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The Internet of Things (IoTs) is becoming ubiquitous in our everyday lives, im-

plying that more technologies will generate data. IoT devices use sensors to mon-

itor various attributes of the environment such as temperature, humidity, light,

etc. These sensors produce data periodically and storing this massive data in a

database is becoming a huge challenge in the data storage infrastructure. Prior re-

search has proposed compression algorithms and signature techniques to reduce

data storage but do not specify how the data patterns are defined. Since similar

patterns are exhibited everyday by the environment, this data generates the same

information from everyday sensing. Therefore, in this study, we propose a system

that stores data models rather than storing raw data points. Instead of storing each

data point at a time, we develop and store data models with the corresponding

time periods that captures the behavior of the sensor data. This helps in reducing

data storage requirements. The data models developed are mathematical polyno-

mial models that fit a sample data set. In addition, we propose a sensor database

structure that addresses the issues of data redundancy as well as temporal con-

straints in the database.
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Chapter 1

Introduction

1.1 Internet of Things (IoTs)

The Internet of Things (IoTs) is the network connecting various objects to the In-

ternet through different information perception devices, so that these individu-

ally addressed physical objects are able to exchange information with each other,

and hence accomplish the target of recognition, monitoring, tracking, and man-

agement. In a typical IoT application architecture, the perception layer of the IoT

comprises of a large number of Wireless Sensor Network (WSN). These WSNs are

made up of sensors that sense the environment and act as a bridge between the

machines and the physical world [17]. There are many technologies involved in

the perception layer, such as sensor network design and performance evaluation,

radio frequency identification (RFID) technology, sensing chip design technology,

internet access technology, multi-sensor information fusion, and so on [9]. The

devices in the perception layer of the IoT includes cameras, RFID readers, etc. In

1



2

WSNs, sensors are used to measure some properties of the environment in which

they are installed, such as pressure, radiation, temperature, humidity, light, and

many more, providing raw data for information systems.

There are various types of sensors and each sensor performs different functions.

For example, logistic and agricultural applications have temperature, humidity

and light sensors, whereas medical devices have sensors that measure heart rate,

blood pressure, and other body functions. Therefore, the data obtained from dif-

ferent sensors is heterogeneous [5]. Also, the sensor data are redundant as the

environment that the sensors are monitoring can be stable for short time periods

and hence, same data is produced by the sensors [6]. Sensors collect data over time

and provide real-time data [2]. The real-time data when processed can bring profit

to IoT. Thus, when an unexpected event occurs, a timely exception detection can

be helpful to make decisions to reduce and avoid the loss of data. Moreover, as

the production cost of sensors is very low, large number of sensors are deployed

in the environment to get complete information about the surroundings. Also, the

sensors are gathering data at frequent intervals resulting in large volumes of data

generation. Therefore, sensors develop huge amount of heterogeneous, continu-

ously streaming and geographically-dispersed real-time data. This results in the

issue of communication overhead and database will be heavily loaded, growing

very fast and performance will drop if all of this data is stored. Hence, there is a

need to find a way to efficiently store this massive volume of data.

In addition to the data generated by the IoT objects, there is metadata that de-

fines and describes these objects, such as object identification, location, services
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provided, etc. Also, IoT data, unlike the traditional Internet data, possess the time

and space attributes that represent the dynamic state changes of an objectâĂŹs lo-

cation over time. Therefore, communication, storage and process will play a major

role in designing the data management solutions for IoT.

IoT data storage mainly have three schemes: local [14], distributed [4], and

centralized [11]. In the local scheme of data storage, each sensor has its own local

database unit. Thus, the sensor nodes in the WSN runs its own database man-

agement system. In the distributed scheme, data is stored in some sensor nodes

in WSN and this is done using distributed technologies. Intermediate tools are

used to provide data access. In the centralized scheme, the data of the network is

gathered by a node, then sent to a data center where all the data of the network is

stored. Since the storage capacity and battery power of the sensors is very limited,

the local and distributed form of data storage is not suitable for IoT systems as

IoTs produce huge data. As a result, the centralized form of data storage is more

suitable for IoT applications.

In addition, the issue that most of the data generated from the sensors is re-

dundant does not provide any extra information. This data is still being stored as

we do not have any system yet that can detect the data and avoid redundancy. If

we are able to develop such a system then it will provide great solutions for future

databases.

