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ABSTRACT 
 
There are an estimated 300-500 million cases of malaria every year, resulting in 

approximately 2 million deaths.  Malaria mortality occurs primarily in children under the 

age of five, and is resultant from the development of severe malaria.  Attempts to control 

P. falciparum malaria face rapidly escalating levels of resistance on two fronts: the 

parasite to anti-malarial drugs, and the mosquito vector to insecticides.  Despite current 

prevention efforts, the global incidence of malaria continues to rise and there is a clear 

and urgent need for a malaria vaccine.  Malaria vaccine efforts thus far have been largely 

unsuccessful in eliciting robust and long-lasting immunity.  While adults living in malaria 

endemic regions have not been shown to naturally develop protective immunity to 

uncomplicated malaria, they do appear to develop protective immunity to severe malaria 

by around the age of five, raising the possibility that a vaccine specifically targeting 

severe malaria may be a more attainable goal of malaria vaccine efforts in the immediate 

future.  There is mounting evidence that the pathogenesis of severe malaria is directly 

related to cytoadhesion and rosetting of parasitized red blood cells.  The P. falciparum 

protein PfEMP1, which is expressed on the surface of parasitized red blood cells, appears 

to have a direct role in mediating cytoadhesion and rosetting.  The DBL1α domain of 

PfEMP1 specifically been implicated in these interactions, and is also one of the only 

regions of PfEMP1 that is highly conserved, making it a promising target antigen for 

malaria vaccine development.  Here we show that immunization with recombinant 

vesicular stomatitis virus vaccine vectors expressing DBL1α induce immune responses 

that are able to disrupt rosetting of parasitized RBC.  This response was comparable with 

that seen in adults from malaria endemic regions. 
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INTRODUCTION 

 

Epidemiology and Global Impact of Malaria  

Approximately 40% of the world’s population lives in areas at risk for malaria.  There are 

four species of Plasmodium that cause human malaria, with P. falciparum being 

responsible for the greatest burden of morbidity and mortality.  The WHO estimates that 

there are up to 500 million cases of malaria every year, resulting in 1-2 million deaths.  

Older children and adults appear to gain some degree of protective immunity that renders 

them less susceptible to severe infections that carry high mortality rates, however malaria 

is currently the third leading cause of death in children under five in developing 

countries.  Malaria is both a disease of poverty and a cause of poverty, and is a significant 

barrier to economic development in malaria endemic countries.  Globally, there is a 

striking overlap of malaria burden and regional poverty.  It is estimated that malaria is 

responsible for a “growth penalty” of up to 1.3% per year in regions of high transmission, 

which, over time can lead to substantial retardation of economic growth in the region1.  In 

addition, malaria is estimated to account for up to 40% of public health expenditures, 

50% of inpatient admissions, and 50% of outpatient visits in countries with a high 

malaria burden, putting an enormous strain on already overtaxed health care systems. 

 

The transmission vector for P. falciparum is the female Anopheles mosquitos.  P. 

falciparum gametocytes are ingested with a blood-meal taken from an infected human.  

Male and female gametocytes fuse and mature into ookinetes in the mosquito gut, and 

subsequently into oocysts in the gut wall.  The oocysts rupture to release sporozoites that 
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migrate to the mosquito salivary glands.  The sporozoites are then injected into the skin 

of a new human host during the mosquito’s next blood meal.  Once in the host, malaria 

parasites undergo two phases of development: the liver or exoerythrocytic phase, and the 

blood or erythrocytic phase.  Injected sporozoites initially migrate through the 

bloodstream to the liver where they infect hepatocytes.  Within the hepatocytes, the 

sporozoites mature into merozoites over a period of 1-2 weeks.  Upon rupture of infected 

hepatocytes, large numbers of merozoites are released into the blood and infect red blood 

cells 2.  During the blood stage of the infection, merozoites replicate asexually in RBCs 

going through the trophozoite or ring form and the schizont form before the RBC 

ruptures releasing many mature merozoites that can then go on to infect more RBCs, 

continuing the cycle.  A small proportion of merozoites mature into male or female 

gametocytes after invading RBCs.  The gametocytes are released into the blood stream 

with the rupture of infected RBCs.  They can then be consumed during a blood meal and 

mature into sporozoites within the mosquito vector, eventually being transmitted to 

another host. 

 

 

Importance of Malaria Vaccine Development  

Attempts to control P. falciparum malaria are currently facing rapidly escalating levels of 

resistance on two fronts: resistance of the parasite to anti-malarial drugs, and resistance of 

the mosquito vector to insecticides.  Many areas of the world are seeing increasing 

malaria rates due to immigration and foreign travel, in addition to changing climate 

conditions that favor multiplication of the mosquito vector.  Given the extremely high 
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public health burden of malaria treatment in endemic areas, it seems clear that prevention 

is the most cost effective approach.  This is especially true because natural protective 

immunity is very slow to develop, leaving individuals susceptible to repeated infections 

requiring treatment.  In addition, prevention would be thought to mitigate the economic 

costs of malaria endemicity to a greater extent than treatment if acute attacks of malaria 

can be prevented before they manifest clinically and lead to significant decreases in 

current and future productivity.  Major strategies for prevention include vector control, 

insecticide treated bed nets, and indoor spraying of insecticides.  These methods have 

been in use for extended periods of time, and while they are effective, global malaria 

mortality and morbidity continue to increase despite their use and there is a consensus 

that a malaria vaccine is urgently needed 3.  No malaria vaccine in late stage development 

has demonstrated strong (>50%) protection, or a durable protection (>1 year).  Much has 

been learned, however, from first generation malaria vaccine development efforts that 

can be applied to future efforts.    

