2

253

6

5

3

6

2

0

0

1

0

12

92

0

1

3

0

0

0

0

0

6

8

41

0

2

1

0

0

0

0

2

0

0

21
Bules

Country

Electronic

International

Jazz
Latin

Pop/Rock

R&B
Rap

Reggae

Bules

Country

Electronic

nternational

Jazz

Latin

Pop/Rock

R&B

Rap

Reggae

(b) Neural Net by artist terms

36

17

0

0

11

0

46

14

1

3

20

35

3

1

11

1

46

9

7

5

10

19

2

0

14

1

27

9

0

1

16

12

0

3

12

0

25

3

3

1

16

17

0

2

15

2

25

7

4

4

13

18

2

4

11

3

30

11

6

6

17

48

5

2

17

2

90

29

12

5

13

16

3

0

9

1

42

17

2

3

15

17

2

1

12

0

30

8

9

1

13

11

2

1

12

2

30

14

4

1
Bules

Country

Electronic

International

Jazz
Latin

Pop/Rock

R&B
Rap

Reggae

Bules

Country

Electronic

International

Jazz

Latin

Pop/Rock

R&B

Rap

Reggae

(c) Logistic Regression by lyrics

47

7

0

1

10

0

10

11

4

1

12

103

1

2

9

1

9

11

3

2

11

12

1

0

9

0

11

8

3

5

16

6

1

5

5

0

15

4

5

1

16

13

3

0

56

3

9

16

5

0

9

6

0

0

5

4

10

10

4

5

23

32

7

3

6

1

308

31

5

5

13

17

1

1

7

1

7

13

5

0

9

6

4

2

10

1

4

9

10

5

13

8

1

0

7

1

8

8

4

6
Bules

Country

Electronic

International

Jazz
Latin

Pop/Rock

R&B
Rap

Reggae

Bules

Country

Electronic

International

Jazz

Latin

Pop/Rock

R&B

Rap

Reggae

(d) Näıve Bayes by social tags

Figure 14: Confusion matrixes of four sub-classifiers

44

50

18

3

1

17

5

13

17

5

1

17

92

0

2

7

0

13

8

6

3

8

6

3

1

5

0

16

4

5

4

11

10

1

7

6

2

11

7

2

1

13

13

1

1

57

0

14

9

2

1

11

8

2

0

6

1

13

7

4

2

29

35

6

1

9

2

265

38

5

7

16

11

2

0

5

2

14

17

2

1

7

12

0

1

4

0

21

7

12

4

7

5

1

0

8

0

11

7

5

6
Bules

Country

Electronic

International

Jazz
Latin

Pop/Rock

R&B
Rap

Reggae

Bules

Country

Electronic

International

Jazz

Latin

Pop/Rock

R&B

Rap

Reggae

(a) SVM by long vector

145

5

0

1

3

0

5

3

0

0

5

183

1

0

2

1

16

1

0

0

0

0

11

1

0

0

1

1

0

0

0

0

0

8

3

0

0

0

0

0

4

0

1

1

109

5

3

4

0

1

0

0

0

0

0

4

1

0

0

0

5

20

6

3

5

2

348

23

6

7

5

1

0

0

2

0

9

84

0

1

3

0

0

0

0

0

6

5

42

3

2

1

0

0

0

0

2

0

0

18
Bules

Country

Electronic

International

Jazz
Latin

Pop/Rock

R&B
Rap

Reggae

Bules

Country

Electronic

International

Jazz

Latin

Pop/Rock

R&B

Rap

Reggae

(b) Combined classifier

Figure 15: Confusion matrixes by all data

MIREX [MIREX, 2009]. Furthermore, we apply the combined classifier to

classify all of the songs in the MSD.

Table 3: Experiment result comparison

Data Method Accuracy
Audio Neural Net 42.70%

Artist terms Neural Net 76.27%
Lyrics Logistic Regression 18.54%

Social Tags Näıve Bayes 48.59%
All data SVM 44.82%
All data Combined classifiers 83.66%

Chapter 6

Conclusion

This paper presented a novel approach in recommending songs one by one

based on user behavior. The approach considered genre, recording year,

freshness, favor and time pattern as factors to recommend songs. The evaluation

results demonstrate that the approach is effective.

In further research, we can apply this technique to a music database in a

server. Also other users’ behavior can be applied to recommend songs for a user.

We can mix recommendation of music in a local device and an online server data

to overcome the issue of cold start and hence obtain new favorite songs.

