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Many Automated Theorem Proving (ATP) systems for different logical forms,

and translators for translating different logical forms from one to another, have been

developed and are now available. Some logical forms are more expressive than others,

and it is easier to express problems in those logical forms. On the other hand, the

ATP systems for less expressive forms have benefited from more years of development

and testing. There is a trade-off between the expressivity of a logical form, and the

capabilities of the available ATP systems. Different ATP systems and translators can

be combined to solve a problem expressed in a given logical form. In this research, an

experiment has been designed and carried out to compare all different possible ways

of trying to solve a problem, using the following logical forms in increasing order of

expressivity: Propositional Logic, Description Logic, Effectively Propositional form,

Conjunctive Normal Form, First Order Form, Typed First order form-monomorphic,

Typed First order form-polymorphic, Typed Higher order form-monomorphic. In

this dissertation, the properties, syntax, and semantics of each target logical form are

briefly described. For each form, the most popular ATP systems and translators for

translating to less expressive forms are introduced.

Problems in logics more expressive than Conjunctive Normal Form can be trans-

lated directly to Conjunctive Normal Form, or indirectly by translation via inter-



mediate logics. No translator was available to translate from Conjunctive Normal

Form to Description Logic, which sits between Effectively Propositional form and

Propositional Logic in terms of expressivity. Saffron a Conjunctive Normal Form to

Description Logic translator, has been developed, which fills the gap between Con-

junctive Normal Form and Description Logic. Moreover, Description Logic Form

(DLF), a new syntax for Description Logic, has been designed. Automated theo-

rem proving by translation to Description Logic is now an alternative way of solving

problems expressed in logics more expressive than Description Logic, by combining

necessary translators from those logics to Conjunctive Normal Form, Saffron, and a

Description Logic ATP system.
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Chapter 1

Introduction

Sound reasoning deals primarily with the process of determining whether or not a

conclusion follows inevitably from some accepted facts. Example 1 presents a set of

fact statements A, and a conclusion statement C.

Example 1

A = {All even numbers are divisible by two,

Four is an even number}

C = Four is divisible by two

Testing whether or not the set of facts A leads to the conclusion C can be done by

considering one or both of two perspectives. One perspective is the semantic perspec-

tive, in which the meaning of the sentences is considered. From basic mathematics, it

is known that four is divisible by two. The other perspective is the syntactic perspec-

tive. In this perspective, without any mathematical knowledge, only by considering

the structure of the statements and applying logical rules, the statement “Four is di-

visible by two” can be concluded from the statements “All even numbers are divisible

1
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by two” and “Four is an even number”. Sound reasoning processes typically use

the syntactic perspective to establish that a conjecture is a theorem.

Logic is used to formalize the notions of a domain of interest. The logical forms

of interest in this research are Propositional Logic, Description Logic, Effectively

Propositional form, Conjunctive Normal Form, First Order Form, Typed First order

form-monomorphic, and Typed First order form-polymorphic, Typed Higher order

form-monomorphic. A logic consists of a syntax and a semantics. The syntax is used

to write statements (about some domain of interest) as a set of formalized statements,

formulae. A logic problem consists of some axiom formulae (the fact statements) and

a conjecture formula (the conclusion).

The semantics of a logic is expressed in terms of interpretations. An interpretation

of a logic problem relates the symbols of the logic problem to entities in the domain of

interest, and assigns TRUE or FALSE to each formula of the logic problem by applying

interpretation rules. An interpretation that evaluates a formula to TRUE is a model

of the formula. An interpretation that evaluates all formulae in a set of formulae to

TRUE is a model of the set of formulae. A set of formulae is satisfiable if and only

if it has at least one model. A set of formulae is unsatisfiable if and only if it has

no models. The conjecture of a logic problem is a logical consequence of its axioms

if every model of the axioms is a model of the conjecture. The conjecture of a logic

problem is a theorem if it is a logical consequence of the axioms of the logic problem.

On the contrary, the conjecture of a logic problem is a nontheorem if it is not a logical
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consequence of the axioms of the logic problem. The set of axioms and a conjecture

of a logic problem is countersatisfiable1 if and only if the conjecture is nontheorem.

A transformation T : F 7−→ T (F ) maps a Formulae F to transformed set of

formulae T (F ). The transformation T is satisfiability preserving means if A =

{F1, F2, ..., Fn} is satisfiable, then
⋃n

i=1 T (Fi) is satisfiable. The transformation T is

countersatisfiability preserving means if C is not a logical consequence of A, then T (C)

is not a logical consequence of
⋃n

i=1 T (Fi). The transformation T is countersatisfiability-

satisfiability preserving means if C is not a logical consequence of A, then
⋃n

i=1 T (Fi)∪

T (∼ C) is satisfiable. A transformation of a set of formulae is sound if and only if it

is satisfiability preserving, countersatisfiability preserving, and countersatisfiability-

satisfiability preserving.

One way to check if the conjecture of a logic problem is a theorem is proof by

contradiction. Proof by contradiction checks if the set consisting of the axioms and

the negated conjecture is unsatisfiable. A common approach is to apply sound trans-

formations from the set consisting of the axioms and the negated conjecture. If these

lead to an obviously unsatisfiable set, e.g. a set containing the FALSE formula, then

it is known that the original set is unsatisfiable, and hence that the conjecture is a

theorem of the axioms. From now on in this dissertation, a logic problem expressed

in this form, i.e. a set consisting of the axioms and the negated conjecture, is called

a PbC logic problem (Proof by Contradiction logic problem).

1The SZS ontology [1] supplies the definitions of status values such as “theorem”, and “counter-
satisfiable”.
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A logic is decidable if for every (PbC) logic problem expressed in that logic, it can

be determined if it is nontheorem (satisfiable) or theorem (unsatisfiable) in a finite

time. A logic is undecidable if it is not decidable, i.e., there is at least one (PbC)

logic problem in that logic for which the non-theoremhood (satisfiability) cannot be

determined in a finite time. A logic is semi-decidable if for every (PbC) logic problem

expressed in that logic, it can be determined whether it is theorem (unsatisfiable) in

a finite time, but the non-theoremhood (satisfiability) of some logic problems in that

logic cannot be determined. Some logics are decidable, but many are semi-decidable

or undecidable.

To solve a (PbC) logic problem, it is checked if a (PbC) logic problem is theorem

(unsatisfiable) or nontheorem (satisfiable). From now on, “problems” refers to both

“logic problems” and “PbC logic problems”, unless explicitly mentioned.

1.1 Automated Theorem Proving

Automated Theorem Proving (ATP) [2] is concerned with the development of au-

tomatic techniques and computer programs for solving problems. An ATP system is

a computer program that automatically solves a problem. Many logics have ATP sys-

tems available. Examples include Vampire [3] for First Order Form and Conjunctive

Normal Form, CVC4 [4] for Typed First order form-monomorphic, and Satallax [5]

for Typed Higher order form.

It is possible to translate a problem in one logic to another logic. A translation

from a problem in source logic to destination logic is a transformation in which the
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formulae of the problem, {F1, F2, ..., Fn}, are in source logic, and
⋃n

i=1 T (Fi) are in

destination logic. Many sound translators for translating a problem in one logic to

another one have been implemented. Examples of sound translators are ECNF [6] for

translating from First Order Form to Conjunctive Normal Form and Monotonox [7]

for translating from Typed First order form-monomorphic to First Order Form or

Conjunctive Normal Form. For the goals of this research, only translations from

more expressive logic to less expressive ones are of interest.

1.2 The Thousands of Problems for Theorem

Provers World

The Thousands of Problems for Theorem Provers (TPTP) world [8] includes the

TPTP problem library [9], and the Thousands of Solutions for Theorem Provers

(TSTP) solution library. TPTP library is a set of standard test problems for ATP

systems. The TSTP library is a set of ATP systems’ solutions for the TPTP problems.

The TPTP world also includes tools to support these libraries. The TPTP allows as

an appropriate, convenient and repeatable testing, evaluating and comparing ATP

systems. The home page for the TPTP is http://www.tptp.org.

1.2.1 The TPTP Library

The TPTP library is the source of test problems in this research. The TPTP prob-

lems cover six main defined fields: logic, mathematics, computer science, science and

engineering, social sciences, and other. Each field is divided into domains, for exam-

ple, HardWare Verification(HWV) and SoftWare Verification.
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TPTP problems and solutions are written in the TPTP syntax. The TPTP syn-

tax enables convenient communication between different systems and researchers.

The TPTP syntax is flexible and extensible, and easily processed by both humans

and computers. The syntax is similar to Prolog syntax, so ATP systems developed

in Prolog have less overhead caused by preprocessing input TPTP problems. Addi-

tionally, if an ATP system produces the solution in the TPTP syntax, the solution

can be processed and evaluated by the tools provided by TPTP. The TPTP tools are

explained in Section 1.2.2.

Several TPTP problems might share a common set of axioms. For the purpose of

avoiding writing the same set of axioms repeatedly in different TPTP problems, the

common axioms can be written in a separate TPTP axiom file. TPTP problems may

include a TPTP axiom file using an include directive.

The latest version of the TPTP supports the following logical forms: Proposi-

tional Logic (PL), Description Logic (DL), First Order Form (FOF), Conjunctive

Normal Form (CNF), Effectively Propositional Form (EPR), Typed First order form-

monomorphic (TF0), Typed First order form-polymorphic (TF1), and Typed Higher

order form-monomorphic (TH0).

Each TPTP problem and axiom file includes up to three sections. Example 2 is

an example of a TPTP problem. The first section is a header with information about

the file for users. This section is in a form of comments. The second section contains

include directives. The last section contains annotated formulae.
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Example 2

%------------------------------------------------------------------------------

% File : SWV041+1 : TPTP v6.1.0. Bugfixed v3.3.0.

% Domain : Software Verification

% Problem : Unsimplified proof obligation gauss init 0077

% Version : [DFS04] axioms : Especial.

% English : Proof obligation emerging from the init-safety verification for

% the gauss program. init-safety ensures that each variable or

% individual array element has been assigned a defined value before

% it is used.

% Refs : [Fis04] Fischer (2004), Email to G. Sutcliffe

% : [DFS04] Denney et al. (2004), Using Automated Theorem Provers

% Source : [Fis04]

% Names : gauss init 0077 [Fis04]

% Status : Theorem

% Rating : 0.28 v6.1.0, 0.23 v6.0.0, 0.22 v5.5.0

% Syntax : Number of formulae : 100 ( 64 unit)

% Number of atoms : 271 ( 81 equality)

% Maximal formula depth : 18 ( 4 average)

% Number of connectives : 176 ( 5 ~ ; 17 |; 95 &)

% ( 5 <=>; 54 =>; 0 <=)

% ( 0 <~>; 0 ~|; 0 ~&)

% Number of predicates : 6 ( 1 propositional; 0-2 arity)

% Number of functors : 38 ( 20 constant; 0-4 arity)

% Number of variables : 170 ( 0 singleton; 170 !; 0 ?)

% Maximal term depth : 9 ( 1 average)

% SPC : FOF THM RFO SEQ

% Comments :

% Bugfixes : v3.3.0 - Bugfix in SWV003+0

%------------------------------------------------------------------------------

%----Include NASA software certification axioms

include(’Axioms/SWV003+0.ax’).

%------------------------------------------------------------------------------

%----Proof obligation generated by the AutoBayes/AutoFilter system

fof(gauss init 0077,conjecture,

( ( geq(minus(n330,n1),n0)

& geq(minus(n410,n1),n0) )

=> ! [A] :

( ( leq(n0,A)

& leq(A,n2) )

=> ! [B] :

( ( leq(n0,B)

& leq(B,minus(n0,n1)) )

=> a select3(tptp const array2(dim(n0,n3),dim(n0,n2),uninit),B,A) = init ) )

)).

%----Automatically generated axioms

fof(gt 5 4,axiom,

( gt(n5,n4) )).

...

fof(finite domain 3,axiom,

( ! [X] :

( ( leq(n0,X)

& leq(X,n3) )

=> ( X = n0

| X = n1

| X = n2

| X = n3 ) ) )).

%------------------------------------------------------------------------------
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The general form of an annotated formula is logical form(name, formula role,

formula, annotations). The logical form keywords for each logical form are shown in

Table 1.1. Each annotated formula is identified by a unique name field. The semantics

of the annotated formula is described by the formula role field, and is used by ATP

systems in reasoning. Examples of a formula roles are axiom, conjecture, type, and

definition. The formula field is the formula. The annotations field is optional. It

may contain the source that the formula came from, some information for users, or

both. Example 2 includes four annotated FOF formulae.

Table 1.1: Logical Forms Supported by TPTP
Logic Logical Form Keyword

PL cnf

EPR cnf

CNF cnf

FOF fof

TF0 tff

TF1 tff

TH0 thf

1.2.2 The TPTP and TSTP Tools

A suite of tools is available to facilitate the maintenance and use of the TPTP and

TSTP libraries. These tools, as well as many other related tools, are available online

at www.tptp.org. Examples of tools and online interfaces for supporting the TPTP

and TSTP libraries include TPTP2X [9, 8], TPTP4X [9, 8], SystemOnTPTP [10], and

SystemB4TPTP [10]. TPTP2X provides underlying features for maintenance and export

of the TPTP and TSTP libraries. Examples of such features are generating prob-

lems, collecting useful information and computing statistics for the headers of TPTP
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problems, and pretty printing TPTP problems and TSTP solutions. The TPTP2X also

provides features for preprocessing the input TPTP problems and post-processing the

solutions output by ATP systems. It can expand TPTP problem include directives

to the full version of the problem. It can convert TPTP format to the input formats of

ATP systems. The TPTP2X is implemented in Prolog, which makes it easy to modify

and extend. TPTP4X is an implementation of some of the TPTP2X features in C. It

includes some added features such as advanced include directive processing in the

TPTP format.

SystemOnTPTP is an online interface that allows the use of ATP systems and tools

for solving TPTP problems. The interface allows a problem to be selected from

the TPTP library, or provided by the user. Additionally, features for preprocessing

of the input problem are provided using internal tools such as TPTP2X and TPTP4X.

SystemOnTPTP allows multiple ATP systems to run on a problem. It also controls

and limits the CPU time and memory usage of the selected ATP systems. Finally, it

converts the output of an ATP system to the TPTP format.

The SystemB4TPTP is an online interface, which allows the use of the TPTP2X and

TPTP4X tools for conversion between different formats of a certain logic compatible

with a range of parsers, and translators for translating from one logic to another.

1.3 Related Conferences and Competitions

The two major forums for presentation of new research about different aspects of

ATP, and the development of new ATP systems and translators, are the international
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Conference on Automated Deduction (CADE) and International Joint Conference on

Automated Reasoning (IJCAR) [11]. The CADE conference was started in 1974, and

was held every two years in the beginning, and every year since 1996. The IJCAR

conference was started in 2001, and was held every two years.

At each CADE and IJCAR conference, the CADE ATP System Competition

(CASC) [12] is held to introduce and evaluate the performance of ATP systems.

CASC evaluates the performance of ATP systems. The source of test problems for

the competition is the TPTP library. To evaluate the ATP systems, the number of

problems solved within a time limit, the number of problems solved with a solution

output within a time limit, and the average runtime for problems solved, are consid-

ered. CASC is the main basis for selecting the ATP systems used in the experiments

in this research. The ATP system used for each logic is the winner of the latest

competition if more than one ATP system is available for the logic.

1.4 Research Goals

A problem expressed in a certain logical form can be either solved using an ATP

system for the logic, or translated to a less expressive logic. If it is translated to a less

expressive logic, again the same two options of solving using an ATP system of the

less expressive logic, or translating down (if possible), are available. This continues

until no further translation is possible. In Figure 1.1, the plain arrows indicate the

process of translation, and the dashed arrows indicate the process of solving using an

ATP system (See Chapter 5 for more about this). Each path from each logical form
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to an ATP system is an alternative way of solving problems expressed in that logical

form.

The ATP systems for less expressive logical forms have benefited from more years

of development and testing than the ATP systems of more expressive logical forms.

There is is a trade-off between the power of the ATP systems for a logical form

and the expressivity of the logical form. Moreover, a problem translated to a less

expressive logical form may have features that negatively affect the performance of

the corresponding ATP systems. For each logical form, the effectiveness of solving

problems through the possible paths starting from that logical form, as illustrated in

Figure 1.1, is compared and discussed in this research. Introducing alternative ways

of solving problems through paths that include translation to DL is a major concern

of this research. To this end, a CNF to DL translator has developed, and a new

TPTP syntax for DL has been designed.

1.5 Road Map

This dissertation is organized as follows. Chapter 1 contains an introduction to the

research and related issues, to build up a basis for understanding the dissertation.

Chapter 2 contains a survey of the logics related to the research. Chapter 3 describes a

new syntax for Description Logic, and related libraries and tools. Chapter 4 describes

a translation procedure from CNF to DL, and its implementation as a tool called

Saffron. Additionally, this chapter includes a mathematical proof for the soundness

of the translation procedure, and empirical tests of the soundness of the implemen-
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tation of Saffron. Chapter 5 describes the experiment to evaluate different ways of

solving problems in different logical forms. Additionally, this chapter includes anal-

ysis and discussion of the results of the experiment. Finally, Chapter 6 contains a

summary of the whole dissertation, conclusions, and suggestions for future work.



Chapter 2

Survey of The TPTP Logics

In this chapter the logical forms Propositional Logic (PL), Description Logic (DL),

First Order Form (FOF), Conjunctive Normal Form (CNF), Effectively Propositional

form (EPR), Typed First order form-monomorphic (TF0), Typed First order form-

polymorphic (TF1), and Typed Higher order form-monomorphic (TH0) are described.

2.1 Propositional Logic (PL)

Propositional Logic is a decidable logic. Examples of applications of PL include

designing digital circuits [13], encoding constraint satisfaction problems [14], and

reasoning about systems [15].

2.1.1 Syntax

Available syntaxes for PL include Dimacs [16] and the TPTP syntax. The syntax

of PL consists of propositions and logical operators. Example 3 are propositions

14
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in the TPTP syntax. By combining different propositions using logical operators,

propositional formulae can be constructed.

Example 3

coffee helps me stay awake

coffee is my favorite drink

PL logical operators and some examples for each operator in both mathematical

and the TPTP syntax are as follows:

• Negation is a unary prefix operator, and negates the proposition. The symbols

¬ and ~ are the mathematical and TPTP symbols for the negation operator

respectively.

Example 4

¬coffee is my favorite drink

~coffee is my favorite drink

• Conjunction is a binary infix operator. It corresponds to English “and”. The

symbols ∧ and & are the mathematical and TPTP symbols for the conjunction

operator respectively.

Example 5

coffee helps me stay awake ∧ coffee is my favorite drink

coffee helps me stay awake & coffee is my favorite drink
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• Disjunction is a binary infix operator. It corresponds to English “and/or”.

The symbols ∨ and | are the mathematical and TPTP symbols for the disjunc-

tion operator respectively.

Example 6

coffee helps me stay awake ∨ coffee is my favorite drink

coffee helps me stay awake | coffee is my favorite drink

• Implication is a binary infix operation. It corresponds to English “if-then”.

The symbols ⇒ and => are the mathematical and TPTP symbols for the im-

plication operator respectively.

Example 7

coffee helps me stay awake⇒ coffee is my favorite drink

coffee helps me stay awake => coffee is my favorite drink

• Equivalence is a binary infix operation. It corresponds to English “if-and-

only-if”. The symbols⇔ and <=> are the mathematical and TPTP symbols for

the equivalence operator respectively.

Example 8

coffee helps me stay awake⇔ coffee is my favorite drink

coffee helps me stay awake <=> coffee is my favorite drink
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2.1.2 Semantics

A PL interpretation assigns either TRUE or FALSE to each proposition. The truth

value of a formula is determined by considering the values of its propositions. The

truth table of each operator holds the resulting value of any possible combination of

the values of the propositions. For example, Table 2.1 shows the truth tables of the

binary operators.

Table 2.1: Example of a Truth Table
p q p∧q p∨q p⇒q p⇔q

TRUE TRUE TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE FALSE FALSE

FALSE TRUE FALSE TRUE TRUE FALSE

FALSE FALSE FALSE FALSE TRUE TRUE

2.1.3 ATP Systems

Two ATP systems for PL are MiniSat [17] and zChaff [18]. In this research MiniSat

is used for reasoning about problems expressed in PL. Different versions of MiniSat

have been implemented for different applications, and they are implemented in dif-

ferent languages, such as C# and C++. Version 2.2.0, used in this research, is in

C++. Examples of the reasoning techniques applied in MiniSat are conflict-clause

recording and conflict-driven back jumping. MiniSat is a powerful solver, and was

the winner of SAT-Race in 2008 [19].
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2.2 Description Logic (DL)

Description Logic is a decidable logic, and more expressive than PL. Examples of ap-

plications of DL include knowledge representation [20], semantic web technologies [20],

and expressing ontologies [21]. An ontology includes a categorization of elements of

a domain of interest, definitions of the relationships between these categories, and

knowledge about the domain. Example 9 illustrates a simple ontology.

Example 9

9.a. Coffee is a drink.

9.b. Negin is a person.

9.c. Coffee is Negin’s favorite drink.

A DL problem is an ontology expressed in DL. The building blocks of a DL ontology

are individuals, classes, and roles. Individuals are elements of the domain of interest.

Classes are bags of individuals, and roles are relationship between two individuals. In

Example 9, “coffee” and “Negin” are individuals, “drink” and “person” are classes,

and “favorite drink” is a role.

There are different variations of DL. ALC is the basic DL, which includes the lan-

guage constructs, such as classes, roles, individuals, class membership, role instances,

conjunction of classes, disjunction of classes and negation of classes. One of the more

expressive variations of DL is SROIQ. Each letter of the word SROIQ represents a

feature in this variation of DL:
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• The letter S represents all the ALC features.

• The letter R represents limited complex role inclusion axioms such as reflexivity,

irreflexivity, and role disjointness.

• The letter O represents nominals (closed classes with a finite number of ele-

ments).

• The letter I represents inverse properties.

• The letter Q represents qualified cardinality restrictions.

SROIQ is the target DL in this research. Saffron, the CNF to DL translator

presented in the Chapter 4 can produce a DL problem with SROI features.

2.2.1 Syntax

Available syntaxes for DL include the RDF/XML, OWL/XML, and Manchester

OWL [22] syntaxes. A TPTP syntax for DL is proposed in this research, and ex-

plained in Chapter 3. The syntax of DL include individuals, classes, roles and DL

operators. Example 10 is the ontology in Example 9, in the DL mathematical syntax.

Example 10

coffee : drink

negin : person

favorite drink(negin, coffee)
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An ontology expressed in DL RDF/XML syntax is a set of RDF/XML tags. An

RDF/XML tag might include sub-tags. Individuals, classes, and roles and their char-

acteristics are expressed in owl:NamedIndividual, owl:Class and owl:ObjectProperty

tags correspondingly. Example 11 is the ontology in Example 9, in the DL RDF/XML

syntax.

Example 11

<owl:Class rdf:about="drink"/>

<owl:Class rdf:about="person"/>

<owl:ObjectProperty rdf:about="favorite drink"/>

<owl:NamedIndividual rdf:about ="coffee">

<rdf:type rdf:resource="#drink"/>

</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="negin">

<rdf:type rdf:resource="#person"/>

<favorite drink rdf:resource="#negin"/>

</owl:NamedIndividual>

In a DL problem, every individual belongs to the default class Thing, and may

belong to other classes. Since every member of a class is also a member of the default

class Thing, every class is a subclass of the class Thing. The empty class in DL

is the class Nothing. A class may be declared by its name or can be anonymous

and constructed from its member individuals, or from operations on other classes,

individuals, or roles. Let a and b be individuals, p and q be classes (named or

anonymous), and r and s be roles, then Table 2.2 shows some possible constructions

of a class in DL. The classes are in mathematical syntax.
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A named class may be equal to, a subclass of, disjoint with, or the complement of

a named class or an anonymous class. The definition of these relationships between

classes are the same as the corresponding relationships between two sets.

