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An ontology is a formal, explicit specification of a shared conceptualization [1, 2].

Formalizing an ontology for a domain is a tedious and cumbersome process. It is con-

strained by the knowledge acquisition bottleneck (KAB). There exists a large number

of text corpora that can be used for classification in order to create ontologies with

the intention to provide better support for the intended parties. In our research we

provide a novel unsupervised bottom-up ontology generation method. This method is

based on lexico-semantic structures and Bayesian reasoning to expedite the ontology

generation process. This process also provides evidence to domain experts to build

ontologies based on top-down approaches.
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Chapter 1

Introduction

An ontology is a formal, explicit specification of a shared conceptualization [1, 2].

It is a generally known fact that formalizing an ontology for a given domain with

the supervision of domain experts is a tedious and cumbersome process. This process

consumes a lot of time and effort. This is formally known as the knowledge acquisition

bottleneck (KAB) and has been highly investigated by the semantic web communities.

1.1 Goal

There exists a large number of text corpora available for public from different domains

such as the BioAssay ontology dataset [4] that needs to be classified into an ontology

which would ultimately provide better values for intended parties. A corpus of a

domain of disclosure such as [4] contains the following important characteristics.

1. Redundancy

2. Structured and unstructured text

1
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3. Noisy and uncertain data that provide a degree of belief

4. Lexical disambiguity

5. Semantic heterogeneity problems

We discuss in depth the importance of prior characteristics in Chapter 4. Using

the features of above the characteristics, our goal in this research is to provide a novel

method to construct an ontology from the evidence collected from the corpus. In

order to achieve our goal, we have used the lexico-semantic features of the lexicon and

probabilistic reasoning to handle the uncertainty of the features. Since our method

is applied to build an ontology for a corpus without domain experts, our believe is

that this method would be classified as an unsupervised learning technique. Since

our method starts from the evidence presented from the corpus, it is generally can

be seen as a reverse engineering technique. We have used WordNet [5] to handle

lexico-semantic structures, and Bayesian reasoning to handle degree of belief of an

uncertain event. Once the conceptualization is learned, we have implemented a Java

based application to serialize this to OWL DL [6] format.

1.2 Road map

The rest of this report is organized as follows. Chapter 2 provides background infor-

mation on OWL and Bayesian reasoning. Chapter 3 provides a broad investigation of

the related work. Chapter 4 provides information of our research approach. Chapter

5 provides the details of Java based implementation of the work. Chapter 6 provides a
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detailed description of the experiments we have conducted on the constructed ontolo-

gies in three different data sets and the discussion on what we have learned. Finally,

chapter 7 provides the summary and the expected feature work.



Chapter 2

Background Information

In this section we discuss about the fundamental representation of an ontology and

the Bayesian reasoning technique.

2.1 Ontology

The word “ontology” has different interpretations in different communities. In our

study we are interested in the interpretation given in Computer Science as a special

kind of information object or computational artifact. Gruber [1] originally defined

the notion of an ontology as a explicit specification of a conceptualization. Borst

[7] defined an ontology as a formal specification of a shared conceptualization, i.e.,

an ontology should have a shared view among several parties. This definition also

expresses the fact that an ontology is also machine readable. Finally, Studer et

al. [2] merge the prior two definitions stating that an ontology is a formal, explicit

specification of a shared conceptualization. All above definitions talk about a notion

4
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of a conceptualization. A conceptualization is an abstract, simplified view of the

world that we wish to represent for some purpose. This view [8] is based on the

objects, concepts and other entities that exist in some domain and relationships that

hold among them. According to [8] definition of an ontology is given as,

Definition 2.1 Let C be a conceptualization and L a logical language with vocabulary

V and ontological commitment K. An ontology O for C with vocabulary V and

ontological commitment K is a logical theory consisting of a set of formulas of L,

designed so that the set of its models approximates to the set of intended models of L

according to K.

Definition 2.1 talks about a notion of a model and an intended model. A model is

an interpretation of objects, concepts and other entities in the universe of discourse,

and a set of relations amoung them. An intended model is always compatible with

ontological commitment K. For more details of a model and an intended model,

please refer to the definitions 2.1, 2.4 and 3.3 of [8].

Figure 2.1 shows an example ontology mentioned in [8]. Let the set CC contain

the concepts of the conceptualiaztion C and they are Cc = {Person, Manager, Re-

searcher}. Let the set CR contain the binary relations of the conceptualization C and

they are CR = {reports-to, cooperates-with}. Lets build the ontology O consisting of

a set of logical formulae. We use the Boolean constructors conjuction (u), which is

interpreted as set intersection, disjunction (t), which is interpreted as the set union,

is-a (⇒), which which is interpreted as the implication, and negation (¬), which is

interpreted as the set complement.
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• IS-A relations or taxonomic relations,

O1 = {Researcher(X) ⇒ Person(X), Manager(X) ⇒ Person(X) }

• Domain and ranges

O2 = O1 t {reports-to(X,Y) ⇒ Person(X) u Person(Y),

cooperates-with(X,Y) ⇒ Person(X) u Person(Y)}

• Symmetry

O3 = O2 t {cooperates-with(X,Y) ⇔ cooperates-with(Y,X)}

• Transitivity

O4 = O3 t {reports-to(X,Y) u reports-to(Y,Z) ⇒ reports-to(X,Z) }

• Disjointness

O5 = O4 t {Manager(X) ⇔ ¬ Researcher(X)}

Figure 2.1: Example ontology of three concepts Person, Researcher & Manager and
two relations cooperates-with & reports-to

An ontology specifies a domain model and the knowledge base provides assertions

about concepts and relations that can be learned. Our approach focuses on learning

an ontology using an unsupervised probabilistic approach. In our work, input data
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is obtained as text documents, and redundancy in the documents is used to capture

the concepts and relations. Ontology learning is to some extent considered as a

process of reverse engineering. The author of a document has a world or a domain

model in mind. Other authors writing the similar text for some degree share the

same world or domain model. Hence, the redundancy in authors’ worlds or domain

models are used to extract the facts that are needed to establish an ontology. Even

if there are substantially large amount of data, only partial information about the

authors’ world or domain model can be extracted. Hence, the learning process is

considered to be a challenging task. Thus, according to definition 2.1, in order to

learn an ontology, we need to acquire the relevant terminology, identify synonym

terms/linguistic variants, concept formation, hierarchical organisation of the concepts,

learn relations/attributes/domain/ranges, hierarchical organisation of relations, and

axiom induction.

2.1.1 OWL

There are different knowledge representation schemes available to represent an on-

tology. Web Ontology Language (OWL), which is recommended by the World Wide

Web Consortium (W3C), has been adopted as a standard for representing ontologies.

We have based our work adhering to this standard and we will discuss our devel-

opment formalisms in its terms. OWL is defined in three different sub-languages

and we are interested in the OWL DL (description logic) sub-language because it is

computationally efficient and permits efficient reasoning support. The computational
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tractability and efficient reasoning support is achieved through vocabulary partition-

ing, explicit typing, property separation, no transitive cardinality restriction and re-

stricted anonymous classes. OWL DL, which is refered to as OWL hereafter, is based

on the description logic SHOIN(D) [9]. The notions of a domain are described by

concepts (classes), relations (roles or properties) and individuals (instances). These

primitives state facts about the domain in the form of axioms. Terminological (T-

box) axioms talk about concepts and relations, and assertional axioms (A-box) talk

about the properties of individuals of the domain. OWL uses the atomic constructs

in table 2.1 to build complex classes and relations.

Description logic (DL) is a formal logic with well defined semantics. The semantics

of DL is specified via model theoretic semantics, which explicates the relationship

between the language syntax and the models of a domain.

.

2.2 Statistical Models

Our implementation tries to gain a lot of insight from probability theory and statistical

models. The following subsections briefly discuss areas we have touched to build our

model.

2.2.1 Uncertainty

Uncertainty in a domain arises from both noise on measurements and the finite size

of the data set. Probability theory provides a consistent framework to handle un-
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Table 2.1: OWL DL syntax and an abstract syntax of an ontology representation

C Definition(C) concept of the ontology
C u D intersectionOf(C D) conjunction of two concepts C and D
C t D unionOf(C D) union of two concepts C or D
¬ C complementOf(C) negation of the concept C
∃R.C R someValuesFrom(C) existential restriction of

an anonymous concept related to
a concept C via relation R

∀R.C R allValuesFrom(C) value restriction of
an anonymous concept related to
a concept C via relation R

≥n R R maxCardinality(n) number restriction of
a concept related to
another concepts at least n via relation R

≤n R minCardinality(n) number restriction of
a concept related to
another concepts at most n via relation R

C v D SubClassOf(C D) C is a subconcept of D
C v ¬D DisjointClasses(C D) C concepts is disjoint from D concept

certainty. There are mainly two important interpretations of probability, frequentist

and Bayesian. In frequentist interpretations, probability is given by frequencies of

random, repeatable events. Bayesian interpretation provide a quantification of un-

certainty. Consider an uncertain event such as “Mars was a habitable planet 100

millions years ago”. This kind of an event cannot be repeated many times in order to

define probability. However, using an observation satellite one could gather evidence

and take actions or revise opinions. This sort of uncertainty is interpreted thorough

the elegant, and very general, Bayesian interpretation of probability [10, 11]. Table

2.2 lists the ontological and epistemological commitments of propositional logic, first

order logic and probability.

Text documents contain a lot of sentences. The structure of these sentences such
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Table 2.2: The ontological and epistemological commitment

Class Ontological commitment Epistemological commitment
Propositional logic facts true/false/unknown
First order logic facts and true/false/unknown

conceptualization
(objects and relations)

Probability theory facts uncertainty ∈ [0, 1]

as syntactic pattern (part-of-speech tags), semantic structures can be used to fomulate

a knowledge base. The extracted knowledge for certain degree can represent a degree

of belief in the relevant sentences. Hence, in order to deal with such degrees of believe,

we have to model it with respect to Bayesian probability. It is important to know

that the ontological commitment of the probability is the as same as for formal logic,

but the epistemological commitment, that is, probability provides uncertainty with

a numerical value between 0 (false) and 1(true), will be different. Hence, this infers

that probability statements are made with respect to a knowledge state, not with

respect to the real world.

2.2.2 Bayesian approach

Probability is represented through random variables. A collection of multiple random

variables gives the full joint probability distribution. If X and Y are random variables,

the basic rules of probability, sum rule 2.1 and product rule 2.2 are given as follows,

p(X) =
∑
Y

p(X, Y ) (2.1)
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p(X,Y ) = p(Y |X)p(X), (2.2)

where p(Y |X) is the conditional probability, which is known as probability of Y

given X. If X and Y are independent, the joint distribution of the two random

variables are factored into product of the marginals 2.3, and conditional probability

is given in 2.4:

p(X,Y ) = p(X)p(Y ) (2.3)

p(Y |X) = p(Y ). (2.4)

Since p(X, Y ) = p(Y, X), Bayes’ theorem is given by equation 2.5,

p(Y |X) =
p(X|Y )p(Y )

p(X)
(2.5)

where,

p(X) =
∑
Y

p(X|Y )p(Y ). (2.6)

An independence relationship among variables reduces the number of probabilities

that need to be specified in the full joint distribution. A Bayesian network represents

such dependencies among variables. If x1, . . . , xn are random variables, the joint

distribution is given by 2.7:

p(x1, . . . , xn) = p(xn|xn−1, . . . , x1)p(xn−1|xn−2) . . . p(x2|x1) =
n∏

i=1

p(xi|xi1 , . . . , x1)

(2.7)
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Figure 2.2: Example Bayesian network with four nodes x1, x2, x3 and x4

Each conditional probability represents a link in the Bayesian network. Each node

represents a random variable or collection of random variables. Equation 2.7 repre-

sents a fully connected graph in general. The most interesting problems are conveyed

from Bayesian networks, when some of the links are absence in the graph. This allows

to create very flexible models, which we used in this thesis. For example, consider

the Bayesian network in figure 2.2, with four random variables x1, x2, x3 and x4.