 

The majority of malaria vaccines currently in development are based on a very small 

number of Plasmodium falciparum antigens 4.  Few of these antigens have been identified 

using human or primate studies, most being discovered using mouse models.  The 

relevance of these models is increasingly being questioned due to the non-natural host 

parasite interaction seen in these models, as well as their demonstrated failure to 

accurately predict human responses 5.  It will be preferable for future efforts to rely on 

targets that have been identified or validated in human or primate, studies.   
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Experiences during clinical trials of several of the first generation malaria vaccines have 

highlighted the critical importance of understanding the interplay between malaria 

parasites and the immune system 4, and future vaccine efforts need to additionally focus 

on exploring how to rationally shape the immune response elicited to malaria target 

antigens based on our increasing understanding of the host-parasite interactions.  There is 

also an emerging consensus that a multi-stage, multi-antigen vaccine will ultimately be 

necessary to achieve a high degree of protective efficacy6.  There are a small number of 

such efforts currently in early stage development, however these vaccines are likely to be 

complex to execute and are likely many years away, particularly given the potential for 

antigenic interference and our current lack of understanding of the requirements for an 

effective adjuvant.  One important, and likely more rapidly attainable, goal of a malaria 

vaccine development is to improve rates of malaria mortality, particularly in children, by 

specifically targeting the development of severe malaria.  While immunity to 

uncomplicated malaria develops very slowly and is rarely fully protective, immunity to 

severe malaria appears to develop with significantly greater rapidity, possibly reflecting a 

higher degree of antigenic homogeneity in the virulence factors of parasites responsible 

for severe disease 7.  Antigens implicated in the development of severe malaria are thus 

potentially attractive vaccine candidates because they may face fewer of the difficulties 

that have been encountered in eliciting protective immunity to uncomplicated P. 

falciparum malaria. 
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Vesicular Stomatitis Virus Vectors in Malaria Vaccine Development 

A viral vector approach to a P. falciparum malaria vaccine is currently receiving a great 

deal of interest 8.  Vaccines based on live viruses induce life-long immunity through 

induction of durable memory B and T cell responses. Such vaccines have been 

responsible for extensive control or even complete elimination of viral diseases.  Some 

have proposed that viral vector-based vaccines may be the most promising approach to 

generating protective immunity to parasites, and that the specific choice of viral vector 

appears to be crucial in determining vaccine efficacy 9.  While many, if not most, of the 

malaria vaccines currently under development that have shown the best success 

incorporate a viral vector, there has been very little effort specifically targeted at 

identifying and using the most potent vaccine vectors currently available.  

 

Vesicular stomatitis virus (VSV) is an enveloped negative strand RNA virus in the family 

Rhabdoviridae.  VSV has previously been demonstrated to be a highly effective vaccine 

vector for multiple pathogens such as HIV-1 10 11,  SARS 12, 13, RSV 14, 15, measles 16, and 

Yersinis pestis 17.  Vaccine vectors based on recombinant, attenuated VSV have been 

used extensively as experimental vaccines and will be used in clinical trials scheduled to 

begin in 2011.  These experimental VSV vaccines have induced long-term immunity to 

both viral and bacterial pathogens in animal models, and should be further explored for 

use in parasite vaccine development.  

 

Pathogenesis of Severe Malaria 

Clinically, malaria can be broadly classified as uncomplicated or severe.  Symptoms of 
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uncomplicated malaria can include a cyclical fever recurring every 36-48 hours or a 

continual low-grade fever, as well as anemia, malaise, arthralgias, vomiting, and rigors. 

Uncomplicated malaria is important in terms of burden on health care systems and 

decreasing productivity, however it is rarely fatal.  Severe malaria, in contrast, is 

frquently fatal if untreated.  Complications of severe malaria include cerebral malaria, 

severe anemia, acute renal failure, pulmonary edema, acidosis, and hypoglycemia, and 

any of these complications can be fatal within days or even hours (World Health 

Organization, 2000).  Risk factors for severe malaria include age less than 5 years or 

greater than 65 years, non-immune status, pregnancy, delay in treatment initiation, and 

the presence of pre-existing medical conditions 18 19 20.  A major cause of malaria 

mortality, particularly in young children, is cerebral malaria resulting from occlusion of 

cerebral microvascular by agglutinated parasitized red blood cells (pRBCs).  Untreated 

cerebral malaria is almost universally fatal, and even with treatment the mortality rate 

remains around 20% 21.  Surviving patients are at increased risk for developmental 

delays, neurological deficits, epilepsy, and behavioral problems.  Cerebral malaria is a 

leading cause of childhood neurodisability in African children 21, which has significant 

long-term implications for future productivity. 