Table 2.2: Complex DL Classes
Class Description

p p
¬p Complement of p

p t q Union of p and q
p u q Intersection of p and q
∀r.a Class of all individuals x where r(x, a)
∀r.p Class of all individuals x where if r(x, y) then p(y)
∃r.p Class of all individuals x where there exists a y where r(x, y) and p(y)

2.2.2 Semantics

A DL interpretation [23] consists of a non-empty set ∆I , the domain of interpretation,

and an interpretation function .I such that:

• .I : a 7−→ aI ∈ ∆I
M ,

• .I : p 7−→ pI ⊆ ∆I
M , and

• .I : r 7−→ rI ⊆ ∆I
M ×∆I

M .

• ThingI = ∆I

• NothingI = ∅

• (¬p)I = ∆I\pI

• (p u q)I = pI ∩ qI
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• (p t q)I = pI ∪ qI

• (∀r.a)I = {x ∈ ∆I | (x, aI) ∈ rI}

• (∀r.p)I = {x ∈ ∆I | For every y in ∆I , if (x, y) ∈ rI then y ∈ pI}

• (∃r.p)I = {x ∈ ∆I | There exists y in ∆I such that (x, y) ∈ rI and y ∈ pI}

• aI ∈ pI iff a : p

• (aI , bI) ∈ rI iff r(a, b)

• aI = bI iff a=b

• r = s− iff ∀x ∈ ∆I :∀y ∈ ∆I : ((x, y) ∈ rI ⇔ (y, x) ∈ (s−)I)

• r w (s1 ◦ s2) iff ∀x ∈ ∆I :∀y ∈ ∆I :∀z ∈ ∆I : (((x, y) ∈ s1I ∧ (y, z) ∈ s2I) ⇒

(x, z) ∈ rI)

2.2.3 ATP Systems

Konclude [24], FaCT++ [25] and HermiT [26] are examples of ATP systems for DL.

Konclude is the ATP system used in this research. Konclude is an ATP system for

large and expressive ontologies. The supported ontology language is SROIQV(D).

Konclude implements a sound and complete tableau calculus enhanced with sophis-

ticated preprocessing methods and tableau saturation. Furthermore, the system can

take advantage of multiple cores within a shared memory environment. Konclude

won three out of nine benchmark categories at the OWL Reasoner Evaluation Com-
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petition 2013 (ORE 2013) [27] and five out of six disciplines at the OWL Reasoner

Evaluation Competition 2014 (ORE 2014) [28].

2.3 First Order Form (FOF), Conjunctive Normal

Form (CNF) and Effectively Propositional Form

(EPR)

2.3.1 First Order Form (FOF)

First Order Form is a semi-decidable logic, and more expressive than PL or DL. Some

notions can be expressed in FOF, but not in PL and DL. Examples 12.a and 12.b can

be expressed in FOF, but not in PL or DL.

Example 12

12.a. Coffee is some person’s favorite drink.

12.b. Coffee helps everybody stay awake.

2.3.1.1 Syntax

Available syntaxes for FOF include the TPTP syntax. Example 13 and 14 are the

Example 12 in the mathematical and TPTP syntaxes.
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Example 13

13.a. ∃X : is(coffee, favorite drink(X))

13.b. ∀Y : helps stay awake(coffee, Y )

Example 14

14.a. ?[X] is(coffee,favorite drink(X))

14.b. ![Y] helps stay awake(coffee,Y)

The syntax of FOF consists of three sets of symbols, variables, functions, and pred-

icates. In Example 13 X and Y are variables. The symbols coffee and favorite drink

are functions. The symbols is and helps stay awake are predicates. The number of

arguments of a function or a predicate is called the arity. Functions and predicates

can have any arity greater than or equal to zero. Functions of arity zero are called

constants. Functions of arity one and two are called unary and binary functions.

Predicates of arity zero are called propositions, and are the same as propositions in

PL. Predicates of arity one and two are called unary and binary predicates. In Ex-

ample 13 coffee is a constant, and favorite drink is a unary function, and is and

helps stay awake are both binary predicates. Terms are built from functions and

variables, and atoms are built from predicates applied to terms. Ground terms and

ground atoms are terms and atoms without any variables.

By combining atoms using logical operators, more complex formulae can be con-

structed. The logical operators of FOF are the same as the logical operators of PL,

with two extra quantifiers, the Existential Quantifier ∃ and the Universal Quantifier
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∀. For example, ∃ is the existential quantifier in Example 13.a, which quantifies over

the variable X, and ∀ is the universal quantifier in Example 13.b, which quantifies

over the variable Y. The interpretation of the quantifiers are explained in the next

section. The TPTP symbols for ∃ and ∀ are ? and ! respectively.

2.3.1.2 Semantics

A FOF interpretation consists of a domain D, a function map F , and a predicate map

R. The domain of an interpretation is a set. The function map defines a function

for each function symbol, from n-tuple elements of the domain to an element of the

domain, where n is the arity of the function symbol. (Thus, every constant of the

problem is mapped to an element of the domain.) The predicate map defines a

function for each predicate symbol from m-tuple elements of the domain to {TRUE,

FALSE}, where m is the arity of the predicate. An interpretation maps ground terms to

domain elements and closed formulae to {TRUE, FALSE}. The interpretation of logical

operators of FOF, other than quantifiers, are the same as for PL. The interpretations

of the existential quantifier and the universal quantifier are as follows.

• Existential Quantifier ∃. If an existential quantifier quantifies over a variable

in a formula, then the formula is TRUE if and only if setting the variable to at

least one element of the domain of the interpretation makes the formula TRUE.

• Universal Quantifier ∀. If an existential quantifier quantifies over a variable in

a formula, then the formula is TRUE if and only if setting the variable to all the

elements of the domain of the interpretation makes the formula TRUE.
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Herbrand Interpretation

The Herbrand Universe of a FOF problem1 is the set of ground terms. The Herbrand

Base is the set of all ground atoms. A Herbrand interpretation is an interpretation

of a FOF problem if the domain of the interpretation is the Herbrand Universe,

the function map is the identity function, and the predicate map is a subset of the

Herbrand Base that maps to TRUE.

2.3.1.3 ATP Systems

Many FOF ATP systems are available. Examples of FOF ATP systems are Vampire [29],

SPASS [30], and E [6].

In this research, Vampire is used. The current version of Vampire was implemented

at the University of Manchester, England. Vampire was the winner of CASC-J7 [31]

FOF and LTB divisions in 2014. This ATP system is written in C++ and consists of

two layers, the shell and the kernel. The shell accepts problems in FOF or CNF. It

then transforms the input to CNF if it is not already CNF. The CNF is passed to the

kernel for reasoning. To increase efficiency, the search space is pruned by omitting

redundancies, applying operations such as subsumption and removing tautologies.

The kernel of Vampire supports equality, and handles equality by implementing the

calculi of ordered binary resolution and superposition.

1Technically, the Herbrand Universe is of the FOF language that has been used to write the
problem.
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2.3.1.4 Translators

FOF problems can be translated to less expressive logical forms. There is a sound

procedure to translate FOF problems to CNF. There are some translators available,

such as ECNF and VCNF. In this research, ECNF is used. ECNF is a subsystem of the E

ATP system. Some FOF problems can be translated to DL, but there is no translator

available for this purpose yet.

2.3.2 Conjunctive Normal Form(CNF)

2.3.2.1 Syntax

A CNF problem is of the form of PbC logic problems. The axioms and the negated

conjecture of the CNF problem have a special structure, and are called clauses. A

clause is a disjunction of literals. A literal is either an atom or a negated atom. An

atom in CNF is the same as an atom in FOF. In a CNF problem, all variables are

implicitly universally quantified. An empty clause has no literals. A CNF problem

is either represented as a set of clauses, or a conjunction of clauses. Examples 15

and 16 are the two representations of one CNF problem with three clauses. In this

dissertation, CNF problems are assumed to be a set of clauses.

Example 15

{ ( a(X,Y) ∨ b ∨ c(T,S) ),

( ¬a(X,V) ∨ b ),

( d(R) ∨ ¬b ∨ c(V,S) ∨ e(X,V,T) ) }



28

Example 16

( a(X,Y) ∨ b ∨ c(T,S) )

∧ ( ¬a(X,V) ∨ b )

∧ ( d(R) ∨ ¬b ∨ c(V,S) ∨ e(X,V,T) )

2.3.2.2 Semantics

A CNF interpretation is the same as a a special case of FOF interpretation. Every

set of clauses has a model if and only if it has a Herbrand model. This is the basis

for building sound inference rules for a set of clauses, e.g., resolution [32].

2.3.2.3 ATP Systems

Most FOF ATP systems can also be used for CNF. All the FOF ATP systems,

mentioned in Section 2.3.1.3 are also CNF ATP systems.

2.3.2.4 Translators

The translation of CNF problems to DL is the topic of Chapter 4. In this research a

translator for this purpose is developed, and is described in Chapter 4.

2.3.3 Effectively Propositional Form (EPR)

EPR is a decidable fragment of CNF. EPR problems are CNF problems that are

known to be reducible to PL problems. A problem with no functions of arity greater

than zero has a finite Herbrand Universe, and is EPR. In addition, if a problem has a

function of arity greater than zero, but does not have any variables or equality, then
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it is an EPR problem. It can be tested if a problem has no functions of arity greater

than zero. Additionally, in a problem with functions of arity greater than zero, it can

be checked if there are any variables or equality.

2.3.3.1 Syntax

The EPR syntax is the same as the CNF syntax.

2.3.3.2 Semantics

An EPR interpretation is the same the CNF interpretation. The herbrand interpre-

tation is used for EPR problems with finite herbrand universe.

2.3.3.3 ATP Systems

All CNF ATP systems can be used for solving EPR problems. In this research

iProver [33], which is an ATP system for EPR, CNF, and FOF, is used for solving

EPR problems. iProver is the winner of the EPR division at all CASCs from 2008

to 2014 [31].

2.3.3.4 Translators

Since EPR is a fragment of CNF, translation from EPR to DL is possible and is

explained in Chapter 4. All EPR problems can be translated to PL since EPR

problems and the set of all of their ground instances are equisatisfiable [34]. In this

research, EGround [34] is used to translate EPR problems to PL. To translate an EPR

problem, EGround generates the ground instances of the problem. Since the number of
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the ground instances is exponential to the number of variables in a clause, i.e. with n

constant symbols a clause with m variables has nm ground instances, EGround applies

clause splitting, structural constraints, and propositional simplification techniques to

reduce the number of ground instances.

2.4 Typed First order form - monomorphic (TF0)

Typed First order form - monomorphic [35] is the monomorphically typed first-order

logic, with predefined and user-defined types. It supports ad-hoc polymorphism for

only equality and some defined symbols. For example, arithmetic function and predi-

cate symbols are ad-hoc polymorphic over the types such as integer type and rational

number type. In this research, the arithmetic capabilities are refused.

2.4.1 Syntax

The syntax described here is the syntax used in the TPTP. The defined types are

$i for individuals, $o for booleans, and types such as $int for integers and $rat

for rational numbers. User-defined types include atomic types, function types and

predicate types. Atomic types are of type $tType. In the TPTP syntax, user-defined

types are defined in type formulae. Example 17 can be expressed in TF0.

In Example 17, person, beverage, and syrup are user-defined atomic types.

These atomic types can be defined in type formulae, as in Example 18.
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Example 17

17.a. Negin is a person.

17.b. Coffee is a beverage.

17.c. Vanilla syrup is a syrup.

17.d. The mixture of a syrup and a beverage is a beverage.

17.e. The mixture of coffee and any syrup helps some people stay awake.

Example 18

tff(person type, type, person: $tType ).

tff(beverage type, type, beverage: $tType ).

tff(syrup type, type, syrup: $tType ).

Constants are by default of type $i, unless they are defined to be of user-defined

atomic types. In Example 17, “Negin”, “coffee” and “vanilla syrup” are constants

of types “person”, “beverage” and “syrup” correspondingly. Statements 17.a, 17.b,

and 17.c are expressed in TF0, as in Example 19.a, 19.b, and 19.c.

Example 19

19.a. tff(negin type, type, negin: person).

19.b. tff(coffee type, type, coffee: beverage).

19.c. tff(vanilla syrup type, type, vanilla syrup: syrup).

19.d. tff(mixture type, type, mixture: ( beverage * syrup ) > beverage).
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A function type for a function of arity greater than zero is a defined as a mapping

from the types of its arguments to its return type. If a function is not defined, the

default type of its arguments and its return type is $i. In Example 17, “mixture” is

a binary function. The function type mixture is defined in TF0 as Example 19.d.

Propositions are of type $o. A predicate type for a predicate of arity greater than

zero is defined as a mapping from the types of its arguments to type $o. If a predicate

type is not defined, the default type of its arguments is $i. In Example 17, “help

stay awake” is a binary predicate. The predicate type help stay awake is defined in

TF0, as in Example 20.

Example 20

tff(help stay awake type, type,

help stay awake: ( beverage * person ) > $o).

The types of variables are specified at the time of quantification. If the type of

a variable is not specified, its default type is $i. In Example 17, statement 17.e is

expressed in TF0, as in Example 21. The types of variables S and P are syrup and

person.

Example 21

tff(mixture of coffee helps someone stay awake, axiom,

![S: syrup]: ?[P: person] :

help stay awake(mixture(coffee,S),P) ).



33

2.4.2 Semantics

A TF0 interpretation is a generalization of a FOF interpretation. Types are inter-

preted by non-empty, pairwise disjoint sub-domains. The domain of interpretation D

is the union of the sub-domains. A variable V of type t is evaluated to the elements of

Dt where Dt is the sub-domain for type t. For example, for the predicate p : (t1 *

t2 * ...* tn) > $o, and all possible n-tuples (a1,a2,...,an), the predicate map

maps p(a1,a2,...,an) to TRUE and FALSE where a1 ∈ Di, Di is the sub-domain of

type ti, 1 ≤ i ≤ n.

2.4.3 ATP Systems

Available ATP systems for TF0 include CVC4 [4], Princess [36] and SNARK [37]. CVC4

is the ATP system used in this research. CVC4 is an open-source ATP system for

proving the satisfiability of a version of FOF problems and TFA problems. CVC4 can

be used as a stand-alone tool or as a library, with essentially no limit on its use for

research or commercial purposes. An interactive text-based interface and a rich C++

API for embedding in other systems are some of the features of this ATP system.

CVC4 is a project of New York University and University of Iowa. CVC4 is the winner

of the CASC-J7 [31] TFA division in 2014.

2.4.4 Translators

TF0 problems can be translated to FOF and CNF. There is a countersatisfiabil-

ity preserving translation procedure from TF0 to FOF, and a countersatisfiability-
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satisfiability preserving translation procedure from TF0 to CNF. Monotonox2FOF and

Monotonox2CNF are variations of Monotonox [7], which is a translator of TF0 and FOF.

Monotonox is based on three basic approaches; generating type predicates, generating

type functions, and type erasure. Generating type predicates and type functions pre-

serves the satisfiability of a problem, but results in very complicated formulae that

affect most ATP systems negatively. Type erasure reduces the complexity, but it does

not always preserve satisfiability. Only certain types can be erased without chang-

ing the satisfiability of the original problem. Monotonox applies the combination of

these three approaches to reduce the complexity of the constructed formulae, while

preserving the satisfiablity.

2.5 Typed First order form - polymorphic (TF1)

Typed First-order Form - polymorphic [38] is distinguished from TF0 by allowing

polymorphism over the types of the arguments and the return values of functions and

over the types of the arguments of predicates.

2.5.1 Syntax

The syntax described here is the syntax used in the TPTP. Similar to TF0, the

defined types are $i for constants and $o for booleans. Monomorphic user-defined

types include atomic types, function types and predicate types that are the same

as user-defined types TF0. Polymorphic function and predicate types are expressed

using type signatures.
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In Example 22, the type definition a polymorphic function type defines the

polymorphic function polymorphic function of arity (m + n) > 0, where type 11,

type 12, . . . , and type 1m are atomic user-defined types. The !>[T1: $tType, T2:

$tType, ..., Tn: $tType, RT: $tType] is the type signature, and expresses that

the last n arguments and the return value of this function are polymorphic. In the

axiom a polymorphic function application, type 21, type 22, . . . , type 2n, and

ret type are user-defined atomic types; term 11, term 12, . . . , term 1m are terms of

types type 11, type 12, . . . , type 1m; term 21, term 22,. . . , term 2n are terms of

types type 21, type 22, . . . , and type 2n; and ret value is a term of type ret type.

Example 22

tff(a polymorphic function type,type,(

polymorphic function:

!>[T1: $tType, T2: $tType, ..., Tn: $tType, RT: $tType]:

( ( type 11 * type 12 * ... * type 1m * T1 * T2 * ... * Tn ) > RT ) )).

tff(a polymorphic function application,axiom,(

ret value = polymorphic function(type 21,type 22, ...,type 2n,ret type,

term 11,term 12,...,term 1m,

term 21,term 22,...,term 2n) )).

Example 23 can be expressed in TF1 as Example 24. In Example 24, beverage

and syrup are user-defined types, and coffee, vanilla syrup, caramel syrup, and

help people stay awake are monomorphic function types. In this example mixture

is a polymorphic function. The first argument type, and the return type are poly-

morphic, and can be either of the user defined types beverage or syrup. In the

type definition mixture type, the !>[BeverageOrSyrup:$tType] is the type signa-

ture, and in the axiom mixture of coffee help people stay awake, the polymor-
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phic function mixture is used. In mixture(beverage,coffee,S), the first argument,

beverage, expresses the type of the polymorphic type of this function.

Example 23

Axioms = { Coffee is a beverage,
Vanilla syrup is a syrup,
Caramel syrup is a syrup,
The mixture of a beverage and a syrup is a beverage,
The mixture of a syrup and a syrup is a syrup,
The mixture of coffee and any syrup helps people stay awake }

Conjecture = Caramel vanilla coffee help people stay awake

Example 24

tff(beverage type,type,(

beverage: $tType )).

tff(syrup type,type,(

syrup: $tType )).

tff(coffee type,type,(

coffee: beverage )).

tff(vanilla syrup type,type,(

vanilla syrup: syrup )).

tff(caramel syrup type,type,(

caramel syrup: syrup )).

tff(mixture type,type,(

mixture:

!>[BeverageOrSyrup: $tType] :

( ( BeverageOrSyrup * syrup ) > BeverageOrSyrup ) )).

tff(help people stay awake type,type,(

help people stay awake: beverage > $o )).

tff(mixture of coffee help people stay awake,axiom,(

![S: syrup]:

help people stay awake(mixture(beverage,coffee,S)) )).
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tff(caramel vanilla coffee help people stay awake,conjecture,(

help people stay awake(

mixture(beverage,coffee,

mixture(syrup,caramel syrup,vanilla syrup))) )).

2.5.2 Semantics

A TF1 interpretation includes of a non-empty collection D of non-empty sets, the

domains. The union of all domains is called the universe, U . Interpretation of the

monomorphic terms and atoms is the same to TF0 using each domain as a domain

of a specific type. Only interpretation for a polymorphic functions and predicates

needs to be added. Every possible domain of a polymorphic variable is considered.

For example, the predicate

p :

!>[T1:$tType, T2:$tType,..., Tn:$tType]:

( t1 * t2 * ...* tm, T1 * T2 * ...* Tn) > $o

is a polymorphic predicate with (m + n) > 0 arguments, such that the last n

arguments have polymorphic types. The predicate map of the predicate p maps

p(a1,a2,..,am,b1,b2,..,bn) to TRUE ad FALSE for all possible (m + n)-tuples

(a1,a2,..,am,b1,b2,..,bn) where ai ∈ Di, Di is the domain of ti, 1 ≤ i ≤ m,

bj ∈ Dj, Dj is any possible domain for bj, and 1 ≤ j ≤ n.

2.5.3 ATP Systems

The only ATP system for TF1 is Alt-Ergo [39], which is used in this research.

Alt-Ergo is an open-source ATP system, written in the Caml language. It pro-
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vides full supports for the proof of mathematical theories expressed in TF1 such as

polymorphic functional arrays and enumerated types theories. Alt-Ergo is highly

parametrized and modular.

2.5.4 Translators

TF1 problems can be translated to TF0 and FOF. There are countersatisfiability

preserving translation procedures from TF1 to TF0 and FOF. Why3 TFF [40] and

Why3 FOF [40] are the only available translators for translating TF1 to TF0 and FOF,

and are used in this research.

2.6 Typed Higher order form-monomorphic (TH0)

The Typed Higher order form - monomorphic [41] is distinguished from TF0 by

addition of λ-terms, quantification over functions, and minor modifications of the

syntax. The λ-calculus is used for function definition (function abstraction is also a

term used in many papers).

2.6.1 Syntax

The syntax described here is the syntax used in the TPTP. Similar to TF0, the defined

types are $i for constants, $o for booleans. User-defined types include atomic types

and function types. Atomic types are of type $tType. Function types are of the

form a or b > c. Type of a is either a defined or an atomic type. Types of b and

c are either a defined type, an atomic type or a function types of the form b > c.
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Predicates in TH0 are functions whose return type is type $o. The types of variables

are function types. The axioms and the conjecture in Example 25 can be expressed in

TH0 as in Example 26. The atomic types are beverage, and syrup, and the function

types are coffee, hot, heat, mix, hot mixture, and cold mixture.

In TH0 TPTP syntax, the symbol @ is used for function application. In Ex-

ample 26 in the axiom hot mixture definition, mix @ B @ S states that the mix

function is applied on the variable B (of type beverage) and S (of type syrup).

In TH0 TPTP syntax, the symbol ^ is used for function definition. The symbol

^ is the TPTP symbol for λ. In a function definition, the symbol ^ quantifies over a

local variable which is used in the body of the function definition. In Example 26, the

axiom cold mixture definition, variables B and S of types beverage and syrup

are local variables that are used in the definition of the function cold mixture.

Example 25

Axioms = { Coffee is a beverage,
Heating a beverage makes the beverage hot,
The mixture of a beverage and a syrup is a beverage,
The hot mixture of a beverage and a syrup is a
mixture of the beverage and the syrup, which is heated,
The cold mixture of a beverage and a syrup is a
mixture of the beverage and the syrup }

Conjecture = There is some mixture of coffee and any syrup which is hot

Example 26

thf(syrup type,type,(

syrup: $tType )).

thf(beverage type,type,(

beverage: $tType )).
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thf(coffee type,type,(

coffee: beverage )).

thf(heat type,type,(

heat: beverage > beverage )).

thf(hot type,type,(

hot: beverage > $o )).

thf(mix type,type,(

mix: beverage > syrup > beverage )).

thf(hot mixture type,type,(

hot mixture: beverage > syrup > beverage )).

thf(cold mixture type,type,(

cold mixture: beverage > syrup > beverage )).

thf(hot mixture definition,definition,

( hot mixture

= ( ^ [B: beverage,S: syrup] :

( heat @ ( mix @ B @ S ) ) ) )).

thf(cold mixture definition,definition,

( cold mixture

= ( ^ [B: beverage,S: syrup] :

( mix @ B @ S ) ) )).

thf(its hot,axiom,(

! [B: beverage] :

( hot @ ( heat @ B ) ) )).

thf(hot coffee,conjecture,(

? [Mixture: beverage > syrup > beverage] :

! [S: syrup] :

? [B: beverage] :

( ( ( Mixture @ coffee @ S )

= B )

& ( hot @ B ) ) )).
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2.6.2 Semantics

A TH0 interpretation is a generalization of a TF0 interpretation. In a TH0 inter-

pretation, quantification over functions is allowed, so a variable of a function type of

arity n corresponds to any n-tuple of the domain of an interpretation mapped to the

domain of interpretation. There are two kinds of interpretations commonly employed

for TH0. Full semantics [42] requires that once the domain of discourse is satisfied,

the variables of function types range over all possible elements of the correct type (all

subsets of the domain, all functions from the domain to itself, etc.). Thus the specifi-

cation of a full interpretation is the same as the specification of a TF0 interpretation.

Henkin semantics [43], which is essentially semantics for typed higher-order with fi-

nite types, is used in this research. Henkin semantics requires the interpretation to

specify a separate domain for each type of higher-order variable to range over. Thus,

an interpretation in Henkin semantics includes a domain D, a collection of subsets of

D, a collection of functions from D to D, etc.

2.6.3 ATP Systems

Available ATP systems for TH0 include Satallax [5], Isabelle-HOT [44], and LEO-II [45].

