
University of Miami
Scholarly Repository

Open Access Theses Electronic Theses and Dissertations

2014-04-28

Software Engineering in Small Projects: The Most
Essential Processes
Luis T. Nunez
University of Miami, lncautus-um@yahoo.com

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_theses

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Theses by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Nunez, Luis T., "Software Engineering in Small Projects: The Most Essential Processes" (2014). Open Access Theses. 478.
https://scholarlyrepository.miami.edu/oa_theses/478

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses/478?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F478&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

UNIVERSITY OF MIAMI

SOFTWARE ENGINEERING IN SMALL PROJECTS: THE MOST ESSENTIAL
PROCESSES

By

Luis Teófilo Núñez Degwitz

A THESIS

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Master of Science

Coral Gables, Florida

May 2014

©2014
Luis Teófilo Núñez Degwitz

All Rights Reserved

UNIVERSITY OF MIAMI

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science

SOFTWARE ENGINEERING IN SMALL PROJECTS: THE MOST ESSENTIAL
PROCESSES

Luis Teófilo Núñez Degwitz

Approved:

________________ _________________
M. Brian Blake, Ph.D. Dilip Sarkar, Ph.D.
Vice Provost for Academic Affairs, Associate Prof. of Computer Science
Department of Computer Science

________________ _________________
Iman Saleh Moustafa, Ph.D. M. Brian Blake, Ph.D.
Assistant Scientist, the Graduate School Dean of the Graduate School

NUNEZ DEGWITZ, LUIS TEOFILO (M.S., Computer Science)

Software Engineering in Small Projects:
The Most Essential Processes (May 2014)

Abstract of a thesis at the University of Miami.

Thesis supervised by Professor M. Brian Blake.
No. of pages in text. (71)

 Although frequently viewed as bureaucratic and inefficient, some software engineering

processes, in particular unit testing, may prove to be not only useful but indispensable for

small projects. Software-related small businesses or “startups” often do not know which

software engineering processes and tools are most effective or even those that are

absolutely required. In addition, they usually have significant time constraints and limited

resources. As a result, it is very common for startup businesses to overlook and omit the

use of many vital processes and/or tools, without realizing that such omissions could

negatively impact their project, financially, at present and many years into the future.

 This thesis surveys and evaluates relevant business processes for software engineering

in small enterprises including requirements engineering, infrastructure selection, and

testing alternatives. Consequently, this work provides important decision support

guidelines when selecting software processes that will ultimately result in robust, reliable,

scalable, and maintainable software. This thesis is the first step towards developing

repeatable techniques for selecting an appropriate set of processes and tools to be used for

new, small-scale software projects. Within this work is a focused experiment that

demonstrates how to effectively leverage unit testing techniques for small projects. The

results of this model are evaluated within a software development experiment where an

existing software product (that did not initially consider formal software engineering

techniques) is redeveloped to incorporate unit testing paradigms. The outcomes of this

experiment include the evaluation and comparison of software quality and an assessment

of level of effort to produce the existing product as it relates to the unit testing-enhanced

product.

From the experimentation it was fount that even though the unit tested code has

aproximatelly twise the code lines as the version without unit testing, the total time to

develop the unit tested version was only 33% greter than the untested version. In addition

the qualitative analysis showed that the tested version was superior in terms of reliability,

manteinability, and scalability.

iii

ACKNOWLEDGEMENTS

I would like to give special thanks to Professor Brian Blake who almost every two

weeks dedicated a considerable amount of his very busy time to oversee the progress of

this work and to review the resulting document.

I would also like to give special thanks to Dr. Dilip Sarkar, who apart from being my

academic advisor for over 2 years, was my professor in a parallel computing course. In

that course, Professor Sarkar did not limit himself to teach how to efficiently develop an

application for a parallel processing environment, but also how to think about

optimization in general for any kind of environment.

In addition, I would like to thank Dr. Iman Saleh Moustafa since besides from

accepting the responsibility of being part of my thesis committee also spent considerable

time listening about the progress of this work and giving accurate feedback and

recommendations to help with the work.

And last, but not least I would like to recognize Dr. Burt Rosenberg, from whom in

the last few years I have learned so many things that I won’t even attempt to enumerate

them.

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES .. v
LIST OF TABLES .. vi

Chapter

 1 INTRODUCTION .. 1

 2 REQUIREMENTS ENGINEERING .. 3

 3 SOFTWARE PROCESS METHODOLOGY ... 9

 4 IMPLEMENTATION PLATFORM ... 13
 4.1 Choice of programming language .. 13
 4.2 Choce of operating system and database management systems 17

 5 SOFTWARE TESTING ... 18
 5.1 About unit testing ... 18
 5.2 Advantages of unit testing .. 19
 5.3 Disadvantages of unit testing ... 20
 5.4 Limitations of unit testing .. 20
 5.5 Properties of good tests .. 20

 6 CASE STUDY AND EXPERIMENT: UNIT TESTING 22
 6.1 Experiment 1: The re-implementation of Find-it 22
 6.1.1 Hypothesis ... 22
 6.1.2 The evaluation method .. 22
 6.1.3 The procedure ... 27
 6.1.4 Quantitative results ... 29
 6.1.5 Qualitative results ... 32
 6.2 Experiment 2: Adding unit testing to existing software 34
 6.2.1 Hypothesis ... 34
 6.2.2 Validation .. 34
 6.2.3 Description of the experiment ... 34
 6.2.4 Results ... 36

 7 DISCUSSION AND CONCLUSION ... 44

REFERENCES…………… .. 48
APPENDIX A…………… .. 51

v

LIST OF FIGURES

Figure 2.1: Sample use case .. 6
Figure 3.1: The Cockburn Scale ... 11
Figure 4.1: Programming language selection ... 17
Figure 5.1: Simplified process for performing unit tests .. 21
Figure 6.1: Quick-seek architecture .. 24
Figure 6.2: Quick-seek class diagram ... 25
Figure 6.3: Find-it arcitechture ... 26
Figure 6.4: List of PHP files for Find-it .. 27
Figure 6.5: Comparative line count .. 30
Figure 6.6: Percentage of total coding hours .. 31
Figure 6.7: Sample user interphase ... 35

vi

LIST OF TABLES

Table 6.1: Quantitative results for experiment 1 .. 29

1

Chapter 1
Introduction

Although contemporary business owners sometimes suggest that formal engineering

processes can be an inefficient practice, software engineering processes, in particular

Unit Testing, continue to be both useful and indispensable for small projects. Many

software-related startup businesses are not aware of which software engineering

processes and tools are really needed and why they are important. Small businesses tend

to have limited time and resources and, as such, it is very common that these

organizations overlook and omit the use of many vital processes and/or tools. These

omissions could prove fatal, or at a minimum very costly, to the underlying projects.

The intention of this thesis is to demonstrate the need and advantages of a set of

software engineering-related processes, particularly in small businesses. This work

provides guidance to small companies on how to apply the most relevant best practices of

software engineering in a way that is cost effective, while reducing delays to their

projects. The ultimate result is robust, reliable, scalable, and maintainable software. To

achieve this goal, this work will be divided in two parts. In Chapters 1 through 5, the

thesis will introduce several software engineering processes core to software lifecycles,

but sometimes neglected by entrepreneurs. This section of the work will be based on

studying the criteria established by others for selecting software engineering processes

and tools. Each of the Chapters 1 through 5 will briefly present the process required

based on what it consists of and recommendations with respect to how to implement.

2

The second part of this work, Chapter 6, described two software development

experiments and corresponding results. Both experiments describe the benefits and level

of effort involved in developing software that contains Unit Testing. The objective of the

experiments is to empirically evaluate the effectiveness of Unit Testing for small projects

and the effort involved in introducing tests to existing software.

The first experiment incorporates unit testing into an existing Web application, called

Find-it, which was initially developed without the use of testing. In this experiment, Find-

it gets updated to incorporate unit testing without performing major refactoring to the

existing code. This experimentation is conducted to evaluate the level of effort for

introducing unit testing in similar applications and the corresponding benefits.

In the second experiment, the Find-it application is re-implemented altogether. Since

Find-it was developed in a controlled environment where the thesis’s author was one of

the main developers, detail information is available on how it was developed and the

effort that it took. Therefore, by re-implementing the application, also in a controlled

environment, it is possible to perform a comparison between both of the preliminary

software and resulting outcome.

3

Chapter 2
Requirements Engineering

Having a well-defined set of requirements, the Software Requirement Specification

(SRS), is a critical software engineering element within an engineering project. Nothing

can be more threatening for a software project than having ineffective requirements.

Improper requirements are a major cause of unscheduled changes that will normally

result in cost overruns and/or project overdue.

According to the study in [1], 80% of the deficiencies in delivered software may be

attributed to problems in requirements engineering. Poor requirements can cause what

Gilb et al. called “The evil circle principle”, that is described as follows [2]:

If requirements are unclear, incomplete or wrong, then the architecture
will be equally wrong.
If the architecture is wrong, then our cost estimates will be wrong.
If the cost estimates are wrong, then people will know we are badly
managed.
If the high-level requirements and architecture are wrong, then the detailed
design of them will be equally wrong.
If the detailed designs are wrong, then the implementation will be wrong.
So we end up re-doing the entire project as badly as the last time, because
somebody will cover up the initial failure, and we will presume that the
methods we used initially were satisfactory.

Gathering, analyzing, and modeling requirements are not easy tasks, but they need to

be done effectively while limiting irrelevant information. In fact, irrelevant information

can have an adverse effect on a project [3]. For example, including unreasonable

expectations from the stakeholders regarding the required time to develop it could

influence the time estimation into set unrealistic deadlines which could later affect

morale. A good SRS is nothing more than a comprehensive description of what the

4

stakeholders anticipate that the end product should be. Mostly, requirements are written

in plain natural language like English, and with some graphic representations of user and

other system interfaces, and a few other illustrations and diagrams. Of course, for it to be

comprehensive it should describe in detail the desired functionality, performance and

design constraints, and the external interfaces [4].

According to the IEEE guideline 830 [5], a good SRS should be:

a) Correct;

b) Unambiguous;

c) Complete;

d) Consistent;

e) Ranked for importance and/or stability;

f) Verifiable;

g) Modifiable;

h) Traceable.

