
University of Miami
Scholarly Repository

Open Access Theses Electronic Theses and Dissertations

2014-04-23

Automated Theorem Proving using the TPTP
Process Instruction Language
Muhammad Nassar
University of Miami, muhammad.m.mansour@gmail.com

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_theses

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Theses by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Nassar, Muhammad, "Automated Theorem Proving using the TPTP Process Instruction Language" (2014). Open Access Theses. 476.
https://scholarlyrepository.miami.edu/oa_theses/476

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F476&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F476&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F476&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F476&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses/476?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F476&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

UNIVERSITY OF MIAMI

AUTOMATED THEOREM PROVING USING THE TPTP PROCESS
INSTRUCTION LANGUAGE

By

Muhammad Nassar

A THESIS

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Master of Science

Coral Gables, Florida

May 2014

c©2014
Muhammad Nassar
All Rights Reserved

UNIVERSITY OF MIAMI

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science

AUTOMATED THEOREM PROVING USING THE TPTP PROCESS
INSTRUCTION LANGUAGE

Muhammad Nassar

Approved:

————————— —————————
Geoff Sutcliffe, Ph.D. Victor Milenkovic, Ph.D.
Associate Professor of Computer Science Professor of Computer Science

————————— —————————
Burton Rosenberg, Ph.D. M. Brian Blake, Ph.D.
Associate Professor of Computer Science Dean of the Graduate School

NASSAR, MUHAMMAD (M.S., Computer Science)
Automated Theorem Proving using the TPTP (May 2014)
Process Instruction Language

Abstract of a thesis at the University of Miami.

Thesis supervised by Professor Geoff Sutcliffe.
No. of pages in text. (53)

The TPTP (Thousands of Problems for Theorem Provers) World is a well estab-

lished infrastructure for Automated Theorem Proving (ATP). In the context of the

TPTP World, a command language was needed to make possible the easy manipula-

tion of logical formulae and provide better control over the use of ATP systems. The

TPTP Process Instruction (TPI) language provides such capabilities. It is used to in-

put, output and organize logical formulae, and control the execution of ATP systems.

This thesis presents the work done for building and testing a shell interpreter for the

TPI language. The thesis is divided into five parts. The first part provides a review of

ATP, ATP systems, and the TPTP World. The second part provides an overview of

the related work and presents the TPI language. The third part introduces the ATP

process and discusses its benefits. The fourth part presents the shell interpreter that

has been developed for the TPI language, describes its implementation and provides

examples of how it can be used in theorem proving. The last part discusses generic

control of ATP systems and demonstrates how such control is achieved through an

extension to the TPI language.

Acknowledgements

I would like to sincerely thank my advisor Dr. Geoff Sutcliffe for his help, support

and valuable guidance throughout my work on the thesis. I would also like to thank

Dr. Burton Rosenberg and Dr. Victor Milenkovic for being part of my committee.

I also thank the Department of Computer Science for providing me with the great

opportunity of being here and being able to finish my studies.

iii

Contents

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 What is Automated Theorem Proving? 1

1.2 ATP Systems . 2

1.3 The TPTP World and the TPI Language 3

2 Previous Work 5

2.1 ATP Execution and Control . 5

2.2 Command Languages . 6

2.3 The TPI Language . 8

2.4 The TPI Language Commands . 10

2.4.1 Input and Output . 10

2.4.2 Logical Formula Grouping . 11

2.4.3 Logical Formula Manipulation 11

2.4.4 Environment Variable Manipulation 12

iv

2.4.5 Execution . 13

2.4.6 Utility Commands . 14

2.4.7 An Example . 15

3 The ATP Process 17

3.1 Overview . 17

3.2 The ATP Process Details . 19

3.3 Benefits . 21

4 The TPI Interpreter 22

4.1 The TPI Language Interpreter . 22

4.2 TPI Applications . 25

4.2.1 Serial Implementation of the ATP Process 26

4.2.2 Parallelization of the ATP Process 31

4.2.3 Shortest Time to Solve an ATP Problem 37

5 Generic Control 43

5.1 Introduction . 43

5.2 Implementation . 45

5.2.1 Example 1 . 46

5.2.2 Example 2 . 46

5.2.3 Further Improvements . 47

5.3 Results . 48

6 Conclusion 50

v

List of Figures

3.1 The ATP Process . 18

4.1 Strategy Scheduling Example . 38

vi

List of Tables

5.1 E generic control . 48

5.2 E generic control - Continued . 48

5.3 iProver generic control . 49

vii

Chapter 1

Introduction

1.1 What is Automated Theorem Proving?

Automated Theorem Proving (ATP) is a form of automated reasoning that is con-

cerned with proving that a statement, called the conjecture, is a logical consequence

of a group of statements, called the axioms [1, 2, 3]. In the context of ATP, a problem

is a group of axioms with a conjecture, expressed in some logical form and stored in

a file. A variety of logics, e.g. first order logic, can be used to write the logical for-

mulae. Using logic to express formulae allows for a precise and clear description of a

problem, and doesn’t allow for ambiguity, as is often the case with natural languages

like English. ATP systems (discussed in Section 1.2) are computer programs capable

of solving ATP problems, i.e., proving that the conjecture is a logical consequence -

or a Theorem - of the axioms.

ATP is utilized in many disciplines, such as hardware verification, mathematics,

and software verification [4]. ATP is used heavily in industry for the purpose of

1

2

hardware verification. Microprocessor manufacturers have been using ATP to verify

the correctness of the floating point arithmetic on their chips. For example, the

ACL2 ATP system [5] has been used to verify the correctness of the floating point

division for AMD’s AMD5K86 microprocessor. One of the big successes in the field of

mathematics was the ability of the EQP ATP system to solve the Robbins problem

[6]. The Robbins problem states that a certain group of axioms is the basis of Boolean

algebra, but nobody was able to provide a formal proof for the problem until EQP

succeeded in producing a proof in 1996. One of the successful efforts in the field of

software verification is The KeY Project [7]. It is a software development tool that

integrates design, implementation, specification and verification of object-oriented

software. At its core, the tool uses an innovative ATP system with an easy to use

graphical user interface.

1.2 ATP Systems

An ATP system is a computer program capable of solving ATP problems. The input

to an ATP system is an ATP problem, and the system attempts to find a proof of

the conjecture from the axioms. If a proof is found, the system might provide a

detailed output explaining how the conjecture was proved from the axioms. If the

system cannot prove the conjecture, the user can try to prove an intermediate result,

or go over the problem file to make sure the logical formulae correctly describe the

problem. An ATP system is said to be complete for a given logic if it can solve any

problem written in that logic, if a solution to that problem does exist. One of the

3

most powerful ATP systems that is complete for first order logic is E [8]. iProver [9]

and Vampire [10] are two other examples of powerful ATP systems that are complete

for first order logic. Example usages of E and iProver are presented in later chapters.

1.3 The TPTP World and the TPI Language

The TPTP (Thousands of Problems for Theorem Provers) World is a well-established

infrastructure for Automated Theorem Proving (ATP) [11]. It hosts a comprehensive

library of ATP test problems, supplies references and information about each problem,

and provides utilities that facilitate problem manipulation and ATP systems’ usage

(see http://www.tptp.org).

The TPTP language provides a way of writing logical formulae. A TPTP language

formula has the form:

language(name, role, formula, [source, [useful-info]]) [12]

An example first order formula is:

fof(pel55 3,axiom,

(! [X] :

(lives(X)

=> (X = agatha

| X = butler

| X = charles))),

file(’PUZ001+1.ax’),

description(’Who Killed Aunt Agatha’)).

The TPTP language also provides a way for the output of different ATP systems to be

standard. It does so through the use of the SZS ontologies [13]. The ontologies provide

values that an ATP system can use to precisely report the status of its execution, e.g.

http://www.tptp.org

4

SZS status Theorem, SZS status Unsatisfiable, and so on. The phrase "SZS

status" is used in later sections to refer to the output of an ATP system.

In the context of the TPTP World, a command language was needed to make

possible the easy manipulation of logical formulae and provide better control over the

use of ATP systems. The TPTP Process Instruction (TPI) language provides such

capabilities [12]. It is used to input, output, and organize logical formulae, and to

control the execution of ATP systems. This thesis presents the work done for building

and testing a shell interpreter for the TPI language, demonstrates the use of the TPI

language and the interpreter in theorem proving, discusses generic control of ATP

systems, and shows how such control is achieved through an extension to the TPI

language. Chapter 2 provides an overview of the related work and presents the TPI

language as described in [12]. Chapter 3 introduces the ATP process and discusses

its benefits. Chapter 4 presents the shell interpreter that has been developed for

the TPI language, describes its implementation and provides examples of how the

interpreter can be used in theorem proving. Chapter 5 discusses generic control of

ATP systems and describes how the TPI language is extended to accommodate such

control. Chapter 6 provides a conclusion of the thesis and discusses future work.