Satallax is the ATP system used in this research. Satallax is an ATP system, writ-

ten in the Objective Caml language. It provides supports for the problems expresses

in higher-order logical froms, particularly Church’s simple type theory with extension-

ality and choice operators. Satallax was the winner of CAC-J7 [31] THF devision.
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2.6.4 Translators

TH0 problems can be translated to TF0 and FOF. There are countersatisfiability

preserving procedures for translating a TH0 problems to TF0, and similarly to FOF.

Isabelle-2TF0 and Isabelle-2FOF [44] are the only available stand-alone translators

for translating TH0 to TF0 and FOF, and are used in this research. Isabelle-2FOF

can also be used for translating TF0 to FOF.



Chapter 3

New Description Logic Syntax

Description Logic Form (DLF) is the new TPTP syntax for the DL SROIQ. The

design of DLF is a fundamental step toward adding DL to the TPTP world, so the

DL community will be able to benefit from the TPTP and TSTP tools. DLF, which

is compact, natural and easily processable by both human and computers, has been

designed in this research. The BNF enables the construction of parsers for DLF

problems and solutions in other languages other than Prolog. Appendix A contains

the BNF for DLF.

3.1 Description Logic Form (DLF)

Like all TPTP problem files, DLF problem files include up to three sections: header,

include directives and the

annotated formulae. The header and include directives are the same as TPTP problem

or axiom files in logical forms other than DLF. The annotated formulae of a DL

43
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problem can include definitions, type formulae, and logic formulae that are explained

in the Section 3.1.1.

3.1.1 DLF Identifiers

Like the TPTP syntax for other logics, DLF uses only standard ASCII characters.

In the TPTP syntax, an atomic word starts with a lower case character and contains

alphanumeric and underscore, or is any sequence of characters wrapped in a pair of

’single quotes’. A defined word is the character $ followed by an atomic word.

One major application of DL is semantic web technologies. DLF needs to be com-

patible with existing DL syntaxes, specially exchange syntaxes such as OWL/XML

and RDF/XML, and make it possible to import ontologies from the semantic web.

DLF allows the definition of namespaces and schemas, such as XML namespace and

RDF schema. A reference word is the character & followed by an atomic word. The

delimiters are #, ; and /. They are used between two identifiers, of which the first

one is the name of a namespace, an schema, or an ontology. The use of reference

words and delimiters is explained in Section 3.1.2.

The syntax for the name of an individual, a class, or a role is an atomic word, a

reference word, two atomic words concatenated by a delimiter, or a reference word

followed by a delimiter and an atomic word. A class term is a named class or an

anonymous class. A class term is either unitary class term or a binary class term.

Constructions of unitary class terms and binary class terms are shown in Table 3.1

and Table 3.2 respectively, where a is an individual and r is a role.
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Table 3.1: Construction of a Unitary Class Term in DLF
Unitary Class Term Meaning

&thing Thing
&nothing Nothing
class name The name of a class
(class term) A unitary or binary class term class term

wrapped in a pair of parentheses
[a 1, a 2, ..., a n] {a 1, a 2, . . . , a n}
-unitary class term ¬unitary class term
! role( ,a) ∀r.a
! role( ,class term) ∀r.class term
? role( ,class term) ∀r.class term

Table 3.2: Construction of a Binary Class Term in DLF
Binary Class Term Meaning

unitary class term

++ unitary class term

unitary class term
t unitary class term

unitary class term

** unitary class term

unitary class term
u unitary class term

unitary class term

<+> unitary class term

unitary class term
] unitary class term

All class binary operators are left associative.

3.1.2 DLF Definitions

Definitions include setting aliases for repeatedly-used identifiers, such as names-

paces and schemas. A definition formula has the form: dlf(name, definition,

dlf definition formula, annotations). The form of a dlf definition formula is

alias := identifier, where the operator := is definition operator, the alias is an atomic

word, and the identifier is an atomic word, a defined word, a reference word, a refer-

ence word followed by a delimiter, or a reference word followed by a delimiter and an

atomic word.



46

XML and OWL namespaces, and XML and RDF, schemas are examples of common

namespaces and schemas defined in a DL ontology. A set of definitions, including

some commonly used definitions, is shown in Example 27. The definitions in Exam-

ple 27 are saved in an TPTP axiom file SYN001~0.ax that can be included in DL

problems where they are needed.

Example 27

%--------------------------------------------------------------

%----Library header definitions

dlf(owl defn,definition,

owl := ’http://www.w3.org/2002/07/owl’ ).

dlf(rdf defn,definition,

rdf := ’http://www.w3.org/1999/02/22-rdf-syntax-ns’ ).

dlf(xml defn,definition,

xml := ’http://www.w3.org/XML/1998/namespace’ ).

dlf(xsd defn,definition,

xsd := ’http://www.w3.org/2001/XMLSchema’ ).

dlf(rdfs defn,definition,

rdfs := ’http://www.w3.org/2000/01/rdf-schema’ ).

dlf(class defn,definition,

class := $tType ).

dlf(thing defn,definition,

thing := &owl#’Thing’ ).

dlf(nothing defn,definition,

nothing := &owl#’Nothing’ ).

%---------------------------------------------------------------

To reference a syntactically defined identifier, a reference word is used. At the

time of preprocessing of a problem by an ATP system, all reference words are replaced

by the corresponding identifiers. In Example 27 the reference word &owl in the last

two formulae is replaced with ‘http://www.w3.org/2002/07/owl’. Similarly, later

in a problem that includes this axiom file SYN001~0.ax, the reference words &thing



47

and &nothing can be used instead of the long identifiers, ‘http://www.w3.org/

2002/07/owl#Thing’ and ‘http://www.w3.org/2002/07/owl#Nothing’.

To specify the namespace or schema of an identifier, a delimiter and the identifier

are appended to the end of the related namespace or schema. The reference word for

the namespace or schema can also be used instead of the full name of the namespace

or schema.

It is common to define the ontology at the beginning of a DL ontology. The

keyword $ontology is reservered as an alias for the ontology identifier. The keyword

$base keyword is reserved for the base namespace. The identifier defined as $base is

replaced whenever the namespace for an identifier is not mentioned. It is usually set

to the ontology name followed by a delimiter as the default delimiter. Example 28

includes the use of the $ontology and the $base keywords.

3.1.3 DLF Type Formulae

The general form of a type formula is dlf(name, type, dlf type formula, annota-

tions). The building blocks of a DL ontology, individuals, classes, and roles are

declared in type formulae,

individual: class term,
class name: $tType,
role: ( unitary class term * unitary class term ) > $o.

DLF type formulae are similar to some TF0 type formulae. The defined words

$tType and $o are borrowed from TF0, which are the types for atomic user-defined

types and booleans respectively. The syntax for a role type declaration is similar to
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the syntax for declaring a binary predicate in TF0. In DLF the left hand side of the

* is the domain and the right hand side of the * is the range of the role. The domain

and range of a role are unitary class terms.

3.1.4 DLF Logic Formulae

The general form of a DLF logic formula is dlf(name, logic formula role, dlf logic

formula, annotations). Examples of logic formula role are axiom and conjecture.

Table 3.3 shows different forms of a dlf logic formula.

Table 3.3: DLF Logic Formulae
DLF logic formula Meaning

class name = class term class name = class term
class name != class term class name 6= class term
class name <> class term class nameu class term = Nothing
class name << class term class name v class term
role(a 1,a 2) r(a 1, a 2)
~role(a 1,a 2) ¬r(a 1, a 2)
$reflexive(role) role is a reflexive role
$irreflexive(role) role is an irreflexive role
$symmetric(role) role is a symmetric role
$asymmetric(role) role is an asymmetric role
$transitive(role) role is a transitive role
$functional(role) role is a well-defined function
role 1 -= role 2 role 1 = role 2−

role 1 << role 2 role 1 v role 2
role 1 >> role 2 role 1 w role 2
role 1 >> role 2 @ role 3 @ ...@ role n

where n ≥ 3
role 1 w role 2 ◦ role 3 ◦ ... ◦ role n

Examples 28 and 29 express the ontology in Example 9 of Chapter 2 in DLF and

RDF/XML syntaxes.
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Example 28

%-------------------------------------------------------------------

include(’SYN001~0.ax’).

%-------------------------------------------------------------------

%---Rest of the Header

dlf(ontology defn,definition,

$ontology := ’http://www.tptp.org/ontologies/CoffeeOntology’ ).

dlf(base defn,definition,

$base := &$ontology# ).

%-------------------------------------------------------------------

dlf(person type,type,(

person: $tType )).

dlf(drink type,type,(

drink: $tType )).

dlf(favoriteDrink type,type,(

favoriteDrink: ( drink * person ): $o )).

dlf(coffee type,type,(

coffee: drink )).

dlf(negin type,type,(

negin: person )).

dlf(coffee is negins favorite drink,axiom,(

favoriteDrink(coffee,negin) )).

%-------------------------------------------------------------------
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Example 29

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

]>

<rdf:RDF xmlns="http://www.tptp.org/ontologies/CoffeeOntology#"

xml:base="http://www.tptp.org/ontologies/CoffeeOntology"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<owl:Ontology rdf:about="http://www.tptp.org/ontologies/CoffeeOntology"/>

<owl:ObjectProperty

rdf:about="http://www.tptp.org/ontologies/CoffeeOntology#favoriteDrink">

<rdfs:domain

rdf:resource="http://www.tptp.org/ontologies/CoffeeOntology#drink"/>

<rdfs:range

rdf:resource="http://www.tptp.org/ontologies/CoffeeOntology#person"/>

</owl:ObjectProperty>

<owl:Class

rdf:about="http://www.tptp.org/ontologies/CoffeeOntology#drink"/>

<owl:Class

rdf:about="http://www.tptp.org/ontologies/CoffeeOntology#person"/>

<owl:NamedIndividual

rdf:about="http://www.tptp.org/ontologies/CoffeeOntology#coffee">

<rdf:type

rdf:resource="http://www.tptp.org/ontologies/CoffeeOntology#drink"/>

</owl:NamedIndividual>

<owl:NamedIndividual

rdf:about="http://www.tptp.org/ontologies/CoffeeOntology#negin">

<rdf:type

rdf:resource="http://www.tptp.org/ontologies/CoffeeOntology#person"/>

</owl:NamedIndividual>

</rdf:RDF>
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Saffron, a CNF to DL Translator

As explained in Chapter 1, a major contribution of this research is to introduce

alternative ways of solving problems by translation to DL. Problems in logics more

expressive than CNF can be translated directly to CNF, or indirectly by translation

via intermediate logics. A CNF problem may be translated to DL. No CNF to DL

translator was available when this research was started. A satisfiability preserving

translation procedure from CNF to DL, and its implementation as Saffron, are

provided as a part of this research. Saffron is implemented in Prolog. The input is a

CNF problem in TPTP syntax, and the output is a DL problem in either RDF/XML

and DLF.

4.1 Input CNF Problems for Saffron

The CNF to DL translation is based on translating each CNF clause to a set of DL

formulae that has equivalent semantics. Constants, unary predicates, and binary

51
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predicates in CNF correspond to individuals, classes, and roles that are the building

blocks of DL ontologies. Clauses with only constants, unary predicates, and binary

predicates might be translated directly to DL. It might not be possible to translate

some such clauses to DL, because there might not be equivalent DL semantics for

the clauses. The current version of Saffron supports translation of many forms of

clauses that have equivalent semantics in DL.

Definition 4.1 CNF clauses that can be translated to DL using Saffron are referred

to as DL-able clauses. Since DL-able clauses have no functions of arity greater than

zero, they are EPR.

Definition 4.2 CNF problems that includes only DL-able clauses are referred to as

DL-able problems. Since these problems have no functions of arity greater than zero,

they are EPR (their Herbrand Universe is finite).

A DL-able problem can be fully translated to DL, i.e, 100% of its clauses can be

translated to DL. A problem with one or more CNF clauses that are not DL-able can

be partially translated to DL, i.e, less than 100% of its clauses can be translated to DL.

The unsatisfiability of a partially translated problem might be preserved, because an

unsatisfiable subset of the clauses has been translated. The experiment in Section 4.5

shows how successful this translator is in preserving the unsatisfiability of partially

translated problems.
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4.1.1 Preparing CNF Problems for Translation

Propositions, predicates of arity greater than two, and functions of arity greater than

zero cannot be translated directly to DL because there is no DL syntax for such

predicates and functions. A splitting technique is applied in the released versions of

Saffron to preprocess problems with propositions, and remove propositions. This

technique is explained in Section 4.1.1.1. However, there is no known approach for

replacing a predicate of arity greater than two with only propositions, unary pred-

icates and/or binary predicates. Known approaches for replacing functions of arity

greater than zero with predicates can be used to transform CNF problems with unary

functions to problems with only unary predicates, binary predicates, or both. The

transformation is explained in Section 4.1.1.2, and it could be used later to extend

Saffron.

4.1.1.1 The Splitting Technique

Many CNF problems contain propositions. Propositions do not have a correspond-

ing notion in DL. In order to solve these problems by translation to DL, splitting

has been used. Considering each proposition in turn, the proposition is assigned

TRUE and then FALSE. In each case the resultant clause set is simplified by removing

clauses that contain TRUE or ~FALSE, and removing FALSE and ~TRUE literals from

the other clauses. Once all propositions have been removed, the resultant clause sets

are translated to DL. If there are n propositions, there are 2n sets to translate. If

any one of the translated sets is satisfiable, the original CNF is satisfiable. If all of
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the translated sets are unsatisfiable, the original CNF is unsatisfiable. (Many readers

will recognize this approach from the DPLL algorithm [46].)

4.1.1.2 Transforming Problems with Unary Functions to Problems with

Unary Predicates, Binary Predicates, or Both

A function replacement approach for CNF problems is presented in [47]. This ap-

proach was considered for EPR problems with functions, but no variables or equality

to replace the unary functions with binary predicates. In this approach a function

of arity n (n > 0) is replaced with a predicate of arity n + 1. After replacing the

functions with predicates, axioms of totality must be added. According to the axiom

of totality for a function of arity n, the function should map every n-tuple of elements

of the domain of an interpretation to some element of the domain. Expressing the

axiom of totality forces the use of an existential quantifier, so the axioms of totality

are first expressed in FOF, and then transformed to CNF. Transforming an existen-

tial quantifier to CNF introduces a Skolem function. Since the existential quantifier

quantifies over the return value of a function of arity n, the arity of the introduced

Skolem function is also n. As the goal of this process is to remove all the functions of

arity greater than zero, this defeats the goal. However, if the domain of an interpre-

tation has d elements the axioms of d-totality are sufficient. Example 30 shows the

axioms of d-totality where p is a replacement for unary function f, and 1,2,...,d are

the domain elements. Since the EPR problems are interesting for translation to DL,

and the Herbrand Universe of an EPR problem is finite, the axioms of d-totality can

be used.
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Example 30
p(X,1) | p(X,2) | ... | p(X,d)

In addition to axioms of totality, the axioms of well-definedness must be added to

complete the function replacement. According to the axiom of well-definedness of a

function of arity n, the function maps every n-tuple of elements of the domain of an

interpretation to at most one element of the domain. The axiom of well-definedness

of a unary function replace with a binary predicate can be translated to DL. The

translated DL axiom of well-definedness expresses that the role corresponding to the

replaced binary predicate is functional. Example 31 and 32 show an axiom of well-

definedness where p f is the replacement of the unary function f in CNF and DLF

correspondingly.

Example 31
~p f(X,Y1) | ~p f(X,Y2) | Y1=Y2

Example 32
$functional(p f)

The Example 33 includes a unary function f that can be replaced by a binary

predicate as in Example 34. In the axiom predicate applied on function of Exam-

ple 33, function f is replaced with the predicate p f in the axiom replacing f with p

of Example 34. In Example 34, the axiom the 3 totality of f is the 3-totality ax-

iom for function f, where e1, e2, and e3 are the only elements of the Herbrand

Universe. The axiom well definedness of f is the well-definedness axiom for func-

tion f.

Example 33

cnf(predicate applied on function,axiom,

( q(f(e1)) )).
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Example 34

cnf(replacing f with p,axiom,

( p f(X,Y) | q(Y) )).

cnf(the 3 totality of f,axiom,

( p f(X,e1)

| p f(X,e2)

| p f(X,e3) )).

cnf(well definedness of f,axiom,

( ~p f(X,Y1)

| ~p f(X,Y2)

| Y1 = Y2 )).

4.2 The Translation Procedure

Definition 4.3 The translation function saffron : c 7−→ saffron(c) translates a

CNF clause c in a CNF problem to a set of DL formulae saffron(c). If c is not

DL-able, saffron(c) is an empty set. For each constant, unary predicate, and bi-

nary predicate in c, an individual, a class, and a role are correspondingly defined in

saffron(c) with the same names.

Definition 4.4 The translation of a CNF problem problem = {c1, c2, ..., cN} is

saffron(problem) =
⋃N

i=1 saffron(ci). saffron(problem) = saffron(problem dl)

where problem dl is the set of all DL-able clauses of the CNF problem problem.

DL-able clauses are EPR clauses, so problem dl is also an EPR problem.

Notation. The symbols a and b are constants in the CNF problem problem dl or

individuals in the DL problem saffron(problem), p and q are unary predicates in

problem dl, and classes in saffron(problem). The symbols r, s, and u are binary

predicates other than equality or inequality in problem dl, and roles in saffron(problem).
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The symbols &thing and &nothing are DLF referenced words for ’http://www.w3.org

/2002/07/owl#Thing’ and ’http://www.w3.org/2002/07/owl#Nohing’.

Notation. ++n
i=1p i ≡ p 1 ++ p 2 ++ ... ++ p n and ∗∗ni=1p i ≡ p 1 ** p 2 **

... ** p n are used in this chapter, where ++ and ∗∗ are the union and intersection

symbols of DLF. |ni=1li ≡ l1 | l2 | ... | ln and &n
i=1li ≡ l1 & l2 & ... & ln are used

in this chapter, where li is a literal, and | and & are the logical disjunction and the

logical conjunction symbols.

Every DL formula defines a characteristic of an individual, a class, or a role, or

describes the default class Thing. The characteristics of individuals that are covered

in this translation are an individual belonging to a named class or certain types of

anonymous classes, an individual being in a binary relationship with another indi-

vidual, and an individual not being in a binary relationship with another individual.

The equality or negative equality between two constants in a CNF clause has to be

taken care of in a different way to other binary predicates applied to two constants.

The corresponding DL formulae of equality between two individuals or inequality be-

tween two individuals use the “same individual as” and “different individual from”

notations in RDF/XML, and = and != in DLF. Table 4.1 illustrates CNF clauses

c and their corresponding DL formulae saffron(c), that describe characteristics of

individuals. The DL formulae are in DLF syntax. For example, the CNF clause

|ni=1p i(a) | |mj=1~q j(a), where n ≥ 0, m ≥ 0, and (m+ n) ≥ 2 in the third row of

the Table 4.1, is translated to the DL formula a:++n
i=1p i ++ ++m

j=1-q j. The CNF

clause expresses that at least one of p i(a) or ~q j(a) is TRUE. The DL formula
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expresses that the individual a belongs to the union of the classes p i and the com-

plements of the classes q i.

Table 4.1: CNF Clauses and Equivalent Individual DL Characteristics
Clause c saffron(c)

p(a) { a: p }
~p(a) { a: -p }
|ni=1p i(a) | |mj=1~q j(a) {a:++n

i=1p i ++ ++m
j=1-q j}

where n ≥ 0, m ≥ 0, and (m + n) ≥ 2

r(a,b) { r(a,b) }
~r(a,b) { ~r(a,b) }
a = b { a = b }
a != b { a != b }
|ni=1r(a,b i)

where n ≥ 2
{ a: ? r( ,[b 1,b 2,...b n]) }

|ni=1(a = b i)

where n ≥ 2
{ a: [b 1,b 2,...b n] }

The characteristics of classes that are covered in this translation are a class being

a subclass of a named class or an anonymous class, and equivalent to the class Thing,

or the class Nothing. Table 4.2 illustrates CNF clauses c and their corresponding DL

formulae saffron(c), that describe characteristics of classes. For example, the CNF

clause ~p(X) | q(X) in the second row of the Table 4.2 is translated to the DL formula

p << q. The CNF clause is equivalent to the FOF formula ![X]: (p(X) => q(X)),

and expresses that for all X if p(X) then q(X). The DL formula expresses that the

class p is a subclass of the class q. In some cases, the subclass characteristic implicitly

covers the equivalency characteristic because the equivalency between two classes is

expressed in more than one CNF clauses. For example, the equivalency between two

named classes is expressed by two CNF clauses, each of which expresses that each of

the classes is a subclass of the other.
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Table 4.2: CNF Clauses and Equivalent Class DL Characteristics
Clause c saffron(c)

p(X) { p = &thing }
~p(X) | q(X) { p << q}
~p(X) | r(X,Y) { p << ? r( ,&thing) }
p(X) | ~r(X,Y) { ? r( ,&thing) << p }
p(X) | ~q(Y) | ~r(X,Y) { ? r( ,q) << p }
|m1
j1=1q j1(Y) | |m2

j2=1~qp j2(Y) |

|hk=1~r k(X,Y)

where (m1 + m2) ≥ 1, and h ≥ 1

{(∗∗hk=1r k( , ∗∗m1
j1=1(-q j1) ** ∗∗m2

j2=1qp j2))

<< &nothing }

|n1
i1=1p i1(X) | |n2

i2=1~pp i2(X) |

|m1
j1=1q j1(Y) | |m2

j2=1~qp j2(Y) |

|h1
k=1~r k(X,Y)

where (n1 + n2 ) ≥ 1,

(m1 + m2) ≥ 1, and h ≥ 1

{ (∗∗hk=1r k( , ∗∗m1
j1=1(-q j1) ** ∗∗m2

j2=1qp j2)) <<

(++n1
i1=1p i1 ++ ++n2

i2=1(-pp i2)) }

|n1
i1=1p i1(X) | |n2

i2=1~pp i2(X) |

|n3
i3=1s i3(X,a i3) |

|n4
i4=1~sp i4(X,a’ i4) |

|m1
j1=1q j1(Y) | |m2

j2=1~qp j2(Y) |

|m3
j3=1u j3(Y,b j3) |

|m4
j4=1~up j4(Y,bp j4) |

|hk=1~r k(X,Y)

where (n1 + n2 + n3 + n4) ≥ 1,

(m1 + m2 + m3 + m4) ≥ 1,

and h ≥ 1

{ ∗∗hk=1?r k( ,( ∗∗m1
j1=1(-q j1) ** ∗∗m2

j2=1qp j2 **

∗∗m3
j3=1-(! u j3( ,b j3)) **

∗∗m4
j4=1! up j4( ,bp j4) ))

<<

(++n1
i1=1p i1 ++ ++n2

i2=1(-pp i2) ++

++n3
i3=1!s i3( ,a i3) ++

++n4
i4=1-(! sp i4( ,a’ i4)) )}

The role characteristics that are covered in this translation are reflexivity, irreflex-

ivity, symmetry, asymmetry, transitivity, a role being subrole of another role, a role

being subrole of the inverse of another role, and a role being super-role of the chain

of two roles. Table 4.3 illustrates CNF clauses c and their corresponding DL formu-

lae saffron(c), that describe characteristics of roles. For example, the CNF clause

~r(X,Y) | s(Y,X) in the seventh row of the Table 4.3 is translated to the formulae

{inv s -= s, r << inv s}. The CNF clause is equivalent to the FOF formula ![X,Y]:
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(r(X,Y) => s(Y,X)), and expresses that for all X and Y if r(X,Y) then s(Y,X).

The DL formula expresses that the role r is a subrole of the inverse of the role s.