Therefore, we propose a model-based data storage design solution for IoT ap-

plications that can resolve the problem of huge-scale and complex IoT data.
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1.2 Overview of the thesis

The rest of this thesis is organized as follows. Chapter 2 discusses the overview

of an IoT system that includes sensor network and IoT data, and provides details

of the system components. Chapter 3 provides a brief review of the related work.

Chapter 4 presents the details of the algorithm that develops data models. These

data models are mathematical polynomial models that are generated from sensor

raw data. Hence, the sensor data can be represented by these data models. Chapter

5 provides the IoT hierarchical structure that contains IoT objects, sensors in IoT

devices, and the models for sensor readings. It further describes the IoT database

architecture and few example queries for the IoT database. Chapter 6 provides

a detailed description of the experiments conducted on the available sensor data

set and the different data models generated by varying the input parameters of

the algorithm. Finally, Chapter 7 provides the summary of the thesis and outlines

potential new direction in the future.



Chapter 2

Background Information

2.1 System Overview

The integration of physical devices into data networks has progressed a lot in the

recent years and it is setting a new pattern in the world of IoT. The data collected

from various devices in sensor networks is in the form of physical environment

measurements which are communicated to other end-user devices via the Inter-

net. The data communication between the sensor network and the Internet can

be done using a gateway node. A gateway node has the power to convert dis-

parate formats of the raw data to standardized formats, thus further reduction in

transmission depends on this processing done at the gateway node. To achieve

the goal of reducing raw data in an efficient manner, a model-based scheme can be

well-established that can predict the data and answer queries of the user just by

selecting the correct model for the data instead of accessing a database that stores

all the processed data.

5
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2.2 System Components

Figure 2.1 shows the overview and the main components of an IoT system. In the

following subsections, we briefly describe function of each component.

Figure 2.1: Block diagram of a typical IoT database

2.2.1 Sensor Network

A sensor network is a group of different sensors that are embedded in various IoT

devices to monitor the physical or environment conditions and has the ability to

communicate with each other to form a network. Sensor nodes play an important

role in the network. They can be static nodes or mobile nodes. After sensing the

environment, the sensor nodes generates the data packet and sends it to the sink
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node via the sensor network. Each sensor node has a micro-controller with one or

more sensors. The micro-controller is equipped with limited memory and limited

computing power.

2.2.2 Sink Node or Aggregator Node

A sink node gathers data from all sensor nodes connected to it. It is also known as

an aggregator node, because it collects readings from multiple sensor nodes. The

main functions of an aggregator node are gathering data from the connected sensor

nodes, pre-processing and aggregating the raw data to produce an estimated read-

ing, and communicating the processed data to the base station. Thus, aggregator is

used to summarize and merge operations in real-time to squeeze the massive vol-

ume of data to be stored and transmitted [10]. In comparison to a micro-controller,

an aggregator has bigger memory and higher computing capability.

2.2.3 Gateway

A gateway is a node that connects two networks. In our IoT system, a sink node

is connected to the Internet through a gateway. It is able to transform and stan-

dardize the data. It gathers data in disparate formats generated from multiple

sensor nodes and converts them to a standard format to be used in the next stage

of data processing. Another role of gateway is protocol transformation. It con-

tains multiple communication protocols to accept outgoing data sent by the sink

nodes, forward the data to the Internet and communicate the incoming data from
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the Internet to the sensor network.

2.2.4 The Internet

The Internet is a medium of connecting a network to another network using the

Internet protocol suite (TCP/IP). It connects a computer to any other computer

globally forming a network. When two computers are linked over the Internet,

they can communicate with each other and send and receive variety of informa-

tion. For our application, data from sensors in the IoTs are communicated via the

Internet.

2.2.5 Database System

A database is a coherent collection of related data. The data is stored in an orga-

nized manner to make it easily accessible and manageable. The database users can

search for, retrieve and update the data as needed in the database. The queries

from users are sent to the database which in return sends the appropriate selected

data. In our approach, the database consists of records of different types of IoT

devices and their sensors that measure and gather the raw information from the

environment they are deployed in. From these raw data points generated periodi-

cally, we build and store data models over a range of time period.
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2.3 Problem Statement

As IoT devices are increasingly becoming a part of our daily lives, interaction be-

tween these devices is producing more and more data. In wireless sensor net-

works, sensors are generating data periodically and hence the data is growing

rapidly. Generating the data is easy but the issue is to manage and store this large

volume of data for desired application.