Since the quality and completeness of the SRS can have a significant impact in the

success of the any software project, it is imperative to give the proper time and resources

to the SRS elaboration. The basic steps [2], [5]–[10] are as follows.

1. Elicitation

This is a phase of the process where information is gathered from stakeholders and

users regarding every aspect of what the software is desired to be, and should include

the following.

a. High level requirements (Vision & scope). This will form the basis for the

introduction and overall description sections of the SRS.

5

i. Opportunity/needs - Why this software is needed.

ii. Justification - What benefits the new software will bring to the stakeholders.

iii. Scope - What the software will do and what won’t do.

iv. Major constraints - Thing to which the development is to be bounded.

v. Major functionality - Description of all the functions that the system will

perform.

vi. Success factor - Definition of what would be considered a successful project.

vii. User characteristics - Background information of the intended users.

b. Low level requirements (can be done by interviews, Observation of people

working, Discussion summaries or questionnaires). The low level requirements

should address most of the following areas.

i. Individual functionality. Use Cases - Detailed description of each functionality.

This is usually done in a tabular form using plain natural language. Of all the

parts of an SRS, the use cases description, or an equivalent detailed description

of the functionality, is the most important part of the document. It is imperative

to anyone not to start a project, without having a well-defined use case

description. The following is an example of a simple but effective way to

describe a use case.

6

Name: Log In to account.

Code: FR LogAcc.

Actor(s): Any active user.

Precondition: The user has arrived to the login page.

Trigger: The user enters a user and password in the proper fields and submits it.

Basic Path: The user can enter a user and password to login to his account and

submits the information.

Alternative

Path:

After submitting username and password, the user is not

authenticated and is redirected to the login page which now shows that

access was denied and gives an option to try again.

Exception

paths:

The system fails to connect to the database, in which case the user

is informed of the problem and is invited to try again at a later time.

Other: One username can be associated with different accounts, but the

combined username and password defines the account to which the

user is login in. Therefore every user and password combination must

be unique.

Figure 2.1:Sample use case

ii. Use Case Diagrams - The functionality description can be complemented with

one or more Use Case Diagrams.

iii. Business flow - This is a description of how the users perform the desired

functionality.

7

iv. Data, format, and information needs. - A description of how the system

receives its (input) and how the output will be formatted.

v. User interfaces - Description and or graphical representation of the user

interfaces.

vi. Interfaces with other systems - If the system is to interact with other systems,

the interfaces for such an interaction need to be described.

vii. Other constraints - performance, reliability and security.

2. Analysis

Once all the requirements are gathered, the data may be disorganized and requires

analysis to categorize and prioritize it [6].

a. Categorizing - An intuitive and effective method for categorizing requirements is to

group them as being functional, nonfunctional, interface, or data format

requirements.

b. Prioritizing - In most cases, time and resources are limited, so software engineers

must decide which requirements should be implemented and others that cannot.

Moreover, software engineers must have an in-depth understanding of what to

implement first. Requirements are typically assigned a priority value.

3. Documentation and definition – Gathered information is typically represented as

software requirements specifications (SRS) Draft. SRSs follow the IEEE guidelines

830, IEEE recommended practice for software requirements specifications [5]. For

Mission critical systems, more formal methods of specifications may be required

where requirements written in natural language are then expressed in machine

8

readable languages to enable the possible use of computer-aided validation and

verification [11].

4. Prototyping – Some software lifecycles suggest a process where a prototype of the

system is developed. An increment prototype allows the stakeholders to validate their

ideas and that requirements are understood correctly. Software engineers must

evaluate if this technique is efficient for the specific application.

5. Review and validation - As the SRS is being prepared, it should regularly be reviewed

and validated by the stakeholders and developers.

6. Agreement and acceptance - The final version of the SRS should be accepted by all

parties. Subsequently, the SRS acts as a contract between stakeholders and developers

that describes what it is that should be developed. Modification and changes after the

SRS is finalized must be properly analyzed and risk to the overall project assessed. If a

change is approved it should be incorporated within the SRS in a way that leaves a

clear trace of what was changed.

9

Chapter 3
Software Process Methodology

A group of professionals working on a software project without following a defined

methodology or software process is a recipe for failure. According to an article by Linda

Dailey Paulson [12].

Although research by The Standish Group found factors such as
executive involvement rated as more important in guaranteeing project
success, having a formal project methodology rates among the top 10.

With that being said it is also important to note that as the size or density of the

methodology increases, productivity decreases at a much faster rate. Therefore adopting a

methodology that is most efficient containing an appropriate density for the project is of

vital importance. However, one of the problems with selecting a methodology is that

there is not one methodology or software process that fits all projects without

customization. It is important to evaluate some of the project’s characteristics in order to

select and adapt a specific methodology.

Before we continue with this topic, it is important to define the software development

methodology. Software development methodologies can often be confused with software

process models. The fact is that a software process model is only part of the

implementation of a methodology. A methodology is concerned with practically every

aspect of a software project, including but not limited to things like where should

employees sit, how do they communicate, how long do they work, and so on.

Cockburn [13] describes a criteria for selecting a software development methodology for

a project. In the literature, related approaches containing concise sets of guidelines for

10

selecting and/or adapting a methodology, as Cockburn’s, are limited. His approach

suggests that multiple methodologies are necessary as no one methodology can be

appropriate for all projects. In his work, we propose a set of principles to follow when

selecting a methodology when multiple methodologies are appropriate and necessary.

Interacting methodologies must be differentiated according to staff size and system

criticality (more dimensions exist, but these two serve well initially) [13]. There are four

main principles [13]when selecting and differentiating software methodologies.

Principle 1

“A large group, need a larger methodology.” The size of the group is defined as the

number of people in the group. And the size of the methodology is defined by the number

of control elements (i.e. milestones, deliverables, activities, standards, etc.)

Principle 2

“A more critical system—one whose undetected defects will produce more damage—

needs more publicly visible correctness (greater density) in its construction.” For this

principle, Cockburn divides criticality into 4 zones. From less critical to more critical, the

zones are loss of comfort (zone C), loss of discretionary moneys (zone D), loss of

essential or irreplaceable moneys (zone E), and finally loss of life (zone L).

Principle 3

“A relatively small increase in methodology size or density adds a relatively large

amount to the project cost.” Methodology density is defined as the detail and consistency

required for the controlling elements.

11

Principle 4

“The most effective form of communication (for transmitting ideas) is interactive and

face-to-face, as at a whiteboard.” The software team members should be sitting in close

proximity to each other to promote frequent and easy contact. This principle follows his

related work in agile software development [14].

Cockburn presents a concise method for selecting a methodology based on the 4 basic

principles. Based on principles 1 and 3, Cockburn presented a table to classify projects

depending on criticality and size (number of people involved). This table is known as the

Cockburn Scale. Below is a simplified version of the Cockburn table.

Table X. The Cockburn Scale.

 1-6 7-20 21-40 41-100 101-200 201-500 ...

Life (L) L6 L20 L40 L100 L200 L500 ...

Essential
money (E)

E6 E20 E40 E100 E200 E500 ...

Discretionary
money (D)

D6 D20 D40 D100 D200 D500 ...

Comfort (C) C6 C20 C40 C100 C200 C500 ...
Figure 3.1: The Cockburn Scale

Recommendations for Small Businesses

Our work is focused on facilitating software engineering practices for small new

ventures. As such, we assert that one dimension (i.e. criticality) should be the criteria for

selecting the methodology that a project should use.

Cockburn and others [15]–[17] have discussed agile methodologies that gained

popularity in the past two decades. It was stated that “Nowadays; agile methodologies are

one of the most important rising methodologies in software engineering.” [16].

12

Unless the project’s criticality is Life Threatening (L), a variant of the agile

methodology can be adapted for the circumstances of small businesses. XP (Extreme

Programming) [13] or one of the methodologies on the Crystal Family of methodologies

[13] could be two possible effective options in these environments. To evaluate XP,

Cockburn [17] states “XP was first used on D8 types of projects. Over time, people found

ways to make it work successfully for more and more people. As a result, I now rate it for

E14 projects.” XP is based on how a collection of individual practices, such as test driven

development, close customer participation, continuous refactoring, constant

communication and coordination, collective code ownership, and pair programming,

interact in a software development setting [15]. With respect to Crystal Clear, Cockburn

[17] states that “Crystal Clear is a methodology for D6-category projects. You should be

able to stretch Crystal Clear to an E8 or D10 category project with some attention to

communication and testing, respectively.” As a result, the agile methodology that is best

suited for any project will depend in large part on the culture of the team.

If the project’s criticality is life threatening, then the project may need a more

sophisticated and/or denser methodology. However, some software engineers assert [18]

that some agile methodologies can be extended to satisfy projects with life threatening

criticality. Gary K. et al [18] affirm that:

 Agile methods are flexible enough to encourage the right amount of
ceremony; therefore if safety-critical systems require greater emphasis on
activities, such as formal specification and requirements management,
then an agile process will include these as necessary activities.

13

Chapter 4
Implementation Platform

The choice of implementation platform components, such as programming languages

for the various components, operating system and environment, and pertinent database

management systems, is a critical decision for some projects. For example, choosing

Microsoft .Net [19] as the development platform for a web based project could be

initially appealing considering the rapid development facilities that it offers. However,

other factors must be understood considering the expense of the platform. Moreover, at

the time of deployment, many low cost hosting servers may not support .Net. To begin

this selection, it is imperative to have a well-defined SRS in order to ensure an efficient

process, overall.

4.1 Choice of programming language

There is no single programming language for all tasks. For that reason, selecting a

programming language that is right for the project is crucial [20]. Naiditch [21] states that

Too often, discussions about what language to select break down into
emotional appeals for one’s favorite language. Instead, a fair and rational
process should be established that bases the choice of a programming
language on issues related to customer needs and business goals.

The following is a list of criteria that can be used to select a programming language

for a project [20]–[23].

14

• Ease of learning

This factor is important if you have a pre-existing development workforce and require

a set of languages unfamiliar to your developers. Otherwise, we assert this factor has

a relatively lower priority factor unless the time to production is very restricted.

• Ease of understanding

Software is usually written once, but read many times. In many cases, it will be

read by people other than the original developers. This is of particular importance

when the system is expected to have a long, useful lifetime. The programming

language may play a role, but, in practice, what makes a program easier or harder

to understand is closely related to the programming style and best practices that

the programmer employs. In general, for a large program, object oriented

language facilitate the understanding and reusability, while procedural language

are less favored. In these studies, we believe that for very small programs, the

opposite could be true.