Chapter 2

Previous Work

2.1 ATP Execution and Control

There exist several ways in which an ATP system’s execution can be controlled. Some

aspects of an ATP system’s execution, e.g., the type of reasoning used, the maximum

allowed execution time, the output format and structure, are controllable. A direct

approach to controlling an ATP system is to provide command line flags that users

can specify, so that the system behaves in a way that reflects the values of the flags

provided. Many ATP systems provide command line flags to control their execution.

E, iProver and Vampire (mentioned in Chapter 1) provide such flags. The following

example demonstrates a call to E with a command line flag that sets an execution

time limit of 300 seconds:

Systems/E---1.8/eprover --cpu-limit=300 Problem1.p

Another approach to controlling an ATP system’s execution is for the system to

support specific commands that control its processing. Such commands are provided

5

6

in the problem file as part of the input to the ATP system. They are different from

the command line flags mentioned earlier, in the sense that the latter are specified

while executing the system from the command line. One well known ATP system that

utilizes this approach is Otter [14]. Otter’s input language is used to write logical

formulae, and provides commands to set and clear flags that control the system’s

behavior.

A third approach, which is used by the TPI language, is to provide a command

language designed to be used in conjunction with an existing language for writing

logical formulae. The Satisfiability Modulo Theories (SMT) command language [15]

also utilizes this approach. Command languages are covered in more detail in Section

2.2.

2.2 Command Languages

Command languages are simple yet powerful tools that are used for many computing

purposes today. They provide the ability to programmatically execute a series of

commands in a controlled fashion, rather than requiring the user to run each com-

mand individually. One of most powerful and widely used command languages is the

Unix shell. A shell is used in Unix-like operating systems, e.g., the various Linux

distributions, to provide an interface for interacting with the operating system. A

shell script is a script that contains commands and programming structures to be

executed by the shell. A shell script can be used for a variety of purposes like ma-

nipulating files and folders, running programs, and writing text to the screen or files.

7

The following example is a simple tcsh shell script that initializes a counter, prints

its value, increments it, and loops till a predefined value is reached.

1 echo "Simple Counter Example"

2 set Counter = 1

3 while ($Counter < 11)

4 echo "Current value of the counter is: $Counter"

5 @ Counter = $Counter + 1

6 if("$Counter" == 6) then

7 set Counter = 7

8 endif

9 endif

Line 1 outputs the specified text to the screen. Line 2 initializes and a counter variable

to 1. A loop is then started that keeps iterating as long as the counter value is less

than 11. Line 4 outputs the value of the counter to the screen, after which line 5

increments the counter value by 1. Lines 6 through 8 skip the counter value of 6, and

thus preventing the value of 6 from being printed on the screen.

In the context of ATP, one of the most recent and widely used command languages

for interacting with ATP systems is the SMT command language. It interacts with

SMT solvers using a textual interface that can be used for adding and deleting formu-

lae, checking their satisfiability, and inspecting their models or their unsatisfiability

proofs if no models exist [15]. The following simple example declares a Boolean value

q and asks whether q and its inverse are satisfiable [16]:

> (set-logic QF UF)

success

> (declare-fun q () Bool)

success

> (assert (and q (not q)))

success

> (check-sat)

unsat

8

> (exit)

success

Interactive Theorem Proving (ITP) systems provide rich, system-specific command

languages that help in the proof building process. Matita [17] and Isabelle [18] are two

examples of ITP systems. The TPI language introduced in Section 1.3 - and discussed

in detail in Section 2.3 - provides a generic way of manipulating logical formulae and

executing ATP systems. It is not specific to any ATP system, and can be used to

control and co-ordinate the execution of multiple ATP systems simultaneously.

2.3 The TPI Language

In the context of ATP, most input languages, including the TPTP language, are used

to write the logical formulae that are the input to ATP systems. Such languages do

not provide support for manipulating the formulae, interacting with ATP systems, or

handling non-logical data. The TPTP Process Instruction (TPI) language provides

commands to control the input, output and organization of logical formulae, handle

the execution of ATP systems, and manage non-logical data. The TPI language was

first introduced in [12]. In its original form, the TPI language was designed to be

used alongside the current TPTP language logical forms, e.g. FOF and CNF. The

TPI commands maintain the same form as the TPTP language formulae introduced

in Section 1.3. A TPI command is in the form:

tpi(name, command, command details, [source, [useful-info]])

The TPI commands are discussed in detail in Section 2.4. The following simple

9

example demonstrates how the TPI language can be used with the existing TPTP

language formulae:

1 tpi(1,input,’Axioms/SYN001+1.ax’).

2 fof(another,axiom,pp => qq).

3 fof(a,conjecture,qq).

4 tpi(2,execute,’SZS Status’ = ’E---1.8/eprover --auto --cpu-limit=300

--tstp-format %s’)

Line 1 adds formulae from the specified problem file using the TPI input command.

Lines 2 and 3 add an axiom and a conjecture. Line 4 uses the TPI execute command

to run E, to try to prove that the conjecture is a Theorem of the axioms. A full

interpreter for the TPI command language in the form described above was developed

in C, and is available as part of the TPTP World.

This thesis presents the work done creating a TPI language interpreter that can

be run within a Unix shell. This variant utilizes the same TPI language commands

introduced in [12], but adapts the syntax of the language to be able to run the TPI

commands in a Unix shell. The modified formula form is as follows:

tpi command name command details

In the modified form, the previous example becomes:

1 tpi input ’Axioms/SYN001+1.ax’

2 tpi input formula ’fof(another,axiom,pp => qq)’

3 tpi input formula ’fof(a,conjecture,qq)’

4 tpi execute ’SZS Status’ = ’E---1.8/eprover --auto --cpu-limit=300

--tstp-format %s’

A detailed example of the usage of the TPI language commands in this adapted form

is presented in Section 2.4.7. The full details of the interpreter’s implementation are

provided in Section 4.1.

10

2.4 The TPI Language Commands

This section describes the TPI language commands and their use. The commands

are grouped according to the type of function they perform.

2.4.1 Input and Output

input formula, input, output, delete

Command details:

tpi input formula formula

tpi input [group name =] file name

tpi output file name [= group name]

tpi delete formula name

Action:

input formula adds a single logical formula to the pool of available formulae. input

adds all the logical formulae in a named file. input can also add the formulae to a

formula group (formula groups are discussed in Section 2.4.2). output outputs all the

logical formulae, or those in a specified group, to an output file. If stdout is specified

as the output file name, the formulae are output to the screen. delete deletes a

logical formula with a specified name from the available formula pool.

Examples:

tpi input formula ’fof(f1,axiom,(tall(matt)))’

tpi input ’Problems/PUZ001-1.p’

tpi input ’NewGroup’ = ’Problems/PUZ001-1.p’

tpi output ’Output File.txt’

tpi output ’Output File.txt’ = ’NewGroup’

tpi delete ’f1’

11

2.4.2 Logical Formula Grouping

start group, end group, delete group

Command details:

tpi start group group name

tpi end group group name

tpi delete group group name

Action:

Logical formulae can be organized into groups. start group marks the start of a

named group of logical formulae. All logical formulae that are subsequently added

using the input or input formula commands belong to this group, until a corre-

sponding end group command is encountered. Formula groups can be nested. In

this case, the formulae belonging to a nested group would also belong to its outer

group(s). delete group deletes all the logical formulae that belong to a group. All

formulae belong to the general group tpi, and the two groups tpi premises and

tpi conjectures are provided as the default groups for the axioms and conjectures.

Examples:

tpi start group ’Arithmatic Axioms’

tpi end group ’Arithmatic Axioms’

tpi delete group ’Arithmatic Axioms’

2.4.3 Logical Formula Manipulation

activate, deactivate, activate group, deactivate group, set role

Command details:

tpi activate formula name

tpi deactivate formula name

12

tpi activate group group name

tpi deactivate group group name

tpi set role formula name = value

Action:

Logical formulae can either be active or inactive. Active formulae are available for

output and execution, while inactive formulae would still be available in the for-

mula pool, but they cannot be used for output or execution. deactivate causes

a named formula to become inactive. activate causes a named formula to be-

come active. deactivate group deactivates all the formulae in a named group and

activate group activates all the formulae in a named group. set role sets the role

[11] of a named formula to a given value, e.g. axiom, conjecture, lemma.

Examples:

tpi activate ’Formula1’

tpi deactivate ’Formula1’

tpi activate group ’Arithmatic Axioms’

tpi deactivate group ’Arithmatic Axioms’

tpi set role ’Formula1’ = ’conjecture’

2.4.4 Environment Variable Manipulation

setenv, unsetenv, waitenv

Command details:

tpi setenv variable name = variable value

tpi unsetenv variable name

tpi waitenv variables

Action:

These three commands handle environment variables. The variables belong to the

13

interpreter’s process. setenv creates a new environment variable - if it does not exist

- with a given name and value. If the environment variable already exists, its value is

set to the given value. unsetenv deletes an environment variable with a given name.

waitenv waits for an environment variable(s) with a given name(s) to become set.