From figure 2.2 and equation 2.7, the joint probability distribution of the four

variables x1, x2, x3 and x4 is given by

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x2)p(x4|x2). (2.8)

An important concept for probability distributions over multiple variables is that

of conditional independece [10, 11]. If there are three random variables x1, x2 and x3,

and conditional distribution of x1, given x2 and x3 is such that x1 does not depend
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on the value of x2 is given by

p(x1|x2, x3) = p(x1|x3). (2.9)

If we consider the joint distribution of x1 and x2 condition on x3, using the product

rule 2.2 and equation 2.9, we get:

p(x1, x2|x3) = p(x1|x2, x3)p(x2|x3) = p(x1|x3)p(x2|x3). (2.10)

Equation 2.10 shows that condition on x3 the joint distribution of x1 and x2

factorizes into the product of the marginal distribution of x1 and x2. Thus, the

random variables x1 and x2 are statistically independent given x3. The short hand

notation for conditional independence is give as in [11],

x1⊥x2|x3 (2.11)

which states that random variable x1 is conditionally independent (⊥) from x2

given the evidence of random variable x3. We use this notion throughout our report

to represent independence when necessary.

2.2.3 N-gram model

An N-gram is a model for word prediction. An N-gram model uses the previous

n − 1 words to predict the next one. This is a very simple yet powerful model for

capturing the meaning of a sentence. N-gram models are interesting if the corpus is
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sufficiently large enough to capture many recurring sequences. In its original form

an N-gram captures all words in the sequence, including the stop words. In general,

an N-gram commits in the present, not in the future or past when reasoning. Since

stop words do not give us additional information, we remove them before applying

an N-gram parser. For an example, lets take the sentence, “Taxonomies or concept

hierarchies are crucial for any knowledge-based system”. First, we remove the stop

words such as “or”, “for”, “any”, then we run the N-gram generator. Lets assume N

is two. Then this will give sequences, “Taxonomies concept”, “concept hierarchies”,

“hierarchies crucial”, “crucial knowledge-base” and “knowledge-based system”. This

example uses the wordform, which is the inflected form as it appears in the corpus.

If the wordform is used, then words such as “concept“ and ”concepts” will be treated

as two separate words. This is not a good simplification and we are instead using

a single abstract word call a lemma. A Lemma is the set of lexical forms having

the same stem and the same word-sense. Hence, word “concepts” is lemmatized to

”concept“ before N-gram generate runs on them.

In our work we are interested in probabilistic models. If bigram models are used,

we are interested in the probability of P (concept | taxonomy). Generally, in an N-

gram, nth word depends on the previous n − 1 words. This is shown in equation

2.12.

P (wn|wn1 , . . . , w1) (2.12)

We approximate the probability of equation 2.12 by counting the number of oc-
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currences of wn words given the word sequences wn1 , . . . , w1:

P (wn|wn1 , . . . , w1) =
#{wn}

#{(n− 1)thwords} . (2.13)

#{X} represents the number of X occurrences in the corpus. Equation 2.13

estimates the N-gram probability by dividing the observed frequency of the nth word

wn by observed frequency of prefix wn1 , . . . , w1. This is the relative frequency and the

maximum likelihood estimation (MLE) that maximises the probability of observed

data P (wn|wn1 , . . . , w1).

It is assumed that the probability of a future word depends only on one past word

given the present word, which is known as the Markov assumption [11]. The Markov

assumption states that the probability of a future event is independent of the past

events given the present event. A bigram model is known as first-order Markov model

because a word looks one word in the past. A trigram model is known as second-

order Markov model because a word looks two words in the past. In general N-gram

is called (N − 1)th order Markov model.

2.2.4 Semantic analysis

All human languages have a form of predicate argument arrangement at the core of

their semantic structure [12]. The meaning of a structure is inferred from words,

context of words and the grammatical structure. We learn a probabilistic seman-

tic structure from the corpus. The conceptualization of the domain is derived from

both IS-A relationships and relationships among the concepts. IS-A relationships are
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learned according to Bayesian learning. This is discussed in Chapter 4. The rela-

tionship among concepts are learned as follows. We assume that a verb of a sentence

will provide the required predicate argument arrangement. In order to associate with

proper predicate argument, we need to understand the syntactic structure of a sen-

tence. Throughout over work, we have used the following syntactic structure given

in Equation 2.14 for sentences:

(Subject NP+) (Verb) (Object NP+) (2.14)

A subject noun phrase (Subject NP+) consists of subject groups formed from

N-gram parsing, and an Object noun phrase (Object NP) consists of object groups

formed from N-gram parsing. A Verb provides the predicate argument arrangement.

There will exist groups in Subject NP and Object NP that will have the highest

association for a given criteria. We discuss the criteria in chapter 4. We select

the group from each category that will maximise the observed probability. If the

group Subject1 is chosen from (Subject NP) and the group Object1 is chosen from

(Object NP), according to λ notation, the semantics of the sentence will be given in

following expression 2.15:

λy.λx.V erb(x, y). (2.15)

Then, applying β-reduction on 2.15, we obtain

((λy.λx.V erb(x, y))(Object1))(Subject1)



17

V erb(Subject1, Object1). (2.16)

2.2.5 Extending probability to description logic

As we have seen in subsection 2.1.1, OWL DL is based on the SHOIN(D) description

logic. Description logics are formal logics with well defined semantics. Generally,

the semantics of a description logic is specified with model theoretic semantics M ,

which explicates the relationships between the language syntax and the models of a

domain [13]. An interpretation I = (4I , .I) consists of a set 4I , called the domain

of I and function .I maps from individuals, concepts and relations to elements of 4I

using binary relations (4I ×4I). Description logic knowledge bases consist of a set

of axioms, which act as constrains of interpretation I. The meaning of a knowledge

base is derived from features and relations that are common in all possible I. An

interpretation satisfies a knowledge base, if it satisfies each axiom in the knowledge

base. Such an I is called the model of the knowledge base. If there are no models

then the knowledge base is inconsistent. There may exists entailed axioms for the

knowledge base [9].

Bayesian networks are propositional. The sets of variables are fixed and finite

and there is a fixed domain of finite values. If we could combine the probability

theory with description logic, this would dramatically increase the range of problems

that can be handled. In the propositional logic context, Bayesian networks specify

probabilities over atomic events. These atomic events can be considered as models or

possible worlds in propositional logic. As we have mentioned before, interpretation
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or models specify domain of individuals, concepts and binary relations that holds

among these entities. Thus, we can consider description logic probabilistic knowledge

base specifies all possible description logic models. In our approach, concepts of the

interpretation consist of nouns, proper nouns of the lexicon, and binary relations of

the interpretation consists of verbs.



Chapter 3

Related Work

The problem of learning a conceptualization from text has been studied in many disci-

plines such as machine learning, text mining, information retrieval, natural language

processing, and Semantic Web (first order logical reasoning). In the following sub-

sections, first we discuss the existing approaches with their pros & cons and second,

we show how our research influence in filling the existing gaps, i.e, how unsupervised

probabilistically reasoned lexico-semantic ontology generation method brings down

the KAB and influence the decision making process of a domain expert.

3.1 Probabilistic reasoning

Knowledge representing languages such as first-order-logic (various other logics), de-

scription logic reflect a major trade-off between expressivity and tractability [14].

Even though description logic, the logic that we are most interested in this work, has

made compromises that allows to be a more successful one, it is limited in ability

19
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to express uncertainty. P-CLASSIC probabilistic version of description logic [14] has

used Bayesian networks [15, 11, 16] to express probabilistic subsumption, which com-

putes the probability that a random individual in class C is subsumed by class D.

Zig & Ping [17] present an ongoing research on probabilistic extension to OWL using

Bayesian networks. Additional cases are used to tag existing classes with prior prob-

abilities. Using these prior probabilities and set of predefined translation rules OWL

T-Box is converted into a Bayesian network to do reasoning of the conceptualization

covered by the T-Box. Lukasiewicz [18] present expressive probabilistic description

logic P-SHIF(D) and P-SHOIN(D) which are probabilistic extensions to description

logics SHIF(D) and SHOIN(D) that OWL-Lite and OWL-DL is based on. This al-

lows to express probabilistic knowledge about concepts and roles as well as assertional

probabilistic knowledge about instances of concepts and roles. This work has been

used as an extension in Pellet to reason an OWL ontology under probabilistic uncer-

tainty [19]. This system processes statements such as “Bird is a subclass-of Flying

Objects with probability 90%” or “Tweety is-a Flying Object with probability less

than 5%”.

3.2 Never ending language learning (NELL)

Machine learning approaches, especially semi-supervised learning models, have shown

a great improvement in extracting information from structured and unstructured text.

This is mainly due to the fact that supervised training is very expensive and fully

categorised examples are very hard to overcome. Semi-supervised learning methods
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use a small number of examples to bootstrap the learning process. The most recent

work on learning a conceptualization is addressed by never ending language learning

(NELL) research that is being done at CMU in the “Read the Web” project [20]. The

conceptualization of millions of unlabelled web documents are learned from a coupled

semi-supervised learning algorithm. The system is bootstrapped with an initial on-

tology that consists of concepts such as Company, SportTeam and relations such as

CompanyHeadquarteredInCity(Company, City), SportsTeamHomeCity(SportsTeam,

City) and a handful set of examples for conceptualization and set of constraints such

as Person and Sports are mutually exclusive. Then, it will simultaneously learn clas-

sifiers for these concepts and relations using the constrains provided in the initial

ontology. The goal of the system is to run 24/7 and to learn good classification of

the concepts and relations in next iteration comparied to the current iteration. The

project has been focused on several semantic categories and uses 200 millon web pages

for the classification [21, 22, 23].

Coupled with this work is the work done on set expansion of named entities in the

web [24, 25, 26] . This refers to expanding a given set of objects into a more complete

set. The extended version of this called automatic set instance acquirer, which takes a

semantic class as input (e.g. fruits) and automatically outputs its probable instances

(e.g. apple, orange, banana).
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3.3 Knowledge Acquisition

Knowledge acquisition is the transformation of knowledge from the form in which it

is available in the world into machine readable forms that can infer useful results.

It is not a trivial task to transfer domain knowledge to a machine readable form

because of the interpretations may be too disambiguous. Hence, it is required to

model the domain in a way that it does not lose the underline interpretation. Due

to these intricacies knowledge acquisition and representation is a hard problem and

it is known as “the knowledge acquisition bottleneck” [27]. Natural language pro-

cessing deals with the problem of knowledge acquisition with part-of-speech tagging.

This endeavour has been thoroughly investigated in knowledge acquisition from text.

Many integrated tasks in natural language processing require a large amount of world

knowledge to create expectations, assess plausibility and guide disambiguation. This

quest still remains a formidable challenge. Building on ideas by Schubert, a system

called DART (Discovery and Aggregation of Relations in Text) has been developed

that extracts simple, semi-formal statements of world knowledge (e.g., air-planes can

fly, people can drive cars) from text and this has used it to create a database of 23

million propositions of this kind [28]. An evaluation of the DART database on two

language processing tasks (parsing and textual entailment) shows that it improves

performance, and a human evaluation shows that over half the facts in it are con-

sidered true or partially true, rising to 70% for facts seen with high frequency. This

work has created a new publicly available knowledge resource for language processing

and other data interpretation tasks, and second it provides empirical evidence of the
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utility of this type of knowledge, going beyond Schubert et al’s earlier evaluations

which were based solely on human inspection of its contents. KNEXT database [29],

TextRunner [30] and ConceptNet [31] similar to DART.

