
University of Miami
Scholarly Repository

Open Access Theses Electronic Theses and Dissertations

2007-01-01

Concurrent Multi-Path Real-Time Transmission
Control Protocol
Anand Jayaraman
University of Miami, anandj@miami.edu

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_theses

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Theses by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Jayaraman, Anand, "Concurrent Multi-Path Real-Time Transmission Control Protocol" (2007). Open Access Theses. 85.
https://scholarlyrepository.miami.edu/oa_theses/85

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses/85?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

UNIVERSITY OF MIAMI

CONCURRENT MULTI-PATH REAL-TIME TRANSMISSION CONTROL
PROTOCOL

By

Anand Jayaraman

A THESIS

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Master of Science

Coral Gables, Florida

December 2007

UNIVERSITY OF MIAMI

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science

CONCURRENT MULTI-PATH REAL-TIME TRANSMISSION CONTROL
PROTOCOL

Anand Jayaraman

Approved:

Dr. Dilip Sarkar
Associate Professor of Computer Science

Dr. Terri A. Scandura
Dean of the Graduate School

Dr. Burton Rosenberg
Associate Professor of Computer Science

Dr. Uttam Sarkar
Visiting Professor of Computer
Science

Dr. Akmal A. Younis
Assistant Professor of Electrical &
Computer Engineering

Dr. Huseyin Kocak
Chairman & Professor of
Computer Science

JAYARAMAN, ANAND (M.S., Computer Science)
Concurrent Multi-path (December 2007)
Real-time Transmission Control Protocol

Abstract of a thesis at the University of Miami.

Thesis supervised by Dr. Dilip Sarkar.
No. of pages in text. (50)

In this thesis, a new transport protocol, the Concurrent Multi-Path Real-time

Transmission Control Protocol (cmpRTCP) is proposed. The proposed protocol has

been designed to handle real-time streams (video and audio) over IP-networks. One

of the key strengths of this protocol lies in its ability to intelligently exploit the

availability of multiple paths between multi-homed hosts for concurrent transmission

of unicast real-time streams. This work describes the architecture and operation of

cmpRTCP in detail. In addition, the limitations of currently used transport protocols

in handling real-time streams are also discussed. These limitations of other protocols

have played a vital role in the design process of the proposed protocol. Experiments

to evaluate the performance of cmpRTCP against other protocols and the results

obtained therein are also documented in this work. Results show that cmpRTCP is a

best effort protocol that tries to maximize the amount of data that is successfully de-

livered to the destination in a timely manner under varying drop and delay conditions

of the network.

Dedication

This thesis is dedicated to my Guru - Sri Sathya Sai Baba, who has not only been a

true friend, tutor and guide but also a source of immense inspiration in my life.

iii

Acknowledgements

I would like to thank Dr. Dilip Sarkar for his support during the time frame of

this research activity. I would also like to thank the Chairman of the Department

of Computer Science Dr. Huseyin Kocak and all members of my thesis committee

for their support, guidance and co-operation. I extend my appreciation towards the

University of Miami for all the facilities provided.

Special thanks to the Associate Dean of Arts & Science Dr. Jacqueline Dixon,

Program Director of Visual Journalism Lelen Bourgoignie-Robert and Vice Dean of

School of Communication Sanjeev Chatterjee for their advice and words of encouragement.

A million thanks to the people of my home for their everlasting encouragement

and support.

iv

Table of Contents

List of Tables viii

List of Figures ix

Glossary xi

1 Introduction 1

1.1 Background . 1

1.2 Recent Research Work . 3

1.3 Motivation and Goals . 5

1.3.1 Goals . 5

1.4 Outline of this work . 5

2 Transport Protocol Families 7

2.1 Categorization . 7

2.2 Single-Path Transport . 8

2.2.1 UDP . 8

2.2.2 TCP . 10

2.3 Multi-path Transport . 10

2.3.1 Multi-path Non-concurrent Transport 10

2.3.1.1 SCTP . 10

2.3.1.2 SCTP-PR . 11

2.3.2 Multi-path Concurrent Transport 12

v

2.3.2.1 SCTP (CDT) . 12

2.3.2.2 SCTP-PR (CDT) . 13

2.3.3 Misc. Protocols . 13

2.3.3.1 AppStripe TCP . 14

2.3.3.2 AppStripe UDP . 14

2.3.4 MRTP . 14

2.4 Limitations of the Various Protocols 14

2.4.1 UDP . 14

2.4.2 TCP . 15

2.4.3 SCTP . 15

2.4.4 SCTP-PR . 15

2.4.5 SCTP (CDT) . 16

2.4.6 SCTP-PR (CDT) . 16

2.4.7 AppStripe TCP . 17

2.4.8 AppStripe UDP . 17

2.4.9 MRTP . 17

2.5 Defining the Real-Time Transport Features 17

3 cmpRTCP 19

3.1 Protocol Design . 19

3.1.1 Basic Operation . 19

3.1.2 Connection Establishment . 20

3.1.3 Sender Design . 21

3.1.3.1 Real-time Scheduling 23

3.1.3.2 Window Management 25

3.1.3.3 Queue Management 27

3.1.4 Receiver Design . 29

3.1.4.1 Receiver Buffer Management 30

3.1.4.2 Acknowledgement Generation 31

vi

4 Performance Evaluation 33

4.1 Experimental Setup . 33

4.1.1 Network Setup . 33

4.1.2 Video Encoding and Real-time Payload Generation 34

4.1.3 Round Trip Delay and Bandwidth Constraints 34

4.1.3.1 Round Trip Delay 34

4.1.3.2 Bandwidth . 36

4.2 Effect of Drop Rate Imbalance across paths 36

4.2.1 Comparison of Packet and Byte Loss Rates 37

4.3 Effect of Round Trip Delay . 38

4.3.1 Effect of Balanced Round Trip Delay 39

4.3.2 Effect of Unbalanced Round Trip Delay 40

4.4 Effect of Drop Rate Fluctuation . 42

4.5 Effect of Delay Variations . 43

4.5.1 Effect of Scaling . 45

5 Conclusion 47

References 48

vii

List of Tables

2.1 Protocol Feature Comparison Chart 9

2.2 Protocol Feature Comparison Chart 9

3.1 Window Management Scheme . 26

viii

List of Figures

2.1 Block Diagram of Single-Path Transport 8

2.2 Block Diagram of Multi-Path Transport 11

3.1 Connection Establishment Process . 20

3.2 Block Diagram of sender side cmpRTCP 22

3.3 Gap Inference Technique . 28

3.4 Block Diagram of receiver side cmpRTCP 29

3.5 Message Flushing Mechanism at Receiver 30

3.6 Format of SACK generated at the receiver 31

3.7 CTSNA / LTSNF Crossover Algorithm 31

4.1 Block Diagram of the experimental setup 33

4.2 Size of Frames in the Foreman Video Sequence 35

4.3 Sorted View of Frames in the Foreman Video Sequence 35

4.4 Comparison of Effective Loss Rates for Drop Rate Imbalance 36

4.5 Congestion Window Plot for cmpRTCP 37

4.6 Congestion Window Plot for cmpRTCPa 38

4.7 Byte and Packet Loss Correlation . 39

4.8 Comparison of Effective Loss Rates for Balanced Round Trip Delay . 39

4.9 Congestion Window Plot for cmpRTCP 40

4.10 Congestion Window Plot for cmpRTCPa 41

4.11 Comparison of Effective Loss Rates for Unbalanced Round Trip Delay 41

4.12 Congestion Window Plot for cmpRTCP 42

ix

4.13 Congestion Window Plot for cmpRTCPa 43

4.14 Effective Loss Rate Comparison for Fluctuating Drop Rates 44

4.15 Effective Loss Rate comparison for Network Delay Variations 44

4.16 Effective Loss Rate comparison when introducing more bad paths . . 46

x

Glossary

ATO Acknowledgment Timeout is the maximum time

duration for which a sender waits for an acknowl-

edgment on a particular path before considering

the path to have gone bad

CDT Concurrent Data Transport, also termed CMT

(Concurrent Multi-path Transmission) is a mode

of transmission where all the available paths from

source to destination are utilized concurrently for

data transfer

Chunk A block of data that is dispatched as payload to

the IP layer from the transport layer

Congestion Avoidance phase A congestion window growth phase where the

congestion window grows linearly

CTSNA Cumulative TSN Acknowledgment is the TSN

value that indicates that all chunks with TSN

values less than or equal to the CTSNA have

been received by the receiver

CWND Congestion Window for a path limits the data,

in number of bytes that a sender can send along

that particular path before receiving an acknowl-

edgment

xi

GOP A group of successive pictures within an MPEG-

coded video stream

H.264 An ITU standard for compressing video based on

MPEG-4

LTSNF The TSN of the last chunk that has been flushed

to the upper layer at the receiver’s end

MTU Maximum Transmission Unit is the size of the

largest packet that the network layer can handle

as a single block without fragmenting it

Multi-homing The ability of a transport layer protocol to probe

for and utilize multiple network paths between

source and destination

RTDTL Real-Time Delay Tolerance Limit is the maxi-

mum amount of time that a receiver will wait for

a chunk to arrive before considering it to be lost

in the network

RTT Round Trip Time for a path is the time required

for a packet dispatched on that path to reach the

destination and for the destination’s acknowledg-

ment to return back to the source

SACK Selective Acknowledgment is an acknowledgment

packet that is dispatched by the receiver acknowl-

edging the reception of new data chunks

Slow Start phase A congestion window growth phase where the

congestion window grows exponentially

xii

SSTHRESH Slow Start Threshold for a path is a threshold

value for the CWND of that path. When the

CWND exceeds the threshold, the window growth

switches from Slow Start phase to Congestion

Avoidance phase

TSN Transmission Sequence Number is a unique num-

ber assigned to every chunk from a monotoni-

cally increasing 32-bit number sequence to iden-

tify the relative position of a chunk during the

transmission of a stream of chunks

WUQ Window Update Queue for a path is the queue

that holds relevant information about the chunks

that were dispatched on that particular path

xiii

Chapter 1

Introduction

This chapter introduces the reader to the role of transport protocols in real-time

data transport. It provides the reader with a generic idea of the commonly used

transport protocols and the problems associated with them. It also describes some

of the research work of the recent past that has been done in the area of transport

protocols to make them more suitable for real-time streams.