 

The development of severe malaria has been strongly linked to P. falciparum virulence 

factors that mediate RBC cytoadherance and rosetting 22 23 24  25 26 27 28.  Expression of P. 

falciparum proteins on the surface of parasitized erythrocytes mediates binding to the 

vascular endothelium and to uninfected erythrocytes, resulting in the accumulation of 

parasitized RBCs in capillary microvasculature.  This is compounded by the altered 
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mechanical properties of pRBCs that cause decreased flexibility of the cell membrane, 

which makes it difficult for the cell to pass through the microvasculature 29.  The resultant 

microangiopathic hemolytic anemia, which serves to exacerbate the pre-existent 

hemolytic anemia from parasite induced rupture of pRBCs, can precipitate acute renal 

failure, secondary to massive hemoglobinuria 29.  The vasocclusive properties of pRBCs 

also lead to tissue hypoxia, ultimately resulting in end-organ damage and other clinical 

manifestations of severe malaria 29.  Finally, the sequestration of pRBCs in the 

microvascular stimulates cytokine production that can cause direct tissue damage 2.  The 

major factor mediating pRBC cytoadherence to various ligands on endothelial cells other 

pRBCs has been established to be the parasite protein P. falciparum Erythrocyte 

Membrane Protein-1 30. 

 

 

PfEMP1 and the Development of Severe Malaria 

PfEMP1 is a high molecular weight (over 200 kD) protein that is expressed on the cell 

membrane of parasitized red blood cells (pRBCs).  PfEMP1 is composed of several 

extracellular Duffy binding-like domains (DBL 1 to 5), with one to two cysteine-rich 

interdomain regions (CIDRs) distributed in between the DBL domains, a transmembrane 

31 region, and an intracellular acidic segment 32 33 1.  PfEMP1 undergoes extensive clonal 

antigenic variation and is encoded by a multigene family of variable surface antigen 4 

genes with at least 50 copies per genome 34.  The most conserved regions of PfEMP1 are 

located in both the N- and C-terminal domains. There is a semi-conserved head structure 

that includes the DBL-1α and CIDR1α domains, and there several regions of DBL-1α are 
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almost 100% conserved 1.  It is thought that PfEMP1 has a central role in malaria 

virulence and the development of clinically severe disease due to its key roles in 

rosetting, cytoadhesion, and immune evasion 35. PfEMP1 is considered by some to be the 

“Achilles heel” 36 of P. falciparum because it is responsible for so many key aspects of 

malaria pathology, and is expressed on the surface of pRBCs making it vulnerable host 

immune attack.  This is presumably why PfEMP1 has evolved to be highly polymorphic 

and demonstrates such extensive clonal antigenic variation.   

 

The region of PfEMP1 mainly responsible for mediating cytoadhesion is thought to be 

the extracellular N-terminal adhesive domain DBL1α 37 38, which is relatively conserved 

compared to other PfEMP1 adhesive domains 30.  In studies using both rats 39 40 and 

primates 40, it has been shown that anti-DBL1α antibodies can disrupt preformed rosettes 

and block cytoadhesion in vivo 39.  DBL1α expressed in recombinant Semiliki forest 

virus vectored vaccine induced antibodies that prevented cytoadhesion and disrupted 

rosettes in a mouse model 39.  More importantly, these associations have been validated in 

human studies.  The presence of antibodies against PfEMP1 have been associated with 

protection against severe disease in various studies of populations living in malaria 

endemic areas 41 28 27. For example, in a study in Gambia, 88% of children with 

uncomplicated malaria had anti-rosetting antibodies compared to the 22% of children 

with severe malaria that had anti-rosetting antibodies 28. 
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STATEMENT OF PURPOSE 

 

The vast majority of malaria mortality is attributable to complications of severe malaria.  

There is compelling evidence that the cytoadhesive properties of pRBCs are a key factor 

determining the development of severe malaria, and has been linked to the expression of 

PfEMP1 on the surface of pRBCs.  While immunity to uncomplicated malaria develops 

very slowly or not at all, immunity to severe malaria appears to develop with 

significantly greater rapidity, possibly reflecting a higher degree of antigenic 

homogeneity in the virulence factors of parasites responsible for severe disease 7.  

Generating protective immunity to severe malaria may be a more immediately achievable 

goal than immunity to uncomplicated malaria as that PfEMP1 variants of the severe 

subtypes tend to be more immunogenic 40, and individuals develop protective immunity 

to severe, but not uncomplicated, malaria after natural infection. PfEMP1 has been 

validated as a potential target antigen in both animal and human models.  The DBL1α 

domain of PfEMP1 may be a promising vaccine target to reduce morbidity and mortality 

from severe malaria.  DBL1α is one of the few highly conserved regions of PfEMP1, and 

it appears to be a region of PfEMP1 that is directly responsible for mediating 

cytoadhesion and rosetting 42 37.  In addition, it is expressed on the surface of pRBCs 

making it vulnerable host immune attack as opposed to many malaria antigens, which are 

sequestered in RBCs making them less vulnerable to both antibody and cell mediated 

immunity.   
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The first goal of the proposed experiments is to evaluate vesicular stomatitis virus vectors 

as a platform for a vaccine incorporating the DBL1α domain of PfEMP1.  The second 

goal of the proposed experiments is to evaluate the effectiveness of VSV vectors 

expressing DBL1α in disrupting rosette formation of pRBCs.   

 

 

Aim 1.  Construct and characterize VSV vectors expressing the P. falciparum 

DBL1α  domain of PfEMP1 (VSV-mDBL1α). 

This aim will determine if VSV vectors are able to induce expression of an 

antigen constructed from the  the P. falciparum protein PfEMP1 and the PfEMP1 

functional domain DBL1α. 

 

 

Aim 2: Test the effectiveness of VSV-mDBL1α vectors in a rosette disruption assay. 