Recognising textual entailment (RTE) is the task to find out whether some text

T entails a hypothesis H. The recognition of textual entailment is without doubt one

of the ultimate challenges for any NLP system: if it is able to do so with reasonable

accuracy, it is clearly an indication that it has some thorough understanding of how

language works. Logical inference is the most common method used in recognising

textual entailment (RTE). Boss & Markert [32] uses model building techniques bor-

rowed from automated reasoning to approximate entailment. DART uses DIRT [31]

database to recognize textual entailment.

A common hypothesis is that there exists a large collection of general knowledge

in texts, lying at a level beneath the explicit assertional content. These axioms infer

logical consequences that are possible in the world or under certain conditions infers

to be normal or commonplace in the world. Marinho et al. [33] had focused on

deriving general propositions from noun phrase clauses and then to fortify stronger

generalisation based on the nature and statistical distribution of the propositions

obtained in the first phase. Cankaya & Moldovan [34] presents a semi-automatic

method for generating commonsense axioms. This process first uses commonsense

rules as a seed that describe some concept properties. Then the algorithm searches

automatically in Extended WordNet [5] for all concepts that have a given property

and generates axioms linking those concepts with the seed commonsense rule. The

ultimate goal of knowledge capturing is to build systems that automatically construct
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a knowledge base by reading texts. This requires solving the problem of Natural

Language Understanding (NLU) [35]. The main objective of NLU is to read texts

to build a formal representation of their content in order to support a variety of

tasks such as answering a query or RTE. Ambiguity is largely inherent to any natural

language. This will cause a considerable challenge in full NLU understanding. The

Learning-by-Reading system [36] focuses to answer the prior problem by integrating

snippets of knowledge drawn from multiple texts to build a single coherent knowledge

base, which has shown both feasible and promising. Some of the method we have

shown so far uses either supervised or unsupervised machine learning algorithms to

find a solution. The other aspect of the spectrum is active learning, a promising

solution for named entity recognition [37]. Hearst [38] describes six lexico-syntactic

patterns for automatic acquisition of the hyponym lexical relations from unrestricted

text.

3.4 Ontology learning

Ontology learning from text considers extracting knowledge from textual data. Maed-

che, Staab & Volz [39, 40, 41] present a state-of-the-art semi-automatic approach to

construction and maintenance of ontology from a domain specific text by applying

machine learning techniques. This work addresses the usage of data mining tech-

niques to simplify and accelerate ontology construction and ensures that the induced

ontology faithfully reflects application data requirements. The implementation of

this work is called TEXT-TO-ONTO. It follows the balanced cooperative modeling
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paradigm, where the interaction between knowledge acquisition and machine learning

steps can be done either by a human or by a machine. ONTOEDIT, a stand-alone

manual ontology engineering environment is fully embedded in TEXT-TO-ONTO,

thus manual ontology construction is possible. The user can also modify propositions

from TEXT-TO-ONTO extraction and maintenance components graphically or can

reject them. The overall process involves, first, data is pre-processed by a resource

processing component and a NLP system. Then, machine learning algorithms are

applied to construct modelling primitives. These modelling primitives are integrated

in a semi-automatic fashion to learn the overall conceptualization. This application

also provides ontology pruning, which refers to the process of removing elements

from the ontology that are no more relevant to a given application domain and on-

tology refinement, which focuses on learning the meaning of unknown words over

time. Evaluation of the learned ontology is computed with the similarity between a

manually-built reference ontology. It is assumed that a high similarity between the

hand-modeled ontology and the ontology learning-based acquired ontology indicates

a successful application of a particular ontology learning technique, which is formally

known as gold standard as a reference. OntoLearn [42], OntoLT [43] and OntoClean

[44] are some of the tools developed to support the user in constructing ontologies

from a textual data. The prior mentioned application, OntoLearn, OntoLT and On-

toClean, depends either on very specific or on proprietary ontology models, which

can not always be translated to other formalisms in a straightforward way. This is

certainly undesirable as ontology learning tools should be independent from a certain

ontology model in order to be widely applicable and used.
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Text2Onto [45] represents the learned ontological structures at a meta-level in

form of so called modeling primitives rather than in a concrete knowledge represen-

tation language, which gives the flexibility on handling the most prevalent represen-

tation languages currently used within the Semantic Web such as RDFS, OWL and

F-Logic. Text2Onto is a complete re-design of TEXT-TO-ONTO. Text2Onto uses

Probabilistic Ontology Models (POMs) where the results of the system are attached

by probabilities. In addition to this, it uses a data-driven change discovery, which is

responsible for detecting changes in the corpus, calculating POM deltas with respect

to the changes and accordingly modifying the POM without recalculating it for the

whole document collection. Many reasoning-based applications in domains such as

bioinformatics or medicine rely on much more complex conceptualizations rather bare

taxonomies and relationships [32]. Some of these conceptualizations are constructed

by pure manual efforts. Hence, methods for the automatic or semi-automatic con-

struction of expressive ontologies could help to overcome the knowledge acquisition

bottleneck. The amount of post-processing for complex learned ontologies can be

relaxed if proper integration of ontology evaluation and debugging approaches are

introduced. Particularly, the treatment of logical inconsistencies, mostly neglected

by existing ontology learning frameworks, becomes a great challenge as soon as we

start to learn huge and expressive conceptualizations. LexO [32] is such an implemen-

tation supporting the automatic generation of complex class descriptions from lexical

resources. The learned ontologies may represent uncertain and possibly contradict-

ing knowledge [46]. This is mainly due to imprecision, inconsistency or uncertainty.

Imprecision and inconsistency are properties of the knowledge base cause by ambigu-
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ous, vague, approximate and contradictory conclusions derived from the information.

Uncertainty means that an agent, i.e., a computer or a human, has only partial

knowledge about the knowledge base. This has two uncertain categories. An objec-

tive uncertainty relates to randomness referring to the propensity or disposition of

something to be true. A subjective uncertainty depends on an agents opinion about

the truth value of information. In either case, agents can assume knowledge as un-

reliable or irrelevant. Ontology learning is subjected to imperfection from ambiguity

and unreliability, thus, it is subjective uncertainty. Text2Onto [45] generates ontolo-

gies based on a Learned Ontology Model (LOM), which is independent of a concrete

ontology representation language. LOM represents uncertainty as annotations cap-

turing the confidence about the correctness of the ontology elements. Then the LOM

is transformed a standard logic-based ontology language, in order to be able to apply

standard reasoning over the learned ontologies. Our research work is also focused on

the ontological commitment dealing with uncertainty produced by the text.

Formal Concept Analysis (FCA) [47] is a method that automatically aquisits tax-

onomies or concept hierarchies from text corpora. In the FCA paradigm, a concept

consist of two parts, which is known as extension and intention. Extension covers

all objects belonging to this concept and intention comprises all attributes valid for

all those objects. These objects and attributes are used in deriving the subconcept-

superconcept relations between concepts with respect a formal context. This formal

context later translates into a lattice from which the partial order of the concept

hierarchy is learned. Since objects and attributes describe the extent and intent, it

is important to extract theses from the text using a NLP concept. Cimiano et al.
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[47] collects verb/subject, verb/object and verb/propositional phrase dependencies to

create the formal context and some of them will be pruned according to a information

measure.

3.5 Ontology population

The other side of ontology learning is ontology population. Ontology population

means finding instances of the conceptualization [48]. Finding instances of the con-

ceptualization is treated as a difficult problem. For some degree, work that is being

done in [21, 22, 23] addresses this issue using coupled co-training. Human-defined

concepts are fundamental building-blocks in constructing knowledge bases such as

ontologies. Statistical learning techniques provide an alternative automated approach

to concept definition, driven by data rather than prior knowledge. Chemudugunta et

al. [49] performs automatically taging of Web pages with concepts from a known set

of concepts (i.e. an ontology) without any need for labeled documents using latent

Dirichlet allocation models.

NLP is used in ontology population, using a combination of rule-based approaches

and machine learning [50]. Linguistic and statistical technique methods are used for

contextual information to bootstrap learning. Named entities are populated using

a weakly supervised automatic approach in [51]. A syntactic model is learned for

categories using an ontology. Then, this model is populated using the corpus. Pantel

& Pennacchiotti [52] presents algorithms for harvesting semantic relations from text

and then automatically linking the knowledge into existing semantic repositories.
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Table 3.1: Summary of the related work

Related Word Purpose T-Box A-Box Method
PR reasoning available available prob. theory
NELL 24× 7 learning fixed dynamic ML techniques
POS type for a word × × prob. & stat.
DART world knowledge × × semi-automated
RTE entailment × × ATP
NLU commonsense rules × × semi-supervised
Text-To-Onto ontology learning

√ √
semi-supervised

Text2Onto ontology learning
√ √

semi-supervised
Lexo complex classes

√ × semi-supervised
FCA taxonomy

√ × FCA
OP ontology population available available semi-/supervised

3.6 Summary

Tabel 3.1 summarises the attributes of prior mentioned methods. Learning a con-

ceptualization of a domain spans accross different fields. It starts with parsing the

structured and unstructured text for syntactic patterns, then from those syntactic

patters semantics of the corpus is build. The parsing process is heavily dependent

on the accuracy of the natural language processing techniques. After the parsing,

it is necessary to build populate the given model. Almost all the methods we have

discussed so far are semi-automated. This means that at one stage of the processing

chain, a domain expert is needed to formalize the final outcome. Most system uses

a domain expert as the authority that handle the uncertainty immerged from the

system. Due this reason ontology learning process has become time consuming and

cumbersome.
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In our work we will formalise a unsupervised method to build an ontology using

probabilistic theory. Probabilistic theory quantifies the uncertainty and learn the

concepts and relations of the conceptualisation. Since the process is unsupervised, we

hypothesis the ontology learning process is much more faster than the prior mentioned

method. Chapter 4 provides a detailed discussion of our method through probabilistic

reasoning.



Chapter 4

Approach

Chapter 3 has mentioned the pros and cons inherited from different techniques to

solve the problem of ontology learning. As shown in table 3.1, each method covers

some portion of the problem. Each method learns a conceptualization from terms,

and present it as taxonomies and axioms for ontology. On the other hand most of

the methods use a top-down approach, i.e., an initial classification of an ontology

is given. The uncertainty inherited from the domain is most of the time dealt with

by a domain expert, and the conceptualization is defined most of the time using

predefined rules or templates. These have shown characteristics of a semi-supervised

and semi-automated learning environment.

In our work, we are focusing on an unsupervised method to quantify the degree of

belief that a grouping of words in the corpus will provide a substantial conceptualiza-

tion of the domain of interest. Degree of belief in world states influence the uncertainty

of conceptualization. Uncertainty arises from partial observability, non-determinism,

laziness and theoretical and practical ignorance [10]. Partial observability arises from

31
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the size of the corpus. Even though the corpus is substantially large enough, it might

not contain all the necessary evidence of an event of interest. A corpus contains am-

biguous statements about an event that will lead to non-determinism of the state of

the event. Laziness arises from work that needs to be done in order to learn excep-

tional rules and it is too hard to learn such rules. Theoretical and practical ignorance

arises from lack of complete evidence and it is not possible to conduct all the neces-

sary tests to learn a particular event. Hence, domain knowledge, in our case domain

conceptualization, can at best provide only a degree of belief of the relevant groups

of words. We use probability theory to deal with the degrees of belief. As mentioned

in chapter 2, probability theory has the same ontological commitment as the formal

logic, though the epistemological commitment differs.

