
University of Miami
Scholarly Repository

Open Access Theses Electronic Theses and Dissertations

2017-12-20

Encasement: A Robust Method for Finding
Intersections of Semi-algebraic Curves
Joseph Masterjohn
University of Miami, j.masterjohn@umiami.edu

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_theses

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Theses by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Masterjohn, Joseph, "Encasement: A Robust Method for Finding Intersections of Semi-algebraic Curves" (2017). Open Access Theses.
699.
https://scholarlyrepository.miami.edu/oa_theses/699

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses/699?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu


UNIVERSITY OF MIAMI

ENCASEMENT: A ROBUST METHOD FOR FINDING
INTERSECTIONS OF SEMI-ALGEBRAIC CURVES

By

Joseph Masterjohn

A THESIS

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Master of Science

Coral Gables, Florida

December 2017



c©2017
Joseph Masterjohn
All Rights Reserved



UNIVERSITY OF MIAMI

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science

ENCASEMENT: A ROBUST METHOD FOR FINDING
INTERSECTIONS OF SEMI-ALGEBRAIC CURVES

Joseph Masterjohn

Approved:

Victor Milenkovic, Ph.D.
Professor of Computer Science

Huseyin Kocak, Ph.D.
Professor of Computer Science

Elisha Sacks, Ph.D.
Professor of Computer Science
Purdue University

Guillermo Prado, Ph.D.
Dean of the Graduate School



MASTERJOHN, JOSEPH (M.S., Computer Science)

(December 2017)

Encasement: A Robust Method for Finding Intersections of Semi-algebraic Curves

Abstract of a thesis at the University of Miami.

Thesis supervised by Professor Victor Milenkovic.
No. of pages in text. (118)

One of the fundamental concepts in computational geometry is deducing the

combinatorial structure, or interactions, of a group of static geometric ob-

jects. In two dimensions, the objects in question include, but are not limited

to: points, lines, line segments, polygons, and non-linear curves. There are

various properties of interest describing a collection of such objects; exam-

ples include: distances, adjacencies, and most notably, intersections of these

objects. Well studied, robust, and highly efficient algorithms exist for linear

geometry and parametric curves. Problems involving non-linear, implicit, and

high-dimensional objects however are an active area of research. Algebraic

curves and algebraic surfaces arise frequently in numerous applications: GIS

software, CAD software, VLSI design, computational chemistry and biology,

dynamics, and robotics. We present a novel algorithm for finding all intersec-

tions of two semi-algebraic curves in a convex polygonal region, and describe

its prospective analog in 3 dimensions. We “encase” the curves in the con-



vex region by repeatedly splitting the region until each cell contains at most

two intersecting segments, thus detecting and isolating all of the intersections.

The advantage of using encasement is that the running time is proportional to

the size of the convex region when it is small and yet comparable to existing

techniques when it is large.
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CHAPTER 1

Introduction

One of the fundamental concepts in computational geometry is deducing the

combinatorial structure or interactions of a group of static geometric objects.

In two dimensions, the objects in question are points, lines, line segments,

non-linear curves, and other objects whose boundaries are defined by the pre-

viously listed objects. There are various properties of interest describing a

collection of such objects; examples include: distances, adjacencies, and most

notably, intersections of these objects. In fact, one of the first problems studied

in most computational geometry classes is the arrangement of line segments,

a description of the intersections, adjacencies, and in general the entire combi-

natorial structure of a set of line segments in the plane. Well studied, robust,

and highly efficient algorithms exist for linear geometry and parametric curves.

Most research for problems limited to low degree objects concern finding lower

bounds on algorithms for said problems. That said, problems involving non-

linear, implicit, and high-dimensional objects are an active area of research.

1
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In the case of two dimensions, this includes finding the intersections, and

in general the arrangement, of a set of algebraic or semi-algebraic curves in

the plane in a robust manner. Algebraic curves and algebraic surfaces arise

frequently in numerous applications: GIS software requiring the analysis of

curves defined on spheres [BT07], CAD programs for engineering design prob-

lems including VLSI design [TOG04], computational chemistry and biology for

understanding the geometric structure of molecules, DNA, proteins, and other

such entities [HS97], and in robotics for describing feasible configurations of

links determining the workspace of a robot, as well as feasible configurations

of poses determining the operational space [TOG04].

The problem we choose to focus our attention on is the problem of finding all

intersections of two semi-algebraic curves in a convex polygonal region. This

problem is equivalent to finding the real solutions of a system of bivariate

polynomials:

f(x, y) =
∑

i+j≤d
fi,jx

iyj = 0

g(x, y) =
∑

i+j≤e
gi,jx

iyj = 0

Subject to:

Qi(x, y) > 0

for a set of linear functions Q0, ..., Qn

Some work has been done in determining the bit complexity of isolating the real

solutions to such a system [ES12], but in general it remains a studied problem.
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The most widely used and current state of the art solutions to this problem

come mainly from the area of computational algebra. Some work has been done

on realizing solutions that can take advantage of the sparsity of intersections

in the region of interest [BEKS13] however, most of these solutions however

require solving the entire unconstrained system of bivariates on the entire real

plane and then reporting a subset of these solutions that satisfy the constraints

of the semi-algebraic curves. These techniques involve computing structures

that have a fixed cost, regardless of the area of interest, and also have proven

difficult to scale to higher dimensions [GCL92]. Thus, we seek to address these

problems in a technique we call encasement. The running time of our technique

is directly proportional to the size of the area of interest and is comparable

in running time to the algebraic techniques for larger regions that contain all

intersections of the curves involved. As well, we propose that the technique

can be applied to the analogous problem in three dimensions, which seeks to

address the problem of finding intersections of algebraic surfaces. This is a

problem which, up to this point in time, has no well known solutions that are

both efficient and robust for generic algebraic surfaces of arbitrary dimension.

We leverage well known and efficient techniques involving linear geometry and

finding roots of univariate polynomials to implement our algorithm.
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1.1 Related Work

This work follows the strategy of the Adaptive Controlled Precision (ACP) li-

brary by Milenkovic and Sacks [MST13]. Any algorithm within this paradigm

offers the guarantee of a bound on the backwards error of the solution: the

result is correct solution for some small perturbation of of the original input.

In this case the perturbation is made explicit: an an exact computation is car-

ried out on the perturbed input. It is of note, however, to mention that if the

input is already known to be generic, then ACP can abstain from perturbation

and provide an exact solution in the same running time as the approximate

solution. Milenkovic and Sacks provide an approximate arrangement for con-

tinuous and compact x-monotone curves in the plane [MS07]. Their output is

realizable for a set of curves that are O(ε + k2ε) close to the original curves.

In their case k being the number of inconsistencies (see their work for details).

Also in the realm of approximate arrangements is a method of controlled per-

turbation by Halperin and Shelton for the approximate spherical arrangements

and circular arrangements [HS97,HL04].

The above strategies are in response to the leading strategy in the realm of

computational geometry, the Exact Geometric Computation (ECG) paradigm

of Yap [Yap00]. This is the strategy behind the most well known computa-

tional geometry libraries CGAL [The17] and LEDA [MN99]. These systems

use both numerical and symbolic computations to ensure the exact result re-
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gardless of degenerate input. CGAL provides a package for 2D arrangements of

curves [WBF+17]. This package has support for computation of the exact ar-

rangement of arbitrary algebraic curves in the plane, described by polynomials

with integer coefficients. Significant work has been put into ECG algorithms

for non-linear arrangements that limit the input to circular arcs, conics, cubics,

quadrics, and Bézier curves [BHK+05,BEH+02,DFMT00,EKSW06,EKP+04,

HW07, Wei02, WZ06]. Eigenwillig and Kerber provide an exact method for

the arrangement of algebraic curves [EK08]. This method is based on the well

known Bentley-Ottoman sweep-line algorithm [BO79]. They obtain efficiency

by performing a only a small number of symbolic computations and relying

heavily on an efficient adaptive-precision root finding algorithm [EKK+05].

Their method however is held back by its dependency on having to com-

pute and factor the resultant of two bivariates [GCL92]. While efficient al-

gorithms exist, especially for integer and rational coefficients, they all have a

running time that is at least O(d2) in the degree d of the resultant polynomial.

Berberich et al. have implemented algorithms for computing arrangements

of real planar algebraic curves and isolating real solutions of zero-dimensional

bivariate systems [BEKS13]. They takes advantage of graphics hardware to

expedite symbolic computations. Their results outperform reference imple-

mentations in Maple and CGAL.
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1.2 Outline

Section 2 defines the notion of an encasement and how it leads to finding the

intersections of a set of Semi-algebraic curves. Section 1.1 discusses some of

the previously used techniques for solving systems of bivariate polynomials,

mostly for their use in 2D arrangements, and current state of the art software

implementing these algorithms. Section 2.1 discussed an overview of the 2D

encasement algorithm, providing minimal details of the implementation. Sec-

tion 4.1 gives and overview of the ACP software, the underlying library for

robust geometric computation used for the encasement algorithm. Section 4.2

gives an overview of the data structures used in the algorithm. Section 4.3 de-

tails the geometric primitives used in the algorithm. Section 4 gives low level

details of the software implementation. Section 5.2 gives the results of test-

ing the implementation against state of the art software (CGAL [The17]) for

computing 2D arrangements. Section 6 discusses possible future improvement

to the algorithm as well as plans for a 3D implementation.



CHAPTER 2

Encasement Definition

Given two generic curves f and g, defined by bivariate polynomial equations

f(x, y) = 0 and g(x, y) = 0, and a convex region B ⊂ R2 we define an

encasement as a partitioning of B into a set of convex polygons {C1, ..., Cn}

called cells with the one of following constraints:

1. The cell is empty. That is, both f and g do not exist anywhere on

the interior of the cell, nor do they intersect the boundary of the cell.

2. The cell contains exactly one of f or g. If a cell contains a given

curve, that curve intersects the cell in a single connected segment on the

interior of the cell with a and b being the points on the boundary.

3. The cell contains both f and g. If this is true, each curve intersects

the cell in a single segment as in the previous case. In addition, f and g

intersect each other transversely at exactly one point on the interior of

the cell.

7
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And the edges of each cell satisfy one of two constraints:

1. Edge has no intersection No curve intersects the line segment defining

the edge.

2. Edge has one intersection The line segment intersects one of either

f or g at a single point on the interior of the segment.

All cells must have positive area but may have collinear edges.

Each intersection is isolated by a cell. We show how this structure can be

used to isolate the intersection to an arbitrarily small region. The incidence

of curves on the cells determines the structure of the arrangement of f and

g. With the additional constraint that each curve segment is monotonic with

respect to the line ab, the pairwise encasements are also be a means to construct

the arrangement of a set of n curves (Sec. 6.4).