The TPI language also supports the use of the term $getenv() with any of the TPI

language commands. $getenv() is replaced by the value of a specified environment

variable. For example, $getenv(’SZS Status’) will be replaced by the value of the

environment variable ”SZS Status”.

Examples:

tpi setenv ’STATUS’ = ’Satisfiable’

tpi unsetenv ’STATUS’

tpi waitenv ’STATUS’

tpi waitenv ’STATUS’ | ’RESULT’

2.4.5 Execution

execute, execute async, filter, generate

Command details:

tpi execute [EnvVar =] command

tpi execute async [EnvVar =] command

tpi filter [EnvVar =] command

tpi generate [EnvVar =] command

Action:

These commands control the execution of ATP systems, or any other command

the user would like to execute. execute runs a specified ATP system in the fore-

ground. An environment variable can be provided to capture the SZS status of

14

the completed execution, e.g., Satisfiable or Theorem. The logical formulae to be

processed by the ATP system are selected using the $getgroups() term(s). The

arguments of the $getgroups() term are the names of formula groups. For example,

a $getgroups(’Axioms’) term will cause all the formulae that belong to the group

named Axioms to be selected for execution, and $getgroups(Axioms,Conjecture)

will cause all the formulae that belong to the groups named Axioms and Conjecture

to be selected for execution. execute async runs like execute except that the ATP

system is run in the background. This is useful in cases where the user wants to

do other tasks while waiting for the ATP system(s) to finish its execution. filter

runs like execute, then deletes the logical formulae specified by the $getgroups()

term(s), and inputs the logical formulae output by the ATP system. generate runs

like execute, and inputs the logical formulae output by the ATP system.

Examples:

tpi execute ’eprover --cpu-limit=30 $getgroups(tpi)’

tpi execute async ’SZS ASYNC’ = ’eprover --cpu-limit=30

$getgroups(Axioms,Conjecture)’

tpi filter ’SInESelect---1.8/sine --mode axiom selection $getgroups(tpi)’

tpi generate ’STATUS’ = ’FormulaeGenerator’

2.4.6 Utility Commands

mktemp, write, assert, exit

Command details:

tpi mktemp variable name

tpi write output data

tpi assert term = term | term != term

tpi exit (<integer exit code>)

15

Action:

mktemp creates a new temporary file and stores its name in the specified environment

variable. write outputs data to stdout. assert checks the equality or inequality

of two terms. If the assertion fails, a message is provided and the exit command is

executed. exit deletes any files that were created using mktemp commands, and ter-

minates any remaining processes that were started using execute async commands.

Examples:

tpi mktemp ’New File’

tpi write ’Status is’ & ’$getenv(SZS Status)’

tpi assert ’$getenv(SZS Status)’ = ’Satisfiable’

tpi exit

tpi exit(1)

2.4.7 An Example

The following example demonstrates a simple use of the interpreter:

1 tpi input formula ’fof(ax,axiom,r).’

2 tpi input formula ’fof(ax2,axiom,r => s).’

3 tpi execute ’SZS’ = ’iprover 30 $getgroups(tpi premises)’

4 tpi write ’Status:’ & $getenv(’SZS’)

5 tpi assert ’$getenv(’SZS’)’ = ’Satisfiable’

6 tpi input formula ’fof(conj,conjecture,s).’

7 tpi execute ’SZS’ = eprover -s --cpu-limit=30 --tstp-format $getgroups(tpi)’

8 tpi write ’Proof status:’ & $getenv(’SZS’)

9 tpi exit

Example 1: A simple use of the TPI Interpreter

Commands 1 and 2 add two axioms. The iProver ATP system is then invoked by

command 3 to check whether the axioms are satisfiable or not. Command 4 writes the

16

SZS status returned by iProver. Command 5 asserts that the axioms are Satisfiable

– if they are not an error code is returned. A conjecture is added by command 6, after

which the E ATP system is invoked by command 7 to try to prove that the conjecture

is a Theorem of the axioms. Command 8 writes the proof status and command 9

ends execution.

Chapter 3

The ATP Process

3.1 Overview

Automated Theorem Proving is primarily concerned with finding a proof that a cer-

tain conjecture is a Theorem of the axioms. The easiest way to do that is to pass

the logical formulae representing the axioms and the conjecture directly to a theo-

rem proving ATP system. While this process may be straightforward, it does have

drawbacks that should be taken into account. Some of these drawbacks are:

• The logical formulae representing the axioms and the conjecture might contain

syntax errors.

• The axioms might be Unsatisfiable, i.e., there is no model for the axioms. Es-

tablishing that the axioms are Satisfiable is a crucial step in the process, because

a proof that the conjecture is a Theorem of an Unsatisfiable group of axioms

can be found vacuously – this is typically not the user’s intention.

17

18

• The user is not provided with further information if the status of system’s

execution is unknown, i.e, the given system couldn’t decide whether or not the

conjecture is a Theorem of the axioms.

Figure 3.1: The ATP Process

The ATP process illustrated in Figure 3.1 avoids these drawbacks, provides more form

and structure, and allows for earlier error detection compared to giving axioms and a

conjecture directly to an ATP system. The initial step is to encode the world knowl-

edge of the domain in question as axioms and a conjecture. The ATP process then

19

starts by checking the syntactic correctness of the logical formulae, and then checking

the axioms’ satisfiability. If the syntax is correct and the axioms are Satisfiable, then

an attempt to find a proof can be performed. If a proof cannot be found, then an

attempt to prove that the axioms and the conjecture are Countersatisfiable can be

performed – if successful this provides useful feedback to the user. A more detailed

explanation of the process is provided in Section 3.2.

3.2 The ATP Process Details

The ATP process goes through a series of steps while attempting to find a proof that

the conjecture is a Theorem of the axioms. These steps are as follows:

1. The axioms and conjecture are added to the pool of available formulae (label

A in Figure 3.1). A syntax checker system is executed to check the syntax of

the formulae (label B). If the syntax checker returns a SyntaxError SZS status,

the process is terminated (label C).

2. Once the syntax of the formulae has been verified, the process moves on to

checking the satisfiability of the axioms. A model finding ATP system such as

iProver is executed to check if the axioms are Satisfiable (label D). If the ATP

system shows that the axioms are Satisfiable, the process moves on to trying to

prove that the conjecture is a Theorem of the axioms (label E). Otherwise, if

the system shows that the axioms are Unsatisfiable, the process is terminated

(label F). If the model finder cannot reach a decision about the satisfiability

20

of the axioms, a refutation finding ATP system such as E is executed to try to

prove that the axioms are Unsatisfiable (label G).

3. If the ATP system finds that the axioms are Unsatisfiable, the process is ter-

minated (label H). If it shows that the axioms are Satisfiable, or if a decision

cannot be reached, the process again moves on to trying to prove that the con-

jecture is a Theorem of the axioms (label E). This is an optimistic approach

that assumes satisfiability of the axioms if nothing can be shown explicitly.

4. Once the axioms have been found to be Satisfiable, or if it couldn’t be proved

that they are Unsatisfiable, the process moves on to trying to prove that the

conjecture is a Theorem of the axioms. A theorem proving ATP system such as

E is executed on the logical formulae (label E). If a proof is found, the process

is terminated with a Theorem status (label I). If the ATP system shows that

the axioms and conjecture are CounterSatisfiable (i.e., the conjecture is not a

Theorem of the axioms), the process is terminated with a CSA status (label J).

If a decision cannot be reached, the system moves on to trying to prove that

the axioms and conjecture are CounterSatisfiable (label K).

5. A countermodel finding ATP system such as iProver is executed to try to

prove that the axioms and conjecture are CounterSatisfiable (label K). If the

ATP system shows that the axioms and conjecture are CounterSatisfiable, the

process is terminated with a CSA status (label L). If a decision cannot be

reached, the process is terminated with a Unknown status (label N). Otherwise,

if a proof is found, the process is terminated with a Theorem status (label M).

21

Section 4.2 provides a detailed explanation of how the TPI language, in its modified

command line form discussed in Section 2.3, is used to implement the ATP process.

3.3 Benefits

Section 3.2 sheds the light on the benefits of applying the ATP process. Since there

are multiple steps that the ATP process goes through, any problems with the logical

formulae can be detected and pointed out at each step. The syntactic correctness of

the logical formulae representing of the problem is checked and verified at early steps.

Later steps check for the satisfiability of the problem axioms. Once the syntactic

correctness of the formulae and the satisfiability of the axioms have been established,

further steps in the process prove or disprove that the conjecture is a Theorem of

the axioms. If the process terminates at any step, the user is provided with useful

feedback and can take further actions accordingly.

Chapter 4

The TPI Interpreter

4.1 The TPI Language Interpreter

This section discusses the implementation details of the TPI language interpreter

presented in Section 2.3. The interpreter has been developed in perl, and acts as a

standalone program that executes one TPI command at a time. It can be used with,

e.g., shell scripting, to provide a fully featured language for ATP processing.

The interpreter recognizes commands of the following format:

tpi command name command details

where tpi is the name of the interpreter.