  This aim will determine if the constructed VSV-mDBL1α vectors are able to 

induce immune responses in mice that are able to decrease or disrupt rosette 

formation of human pRBCs. 
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METHODS 

 

Plasmids    

We designed a codon-optimized 1.7kb gene construct encoding the PfEMP1 N-terminal 

sequence (NTS, 67aa), DBL1α domain (348aa), transmembrane region (TM, 36aa), and 

acid-terminal sequence (ATS, 59aa).  The VSV-G signal sequence (16aa) was added to 

the N-terminus and a cMyc tag (11aa) was added to the C-terminus (Figure 1).  Upstream 

XhoI and downstream NheI sites were introduced to allow for directional cloning into 

VSV vectors. The gene product was cloned into the fifth position of VSV vectors 

encoding either the Indiana or New Jersey serotype G-proteins to make VSV-mDBL1α 

(Figure 2).   

   *All of the above experiments were preformed by the author, except for the 

synthesis of the DBL1α gene construct with was preformed by the company MrGene. 

 

 

Recombinant viruses  

BHK-21 cells were grown to 50% confluence and infected with recombinant vaccinia 

virus expressing T7 RNA polymerase and a multiplicity of infection (MOI) of 10.  The 

cells were incubated for 1 h in serum-free Dulbecco's modified Eagle's medium 

(DMEM). The cells were then co-transfected with the plasmid expressing the 

recombinant VSV anti-genome with expression vectors for the VSV N, P, and L proteins 

under the control of a T7 promoter. Supernatants were collected 40 hours post-

transfection, filtered through a 0.2µm-pore filter to remove vaccinia virus, and passaged 
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onto fresh BHK-21 cells.  Medium was collected immediately after cytopathic effects 

were observed (~48 hours) and filtered through a 0.1µm-pore filter. Recombinant VSV-

DBL1α was then plaque purified and expanded, and the VSV- DBL1α was stored at 

−80°C. Titers were determined on thawed samples to be 2.5x108.  

   *All of the above experiments were preformed by the author. 

 

 

Detection of DBL1α expression  

Immunoflorescence studies were preformed using BHK-21 cells infected with VSV- 

DBL1α (MOI of 10), with uninfected and wild type VSV-infected cells used as controls.  

Medium was collected 6h after infection, cells were washed with phosphate-buffered 

saline (PBS) and lysed with 2× SDS sample buffer. Proteins were separated on a 10% 

SDS gel, transferred to a nitrocellulose membrane, probed with anti-cMyc antibody, and 

detected with secondary antibody using chemiluminesence.  The sample was also 

incubated with PNGase in glycoprotein denaturing buffer for 10 minutes at 100°C and 

then for one hour at 37°C in order to deglycosylate the protein. 

 

For immunofluorescence microscopy, BHK-21 cells were grown on glass coverslips and 

infected with VSV-DBL1α (MOI of 10), with uninfected and VSV-infected cells as 

controls.  After 5 hours, cells were fixed with 2% paraformaldehyde and then blocked for 

1 hour in PBS containing 10% fetal bovine serum.  Cells were then incubated with either 

anti-cMyc antibody (Santa Cruz Biotechnology; 1:50) or anti-VSV-G antibody (1:200) 

for 30 min at 37°C.  Cells were washed with PBS following incubation with primary 
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antibody and then incubated with Alexa Fluor 488-labeled goat anti-mouse secondary 

antibody (Invitrogen; 1:1,000) for 30 min at 37°C.  After washing, cells were mounted 

onto microscope slides with ProLong Gold antifade reagent containing DAPI (4′,6-

diamidino-2-phenylindole; Invitrogen). A Nikon Eclipse 80i fluorescence microscope 

equipped with a Nikon Plan Apochromat 40x or 60X oil objective and a Photometrics 

CoolSnap camera was used to capture images.  

   *All of the above experiments were preformed by the author. 

 

 

Immunizations and sera collection  

Female Balb/c mice at 10 weeks of age were purchased from Charles River (Wilmington, 

MA) and housed at the Yale University School of Medicine animal facilities. All 

experiments were performed in accordance with Yale Institutional Animal Care and Use 

Committee-approved procedures.  Single intramuscular (i.m.) inoculations of VSV-

mDBL1α (108 PFU) were administered in a 50-µl volume.  A VSV vector expressing 

HIV gag (VSV-41g, 108 PFU) was used as a control.  All priming injections were 

preformed with the VSV-Indiana strain.  Boost inoculations were preformed 30 days 

post-prime with the VSV-New Jersey strain of both VSV-DBL1α (108 PFU) and VSV-

41g (108 PFU).  Sera were collected at Day 0 (pre-prime), Day 30 (pre-boost), and Day 

60.   

   *All of the above experiments were preformed by the author except for sera 

collection, which was preformed by the Yale Animal Research Facility technicians. 
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Rosette disruption assay  

Rosette disruption assays were performed using the DBL1α domain from the highly 

virulent FCR3S1.2 strain of P. falciparum.  A 25µl volume of FCR3S1.2 culture (5% 

hematocrit, with an 80% rosetting rate) was mixed with an equal volume of sera from 

immunized animal at three different dilutions (1:5, 1:10 and 1:20) and incubated at 37 °C 

for 1 h. Aliquots were then mixed with 1µl of ethidium bromide (0.5µg/ml) and the 

percentage of mature pRBCs in rosettes (defined as the binding of two or more labeled 

RBCs) was examined using fluorescent microscopy.   