2.1 Algorithm Overview

The partition of B is generated by starting with B as the sole cell, and then

splitting each edge or cell that violates all the constraints. An edge is split at

a point. A cell C is split into two smaller cells (C1 and C2) with a splitting

line L = (p, v) = {p + tv : t ∈ R and p, v ∈ R2}. The two resulting cells

correspond to the subset of C to the left of L and the subset of C to the right
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of L respectively. That is to say:

C1 = {q ∈ C : (q − p)× (v) < 0}

C2 = {q ∈ C : (q − p)× (v) > 0}

The line segment of L that intersects C becomes an edge of each new cell.

Each step of the algorithm is characterized by choosing a splitting line, given

a cell and the curves that it intersects. Each splitting line seeks to bring the

sub-cells closer to satisfying the constraints of a valid encasement.

The encasement algorithm visits each cell, initially just B, and attempts to

certify it as simple, meaning intersecting f and g simply. If it cannot, it splits

the cell by a line L in a manner that makes the two resulting cells either

simple or closer to simple. The following is a summary. Details appear in the

indicated sections.

Loop splitting (Sec. 3.1) Construct a critical set S for f : S does not intersect

f and contains all local minima and maxima of f(x, y). Since a loop of

f must surround an extrema, it must surround a connected component

of S. If a cell contains a connected component of S, L intersects it and

hence splits any loop surrounding it. Likewise g. See Figure 2.2.

Self-separation (Sec. 3.2) If C contains more than one segment of f or g, L

separates a maximal subset of one segment from another. See Figure 2.3.
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Intersection isolation and encasement (Sec. 3.3) If f and g intersect an

odd number of times, isolate a single intersection in the cell to a rectangle

containing no other intersections. Split C by up to four lines to encase

the intersection in a cell excluding all other intersections. See Figure 2.4.

Curve separation (Sec. 3.4) If both f and g have a single segment in C that

have an even number of intersections, construct a splitting line L that

seeks to separate f from g. See Figure 2.5.

Subdivide and Refine (Sec. 3.5) If curve separation or self separation fails

to separate after a number of tries, we fall back to a binary subdivision

of the cell to ensure termination. Subdivide the cell into two sub-cells,

splitting by the perpendicular bisector of the intersections of f and the

boundary. If that fails to separate the cell into two cells each with an

odd number of intersections, refine the boundary of the cells containing

f to roughly the mean tangent direction of f in the cell. See Figure 2.6.

A loop or pair of intersections or intersection can be split or separated or

isolated only once. The number of splits required is O(d2) for d the maximum

degree of f and g. Each split can generate a constant number of cells requiring

self-separation of f . A split might create O(d) segments to be self-separated

and more than one split may be required to separate even a pair of segments,

but empirically, self-separation is not a majority of the cost.
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(a) (b)

Figure 2.1: (a) The starting state of the algorithm, curves are traced based on their boundary

intersections. (b) The critical regions of each curve are computed.

(a) (b)

Figure 2.2: (a) The critical region in the center is contained entirely inside a face, and thus

needs to be split. (b) Splitting through a vertex of the region discovers a loop of the green

curve.



12

(a) (b)

Figure 2.3: (a) The top cell contains two segments of the red curve (> 2 intersections

along the boundary). (b) Self separation is performed and the two segments are isolated to

different cells.
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(a) (b)

Figure 2.4: (a) f and g alternate along the boundary and an intersection is isolated. (b)

The intersection cannot be verified to be the only one in the cell, thus the intersection is

encased into a sub-cell where it can be verified.
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(a) (b)

Figure 2.5: (a) f and g intersect in a non-alternating manner along the boundary, we assume

no intersections and attempt to split between the curves. (b) f and g are successfully

confined to separate cells by performing a split.
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(a) (b)

Figure 2.6: (a) f and g do not alternate along the boundary, however they contain 2

intersections and cannot be separated by a splitting line. (b) Subdivision splits between the

two intersections, confining each to individual cells.



16

Figure 2.7: A view of the final encasement.



CHAPTER 3

Encasement Algorithm

3.1 Loop Elimination

Because generic algebraic curves can have closed loops within B, we need to

detect any closed loops of f within B and perform splits that intersect them.

If f = {(x, y) : f(x, y) = 0} has a closed loop entirely contained in B, then

the interior of the loop must contain a critical point of f(x, y) : (x0, y0) such

that fx(x0, y0) = 0 and fy(x0, y0) = 0. This is equivalent to saying that the

algebraic curves fx(x, y) and fy(x, y) intersect on the interior of the cell. By

the extreme value theorem, f has an extremum in the interior because it is

zero on the boundary, see Figure 3.1. To ensure all closed loops of f are

split, we generate S ⊂ B that contains all critical points of f and does not

intersect f . For any connected component of S that contains a critical point,

any loop associated with that critical point cannot intersect the connected

17
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component, thus it must completely surround the connected component. For

each component Si of S, if Si is entirely contained within a cell C, we split C by

a line that intersects Si. Each Si is considered with respect to the current, not

original, set of cells, so a single line split might intersect multiple components

hence split multiple loops.

S is determined with a planar decomposition algorithm. Start with an axis-

aligned rectangle R (2D interval) that is the bounding box of B and evaluate

f, fx, and fy onR, using interval arithmetic. If the resulting interval contains 0,

the sign of the polynomial is ambiguous on R. If the sign of f, fx, and fy are all

ambiguous, split the rectangle either vertically or horizontally across its longer

axis and recurse. If the sign of fx or fy is known, this rectangle cannot contain

a critical point, and the recursion terminates and this rectangle is ignored. If

the sign of f is known, but the sign of fx and fy are still ambiguous, then

this is a candidate rectangle. If a critical point of f exists, it lies inside a

candidate rectangle. Also, since the sign of f is known, no loop of f intersects

this rectangle. The recursion terminates and this rectangle is added to the set

of candidate axis-aligned rectangles.

At this point, S is defined as the union of all candidate rectangles. We want

to identify the connected components of S in order to split the critical regions

in the most efficient way. This is accomplished with two merge operations,
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detailed in (Sec. 3.1.2), that organize the unordered set of candidate rectangles

into connected components, see Figure 3.2.

3.1.1 Efficient Critical Region Subdivision

The first step in the algorithm (Loop Splitting) requires splitting of any loop of

curve f that does not intersect the initial bounding box. Doing so is required

to ensure that the algorithm accounts for all branches of f . We find sub-regions

of the bounding box of constant sign that enclose all extrema of f . We evaluate

f, fx, fy on this sub-region using interval arithmetic and verify that the result-

ing interval does not contain 0. If the sign of the value of f or its partials is

ambiguous, we split the interval and recurse. The naive implementation of the

splitting results in an undesirable recursive depth. The nature of this depth

is a basic consequence of the weakness of interval arithmetic. Evaluating f

on the interval is equivalent to detecting whether a 0th order approximation

to f contains 0 on [xl, xu]× [yl, yu]. To reduce the depth of the recursion, we

use the lower bound of a 2nd order approximation of the curve and evaluate

whether this quadratic approximation has zeros on the interval. Given a two-

dimensional interval R = [xl, xu]× [yl, yu] and a curve f : R×R→ R, Taylor’s

theorem states that for any point (x, y) ∈ R: f(x, y) ∈ Qf (x, y) =

f(xl, yl) + (x− xl)fx(xl, yl) + (y − yl)fy(xl, yl)+

1
2
(x− xl)2fxx(Rx, yl) + (x− xl)(y − yl)fxy(Rx, yl) + 1

2
(y − yl)2fyy(R)
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(a) (b)

(c) (d)

Figure 3.1: (a) A loop of an algebraic curve f . (b) Alternating turning points along the loop.

(c) By continuity, the curves fx and fy must intersect. (d) A “critical region” contained

inside a loop surrounding a critical point.
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The function is first expanded in x about a, and then subsequently expanded in

y about b. This leads to less evaluations on large intervals, and thus a smaller

resulting interval. We choose to expand about the point (xl, yl) to ensure

that when evaluated, (x − xl) and (y − yl) are positive. We compute the

quadratic approximation on the interval, and then set the coefficients to their

lower bounds in the resulting bivariate. So if 0 < Qf (x, y) then 0 < f(x, y)

on the interval R. If f is initially negative on the region, we work with an

approximation of −f for generality. We verify that Qf (x, y) is positive on R

by

1. Evaluating Qf (x, y) at the four corners of the 2D interval:

(0, 0), (0, yu − yl), (xu − xl, 0), (xu − xl, yu − yl)

2. Solving for intersections of Qf (x, y) and the boundary of R

3. Evaluating Qf (x, y) at its single critical point:

{(x0, y0) : Qfx(x0, y0) = Qfy(x0, y0) = 0} (if (x0, y0) ∈ R)

If Qf (x, y) has constant and consistent sign at all corners and its critical point,

and has no intersections with the boundary, then it has constant sign on all

of R. This also implies that f(x, y) itself has constant sign on all of R. We

compute and verify a lower bound quadratic approximation for f, fx, fy at each

subdivision, rather than evaluating the functions themselves on the interval.

This leads to a considerable decrease in the depth of the recursion as well as

the amount of computation for each 2D interval.
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The possibility exists to choose a higher order approximation of the function

as our lower bound by expanding the Taylor series further. The benefit of

this would be a more accurate approximation to the original function, and

presumably a decrease in the depth of the recursion. One problem with this

approach is that the evaluation of a higher degree function is more compu-

tationally expensive. For an approximation of degree d, d(d+1)
2

partial deriva-

tives must be computed. The higher degree function must be evaluated on

maxima/minima of the 2D interval. And we must do linear substitution and

univariate root finding to compute intersections with the boundary. But, the

primary disadvantage of this method is the computation of the critical points

of the approximation. In the quadratic case, the critical points of the function

can be found by solving a linear system. We don’t have that advantage with

higher degree approximations.

We chose to experiment with various degrees of approximation and ways of

computing the critical points. We compared using resultants and recursive

encasement in order to solve for the intersections of fx(x, y) = 0 and fy(x, y) =

0. In most cases recursive encasement was decidedly more efficient than our

own resultant computation, and thus our choice for finding the critical points of

higher degree approximations. For most inputs with degree ≤ 9 the speedups

of using a higher degree approximation were negligible compared to using the

quadratic approximation. However inputs with degree > 9 saw considerable

improvement using higher order approximations. In general, the speedup of
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using a higher order approximation for a polynomial of degree d did not seem

to benefit more from any approximation of degree greater than d
2
. With these

observations in mind, we determined the following heuristic for choosing an

approximating polynomial:

• If the degree of f is ≤ 9, use a quadratic approximation.

• Else use a Taylor expansion to degree d
2
.

One benefit of using this recursive strategy is that any speedups to the main

encasement algorithm will be reflected in the speed of the critical region finding

and vice versa.

3.1.2 Connected Component Finding

The termination of the recursive critical region subdivision results in a set

of 2D intervals r = {[xl0 , xu0 ] × [yl0 , yu0 ], ..., [xln , xun ] × [yln , yun ]} where on

each interval ri, 0 6∈ f(ri) and 0 ∈ fx(ri), 0 ∈ fy(ri). In other words all

regions potentially inside of a loop of f and covering all critical points of

f . These regions give us a way to complete the loop splitting procedure as

any critical point that exists is completely contained in one of these regions.