1.1 Background

Recent advances in digital networking technology coupled with the rapid increase

in consumption of digital content over the intra / internet have placed a greater

emphasis on bandwidth aggregation, network load balancing (NLB) and reliable com-

munication. The challenges to be tackled only get bigger when considering real-time

video/audio streams owing to the time-sensitive nature of real-time data. As stated

in [20], application level end-to-end delays exceeding 250 ms affect data delivery of

real-time streams leading to unintelligible real-time interaction from an end-user’s

perspective. Also, real-time data transfers cannot be compared with voluminous

file data transfers because the idea is not to utilize the highest available network

bandwidth for fast transmission but rather transmit data at the rate at which it is

dispatched by the real-time source while ensuring minimal jitter.

1

2

Currently, real-time applications utilize the user datagram protocol (UDP) at the

transport layer for their transmissions. UDP is connection-less and does not re-

transmit packets, making it a lightweight protocol. Also, UDP does not take care

of re-ordering packets arriving out of order at the destination. Applications using

UDP have no knowledge of network status and hence may under-utilize available

bandwidth or worsen the congestion in the network [4]. The standard Transmission

Control Protocol (TCP) [11] on the other hand is connection-oriented, takes care of

retransmission and does re-ordering of packets arriving out of order at the destination.

Although TCP does have some knowledge of the network congestion status; TCP’s

retransmission to ensure that each and every packet does reach the destination is

an expensive (time consuming) process for real-time streams. Retransmitted packets

over networks with reasonable delays have little value at the receiving end in real-time

applications such as Voice over IP (VoIP) and Digital Video over IP (DVIP) because

of their late arrival. Also, in the process of retransmission of a set of data packets,

newer data being dispatched from the source gets held up until the retransmission is

complete. Thus a cycle of constantly increasing delay in data delivery sets in during

the length of the transmission which is unacceptable for real-time streams.

Another limitation of both TCP and UDP is their inability to probe for and utilize

multiple paths if available between hosts equipped with multiple network interfaces

(multi-homed hosts). TCP / UDP can bind to only one IP-endpoint at either end. Ap-

plications can however split data across multiple connections to enable multi-homed

streaming 1. It is shown in [10] that multi-homed streaming can improve quality of

reception (Q2) by 30% or more. While some studies on non real-time traffic have pro-

posed multipath data transfer solutions at application layer and network layer (see

[15, 23] and the references therein), it has been clearly shown in [15] that it is the

transport layer that is best equipped with end-to-end information and hence most

suitable for positioning the multipath data transport capability.

1Multi-homed Streaming: Process of streaming data from source to destination via multiple paths
2Q: fraction of data packets from a given stream session that reach the receiver on or before their

respective scheduled play-out time

3

A protocol that currently exists for real-time applications (RTP) [24] utilizes a

UDP channel for data transmission and a TCP channel for transmitting out of band

control information (RTCP [24]). The control overhead is about 5% of the data load

as stated in [24]. Although classified as a transport protocol, RTP attaches itself to

an application and needs an underlying transport protocol (UDP in general) for data

transmission. RTCP, the out of band control protocol does not define a congestion

control mechanism for RTP. It merely has the ability to provide statistical information

to the sending application periodically about data reception at the receiver. The

application may use this information to downgrade or enhance its encoding rate of the

real-time stream that is being generated. RTP is also not designed to take advantage

of the multi-homing capability of hosts.

Considering these limitations of TCP and UDP as well as the problems of multi-

homing at the application layer for real-time streams, this work proposes a new trans-

port protocol - the concurrent multi-path real-time TCP (cmpRTCP). The new pro-

tocol has been designed to track congestion in the network, not to retransmit packets

but to ensure re-ordering of packets that arrive out of order at the destination. One

of the key features of this protocol is its ability to intelligently exploit multiple paths

between multi-homed hosts to achieve concurrent real-time data transmission. This

protocol implements a feedback control system that takes care of maximizing the

amount of data that is successfully delivered to the destination in a timely manner.

The key features of the proposed protocol are (i) multi-path congestion control (ii)

path viability estimation and multi-path load balancing (iii) increased end-end reli-

ability using multiple paths (iv) improved QoS by scheduling more packets on better

paths.

1.2 Recent Research Work

Several research studies have been conducted in the recent past in the areas of real-

time stream transmission enhancement and multi-path data transfer. Studies have

4

shown that computers equipped with multiple network interfaces (MNIs) can be uti-

lized for concurrent multi-path data transport suitable for bandwidth aggregation as

well as increased reliability [3, 18, 10, 1, 2, 21]. Most of the multi-path data trans-

port solutions have extended the idea from Stream Control Transmission Protocol

(SCTP) [26] owing to its ability to probe for and establish multiple paths between

multi-homed hosts. However, the multi-path solutions extending SCTP are designed

for reliability with full retransmission making them appropriate for non real-time data

transfers and not for real-time streams.

A multi-path protocol for real-time streams called MRTP has been proposed in [18]

with the ability to partition and dispatch packets across multiple paths. MRTP, like

RTP, is a layer on top of the transport protocol in the Open Systems Interconnection

(OSI) stack [8] that utilizes services offered by TCP / SCTP or UDP.

Adapted versions of the Partial reliability (PR) extension of SCTP (SCTP-PR)

[25] have been used in solutions proposed in [19] and [9] for real-time transport. While

these proposals may help improve perceptible quality of the real-time stream at the

receiving end, the problem with these solutions is the inability of the receiver to drop

late arriving packets at the receiving end without explicit instruction from the sender

to do so. These proposed protocols do not have a mechanism to identify late arriving

packets nor the ability to notify the sender about them. The protocol proposed in [9]

has incorporated a mechanism for bandwidth estimation and a scheduling policy that

uses the estimate to reduce relative delay variations on concurrent paths. However,

loss rates on various paths are not used in scheduling the packets.

The novel concurrent multi-path real-time transmission control protocol proposed

in this work not only overcomes the problems faced by the different adapted versions

of SCTP-PR, but also preserves the novel design and implementation features of

cmpTCP (the non real-time counterpart of cmpRTCP) reported in [23].

5

1.3 Motivation and Goals

The different transport protocols suffer from several limitations that have been briefly

described in this chapter and are described in greater detail in the next chapter

under section 2.4. The primary motivation for this work has been to bringforth these

limitations and propose a protocol that is capable of overcoming these limitations

thereby ensuring real-time data transport in a timely manner.

1.3.1 Goals

The main goal of this work has been the design and implementation of a transport

layer protocol that is capable of intelligently exploiting multiple paths between multi-

homed hosts for real-time streaming.

1. Increased Availability: By definition, availability is the ability of data channels

to be ready for use when required and not be committed to other tasks. The

protocol must increase availability by probing for multiple paths and utilizing

them concurrently for data transport.

2. Increased Robustness: Robustness is the ability of a system to withstand changes

in its operating environment while ensuring minimal impact on the task at hand.

The protocol be robust enough to handle changes in path delay / drop condi-

tions to ensure minimal data loss.

3. Increased Scalability: Scalability is a measure of how well a system expands.

The protocol must be able to scale well with increase in number of available

paths

1.4 Outline of this work

The rest of the work described in this document is organized as follows. Chapter

2 discusses the operation of the various transport layer protocols, their limitations

6

when handling real-time streams in greater detail, and the need for the proposed

protocol. Chapter 3 describes the detailed architecture and operation of cmpRTCP.

In chapter 4, the experiments that were conducted to evaluate the performance of the

protocol have been described along with the results from those experiments. Finally,

in chapter 5 an overall conclusion is drawn from the work in its entirety.

Chapter 2

Transport Protocol Families

This chapter introduces the reader to the families of transport protocols that have

influenced the design of cmpRTCP because of their limitations and also paved the

way for its implementation.

2.1 Categorization

Transport protocols can be categorized along multiple dimensions. The primary ways

of categorizing them are listed below

1. Based on their ability to establish multiple paths between source and destina-

tion, they are categorized as either Multi-Path or Single-Path transport.

2. Based on their ability to utilize multiple paths simulataneously for data trans-

mission, they are categorized as either Concurrent or Non-Concurrent trans-

port.