4.1 Overall process

The overall process of learning and presenting a probabilistic conceptualization is

divided into four phases as shown in figure (4.1). They are,

1. Pre-processing

2. Syntactic analysis

3. Semantic analysis

4. Representation
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4.1.1 Pre-processing

A corpus contains plethora of structured and unstructured sentences build from a

lexicon. A lexicon of a language is its vocabulary build from lexemes [12, 53, 54]. A

lexicon contains words belonging to a language and in our work individual words from

the corpus will be treated as the vocabulary, thus, the lexicon of the corpus. In pure

form, the lexicon may contain words that appear frequently in the corpus but have

little value in formalising a meaningful criterion. These are called stop words or in

our terminology negated lexicon will be excluded from the vocabulary. The defintion

of the lexicon of our work is given as,

Definition 4.1 The lexicon L is the set that contains words belong to the universe of

English vocabulary, which is part-of-speech type tagged with the Penn Treebank English

POS tag set [55] and the type of the word is given in table 4.1.

Table 4.1: The definition of the lexicon L is based on the subset of the Penn treebank
tags set

Term Description
NN Noun, singular or mass
NNP Proper Noun, singular
NNS Noun, plural
NNPS Proper Noun, plural
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
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Definition 4.1 implicitly implies that the negated lexicon L is the set that contains

English words that are part-of-speech tagged with the Penn Treebank English POS

tag set other than the tags given in definition 4.1. In addition, the word length

WL above some threshold WLT
is also considered when building the lexicon of the

corpus. with respect to part-of-speech context, the length of a word is the sequence

of characters or symbols that made up the word. i.e., the word ”mika” has a word

length of four (WL = 4). By default we have considered a world having a length of

more that 2 is sufficiently formalise with some criterion.

Building up the pure lexicon at this stage excluding the negated lexicon of the pre-

processing is known as tokenization from sentences. Here, the pure form of the lexicon

might contain words that need to be further purified according to some criterion.

Words of the corpus contain a lot of standard and constructed words. As mentioned,

some words do not provide useful information. In order to filter out these words, in

the next phase of the pre-processing phase, each word is processed through a regular

expression filter. The regular expression filter is a parameter to the system. The

default regular expression is given as [a−zA−Z]+ if this parameter is not specified by

the user. As an example: a word such as du−145 will be filtered out from this regular

expression. We also try to do token normalization to some extent. This is the process

of canonicalizing the tokens so that matches occur despite superficial differences in

the character sequences of the tokens. In the next step, the vocabulary learned from

the corpus is subjected to case-folding by reducing all letters to lower case. As an

example: Protocol will be case-folded to protocol. Documents use different forms

of a word such as organize, organizes and organizing for grammatical reasons.
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In addition to this there are families of derivationally related words with similar

meanings. We use stemming and lemmatization to reduce the inflectional forms and

derivational forms of a word to a common base form. We achieve this from the aid

of WordNet’s [5] stemming algorithms, using the first sense of a word.

4.1.2 Syntactic analysis

Once the pre-processing phase eliminates the noise of the corpus, in the second phase,

the system tags the word according to its part-of-speech classes. Part-of-speech classes

include nouns, verbs, adjective, adverbs, prepositions etc. We are mainly interested

in nouns, adjective and verb forms as given in defintion 4.1. We assume that each

sentence of the corpus follows the part-of-speech pattern in expression 4.1,

(NounPhrase+)(V erb+)(NounPhrase+) (4.1)

Using the first word sense of WordNet synsets we derive the tags of each word accord-

ing to equation 4.1. Up to this point, the process will classify the lexicon according

to its part-of-speech. We hypothesis that the lexicon learned from this stage provides

the potential candiates for concepts and relations of the ontology. But the lexicon it-

self does not provide sufficient ontology concepts. We group words that are related to

form an OWL concept. This grouping is done using the N-gram model as discussed

in the chapter 2. Figures 4.2 and 4.3 provide examples of a 2-gram and a 3-gram

model.

According to this figure 4.2 group w1|w2 forms a potential concept in the concep-
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Figure 4.2: 2-gram model example

Figure 4.3: 3-gram model example

tualization. Groups w2|w3, w3|w4 etc. form other potential concepts in the concep-

tualization. Word w3 comes after group w1|w2. According to Bayes viewpoint, we

collect the information to estimate the probability p(w3|{w1|w2}), which will be used

in forming IS-A relationships, w1|w2 v w3 using an independent Bayesian network

with conditional probability p({w1|w2}|w3) . In this phase, all this information is

collected as frequencies and sent to the third phase. In addition to this, we collect

the frequencies of patterns discussed in section 4.1, which are used in the third phase

to create the relations among concepts.

The bootstrap algorithm 1 gives the main operations conducted by the pre-

processing and syntactic analysis phases. Corpus,Regex, and NegatedLexicon are

inputs to the algorithm 1, and ensure frequencies of concepts GF , verbs VF , lexicon

LF , part-of-speech tag POSF and sets G, V, L, POS and {W |G}. Variable Corpus

contains the set of text documents of the corpus. This is given as di ∈ Corpus where

di represents the document and i = 1, . . . M . M is the size of the Corpus. Each di
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Algorithm 1 BOOTSTRAP (Corpus,Regex, NegatedLexicon)

Require: Substantially large text corpus Corpus, filtering regular expression Regex
and stop words NegatedLexicon

Ensure: Frequencies of concepts GF , verbs VF , lexicon LF , part-of-speech tag POSF

and sets G, V, L, POS, {W |G} and {G|V }
1: L = ∅, G = ∅, POS = ∅
2: for di ∈ Corpus do
3: for sj ∈ di do
4: for wk ∈ sj do
5: if wk ∈ Regex && wk 6∈ NegatedLexicon then
6: if WORDNET STEM AS NOUN OR ADJ(wk, wks) then
7: if wks 6∈ NegatedLexicon then
8: L = L

⋃
wks

9: Lwks
+ +

10: gl = N GRAM GENERATOR(wks)
11: G = G

⋃
gl

12: Ggl
+ +

13: {wks|gl}+ +
14: end if
15: else if WORDNET STEM AS V ERB(wks , wks) then
16: if wks 6∈ NegatedLexicon then
17: V = V

⋃
wks

18: Vwks
+ +

19: end if
20: end if
21: if ∃wks then
22: GENERATE BINARY RELATION(Lwks

, Vwks
, gl, POS, POSF , {G|V })

23: end if
24: end if
25: end for
26: end for
27: end for
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contains a finite number of sentences sj. Let sj ∈ di and let the maximum number

of sentences that will be seen by this operation is given by max(sj). Each sentence

consists of finite number of words wk ∈ sj. Let the maximum number of words that

will be seen in a sentence is given by max(wk). The word wk matches against the

input regular expression Regex and if it succeeds, then it is checked against the stop

word set NegatedLexicon. If both operations are succeeded, then wk is subjected to

WORDNET STEM AS NOUN OR ADJ WordNet first sense check as a noun or

an adjective and stemmed using WordNet stemming algorithm to produce wks . If wks

is a noun or an adjective it is added to the lexicon set L and increment the occurrences

of wks with Lwks
. Using wks and the N-gram generator N GRAM GENERATOR,

group gl is created for the system. Then the generated gl is added to the group set

G and increment the occurrences of gl with Ggl
. Finally, the algorithm increments

the {wks|gl} count, which is used by the probabilistic phase. The second option is

to check whether wk is a verb. The sub-routine WORDNET STEM AS V ERB is

used to check whether wk is a verb and if it succees, it will produce output wks , which

will be added to verb set V and increment the occurrences of wks with Vwks
. Finally,

GENERATE BINARY RELATION uses Lwks
and Vwks

to generate the binary

relations POS and associated counts POSF if-and-only-if wks exists. In addition to

this, {G|V } frequencies will be calculated in order to build the relations probabilities

in later sections. The asymptotic running time of the algorithm 1 is,

O(M ×max(sj)×max(wk)).
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Figure 4.4: Probabilistic IS-A relationship representation of the conceptualization
(4.2). w and g are defined as the concepts of the conceptualization.

4.1.3 Semantic analysis

The third phase of the process is semantic analysis with probabilistic reasoning, which

constitutes the important operations of our work. This phase determines the concep-

tualization of the domain calulating probabilities for IS-A relations and relations

among the concepts. In addition to this, in order to provide a useful taxonomy we

induce concepts from clustered concepts. Our defintion of concept learning is given

in 4.2.

Definition 4.2 The set W = {w1, . . . , wn} represents a n-independent lexems of

the lexicon L and each wi has a prior probability θi. The set G = {g1, . . . , gm}

represents m-independent N-gram groups learned from the corpus and each gj has a

prior probability ηj. When w ∈ W and g ∈ G, p(w|g) is the likelihood probability

π learned from the corpus. The entities w and g represent the potential concepts of

the conceptualization. Within this environment, an IS-A relationship between w and

g is given by the posterior probability p(g|w) and this is represented with a Bayesian

network having two nodes w and g as shown in the figure 4.2 and,
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p(g|w) =
π × η∑

i p(w|gi)× p(gi)
. (4.2)

Lets define the knowledge factor lowerbound that select the super-concept of the

conceptualization.

Definition 4.3 W = {w1, . . . , wn} represents n-independent lexems of the lexicon

L and each wi has a prior probability θi. Lets define knowledgefactor KF as the

lowerbound; if θi ≥ τ with 0 ≤ τ ≤ 1 then wi is considered as a super-concept of the

conceptualization.

Definition 4.3 states that w of the defintion 4.2 is considered as a super-concept

of the conceptualization.

Definition 4.4 Probabilistic conceptualization of the domain is represented by n-

number of indendent Bayesian networks sharing groups.

Figure 4.5 shows a situation where multiple Bayesian networks share a common

group g2. According to this definition consider a set G contains n-number of fi-

nite random variables {g1, . . . , gn}. There exist a group gi, which is shared by m

words {w1, . . . , wm}. Then, with respect to Bayesian framework, BNi of p(gi|wi) is

calculated and max(p(gi|mi)) is selected for the construction of the ontology. This

means that if there exists two Bayesian networks and Bayesian network one is given

by the pair w1, g1 and Bayesian network two is given by the pair {w2, g1} then the

Bayesian network that has the most substantial IS-A relationship is obtained through
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Figure 4.5: w1, w2, w3, w4 and w5 are super-concepts. g1, g2, g3 and g4 are candidate
subconcepts. There are 5 independent Bayesian networks. Bayesian networks 2 and
5 share the group g2 when representing the concepts of the conceptualization

maxBNi
(p(g1|w1)) and this network is retained and other Bayesian networks will be ig-

nored when building the ontolgoy. If all p(g1|w1) remains are equal, then the Bayesian

network with the highest super-concept probability will be retained. These two con-

ditions will resolve any naming issues. Let’s illustrate prior definitions in action with

an example.

Example 4.1 Let’s illustrate the concept defintions mentioned in 4.2-4.4. Assume

we are using a 2-gram model to gather groups. The set LW and LWF
show the lexicon

and their relative frequencies. Sets GG and GGF
show the groups and their rela-

tive frequencies. Sets PW |G and P(W |G)F
represent the group/word (word ∈ Lexicon)

dependencies and their relative frequencies. Table 4.2 shows the sets and prior proba-

bilities. Lets assume that the knowledge factor (KF) for the problem is 0.5. w1, w3, w4

and w8 has prior probabilities that is accepted by the system. Then, we need to cal-
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culate P (G|W ) in order to obtain posterior probability. Lets calculate the posterior

probability of P (g1|w1). This will be given by,

P (g1|w1) =
P (w1|g1)× P (g1)∑

g P (w1|g)× p(g)

P (g1|w1) =
0.66667× 0.103448

(0.66667× 0.103448 + 0.66667× 0.310345 + 1.00000× 0.034483)

P (g1|w1) = 0.22222

Lets calculate p(g1|w1),

p(g1|w1) =
0.33333× 0.103448

0.33333× 0.103448 + 0.16667× 0.206897

p(g1|w1) = 0.5

Hence, the calculate posterior probability 0.22222 is the degree of belief that group

g1 or the concept, according to our lexico-semantic definition, has a IS-A relationship

with concept w1. Figure 4.6 shows the ontology for the taxonomy we have just learned.