Splitting through each 2D interval would result in a considerable number of

splits however. The observation that a loop cannot intersect any connected

component of the 2D intervals. This leads us to the more efficient procedure of

finding all connected components of the intervals and splitting through them.



24

If ri∩rj 6= ∅, then ri and rj share a boundary and can be thought of as part of

a connected component that covers the same critical region inside of a loop of

f . It is only necessary to intersect a connected component of the regions once

to split the loop surrounding the connected component. Therefore we seek to

find all of the connected components of r, in order to minimize the number

of splitting lines required to eliminate a closed loop of f . We calculate the

connected components using a Union-Find data structure as follows (Fig. 3.2):

• Create lists for each unique x and y lower and upper bounds appearing

in r. For instance xlb[0.5] is a list containing all ri ∈ r, such that the

lower bound of the x coordinate of ri is 0.5. Keep each list sorted by the

lower bound of the opposite dimension.

• For each 2D interval, insert it into its corresponding lists for each x and

y lower and upper bound.

• For each x upper bound list, find the corresponding x lower bound list.

In linear time in the size of the lists we can find all adjacent intervals

that overlap in y. For each overlapping interval call union(ri, rj), to

make them belong to the same set.

• Do the same for each y upper bound list and its corresponding y lower

bound list.

• At the end, each ri should be a member of a set representing its connected

component. If all intervals of this set are wholly contained inside the

same encasement cell, then the connected component needs to be split.
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Choose a representative interval from that set and a random point in

its interior. Construct a horizontal or vertical line (chosen randomly) at

that point, and split the encasement cell that contains that point.

3.2 Curve Self Isolation

After all loops of the curves have been successfully split, we are left with cells

that only contain open curve segments of f and g. But a cell C may contain

multiple disjoint open curve segments of a curve. Assume curve f intersects

the boundary of cell C at 2k points (a1, a2, ..., a2k) ordered clockwise. Because

the curves are generic, curves contain no self intersections. Thus, any two

distinct points with the same parity (ai, ai+2j) cannot be on the same open

component of f . If they were, it would contradict the assumption that the

curves do not contain self intersections. An example of this violation can be

seen in Figure 3.3.

To eliminate multiple disjoint segments of the same curve, we choose the clos-

est pair (a, b) of boundary intersections with the same parity measured by

distance around the boundary, and construct a splitting line between them.

Given a pair of boundary intersections that are on different curve segments,

we construct the splitting line as such:

1. p = 0.5 ∗ (a+ b) (i.e. midpoint of a and b)
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Figure 3.2: Initial state of connected components. Box j is the first region whose right x

boundary is x0. Box i is the first region whose left x boundary is x0 (a). Box i and j

are adjacent, and are therefore added to the same connected component set (b). Moving i

forward to the next box with left x boundary equal to x0. It is also adjacent, and added to

the current common set (c). Moving i forward results in disjoint boxes, so we start a new

current set (d). We move j to the next box and see an adjacency. These two boxes start

the next connected component set (e). We move i forward to a box that is disjoint from the

previous i, but adjacent to box j. It is also added to the common connected component set

(f).
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Figure 3.3: Both red and green segments are of the curve f . The green segment shows

one way of connecting two points with the same parity around the boundary. Because the

curve is continuous, this would cause a self intersection within the cell with any other way

of connecting the other boundary intersections

2. u = ∇f(p)⊥/|∇f(p)| (i.e. unit tangent to f at point p)

3. L = (p, u) = {p+ ru : r ∈ R}

We then split cell C with the generated line L and recurse into the two gen-

erated cells . If the splitting line fails to separate the curve segments, the

sub-cells it generates will contain shorter segments which are closer to linear.

For a linear f , this splitting line corresponds to the perpendicular bisector of

the line segment connecting their closest points, an optimal separator.
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(a) (b)

(c) (d)

Figure 3.4: (a) and (b) show two possible ways of f to be connected if we only know about

intersections along the boundary. By the argument in section 3.2, we can only make the

assumption that intersections with the same parity aren’t on the same component of the

curve. (c) Find the midpoint of two points known not to be on the same segment. (d) Split

in the direction of the tangent (gradient rotated by π
2 ) at the midpoint.
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3.3 Intersection Isolation and Encasement

After self separation, some cells contain curve segments of both f and g. The

parity of the number of intersections of two curves f and g can be calculated

just by knowledge of the ordering of their intersections along the boundary

(Sec. 3.3.1.1). If the parity is odd, f and g must have at least one intersection

in the cell. In this case we isolate an intersection within the cell to a 2D

interval and encase it by up to 4 line splits to a cell that excludes all other

intersections.

Given a cell C with an odd number of intersections, we need to find an initial

2D interval R that isolates some intersection in C. Let R be the bounding box

of C. If the interval ∇f(R) × ∇g(R) does not contain 0, then ∇f × ∇g has

constant sign on R, and there is a single intersection of f and g inside R and

more importantly inside C.

Lemma 1 Given a 2D interval R = [xl, xu] × [yl, yu] and two continuous

functions f(x, y) and g(x, y). If ∇f×∇g(x, y) evaluated on the entire interval

R has constant sign, then f and g intersect at most once inside R.

Proof: Suppose there are at least two intersections of f and g in a cell

R. Call an arbitrary pair of those intersections a and b. Also suppose that

∇f × ∇g has constant sign on R. Because f(a) = 0 and f(b) = 0, f must
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achieve a minimum or maximum along the interior of line segment ab. Call

that point p. Consequently at this point p, the directional derivative in the

direction ab will be zero. ∇f(p) · ab = 0. Likewise there exists a point q for

g (q and p are not necessarily the same point). Thus ∇f(p) and ∇g(q) are

parallel vectors. Since evaluating the sign of the cross products on the entire

cell means considering every pair of points in the cell and ∇f(p)×∇g(q) = 0,

the sign is not constant on the entire cell. This is a contradiction, and thus if

∇f ×∇g is constant on R, then f and g can intersect at most once inside R.

If ∇f(R) × ∇g(R) contains 0, split C with an axis-parallel line that bisects

its longer dimension. One of the resulting cells will intersect contain an odd

number of intersections of f and g. Recurse on that sub-cell. The splits and

resulting sub-cells will not become part of the encasement topology: they are

just auxiliary cells used to find a suitable R.

The 2D interval defining R, [x0, x1] × [y0, y1], now represents an intersection

of f and g, although not very accurately. At this point we minimize the size

of the interval by alternating iterative Newton’s method and subdivision until

they both fail in double precision or the current level of precision if a higher

level of precision is being used.
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Newton’s method can fail if R is not within the interval of convergence. The

details of this failure are described later in (Sec. 3.3.1). In the general case,

after some number of subdivisions, Newton’s method will succeed and iterate

until it fails to shrink the interval, because the width of the interval is on the

magnitude of roundoff error.

Subdivision can fail if we are unable to order the intersections along the bound-

ary. This happens when the intervals representing the univariate roots corre-

sponding to the boundary intersections overlap.

Given an minimal R, we can interpret R as a point in ACP because the

fundamental representation of a point in ACP is a 2D interval whose precision

can be adjusted when necessary. Let the point represented by the interval R

be called q. If q is in cell C, we need to verify that it is the only intersection

in that cell. C isolates an intersection q if the angle bisectors of the tangents

lines to f and g at q intersect f and g only once inside C. Otherwise C is

shrunk by subdivision to a sub-cell for which this is true (Sec. 3.3.2).

3.3.1 Intersection Isolation

Intersections of two bivariate curves act as vertices of the resulting arrange-

ment, and thus it is necessary to be able to compute them to arbitrary preci-

sion. We devised a strategy that utilizes a two dimensional interval Newton’s
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method along with a subdivision method in order to take a given interval

R = [xl, xu]× [yl, yu] that definitely contains an intersection point of f and g,

(x0, y0) ∈ R : f(x0, y0) = g(x0, y0) = 0, and refine it to the tightest bound at

the desired precision.

We can determine the parity of the number of intersections of f and g inside

a cell C only knowing the intersections of f and g with the boundary of C.

This leads to a natural subdivision algorithm to refine a cell containing an

intersection. Given a cell that contains an odd number of intersections, split

this cell by any line going through the cell. One of the resulting sub-cells

contains an odd number of intersections. Recursively subdivide that sub-cell

until the desired level of precision. While being relatively simple to compute, a

subdivision step is expensive because it requires multiple calls to the univariate

root finder in order to compute new boundary intersections when computing

the parity of a sub-cell. Also, it does not give any guarantee that the sub-

cell in question contains a unique intersection. To alleviate this problem, we

developed a 2 dimensional Newton like method to refine an interval containing

a unique intersection.

2D Newton’s method can fail to successfully refine the interval for numerous

reasons:

• There is not a unique intersection in the interval, thus ∇f(R)×∇g(R)

does not have constant sign.
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• R is not within the interval of convergence, so the arithmetic succeeds,

but the interval produced is not smaller than the previous interval.

• The dimensions of the interval are on the order of magnitude of the

roundoff error, and a successful step results in an interval no smaller

than the previous.

The first case is easy to verify, and when it occurs we fall back on a subdivision

step. We distinguish the second and third case by also doing a subdivision

step. If the interval is too large to be within the interval of convergence,

then a subdivision is likely to succeed. So when Newton’s method does not

shrink the interval, subdivision should help to proceed. However, if the interval

did not shrink because of the third case, the subdivision step will fail when

applied, because it won’t be able to distinguish various univariate roots along

the boundary because their intervals overlap. When a subdivision step fails

after successfully iterating Newton’s method, we terminate isolation.

3.3.1.1 Subdivision

A subdivision step requires detecting the parity of the number of intersections

of f and g within a cell C. This is easily computed with only knowledge of

the intersections of the curves along the boundary of the cell [BL04].

Lemma 2 Consider a convex polygonal cell C and two algebraic curves f and

g. Let r1, ..., rn be the intersections of f and the boundary of C, in clockwise
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order, and let xi be the number of intersections of g and the boundary of C

between ri and ri+1. Then the parity of the number of intersections of f and

g inside C is equivalent to the parity of x2 + x4 + x6 + ...+ xk.

Given a 2D interval, R = [x0, x1] × [y0, y1], we can find the intersections of f

and g with the boundary of R with four substitutions and invocations of the

univariate root solver. For instance, for intersections along the lower boundary

of the interval we would substitute y = yo into f(x,y), to create f(x, yo) a

univariate polynomial in x. We then query for the roots of that univariate in

the interval [x0, x1], call them r0, ..., rn. Each root represents an intersection

with the boundary (ri, y0). We can do the same for the curve g, to create roots

s0, ..., sm and corresponding boundary intersections (si, y0). These two lists of

curves can then be compared by their x coordinate to give them an ascending

ordering along the lower boundary from x0 to x1 (e.g. (r0, s0, s1, s2, r1, ...)).