Table 4.3: CNF Clauses and Equivalent Role DL Characteristics
Clause c saffron(c)

r(X,X) { $reflexive(r) }
~r(X,X) { $irreflexive(r) }
~r(X,Y) | r(Y,X) { $symmetric(r) }
~r(X,Y) | ~r(Y,X) { $asymmetric(r) }
~r(X,Y) | ~r(Y,Z) | r(X,Z) { $transitive(r) }
~r(X,Y) | s(X,Y) { r << s }
~r(X,Y) | s(Y,X) { inv s -= s,

r << inv s }
~r 1(X,Y) | ~r 2(Y,Z) | s(X,Z) { s >> ( r 1 @ r 2 ) }
~r 1(X,Y) | ~r 2(X,Z) | s(Y,Z) { inv s -= s,

inv r 2 -= r 2,
inv s >> ( inv r 2 @ r 1 ) }

Some CNF clauses describe the default class &thing, so they are expressed in DL

as a restriction on, or a description of the class &thing. The characteristics of the

class &thing that are covered in this translation are the class &thing being equivalent

to certain kinds of anonymous classes. Table 4.4 illustrates CNF clauses and their

corresponding DL formulae that describe the characteristics of the class &thing. For

example, the CNF clause |ni=1(X = a i) in the third row of the Table 4.4 is translated

to the DL formula &thing = [a 1,a 2,... ,a n]. The CNF clause expresses that

for all X, X is equal to at least one of the constants a i. The DL formula expresses

that the class &thing consists of individuals a i.

In RDF/XML syntax, each individual, each class, each role, and class &thing

are expressed as an RDF/XML tag, with their characteristics (if any) as sub-tags.

When the clause-by-clause translation of the whole problem is completed, for each

individual, each class, each role, and the class &thing, all the characteristics that were
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Table 4.4: CNF Clauses and Equivalent &thing Class Descriptions
Clause c saffron(c)

~p(X) &thing = ~p

|mi=1p i(X) | |nj=1~q j(X)

where m ≥ 0, n ≥ 0, and (m + n) ≥ 2
{ &thing = ( ++m

i=1p i ++ ++n
j=1-q j ) }

|ni=1(X = a i) where n ≥ 1 { &thing = [a 1,a 2,...,a n] }
|ni=1r(X,a i) where n ≥ 1 {&thing = ?r( ,[a 1,a 2,...,a n])}
|m1
i1=1p i1(X) | |m2

i2=1 ~q i2(X) |

|nj=1(X = a j)

where (m1 + m2) ≥ 1, and n ≥ 1,

{&thing = ( ++m1
i1=1p i1 ++

++m2
i2=1-q i2 ++

[a 1,a 2,...,a n]) }
|m1
i1=1p i1(X) | |m2

i2=1~q i2(X) |

|n1
j1=1r j1(X,a j1) |

|n2
j2=1~r j2(X,b j2)

where (m1 +m2) ≥ 0, and (n1 +n2) ≥ 1

{&thing = ( ++m1
i1=1p i1 ++

++m2
i2=1-q i2 ++

++n1
j1=1!r j1( ,a j1) ++

++n2
j2=1-(! r j2( ,b j2)) }

found during the translation are gathered and combined into an RDF/XML tag.

In DLF syntax, the type of individuals are expressed in a DLF type formula. If

an individual belongs to more than one class, then the type of the individual is the

intersection of those classes. The types of classes are always $tType. The type of roles

are always &thing * &thing > $o because no CNF clause is translated in a way that

provide the domain or the range of a role. All other CNF clauses are translated to

DLF logic formulae with the same TPTP formula role as the original CNF clause.

Example 35 can be expressed in CNF as in Example 36. The CNF problem

in Example 36 can be translated to DL, and the result of the translation in DLF

is Example 37, and in RDF/XML, without the header and footer of the .owl file,

is Example 38. The CNF problem is unsatisfiable because the negated conjecture

sarah is sibling of mary is in contradiction with the two axioms mary is sibling of sarah

and sibling is symmetric. The negated conjecture joe is dad of youngest child

is also in contradiction with the axioms mary is child of joe, mary is youngest child,
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and dad is subproperty of inverse of child. Konclude is used to confrim that

the resultant DL ontology is inconsistent.

Example 35

Sarah is a person. Mary is a female. Joe is a person. Joe is not a female.

Mary is Sarah’s sibling. Joe is Sarah’s dad. Mary is Joe’s child. Mary

and Sarah are different people. Mary is the youngest child. Sibling is

symmetric. Every dad’s child is a child of the dad. Every female is a

person.

Therefore: Sarah is Mary’s sibling. Joe is the youngest child’s dad.

Example 36

cnf(sarah is a person,axiom,

( person(sarah) )).

cnf(mary is a female,axiom,

female(mary) )).

cnf(joe is a person,axiom,

person(joe) )).

cnf(joe is not a female,axiom,

~female(joe) )).

cnf(mary is sibling of sarah,axiom,

sibling(mary,sarah) )).

cnf(joe is dad of sarah,axiom,

dad(joe,sarah) )).

cnf(mary is child of joe,axiom,

child(mary,joe) )).

cnf(mary and sarah are different,axiom,

mary != sarah )).
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cnf(mary is youngest child,axiom,

mary = youngest child )).

cnf(sibling is symmetric,axiom,

~sibling(X,Y)

| sibling(Y,X) )).

cnf(dad is subproperty of inverse of child,axiom,

~dad(X,Y)

| child(Y,X) )).

cnf(female is subclass of person,axiom,

~female(X)

| person(X) )).

cnf(sarah is not sibling of mary,negated conjecture,

~sibling(sarah,mary) )).

cnf(joe is not dad of youngest child,negated conjecture,

~dad(joe,youngest child) )).

Example 37

dlf(person type,type,

person: $tType)).

dlf(female type,type,

female: $tType)).

dlf(sarah is a person,type,

sarah: person )).

dlf(mary is a female,type,

mary: female )).

dlf(youngest child type,type,

youngest child: &thing).

dlf(joe is a person and joe is not a female,type,

joe: ( person ** -female ) )).

dlf(sibling type,type,

sibling: ( &thing * &thing ) > $o ).
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dlf(dad type,type,

dad: ( &thing * &thing ) > $o )).

dlf(child type,type,

child: ( &thing * &thing ) > $o )).

dlf(inv child type,type,

inv child: ( &thing * &thing ) > $o )).

dlf(mary is sibling of sarah,axiom,

sibling(mary,sarah) )).

dlf(joe is dad of sarah,axiom,

dad(joe,sarah) )).

dlf(mary is child of joe,axiom,

child(mary,joe) )).

dlf(mary and sarah are different,axiom,

mary != sarah )).

dlf(mary is youngest child,axiom,

mary = youngest child )).

dlf(sibling is symmetric,axiom,

$symmetric(sibling) ).

dlf(inv child is inverse of child,axiom,

inv child -= child ).

dlf(dad is subproperty of inverse of child,axiom,

dad << inv child ).

Example 38

<owl:NamedIndividual rdf:about="&family-ontology;joe">

<family-ontology:dad rdf:resource="&family-ontology;sarah"/>

<rdf:type rdf:resource="&family-ontology;person"/>

<rdf:type>

<owl:Class>

<owl:complementOf rdf:resource="&family-ontology;female"/>

</owl:Class>

</rdf:type>

</owl:NamedIndividual>
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<owl:ObjectProperty rdf:about="&family-ontology;child"/>

<owl:ObjectProperty rdf:about="&family-ontology;dad">

<rdfs:subPropertyOf>

<rdf:Description>

<owl:inverseOf rdf:resource="&family-ontology;child"/>

</rdf:Description>

</rdfs:subPropertyOf>

</owl:ObjectProperty>

<rdf:Description>

<rdf:type rdf:resource="&owl;AllDifferent"/>

<owl:distinctMembers rdf:parseType="Collection">

<rdf:Description rdf:about="&family-ontology;mary"/>

<rdf:Description rdf:about="&family-ontology;sarah"/>

</owl:distinctMembers>

</rdf:Description>

<rdf:Description>

<rdf:type rdf:resource="&owl;NegativePropertyAssertion"/>

<owl:targetIndividual rdf:resource="&family-ontology;mary"/>

<owl:assertionProperty rdf:resource="&family-ontology;sibling"/>

<owl:sourceIndividual rdf:resource="&family-ontology;sarah"/>

</rdf:Description>

<rdf:Description>

<rdf:type rdf:resource="&owl;NegativePropertyAssertion"/>

<owl:targetIndividual rdf:resource="&family-ontology;youngest child"/>

<owl:assertionProperty rdf:resource="&family-ontology;dad"/>

<owl:sourceIndividual rdf:resource="&family-ontology;joe"/>

</rdf:Description>

<owl:Class rdf:about="&family-ontology;female">

<rdfs:subClassOf rdf:resource="&family-ontology;person"/>

</owl:Class>

<owl:NamedIndividual rdf:about="&family-ontology;sarah">

<rdf:type rdf:resource="&family-ontology;person"/>

</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="&family-ontology;mary">

<family-ontology:child rdf:resource="&family-ontology;joe"/>

<family-ontology:sibling rdf:resource="&family-ontology;sarah"/>

<owl:sameAs rdf:resource="&family-ontology;youngest child"/>

<rdf:type rdf:resource="&family-ontology;female"/>

</owl:NamedIndividual>
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<owl:ObjectProperty rdf:about="&family-ontology;sibling">

<rdf:type rdf:resource="&owl;SymmetricProperty"/>

</owl:ObjectProperty>

4.3 Implementation of Saffron

Saffron has two implementations. One implementation outputs the resultant DL

problem in RDF/XML, and the other implementation outputs the resultant DL prob-

lem in DLF. Both implementations consists of three translation related modules, and

several support modules that are responsible for reading the input problem and sav-

ing the clauses in a processable format. The three translation related modules are

named translation, gather, and generate-output.

The two implementations are very different in the gather, and generate-output

modules, and slightly different in the translation module. In both implementations,

the translation module translates the CNF problem clause-by-clause. Each clause

is translated to a set of DL formulae. In the RDF/XML implementation the output

from the translation module is passed to the gather module for further process-

ing, and then the output of the gather module is passed to the generate-output

module. In the DLF implementation the output from the translation module that

needs further processing is passed to the gather module, and the rest of the output

is passed directly to the generate-output module. In both DLF and RDF/XML

implementations, the generate-output module uses the data received from the other
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module(s) to generate the output DL problem. Appendix B is the pseudo code for

the implementation that outputs RDF/XML syntax.

4.3.1 The translation Module

For each CNF clause, the translation module tries to translate the clause. If the

clause is not DL-able, it is kept as an untranslated clause to be used later for statistics

purposes, such as calculating the translation percentage. The translation module

uses a translation table that maps clause structures to their translation in DL. The

translation table is illustrated in Tables 4.5 and 4.6.

To translate a CNF clause c, all the constants, unary predicates, binary predicates,

and distinct variables of the clause c are extracted. The clause c is then filtered out

if it is obvious that c is not DL-able. The filtering is done by checking the sizes of the

sets of constants, unary predicates, binary predicates, and distinct variables of the

clause. If the sizes of these sets does not match any of the DL-able clause structures

in the translation table, then c is filtered out, and kept as untranslated. The filtering

process narrows down the search space for a possible translation of the clause c.

The CNF clauses of Example 39 have no constants, no unary predicates, and two

binary predicates. Clause 39.a has four distinct variables, and other clauses have two

distinct variables. There is no DL-able clause structure with four distinct variables,

so the clause 39.a is filtered out. However, clauses 39.b and 39.c are kept for the next

step because the sizes of their sets of constants, unary predicates, binary predicates

and variables match the DL-able clause structures in two rows of Table 4.5.
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Example 39

39.a. dad(X,Y) | child(Z,T)

39.b. ~dad(X,X) | child(Y,Y)

39.c. ~dad(X,Y) | child(X,Y)

39.d. ~dad(X,Y) | child(Y,X)

The last step of the translation is to determine if there is an exact match for c. All

features of the clause c, such as polarity of its literals, and the order of appearance of

variables and constants in the arguments of binary predicates, are taken into account

when finding a match.

In Example 39, the clauses 39.b, 39.c and 39.d share same sets of constants, unary

predicates, binary predicates, and distinct variables. However, the clause 39.b is not

DL-able, and the clauses 39.c and 39.d match the clause structures in two rows of

the Table 4.5. Examples 40.a and 40.b are the translation for clauses 39.c and 39.d

correspondingly.

Example 40

40.a. {dad << child}

40.b. {inv child -= child,

dad << inv child }

In the RDF/XML implementation, the output of the translation module on a

DL-able clause c is a set of pairs. The first argument of the pair contains information



69

T
ab

le
4.

5:
C

N
F

an
d

D
L

E
q
u
iv

al
en

t
F

or
m

u
la

e
C

la
u

se
c

In
d

iv
id

u
al

s
C

la
ss

es
R

o
le

s
V

a
ri

a
b

le
s

sa
ff

ro
n

(c
)

p
(
a
)

{a
}

{p
}

{}
{}

{a
:
p
}

~
p
(
a
)

{a
:
-
p
}

|m i=
1
p
i
(
a
)
|
|n j
=
1
~
q
j
(
a
)

{a
}

{p
i,
q
j
|0
≤
i≤

m
,0
≤
j
≤
n
,

(m
+

n
)≥

2}
{}

{}
{a

:
++

n i=
1
p
i
+
+

++
m j
=
1
-
q
j
}

r(
a,

b
)

{a
,b
}

{}
{r
}

{}
{r
(
a
,
b
)
}

˜r
(a

,b
)

{~
r
(
a
,
b
}

a
=
b

{a
,b
}

{}
{=
}

{}
{a

=
b
}

a
!
=
b

{a
!
=
b
}

|n i=
1
r(
a
,b

i)
w

h
er

e
n
≥

2
{a

,b
i|

0
≤
i≤

n
,n
≥

2}
{}

{r
}

{}
{a

:
?
r
(
,
[
b
1
,
b
2
,
.
.
.
b
n
]
)
}

|n i=
1
a

=
b
i

w
h

er
e
n
≥

2
{a

,b
i|

0
≤
i≤

n
,n
≥

2}
{}

{=
}

{}
{a

:
[
b
1
,
b
2
,
.
.
.
b
n
]
}

p
(
X
)

{}
{p
}

{}
{X
}

{p
=
&
t
h
i
n
g
}

~
p
(
X
)

{&
t
h
i
n
g
=
~
p
}

~
p
(
X
)
|
q
(
X
)

{}
{p

,q
}

{}
{X
}

{p
<
<
q
}

~
p
(
X
)
|
r
(
X
,
Y
)

{}
{p
}

{r
}

{X
,Y
}

{p
<
<
?
r
(
,
&
t
h
i
n
g
)
}

p
(
X
)
|
~
r
(
X
,
Y
)

{?
r
(
,
&
t
h
i
n
g
)
<
<
p
}

p
(
X
)
|
~
q
(
Y
)
|
~
r
(
X
,
Y
)

{}
{p

,q
}

{r
}

{X
,Y
}

{?
r
(
,
q
)
<
<
p
}

|m i=
1
p
i
(
X
)
|
|n j
=
1
~
q
j
(
X
)

{}
{p

i,
q
j
|0
≤
i≤

m
,0
≤
j
≤
n
,

(m
+

n
)≥

2}
{}

{X
}

{&
t
h
i
n
g
=

++
n i=

1
p
i
+
+

++
m j
=
1
-
q
j
}

|m i=
1
X
=
a
i

{a
i|0
≤
i≤

n
,
n
≥

2
}

{}
{=
}

{X
}

{&
t
h
i
n
g
=
[
a
1
,
a
2
,
.
.
.
,
a
n
]
}

|m i=
1
r
(
X
,
a
i
)

{a
i,
|0
≤
i≤

n
,
n
≥

2
}

{}
{r
}

{X
}

{&
t
h
i
n
g
=
?
r
(
,
[
a
1
,
a
2
,
.
.
.
,
a
n
]
)
}

r
(
X
,
X
)

{}
{
}

{r
}

{X
}

{$
r
e
f
l
e
x
i
v
e
(
r
)
}

˜r
(X

,X
)

{$
i
r
r
e
f
l
e
x
i
v
e
(
r
)
}

~
r
(
X
,
Y
)
|
r
(
Y
,
X
)

{}
{}

{r
}

{X
,Y
}

{$
s
y
m
m
e
t
r
i
c
(
r
)
}

~
r
(
X
,
Y
)
|

~
r
(
Y
,
X
)

{$
a
s
y
m
m
e
t
r
i
c
(
r
)
}

~
r
(
X
,
Y
)
|
~
r
(
Y
,
Z
)
|
r
(
X
,
Z
)

{}
{}

{r
}

{X
,Y

,Z
}

{$
t
r
a
n
s
i
t
i
v
e
(
r
)
}

~
r
(
X
,
Y
)
|
s
(
X
,
Y
)

{}
{}

{r
,s
}

{X
,Y
}

{r
<
<
s
}

~
r
(
X
,
Y
)
|
s
(
Y
,
X
)

{i
n
v
s
-
=
s
,
r
<
<
i
n
v
s
}

~
r
1
(
X
,
Y
)
|
~
r
2
(
Y
,
Z
)
|
s
(
X
,
Y
)
{}

{}
{r

1
,r

2
,s
}
{X

,Y
,Z
}

{s
>
>
(
r
1
@
r
2
)
}

~
r
1
(
X
,
Y
)
|
~
r
2
(
X
,
Z
)
|
s
(
Y
,
Z
)

{
i
n
v
r
2
-
=
r
2
,
i
n
v
s
-
=
s
,

i
n
v
s
>
>
(
i
n
v
r
2
@
r
1
)
}



70

T
ab

le
4.

6:
C

N
F

an
d

D
L

E
q
u
iv

al
en

t
F

or
m

u
la

e
C

la
u

se
c

In
d

iv
id

u
al

s
C

la
ss

es
R

o
le

s
V

a
ri

a
b

le
s
sa
ff

ro
n

(c
)

|n
1

i1
=
1
p
i1

(X
)
||

n
2

i2
=
1
∼
p
p
i2

(X
)
|

|m
1

j
1
=
1
q
j1

(Y
)
||

m
2

j
2
=
1
∼
qp

j2
(Y

)
|

|h
1

k
=
1
∼
r k

(X
,Y

)

w
h

er
e

(n
1

+
n

2
)≥

1,

(m
1

+
m

2)
≥

1,
an

d
h
≥

1

{}
{p

i1
,p
p
i2
,

q
j1
,q
p
j2
|

0
≤
i1
≤
n

1
,

0
≤
i2
≤
n

2
,

0
≤
j1
≤
m

1
,

0
≤
j2
≤
m

2}

{r
k
|0
≤
k
≤
h
}

{X
,Y
}

{
(∗
∗h k

=
1
r k

(
,
∗
∗m

1
j
1
=
1
−
q
j1
∗
∗

∗
∗m

2
j
2
=
1
qp

j2
))

<
<

(
+

+
n
1

i1
=
1
p
i1

+
+

+
+

n
2

i2
=
1
−
p
p
i2

)
}

|n
1

i1
=
1
p
i1

(X
)
||

n
2

i2
=
1
∼
p
p
i2

(X
)
|

|n
3

i3
=
1
s
i3

(X
,a

i3
)
|

|n
4

i4
=
1
∼
sp

i4
(X

,a
′
i4

)
|

|m
1

j
1
=
1
q
j1

(Y
)
||

m
2

j
2
=
1
∼
qp

j2
(Y

)
|

|m
3

j
3
=
1
u
j3

(Y
,b

j3
)
|

|m
4

j
4
=
1
∼
u
p
j
4
(Y

,b
p
j4

)
|

|h k
=
1
∼
r k

(X
,Y

)

w
h

er
e

(n
1

+
n

2
+

n
3

+
n

4)
≥

1,

(m
1

+
m

2
+

m
3

+
m

4)
≥

1,

an
d
h
≥

1

{a
i3
,a

′
i4
,

b
j3
,b
p
j4
|

0
≤
i3
≤
n

3
,

0
≤
i4
≤
n

4
,

0
≤
j3
≤
m

3
,

0
≤
j4
≤
m

4
}

{p
i1
,p
p
i2
,

q
j1
,q

j2
|

0
≤
i1
≤
n

1
,

0
≤
i2
≤
n

2
,

0
≤
j1
≤
m

1
,

0
≤
j2
≤
m

2}

{s
i3
,s
p
i4
,

u
j
4
,u

p
j
4
,r

k
|

0
≤
i3
≤
n

3
,

0
≤
i4
≤
n

4
,

0
≤
j3
≤
m

3
,

0
≤
j4
≤
m

4}

{X
,Y
}

{
∗∗

h k
=
1
?r

k
(
,

(∗
∗m

1
j
1
=
1
−
q
j1
∗
∗

∗
∗m

2
j
2
=
1
qp

j2
∗
∗

∗
∗m

3
j
3
=
1
−

(!
u
j3

(
,b

j3
))
∗
∗

∗∗
m

4
j
4
=
1
!u

p
j
4
(
,b
p
j4

))
)

<
< (

+
+

n
1

i1
=
1
p
i1

+
+

+
+

n
2

i2
=
1
−
p
p
i2

+
+

++
n
3

i3
=
1
!s

i3
(
,a

i3
)

+
+

+
+

n
4

i4
=
1
−

(!
sp

i4
(
,a

′
i4

))
)}

|m
1

i1
=
1
p
i1

(X
)
|
|m

2
i2
=
1
∼
q i

2
(X

)
|

|n j
=
1
(
X

=
a
j

)
w

h
er

e
m

1
≥

0,
m

2
≥

0,
(m

1
+

m
2)
≥

1,
n
≥

1,

{a
j
|0
≤
j
≤
n
,

n
≥

1
}

{p
i1
,q

i2
|

0
≤
i1
≤
m

1
,

0
≤
i2
≤
m

2
,

(m
1

+
m

2
)≥

1}

{=
}

{X
}

{&
th
in
g

=
(

+
+

m
1

i1
=
1
p
i1

+
+

+
+

m
2

i2
=
1
−
q i

2
+

+

[a
1
,a

2
,.
..
,a

n
])
}

|m
1

i1
=
1
p
i1

(X
)
|
|m

2
i2
=
1
∼
q i

2
(X

)
|

|n
1

j
1
=
1
r j

1
(X

,a
j
1
)
|

|n
2

j
2
=
1
∼
r′ j

2
(X

,b
j
2
)

w
h

er
e
m

1
≥

0,
m

2
≥

0,
(m

1
+

m
2)
≥

1,
an

d
(n

1
+

n
2)
≥

1

{a
j
1
,b

j
2
|

0
≤
j1
≤
n

1,
0
≤
j2
≤
n

2,
(n

1
+

n
2
)≥

1}

{p
i1
,q

i2
|

0
≤
i1
≤
m

1
,

0
≤
i2
≤
m

2
,

(m
1

+
m

2
)≥

1}

{r
j
1
,r

′ j
2
|

0
≤
j1
≤
n

1
,

0
≤
j2
≤
n

2,
(n

1
+

n
2
)≥

1
}

{X
}

{&
th
in
g

=

(
+

+
m

1
i1
=
1
p
i1

+
+

+
+

m
2

i2
=
1
−
q i

2
+

+

++
n
1

j
1
=
1
!r

j
(
,a

j
1
)

+
+

+
+

n
2

j
2
=
1
−

(!
r′ j

(
,b

j
2
))
}



71

that uniquely specifies an RDF/XML tag. The second argument of the pair is a DL

formula expressed as a sub-tag. All the pairs are passed to the gather module to

create completed RDF/XML tags.

In the DLF implementation, the output of the translation module on a DL-able

clause c is a set of DL formulae and the list of the names of the constants, unary

predicates, and binary predicates of c. DL formulae expressing that an individual

belongs to a class, along with the names of constants, unary predicates and binary

predicates of the clause c, are passed to the gather module. All other DL formulae

are expressed as DLF logic formulae, and passed directly to the generate-output

module.

4.3.2 The gather and generate-output Modules

The characteristics of a specific individual, class or role, and the description of the

class &thing are distributed in a CNF problem. After the translation module has

translated all the DL-able clauses, the gather module processes the data received

from the translation module.

In the RDF/XML implementation, the gather module collects all the resultant

pairs from the translation module. It merges the sub-tags of all the pairs whose

first arguments specify the same RDF/XML tag, to create a completed RDF/XML

tag that describes the individual, class, role, or &thing. The output of the gather

module is a set of RDF/XML tags that are passed to the generate-output module.
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In the DLF implementation, the gather module collects all the DL formulae and

the list of names received from the translation module. A type formula needs to be

created for each individual, each class, and each role in DLF syntax. If an individual

belongs to more than one class, then the type of the individual is the intersection of

those classes. If an individual does not belong to any class, the type of the individual

is &thing. The types of classes are always $tType. The types of roles are always

&thing * &thing > $o, because no CNF clause is translated in a way to provide the

domain or range of a role. The output of the gather module is a set of DLF type

formulae that is passed to the generate-output module.