• Speed of development

Libraries and tools dictate the speed at which you can create production code. For

example, contemporary Integrated Development Environment (IDE) with

integrated development libraries facilitates the development of Graphical User

Interfaces (GUI’s). Therefore, selecting a language that has libraries and tools that

are adequate for the required tasks could improve speed of development.

• Help with enforcement of correct code

Strongly typed languages prevent runtime errors. Java, [24] C#, and ADA are

examples of strongly typed languages. C also requires that all variables have

15

strong type declarations, but by the use of pointers this requirement can be

somewhat overlooked.

• Performance of compiled code

Contemporary compilers for most modern programming languages are optimized

to produce efficient code, so this factor is increasingly less relevant. Performance

is more heavily determined by architectural issues or algorithmic decisions.

Language selection is usually less relevant. There are few exceptions, such as

when applications that process large numbers where small variations in

performance could translate significantly increased CPU time.

• Portability

Modern programming languages have associated compilers for all the major

platforms. However, if the system must be portable across platforms, some

languages are more appropriate than other. For example, Java was created to be

highly portable across most major platforms [23]. “By far, the most successful

example of a popular language that has good portability is Java, which was

deliberately designed for portability. It has achieved this by standardizing not only

the language, but also the platform environment (J2EE and J2SE).”

• Runtime requirements

The language selected for developing an application may require that the user

installs a specific runtime environment. A user may be reluctant to download and

install applications that have security and performance risks.

• Ease of collaboration

16

This is an important factor when the project is developed and/or maintained by

teams in distributed locations. In general, object-oriented languages support

collaboration more than procedural languages. Hybrid languages and web-based

languages like PHP and Python could work equally well for this factor, when

software teams limit the development of procedural code but instead uses

effective object-oriented practices.

• Adequate match for the task

It is important to find an adequate match for the task, like with speed of

development, depend on the nature of the project and the features that it requires.

Such features or libraries are not equally accessible to all languages. Also, the

original philosophy of the language can play an important role in the decision.

“The best choice of language for a task would be according to the original

philosophy, keeping in mind that Java is portable web oriented language, Perl is a

powerful script language, Python is an easily coded language and C and C++ are

efficient languages used in operating systems and drivers” [22]. It is important to

examine the SRS and evaluate each requirement while understanding

appropriateness of the various candidate languages.

Below is a table of some of the most popular programming languages used today. The

author has assigned a score to each language in a scale from 1 to 5 where 5 is the highest

score, according to each of the mentioned characteristics. The values presented on this

table are for illustrative purpose, readers are encouraged to use their own set of values.

17

 Java PHP Python C C++ C#

Ease of learning 2 5 5 4 3 2

Ease of understanding 3 4 4 2 3 3

Speed of development 2 4 4 4 2 2

Enforcement of
correct code

4 2 2 3 3 3

Performance 4 2 2 5 5 3

Supported platforms 5 4 4 4 4 4

Portability 5 4 4 3 3 3

Ease of collaboration 5 5 5 3 5 5

Runtime requirements 4 3 3 5 5 5
Figure 4.1: Programming language selection

4.2 Choice of operating system and database management systems

The selection of the operating system and database management system that a project

requires could be a long and complex task that extends beyond the scope of this work. If

some quick decisions are required, the author suggests that the requirements should be

closely evaluated. The cost of acquisition, cost of maintenance, and availability for

deployment are important factors to be considered.

18

Chapter 5
Software Testing

Another important process is a systematic way to incrementally test during the

development lifecycle. Failure to do it properly will increase the probability of

encountering a number of expensive, and sometimes recurring, complications. There are

several forms of software testing. This thesis focuses on unit testing, integration testing,

system testing, and acceptance testing. Integration, system, and acceptance testing are

perhaps the most prevalent. However, unit testing is more unique, since it is perceived as

inefficient by many programmers. First, Elims et al. [25] suggest that the perceived

additional time required to use unit testing is far greater than reality.

We examine the available data from three safety-related, industrial
software projects that have made use of unit testing. Using this information
we argue that the perceived costs of unit testing may be exaggerated and that
the likely benefits in terms of defect detection are quite high in relation to
those costs.

Properly performed unit testing actually saves time and resources over the lifetime of

the project. However, unit testing must be implemented properly and early.

5.1 About unit testing

There are many definitions of Unit testing but a simple and concise one is the

following “Testing of individual hardware or software units or groups of related units”

[26]. Unit testing is a key component for any software that is intended to be sustained

while also being manageable for an extended time. However, as mentioned, unit testing

should be taken into consideration at the start of any project, as it is difficult to

incorporate later in the project. On the other hand, if unit testing is incorporated into the

19

development of each unit then the effort and expense is minimized as the integration time

of new code is reduced (i.e. reduction in time to debug new code).

5.2 Advantages of unit testing

• Higher confidence in the code and less time spent on the debugger.

Beck [27] suggests, in context of the xUnit family of automated testing

frameworks, that “It wasn't until I had been automating tests for

several years that I noticed that I didn't use the debugger.” .

• Early detection of problems.

Normally unit testing is done either before writing the unit of code, or

immediately after. So when a test fails at that stage, either the code for that unit

has a bug or the test has a bug. In either case both codes are revised and the

software bug is removed.

• Helps prevent the introduction of new bugs during code modifications.

If a modification of the program makes a test fail, the failing test tells us where

the problem may be before the code is updated.

• Facilitates integration testing.

By using unit testing, all the individual units are more reliable, so the integration

testing becomes less complex thus reducing development time.

• Complements documentation.

Unit testing suites constitute a form of documentation in itself, since the test

reveal characteristics that the units should implement.

• Supports design.

20

If unit testing is done before coding, then the tests become an additional model of

the design.

• Greatly reduces the cost of defects in the long run [27].

“…The Defect Cost Increase (DCI). DCI states that the sooner you test after the

creation of an error, the greater your chance of finding the error and the less it

costs to find and fix the error...”

5.3 Disadvantages of unit testing

A major disadvantage of unit testing is the time investment. The lines of code

increase proportionately and require maintenance.

5.4 Limitations of unit testing

• It only tests individual units.

It does not test the integration between the units. It also does not test performance.

• A unit test failure does not prove that the code is faulty.

The fault may be in the test itself.

• Unit testing is very difficult and ineffective with GUIs.

There are frameworks and tools that help unit test GUIs and WEB pages, but in

general it is difficult to do it.

5.5 Properties of good tests

An excerpt from a common testing book [28] suggests

Unit tests are very powerful magic, and if used badly can cause an

enormous amount of damage to a project by wasting your time. If unit tests
aren’t written and implemented properly, you can easily waste so much time
maintaining and debugging the tests themselves that the production code—
and the whole project—suffers. We can’t let that happen; remember, the
whole reason you’re doing unit testing in the first place is to make your life

21

easier! Fortunately, there are only a few simple guidelines that you need to
follow to keep trouble from brewing on your project.

Good tests have the following properties, which makes them A-TRIP:
Automatic
Thorough
Repeatable
Independent
Professional

As more and more people and companies recognize that unit testing is essential for

the sustainability of a software project, unit testing is moving to the requirements phase

of the project. The following is an illustration of the typical activities involved in proper

unit testing. The illustration was taken from [25].

Figure 5.1: Simplified process for performing unit tests, shaded boxes show associated activities that must be completed
before or in conjunction with unit testing. [25]

22

Chapter 6
Case Study and Experimentation:

Unit Testing

6.1 Experiment 1: The re-implementation of Find-it

Find-it, an application that was developed by this author and a group of 4 other team

members over the course of a semester was redeveloped into a new product of identical

functionality called Quick-seek. One of the reasons for selecting Find-it for this

experiment was that the author was one of the developers and therefore maintained

detailed records related to the time it took to develop each piece. Another reason for

choosing Find-it was that it is complex enough to be relevant, but simple enough to be

developed in one semester, which was the maximum time available to complete the task

of re-developing it in another programming language. In addition, and perhaps most

importantly, Find-it was developed to incorporate several software engineering methods,

but Unit Testing was not incorporated.

6.1.1 Hypothesis
This thesis claims that if Unit Testing is performed concurrently with development it

should not significantly increase the initial developing cost of the project, and that in time

the benefits of a self-testing application will exceed the higher cost.

23

6.1.2 The evaluation method
By redeveloping Find-it, but this time doing it with a test-driven development frame

of mind from the initial phases, this experiment intends to demonstrate that even though

more than twice the code was written than it was with the original system, the new

software, Quick-seek, did not take much more time or resources to build it, and the

quality of the new product is far superior in terms of robustness and maintainability.

Quick-seek was intentionally written in a different programming language and using a

different architecture to ensure that rewriting it wouldn’t be easier than writing it for the

first time.

24

Figure 6.1

H
TT

P
R

eq
ue

st
 1

H
TT

P
R

Java Servlet Controller

Java

Forward HTTP Request 1

DB
Query

Resultset

HTTP Request 2

HTML

Fo
rw

ar
d

H
TT

P
R

eq
ue

st
 2

H
TT

P
R

es
po

ns
e

H
TT

P
R

eq
ue

st
 1

Quick-seek architecture

25

Figure 6.2: Quick-seek class diagram

26

 Figure 6.3

H
TT

P
R

eq
ue

st
 1

H
TT

P
R

PHP

Query

Resultset

HTML

H
TT

P
R

es
po

ns
e

H
TT

P
R

eq
ue

st

Data Base

Find-it architecture

27

Find it does not have a class diagram, since its logic was written as a group of files with

procedural PHP code, and therefore it has no packages or clases. The PHP files are

enumerated as follows.

ProcessAddItem.php

ProcessEditItem.php

ProcessDeleteItem.php

ProcessSearch.php

ProcessAddCatalog.php

ProcessEditCatalog.php

ProcessDeleteCatalog.php

ProcessAddUser.php

ProcessEditUser.php

ProcessDeleteUser.php

ProcessSignup.php

ProcessAuthentication.php

Restrict_Access.php

Figure 6.4: List of PHP files for Find-it

6.1.3 The procedure

The first step in the experiment was to take the SRS of Find-it and do some minor

adaptations to it to use it as the SRS for Quick-seek. The author decided to use the same

SRS instead of creating a completely new one, to make sure that Quick-seek, the new

product, would be functionally the same as Find-it and therefore comparable.