An ordering of the roots along each of the four boundary intervals of R give an

ordering of all intersections along the boundary, and thus a way to compute

the parity of the number of intersections of f and g inside R.

The subdivision step determines the major axis of R, and splits at the midpoint

of the interval on that axis. WLOG assume the x dimension of R = [x0, x1]×

[y0, y1] has the greater magnitude. Let xm = (x0+x1)
2

, then R is split into

Rl = [x0, xm]× [y0, y1] and Rr = [xm, x1]× [y0, y1]. The parity of the number

of intersections of f and g in these two sub-intervals is computed and the one
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with odd parity becomes the new R. Only one substitution for each curve,

f(xm, [y0, y1]) etc., is required to split the cell, and the previous boundary

intersections along R can be re-purposed for the boundaries shared with Rr

and Rl.

3.3.1.2 Interval Newton’s Method

Newton’s method is a well known numerical technique for finding roots of

equations. However there is always inherent imprecision in any numerical

technique implemented in floating point arithmetic, and no robust guarantees

are given for the standard Newton algorithm. Interval Newton’s method is a

version of the standard Newton method that uses interval arithmetic to isolate

the root within an interval. This provides the robustness necessary for doing

exact computations [HW03].

Consider the truncated Taylor series of a function f about a point x in La-

grange form:

f(y) = f(x) + (y − x)f ′(x) + ...+
(y − x)m

m!
f (m)(x) +Rm(x, y, ξ)

where:

Rm(x, y, ξ) =
(y − x)m+1

(m+ 1)!
f (m+1)(ξ)

For a point ξ ∈ X = [x, y] (assuming x < y). Thus:

f (m+1)(ξ) ∈ f (m+1)(X)



36

(a) (b)

(c)

Figure 3.5: (a) Along the boundary Ri, f and g alternate. (b) A Newton step fails to shrink

the interval (c) Ri is subdivided into two sub-intervals.
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This bound on the remainder of the truncated series leads to the fact that for

any x, y ∈ X:

f(y) ∈ f(x) + (x− y)f ′(X)

The same holds in the multidimensional case z, y ∈ R = [xl, xu][yl, yu]:

f(z) ∈ f(y) + Jf (R) · (z − y)

For a zero in the interval {z : f(z) = 0}

f(y) + Jf (R) · (z − y) = 0

z ∈ y − J−1f (R) · f(y)

Given our starting interval R we iteratively improve the interval by computing

Ri = Ri−1 ∩
(
y− J−1f (Ri−1) · f(y)

)
. In order to compute J−1f (Ri−1) · f(y), we

solve the linear system:

Jf (R) · x = f(y)

for x using Gaussian elimination. We repeat this process until Ri −Ri−1 = ∅,

at which time we have reached the limits of the current level of precision and

the magnitude of the interval is on the order of roundoff error.

3.3.2 Intersection Encasement

Once an intersection, q, of f and g is found within a cell C, we need to verify

that it is the only intersection inside that cell, and encase it if not. Compute
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(a) (b)

(c)

Figure 3.6: (a) A Newton step will be attempted in Ri. (b) The resulting interval and its

intersection with Ri. (c) Assign Ri+1 to the intersection of Ri and the resulting interval.
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(a) (b)

(c)

Figure 3.7: (a) A Newton step will be attempted in Ri. (b) The resulting interval and its

intersection with Ri. It is entirely contained within Ri. (c) Assign Ri+1 to the intersection

of Ri and the resulting interval.
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the angle bisectors of the tangents of f and g at q. Call those bisectors u and

v. The lines q + tu and q + tv pass through the intersection of f and g at

t = 0, and we want that to be the only place they intersect f or g inside C.

Substitute the lines into f and g to find any other intersections. We know

there is a root at q (f(q) = g(q) = 0) so we algebraically remove the known

root by eliminating the constant term and dividing by t to give Fu(t) and

Gu(t). Solve Fu(t) = 0 and Gu(t) = 0 using univariate root isolation, along

the interval of t where Fu(t) and Gu(t) lie inside C. Do so similarly with v. If

there are no roots, then the cell has been verified and q is the only intersection

in the cell. If not, take the smallest positive root and largest negative root

of each polynomial rp, rn. Split the cell with the perpendicular bisector of

(q + rpu) and q and also with the perpendicular bisector of q + rnu and q. Do

so similarly with the other bisector v. In the resulting cell containing q, the

angle bisectors of the tangents to f and g at q will intersect the curves only

at q.

3.4 Curve-Curve Isolation

If the parity of the number of intersections of f and g within cell C is even,

the curves either don’t intersect or intersect an even number of times. In the

first case we want to separate the segments of f and g into different sub-cells.

In the second case we want to separate intersections into different sub-cells,
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Figure 3.8: The intersection has been isolated, and the bisectors do not intersect the curves

between the intersection and the boundary. No intersection encasement is needed, the

intersection is the only one in the cell.
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Figure 3.9: The left bisector has intersected the red curve. To ensure a cell where the

bisectors do not intersect the curves before the cell boundary, split between the intersection

of f and g and the first intersection of the bisector and the red curve.
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until some sub-cell has odd parity. We generate the splitting line for the first

case in the following manner:

1. Let (a, b) be the closest pair of boundary intersection points a ∈ f and

b ∈ g and (c, d) be the other pair.

2. Let p be a point calculated to be between c and d and equidistant from

f and g. The notion of equidistant from f and g is an approximation

and depends on the orientation of the curve segments at the boundary,

but we leave the details of those calculations for later (Sec. 3.4.1).

3. Solve for the intersection of the linear approximations of f and g at p:

f(p) +∇f(p) · v = g(p) +∇g(p) · v = 0, for v.

4. L = (p, v) = {p+ tv : t ∈ R}

If this splitting line results in multiple components of the same curve, then

apply self isolation. If the segments have a two or more intersections, the

splitting lines converge on the farthest pair. If the splitting lines fail to separate

the two curves after a fixed number of recursive calls, the cell is passed to

Refinement and Subdivision.

3.4.1 Splitting Line Generation

When a cell contains two curves that do not alternate along the boundary,

we know that the parity of the number of intersections in that cell is even.

A valid encasement has no cells containing two curves, with even intersection



44

parity, therefore these cells are in violation of the encasement constraints and

must be subdivided. This leads to the question of how to subdivide the cell

in the most efficient manner. Because the inputs are assumed to be generic,

we can infer that the likelihood of there being 2, 4 or more intersections in a

cell that is relatively refined to be low. This drives the effort towards trying

to generate a splitting line that most effectively separates two curve segments

that do not intersect inside the cell. Our strategy for generating splitting lines

tries to achieve this. To separate segments of f and g, split the cell with a line

through their closest point in the cell and whose normal is the average of their

gradients at this point. Rather than computing the closest pair of points of f

and g in the cell, we make an approximation near the boundary intersections.

Given a cell containing two curve segments whose intersection parity is even,

we generate splitting as such: In general you can give an ordering to the

intersections of f and g with the boundary that is equivalent to (f0 f1 g0 g1)

where fi is an intersection of f and gi is an intersection of g. We consider

adjacent pairs, with one point from each curve, either (f1, g0) or (f0, g1).

Which ever has the shorter distance from each other around the boundary will

be the points we work with. From the chosen pair call the point on f : p and

call the point on g: q. For the purpose of the approximation we are about

to make, we need to ensure that f(q) > 0 and g(p) > 0: both functions are

positive on the region between the curves inside the cell. We flip the signs

of f and g accordingly. We then compute the normalized inward tangents to



45

the curves at their respective points: ft(p) and gt(q). Inward meaning in the

direction entering the cell. We recognize 4 cases with respect to the projection

of the tangents on the line segment pq:

• Case 1: ft(p) · ~pq > 0 and gt(q) · ~pq < 0 (a.k.a. the curves are converging

towards each other)

• Case 2: ft(p) · ~pq < 0 and gt(q) · ~pq > 0 (a.k.a. the curves are diverging

away from each other)

• Case 3: ft(p) · ~pq > 0 and gt(q) · ~pq > 0 (a.k.a. the curves are skew, and

g projects onto f inside the cell)

• Case 4: ft(p) · ~pq < 0 and gt(q) · ~pq < 0 (a.k.a. the curves are skew, and

f projects onto g inside the cell)

We view the skew case as a sort of symmetry, so long as we know which curve

projects onto the other in the cell, the way we handle this case is the same.

Assume f projects onto g, by project we mean that the ray from p along the

direction of the normal to the curve, ∇f(p), intersects g inside the cell. Case 1

and 2 (a.k.a diverging and converging) also have somewhat of a symmetry. In

either case neither curve projects onto each other along their normal direction.

In this case we consider the direction of projection to be ~pq

In either case we have one of the boundary points on the curve, call it u, and

the direction of projection, call it v. We are looking for a point p on the line

u+ tv that is approximately equidistant from f and g. The assumption is that

this point lies on a line that separates f and g in roughly equal proportion.
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To find p we construct linear approximations of f and g about the point u and

solve for the point on line u+ tv equidistant from those two lines.

The linear approximations about the point u are given by:

fu(p) = f(u) +∇f · (u− p)

gu(p) = g(u) +∇g · (u− p)

Where the distance to the linear functions fu(p) and gu(p) are:

dist(p, f) =
fu(p)

|∇f(p)|
dist(p, g) =

gu(p)

|∇g(p)|

Setting these two distances equal to each other we can solve for t in closed

form.

dist(p, f) = dist(p, g) =⇒

f(u) +∇f(u) · tv
|∇f(u)|

=
g(u) + t∇g(u) · tv

|∇g(u)|

One caveat is that the point generated may not be within the given cell. If

this happens we choose the point on the line closest to that point that is also

inside the cell.

At the point p = u+ tv we need to find the direction of the splitting line, call

it v. The strategy here is to again linearize the two functions, but now about

the point p. Find the intersection of these two linear approximations, and the

direction from p to this intersection is the direction of the splitting line. If
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the two curves truly intersect transversely in this cell, this approximation of

the direction of the intersection becomes more accurate as the area of the cell

decreases, f and g appear linear in a neighbourhood of a transverse intersec-

tion. If the curves do not intersect in this cell, then a sequence of splitting

lines generated where at least one point on each line is between curves f and

g will eventually isolate the curves to separate cells. The linearization of the

functions about p are given by:

fp(q) = f(p) +∇f · (p− q)

gp(q) = g(p) +∇g · (p− q)

The intersection of these lines lies on some line p+ tv, we can arbitrarily solve

for the representation where t = 0, so we solve for v:

fp(p+ v) = 0

gp(p+ v) = 0

And thus:

fp(p) +∇f · v = 0

gp(p) +∇g · v = 0

This is a very simple linear system, and we can solve it with direct methods.

Once a valid p and v are found, we construct the line p+ tv and split the cell

by this line.