The generate-output module creates an appropriate definition header for the DL

problem, depending on the desired syntax of the output DL problem. The definition

header and the set of either RDF/XML tags or DLF formulae are written to an output

file.

4.4 Proof of the Soundness of the Translation

It is necessary to prove that the CNF to DL translation procedure is sound. In this

section a mathematical proof is provided.

Theorem 4.1 The CNF problem problem dl (all the DL-able clauses of the CNF

problem problem) is satisfiable if and only if the DL problem saffron(problem dl) is

satisfiable.

Proof The CNF problem problem dl is satisfiable if and only if it has a model. The

DL problem saffron(problem dl) is satisfiable if and only if it has a model. To
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prove the theorem, it is necessary to prove that problem dl has a model if and only

if saffron(problem) has a model. Since a CNF problem has a model if and only

if it has a Herbrand model, it is enough to prove that problem dl has a Herbrand

model HM if and only if saffron(problem) has a model M . A CNF problem has

a Herbrand model HM if and only if all the clauses are TRUE in HM . Thus, it is

necessary to prove that every clause c is TRUE in HM if and only if saffron(c) is TRUE

in M . A bidirectional proof-by-construction is presented here. In one direction, HM

is constructed from M , and in the other direction M is constructed from HM .

Models for CNF problems are explained in detail in Section 2.3.2.2. The compo-

nents of the Herbrand model HM = (DHM , FHM , RHM) for problem dl are defined

as follows:

• DHM is the domain of HM , which is the Herbrand Universe. Since problem

is EPR, the Herbrand Universe is finite and consists of the constants of the

problem dl. If problem dl has no constants, a dummy element is added to

DHM .

• FHM is the function map. It is the identity function. All the constants in

problem dl, which are the only functions in problem dl, are mapped to them-

selves.

• RHM is the predicate map. It is the subset of the Herbrand Base (HBTRUE)

that is TRUE . That means a ground atom A is TRUE in HM if and only if

A ∈ HBTRUE.
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Models for DL problems are explained in detail in Section 2.2.2. The components

of the model M = (∆I
M , .

I) for saffron(problem) are defined as follows:

• ∆I
M is the domain of M . It is the set consisting of the interpretations of the

individuals in saffron(problem dl). (Recall from Section 4.2, the individuals

in saffron(problem dl) are the constants in problem dl).

• .I is the interpretation function for M .

HM and M can be constructed one from another by the following rules, which

are the basis of the translation function saffron.

• a ∈ DHM iff aI ∈ ∆M .

• p(a) is TRUE in HM

iff

p(a) ∈ HBTRUE

iff

aI ∈ pI in M .

• r(a, b) is TRUE in HM

iff

r(a, b) ∈ HBTRUE

iff

(aI , bI) ∈ rI in M .

• a = b is TRUE in HM

iff

(a = b) ∈ HBTRUE

iff

aI = bI in M .
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For each translation rule c
saffron7−−−−→ saffron(c), a lemma is proven that c is TRUE

in HM iff saffron(c) is TRUE in M . The syntax for the clause c, which also appears

in the first line of each lemma, is CNF. Steps from CNF syntax to CNF semantics are

defined in Section 2.3.2.2. The syntax for the DL formulae in saffron(c), which also

appear in the last line of each lemma, is DLF. Steps from DL syntax to DL semantics

are defined in Section 2.2.2.

Notation. The variables X, Y and Z range over DHM , and the variables x, y and z

range over ∆M .

Lemma 4.2 Translating p(a)
saffron7−−−−→ {a : p}:

Proof
p(a) in HM

iff
aI ∈ pI in M

iff
a : p �.

Lemma 4.3 Translating ~p(a)
saffron7−−−−→ { a : -p}:

Proof
~p(a) in HM

iff
aI /∈ pI in M

iff
aI ∈ ∆I

M\pI in M
iff

aI ∈ (¬p)I in M
iff

a : -p in M �.

Lemma 4.4 Translating |ni=1p i(a) | |mi=1~q i(a)
saffron7−−−−→

{ a: (++n
i=1p i ++ ++m

i=1(-q i))} ((m+ n) ≥ 2):
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Proof
|ni=1p i(a) | | i = 1mq i(a) in HM

iff∨n
i=1 p i(a) ∼(

∧m
i=1 q i(a)) in HM

iff∨n
i=1(aI ∈ p iI)∨ ∼

∧m
i=1(aI ∈ q iI) in M

iff∨n
i=1(aI ∈ p iI)∨

∨m
i=1(aI /∈ q iI) in M

iff∨n
i=1(aI ∈ p iI)∨

∨m
i=1(aI ∈ (∆I

M\q iI)) in M
iff∨n

i=1(aI ∈ p iI)∨
∨m

i=1(aI ∈ (¬q i)I) in M
iff

aI ∈ (
⋃n

i=1(p iI)∪
⋃m

i=1(¬q i)I) in M
iff

a: (++n
i=1p i ++ ++m

i=1(-q i)) in M �.

Lemma 4.5 Translating r(a,b)
saffron7−−−−→ { r(a,b)}:

Proof
r(a,b) in HM

iff
(aI , bI) ∈ rI in M

iff
r(a,b) in M �.

Lemma 4.6 Translating ~r(a,b)
saffron7−−−−→ {~r(a,b)}:

Proof
~r(a,b) in HM

iff
(aI , bI) /∈ rI in M

iff
~r(a,b) in M �.
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Lemma 4.7 Translating a = b
saffron7−−−−→ {a = b}:

Proof
a = b in HM

iff
aI = bI in M

iff
a = b in M �.

Lemma 4.8 Translating a != b
saffron7−−−−→ {a != b}:

Proof
a != b in HM

iff
aI 6= bI in M

iff
a != b in M �.

Lemma 4.9 Translating |ni=1r(a,b i)
saffron7−−−−→ {a: ?r( ,[b 1,b 2,...,b n])}(n ≥

2):

Proof
|ni=1r(a,b i) in HM

iff∨n
i ((aI , b iI) ∈ rI) in M

iff
(aI , b 1I) ∈ rI ∨ (aI , b 2I) ∈ rI ∨ ... ∨ (aI , b nI) ∈ rI in M

iff
∃y ∈ ∆I

M : ((aI , y) ∈ rI ∧ (
∨n

i=1(y = b iI)) in M
iff

∃y ∈ ∆I
M : ((aI , y) ∈ rI ∧ y ∈ {b 1I , b 2I , .., b nI}) in M

iff
∃y ∈ ∆I

M : ((aI , y) ∈ rI ∧ y ∈ {b 1, b 2, .., b n}I) in M
iff

aI ∈ (∃r.{b 1, b 2, .., b n})I in M
iff

a: ?r( ,[b 1,b 2,...,b n]) in M �.
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Lemma 4.10 Translating |ni=1(a=b i)
saffron7−−−−→ {a: [b 1,b 2,...,b n]} (n ≥ 2):

Proof
|ni=1(a=b i) in HM

iff∨n
i=1(aI = b iI) in M

iff
aI ∈ {b 1I , b 2I , .., b nI} in M

iff
aI ∈ {b 1, b 2, .., b n}I in M

iff
a: [b 1,b 2,...,b n] in M �.

Lemma 4.11 Translating p(X)
saffron7−−−−→ {p = &thing}:

Proof
p(X) in HM

iff
∀X ∈ DHM : p(X) in HM

iff
∀x ∈ ∆I

M : x ∈ pI in M
iff

pI = ∆I
M = >I in M

iff
p = &thing �.

Lemma 4.12 Translating ~p(X)
saffron7−−−−→ {&thing = (-p)}:

Proof
~p(X) in HM

iff
∀X ∈ DHM :∼p(X) in HM

iff
∀x ∈ ∆I

M : x /∈ pI in M
iff

∀x ∈ ∆I
M : x ∈ ∆I

M\pI in M
iff

∀x ∈ ∆I
M : x ∈ (¬p)I in M

iff
(¬p)I = ∆I

M = >I in M
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iff
>I = (¬p)I in M

iff
&thing = (-p) in M �.

Lemma 4.13 Translating ~p(X) | q(X)
saffron7−−−−→ {p << q}:

Proof
~p(X) | q(X) in HM

iff
∀X ∈ DHM : (p(X)⇒ q(X)) in HM

iff
∀x ∈ ∆I

M : (x ∈ pI ⇒ x ∈ qI) in M
iff

pI ⊆ qI in M
iff

p << q in M �.

Lemma 4.14 Translating ~p(X) | r(X,Y)
saffron7−−−−→ {p << ?r( ,&thing)}:

Proof
~p(X) | r(X,Y) in HM

iff
∀X ∈ DHM : ∀Y ∈ DHM : (∼p(X) ∨ r(X, Y )) in HM

iff
∀X ∈ DHM : ∀Y ∈ DHM : (∼p(X) ∨ (r(X, Y ) ∧ Y ∈ DHM)) in HM

iff
∀X ∈ DHM : ∀Y ∈ DHM : (∼(p(X)∧ ∼(r(X, Y ) ∧ Y ∈ DHM)) in HM

iff
∼(∃X ∈ DHM : ∃Y ∈ DHM : (p(X)∧ ∼(r(X, Y ) ∧ Y ∈ DHM))) in HM

iff
∼(∃x ∈ ∆I

M : ∃y ∈ ∆I
M : (x ∈ pI∧ ∼((x, y) ∈ rI ∧ y ∈ ∆I

M))) in M
iff

∼(∃x ∈ ∆I
M : (x ∈ pI∧ ∼(x ∈ (∃r.>)I))) in M

iff
∀x ∈ ∆I

M :∼(x ∈ pI ∧ x /∈ (∃r.>)I) in M
iff

∀x ∈ ∆I
M : (x /∈ pI ∨ x ∈ (∃r.>)I) in M

iff
∀x ∈ ∆I

M : (x ∈ pI ⇒ x ∈ (∃r.>)I) in M
iff
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pI ⊆ (∃r.>)I in M
iff

p << ?r( ,&thing) in M �.

Lemma 4.15 Translating p(X) | ~r(X,Y)
saffron7−−−−→ {?r( ,&thing) << p}:

Proof
p(X) | ~r(X,Y) in HM

iff
∀X ∈ DHM : ∀Y ∈ DHM : (p(X)∨ ∼r(X, Y )) in HM

iff
∀X ∈ DHM : ∀Y ∈ DHM : (p(X)∨ ∼r(X, Y ) ∨ Y /∈ DHM) in HM

iff
∀X ∈ DHM : ∀Y ∈ DHM : (∼(r(X, Y )∧ ∼p(X) ∧ Y ∈ DHM)) in HM

iff
∼(∃X ∈ DHM : ∃Y ∈ DHM : (r(X, Y )∧ ∼p(X) ∧ Y ∈ DHM) in HM

iff
∼(∃x ∈ ∆I

M : ∃y ∈ ∆I
M : ((x, y) ∈ rI ∧ y ∈ ∆I

M ∧ x /∈ pI)) in M
iff

∼(∃x ∈ ∆I
M : (x ∈ (∃r.>)I ∧ x /∈ pI)) in M

iff
∀x ∈ ∆I

M :∼(x ∈ (∃r.>)I ∧ x /∈ pI) in M
iff

∀x ∈ ∆I
M : (x /∈ (∃r.>)I ∨ x ∈ pI) in M

iff
∀x ∈ ∆I

M : (x ∈ (∃r.>)I ⇒ x ∈ pI) in M
iff

(∃r.>)I ⊆ pI in M
iff

?r( ,&thing) << p in M �.

Lemma 4.16 Translating ~r(X,Y) | ~q(Y) | p(X)
saffron7−−−−→ {?r( ,q) << p}:

Proof
∼r(X, Y ) | ∼q(Y ) | p(X)

iff
∀X ∈ DHM : ∀Y ∈ DHM : (∼r(X, Y )∨ ∼q(Y ) ∨ p(X)) in HM

iff
∀X ∈ DHM : ∀Y ∈ DHM : (∼(r(X, Y ) ∧ q(Y )∧ ∼p(X))) in HM

iff
∼(∃X ∈ DHM : ∃Y ∈ DHM : (r(X, Y ) ∧ q(Y )∧ ∼p(X))) in HM
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iff
∼(∃x ∈ ∆I

M : ∃y ∈ ∆I
M : ((x, y) ∈ rI ∧ y ∈ qI ∧ x /∈ pI)) in M

iff
∼(∃x ∈ ∆I

M : (x ∈ (∃r.q)I ∧ x /∈ pI)) in M
iff

∼(∃x ∈ ∆I
M :∼(x /∈ (∃r.q)I ∨ x ∈ pI)) in M

iff
∀x ∈ ∆I

M : (x /∈ (∃r.q)I ∨ x ∈ pI) in M
iff

∀x ∈ ∆I
M : (x ∈ (∃r.q)I ⇒ x ∈ pI) in M

iff
(∃r.q)I ⊆ pI in M

iff
?r( ,q) << p in M �.

Lemma 4.17 Translating |m1
j1=1q j1(Y) | |m2

j2=1~qp j2(Y) | |hk=1~r k(X,Y)
saffron7−−−−→

{ ( ∗∗hk=1?r k( , ∗∗m1
j1=1(-q j1) ** ∗∗m2

j2=1qp j2)) << &nothing } (m1 +m2) ≥ 1,

and h ≥ 1:

Proof
|m1
j1=1q j1(Y) | |m2

j2=1~qp j2(Y) | |hk=1~r k(X,Y)

iff
∀X ∈ DHM : ∀Y ∈ DHM :
(
∨m1

j1=1 q j1(Y ) ∨
∨m2

j2=1 ∼qp j2(Y ) ∨
∨h

k=1 ∼rk(X, Y )) in HM
iff

∀X ∈ DHM : ∀Y ∈ DHM :
∼(

∧m1
j1=1 ∼q j1(Y ) ∧

∧m2
j2=1 qp j2(Y ) ∧

∧h
k=1 rk(X, Y )) in HM

iff
∼(∃X ∈ DHM : ∃Y ∈ DHM :
(
∧m1

j1=1 ∼q j1(Y ) ∧
∧m2

j2=1 qp j2(Y ) ∧
∧h

k=1 rk(X, Y ))) in HM
iff

∼(∃x ∈ ∆I
M : ∃y ∈ ∆I

M :
(
∧m1

j1=1 y ∈ (¬q j1)I ∧
∧m2

j2=1 y ∈ qp j2I ∧
∧h

k=1(x, y) ∈ rIk) in M
iff

∼(∃x ∈ ∆I
M : ∃y ∈ ∆I

M :
(y ∈ (

⋂m1
j1=1(¬q j1)I ∩

⋂m2
j2=1 qp j2

I) ∧
∧h

k=1(x, y) ∈ rIk) in M
iff

∼(∃x ∈ ∆I
M : ∃y ∈ ∆I

M :
y ∈ (

dm1
j1=1(¬q j1) u

dm2
j2=1 qp j2)I ∧

∧h
k=1(x, y) ∈ rIk) in M

iff
∼(∃x ∈ ∆I

M : ∃y ∈ ∆I
M :
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∧h
k=1(y ∈ (

dm1
j1=1(¬q j1) u

dm2
j2=1 qp j2)I ∧ (x, y) ∈ rIk)) in M

iff
∼(∃x ∈ ∆I

M :∧h
k=1(x ∈ (∃r k.(

dm1
j1=1(¬q j1) u

dm2
j2=1 qp j2))I) in M

iff
∼(∃x ∈ ∆I

M :
x ∈

⋂h
k=1(∃r k.(

dm1
j1=1(¬q j1) u

dm2
j2=1 qp j2))I) in M

iff
∼(∃x ∈ ∆I

M :
x ∈ (∗∗hk=1?rk( ,

dm1
j1=1(¬q j1) u

dm2
j2=1 qp j2))I) in M

iff
(
dh

k=1 ∃r k.(
dm1

j1=1(¬q j1) u
dm2

j2=1 qp j2))I ⊆ ∅ in M
iff

∗∗hk=1?r k( , ∗∗m1
j1=1(-q j1) ** ∗∗m2

j2=1qp j2)) << &nothing in M �.

Lemma 4.18 Translating |m1
i1=1p i1(X) | |m2

i2=1~p i2(X) | |m1
j1=1q j1(Y) |

|m2
j2=1~qp j2(Y) | |hk=1~r k(X,Y)

saffron7−−−−→

{ ( ∗∗hk=1?r k( , ∗∗m1
j1=1(-q j1) ** ∗∗m2

j2=1qp j2)) <<

(++n1
i1=1p i1 ++ ++n2

i2=1(-p i2)) }

(n1 + n2) ≥ 1, (m1 +m2) ≥ 1, and h ≥ 1:

Proof
|m1
i1=1p i1(X) | |m2

i2=1~p i2(X) | |m1
j1=1q j1(Y) | |m2

j2=1~qp j2(Y) |

|hk=1~r k(X,Y) in HM
iff

∀X ∈ DHM : ∀Y ∈ DHM :
(
∨n1

i1=1 p i1(X) ∨
∨n2

i2=1 ∼pp i2(X) ∨
∨h

k=1 ∼rk(X, Y ) ∨
∨m1

j1=1 q j1(Y )∨∨m2
j2=1 ∼qp j2(Y )) in HM

iff
∀X ∈ DHM : ∀Y ∈ DHM :∼(∼(

∨n1
i1=1 p i1(X) ∨

∨n2
i2=1 ∼pp i2(X))

∧
∧h

k=1 rk(X, Y ) ∧
∧m1

j1=1 ∼q j1(Y ) ∧
∧m2

j2=1 qp j2(Y )) in HM
iff

∼(∃X ∈ DHM : ∃Y ∈ DHM : (∼(
∨n1

i1=1 p i1(X) ∨
∨n2

i2=1 ∼pp i2(X))

∧
∧h

k=1 rk(X, Y ) ∧
∧m1

j1=1 ∼q j1(Y ) ∧
∧m2

j2=1 qp j2(Y ))) in HM
iff

∼(∃x ∈ ∆I
M : ∃y ∈ ∆I

M : (∼(
∨n1

i1=1 x ∈ p i1I ∨
∨n2

i2=1 x ∈ (−pp i2)I)

∧
∧m1

j1=1 y ∈ (¬q j1)I ∧
∧m2

j2=1 y ∈ qp j2I ∧
∧h

k=1(x, y) ∈ rIk) in M
iff
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∼(∃x ∈ ∆I
M : ∃y ∈ ∆I

M : (x /∈ (
⋃n1

i1=1(−p i1)I ∪
⋃n2

i2=1 pp i2
I)∧

(y ∈ (
⋂m1

j1=1(¬q j1)I ∩
⋂m2

j2=1 qp j2
I) ∧

∧h
k=1(x, y) ∈ rIk) in M

iff
∼(∃x ∈ ∆I

M : ∃y ∈ ∆I
M : x /∈ (

⊔n1
i1=1 p i1 t

⊔n2
i2=1(¬pp i2))I∧

y ∈ (
dm1

j1=1(¬q j1) u
dm2

j2=1 qp j2)I ∧
∧h

k=1(x, y) ∈ rIk) in M
iff

∼(∃x ∈ ∆I
M : ∃y ∈ ∆I

M : x /∈ (
⊔n1

i1=1 p i1 t
⊔n2

i2=1(¬pp i2))I∧∧h
k=1(y ∈ (

dm1
j1=1(¬q j1) u

dm2
j2=1 qp j2)I ∧ (x, y) ∈ rIk)) in M

iff
∼(∃x ∈ ∆I

M : x /∈ (
⊔n1

i1=1 p i1 t
⊔n2

i2=1(¬pp i2))I∧∧h
k=1 x ∈ (∃r k.(

dm1
j1=1(¬q j1) u

dm2
j2=1 qp j2)))I) in M

iff
∼(∃x ∈ ∆I

M : x /∈ (
⊔n1

i1=1 p i1 t
⊔n2

i2=1(¬pp i2))I∧
x ∈

⋂h
k=1(∃r k.(

dm1
j1=1(¬q j1) u

dm2
j2=1 qp j2))I) in M

iff
∼(∃x ∈ ∆I

M : x /∈ (
⊔n1

i1=1 p i1 t
⊔n2

i2=1(¬pp i2))I∧
x ∈ (

dh
k=1 ∃r k.(

dm1
j1=1(¬q j1) u

dm2
j2=1 qp j2))I) in M

iff
∀x ∈ ∆I

M :∼(x /∈ (
⊔n1

i1=1 p i1 t
⊔n2

i2=1(¬pp i2))I∧
x ∈ (

dh
k=1 ∃r k.(

dm1
j1=1(¬q j1) u

dm2
j2=1 qp j2))I) in M

iff
∀x ∈ ∆I

M : (x ∈ (
⊔n1

i1=1 p i1 t
⊔n2

i2=1(¬pp i2))I

∨x /∈ (
dh

k=1?rk( , (
dm1

j1=1(¬q j1) u
dm2

j2=1 qp j2)))I) in M
iff

∀x ∈ ∆I
M : (x ∈ (

dh
k=1?rk( , (

dm1
j1=1(¬q j1) u

dm2
j2=1 qp j2)))I ⇒

x ∈ (
⊔n1

i1=1 p i1 t
⊔n2

i2=1(¬pp i2))I) in M
iff

(
dh

k=1?rk( , (
dm1

j1=1(¬q j1)u
dm2

j2=1 qp j2)))I ⊆ (
⊔n1

i1=1 p i1t
⊔n2

i2=1(¬pp i2))I in M
iff

∗∗hk=1?r k( , ∗∗m1
j1=1(-q j1) ** ∗∗m2

j2=1qp j2)) <<

(++n1
i1=1p i1 ++ ++n2

i2=1(-p i2)) in M �.

