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This dissertation deals with studies of molecular 

encapsulation and preparation of novel molecular cages. The 

author begins in Chapter 1 with a short discussion of 

molecular encapsulation and some of the molecular hosts 

such as cavitands, carcerands, hemicarcerands, 

hexamericresorcinarene capsules and molecular cages and 

then presents more introductory material on a deep cavity 

cavitand and cucurbit[7]uril since the author’s research is 

majorly based on these two molecular hosts. The author is 

interested in the electrochemistry studies of redox-active 

guests and their electrochemical kinetic changes before and 

upon encapsulation in aqueous solution so as to mimick the 

behavior of redox proteins in biological systems or be 

potentially used for drug delivery. The author carries out 

a series of characterization experiments such as 1H NMR, 

ESI-TOF MS, DOSY NMR, COSY NMR, UV-Vis and so on to prove 

the formation of host-guest complexes before running any 



electrochemistry experiments. Some experiments fail to 

provide convincing evidence for redox-active guests 

encapsulated in the host molecules. Therefore the author 

does not include these systems in the dissertation.  The 

author gives two encapsulation examples in Chapter 2 and 

Chapter 3 respectively with tetrathiafulvalene (TTF) and 

bulky adamantylferrocene derivatives in a dimeric capsule 

formed by two deep-cavity cavitands.  

In Chapter 4, the author investigates binding of 

cucurbit[7]uril with a newly synthesized tris(viologen) 

derivative guest. Upon viologen moiety encapsulation inside 

cucurbit[7]uril, the surrounding guest protons that are 

close to the oxygen portal of cucurbit[7]uril will have 

strong interactions with the oxygens and show interesting 

complexation-induced chemical shifts in 1H NMR experiments. 

The author also reports data on two control compounds to 

help explain the interesting phenomena.  

In Chapter 5, the author attempts to synthesize a 

novel molecular cage glued by “click” reactions. With 

trial-and-error, the author ends up with insoluble polymers 

since the “click” reactions are super-efficient and 

undirected. The results show that the design of the 

starting materials will affect the formation of the cage 

molecules and intramolecular reactions must overcome 



intermolecular cross-linking reactions after the first 

“click” made. Highly diluted experimental conditions and a 

suitable template are also important for the successful 

formation of cage molecules.  
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CHAPTER 1 

AN INTRODUCTION TO MOLECULAR ENCAPSULATION 

1.1 Molecular Encapsulation 

In supramolecular chemistry,1 molecular encapsulation 

is defined as the application of programmed molecules that 

assemble into larger molecular architectures via 

intermolecular noncovalent bonds while including smaller 

molecules inside the assembly.2,3 An important class of 

supramolecular structures is the host–guest assemblies, 

where the host is a receptor that selectively binds 

(generally smaller) guest molecules.4-6 Since only weak 

intermolecular interactions such as hydrogen bonds, 

hydrophobic effects and metal–ligand interactions are 

involved, the formation and dissociation of the host-guest 

complexes is reversible and controllable, which provide a 

possible way to explore the chemical reactivity of guests 

that are unstable or insoluble in bulk solution. 

Cram demonstrated the first example of molecular 

encapsulation in 1991.6,7 Up to now, the field of molecular 

encapsulation has seen a remarkable development. This 

chapter will begin with a brief introduction of the 

resorcinarene-based hosts (receptors), cucurbit[n]urils 



(

r

c

1

R

S
r

r

(

u

f

c

(CBn) an

redox-ac

cavities

1.2 Cavi

Resorcin

Scheme 1
resorcin

Cav

reaction

(Scheme 

usually 

form a 

conforma

nd molec

ctive gu

s of the 

itands, 

narene Ca

1.1 Gene
nol. 

vitands 

ns betwe

1.1). 

tetrame

relati

ation. Th

cular cag

uests t

host mo

Carcera

apsules

eral syn

are ho

een res

The res

eric and

vely sh

he struc

ges. The

hat can

lecules.

ands, He

nthesis o

sts for

sorcinol 

sulting 

d contai

hallow 

cture of 

en the e

n be en

. 

emicarce

of octol

rmed in 

deriva

cyclic 

in four 

bowl in

the oct

emphasis 

ncapsula

erands 

ls and c

acidic

atives 

octol 

aromati

n the 

tols can

will sh

ated int

and Hex

 

cavitand

c conden

and ald

compound

ic unit

preferr

 be elab

2 

hift to

to the 

xameric 

ds from 

nsation 

dehydes 

ds are 

s that 

red C4v

borated 



3 

further for various purposes. Most commonly, the main 

objective of additional synthetic work is to fix the 

conformation of these compounds in C4v symmetry with a well-

defined, albeit small cavity. 

Cram developed this chemistry during the 1980s and 

1990s by preparing compounds consisting of two covalently 

connected cavitands facing each other.6,7 When the two 

cavitands are forced to be close to one another, with very 

small openings between them, the resulting compounds were 

termed carcerands, as they could trap or encapsulate 

(“incarcerate”) small guests (Figure 1.1). Once the 

host/guest complex (carceplex) was formed, the guest will 

be retained in the interior of the host, maintaining the 

structural integrity in the gaseous, liquid and solid state. 

More interesting was the synthesis of larger compounds, 

in which the connectors between the two facing cavitands 

provide larger open spaces between them, which effectively 

become openings (portals) into the host’s inner cavity.  

These host compounds were baptized as hemicarcerands, 

because the encapsulation of guest molecules was not 

complete, as opposed to what was observed with carcerands 

(Refer to Figure 1.1).  
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6 

The resorcinarenes are tetrameric macrocyclic octols 

prepared by the condensation of resorcinol in the presence 

of an aldehyde (see “octol” structures in Scheme 1) and 

mineral acid as the catalyst. While the chemistry of the 

resorcinarenes has been well known since the 1970s, 

MacGillivray and Atwood found that the simple host 9 (see 

Figure 1.3) crystallizes forming a fascinating hexameric 

molecular capsule.11 Each capsule adopts a snug cube 

conformation with the six resorcinarenes and eight water 

molecules held together by a network of sixty hydrogen 

bonds. The internal volume for each capsule is estimated at 

ca. 1375 Å3. This report attracted attention from several 

groups and it was shown quickly that similar hexameric 

molecular capsules were formed by a number of 

resorcinarenes in the solution phase.12-14 For instance, 

Rebek reported a complex with eight benzene molecules 

inside the self-assembled hexameric resorcinarene 10 

capsule.15 Due to its solubility in low polarity solvents, 

resorcinarene 10 has been utilized extensively as the 

monomer for hexameric capsule formation in CHCl3 and CH2Cl2 

solution. 
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It is now well known that in the presence of suitable 

hydrophobic guests, two molecules of cavitand 11 will come 

together, assisted by hydrophobic effects, to yield a well-

defined dimeric molecular capsule (Figure 1.4b).16 To probe 

the shape and size of the cavity of the capsule, Gibb’s 

group examined a range of steroids and their encapsulation 

by capsule 112.16,17 It was found that the strength of 

binding, allied to the size of the internal volume of the 

capsule, make possible for several molecules to be trapped 

within the capsule. Ramamurthy’s group examined the 

interior of the cavity and how the capsulation influenced 

photoreaction of encapsulated guests via fluorescence 

spectrometry.18-22 Recently they reported that capsule 112, 

acts as a molecular host that can effectively facilitate 

photo-induced electron transfer between an incarcerated 

donor and a free acceptor in aqueous solution. The donor, 

trapped by the 112 capsule and isolated from the bulk 

solution, is excited to produce an electron that is 

transferred through the molecular wall of the capsule 

directly into the electrostatically exterior-attached 

acceptor without any solvent relaxation effects, reducing 

the electron transfer rate from 631 picoseconds in free 

solution to 20 picoseconds as molecular assembly (Figure 

1.5).23 Our own group has been interested in the 
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(+NH3(CH2)nNH3+, n=4-7,K>105 M-1) and neutral molecules such 

as tetrahydrofuran and benzene in aqueous solution. CB7 can 

form 1:1 complexes with protonated adamantylamine, methyl 

viologen dication (N,N’-dimethyl-4,4’ bipyridinium, MV2+), 

ferrocene, carborane and many other guests in aqueous 

solution. However, CB8 can store two different guest 

molecules such as MV2+ and 2,6-dihydroxynathphalene (HN) in 

the even larger cavity. 

1.5 Molecular Cages 

The self-assembly of coordination complexes with 

various sizes and shapes, such as tetrahedral, octahedral, 

cubic, dodecahedral and so on, has been developed very fast 

during the past few years.32 These cage-like architectures 

are built from metal connecting points and rigidly 

preorganized organic ligands. For example, Raymond and co-

workers assembled a chiral tetrahedral [M4L6]12- coordination 

cage with metal ions such as Ga3+ situated at the corners of 

the tetrahedron and six naphthalene-based bis-bidentate 

catechol amide ligands on the edges of the tetrahedron by 

the presence of an appropriate guest template (Figure 

1.7a).33 Fujita and co-workers developed an octahedral 

[M6L4]12+ coordination cage consisted of six cis-protected 
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proteins. These biological macromolecules show interesting 

properties regarding their electron transfer (ET) reactions. 

Usually, the redox centers are partially buried in the 

polypeptide framework and the redox centers are more or 

less available for ET reactions depending on the spatial 

relationship between the redox center and the reacting 

partner. Since the rates of ET reactions decay 

exponentially with the distance between the reacting 

centers, it seems clear that Nature uses this strategy to 

control the ET reactions in which redox proteins may engage. 

From an electrochemical point of view, this fact translates 

into either fast or slow electrochemical kinetics for a 

redox protein depending on the chemical nature of the 

electrode and the preferred orientation that the protein 

may adopt near the electrode surface. Thus, orientations in 

which the redox active group is positioned close to the 

electrode surface give rise to relatively fast 

electrochemical kinetics, that is, fast heterogeneous ET 

rates, while orientations in which the redox group is 

located relatively far away from the electrode surface 

result in slower or more sluggish electrochemical kinetics. 