While databases are becoming more efficient and data storage capability is ex-

panding, there will come a stage when data overwhelms data storage. With in-

formation communication technologies producing data at an accelerated rate, it is

inevitable that the storage space will not be enough to store all this data.

Fortunately, data generated by IoT sensors is redundant and hence does not

provide any extra information. Each of the sensor data points are still being stored

because currently, we do not have any system that can model such data and store

the models instead of the raw data. For example, while monitoring the temper-

ature of any environment, the sensors gather temperature readings as raw data

points at regular time interval. The deviation in temperature readings between ad-

jacent time intervals is generally insignificant during large parts of the day and is

only affected by few external factors such as the geographic locations and seasons.

If we are able to avoid storing each of these temperature readings for adjacent time

intervals and develop and store prediction models to minimize the redundancy, we

could store less amount of data ensuring minimal loss of information and hence

reducing the size of the database.
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Moreover, cost of sending and receiving data from one sensor node to another

is much higher than that of gathering data and performing local and in-network

data processing. In other words, the cost of communication is greater than the cost

of computation. In addition, transmitting and receiving a data packet consumes a

considerable amount of energy. Hence, the consumption of network energy should

be minimized in order to fully utilize the sensor network. This can be achieved by

minimizing the data flow in the network.

With large numbers of sensor nodes comes the problem of scalability, need of

large memory and data redundancy. The solution to these issues is generating

data models from the raw data points over certain time intervals and designing a

model-based database system that stores these models with the respective time pe-

riods, hence providing with an efficient way to address these temporal constraints.



Chapter 3

Related Work

3.1 Sensor Data Models

In the aspect of avoiding redundant data generated from the sensors, data models

in [12] are created using polynomials while the sensor node is providing new sam-

ples. When adding points to the polynomial, the algorithm tries to add as many

points to the polynomial by adding degrees to the polynomial to fit the data. If

the data does not fit, the polynomial keeps adding degrees until the maximum

number of degrees is added. If the value point does not fit within the maximum

number of polynomial degrees, the polynomial is stored with the timestamp, then,

a new polynomial of degree zero is created to fit the next sample, and the process

is restarted. This algorithm is an online segment construction based on live ma-

chine learning. Versions for model elements are created if an attribute in the IoT

object has changed, but this research has not reused their models for future time

intervals. Rather, they create new polynomials for each time interval unlike this

11
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work that tries to predict future trends to reduce sensor traffic.

In [16] a Time Series database service has been created to support pattern searches

in the IoT domain. For query processing, TSaaS (Time Series as a Service) partitions

the pattern into segments, and searches for a similar pattern using a systematic ap-

proach.

The authors in [7] compare representative techniques like piecewise constant

approximation, adaptive piecewise constant approximation, slide filters, from cat-

egories based on constant, linear, non-linear and correlation models according to

data reduction and prediction accuracy. The study concludes that constant and lin-

ear models outperform the others in the presence of small variations in the data.

As compared to these results, the data models created in this work are based on

linear and higher degree polynomials.

The authors in [19] presents an approach that sends and receives information

using signatures instead of raw sensor data. The signature is a string representa-

tion implying that something is present or absent at a particular sensor. The prob-

lem of data communication is overcome because only binary data is transmitted;

but how the data patterns are defined is not specific enough. In our application,

the sensor readings are understood and analyzed with the proposed model-based

method that may learn patterns out of it and further forecast the real time data.
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3.2 Database Architecture

Thantriwatte et al. [13] developed a query processing system in WSN based on

NoSQL database, but the work done is quite elementary. Instead of targeting the

IoTs, it mainly talks about WSN, and the issue of how to store such huge amount

of IoT data along with solution to adequately organize and manage this data was

not addressed in the article. Also, query optimization performed is not as good as

in the relational databases.

Jain et al. [8] presents a method that reduces the amount of data communi-

cated in distributed data streams environment by using Kalman Filters. Also, to

maintain the location of moving objects in the database is another concern. When

a moving object changes its location, updating the server about its new location

is again expensive. According to [15], the trajectory of the moving object can be

kept track of, and only when the object changes its trajectory, or does not oper-

ate according to the trajectory, then the update is sent to the server. In this work,

we propose an approach that handles temporal correlations in the data. This can

prove to be very effective in sensor networks.