Lemma 4.19 Translating

|n1
i1=1p i1(X) | |n2

i2=1~pp i2(X) | |n3
i3=1s i3(X,a i3) | |n4

i4=1~sp i4(X,a’ i4) |

|m1
j1=1q j1(Y) | |m2

j2=1~qp j2(Y) | |m3
j3=1u j3(Y,b j3) | |m4

j4=1~up j4(Y,bp j4) |

|hk=1~r k(X,Y)
saffron7−−−−→

( ∗∗hk=1?r k( , ** ( ∗∗m1
j1=1-q j1 ** ∗∗m2

j2=1qp j2 ** ∗∗m3
j3=1-(!u j3( ,b j3)) **

∗∗m4
j4=1!up j4( ,bp j4)) ))
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<< ( ++n1
i1=1p i1 ++ ++n2

i2=1-pp i2 ++ ++n3
i3=1!s i3( ,a i3) ++

++n4
i4=1-(!sp i4( ,a’ i4)))

((n1 + n2 + n3 + n4) ≥ 1, (m1 + m2 + m3 + m4) ≥ 1, and h ≥ 1):

Proof
|n1
i1=1p i1(X) | |n2

i2=1~pp i2(X) | |n3
i3=1s i3(X,a i3) | |n4

i4=1~sp i4(X,a’ i4) |

|m1
j1=1q j1(Y) | |m2

j2=1~qp j2(Y) | |m3
j3=1u j3(Y,b j3) | |m4

j4=1~up j4(Y,bp j4) |

|hk=1~r k(X,Y) in HM
iff

∀X ∈ DHM : ∀Y ∈ DHM :
(
∨n1

i1=1 p i1(X)∨
∨n2

i2=1 ∼pp i2(X)∨
∨n3

i3=1 s i3(X, a i3)∨
∨n4

i4=1 ∼sp i4(X, a′ i4)∨∨m1
j1=1 q j1(Y )∨

∨m2
j2=1 ∼qp j2(Y )∨

∨m3
j3=1 u j3(Y, b j3)∨

∨m4
j4=1 ∼up j4(Y, bp j4)∨∨h

k=1 ∼r k(X, Y )) in HM
iff

∀X ∈ DHM : ∀Y ∈ DHM :
∼(∼(

∨n1
i1=1 p i1(X)∨

∨n2
i2=1 ∼pp i2(X)∨

∨n3
i3=1 s i3(X, a i3)∨

∨n4
i4=1 ∼sp i4(X, a′ i4))

∧
∧m1

j1=1 ∼q j1(Y )∧
∧m2

j2=1 qp j2(Y )∧
∧m3

j3=1 ∼u j3(Y, b j3)∧
∧m4

j4=1 up j4(Y, bp j4)∧∧h
k=1 r k(X, Y )) in HM

iff
∼(∃X ∈ DHM : ∃Y ∈ DHM :
(∼(

∨n1
i1=1 p i1(X)∨

∨n2
i2=1 ∼pp i2(X)∨

∨n3
i3=1 s i3(X, a i3)∨

∨n4
i4=1 ∼sp i4(X, a′ i4))

∧
∧m1

j1=1 ∼q j1(Y )∧
∧m2

j2=1 qp j2(Y )∧
∧m3

j3=1 ∼u j3(Y, b j3)∧
∧m4

j4=1 up j4(Y, bp j4)∧∧h
k=1 r k(X, Y )) in HM

iff
∼(∃x ∈ ∆I

M : ∃y ∈ ∆I
M :

(∼(
∨n1

i1=1 x ∈ p i1I∨
∨n2

i2=1 x ∈ (¬pp i2)I∨
∨n3

i3=1(x, a i3) ∈ s i3I∨
∨n4

i4=1(x, a′ i4) /∈
sp i4I) ∧∧m1

j1=1 y ∈ (¬q j1)I ∧
∧m2

j2=1 y ∈ qp j2 ∧
∧m3

j3=1(y, b j3) /∈ u j3I ∧
∧m4

j4=1(y, bp j4) ∈
up j4I ∧∧h

k=1(x, y) ∈ r kI) in M
iff

∼(∃x ∈ ∆I
M : ∃y ∈ ∆I

M :
(∼ (

∨n1
i1=1 x ∈ p i1I ∨

∨n2
i2=1 x ∈ (¬pp i2)I ∨

∨n3
i3=1 x ∈ (!s i3( , a i3))I ∨

∨n4
i4=1 x ∈

(¬!sp i4( , a′ i4))I) ∧∧m1
j1=1 y ∈ (¬q j1)I ∧

∧m2
j2=1 y ∈ qp j2 ∧

∧m3
j3=1 y /∈ (!u j3( , b j3))I ∧

∧m4
j4=1 y ∈

(!up j4( , bp j4))I ∧∧h
k=1(x, y) ∈ r kI) in M

iff
∼(∃x ∈ ∆I

M : ∃y ∈ ∆I
M :

(∼(x ∈ (
⋃n1

i1=1 p i1
I ∪

⋃n2
i2=1(¬pp i2)I ∪

⋃n3
i3=1(!s i3( , a i3))I ∪⋃n4

i4=1(¬!spi4( , a′ i4)))I)) ∧
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(y ∈ (
⋂m1

j1=1(¬q j1)I ∩
⋂m2

j2=1 y ∈ qp j2 ∩
⋂m3

j3=1(¬!u j3( , b j3))I ∩⋂m4
j4=1(!up j4( , bp j4)))I)) ∧

∧h
k=1(x, y) ∈ r kI) in M

iff
∼(∃x ∈ ∆I

M : ∃y ∈ ∆I
M :

(∼(x ∈ (
⊔

i1=1 n1p i1 t
⊔n2

i2=1(¬pp i2) t
⊔n3

i3=1!s i3( , a i3) t⊔n4
i4=1(¬!sp i4( , a′ i4))))I)) ∧

y ∈ (
dm1

j1=1 ¬q j1 u
dm2

j2=1 qp j2 u
dm3

j3=1(¬!u j3( , b j3)) u
dm4

j4=1!up j4( , bp j4))I ∧∧h
k=1(x, y) ∈ r kI) in M

iff
∼(∃x ∈ ∆I

M : ∃y ∈ ∆I
M :

(∼(x ∈ (
⊔n1

i1=1 p i1 t
⊔n2

i2=1−pp i2 t
⊔n3

i3=1!s i3( , a i3) t⊔n4
i4=1(¬!spi4( , a′ i4))))I)) ∧∧h
k=1(y ∈ (

dm1
j1=1 ¬q j1 u

dm2
j2=1 qp j2 u

dm3
j3=1(¬!u j3( , b j3)) u

dm4
j4=1!up j4( , bp j4))I ∧ (x, y) ∈ r kI)) in M

iff
∼(∃x ∈ ∆I

M :
(∼(x ∈ (

⊔n1
i1=1 p i1 t

⊔n2
i2=1−pp i2 t

⊔n3
i3=1!s i3( , a i3) t⊔n4

i4=1(¬!spi4( , a′ i4))))I)) ∧∧h
k=1 x ∈ (?r k( , (

dm1
j1=1 ¬q j1 u

dm2
j2=1 qp j2 u

dm3
j3=1(¬!u j3( , b j3)) u

dm4
j4=1!up j4( , bp j4))))I) in M

iff
∼(∃x ∈ ∆I

M :
(∼(x ∈ (

⊔n1
i1=1 p i1 t

⊔n2
i2=1−pp i2 t

⊔n3
i3=1!s i3( , a i3) t⊔n4

i4=1(¬!spi4( , a′ i4))))I)) ∧
x ∈

⋂h
k=1(?r k( , (

dm1
j1=1 ¬q j1 u

dm2
j2=1 qp j2 u

dm3
j3=1(¬!u j3( , b j3)) u

dm4
j4=1!up j4( , bp j4))))I) in M

iff
∼(∃x ∈ ∆I

M :
(∼(x ∈ (

⊔n1
i1=1 p i1 t

⊔n2
i2=1−pp i2 t

⊔n3
i3=1!s i3( , a i3) t⊔n4

i4=1(¬!spi4( , a′ i4)))I)) ∧
x ∈ (

dh
k=1?r k( , (

dm1
j1=1 ¬q j1 u

dm2
j2=1 qp j2 u

dm3
j3=1(¬!u j3( , b j3)) u

dm4
j4=1!up j4( , bp j4))))I) in M

iff
∀x ∈ ∆I

M :
∼(∼(x ∈ (

⊔n1
i1=1 p i1 t

⊔n2
i2=1−pp i2 t

⊔n3
i3=1!s i3( , a i3) t⊔n4

i4=1(¬!spi4( , a′ i4))I) ∧
x ∈ (

dh
k=1?r k( , (

dm1
j1=1 ¬q j1 u

dm2
j2=1 qp j2 u

dm3
j3=1(¬!u j3( , b j3)) u

dm4
j4=1!up j4( , bp j4))))I) in M

iff
∀x ∈ ∆I

M :
(x ∈ (

⊔n1
i1=1 p i1 t

⊔n2
i2=1−pp i2 t

⊔n3
i3=1!s i3( , a i3) t

⊔n4
i4=1(¬!spi4( , a′ i4))I ∨
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x /∈ (
d

k 1h?r k( , (
dm1

j1=1 ¬q j1 u
dm2

j2=1 qp j2 u
dm3

j3=1(¬!u j3( , b j3)) u
dm4

j4=1!up j4( , bp j4))))I) in M
iff

∀x ∈ ∆I
M :

x ∈ (
d

k 1h?r k( , (
dm1

j1=1 ¬q j1 u
dm2

j2=1 qp j2 u
dm3

j3=1(¬!u j3( , b j3)) u
dm4

j4=1!up j4( , bp j4))))I ⇒
(x ∈ (

⊔n1
i1=1 p i1t

⊔n2
i2=1−pp i2t

⊔n3
i3=1!s i3( , a i3)t

⊔n4
i4=1(¬!spi4( , a′ i4))I in M

iff
(
d

k 1h?r k( , (
dm1

j1=1 ¬q j1 u
dm2

j2=1 qp j2 udm3
j3=1(¬!u j3( , b j3)) u

dm4
j4=1!up j4( , bp j4))))I ⊆

(
⊔n1

i1=1 p i1 t
⊔n2

i2=1−pp i2 t
⊔n3

i3=1!s i3( , a i3) t
⊔n4

i4=1(¬!spi4( , a′ i4))I in M
iff

( ∗∗hk=1?r k( , ** ( ∗∗m1
j1=1-q j1 ** ∗∗m2

j2=1qp j2 **

∗∗m3
j3=1-(!u j3( ,b j3)) ** ∗∗m4

j4=1!up j4( ,bp j4)) )) <<

(++n1
i1=1p i1 ++ ++n2

i2=1-pp i2 ++

++n3
i3=1!s i3( ,a i3) ++ ++n4

i4=1-(!sp i4( ,a’ i4))) in M �.

Lemma 4.20 Translating r(X,X)
saffron7−−−−→ {$reflexive(r)}:

Proof
r(X,X) in HM

iff
∀X ∈ DHM : r(X,X) in HM

iff
∀x ∈ ∆I

M : (x, x) ∈ rI in M
iff

$reflexive(r) in M �.

Lemma 4.21 Translating ~r(X,X)
saffron7−−−−→ {$irreflexive(r)}:

Proof
~r(X,X) in HM

iff
∀X ∈ DHM :∼r(X,X) in HM

iff
∀x ∈ ∆I

M : (x, x) /∈ rI in M
iff

$irreflexive(r) in M �.
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Lemma 4.22 Translating (~r(X,Y) | r(Y,X))
saffron7−−−−→ {$symmetric(r)}:

Proof
(~r(X,Y) | r(Y,X))

iff
∀X ∈ DHM : ∀Y ∈ DHM : (r(X, Y )⇒ r(Y,X)) in HM

iff
∀x ∈ ∆I

M : ∀y ∈ ∆I
M : ((x, y) ∈ rI ⇒ (y, x) ∈ rI) in M

iff
$symmetric(r) in M �.

Lemma 4.23 Translating (~r(X,Y) | ~r(Y,X))
saffron7−−−−→ {$asymmetric(r)}:

Proof
(~r(X,Y) | ~r(Y,X)) in HM

iff
∀X ∈ DHM : ∀Y ∈ DHM : (r(X, Y )⇒∼r(Y,X)) in HM

iff
∀x ∈ ∆I

M : ∀y ∈ ∆I
M : ((x, y) ∈ rI ⇒ (y, x) /∈ rI) in M

iff
$asymmetric(r) in M �.

Lemma 4.24 Translating (~r(X,Y) | ~r(Y,Z) | r(X,Z))
saffron7−−−−→ {$transitive(r)}:

Proof
(~r(X,Y) | ~r(Y,Z) | r(X,Z))

iff
∀X ∈ DHM : ∀Y ∈ DHM : ∀Z ∈ DHM : (((r(X, Y ) ∧ r(Y, Z))⇒ r(X,Z)) in HM

iff
∀x ∈ ∆I

M : ∀y ∈ ∆I
M : ∀z ∈ ∆I

M : (((x, y) ∈ rI ∧ (y, z) ∈ rI)⇒ (x, z) ∈ rI) in M
iff

$transitive(r) in M �.

Lemma 4.25 Translating (~r(X,Y) | s(X,Y))
saffron7−−−−→ {r << s}:

Proof
(~r(X,Y) | s(X,Y)) in HM

iff
∀X ∈ DHM : ∀Y ∈ DHM : (r(X, Y )⇒ s(X, Y )) in HM



88

iff
∀x ∈ ∆I

M : ∀y ∈ ∆I
M : ((x, y) ∈ rI ⇒ (x, y) ∈ sI)

iff
rI ⊆ sI in M

iff
r << s in M �.

Lemma 4.26 Translating (~r(X,Y) | s(Y,X))
saffron7−−−−→ {inv s -= s, r << inv s}:

Proof
(~r(X,Y) | s(Y,X)) in HM

iff
∀X ∈ DHM : ∀Y ∈ DHM : (r(X, Y )⇒ s(Y,X)) in HM

iff
∀x ∈ ∆I

M : ∀y ∈ ∆I
M : ((x, y) ∈ rI ⇒ (y, x) ∈ sI) in M .

inv s = s− ∧ ∀x ∈ ∆I
M : ∀y ∈ ∆I

M : ((x, y) ∈ rI ⇒ (x, y) ∈ inv sI) in M
iff

inv s = s− ∧ rI ⊆ inv sI in M
iff

{inv s -= s, r << inv s} in M �.

Lemma 4.27 Translating ~r1(X,Y) | ~r2(Y,Z) | s(X,Z)
saffron7−−−−→

{ s >> r1 @ r2 }:

Proof
~r1(X,Y) | ~r2(Y,Z) | s(X,Z) in HM

iff
∀X ∈ DHM : ∀Y ∈ DHM : ∀Z ∈ DHM :∼r1(X, Y )∨ ∼r2(Y, Z) ∨ s(X,Z) in HM

iff
∀X ∈ DHM : ∀Y ∈ DHM : ∀Z ∈ DHM :∼(r1(X, Y ) ∧ r2(Y, Z)) ∨ s(X,Z) in HM

iff
∀X ∈ DHM : ∀Y ∈ DHM : ∀Z ∈ DHM : ((r1(X, Y ) ∧ r2(Y, Z)) ⇒ s(X,Z)) in

HM
iff

∀x ∈ ∆I
M : ∀y ∈ ∆I

M : ∀z ∈ ∆I
M : (((x, y) ∈ r1I ∧ (y, z) ∈ r2I) ⇒ (x, z) ∈ sI)in

M
iff

∀x ∈ ∆I
M : ∀z ∈ ∆I

M : ((x, z) ∈ (r1 ◦ r2)I ⇒ (x, z) ∈ sI) in M
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iff
(r1 ◦ r2)I ⊆ sI in M

iff
s >> r1@ r2 in M �.

Lemma 4.28 Translating ~r1(X,Y) | ~r2(X,Z) | s(Y,Z)
saffron7−−−−→

{ inv s -= s, inv r2 -= r2, inv s >> inv r2 @ r1 }:

Proof
~r1(X,Y) | ~r2(X,Z) | s(Y,Z)

iff
∀X ∈ DHM : ∀Y ∈ DHM : ∀Z ∈ DHM :∼r1(X, Y ) | ∼r2(X,Z) | s(Y, Z) in HM

iff
∀X ∈ DHM : ∀Y ∈ DHM : ∀Z ∈ DHM : (r1(X, Y ) ∧ r2(X,Z))⇒ s(Y, Z) in HM

iff
∀x ∈ ∆I

M : ∀y ∈ ∆I
M : ∀z ∈ ∆I

M : (((x, y) ∈ r1I ∧ (x, z) ∈ r2I) ⇒ (y, z) ∈ sI) in
M .

inv s = s− ∧inv r2 = r2−∧
(∀x ∈ ∆I

M : ∀y ∈ ∆I
M : ∀z ∈ ∆I

M : (((x, y) ∈ r1I ∧ (z, x) ∈ inv r2I) ⇒ (z, y) ∈
inv sI)) in M

iff
inv s = s− ∧inv r2 = r2−∧
(∀x ∈ ∆I

M : ∀y ∈ ∆I
M : ∀z ∈ ∆I

M : ((z, y) ∈ (inv r2 ◦ r1)I ⇒ (z, y) ∈ inv sI)) in
M

iff
inv s = s− ∧ inv r2 = r2− ∧ (inv r2 ◦ r1)I ⊆ inv sI in M

iff
{inv s -= s, inv r2 -= r2, inv s >> inv r2 @ r1} in M �.

Lemma 4.29 Translating |ni=1p i(X) | |mi=1~q i(X)
saffron7−−−−→

{ &thing = ++n
i=1p i ++ ++m

i=1~q i } (n ≥ 0,m ≥ 0, and m+ n ≥ 2):

Proof
|ni=1p i(X) | |mi=1~q i(X) in HM

iff
∀X ∈ DHM : (

∨n
i=1 p i(X) ∨

∨m
i=1 ∼qi(X)) in HM

iff
∀x ∈ ∆I

M : (
∨n

i=1(x ∈ p iI) ∨
∨m

i=1(x /∈ q i)) in M
iff
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∀x ∈ ∆I
M : (

∨n
i=1(x ∈ p iI) ∨

∨m
i=1(x ∈ (∆I

M\q iI)) in M
iff

∀x ∈ ∆I
M : (

∨n
i=1(x ∈ p iI) ∨

∨m
i=1(x ∈ (¬q i)I)) in M

iff
∀x ∈ ∆I

M : x ∈ (
⋃n

i=1(p iI)∪
⋃m

i=1(¬q i)I) in M
iff

∀x ∈ ∆I
M : x ∈ (

⊔n
i=1 p it

⊔m
i=1(¬q i))I in M

iff
(
⊔n

i=1 p it
⊔m

i=1(¬q i))I = ∆I
M = >I in M

iff
&thing = ++n

i=1p i ++ ++m
i=1~q i in M �.

Lemma 4.30 Translating |ni=1(X = a i(X))
saffron7−−−−→ { &thing = [a 1,a 2,...,a n] }

(n ≥ 0,m ≥ 0, and m+ n ≥ 2):

Proof
|ni=1(X = a i(X)) in HM

iff
∀X ∈ DHM : (

∨n
i=1(X = a i)) in HM

iff
∀x ∈ ∆I

M : (
∨n

i=1(x = a iI)) in M
iff

∀x ∈ ∆I
M : x ∈ {a 1I , a 2I , ..., a nI} in M

iff
∀x ∈ ∆I

M : x ∈ {a 1, a 2, ..., a n}I in M
iff

{a 1, a 2, ..., a n}I = ∆I
M = >I in M

iff
&thing = [a 1,a 2,...,a n] in M �.

Lemma 4.31 Translating |ni=1r(X,a i(X))
saffron7−−−−→ { &thing = ?r( ,[a 1,a 2,...,a n]) }

(n ≥ 0,m ≥ 0, and m+ n ≥ 2):

Proof
|ni=1r(X,a i(X)) in HM

iff
∀X ∈ DHM : (

∨n
i=1 r(X, a i)) in HM

iff
∀x ∈ ∆I

M : (
∨n

i=1(x, a iI) ∈ rI) in M
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iff
∀x ∈ ∆I

M : ∃y ∈ ∆I
M : ((x, y) ∈ rI ∧ y ∈ {a 1I , a 2I , ..., a nI}) in M

iff
∀x ∈ ∆I

M : ∃y ∈ ∆I
M : ((x, y) ∈ rI ∧ y ∈ {a 1, a 2, ..., a n}I) in M

iff
∀x ∈ ∆I

M : x ∈ (∃r.{a 1, a 2, ..., a n})I in M
iff

(∃r.{a 1, a 2, ..., a n})I = ∆I
M = >I in M

iff
&thing = ?r( ,[a 1,a 2,...,a n]) in M �.

Lemma 4.32 Translating |m1
i1=1p i1(X) | |m2

i2=1 ~q i2(X) | |nj=1(X = a j)
saffron7−−−−→

{&thing = ( ++m1
i1=1p i1 ++ ++m2

i2=1-q i2 ++ [a 1,a 2,...,a n]) }

where (m1 +m2) ≥ 1, and n ≥ 1,

Proof
|m1
i1=1p i1(X) | |m2

i2=1 ~q i2(X) | |nj=1(X = a j) in HM
iff

∀X ∈ DHM : (
∨m1

i1=1 p i1(X) ∨
∨m2

i2=1 ∼q i2(X) ∨
∨n

j=1(X = a j)) in HM
iff

∀x ∈ ∆I
M : (

∨n1
i1=1 x ∈ p i1I ∨

∨n2
i2=1 x /∈ q i2I ∨

∨n
j=1(x = a jI)) in M

iff
∀x ∈ ∆I

M : (
∨n1

i1=1 x ∈ p i1I ∨
∨n2

i2=1 x ∈ (∆I
M\q i2I) ∨

∨n
j=1(x = a jI)) in M

iff
∀x ∈ ∆I

M : (
∨n1

i1=1 x ∈ p i1I ∨
∨n2

i2=1 x ∈ (¬q i2)I ∨
∨n

j=1(x = a jI)) in M
iff

∀x ∈ ∆I
M : (

∨n1
i1=1 x ∈ p i1I ∨

∨n2
i2=1 x ∈ (¬q i2)I ∨ x ∈ {a 1, a 2, ..., a n}I) in M

iff
∀x ∈ ∆I

M : x ∈ (
⋃n1

i1=1 p i1
I ∪

⋃n2
i2=1(¬q i2)I ∪ {a 1, a 2, ..., a n}I) in M

iff
∀x ∈ ∆I

M : x ∈ (
⊔n1

i1=1 p i1 t
⊔n2

i2=1(¬q i2) t {a 1, a 2, ..., a n})I in M
iff

(
⊔n1

i1=1 p i1 t
⊔n2

i2=1(¬q i2) t {a 1, a 2, ..., a n})I = ∆I
M = >I in M

iff
&thing = ( ++m1

i1=1p i1 ++ ++m2
i2=1-q i2 ++ [a 1,a 2,...,a n]) �.
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Lemma 4.33 Translating |m1
i1=1p i1(X) | |m2

i2=1~q i2(X) | |n1
j1=1r j1(X,a j1) |

|n2
j2=1~r j2(X,b j2)

saffron7−−−−→

{&thing = ( ++m1
i1=1p i1 ++ ++m2

i2=1-q i2 ++ ++n1
j1=1!r j1( ,a j1) ++

++n2
j2=1-(! r j2( ,b j2)) }

where (m1 +m2) ≥ 0, and (n1 + n2) ≥ 1

Proof
|m1
i1=1p i1(X) | |m2

i2=1~q i2(X) | |n1
j1=1r j1(X,a j1) |

|n2
j2=1~r j2(X,b j2)

iff
∀X ∈ DHM : (

∨m1
i1=1 p i1(X) ∨

∨m2
i2=1 ∼ q i2(X) ∨

∨n1
j1=1 r j1(X, a j1) ∨

∨n2
j2=1 ∼

r j2(X, b j2)) in HM
iff

∀x ∈ ∆I
M : (

∨n1
i1=1 x ∈ p i1I ∨

∨n2
i2=1 x /∈ q i2I ∨

∨n
j1=1(x, a j1I) ∈ r j1I ∨∨n

j2=1(x, b j2I) /∈ r j2I) in M
iff

∀x ∈ ∆I
M : (

∨n1
i1=1 x ∈ p i1I ∨

∨n2
i2=1 x ∈ (∆I

M\q i2I) ∨
∨n

j1=1(x, a j1I) ∈ r j1I ∨∨n
j2=1(x, b j2I) /∈ r j2I) in M

iff
∀x ∈ ∆I

M : (
∨n1

i1=1 x ∈ p i1I ∨
∨n2

i2=1 x ∈ (¬q i2)I ∨
∨n

j1=1(x, a j1I) ∈ r j1I ∨∨n
j2=1(x, b j2I) /∈ r j2I) in M

iff
∀x ∈ ∆I

M : (
∨n1

i1=1 x ∈ p i1I ∨
∨n2

i2=1 x ∈ (¬q i2)I ∨
∨n

j1=1(x, a j1I) ∈ r j1I∨ ∼∧n
j2=1(x, b j2I) ∈ r j2I) in M

iff
∀x ∈ ∆I

M : (
∨n1

i1=1 x ∈ p i1I ∨
∨n2

i2=1 x ∈ (¬q i2)I ∨
∨n

j1=1 x ∈ (∀r j1.a j1)I∨ ∼∧n
j2=1 x ∈ (∀r j2.b j2)I) in M

iff
∀x ∈ ∆I

M : (
∨n1

i1=1 x ∈ p i1I ∨
∨n2

i2=1 x ∈ (¬q i2)I ∨
∨n

j1=1 x ∈ (∀r j1.a j1)I ∨∨n
j2=1 x /∈ (∀r j2.b j2)I) in M

iff
∀x ∈ ∆I

M : (
∨n1

i1=1 x ∈ p i1I ∨
∨n2

i2=1 x ∈ (¬q i2)I ∨
∨n

j1=1 x ∈ (∀r j1.a j1)I ∨∨n
j2=1 x ∈ (∆I

M\(∀r j2.b j2)I)) in M
iff

∀x ∈ ∆I
M : (

∨n1
i1=1 x ∈ p i1I ∨

∨n2
i2=1 x ∈ (¬q i2)I ∨

∨n
j1=1 x ∈ (∀r j1.a j1)I ∨∨n

j2=1 x ∈ (¬∀r j2.b j2)I) in M
iff

∀x ∈ ∆I
M : x ∈ (

⋃n1
i1=1 p i1

I∪
⋃n2

i2=1(¬q i2)I∪
⋃n

j1=1(∀r j1.a j1)I∪
⋃n

j2=1(¬∀r j2.b j2)I)
in M
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iff
∀x ∈ ∆I

M : x ∈ (
⊔n1

i1=1 p i1t
⊔n2

i2=1(¬q i2)t
⊔n

j1=1 ∀r j1.a j1t
⊔n

j2=1(¬∀r j2.b j2))I

in M
iff

(
⊔n1

i1=1 p i1t
⊔n2

i2=1(¬q i2)t
⊔n

j1=1 ∀r j1.a j1t
⊔n

j2=1(¬∀r j2.b j2))I = ∆I
M = >I

in M
iff

&thing = ( ++m1
i1=1p i1 ++ ++m2

i2=1-q i2 ++ ++n1
j1=1!r j1( ,a j1) ++

++n2
j2=1-(! r j2( ,b j2))

�.