If the interactions between the electrode surface and the 

protein surface do not induce a specific interfacial 

orientation of the protein, then, the prevailing kinetics 
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will result from the integration of the rates for all 

possible orientations. Although a good number of redox 

proteins could be cited as examples, perhaps the most 

heavily investigated case is that of cytochrome c, which 

contains an iron heme redox center partially buried in a 

region of the protein surface decorated with a number of 

positively charged lysines. Among other schemes, 

modification of the electrode surface with a carboxylate-

terminated monolayer leads to relatively fast ET, as the 

lysine-carboxylate interactions arrange the iron heme 

center on the protein side facing towards the electrode 

surface.36 

The quest to develop and investigate synthetic 

structures with similar ET properties requires, as a first 

step, the placing of the redox center at some distance from 

the electrode surface. In supramolecular systems, non-

covalent methods are employed to accomplish this goal. Our 

group has always preferred to work in aqueous media and the 

experimental work with hemicarcerands had to be done in 

solvents of considerable low polarity, such as 

dichloromethane and tetrachloroethane. Therefore, we 

developed our interest in CB7 host and water-soluble 
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cavitand-type hosts which has considerable solubility in 

aqueous solution.  

 

Figure 1.8 Cyclic voltammetric response of 0.5 mM ferrocene 
in 10 mM borate buffer (pH 8.9) also containing 50 mM NaCl 
in the absence of 11 (solid line), and in the presence of 
1.0 equiv (discontinous line) and 2.0 equiv (dotted line) 
of host 11.   

Kaifer’s group had previously studied the 

encapsulation of ferrocene (Fc) in capsules formed by two 

deep cavity cavitands using electrochemistry.24 The 

ferrocene voltammetric response of Fc@112 was found to be 

completely flat in the potential range where its oxidation 

is observed (Figure 1.8). In other words, no current wave 

for one-electron oxidation of Fc was observed either by 

cyclic voltammetry or square wave voltammetry. However, the 
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expected current wave emerged as soon as the concentration 

of Fc exceeded the value that can be encapsulated, that is, 

[Fc] > [11]/2. This suggests that there is no passivation 

of the electrode resulting from any accumulation or 

precipitation of host on its surface. In fact, our data 

clearly support the voltammetrically silent character of 

Fc@112 under the conditions of our experiments.  

Kaifer’s group has also found that the negative 

charges around the 112 dimeric capsule can also play very 

important roles. For instance, hydrophobic cations, such as 

viologens, bind strongly to the outer surface of the 

capsule,24 due to the presence of four negative charges 

clustered at each polar end of the assembly and another 

eight negative charges gathered around the capsule’s 

equator. Kaifer’s group took advantage of these anionic 

surface charges to design a supramolecular system in which 

the oxidation of the encapsulated ferrocene becomes 

possible.  Basically, Kaifer’s group utilized the cationic 

ferrocene derivative (ferrocenylmethyl)trimethylammonium to 

mediate the electrochemical oxidation of ferrocene inside 

the 112 capsule (see Scheme 1.2).25 The supramolecular 

system consists of two molecules of host 11, forming a 

dimeric capsule, which includes ferrocene, and has a 
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affinities with viologen guests are lower (K~105-106 M-1) 

than those measured with ferrocene derivatives (K~108-1015 M-

1). In spite of these differences in the K values, both 

guests give rise quantitatively to CB7 inclusion complexes 

upon addition of 1.0 equiv of the host at the concentration 

levels (usually mM) employed in voltammetric experiments. 

In the absence of CB7, both guests exhibit very fast 

electrochemical kinetics and the observed voltammetric 

currents are controlled by diffusional effects. In 

electrochemical terms, their behavior is fully reversible. 

The viologen inclusion complexes also show reversible 

voltammetric behavior, indicating that viologen inclusion 

by CB7 does not have a significant effect on the 

electrochemical kinetics.37,38 In pronounced contrast, CB7 

inclusion complexes of ferrocene derivatives show a 

considerable decrease in electrochemical kinetics into the 

so-called “quasi-reversible” regime, where the standard 

rate constants for heterogenous electron transfer (ko) can 

be readily measured. 

The attenuation of electrochemical kinetics observed 

with the CB7 inclusion complexes of ferrocene derivatives 

reflects a hindrance to electron transfer that is probably 

related to the increased average distance between the redox 
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center and the electrode surface. This distance increase is 

a natural result of the encapsulation of the redox center 

inside the CB7 cavity. However, we should ask why the same 

phenomenon is not observed with viologens. Kaifer’s group 

rationalizes these observations using the fact that 

viologens protrude from the CB7 cavity in the inclusion 

complex, while the ferrocene center is much better included 

in the cavity. In fact, Figure 1.10 displays the two 

inclusion complexes, in which the relevant frontier 

orbitals for the guests are clearly shown. As it is clear 

in the figure, the HOMO of the ferrocene derivative, the 

key orbital for the oxidation of this guest, is fully 

contained inside the host cavity. In stark contrast, the 

LUMO of methylviologen, the most relevant orbital for guest 

reduction, has regions that escape out of the cavity 

through both portals. We view these regions as “leaky” 

areas in which the electron transfer is not curtailed by 

the surrounding host, thus facilitating electron transfer 

to the viologen inclusion complex. 
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properties upon incarcerated. In the last decade, a number 

of molecular hosts based on various building blocks and 

non-covalent interactions have been developed. These well-

defined architectures act like various containers, 

selectively confining guests in the protective inner phase 

and isolating them from bulky phase molecules. This chapter 

provides a brief introduction to the resorcinarene-based 

hosts, cucurbit[n]urils (CBn) and molecular cages. Water 

soluble hosts with large enough cavity, such as the deep-

cavity cavitand (host 11) and cucurbit[7]uril are of more 

interest for us because of their strong binding ability 

with redox active centers. Kaifer’s group has shown that 

encapsulation of redox active compounds may have a 

pronounced effect on their kinetics of heterogeneous 

electron transfer. It is anticipated that this field of 

research will further grow with the development of 

largercavity hosts with better aqueous solubility. 
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CHAPTER 2 

ENCAPSULATION OF TETRATHIAFULVALENE INSIDE A 
DIMERIC MOLECULAR CAPSULE FORMED BY TWO DEEP-CAVITY 

CAVITANDS 

2.1 General discussion 

Tetrathiafulvalene (TTF) and its derivatives 

constitute an important class of compounds for the design 

and preparation of highly conducting organic solids.41-43 TTF 

derivatives undergo two consecutive one-electron oxidations 

at very accessible potentials. This ease of oxidation has 

also led to their extensive utilization in switchable 

molecules.44 Typically, TTF is oxidized to its cation 

radical (TTF+) or dication (TTF2+) forms so that the 

development of positive charge on the TTF residue triggers 

the electrostatic repulsion with other positively charged 

components, leading to a measurable effect. 

Gibb’s octaacid16 (compound 11 in Figure 1.4) is a 

deep-cavity cavitand with a well-defined “bowl” shape. 

Eight carboxylic acid groups on the outer surface of this 

cavitand increase its solubility to millimolar levels in 

basic aqueous solution. Under these conditions, octaacid 

cavitand 11 forms head-to-head dimeric molecular capsules 

in the presence of hydrophobic guests.16,45 We have already 
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proton labels) undergo a pronounced downfield shift in the 

presence of TTF, but all aromatic protons are affected. 

Once the TTF concentration reaches the 0.5 equiv. mark, 

further additions of TTF no longer have any significant 

effect on the spectra. This finding is consistent with the 

anticipated stoichiometry for the inclusion of TTF inside a 

dimeric molecular capsule (an assembly that we will denote 

as TTF@112). 

TTF is a very hydrophobic compound, and its aqueous 

solubility is well below the millimolar concentrations used 

in the 1H NMR experiments.47 The fact that we can dissolve 

TTF at a concentration of 1 mM in an aqueous solution 

containing 2 mM of 11 is by itself a strong indication that 

there is an efficient binding interaction between the two 

compounds. In the NMR experiments of Figure 2.2, additions 

of up to 0.5 equiv. of TTF result in perfectly transparent 

solutions. However, once the total amount of added TTF 

exceeds 0.5 equiv., the solutions become turbid, because 

the amount of host is not enough to bind and solubilize all 

the TTF added. Figure 2.3 shows two pictures taken to 

illustrate the completely different appearance of solutions 

with fully dissolved TTF (in the presence of 11) and 

undissolved TTF guest (in the absence of 11). 
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In aqueous solution, the first oxidation is poorly 

developed because of the low solubility of TTF, but the 

second oxidation gives rise to a larger wave as the charged, 

oxidized TTF forms are considerably more soluble.50 

Therefore, we set out to record the electrochemical 

behavior of TTF trapped inside 112 using cyclic voltammetry 

(CV). The experimental results are shown in Figure 2.5. The 

black trace depicts the voltammetric behavior in the 

absence of host 11, showing the poorly developed anodic 

wave for the TTF → TTF+ + e− oxidation process centered at 

+0.18 V vs. Ag/AgCl. The second anodic wave (at +0.48 V) 

exhibits a higher current level, but no peaks are observed 

on the reverse scan, suggesting the fast disappearance of 

the dication. In the presence of 2.0 equiv. of host 11 (red 

trace), the small anodic current for the first oxidation 

process disappears, in spite of the fact that the effective 

concentration of TTF in this solution is 0.5 mM (with the 

TTF molecules encapsulated inside 112). We have reported 

very similar results for encapsulated ferrocene (Fc), that 

is, the Fc@112 assembly was found to be voltammetrically 

silent in the potential region corresponding to Fc 

oxidation. As the CV potential scan with TTF@112 extends to 

more positive values, a well-defined wave was recorded in 

the potential region corresponding to the second oxidation 
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process (at +0.56 V) and a small peak was observed on the 

reverse scan at potentials associated with the TTF+ + e− → 

TTF reduction process. 