   *All of the above experiments were performed by collaborators from the lab of 

Mats Wahlgren at the Swedish Institute for Infectious Disease Control in Stockholm, 

Sweden. 
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RESULTS 

 

Construction mDBL1α gene and recovery of VSV vectors expressing mDBL1α  

In order to generate effective immune responses to target antigens derived from PfEMP1, 

it is thought that there must be expression of the antigen at the cell surface 39.  Due to the 

size and significant variability of PfEMP1, expression of the full-length protein at the cell 

surface for use as an immunogen is not feasible.  For this reason, Chen et al 39 introduced 

the concept of creating a ‘mini’ PfEMP1 gene construct that could be used to express 

individual functional domains of the PfEMP1 protein being employed as target antigens 

at the cell surface by incorporating PfEMP1 structural domains.  The construct we 

created using this model, mDBL1α (Figure 1), consists of the NTS (67aa), the DBL1α 

domain (348aa), the transmembrane region (24 aa) and part of the ATS-domain (59aa).  

The VSV signal sequence (16aa) was inserted upstream to the NTS in order to target the 

protein into the exocytic pathway and potentially to the cell surface, and a cMyc tag 

(EQKLISEEDL) was inserted downstream of the ATS to facilitate detection of the 

protein.  Chen et al did not find a significant effect on immunogenicity due to the 

presence or absence of the NTS, however others 43 have found that the presence of the 

NTS upstream to the DBL1α domain significantly increased the ability to induce an 

antibody response that disrupts rosetting of pRBCs.  The DNA sequence encoding this 

protein was synthesized (GeneMan) with upstream and downstream cloning sites.  

mDBL1α was inserted into VSV vectors between the VSV-L and VSV-G proteins 

(Figure 2), and successful cloning was verified by restriction digest.  Recombinant VSV-

mDBL1α particles were generated in BHK21 cells at titers of 108/ml. Cloning of the 
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mDBL1α gene into VSV and virus recoveries were performed for both vectors 

expressing the Indiana (I) and New Jeresy 44 44 serotype G-proteins for use in a prime-

boost inoculation regimen.  Neutralizing immune responses directed at the VSV vector 

induced by the priming vaccination can be avoided by switching to a G-protein from a 

different VSV serotype for the boost vaccination 6. 

 

 

 
 
 
 

 
 
Figure 1. Schematic representation of the structure of the mDBL1α construct derived 
from PfEMP1 of the highly virulent FCR3S1.2 strain of P. falciparum.  The N-terminal 
sequence (NTS) and DBL1α domain from the PfEMP1 gene were joined to a sequence 
encoding the PfEMP1 transmembrane region 31 and portion of the acid terminal sequence 
32.  The vesicular stomatitis virus G-protein signal sequence (VSV SS) was inserted 
upstream of the NTS to target the protein to the exocytic pathway.  A cMyc tag was 
inserted downstream of the ATS to facilitate detection of the gene product.  
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Figure 2.  Sequence of mDBL1a.  DNA sequence is shown on the top line in the 5’ to 3’ 
direction.  Amino acid sequence is shown on the bottom line. Regions shown in Figure 1 
are labeled. 
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A 

 
 
 
 
B 

 
 
Figure 3.  Insertion of mDBL1α into the vesicular stromatitis virus (VSV) genome.  
(A) Schematic representation of the VSV-mDBL1α genome. The site of mDBL1α gene 
insertion and gene order are shown in the 3′ to 5′ direction on the negative strand RNA 
genome.  Red arrows indicate the restriction enzyme sites used for cloning the mDBL1α 
DNA.  VSV-G is indicated as either the I or NJ serotypes.  (B) Vector map of pVSV- 
mDBL1α.  XhoI and NheI sites used for cloning are shown. 
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Expression and cell localization of DBL1α  

Immunoflorescence microscopy performed to examine expression and localization of c-

Myc tagged mDBL1α.  The results showed that BHK21 cells infected with VSV-

mDBL16 expressed mDBL1α (Figure 4c).  Anti-cMyc antibodies did not cross react with 

uninfected cells or with cells infected with wild-type VSV (Figures 4a and 4b). VSV-

mDBL1α infected cells also expressed VSV-G protein (Figure 4d).  Figure 3e shows 

VSV-mDBL1α infected cells stained with anti-cMyc antibodies at 60x magnification.  

Expression of mDBL1α at the cell surface was not detected using immunoflorescence 

microscopy.  The majority of expression appeared to be in a reticular ER-like pattern.  

Western blot analysis on whole cell extracts of infected cells demonstrated a the presence 

of a ~62kDa protein with the mobility expected of mDBL1α in cells infected with VSV-

mDBL1α, but not in control cells infected with wild type VSV (Figure 5).  DBL1a has 3 

predicted sites for N-linked glycosylation 45.  If mDBL1α progressed to the secretory 

pathway, the protein should have been glycosylated.  Therefore, to determine whether 

mDBL1α did enter the secretory pathway, we treated the protein with an N-glycosidase.  