Since for each translation rule c
saffron7−−−−→ saffron(c), it is proven that c is TRUE in

HM iff saffron(c) is TRUE in M . Thus, HM and M can be constructed one from

another. Thus, the theorem is proven �.

4.5 Testing the Implementation of Saffron

In addition to the mathematical proof of the soundness of the translation procedure

provided in Section 4.4, an empirical test for the soundness of the implementation

of the translation procedure, Saffron, has been performed. Initially, Saffron was

tested over CNF problems created to test different features of the translation, and

many problems in the TPTP libarary. Then it was tested over sets of sample problems

in the TPTP library.

In order to test the soundness of the implementation of Saffron, a CNF problem,

problem, is translated to DL, then the DL problem, saffron(problem), is attempted

using Konclude. The CNF problem, problem, might be the result of the translation

of a problem expressed in a form more expressive than CNF. If a theorem or an

unsatisfiable problem expressed in a form more expressive than CNF is translated to
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CNF, the resultant CNF problem is unsatisfiable. If a non-theorem or a satisfiable

problem expressed in a form more expressive than CNF is translated to CNF, the

resultant CNF problem is satisfiable. The status of the translated CNF problem is

the basis for the expected status of the translated DL problem.

Table 4.7 shows the status of the CNF problem problem, the translation percent-

age, the possible status of the DL problem saffron(problem) confirmed by Konclude,

and the soundness evaluation of the implementation of Saffron based on these values.

The soundness of Saffron was tested over four sets of sample problems from the

TPTP library. These four sets are all DL-able problems, CNF SoftWare Verification

(SWV) problems that are DL-able after applying the splitting technique, FOF prob-

lems with no functions of arity greater than zero, and TF0 HareWare Verification

(HWV) problems. The time limit for each stage of the reasoning process was 300

seconds, and the experiment was done on a machine with the following specifications.

• Number of CPUs : 4

• CPU Model: Intel(R) Xeon(TM) CPU 2.80GHz

• RAM per CPU: 756MB

• OS: Linux 2.6.32.26-175.fc12.i686.PAE

Table 4.8 summarizes the results of the testing of the soundness. The column

Sample indicates the set of sample problems. The column Status is either THM,

UNS, non-THM, and SAT to categorize the set of sample problems into the theorem,

unsatisfiable, non-theorem or satisfiable categories. The column Translation % is
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Table 4.7: Evaluation of the Soundness of Saffron

Status of Translation Status of Soundness
problem Percentage saffron(problem) Evaluation

UNS 100% UNS Sound

SAT Unsound

< 100% UNS Sound

SAT Inconclusive

SAT 100% UNS Unsound

SAT Sound

< 100% UNS Unsound

SAT Inconclusive

the average CNF to DL translation percentage of (translated) CNF problems. The

column Total is the total number of problems in the corresponding category. The

column Sound, Inconclusive, and Unsound shows the number of problems, over which

test results suggest soundness, are inconclusive, and suggest unsoundness respectively.

None of the test results suggest that Saffron is unsound. All the test results either

suggest the soundness of Saffron, or are inconclusive.

Table 4.8: Result of the Empirical Soundness Test of Saffron

Sample Status T
ra

n
sl
a
ti
o
n
%

T
o
ta

l

S
o
u
n
d

In
c
o
n
c
lu
si
v
e

U
n
so

u
n
d

DL-able UNS 100% 23 12 11 0

SAT 100% 3 0 3 0

SWV UNS 100% 40 32 8 0

FOF THM/UNS 100% 7 7 0 0

< 100% 128 5 123 0

non-THM/SAT 100% 8 8 0 0

< 100% 32 0 32 0

TF0 HWV THM/UNS 100% 20 0 20 0

< 100% 31 2 29 0

non-THM/SAT 100% 6 1 5 0

< 100% 6 0 6 0
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4.5.1 DL-able Problems

The first set of problems was the DL-able problems in the TPTP library. This sample

was chosen to test the soundness of Saffron without the effects of splitting, partial

CNF to DL translation, and the translation from logics more expressive than CNF

to CNF. There are 23 unsatisfiable and 3 satisfiable DL-able problems.

The unsatisfiability of 12 unsatisfiable problems was confirmed by Konclude.

These results suggest that Saffron is sound. Konclude timed out on the remain-

ing 11 unsatisfiable problems, and on all three satisfiable problems. These results are

inconclusive.

4.5.2 CNF Software Verification Problems (SWV) Problems

The second set of problems was all the CNF SWV problems in the TPTP library that

are DL-able after applying the splitting technique. This sample was chosen to test

the soundness of Saffron with splitting, but without the effects of partial CNF to

DL translation, and the translation from logics more expressive than CNF to CNF.

This experiment also introduces a new industrial application of DL. There are 40

unsatisfiable such SWV problems. They all have only one proposition. The splitting

technique produces two unsatisfiable proposition free versions of each problem. The

problem is considered solved by translation to DL if the unsatisfiability of the both

proposition free versions of the problem is confirmed by Konclude.

The unsatisfiability of both proposition free versions of 32 problems out of 40

problems was confirmed by Konclude. These results suggest that Saffron is sound.
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Konclude timed out on at least one proposition free version of the remaining 8 prob-

lems. Theses results are inconclusive.

4.5.3 FOF Problems with no Functions of Arity Greater than

Zero

The third set of problems was the FOF problems with no functions of arity greater

than zero in three domains CSR, KRS, and NUM in the TPTP library. This sample

was chosen to test the soundness of Saffron with the translation from a logic more

expressive than CNF to CNF. Initial experiments showed that many translated CNF

problem from such FOF problems in three domains CSR, KRS, and NUM are DL-

able.

There are 175 FOF problems with no functions of arity greater than zero in three

domains CSR, KRS, and NUM in the TPTP library. Sixty-one problems are theorems,

seventy-four problems are unsatisfiable, one problem is a non-theorem, and thirty-

nine problems are satisfiable. These 175 problem were successfully translated to CNF

using the sound FOF to CNF translator, ECNF. The resultant 135 unsatisfiable and

40 satisfiable CNF problems are then translated to DL using Saffron.

Among the 135 unsatisfiable translated CNF problems, seven problems were DL-

able. The unsatisfiability of all the DL-able problems, and five of the partially trans-

lated problems was confirmed by Konclude. These results suggest that Saffron is

sound. Konclude either timed out on the remaining 128 problems, or confirmed the

satisfiability of partially translated problems. These results are inconclusive.
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Among the 40 satisfiable translated CNF problems, eight problems were DL-able.

The satisfiability of all the DL-able problems was confirmed by Konclude. These

results suggest that Saffron is sound. Konclude either timed out on the remaining

32 problems, or confirmed the satisfiability of the partially translated problems. These

results are inconclusive.

4.5.4 TF0 Hardware Verification (HWV) Problems

The last set of problems was the TF0 HWV problems in the TPTP library. This

sample was chosen to test the soundness of Saffron with the translation from logics

more expressive than CNF to CNF.

There are 63 TF0 HWV problems. Thirty-one problems are theorem, 20 problems

are unsatisfiable, six problems are non-theorem, and six problems are satisfiable.

These 63 problem were successfully translated to CNF using the sound TF0 to CNF

translator, Monotonox-2CNF. The resultant 51 unsatisfiable and 12 satisfiable CNF

problems are then translated to DL using Saffron.

Among the 51 unsatisfiable translated CNF problems, 20 problems were DL-able.

Konclude timed out on all 20 DL-able problems. These results are inconclusive. The

unsatisfiability of two partially translated problems is confirmed by Konclude. These

results suggest that Saffron is sound. Konclude either timed out on the remaining 29

partially translated problems, or confirmed the satisfiability of the partially translated

problems. These results are inconclusive.
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Among the 12 satisfiable translated CNF problems, six problems were DL-able.

The satisfiability of one DL-able problems is confirmed by Konclude. This result

suggests that Saffron is sound. Konclude timed out on the remaining 5 DL-able

problems. These results are inconclusive. Konclude timed out on all partially trans-

lated problems. These results are inconclusive.



Chapter 5

Experiments

Different ATP systems and translators can be combined to solve a problem expressed

in a given logical form. The related logical forms to this research are Proposi-

tional Logic(PL), Description Logic (DL), Effectively Propositional Form (EPR),

Conjunctive Normal Form (CNF), First Order Form (FOF), Typed First order form-

monomorphic (TF0), Typed First order form-polymorphic (TF1), Typed Higher order

form-monomorphic (TH0).

As illustrated in the Figure 5.1, A problem, expressed in a logic, can be either

solved using an ATP system for that logic, or translated to a less expressive logic. If

it is translated to a less expressive logic, again the same two options of solving us-

ing an ATP system, and translating down (if possible) are available. This continues

until no further translation is possible. In Figure 5.1, the plain arrows demonstrate

the process of available translation, and the dashed arrows demonstrate the process

of solving. Table 5.1 lists the translators and ATP systems used in the experiments of

100
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this research, corresponding to the labels on the arrows in Figure 5.1. The selected

ATP system for solving CNF problems is Vampire , but if the problem is EPR, the

selected ATP system is iProver.

# Action Tool

1 TH0 → Proof Satallax 2.7
1.3 TH0 → TF0 Isabelle-2TF0
1.4 TH0 → FOF Isabelle-2FOF
2 TF1 → Proof Alt-Ergo 0.95.2
2.3 TF1 → Proof Why3-TF0 0.85
2.4 TF1 → Proof Why3-FOF 0.85
3 TF0 → Proof CVC4 TFF-1.5
3.4 TF0 → FOF Monotonox-2FOF e3c1636
3.5 TF0 → CNF Monotonox-2CNF e3c1636
4 FOF → Proof Vampire 4.0
4.5 FOF → CNF ECNF 1.8
5 CNF → Proof Vampire 4.0 or iProver 1.4
5.6 CNF → DL Saffron 4.5
5.7 EPR → PL EGround 1.8
6 DL → Proof Konclude 0.6.1
7 PL → Proof MiniSAT 2.2.0

Table 5.1: ATP Systems and Translators used in this research

An experiment was designed and carried out to compare the effectiveness of solving

problems in different logics (TH0, TF1, TF0, FOF, CNF and EPR) using all possible

combinations of available translators and ATP systems. The comparison was done

in terms of the number of problems solved and the average CPU time taken for the

solved problems, for the whole reasoning process, including translations and solving.

The source of problems for the experiment was the TPTP library. The sample

problems in TH0, FOF, CNF and EPR were the TPTP problems selected for the

latest CADE ATP System Competitions that have related divisions to each logic.

The machine used to run this experiment has the following specifications.
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TF1 ATP SystemTyped First Order!
Logic (Polymorphic) 

TF0 ATP SystemTyped First Order!
Logic (monomorphic) 

Conjunctive Normal Form

First Order Logic 

Description Logic

Propositional Logic

FOF ATP System

CNF ATP System

DL ATP System

PL ATP System

2

3

4

5

6

7

2.3

3.4

4.5

5.6

2.4

3.5

if EPR

5.7

Typed Higher Order!
Logic (Monomorphic) 

1.3

TH0 ATP System
1

1.4

Figure 5.1: Combinations of translators and ATP systems
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• Number of CPUs : 4

• CPU Model: Intel(R) Xeon(TM) CPU 2.80GHz

• RAM per CPU: 756MB

• OS: Linux 2.6.32.26-175.fc12.i686.PAE

Notation. A path written logic1 · logic2 · . . . · logicn, with a chain of tools (translators

and an ATP system), translator1 > translator2 > . . . > translatorn−1 > atpn,

means that the problem is originally in logic logic1, and for 1 ≤ i ≤ n− 1, problems

in the logic logici are translated to the logic logici+1 using the translator translatori,

and eventually the problem in the logic logicn is attempted using its ATP system

atpn.

The results of the experiments over each set of problems are discussed in the fol-

lowing sections of this chapter. The results of each set of problems are displayed in

result tables, and include Total Available, Success, Time, Common Time, Translation

Time, Solving Time, Timeout and Failed for each path. “Total Available” is the num-

ber of problems available for the final translation step (if any) of the path. “Success”

is the number of problems solved, and the percentage with respect to “Total Avail-

able”. “Time” is the average CPU time for the whole reasoning process for solved

problems. “Common Time” is the average CPU time for the common problems solved

through all paths up to and including the row. “Translation Time” is the average

CPU time for the translation steps for solved problems. “Solving Time” is the aver-

age CPU time for the ATP system to solve the (translated) problems. “Timeout” is
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the number of problems for which the last translation step or the ATP system timed

out, and the percentage with respect to “Total Available”. “Failed” is the number

of problems for which the last translation step or the ATP system failed, and the

percentage with respect to “Total Available”.

5.1 Effectively Propositional Form

EPR problems can be translated to DL and PL. As explained in Chapter 4, an EPR

problem might be only partially translated to DL. However, if the unsatisfiable core

of an unsatisfiable EPR problem is translated, the partially translated problem can

be used to confirm the unsatisfiability using a DL ATP system.

Three experiments were carried out over three different sets of EPR problems

to compare the possible paths for EPR problems. One set is the problems from the

CASC-J7 EPR division. The two other sets are the sets of EPR problems that are used

in Section 4.5.1 and 4.5.2 in Chapter 4 to test the soundness of the implementation

of Saffron.

Table 5.2 shows the results of the experiment on the 200 EPR problems from

CASC-J7. As illustrated in this table, iProver can solve more problems than EGround>

MiniSAT, which in turn can solve more problems than Saffron>Konclude. The rea-

son that Saffron>Konclude cannot solve more problems than the two other alterna-

tives is that only 20 of the EPR problems are DL-able. An average of 29% of the

clauses of each non-DL-able problem were translated to DL.
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Table 5.2: Results of Comparing Paths over 200 EPR Problems
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EPR iProver 180 (90%) 22.50 22.50 0.00 22.50 19 (10%) 1 (1%)
EPR.PL EGround>MiniSAT 56 (28%) 0.26 0.26 10.63 0.07 113 (57%) 31 (16%)
EPR.DL Saffron>Konclude 4 (2%) 57.26 76.74 8.79 55.42 59 (30%) 137 (69%)

Table 5.3 shows the results of the experiment on the set of 26 DL-able problems

used to test the soundness of Saffron in Section 4.5.1 of Chapter 4. Since all of these

problems are EPR, iProver is used to solve the problems. As illustrated in this table,

iProver can solve more problems than EGround>MiniSAT, which in turn can solve

more problems than Saffron>Konclude. The results of the experiment suggest that

solving an EPR problem by Saffron>Konclude is an alternative, despite the fact that

iProver is a well-tuned and powerful ATP system for EPR problems. The average

time for the translation of problems by Saffron is 0.43, but Konclude timed out with

the time limit of 300.

Table 5.3: Results of Comparing Paths from EPR over 26 DL-able Problems
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EPR iProver 26 (100%) 34.76 34.76 0.00 34.76 0 (0%) 0 (0%)
EPR.PL EGround>MiniSAT 13 (50%) 1.40 1.40 0.00 1.40 0 (0%) 13 (50%)
EPR.DL Saffron>Konclude 12 (46%) 0.54 0.54 0.00 0.54 14 (54%) 0 (0%)

Table 5.4 shows the results of the experiment on the TPTP 40 EPR SoftWare

Verification (SWV) problems that are DL-able after removing propositions using

the splitting technique. This set was used to test the soundness of Saffron in Sec-
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tion 4.5.2 of Chapter 4. All these SWV problems are unsatisfiable and have only one

proposition. The splitting technique generates two proposition free versions of these

problems. If the unsatisfiability of both versions of each problem is confirmed by

Konclude, then the problem is solved through the EPR.DL path. The two versions of

the problem can be solved in parallel if more than one CPU is available. In Table 5.4,

EPR.DL(serial) and EPR.DL(parallel) show the statistics for solving the two versions

of SWV problems in serial and parallel through the path EPR.DL. The success rate of

solving by translation to DL is 80%. This result suggests that solving by translation

to DL is an alternative way of solving EPR SWV problems.

Table 5.4: Results of Comparing Paths from EPR over 40 EPR SWV Problems
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EPR iProver 40 (100%) 13.87 13.87 0.00 13.87 0 (0%) 0 (0%)

EPR.DL
(parallel)

Saffron>Konclude 32 (80%) 22.00 22.00 2.11 19.89 8 (20%) 0 (0%)

EPR.DL
(serial)

Saffron>Konclude 32 (80%) 29.92 29.92 4.21 25.71 8 (20%) 0 (0%)

EPR.PL EGround>MiniSAT 3 (8%) 0.38 - 0.27 0.12 24 (60%) 13 (33%)

5.2 Conjunctive Normal Form

CNF problems can be translated to DL, and if they are EPR they can be translated

to PL. The same as EPR problems, partial translation of CNF problems might be

useful.
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The problems in CNF are the problems from the CASC-J6 CNF division. Table 5.5

shows the results of the experiment on the set of 199 unsatisfiable CNF problems from

CASC-J6. None of these problems are EPR, so none of them can be translated to

PL. The translation of all of these CNF problems to DL was partial, with an average

of 14% of the clauses of each problem were translated to DL. This incompleteness is

presumed to be the reason why none of the resultant DL problems could be shown

to be unsatisfiable by Konclude.

Table 5.5: Results of Comparing Paths from CNF over 199 Problems from CASC-J6
Path Tools Success Time Timeout Failed

CNF Vampire 186 (93%) 13.30 13 (7%) 0 (0%)
CNF.DL Saffron>Konclude 0 (0%) - 0 (0%) 199 (100%)

5.3 First Order Form (FOF)

FOF problems can be translated to CNF. If a problem is translated to CNF then it

can be translated to DL or PL, as explained in Section 5.2.

The problems in FOF are the problems from the CSC-J7 FOF division. Table 5.6

shows the results of the experiment. As expected from the results of CASC competi-

tions, Vampire is a very powerful ATP system for FOF. This experiment also shows

that Vampire solves more problems than any other approach.

When more than one CPU is available, different approaches can be executed

on one problem simultaneously to increase the chance of the problem being solved.

Therefore, with N processors, N paths that provide the maximum number of problem

solved in this experiment are chosen. Table 5.7 shows which path is the best to be
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Table 5.6: Results of Comparing Paths from FOF
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FOF Vampire 400 376 (94%) 14.01 14.01 0.00 14.01 22 (6%) 2 (1%)
FOF.CNF ECNF>Vampire or iProver 400 321 (80%) 20.30 19.85 20.26 0.04 63 (16%) 16 (4%)
FOF.CNF.DL ECNF> Saffron>Konclude 390 12 (3%) 98.75 0.13 95.89 2.86 56 (14%) 322 (83%)
FOF.CNF.PL ECNF>EGround>MiniSAT 8 0 (0%) - - - - 4 (50%) 4 (50%)

added to maximize the number of problems solved when increasing the number of

CPUs. Out of the 400 sample problems, 379 problems can be solved through all

paths together. The two paths shown in Table 5.7 can solve all these problems, so

using more than two CPUs will not increase the chance of a problem being solved.

Table 5.7: Paths from FOF in Parallel
CPUs Path Exclusive Success Time

1 FOF 376 376 14.00
2 FOF.CNF 3 379 10.41

5.4 Typed First-order Form - monomorphic

TF0 problems can be translated to FOF or CNF. If a problem is translated to FOF,

then it can be translated to CNF as explained in Section 5.3. If a problem is translated

to CNF, then it can be translated to DL or PL, as explained in Section 5.2.

The problems in TF0 are all the TF0 problems without arithmetic in the TPTP.

Table 5.8 shows the results of the experiment. As expected from the results of CASC,

CVC4 is a very powerful ATP system for TF0. This experiment also shows that CVC4

solves more problems than any other approach. The results of this experiment also
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suggests that TF0 problems are very hard because less than half of the problems are

solved with the best approach. The two translations to DL solve 4% and 2% of the

total available problems.

Table 5.8: Results of Comparing Paths from TF0
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TF0 CVC4 153 70 (46%) 18.42 18.42 0.00 18.42 83 (54%) 0 (0%)
TF0.FOF Monotonox-2FOF>Vampire 153 61 (40%) 11.52 8.87 0.13 11.39 55 (36%) 37 (24%)
TF0.FOF.CNF Monotonox-2FOF>ECNF>

Vampire or iProver
128 56 (44%) 21.24 21.64 0.10 21.15 61 (48%) 11 (9%)

TF0.CNF Monotonox-2CNF>
Vampire or iProver

153 52 (34%) 13.66 5.48 0.00 13.65 43 (28%) 58 (38%)

TF0.CNF.DL Monotonox-2CNF> Saffron>
Konclude

98 4 (4%) 14.94 14.94 2.92 12.03 37 (38%) 57 (58%)

TF0.CNF.PL Monotonox-2CNF>EGround>
MiniSAT

45 3 (7%) 0.00 - 0.00 0.00 42 (93%) 0 (0%)

TF0.FOF.CNF.PL Monotonox-2FOF>ECNF>
EGround>MiniSAT

60 3 (5%) 0.00 - 0.00 0.00 52 (87%) 5 (8%)

TF0.FOF.CNF.DL Monotonox-2FOF>
ECNF> Saffron>Konclude

126 2 (2%) 82.11 - 11.47 70.64 40 (32%) 84 (67%)

Table 5.9 shows which path is the best to be added to maximize the number of

problems solved when increasing the number of CPUs. Out of the 153 problems, 82

problems can be solved through all paths together. The four paths shown in Table 5.9

can solve all these problems, so using more than four CPUs will not increase the

chance of a problem being solved. It shows that using multiple CPUs significantly

increases the chance of a problem being solved. The best approach using CVC4 solves

70 problems out of 153. Using the four approaches in Table 5.9 solves 82 problems,

which is an over 17% increase in the number of problems solved.
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Table 5.9: Paths from TF0 in Parallel
CPUs Path Exclusive Success Time

1 TF0 70 70 18.42
2 TF0.FOF.CNF 9 79 11.23
3 TF0.CNF 2 81 10.55
4 TF0.FOF 1 82 10.24

5.5 Typed First-order Form - polymorphic

TF1 problems can be translated to TF0 or FOF. If a problem is translated to TF0,

then it can be translated to FOF or CNF as explained in Section 5.4. If a problem is

translated to FOF, then it can be translated to CNF, as explained in Section 5.3.

The problems in TF1 are all the TF1 problems without arithmetic in the TPTP

that were available when this experiment was initiated. Table 5.10 shows the results

of the experiment. The results suggest that solving by translation down to FOF

or CNF solves more problem than than using the direct ATP system for TF1. The

reason is that Vampire, the ATP systems is a very powerful ATP system for FOF and

CNF. The TF1 problems are mostly very hard problems, and the best approach can

solve 44% of the problems within the time limit of 300 seconds. The best translation

to DL approach, through the path TF1.TF0.CNF.DL, can solve 3% of the problems.

The other two translation to DL approaches can solve 2% and 1% of the problems.

All the translated problems to CNF are partially translated to DL.