Chapter 4

Sensor Data Models

Sensor data models provide an efficient way to represent data and minimize stor-

age space with the same data utility. The actual data reading gathered by sensors

from their environment are raw data points. Instead of storing these raw data

points in the database, we can efficiently utilize the storage space by representing

groups of similar raw data points in the form of mathematical equations. There-

fore, we adequately manage the storage space by storing these mathematical equa-

tions (data models) in the database. Hence, in order to retrieve a raw data reading,

instead of fetching a raw data point, we retrieve a data model that corresponds to

this data point. We calculate the data value using the data model retrieved.

4.1 Generating Data Models

The data models are generated from a set of raw data points, and they are stored

in the database against a time interval - this data model is considered an effec-

14
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tive representation of raw data points that were observed at timestamps which lie

within this time interval. The mathematical models, M1, M2, M3, ..., MN , are poly-

nomial equations that are stored in the database in the form of numeric coefficients

of the equation with the corresponding time periods T1, T2, T3, ..., TN. Let us denote

these coefficients as an, an−1, an−2, ..., a0 where n is the degree of the polynomial

equation. We find the coefficients of a polynomial that fits the raw data points by

minimizing the sum of the squares of the deviations of these data points from the

value provided by the model. The models will be stored in the form of their poly-

nomial coefficients as they will be mathematical functions of the form as shown in

Equation 4.1, where the data value Y at an input time period x is calculated by pro-

viding the coefficients an, an−1, an−2, ..., a0 of the mathematical polynomial model

of degree n.

Y = a0 + a1x + a2x2 + ... + anxn (4.1)

Generation of Sensor Data Model (Algorithm 1) describes an algorithm that

develops data models from a set of raw sensor data, sensorData[] with a given

error threshold, γ. The raw sensor data is the data set generated by the sensors

that monitor the environment in which they are installed. The error threshold is

the maximum amount of deviation between the raw data point and the acceptable

predicted value generated by the algorithm. Each element in sensor data includes

the actual data reading, actualValue with the corresponding timestamp, timestamp

when the data was observed. The predicted value, predictedValue calculated from
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Algorithm 1 Generation of Sensor Data Model

1: procedure GENERATIONOFSENSORDATAMODEL(maximumDegree, γ)
2: sensorData[] < timestamp, actualValue > � Raw sensor data
3: degree = 1;
4: low = 0;
5: high = sensorData.size(); � Number of records in sensorData[]
6: for all records in sensorData[] do � Generate acceptable models
7: executePolyfit(low, high, degree)
8: loop
9: if (degree > maximumDegree) then

10: � Do binary division on all records by calculating the middle index
11: mid = low + (high-low)/2;
12: executePolyfit(low, mid, degree);
13: executePolyfit(mid, high, degree);
14: end if � Get coefficients of the polynomial
15: p = getPolyfit(low, high, degree);
16: for sensorData[low] to sensorData[high] do
17: loop � Calculate predicted value
18: predictedValue = polyval(p, timestamp);
19: absoluteError = abs(predictedValue - actualValue);
20: if (absoluteError > γ) then � Data model is not acceptable
21: executePolyfit(low, high, degree++);
22: return;
23: end if
24: end loop
25: end for
26: store data model p in database
27: end loop
28: end for
29: end procedure
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the algorithm is accepted only if its value lies within the error threshold. We gener-

ate the acceptable data models in a function named executePoly f it(low, high, degree)

which is carried out on sensorData[] starting from its record which is the one at its

lowest index, low to the one at its highest index, high with the degree of the poly-

nomial, degree. Our algorithm is initialized with the value of low equal to 0 and

high equal to the size or number of records in sensorData[] calculated by the func-

tion size(). The function getPoly f it(low, high, degree) generates the coefficients, p

of a polynomial that fits the raw data points by minimizing the sum of the squares

of the deviations of these data points from the value provided by the polynomial.

Considering the whole sensor data at once, firstly, we try to obtain the polyno-

mials with degree one, i.e., we find coefficients a0 and a1 for linear polynomials

in such a way that the absolute difference, absoluteError between actualValue and

predictedValue is always less than the given error threshold. The predicted value is

calculated by the function polyval(p, timestamp) that returns the value of a polyno-

mial of degree degree evaluated at timestamp taking the input argument p as the co-

efficients of the polynomial returned by the function getPoly f it(low, high, degree).