The interpreter stores its logical formulae in TPTP format, in a text file called

DB File. The file provides persistent storage of the logical formulae between execu-

tions of TPI commands. The logical formulae can be organized into groups (as de-

scribed in Section 2.4.2). Groups are implemented in the DB File by adding the com-

ment lines %TPI start group: group name and %TPI end group: group name

22

23

before and after the formulae in the group. All formulae belong to the general group

tpi, i.e., the whole DB File is used whenever a $getgroups(tpi) is encountered.

The interpreter provides the default groups tpi premises and tpi conjectures.

These two groups are created while the input and input formula commands are

being executed. All axiom-like formulae (axioms, definitions, etc.) are added to the

tpi premises group, and all conjectures are added to the tpi conjectures group.

The interpreter checks for each formula’s role and adds it to the appropriate group

accordingly. If the formulae belonging to a certain group are not contiguous while

being input, the interpreter creates multiple entries representing the same group in

the DB File.

The TPI language has commands for setting and accessing “environment vari-

ables” (as described in Section 2.4.4). As the interpreter executes as a sub-process

of the user’s shell, the interpreter’s environment variables are not passed back to the

shell’s environment. To provide persistence of its environment variables, the inter-

preter saves its environment variables in a file called ENV VARS whenever the setenv

command is used, and reloads the values at the start of each execution. If a conflict

is detected, i.e., one of the shell’s environment variables has the same name as a

variable in the ENV VARS file, the shell’s variable overwrites the local one and the new

value is written to the ENV VARS file. This means that the overwritten variable is no

longer persistent across multiple TPI command executions, and the user needs to be

careful when creating shell environment variables to avoid this problem. The user

should also not use environment variable names that are already in use by the shell,

e.g. PATH, when creating environment variables using the TPI setenv command.

24

Example 2 illustrates some capabilities of the TPI language, and shows practical use

of the TPI command form that is accepted by the interpreter.

1 tpi start group axioms

2 tpi input formula ’fof(ax,axiom,r).’

3 tpi input formula ’fof(ax2,axiom,r => s).’

4 tpi end group axioms

5 tpi start group conjecture

6 tpi input formula ’fof(conj,conjecture,s).’

7 tpi end group conjecture

8 tpi deactivate group conjecture

9 tpi execute async ’SZS ASYNC’ = ’iprover 30 $getgroups(axioms)’

10 tpi activate group conjecture

11 tpi execute SZS = ’eprover -s --cpu-limit=30 --tstp-format

$getgroups(axioms,conjecture)’

12 tpi waitenv ’SZS ASYNC’

13 tpi write ’Axioms status: ’ & ’$getenv(’SZS ASYNC’)’ &

’ Proof status: ’ & ’$getenv(SZS)’

14 tpi exit

Example 2: A typical use of the TPI commands accepted by the Interpreter

Commands 1, 4, 5 and 7 use start group and end group to create groups for the

axioms and the conjecture. Command 8 deactivates the conjecture group. Com-

mand 9 invokes the iProver ATP system in the background to check if the axioms

are Satisfiable. Command 10 activates the conjecture group. The E ATP system is

invoked by command 11, to prove that the conjecture is a Theorem of the axioms.

Command 12 waits until the iProver system finishes execution, after which command

13 outputs the execution results. Command 14 ends execution.

Example 3 shows how the TPI commands in their modified format can be used

with shell scripting. It provides is a simple shell script that integrates TPI commands

with shell commands.

25

1 #!/bin/tcsh

2 set MyProver = "Systems/E---1.8/eprover -s --auto --cpu-limit=300"

3 tpi input Problems/PUZ/PUZ001+1.p

4 tpi execute ’SZSProof’ = "$MyProver"’ $getgroups(tpi)’

5 set TheResult = ‘tpi write ’$getenv(SZSProof)’‘

6 if("$TheResult" == "Theorem") then

7 echo "FINAL STATUS: Theorem"

8 else

9 echo "$MyProver couldn’t find a proof of the conjecture."

10 echo "FINAL STATUS: $TheResult"

11 endif

Example 3: Using the TPI commands with shell scripting

Line 2 sets the variable MyProver to E with the necessary command line flags. Line

3 uses the TPI input command to add the formulae from PUZ001+1.p problem file

to the DB File. Line 4 uses the TPI execute command to execute E against all the

formulae in the DB File - $getgroups(tpi) causes all the formulae in the DB File

to be selected for execution. Line 5 sets the variable TheResult to value of the

environment variable SZSProof, which holds the SZS Status of E’s execution. The

remaining lines demonstrate a conditional statement that outputs the proof result.

4.2 TPI Applications

This section provides three example applications where the TPI language, with its

modified command format, is usefully utilized. The first example, in Section 4.2.1, is

an implementation of the ATP process described in Section 3.1. The second example,

in Section 4.2.2, also provides an implementation of the ATP process, with modi-

fications that make some tasks run in parallel. The last example, in Section 4.2.3,

26

demonstrates how the TPI language is used to provide an estimate of the shortest

running time a strategy scheduling ATP system can be given to solve a given ATP

problem.

4.2.1 Serial Implementation of the ATP Process

Algorithm 1 illustrates how the TPI language can be used to implement the ATP

process described in Section 3.1. It handles all the steps introduced in Section 3.2.

Code Sample 1 provides the tcsh script code for Algorithm 1.

The axioms and conjecture are added to the DB File using the input command

(label A in Figure 3.1, line 1 in Algorithm 1, line 1 in Code Sample 1). Using the

execute command, a syntax checker system is executed to check the syntax of the

formulae (label B, line 2, line 2). If the syntax checker returns a SyntaxError status,

the user is informed using the write command and the process ends with a call to

the exit command (label C, lines 4-5, lines 5-6).

Once the syntax of the formulae has been verified, the process moves on to checking

the satisfiability of the axioms. Using the execute command, a model finding ATP

system like iProver is executed to check if the axioms are Satisfiable (label D, line 7,

line 8). If the ATP system shows that the axioms are Satisfiable, the process moves

on to trying to prove that the conjecture is a Theorem of the axioms (label E, lines

9-28, lines 11-32). Otherwise, if it shows that the axioms are Unsatisfiable, the user

is informed using the write command and the process ends with a call to the exit

command (label F, lines 30-31, lines 34-35).

27

1 input the logical formulae;
2 execute a syntax checker on the formulae;
3 if the returned status is SyntaxError then
4 write Wrong Syntax;
5 exit;

6 else
7 execute a model finder to check if the axioms are Satisfiable;
8 if the returned status is Satisfiable then
9 Repeated Section;

10 execute a prover to check if the conjecture is a Theorem of the axioms;
11 if the returned status is Theorem then
12 write Proof Found;
13 exit;

14 else
15 if the returned status is CounterSatisfiable then
16 write No Proof;
17 exit;

18 else
19 execute a countermodel finder to check if the axioms and

conjecture are CounterSatisfiable;
20 if the returned status is CounterSatisfiable then
21 write No proof;
22 exit;

23 else if the returned status is Theorem then
24 write Proof Found;
25 exit;

26 else
27 write No Proof;
28 exit;

29 else if the returned status is Unsatisfiable then
30 write Axioms Unsatisfiable;
31 exit;

32 else
33 execute a prover to check if the axioms are Unsatisfiable;
34 if the returned status is Unsatisfiable then
35 write Axioms Unsatisfiable;
36 exit;

37 else if the returned status is Satisfiable or Unknown then
38 Goto Repeated Section;

Algorithm 1: The ATP Process

28

1 tpi input $1

2 tpi execute ’SZS Syntax’ = ’tptp4X -q3 -z $getgroups(tpi)’

3 set SyntaxResult = ‘tpi write ’$getenv(SZS Syntax)’‘

4 if ("$SyntaxResult" == "SyntaxError") then

5 echo "% Syntax Error!"

6 tpi exit

7 else

8 tpi execute ’SZS Satisfiability’ = ’iproveropt run sat.sh 300

$getgroups(tpi premises)’

9 set SatResult = ‘tpi write ’$getenv(SZS Satisfiability)’‘

10 if("$SatResult" == "Satisfiable") then

11 repeatedSection:

12 tpi execute ’SZS Proof’ = ’eprover --auto --cpu-limit=300

$getgroups(tpi)’

13 set ProofResult = ‘tpi write ’$getenv(SZS Proof)’‘

14 if("$ProofResult" == "Theorem") then

15 echo "% Proof Found!

16 tpi exit

17 else

18 if("$ProofResult" == "CounterSatisfiable") then

19 echo "% No Proof!"

20 tpi exit

21 else

22 tpi execute ’SZS CSA AxConj’

= ’iproveropt run sat.sh 300 $getgroups(tpi)’

23 set CSAResultAxConj = ‘tpi write ’

$getenv(’SZS CSA AxConj’)’‘

24 if("$CSAResultAxConj" == "CounterSatisfiable") then

25 echo "% No Proof!"

26 tpi exit

27 else if("$CSAResultAxConj" == "Theorem")

28 echo "% Proof Found!"

29 tpi exit

30 else

31 echo "% No Proof!"

