
University of Miami
Scholarly Repository

Open Access Theses Electronic Theses and Dissertations

2009-01-01

Confidential Data Dispersion using Thresholding
Aravind Prakash
University of Miami, prakar177@gmail.com

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_theses

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Theses by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Prakash, Aravind, "Confidential Data Dispersion using Thresholding" (2009). Open Access Theses. 232.
https://scholarlyrepository.miami.edu/oa_theses/232

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses/232?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

UNIVERSITY OF MIAMI

CONFIDENTIAL DATA DISPERSION USING THRESHOLDING

By

Aravind Prakash

A THESIS

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Master of Science

Coral Gables, Florida

May 2009

©2009
Aravind Prakash

All Rights Reserved

UNIVERSITY OF MIAMI

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science

CONFIDENTIAL DATA DISPERSION USING THRESHOLDING

Aravind Prakash

Approved:

________________ _________________
Burton Rosenberg, Ph.D. Terri A. Scandura, Ph.D.
Associate Professor of Computer Science Dean of the Graduate School

________________ _________________
Akmal Younis, Ph.D. Huseyin Kocak, Ph.D.
Associate Professor of Electrical Professor of Computer Science
and Computer Engineering

PRAKASH, ARAVIND (M.S., Computer Science)

Confidential Data Dispersion using Thresholding (May 2009)

Abstract of a thesis at the University of Miami.

Thesis supervised by Dr. Burton Rosenberg.
No. of pages in text. (41)

With growing trend in “cloud computing” and increase in the data moving into the

Internet, the need to store large amounts of data by service providers such as Google,

Yahoo and Microsoft has increased over time. Now, more than ever, there is a need to

efficiently and securely store large amounts of data. This thesis presents an

implementation of a Ramp Scheme that confidentially splits a data file into a

configurable number of parts or shares of equal size such that a subset of those shares can

recover the data entirely. Furthermore, the implementation supports a threshold for data

compromise and data checksum verification to verify that the data parts have not been

tampered with. This thesis addresses two key problems faced in large-scale data storage,

namely, data availability and confidentiality.

iii

Table of Contents

List of Graphs ..v

List of Figures ..vi

Chapter 1: Introduction ...1

1.1 Background...1

1.2 Motivation...2

1.3 Organization of this Document...5

Chapter 2: Ramp Schemes ..6

2.1 Definition..6

2.2 Ramp Scheme versus Conventional 1-N Redundancies.......................................7

Chapter 3: Algorithm...14

3.1 Background on Lagrange Interpolation ..14

3.2 Assumptions ...15

3.3 Useful Sub-Routines ...16

3.4 SPLIT..19

3.5 MERGE ..20

Chapter 4: Architecture ...23

4.1 Hashing ...23

4.2 Splitting...24

4.3 Merging...25

4.4 Integrity Check ...26

iv

Chapter 5: Implementation..27

5.1 Interfaces...27

5.2 Randomness ..30

5.3 Experimental Setup...32

5.4 Results...34

Chapter 6: Conclusion and Future work..37

6.1 Conclusion ..37

6.2 Future Work..38

Bibliography..40

v

List of Graphs

Graph 1 - Reliabilities of (8,3,1) Ramp Scheme and 1-2 Redundancy Setup11

Graph 2 - Reliability of Ramp Schemes with 1000 nodes and 1-6 Redundancy System .12

Graph 3 - Split times using /dev/urandom against using no randomness34

Graph 4 - Time taken to merge ...35

vi

List of Figures

Figure 1 - Updating Data with the SHA hash string ...23

Figure 2– Splitting data using Lagrange Interpolation Polynomial24

Figure 3 – Merging data using the Lagrange Interpolation Polynomial25

Figure 4 – Checking the integrity of the merged data ...26

Figure 5 – Advantages of Ramp Schemes over Copy based systems.37

1

Chapter 1

Introduction

1.1 Background

Data storage, reliability and security are important aspects of data management. With

the increase in the Internet traffic and growing number of services on the cloud, by

different service providers such as Google, Yahoo, Microsoft and Facebook. There is a

lot of data that these companies need to efficiently store, including sensitive data like user

profile, banking information, personal files, etc. Also, there is company related data such

as proprietary algorithms, Software source code, etc which need to be stored away

securely and reliably as a contingency for both disasters and attackers (such as hackers).

It is now more than ever that there is a need for these companies to efficiently, securely

and reliable store data.

Current procedures used for data management, fault/disaster recovery and increasing

availability, such as the ones discussed in [10] and [11] heavily rely on 1-2 or 1-N

redundancy models, where a 1-N redundancy model implies a total of N copies including

the 1 active copy. A 1-N redundancy model can be better understood using the following

example. If the original data were in Miami, a copy of the “entire data” would be

maintained in say Chicago in 1-2 redundancy model. In 1-N redundancy model, if

original data were in Miami, a copy of the data would be maintained in multiple cities

say, Chicago, Beijing and London. In either case, if the data in Miami were lost due to a

natural calamity (say), a copy of the data from the backup in Chicago, in case of 1-2

redundancy model or a back up from Chicago, Beijing or London in case of 1-N

2

redundancy model would be restored as original. This method not only poses data

security issues, but also for a given level of reliability, requires more data than actually

needed.