 

Figure 2.5 CV responses on glassy carbon (0.07 cm2) of a 
saturated TTF aqueous solution (black trace) also 
containing 50 mM NaCl and 10 mM borate buffer pH 8.9 and a 
0.5 mM TTF + 1.0 mM 11 solution (red trace) in the same 
aqueous medium. Scan rate: 0.1 V s−1. The insert shows the 
SWV responses of the same two solutions in the potential 
range associated with the first TTF oxidation. 

In order to confirm that the first one-electron 

oxidation of TTF is shut off upon encapsulation, we carried 

out voltammetric experiments using square wave voltammetry 

(SWV), a technique that has inherently better sensitivity 

than CV. In the absence of host 11, we observed a small 

peak for the oxidation of the low concentration of TTF that 
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results from its limited aqueous solubility (see insert in 

Figure 2.5). However, in the presence of 2 equiv. of 11, a 

0.5 mM concentration of the TTF@112 assembly is present in 

the solution, but the SWV trace fails to reveal any 

significant faradaic current levels. Clearly, this result 

constitutes strong evidence for the hindered voltammetric 

response of encapsulated TTF. 

The observed hindrance for the electron-transfer 

process from the guest (in TTF@112) to the electrode is 

probably due to very slow electrochemical kinetics, 

resulting from the increased distance between encapsulated 

TTF (compared to free TTF) and the electrode surface. We 

have used similar arguments to explain the lack of 

voltammetric response observed with the Fc@112 assembly.24 

However, oxidation of encapsulated Fc in the latter 

assembly can be accomplished using a cationic mediator,25 

which attaches itself quite strongly to the negatively 

charged surface of the 112 capsule. In that case, oxidation 

of the guest leads to dissociation of the molecular 

assembly because the oxidized Fc+ species is less 

hydrophobic than the neutral guest and does not serve as an 

effective molecular “glue” to keep the assembly together. 

In the case investigated here, slow oxidation of TTF@112 
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seems to take place, eventually leading to the observation 

of the TTF+ oxidation wave. However, the fact that the peak 

potential for this anodic wave is more positive than that 

observed for the same oxidation in the absence of host 11 

is consistent with the release of TTF+ from the capsule. 

Furthermore, although the dicationic species (TTF2+) 

decomposes rapidly under the basic pH conditions of our 

experiments, the reduction of a small amount of free TTF+ is 

observed in the reverse scan. All these observations 

clearly indicate that the slow electrochemical oxidation of 

TTF@112 leads to the disassembly of the molecular capsule 

and the release of the less hydrophobic oxidized guest. 

The oxidation of encapsulated TTF is quite slow but 

still allows the eventual observation of a more developed 

wave for the oxidation of TTF+. This wave may also include 

faradaic components resulting from the kinetically hindered 

oxidation of TTF. The relatively loose fitting of TTF 

inside the 112 capsule may weaken the overall stability of 

the supramolecular assembly. The hypothesis that TTF fits 

loosely inside the inner space of the capsule (see Figure 

2.6) is consistent with the lack of observation of an NMR 

resonance for the TTF protons in the assembly TTF@112. This 

signal is likely to be broadened by the exchange of the 
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trapped guest among several possible locations inside the 

capsule. In contrast to this the bulkier ferrocene shows a 

relatively sharp resonance for its protons in the Fc@112 

assembly. 

Because of their importance in the research area of 

conducting organic solids, we also carried out experiments 

with two bulkier and more hydrophobic TTF derivatives, 

bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and 

bis(propylenedithio)tetrathiafulvalene (BPDT-TTF) see 

structures in Figure 2.1). However, all our attempts to 

solubilize these TTF derivatives in aqueous solutions 

containing host 11 failed, preventing further 

experimentation with these guests. Two reasons can be put 

forward to rationalize the failure of these guests to drive 

the formation of 112 capsules around them. First, these TTF 

derivatives are considerably more hydrophobic than TTF 

itself, which limits their aqueous solubility to even lower 

values and, thus, thwarts their binding interactions with 

host 11. Second, both guests have larger molecular volumes 

than TTF, which restricts their inclusion in the cavity of 

the 112 dimeric capsules. We have done some preliminary 

molecular modeling computations on these molecular 

assemblies and the results suggest that each of these 
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Materials: The cavitand host (compound 11) was prepared as 

reported by Gibb and co-workers (Scheme 2.1).16,51 All other 

chemicals were of the highest purity available and 

purchased from commercial suppliers. 

Electrochemistry: The voltammetric experiments were 

recorded using a single-compartment cell fitted with a 

glassy carbon working electrode (0.071 cm2), a platinum 

auxiliary electrode, and a Ag/AgCl reference electrode. The 

working electrode was polished immediately before the 

experiments using a water/alumina (0.05 μm) slurry on a 

felt surface. The solution was thoroughly deoxygenated by 

purging with high purity nitrogen gas and maintained under 

a nitrogen atmosphere during the experiments. 

Computational Studies: Energy minimization of 

supramolecular structures was carried out using the PM3 

semi-empirical method as implemented in the Gaussian 

software package (03 version).  



38 

  CHAPTER 3 

TRAPPING OF BULKY GUESTS INSIDE A DIMERIC MOLECULAR 
CAPSULE FORMED BY TWO DEEP-CAVITY CAVITANDS 

3.1 General Discussion 

In chapter 2, we presented our work on the study of 

encapsulating tetrathiafulvalene (TTF) inside the molecular 

capsule 112. In this chapter, we continue our research work 

by trapping bulky ferrocene-adamantane guests inside 112 

dimeric capsules. 

Adamantane (Ad) and ferrocene are two hydrophobic 

groups with pronounced differences from a chemical 

standpoint, but similar sizes. Both adamantane and 

ferrocene individually serve as hydrophobic guests to drive 

the formation of 112 capsules. Ramamurthy and co-workers 

have reported the entrapment of two adamantane molecules 

inside 112 assemblies under certain experimental 

conditions.45,52 Given the availability in our group of 

compounds containing both units (see compounds 12-14 in 

Figure 3.1) we decided to investigate the possible 

encapsulation of these compounds inside 112 dimeric capsules. 
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capsules we never found clear evidence for a similar 2:2 

complex, in which two ferrocenes would share the inner 

space of the molecular capsule. Therefore, before starting 

any work with guests 12-14, we attempted the simultaneous 

encapsulation of ferrocene and adamantane inside 112. 

Unfortunately, our efforts were in vain and we could not 

collect any evidence for such supramolecular species. When 

an aqueous solution containing 11 was exposed to an 

equimolar mixture of ferrocene and adamantane, the 

resulting NMR spectrum (Figure 3.2) shows signals 

corresponding to both encapsulated guests. However, the 

signals for the host protons do not show any evidence for 

the reduced symmetry of the 112 capsule that would be 

expected if two different bulky guests were included. 

Further analysis of this NMR spectrum using 2D NOESY 

techniques (Figure 3.3) reveals the spatial proximity of 

the encapsulated guest protons to some of the host protons, 

but no cross peaks between ferrocene and adamantane protons. 

All these data suggest the formation of Ad@112 and Fc@112, 

but no evidence for capsules containing both guests. 

Similarly, if we add excess adamantane to a solution 

already containing the Fc@112 complex, the final result is a 

solution containing the two 1:2 inclusion complexes. Under 

our experimental conditions, we could not obtain evidence 
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corresponding to the host signals except peaks that are 

close to the water peak, an artifact that results from the 

irradiation of the water peak for suppression purposes. The 

measured diffusion coefficient of 1.45 × 10-6 cm2/s is 

consistent with other D0 values previously reported for 

guest@112 species,27 further confirming the formation of the 

12@112 complex in aqueous solution. 

Given our interest in the electrochemical behavior of 

encapsulated redox centers, we carried out cyclic 

voltammetric experiments with solutions containing variable 

concentrations of cavitand 11 and guest 12, which contains 

a redox-active ferrocenyl residue in its structure. Our 

voltammetric data (Figure 3.7) clearly show that the 

current levels corresponding to the reversible one-electron 

oxidation of the ferrocenyl residue are gradually 

attenuated in the potential window from 0 mV to 600 mV, as 

the host/guest molar ratio increases. When 2.0 equiv of 

cavitand 11 are added to the solution, the cyclic 

voltammograms recorded for guest 12 are basically flat and 

no measurable faradaic currents associated with the 

oxidation of the ferrocenyl unit were detected in the 

potential range where its electrochemical oxidation is 

clearly observed in the absence of 11. These experimental 
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results are very similar to those recorded with Fc@112 and 

suggest that the encapsulation of guest 12 leads to a 

considerable attenuation of the electrochemical kinetics 

for the oxidation of the ferrocenyl residue.24,25 

 

Figure 3.7 Cyclic voltammetric responses on glassy carbon 
(0.07 cm2) of 0.5 mM guest 12 in 10 mM borate buffer (pH 8.9) 
also containing 50 mM NaCl in the absence (solid line), in 
the presence of 1.0 equiv (discontinuous line) and 2.0 
equiv (dotted line) of host 11. Scan rate: 0.1 V s-1. 

Guest 13 is basically insoluble in water due to its 

considerable hydrophobic character. When adding solid 13 to 

a solution containing cavitand 11, we did not observe any 

dissolution of the guest immediately after its addition. 

However, after heating at 60 0C and 2 hours of sonication, 

guest 13 was gradually dissolved into the cavitand-

containing solution. The appearance of signals 

Potential (mV) vs. Ag/AgCl
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Figure 3.9 Cyclic voltammetric response on glassy carbon 
(0.07 cm2) of 0.5 mM guest 13 in 10 mM borate buffer (pH 8.9) 
also containing 50 mM NaCl in the presence of 2.0 equiv 11. 
Scan rate: 0.1 V s-1. 