If a linear model is found such that the values predicted by it has an error less

than the given error threshold, it implies that the linear model fits the sensor data,

and hence we can accept this linear data model with the corresponding time pe-

riod of the sensor data. As a result, when the user enters a query, we can retrieve

the coefficients of this model and calculate the predicted value at any given input

timestamp as described further in Chapter 5 and Chapter 6.

However, if the sensor data does not fit with this linear model, then we find the
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coefficients for a quadratic data model, i.e., polynomial with degree two. If this two

degree polynomial falls under the error threshold, then it means that all the sensor

data can be represented with this polynomial and hence we have found the accept-

able data model. This process of finding the coefficients for the whole sensor data

set continues until we reach the maximum degree of polynomial, maximumDegree

given as an input parameter for the algorithm.

Considering the sensor data set as a whole, even after reaching the maximum

degree, if there is no polynomial found that can be accepted with the given error

threshold, then a binary division needs to be conducted on the whole data set.

The binary partition divides the data set into two equal halves by calculating the

middle index, mid of sensorData[] and then we find the coefficients for the data set

in these two halves. To get the data model, we repeat the process with first finding

the linear polynomial that fits with the given error threshold. If it does not fall

under the error threshold, then we find the polynomials with higher degrees. This

process of finding sensor data models is carried out until all the sensor data can be

represented by acceptable polynomial equations. The models guarantee that every

value they output never has an error greater than the given error threshold.



Chapter 5

Sensor Database

Nowadays, sensors are everywhere and the data they are producing is growing

at a phenomenal rate. The sensors gather information of various phenomenon in

their environment on a regular basis. Thus and so, a large number of phenomenon

readings are generated every day. And therefore, it is becoming difficult to store,

manage and analyze this large volume of data. As a solution to this, we have

developed an algorithm for these phenomenon readings that converts raw data

points into data models, as discussed in Chapter 4, and in addition, storing this

large number of models still requires huge amount of space. To find a better way to

store and retrieve the data models and hence the phenomenon readings efficiently

supporting the environmental information, we further discuss the structure of our

sensor database.
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Figure 5.1: IoT hierarchical structure

5.1 IoT Hierarchical Structure

We are moving from a time where there are millions of devices connected to a

network today to a time where there will be billions of devices connected to this

network. We need to create a hierarchical structure, as shown in Figure 5.1, that

makes query processing easier by creating a logical flow between IoT objects.

5.1.1 IoT Objects

An IoT database is organized by different data coming from IoT devices or ob-

jects. Therefore, the user needs to specify what IoT object they want to search

for. The IoT objects consists different kinds of information sensing devices such as

speedometers, rain gauges, microphones, and many more that have variety of sen-

sors like automotive sensors, environmental sensors, acoustic and sound sensors,
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etc [1]. These objects can be connected to the Internet and hence data or informa-

tion collection, transmission and processing between these devices can be achieved

in an intelligent and effective manner [18].

5.1.2 Sensors in IoT Devices

The sensors hierarchy contains all the sensors that are embedded in the IoT de-

vices. For example, a car have different types of sensors such as speedometer,

manifold absolute pressure (MAP) sensor, blind spot monitor and many more that

measures speed, pressure, blind spot detection, etc. These sensors produce data

which can be represented by mathematical models that predicts the data.

5.1.3 Models for Sensor Readings

The models hierarchy contains one of the most important pieces in the database

which is the data model. The data models will be in the form of polynomial equa-

tions whose coefficients will be represented as the parameters of the data model.

The models in the hierarchy will be organized by timestamps in a sorted fashion.

This is explained further in section 5.3.