3. Based on their ability to detect and react to congestion and loss in the network,

they are categorized as either Loss Aware or Loss Unaware transport.

4. Based on their ability to deliver all user messages (messages sent from the layer

above the transport layer in the protocol stack) that were dispatched to the

destination, they can be categorized as either Reliable or Unreliable transport.

7

8

5. Based on their ability to deliver user messages / user bytes at the destination in

the same order as they were dispatched at the source, they can be categorized

as either Ordered or Unordered transport.

2.2 Single-Path Transport

Protocols that belong to this family, bind to a single IP endpoint at both the source

and the destination ends (refer Fig. 2.1) when a user session is started. Data trans-

mission during the entire session is along the path connecting the two IP endpoints.

TCP and UDP belong to this family of protocols.

User Application

Transport

IPs1

MACs1

User Application

Transport

MACd1

Source Destination

IPsk : kth IP address at source
MACsk : kth MAC address at source

IPdk : kth IP address at destination
MACdk : kth MAC address at destination

IPd1

Figure 2.1: Block Diagram of Single-Path Transport

2.2.1 UDP

User Datagram Protocol, a light weight transport protocol that can be categorized as

a single-path, loss unaware, unreliable and unordered delivery transport (refer Table

2.1). UDP [22] is message oriented in nature which means that if an application at the

destination receives a set of bytes from the underlying UDP transport layer, the set

of bytes constitute a complete user message sent from the source. When applications

use UDP, messages may arrive out of order or go missing without notice. The fact

that the overhead of checking if every packet arrives at the destination is avoided,

9

Multi-Path Concurrent Loss Aware Reliable Ordered Delivery

UDP

TCP Yes Yes Yes

SCTP Yes Yes Yes Yes

SCTP-PR Yes Yes Yes

SCTP (CDT) Yes Yes Yes Yes Yes

cmpTCP Yes Yes Yes Yes Yes

SCTP-PR (CDT) Yes Yes Yes Yes

Table 2.1: Protocol Feature Comparison Chart

Message Oriented Multi-streaming Bundling

UDP Yes

TCP

SCTP Yes Yes Yes

SCTP-PR Yes Yes Yes

SCTP (CMT) Yes Yes Yes

cmpTCP Yes Yes Yes

SCTP-PR (CMT) Yes Yes Yes

Table 2.2: Protocol Feature Comparison Chart

10

makes UDP faster and more efficient than most protocols. The limitations of using

UDP for real-time data transport are mentioned in section 2.4.

2.2.2 TCP

Transmission Control Protocol is the core protocol used on the internet for reliable

transmission of data. TCP [11] is categorized as a single-path, loss aware, reliable and

fully ordered delivery transport (refer Table 2.1). TCP is stream oriented in nature

which means that data is received by applications at the destination as a continuous

stream of bytes without any demarcation at message boundaries. The strict ordering

and reliability of TCP makes it extremely useful for lossless transfer of data from

source to destination. However, there are problems when using TCP for real-time

data (refer section 2.4).

2.3 Multi-path Transport

Protocols that belong to this family, bind to multiple IP endpoints at both the source

and the destination ends (refer Fig. 2.2) at the beginning of a user session. Data

transmission is along one or more paths connecting the multiple IP endpoints for the

session. Some of these protocols also support addition of new IP endpoints as well

as removal of IP endpoints when a session is in progress. SCTP, SCTP-PR, SCTP

(CDT), SCTP-PR (CDT) and cmpTCP belong to this family of protocols.

2.3.1 Multi-path Non-concurrent Transport

These are protocols that establish multiple paths between source and destination but

utilize only one path for transmission while reserving the rest for fail-over.

2.3.1.1 SCTP

The Stream Control Transmission Protocol (SCTP) [26] was the first protocol of

its kind that enabled multi-homed hosts to communicate via multiple paths. SCTP

11

User Application

Transport

IPs1

MACs1 MACs2

IPs2 IPs3 IPs4

User Application

Transport

IPd1

MACd1 MACd2

IPd2 IPd3 IPd4

Source Destination

IPsk : kth IP address at source
MACsk : kth MAC address at source

IPdk : kth IP address at destination
MACdk : kth MAC address at destination

Figure 2.2: Block Diagram of Multi-Path Transport

provides features such as sequenced delivery of user messages within multiple streams,

optional bundling of multiple user messages into a single SCTP packet and network-

level fault tolerance through supporting of multi-homing at either or both ends of an

SCTP association.

On a multi-homed host, SCTP has the capability to tie down multiple IP addresses

of the host to a common SCTP endpoint that can be used for data transmission or

reception. This means that when an SCTP association is established between two

multi-homed hosts, all potential network paths for data transfer are scouted for and

kept track of by the protocol. SCTP’s ability to scout for and establish multiple paths

for communication has in fact made it the backbone for concurrent data transport

protocols described in section 2.3.2.

In [17] it has been shown that SCTP is definitely a better protocol than TCP

for MPEG-4 real-time transmission. At the same time, SCTP also suffers from some

limitations (refer section 2.4).

2.3.1.2 SCTP-PR

The Stream Control Transport Protocol - Partial Reliability Extension (SCTP-PR)

[25] is the extension of SCTP that supports partially reliable data transmission service

to the upper layer protocol. This means that unlike SCTP which does a complete

12

ordered delivery of messages to the upper layer protocol, SCTP-PR has the feature

where the sender can inform the receiver to not wait for certain data packets that

may not have arrived at the receiver. This is particularly useful when considering

real-time transmissions where every user message has a lifetime before which it must

reach the destination. Messages that have expired at the sender no longer need to

be transmitted or retransmitted and the receiver can be notified of the same using

this protocol. SCTP-PR has formed the backbone for many research studies that

have tried to propose a solution for concurrent real-time data transport owing to its

ability to establish multiple paths for communication and support partially reliable

data transfer service.

In [27] it has been shown that SCTP-PR performs much better than TCP and

UDP for real-time transmission by reducing relative retransmission and transmission

delays respectively. In [19], it has been shown that better picture quality (PSNR1) of

real-time video can be obtained using SCTP-PR as compared to UDP by exploiting

the partially reliable data transfer service of SCTP-PR to retransmit only I-frames.

The problems associated with SCTP-PR are documented in section 2.4.

2.3.2 Multi-path Concurrent Transport

These are protocols that establish multiple paths between source and destination and

utilize all the available paths concurrently to transfer data.

2.3.2.1 SCTP (CDT)

There are many adapted versions of SCTP that have been proposed for concurrent

data transport [3, 7, 1, 2, 12, 13, 14, 15, 16, 23]. These adaptations allow data

transmission on multiple paths concurrently by tracking and controlling the amount

of packets dispatched on each path at any point during the session, based on the

reception of acknowledgments from the receiver. The higher the number of acknowl-

edgments that are received for packets dispatched on a particular path, the higher

1PSNR: The peak signal to noise ratio that is a measure of the quality of picture reconstruction

13

the potential of that path to transmit more data is the common philosophy applied

across all these versions. Section 2.4 highlights the limitations of using the concur-

rent transport SCTP for real-time streams. The Concurrent Multi-Path Transmission

Control Protocol (CMPTCP) described in [23] is an adaptation that utilizes a single

transmission queue and a scheduler beneath the queue that dispatches the packets

on the available paths in a round robin fashion. cmpTCP is in fact the non real-time

counterpart of cmpRTCP.

2.3.2.2 SCTP-PR (CDT)

Similar to the many adapted versions of SCTP as described in section 2.3.2.1, SCTP-

PR also has many adapted versions for concurrent transport. The general adaptation

as described in [9] as a greedy scheduler is one where a scheduler picks up the packets

from a global transmission queue and schedules them over the different available

paths in a round robin fashion. This adaptation is referred to as SCTP-PR (CDT-1)

in latter sections. One of the enhanced adaptations has also been clearly described

in [9] which utilizes a separate transmission queue for every available path and a

scheduler to dispatch the user messages from the upper layer protocol to one of these

transmission queues depending on a contrived bandwidth heuristic for each one of

those paths. This adaptation has been termed SCTP-PR (CDT-2) in latter sections.

The section on limitations of the various protocols (2.4) highlights the problems of

using SCTP-PR (CDT) for real-time streams.

2.3.3 Misc. Protocols

These are management protocols that operate on top of the transport layer in the

protocol stack to achieve some form of concurrency in multi-path transmission. These

protocols can utilize either TCP, UDP, SCTP or any of its variants for the actual data

transport.

14

2.3.3.1 AppStripe TCP

AppStripe TCP is not strictly a transport layer protocol. Here, it is the applica-

tion that establishes multiple TCP connections between source and destination, and

transmits over all paths [15]. The application must manage path failures, re-ordering

of packets sent over the different paths at the destination and also the round robin

scheduling over the available paths.

2.3.3.2 AppStripe UDP

Similar to AppStripe TCP mentioned in section 2.3.3.1, AppStripe UDP is not a

transport layer protocol. The application establishes multiple UDP connections be-

tween source and destination, and transmits over all paths. Again, it is the application

which manages path failures, round robin scheduling of messages over the available

paths and re-ordering of packets sent over the different paths at the receiving end.