The method described above is a latter iteration of several heuristically tested

ways of generating splitting lines and we in no way claim that it is optimal.
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Several other strategies have been considered and are planned for future work

(Sec. 6.1). Much effort and thought has gone into the generation of splitting

lines, because it is arguably the most frequent operation in the encasement

algorithm, both from intuition and profiling of the algorithm.

ft(p)

gt(q)

∇ft(p)

∇gt(q)

p
q

Figure 3.10: Case 1: ft and

gt converge

ft(p) gt(q)

∇ft(p)∇gt(q)

p q

Figure 3.11: Case 2: ft and

gt diverge
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ft(p)

gt(q)

∇ft(p)

∇gt(q)
p

q

Figure 3.12: Case 3: ft and

gt are skew

3.5 Subdivision and Refinement

If curve-curve isolation fails to separate two curves that seemingly don’t in-

tersect, procedures we refer to as refinement and subdivision are invoked to

ensure termination of the algorithm. We want to refine a cell C containing f

to a smaller cell that more tightly surrounds the curve. That is to say, the

minimum distance from any point on f to the boundary of the resulting cell

is smaller than its minimum distance to C.

Subdivision: Curve f intersects cell C at points a and b along the boundary.

We wish to subdivide this curve by splitting the cell so that the segments in

the resulting cells have roughly the same length. We split the cell C with the

perpendicular bisector of ab. Repeatedly subdividing the resulting cells results
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in a finer and finer linear approximation of f by line segments ab, where a and

b are the intersection of f with the boundary of the new cell.

Refinement: We identify intersections with the boundary, a and b and their

midpoint m = (a+ b)/2. Let L = (m, (a− b)⊥) = {m+ t(a− b)⊥ : t ∈ R} be

the perpendicular bisector of ab. Compute its intersections with the boundary,

c and d at t = tc and t = td. Let c be the endpoint of the intersection of L

and the boundary such that mc intersects f . Compute the intersections of L

and f on the segment mc and choose its smallest root r in its interval [0, tc].

Let p = m + (0.9r + 0.1tc)(b − a)⊥ and v be ∇f(p)⊥. Split the cell with line

Ltop = (p, v). Split the resulting cell with Lbottom = (0.9m+0.1d, (a−b)). The

splits result in cutting in the tangent direction to f at p just above the curve

f and cutting in the mean tangent direction (a− b) just below the curve.
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(a) (b)

Figure 3.13: (a) Frame of reference for generating splitting lines for refinement. (b) Resulting

cell after refinement.



CHAPTER 4

Implementation

The following are various in-depth descriptions and discussions of techniques

developed in the process of implementing the encasement algorithm. Most

techniques are the end result of a few attempts to solve the underlying problem.

These techniques are not only relevant to the encasement algorithm, but are

generic techniques that can be applied in any future algorithms developed in

ACP 4.1.

4.1 ACP

The ACP library [MST13] is designed to provide efficient and exact evalua-

tion of geometric primitives on perturbed inputs. The fundamental object of

arithmetic in the ACP library is called a Parameter. A parameter represents

a real number using a floating point interval that contains it. The default is

52
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double-float, but it can use higher precision floats (MPFR) [FHL+07] if needed.

All inputs to any program using ACP are stated at double precision numbers

d0, ..., dn. Each one is given a perturbation d∗i = di + rand(−δ, δ)(1 + |di|)

(where δ = 10−8 for this particular application) and its initial representation

is a trivial interval [d∗i , d
∗
i ]. Beyond the initial perturbation, the input param-

eters d∗0, ..., d
∗
n are treated as exact input. The endpoints of the interval are

initially double precision numbers, but they can be extended to higher preci-

sion when needed. All arithmetic on parameters is computed using interval

arithmetic, implemented in the ACP library.

The next fundamental object in ACP is known as a Geometric Object. A

geometric object is specified by a list of parameters. For instance, points in

Rn are specified by their coordinates (x0, ..., xn). A line in R2 is represented

by (p, v) = ((px, py), (vx, vy)) = p + vt for t ∈ R. A polynomial in R[t] is

represented by its coefficients (c0, ..., cn) = c0 + c1t + c2t
2 + ... + cnt

n. These

parameters may be inputs to the program, wherein the object is referred to

as an Input Object. The parameters of the geometric object may also be

represented in terms of parameters of other geometric objects. For example, a

point may be represented by a the intersection of a bivariate polynomial and a

line, where the parameters of the line are substituted into the coefficients of the

polynomial.. Its coordinate is a single parameter t on a parametric line L where

t is a root of the polynomial that is the result of substituting the line equation

into the bivariate polynomial. As well, a point p ∈ R2 can be represented by
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the common zero x = r, y = s of two bivariate polynomials with parameter

coefficients f(x, y), g(x, y) where f(s, r) = g(s, r) = 0. These points are the

fundamental point of investigation for the encasement calculation. We refer

to this objects as Derived Objects. The objects that are required for the

computation of a derived geometric object are referred to as the antecedents

of the derived object. In general the antecedents of a geometric object may be

derived objects themselves, resulting in a tree of antecedents involved in the

computation, with the eldest antecedents of any derived object being input

objects. Every object provides a method to calculate its parameters from the

parameters of its antecedents at the prevailing level of precision. For an input

object, the calculation is simple: just provide the input parameters padded

with enough digits of precision to match the prevailing the precision. For a

derived object, first it must ensure that its antecedents are calculated at the

prevailing precision, then it can proceed with its specified logic for computing

its coordinates.

Branching of logic in a computational geometry program is determined by the

sign of Primitives (interpreted as truth values), whose inputs are geometric

objects. For instance, a primitive Orient2D is used to determine whether

a list of 2D points, (a, b, c), is oriented clockwise or counterclockwise in the

plane. It is defined to be: sign((b−a)× (c−a)). When a primitive is invoked,

it performs the intended operation on the geometric objects and evaluates the

sign of the result. ACP uses a strategy of lazy evaluation, in which a derived
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geometric object is not computed until a primitive involving that object is

invoked. If the sign of a primitive is ambiguous (i.e. the interval of the re-

sulting parameter contains 0), it is recomputed at a higher level of precision.

The number of bits of precision begins at 53-bit double precision and doubles

at each primitive evaluation failure, until it fails with 848 bits of precision.

At this time the computation gives up, and is unable to determine the sign

of the primitive. The primitive may just require more precision to finish the

computation, or the inputs to the primitive might be degenerate. We avoid de-

generate input by perturbation, but there is still the possibility that perturbed

inputs contain degeneracies. However, if the same primitive fails with differ-

ent different perturbation seeds, the probability of the perturbed input being

degenerate gets exponentially smaller. A complete solution would restart the

computation with twice the number of initial random bits to each input, as

well as twice the maximum precision allowed. We do not currently implement

this approach.

A primitive may be degenerate because of an Identity. An identity results

when the symbolic expression of the primitive is identical to the zero polyno-

mial, due to special relationships between the inputs. For instance: let a and

b be two points in the plane, and let c = (a+ b)/2 a derived geometric object

that is the midpoint of a and b. If we evaluate Orient2D on points a, b, c

the result will be identically zero ANY level of precision because the point c
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is derived to lie on the line going through a and b. Within the encasement

algorithm, we currently handle identities with specialized logic.

4.2 Encasement Data Structure

The structure of the encasement is represented through a standard half-edge

Doubly Connected Edge List (DCEL) structure. Each directed half-edge is

defined by a parametric line L = p+tv and interval [t0, t1] defining the segment

of the line where this edge exists. The two vertices of an edge are the points

L(t0) and L(t1). Each vertex is the intersection of two lines that define two

edges. Each line is either a splitting line or a line induced by the original

constraints of the initial convex polygonal region. A face is the interior of a

closed chain of edges. One face exists at the onset of the algorithm, the interior

region, whose boundary is the initial convex polygon. Each subsequent face

generated by a splitting line, and the resulting faces are a partition of the

interior of the parent face. Thus the DCEL induced by encasement operations

is a binary space partition of the original convex polygonal region. Storing

parent and child pointer in each face gives rise to a natural way to trace the

history of the algorithm.
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4.3 Primitives

As in any algorithm in computational geometry, the branching of control logic

in the encasement algorithm is determined by the signs of geometric predicates,

which we refer to as “Primitives” within the software and from hereon. This

section presents the necessary geometric primitives used in the encasement

algorithm.

Because ACP uses a strategy of lazy evaluation combined with adaptively

increasing the precision of derived objects, it is necessary to encapsulate all

primitives into a functional object structure. The value of an object is not

calculated at any precision until the first primitive that depends on the object

is invoked. Thus even the simplest of primitives need to be encapsulated in

this structure. The following is a listing of all primitives used in the algorithm

as well as their derivations.

Orient2D (PV2 a, PV2 b, PV2 c): Determines if the vertices of triangle

abc are given in clockwise or counterclockwise order. Given by the sign of

((b − a) × (c − a)). A positive sign implies clockwise order, while negative

implies counterclockwise.

LeftOf (Line l, PV2 o): Determines if point o is to the left of the line given

by p + tv : t ∈ R. Given by the sign of (o − p) × v. A positive sign indicates
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that the point o is to the right of the line, while negative indicates left of the

line.

YOrder (PV2 a, PV2 b): Compares points a and b by their y coordinate.

Given by the sign of a.y − b.y. Negative sign indicates that the y coordinate

of a is ordered before the y coordinate of b in ascending order.

XOrder (PV2 a, PV2 b): Compares points a and b by their x coordinate.

Given by the sign of a.x − b.x. Negative sign indicates that the x coordinate

of a is ordered before the x coordinate of b in ascending order.

LessThan (Parameter a, Parameter b): Determines if a < b. Given by the

sign of a− b. Negative sign indicates that a < b.

Dot (PV2 a, PV2 b): Determines the sign of the dot product of vectors a and

b. Given by the sign of a.xb.x+ a.yb.y.

Side (PV2 a, PV2 b): Determines the sign of the cross product of vectors a

and b. Given by the sign of a.xb.y − a.yb.x.

PolySign (Poly f , PV2 p ): Determines the sign of the value of the polynomial

f evaluated at p. Given by the sign of the parameter that is the result of

evaluating c00 + c10(p.x) + c01(p.y) + c11(p.x)(p.y) + ...+ etc. Where (p.x, p.y)

are the coordinates of p and c00, c10, c01, c11, ... are the coefficients of f .
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Sign (Parameter x): Determines the sign of a single parameter, x. Simply -1

if x < 0 or 1 if x > 0.

Shorter (PV2 a, PV2 b, PV2 c, PV2 d): Determines if the line segment

between a and b is shorter than the line segments between c and d. Given by

the sign of ((b− a) · (b− a))− ((d− c) · (c− d)), where negative sign indicates

that ab is shorter than cd.

CCWOrder (PV2 a, PV2 b): Determines the ordering of vectors a and b

when sorted about the origin considered by the angle they make with the

vector (1, 0) measured counterclockwise from (1, 0) to a and similarly for b. If

the sign of a.y and b.y differ, then the order is given by the sign of a.y − b.y,

where positive means a is ordered before b. If the sign of a.y and b.y are the

same, then the order is given by the sign of a × b, where positive means a is

ordered before b.