5.2 Database Architecture

Our model-based IoT database is a database management system (DBMS) built

for IoT objects and their various sensors. It presents a set of relational database

operations that helps in creation of the database and solves complex data queries.
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Figure 5.2: IoT database architecture

Figure 5.2 proposes an underlying architecture of an IoT database. When a user

enters any query, it is parsed by the query processor. The query service module

builds the query according to the query parameters and sends the query request

to the database service module. The database service module holds the database

logic and sends the query statements to the query engine. The index established in

the index module will be utilized to retrieve the requested data. After the required

data is obtained from the database, the query engine sends the records to the result

transformer that presents the query results in a format easy to use by the user.
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5.3 Terminology

For IoT database, we use the standard terminology from the concept of relational

database [3]. A relational database is a collection of information related to a partic-

ular topic or purpose. It specifies the data types, structures, and constraints of the

data to be stored. A database management system is a collection of programs that

enables users to create and maintain a database. A relation or a table is a format of

rows and columns that displays related information. An attribute is a specific item

of information that contains a homogeneous set of values throughout the table.

Attributes appear as columns in a table. A record is an individual listing of related

information that contains a number of related attributes stored in a table. A record

appear as rows in a table. Each attribute has a domain that depicts the data type

of the attributes. To avoid duplication of information, a relation has a primary key

that uniquely identify each record in the relation. To retrieve a particular collection

of information in a database, a query can be send to the database.

Figure 5.3 shows an example of a relation named as objectModels that contains

four records of sample information collected by some sensors that monitor a partic-

ular environment. The column names such as objectID, location, timestamp, and

dataModel are the attributes of this relation where timestamp is the primary key

stating that each record will be uniquely identified by timestamp. In other words,

no two records can have the same timestamp. Hence, by knowing the timestamp

of a particular object, we can retrieve its objectID, location, and data model. More-

over, the definition of a sample record is shown in Equation 5.1, where objectID ∈
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Figure 5.3: Relation objectModels containing sample information

Integer is the ID of an IoT object; location ∈ String is the location where the object

was installed while monitoring; timestamp ∈ Timestamp is the date and time of the

format yyyy − mm − dd hh : MM : ss where yyyy, mm, dd, hh, MM and ss rep-

resent the year, month, date, hour, minute and second respectively when the data

was observed; dataModel ∈ String represents the coefficients of the polynomial

equation of the data model as a comma separated value.

SampleRecord = (objectID, location, timestamp, dataModel) (5.1)

5.4 Query IoT Model Database

Queries play a major role in the abstraction of data from a database. A relation

is defined by using a set of operations. It consists of a set of attributes, their data
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types and a set of constraints on the records to be inserted in the relation. The

CREATE TABLE operation specifies the layout of a relation. Once a relation is

defined, the data records are inserted in it. While inserting, the database verifies

that the attribute values satisfies the domain or the data type of the corresponding

attribute. The SELECT operation is used to retrieve a set of records from a relation.

With the REMOVE operation, records can be deleted in a relation.

5.4.1 Query Syntaxes

We need to define a set of query syntaxes for our IoT database.

1. getByLocation: It returns all the SampleRecord from the database where the

value of specified location is equal to the value of the attribute location in the

objectModels relation as discussed further in Chapter 6.

2. getElement: It returns all the SampleRecord based on a key. This key can

be any attribute such as timestamp, location or dataModel depending on the

requested data.

3. getByTimeRange: It returns all the SampleRecords from the database where

the requested time range lie between the values of the attribute timestamp in

the objectModels relation as discussed further in Chapter 6.

5.4.2 Query Examples

Let us consider a few query examples that can be carried out on the IoT database

example as discussed in Figure 5.3.
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Example 1: query the temperature of the Robocanes room at time 01:25:32 on 2016-

01-01.

In order to obtain the temperature value, firstly, we will retrieve the data model

from the database corresponding to the input timestamp. The database contains

the data models in the form of coefficients of a polynomial equation in the relation

objectModels. The attribute values in the relation is denoted by value.

for each SampleRecord in objectModels

getByLocation(SampleRecord, location).value = "Robocanes"

AND getElement(((SampleRecord, timestamp).value >= "2016-01-01 01:25:32")

limit 1)

return getElement(SampleRecord, dataModel).value

Suppose, the data model retrieved corresponding to the input timestamp 2016-01-

01 01:25:32 is (2.09E-5,-29567823.29). Then, the polynomial equation formed will

be

Y = (2.09E − 5 ∗ x)− 29567823.29 (5.2)

where x is the input timestamp.

Next, we convert the timestamp into epoch time that gives us the number

of seconds that have elapsed since 00:00:00 Coordinated Universal Time (UTC),
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Thursday, 1 January 1970 and input this value as x in the mathematical equation.

This will give us the value of the temperature on 2016-01-01 at 01:25:32.