28

The second step was to set up a developing environment similar to the one that was

used to develop Find-it, but adapted to the new language to be used. Among the most

important things included in the developing environment were a version control system,

(i.e. SVN), Eclipse as the IDE, and MySQL as the DBMS. The environment also

included a Java JDK, Tomcat as the Java container, and JUnit for unit testing. In addition

to that an Endeavour Server, which is a freeware web based Project Management System

was installed. Due to the small nature of the project, the Endeavor was used very lightly,

only to define the major iterations planed and to occasionally check if the development

process was on track.

Following the advice presented in this document, since the project is very small, a

very simple methodology was adopted, a simplification of Extreme Programming (XP).

This was the most significant change in comparison with what was done with Find-it,

since Extreme Programming requires developing a unit test for every method or unit of

code.

In selecting the implementation platform for Quick-seek it was decided to keep

everything equal to what was used in Find-it except for the programming language. The

decision of changing the programming language was to ensure that the code would be

completely written from scratch as opposed to retyping some of the code that was already

done. Very soon it became obvious that the change of the language was unnecessary with

that respect to the fact that this time the application was going to be built using a test

driven development (TDD) methodology. Therefore, it would best be developed with an

object oriented model, while Find-it was mainly procedural and therefore very different.

29

Nonetheless, switching to Java added to the purpose of simulating a completely new

project.

The graphic design for Find-it was taken from a free HTML template from

FreeCSS.com. It was decided to use the same template for Quick-seek since changing it

did not add additional value to the experiment. However, the CSS was modified to

change the colors of the UI just so that the two products could be easily differentiated.

6.1.4 Quantitative results

To obtain the following figures we used Code Analyzer, a Java application developed by
Mark Teel [29].

 Find-it Quick-

seek

Total Files 52 66
Total Lines 4,116 8,758

Code Lines 3,229 6,075
 Functional code lines 3,229 2,803
 Test Code Lines 0 3,272
Documentation Lines 524 1,246
Whitespace Lines 368 1,501

Total Coding Hours 146 194
 Table 6.1: Quantitative results for experiment 1

30

 Figure 6.5: Comparative line count

The results show that the redeveloped software has more than twice the lines of code

than the Find-it application. Also, more than half of the lines of code for Quick-seek are

test code lines. The results were expected based on related work. At first, it appears that it

will be hard to justify unit testing, since apparently the overhead caused by it is very

significant. However, the average time to develop a line of code without unit testing is

not the same as the average time to develop a line with unit testing. On the average, it

takes considerable less time to develop a line of code that is tested. Why? There are a

several reasons, but two are most relevant: First, even the best programmers usually make

mistakes when they write code. As a result, when developing without frequent testing it is

very common to spend time debugging the code before it can adequately execute for the

first time. Such was the case when Find-it was developed, where many hours were spent

debugging. That initial debugging time is part of the total time to develop those lines of

code. If the code is unit tested each time a small unit is written then this method

eliminates that initial debugging. As a result, by disregarding the time to write the tests,

each line of unit tested functional code is written faster on the average than untested

0 2000 4000 6000 8000 10000

Total Files

Total Lines

Code Lines

Functional code lines

Test Code Lines

Comment Lines

Whitespace Lines

Find-it

Quick-seek

31

functional code lines. Second, the larger the size of the functional code, the longer it is

required conceptualize the tests. Test lines also require thinking; however, since they are

so closely related to the code to be tested, if they are written very close to the time of

writing the functional unit of code, then they require considerably less amounts of time

than a line of functional code. As to be expected, this difference becomes more apparent

if the developer is very experienced in unit testing.

It is necessary to point out that even though it is faster to develop a line of unit tested

code, the difference is not enough to compensate for twice the code. As a result, the total

time to develop an application using test driven development will undoubtedly still be

larger than developing without it. For example, in our experiment, it took 49 more hours

to develop Quick-seek, which represents only a 33% increase in developing time.

Figure 6.6: Percentage of total coding hours

Nonetheless, time to develop cannot be used in isolation to decide whether or not it is

justified to use unit testing. Other metrics might lead to a more holistic conclusion, since

Total Coding Hours

Quick-seek

Find-it

57% 43%

32

the cost of a software project does not end at the moment when the developers write the

last line of the first version.

6.1.5 Qualitative results

In comparing Find-it, the original non-tested application, with Quick-seek, it is

initially observable that the two products that are functionally identical; however, as the

code is analyzed in terms of reliability, maintainability and scalability, it is clear that the

quality of the two products is very different.

Regarding reliability, it is notable that with the exception of the HTML code, the

controller servlet, and simple accessor methods, every method of the application has an

automated test for it. As a result, every time a method or class is added or modified, all of

the other classes and methods are tested, which significantly raises the reliability of the

product. These tests are simple tests that verify that each small unit of the software is

working as anticipated. However, in other cases, some very complex methods may

require more exhaustive testing. Because of the built-in suite of automated unit test,

Quick-seek requires very little integration, and acceptance testing before it was approved

with confidence for production. Find-it on the other hand has no built-in testing

capabilities which creates uncertainty regarding the reliability of the code. Due to the lack

of automated testing, Find-it required extensive manual integration and acceptance

testing before it is approved as a production-ready product. During the several iterations

of testing, often the product had to be sent back for debugging a defect. These testing and

debugging iterations obviously add to the initial cost of development.

33

Regarding maintainability the situation is similar. Since Quickseek has a built-in suite

of automated tests that exercise every method in the application and that can easily be run

after any change is made to the software; if Quick-seek is put into production and later a

new feature is needed or a change in functionality is required, a developer can work on

the software with assurance that if his additions cause new error within the existing code,

then it is probable that the test suite will detect it and point out where the problem is. As a

result, the updated version can be put into production with confidence with little

additional manual testing. On the other hand, the same cannot be said of Find-it which

does not have any automated testing to exercise all code. A developer making a change or

correcting a bug could very easily introduce a new bug that without extensive manual

testing would have a high probability of being unnoticed before the new version goes into

production. This kind of situation occurs frequently in commercial products that had not

been developed with unit testing, and it is difficult to estimate the related cost. On a

similar note, it is worth noting that the main developer of Find-it has used the product for

personal purposes almost on a daily basis since it was first published. Since that time,

many bugs have been discovered and corrected. If Find-it had been a commercial

product, the cost of a customer encountering a problem could have a serious impact on

the business, not to mention the additional cost.

When it comes to scalability, again it can be seen that Quick-seek has a great advantage

over Find-it. If new features are required, that call for a major design change, the unit test

built into Quick-seek makes the refactoring process straightforward and less risky.

34

6.2 Experiment 2: Adding unit testing to existing software

6.2.1 Hypothesis

If unit testing is skipped, during software development there is a chance that problems

will start to show up later on in the life of the software. Unit testing should be

incorporated at the start of a new project, particularly for small businesses, as it takes

longer to incorporate unit tests later in the project. Alternatively, if unit testing is built

into the implementation of each unit, the effort is reduced and less time is spent

debugging the new code.

6.2.2 Validation
To validate these assertions, we conducted an experiment where we incorporated unit

testing to Find-it; an application that was implemented without applying unit testing. The

goal is to introduce unit testing without a major refactoring effort. Find-it, is a web based

filing management system written in non-object-oriented PHP interphasing with a

MySQL database.The experiment was then evaluated quantitatively by tracking the time

that it took to create unit tests for most of the PHP scripts that comprise the main logic of

the software and comparing that time with the time that took to build the functional code.

In addition, an analytical evaluation was conducted by identifying the factors that

presented complications to the process.

6.2.3 Description of the experiment
After some analysis regarding how to best implement unit testing to Find-it, the initial

impression was that it would not be possible to effectively incorporate unit testing into

the application without massively refactoring the software. However, after further

examination, it is observed that certain aspects of unit testing could be achieved but it

35

requires some compromise with respect to various characteristics of quality unit testing.

The process is also observed to be very time consuming. In particular, developing

independent tests were difficult to create from existing code. The analytical results of the

experiment are the identification of areas in the original code that made unit test

incorporation intractable and the introduction of mitigating solutions (i.e.“workaround

solutions”) in this environment.

In the experiment, three major types of problems were discovered and will be

described in more detail in the next few paragraphs. It is important to note that this was

an isolated experiment performed on a single system. However, useful insights were

discovered around the importance of considering unit testing at design time.

Find-It, the system used for the experiment, is made of a collection of HTML forms

like the following one.

 Figure 6.7: Sample user interphase

36

In most cases the HTML has embedded PHP code that is standardly executed on

server side where final HTML code is sent to the client browser. In many cases this

embedded PHP code consists of a line that instructs the parser to include the lines of a

specified PHP file before it gets executed, as shown in the piece of code bellow.

<?php

require_once('scripts/account_registration.php');

?>

The previous code fragment is inserted at the beginning of the HTML form; and as a

result the code in the file “account_registration.php” gets inserted into the HTML

document before the form gets executed by the server.

In this particular case these inserted files, which contain pure PHP code, is what we

wanted to unit test. But as mentioned earlier, doing so still present some challenges.

6.2.4 Results
On the quantitative side it was observed that it took 153 hours to code the unit tests

for Find-it, while it only took 146 hours to develop the functional code. In other words, it

took longer to build the tests than it took to build the functional code. This result by it self

are not enough to validate our hypothesis since it does not tell us anything about the time

that it would have taken if the tests were coded incrementally wile developing the

functional code. However, combining this result with the results of experiment 1 we get

that the total time to code Find-it plus the time to code it’s unit tests was 299 hours.

Therefore, it took considerably longer than the 194 hours that it took to develop Quick-

seek, a functionally identical application that was developed using test driven

development. This combined results do in fact validate our hypothesis.

37

On the analitical side the following was observed. The two main types of dificulties

encountered originate from the fact that in most cases the PHP files have no class

declarations or functions that can be called from a test function. The most promising

solution is to dynamically include the whole file into the test function. As a result, there

are several challenges.