After glycosidase treatment, a mobility shift was seen, with a sharper band observed for 

the deglycosylated protein (Figure 5), suggesting that mDBL1a was successfully targeted 

to the secretory pathway. 
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Figure 4. Indirect immunofluorescence microscopy of mDBL1α and VSV-G protein in 
cells infected with VSV-mDBL1α and wild type VSV (wtVSV).  (a) Uninfected BHK21 
cells stained with anti-cMyc antibodies (40x objective).  (b) BHK21 cells infected with 
wtVSV and stained with anti-cMyc antibodies (40x objective).  (c) BHK21 cells infected 
with VSV-mDBL1α and stained with anti-cMyc antibodies (40x objective).  (d) BHK21 
cells infected with VSV-mDBL1α and stained with antibodies recognizing VSV-G 
protein (40x objective).  (e) BHK21 cells infected with VSV-mDBL1α stained with anti-
cMyc antibody (60x objective).    
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Figure 5. Western blot of mDBL1α. Western blot analysis was performed on whole cell 
extracts prepared from BHK-21 cells infected with either VSV-mDBL1a or wild type 
VSV as a control and probed with anti-cMyc antibody.  Samples were also cleaved to 
remove N-linked glycans. (VSV-mDBL1α + PGNase). 
 

 

 

Immunization with VSV-DBL1α reduces rosetting of human pRBCs 

After prime-boost immunization with VSV-mDBL1α, sera of immunized mice dose-

dependently disrupted rosettes formed by human RBCs infected with the highly virulent 

FCR3S1.2 strain of P. falciparum (Figure 6a).  Immunization with VSV-mDBL1α 

generated a response that reduced rosetting by 58% (Figure 6b).  The differences in the 

mean rosette disruption rates between the sera of mice immunized with VSV-mDBL1α 

and mice immunized with the control vector VSV-41g were statistically significant, 

P<0.01 (Students unpaired T-test). 
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Figure 6. Means of rosette-disrupting activity of the sera generated by the prime-boost 
immunization with VSV-mDBL1α in mice. Sample of rosetting FCR3S1.2 (rosetting rate 
of >80%) was mixed with sera diluted from 1:5 to 1:20 and the rosetting rate was scored 
in incident UV-light.  (a) Dose response inhibition of rosetting by serum from mice 
immunized with VSV-mDBL1α.  (b) Sera from mice immunized with VSV-mDBL1α 
showed significantly (P<0.01, Students unpaired T-test) greater rosette-disruption activity 
than serum from mice immunized with the control vector VSV-41g (VSV-control).  
Baseline responses are shown at Day 0, post-prime responses were measured at Day 30, 
post-boost responses were measured at Day 60.  



  27 

DISCUSSION 
 

Immunization with VSV-mDBL1α induces a robust anti-rosetting response 

We have shown that immunization with VSV vectors expressing the DBL1α domain of 

the P. falciparum protein PfEMP1 generates an immune response that is able to disrupt 

rosette formation in pRBCs.  Sera of mice immunized with VSV-mDBL1α were able to 

reduce rosetting by 58%.  For comparison, a serum pool from adults living in a malaria 

hyperendemic region has previously been shown to produce a 60% reduction in rosetting 

40.  While older children and adults from malaria endemic areas do not develop complete 

protective immunity to uncomplicated malaria, they appear to develop robust immunity 

to severe malaria, and malarial mortality is rate after the age of 5 in endemic areas.  

 

Rosette disruption assay results obtained with VSV-mDBL1α vectors compare favorably 

with results from other studies using DBL1α as a target antigen.  Chen et al., 2004 

vaccinated mice with a DBL1α construct (DBL1α-TM-ATS) expressed in Semliki Forest 

Virus (SFV) vectors, and showed a 40% reduction in rosetting 39.  Improved rosette 

disruption seen with VSV-mDBL1α vectors may be related to the viral vector used to 

express DBL1α, but may also be related to expression of the NTS as that a recent article 

has show optimal immunogenicity with NTS-DBL1α 43.  In addition, the study by Cheng 

et al. primed with SFV-DBL1α but boosted with recombinant protein in combination 

with complete Freunds adjuvant rather than boosting with a second round of viral vector.  

Moll et al (2007) similarly showed 40% rosette disruption using DBL1α expressed in 

SVF vectors in monkeys 40.  In this study, vaccinations were given with one prime and 

two boosts with SFV-DBL1α particles, and an additional boost with DBL1α recombinant 
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protein.  It does not appear that boosting with additional rounds of viral vectors as 

opposed to solely recombinant protein improved rosette-disruption ability, however it is 

difficult to directly compare as that this study was done in primates rather than rodents.  

 

 

Mini-PfEMP1 expression in mammalian cells    

Codon optimized ‘mini’ PfEMP1 consisting of the structural regions of the PfEMP1 

protein (the NTS, TM, and ATS regions) and the functional DBL1α domain responsible 

for cytoadhesion were used in this study in an attempt to maximize cell surface 

expression of DBL1α.  The mDBL1α gene construct was codon optimized because there 

are significant differences in protozoan and mammalian protein synthesis, with the 

plasmodium genome containing a high A/T content as well as frequent lysine and 

arginine repeats, and codon-optimization has been shown to significantly increase the 

level of expression of P. falciparum antigens in mammalian cells 8 46 47.  

 

The VSV signal sequence was added to the N-terminal end of mDBL1α in order to target 

mDBL1α to the exocytic pathway.  The glycosylation of mDBL1α suggests that it was 

present in the secretory pathway, however the immunoflorescence microscopy studies 

show mDBL1α expression in an ER-like pattern, which could indicate possible problems 

with protein folding and transport.  Historically, there have been reports of poor 

processing and suboptimal transport of Plasmodial surface proteins in mamallian cells, 

and it has been suggested that replacement of the Plasmodial GPI signal sequence with a 

mammalian sequence would improve the immunogenicity of antigens that require cell 
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surface expression 48.  The effect of using a VSV signal sequence on surface expression is 

unclear from these experiments as that no direct comparisons can be made.  It has been 

thought that expression of DBL1α at the cell surface is important to the generation of 

anti-rosetting antibodies 35.  The induction of a robust anti-rosetting response by VSV-

mDBL1α vectors, despite their apparent failure to induce surface expression of DBL1α, 

suggests that cell surface expression is not necessarily requisite to generating a robust 

anti-rosetting response.   