Figure 4.2 shows that the concept w2|w3 is a subconcept of w1 as well as w8.

According to the defintion 4.4 this creates a violation. Since p(w8|g1) > p(w1|g1) we

remove the weaker IS-A relation from the conceptualization.

The next step is to induce the relationships in Figure 4.6 to complete the con-

ceptualization. In order to do this, we need to find semantics associated with each

verb.

Definition 4.5 Given a subset of concepts GS = {g1, . . . , gn}, GS ⊂ G, with size
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Figure 4.6: Hypothetical example ontology (this shows only the taxonomy)
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Table 4.2: Hypothetical data points that will be used to illustrate the example

LW LWF
LWP

GG GGf
GGP

PW |G P(W |G)F
P(W |G)P

w1 10 0.0884
w2 9 0.0789
w3 20 0.1769
w4 30 0.2654
w5 5 0.0442
w6 8 0.0707
w7 9 0.0796
w8 13 0.1150
wv1 7 0.0619
wv2 3 0.0265

g1 = {w2, w3} 3 0.1034
g2 = {w4, w5} 7 0.2413
g3 = {w6, w7} 9 0.3103
g4 = {χ, w7} 1 0.0344
g5 = {w3, w5} 3 0.1034
g6 = {w1, w8} 6 0.2068

P (w1|g1) 2 0.6667
P (w1|g3) 6 0.6667
P (w1|g4) 1 1.0000
P (w4|g3) 5 0.5556
P (w4|g5) 1 0.3333
P (w3|g2) 6 0.8571
P (w8|g1) 1 0.3334
p(w8|g6) 1 0.1667
p(wi|gj) 0 0
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n, for a given super-concpet w, when p(g1|w), . . . , g(gn|w) holds, the prefixes of the

concepts are extracted and known as an induced concepts. For a m-gram model, at

most up to m − 1 concepts can be induced. For all induced concepts c, the concepts

name collision will be avoided by assigning different namespaces. The induced concept

will be given a prior probability of 0.

Definition 4.5 gives an efficient way to represent the taxonomy of the concep-

tualization. Newly induced concepts contain words up to at most m − 1. Thus,

this concepts induction will lead to concepts collision in the given namespace. This

situation is avoided according to Defintion 4.6.

Definition 4.6 When a concept is induced from a group of concepts, the induced

concept is assigned to a different namespace in order to avoid possible concept name

conflicts. The namespace assignment is forced, if and only if there exist a concept

with the same name in the system, otherwise induced concepts will be subjected to the

default namespace of the system.

Example 4.2 illustrates an instance of concept induction process.

Example 4.2 Lets assume a learning instance uses a 3 gram model. We learn the

following concepts from the system. There exist a super-concept W and subconcepts

w1|w2|w3, w1|w2|w4, w1|w5|w6, w7|w8|w9. For this configuration, the induced concept

hierarchy is as shown in Figure 4.8. w1 and w1|w2 are induced concepts of the system.

They will be assigned to different namespaces if the conditions of definition 4.6 is met.
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Figure 4.7: Induced concept hierarchy

Relations are as important as concepts in a conceptualization. Relations exists

among the concept of the conceptualization. We have hypothesized that relations are

generated by the verbs in the corpus.

Definition 4.7 Relationships of the conceptualization are learned from the syntactic

structure model by the equation 2.14 and the semantic structure model by the equation

2.15.

Definition 4.8 If there exists a verb V between two groups of concepts C1 and C2,

the relationship of the triple (V,C1, C2) is written as V (C1, C2) and model with con-

ditional probability p(C1, C2|V ). The Bayesian network for relationship is and the

model semantic relationship is given by,

p(C1, C2|V ) = p(C1|V )p(C2|V )→ V (C1, C2)
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Figure 4.8: Bayesian networks for relations modeling. C1 and C2 are groups and V
is a verb

Using definitions 4.7 and 4.8, the relationship among multiple concepts are defined

in 4.9. We define the relations in terms of groups of words in the lexicon. These groups

are clustered around the most probable words found in the corpus.

Definition 4.9 Let Sp ⊂ S be a part of co-occurance sentence of the corpus, which

can be transformed into {Gi vj Gk} groups and a verb. The sizes of Gi and Gk are

|Gi|, |Gk| and Gi = {g1, . . . , gm} and Gk = {gm+1, . . . , gn}, n > m. Then, the rela-

tionships among Gi and Gk are build from the combinations of the elements from Gi

and Gk with respect to vj in accordance with the Bayesian model p(Gi, Gk|Vj). There

will be |Gi| × |Gk| relations,

vj(g1, gm+1)← p(g1, gm+1|vj)

vj(g1, gm+2)← p(g1, gm+2|vj)

. . .

vj(g1, gn)← p(g1, gn|vj)

vj(g2, gm+1)← p(g2, gm+1|vj)
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. . .

vj(gm, gm+1)← p(gm, gm+1|vj)

. . .

vj(gm, gn)← p(gn, gm|vj)

The relations learned from defintions 4.7 and 4.8 sometimes needs to be subjected

to a lower bound. The Knowledge Factor (KF) parameter is used as an input to

semantic analysis phase to set this lower bound.

Definition 4.10 Let set R = {v1(C1, C2), . . . , vm(Ck, Cr)} be the relations that are

learned from the corpus. Relations vi(Cj, Ck) are assigned a probability using a

Bayesian model p(Cj, Ck|Vi). When these relations are ordered based on their proba-

bility, a threshold ϕ is defined as the Knowledge Factor (KF) of the system.

Definition 4.10 allows the user to limit the number of relations learned from the

system. When the corpus is substantially large, the number of relations that are

learned is proportional to the number of verbs in the lexicon. Not all relations may

relevant and the KF is used as the limiting factor.

Definition 4.11 Let vi be a verb and vj is the antonym verb of vj learned from

WordNet (vi ./ vj). Let there be relations vi(Gm, Gn) and vj(Gm, Gn) modeled by

p(Gm, Gn|vr) (vr = i, j). Since, vi ./ vj for Gm and Gn, the relationship with the

highest p(Gm, Gn|vr) value will be selected and the other relationship will be removed.
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We are using verbs of the lexicon as the key elements in forming relationships

amoung concepts. Verbs have opposite verbs. Thus, according to definition 4.11, if

a verb is associated with some concepts and these concepts happen to be associated

with a opposite verb, the verb with the highest Bayesian probability value is selected

for the relations map and the other relationship will be removed from the system.

Example 4.3 Let’s extend the example 4.1 with some relations. If the system learns

that there is a v1(g1, g2) relation and a v2(g6, g5) relation, then we need to find the

probabilities p(g1, g2|v1) and p(g6, g5|v2). The frequencies of these values are found

from the booststrap algorithm and they are converted into probabilities later. Lets

assume that we found these probabilities, p(g1|v1) = 0.14, p(g2|v1) = .42, p(g6|v2) = 1,

and p(g5|v2) = 0.33. Then according to definitions 4.8-4.11,

v1(g1, g2)← p(g1, g2|v1) = 0.06 and v2(g6, g5)← p(g6, g5) = 0.33.

This is shown in figure 4.9.

We will now provide the algorithms that are implemented according to the defin-

tions described in this section. Algorithm 2 provides the logic to calculate super-

concepts and taxonomy of the corpus subjected to KF. The algorithm 2 requires

frequencies of concepts GF , lexicon LF , verbs VF , {W |G} and knowledge factor

KF = (0, 1] as input, and provides super-concepts and taxonomy IS-A relationship

BNSuperConcepts,Groups as the output. First, the algorithm calculates prior probabilities

of p(wi) = θi, p(gj) = ηj and likelihood probability p(w|g). Then all p(wi) are sorted
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Figure 4.9: Hypothetical example ontology with relations (only two relations are
shown)
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and only the top KF × |BNSuperConcepts| will be selected as valid super-concepts.

Then, for all valid super-concepts posterior probability of p(g|w) is calculated. If the

calculated probability p(g|w) is the highest, the associated super-concept and groups

will be added to BNSuperConcepts,Groups.

Algorithm 2 SUPER CONCEPTS AND TAXONOMY (GF , LF , VF , {W |G}, KF )

Require: Frequencies of concepts GF , lexicon LF , verbs VF , {W |G} and knowledge
factor KF

Ensure: Super-concepts and taxonomy IS-A relationship BNSuperConcepts,Groups

1: BNSuperConcepts = ∅, BNGroups = ∅ and BNSuperConcepts|Groups = ∅
2: for wi ∈ W do
3: Calculate prior probability θi for wi using LF and VF .
4: BNSuperConcepts = BNSuperConcepts

⋃
wi

5: end for
6: for gi ∈ W do
7: Calculate prior probability ηi for gi using GF

8: BNGroups = BNGroups

⋃
gi

9: end for
10: for {w|g}i ∈ {W |G} do
11: Calculate likelihood probability πi for {w|g} using {W |G}
12: BNSuperConcepts|Groups = BNSuperConcepts|Groups

⋃{w|g}i
13: end for
14: Sort BNSuperConcepts. Keep only top KF × |BNSuperConcepts| fraction of

BNSuperConcepts and marked them as valid
15: for ∀validwi ∈ BNSuperConcepts do
16: Calculate posterior probability p(g|wi) using θi, ηi and BNSuperConcepts|Groups

according to definition (4.4)
17: if p(g|wi) is largest among ∀wi then
18: BNSuperConcepts,Groups = BNSuperConcepts,Groups

⋃{wi, g}
19: end if
20: end for

The output of alogrithm 2 will be used to induce concepts according to algorithms

(3) and (4). Algorithm (3) uses BNSuperConcepts,Groups produced from algorithm (2)

as input and output a tree TreeSuperConcpet,InducedConcpets,Groups containing all super-

concepts, induced concepts and groups. This algorithm simply goes through each

element of set BNSuperConcepts,Groups invoking the recursive algorithm 4.
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Algorithm 3 INDUCED CONCEPT WRAPPER(BNSuperConcepts,Groups)

Require: Super-concept and groups relation BNSuperConcepts,Groups

Ensure: Tree TreeSuperConcept,InducedConcepts,Groups consists of super-concepts, induced
concepts and groups.

1: for ∀SuperConcepti, Groups ∈ BNSuperConcepts,Groups do
2: INDUCED CONCEPT (TreeSuperConcepti,InducedConcepts,Groups, Groups, 1)
3: end for

Algorithm 4 INDUCED CONCEPT (TreeSuperConcpeti,InducedConcpets,Groups, Groups, depth)

Require: Tree TreeSuperConcepti,InducedConcepts,Groups data structure, groups Groups
and depth depth

Ensure: Induced concepts for Groups with super-concept SuperConcepti.
1: if depth <= (|n− gram| − 1) then
2: G ∈ Groups is of the form w1|w2| . . . |wn. Create set Prefix using depth wi

words
3: Cluster all elements in Groups to associated Prefix, (PrefixGroups =

{prefixi, Groupsk ∈ Groups})
4: if |Groupsk| == 1 then
5: Add Groupsk to TreeSuperConcpeti, ,Groupsk

6: else
7: if ∃Prefixi then
8: Create new namespace Namespacej

9: Add Prefixi to TreeSuperConcepti,P refixi,Groups with namespace Namespacej

10: else
11: Add Prefixi to TreeSuperConcpeti,P refixi,Groups

12: end if
13: INDUCED CONCEPT (TreeSuperConcpeti,P refixi,Groups, Groupsk, (depth +

1))
14: end if
15: else
16: Add Groups to TreeSuperConcepti,InducedConcept,Groups

17: end if



54

TreeSuperConcepti,InducedConcepts,Groups, Groups and depth are the inputs to the algo-

rithm 4 with SuperConcept and depth is initialized to SuperConcepti and one. This

algorithm is applied recursively until depth <= (|n− gram| − 1) according to defini-

tion 4.5. |n− gram| is the length of the n-gram. As an example: 2-gram has a length

of 2. Each group gi ∈ Groups is of the form w1| . . . |wn. First, take the depth prefix

from the groups and cluster them according the prefix. If the cluster contains only

one element of the group then add that group into TreeSuperConcpeti, ,Groupsk
. Other-

wise, add the prefix to Tree. If the prefix already exists in the tree, add this prefix

with a different namespace to avoid namespace collisions according to definition 4.5.