Based on classifier authority and classification confidence, the combined

classifier integrates sub-classifiers, which are good at classification of certain data

sources. The combined classifier performs with higher accuracy than

sub-classifiers and the SVM classifier using concatenated vectors.

45

REFERENCES

[Bertin-Mahieux et al., 2011] Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and
Lamere, P. (2011). The million song dataset. In Proceedings of the 12th
International Conference on Music Information Retrieval (ISMIR 2011).

[Box and Pierce, 1970] Box, G. E. P. and Pierce, D. A. (1970). Distribution of
residual autocorrelations in autoregressive-integrated moving average time
series models. Jour. of the American Statistical Association, 65:1509C1526.

[Cai et al., 2007] Cai, R., Zhang, C., Wang, C., Zhang, L., and Ma, W. (2007).
Musicsense: Contextual music recommendation using emotional allocation
modeling. In ACM International Conference On Multimedia, pages 553–556.

[Cano et al., 2005] Cano, P., Koppenberger, M., and Wack, N. (2005). An
industrial-strength content-based music recommendation system. In 28th
Annual International ACM SIGIR Conference.

[Cohen and Fan, 2000] Cohen, W. W. and Fan, W. (2000). Web-collaborative
filtering: Recommending music by crawling the web. Computer Network,
33:685–698.

[Donaldson, 2007] Donaldson, J. (2007). A hybrid social-acoustic
recommendation system for popular music. In ACM Recommender Systems,
Minnesota.

[Ebbinghaus, 1913] Ebbinghaus, H. (1913). Memory: A Contribution to
Experimental Psychology. Columbia University, New York.

[Flexer et al., 2008] Flexer, A., Schnitzer, D., Gasser, M., and G., W. (2008).
Playlist generation using start and end songs. In 9th International Conference
on Music Information Retrieval, pages 173–178.

[IMDB, 2012] IMDB (2012). [Online]. Available: http://www.imdb.com.

[Last.fm, 2012] Last.fm (2012). [Online]. Available:
http://labrosa.ee.columbia.edu/millionsong/lastfm.

[Lee, 2010] Lee, C.-H. (2010). Learning to combine discriminative classifiers:
confidence based. In Proceedings of the 16th ACM SIGKDD, KDD ’10, pages
743–752, New York, USA.

[Liu et al., 2009] Liu, N., Lai, S., Chen, C., and Hsieh, S. (2009). Adaptive music
recommendation based on user behavior in time slot. International Journal of
Computer Science and Network Security, 9:219–227.

46

47

[Logan, 2004] Logan, B. (2004). Music recommendation from song sets. In 5th
International Conference on Music Information Retrieval, pages 425–428.

[McKay et al., 2010] McKay, C., Burgoyne, J. A., Hockman, J., Smith, J. B. L.,
Vigliensoni, G., and Fujinaga, I. (2010). Evaluating the genre classification
performance of lyrical features relative to audio, symbolic and cultural
features. In Proceedings of the 11th ISMIR, ISMIR ’10, pages 213–718,
Utrecht, Netherlands.

[MIREX, 2009] MIREX, A. G. C. (2009). [Online]. Available:
http://www.music-ir.org/mirex/wiki/2009.

[musiXmatch, 2012] musiXmatch (2012). [Online]. Available:
http://labrosa.ee.columbia.edu/millionsong/musixmatch.

[Pampalk et al., 2005] Pampalk, E., Pohle, T., and Widmer, G. (2005). Dynamic
playlist generation based on skipping behavior. In 6th International
Conference on Music Information Retrieval, pages 634–637.

[Ragno et al., 2005] Ragno, R., Burges, C., and Herley, C. (2005). Inferring
similarity between music objects with application to playlist generation. In 7th
ACM SIGMM International Workshop on Multimedia Information Retrieval.

[RapidMiner, 2012] RapidMiner (2012). [Online]. Available:
http://en.wikipedia.org/wiki/RapidMiner.

[Shao et al., 2009] Shao, B., Wang, D., Li, T., and Ogihara, M. (2009). Music
recommendation based on acoustic features and user access patterns. IEEE
Transactions on Audio, Speech And Language Processing, 17(8):1602–1611.

[Su and Yeh, 2010] Su, J. and Yeh, H. (2010). Music recommendation using
content and context information mining. IEEE Intelligent Systems, 25:16–26.

[Weka, 2012] Weka (2012). [Online]. Available:
http://www.cs.waikato.ac.nz/ml/weka/.

	University of Miami
	Scholarly Repository
	2012-05-07

	A Music Recommendation System Based on User Behaviors and Genre Classification
	Yajie Hu
	Recommended Citation

	Yajie Hu - revised2.pdf