1.2 Motivation

Conventional data security systems rely on Data encryption methods such as DES and

RSA. These encryption methods convert a message called plaintext into an encrypted

message called ciphertext using a key, which is usually much smaller than the plaintext

message. The problem with this kind of a system is, one the key needs to be safeguarded,

because if the key is compromised, the attacker will be able to decipher the ciphertext and

two, the probability that an attacker will be able to reproduce the key without any

knowledge of it should be incredibly small, meaning, the key will have to be big, random

and should be from a really large sample space. In-spite of the above, it must be noted

that these systems only provide Computational Security, meaning, the key recovery is

possible, but the computing cost involved is too high. Their security heavily depends

upon the attacker not being able to either get hold of the ciphertext or generate the key,

which in turn depends on how well the ciphertext is guarded and also depends on the

sophistication of the hardware used by the attacker. If the attacker is indeed able to

generate the key, even a small amount of ciphertext could potentially leak a critical

amount of secret information. Over time, thanks to Moore’s laws, the cost of Hardware

required to break these system will be so small that the systems will be rendered unsafe

for use. In-fact experts already believe that RSA (1024 bits) is unsafe [8]. Scientists have

constantly been forced to invent newer methods of encryption due to failure of older

3

methods due to Hardware Sophistication. This race between the hardware sophistication

and the strength of encryption is a huge limitation of computational security.

In this thesis, we present an implementation of a (c, t, w) Ramp Scheme. A (c, t, w)

Ramp Scheme is a protocol to distribute a secret s among a setP of w participants in such

a way that sets of participants of cardinality greater than or equal to t have full

information on s, whereas sets of participants of cardinality less than or equal to c have

no information on s, whereas sets of participants of cardinality greater than c and less

than t might have “some” information on s.

Since compromise of shares of up to c in number have NO INFORMATION on s, no

matter how sophisticated the attacker’s hardware is, he will not be able to recover any

information. Hence, Ramp Schemes provide Information Theoretic security, which is

clearly better and more preferable than Computational security. Since only a fraction of

the total shares is required to reconstruct the actual data, Ramp Schemes provide

tolerance to loss of shares (due to whatever means). Tolerance to loss of shares is nothing

but increased reliability of data. Therefore, Ramp Schemes not only provide Information

Theoretic security, they also increase the data reliability. In this thesis, we provide an

implementation of a (c, t, w) Ramp Scheme.

Ramp Schemes rely on randomness as a source to obscure data and increase each

share’s entropy. Unfortunately, Ramp Schemes not only use randomness to split the data

into parts, but also embed random data into each share, hence requiring the user to store

redundant random information as a part of the shares. This redundancy of random

information is a worthy tradeoff for the amount of reliability and confidentiality that the

Ramp Schemes provide when compared to conventional 1-N redundancy systems. The

4

more random or purer the randomness is, higher is the entropy of a share and hence

higher is the level of security. An implementation of a Ramp Scheme requires good

quality randomness. In [6] Blundo and Santis discuss the role of randomness in Ramp

Schemes and in [7], Blundo and Masucci provide bounds for the amount of randomness

as a function of the size of data used in a (c, t, w) Ramp Scheme. Randomness plays a

very important role in the implementation of a Ramp Scheme. The more “random” the

randomness is, better the result, meaning, harder it is to guess the randomness, better

secure the system is. More about randomness will be explained in a separate section to

follow. In this thesis, we use randomness from /dev/urandom. We split the data and

randomness into different shares using a Ramp Scheme implementation. Data (in the

form of a file, say) is split into multiple individual shares (N in number) using a Lagrange

interpolation polynomial such that a subset of them (M) can reconstruct the data entirely.

A parameter called the threshold parameter (K) is used to indicate the tolerance the shares

have to intrusion. This is equal to the amount of randomness added to the data.

Compromise of up to K shares will reveal absolutely no information, while compromise

of shares greater than K in number, but less than M might reveal some information. The

security of the channels used for communicating the shares is of paramount importance

since the compromise of those channels would defeat the system as a whole. In [12],

Beimel and Chor discuss the implementation of Ramp Schemes in a public channel. In

this thesis however, we assume that the channels used for communication are secure.

Furthermore, detection of data manipulation, i.e., detecting if the data has been

manipulated at one or more of the individual systems which hold data and identification

of system(s) where the data is being manipulated is an important aspect of Ramp Scheme

5

implementation. These aspects are analyzed and a method to detect cheating and isolate

cheaters is suggested by T. C. Wu and T. S. Wu in [15]. In this thesis, we present an

implementation where we support detection of data manipulation in the form of a data

integrity check, but implementation of the algorithm corresponding to the identification

of the manipulating systems is left to the application which uses our library since.

1.3 Organization of this Document

In Chapter 2 of this document, we discuss Ramp Schemes in detail and in chapter 3

we give details about an Algorithm to implement a (c, t, w) Ramp Scheme. In chapter 4,

we present the architecture of our implementation followed by the library implementation

of Ramp Scheme in chapter 5 using C programming language on Fedora Linux. The

implementation is based on the algorithm described in chapter 3. We also discuss the

performance of the Split and Merge functionalities of the implementation. Chapter 6

discusses the future work and chapter 7 concludes by summarizing our work.

6

Chapter 2

Ramp Schemes

Secret sharing schemes were introduced by Shamir[1] and Blakeley[2]. They

analyzed sharing schemes for cases where a subset of shares (fixed) t out of w can

reconstruct a secret. These schemes are called (t, w) threshold schemes.

2.1 Definition

In [4], Blundo, Santis and Vacarro define a (c, t, w) Ramp Schme as follows: A(c, t,

w) Ramp Scheme is a protocol to distribute a secret s among a set P of w participants in

such a way that set of participants of cardinality greater than or equal to t can reconstruct

the secret s, sets of participants of cardinality less than or equal to c have no information

on s, whereas sets of participants of cardinality greater than c and less than t might have

“some” information on s. A (t, w) threshold scheme is a special case of a ramp scheme

where c = t – 1. Formally defined, a (c, t, w) ramp scheme, where 1 ≤ c < t ≤ w, is a

sharing of a secretS among participants w, such that

1. Any set of at-least t participants can reconstruct the secret. That is, if A represents

the collection of shares from number of participants ≥ t, it holds H(S  A) = 0.