Then, recursively call algorithm 4 with TreeSuperConcpeti,P refixi,Groups, Groupsk and

(depth + 1). Finally, the tree TreeSuperConcept,InducedConcepts,Groups represents the prob-

abilistic taxonomy of the corpus.

The next step of the conceptualization is to generate relationships according to

definitions 4.7 , 4.8 and 4.9.

Algorithm 5 provides the logic for relations creation. The concept tree Tree,

verb set V , frequencies of lexicon LF , frequencies of verbs VF , frequencies of groups

given verbs {G|V }, part-of-speech POS and relations factor RF = (0, 1] are given

as the input. Prior probabilities of vi ∈ V are calculated. Then, it is sorted and

the top RF × |VRelated| are extracted to set VFinal. Then all combinations of groups

related to a verb vi ∈ VFinal are created. If combinations of groups related to a verb

vi ./ vj ∈ VFinal exist, according to definition 4.9, the relation that has the highest

Bayesian probability is kept in the tree.
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Algorithm 5 RELATIONS(Tree, V, LF , VF , {G|V }, POS, RF )

Require: Concept tree Tree from algorithm (4), verbs V , frequencies of verbs VF

and lexicon LF and part-of-speech POS
Ensure: Relations attached to tree Tree
1: VRelated

2: for ∀vi ∈ V do
3: Calculate prior probability βi for each vi using LF and VF and to set VRelated

4: end for
5: Sort VRelated and extract top RF × |VRelated| elements to set VFinal

6: for ∀vi ∈ VFinal do
7: Find (gn)(vi)(gm) relations from POS
8: Generate all combinations according to definition (4.9)
9: Calculate probability p(gk, gl|vi) for all combinations

10: Find gk and gl concepts from Tree and create the relation vi(gk, gl)
11: if vi ./ vj ∈ VFinal then
12: if gk && gl related with vi and vj then
13: Keep only the relation associated with vi or vj that has the highest prob-

ability p(gk, gl|vr) (r = {i, j})
14: end if
15: end if
16: end for

4.1.4 Representation

The learned Tree from the prior section is serialized as an OWL 1 [6] ontology.

Tree is the conceptualization of the system and it is serialized as the T − Box.

The probabilites associated with the conceptualization are serialized as the A−Box.

The internal concept representation uses “|” character as the word separator. This

is transformed into “ ” character when serialized into concepts. We have used this

convention because the default regular expression accepts alphabet of the form that

has zero or more “ ” characters. The simple transformation rule can be defined as

replace(′|′,′ ′). As an example, the concept name a|b|c d is transformed into a b c d.
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Implementation

The implementation of our work use several open source projects to populate the

required contexts at different phases that we introduced in chapter 4. The bootstrap-

ping process of our project requires tokenizing sentences and stemming/ lemmatizing

of tokens to produced the lexicon of the corpus. In addition to this, we also require

to know the type of a word. We used the Stanford log-linear part-of-speech tagger

[56, 57, 58] to parse the syntactic structure of a sentence and also we use the OpenNLP

[59] project to produce sentences and tokens and the WordNet [5] project to lookup

for the type, stem and lemma of a word. In order to access the WordNet electronic

library, we use the JWI [60] project.

The BioAssayOntology [4, 61] corpus contains xHtml-documents. We use the html

parser [62] library to extract text from these documents. One of our other corpora

contains pdf-documents. We use the Apache PDFBox [63] library to extract the

contents from the pdf-documents. According to defintion 4.1, the lexicon is defined

based on the Penn Treebank English POS tag set. We use the Stanford log-linear

56
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POS tagger [57, 58], which uses the standard Penn Treebank tag set. Finally, we used

Jena API [64] to serialize our probabilistic model into OWL DL [6].

We use several important third party open source projects in our implementation.

Each third party project primarily specializes in different discipline of computer sci-

ence. We use the Stanford log-linear POS tagger to type tag words in a sentences.

This is a very efficient statistical parser develop and maintain for the last 8 years.

The accuracy of the syntactic phase primarily depends on the efficiency of the part-of-

speech tagger use. Since, we need higher accuracy, we believe this is a good research

decision. WordNet is lexical database. We use the base form of an inflected word in

the process. An efficient access to an off-line lexical database is paramount in order

to speed up the ontology construction process. One of the important problems in

natural language processing and machine learning is to detect the sentence boundary.

This is not a easy task with a collection of documents. We need approximate sentence

detection in our work to generate sentences. The OpenNLP projects hosts several

efficient sentence detectors and we use it in our work to achieve maximum efficiency.

Finally, the Jena API is a Java based OWL object model. Once the conceptualization

is learned, it is needed to serialize to a file. We could have written our own OWL

object model, but this is not our purpose in this research. It is important that the

implementation to be efficient, less error prone and easily extendible and this is the

reason we have use these open source projects in our implementation.

The first section provides a brief description of the third party projects. The sec-

ond section provides the implementation details of our work named as “PrOntoLearn”

(Probabilistic Ontology Learning) and the associations with section 5.1.
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5.1 Third party projects

Our implementation is based on Java 1.6 specification [65]. Due to our implemen-

tation decision, we have the opportunity of using number of open source projects

implemented in Java in different phases of the project. In the pre-processing phase

4.1.1, our system is required to read the sentences from the corpus, tokenize the sen-

tences to words and obtain the normalized form of the word such as stem or lemma

of the word to produce the lexicon of the corpus.

First, the sentences of the corpus are read using OpenNLP/Maxent project [59].

Then, the sentence is tagged with its part-of-speech tags using Stanford log-linear

part-of-speech tagger [56, 57, 58]. This tagger uses the Penn Treebank project tagset

[55]. From these tags, we have extracted all words related to nouns (NN, NNP

& NNS), adjectives (JJ, JJR & JJS) and verbs (VB, VBD, VBG, VBN, VBP &

VBZ) preserving the word sequence. These words are the candidate lexicons of the

corpus. These candidate (potential) words are subjected to filtering as discussed in

the section 4.1.1. Default filtering rules include that any word of the candidate lexicon

set should have a word length > 2 and the word should be an element of the alphabet

of the regular expression [a-zA-Z]+[- ]?\w*. Then, use the WordNet [5] project to

normalize the candidate lexicon to their stem or lemma using WordNet stemming

and lemmatizing algorithms.

Second, the learned probabilistic conceptualization model is serialzed into OWL

DL sub-language using Jena API [64] in the representation phase of the section 4.1.4.

We provided a detail description in chapter 2 why OWL DL sub-language is considered
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in our work. We also provide a debug representation of the conceptualization using

Java Swing API [65]. We have only provided the conceptualization observation facility

in the debug tool implemented in Java Swing API. In order to construct complex

tasks on the serialized ontology, we recommend using Protégé ontology editor and

knowledge-base framework [66].

5.1.1 WordNet

The WordNet [5] is a large lexical database for the English language developed and

maintained at the Cognitive Science Laboratory of Princeton University. In addition

to being a standard dictionary and thesaurus, the WordNet distinguishes between

lexical and semantic relations of a word. The lexical relations hold between seman-

tically related word forms, and semantic relations hold between word meanings. In

order to represent these concepts, WordNet uses a logical grouping called synset,

which is a list of synonymous words or collections that share a common meaning in

some context. A word or a collection of words may appear in multiple synsets based

on the meaning they hold considering the global context. WordNet has taken a great

depth in describing relations among synsets based on the different gramatical rules.

WordNet provides information for nouns, verbs, adjectives and adverbs. This is also

the part-of-speech that WordNet recognizes. There are lexical and semantic relations

among words and synsets and it is based on the type of the word in question.

1. Nouns are organized into hierarchies based on hypernymy/hyponymy, holonomy,

meronym, antonymy and coordinated terms relations among synsets.
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• Hypernymy : Synset S1 is a hypernymy of synset S2, if the meaning of S1

subsumes the meaning of S2.

• Hyponymy : The inverse relation of hypernymy.

• Meronymy : Synset S1 is a meronymy of of synset S2, if S1 denotes a part

of or member of S2.

• Holonymy : The inverse relation of meronymy.

• Antonymy : When the relations between synsets hold the opposite mean-

ing.

• Coordinated terms : Synset S1 is a coordinated term of synset S2, if S1

and S2 share a common hypernymy.

2. Verbs are organized into hierarchies based on hypernymy/hyponymy, troponym,

entailment and coordinate terms relations among synsets.

• Troponym : Synset S1 is a troponym of synset S2, if the activity S2 is

doing is same as S1.

3. Adjectives are arranged in clusters containing head synsets and satellite synsets.

Each cluster is organized around antonymous pairs.

4. Adverbs are often derived from adjectives, and occasionally have antonyms.

Hence, from each adverb, there exist an lexical pointer to the adjective which

it is derived from.

According to chapter 4, we forcus on nonus, adjectives and verbs to learn the

underlying conceptualization, where collections of nouns provide a concept and verbs
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provide the relations among concepts. Table 5.1 shows some examples to understand

the prior mentioned relations in WordNet.

WordNet is organized around a logical grouping called synset. Each synset has a

meaning and this meaning is given by a gloss. Though, these glosses can be used as

examples for a machine learning algorithm to populate or extract a useful structure, it

is beyond the scope of our research. For our research we use WordNet 3.0 distribution.

It has 117,798 nonus, 11,529 verbs and 21,479 adjectives. The average polysemy for

nouns is 1.24, i.e., a noun has 1.24 different meanings in average. This is one of the

main factors that we used the first sense of the word when classifying whether the word

is a noun, a verb or an adjective. Our dataset contains word that are not recognized

by WordNet. This is mainly true for nouns and proper nouns. The BioAssay ontology

dataset is a specialized molecule biological screening documents. These documents use

a domain specific jargon, which may not be available in WordNet. We experimented

with Porter stemming algorithm [67] to stem the inflected word forms, which in result

a ad-hoc outputs. Therefore, we use the inflected word form itself as a potential

candidate of the lexicon and this word form uses in generating the N-gram groups,

in the case WordNet does not recognize the word. These words are treated as nouns

and conducted our experiements.

5.1.2 MIT Java WordNet Interface

WordNet provides different interfaces that are build in many languages to interact.

Since our implementation is based on Java, out of several Java interfacing projects
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listed in WordNet site, we choose MIT Java Interface to Wordnet (JWI), developed

at MIT [60]. JWI is written for Java version 1.5 and uses Java NIO packages for

file access, with significant increase in speed. We have used JWI version 2.1.5 in our

implementation. In order to complete this section, we presente a sample Java code 5.1

to connect to WordNet database using JWI. As lines (3 - 4) creates the URL where

the WordNet database is available. Lines (6 - 7) create and open the connection to

the database. Lines (9 - 11), look up for the first sense of the noun “man”. As shown

in the output, each word belongs to a synset and each synset has an id. Each word

has an id. Each word comes with a gloss, which can be used in other purposes.

5.1.3 OpenNLP

OpenNLP [59] is an umbrella project that hosts open source projects related to natural

language processing (NLP). It facilitates and encourages researches to develop such

projects. Out of the listed projects, we use Maxent and “OpenNLP tools” Java

package to generate sentences. We use Maxent version 2.4 and OpenNLP tools 1.3.0

in our implementation.