2.3.4 MRTP

The Multi-flow Real-time Transport Protocol (MRTP) proposed in [18] is a protocol

with the ability to partition and dispatch user messages across multiple paths. It

forms a layer on top of the transport protocol in the stack and establishes multiple

flow connections utilizing the underlying protocol (TCP / UDP / SCTP). In [18],

it has been shown that by appropriately positioning the protocol over one of the

transports, the quality of real-time streams can be enhanced.

2.4 Limitations of the Various Protocols

2.4.1 UDP

UDP has no knowledge of the congestion or losses occurring in the network and hence

can severely hamper the quality of real-time data transmission by under-utilizing

available bandwidth or worsening congestion in the network [4]. Also, UDP requires

15

that the application at the receiver take care of re-ordering messages that arrive out

of sequence.

2.4.2 TCP

The main problem with TCP when used for real-time streams is TCP’s retransmission

policy. While the protocol ensures that each and every single packet does reach the

destination by making the required retransmissions, it is not useful because retrans-

mitted packets have little value at the receiving end owing to the delay involved. The

fact that retransmission of a set of data packets holds up newer data from being dis-

patched until retransmission is complete, sets in a cycle of constantly increasing delay

in data delivery at the receiver. The other problems of TCP include the inability to

parallelize several transmission streams without creating multiple TCP connections

(a problem that has been addressed in SCTP).

2.4.3 SCTP

One of the limitations of SCTP is that it uses only one path which is designated as the

primary path for transmission. Alternate paths are used only when the primary path

fails. Even the alternate paths are used only one at a time based on their precedence.

In any case, it is clear that SCTP is not meant for concurrent data transport on

multiple paths. When used for real-time transmission on a single path, it suffers from

the same retransmission problem as TCP.

2.4.4 SCTP-PR

SCTP-PR suffers from three major limitations. (i) Similar to SCTP, SCTP-PR trans-

mits only on one path (primary path or an alternate path) at any given time. All

other paths are used as backup. (ii) The transport layer at the receiver does not have

the ability to drop late arriving packets without explicit instruction from the sender

to do so. (iii) The receiver has no way to notify the sender of late arriving packets.

16

2.4.5 SCTP (CDT)

This protocol is not suitable for real-time transmission because it supports complete

ordered delivery of user messages to the upper layer protocol at the receiving end

which poses the same problem as that of TCP and SCTP. Also, the other problems

with this protocol are (i) The receiver does not have the ability to drop late arriving

packets. (ii) The receiver has no way to notify the sender of late arriving packets.

2.4.6 SCTP-PR (CDT)

Although this is the best protocol of the entire lot for transporting real-time streams,

both the general version of this protocol that has the partial reliability extension

added to the SCTP Concurrent version and the version described in [9] suffer from

the same retransmission problem as in most other protocols mentioned above. The

partial reliability extension does support for packets to be discarded as and when

they expire at the sender, eliminating the need for retransmission of those packets,

but the design of the protocol is such that for reasonable delays in the network, even

the few retransmissions can cause head of line blocking. Also, for every set of packets

that expire, a forward-TSN (refer [25]) needs to be sent by the sender to the receiver

to indicate the same, until when the packets that are being buffered at the receiver

may expire. These issues have been clearly illustrated in the various scenarios shown

in chapter 4.

The major limitations of the protocol illustrated in [9] are (i) packet loss rates on

the various paths do not influence the choice of paths. (ii) Delayed packet delivery

at the receiver is not communicated to the sender so as to influence the choice of

paths. These are in addition to the head of line blocking problem as with the general

version.

17

2.4.7 AppStripe TCP

All the limitations of TCP with the retransmission issues also apply here. In addition,

the application at the receiver has the overhead of reordering packets received from

the multiple connections. At the sending end, the application has the overhead of

scheduling packets without the knowledge of congestion in the different paths. This

information although present at the transport layer in all the connections is not

available to the application.

2.4.8 AppStripe UDP

The application at the receiver has the overhead of reordering the packets in this case.

Also, since UDP has no network congestion awareness, this protocol cannot favor one

path over another.

2.4.9 MRTP

The major limitation of this protocol is the very fact that it is not a transport layer

protocol and hence requires a lot of overhead to communicate path status and other

network congestion related parameters to either end. It has been very clearly shown

in [15] that it is the transport layer that is best equipped with end-to-end network

information for handling multi-path data transport. While a combination of MRTP

and UDP protocols is useful for aggregation of bandwidth in wireless ad hoc networks,

it is not major quite useful for improving quality of service (QoS) at the receiving

end without sending redundant packets nor for decreasing total packet loss rate or

increasing reliability of application level connectivity.

2.5 Defining the Real-Time Transport Features

From the previous sections that have highlighted the different protocol families and

the limitations of the various protocols, the attributes of a protocol capable of real-

time data transport can be enumerated.

18

1. The protocol must be capable of concurrent data transport so as to exploit the

availability of multiple paths between hosts.

2. The protocol must be loss aware and react to data loss in the network

3. The protocol must be able to divert traffic to better paths and achieve optimal

load balancing.

4. It is preferable if the protocol is an ordered delivery protocol so as to eliminate

need for different applications to implement their own ordering schemes for

every session that they open.

5. The protocol must be able to minimize and trade off its reliability for timely

delivery.

This clearly marks the boundary and scope of operation for the cmpRTCP protocol

whose design has been discussed in subsequent chapters.

Chapter 3

cmpRTCP

3.1 Protocol Design

3.1.1 Basic Operation

cmpRTCP establishes a multi-homed connection between the source and destination

hosts in the same manner as cmpTCP [23] (very similar to the mechanism in SCTP

[26]). The process of connection establishment is described in section 3.1.2. The

entire design of cmpRTCP beyond the connection establishment is based upon the

simplistic goal that the sender must make a best effort to ensure that every packet

/ data chunk reaches the destination with no retransmission. For this purpose, the

transport protocol at the sender must be equipped with

1. A congestion window manager that continually tracks the network congestion

status of the multiple paths that have been setup for concurrent data transport.

2. A real-time scheduler that schedules packets over the multiple paths based on

the inputs from the congestion window manager.

Similarly, the receiver must be equipped with the ability to aid the sender by informing

it of

1. Packets that are arriving late on particular paths

19

20

2. Packets that have not shown up at all within a reasonable time limit.

This is of course in addition to the normal multi-path acknowledgements with gap

reports (refer cmpTCP [23]).

3.1.2 Connection Establishment

Source Destination

Network

Source Destination

Network

Source Destination

Network

Source Destination

Network

Source Destination

Network

Source Destination

Network

Init chunk

cookie

Heartbeat

Init Ack

cookie Ack

Heartbeat Ack

Figure 3.1: Connection Establishment Process

The connection establishment procedure is a 6-way handshake as shown in Fig.

3.1. The process can be carried out on top of IPv4 or IPv6 layers [26]. Firstly, the

sender sends a packet with a connection initialization data chunk (INIT chunk) which

primarily contains information about the sender’s multiple IP addresses. The receiver

responds back with a connection initialization acknowledgement chunk (INIT ACK

chunk) which contains the multiple IP addresses that the receiver is ready to accept

data on along with a state cookie [26] and a message authentication code (MAC) [26]

that are used for authenticating the sender in the next stage. The sender responds to

21

the INIT ACK with a Cookie Echo chunk that contains the original state cookie and

the MAC. The receiver upon receiving the cookie echo, authenticates the sender by

verifying that the MAC that is computed from the state cookie in the echoed chunk is

the same as the MAC on the echoed chunk. Upon authentication, the receiver sends

a Cookie Ack chunk to confirm establishment of the connection.

The next two stages of the handshake are for activating the multiple paths if

available, for concurrent transmission. The sender broadcasts a Heartbeat chunk to

every IP address of the multi-homed destination that was present in the INIT ACK

chunk. The receiver responds with a Heartbeat ACK chunk on every path in which it

received the heartbeat chunk, notifying the sender that the path is indeed active and

suitable for data transmission. Data transmission commences right after the paths

are registered as active at the sender after reception of all the heartbeat acknowledge-

ments.

3.1.3 Sender Design

Fig. 3.2 depicts the overall architecture of cmpRTCP at the sender end. In addition

to the two core modules (the congestion window manager and the real-time scheduler,

the other modules that peform the relevant supporting roles are the Stream engine,

the SACK processing module and the Packet dispatcher. The upper layer is allowed

to send multiple parallel streams of real-time data for transmission through the es-

tablished connection. In order to accommodate and manage the flow of the various

data streams that need to be transported, there exists the stream engine which acts

as a stream multiplexing, message fragmenting and time-stamping unit, creating data

chunks out of the messages from the upper layer. The scheduler picks up these chunks

queueing up in the transmission queue and chooses a path for dispatching them. The

choice of path is based upon a heuristic that combines the following four factors (i)

size of the congestion window of the path, (ii) outstanding bytes in flight (bytes that

22

Stream Engine

Real-Time Scheduler Congestion Window
Manager

SACK Processing
Module

Transmission Queue

Packet Dispatcher

………...

………...

N/W
Path #1

N/W
Path #2

N/W
Path #n

Window-Update
Queue #1

Window-Update
Queue #2

Window-Update
Queue #n

cmpRTCP sender Architecture

Figure 3.2: Block Diagram of sender side cmpRTCP

23

are awaiting acknowledgement) on the path, (iii) number of chunks that are appar-

ently missing (dropped / delayed) on the path, (iv) Round Trip Time (RTT) of the

path. The window manager tracks the above factors to aid the scheduler.