32 tpi exit

33 else if("$SatResult" == "Unsatisfiable")

34 echo "% Axioms Unsatisfiable!"

35 tpi exit

36 else

37 tpi execute ’SZS Unsatisfiability’ = ’eprover --auto --cpu-limit=300

$getgroups(tpi premises)’

38 set UnsatResult = ‘tpi write ’$getenv(SZS Unsatisfiability)’‘

39 if("$UnsatResult" == "Unsatisfiable")

40 echo "% Axioms Unsatisfiable!"

29

41 tpi exit

42 else

43 goto repeatedSection

Code Sample 1: The ATP Process Code

If the model finder cannot reach a decision about the satisfiability of the axioms, a

refutation finding ATP system like E is executed using the execute command, to try

to prove that the axioms are Unsatisfiable (label G, line 33, line 37).

If the ATP system finds that the axioms are Unsatisfiable, the user is informed

using the write command and the process ends with a call to the exit command

(label H, line 35-36, lines 40-41). If the system shows that the axioms are Satisfiable,

or if a decision cannot be reached, the process again moves on to trying to prove that

the conjecture is a Theorem of the axioms (label E, line 38, line 43). (This is an

optimistic approach that assumes satisfiability of the axioms if nothing can be shown

explicitly.)

Once the axioms have been found to be Satisfiable, or if it couldn’t be proved that

they are Unsatisfiable, the process moves on to trying to prove that the conjecture

is a Theorem of the axioms. Using the execute command, a theorem proving ATP

system like E is executed on the logical formulae (label E, line 10, line 12). If a proof

is found, a Theorem status is output using the write command, and the process ends

with a call to the exit command (label I, lines 12-13, lines 15-16). If the ATP system

shows that the axioms and conjecture are CounterSatisfiable (i.e., the conjecture is

not a Theorem of the axioms), the user is informed using the write command and

the process ends with a call to the exit command (label J, lines 16-17, lines 19-20).

If a decision cannot be reached, the process moves on to trying to prove that the

30

axioms and conjecture are CounterSatisfiable (label K, lines 19-28, lines 22-32).

Using the execute command, a countermodel finding ATP system like iProver is

executed to try to prove that the axioms and conjecture are CounterSatisfiable (label

K, line 19, line 22). If the ATP system shows that the axioms and conjecture are

CounterSatisfiable, the user is informed using the write command and the process

ends with a call to the exit command (label L, lines 21-22, lines 25-26). If a proof is

found, a Theorem status is output using the write command, and the process ends

with a call to the exit command (label M, lines 24-25, lines 28-29). Otherwise, if a

decision cannot be reached, the user is informed using the write command and the

process ends with a call to the exit command (label N, lines 27-28, lines 31-32).

The following is the output when the script is run on the KRS233+1.p problem (http:

//www.tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=KRS&File=KRS233+

1.p). It demonstrates the case where the axioms are assumed to be Satisfiable if they

cannot to be proved otherwise. A proof of the conjecture is found by E.

%--

% Now checking the syntax....

% Using: Systems/TPTP4X---0.0/tptp4X -q3 -z

%--

% ATP SYSTEM STATUS:

% SZS status Success

%--

% Now checking if the axioms are Satisfiable....

% Using: Systems/iProver---1.0-SAT/Source/iproveropt run sat.sh 15

%--

% ATP SYSTEM STATUS:

% SZS status Unknown

%--

% Couldn’t reach a decision, checking if the axioms are Unsatisfiable....

% Using: Systems/E---1.8/eprover --auto --cpu-limit=15 --tstp-format

%--

% ATP SYSTEM STATUS:

http://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=KRS&File=KRS233+1.p
http://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=KRS&File=KRS233+1.p
http://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=KRS&File=KRS233+1.p

31

SZS status ResourceOut

%--

% Now checking if the conjecture is a Theorem of the axioms....

% Using: Systems/E---1.8/eprover --auto --cpu-limit=15 --tstp-format

%--

% ATP SYSTEM STATUS:

SZS status Theorem

%--

% FINAL STATUS:

% SZS status Theorem

%--

4.2.2 Parallelization of the ATP Process

Algorithm 2 provides another way of implementing the ATP process. In Algorithm

1, each ATP system is called when it is needed in the process according to the stage

of processing. In Algorithm 2, all ATP systems used for the different execution

steps presented in Algorithm 1 are run in the background using the execute async

command. The ATP systems are executed once the syntactic correctness of the

formulae has been verified. This leads to the results of the ATP systems’ executions

being available sooner since all systems are executed early in the process, as opposed

to having to wait for each system to finish execution as is the case in Algorithm 1.

This approach would also make use of more of the available processor cores. Code

Sample 2 provides the equivalent tcsh script code to Algorithm 2.

The axioms and conjecture are added to the DB File using the input command

(label A in Figure 3.1, line 1 in Algorithm 2, line 1 in Code Sample 2). Using the

execute command, a syntax checker system is executed to check the syntax of the

formulae (label B, line 2, line 2).

32

1 input the logical formulae;
2 execute a syntax checker on the formulae;
3 if the returned status is SyntaxError then
4 write Wrong Syntax;
5 exit;

6 else
7 execute async a model finder to check axiom satisfiability;
8 execute async a prover to check axiom unsatisfiability;
9 execute async a prover to check if the conjecture is a Theorem of the

axioms;
10 execute async a model finder to check if the axioms and the conjecture

are CounterSatisfiabile;
11 waitenv on the axiom satisfiability check;
12 if the returned status is Satisfiable then
13 Repeated Section;
14 waitenv on the proof that the conjecture is a Theorem of the axioms;
15 if the returned status is Theorem then
16 write Proof Found;
17 exit;

18 else
19 if the returned status is CounterSatisfiable then
20 write No Proof;
21 exit;

22 else
23 waitenv on the check if the axioms and the conjecture are

CounterSatisfiabile;
24 if the returned status is CounterSatisfiable then
25 write No proof;
26 exit;

27 else if the returned status is Theorem then
28 write Proof Found; exit;
29 else
30 write No Proof; exit;

31 else if the returned status is Unsatisfiable then
32 write Axioms Unsatisfiable; exit;
33 else
34 waitenv on the axiom unsatisfiability check;
35 if the returned status is Unsatisfiable then
36 write Axioms Unsatisfiable; exit;
37 else if the returned status is Satisfiable or Unknown then
38 Goto Repeated Section;

Algorithm 2: The Parallelized ATP Process

33

1 tpi input $1

2 tpi execute ’SZS Syntax’ = ’tptp4X -q3 -z $getgroups(tpi)’

3 set SyntaxResult = ‘tpi write ’$getenv(SZS Syntax)’‘

4 if ("$SyntaxResult" == "SyntaxError") then

5 echo "% Syntax Error!"

6 tpi exit

7 else

8 tpi execute async ’SZS Sat’ = ’iprover $getgroups(tpi premises)’

9 tpi execute async ’SZS AxUnsat’ = ’eprover $getgroups(tpi premises)’

10 tpi execute async ’SZS Proof’’ = ’eprover $getgroups(tpi)’

11 tpi execute async ’SZS CSA AxConj’ = ’iprover $getgroups(tpi)’

12 tpi waitenv ’SZS Sat’

13 set SatResult = ‘tpi write ’$getenv(SZS Sat)’‘

14 if("$SatResult" == "Satisfiable")

15 repeatedSection:

16 tpi waitenv ’SZS Proof’

17 set ProofResult = ‘tpi write ’$getenv(SZS Proof)’‘

18 if("$ProofResult" == "Theorem") then

19 echo "% Proof Found!

20 tpi exit

21 else

22 if("$ProofResult" == "CounterSatisfiable") then

23 echo "% No Proof!"

24 tpi exit

25 else

26 tpi waitenv ’SZS CSA AxConj’

27 set CSAResultAxConj = ‘tpi write ’$getenv(’SZS CSA AxConj’)’‘

28 if("$CSAResultAxConj" == "CounterSatisfiable") then

29 echo "% No Proof!"

30 tpi exit

31 else if("$CSAResultAxConj" == "Theorem")

32 echo "% Proof Found!"

33 tpi exit

34 else

35 echo "% No Proof!"

36 tpi exit

37 else if("$SatResult" == "Unsatisfiable")

38 echo "% Axioms Unsatisfiable!"

39 tpi exit

40 else

41 tpi waitenv ’SZS AxUnsat’

42 set UnsatResult = ‘tpi write ’$getenv(SZS AxUnsat)’‘

43 if"$UnsatResult" == "Unsatisfiable"

44 echo "% Axioms Unsatisfiable!"

45 tpi exit

34

46 else

47 goto repeatedSection

Code Sample 2: Parallelized ATP Process Code

If the syntax checker returns a SyntaxError status, the user is informed using the

write command and the process ends with a call to the exit command (label C,

lines 4-5, lines 5-6). If the syntax is found to be correct, four ATP systems are run

in the background using the execute async command.