1. The function may directly send output to the user without storing a result

value

There may be some scripts for which the functionality is just to display (echo)

some string or value like in the following script. In those cases, there is no easy way

to automatically test the value of the string that gets echoed. When this occurs, the

easiest solution may be to do some minor refactoring to the code. Look at the

following example.

accessLevelOptions.php

<?php

 $sql = 'SELECT accessLevel FROM `users`

 WHERE `userId`='.$_GET['userId']. '

 ORDER BY accessLevel';

 $result = $dbRead->fetchAll($sql,$_GET['userId']);

 $admin = 10;

 $user = 20;

 $ruser = 30;

 echo "<option";

 if($result[0]['accessLevel']==$admin){

 echo " selected=selected";}

 echo ' value='. $admin . ">Administrator</option>";

 echo "<option";

 if($result[0]['accessLevel']==$user){

38

 echo " selected=selected";}

 echo ' value='. $user . ">User</option>";

 echo "<option";

 if($result[0]['accessLevel']==$ruser){

 echo " selected=selected";}

 echo ' value='. $ruser . ">Restricted User</option>";

?>

In this case, minor refactoring allows the data to be first stored on a variable

which we can then use to test (compare with) some known value as was done in the

following refactored code.

accessLevelOptions.php (Refactored code)

<?php

$sql = 'SELECT accessLevel FROM `users`

 WHERE `userId`= ?

 ORDER BY accessLevel';

$result = $dbRead->fetchRow($sql,$_GET['userId']);

$admin = 10;

$user = 20;

$ruser = 30;

$usersList = "<option";

if($result['accessLevel']==$admin){

 $usersList = $usersList . " selected=selected";

}

$usersList = $usersList . ' value='. $admin . ">Administrator</option>";

$usersList = $usersList . "<option";

if($result['accessLevel']==$user){

 $usersList = $usersList . " selected=selected";

}

$usersList = $usersList . ' value='. $user . ">User</option>";

$usersList = $usersList . "<option";

if($result['accessLevel']==$ruser){

 $usersList = $usersList . " selected=selected";

39

}

$usersList = $usersList . ' value='. $ruser . ">Restricted User</option>";

2. Performing more than one functionality in the same unit of code

Many scripts perform two or more functionalities synchronously. This eliminates

straightforward methods for testing independent functionality separately. Such is the

case of the following script.

process_delete_catalog.php

<?php

 require_once('library.php');

 // Check if the catalog has children

 $sql = 'SELECT id FROM `containers`

 WHERE parentId = 0 AND dbId = ?';

 $result = $dbRead->fetchAll($sql,$_GET['dbId']);

 $size_of_result = sizeof($result);

 // Delete the catalog if it has no children

 if ($size_of_result == 0){

 // The container has no childs

 $dbWrite->delete('databases','dbID='.$_GET['dbId']);

header('Location: ../DBList.php');

 break;

 }

 // There are childs, do not delete

 header('Location: ../DBList.php?msg=CatalogNotEmpty');

 ?>

40

As we can see from the highlighted sections of this short script, there are two

distinguishable functionalities.

The first functionality that can be found is in the code in “library.php”, which

creates a connection with the database and instantiates two objects $dbRead and

$dbWrite. These two objects contain the methods for reading and writing to the

database.

The other functionality deletes a catalog if it has no children. Since the script

will run in entirety before an intervention can be asserted, again there are limited

approaches to run the script and test functionality without the necessity of using

the real database. Using the real database is not desirable for many reasons. For

one, the test would be dependent on a successful connection and on specific data

being present on it. Secondly, there is a risk of deleting a record, and even leaving

that database in an unstable or incorrect state. Fortunately, in this particular case,

the insertion of ‘library.php’ was done via a require_once and not via require. For

that reason, it was possible to apply a rudimentary solution to solve one aspect of

the problem. A require_once(‘library.php’) was inserted in the test before

inserting ‘process_delete_catalog.php’ to it. Making the require_once inside

‘process_delete_catalog.php’ inactive since it was already inserted. That solution

enables the instantiation of a dummy class of $dbRead and $dbWrite before

running ‘process_delete_catalog.php’ and as a result avoids reading or writing to

the real database, as it can be seen in the code below. However, we did not

recognize a solution that avoids the initial connection to the database.

DeleteCatalogTests.php

41

<?php

require_once 'C:\Program Files\PHP\PEAR\PHPUnit\

 Framework\TestCase.php';

//This makes the second ‘require_once('..\scripts\library.php')’

that is inside //‘process_delete_catalog.php’ inefective.

require_once('..\scripts\library.php');

// Scripts that redefine $dbRead and $dbWrite

require_once('DbReadForTestDeleteCatalog.php');

require_once('DbWriteForTestDeleteCatalog.php');

class DeleteCatalogTests extends

 PHPUnit_Framework_TestCase{

 private $dbRead;

 private $dbWrite;

 protected function setUp(){

 $this->dbRead = new DbReadForTestDeleteCatalog();

 $this->dbWrite = new DbWriteForTestDeleteCatalog();

 }

 public function test_no_delete_if_catalog_not_empty(){

 $dbRead = $this->dbRead;

 $dbWrite = $this->dbWrite;

 $_GET['dbId']=1; // This will simulate a catalog with 2

 // entries

 require('..\scripts\process_delete_catalog.php');

 $this->assertfalse($dbWrite->deleteCalled == true,

 "The delete was atempted on a non empty

 catalog\n");

 }

42

 public function test_delete_requested_if_catalog_empty(){

 $dbRead = $this->dbRead;

 $dbWrite = $this->dbWrite;

 $_GET['dbId']=0; //This will result on an empty result

 require('..\scripts\process_delete_catalog.php');

 $this->asserttrue($dbWrite->deleteCalled == true,

 "The delete was NOT atempted on a non

 empty catalog\n");

 }

 public function test_sql_for_fetch(){

 // This test protects the code from someone messing with

the

 // sql query for the fetch

 $dbRead = $this->dbRead;

 $dbWrite = $this->dbWrite;

 $_GET['dbId']=1; // This will simulate a catalog with 2

 // entries

 require('..\scripts\process_delete_catalog.php');

 $this->asserttrue($result[0]['sql'] == "SELECT id

 FROM `containers`

 WHERE parentId = 0

 AND dbId = ?",

 "The sql was not the expected one\n");

 $this->asserttrue($result[0]['id'] == $_GET['dbId'],

 "The id was not the expected one\n");

}

}

43

An additional challenge encountered was testing code that is hard to understand

The script that calculates the path to a container was written by the author a year

prior to the experiment. The script is only 23 lines long, and the author required 2

hours to fully understand it enough to apply unit testing to it. If the unit test had been

written at the inception of the script then this would have represented a significant

saving of time.

To summarize the results of this experiment we have that on the quantitative side,

it took 153 hours to code the unit tests for Find-it, while it only took 146 hours to

develop the functional code, and the total developing time was far greater than the

total developing time of Quick-seek which included unit testing. This result, even

though originally counterintuitive, was supported by the analytical results were a

number of complications were found that substantially added to the time that it took

to develop the tests.

44

Chapter 7
Discussion and Conclusion

The motivation for this work was to aid new entrepreneurs of small software project

in understanding the need for some of the most essential processes of software

engineering. This work is most applicable to small projects where budget and resources

are usually very limited. The author assessed and included the areas of software

engineering that are most essential to small projects.

Of the practices presented there is one in particular, unit testing, for which there is

controversy as to weather it’s benefits are worth the cost of implementing it. For that

reason the experimental part of this workwas dedicated to unit testing and consisted of

two experiments which attempt to dissipate the controversy about unit testing.

Experiment 1 was conducted to support the hypothesis that if unit testing is

performed concurrently with development it should not significantly increase the initial

developing cost of the project, and that in time the benefits of a self-testing application

will exceed the higher cost. The results of our experiment strongly support our

hypothesis. Of the total number of hours that took to code Find-it and Quick-seek, only

57% of that time belongs to Quick-seek which agree with our hypothesis. The qualitative

analysis shows that Quick-seek is more reliable, maintainable, and scalable, which

suggest that the benefits do in fact outweighs the relatively small cost increase.

45

Experiment 2 was conducted to support the hypothesis that unit testing should be

incorporated at the start of a new project, particularly for small businesses, as it takes

longer to incorporate unit tests later in the project. The results of experiment 2 strongly

support the hypothesis. When we added the time that it took to build Find-it with the time

that it took to implement its unit tests we observed that the total was far greater than the

time that it took Quick-seek which already incorporated symilar amount of unit testing.

Both experiment were designed with small projects in mind, but this author believes

that the results are equally valid to projects of any size. The only exception would be

extremely small and simple software, less than a page of code without complex logic. As

size and complexity increases, so does the value of using test driven developing

techniques.

Factors like choise of language or programers experience should also not affect the

results. For example, if Find-it was coded by a very inexperienced programmer and then

the experimens were conducted by the same programmer, then all times should have

increased proportionally for each case and would lead to the same conclusion.

The second experiment presented in Chapter 6 was conducted with worst case

scenario frame of mind. For example, many of the test lines of code accounted for in the

statistics as test code were to create mock objects to isolate the test from the rest of the

system. Normally this would be done using existing libraries and frameworks that are

freely available for that purpose.

As mentioned, related projects [25], [27], [28], [30], [31] and the state-of-the-art

agrees on the value of unit testing and curiously most of the resistance to use it originates

from those individuals who suffer the most from not taking advantage of it, programmers

46

and decision makers. Part of this problem comes from lack of proper training. Unit

testing, not only should be part of the core courses of any software-related higher

education program, but it should be introduced early in the program and then enforced in

any programming course. In that way, when the students graduate, they will be

accustomed to incorporate it to any piece of software that they write.

Small software related new ventures often cannot afford the cost associated with

implementing the full range of software engineering processes and practices. However,

sometimes unknowingly, they cannot afford to disregard the most essential practices. If

the leaders of a software project want to improve their long-term outlook, at a minimum,

they should elaborate a comprehensive SRS, choose and implement a methodology that is

appropriate for the size and complexity of the project, carefully select their

implementation and deployment platform, and implement procedures to efficiently and

continuously test the software. Integration and acceptance testing should be performed at

a minimum before every minor release. Unit testing however should be done every time a

small unit of code gets added modified or deleted. Moreover, unit testing should not be

seen as optional for any project that is expected to last more than a few months. In such

cases it should be regarded as an integral part of the project without which the software

would be incomplete. However, it should be noted that for achieving the most efficiency,

the tests should be written either before each unit of functional code is written, or

immediately after.