 

Since VSV-DBL1α was observed to result in production of a glycosylated protein 

product, a future avenue for exploration to improve VSV-mDBL1α immunogenicity 

might be to delete N-glycosylation sites.  It has been reported that N-glycosylation of 

some malaria antigens decreases the strength of the immune response directed toward 

those antigens 49 50, and it is currently being studied whether removal of N-glycosylation 

sequences will improve immune responses 8.   

 

 

Advantages of vesicular stomatitis vectors in malaria vaccine development 

VSV not previously been used in malaria vaccine development, but VSV has several 

attributes that could make it particularly well suited for use in a malaria vaccine strategy.  

VSV infects humans very rarely because humans are not a natural host for VSV.  As 

such, there is extremely low seroprevalence in the human population world-wide.  This is 

in contrast to viral vectors being used for malaria vaccines such as adenovirus, which is 

estimated to have a global seropositivity of up to 50%, with some estimates reaching up 
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to 90% in developing countries.  VSV vectors are also able to be administered 

intranasally.  A mucosal route is much more feasible than a parenteral route for large 

scale administration in developing countries due to the lack of a need for needles – 

which, when in short supply, can contribute to the spread of blood borne pathogens 

through re-use – as well as the need for a trained healthcare professional to administer the 

vaccine.  The enormous success of the live polio vaccine was due in part to the fact that it 

is administered via a non-injectible route.  Multiple studies with malaria parasites have 

indicated that mucosal vaccination is effective at inducing protective immune responses 

32 51 52. 

 

A future possibility for maximizing effectiveness of VSV-vectored malaria vaccines 

could be to use them in a heterologus regimen with a second viral vector, particularly 

with regard to improving durability of the immune response.  Multiple studies of viral 

vectored malaria vaccines have shown that heterologus prime-boost regimens (AB or 

BA) are more effective than homologous prime boost (AA or BB), and recent 

studies have demonstrated the superiority of an alternating heterlogous regimen 

(ABA) in maximizing immune response durability 53 54.  One study using a 

combination of MVA and Fowlpox vectored malaria vaccines demonstrated that while 

the responses to heterologous prime-boost vaccination fell to pre-vaccination levels after 

270 days, the response to the heterologous alternating vector regimen remained at 84% of 

the peak response 54.  One way of moving forward might be to combine VSV-vectored 

DBL1α vaccine with a Semliki Forest Virus vectored vaccine that also expresses DBL1α.  
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Clinical significance of rosette disruption in severe malaria 

Rosette disruption assays establish the functional ability of immune sera to prevent 

cytoadhesive interactions that have been shown to be associated with the 

pathophysiology of severe malaria. Therapeutic interventions that target rosetting may 

therefore have potential to decrease the global burden of severe malaria 55 56.  Human 

genetic studies have shown that RBC polymorphisms that reduce rosetting, such as 

complement receptor 1 deficiency 37 and blood group O 23, confer protection against 

severe malaria 57 58 possibly by reducing the vaso-occlusive effects of rosetting 59.  The 

association of rosetting with severe malaria, taken with the protective effects of human 

polymorphisms that reduce rosette formation, support a direct role of rosetting in the 

pathogenesis of severe malaria. Further support is provided by the observation that the 

presence of antibodies against PfEMP1 is associated with protection against severe 

malaria in various studies of populations living in malaria endemic areas 41 28 27. 

 

Antibodies to DBL1α from the FCR3S1.2 strain of P. falciparum have been shown to be 

cross-reactive with multiple rosetting strains of highly virulent P. falciparum 40.  A 

vaccine that that incorporates targets antigens from the more virulent strains of P. 

falciparum that are specifically related to the development of severe malaria hold promise 

of decreasing malaria mortality, the vast majority of which is secondary to the 

development of severe malaria.  This will mainly affect children under 5, in whom the 

vast majority of severe malarial mortality is observed.  In addition, such vaccines could 

be an important component of a traveler’s vaccine as that travelers are also at increased 

risk of developing severe malaria due to their lack of previous exposure and non-immune 
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status.  Such a vaccine will likely not be directly effective in preventing morbidity related 

to uncomplicated malaria.  However it may be able to make a unique contribution 

towards the eventual development of a vaccine that confers protection to uncomplicated 

malaria due to the important role of PfEMP1 in parasite immune evasion and 

immunomodulation. 

 

Failure to induce durable immunologic memory has been one of the most significant 

obstacles to the success of virtually every malaria vaccine effort to date.  The interactions 

between P. falciparum and the mammalian immune system are extremely complex.  Not 

only has the parasite developed sophisticated immune evasion mechanisms, there is 

compelling evidence that it actively induces host immune suppression.  Some of the 

difficulties in malaria vaccine efforts encountered thus far in inducing a durable immune 

response may be partially addressed by designing vaccines with these interactions in 

mind.  In general, malaria vaccine efforts have thus far focused almost exclusively on the 

antigen selection process – which is understandable given that the Plasmodium genome 

contains over 5,000 genes.  Interestingly, however, the genome of P falciparum contains 

more genes related to host immune evasion and immune suppression than it does 

enzymes.  Experience during clinical trials of several of the first generation malaria 

vaccines has highlighted the critical importance of adjuvant selection to the ability of a 

vaccine to induce a durable immune response, or even any immune response at all 4.  This 

suggests that the specific immune microenvironment at the time of vaccination may have 

an importance approaching that of the actual choice of target antigen(s).  Rather than 

simply continuing the strategy of attempting to identify more antigens, future vaccine 
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efforts need to additionally focus on exploring how to rationally shape the immune 

response elicited to malaria target antigens based on our increasing understanding of the 

interactions of the malaria parasite with the host immune system, and targeting PfEMP1 

could play an important role in this process.  