2. Any set of at-most c participants has absolutely no information on the secret. That

is, if A represents the collection of shares from number of participants ≤ c, it

holds H(S  A) = H(S)

By definition of Ramp Schemes above, for any set of participants up to c in number,

H(S  A) = H(S), meaning, the entropy or the uncertainty of S doesn’t change by

knowledge of A (more details can be found in [9]), in other words, knowledge of up to t

7

shares will keep the secret as uncertain as it was without knowing any shares. Any set of

more than c and less than tparticipants might have “some” information on the secret S.

Formally from [4], for all A ⊆ P with c < A <t, it holds, H(S | A) = (t - |A|) * H(S) / (t –

c). This expression shows that the entropy,

H(S | A) ≤ H(S) for c < A <t, which implies that the Secret is less uncertain than it

was without the knowledge of any shares.

From the above analysis, it can be concluded that Ramp Schemes provide information

theoretic security rather than just computational security. Blakley and Meadows provide a

detailed analysis of security of Ramp Schemes in [14]. We now present comparisons

between Ramp Schemes and Conventional redundancies.

2.2 Ramp Scheme versus Conventional 1-N Redundancies

We compare the Ramp scheme against conventional 1-N redundancy in the following

situations:

1. With respect to Data Storage Space: The amount of data storage space required

is the same in both, Ramp Scheme and the 1-N redundancy.

2. With Respect to number of Individual Systems: We are provided with a set of

highly vulnerable systems. That is, the probability of failure and or

compromise of each system in both the Ramp Scheme and the 1-N redundancy

is high. This analysis is practical in situations where there is less or no control

over the individual systems. In particular when sensitive information is stored

in nodes over WAN or Internet.

Scenario – 1: Amount of Data Storage is Constant

8

Relation between the size of shares of Ramp Scheme and size of share of 1-N

Redundancy:

Though the user could store each share in an individual system or multiple shares on

the same system, here, it has been assumed that the user stores individual shares in

different systems, in which case, the total storage space required will be equal to the

number of systems times the size of each share.

Let the size of Data to be stored be “D’.

Let the total number of generated shares under the Ramp Scheme be “n’.

Let the total number of shares required to reconstruct the data be “m’.

Let the total number of shares of randomness used be “k’

Hence, total number of shares of data used to split the data using the Ramp Scheme is

(m – k)

The size of each of “n” generated shares is given by si = D/(m – k)

Hence, the total size of all the shares is given by, S1 = nD/(m – k)

Share size under 1-N Redundancy is given by:

Size of Data is D and a copy is stored on each of the n1.

Hence, total storage space required, S2= n1D.

We are concerned about a given amount of storage space, i.e., S1 = S2,

Therefore,

 nD/(m – k) = n1D

or, n/(m – k) = n1

The above expression gives a relation between the Number of systems required in

both the Setups, one using the Ramp Scheme and the other using the 1-N Redundancy.

9

Here it must be noted that, we do not consider the reparability of the individual systems.

Meaning, if an individual system fails, the system administrator may be in a position to

replace or repair the failed unit. Our assumption is that the systems will not be repaired or

serviced once deployed. The repair and servicing aspect has been considered in detail and

well analyzed in several reliability engineering books such as [13]. We now consider an

example to demonstrate a setup where Ramp Scheme outperforms 1-N redundancy.

Example:

Consider a (c, t, w) Ramp Scheme with c = 1, t = 3 and w = 8. We will compare the

reliability of this setup against a 1-3 redundancy model setup, which consists of 1 active

and 3 failsafe redundant systems. In this example, it has been assumed that similar

systems are used in both setups. Particularly, probability of failure of an individual

system in Setup 1 using the (1, 3, 8) Ramp Schemes is the same as the probability of

failure of the individual system in Setup 2 using the 1-3 Redundancy model.

Setup 1

We use 1 part of randomness and 2 parts of original data; this will make the tolerance

of the system to 1 share. Meaning, compromise of 1 share will leak absolutely no

information about the data while compromise of 2 shares will leak half the information

about the data.

Let the size of the original data be D.

Hence, total storage space required to house this setup is the same as the sum total of

sizes of all the shares. That is,

In this particular case, the total storage space required is, 8D/(3 – 1) = 4D.

10

Setup – 2

We use a 1-4 redundancy model consisting of 1 active system and 3 failsafe

redundant systems. Therefore, Total storage space required is (3+1)D = 4D, since we

replicate original data into 3 redundant parts.

Now, for a given storage space (4D), we compare the reliabilities of Setup 1 and

Setup 2.

Reliability of Setup – 1

Reliability of Setup 1 after time x is the probability that at-least t systems are up and

running after time x. Hence, reliability is given by,

Where, px is the probability that the system will be up after time x.