The packet dispatcher transmits packets scheduled for transmission and places the

important attributes of every transmitted data chunk - size, Transmission Sequence

Number (TSN) and timestamp (time when the chunk was handed over to the protocol

for dispatch) in the appropriate Window Update Queue (WUQ) corresponding to the

path of transmission.

The SACK processing module scans every incoming acknowledgement packet and

uses the information contained in the packet to update the WUQs. For information

contained in acknowledgements, refer section 3.1.4.2.

3.1.3.1 Real-time Scheduling

The scheduler as described previously (section 3.1.3) has the responsibility to load

balance across the multiple paths based on their availability. Algorithms 1 and 2

illustrated in this section, are two scheduling algorithms that were developed and

deployed to understand the importance of good scheduling. The basic cmpRTCP

protocol uses the first algorithm shown while the second algorithm is used in cm-

pRTCPa (a variant of cmpRTCP). These algorithms execute as atomic operations.

New events from layers in the protocol stack above or below, queue up until the algo-

rithm completes a full pass across all paths. From the algorithms, it can be seen that

during every round, when a burst of packets arrive from the upper layer, cmpRTCP

fills up each available path to its full capacity (capacity of each path is determined

by the window manager - 3.1.3.2) before moving on to the next path in a round robin

fashion. Every successive round takes over from the path that was previously used

if it was not filled completely in the previous round; the next path by round robin

otherwise.

cmpRTCPa - the variant of cmpRTCP, is based on the idea that information

about the missing packets can not only be used to control the amount of data being

24

forall i such that i is a valid path number do
if obpa(i) < cwnd(i) then

transmit on path i until obpa(i) = cwnd(i);
if more data is pending transmission in queue then

choose next path i;
end

end

end
if no path was available for transmission and data is pending transmission
then

find path j that has the minimum ratio of obpa(j)
cwnd(j)

over all paths;
transmit one MTU of data on path j;

end

Algorithm 1: cmpRTCP Scheduler

Data: PathSet← set of valid path numbers sorted in ascending order of the
number of packets missing on the respective paths

Let j be the first path from PathSet;
while data is pending transmission do

if (obpa(j) < cwnd(j)) or (missing(j) + sentAlready(j) < missing(j + 1))
then

transmit on path j;
end
else

choose path j + 1;
if j + 1 is not a valid path number then

break out of the loop;
end

end

end

Algorithm 2: cmpRTCPa Scheduler

25

dispatched on each path but also direct the decision control of choosing a path. The

variant thus operates by sorting the paths in the increasing order of the number

of packets missing on the respective paths and then choosing paths in that order,

dispatches packets as much as their respective congestion windows would permit. In

addition, cmpRTCPa may dispatch data exceeding the path capacity if it finds that

loss of all of that data in excess of the capacity, still does not make that path worse

than the next best.

3.1.3.2 Window Management

The congestion window manager uses an additive increase multiple decrease (AIMD)

congestion controller for every path. The basic AIMD technique is similar to cmpTCP

[23]. The window growth algorithm is illustrated in Table 3.1. However the algorithm

needs to account for several factors that don’t play a part in conventional non real-

time data transfer. Starting with the fact that no retransmission ever occurs.

(i) When packet drops are detected and the congestion window shrinks, the num-

ber of packets in-flight would be more than the new window size. In a transport

protocol with retransmission, this would immediately trigger a retransmission of the

reportedly missing packets so as to free up the window for newer data. But here, since

there is no retransmission, if it so happens that all paths have more bytes in-flight

than their respective windows, transmission would freeze. To prevent transmission

from freezing, at least one maximum transmission unit (MTU) of data is transmitted

even if there is no path whose window accommodates a data packet.

(ii) The beginning of any real-time data transmission is usually accompanied by

a sudden burst of data. Message fragments that don’t make it to the network during

the initial burst will have to wait for at least a whole round trip time (RTT) in the

transmission queue and another 1
2

RTT to travel to the destination by when there is

a strong possibility that they expire. To prevent severe loss of these fragments at the

beginning, the initial window size is set to an integral multiple of the MTU size.

26

Table 3.1: Window Management Scheme

Begin Transmission

Condition : Before first dispatch on path p

ssthresh(p) = receiver window size

cwnd(p) = integral multiple of MTU(p)

Slow Start

Condition : cwnd(p) = ssthresh(p)

And b bytes acknowledged in the latest SACK

for chunks dispatched over path p

cwnd(p) = cwnd(p) + min[MTU(p), b]

Congestion Avoidance

Condition : cwnd(p) > ssthresh(p)

cwnd(p) = cwnd(p) + MTU(p)
cwnd(p)

Packet Drop Detection

Condition : for a chunk dispatched on path p,

Gap report > 3 or Receiver notifies late packet arrival via SACK

And the congestion window size of p is not locked

ssthresh(p) = max[1
2
cwnd(p), 2MTU(p)]

cwnd(p) = max[1
2
cwnd(p), MTU(p)]

lock the window size of p for a duration RTT(p)

Acknowledgment Timeout (ATO)

Condition : T3 timer expired with duration ATO for path p

And the congestion window size of p is not locked

ssthresh(p) = max[1
2
cwnd(p), 2MTU(p)]

cwnd(p) = MTU(p)

Idle Path

Condition : No transmission on path p for duration of 1x ATO

cwnd(p) = integral multiple of MTU(p)

27

(iii) To ensure that minimum data is sent over lossy paths when multiple paths

are actually available for transmission, the congestion window is allowed to shrink to

a minimum of a single MTU.

(iv) To prevent a sudden burst loss from immediately sealing the window, the

time interval between successive collapses of the congestion window is chosen to be

a single RTT of the corresponding path (as opposed to a fast retransmit phase [26]

that locks the window).

(v) If an incoming acknowledgment packet indicates new data received at the

destination, then the amount of bytes corresponding to the data packets acknowledged

is used for appropriately incrementing the window sizes of the corresponding paths

on which those data packets were dispatched. On the other hand, if the incoming

acknowledgment indicates data being flushed to the upper layer at the destination

(refer section 3.1.4.2 - LTSNF), all unacknowledged data prior to the data flush

indicated by the incoming acknowledgment, are considered lost and window sizes

of paths on which the unacknowledged data was originally dispatched are collapsed

appropriately.

3.1.3.3 Queue Management

The WUQs (Fig. 3.2) hold information about every chunk dispatched over the net-

work. Each queue has details about chunks dispatched in the path corresponding to

that queue, in the increasing order of TSNs. The purpose of holding information in

this sorted manner is to ensure that true gaps in the transmission sequence arising

out of packet drops in the network are promptly identified and used by the congestion

window manager to adjust the window size of each path, while ensuring that spurious

gap reports that arise out of relative path delay differences are discarded.

Everytime an unacknowledged chunk is encountered in any of the WUQs such that

there is another chunk with a higher TSN in the same queue that is acknowledged,

the gap count (a value that indicates the number of times a loss has been identified

for a particular chunk) of the unacknowledged chunk is incremented by one. When

28

WUQ #1

WUQ #2

WUQ #3

TSN: 103 TSN: 105TSN: 100 TSN: 107

TSN: 104 TSN: 106TSN: 101

TSN: 102

CTSNA : 100 Frag #1 : 3 - 5 Frag #2 : 7 - 7SACK:

Incoming sack reports gaps for TSNs 101, 102 and 106 but the congestion
window manager deciphers from the WUQs that the true gap is only at TSN
101 because TSNs 102 and 106 are the latest chunks added to the respective
WUQs.

Figure 3.3: Gap Inference Technique

the gap count of any unacknowledged chunk exceeds a predefined count (standard

count is ’3’ in TCP), the chunk is considered lost.

Information about a chunk is removed from the WUQs under two conditions.

(i) When an incoming acknowledgement indicates that the receiver has received

all chunks upto or beyond the TSN of the chunk under consideration.

(ii) When the incoming acknowledgement indicates that the receiver has flushed

another chunk with a higher TSN to the upper layer at the destination.

Fig. 3.3 illustrates with an example the technique by which true gaps alone are

identified in the WUQs. The figure shows the WUQs at the sender’s end. Due to

the relative delay differences across the paths, the receiver has received all the chunks

dispatched so far on path-1 (chunks 100 through 107). Chunks 101, 104 and 106

had been dispatched on path-2 but 101 has been dropped by the network. Chunk

104 has reached the destination. Chunk 106 is still on the way to the destination.

Chunk 102 is on its way to the destination on path-3. Reception of chunks 103, 104,

105 and 107 at the receiver would generate acknowledgements indicating that 102

has not arrived. This is a spurious gap report as far as 102 is concerned and should

not be wrongly inferred as congestion on path-3. Similarly, reception of chunks with

29

TSN 107 or higher on path-1 does not have any bearing on 106 although the receiver

would still generate gap reports for 106 until it receives 106. The only true gap is

101 because 104, which was dispatched on the same path as 101 has reached the

destination. Hence, by tracking the chunks on separate WUQs, spurious gap reports

are discarded.

3.1.4 Receiver Design

Stream Engine

SACK Generation
ModulePacket Collator

………...