4.4 Software and Robust Curve Tracing

We have provided a companion software for visualization of the algorithm,

Along with the C++ implementation of the algorithm itself. Visualization

of general algebraic curves and even more so, robust visualizations of alge-

braic curves is of some interest. Our visualization is efficient at a variety of

scales, but not necessarily robust at this point. This is due to the nature of
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the our curve tracing implementation. However, we propose a framework for

constructing robust visualizations of curves given a small modification to the

encasement algorithm.

Given a curve f , a cell C and the two intersections of f on the boundary a

and b, the most simple visual approximation of the curve in this cell is a line

segment from a to b. One might wish to see the more complicated and nu-

anced behavior of the curve in this cell, as well as its interactions with possibly

another curve in the cell. We could accomplish this by sampling the curve at

intersections with a line perpendicular to ab in the space between a and b inside

the cell. The first caveat is constructing an exact point on the curve requires

calling the univariate solver. This can become rather expensive depending on

the number of samples requested and the total number of cells in the visual-

ization. Although the arrangement is static, visualizations of the solution can

be a very dynamic if one wishes to zoom in and produce a more refined picture

of a smaller region. The second caveat is that when intersecting one of these

perpendicular lines between a and b, you might possibly encounter more than

one intersection along the interval. This presents a problem because ostensibly

when you have points on the curve a, b, and mid (a point between a and b),

you would visualize the curve with a line segment between a and mid and then

one between mid and b. But there is no obvious way to generalize construct-

ing line segments in a meaningful way when you have multiple intersections

along this line. We propose an approach to deal with these two problems and
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create a method for robust and efficient visualizations. Given the curve and

cell described above, assume f is monotonic with respect to some direction v

inside the cell. That is to say either ∇f × v > 0 or ∇f × v < 0 on the entire

cell. If this is true than any line parallel to v⊥ that intersects the cell and

separates a and b on either side will intersect f exactly once. Thus if we can

further constrain the segments of curves in encasement cells to be monotonic

to some direction, we can construct a point on a perpendicular between a and

b without the burden of not knowing the topology of the curve along this line.

Doing this also gives rise to a solution to the first caveat. Because we are

guaranteed one intersection on this line in the cell, we can construct the two

intersections of the perpendicular line and the cell, c and d at t0 and t1 and we

know the interval [t0, t0] contains and isolated the t where the line intersects

the curve. Thus we are not required to call the univariate solver, and can use

direct numerical methods to refine this interval to the required precision of

the visualization. This proposed solution is intended to be included in future

versions of the software.

In the current software, we implement curve tracing as such: Starting at a

point on the endpoint p0 and a time step t we do the following at iteration i:

1. Compute v = ∇f(pi)
⊥, the tangent to the curve at pi. If it is not pointing

inward to the cell, flip its sign.

2. Compute q∗0 = pi + tv
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3. Iterate Newton’s method in double precision for n iterations:

fL(qi + ∆q) = f(qi) +∇f(qi) ·∆q = 0

qi+1 = qi + ∆q

4. pi+1 = qn

5. Repeat until pi+1 falls out of the cell or a fixed maximum number of

iterations have been completed

This is a standard curve tracing (homotopy / continuation) method [AY78]. It

makes no guarantees that the displayed topology matches the true topology of

the curve nor that tracing from intersection a on the boundary will converge

to intersection b. It is however a very efficient algorithm, and for most generic

scenarios give a very good approximation to the features of the curves. We vary

the time step t based on the level of detail of the viewing area and adaptively

cull any faces that do not intersect the viewing area. The end result is an

effective visualization, that aides in inspection of inputs as well as debugging

the algorithm itself.

We provide a small set of features in the prototype software. A user may

input a file description of a set of curves by providing the coefficients of their

polynomials as doubles. As well, we provide the option to generate a random

curve of arbitrary degree. Once input is determined, the user may query for

the entire encasement to be computed, or to step through each splitting line

generated from the algorithm, with the option to step backwards if so desired.

At any time, the user may query to iterate through the current set of faces,
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edges, and vertices of the DCEL structure, to inspect them without the burden

of the rest of the encasement scaffolding in the way. The user may query to

visualize the connected components of the critical regions if so desired, and

they will be displayed alongside the current encasement structure. Using the

keyboard the user can translate the center of the viewport along the plane

and zoom in on areas of interest in real time. Once the entire arrangement

is computed, the user may query to iterate through the intersections detected

and display their locations and automatically relocate the camera to a view

centered on the intersection. As well, the user may click within the initial

boundary and a point location query will be performed. The arrangement cell

containing the point will be identified by tracing its boundary in black. While

not a complete production ready software, we provide a small but rich set of

features for inspecting the interaction of two semi-algebraic curves.

4.5 Resultant Calculation

In the midst of our investigation into state of the art techniques for solving

systems of bivariate equations, we discovered some methods for computing

resultants that we thought helpful to implement within ACP both for the

purpose of understanding the algorithm to a finer degree as well as for use in

the testing and verification of our own implementation. It also gave insight
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Figure 4.1: The encasement software in initial state. The initial convex region B is shown.
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Figure 4.2: Critical regions have been identified. Critical regions of f are red and g are

green.
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Figure 4.3: Current knowledge of all curves after intersecting with the boundary of B
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Figure 4.4: Currently splitting through critical regions of f and g
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Figure 4.5: One step after figure 4.4. Splitting through the critical region in the bottom cell

discovered a loop of f



69

Figure 4.6: After all of the critical regions have been split, the separating splitting line is

constructed.



70

Figure 4.7: A completed and validated encasement of f and g.
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Figure 4.8: Intersections of f and g identified.
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Figure 4.9: Zoomed in view of a Root2. The 2D interval is represented by the square box

of width around 10−14. The reason for the jagged curve tracing is because he precision of

Newton’s method in double at this scale is the same magnitude of rounding error.
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Figure 4.10: Another Root2.
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Figure 4.11: A third Root2.
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Figure 4.12: Interactive selection and tracing of arrangement faces.
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Figure 4.13: Arrangement face of f and g.
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Figure 4.14: Arrangment face induced by a loop of f
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Figure 4.15: Arrangement face containing a hole whose boundary is a loop of f
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into the algorithms used by CGAL and the efforts undertaken to optimize

their own implementations.

The resultant of two polynomials is a polynomial expression of their coeffi-

cients, which is equal to zero if and only if the polynomials have a common

root (possibly in a field extension), or, equivalently, a common factor (over

their field of coefficients) [Sal85]. Any intersection of f and g occurs at a

common root x of f and g considered as polynomials in y with coefficients

in the ring R[x]. These values x are the roots of the resultant resy(f, g).

The subscript indicating that y is the indeterminate over which we define and

compute the resultant. For each root of the resultant α one may compute the

common roots of f(α, y) and g(α, y) to generate the solutions to the system:

f(x, y) = 0 and g(x, y) = 0. This involves solving for the roots of univariate

polynomials, something already possible and efficient in ACP. We’re left to

compute resy(f, g) in ACP. Let,

A = a0x
d + a1x

d−1 + · · ·+ ad

B = b0x
e + b1x

e−1 + · · ·+ be
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The resultant of A and B is given by the determinant of the so called Sylvester

matrix of A and B:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 0 · · · 0 b0 0 · · · 0

a1 a0 · · · 0 b1 b0 · · · 0

a2 a1
. . . 0 b2 b1

. . . 0

...
...

. . . a0
...

...
. . . b0

...
... · · · a1

...
... · · · b1

ad ad−1 · · ·
... be be−1 · · ·

...

0 ad
. . .

... 0 be
. . .

...

...
...

. . . ad−1
...

...
. . . be−1

0 0 · · · ad 0 0 · · · be

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
This provides a very direct way of computing the resultant of f and g of degree

d and e respectively: construct the Sylvester matrix of f and g and compute its

determinant. This, however, turns out to be a very inefficient way of comput-

ing the resultant. As it turns out through the use of the Euclidean algorithm

for polynomials, one may efficiently compute values of the resultant polynomial

evaluated at given inputs without explicitly computing each coefficient of the

resultant polynomial. This gives rise to an alternative algorithm for computa-

tion: evaluate resy(f, g) at d ·e unique points, then interpolate the coefficients

from this point-value representation of the polynomial. Evaluating the value

of the resultant at a single point x = α takes O(de) arithmetic operations

on the coefficients of f(α, y) and f(α, y), which are now real valued intervals.
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Standard Newton interpolation of a polynomial of degree d costs O(d2) arith-

metic operations in the field of its coefficients. This makes the interpolation of

resy(f, g) cost O((de)2) operations. There exist faster methods for resultants

of polynomials with integer, rational, and polynomial coefficients using subre-

sultants and even faster methods using the Chinese Remainder Theorem are

known for polynomials with integer coefficients [GCL92].

4.6 Verification

The correctness of the encasement algorithm can be shown mathematically, but

in order to validate the correctness of the implementation as well as strengthen

the result we devised a scheme to verify the output of the encasement algo-

rithm. Of primary concern is the correct detection of all intersections in the

starting cell. A secondary but equally important concern is correct topology

of the curve away from intersections, this primarily concerns the detection of

loops.

To verify that all intersections have been found and that the interval represen-

tations of the enclosure of an intersection truly contain a root we used CGAL

as well as our own resultant calculation. For our own resultant calculation we

first find a perfect matching between the set of 2D intervals from encasement

and the set of 2D intervals from resultant, where the binary relation is non-
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empty intersection of the two intervals. If a valid matching is found we take

the intersection of each pair of roots in the matching and verify that the curves

indeed alternate along the boundary of this interval. If all root pairs succeed,

then the intersection set from encasement is deemed valid. For validation with

CGAL we also try to construct a perfect matching between the output sets,

but now the relation is the root approximated at double from CGAL is con-

tained in a 2D interval from encasement. If the output passes both of these

tests we deem the intersection set valid.

The first test validates whether we found loops of curves that intersect some

branch of the other curve, but we are still not sure whether we have inter-

sected all loops of the curve that are isolated and do not intersect the original

boundary or any branch of the other curve. To validate this we perform the

encasement algorithm, but replace the critical region subdivision step with a

slow yet precise calculation of all of the critical point of the curves via resul-

tants. At each critical point we generate a splitting line and split the current

cell containing the critical point. This ensures that no loop of a curve exists

entirely in the interior of a single encasement cell. After both encasements

are computed, we count the number of connected components of each curve

(branches) in the arrangement. Furthermore we also count all intersections of

f with g along each branch and verify their ordering in terms of branches of g

and vice versa for g. If the encasement satisfies each of these tests, we consider

the entire encasement valid and its output to be correct.
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4.7 Line Rounding

As stated, the primary step in the encasement algorithm is a binary subdivi-

sion of a cell, whose split is determined by a splitting line that crosses the cell.