Table 5.11 shows which path is the best to be added to maximize the number of

problems solved when increasing the number of CPUs. Out of the 538 problems, 300

problems can be solved through all paths together. The five paths shown in Table 5.11

can solve all these problems, so using more than five CPUs will not increase the chance
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Table 5.10: Results of Comparing Paths from TF1
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TF1.FOF Why3-FOF>Vampire 538 238 (44%) 9.34 9.34 0.08 9.26 288 (54%) 12 (2%)
TF1.TF0.FOF Why3-TF0>

Monotonox-2FOF>Vampire
538 234 (43%) 2.95 3.77 0.12 2.82 225 (42%) 79 (15%)

TF1.TF0.FOF.CNF Why3-TF0>
Monotonox-2FOF>ECNF>
Vampire or iProver

495 233 (47%) 7.72 8.47 0.19 7.52 225 (45%) 37 (7%)

TF1.FOF.CNF Why3-FOF>ECNF>
Vampire or iProver

538 231 (43%) 7.51 3.70 0.09 7.42 303 (56%) 4 (1%)

TF1.TF0.CNF Why3-TF0>
Monotonox-2CNF>
Vampire or iProver

538 208 (39%) 7.48 5.82 0.14 7.35 257 (48%) 73 (14%)

TF1 Alt-Ergo 538 197 (37%) 0.79 0.25 0.00 0.79 158 (29%) 183 (34%)
TF1.TF0 Why3-TF0>CVC4 538 184 (34%) 11.00 5.09 0.25 10.75 295 (55%) 59 (11%)
TF1.TF0.CNF.DL Why3-TF0>

Monotonox-2CNF>
Saffron>Konclude

486 14 (3%) 0.68 0.71 0.11 0.56 0 (0%) 472 (97%)

TF1.TF0.FOF.CNF.DL Why3-TF0>
Monotonox-2FOF>
ECNF> Saffron>Konclude

495 8 (2%) 0.71 0.71 0.15 0.56 0 (0%) 487 (98%)

TF1.FOF.CNF.DL Why3-FOF>ECNF>
Saffron>Konclude

538 3 (1%) 0.66 0.67 0.12 0.54 0 (0%) 535 (99%)

of a problem being solved. It shows that using multiple CPUs significantly increases

the chance of a problem being solved. The best approach using Why3-FOF>Vampire

solves 238 problems out of 538. Using the five approaches in Table 5.11 solves 300

problems, which is an over 26% increase in the number of problems solved. The two

translation to DL approaches can exclusively solve 2% of the problems. This result

is interesting since the TF1 ATP system cannot solve any problems exclusively.

Table 5.11: Paths from TF1 in Parallel
CPUs Path Exclusive Success Time

1 TF1.FOF 238 238 9.34
2 TF1.TF0.FOF.CNF 55 293 7.18
3 TF1.TF0.CNF.DL 4 297 7.03
4 TF1.FOF.CNF 2 299 7.47
5 TF1.FOF.CNF.DL 1 300 7.45
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5.6 Typed Higher-order From - monomorphic

TH0 problems can be translated to TF0 and FOF. If a problem is translated to TF0

then it can be translated to FOF or CNF, as explained in Section 5.4. If a problem

is translated to FOF then it can be translated to CNF, as explained in Section 5.3.

The problems in TH0 are the problems from the CSC-J7 TH0 division. Table 5.12

shows the results of the experiment on this set of TH0 problems. As expected from

the results of the CASC competitions, Satallax is a very powerful ATP system for

TH0. This experiment also shows that Satallax solves more problems than any other

approaches.

Table 5.13 shows which path is the best to be added to maximize the number

of problems solved when increasing the number of CPUs. Out of the 400 problems,

367 problems can be solved through all paths together. The four paths shown in

Table 5.13 can solve all these problems, so using more than four CPUs will not

increase the chance of a problem being solved. It shows that using multiple CPUs

significantly increases the chance of a problem being solved. The best approach using

Satallax solves 354 problems out of 153. Using the four approaches in Table 5.13 solves

367 problems, which is an almost 4% increase in the number of problems solved.
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Table 5.12: Results of Comparing Paths from TH0
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TH0 Satallax 400 354 (89%) 6.94 6.94 0.00 6.94 46 (12%) 0 (0%)
TH0.FOF Isabelle-2FOF>Vampire 400 148 (37%) 10.22 10.17 7.07 3.15 111 (28%) 141 (35%)
TH0.FOF.CNF Isabelle-2FOF>ECNF>

Vampire or iProver
400 146 (37%) 13.40 12.10 7.07 6.33 119 (30%) 135 (34%)

TH0.TF0 Isabelle-2TF0>CVC4 400 136 (34%) 11.30 9.46 6.94 4.36 212 (53%) 52 (13%)
TH0.TF0.FOF.CNF Isabelle-2TF0>

Monotonox-2FOF>ECNF>
Vampire or iProver

400 111 (28%) 12.75 7.27 6.65 6.10 118 (30%) 171 (43%)

TH0.TF0.FOF Isabelle-2TF0>
Monotonox-2FOF>Vampire

397 108 (27%) 8.46 7.12 6.65 1.81 114 (29%) 175 (44%)

TH0.TF0.CNF Isabelle-2TF0>
Monotonox-2CNF>
Vampire or iProver

397 105 (26%) 8.89 8.30 6.83 2.07 115 (29%) 177 (45%)

TH0.TF0.CNF.PL Isabelle-2TF0>
Monotonox-2CNF>
EGround>MiniSAT

12 12 (100%) 6.75 6.75 6.75 0.00 0 (0%) 0 (0%)

TH0.TF0.FOF.CNF.PL Isabelle-2TF0>
Monotonox-2FOF>ECNF>
EGround>MiniSAT

11 11 (100%) 6.75 6.75 6.75 0.00 0 (0%) 0 (0%)

TH0.FOF.CNF.PL Isabelle-2FOF>ECNF>
EGround>MiniSAT

10 10 (100%) 6.78 6.79 6.78 0.00 0 (0%) 0 (0%)

TH0.TF0.CNF.DL Isabelle-2TF0>
Monotonox-2CNF>
Saffron>Konclude

400 3 (1%) 7.77 7.32 7.23 0.55 1 (0%) 396 (99%)

TH0.FOF.CNF.DL Isabelle-2FOF>ECNF>
Saffron>Konclude

399 1 (0%) 7.31 7.31 6.81 0.50 2 (1%) 396 (99%)

TH0.TF0.FOF.CNF.DL Isabelle-2TF0>
Monotonox-2FOF>ECNF>
Saffron>Konclude

371 1 (0%) 7.34 7.34 6.82 0.52 1 (0%) 369 (99%)

Table 5.13: Paths from TH0 in Parallel
CPUs Path Exclusive Success Time

1 TH0 354 354 6.94
2 TH0.FOF 10 364 5.60
3 TH0.TF0.FOF.CNF 2 366 5.91
4 TH0.TF0 1 367 5.92



Chapter 6

Conclusion

6.1 Review of the Dissertation

Chapter 1 provides an introduction to the research and related issues, to build up

a basis for understanding the dissertation. This includes an introduction to auto-

mated theorem proving, a description of the TPTP world, an introduction to related

conferences and competitions, and the research goals.

Chapter 2 provides a survey of the logics related to the research. The logics, in

the increasing order of expressivity, are Propositional Logic, Description Logic, Effec-

tively Propositional Form, Conjunctive Normal Form, First Order Form, Typed First

order form-monomorphic, Typed First order form-polymorphic, Typed Higher order

form-monomorphic. For each logic, the syntax and semantics are briefly explained,

and common Automated Theorem Proving (ATP) systems, and translators to less

expressive logics are introduced.
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Chapter 3 describes DLF, a new TPTP syntax for Description Logic. This in-

cludes a description of the TPTP problems, and of the DLF annotated formulae

(definitions, type formulae, and logic formulae).

Chapter 4 describes a translation procedure from CNF to DL, and its implemen-

tation as Saffron. This includes a mathematical proof for the soundness of the

translation procedure, and empirical tests of the soundness of the implementation of

Saffron.

Chapter 5 describes an experiment to evaluate different ways of solving problems

in target logical forms of this research. This includes analysis and discussion of the

results of the experiment over sample test problems in each logical form.

6.2 Contributions and Conclusions

In this research, Saffron, a CNF to DL translator has been developed. No such

translator was available before. The translation procedure is a mapping of CNF

clause structures to DL formulae with equivalent semantics. A proof of the soundness

of the translation procedure has been provided. Saffron is the implementation of the

translation procedure in Prolog. Saffron can 100% translate many EPR problems

with only constants, unary predicates and binary predicates, many EPR Software

Verification problems, many FOF problems with no functions of arity grater than

zero translated to CNF, and many TF0 Hardware Verification problems translated

to CNF. The translation of EPR Software Verification problems, and CNF Hardware

Verification problems has introduced new industrial applications of DL. An empirical
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test for the soundness of the implementation has been provided. The empirical test

suggests that the implementation is sound.

DLF, a new TPTP syntax for Description Logic, has been designed in this research.

DL is more expressive than PL, and less expressive than EPR. DL, as a specific logic

for expressing ontologies, was not a part of TPTP world, and there was no TPTP DL

syntax before. A BNF definition has been provided to allow parsing DLF problems.

Now Saffron and the DLF syntax can help embed DL into the TPTP world, so that

the DL communities can benefit from the TPTP and TSTP tools.

Experiments have been designed to compare different ways of solving problems by

using combinations of translators and ATP systems. This included identifying state-

of-the-art ATP systems and translators for all logics, as well as identifying appropriate

sets of test problems. A framework was then built for running experiments over all

the possible ways of solving the test problems. The execution of the experiments and

the analysis of their results revealed that, in general, solving problems by translation

to less expressive logics, particularly DL, is an alternative (some times the only) way

of solving a problem.

The results of the experiments show that more TF1 problems are solved by transla-

tions to less expressive logics than by using a TF1 ATP system. The results also show

that solving TF0 problems by translations to less expressive logics is an alternative

way of solving problems versus using a TF0 ATP system. Moreover, the results show

that solving DL-able and some EPR Software Verification problems by translation

to DL is an alternative way of solving problems versus using an EPR ATP system.

Almost half of such Software Verification problems are solved by translation to DL
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almost as fast as solving by an established and powerful EPR ATP system. Many

FOF problems with no functions of arity greater than zero are solved by translation

to DL, which offers an alternative way of solving such problems.

When more than one CPU is available, simultaneously solving TF0 and TF1

problems through several paths remarkably increases the chance of the problem being

solved, compared to the best approach for solving these problems. Solving TF1

problems by translation to DL with two possible combinations of translators and a

DL ATP system can exclusively solve 2% of the TF1 sample problems. This result is

interesting since the TF1 ATP system cannot solve any problems exclusively.

6.3 Future Work

In the future, the translation procedure and the implementation of Saffron can be

extended to translate CNF clauses with wider range of clause structures. Examples of

potential clause structures are clauses with unary functions and clauses that specify

the domain and the range of binary predicates. Variable instantiation can be added

as a preprocessing feature of Saffron in a way that the number of variables in a

clause is reduced, so that the clause can be translated using the currently available

features of Saffron.

In the future, DLF and DLF tools can be integrated into the TPTP world. This

is possible by developing tools for importing problems in other DL syntaxes into the

TPTP in the DLF syntax, and adding features to TPTP2X for exporting problems in

other DL syntaxes. DL problems can be collected and released in the TPTP problem
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library. Solutions for DL problems can be collected and released in the TSTP solution

library. Eventually, DL ATP systems and tools can be added to the SystemOnTPTP.



Appendix A

The BNF for DLF

This appendix is the BNF for DLF, TPTP syntax for DL SROIQ. Table A.1 describes

the separators for different rules reduction [48].

Table A.1: Reduction Separators in TPTP BNF
Rule Type Separator

Syntactic ::=

Semantic :==

Lexical ::-

Character-macro :::

%-------------------------------------------------------------------

<dlf annotated> ::= dlf(<name>,<formula role>,<dlf formula><annotations>).

<annotations> ::= ,<source><optional info> | <null>

%-------------------------------------------------------------------

%----DLF formulae

<dlf formula> ::= <dlf typed atom> | <dlf definition> |

<dlf declaration atom> | <dlf indiv formula> |

<dlf role formula> | ( <dlf formula> )

%-------------------------------------------------------------------

%----DLF declaration formula which includes:

%----A class, individual or role is equal or not equla to another one.

%----A class or role is subclass(subrole) of or disjoint with another one.

<dlf declaration atom> ::= <dlf block name> <infix equality>

<dlf class unitary term> | <dlf block name> <infix inequality>
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<dlf class unitary term> | <dlf block name> <dlf disjoint operator>

<dlf class unitary term> | <dlf block name> <subtype sign>

<dlf class unitary term>

<dlf class unitary term> ::= <dlf block name> | <dlf closed class> |

<dlf restriction term> |

<dlf negation operator> <dlf class unitary term> |

( <dlf class binary term> ) | ( <dlf class unitary term> )

%----All dlf binary operators over classes are associative

%----All associative operators are left assosiative by default, unless

% parantesized differently

<dlf class binary term> ::= <dlf class union term> |

<dlf class intersection term> | <dlf class disjoint union term>

<dlf class union term> ::= <dlf class unitary term> <dlf union operator>

<dlf class unitary term> | <dlf class union term> <dlf union operator>

<dlf class unitary term>

<dlf class intersection term> ::= <dlf class unitary term>

<dlf intersection operator> <dlf class unitary term> |

<dlf class intersection term> <dlf intersection operator>

<dlf class unitary term>

<dlf class disjoint union term> ::= <dlf class unitary term>

<dlf disjoint union operator> <dlf class unitary term> |

<dlf class disjoint union term> <dlf disjoint union operator>

<dlf class unitary term>

<dlf closed class> ::= [<dlf block list>]

<dlf restriction term> ::= <fol quantifier>

<dlf block name>(<underscore>,<dlf class unitary term>)

%-------------------------------------------------------------------

%----DLF individual formula

<dlf indiv formula> ::= <dlf block name>(<dlf block name>,<dlf block name>)|

<dlf negation operator><dlf block name>(<dlf block name>,<dlf block name>)

%----DLF individual formula

<dlf indiv formula> ::= <dlf block name>(<dlf block name>,<dlf block name>)|

<dlf negation operator><dlf block name>(<dlf block name>,<dlf block name>)

%-------------------------------------------------------------------

%----DLF role formula

<dlf role formula> ::= <dlf role characteristic>(<dlf block name>) |

<dlf role description one on one>(<dlf block name>,<dlf block name>) |

<dlf block name> <supertype sign> <dlf roles chain> |

<dlf block name> <dlf role infix one on one operator> <dlf block name>

<dlf role characteristic> ::= $functional | $inverse functional |
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$transitive | $symmetric | $asymmetric | $reflexive | $irreflexive

<dlf role description one on one> ::= $equivalentProperty |

$subPropertyOf | $propertyDisjointWith | $inverseOf

<dlf role infix one on one operator> ::= <dlf infix inverse of>

%----A role is superProperty of a role or a chain of roles

<dlf roles chain> ::= <dlf block name> |

<dlf roles chain> <dlf infix role chain> <dlf block name> |

( <dlf roles chain> )

%-------------------------------------------------------------------

%----DLF typed atom

<dlf typed atom> ::= <dlf block name> : <dlf top level type>

<dlf top level type> ::= $tType | <dlf class unitary term> |

$role(<dlf class unitary term>,<dlf class unitary term>) |

( <dlf class unitary term> <star> <dlf class unitary term> )

<arrow> <dlf oType>

<dlf definition> ::= <dlf block name> <dlf defn operator> <dlf top level type>

<dlf definition> :== <atomic word> <dlf defn operator> <dlf top level type>

%----DLF auxiliary definitions

%----dlf blocks are classes, individuals, and roles

<dlf block name> ::= <atomic word> | <atomic defined word> |

<ampersand word> | <ampersand defined word> |

<ampersand word> <dlf delimiter> <atomic word> |

<ampersand defined word> <dlf delimiter> <atomic word> |

<ampersand word> <dlf delimiter> |

<ampersand defined word> <dlf delimiter>

<dlf block list> ::= <dlf block name> | <dlf block list>,<dlf block name>

%-------------------------------------------------------------------

%----DLF operators

%--- unary

<dlf negation operator> ::= ~

%--- binary and left associative

<dlf infix role chain> ::= @

%--- binary and left associative

<dlf infix inverse of> ::= <minus>=

%--- binary and left associative

<dlf union operator> ::= ++
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%--- binary and left associative

<dlf intersection operator> ::= <star><star>

%--- binary and left associative

<dlf disjoint operator> ::= <less sign><arrow>

%--- binary and nonassociative

<dlf defn operator> ::= <infix equality><infix equality>

<dlf delimiter> ::= ; | <hash symbol> | /

<dlf oType> ::= <atomic defined word>

<dlf oType> :== $o

<dlf disjoint union operator> ::= <less sign><plus><arrow>

%-------------------------------------------------------------------



Appendix B

Pseudo Code for Saffron

List<Clause> notTranslatedClauses = new ArrayList<Clause>();
List<Characteristic> characteristics = new ArrayList<Characteristic>();
public void translate(String inputFile, String outputFile){

List<Clause> clauses = readCNFClause(inputFile);
for(Clause clause: clauses){

if (!translateOneClause(clause)){
notTranslatedClauses.add(clause);

}
}
List<DLAxiom> dlAxioms = gather();
generateOutput(dlAxioms,outputFile);

}
/**
* reads the TPTP CNF inputFile and returns its list of clauses
* @param inputFile in
* @return list of clauses in inputFile
*/
List<Clause> readCNFClause(String inputFile){

return null;
}
/**
* Translate the clause into characteristics for an individual,
* a class or a role, adds the characteristics to the list of
* characteristics.
* @param clause
* @return true if succeeds to translate clause, and false if
* fails to translate the clause because it is not DL-able.
*/
boolean translateOneClause(Clause clause){

List<String> positiveIndividuals = new ArrayList<String>();
List<String> negativeIndividuals = new ArrayList<String>();
List<String> positiveClasses = new ArrayList<String>();
List<String> negativeClasses = new ArrayList<String>();
List<String> positiveRoles = new ArrayList<String>();
List<String> negativeRoles = new ArrayList<String>();

extract(clause.literals,INDIVIDUAL,positiveIndividuals,negativeIndividuals);
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extract(clause.literals,CLASS,positiveClasses,negativeClasses);
extract(clause.literals,ROLE,positiveRoles,negativeRoles);

return guessClause(clause.literals, positiveIndividuals,
negativeIndividuals, positiveClasses, negativeClasses,
positiveRoles, negativeRoles);

}
/**
* Based on the list of constants, unary predicates, and binary
* predicates of the clause, and their polarity, and list of
* variables in the literals of the clause, guesses the translation
* and if it finds a translation, it will be added to the list of
* characteristics.
* @param literals
* @param positiveIndividuals list of constants appearing in positive
* literals in literals
* @param negativeIndividuals list of constants appearing in negative
* literals in literals
* @param positiveClasses list of positive unary predicates appearing
* in literals
* @param negativeClasses list of negative unary predicates appearing
* in literals
* @param positiveRoles list of positive binary predicates appearing
* in literals
* @param negativeRoles list of negative binary predicates appearing
* in literals
* @return true if a translation for the clause is found, and
* false if no translation for the clause is found
*/
boolean guessClause(List<String> literals,

List<String> positiveIndividuals,
List<String> negativeIndividuals,
List<String> positiveClasses,
List<String> negativeClasses,
List<String> positiveRoles,
List<String> negativeRoles){

List<String> targets = checkCharacteristics(literals,
positiveIndividuals, negativeIndividuals, positiveClasses,
negativeClasses, positiveRoles, negativeRoles);

if(targets.isEmpty())
return false;

for(String individual: positiveIndividuals){
if(!targets.contains(individual))

characteristics.add(new
Characteristic(INDIVIDUAL,individual,""));

}
for(String individual: negativeIndividuals){

if(!targets.contains(individual))
characteristics.add(new

Characteristic(INDIVIDUAL,individual,""));
}
for(String oneClass: positiveClasses){

if(!targets.contains(oneClass))
characteristics.add(new Characteristic(CLASS,oneClass,""));

}
for(String oneClass: negativeClasses){

if(!targets.contains(oneClass))
characteristics.add(new Characteristic(CLASS,oneClass,""));

}
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for(String role: positiveRoles){
if(!targets.contains(role))

characteristics.add(new Characteristic(ROLE,role,""));
}
for(String role: positiveRoles){

if(!targets.contains(role))
characteristics.add(new Characteristic(ROLE,role,""));

}
return true;

}
/**
* For each individual, class, and role, gathers all the
* characteristics that are created during the translation
* to form one RDF/XML tag for each.
* @return the list of all RDF/XML tags
*/
List<DLAxiom> gather(){

Map<String,List<String>> individualsTags = new HashMap<String,
List<String>>();

Map<String,List<String>> classesTags = new HashMap<String,
List<String>>();

Map<String,List<String>> rolesTags = new HashMap<String,
List<String>>();

for(Characteristic characteristic: characteristics){
List<String> tags;
if(characteristic.blockType == INDIVIDUAL){
tags = individualsTags.get(characteristic.name);
if(tags == null){

tags = new ArrayList<String>();
}
tags.add(characteristic.subTag);
individualsTags.put(characteristic.name,tags);

}
else if(characteristic.blockType == CLASS){

tags = classesTags.get(characteristic.name);
if(tags == null){

tags = new ArrayList<String>();
}
tags.add(characteristic.subTag);
classesTags.put(characteristic.name,tags);

}
else {

tags = rolesTags.get(characteristic.name);
if(tags == null){

tags = new ArrayList<String>();
}
tags.add(characteristic.subTag);
rolesTags.put(characteristic.name,tags);

}
}
List<DLAxiom> dlAxioms = new ArrayList<DLAxiom>();
for(String individual: individualsTags.keySet()){

dlAxioms.add(new
DLAxiom(INDIVIDUAL,individual,individualsTags.get(individual)));

}
for(String oneClass: classesTags.keySet()){

dlAxioms.add(new
DLAxiom(CLASS,oneClass,classesTags.get(oneClass)));
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}
for(String role: rolesTags.keySet()){

dlAxioms.add(new DLAxiom(ROLE,role,rolesTags.get(role)));
}
return dlAxioms;

}
/**
* Writes header, the dl axioms and the footer in outputFile
* @param dlAxioms the DL axioms gathered after the translation
* @param outputFile the owl file including the DL translation
* of the input file
*/

void generateOutput(List<DLAxiom> dlAxioms,String outputFile){
//create output file named outputFile
//write header of the ontology to outputFile
//write dlAxioms to outputFile
//write the number of untranslated CNF as a comment
//write the untranslated CNF formulas as a comment
//write footer of including the translation result

}

/**
* Extracts both lists of positive and negative either
* constants(Individuals), unary pedicates (classes),
* or binary predicates (roles) from literals
* @param literals
* @param blockType is set to either INDIVIDUAL, CLASS or ROLE
* @param positiveBlocks will be set to the list of positive constants
* appearing in literals if the blockType is
* INDIVIDUAL, or the list of the name of positive
* unary predicates appearing in literals if the
* blockType is Class, or the list of the name of
* positive binary predicates appearing in literals
* if the blockType is ROLE.
* @param negativeBlocks will be set to the list of negative constants
* appearing in literals if the blockType is
* INDIVIDUAL, or the list of the name of negative
* unary predicates appearing in literals if the
* blockType is Class, or the list of the name of
* negative binary predicates appearing in literals
* if the blockType is ROLE.
*/
void extract(List<String> literals, int blockType,

List<String> positiveBlocks, List<String> negativeBlocks){
...

}
/**
* Based of the Tables 4.5 and 4.6 Checks if
* the clause is translated to characteristics of one or more literals

in
* literals or the default class Thing
* @param literals
* @param positiveIndividuals list of constants appearing in positive
* literals in literals
* @param negativeIndividuals list of constants appearing in negative
* literals in literals
* @param positiveClasses list of positive unary predicates appearing
* in literals
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* @param negativeClasses list of negative unary predicates appearing
* in literals
* @param positiveRoles list of positive binary predicates appearing
* in literals
* @param negativeRoles list of negative binary predicates appearing
* in literals
* @return the list of characteristics found
*/
List<String> checkCharacteristics(List<String> literals,

List<String> positiveIndividuals, List<String>
negativeIndividuals,

List<String> positiveClasses, List<String>
negativeClasses,

List<String> positiveRoles,List<String> negativeRoles){
...

}
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