Noticeably, guests 12 and 13 have similar sizes and 

both fill ca. 62% of the available space within the cavity 

of capsule 112, suggesting that these guests are not too far 

from optimal inclusion fit according to Rebek’s rule,53 

which establishes 55% occupation as ideal in host-guest 

inclusion phenomena. However, the level of occupation of 

the cavity suggests a tight fit of either guest inside the 

dimeric molecular capsule. 

Potential (mV) vs. Ag/AgCl
0100200300400500600

C
u

rr
e

n
t 

(
A

)

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00



 

F
8
i

a

W

t

w

h

g

p

s

t

b

w

a

Figure 3
8.9 in D
in the p

In 

adamanty

When 2.0

the term

was evi

hydrogen

guest an

probably

states i

to the f

binding 

which re

assembly

3.10 1H N
D2O) of g
presence 

contrast

yl units

0 equiv 

minal ad

ident fr

n signals

nd host s

y due to

involving

flexibil

between 

esults i

y. 

NMR spec
guest 14
of 2.0 

t to gue

 connect

of cavi

damantyl 

rom the

s (Figur

signals 

o the rap

g guest 

lity of 

the ada

in a mor

ctra (500
4 (0.5 mM
equiv 11

ests 12 a

ted to 

itand 11

units 

e upfiel

re 3.10).

observed

pid exch

14 and 

guest 1

amantyl g

e flexib

0 MHz, 1
M) (a) i
1. 

and 13, 

the cen

 was ad

of gues

ld shif

. The ex

d in the

hange am

cavitan

14 and t

groups a

ble and 

 

10 mM bo
in the a

guest 1

tral fer

ded, the

t 14 wi

ft of 

xtensive

 1H NMR 

mong boun

d 11. Th

the relat

and the 

labile 

orate buf
absence a

4 contai

rrocenyl

e inclus

ithin th

the ada

 broaden

experime

nd and u

his is r

tively d

cavitand

supramol

50

 

ffer pH 
and (b) 

ins two 

l unit. 

sion of 

he host 

amantyl 

ning of 

ents is 

unbound 

related 

dynamic 

d hosts,

lecular 

 



   51 

 

Figure 3.11 Square wave voltammetric responses on glassy 
carbon (0.07 cm2) of 0.5 mM guest 14 in 10 mM borate buffer 
(pH 8.9) also containing 50 mM NaCl in the absence (solid 
line), in the presence of 1.0 equiv (discontinuous line), 
2.0 equiv (dotted line) and 3.0 equiv (dash-dote line) of 
host 11. Scan rate: 0.1 V s-1. 

Square wave voltammetry (SWV) was also used to 

investigate the interactions between guest 14 and cavitand 

11. When 2.0 equiv of 11 was added to a solution containing 

0.5 mM guest 14, the current for the oxidation of the 

ferrocene subunit was reduced owing to the slow diffusional 

motion of the complex (Figure 2.11), but not completely 

depressed, suggesting that the electroactive ferrocenyl 

unit in guest 14 was still “exposed” to the electrode. The 

half-wave potential (E1/2) for the oxidation of the 

ferrocene subunit also shifted positively, compared to the 

value for the free guest, presumably indicating that the 
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From these experimental results, we postulate a 

pseudo-capsular structure for the complex in which each of 

the adamantyl units of guest 14 is included by cavitand 11, 

leaving the connecting ferrocenyl unit of the guest still 

exposed to the solution, through the cleft formed between 

the two capping cavitands (Figure 3.12). Rebek and co-

workers have reported a similar pseudo-capsular assembly.54 

3.3 Summary 

In conclusion, we have presented data showing very 

clearly that cavitand 11 forms dimeric capsules around the 

bulky guests 12 and 13 in aqueous solution. Notably, we 

have not been able to obtain experimental evidence for the 

simultaneous encapsulation of freely diffusing adamatane 

and ferrocene. Both NMR spectroscopic and voltammetric data 

are consistent with the complete encapsulation of 12 and 13 

inside 112 capsules. In contrast to this, guest 14 leads to 

a 1:2 complex with two molecules of cavitand 11 bound to 

the terminal adamantyl residues. This complex is not, 

however, a “sealed” molecular capsule, and the middle 

ferrocenyl residue does not appear to be included inside 

the supramolecular assembly, as evidenced by the measurable 
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voltammetric response recorded for the electrochemical 

oxidation of the ferrocenyl unit.  

3.4 Experimental Section 

Materials. The cavitand host (compound 11) was prepared as 

reported by Gibb and co-workers.16,51 All other chemicals 

were of the highest purity available and purchased from 

commercial suppliers. 

Synthesis of adamantyl(ferrocenylmethyl)amine (12): To an 

absolute methanol solution (50 mL) of 

ferrocenecarboxaldehyde (200 mg, 0.93 mmol) and 1-

adamantylamine (948 mg, 6.3 mmol) also containing activated 

4A type molecular sieves was added 5 M HCl in methanol to 

adjust the pH of the solution to ca. 7. After stirring for 

1 h at r.t. under N2, NaBH3CN (352 mg, 5.6 mmol) was added 

to the reaction mixture, which was then heated and stirred 

at 60 oC for 2 days. The resulting mixture was filtered 

through Celite 545 and then concentrated in vacuo to give a 

red solid, which was purified by column chromatography on 

Al2O3 (neutral) using chloroform and ethyl acetate (5:1) as 

the eluent. The yellow solid product was obtained after 

solvent evaporation and recrystallized from methanol (130 

mg, yield: 36.1%). ESI-HRMS (m/z) calcdfor C21H28NFe: 
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350.1571, found: 350.1579. 1H NMR (500 MHz, D2O): 1.54 (ds, 

3H), 1.62 (ds, 3H), 1.78 (s, 6H), 2.07 (s, 3H), 3.92 (s, 

2H), 4.16 (s, 5H), 4.20 (s, 2H), 4.27 (s, 2H). 13C NMR (125 

MHz, D2O): 28.75, 34.86, 37.94, 39.41, 57.46, 68.91, 69.55, 

69.90, 76.73. 

Synthesis of adamantylferrocenecarboxylamide (13): 

Ferrocenecarboxaldehyde (200 mg, 0.87 mmol) was mixed with 

1-adamantylamine (158 mg, 1.04 mmol) in 200 mL anhydrous 

dichloromethane. To this solution n-HATU (397 mg, 1.04 mmol) 

and proton sponge (224 mg, 1.04 mmol) were added. The 

reaction mixture was stirred under N2 at r.t. for 1 day and 

then concentrated in vacuo to give a red solid, which was 

purified by column chromatography (SiO2) using 

hexane/chloroform/ethyl acetate (2/2/1) as the eluent. The 

final product was obtained (200.8 mg, yield: 63.6%) after 

solvent evaporation and recrystallized from CH3CN/CHCl3 

(1/1). ESI-HRMS (m/z) calcd for C21H26NOFe: 364.1364, found: 

364.1351. 1H NMR (500 MHz, d6-DMSO): 1.63 (s, 6H), 2.02 (s, 

9H), 4.11 (s, 5H), 4.27 (t, 2H), 4.80 (t, 2H), 6.72 (s, 1H).  

13C NMR (125 MHz, d6-DMSO): 29.37, 36.59, 41.71, 50.69, 

68.77, 69.83, 70.21, 78.04, 168.62. 

1,1’-Bis(adamantylaminomethyl)ferrocene (14): To an 

absolute methanol solution (60 mL) of 1,1’-
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ferrocenedicarboxaldehyde (200 mg, 0.83 mmol) and 1-

adamantylamine (998 mg, 6.6 mmol) also containing 4A type 

molecular sieves was added 5 M HCl in methanol to adjust 

the pH of the solution to ca.7. After stirring for 1 h at 

r.t. under N2, NaBH3CN (415 mg, 6.6 mmol) was added to the 

reaction mixture which was then refluxed for 2 days. The 

resulting mixture was filtered through Celite 545 and then 

concentrated to give a red residue, which was purified by 

column chromatography on Al2O3 (neutral) using 

CHCl3/EtOAc/MeOH (20/4/1) as the eluent. The yellow solid 

product was obtained after the solvent was evaporated and 

recrystallized from hot methanol (90.5 mg, yield: 21.4%). 

ESI-HRMS (m/z) calcd for C32H45N2Fe: 513.2932, found: 

513.2940. 1H NMR (500 MHz, D2O): 1.50 (ds, 6H), 1.59 (ds, 

6H), 1.74 (s, 12H), 2.04 (s, 6H), 3.86 (s, 4H), 4.20 (s, 

4H), 4.26 (s, 4H). 13C NMR (125 MHz, D2O): 28.91, 35.66, 

38.05, 39.09, 56.98, 70.52, 71.98, 78.98. 

Electrochemistry: The voltammetric experiments were 

recorded using a single-compartment cell fitted with a 

glassy carbon working electrode (0.071 cm2), a platinum 

auxiliary electrode, and a Ag/AgCl reference electrode.  

The working electrode was polished immediately before the 

experiments using a water/alumina (0.05 μm) slurry on a 
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felt surface. The solution was thoroughly deoxygenated by 

purging with high purity nitrogen gas and maintained under 

a nitrogen atmosphere during the experiments. 

Computational Studies: Energy minimization of 

supramolecular structures was carried out using the PM3 

semi-empirical method as implemented in the Gaussian 

software package (03 version). Guest molecular volumes were 

calculated with YASARA and compared with the cavity volumes 

computed using the SPDB viewer (version 4.04). 
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CHAPTER 4 

BINDING OF CUCURBIT[7]URIL WITH A TRIS(VIOLOGEN) 
DERIVATIVE GUEST 

4.1 General Discussion 

In Chapter 1 we had a brief introduction of binding 

cucurbit[7]uril with viologen (V2+) guests. In this chapter, 

we will present more details based on our research work. 