The quantitative analysis of Experiment 2 can only account for the cost involved

during the development phase of the products. It would be interesting to conduct a similar

experiment with a commercial software product developed without unit testing and that

47

has been in the market for at least one year for which there are records of the bugs

corrected and the amount of resources that were expended to correct them. The results of

such an experiment would be very valuable.

48

References

[1] R. P. Evans, “A Methodological Framework for Requirements Assessment,” 1994.

[2] T. Gilb and S. Finzi, Principles of Software Engineering Management, vol. 4.

Addison-Wesley Reading, MA, 1988.

[3] M. Jorgensen and S. Grimstad, “The Impact of Irrelevant and Misleading Information

on Software Development Effort Estimates: A Randomized Controlled Field
Experiment,” IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 695–707, Sep. 2011.

[4] K. Udupa, Computer Supported Cooperative Work in Specifying Software

Requirements. 1992.

[5] IEEE Computer Society, Software Engineering Standards Committee, and IEEE-SA

Standards Board, IEEE Recommended Practice for Software Requirements
Specifications. New York, NY: Institute of Electrical and Electronics Engineers,
1998.

[6] F. Tsui and O. Karam, Essentials of Software Engineering, 2nd ed. Sudbury, Mass:

Jones and Bartlett Publishers, 2011.

[7] W. Maalej and A. K. Thurimella, Managing Requirements Knowledge. Berlin; New

York: Springer, 2013.

[8] M. Chemuturi, Requirements Engineering and Management for Software

Development Projects. New York: Springer, 2013.

[9] O. Vogel, Software Architecture: A Comprehensive Framework and Guide for

Practitioners, 1st ed. New York: Springer, 2011.

[10] R. F. Schmidt, Software Engineering Architecture-driven Software Development.

Waltham, MA: Morgan Kaufmann, an imprint of Elsevier, 2013.

[11] M. C. B. Alves, D. Drusinsky, J. B. Michael, and M.-T. Shing, “End-to-End

Formal Specification, Validation, and Verification Process: A Case Study of Space
Flight Software,” IEEE Syst. J., vol. 7, no. 4, pp. 632–641, Dec. 2013.

[12] L. D. Paulson, “Adapting Methodologies for Doing Software Right,” IT Prof.,

vol. 3, no. 4, pp. 13–15, 2001.

[13] A. Cockburn, “Selecting a Project’s Methodology,” Softw. IEEE, vol. 17, no. 4,

pp. 64–71, 2000.

49

[14] M. Fowler and J. Highsmith, “The Agile Manifesto,” Softw. Dev., vol. 9, no. 8,
pp. 28–35, 2001.

[15] T. Dingsoyr, T. Dyba, and N. B. Moe, Agile Software Development Current

Research and Future Directions. Berlin: Springer, 2010.

[16] A. H. Mohammad and T. Alwada’n, “Agile Software Methodologies: Strength

and Weakness,” Int. J. Eng. Sci. Technol. IJEST, 2013.

[17] A. Cockburn, Agile Software Development: The Cooperative Game (2nd Edition)

(Agile Software Development Series). 2006.

[18] K. Gary, A. Enquobahrie, L. Ibanez, P. Cheng, Z. Yaniv, K. Cleary, S. Kokoori,

B. Muffih, and J. Heidenreich, “Agile Methods for Open Source Safety-critical
Software,” Softw. Pract. Exp., vol. 41, no. 9, pp. 945–962, Aug. 2011.

[19] D. Chappell, Understanding .NET, 2nd ed. Upper Saddle River, NJ: Addison-

Wesley, 2006.

[20] D. Spinellis, “Choosing a Programming Language,” IEEE Softw., vol. 23, no. 4,

pp. 62–63, Aug. 2006.

[21] D. Naiditch, “Selecting a Programming Language for Your Project,” Aerosp.

Electron. Syst. Mag. IEEE, vol. 14, no. 9, pp. 11–14, 1999.

[22] M. Fourment and M. Gillings, “A Comparison Of Common Programming

Languages Used In Bioinformatics.,” BMC Bioinformatics, vol. 9(1), p. 82, 2008.

[23] C. Britton, “Choosing a Programming Language,” skyscrapr.net, Jan. 2008.

[24] D. Parsons, Foundational Java. Dordrecht: Springer, 2012.

[25] M. Ellims, J. Bridges, and D. C. Ince, “The Economics of Unit Testing,” Empir.

Softw. Eng., vol. 11, no. 1, pp. 5–31, Mar. 2006.

[26] IEEE Computer Society and Standards Coordinating Committee, IEEE Standard

Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. New
York, NY: Institute of Electrical and Electronics Engineers, 1991.

[27] K. Beck, JUnit Pocket Guide. O’Reilly Media. Kindle Edition., 2009.

[28] D. Hunt, A., & Thomas, Pragmatic Unit Testing: In Java with JUnit. Raleigh,

N.C.: Pragmatic Bookshelf., 2004.

[29] M. Teel, Code Analyzer. .

50

[30] G. Miller and J. Cashion, “Agile Development at Ultimate Software,” 19-Mar-
2014.

[31] K. Auer, Extreme Programming Applied: Playing to Win. Boston: Addison-

Wesley, 2002.

51

APPENDIX A

QUICK-SEEK SRS
February 24, 2013

Developer
Luis Teófilo Nunez Degwitz

Note: This is an adaptation of the original SRS for a project named Find-it originally

developed by
Luis Nunez - Nick Shuman - Sana Khan - Jeff Milinazzo -Sean Meadows - Kin Chan

The original SRS of the Find-it project was intentionally used, with some minor

adaptations, in order to develop similar products so that they can effectively be compared
to one another.

To avoid page numbering conflicts with this thesis page numbering, the table of content
of the SRS and the page numbers of it have been removed.

1. Introduction
1.1. Purpose
The purpose of this document is to describe a filing management software that is to be
developed to efficiently solve the following problem.

It is very common for most people to receive a variety of paper documents that need to be
filed to be referenced on a future date. The problem is how to efficiently file them in a
way that they can be easily retrieved in the, possibly distant, future. We normally put
them in folders on file drawers sorted by some criteria. But which criterion is the right
standard for all kinds of documents? If after some time you do not remember which
criterion you used to file a document, you may have a hard time finding it. Every time
that we need to file a new document we have to first find if we have already have created
a place where this document belongs, and if not, then we need to think about what will be
the proper way to file it. Without an efficient system, this could be time consuming, and
if done wrong could lead to the misplacement of the document. If other people need to
find a file they may not be able to easily guess the criterion that you used to file it. This
problem can be extended to storing any object anywhere, for example, the things that we
put in a box in the garage and then we forget where we put them.

1.2. Scope of the project
To create a web based database system to catalog items that are to be filed or stored
away.

a. The user should be able to store the name, description, categories, location
and other attributes of the documents or objects to be filed so that they can
be easily searched and located at any time.

b. The system should be web based and should work efficiently from a

52

smartphone.
c. Each file (container) should be able to be assigned to multiple categories.
d. It should make the process of filing and retrieving documents easier, not

harder.
e. It would probably be written as Java Server Pages or PHP, connected to a

MySQL or hsqldb database. The HTML should probably use CSS to allow
for different screen sizes.

1.3. Definitions, acronyms, and abbreviations

Catalog: a collection of containers and items.
Container: an item that contains other containers or items
Item: Information related to an object that is or will be cataloged by the system.
When an item contains other items, then we may call it a container but they are
basically the same kind of entity in the database.

Requirements Document

Vision of the solution: Feasibility Study

This project’s main concern is to develop a web based system to help properly
organize and catalog physical documents or objects that are going to be filed for a
possible later retrieval. For the purpose of this document the name of the system will be
Quick-seek. The users should be able to store something into a location or container, and
then document in the system where that particular item is. Later, the user can look up
that specific item, and our system will display exactly where it is that the object was
stored. Also, the database should be able to store descriptions and various characteristics
of the stored object.

There has been plenty of other work in this area with filing systems such as The
Paper Tiger. This system allows for users to catalog where they have put documents
inside a file cabinet. Then, the user can search for that document, and The Paper Tiger
will tell them where it is within the cabinet. Quick-seek can act as marketable
competition to The Paper Tiger because we plan to overcome certain limitations that
Paper-Tiger has.

One of the characteristics that make Quick-seek different is that we are enabling
the user to add an infinite amount of containers within containers in the database. For
example, if a user has a file cabinet that would be one container (say Cabinet 1). If there

53

is a box within the file cabinet that would be an additional container (say Car Information
Box). Then, there can be a folder within the box, which will be a third container (say
Insurance Info). Finally, the user can add an item (say BMW 1999 insurance) into the
folder (resulting in the path Cabinet 1 ---> Car Information Box ---> Insurance Info--->
BMW 1999 insurance). Another unique feature of Quick-seek is that it will incorporate a
color coding mechanism to help minimize some human errors that can cause the
misplacing of an item within a database.

As well as The Paper Tiger, there exists other kind of filing systems like the one
called DigitalDrawer, which aims to virtually keep track of a company’s paper
documents. The DigitalDrawer software scans in the paper document, and saves the file
to the computer. This differs from our software because we do not aim to make a user go
paperless. Instead, Quick-seek will be just a digital database that maps to physical
objects. Going paperless (essentially item-less) would be impractical for many uses.

Analysis of requirements

The software that is being proposed for this project, tentatively titled Quick-seek,
hopes to make the lives of its users easier by providing a system that allows them to
know the location of an item quickly and precisely.

This web based program hopes to allow the user to store the name, description,
category, location and other attributes of the item to be filed so that it can be easily
searched and located at any time. For instance, the user does not need to remember what
container the item was filed in, they only need to do a search regarding any one of the
tags/keywords that are associated with that item to be able to find it. This program will
make the process of filing and recovering items easier.

Risk assessment and Reduction plan

Risk 1: Unrealistic schedule, greater workload than anticipated
Description: It may be the case that the features promised for the project may have been
due to an overzealous calculation, and realistically the functionality of the final version 1
of the product may have to be more modest, since the amount of work to be done may
exceed the realistic time frame of the project.
Priority: High. If proper and accurate planning is not done, then there is little hope for
the product being completed on time.
Probability of happening: Moderate. This project calls for a lot of time to be put into it
in a productive manner. The developer must learn some new skills necessary to complete
the project. Impact: High. If proper and accurate planning of a schedule is not done then
the project may not be completed on time.
Mitigation: A system of keeping track of the work and the tasks that need to be
completed has been implemented. The functions that are essential will be done first and
any additional features will be implemented if there is time.
Contingency: If it becomes apparent that time is running out to complete the essential
features of the software, overtime will need to be scheduled.