The first system is a model finding ATP system like iProver, and is executed to

check if the axioms are Satisfiable. The second is a refutation finding ATP system

like E, and is executed to try to show that the axioms are Unsatisfiable. The third is a

theorem proving ATP system like E, and is executed to try prove that the conjecture

is a Theorem of the axioms. The last system is a countermodel finding ATP system

like iProver, and is executed to try to prove that the axioms and conjecture are

CounterSatisfiable (labels D,G,E,K, lines 7-10, lines 8-11).

Once the syntax of the formulae has been verified, the process moves on to checking

the satisfiability of the axioms. Using the waitenv command, execution is paused

until the environment variable is set by the first ATP system, indicating the status

of the axiom satisfiability check (label D, line 11, line 12). If the ATP system has

shown that the axioms are Satisfiable, the process moves on to the next step, which is

to check if a proof if the conjecture is a Theorem of the axioms has been found (label

E, lines 13-32, , lines 15-36). Otherwise, if the system has shown that the axioms are

Unsatisfiable the user is informed using the write command and the process ends

with a call to the exit command (label F, line 32, lines 38-39). If the model finder

35

could not reach a decision about the satisfiability of the axioms, execution is paused

using the waitenv command until the environment variable is set by the second ATP

system, indicating the status of the axiom unsatisfiability check (label G, line 34, line

41).

If the ATP system has shown that the axioms are Unsatisfiable, the user is in-

formed using the write command and the process ends with a call to the exit

command (label H, lines 36, lines 44-45). If the system has shown that the axioms

are Satisfiable, or if a decision could not be reached, the process again moves on to

check if a proof that the conjecture is a Theorem of the axioms has been found (label

E, line 38, line 47). (Moving forward in the process if a decision could not be made

is an optimistic approach that assumes satisfiability of the axioms if nothing can be

shown explicitly.)

Once the axioms have been found to be Satisfiable, or if it couldn’t be proved

that they are Unsatisfiable, the process moves on to checking if a proof that the

conjecture is a Theorem of the axioms has been found. Using the waitenv command,

execution is paused until the environment variable is set by the third ATP system,

indicating the proof status (label E, line 14, line 16). If a proof that the conjecture is

a Theorem of the axioms has been found by the system, a Theorem status is output

using the write command, and the process ends with a call to the exit command

(label I, lines 16-17, lines 19-20). If the ATP system has shown that the axioms

and conjecture are CounterSatisfiable (i.e., the conjecture is not a Theorem of the

axioms), the user is informed using the write command and the process ends with

a call to the exit command (label J, lines 20-21, lines 23-24). If a decision is not

36

reached, the process moves on to check if the axioms and conjecture have been found

to be CounterSatisfiable (label K, lines 23-30, lines 26-36).

Using the waitenv command, execution is paused until the environment variable

is set by the last ATP system, indicating whether the axioms and conjecture are

CounterSatisfiable (label K, line 23, line 26). If the ATP system has shown that the

axioms and conjecture are CounterSatisfiable, the user is informed using the write

command and the process ends with a call to the exit command (label L, lines 25-26,

lines 29-30). If a proof has been found, a Theorem status is output using the write

command, and the process ends with a call to the exit command (label M, line 28,

lines 32-33). Otherwise, if a decision could not be reached, the user is informed using

the write command and the process ends with a call to the exit command (label N,

line 30, lines 35-36).

The following is the output when the script is run on the AGT001+1 problem (http://

www.tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=AGT&File=AGT001+1.

p).

%--

% Now checking the syntax....

% Using: Systems/TPTP4X---0.0/tptp4X -q3 -z

%--

% ATP SYSTEM STATUS:

% SZS status Success

%--

% Now checking if the axioms are Satisfiable....

% Using: Systems/iProver---1.0-SAT/Source/iproveropt run sat.sh 15

% Waiting for System:

%--

% ATP SYSTEM STATUS:

% Satisfiable

%--

% Now checking if the conjecture is a Theorem of the axioms....

http://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=AGT&File=AGT001+1.p
http://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=AGT&File=AGT001+1.p
http://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=AGT&File=AGT001+1.p

37

% Using: Systems/E---1.8/eprover -s --auto --cpu-limit=15 --tstp-format

% Waiting for System:

%--

% ATP SYSTEM STATUS:

% Theorem

%--

% FINAL STATUS:

% SZS status Theorem

%--

4.2.3 Shortest Time to Solve an ATP Problem

An ATP system usually accepts a command line flag that specifies the maximum time

the system can use to try and solve a problem. Many ATP systems employ strategy

scheduling techniques [19] in order to try multiple search strategies to solve a given

problem in the amount of time they have available. Depending on the amount of time

it has available, an ATP system will divide this time among different search strategies

and try to solve the problem using each of those strategies. Providing an ATP system

with less time may result in the system solving the problem in a shorter amount of

time. This section shows how the TPI language is used with shell scripting to find

out the least amount of time the system can be given to solve a problem successfully.

Figure 4.1 provides an example of how a strategy scheduling ATP system could

adjust its scheduling strategies according to the amount of time available for execu-

tion. In this example, the ATP system uses four different search strategies to try

to solve an ATP problem. Initially, the system is provided with a 120 second time

limit. It allocates 15 seconds for strategies 1 and 2, 30 seconds for strategy 3 and 60

seconds for strategy 4. It solves the problem using strategy 4 in 25 seconds with a

38

Figure 4.1: Strategy Scheduling Example

total execution time of 85 seconds (60 seconds for the first 3 strategies and 25 seconds

for solving the problem using strategy 4). If the time limit is halved and the system

is provided with 60 seconds instead, the total execution time drops to 55 seconds

(30 seconds for the first 3 strategies and 25 seconds for solving the problem using

strategy 4). When the execution time is further halved to become 30 seconds, the

system can no longer solve the problem since the available time for strategy 4 drops

to 15 seconds.

The last time limit value at which the system solved the problem is 60 seconds.

The average of this time limit value and the current time limit value (30 seconds) is 45

39

seconds and can be used as the new time limit to try to solve the problem. Using 45

seconds as the new time limit value, the system allocates 5.625 seconds for strategies

1 and 2, 11.25 seconds for strategy 3 and 22.5 seconds for strategy 4. Again, the

system cannot solve the problem since the available time for strategy 4 is less than 25

seconds. Using the same approach, the average of the last time limit value at which

the system solved the problem and the current time limit value (45 seconds), is 52.5

seconds and is used as the new time limit value. The system allocates 6.5625 seconds

for strategies 1 and 2, 13.125 seconds for strategy 3 and 26.25 seconds for strategy 4.

The system solves the problem using strategy 4 in 25 seconds with a total execution

time of 51.25 seconds. Therefore, the shortest time the system takes to solve the

problem is 51.25 seconds. This is just an example of how an ATP system can split

up the time it has available among different search strategies. Different ATP systems

use different scheduling techniques to solve ATP problems.

A tcsh shell script has been developed to find the least amount of time a strategy

scheduling ATP system can be given in order to solve a given problem. It makes use

of the TPI execute command and implements a binary search technique to reach its

goal. Algorithm 3 and Code Sample 3 provide the logic and implementation details.

The algorithm starts with collecting the information needed from the user: the name

of the problem file, the initial time limit, and a constant value - Epsilon - whose

use will be explained shortly (lines 1-3 in Algorithm 3, lines 2-4 in Code Sample 3).

Default values for the time limit and Epsilon in seconds are used if not provided

by the user (lines 4-7, lines 5-8). Two variables are then initialized: the LowerBound

variable that is the last reported time limit at which the given ATP system times

40

1 Read the Problem File name;
2 Read the initial TimeLimit value;
3 Read the Epsilon value;
4 if TimeLimit is not provided then
5 Set TimeLimit = 100;
6 if Epsilon is not provided then
7 Set Epsilon = 10;
8 Set LowerBound = 0;
9 Set UpperBound = TimeLimit;

10 execute the given ATP system against the given Problem with the current
TimeLimit value;

11 if the returned status is not TimeOut then
12 while The difference between UpperBound and LowerBound is greater than

Epsilon do
13 Set TimeLimit = average value of UpperBound and LowerBound;
14 execute the given ATP system against the give Problem with the

current TimeLimit value;
15 if the returned status is Theorem then
16 Set UpperBound = current TimeLimit value;
17 if the returned status is TimeOut then
18 Set LowerBound = current TimeLimit value;

19 The shortest time to solve the problem is the current UpperBound value;

20 else
21 Problem could not be solved in the time provided;

Algorithm 3: Computing he shortest time to solve an ATP problem

out when trying to solve the problem, and the Upperbound variable that is the last

reported time limit at which the given ATP system successfully solved the problem.

The LowerBound is initialized to 0 and the UpperBound is initialized to the initial

time limit value (lines 8-9, lines 9-10).