Example 2: query the location of those rooms where temperature is greater than 22.34

degree Celsius between January 2, 2016 to January 4, 2016.

Firstly, we retrieve all the records from the database from January 2, 2016 00:00:00

to January 4, 2016 23:59:00. Then we input the corresponding timestamps and

the model coefficients resulting in the predicted temperature values for this time

range. Then within these records, we will select only those records where the data

models predict the value of the temperature greater than 22.34 and return the re-

spective locations.

for each SampleRecord in objectsModels

getByTimeRange(SampleRecord, "2016-01-02 00:00:00","2016-01-04 23:59:00")

AND getElement((SampleRecord, temperature).value > 22.34)

return(getElement(SampleRecord, location).value)

As a result, we will get all the locations where temperature is greater than 22.34

degree Celsius within the time range January 2, 2016 to January 4, 2016.



Chapter 6

Experimental Results

This chapter provides experimental results that we obtained from the implemen-

tation of our proposed Generation of Sensor Data Model algorithm that develops

data models from a set of raw data points. We also developed a relational database

to store these data models and perform user query execution.

6.1 Experimental Settings

For this experiment, we have installed a TM4C1294 Connected LaunchPad Eval-

uation Kit which is a low-cost development platform ARM Cortex-M4F-based

micro-controllers. We have also installed a Texas Instruments Sensor Hub Boost-

erPack (BOOSTXL-SENSHUB) which is an add-on board that provides a platform

for evaluating the use of ARM Cortex-M4F-based TM4C devices in sensor fusion

applications. This booster pack features seven different kinds of sensors such

as MPU-9150 motion tracking sensor, BMP180 pressure sensor, SHT21 humidity

28
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and ambient temperature sensor, ISL29023 ambient and infrared light sensor, and

TMP006 infrared temperature sensor. We have installed these around our offices

at the University of Miami. We have used Java and Matlab 9.0 (R2015b) as our

programming platform to use the polynomial fitting tools and build the algorithm

presented in Chapter 4.

6.2 IoT Model Database

In our relational database, we construct a relation known as objects, as shown in

Table 6.1, that contains all the information about an IoT object such as its ID, name

and type. This relation is created using a set of queries, as shown in Figure 6.1,

where objects is the name of the relation in a database. It contains three attributes

- objectID, objectName, and objectType where objectID is the primary key of this

table. These attributes represent the identification numbers, name and type of var-

ious IoT objects.

Table 6.1: Relation objects

Attribute Name Data Type
objectID int
objectName varchar (45)
objectType varchar (45)

We construct another relation known as objectModels, as shown in Table 6.2. It

includes all the data models of sensor data signal that the corresponding objectID

has along with the timestamp and location at which data models are obtained. A
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Figure 6.1: Set of queries for objects relation

sensor generates one single reading at a time, hence only one relation is created for

every sensor. If multiple objects are there then multiple relations will be created

to store corresponding data models. The relation objectModels is created using a

set of queries, as shown in Figure 6.2, where objectModels is the name of a relation

in the database named mydb. The attributes of this relation are objectID, location,

timestamp, and dataModel where timestamp is the primary key and objectID con-

nects this relation to the other relation objects by representing it as a foreign key.

Table 6.2: Relation objectModels

Attribute Name Data Type

objectID int
location varchar(50)
timestamp timestamp
dataModel varchar(50)

We populate our database with the data models with the corresponding times-

tamps and locations with an error threshold of 0.10 and maximum degree equal to

2. Currently, our database contains 12 days’ worth of data starting from January
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Figure 6.2: Set of queries for objectModels relation

1, 2016 00:00:00 to January 12, 2016 23:58:00. This consists of 3448 original data

points generated by the SHT21 ambient temperature sensor. The total number of

data models produced are 549 which are then stored in the objectModels table.