54

Non-Functional Requirements

A. Product Requirements

1. Efficiency Requirements
a. The application should take no more than 3 seconds to load each page.
b. The application should inform the user (by something such as a loading

bar, spinning beach ball, etc.) during all functions that may take more than 3
second of processing time.

c. Each database should be able to be accessed concurrently by no less
than 5 users.

d. The application should not require any processing on the user’s
computer that could not be accomplished by a 2.0 GHz single-core Pentium 4
CPU with 1 GB of RAM running Windows XP Home on a 7200RPM HDD.

2. Reliability Requirements

a. It should be available 24 hours a day, 7 days a week, all year long. The
only downtime should be for critical system upgrades or bug fixes, and these
should be attempted to be completed during off-peak hours to minimize loss of
use.

b. The program works consistently mainly for Google Chrome, all
operating mayor systems, and geographic locations. We will define "consistently"
as the program is operating as it is intended to 95% of the time.

c. The system will be less expensive, and more specialized than other
existing systems such as The Paper Tiger. Quick-seek will have unique features
such as the ability to add color coding to each item.

3. Portability Requirements

a. Although the system was created for Google Chrome it should also be
compatible with Mozilla Firefox, Internet Explorer, Apple Safari, as well as
general mobile web browsers. However, users are recommended to access the
system with Google Chrome whenever possible.

b. The minimum screen resolution that should be supported is 1024x768,
as at least 98% of all web users are using a screen resolution equal to or higher
than this.

c. It should be coded with CSS support for all different supported
browsers as well as a default basic styling option that will be supported by all
browsers.

B. Organizational Requirements

1. Delivery Requirements
a. The system should be web based and should work efficiently from a

desktop and a smartphone.

2. Implementation Requirements

55

a. It should be written in HTML with server side processing using Java,
PHP or similar, connected to database. The HTML should use CSS to allow for
different screen sizes.

3. Standards Requirements

a. All web pages should follow the same HTML and CSS based template.

C. External Requirements

1. Interoperability Requirements
a. As this is a web-based application with multiple browsers supported, it

should be OS-independent and able to share data seamlessly between different
browsers.

b. It should take into consideration that in future versions the system is
expected to be multi-lingual and multi-zone ready. It must be easy to add versions
for other languages or zones like Spanish-Venezuela, Portuguese-Brazil.

2. Legislative Requirements
 a. The application is regulated under the MIT License

b. The application contains no warranty

3. Ethical Requirements
a. The organization's data protection officer must certify that all data is

maintained according to data protection legislation before the system is put into
operation.

Use cases with complete textual description

List of Use Cases:

1. Sign-up for new account. In future version needs to give instant access after email
verification.

2. Login to account
3. Log-out of account (every page will have this, except for home)
4. List of catalogs. Show all catalogs created on a specific account
5. Search through a catalog by keywords to find an item. This is a search field.

(every page after List of Catalogs Page)
6. Search through all catalogs to find an item.
7. Browse through the database going through selected items
8. Add, Modify, or Delete users
9. Add, Modify, or Delete a catalog
10. Add, Modify, or Delete an item in a catalog

56

11. View item information (limited view)
12. Add, Modify or Delete Labels (Future version)
13. Associate one or more labels to an item (Future version)
14. Find all items associated with a label (Future version)
15. Check-out or check-in an item from the filing system (Future version)
16. List item history (Future version)
17. Color code an item
18. Move an item and all its children to another location (Future version)
19. List items alphabetically

Name: Sign-up for new account.
Code: FR NewAcc
Actor(s): Anyone.
Precondition: Someone has arrived to the homepage of the system.
Trigger: Activate the account registration link.
Basic Path: The user fills out a form to obtain an account.
Alternative Path: User cancels the request and returns to the home page.
Exception paths: There is a problem with the connection to the Database, and the user
gets a message encouraging him to try later.
Other:

Name: Log In to account.
Code: FR LogAcc
Actor(s): Any active user.
Precondition: The user has arrived to the login page.
Trigger: The user enters a user and password in the proper fields and submits it.
Basic Path: The user can enter a user and password to login to his account and submits
the information.
Alternative Path: After submitting username and password, the user is not authenticated
and is redirected to the login page which now shows that access was denied and gives an
option to try again.
Exception paths: The system fails to connect to the database, in which case the user is
informed of the problem and is invited to try again at a later time.
Other: One username can be associated with only one account. Therefore every user
name must be unique.

Name: Log-out of account

57

Code: FR LogOut
Actor(s): Administrator_User, Standard_User, Restricted_User
Precondition: A user is logged-in to the system, and is viewing any of the pages of the
system.
Trigger: User activates a logout link or the session times out due to inactivity.
Basic Path: The user is sent to the homepage and his session is invalidated.
Alternative Path: The user navigates to a page outside of the system in which case the
session remains open until it times out.
Exception paths:
Other: All pages except for the home or any external page will have a logout option

Name: List all catalogs
Code: FR LisCat
Actor(s): Administrator_User, Standard_User, Restricted_User
Precondition: The user has recently logged in from the homepage or has navigated to the
Catalogs List page.
Trigger: Navigating to the Catalogs List page.
Basic Path: A list of all the catalogs available to the account is displayed.
Alternative Path:
Exception paths: There is a problem with the connection to the Database, and the user
gets a message encouraging him to try or contact support if the problem persists.
Other:

Name: Search by keyword through a catalog to find an item.
Code: FR SrchKW.
Actor(s): Administrator_User, Standard_User, Restricted_User.
Precondition: A catalog must have been selected previously and the user is viewing any
of the pages related to that catalog.
Trigger: User submits the keywords.
Basic Path: User enters some keywords and requests the search by submitting them. A
list of all items containing all of the entered keywords is displayed along with each item’s
description. Sorted by item name. Each item can be selected to show its details or to be
edited which may include deleting it.
Alternative Path:
Exception paths: If no items are found, a message that no items were found is displayed
at the result page. Alternatively, the user can be taken back to the previous page but a
noticeable message indicating that no items were found should be displayed.
Other:

Name: Search by keyword through the whole account to find an item.
Code: FR SrchAc.
Actor(s): Administrator_User, Standard_User.
Precondition: The user must be logged-in and viewing the list of catalogs.
Trigger: User submits the keywords to search.
Basic Path: Similar to FR SrchKW but the search is not limited to a catalog, instead it
searches the whole account. User enters some keywords and requests the search by

58

submitting them. A list of all items containing all of the entered keywords is displayed
along with each item’s description. Each item can be selected to show its details or to be
edited which may include deleting it.
Alternative Path:
Exception paths: If no items are found, a message that no items were found is displayed
at the result page. Alternatively, the user can be taken back to the previous page but a
noticeable message indicating that no items were found should be displayed.
Other:

Name: Browse through a catalog.
Code: FR BroCat.
Actor(s): Administrator_User, Standard_User, Restricted_User.
Precondition: The user must be logged-in and viewing the list of catalogs.
Trigger: The user clicks on the link of a catalog
Basic Path: The user navigates to any location or item by following the links. When a
user clicks on a catalog or location then a list of all the locations/items contained in that
location is displayed.
Alternative Path: If the location does not have any descendants then the detail view of
the location is presented.
Exception paths:
Other: When the item has other items within it (descendants), the descendants are
listed in alphabetical order.

Name: Add, Modify, or delete users and access rights (Manage users)
Actor(s): Administrator_User
Code: FR MngUsr
Precondition: The user has to be logged-in and has to belong to the Administrators
group. The user also has to be viewing a page that has a way to access the Users
Management function.
Trigger: Click on a link or button to go to the Users Management function
Basic Path: On the first version the functionality will be simple. The user is first
presented with a list of all the users registered for the account. Selecting any of the listed
users will display a form that allows the administrator to edit or delete the information of
the selected user including its password and access level. While viewing the list of users
(previous window), the admin would also have an option to create a new user. If the
create new user option is selected a form to enter the data for the new user is presented.
When the data is submitted it must first be validated. Of special importance is to validate
that the user is unique within the account. The administrator can give the new user one of
3 types of access levels that is predefined.
Alternative Path:
Exception paths:
Other: On a future version the admin should be able to create groups which would define
which pages can be accessed by the members of the group. Then when a user is created
or edited, the admin can assign one or more groups to it. In order to create the groups,
each page should be registered in a table of the database.

59

Name: Add, Modify, or delete a Catalog in the account (Manage Catalogs)
Code: FR MngCat
Actor(s): Administrator_User
Precondition: The user has to be logged-in and has to belong to the Administrators
group. The user also has to be viewing the list of catalogs page.
Trigger: Request to edit a catalog or to create a new catalog.
Basic Path: When the admin request to edit a catalog a form to modify the fields of the
catalog is presented. The form also has an option to delete the catalog. A similar form is
presented if the user had requested to create a new catalog, but in this case the form is
empty and it does not have a delete catalog option.
Alternative Path: If the user is not an admin, an authorization error message is
displayed.
Exception paths:
Other: The catalog must be empty in order to be deleted.

Name: Add an item to a container/item or catalog
Code: FR AddItem
Actor(s): Administrator_User, Standard_User
Precondition: The user must be viewing the root level content of a catalog or a
container/item.
Trigger: The user requests to add an item
Input Fields: CatalogID or possibly ItemID. This is required to know where to insert the
new item.
Output: A form with all the required fields to add a new item
Basic Path: A user requests to add an item. When the form is displayed, the user fills it
in and submits it. Data from the form fields should be validated as much as possible.
Alternative Path: The user decides not to add any item and cancels the request.
Exception paths:
What to test: That all fields are validated, that the sql is not invoked with invalid data,
that the correct sql is invoked. For integration, that the item is added correctly.
Other: Associating labels to the item should be handled from here.

Name: Modify, or delete an item in a container (Manage Item)
Code: FR MngItem
Actor(s): Administrator_User, Standard_User
Precondition: The user must be viewing the root level content of a container/item.
Trigger: The user requests to edit an item
Input Fields: ItemID. This is required to know which item is to be edited.
Output: A form with all the fields of an item prefilled with the data of the selected item
and editable.
Basic Path: A user requests to edit an item. When the form is displayed, the user edits
any fields for which the user wants to make changes and submits the data. Data from the
form fields should be validated as much as possible.