A strategy scheduling ATP system - E in this case - is then executed using the

execute command, bounded by the initial time limit to try to solve the given problem

(line 10, line 11). If it times out, the algorithm halts (line 11, line 13). Otherwise, the

time limit is set to be midway between the LowerBound and UpperBound variables

(line 13, line 15) and the system is executed again, bounded by the new time limit

41

1 #!/bin/tcsh

2 set Problem = $1

3 set TimeLimit = $2

4 set Epsilon = $3

5 if(!$?TimeLimit)

6 set TimeLimit = 100

7 if(!$?Epsilon)

8 set Epsilon = 10

9 set LowerBound = 0

10 set UpperBound = $TimeLimit

11 tpi execute -q2 ’SZS Scheduling’ = "/E---1.8/eprover --cpu-limit=

$UpperBound $Problem"’’

12 set ProofResult = ‘tpi write ’$getenv(SZS Scheduling)’‘

13 if("$ProofResult" != "ResourceOut")

14 while(($UpperBound - $LowerBound) > $Epsilon)

15 @ TimeLimit = ($UpperBound + $LowerBound) / 2

16 tpi execute -q2 ’SZS Scheduling’ = "/E---1.8/eprover

--cpu-limit=$TimeLimit $Problem"’’

17 set ProofResult = ‘tpi write ’$getenv(SZS Scheduling)’‘

18 if("$ProofResult" == "Theorem")

19 set UpperBound = $TimeLimit

20 if("$ProofResult" == "ResourceOut")

21 set LowerBound = $TimeLimit

22 end

22 echo "Final time limit is: $UpperBound"

24 else

25 echo "Problem could not be solved in the time provided!"

Code Sample 3: TCSH code to compute the shortest time to solve an ATP
problem

value (line 14, line 16). If it successfully solves the problem, the UpperBound value is

set to the time limit value (lines 15-16, lines 18-19). If it times out, the LowerBound

value is set to the time limit value (lines 17-18, lines 20-21). This process is repeated

in a loop until the difference between UpperBound and LowerBound becomes smaller

than Epsilon (lines 12-18, lines 14-21). Upon exiting from the loop, the value held

by the UpperBound variable is the time limit value at which the system last solved

the problem successfully, if it did not time out at the first attempt.

42

The following is a sample output when the script is run against the ALG103+1 problem

(http://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=ALG&File=

ALG103+1.p).

Problem is /home/tptp/TPTP/Problems/ALG/ALG103+1.p

Current time limit: 300

E---1.8/eprover --auto-schedule --cpu-limit=300 /Problems/ALG/ALG103+1.p

Current proof status SZS: Theorem

Current time limit: 150

E---1.8/eprover --auto-schedule --cpu-limit=150 /Problems/ALG/ALG103+1.p

Current proof status SZS: Theorem

Current time limit: 75

E---1.8/eprover --auto-schedule --cpu-limit=75 /Problems/ALG/ALG103+1.p

Current proof status SZS: Theorem

Current time limit: 37

E---1.8/eprover --auto-schedule --cpu-limit=37 /Problems/ALG/ALG103+1.p

Current proof status SZS: ResourceOut

Current time limit: 56

E---1.8/eprover --auto-schedule --cpu-limit=56 /Problems/ALG/ALG103+1.p

Current proof status SZS: ResourceOut

Current time limit: 65

E---1.8/eprover --auto-schedule --cpu-limit=65 /Problems/ALG/ALG103+1.p

Current proof status SZS: Theorem

Final time limit is: 65

http://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=ALG&File=ALG103+1.p
http://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=ALG&File=ALG103+1.p

Chapter 5

Generic Control

5.1 Introduction

The previous chapters explain how the TPI language provides a practical way of

executing ATP systems. The TPI language execute command can be used to execute

any ATP system, but it is the user’s responsibility to provide the correct command

line flags that are needed for the system’s execution. Different ATP systems have

different command line flags that control different aspects of their execution. This

chapter is concerned with flags that control how an ATP system goes about its proof

finding process, and how it produces its output. For example, E provides flags that

determine its reasoning process, decide which axioms get selected in the proof building

process, and control how its output is produced. Similar flags are provided by many

ATP systems. It would be desirable to abstract them to generic options. Instead of

the user having to provide these command line flags individually for each ATP system,

the execute command has been modified to accept them as generic parameters. This

43

44

would provide a standard interface for the execution of different ATP systems. Three

aspects of an ATP system’s proof finding process have been chosen:

• Forward vs. Backward Reasoning: Forward reasoning is a reasoning pro-

cess in which an ATP system starts with the axioms, and then derives new

formulae in the hope of reaching the conjecture. Backward reasoning involves

an ATP system starting from the conjecture, then repeatedly generating new

sub-goals until the axioms are reached. Forward and backward reasoning yield

different execution times and possibly different execution results when used on

a given problem with the same ATP system.

• Axiom Selection: Some ATP systems employ techniques to select axioms

that are more likely to be necessary for generating a proof. The system will

try to select the axioms that are most relevant to the conjecture. Using axiom

selection leads to a shorter execution time if the selected axioms are sufficient

to generate a proof. This might have a big impact on efficiency, especially for

problems that have a large number of axioms. Axiom selection can either be

turned on or off when running the execute command on systems that support

it.

• Proof Output: Most ATP systems provide a meaningful output of the steps

that led to a proof. Generating this output could be resource and time con-

suming for big problems, and has an impact on the system’s efficiency. Proof

output can either be turned on or off. When it is turned off, less details are

provided about the system’s execution, depending on the system.

45

5.2 Implementation

In order for the execute command to provide a standard way of using the generic

options discussed in Section 5.1, it has been modified to accept such options as generic

parameters. The modified form of the execute command is as follows:

tpi execute[(List of GenericParameters)] [EnvVar =] command

where the list of generic parameters can contain any of the following values:

• Forward: The ATP system should use forward reasoning in the proof building

process.

• Backward: The ATP system should use backward reasoning in the proof build-

ing process.

• AxSelect: The ATP system should use axiom selection in the proof building

process if applicable.

• NoAxSelect: The ATP system should not use axiom selection in the proof

building process.

• Proof: The ATP system should provide the full details of the proof.

• NoProof: The ATP system should provide less details about the proof, depend-

ing on the system.

When execute is called in this form, the TPI language interpreter detects the

name of the ATP system in the provided command, determines the generic parameters

used, and add their values - according to the system used - to the execution command.

46

The process of determining whether or not a given ATP system uses these control

flags and determining their correct values was sometimes challenging. In some cases,

the values of the flags could be retrieved directly from the system’s user manual.

In other cases, they could not be determined and the system’s developer had to

be contacted. Once these values had been determined, they could be used directly

through the generic parameters, saving the system’s user a lot of time and effort.

5.2.1 Example 1

The following example demonstrates a call to execute in its modified form. The

system used is E and the problem used is PUZ001+1:

tpi execute(AxSelect,NoProof) ’SZS STATUS’ = ’eprover --cpu-limit=30

Problems/PUZ001+1.p’

In this example, the interpreter detects the word eprover and determines that the

system used is E. It detects that the generic control flags used are AxSelect and

NoProof. It then determines that the values of the flags are --sine=Auto and -s,

and adds them to the command. The final call to execute becomes:

tpi execute ’SZS STATUS’ = ’eprover --sine=Auto -s --cpu-limit=30

Problems/PUZ001+1.p’

5.2.2 Example 2

The following example demonstrates another call to execute in its modified form.

The system used is iProver and the problem used is KRS233+1:

47

tpi execute(Backward) ’SZS STATUS’ = ’iproveropt --time out real 240

--out options control Problems/KRS233+1.p’

In this example, the interpreter detects the word iproveropt and determines that the

system used is iProver. It detects that the generic control flag used is Backward. It

then determines that the value of the flag is --inst lit sel "[+sign;+ground;-num

var;-num symb]" --res lit sel kbo max and adds it to the command. The final

call to execute becomes as follows:

tpi execute ’SZS STATUS’ = ’iproveropt --inst lit sel "[+sign;+ground;

-num var;-num symb]" --res lit sel kbo max --time out real 240 --out op

tions control Problems/KRS233+1’

5.2.3 Further Improvements

The current implementation has the values of the generic parameters hard coded.

This has been convenient for the sake of demonstration and since only E and iProver

were used for testing. When the generic parameters for more systems are determined,

they will be added to an external file that holds the names of the ATP systems and

the values of their corresponding generic parameters. When execute is called, the

TPI language interpreter will detect the name of the ATP system in the provided

command, determine the generic parameters used, fetch their values from the external

file according to the system used, and add the values to the execution command.

48

5.3 Results

Tables 5.1, 5.2 and 5.3 provide the execution times, in seconds, of E and iProver

when they are executed with different combinations of the generic control parameters

described in Section 5.1.