Substituting values of w and t, we get,

Reliability of Setup – 2

Reliability of Setup 2 after time x is the probability that at-least 1 system is up and

running after time x. Reliability of such a setup with nsystems is given by,

In this case, n = 4, since there are 4 systems in all. Substituting for n, we get,

Plotting R1(x) andR2(x) versus the px, the probability of a system being up after x units

of time, we get the graph,

11

Graph 1 - Reliabilities of (8,3,1) Ramp Scheme and 1-2 Redundancy Setup

From the graph, it can be seen that as the reliability of individual systems increase

over 0.76, the reliability of setup 1 becomes higher than reliability of setup 2. The

increased reliability along with the threshold for tolerance (the confidentiality aspect,

which allows the compromise of upto 1 share) makes Setup 1 a more suitable

implementation. More such examples can be given to show that the ramp scheme out

performs conventional 1-N redundancies. A (2, 10, 24) Ramp Scheme requires the same

amount of storage space as a 1-3 Redundancy model, but gives better reliability than 1-3

redundancy at higher individual system reliabilities. A (5, 15, 40) Ramp Scheme requires

the same amount of storage space as a 1-4 Redundancy model, but provides higher

reliability at higher individual system reliabilities. In general, for a given amount of data

storage space, Ramp Schemes provide higher reliability with higher individual system

reliabilities.

(8, 3, 1) Ramp Scheme

12

Scenario – 2: Highly vulnerable individual systems

High vulnerability of a system implies that the system is prone to attack and or

compromise. It will be looked upon as high probability of failure or compromise. In this

scenario, we are interested in comparing the reliability of Ramp schemes against

reliability of conventional 1-N redundant systems while the probabilities of failure of

individual systems are very high. This analysis is specially useful in considering

applications of Ramp Schemes in a Wide Area Network (or Internet) where there are a

huge number of systems, where each of them can be pretty hostile or their down time can

be pretty high. Ayari, Barbaron, Lefèvre and Primet [17] present different challenges and

High Availability issues in Internet based services and Ayari, Barbaron and Lefèvre

suggest improvements to Internet based High Availability systems in [10].

Graph 2 - Reliability of Ramp Schemes with 1000 nodes and 1-6 Redundancy System

The above figure shows that the Ramp Schemes out performs even the 1-6

Redundancy when the reliability of individual systems is small. The Reliability curve

13

gets steeper as the number of shares increase. This set up is particularly useful if Ramp

Schemes were used as a model to store sensitive data over the Internet.

14

Chapter 3

Algorithm

In this chapter we discuss the algorithm used to implement a (c, t, w) Ramp Scheme.

In a nutshell, we construct a Lagrange Interpolation Polynomial using the Original data to

be split and the randomness as input points and generate the desired number of shares at

the output points.

3.1 Background on Lagrange Interpolation

The Lagrange interpolating polynomial is a polynomial P(x) of degree less than or

equal to (n-1) that passes through the n points (x1, y1), (x2, y2), ..., (xn, yn), where y1=

f(x1), y2=f(x2), …, yn = f(xn). It is given by,

,

where,

,

Explicitly written,

15

Note that the Lagrange Interpolation Polynomial P(x) can not be reconstructed

without at-least “n” points. This property is the basis of the algorithm presented here. We

construct a Lagrange Interpolation Polynomial of degree m – 1, where “m” is the

minimum number of shares required to recover the original data, use “m – k” inputs of

original data parts and “k” inputs of random data at “m” points beginning from point 0

and evaluate the output at “n” output points which are different from the input points. To

reconstruct the original data, we take any “m” out of “n” input points and evaluate the

output at “m – k” points beginning from 0.

3.2 Assumptions

We make the following assumptions to facilitate the description of the algorithm:

1. We assume that we are provided with a field with size of at-least 256 with an

implementation of addition, subtraction, multiplication and inverse functions (The

algorithm has been tested for GF (256). However, the Algorithm will work with

any GF’s with greater than 256 elements. The number of shares that can be

generated depends on the number of distinct points on the field. If a field has “N”

distinct points, “N – m” shares can be generated in the field). A method SUM(a,

b), which adds two field elements a and b and returns the resulting field element.

A method DIFF(a, b), which subtracts field element b from field element a and

returns the resulting field element (Note that if we are using a GF with

characteristic 2, then SUM and DIFF will both be the same, which is an XOR

operation of the two elements). A method PROD(a, b), which returns a field

16

element which is a product of two field elements a and b. We also assume the

presence of a function called INV (x) which returns the inverse of the element x in

the field.

2. We assume an infinite source of Randomness RAND (), which on each call

returns a single byte of randomness.

3. We assume the existence of a function HASH (data, hash), which generates the

hash for the data and returns the size of the hash. We also assume that the

character “-” is not a part of the hash. This is important because “-” is used as

padding at the end of data and hash.

3.3 Useful Sub-Routines

We define the following methods that will be used in the algorithms for SPLIT and

the MERGE.

We define method GETBYTE, a method used to retrieve a byte from a part starting

from the first byte. On successive calls, successive bytes are obtained. This works similar

to getc(FILE *fp) in stdio C library.

GETBYTE(in_part)

1. returnone byte from in_part.

We define PUTBYTE method, used to put a byte into a part. On successive calls to

PUTBYTE, bytes are appended to the original content. PUTBYTE works similar to the

putc(int data, FILE *fp) in stdio C library.

PUTBYTE(byte, out_part)

1. out_part[last_byte] ← data

17

The following two procedures CALC_INCROSS and CALC_OUTCROSS contribute

towards forming the Lagrange Interpolation Polynomial. CALC_INCROSS is a

method, which calculates the product of (xi – xj) with j not equal to i, where xi are

input points. That is, it evaluates,

CALC_INCROSS(in_points)

1. fori ← 0 upto length[in_points]

2. doval←1

3. forj ← 0 upto length[in_points]

4. do if (j not equal to i)

5. thenval ← PROD (val, DIFF(in_points[i], in_points[j]))

6. in_cross[i] ← val

7. returnin_cross

CALC_OUTCROSS is a method, which calculates the product of (zi – xj) for all i,

where zi are output pointsand xjare input points. That is, it evaluates,

CALC_OUTCROSS(in_points, out_points)

1. fori ← 0 upto length[out_points]

2. doval←1

3. forj ← 0 upto length[in_points]

18

4. doval← PROD (val,DIFF(out_points[i], in_points[j]))

5. out_cross[i] ← val

6. returnout_cross

EVAL_POINT is a method, which plugs in the m input data values into the Lagrange

Interpolation Polynomial generated from CALC_INCROSS and CALC_OUTCROSS

and interpolates the n output data values.