60

Alternative Path: The user requests to delete the item, in which case a confirmation
dialog is displayed and if accepted the item is deleted. If the user does not confirm the
intent to delete, he is returned to the form.
Alternative Path: The user decides not to make any changes and cancels the edit
request.
Exception paths:
What to test: That all fields are validated, that the sql is not invoked with invalid data,
that the correct sql is invoked. For integration, that the item is modified correctly.
Other: Associating labels to the item should be handled from here.

Name: View item information
Code: FR VieIte
Actor(s): Administrator_User, Standard_User, Restricted_User
Precondition: The user musts be viewing a list of items
Trigger: The user selects the item
Input Fields: ItemID
Output: A page displaying all the item’s fields. The fields must be read only.
Basic Path: The user has one or more items listed and selects one. The system responds
by showing the item’s detail (List of all fields).
Alternative Path:
Exception paths:
What to test: Given an itemID the system creates the correct sql to select the item.
Other: When the details of the item are presented, an option to check-out, check-in an
item should be available.

Name: Add a Label
Code: FR AddLbl
Actor(s):Administrator_User, Standard_User
Precondition: Add a label can be called from any place within a catalog
Trigger: A user request to add a label
Input Fields: CatalogId (Former DBId), a reference to the calling page
Output: A form to create a label
Basic Path: The user requests to add a label, a form with all the fields that the user can
edit for a label is presented. The user enters the data and submits it. The user is returned
to the calling page.
Alternative Path: The user decides not to create the new label and cancels the form, at
which point he is returned to the calling page.
Exception paths:
What to test:
Other: Note that Add label can be called from different places and it should be able to
know where to return when it finishes. This will not be implemented until version 2,
unless there is time to spear.

Name: Modify Labels
Actor(s): Administrator_User, Standard_User
Code: FR ModLbl

61

Precondition: The user must be viewing the list of labels for a catalog
Trigger: The user requests to edit a label
Input Fields: Label ID
Output: A form with all the fields of a label that can be edited by a user
Basic Path: The user requests to modify a label. The system responds with a pre-filled
form with all the editable fields of the label. The user makes all the modifications that he
wishes and submits the data which causes the label to be modified.
Alternative Path: The user can request to delete the label in which case a confirmation
dialog is presented. If the user confirms the deletion, the label is deleted; else the user is
taken back to the unmodified form.
Alternative Path 2: The user can request to cancel the modification in which case he is
returned to the list of labels.
Exception paths:
What to test:
Other: If a label is deleted, all its associations need to be deleted as well. This will not be
implemented until version 2, unless there is time to spear.

Name: Associate one or more labels to an Item
Code: FR AssLbl
Actor(s): Administrator_User, Standard_User
Precondition: The user is editing an item.
Trigger: The user requests to associate a label to the current item
Input Fields: Item ID
Output: A list of all the available labels for the current catalog. The user must be able to
select all the labels that he wants associated with the current item.
Basic Path: The user requests to associate a label. The system responds with a list of all
the available labels for the current catalog showing the ones that are already associated, if
any. The user can then select some more labels and or deselect whichever he wants. If the
user wants to select a label that does not exist, he can request to add a new one. When the
user is done selecting the labels he submits the list and returns to the form where he was
editing the item.
Alternative Path: The user can decide not to add or change any of the existent
association and cancel the request in which case he is returned to the form where he was
editing the item.
Exception paths:
What to test:
Other: This will not be implemented until version 2, unless there is time to spear.

Name: Filter the results of a search by label
Code: FR FltLbl
Actor(s): All users
Precondition: The user must be viewing at the results of a search
Trigger: A user request to filter a search result by a set of selected labels
Input Fields: Search query
Output: A list of items/containers that satisfy the query and the filter

62

Basic Path: The user decides to filter the results from a search and selects one or more
labels so that the results shows only items and containers that are associated with all the
selected labels
Alternative Path: The user can decide not to filter the result, so he can cancel the request
and leave the results unchanged.
Exception paths:
What to test:
Other: This will not be implemented until version 2, unless there is time to spear.

Name: Check-out or check-in an item or container from the filing system
Code: FR CheOut
Actor(s): Administrator_User, Standard_User
Precondition: The user is editing an item or container
Trigger: Request to check-out or check-in an item
Input Fields: Item ID
Output: Form to mark the item as checked in or out, and to record notes and who the
person responsible for returning the item is.
Basic Path: A user that is editing an item or container requests to check-out or
check-in and item. A form is presented where the user can add notes, the name of the
person responsible to return the item, and an indicator as to whether the item is checked-
in or checked-out.
Alternative Path:
Exception paths:
What to test:
Other: This will not be implemented until version 2, unless there is time to spear.

Name: Color code an item or a container
Code: FR - ColCod
Actor(s): Administrator_Use, Standard_User
Precondition: The user is adding or editing an item or container
Trigger: The user selects a color code for the item or container
Input Fields: Item Id
Output:
Basic Path: While the user is adding or editing an item or container, he can select a color
code for it in one of the fields.
Alternative Path:
Exception paths:
What to test:
Other: The color code is a visual aide to help reduce errors. The way to use it is up to the
users. It is recommended that the users set up a common policy for color coding the items
and containers. For example, folders can be coded with alternating colors to choose from
a set of three contrasting colors. When a new folder is added in between two folders, it
must be of different color than the other two. In that way if someone is filing a folder in
the wrong place ⅔ of the times the folder would be of the wrong color which will help
the person immediately recognize the mistake.

63

Name: Move a container or item to another container
Code: FR MovCont
Actor(s): Administrator_User
Precondition: The user must be editing the container or item to be relocated
Trigger: A user request to relocate the item
Input Fields: Item ID
Output: A list of the top level containers from which the user can navigate to the desired
new location
Basic Path: The user requests to relocate the container or item, the system then presents
a list of the top level containers from which the user can navigate to the desired new
location. When the user arrives to the desired location he can chose to relocate the item to
that place or cancel the request to relocate.
Alternative Path:
Exception paths:
What to test:
Other: When a container is relocated, all the items, containers and sub containers are
relocated with it. In other words, the whole tree is relocated.
This will not be implemented until version 2, unless there is time to spear.

Name: Generate Reports
Code: FR GenRpt
Actor(s): Administrator_User, Standard_User, restricted_User
Precondition: The user must be logged-in and must have chosen a catalog
Trigger: A request from the user to present a list of available reports
Input Fields: Catalog Id
Output: A list of links to available reports
Basic Path: The user request to generate reports. The system responds with a list of
available reports. The user can select one which will then be displayed. At this point the
user can chose to print the report.
Alternative Path:
Exception paths:
What to test:
Other: In a future version there should be an option that allows the user to define his
own reports.

64

Graphical User Interface

This is a screenshot of what the user will see when he first navigates on to the Quick-seek
website. There is a brief description statement, explaining our system and what it is
aimed to do. The user can either sign in to their previously existing account, or he can
register a new account. If he wants to create a new account, he will click the “register”
button and be taken to the following screen:

65

This is a screenshot of the account registration form. A user has to enter some
information including a password that will be stored for future access to the account. The
Company Name field will be the name of the account created. When all the information
is input correctly by the user, he will hit the “submit” button and be taken to the next
screen if there were no errors. Otherwise, a similar form is presented showing the errors
that need to be corrected.

66

This is the screen the user will be taken to once he has submitted an account. Once it is
approved, he will be sent an e-mail, and will then have the ability to start creating
databases within his account.

67

This screenshot is the user registration form. This is different from the account
registration form above. Here an administrator user adds additional users to an already
existing account. The administrator also has the ability to select the level of access to the
account that the new user will have.

68

This screenshot is the list of catalogs. Here, a user or administrator can look at a listing
of all the current catalogs in the account. By clicking on one of these catalogs, the user
will be taken to the list of first level Items/containers for that catalog.

69

Once a catalog is selected by the user, the list of first level items for that catalog is
displayed. Also, there is a description field so the user can briefly explain each item or
container. The same page is used for list items. Once the user enters into an item or
container, each item (container within) will present itself along with a description next to
it, just as it does in the list of catalogs.

70

This is the Add Item screen. It is used to store/file an item. Also it is used to modify the
information if it changes (Edit Item) or there was a mistake.

71

When a user enters some keywords in the search field and clicks search, he will be
presented with all the items that match the search string, showing the name, a brief
description, and the current availability status of each and every item.

	University of Miami
	Scholarly Repository
	2014-04-28

	Software Engineering in Small Projects: The Most Essential Processes
	Luis T. Nunez
	Recommended Citation

	SOFTWARE ENGINEERING IN SMALL PROJECTS: THE MOST ESSENTIAL PROCESSES
	SOFTWARE ENGINEERING IN SMALL PROJECTS: THE MOST ESSENTIAL PROCESSES
	NUNEZ DEGWITZ, LUIS TEOFILO (M.S., Computer Science)
	Abstract of a thesis at the University of Miami.
	Chapter 1
	Introduction
	Chapter 2
	Requirements Engineering
	Chapter 3
	Software Process Methodology
	Chapter 4
	Implementation Platform
	4.1 Choice of programming language
	4.2 Choice of operating system and database management systems
	Chapter 5
	Software Testing
	5.1 About unit testing
	5.2 Advantages of unit testing
	5.4 Limitations of unit testing
	5.5 Properties of good tests
	Chapter 6
	Case Study and Experimentation:
	Unit Testing
	6.1 Experiment 1: The re-implementation of Find-it
	6.1.1 Hypothesis
	6.1.2 The evaluation method
	6.1.3 The procedure
	6.1.4 Quantitative results
	6.1.5 Qualitative results
	When it comes to scalability, again it can be seen that Quick-seek has a great advantage over Find-it. If new features are required, that call for a major design change, the unit test built into Quick-seek makes the refactoring process straightforward...
	6.2 Experiment 2: Adding unit testing to existing software
	6.2.1 Hypothesis
	6.2.2 Validation
	6.2.3 Description of the experiment
	6.2.4 Results
	1. The function may directly send output to the user without storing a result value
	2. Performing more than one functionality in the same unit of code
	An additional challenge encountered was testing code that is hard to understand
	Chapter 7
	Discussion and Conclusion
	References