Viologens (V2+) can undergo two consecutive one-

electron reductions to firstly form a fairly hydrophobic 

radical cation species (V+) and then a fully reduced neutral 

(V) species,55 which may precipitate on the working 

electrode and distort the shapes of the voltammetric peaks. 

Both reduction processes can take place at accessible 

potentials in aqueous and non-aqueous solutions with 

electrochemical reversibility. Kaifer’s group had 

previously pointed out that the removal of one positive 

charge from V2+ (V2+ + e- = V+) has a relatively minor effect 

on the host-guest binding affinity with CB7 compared to 

that of hydrophobic interactions, based on the experimental 

result that the E1/2 value for the process shifts only 25 mV 

cathodically in the presence of one equivalent of CB7.37 
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Figure 4.4. As CB7 is added (G:H=1:1.5), all the peaks are 

shifted to their final positions and broadened except 

terminal peaks “j” and “k”, which remain sharp. When the 

CB7 concentration reaches 3 equiv., in contrast, all the 

previously broadened peaks are sharpened and the originally 

sharp peaks “j” and “k” are broadened. Further additions of 

CB7 (G:H=1:6) no longer have any significant effect on the 

spectra except peaks “j” and “k”, which are further 

broadened. All the peaks assigned on Figure 4.4 are based 

on 2D NMR COSY experiments, and we are specifically 

interested in the situation where the concentration of 

guest versus host is equal to 1:3, assuming that all 

viologen moieties can be included inside CB7 (refer to 

Figure 4.5 for peak assignments). Peaks “g” and “h” 

corresponding to the β viologen protons show a 1.5 ppm 

upfield displacement from originally 8.4 ppm, in the 

absence of host, to 6.9 ppm when encapsulated inside CB7. 

The α-protons of the bipyridinium moiety are almost 

unchanged. These changes are consistent with the published 

results and are characteristic of the viologen·CB7 

complex.59 The downfield shift of peak “a” and peak “b”, 

instead, means the 1,2,3-triazole group of guest 17 does 

not undergo any encapsulation since the interactions with 

the electronegative oxygens on the CB7 portal cause reduced 
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We submitted a sample containing one equivalent of 17 

and three equivalents of CB7 for ESI-TOF mass spectrometry 

to investigate the presence of 17·CB73 complex. From the 

spectroscopic results in Figure 4.7, we can conclude that 

the 17·CB73 complex shows remarkable stability in the gas 

phase. The most intense signal is the parent complex 

without any counter ion, namely [17·CB73]6+ (m/z=756.6008, 

z=6). As the number of attached PF6- counter ions to the 

supramolecular complex increases, the signal intensity of 

the complex decreases. We are still able to detect 

[17·3PF6·CB73]3+ (m/z=1658.1500, z=3) complex, even though 

the intensity is very low. By comparing to the theoretical 

data of [17·CB73]6+ complex, our results convincingly prove 

the formation of the 17·CB73 complex.  
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of the voltammetric peaks. Therefore, we narrow the 

potential scan range of the 17·CB73 complex by only focus on 

the first reduction-oxidation process, namely from V2+ + e- 

= V+ and then V+ - e- = V2+. Our data in Figure 4.10 show 

that the guest voltammetry still has a distorted shape 

which tells us that the sharp oxidation peak is not 

distorted by fully reduced neutral species precipitated on 

the electrode surface, but by the fairly hydrophobic 

radical cation species (V+). Upon addition of CB7, the 

reduction potential gradually moves from (-480 mV) to a 

more negative value (-620 mV), which corresponds to the 

reduction of the encapsulated viologen species. The 

oxidation peak gradually reduces its currents upon addition 

of CB7. Once CB7 concentration reaches three times of guest 

17 concentration, the oxidation peak moves to a negative 

potential (-550 mV) which belongs to the oxidation of 

encapsulated radical cation species (V+). From the G:H 1:3 

voltammetry result (refer to the amplified insert in Figure 

4.10), we can clearly see that viologen species of 17·CB73 

complex undergo reversible reduction-oxidation process with 

reduced currents at the potential rang -450 mV to -700 mV, 

which tells us that stabilized by CB7 the viologen species 

are more difficult to reduce and that the bulky size of 
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as if they were “d” protons since they move to a chemical 

shift that belongs to “d” protons in 17·CB73 and 18·CB7 

complexes, and the “e” protons shift to a position that 

used to be “c” protons in the 17·CB73 and 18·CB7 complexes 

(refer to the proton labels in parentheses for guest 19 in 

Figure 4.15). These important data tell us that the 

abnormal behavior of peaks “c” and “d” in our previous 

discussion indeed come from the twisted propyl chains that 

the “c” protons twist closer to one portal of CB7 and their 

electron clouds are strongly influenced by the portal 

oxygens at that spatial position and give a significantly 

upfield shift. Contained by the twisted “c” protons, the 

adjacent “d” protons step back to a spatial position that 

is shielded from the effect of the portal oxygens, thus 

have a much lower chemical shift.  

We have also done some preliminary molecular modeling 

computation on the 19·CB7 complex and the result is shown 

in Figure 4.15. From the figure we can clearly see that “e” 

protons are very close to one of the CB7 portals, therefore 

their counterpart “c” protons in 17·CB73 and 18·CB7 

complexes must be folded up to CB7 to get the same effect. 

This twisted structure contains the protons “d” in the same 

spatial positions as the “c” protons in the 19·CB7 complex 
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aqueous solution of CB7, and get the value 5.6×104 M-1, which 

is lower than previous reported viologen·CB7 complexes in 

Kaifer’s group.37,38 The comparatively lower binding constant 

for 18·CB7 complex reflects relatively weaker binding 

affinities between CB7 and our viologen moieties, and also 

explains why we cannot get exact 1:3 stoichiometry for 

17·CB73 complex through Job-plot. We tried to calculate K2 

and K3 by fitting our experimental data of 17·CB73 complex 

to eq. 1-5, but we could not obtain reasonable results yet. 

4.3 Summary 

In conclusion, we have presented data showing very 

clearly that CB7 forms trimeric complexes around the 

tris(viologen) guest 17 in aqueous solution. Both NMR 

spectroscopic and voltammetric data are consistent with the 

encapsulation of viologen residue inside host CB7 as 

reported in literature. From the results of ESI-TOF mass 

spectrum, we conclude that a supramolecular architecture, 

17·CB73 complex, is formed and very stable in gas phase. The 

UV-Vis and Job-plot results show a relatively weak binding 

effect in 17·CB73 complex in aqueous solution. The 

electrochemical data give us a significant potential shift 

for the first reduction-oxidation process upon formation of 
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17·CB73 complex. We also designed and prepared two control 

guests 18 and 19, trying to understand the abnormal 

chemical shift changes of proton “c” and “d” of guest 17 

upon encapsulation by CB7. The 1H NMR results support that 

each viologen branch acts as if they are independently 

interacting with CB7 and proton “c” is in a special 

position that is hugely impacted by oxygens located at the 

portal of CB7, yielding a remarkable 2.8 ppm upfield shift. 

The binding constant value for 18·CB7 complex also proves 

that CB7 does not have very strong binding affinity on the 

viologen moiety of these compounds, leading to fast 

association-dissociation dynamics in aqueous solution.  

4.4 Experimental Section 

Materials. All starting chemicals were of the highest 

purity available and purchased from commercial suppliers. 

Synthesis of 2,4,6-tris(prop-2-ynyloxy)-1,3,5-triazine (17a) 

has been previously reported.60 Propargyl alcohol (10 ml) 

was added slowly to a suspension of cyanuric chloride (2.2 

g, 12.1 mmol) in 15 ml THF at room temperature followed by 

K2CO3 (5.2g, 36.3 mmol). Reaction was heated to 60 0C 

overnight. The reaction mixture was filtered. After 

evaporation of solvent, the residue was dissolved in 80 ml 
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CH2Cl2, and washed with diluted hydrochloric acid (10%) and 

saturated brine. Then dried over MgSO4 and evaporated the 

solvent, 2.6 g (90% yield) of 17a as white solid was 

obtained. ESI-TOF MS (m/z) calcd for [C12H9N3O3Na]+: 266.0542, 

found:266.0551. 1H NMR (500 MHz, d6-DMSO): 3.68 (s, 1H), 

5.08 (s, 2H). 13C NMR (125 MHz, d6-DMSO): 56.21, 78.34, 

79.11. 

Synthesis of 1-ethyl-4,4’-bipyridinium bromide (17b): 

Bromoethane (3.16 g, 29 mmol) dissolved in 35 ml toluene 

was added to an intensively stirred solution of 4,4’-

bipyridine (7.8g, 50 mmol) in 15 ml toluene at room 

temperature within 1h. The solution was stirred at room 

temperature for 15h and then refluxed for 2 more days. 

After reaction, precipitate was filtered and washed with 

toluene to get 4.5 g (58% yield) yellow product. ESI-TOF MS 

(m/z) calcd for [C12H13N2]+: 185.1079, found: 185.1089. 1H NMR 

(500 MHz, d6-DMSO): 1.59 (t, 3H), 4.70 (q, 2H), 8.06 (ds, 

2H), 8.67 (ds, 2H), 8.88 (ds, 2H), 9.29 (ds, 2H). 13C NMR 

(125 MHz, d6-DMSO): 16.80, 56.44, 122.36, 125.81, 141.32, 

145.32, 151.46, 152.63. 