This is nothing but,

EVAL_POINT(in_points, out_points, in_cross, out_cross, in_data)

1. fori ←0 upto n – 1

2. doval ←0

3. ifout_cross[i] is equal to 0 //Means output point is an input point retain data

4. then for j ←0 upto m – 1

5. do if out_points[i] equals in_points[j]

6. thenval ← in_data[j]

7. else

8. forj ←0 upto m – 1

19

9. doterm1 ← DIFF(out_points[i] – in_points[j])

10. term1← PROD (term1, in_cross[j])

11. term1← INV(term1)

12. term1← PROD(term1, out_cross[i])

13. term1← PROD(term1, in_data[j])

14. val← SUM(val, term1)

15. out_data[i] ← val

We now move on to the Algorithms for splitting and merging.

3.4 SPLIT

We define the method SPLIT used to split data (D) of size (D_size) into “n”parts of

equal size such that at-least “m” of the “n” parts are required to reconstruct the data

successfully. Compromise of up-to “k” parts will reveal absolutely zero information,

while compromise of less than m, but greater than k number of parts might reveal some

information.

SPLIT (D, D_size, m, n, k)

1. ifn< 0 or m < 0 or n < m or m < k

2. thenreturn config_error

3. hash_len←HASH (D, cs)

4. pad_size←m – k – ((D_size + hash_len) mod (m – k))

5. D← Concatenate D and cs

6. fori ← 1 upto pad_size

7. doD ←Concatenate D and “-”

20

8. fori← 0 upto m – 1

9. doin_points[i] ← i

10. fori ← m upto m + n – 1

11. doout_points[i] ← i

12. part_size ← (D_size + hash_len + pad_size)/ (m – k)

13. fori ← 0 upto m – k – 1

14. doin_parts[i] = D[i * part_size] //Split data into m - k parts

15. in_cross ← CALC_INCRORSS(in_points)

16. out_cross ←CALC_OUTCROSS(in_points, out_points)

17. fori ←1 upto part_size

18. do for j ← 0 upto m - 1

19. do if j < m – k – 1

20. thenin_data[j] ←GETBYTE(in_part[j])

21. elsein_data[j] ←RAND()

22. out_data ←EVAL_POINT(in_points, out_points, in_cross, out_cross, in_data)

23. forj ← 0 upto n – 1

24. doPUTBYTE(out_parts[j], out_data[j])

25. returnout_parts, out_points

3.5 MERGE

We define method MERGE, used to merge the data parts into the original data.

Merging works similar to splitting. We plug the m parts at their respective points in the

Lagrange Interpolation Polynomial and evaluate the outputs at points 0 to m – k – 1,

21

which will be the original data parts. That is, m out of nout_points of SPLIT become the

in_points of MERGE and the in_points of SPLIT become the out_points of merge. Parts

is an array of parts with data and the point of evaluation (in_point), part_size is the size

of each part, m, n and k form the configuration parameters which must be identical to

what they were when the data was split using SPLIT.

MERGE (parts, part_size, n, m, k)

1. ifn< 0 or m < 0 or n < m or m < k

2. thenreturn config_error

3. fori← 0 upto m – 1

4. doin_points[i] ← parts[i].id

5. fori ← 0 upto m - k – 1

6. doout_points[i] ← i

7. in_cross ← CALC_INCRORSS(in_points)

8. out_cross ←CALC_OUTCROSS(in_points, out_points)

9. fori ←1 upto part_size

10. do for j ← 0 upto m - 1

11. doin_data[j] ←GETBYTE(parts[j])

12. out_data ←EVAL_POINT(in_points, out_points, in_cross, out_cross, in_data)

13. forj ← 0 upto m – k – 1

14. doPUTBYTE(out_parts[j], out_data[j])

15. fori ←1 upto m – k – 1

16. doD ← out_parts[i] concatenated to D

17. whilethe last character of D is “-”

22

18. do remove “-” //Remove padding

19. cs ←removehash from end of D

20. HASH (D, cs_new)

21. ifcs not equal to cs_new

22. return checksum error

23. returnD

23

Chapter 4

Architecture

In this chapter we discuss the architecture of the library.

4.1 Hashing

Figure 1 - Updating Data with the SHA hash string

The library depends on an external SHA library [19] to generate the SHA hash. A

reference to the data, which needs to be split, is passed to the SHA library. The SHA

library generates a SHA hash string corresponding to the data, which is then appended to

the data itself.

24

4.2 Splitting

The following diagram shows data is split into shares. The middle portion of the diagram

shows the Lagrange Interpolation polynomial constructed out of the m input points,

which include m – k data points and k random points.

Figure 2– Splitting data using Lagrange Interpolation Polynomial

It is a matter of choice to choose the points where the actual data will correspond . The m

– k parts of Original data (appended with SHA) are used at input points 0, 1, 2, …,m – k –

1, along with k parts of random data are used as input points at m – k, m – k + 1, …, m

and a Lagrange interpolation polynomial is constructed. The data from the input points is

plugged into the Lagrange Interpolation Polynomial and the data at the n output points

(which are not the same as the input points) are evaluated to obtain the n shares. The

25

point that a share corresponds to is stored as a part of the share. This information is

essential during the reconstruction of the original data from the shares.