N/W
Path #1

N/W
Path #2

N/W
Path #n

cmpRTCP receiver Architecture

Receiver Buffer

Received Message Queue

Figure 3.4: Block Diagram of receiver side cmpRTCP

Fig. 3.4 depicts the architecture of the cmpRTCP receiver. The receiver functions

by imposing a real-time delay tolerance limit (RTDTL) on all the arriving packets.

As the packets arrive from the network, the packet collator ensures that late arriving

packets beyond the RTDTL (100 ms in our experiments) are forcefully dropped.

Packets that do manage to get admitted are placed in a receiver buffer where they

wait to be picked up by the stream engine. The stream engine takes care of reordering

and defragmentation of the messages by waiting for missing chunks in the receiver

30

buffer as long as the RTDTL after which the packets waiting in the buffer are flushed

to the upper layer before they expire.

3.1.4.1 Receiver Buffer Management

The receiver buffer holds time sensitive information i.e. the data packets in the buffer

become worthless if the total time spent by them in transit and in the buffer is more

than the RTDTL. However, not every packet can be flushed to the upper layer as

and when it queues up in the buffer because ordered delivery to the upper layer is a

requirement of the protocol.

TSN: 201

TSN: 202

TSN: 203

Last TSN Flushed To Upper Layer (LTSNF) = 200

Not arrived

‘t’ msec left
for expiration

Max. wait for TSN 201 can be ‘t’ msecs.
If 201 does not arrive, 202 will be flushed
to the upper layer after ‘t’ msecs if

202 is not part of the msg . starting with 201 and
202 and some other chunks in the queue form a
complete msg.

or else 202 is discarded

Figure 3.5: Message Flushing Mechanism at Receiver

When packets arrive at the destination over multiple network paths, a packet with

a lower TSN may take longer over one network path while a packet with a higher TSN

may have already reached the receiver buffer. The receiver cannot wait for the packet

with the lower TSN indefinitely because the lifetime of the packet with the higher

TSN in the buffer would run out. The maximum duration of waiting for a packet

can only be as long as the time left for the first packet at the head of the receiver

buffer to expire. After this duration, the first packet in the buffer is flushed to the

upper layer and the sender is notified about the last TSN flushed to the upper layer

via a selective acknowledgement (SACK) packet. The message flushing mechanism is

illustrated in Fig. 3.5.

31

3.1.4.2 Acknowledgement Generation

Chunk Header
(32 bits)

TSN ACK
(32 bits)

Receiver Window
(32 bits)

TSN ACK Specifier
(16 bits)

Drop Chunk Offset
(16 bits)

No. Fragments
(16 bits)

No. Duplicates
(16 bits)

Fragments & Duplicates
(variable size)

SACK Format

Figure 3.6: Format of SACK generated at the receiver

The TSN ACK field can hold one of two values; either the cumulative TSN ac-

knowledgment (CTSNA) or the last TSN flushed to upper layer (LTSNF). A CTSNA

indicates that all packets upto and including the TSN in the TSN ACK field have

been received at the receiver. An LTSNF indicates that the TSN in the TSN ACK

field is the last TSN that has been flushed to the upper layer. To distinguish the

CTSNA from the LTSNF, one bit of the TSN ACK Specifier field is used. If the

receiver drops a late arriving packet, the TSN of the dropped packet is put into the

Drop Chunk Offset field as an offset from the CTSNA / LTSNF.

In order to determine if it is the CTSNA that will be dispatched in the SACK

packet or the LTSNF, the algorithm shown in Fig. 3.7 is used.

LTSNF Cross-Over Check

Condition: (Current LTSNF = Current CTSNA and
 Current CTSNA = Previous CTSNA) or
(Current LTSNF > Current CTSNA)

Action:
Dispatch LTSNF in SACK
make Previous CTSNA = LTSNF

if Condition is not satisfied, dispatch CTSNA in SACK

Figure 3.7: CTSNA / LTSNF Crossover Algorithm

Having the LTSNF and the Crossover algorithm is very crucial to the protocol.

Without the LTSNF, during transmission, the CTSNA would have got locked at a

particular TSN value soon after loss of a packet. Further loss during transmission

would have led to an arbitrary growth in the fragment report, thereby increasing the

SACK size. The size of the SACK would have reached a threshold (MTU) beyond

32

which the IP layer would have started fragmenting the SACK, which is undesirable.

Thus the main purpose of using LTSNF is to enable the sender identify gaps in the

reception sequence which might otherwise be masked. Also, the Crossover algorithm

enables the CTSNA to keep advancing over the duration of the transmission.

Chapter 4

Performance Evaluation

4.1 Experimental Setup

Real-Time Stream Server Client

Network Emulator

Network Emulator

 Connection ‘A’

 Connection ‘B’

 Connection ‘C’

 Connection ‘D’

Network Configuration

Figure 4.1: Block Diagram of the experimental setup

4.1.1 Network Setup

A block diagram of the experimental network setup is shown in Fig. 4.1. The setup

includes four computers - a real-time video server, a client that receives the video and

two other machines that serve as network emulators. As shown in Fig. 4.1, network

connections ‘A’ and ‘C’ are interconnected and similarly network connections ‘B’ and

‘D’ are interconnected via the emulators. For simplicity one of the paths is referred

to as path I (network path combining ‘A’ and ‘C’) and the other as path II (network

33

34

path combining ‘B’ and ‘D’). The network emulators and the client are equipped with

Pentium4 2.2 GHz processors with 512 KB cache and 512 MB of RAM. The video

server has a Pentium4 2.8 GHz processor onboard with 1 MB cache and 512 MB

of RAM. The network emulation was done using Nistnet 2.0.12c [6]. Experiments

done for cmpRTCP were also repeated for its variant (cmpRTCPa). Experiments

were also performed for an application level multi-path UDP real-time data streamer

(AppStripe UDP) for contrast.

4.1.2 Video Encoding and Real-time Payload Generation

All experiments presented here involved transmission of a 10.2 MB pre-encoded H.264

stream of the foreman video clip (2098 frames; YUV 4:2:0) at CIF resolution - 352x288

at 25 fps with a GOP structure (12,3) and average I, P and B-frame sizes of 16.56

KB, 6.1 KB and 3.14 KB respectively. The H.264 encoding was done such that every

encoded frame would be sliced and packed into real-time payload (RTP) packets, the

size of each packet being close to 1200 bytes (less than a single MTU of 1500 bytes).

The distribution of frame sizes is shown in Fig. 4.2. Fig. 4.3 shows the frame sizes

of the clip, sorted in descending order of frame size.

4.1.3 Round Trip Delay and Bandwidth Constraints

4.1.3.1 Round Trip Delay

Round Trip Delay for a path also referred to as RTT (Round Trip Time) is the total

amount of time that it takes for a packet to travel from the source to the destination

along that path and for the acknowledgement from the destination to return back to

the source. Typical RTT between hosts within the United States range from less than

10 ms to as large as 100 ms. In all experimental scenarios described, unless otherwise

stated, the round trip delay has been set to 40 ms (20 ms in either direction).

35

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5
x 104 Foreman Video Sequence − Frame Sizes

Frames Number

Fr
am

e
S

iz
e

(B
yt

es
)

Figure 4.2: Size of Frames in the Foreman Video Sequence

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5
x 104 Foreman Video Sequence − Sorted Frame Sizes

Frames Sorted by Size

Fr
am

e
S

iz
e

(B
yt

es
)

Figure 4.3: Sorted View of Frames in the Foreman Video Sequence

36

4.1.3.2 Bandwidth

Bandwidth of a path is the amount of bytes that can be transmitted on that path

every second. Higher the bandwidth, faster the speed of transmission. For all the

experiments described below, the amount of bandwidth alloted was unlimited.

4.2 Effect of Drop Rate Imbalance across paths

1 3 5 7 9 11 13 15 17 19
0

1

2

3

4

5

6

7

8

9

10

11
Drop Rate vs Effective Loss Rate for a Foreman Video Transmission

Percentage Drop Rate on Path II [Path I fixed at 1%, RTT of both Paths at 40 ms]

P
er

ce
nt

ag
e

To
ta

l P
ac

ke
ts

 L
os

t

AppStripe UDP
cmpRTCP
cmpRTCPa

Figure 4.4: Comparison of Effective Loss Rates for Drop Rate Imbalance

The idea behind this experiment was to study the performance of cmpRTCP over

networks that exhibit a drop rate differential across multiple paths that are available

for data transmission. While setting the packet drop rate on path I at 1%, the drop

rate on path II was varied from 1% to 19%. Fig. 4.4 contrasts the effective loss rate

(percentage of packets lost) between cmpRTCP, cmpRTCPa and an Application level

UDP streamer.

From Fig. 4.4, it is clear that as the drop rate differential across the paths increase,

cmpRTCP and its variant perform increasingly better than the others. When the

drop rate on path II is set to 19%, it can be seen that cmpRTCP shows a 60%

37

improvement while its variant cmpRTCPa, an even higher 80% improvement over

UDP. The improvement can be attributed to the fact that cmpRTCP uses the packet

drop detection mechanism to control the amount of data flowing through each path.

cmpRTCPa takes it one step further and makes a best effort to choose a path with

minimum number of missing packets during every round of transmission. The rapidly

shrinking congestion window of the bad path with increasing drop rate differential is

clearly seen in Fig. 4.5 and 4.6 for cmpRTCP and cmpRTCPa respectively.