Synthesis of 1-(3-bromopropyl)-1’-ethyl-4,4’-

bipyridiniumbromide(17c) was based on the reported 

procedure:61 528 mg (2 mmol) of 1-methyl-4,4’-bipyridinium 
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bromide (17b) was dissolved in 35 ml hot acetonitrile. When 

solution became clear, 6g (30 mmol) of dibromopropane was 

added via syringe to the solution and reacted for 40 hours 

at reflux. After the reaction mixture cooled down to room 

temperature, the crude product was filtered and washed with 

acetonitrile to get 750 mg (80% yield)of the pure product 

(17c) as a yellow precipitate. ESI-TOF MS (m/z) calcd for 

[C15H19N2Br2]+: 386.9895, found: 386.9835. 1H NMR (500 MHz, 

d6-DMSO): 1.62 (t, 3H), 2.61 (t, 2H),3.65 (p, 2H), 4.77 (q, 

2H), 4.86 (t, 2H), 8.86 (ds, 4H), 9.47 (ds, 4H). 13C NMR 

(125 MHz, d6-DMSO): 16.78, 30.62, 33.53, 57.00, 60.09, 

126.98, 127.05, 146.17, 146.58, 148.85, 149.19. 

Synthesis of 1-(3-azidopropyl)-1’-ethyl-4,4’-

bipyridiniumhexafluorophosphate (17d) was based on the 

reported procedure:61 A mixture of 1-(3-bromopropyl)-1’-

ethyl-4,4’-bipyridinium bromide (17c) (0.47g, 1 mmol, 1M) 

and sodium azide (0.195g, 3 mmol, 3M) in 1 ml of water was 

heated at 80 0C overnight. The solution was evaporated to 

dryness to give a brown solid. The solid was dissolved in 1 

ml of methanol and filtered to remove an excess of sodium 

azide. The filtrate was dried under vacuum to solid. The 

solid was then dissolved in a H2O/MeCN (3:1) mixture and a 

saturated aqueous solution of NH4PF6 was added to this 
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mixture. The resulting yellow/brown precipitate was 

filtered, washed with H2O and dried under reduced pressure 

to give 240 mg (43% yield) final product (17d) as purple 

solid. ESI-TOF MS (m/z) calcd for [C15H19N5PF6]+: 414.1282, 

found: 414.1171. 1H NMR (500 MHz, d6-DMSO): 1.62 (t, 3H), 

2.29 (p, 2H),3.54 (t, 2H), 4.72 (q, 2H), 4.77 (t, 2H), 8.80 

(ds, 4H), 9.40 (ds, 4H). 13C NMR (125 MHz, d6-DMSO): 16.77, 

30.15, 48.06, 57.07, 59.19, 127.00, 146.20, 146.63, 149.00, 

149.24. 

Synthesis of tris(viologen)guest(17): A degassed solution 

of [Cu(MeCN)4]PF6 (75 mg, 0.2 mmol) in MeCN (0.5 mL) was 

added to a degassed solution of 1-(3-azidopropyl)-1’-ethyl-

4,4’-bipyridinium hexafluorophosphate (17d) (625 mg, 1.2 

mmol) and 2,4,6-tris(prop-2-ynyloxy)-1,3,5-triazine (17a) 

(97.3 mg, 0.4 mmol) in Me2CO (30 ml) under N2. The solution 

was stirred for 2 days at 30 0C before column chromatography 

on silica gel (CH2Cl2/CH3CN 6:4) monitored by TLC (10:1:1 

MeCN: H2O: Sat NH4PF6) to afford the expected product 17·PF6 

as 220 mg (42% yield) light yellow powder. The product can 

also be converted to 17·Cl6 by ion exchange with 

tetrabutylammonium chloride. ESI-TOF MS (m/z) calcd for 

[C57H66N18O3Cl4]2+: 596.2145, found: 596.1857. 1H NMR (500 MHz, 

d6-DMSO): 1.62 (t, 3H), 2.64 (p, 2H),4.58 (t, 2H), 4.72 (q, 
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2H), 4.77 (t, 2H), 8.34 (s, 1H), 8.80 (m, 4H), 9.38 (m, 4H). 

13C NMR (125 MHz, d6-DMSO): 16.31, 30.77, 46.50, 56.533, 

58.40, 60.92, 125.34, 126.52, 141.39, 145.68, 146.05, 

148.35, 148.65, 172.26. 

Synthesis of control compound triazole-viologen (18): A 

degassed solution of [Cu(MeCN)4]PF6 (37.5 mg, 0.1 mmol) in 

MeCN (0.5 mL) was added to a degassed solution of 1-(3-

azidopropyl)-1’-ethyl-4,4’-bipyridinium hexafluorophosphate 

(17d) (260 mg, 0.5 mmol) and propargyl alcohol(28 mg, 0.5 

mmol) in Me2CO (15 ml) under N2. The solution was stirred 

for 2 days at 30 0C before column chromatography on silica 

gel (CH2Cl2/CH3CN 1:5) monitored by TLC (10:1:1 MeCN: H2O: 

Sat NH4PF6) to afford the expected product 18 as 230 mg (75% 

yield) light yellow powders. ESI-TOF MS (m/z) calcd for 

[C18H23N5OPF6]+: 470.1544, found: 470.1556. 1H NMR (500 MHz, 

d6-DMSO): 1.62 (t, 3H), 2.64 (p, 2H),4.48 (ds, 2H), 4.50 (t, 

2H), 4.72 (q, 2H), 4.77 (t, 2H), 5.21 (t, 1H, OH), 7.99 (s, 

1H), 8.86 (s, 4H), 9.31 (ds, 2H), 9.38 (ds, 2H). 13C NMR 

(125 MHz, d6-DMSO): 16.77, 31.06, 46.80, 54.24, 57.06, 59.14, 

146.12, 146.47, 148.62, 148.85, 149.12. 

Synthesis of control compound triazole-viologen (19) is 

similar to the synthesis of control compound 18, the only 

difference is using dibromoethane as starting material to 
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get 1-(3-bromoethyl)-1’-ethyl-4,4’-bipyridinium bromide and 

then 1-(3-azidoethyl)-1’-ethyl-4,4’-bipyridinium 

hexafluorophosphate). The expected product 19 is a brown 

solid with 250 mg in 83% yield. ESI-TOF MS (m/z) calcd for 

[C17H21N5OPF6]+: 456.1388, found: 456.1393. 1H NMR (500 MHz, 

d6-DMSO): 1.61 (t, 3H), 4.51 (t, 2H),4.72 (q, 2H), 5.13 (s, 

2H), 5.23 (t, 2H), 5.25 (s, 1H, OH), 8.03 (s, 1H), 8.80 (s, 

4H), 9.23 (ds, 2H), 9.40 (ds, 2H). 13C NMR (125 MHz, d6-

DMSO): 16.77, 49.53, 55.41, 57.16, 60.58, 124.01, 126.86, 

127.10, 146.15, 146.78, 148.65, 148.93, 149.75. 

Electrochemistry: The voltammetric experiments were 

recorded using a single-compartment cell fitted with a 

glassy carbon working electrode (0.071 cm2), a platinum 

auxiliary electrode, and a Ag/AgCl reference electrode.  

The working electrode was polished immediately before the 

experiments using a water/alumina (0.05 μm) slurry on a 

felt surface.  The solution was thoroughly deoxygenated by 

purging with high purity nitrogen gas and maintained under 

a nitrogen atmosphere during the experiments. 

Computational Studies: Energy minimization of 

supramolecular structures was carried out using the DFT-

B3LYP method (basis set: 3-21G) as implemented in the 
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Gaussian software package (09 version) without solvent 

effect. 
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CHAPTER 5 

CAGE MOLECULES FORMED BY “CLICK” REACTIONS 

5.1 General Discussion 

“Cage” type molecules have been attracting continuous 

interest from supramolecular chemists all over the world 

because of their rigid, three-dimensional (3D) molecular 

frames that enclose space to encapsulate smaller guest 

molecules. Various shaped cage molecules, for example, 

sphere, cylinder, cone, and prism, have been synthesized 

either through covalent bond formation62 or noncovalent 

interactions63, such as hydrogen bonds and metal-ligand 

coordination bonds. In recent years, cage molecules based 

on metal-ligand directed assembly have developed rapidly 

and facilitated potential applications in gas storage, drug 

delivery, catalysis and so on. In this chapter, only cage 

molecules built from covalent chemical bonds possessing 

high stability will be covered. 

Mei-Xiang Wang’s group reported a molecular triangular 

prism 20 based on oxygen atom bridged bicyclocalix-

aromatics that employs 1,3,5-tris(4-hydroxyphenyl)benzene 

(20a) as equilateral triangular bases for “top” and “bottom” 

and cyanuric chlorides as the three pillars.64 The synthesis 
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Up to the present, the construction of supramolecular 

cages with large cavities in an efficient way still remains 

a challenge. In designing these sophisticated molecular 

architectures, the geometry of the molecules is very 

important, even small changes in the shapes of molecules 

can have a profound influence on cage formation. 

Intramolecular interactions also play critical roles in 

producing three dimensional cage products and avoiding 

other side reactions. In this chapter, we will present our 

interest in designing larger cage molecules via “click” 

reaction and show how the design of the starting molecules 

affect the formation of the cage molecules. 

5.2 Experimental Results and Discussion 

To explore the experimental conditions for “click” 

reaction, we started with a simple experiment between 1,4-

diethynylbenzene (21a) and 2-azidoethanol (21b), using the 

organic soluble copper (I) complex (EtO)3P·CuI as catalyst 

(Scheme 5.4). From the ESI-TOF mass spectrum result, calcd 

for [C14N6O2H17]+: 301.1413, found: 301.1426, we confirm that 

resulting compound 21 was successfully synthesized. Herein, 

we build our confidence to synthesize more complicated cage 

molecules.  
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concentration (~0.3 mM) to help reduce the chances for 

starting materials to collide together and form cross-

linking polymers. Meanwhile, a suitable template that can 

shape the cage molecule by hydrophobic forces and π-

stacking interactions would effectively assist in forming 

the cage molecule and trap the template in the inner cavity. 

Usually, solvent itself is a good template. In our case, 

toluene as solvent is too small to act as a template and to 

stabilize the system by cofacial π-stacking interactions. 