4.3 Merging

Figure 3 – Merging data using the Lagrange Interpolation Polynomial

Merging happens very similar to splitting. Any mout of nshares are used as inputs to

generate the data parts at the output. Lagrange interpolation is used to create a

polynomial passing through m shares. This polynomial is then evaluated at 0, 1, 2, … ,m

– k – 1 points to recover the original data parts. These recovered parts are appended

together in the increasing order of point value to obtain the merged data. It can be noted

that the data at points,m – k – 1 to m – 1 correspond to the randomness that was added.

26

4.4 Integrity Check

The last part of the reconstruction procedure is the integrity check. This part validates

that the shares haven’t been altered intentionally or unintentionally.

Figure 4 - Checking the integrity of the merged data

In this part, the merged data, without the SHA at the end of it is passed through the

SHA generator to generate the new SHA. This new SHA is compared against the

previously generated SHA to verify integrity. If the two SHAs do not match, there is a

potential threat of intrusion.

Figure 4 – Checking the integrity of the merged data

27

Chapter 5

Implementation

We implemented the above algorithm into a Unix library using C programming

language. Functionalities such as synchronous Splitting and Merging are supported. We

worked on a GF(256) using Conway Multiplication for the field multiplication. The field

implementation by David Madore was used for the field. We used an Open Source

implementation of Secure Hash Algorithm (SHA) [3] library to provide support for data

integrity. We obtain the random data from /dev/urandom.

5.1 Interfaces

The following structure is used as a configuration structure to set the values of m, n

and k.

struct config {
 unsigned int m;
 unsigned int n;
 unsigned int k;
};

Where, n is total number of parts into which you want the data split, m is the total

number of partsneededto recover the original data and k is number of random parts to use

(this indicates the tolerance. Compromise of up to kparts will reveal no information about

the original data whatsoever).

The following conditions apply:

1. It is required that m ≥ n and n > k.

2. k can be 0, but m and n can't.

If there is an error in configuration, INVALID_CONF error will be returned.

Error codes are enumerated as follows:

28

typedef enum {
 SUCCESS = 0,
 INVALID_CONF = 1,
 OUT_OF_MEM = 2,
 MERGE_CHECKSUM_ERROR = 3,
 DATA_ERROR = 4,
 IO_ERROR = 5,
 GOD_KNOWS_WHAT_WENT_WRONG_ERROR = 6
} SplitError;

The following structure is used to provide original data as input to split

struct req_orig_data{
 void *data;
 unsigned int data_size;
};

The following structure contains the split parts. “parts” is an array of “m” pointers, each

pointer pointing to a single part of size “part_size” bytes. The number of pointers will be

the same as the number of parts requested in the “struct config structure”. If memory

allocation fails for the parts, error code will be set to OUT_OF_MEM.

struct res_split_parts {
 struct part **parts;
 int part_size;
 SplitError err;
};

The following structure holds a part.Data for the parts will be allocated by the library.

struct part {
 unsigned char *part_data;
 int id;
};
idcorresponds to the point at which the part was evaluated. This information is used in the

construction of Lagrange Interpolation polynomial during reconstruction.

29

The following structure should be used as request to merge the parts into the original

data. “parts” should have an array of “num_parts” pointers, each pointing to an

individual part. “part_size” bytes will be read from each part.

struct req_orig_parts {
 struct part **parts;
 int num_parts;
 int part_size;
};

The following structure is used to return the merged data with size “size” bytes.

Appropriate error code will be set.

struct res_merged_data {
 void *data;
 int data_size;
 SplitError err;
};

The following method is used to split data into parts. data will contain the Original data

and its size, while conf will contain the requested configuration.

 The struct res_split_parts will hold the pointers to the requested parts. If an error

was encountered, appropriate error code will be set. If the error doesn't indicate

SUCCESS, the contents of the parts will be unreliable (may contain some garbage value).

struct res_split_parts split(struct req_orig_data data,
struct config conf);

The following method is used to merge the shares into the original data and check for

integrity. The struct req_orig_parts will contain the individual parts.

 struct res_merged_data will contain the merged data along with an appropriate

error code. If the checksum fails (which would indicate that one or more parts might be

compromised), MERGE_CHECKSUM_ERROR error will be returned.

30

struct res_merged_data merge(struct req_orig_parts

parts, struct config conf);

5.2 Randomness

Randomness is a crucial resource for cryptography, and random number generators

are therefore critical building blocks of almost all cryptographic systems. Be it to

generate session and message keys for symmetric ciphers such as triple-DES or Blowfish,

be it to generate seeds for routines that generate large primes (for RSA, say), be it for

salts to combine with passwords during password storage, and so on, randomness is used

everywhere. Similarly, randomness is crucial in the implementation of a threshold

scheme or a (c, t, w) Ramp Scheme in general. The security of a Ramp Scheme heavily

depends on the randomness that is used during the generation of the shares.

True random numbers are defined as follows: a number generated in the range 0, 1,

…, 2n – 1 is “truly random” if an observer, with any amount of computational

resourcecannot predict the number with probability better than 1/2n.. True random

numbers are, unfortunately, very difficult to generate, especially on computers, which are

designed to be deterministic. Nature is the best source of true randomness. Temperature

variations in the CPU, keystrokeson a keyboard, mouse movements and hard-drive

activity are activities which are non-deterministic in nature and hence are a source of true

randomness. Hardware based true random number generators use some physical

phenomenon that is expected to be random and then compensate for possible biases in the

measurement process. Software based random number generators on the other hand use

computational algorithms that produce long sequences of apparently random results,

which are in fact completely determined by a shorter initial value, known as a seed or

31

key. Such a number is called a pseudorandom number if the generator’s output is not

distinguishable from a truly random number by any polynomial time algorithm. The

quality of a pseudorandom number generator depends on the algorithm used to generate

random numbers and the source of the key. In a cryptographic sense (including that in

Ramp Schemes), pseudorandom numbers (PRNGs) are acceptable only if they are

indistinguishable in polynomial computational time from true random numbers. Such

cryptographically acceptable pseudorandom numbers are called “cryptographically

secure pseudo random numbers” (CSPRNG).