E Default Backward AxSelect NoProof Forward NoAxSelect NoProof

KRS233+1 4.99 Timeout 4.81
CSR071+3 2.06 1.13 2.09
HAL003+3 0.07 36.52 0.07
SWW271+1 38.82 Timeout 38.65
SWW314+1 4.49 Timeout 4.59
NUM860+1 2.89 14.53 3.01
SWW297+1 4.4 Timeout 4.8

Table 5.1: E generic control

E Back. NoAxSel NoProof For. AxSel Proof For. NoAxSel Proof

KRS233+1 Timeout 6.06 5.5
CSR071+3 1.47 2.52 2.24
HAL003+3 37.44 0.08 0.08
SWW271+1 Timeout 43.32 42.29
SWW314+1 Timeout 6.4 4.91
NUM860+1 16.57 3.94 3.92
SWW297+1 Timeout 5.17 5.53

Table 5.2: E generic control - Continued

Six different combinations were used to execute E on the ATP problems. These

combinations are the default configuration (forward reasoning with axiom selection

and no proof), backward reasoning with axiom selection and no proof, forward reason-

ing with no axiom selection and no proof, backward reasoning with no axiom selection

and no proof, forward reasoning with axiom selection and proof, and forward reason-

ing with no axiom selection and proof. The ATP problems have been selected from

49

a pool of first order problems that are complex enough to provide good comparison

results. The results show how using different reasoning strategies can yield different

execution times and in some cases a different execution status, like the cases where

the system times out while solving a problem when Backward Reasoning is used but

successfully solves it using Forward Reasoning.

iProver Default Forward Backward

KRS233+1 0.36 0.33 0.35
CSR071+3 66.95 27.14 30.63
HAL003+3 3.33 3.89 3.1
SWW271+1 51.23 116.01 145.67
SWW314+1 14.21 14.51 13.71
NUM860+1 10.8 17.29 10.78
SWW297+1 11.99 12.09 4.4

Table 5.3: iProver generic control

Three different combinations were used to execute iProver on the ATP problems.

These combinations are the default configuration (which does not apply either for-

ward or backward reasoning solely), forward reasoning, and backward reasoning. The

results also show how using different reasoning strategies can yield different execution

times, like the case with problem CSR071+3 where execution time is doubled when the

default configuration is used, and the case with problem SWW271+1 where execution

time is halved when the default configuration is used.

Chapter 6

Conclusion

This thesis presents the work done for the purpose of building and testing a command

line interpreter for the TPI language. The example TPI applications presented in

Section 4.2 and the generic control of ATP systems presented in Chapter 5 show how

the interpreter adds more flexibility and versatility to the use of ATP systems. The

implementation of the ATP process, for example, wouldn’t have been possible without

the ability to capture the results of ATP systems’ executions and use them within

a program in order to take further execution decisions. The parallel implementation

of the ATP process wouldn’t have been possible either without the ability to run

multiple systems simultaneously in the background.

The key advantage of a command line interpreter is that it allows the users of

ATP systems to use the TPI language commands within the context of a shell. This

allows the users to take advantage of the full power of shell programming in order to

manipulate logical formulae and execute ATP systems. For example, the algorithm

for calculating the shortest time to solve an ATP problem, presented in Section 4.2.3,

50

51

relies on conditional and loop statements to repeatedly run an ATP system until the

desired goal is reached. The example applications presented are only a sample of

what can be achieved when using the interpreter for ATP purposes. It is up to the

user to utilize the interpreter within the context of a shell program to achieve his

needs.

Future work on the interpreter will focus on making it available to more ATP

system developers and users, as they could benefit from the standard interface the TPI

language provides for dealing with ATP systems. The generic control of ATP systems

discussed in Chapter 5 will be extended to include more ATP systems and more

generic parameters. The values of the generic parameters will be stored in a separate

file rather than being hard coded as discussed in Section 5.2.3. The interpreter will

need to incorporate any new TPI commands, if any are introduced.

References

[1] D. W. Loveland, Automated Theorem Proving: A Logical Basis (Fundamental
Studies in Computer Science). Elsevier North-Holland, 1978.

[2] J. Harrison, Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, 2009.

[3] C.-L. Chang and R. C. T. Lee, Symbolic Logic and Mechanical Theorem Proving.
Computer science classics, Academic Press, 1973.

[4] G. Sutcliffe, “An Overview of Automated Theorem Proving.” http://www.cs.

miami.edu/~tptp/OverviewOfATP.html.

[5] M. Kaufmann and J. S. Moore, “The ACL2 Home Page,” Dept. of Computer
Sciences, University of Texas at Austin, 2004. http://www.cs.utexas.edu/

users/moore/acl2/.

[6] W. McCune, “Well-Behaved Search and the Robbins Problem,” in Proceedings
of the 8th International Conference on Rewriting Techniques and Applications,
RTA ’97, (London, UK, UK), pp. 1–7, Springer-Verlag, 1997.

[7] B. Beckert, R. Hähnle, and P. H. Schmitt, eds., Verification of Object-Oriented
Software: The KeY Approach. LNCS 4334, Springer-Verlag, 2007.

[8] S. Schulz, “System Description: E 1.8,” in Proceedings of the 19th LPAR, Stel-
lenbosch (K. McMillan, A. Middeldorp, and A. Voronkov, eds.), vol. 8312 of
LNCS, Springer, 2013.

[9] K. Korovin, “iProver — An Instantiation-Based Theorem Prover for First-Order
Logic (System Description),” in Proceedings of the 4th International Joint Con-
ference on Automated Reasoning, IJCAR ’08, (Berlin, Heidelberg), pp. 292–298,
Springer-Verlag, 2008.

[10] L. Kovács and A. Voronkov, “First-Order Theorem Proving and Vampire,” in
Proceedings of the 25th International Conference on Computer Aided Verifica-
tion, CAV’13, (Berlin, Heidelberg), pp. 1–35, Springer-Verlag, 2013.

52

http://www.cs.miami.edu/~tptp/OverviewOfATP.html
http://www.cs.miami.edu/~tptp/OverviewOfATP.html
http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/

53

[11] G. Sutcliffe, “The TPTP World - Infrastructure for Automated Reasoning,”
in Proceedings of the 16th International Conference on Logic for Programming
Artificial Intelligence and Reasoning (E. Clarke and A. Voronkov, eds.), no. 6355
in Lecture Notes in Artificial Intelligence, pp. 1–12, Springer-Verlag, 2010.

[12] G. Sutcliffe, “The TPTP Process Instruction Language,” in Proceedings of the
19th International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, 2013.

[13] G. Sutcliffe, “The SZS Ontologies for Automated Reasoning Software,” in Pro-
ceedings of the LPAR Workshops: Knowledge Exchange: Automated Provers and
Proof Assistants, and The 7th International Workshop on the Implementation of
Logics (G. Sutcliffe, P. Rudnicki, R. Schmidt, B. Konev, and S. Schulz, eds.),
no. 418 in CEUR Workshop Proceedings, pp. 38–49, 2008.

[14] W. McCune, “Otter 3.3 Reference Manual,” Tech. Rep. ANL/MSC-TM-263,
Argonne National Laboratory, Argonne, USA, 2003.

[15] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version 2.0,” in
Proceedings of the 8th International Workshop on Satisfiability Modulo Theories
(A. Gupta and D. Kroening, eds.), 2010.

[16] D. R., “The SMT-LIBv2 Language and Tools: A Tutorial,” 2013. http://www.
grammatech.com/resource/smt/SMTLIBTutorial.pdf.

[17] A. Asperti, C. Sacerdoti Coen, E. Tassi, and S. Zacchiroli, “User Interaction
with the Matita Proof Assistant,” Journal of Automated Reasoning, vol. 39,
no. 2, pp. 109–139, 2007.

[18] T. Nipkow, L. Paulson, and M. Wenzel, “Isabelle/HOL: A Proof As-
sistant for Higher-Order Logic.” http://www.cl.cam.ac.uk/research/hvg/

Isabelle/dist/Isabelle/doc/tutorial.pdf.

[19] A. Wolf, “Strategy Selection for Automated Theorem Proving,” in Artificial
Intelligence: Methodology, Systems, and Applications (F. Giunchiglia, ed.),
vol. 1480 of Lecture Notes in Computer Science, pp. 452–465, Springer Berlin
Heidelberg, 1998.

http://www.grammatech.com/resource/smt/SMTLIBTutorial.pdf
http://www.grammatech.com/resource/smt/SMTLIBTutorial.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/tutorial.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/tutorial.pdf

	University of Miami
	Scholarly Repository
	2014-04-23

	Automated Theorem Proving using the TPTP Process Instruction Language
	Muhammad Nassar
	Recommended Citation

	List of Figures
	List of Tables
	Introduction
	What is Automated Theorem Proving?
	ATP Systems
	The TPTP World and the TPI Language

	Previous Work
	ATP Execution and Control
	Command Languages
	The TPI Language
	The TPI Language Commands
	Input and Output
	Logical Formula Grouping
	Logical Formula Manipulation
	Environment Variable Manipulation
	Execution
	Utility Commands
	An Example

	The ATP Process
	Overview
	The ATP Process Details
	Benefits

	The TPI Interpreter
	The TPI Language Interpreter
	TPI Applications
	Serial Implementation of the ATP Process
	Parallelization of the ATP Process
	Shortest Time to Solve an ATP Problem

	Generic Control
	Introduction
	Implementation
	Example 1
	Example 2
	Further Improvements

	Results

	Conclusion