All intermediate calculations are performed for the sole task of determining

a more optimal line to split a given cell, until the resulting cells satisfy the

requirements of a valid encasement cell. As such, splitting lines, which end up

as the boundaries of resulting cells, are first class citizens in the encasement

algorithm. Splitting lines are the objects that appear most frequent in primi-

tive evaluations, as well as the most prevalent parents of other derived objects

(including other splitting lines themselves). For instance:

• Splitting line L is constructed to split between points p and q

• Point p lies on an edge of an encasement cell and is the result of sub-

stituting the line that the edge is a segment of (L2) into a curve f and

solving for roots of the resulting univariate polynomial

• The line L2 itself is a splitting line, that resulted in the subdivision of

the parent of the cell that contains it.

• Splitting line L2 depends on splitting between a different pair of points

p2 and q2

• etc...

It is apparent that a splitting line involved in a cell that is a result of d sub-

divisions may have Ω(2d) antecedents. If a primitive fails to resolve its sign,
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then precision of all objects involved will need to be increased including all

antecedents of any derived object in the computation. Thus, failed primi-

tives involving splitting lines would consume the bulk of computation. If the

derivation tree of a splitting line gets prohibitively large, it makes the evalu-

ation of any failed primitive inefficient. For that reason, it was necessary to

develop for any splitting line L and a set of constraints {c0, c1, ..., cn} that L

satisfies, a way to construct an alternative splitting line, L∗, which satisfies all

constraints, but whose construction depends on randomized and generic input

with empty derivation trees. To do so, we implement an approximation func-

tion approx(L, a, b). The constraints of this function are that line L∗ = (p, v)

separates points a and b, and that L∗ is close to the exact splitting line L.

That is to say: sign((a − p) · v)) 6= sign((b − p) · v). The function returns a

randomized splitting line that also separates points a and b.

We achieve the alternative splitting line, L∗ as follows: First try approximat-

ing each coordinate of p and v by the midpoint of its interval, e.g. (p.xlb +

p.xub)/2, and then perturbing in the same manner as we perturb inputs: add

rand(−10−8, 10−8)(1 + |x|) to x. If this line fails to separate a and b, do the

following:

Recompute the intervals for the coordinates until they are small enough so

that p + vt does separate a and b in interval arithmetic. This may require

higher precision arithmetic. Then replace each coordinate of p and v by a
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random double-float element of its interval. This is complicated by the fact

that the interval may be very small and possibly have no double-floats in it at

all. Select a random element as follows:

• Let S be a list of double-float numbers, initially empty. Let [l, u] be the

interval.

• If |u − l| < (10−8) |l|, then the interval contains fewer than 108 double-

floats, which we consider too few for a random choice.

• In that case, let d be the double-float resulting from rounding l towards

zero. Add d to S and subtract d from l and u.

• Repeat until |u − l| ≥ (10−8) |l|. Select a random double-float r in the

interval [l, u] and add r to S. The approximation is defined as the sum

of the elements of S.

We use the sum of doubles representation presented by Shewchuk [She97].

Using this technique, each coordinate of p and v are expressed as a set S of

double-floats whose largest element is an accurate approximation and whose

sum, carried out in extended precision, is the exact value.



CHAPTER 5

Experiments and Results

The encasement algorithm isolates the connected components of a semi-algebraic

curve inside of a convex region, but its primary focus is finding all inter-

sections between a pair of semi-algebraic curves (f and g) in that convex

region. The problem of finding all intersections of a pair of bivariate poly-

nomial equations in a 2D region can be reduced to the problem of finding

the roots of univariate polynomials on an interval. This is already shown

with various methods using resultants, but encasement provides an alterna-

tive reduction and method of computation. Therefore to show the merits of

encasement, we test its performance computing the intersections on a gamut

of different curves and compare it to the performance of the leading com-

putational geometry software, CGAL [The17]. Specifically, we use the Ar-

rangement on surface 2 [WBF+17] package which provides functionality for

arrangements of planar algebraic curves. Most of the algorithms computing the

algebraic objects and univariate roots required by the techniques CGAL uses

86
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are contained in the Curved kernel via analysis 2 [BHK+17] package, which is

a model for ArrangementTraits 2 concept. The methods of this model that

analyze the geometric properties of single curves and pairs of curves are con-

tained in the Curve analysis 2 and Curve pair analysis 2 classes respectively.

This package makes use of state of the art algebraic methods for solving bivari-

ate systems, cited in the code as [EK08] and [EKK+05] (which were discussed

in the related work section).

One caveat to make mention of is that CGAL and ACP operate under different

paradigms to provide robustness. ACP’s paradigm is to handle only generic

input, for us curves in general position, and provide exact solutions for a small

perturbation of the input with backwards error gaurantees. CGAL on the other

hand operates under the Exact Computation Paradigm of Yap [Yap00]. CGAL

tracks error bounds and uses extended precision only when it is truly needed,

much like ACP, but with different representations of the underlying number

types. So not only are we comparing different algorithms for the solutions

of bivariate equations, but at the same time comparing the two paradigms.

Another thing to mention is that the coefficients of the polynomials for CGAL’s

2D Arrangement package are specified to be integers. Because we generate the

random input numerically in double, we must transform the polynomials to

equivalent polynomials with integer coefficients. This is done in such a manner

that the number of digits of precision in the coefficients (namely 16 digits) is

preserved.
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5.1 Experimental Setup

We generate random curves of varying degree in general position that intersect

at common points. To generate a curve f of total degree n (having m =

(n(n + 1)/2) coefficients), generate m − 1 random points in the region of

interest. We want these m−1 points to lie on the curve (i.e. f(pi) = 0). Thus

for pi = (xi, yi) we can infer

cmx
n
i + cm−1x

n−1
i yi + ...+ c2xi + c1yi + c0 = 0

We can assume WLOG that c0 = 1. From this we can generate a non-

homogeneous linear system:

xn1 xn−11 y1 . . . x1 y1

xn2 xn−12 y2 . . . x2 y2

...
...

. . .
...

...

xnm−1 xn−1m−1ym−1 . . . xm−1 ym−1





cm

cm−1

...

c1


=



−1

−1

...

−1


We then solve this system using efficient subroutines from the BLAS/LAPACK

software package [ABB+99]. Because each curve is generated from its own

unique set of interpolating points, the probability of these curves being degen-

erate is very low. Thus we assume each intersection point is transverse and

involves only two curves.

We generate curves ranging from degree 2 to degree 20. As a baseline for the

performance of the various algorithms with respect to the degree of the input,
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we test each algorithm against pairs of curves of the same degree. We then

tested each algorithm’s ability to process the arrangement of a batch set of

curves ranging from groups of 3 to 20 curves. All curves within a batch have

the same total degree.

To exemplify the ability of encasement to perform when smaller regions of

interest are selected, we isolated smaller convex regions surrounding a known

intersection of a pair of curves. We then ran the encasement algorithm again,

changing the starting region of interest to [rx − d, rx + d]× [ry − d, ry + d], for

various values of d.

We compare the timing results of our encasement algorithm against the lead-

ing computational geometry software, CGAL [The17] All experiments were

performed on a server with an Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz

(10 cores) with 64 GB of RAM.

Because the focus of the encasement software as it stands is on computing

all pairwise intersections of each of the curves, we would like to focus our

timing comparisons on pairs of curves. The encasement algorithm handles

only two curves at a time computing their indices, and only after that would

provide relevant arrangement information. Thus we want to compare this per-

formance against CGAL computing the arrangements of only a pair of curves

at a time. One might argue that this is a handicap for CGAL, and that neglect-

ing its batch processing capabilities would lead to suffering performance, but
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we intend to show that the extra complexity of computing the arrangement

of n curves supplants the complexity of doing O(n2) arrangements of pairs

of curves. To show this we have given the comparison of the performance of

CGAL on various numbers of curves. The monotonization process of either

method remains the same (Fig. 5.1). Both must monotonize n curves individ-

ually resulting in a curve reflecting the O(n) nature of the monotonization for

both.Clearly CGAL receives no benefit from computing all of the intersections

of the curves from the batch arrangement (Fig. 5.2). If the intersections of

the curves (vertices of the arrangements in CGALs case) are the main focus,

then using CGAL to compute O(n2) individual arrangements of the pairs of

curves yeilds better results. Therefore we believe it is justified to compare

encasement against CGAL Arrangements by just looking at running time on

a single pair of curves. The asymptotic behavior of both on n curves can be

reasonably predicted.

Both the encasement and Resultant Based CGAL Arrangement algorithms

can be broken down in to 3 stages: sub- algorithms that are analogous. The

encasement algorithm must first isolate all features of the curves that are un-

known from the bounding box stage. This corresponds to loops of the curves.

Likewise CGAL must find x-monotone segments of each curve (which includes

the price of finding loops) in order for it to proceed. Second each algorithm

must isolate the common roots of the pair of curves and robustly ensure their

existence and separation. Thirdly we require that each algorithm provide rep-
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resentations of the intersections at at least double precision. CGAL provides a

double representation of the algebraic numbers representing their coordinates

if queried and encasement can provide approximations of the coordinates of

the intersections to arbitrary degree.

5.2 Results Large Domain

The first result compares the running time of the first stage of each algorithm

(Fig. 5.3). X-Monotonization of the curves for CGAL and splitting of loops

for encasement. The two methods are comparable for low degrees but show a

significant divergence around degree 12.

The encasement loop splitting technique computes a lower degree lower bound

Taylor approximation of the curve on each sub-cell until the separation is

achieved. The combination of adapting the degree of this approximation along

with using recursive encasements at optimal depths keeps the running time

modest with respect to the degree.

We show the ratio TCGAL(d)/Tencasement(d), of the first stage, where T denotes

the average running time of the algorithm on a random curve of the specified

degree (Fig. 5.4). The data shows a definite increasing trend, indicating that

the monotonization process for CGAL is asymptotically more complex than

loop splitting for encasement.
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Figure 5.1: Analogous first steps in each of the n2 CGAL and batch CGAL algorithms.

Both demonstrate linear behavior asymptotically in the number of curves.
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Figure 5.2: The cost of arrangement of the n2 CGAL and batch mode CGAL. Both

demonstrate quadratic behavior asymptotically in the number of curves, with the n2

showing a smaller constant factor.
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The second result demonstrates the comparative running time between the sec-

ond stage of each algorithm (Fig. 5.5). Face splitting to isolate intersections

for encasement and arrangement insertion for CGAL. Although encasement

seems to have the disadvantage here, the scale of the time axis is a factor of

10 smaller than the other two figures. This second stage of each algorithm

seems to affect their respective running times the least. The main cost en-

casement endures during this phase of the algorithm is substituting univariate

line equations into bivariate polynomials and the isolation of the subsequent

single univariate polynomial’s roots. Substitution is either done in a direct

manner or by interpolation with Newton Polynomials. Both of these depend

on the number of terms in the bivariate polynomial, which is quadratic in the

total degree. Thus the non linear nature of the cost. At larger degrees, ACP

may not be able to isolate the roots of polynomial without pushing to higher

precision arithmetic.