Based on the above discussion, we decided to revise our 

proposal by reducing the quantity of “click” reactions in 

one cage molecule without sacrificing the cavity size of 

the cage. 

Inspired by the molecular triangular prism 20, we 

designed a new scheme for the synthesis of cage 23. We 

improved 20 by introducing longer pillars that support the 

molecular “top” and “bottom” 20a, which will provide a 

larger cavity for bigger guest molecules to reside inside 

(see Scheme 5.6). However, when we carried out the 

experiment using three “click” reactions to close up the 

cage, a yellow precipitate arose from toluene and the 

precipitate couldn’t be dissolved any more in other 

solvents. Since 20a is highly hydrophobic due to the four 
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The proposal in Scheme 5.10 is reasonable, but when we 

carried out the experiments shown in Scheme 5.11 to 

synthesize the pillar compound 27b, we could not get the 

pure product. 4,4’-Bipyridine has two active N-terminals 

for dibromopropane bromides, and dibromopropane also has 

two bromide ends for N-terminals. We tried different 

solvents, different temperatures and different reaction 

times for the reaction, but we always obtained 27c mixed 

with side product polymers (up to 80% purity). We tried to 

remove the polymer impurities, and our results showed that 

the desired product and the polymers have similar chemical 

properties and are very difficult to separate. Therefore, 

we used the approximate 80% purity of 27c to react with 0.5 

equiv. of sodium azide. Beside the desired 27b, we 

introduced more impurities from either the starting 

materials 27c or both bromide ends converted to azides 27a 

(Scheme 5.11). Azide ends and bromide ends have similar 

polarity and show up as one spot in TLC, therefore column 

chromatography is not an effective way here. We directly 

used the mixture (~50% purity) and converted their counter 

ions to PF6- and then tried the first “click”. We obtained 

the intermediate product 27d with less than 10% yield to 

our best result. Column chromatography helps removing most 

of the starting materials, but there are still around 20% 
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architecture that can hold up small guest molecules via 

“click” chemistry. From the experimental results of several 

proposed synthetic schemes, we can conclude that it is 

extremely easy to produce polymers instead of shaped cage 

molecules via “click” chemistry since “click” reactions are 

very efficient and non-selective. A template that can shape 

the cage cavity and has non-covalent effects with the 

forming cage can help reduce the random reactions and lead 

to more controlled results.  

5.4 Experimental Section 

Materials. All starting chemicals were of the highest 

purity available and purchased from commercial suppliers. 

2-Azidoethanol (21b) was prepared by a modification of the 

method of Hooper et al.71 To a 250 mL round bottom flask was 

added 2-bromoethanol (37.5 g, 0.3 mol) and sodium azide 

(32.5 g, 0.5 mol) in 100 mL of water. The mixture was 

stirred at 80 0C for 8 h and then cooled to room temperature. 

The solution was extracted with ether (3×100 ml), dried 

with sodium sulfate overnight, and filtered. After the 

removal of the solvent under vacuum, 2-azidoethanol 

wasobtained as a colorless liquid (90% yield). 
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Synthesis of compound 21: A mixture of 1,4-diethynylbenzene 

(21a) (3.47g, 0.0275 mol), 2-azidoethanol (21b) (4.3g, 0.05 

mol), DIPEA (9.69g, 0.075 mol) and the copper catalyst 

[(EtO)3P·CuI] (0.89g, 0.0025 mol) was added to 75 mL toluene. 

The solution was refluxed for 1 h before precipitate was 

filtered and washed with toluene. ESI-TOF mass spectrum 

result, calcd for [C14N6O2H17]+: 301.1413, found:301.1426. 1H 

NMR (500 MHz, d6-DMSO): 3.82 (q, 2H), 4.45 (t, 2H), 5.12 (t, 

1H), 7.93 (ds, 2H), 8.54 (s, 1H). 

2,4,6-Tris(2-azidoethoxy)-1,3,5-triazine (22a) was 

synthesized based on a reported procedure.72 To a cold 

solution of cyanuric chloride (1.87 g, 10 mmol) and 2-azido 

ethanol (21b) (5.2 g, 60 mmol) in dry acetonitrile (25 ml) 

was added dropwise a solution of DIPEA (7 ml) in 

acetonitrile (10 ml). The reaction mixture was kept at room 

temperature for 2 days. After evaporation the crude product 

was dissolved in chloroform (150 ml) and washed with water 

(50 ml). The organic phase was dried (Na2SO4), filtered and 

evaporated. Column chromatography (CH2Cl2-ether 20:1) gave 

the product 22a as a liquid. 1H NMR (CDCl3, 300 MHz): 4.59 

(t, 1H), 3.68 (t, 6H); 13C NMR (CDCl3, 75 MHz): 49.4, 67.3, 

171.8. 
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Synthesis of cage molecule 22: A mixture of 1,4-

diethynylbenzene (21a) (27.9 mg, 0.15 mmol), 2,4,6-tris(2-

azidoethoxy)-1,3,5-triazine (22a) (33.6 mg, 0.10 mmol), 

DIPEA (0.15 ml) and the copper catalyst [(EtO)3P·CuI] (20 mg, 

0.05 mmol) in 500 ml toluene under reflux for 1 h. The 

precipitate was filtered and washed with toluene for 

further characterization. The residue was concentrated and 

dried for further product analysis.  

1,3,5-Tris(4-hydroxyphenyl)benzene (20a) was synthesized 

based on a reported procedure.64 SiCl4 (50.97 g, 300 mmol) 

was added slowly by syringe to a stirred solution of p-

methoxyacetophenone (15 g, 100 mmol) in dry ethanol (100 mL) 

at 0 0C. The mixture was stirred for 6 hours and then 

further refluxed for 2 hours. The reaction mixture was then 

cooled to room temperature and poured into 200 mL water, 

extracted with CH2Cl2 (150 ml × 3), Dried (MgSO4), filtered 

and concentrated on a rotary evaporator. Crystallization 

from ethanol gave 1,3,5-tris(4-methoxyphenyl)benzene (11 g, 

83%) as light yellow solid. 1H NMR(300 MHz, CDCl3): 3.87 (s, 

9H), 7.01 (d, 6H), 7.62 (d, 6H), 7.65 (s, 3H); 13C NMR (75 

MHz, CDCl3): 55.3, 114.2, 123.8, 128.3, 159.3, 133.8, 141.8. 

1,3,5-Tris(4-methoxyphenyl)benzene (9.9 g, 25 mmol) was 

taken in flask and added to it 100 ml of acetic acid as 
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solvent and stirred it till reflux. Then added to it 

dropwise 48% aqueous HBr (37.93 g, 25.45 mL, 225 mmol) and 

refluxed the solution for another 30 h. The reaction 

mixture was concentrated on rotary evaporator to a small 

volume and then added to it 100 mL of water. Precipitates 

thus formed were filtered and washed thoroughly with water. 

The residue was then chromatographed on a silica gel column 

(100-200) with a mixture of petroleum ether and acetone 

(3:1) as the mobile phase to give 8.15 g 20a (92%) as white 

solid. 1H NMR (300 MHz, Acetone): 6.97 (d, 6H), 7.66 (d, 6H), 

7.69 (s, 3H), 8.46 (s, 3H); 13C NMR (75 MHz, Acetone): 116.5, 

123.7, 129.1, 133.5, 142.9, 158.1. 

Synthesis of 2-propargyloxy-1,3,5 triazine (23a): Cyanuric 

chloride (0.57 g, 3.12 mmol) was dissolved in 25 ml THF and 

cooled to 0 0C in an ice/water bath, followed by dropwise 

addition of a mixture of propargyl alcohol (0.175 g, 3.12 

mmol) and DIPEA (0.4 g, 3.12 mmol) in 15 ml THF. The 

reaction mixture was stirred for 4 hours at 0 0C then warmed 

up to room temperature overnight. DIPEA salt was filtered 

out and the filtrate was concentrated. Filtrate was 

dissolved in CH2Cl2 then washed with water three times 

before dried with anhydrous Na2SO4. The residue was then 

chromatographed on a silica gel column (100-200) with a 
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mixture of hexane and EtOAc (6:1) as the mobile phase to 

give 381 mg (60%) pure product 23a as white solid. 1H NMR 

(500 MHz, CDCl3): 2.62 (s, 1H), 5.12 (s, 1H); 13C NMR (125 

MHz, CDCl3): 57.32, 75.65, 77.00, 170.4, 172.77. 

Synthesis of 2-azidoethoxy-1,3,5 triazine(23b): Cyanuric 

chloride (0.57 g, 3.12 mmol) was dissolved in 25 ml THF and 

cooled to 0 0C in an ice/water bath, followed by drop wise 

addition of a mixture of 2-azidoethanol (21b) (0.27 g, 3.12 

mmol) and DIPEA (0.4 g, 3.12 mmol) in 15 ml THF. The 

reaction mixture was stirred for 4 hours at 0 0C then warmed 

up to room temperature overnight. DIPEA salt was filtered 

out and the filtrate was concentrated. Filtrate was 

dissolved in CH2Cl2 wan washed with water three times before 

dried with anhydrous Na2SO4. The residue was then 

chromatographed on a silica gel column (100-200) with a 

mixture of hexane and EtOAc (6:1) as the mobile phase to 

give 292 mg (40%) pure product 23b as liquid. 1H NMR (500 

MHz, CDCl3): 3.73 (d, 2H), 4.66 (d, 2H); 13C NMR (125 MHz, 

CDCl3): 49.27, 68.17, 170.77, 172,76. 