0 2 4 6 8 10 12 14 16 18
1500

3000

4500

6000

7500

9000

10500

12000

13500

Drop Rate Differential vs Average Window Size for cmpRTCP

Drop Rate Difference between Path I & Path II [Path I fixed at 1%]

A
ve

ra
ge

 C
on

ge
st

io
n

W
in

do
w

 S
iz

e
(B

yt
es

)

Path−I Window
Path−II Window

Figure 4.5: Congestion Window Plot for cmpRTCP

4.2.1 Comparison of Packet and Byte Loss Rates

When an IP packet is transmitted over a network, either the whole packet makes it to

the other side or the whole packet is lost in transit. If each frame of the H.264 video

stream were to be dispatched as a single IP packet, there would be no correlation

between the total number of packets lost in the network and the actual amount of

bytes lost. This is because H.264 streams are composed of I, P and B-frames whose

sizes differ considerably. Thus the distribution of data over the sequence of frames

38

0 2 4 6 8 10 12 14 16 18
1500

3000

4500

6000

7500

9000

10500

12000

13500

Drop Rate Differential vs Average Window Size for cmpRTCPa

Drop Rate Difference between Path I & Path II [Path I fixed at 1%]

A
ve

ra
ge

 C
on

ge
st

io
n

W
in

do
w

 S
iz

e
(B

yt
es

)
Path−I Window
Path−II Window

Figure 4.6: Congestion Window Plot for cmpRTCPa

is very non-uniform (loss of an I-frame could be the same as loss of 5 or more B-

frames in terms of bytes lost). In addition to this, as the transport layer fragments

the messages from the upper layer into chunks that are no more than the size of an

MTU, loss of a fragment would render the rest of the fragments of a message useless

to the upper layer at the receiving end. This raises a question about the plot in Fig.

4.4. Is it possible to infer the loss rates in terms of bytes? It is for this reason that the

RTP packet sizes were restricted to less than a single MTU during their generation.

This prevents the problem of fragmentation and also helps achieve an almost perfect

correlation between the percentage of bytes lost and percentage of packets lost as

shown in Fig. 4.7 (correlation coefficient = 0.998). Hence, the effective loss rates

shown in Fig. 4.4 are the same irrespective of the metric (lost bytes or lost packets).

4.3 Effect of Round Trip Delay

Here, the idea was to study, compare and contrast the behavior of the various proto-

cols under scenarios of various network round trip delays. A superior protocol would

39

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Percentage Packets Lost

P
er

ce
nt

ag
e

B
yt

es
 L

os
t

Packets Lost vs Bytes Lost for a Foreman Video Transmission

AppStripe UDP
cmpRTCP
cmpRTCPa

Figure 4.7: Byte and Packet Loss Correlation

be one whose deliverability does not get drastically affected by change in round trip

delays.

4.3.1 Effect of Balanced Round Trip Delay

40 50 60 70 80 90 100 110 120 130
0

2

4

6

8

10

12
RTT vs Effective Loss Rate for a Foreman Video Transmission

Round Trip Delay on Path I and II (ms) [Drop Rate on Path I & II fixed at 1%]

P
er

ce
nt

ag
e

To
ta

l P
ac

ke
ts

 L
os

t

AppStripe UDP
cmpRTCP
cmpRTCPa

Figure 4.8: Comparison of Effective Loss Rates for Balanced Round Trip Delay

In this case, the drop rates on both paths were set to 1%. The round trip delay

was varied symmetrically on both paths from 40 ms to 130 ms as shown in Fig. 4.8.

40

It can be seen in Fig. 4.8 that cmpRTCP and cmpRTCPa perform the same as

the AppStripe UDP streamer delivering 99% of the packets to the destination on-

time irrespective of the round trip delay within the range 40 - 130 ms. This can be

explained considering the fact that both cmpRTCP and its variant do not retransmit

any packets and equally schedule packets on both paths which leads to an average

loss of 1% irrespective of the RTT.

40 50 60 70 80 90 100 110 120 130
0.15

0.3

0.45

0.6

0.75

0.9

1.05

1.2

1.35

1.5

1.65

1.8

1.95
x 104 RTT vs Average Window Size for cmpRTCP

Round Trip Delay of Path I & Path II (ms) [Drop Rate of Path I & II fixed at 1%]

A
ve

ra
ge

 C
on

ge
st

io
n

W
in

do
w

 S
iz

e
(B

yt
es

)

Path−I Window
Path−II Window

Figure 4.9: Congestion Window Plot for cmpRTCP

The individual congestion window plots for the protocols are shown in Fig. 4.9

and 4.10. It can be seen that cmpRTCP and its variant’s window sizes increase with

increase in round trip delay which is expected as there are more bytes in flight.

4.3.2 Effect of Unbalanced Round Trip Delay

Here, the round trip delay on one path was varied from 20 ms to 90 ms while holding

the RTT of the other path at 90 ms. The drop rates on both paths were set to

1% similar to the scenario described in section 4.3.1. It can be seen in Fig. 4.11

that cmpRTCP and cmpRTCPa perform the same as the AppStripe UDP streamer

delivering 99% of the packets to the destination on-time irrespective of the imbalance

41

40 50 60 70 80 90 100 110 120 130
0.15

0.3

0.45

0.6

0.75

0.9

1.05

1.2

1.35

1.5

1.65

1.8

1.95
x 104 RTT vs Average Window Size for cmpRTCPa

Round Trip Delay of Path I & Path II (ms) [Drop Rate of Path I & II fixed at 1%]

A
ve

ra
ge

 C
on

ge
st

io
n

W
in

do
w

 S
iz

e
(B

yt
es

)

Path−I Window
Path−II Window

Figure 4.10: Congestion Window Plot for cmpRTCPa

20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
RTT vs Effective Loss Rate for a Foreman Video Transmission

Round Trip Delay on Path I (ms) [Drop Rate on Path I & II fixed at 1%; RTT of Path II at 90 ms]

P
er

ce
nt

ag
e

To
ta

l P
ac

ke
ts

 L
os

t

AppStripe UDP
cmpRTCP
cmpRTCPa

Figure 4.11: Comparison of Effective Loss Rates for Unbalanced Round Trip Delay

42

in the round trip delay across the paths. The reason is the same as in the previous

section (refer section 4.3.1) for both cmpRTCP and its variant.

20 30 40 50 60 70 80 90

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 104 RTT vs Average Window Size for cmpRTCP

Round Trip Delay of Path I (ms) [Drop Rate of Path I & II fixed at 1%; RTT of Path II at 90 ms]

A
ve

ra
ge

 C
on

ge
st

io
n

W
in

do
w

 S
iz

e
(B

yt
es

)

Path−I Window
Path−II Window

Figure 4.12: Congestion Window Plot for cmpRTCP

4.4 Effect of Drop Rate Fluctuation

Here, the packet drop rate on path I was set to 5% and the drop rate on path II was

allowed to oscillate between 1% and 9% (which averages to 5%). The time period of

oscillation was varied from 1 second to 19 seconds, incremented in steps of 1 second

at the end of every run. RTT on both paths were set to 40 ms. Fig. 4.14 contrasts

the effective loss rates of the protocols. UDP, not being aware of the fluctuations

on path II, dispatches packets equally on both paths. This leads to the constant

average drop rate of 5% that is observed, irrespective of the fluctuation. On the other

hand, cmpRTCP and its variant are able to track the fluctuations and dispatch the

packets appropriately to reduce the effective loss rate. As the time span of fluctuation

increases above 2 seconds, cmpRTCP shows about 10% improvement over UDP and

cmpRTCPa shows an improvement of about 20%. Shorter fluctuation spans do not

43

20 30 40 50 60 70 80 90

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 104 RTT vs Average Window Size for cmpRTCPa

Round Trip Delay of Path I (ms) [Drop Rate of Path I & II fixed at 1%; RTT of Path II at 90 ms]

A
ve

ra
ge

 C
on

ge
st

io
n

W
in

do
w

 S
iz

e
(B

yt
es

)

Path−I Window
Path−II Window

Figure 4.13: Congestion Window Plot for cmpRTCPa

give the protocol enough time to react and hence lead to slightly higher effective loss

rates (which are still less than 5%).

4.5 Effect of Delay Variations

To look at the performance of the protocol under situations of network induced delay

variations, the following experiment was performed. Path I was allotted a mean delay

of 40 ms with a std. deviation 1 of 4 ms and a drop rate of 1%. Path II also had a drop

rate of 1%. The mean delay in the forward direction on path II was varied from 20 ms

to 160 ms with the std. deviation set to 20% of the chosen mean delay. The RTDTL

was set to 100 ms for the experiment. The correlation for the std. deviation between

successive packet delays was set to 0.8 on nistnet to minimize packet re-ordering

within each individual path[5].