6.3 Results

To generate the models, we used past data from a SHT21 temperature sensor that

returns the temperature in degrees Celsius. Then, we applied the Generation of

Sensor Data Model algorithm to produce our data models. The algorithm was

applied to 12 days’ worth of data to capture all the behaviors that the data exhibits

throughout the day.
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Figure 6.3: Graph showing polynomial models generated from sensor data ob-
tained on January 11, 2016 with error threshold set to 0.10

In Figure 6.3, 78 polynomial models were generated for January 11, 2016 00:00:00

to January 11, 2016 23:59:00. These models were generated using error threshold

equal to 0.10 degrees Celsius and maximum polynomial degree equal to 2. The

maximum polynomial degree is set to 2 and does not need to be high as all the

data points are represented by maximum 3 coefficients reducing and saving the

storage space. This sample data set has 288 data points generated daily every five

minutes. Therefore, our algorithm produced only 78 models that can predict the

same data with a 0.10 degrees Celsius error threshold. The Figure 6.4 depicts a part

of the database where the data models are stored in the form of coefficients of the

polynomial equations produced.

Table 6.3 shows the number of data models retrieved with error threshold equal

to 0.10 degrees Celsius but maximum degree for the polynomials to be obtained

is varied from 1 to 5. Thus, we produced 121 linear models with the constraint of



33

Figure 6.4: Models generated from raw data gathered by sensor

maximum polynomial degree as 1. Moreover, when we increase the value of max-

imum degree of the polynomial, the number of data models obtained are reduced.

Table 6.3: Number of models generated with error threshold set to 0.10

Highest order of polynomial Number of models
1 121
2 78
3 78
4 77
5 77

Similarly, Table 6.4 shows the number of data models retrieved with error thresh-

old set equal to 0.25. Hence, we get 20 models considering only the linear polyno-

mials allowed. This number decreases as we raise the maximum degree of poly-

nomials.

Example User Query: Show the temperature of the room named ’Robocanes’ at time

03:59:23 on January 11, 2016.

First, we run the following query on the database to retrieve the data model of
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Table 6.4: Number of models generated with error threshold set to 0.25

Highest order of polynomial Number of models

1 20
2 14
3 13
4 13
5 13

temperature sensor with this corresponding timestamp.

Query: SELECT dataModel FROM objectModels where location = ’Robocanes’ and

timestamp >= ’2016-01-11 03:59:23’ limit 1;

The corresponding data model retrieved is a linear model with coefficients (a1, a0)

= (−1.4333333346432084E − 4, 208214.21779025975). Hence, the required temper-

ature value is equal to (a1 * epoch time of 2016-01-11 03:59:23) + a0 which gives the

resulting temperature value as 22.15 degrees.

6.4 Discussion

As sensors produce large volume of raw data everyday, these data points are trans-

formed into polynomial data models with respect to the timestamps at which the

raw data was collected, and then instead of storing each and every data point,

these polynomial models are stored in the database. Referring to Tables 6.3 and 6.4,

we can reduce the number of data models to be produced by allowing polynomials

of higher order. As a result, the amount of storage space the sensor information oc-

cupies is reduced from 3448 original data points to 549 data models without losing
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any information. Considering a days’ worth of data with 288 raw data points and

generating data models out of it with maximum degree of polynomials is equal to

2, the number of models obtained are 14. This implies that each model will have

maximum 3 coefficients that will represent the data points resulting in 3 * 14 = 42

numbers to store instead of 288 numbers. Therefore, instead of storing each raw

data point, we build data models out of it. Hence, we have successfully reduced

the data points to a compressed set of data models.



Chapter 7

Conclusion

With the increasing trend of information communication technologies, data is be-

ing generated at very high rates. Data is becoming very hard to manage and an effi-

cient way to organize data in databases is an important issue. IoT model databases

is becoming an important notion to alleviate data generation by decreasing the

space that data consumes while also maintaining the same information.

Data models also provide data with a negligible error that can fit many raw

data points from sensors. These models are created by fitting a function to the data

points. In this research, we used polynomials with different order, for example,

first order, second order, etc to fit the data points. Our algorithm, Generation of

Sensor Data Model, finds a polynomial curve whose parameters are the coefficients

of the polynomial equations. These parameters now cover many raw data points

within a time range. In other words, with data models we can represent enormous

amount of data points without having to overfill databases or sacrifice data utility.

Also, an IoT storage management architecture is proposed to meet the needs of
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massive IoT data. It not only supports how to reasonably and effectively store big

IoT data but is also concerned about how to respond to the queries satisfying the

temporal and spatial correlation constraints.

As future work, more robust algorithms can be created to segment data into

more accurate models using a set of mathematical functions other than the polyno-

mials of higher degrees such as logarithmic functions. Finding the most probable

model efficiently will also help the system save energy.
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