5.1.4 Stanford Log-linear Part-Of-Speech Tagger

The Stanford log-linear part-of-speech tagger reads text in the english language and

assigns part-of-speech to each word such as nouns, verbs, adjectives etc. [56]. This

tagger uses the Penn Treebank tag set to tag English words. We use Java 1.5+

implementation of this tagger in our implementation. This tagger has the current
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Table 5.1: WordNet: lexical relations example

Class Meaning Example
Synonym −−is the same as synonym(theme, topic)
Hypernym −−is the general form for−− hypernym(furniture, chair)
Hyponym −−is kind of−− hyponym(chair, furniture)

Meronym
−−is part−− meronym(branch, tree)

−−is substance of−− meronym(wood, tree)

−−is member of−− meronym(person, group)

Holonym
−−has part−− holonym(car, tire)

−−as substance−− holonym(tree, wood)

−−as member−− holonym(group, person)
Anonym −−is the opposite of−− antonym(up, down)

best publish performance among taggers. In-depth details are available in [57, 58].

5.1.5 Jena API

One goal of our work is to create the OWL [6] environment of the learned ontology.

Jena [64] is a Java framework for building Semantic Web applications, where it pro-

vides an environment for RDF, RDFS, OWL and SPARQL [68] models. In addition

to this, it provides a very powerful rule-based inference engine.

Listing 5.1: JWI sample code & output

1 public void sampleCode ( ) throws IOException {

2 // cons t ruc t the URL to the Wordnet d i c t i ona r y d i r e c t o r y

3 St r ing path = "..." ;

4 URL ur l = new URL( path ) ;

5 // cons t ruc t the d i c t i ona r y o b j e c t and open i t
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6 ID i c t i ona ry d i c t = new Dict ionary ( u r l ) ;

7 d i c t . open ( ) ;

8 // look up f i r s t sense o f the word ”man”

9 IIndexWord idxWord = d i c t . getIndexWord ("man" , POS.NOUN) ;

10 IWordID wordID = idxWord . getWordIDs ( ) . get ( 0 ) ;

11 IWord word = d i c t . getWord (wordID ) ;

12 System . out . p r i n t l n ("Id=" + wordID ) ;

13 System . out . p r i n t l n ("Lemma=" + word . getLemma ( ) ) ;

14 System . out . p r i n t l n ("Gloss=" + word . getSynset ( ) . ge tGlos s ( ) ) ;

15 }

16 Synset = SYNSET{SID−10287213−N : Words [W−10287213−N−1−man,

17 W−10287213−N−2−adult male ]}

18 Id = WID−10287213−N−??−man

19 Lemma = man

20 Gloss = an adult person who i s male ( as opposed to a woman ) ;

21 "thereÃwereÃtwoÃwomenÃandÃsixÃmenÃonÃtheÃbus"

5.1.6 HTML parser & PDFBox

HTML parser [62] is an efficient open source library hosted in Sourceforge to extract

text from Html documents. We use this library to extract all text fragments from the

available tags. PDFBox [63] is an open source library hosted in the Apache Software

Foundation to extract text from pdf documents. We use version 1.0 of this library,

which is the latest release. It has been observed that the extracted text has a high
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level of noise associated with it. Even though we use normalizing algorithms from

Information Retrival in the pre-processing phase, we are not able to eleminate all of

the noise that come with the extraction process. As a future feature, we would like

to use Google SOAP API estimating the confidence level of a word given its context

and words inside the Markov blanket [11].

5.2 PrOntoLearn Implementation

In this section we discuss about the implementation details of our work. Figure 5.1

shows the high level class diagram of our implemenation created by the IntelliJ IDEA

9.0 UML plugin [69].

Figure 5.1: PrOntoLearn high level class diagram of package edu.miami.cs.pronto
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We use the code name PrOntoLearn for our project. We use Java 1.6 ver-

sion in our implementation. Main ProOntoLearn API contains classes belong to

the package edu.miami.cs.pronto. The main interface of our implementation is

edu.miami.cs.pronto.Pronto < T >. Implementations of this interface are avail-

able in the package edu.miami.cs.pronto.impl as shown in figure 5.2. along the

line of pre-processing and syntactic phases, the lexion of the corpus is learned and

they are typed-tag to nouns, verbs, adverbs and adjectives. Representations of each

of lexicon is mapped to an instance of the type edu.miami.cs.pronto.Pronto <

T >. The main-sub types of this interface are edu.miami.cs.pronto.impl.Noun,

edu.miami.cs.pronto.impl.V erb, edu.miami.cs.pronto.impl.Adverb and

edu.miami.cs.pronto.impl.Adjective repectively. Candidate groups learned from N-

gram model is mapped to objects of the instance type edu.miami.cs.pronto.impl.Group.

Part-of-speech with respect to a verb is mapped to instances of the type

edu.miami.cs.pronto.impl.PosGroup. All the instances from prior mentioned classes

are created in the pre-processing and syntactic analysis phases.

The most important implementation of our work is available in the classes of

edu.miami.cs.pronto.ProbabilisticReasoner and edu.miami.cs.pronto.HMAnalyzer.

Combination of the algorithms in these classes will create the probabilistic conceptu-

alization and the object model of PrOntoLearn. Once the object model is created, it is

serialized as an OWL DL document using edu.miami.cs.pronto.OwlDLJenaSerializer

class. We also provide a simple yet powerful Java Swing GUI class

edu.miami.cs.pronto.BasicOwlDlGui as a debug tool and quick visualization of the

ontology. Once the OWL DL file is created, it is recommended that an open source
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application such as Protégé 4.X is used for visualization, reasoning, SPARQL quer-

rying etc.

Configuration parameters of the system are populated to an instance of the class

edu.miami.cs.pronto.config.ProntoConfig. The configuration parameters include

the location of WordNet database, OpenNLP training data, etc. Listing 5.2 shows

how one can use PrOntoLearn API to create an ontology from a corpus, visualize it

and searialize it as an OWL DL document. This example assumes that the documents

of the corpus consists of Html files. It should be noted that the training files for

different open source projects that are used in our work needs to be downloaded

separately from the respective web sites. Throughout our implementation we use

open source libraries licenced under GPL, LGPL and ASF 2.0. Therefore, we have

included them in our final distribution.

Listing 5.2: Example of PrOntoLearn API

1 public void run ( ) throws IOException {

2 // Location to corpus

3 F i l e base = new F i l e ("<location -to-corpus>" ) ;

4 // Wordnet base

5 F i l e wordnetBase = new F i l e ("<location-to-WordNet -3.0>" ) ;

6 // OpenNLP t r a i n i n g data
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Figure 5.2: PrOntoLearn edu.miami.cs.pronto.impl class diagram
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7 F i l e openNlpTrainingDataBase =

8 new F i l e ("<location-to-OpenNLP-training -data>" ) ;

9 // Stanford tagge r model

10 F i l e taggerModel = new F i l e ("<location-to-stanford-tagger>" ) ;

11 // Create PrOntoLearn con f i g u r a t i on

12 ProntoConfig c on f i g = ProntoConfig . c reateProntoConf ig ( base ,

13 wordnetBase ,

14 openNlpTrainingDataBase ,

15 taggerModel ) ;

16 // N−gram model needs to be used

17 int nGram = 3 ;

18 Template assayTemplate =

19 new AssayTemplateStanfordTagged ( con f i g , null , nGram ) ;

20 // Create the l e x i c a l ana l y ze r

21 Lex ica lAna lyzer2 la2 =

22 new Lex i ca lAna lyze rBas i c ( con f i g , assayTemplate ) ;

23 l a2 . ana lyze ( ) ;

24 // Knowledge f a c t o r o f the system

25 double kf = 0 . 5 ;

26 // Re la t i ons f a c t o r o f the system

27 double r f = 0 . 9 ;

28 // Create the p r o b a b i l i s t i c reasoner

29 f ina l Probab i l i s t i cRea sone r pr =

30 new Probab i l i s t i cRea sone r ( assayTemplate , kf , r f ) ;
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31 pr . c a l c u l a t e ( null ) ;

32 // Create the hypernomy and meronomy ana ly ze r

33 f ina l HMAnalyzer hmAnalyzer = new HMAnalyzer ( pr , nGram ) ;

34 hmAnalyzer .hm( null ) ;

35 // OWL DL output l o c a t i o n

36 F i l e opf = new F i l e ("<location-to-owl-dl-output" ) ;

37 OutputStream ops = new FileOutputStream ( opf ) ;

38 // Write the OWL DL

39 OwlDLJenaSer ia l izer owl =

40 new OwlDLJenaSer ia l izer ( hmAnalyzer , pr ) ;

41 owl . tBox ( ops ) ;

42 // Java Swing GUI

43 new BasicOwlDlGui ( hmAnalyzer , pr ) . show ( ) ;

44 }

Since our approach is unsupervised, the user has to provide configuration pa-

rameters, such as knowledge factor (KF), relations factor (RF) and lexicon filtering

pattern. These parameters are analogous to clustering parameters K of the K-means

algorithm [11].



Chapter 6

Experiments & Results

We have conducted our experiments on three main data corpora,

1. The PCAssay, of the BioAssay Ontology (BAO) project, Department of Molec-

ular and Cellular Pharmacology University of Miami, School of Medicine [61, 4].

2. A sample collection of 38 pdf files from ISWC 2009 proceedings.

3. A substantial portion of the web pages extracted from the University of Miami,

Department of Computer Science (www.cs.miami.edu) domain.

We have constructed ontologies for all three corpora with different parameter

settings. One of the key problems we have is ontology evaluation. The BioAssay

ontology dataset and the pdf dataset was impossible to evaluate as there are no

existing reference ontologies or no ground truth that we could find. Therefore, we

use the third dataset from the University of Miami, Department of Computer Science

domain and conducted recall and precision on a reference ontology. The following

section provides experimental results and we discuss the significance of these results.

71
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6.1 Experiments

The first corpus, which is the primary data corpus of our experiment, contains

molecule biological assays performed on various screening centres. The PCAssay

dataset has an exponential growth rate. We specifically limited our dataset to assays

available on the 1st of January 2010. Table 6.2 provides the statistics of the corpus.

We extracted the vocabulary generated from [a-zA-Z]+[- ]?\w* regular expression,

and normalized them to create the lexicon of the corpus. One of the important as-

pects that shows in the corpus is that we will get exactly the same number of groups

for every N -gram model. We explain this phenomenon with an example sentence

“University of Miami, Department of Computer Science”. The filtered sentence of

this example is “University Miami Department Computer Science”. Table 6.1 shows

the outcome of 2-gram and 3-gram generator. According to table 6.1 both model

generate 6 groups each.

Table 6.1: 2-gram & 3-gram generator results of a filtered sentence “University Miami
Department Computer Science”

2-gram 3-gram
< s > University < s1 > < s2 > University
University Miami < s2 > University Miami
Miami Department Miami Department Computer
Department Computer Department Computer Science
Computer Science Computer Science < /s2 >
Science < /s > Science < /s2 > < s1 >

The elements of the set {< s >, < s1 > < s2 >} are empty starting elements

and the elements of the set {< /s >,< /s2 > < /s1 >} are empty ending ele-

ments. We need these extra elements because we calculate the probabilities such as
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p(University| < s >) (The nth word given the previous (n− 1) words in the Markov

blanket). This is true for all values of N-gram.

Table 6.2: The PCAssay (the BioAssay Ontology project) corpus statistics

Title Statistics Description

Documents
All documents are xhtml

1,759 formated with a given template

Unique ConceptWords
Normalized candidate concept words from

13,017 NN, NNP, NNS, JJ, JJR & JJS
using [a-zA-Z]+[- ]?\w*

Unique V erbs
Normalized verbs from

1,337 VB, VBD, VBG, VBN, VBP & VBZ
using [a-zA-Z]+[- ]?\w*

Total ConceptWords 631,623
Total V erbs 109,421
Total Lexicon 741,044 Lexicon = ConceptWords

⋂
V erbs

Total Groups 631,623

Figure 6.1 shows the frequency distribution of the lexicon of the pdf corpus. We

also observe the similar distributions in other two corpora. According to Figure

6.1, it shows that the distributions of the three corpora can be approximated to

an exponential family of graph λ1e
−λ2x. Thus, the probability distribution of this

distribution is proportional to exponential distribution. The knowledge factor limits

the number of words that we extract as super-concepts. A lot of words in the lexicon

occur only once. Using KF, we are pruning the number of super-concepts needed in

the representation.