Synthesis of 23c: To a solution of 2-propargyloxy-1,3,5 

triazine (23a) (813 mg, 4 mmol) in acetone (20 ml) was 

added dropwise a mixture of 1,3,5-tris(4-

hydroxyphenyl)benzene (20a) (354 mg, 1 mmol) and K2CO3 
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(0.539 g, 3.6 mmol) in acetone during 3 hours at room 

temperature. The reaction then was stirred for another 2 

days. After reaction, solid was filtered off and filtrated 

was then concentrated before running on a silica gel column 

(100-200) with a mixture of CHCl3 and ethyl acetate (15:1) 

as the mobile phase to give 200 mg (20%) pure product 23c 

as light yellow solid. 1H NMR (500 MHz, CDCl3): 2.60 (s, 1H), 

5.07 (s, 2H), 7.36 (ds, 2H), 7.79 (ds, 2H), 7.83 (s, 1H); 

13C NMR (125 MHz, CDCl3): 56.63, 121.76, 125.38, 128.65, 

139.26, 141.50, 151.01, 171.69, 172.19, 173.54. 

Synthesis of 23d: To a solution of 2-azidoethoxy-1,3,5 

triazine (23b) (932 mg, 4 mmol) in acetone (20 ml) was 

added dropwise a mixture of 1,3,5-tris(4-

hydroxyphenyl)benzene (20a) (354 mg, 1 mmol) and K2CO3 

(0.539 g, 3.6 mmol) in acetone during 3 hours at room 

temperature. The reaction then was stirred for another 2 

days. After reaction, solid was filtered off and filtrated 

was then concentrated before running on a silica gel column 

(100-200) with a mixture of CHCl3 and ethyl acetate (15:1) 

as the mobile phase to give 270 mg (40%) pure product 23d 

as white solid. 1H NMR (500 MHz, CDCl3): 3.70 (t, 2H), 4.59 

(t, 2H), 7.34 (ds, 2H), 7.79 (ds, 2H), 7.83 (s, 1H); 13C NMR 
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(125 MHz, CDCl3): 49.35, 67.38, 121.74, 125.37, 128.68, 

139.25, 141.47, 151.02, 172.09, 172.22, 173.51. 

Synthesis of 23: A solution of 23c (86 mg, 0.1 mmol), 23d 

(95 mg, 0.1 mmol), DIPEA (159 µl, 0.014 mmol) in toluene 

(300 ml) refluxing for 5h. The precipitate was filtered and 

washed with toluene for further characterization. The 

residue was concentrated and dried under vacuum for further 

product analysis. 

Synthesis of 4,4’-bipyridine-4-but-1-yne bromide salt (24a): 

4,4’-Bipyridine (1.17 g, 7.5 mmol) reacted with 4-bromo-1-

butyne (1.0 g, 7.5 mmol) in toluene (30 ml) under reflux 

for 4 days. After reaction, precipitate was filtered and 

washed with toluene to get 1.9 g (87%) yellow powder as 

product 24a. 1H NMR (500 MHz, d6-DMSO): 3.04 (t, 2H), 3.13 

(s, 1H), 4.81 (t, 2H), 8.08 (ds, 2H), 8.71 (ds, 2H), 8.90 

(ds, 2H), 9.24 (ds, 2H). To exchange into 

hexafluorophosphate salt (26a): the yellowish solid (24a) 

was dissolved in a H2O/MeCN (3:1) mixture and a saturated 

aqueous solution of NH4PF6 was added to this mixture. The 

resulting white precipitate was filtered, washed with H2O, 

and dried under reduced pressure to give final product 26a. 

Synthesis of 24: A mixture of 2,4,6-tris(2-azidoethoxy)-

1,3,5-triazine (22a) (840 mg, 2.5 mmol) and 4,4’bipyridine-



   113 

4-but-1-yne (24a) (2.16g, 7.5 mmol), DIPEA (1.3 ml, 7.5 

mmol) and the copper catalyst [(EtO)3P·CuI] (89 mg, 0.25 

mmol) in 50 ml toluene under reflux for 1 h. The resulting 

residue was concentrated and dried for further product 

analysis. Different solvents (THF/H2O/EtOH 1:2:2, H2O/t-BuOH 

2:1, CHCl3-MeOH cosolvent, DMF), catalyst (CuSO4·5H2O/sodium 

ascorbate), base (DBU), temperature (RT, 60 0C) and reaction 

time (24 hours, 8h) were tried for this reaction. 

Synthesis of 1,1’-di(but-3-ynyl)-4,4’-bipyridine-1,1’-diium 

bis(hexafluorophosphate) salt (25a) was synthesizedbased on 

a reported procedure.73 A mixture of 4,4’-bipyridine (260 mg, 

1.67 mmol) and p-toluenesulfonic acid but-3-ynyl ester (1.5 

g, 6.69 mmol) in MeCN (10 ml) was heated to 80 0C in a 

sealed tube for 4 days. The solution was then cooled to 

room temperature and the resulting precipitate was filtered 

and washed with MeCN. The yellowish solid was then 

dissolved in a H2O/MeCN (3:1) mixture and a saturated 

aqueous solution of NH4PF6 was added to this mixture. The 

resulting white precipitate was filtered, washed with H2O, 

and dried under reduced pressure. The product (25a) was 

isolated as a white powder. 1H NMR (500 MHz, CD3CN): 2.44 (s, 

1H), 2.98 (t, 2H), 4.78 (t, 2H), 8.42 (ds, 2H), 8.97 (ds, 

2H). 
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Synthesis of 25: A degassed solution of [Cu(MeCN)4]PF6 (25 

mg, 0.067 mmol) in MeCN (0.5 ml) was added to a degassed 

solution of 1,1’-di(but-3-ynyl)-4,4’-bipyridine-1,1’-diium 

bis(hexafluorophosphate) salt (25a) (107.7 mg, 0.195 mmol) 

and 2-azidoethanol (21b) (329 mg, 3.78 mmol) in Me2CO (15 ml) 

under N2. The solution was stirred for 2 days at 30 0C then 

filtered. Solid was washed with hexanes and dried under 

vacuum. 1H NMR (500 MHz, d6-DMSO): 3,46 (t, 2H), 3.75 (t, 

3H), 4.38 (t, 2H), 5.02 (t, 2H), 5.03 (s, 1H), 7.94 (s, 1H), 

8.78 (ds, 2H), 9.37 (ds, 2H).  

Synthesis of 26 was under the same experimental conditions 

as synthesis of 25 by using 4,4’-bipyridine-4-but-1-yne 

hexafluorophosphate salt (26a) and 2-azidoethanol (21b) as 

starting materials. 

Synthesis of 1,1’-di(3-bromopropyl)-4,4’-bipyridine (27c): 

4,4’-bipyridine (260 mg, 1.67 mmol) and dibromopropane 

(4.65 g, 30 mmol) was added in 10 ml ACN. The mixture was 

heated to 80 0C for 4 days. After reaction, yellow 

precipitate was filtered and washed with ACN to get 400 mg 

1,1’-di(3-bromopropyl)-4,4’-bipyridine with 80% purity. 1H 

NMR (500 MHz, D2O): 2.56 (p, 4H), 3.44 (t, 4H), 4.82 (t, 4H), 

8.48 (ds, 4H), 9.08 (ds, 4H). 
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Synthesis of 1,1’-di(3-azidopropyl)-4,4’-bipyridine (27a): 

A mixture of 1,1’-di(3-bromopropyl)-4,4’-bipyridine (27c) 

(560 mg, 1 mmol, 1 M) and sodium azide (0.39 g, 6 mmol, 6 M) 

in 1 ml of water was heated at 80 0C for overnight. The 

solution was evaporated to dryness to give a brown solid. 

The solid was dissolved in 1 ml of methanol and filtered to 

remove an excess of sodium azide. The filtrate was dried 

under vacuum to solid. The brown solid was then dissolved 

in a H2O/MeCN (3:1) mixture and a saturated aqueous solution 

of NH4PF6 was added to this mixture. The resulting 

precipitate was filtered, washed with H2O, and dried under 

reduced pressure. 1H NMR (500 MHz, d6-DMSO): 2.293 (p, 4H), 

3.35 (t, 4H), 4.77 (t, 4H), 8.82 (ds, 4H), 9.40 (ds, 4H). 

Synthesis of cage molecule 27: Amixture of 1,1’-di(3-

azidopropyl)-4,4’-bipyridine (27a) (92.1 mg, 0.15 mmol), 

2,4,6-tris(prop-2-ynyloxy)-1,3,5-triazine (17a) (24.3 mg, 

0.10 mmol), [Cu(MeCN)4]PF6 (25 mg, 0.067 mmol) was added 

into the degassed Me2CO (300 ml). The solution was stirred 

for 2 days at 30 0C then filtered. Solid was washed with 

hexanes and dried under vacuum for further analysis.  

Synthesis of 1-(3-azidopropyl)-1’-(3-bromopropyl)-4,4’-

bipyridine (27b): The synthesis procedure is the same as 

the synthesis of 1,1’-di(3-azidopropyl)-4,4’-bipyridine 
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(27a) with the only difference in the amount of sodium 

azide which is (65 mg, 1 mmol, 1 M). 

Synthesis of 27d: A degassed solution of [Cu(MeCN)4]PF6 (75 

mg, 0.2 mmol) in MeCN (0.5 mL) was added to a degassed 

solution of 1-(3-azidopropyl)-1’-(3-bromopropyl)-4,4’-

bipyridine (27b) (740 mg, 1.2 mmol) and 2,4,6-tris(prop-2-

ynyloxy)-1,3,5-triazine (17a) (97.3 mg, 0.4 mmol) in Me2CO 

(30 ml) under N2. The solution was stirred for 2 days at 30 

0C before column chromatography on silica gel (CH2Cl2/CH3CN 

6:4) monitored by TLC (10:1:1 MeCN: H2O: Sat NH4PF6) to 

afford less than 10% yield of 27d as light yellow powder 

(80% purity).  

Computational Studies: Energy minimization of 

supramolecular structures was carried out using the DFT-

B3LYP method (basis set: 3-21G) as implemented in the 

Gaussian software package (09 version) without solvent 

effect. 
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