PRNG’s such as Peter Gutmann’s PRNG in Cryptlib [20], Colin Plumb’s PRNG in

PGP [21], RSAREF 2.0 PRNG [22], Yarrow [23] are established PRNGs. Design

challenges of this thesis included obtaining good randomness but at the same time

keeping the library small. Linux provides two sources of cryptographically secure

randomness through two special files, /dev/random (blocking) and /dev/urandom (non-

blocking). Since /dev/urandom is cryptographically secure and comes built into most

flavors of Linux, randomness required to generate the shares has been obtained from

/dev/urandom (stands for “unlocked” random) on Fedora Linux (/dev/random and

/dev/urandom generally come built into most Linux flavors). Ituses environmental noise

collected from device drivers and other hardware sources, primarily from keyboard,

mouse, hard-disk activity and interrupts to generate randomness. The kernel maintains a

pool of entropy (which is fed using the hardware activity), which the /dev/random uses to

generate random data. Since the hardware activity during the boot sequence of a system

is almost identical every time the system boots, the hardware activity during the initial

phase is predictable and thus poses a security threat. To mitigate this threat, the Linux

32

kernel reads 512 bytes of data from /dev/urandom and stores it on the hard disk during

shutdown and writes it back to the entropy pool at boot up. At any point, if the pool is

empty, /dev/random will block until additional environmental noise is gathered and

entropy is added into the pool. /dev/urandom on the other hand reuses the internal pool to

produce more pseudo-random bits. Since /dev/urandom re-cycles the entropy without

blocking, it is considerably faster than /dev/random. However, the quality of randomness

generated by /dev/urandom degrades if the entropy available in the entropy pool falls

below a certain level. More data about /dev/random and /dev/urandom can be found in

[24].

Performance of the Ramp Scheme, as will be shown below, depends heavily on the

rate of generation of random data. One way of improving performance is to use the

randomness from /dev/random to seed a faster PSRNG and gather randomness from the

PSRNG. This has been left as future work.

5.3 Experimental Setup

The experiment was run on Fedora Linux. Identical system states were maintained with

respect to the available free memory and CPU before running the split and merge. Data

Files of sizes 100KB, 500KB, 1MB, 5MB, 10MB, 20MB, 50MB, 100MB, 200MB and

500MB were used to test the performance of the split and merge functions of the library.

3 trials of the experiments corresponding to split and merge were run for each file and the

times taken to split/merge in each trial were noted. The average of the 3 trials was used to

plot the graph. The following code was inserted to time the execution of the split

function.

clock_t start = clock();

33

res = split(data, conf);
printf("Done.\nTime elapsed: %f\n", ((double)clock() -
start)/CLOCKS_PER_SEC);

Similarly, the following code was inserted to time the execution of the merge function.

clock_t start = clock();
res = split(data, conf);
printf("Done.\nTime elapsed: %f\n", ((double)clock() -
start)/CLOCKS_PER_SEC);

Different input files as listed above were used as inputs and the respective output times

were recorded. A graph of Data File Size v/s Time Taken was plotted. The experiment

was run under two setups:

1. Randomness from the /dev/urandom was used as the main source of randomness

during split.

2. No randomness was used during splitting.

While obtaining the randomness from /dev/urandom, sufficient time was provided

between trials to ensure that the entropy available in the system was above 3000. The

entropy available was calculated using,

cat /proc/sys/kernel/random/entropy_avail

34

5.4 Results

Graph 3 - Split times using /dev/urandom against using no randomness

35

Graph 4-Time taken to merge

A graph of Size of the Data File versus Time taken was plotted. The times taken while

using no randomness was significantly less than the time taken while using /dev/urandom

as a source of randomness to split a data file of given size. In each trial, the entropy

available in the system after running the experiment reduced to a value below 200, which

is considered dangerously low.

It can be seen from the graph that Split function performs better when no randomness is

used. Also, it can be seen that the graph is a straight line indicating that the time taken is

directly proportional to the data size. This agrees with our runtime analysis of O(n) as

mentioned in Chapter 3. The rate of splitting data which is the same as the slope of the

line in the graph is found to be approximately 5.4 MB per second in the case of split

using no randomness as compared to 2.6MB per second while using /dev/urandom as the

main source of randomness.

36

On the other hand, the merge function has nothing do to with acquiring randomness. The

rate of merging data equal to the slope of the line is approximately equal to 9.1 MB per

second. As it can be seen this is very much higher than the data rate in the split

functionality. This is clearly due to the fact of reading randomness during splitting. The

faster performance can also be attributed to the fact that the number of points where the

outputs are evaluated during merge is less than the number of points where output is

evaluated during split.

37

Chapter 6

Conclusion and Future work

6.1 Conclusion

In this thesis, we highlighted the problems with conventional 1-N redundancy

copy based systems. We then defined Ramp Schemes and showed how Ramp Schemes

are suitable for data storage. In particular, we highlighted the following differences.

Figure 5 – Advantages of Ramp Schemes over Copy based systems.