Figure 6.2 shows the time in hours that it took our implementation to build the

probabilistic conceptualization model. It is found from the experiments that the part-

of-speech tagger requires approximately 2,600 ms to train itself. The average file size
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Figure 6.1: Lexicon distribution of Pdf corpus of 38 documents

of the corpus is approximately 6 Kb. We conducted these experiments in a Genuine

Intel(R) CPU 585 @ 2.16GHz, 32 bits, 2 Gb Toshiba laptop. As Figure 6.2 shows,

the time required to build the conceptualization grows linearly. It is evident from our

implementation that the algorithms presented in different phases can be parallelized

or use a MapReduce [70] framework to build the prior and posterior probabilities and

conserve time. We have left this work future enhancements.

One of the other obstacles we have faced in terms of time complexity is in the

representation layer. We have used Jena API [64] to serialize the probabilistic concep-

tualization into OWL DL [6]. When the system produced more than 1,000 concepts

and relations, it is found that the Jena API takes a considerable amount of time

to serialize the model. We have used different architectural schemes to improve its
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Figure 6.2: BioAssayOntology corpus documents vs. build time

performance. With all optimization tasks we have put forward, still the presentation

layer requires approximately 3.2 hours to serialize the model for the BioAssayOntol-

ogy data corpus for full data set of 1,758 documents with capacity of 11.5 Mb. In

order to provide a fast visualization of the conceptualization, we have written a sim-

ple yet flexible Java swing graphical user interface (GUI). This GUI has provided us

visualizing and debugging the code as smoothly as possible. One of the other advan-

tages of using a GUI is that it also provides the probabilities of the joint probability

distribution P (X, G), which is the representation of our probabilistic conceptualiza-

tion.

The idea of our work is to generate an ontology without the supervision of a

domain expert (unsupervised) for any given corpus. The user has to set system
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parameters such as the knowledge factor, relations factor and regular expression of

the lexicon. Since we used data corpora from the bio medical domain, a collection

of research papers and set of documents collected from computer science web site,

the evaluation of the created ontology using standard techniques such as precision

and recall is not easy. We evaluate the generated ontologies with human domain

experts. We obtained the comments and recommendations from the domain expert

on the importance of the generated ontology. The ontology that is generated is too

large to show in here. Instead, we provide a few distinct snapshots of the ontology

with the help of Protégé OWLViz plugin. Here are a few snapshots of the ontology

created from the BioAssay ontology dataset for KnowledgeFactor = 0.5, N-gram =

3, and RelationsFactor = 0.9:

Figures 6.3, 6.4 and 6.5 show three snapshots of the created ontology. Figure 6.6

shows a snapshot of the ontology with ∃ relations. Figure 6.7 shows the Java swing

visualization of BioAssayOntology for randomly chosen 200 documents.

The Java swing GUI shows the prior and posterior probabilities of the concepts and

relations in the conceptualization. Before we discuss the pdf corpus, let us look at the

University of Miami, Department of Computer Science corpus (www.cs.miami.edu).

Statistics of this corpus are shown in tabel 6.3.

Gold standard based approaches such as precision (P ), recall (R) and F-measure

(F1) are used to evaluate ontologies [71]. If the computed ontology is OC and the

reference ontology is OR, then,

P (OC , OR) =
CC

⋂
CR

CC

(6.1)
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Figure 6.5: An example snapshot of the BioAssayOntology corpus (No. 3)

Figure 6.6: An example snapshot of the BioAssayOntology corpus with relations (No.
4)
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Figure 6.7: Java Swing GUI for BioAssayOntology dataset (for 200 documents).

Table 6.3: www.cs.miami.edu corpus statistics

Title Statistics Description

Documents
All documents are xhtml

218 formated with a give template

Unique ConceptWords
Normalized candidate concept words from

5,384 NN, NNP, NNS, JJ, JJR & JJS
using [a-zA-Z]+[- ]?\w*

Unique V erbs
Normalized verbs from

835 VB, VBD, VBG, VBN, VBP & VBZ
using [a-zA-Z]+[- ]?\w*

Total ConceptWords 39,455
Total V erbs 4,797
Total Lexicon 44,252 Lexicon = ConceptWords

⋂
V erbs

Total Groups 39,455
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R(OC , OR) =
CC

⋂
CR

CR

(6.2)

F1(OC , OR) =
2× P (OC , OR)×R(OC , OR)

P (OC , OR) + R(OC , OR)
(6.3)

Where CC ∈ OC and CR ∈ OR. We have used [3] as our reference ontology and

it is given in Appendix A. Since a concept of the computed ontology is created using

the form of a b c . . ., a substring of the concept that matches with reference concept

is accepted as a valid mapping.

Table 6.4: Precision, recall and F1 measurement for N − gram = 4 and RF = 1

KF Precision Recall F1
0.1 0.209 1 0.309
0.2 0.194 1 0.325
0.3 0.257 1 0.410
0.4 0.257 1 0.410
0.5 0.257 1 0.410
0.6 0.248 1 0.397
0.7 0.244 1 0.393
0.8 0.236 1 0.383
0.9 0.237 1 0.383
1.0 0.13 1 0.232

According to the table 6.4, the precision of the generated ontology is approximately

21%. Then we have used another reference ontology to calculate recall, precision and

F1. Table 6.5 shows the results. According to this result, the precision of the con-

structed ontology is approximately 42%. This concludes one important fact. There

is no gold standard ground truth available here. When we use another reference

ontology the precision increases. This does not mean that this is ground truth. A
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quantitative evaluation of an ontology is still a open problem. Using a human do-

main expert to evaluate the ontology is an alternative approach. This is a qualitative

evaluation method. In order to get a good qualitative evaluation, the ontology should

be inspected with at least 10-15 experts. It is practically difficult job to find domain

experts for a corpus such as BioAssay ontology dataset, which has bio medical molec-

ular screen constructs. We evaluated our ontology for the first corpus with a bio

medicine molecular expert. According to his comments, the ontology contains rich

set of vocabulary, which is very useful for top-down ontology construction. But he

also mentioned that the tree does have a flat structure. We use 3-gram generator to

create the ontology. Therefore, the maximum level this model will give is at most 3.

Table 6.5: Precision, recall and F1 measurement for N−gram = 4 and RF = 1 using
extended reference ontology

KF Precision Recall F1
0.1 0.424 1 0.596
0.2 0.388 1 0.559
0.3 0.445 1 0.616
0.4 0.438 1 0.609
0.5 0.438 1 0.609
0.6 0.424 1 0.595
0.7 0.415 1 0.587
0.8 0.412 1 0.583
0.9 0.405 1 0.576
1.0 0.309 1 0.472

Finally, we have generated an ontology for the pdf corpus. The noise of the lexicon

that is generated from this corpus depends on the pdf parser we used. We found that

the version 1.0.0 PdfBox parser has inherent parsing noise. One of our assumptions

is that the corpus contains correct information.
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Figure 6.8: A shanpshot of cs.miami.edu ontology
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This is a reasonable assumption because of the corpora we used was a technical or

a publicly available in the web. If our method is used for a corpus containing a lot of

noise, we need to provide another additional layer to filter out or smoothen the error.

There are in many ways this could be achieved. The naive way is to use a standard

dictionary to parse the words and use the first sense. The most common way is to

send the word to a search engine and obtain the result and parse the result for the

requested word. If the word appears more that a threshold T > 0, then that word

can be considered a potential word for the lexion.

It is to be noted that the ontologies that are generated from the system are

consistent with Pellet and Fact++ reasoners. We conducted reasoning experiments

using Pellet and Fact++ plugins available in Protégé 4.X distribution.

6.2 Discussion

The results show that our method creates an ontology for any given domain with ac-

ceptable results. This is shown in the precision value, if the ground truth is available.

On the other hand, if the domain does not have ground truth the results are subject

to domain expert evaluation of the ontology. One of the potential problems we have

seen in our approach is search space. Since our method is unsupervised, it tends to

search the entire space for results, which is computationally costly. We thus need a

better method to prune the search space so that out method provide better results.

According to human domain experts, our method extracts good vocabulary but pro-

vides a flat structure. They have proposed a sort of a semi-supervised approach to
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correct this problem, by combining the knowledge from domain experts and results

produced by our system. We left the detailed investigation for future work.

Since our method is based on Bayesian reasoning (which uses N-gram probabil-

ities), it is paramount that the corpus contains enough evidence of the redundant

information. This condition requires that the corpus is substantially large enough so

that we can hypothesize that the corpus provides enough evidence to build the on-

tology. We did not conduct an experiment to show how much of evidence our system

needs in order to create a considerable ontology.

We hypothesize that a sentence of the corpus would generally be subjected to

the grammar rule given in Equation 2.14. This constituent is the main factor that

uses to build the relationships among concepts. In NLP, there are many other finer

grained grammar rules that specifically fit for given sentences. If these grammar rules

are used, we believe we can build a better relationship model. We have left this for

future work.

At the moment our system does not distinguish between concepts and the indi-

viduals of the concepts. The learned A-Box is primarily consist of the probabilities

of each concepts. This is one area we are eager to work on. Using state-of-the art

NLP techniques, we plan to fill this gap in a future work. Since our method has

the potential to be used in any corpus, it could be seen that the lemmatizing and

stemming algorithms that are available in WordNet would not recognize some of the

words. Specially in the BioAssay dataset, we observed that some of the domain spe-

cific words are not recognized by WordNet. We used Porter stemming algorithm [67]

to get the word form and it showed that this algorithm constructed peculiar word
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forms. Therefore, we deliberately removed this from the processing pipeline.

The complexity of our algorithms is as follows. The bootstrapping algorithm

available in the syntactic layer has a worst case running time of O(M ×max(sj) ×

max(wk)). The probabilistic reasoning algorithm has the worst case running time of

O(|L| × |SuperConcepts|). The generated has proven to be satisfiable under Pellet

and Fact++ reasoners.

Finally, our method provides a process to create a lexico-semantic ontology for

any domain. For our knowledge, this is a very first research on this line of work. So

we continue our research along this line and to provide better results for future use.



Chapter 7

Summary & Future Work

We have introduced a novel process to generate an ontology for any random text

corpus. We have shown that our process constructs a flexible seed ontology. It is

also shown that in order to achieve high precision, it is paramount that the corpus

should be large enough to extract important evidence. Our research has also shown

that probabilistic reasoning on lexico-semantic structures is a powerful solution to

overcome or at least mitigate the knowledge acquisition bottleneck. Our method also

provides evidence to domain experts to build ontologies using a top-down approach.

Though we have introduced a powerful technique to construct ontologies, we be-

lieve that there is a lot of work that can be done to improve the performance of

our system. One of the areas our method lacks is the separation between concepts

and individuals. We would like to use the generated ontology as a seed ontology to

generate instances for the concepts and extract the individuals already classified as

concepts. We would use NLP technique to obtain this classification. In addition to

this, our system can improve the quality of the relations if we introduce more specific
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grammar rules to sentences. We are looking at computational lexical semantics to

prune the search space, so that the algorithms are efficient. Finally, we would like to

increase the lexicon of the system with more tags available from the Penn treebank

tagset. We believe that if we introduce more tags into the system, our system can be

trained to construct human readable (friendly) concepts and relations names.



Appendix: A

Figure 1 shows one of the reference ontologies that we used to evaluate the 2nd dataset.

Figure 1: Reference Computer Science Department ontology [3]
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