 

 

Future directions: PfEMP1 and parasite induced immune modulation and evasion 

Malaria parasites have evolved various mechanisms to evade host immune defenses:  1) 

The most basic mechanism of immune escape is the intracellular parasitism of RBCs, 

allowing the parasites avoid humoral immune responses while simultaneously evading 

recognition by CD8+ T-cells due to the lack of expression of MHC I molecules on the 

RBC surface.  2) There is a high degree of antigenic polymorphism in malarial parasites, 

and the low immunogenicity and high heterogeneity of malaria antigens is thought to 

drive the immune system to respond to too many targets 60.  Many of these targets contain 

tandem repeats that provide immunodominant B-cell epitopes, potentially masking the 

critical epitopes for protective immunity by affecting the affinity maturation of antibodies 

and inducing T-cell independent B-cell activation 36.  3) The expression of PfEMP1 on 

pRBCs allows parasites to adhere to the vascular endothelium, protecting them from 

splenic clearance.  4) Given the critical importance of PfEMP1 to essential parasite 

functions such as adhesion, as well as its’ vulnerable location exposed on the surface of 

pRBCs, PfEMP1 has evolved to be extremely polymorphic as well as to exhibit a high 

degree of clonal antigenic variation.  The var gene encoding PfEMP1 is present at over 

50 loci in the plasmodium genome, and blood stage parasites are able to switch 
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expression between these various loci resulting in antigenically distinct waves of 

parsitemia that effectively allow evasion of the primary antibody response 33. 

 

In addition to immune evasion mechanisms, malaria parasites appear to have the ability 

to actively induce host immune suppression 36 61.  Patients with active malaria infection 

often show reduced immune responses not only to malaria parasites, but to other, 

unrelated, infectious organisms as well as vaccines 62.  This active immune suppression 

during infection could make it difficult for the host to develop and sustain robust 

protective immunity.  This is seen both in the long latency to acquiring protective 

immunity in individuals in malaria endemic areas, as well as the difficulties encountered 

thus far in inducing durable immune responses with vaccines. Recently it has been 

demonstrated that PfEMP1 can bind to B-cells and dendritic cells, an interaction that has 

the potential to actively interfere with the host immune system during infection 35.  

PfEMP1 has been shown to inhibit the maturation of antigen presenting cells in vitro 63, 

which could lead to impaired T-cell responses.  This interaction with dendritic cells 

induces upregulation TGF-β as well as induction of T-regulatory cell activation and 

proliferation.  PfEMP1 has additionally been shown to suppress PBMC production of 

IFN-γ in vitro by up to 20-fold 6. A clear consensus has not yet been achieved as to the 

domains of PfEMP1 that are critical to its immune evasion properties.  The most recent 

evidence indicates that – in contrast what has been previously believed – the interaction 

of PfEMP1 with APCs occurs independently of a direct interaction of the CIDR1 domain 

with host CD36, and instead may involves the DBL domain 64.  
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Conclusions 

The critical role of PfEMP1 in the development of severe malaria and in P. falciparum 

immune evasion make it an important vaccine candidate.  The majority of PfEMP1 is 

highly polymorphic with the major exception being the DBL-1α domain, regions of 

which are almost 100% conserved 1.  There appears to be a higher degree of antigenic 

homogeneity in the virulence factors of parasites responsible for severe disease 7, and 

cross-reactivity to DBL1α appears to occur between a number of highly virulent strains 

of P. falciparum.  There is compelling evidence that the DBL1α domain is responsible 

for the cytoadhesive and rosetting properties of pRBCs that are central to the 

development of severe malaria, and may be involved in important aspects of parasite 

immune evasion.  There is evidence from numerous human studies, as well as rodent and 

primate studies, that strongly support the potential utility of DBL1α as a target antigen, 

and it is hoped that immunization with vaccine incorporating DBL1α could alleviate 

some of the burden of severe malarial mortality in the future.   

 

VSV vectors have been shown to be highly effective in inducing potent immune 

responses in a number of other diseases, and may also be well-suited to malaria vaccine 

development.  We have shown that immunization with DBL1α expressed in VSV vectors 

induces anti-rosetting activity comparable to that of immune sera from adults living in 

malaria hyperendemic regions.  Future studies should look toward establishing whether 

the immune response durability of VSV vectored DBL1α vaccines might be optimized by 

incorporating them into an alternating heterologous prime-boost regimen with other viral 

vectored DBL1α vaccines such as the SFV-DBL1α vaccine currently in development.  In 
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addition, it future studies should examine whether incorporation of DBL1α into a multi-

antigen vaccine targeting uncomplicated malaria might improve vaccine efficacy by 

interfering with parasite immunomodulation and immune evasion strategies that may be 

partially responsible for difficulties encountered with current vaccine efforts.  
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