We have shown through examples that a given amount of system reliability can

be obtained using lesser data space using a Ramp Scheme when compared to a

Copy
Based

Ramp
Scheme

More reliable for a given amount of data storage

Information theoretic
security

More suitable for deployment across wide
networks

Highly scalable

Commercially widely
available

Easy implementation

More suitable for failover
situations

38

conventional 1-N copy based systems. Furthermore Ramp Schemes provide Information

Theoretic security, which is very valuable when managing sensitive information. We also

presented our implementation of Ramp Schemes library in C programming language on

Fedora Linux and discussed the performance of the implementation. We went on and

established the importance of randomness in Ramp Schemes.

In all, using ramp schemes to secure data is a very cost effective way to achieve

information theoretic security to confidentially disperse and store data.

6.2 Future Work

Current implementation of the Ramp Scheme library provides a synchronous

interface to split and merge data, but when the data size is too large (in terms of GB’s)

splitting and merging would take a lot of time and the caller would be blocked till the

operation is complete. Asynchronous interfaces for split and merge should be provided

which would perform the operation and call back the caller to hand over the results.

The current implementation doesn’t provide the user to use his/her own random

number generation function. It would be a nice addition to the library to be able to accept

a random number generator function as input to split.

Splitting in the current implementation is limited by the system’s free memory

(RAM). Meaning, if the system memory is 1GB, max size of data that can be split is

around 500MB. This needs to be fixed by implementing split and merge using a pre-

defined block size.

The Reliability analysis of Ramp Schemes and 1-N redundancy systems doesn’t

consider the repair and maintenance aspect of the individual nodes where the data is

39

housed. This brings in a whole new view from the point of Reliability Engineering and

has been left as future work.

40

Bibliography

1. A. Shamir, How to Share a Secret, Commun. of the ACM, 22:612-613, 1979.

2. G. R. Blakley, Safeguarding Cryptographic Keys, AFIPS Conference
Proceedings, 48:313-317, 1979.

3. HMAC-SHA1, Aaron Gifford, http://www.aarongifford.com/computers/sha.html

4. Carlo Blundo, Alfredo De Santis and Ugo Vaccaro, Efficient Sharing of Many
Secrets, STACS 93. 10th Annual Symposium on Theoretical Aspects of Computer
Science, Wurzburg, Germany, February 1993, Proceedings.

5. Douglas R, Stinson. Cryptography Theory and Practice, 3rd Edition, Chapman
and Hall publication. ISBN: 1-58488-508-4

6. C. Blundo, A. De Santis and U. Vaccaro, Randomness in Distribution Protocols.

Inform. Comput. pp 111-139, 1996.

7. C Blundo and B Masucci, A note on the Randomness in Dynamic Threshold
Scheme. Journal of Computer Security, Vol 7, No. 1, 1999, pp 73-85.

8. James Middleton. 1024-bit encryption is “compromised”. Vnunet.com, March,

26, 2002. http://www.vnunet.com/News/1130451

9. Robert M Gray, Entropy and Information Theory, Springer 1st Edition. ISBN:
978-0387973715.

10. Narjess Ayari, Denis Barbaron and Laurent Lefèvre, On improving the Reliability

of Internet Services through Active Replication, 2008 Ninth International
Conference on Parallel and Distributed Computing, Applications and
Technologies.

11. Nidhi Aggarwal, James E. Smith, Kewal K. Saluja Norman P. Jouppi,

Parthasarathy Ranganathan, Implementing High Availability Memory with a
Duplication Cache, Microarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM
International Symposium.

12. Amos Beimel and Benny Chor, Secret Sharing with Public Reconstruction, IEEE

Transactions on Information Theory, vol. 44, no. 5, sept 1998.

13. Igor A. Ushakov and Robert A. Harrison, Handbook of reliability engineering,
American edition, New York : Wiley, c1994.

14. G. R. Blakley and C. Meadows, Security of ramp schemes, in Advances in

Cryptology -- CRYPTO '84.

41

15. Wu, T C and Wu T S, Cheating detection and cheater identification in secret

sharing schemes, IEEE Transactions on Computers and Digital Techniques
142(1995), 367-369.

16. D. R. Stinson and S. A. Vanstone, A combinatorial approach to threshold

schemes, SIAM Journal of Discrete Mathematics1 (1988), 230-236.

17. Narjess Ayari, Denis Barbaron, Laurent Lefèvre and Pacale PrimetFault
Tolerance for Highly Available Internet Services: Concepts, Approaches and
Issues, IEEE Communications Surveys, 2nd Quarter 2008, Volume 10, No. 2.

18. Hasard, Acryptographically secure Pseudo Random Number Gernerator.

http://sourceforge.net/projects/freshmeat_hasard/

19. Aarona D. Gifford, SHA 2 – An OpenSource implementation.
http://www.aarongifford.com/.

20. P. Gutmann, Software Generation of Random Numbers for Cryptographic

Purposes, Proceedings of 1998 Usenix Security Symposium, USENIX
Association, 1998, pp. 243 257.

21. P. Zimmermann, The Ofiicial PGP User’s Guide, MIT Press, 1995.

22. RSA laboratories, RSAREF cryptographic library, March 1994.

23. John Kelsey, Bruce Schneier and Niels Furguson, Notes on Design and Analysis

of the Yarrow Cryptographic Pseudorandom Number
Generator,http://www.schneier.com/paper-yarrow.html.

24. Ziv Gutterman, Benny Pinkas, Tzachy Reinman, Analysis of the Linux Random

Number Generator, http://www.pinkas.net/PAPERS/gpr06.pdf.

	University of Miami
	Scholarly Repository
	2009-01-01

	Confidential Data Dispersion using Thresholding
	Aravind Prakash
	Recommended Citation

	Microsoft Word - Thesis_final.docx