We show the ratio TCGAL(d)/Tencasement(d) of the second stage, where T denotes

the average running time of the algorithm on a random curve of the specified

degree (Fig. 5.6). The ratio quickly decreases and approaches a constant rate

of around 0.5. This indicates that the two algorithms only differ by a constant

factor when runtime is analyzed with respect to the degree of the input.

The third result demonstrates the running time of computing double preci-

sion approximation of the coordinates of the intersections of the two curves
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(Fig. 5.7). For encasement this cost is relatively low. The intersection isola-

tion portion already requires computing the coordinates of the roots in double

precision to the best ability of Interval Newton’s method and subdivision.

Thus, all that is required for coordinates whose intervals are not yet already

consecutive double precision floats is to perform Interval Newton’s method

and subdivision (a.k.a. Root2 polishing) in 212-bit precision. The quadratic

convergence of Newton’s method is key in this procedure’s efficiency. On the

other hand, this task seems to be difficult for CGAL. Even the documentation

for the arrangements of 2D curves package mentions that requesting double

approximations of coordinates of points can be a costly procedure [WBF+17].

This is clearly exemplified by the steep increase in CGAL’s cost, again around

degree 11-12. Having double precision approximations of these coordinates

is essential for use of the results as inputs in additional CAD and geometry

software, so we believe the addition this runtime to the total timing results to

be fair.

We show the ratio TCGAL(d)/Tencasement(d) of the third stage, where T denotes

the average running time of the algorithm on a random curve of the specified

degree (Fig. 5.8). The ratio is increasing as the ratio for the first stage. Yet,

the ratio is a order of magnitude larger than the ratio for the first stage.

It trends in a close to linear fashion, indicating that CGAL’s approximation

for intersection coordinates may be a factor of d larger than encasement’s

intersection approximation.
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The final result compares the total running time of the three stages of each

algorithm added together (Fig. 5.9). Clearly the pitfalls of the encasement

algorithm are undoubtedly overshadowed by the pitfalls of CGAL’s algorithm.

Even though CGAL outperforms encasement in the second stage, the scale of

this improvement is much smaller than the out-performance of encasement in

the other stages.

We show the complete ratio TCGAL(d)/Tencasement(d) of the total running time

of all three stages, comprising the totality of the algorithms (Fig. 5.8). The

ratio is dominated by the contributions from the first and third stages of each

algorithm, where most of the expense of each is contained. Thus it is steadily

increasing at a rate that seems to be well approximated linearly, at this range

of degrees. Therefore we can confidently state that the asymptotic complexity

of encasement improves on the complexity of CGAL’s arrangements by a factor

of at least d.

5.3 Results Smaller Domains

The second set of results exemplifies encasement’s stellar performance on pro-

gressively smaller input domains. The interest in computing relevant topolog-

ical information on restricted input domains is important. Many applications

require locally refined information and have no need for a global arrangement.
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Figure 5.3: (Individual Curve Isolation) Total running time of encasement vs CGAL on

pairs of curves of varying degrees.
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Figure 5.4: (Individual Curve Isolation) Ratio of running time CGAL over encasement on

pairs of curves of varying degrees.
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Figure 5.5: (Root Isolation) Total running time of encasement vs CGAL on pairs of curves

of varying degrees.
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Figure 5.6: (Root Isolation) Ratio of running time CGAL over encasement on pairs of

curves of varying degrees.
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Figure 5.7: (Root Approx Double) Total running time of encasement vs CGAL on pairs of

curves of varying degrees.
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Figure 5.8: (Root Approx Double) Ratio of running time CGAL over encasement on pairs

of curves of varying degrees.
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Figure 5.9: (Total Running Time) Sum of all three stages of each encasement and CGAL

on pairs of curves of varying degrees.
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of curves of varying degrees.
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We show a comparison between the total running time of encasement and

CGAL on progressively smaller and smaller input domains (Fig. 5.12 and

Fig. 5.11). Each curve in the figure represents the running time of an al-

gorithm with a fixed-size input box on curves of varying degrees. The input

domains were chosen to be non-trivial and include at least a single intersection

of the two input curves. Each input domain is square and the number next to

the title of each curve in the legend represents the side length.

CGAL does not have a natural way to restrict the domain of the input, so

what is required is to compute sub-segments of the X-monotone segments of

the original curve who intersect the left and right x values of the input domain.

These become the inputs to the arrangement, and all other segments that do

not intersect that interval are discarded. Clearly from the figure, CGAL sees no

benefit from decreasing the size of the input bounding box. Their techniques

are mostly agnostic from the region of interest specified. It must monotonize

the input and compute a resultant regardless. It may benefit slightly when

isolating roots of its resultant polynomial, but those gains are insignificant in

comparison to the cost of everything else.

encasement on the other hand is, by design, handled to reap the benefits of

smaller input domains. Each factor of two smaller the input domain removes

a recursive depth from the loop cutting algorithm. For generic inputs the

complexity and distribution of splitting lines is proportional to the complexity
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of the arrangement and distribution of its features. Therefore whatever factor

of the complexity of the arrangement is removed from the input domain will be

the same factor of improvement in the face splitting for intersection isolation.

The same applies to refining the coordinates of the intersections to consecutive

double floats. Clearly each factor smaller in the input box pushes the running

time down for all degrees (Fig. 5.12).
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Figure 5.11: Running time of CGAL on pairs of varying degree curves with varying

bounding box sizes. No marked improvement on running time with smaller bounding

boxes.
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Figure 5.12: Running time of encasement on pairs of varying degree curves with varying

bounding box sizes. Curves of all degrees see improvement from smaller starting box.



CHAPTER 6

Future Work

The development of the techniques for the algorithm have been very incre-

mental, with new improvements being based on ideas that were themselves

iterations of previous innovations. The results in this document are based on

the current state of the algorithm and implementation, but planned improve-

ments are already being considered.

6.1 Improved Splitting Lines

Arguably the most important decision the algorithm must make is the con-

struction of the next splitting line. This is the only operation that modifies

the current encasement, and the optimality of the line chosen is directly re-

sponsible for the efficiency of the algorithm. We in no way claim that our

current strategy chooses the most optimal line. The method for choosing is
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based purely on heuristics and appealing to low order approximations of the

curves within the cell. Given two curves f and g that do not intersect in the

cell, one can qualitatively describe an optimal splitting line by its behavior

around the area of the curves closest approach within the cell. Let point a on

curve f and point b on curve g be the points where the distance from f to

g is minimal. There is not necessarily a unique a nor b but any such points

will do. At these points ∇f(a) is parallel to ∇g(b). A line at point p in

the direction ∇f(a)⊥ separates f and g with equal distance at a and b. It

is the optimal splitting line to the best linear approximation to the curves at

their respective points. We hypothesize that the generation of such splitting

lines would produce a more efficient encasement algorithm than the current

strategy for generating splitting lines. We propose using numerical methods

to find a on f such that ∇f(a)×∇g(a) = 0 to find the approximate region of

closest approach of the curves, and construct a splitting line approximate to

the splitting line described above.

6.2 Individual Encasements

An encasement that constrains the curves to be monotonic with respect to

some direction has already been described to be effective in constructing robust

visualizations, but we are of the opinion that constraining the curves in this

way can also lead to a more efficient encasement algorithm. Our proposed idea
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is to perform individual encasements of each curve with the restriction that the

curve is monotonic in either x or y within the cell. This amounts to separating

f from both fx and fy within the cell. Thus we can use a relaxed encasement

to achieve the separation. Create an encasement of curve f and the curves

induced by fx = 0, and fy = 0. However we relax the constraint that two

curves in a common cell must intersect. This results in an encasement where

each cell contains either zero, one, or two curves. We are interested in the cells

that contain f . Such a cell possibly intersects either fx or fy, but never both.

Thus if such a cell excludes fx = 0 then we know either fx > 0 or fx < 0 and

either way, f is monotonic with respect to x inside the cell. The same applies

to fy. The result is that each cell containing f contains a single segment

that is either monotonic in x or y. This provides the means for our proposed

robust visualization. We also seek to use this procedure as a preprocessing

step. To encase f and g, first compute their individual encasements. Then

overlay the individual encasements and intersect edges of both to construct

a decomposition of the cell. This is not necessarily a valid encasement of f

and g yet. However, now any cell containing both f and g contain a single

segment of each monotonic with respect to some direction. This can aid in

constructing more optimal splitting lines and alternative ways of finding their

possible intersection within the cell.
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6.3 Improved Intersection Finding

We believe our algorithm for for isolating the intersection of f and g once a

cell with an alternating boundary is found can be significantly improved. As

it stands, the algorithm must subdivide the cell until a verifiable 2D interval

that is entirely contained in the cell is found. At that point the relatively large

2D interval must be subdivided until Newton’s method can succeed. Upon

initial analysis, a significant portion of the cost of this operation goes into

the linear substitution and root finding involved in subdivision, even thought

the substitution of vertical and horizontal lines is slightly more efficient than

general lines. We propose then to use numerical method in double precision

to converge to a point close to an intersection within the cell and then verify

that a 2D region around that point contains an intersection. This method

would have the benefit of the high efficiency of numerical algorithms in double

precision, but is complicated by the fact that we leave the realm of verifiable

intersection using interval arithmetic. Care must be taken to ensure that

once a region of interest is found in double, that we can construct a verifiable

intersection interval around such a point.
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6.4 Arrangement Construction

As it stands, the current software is primarily focused on providing the inter-

sections of f and g verifiably. The intention of the method however is to be

able to produce the entire arrangement of f and g and to have the ability to

answer any associated queries about such an arrangement (point location, ad-

jacency of cells, nesting of cells, etc). Preliminary work has been investigated

into providing such queries, but are at this point incomplete. The current soft-

ware can report the vertices of all arrangement cells accurately, the adjacency

of each cell, and an approximation of its boundary. To accurately provide

points on the boundary to an arbitrary degree of precision would require some

modifications to the way that single curve segments are represented in the

encasement (Sec. 4.4).

6.5 3D Analogue

The eventual goal of the technique of encasement is to be able to provide

the arrangement of a set of algebraic surfaces embedded in R3. We believe

that most of the strategies involved in computing the 2D encasement can be

translated into direct analogues in 3D. Critical point finding remains very

similar, the difference being the regions are now connected components of

leaves of an octtree rather than a quadtree. The use of Taylor’s theorem
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for lower bound approximations of the functions applies directly with small

modification to the code. The central idea of splitting lines translates into

the construction of splitting planes for 3D cells. Intersections of trivariates

f(x, y, z) = 0 and g(x, y, z) = 0 on a plane with parametric equation ~p +

α~u+β~v results in the subproblem of finding the intersections of two bivariates

fplane(α, β) and gplane(α, β) in a convex region, a problem we have shown in

this work to be efficiently solved by encasement. Other details have to be

worked out, but we believe the translation to be plausible.
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