Fig. 4.15 shows that as the mean delay starts rising above 70 ms, all protocols

start showing some amount of additional loss (in addition to the 1% drop rate on

1std. deviation(σ): standard deviation from the mean when using a standard normal distribution
curve

44

2 4 6 8 10 12 14 16 18 20
3

3.5

4

4.5

5

5.5

6

6.5

7

Drop Rate Fluctuation Span (sec) [Path I fixed at 5%, Path II toggling between 1% and 9%]

P
er

ce
nt

ag
e

To
ta

l P
ac

ke
ts

 L
os

t

Drop Rate Fluctuation Span vs Effective Loss Rate for a Foreman Video Transmission

AppStripe UDP
cmpRTCP
cmpRTCPa

Figure 4.14: Effective Loss Rate Comparison for Fluctuating Drop Rates

20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

35

40

45

50

55
Network Delay vs Effective Loss Rate for a Foreman Video Transmission

Forward Delay on Path II (msec) [σ = 20% of the delay]

P
er

ce
nt

ag
e

To
ta

l P
ac

ke
ts

 L
os

t

AppStripe UDP
cmpRTCP
cmpRTCPa

Figure 4.15: Effective Loss Rate comparison for Network Delay Variations

45

either path). While there is a substantial increase in the effective loss rate for UDP

as the mean delay approaches the RTDTL (100 ms), cmpRTCP and its variant per-

form much better by maintaining a low effective loss rate. It can be seen that at

a mean delay of 160 ms (σ = 32) where less than 3% of the packets transmitted

(normal distribution) over path II would reach the destination under the RTDTL,

an application streaming its data over multiple UDP connections manages to deliver

only 50% of the total packets at the destination while cmpRTCP delivers 86% of the

packets and cmpRTCPa delivers 94% of the packets. This clearly shows that delays

in the network are promptly identified and the delay information used very effectively

in cmpRTCP and its variant.

Hence the response of the window management scheme to delays in data reception

at the destination is similar to data dropped in transit over the network thereby

enhancing data delivery by using more of the better paths.

4.5.1 Effect of Scaling

Another experiment was conducted to look at the effect of scaling the number of paths

to see how well the protocol is able to adapt itself. The packet drop rate on Path I

was set to 1% (signifying a good path) and the number of bad paths were increased

from 1 to 5 (drop rate on each bad path was set to 19%). Fig. 4.16 clearly shows that

cmpRTCP scales well although there is an increase in the net effective loss rate with

addition of more bad paths. This is expected because the protocol has to account for

the fact that the bad paths may not continue to remain bad throughout the period

of transmission. This effect of increase in the net effective loss rate is brought down

further by cmpRTCPa because the algorithm tries to equalize the number of missing

packets across all paths.

46

1 2 3 4 5
0

2

4

6

8

10

12

14

16
Number of Bad Paths vs Effective Loss Rate for a Foreman Video Transmission

Number of Bad Paths at Drop Rate 19% (in conjunction with a single path at Drop Rate 1%)

P
er

ce
nt

ag
e

To
ta

l P
ac

ke
ts

 L
os

t

AppStripe UDP
cmpRTCP
cmpRTCPa

Figure 4.16: Effective Loss Rate comparison when introducing more bad paths

Chapter 5

Conclusion

The primary purpose of this work was to come up with a robust transport protocol

for transmission of real-time streams between multi-homed hosts. In this paper, the

advantage of having a protocol that makes use of a TCP like congestion controller

work in conjunction with a packet scheduler to achieve substantial gains has been

clearly highlighted. Studies and experiments have shown that this protocol is indeed

capable of performing very well when streaming real-time video over IP-networks with

fixed as well as varying drop rate and delay characteristics. Some of the important

tasks ahead include performing an exhaustive study of the protocols performance

under dynamic conditions of varying bandwidth, extending the protocol to support

retransmission of select packets under application request, replacing the AIMD con-

gestion controller with a more sophisticated bandwidth manager and developing an

analytical model for the protocol.

47

References

[1] A. A. E. Al, T. Saadawi, and M. Lee. LS-SCTP: A bandwidth aggregation
technique for stream control transmission protocol. Computer Communications,
27(10), 2004.

[2] A. E. Al, T. Saadawi, and M. Lee. A Transport Layer Load Sharing Mechanism
for Mobile Wireless Hosts. In IEEE PerCom 2004, 2004.

[3] A. Argyriou and V. Madisetti. Bandwidth aggregation with SCTP. In IEEE
Globecom, San Fransisco, CA, Dec 2003.

[4] S. Bangolae, A. P. Jayasumana, and V. Chandrasekar. TCP-friendly congestion
control mechanism for a UDP-based high-speed radar application and character-
ization of its fariness. In ICCS, Singapore, Nov 2002.

[5] J. But, U. Keller, and G. Armitage. Passive TCP stream estimation of RTT
and jitter parameters. In LCN ’05: Proceedings of the The IEEE Conference on
Local Computer Networks 30th Anniversary, pages 433–441, Washington, DC,
USA, 2005. IEEE Computer Society.

[6] M. Carson and D. Santay. NIST Net: a Linux-based network emulation tool.
ACM SIGCOMM Computer Communication Review, 33(3):111–126, 2003.

[7] C. Casetti and M. Meo. Westwood SCTP: Load balancing over multipaths using
bandwidth-aware source scheduling. In IEEE Vehicular Technology Conference,
2004.

[8] J. Day and H. Zimmermann. The osi reference model. Proceedings of the IEEE,
71(12):1334–1340, Dec. 1983.

[9] M. Fiore and C. Casetti. An adaptive transport protocol for balanced multihom-
ing of real-time traffic. In Globecom, 2005.

[10] A. Habib and J. Chuang. Multi-homing media streaming. In IPCCC, 2005.

[11] I. S. Institute. Transmission Control Protocol (TCP). RFC 793, September
1981.

[12] J. Iyengar, P. Amer, and R. Stewart. Concurrent multipath transfer using trans-
port layer multihoming: Performance under varying band- width proportions.
In MILCOM, Monterey. CA, Oct 2004.

48

49

[13] J. Iyengar, P. Amer, and R. Stewart. Retransmission policies for concurrent
multipath transfer using SCTP multihoming. In ICON, Singapore, Nov 2004.

[14] J. Iyengar, P. Amer, and R. Stewart. Receive buffer management for concurrent
multipath transport using SCTP multihoming. Technical Report TR2005-10,
CIS Dept, University of Delaware, Jan 2005.

[15] J. Iyengar, P. Amer, and R. Stewart. Concurrent Multipath Transfer Us-
ing SCTP Multihoming Over Independent End-to-End Paths. Networking,
IEEE/ACM Transactions on, 14(5):951–964, Oct. 2006.

[16] J. Iyengar, K. Shah, P. Amer, and R. Stewart. Concurrent multipath transfer
using SCTP multihoming. In SPECTS, San Jose, California, July 2004.

[17] Z. Lifen, S. Yanlei, and L. Ju. The performance study of transmitting MPEG4
over SCTP. In Neural Networks and Signal Processing, 2003. Proceedings of the
2003 International Conference on, volume 2, pages 1639–1642, dec 2003.

[18] S. Mao, D. Bushmitch, S. Narayanan, and S. S. Panwar. MRTP: A multi-flow
realtime transport protocol for ad hoc networks. In IEEE Vehicular Technology
Conference, Orlando, Florida, Oct 2003.

[19] M. Molteni and M. Villari. Using SCTP with partial reliability for MPEG-4
multimedia streaming. In Proc. of BSDCon Europe, Netherlands, Nov 2002.

[20] P. Papadimitriou and V. Tsaoussidis. End-to-end congestion management for
real-time streaming video over the internet. In IEEE Globecom, San Fransisco,
CA, Nov 2006.

[21] D. S. Phatak and T. Goff. A novel mechanism for data streaming across multiple
IP links for improving throughput and reliability in mobile environments. In
IEEE INFOCOM, New York, NY, June 2002.

[22] J. B. Postel. The User Datagram Protocol (UDP). RFC 768, August 1980.

[23] D. Sarkar. A concurrent multipath TCP and its markov model. In ICC, Istanbul,
Turkey, June 2006.

[24] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications. RFC 3550, IETF, July 2003.

[25] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Conrad. Stream Control
Transmission Protocol (SCTP) Partial Reliability Extension. RFC 3758, May
2004.

[26] R. Stewart, Q. Xie, K. Momeault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Ry-
tina, M. Kalla, L. Zhang, and V. Paxson. Stream Control Transmission Protocol.
RFC2960, IETF, Oct 2000.

50

[27] H. Wang, Y. Jin, W. Wang, J. Ma, and D. Zhang. The performance comparison
of PR-SCTP, TCP and UDP for MPEG-4 multimedia traffic in mobile network.
In ICCT, April 2003.

Vita

Anand Jayaraman was born in Bangalore, India, on May 24, 1980. He completed

his elementary and secondary education in Kendriya Vidyalaya NAL in Bangalore,

India. In October 1997 he entered the Bangalore University from which he graduated

with a BE degree with distinction, majoring in Computer Science & Engineering, in

August 2001. He worked with Microsoft R&D as Program Manager for the Windows

System Resource Manager from November 2001 to October 2003. In August 2004

he was admitted to the Graduate School of the University of Miami where he was

granted a Master’s degree in Computer Science in December 2007.

	University of Miami
	Scholarly Repository
	2007-01-01

	Concurrent Multi-Path Real-Time Transmission Control Protocol
	Anand Jayaraman
	Recommended Citation

	Concurrent Multi-Path Real-Time Transmission Control Protocol

