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ABSTRACT 

THE EXPRESSION AND LOCALIZATION OF CYTOPLAMIC 
POLYADENYLATION ELEMENT BINDING PROTEINS IN THE RETINA 

Xiangping Wang 

Nov 7,2008 

The current status of our knowledge of synaptic plasticity comes largely from studies of 

the hippocampus and the context of learning and memory. We remain largely ignorant of 

plasticity in other neural systems and contexts. The molecular basis of plasticity has 

recently been given new impetus due to the discovery of a local control mechanism 

which can regulate protein synthesis at stimulated synapses. This involves the use of 

cytoplasmic polyadenylation binding proteins (CPEBs) to regulate translation. The 

studies presented here attempt to show that these molecular components are present in 

the retina, a part of the central nervous system that has been seen, historically, as not 

plastic. 

Methods used: RT-PCR was used to determine the presence of mRNAs in tissue. In 

situ hybridization and immunofluorescence microscopy were used for localization of 

mRNAs and proteins respectively. Real-time PCR and Western blots were used for 

quantifications of mRNA and proteins during postnatal development. A bioinformatics 

program "CPE detector" and 3' RACE were used to identify potential mRNA targets for 

CPEB1 in the UTR databases and in the retina respectively. The PAT assay was used 

to determine the length of poly(A) tails for some potential mRNA targets. Data mining 

and sequence alignment were used to identify alternatively spliced isoforms of CPEB3. 
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Major Results: Our results demonstrated that CPEB1-4 were all present in the retina. 

The four CPEBs had similar distributions in the inner retina: predominantly in the retinal 

ganglion cell layer, and to a less extent, in the inner nuclear layer. However, CPEB1 had 

a laminar pattern in the inner plexiform layer, whereas CPEB3 was diffuse. The 

presence of CPEB1 was minimal in the outer plexiform layer in contrast to CPEB3. 

During postnatal development the levels of CPEB1, 3 and 4 were up-regulated; whereas 

the level of CPEB2 was constant. Potential mRNAs were identified as targets of 

CPEB1; some mRNA targets demonstrated elongated poly(A) tails at postnatal day7 or 

day12, consistent with the up-regulation of CPEB1 at these ages. Multiple isoforms, 

including a novel one, were identified for CPEB3. The alternative splicing of CPEB3 

could occur both in the UTRs and in the coding region. 

Major Conclusions/Significance: Our data demonstrated that more than one CPEB 

paralog is present in mouse retina. Potential mRNA targets for CPEB1 were present in 

the retina and gained elongated poly(A) tail in accordance with the up-regulation of 

CPEB1 during development. The increases of CPEB1, 3 and 4 during the development 

indicate a possible role of such CPEBs in synaptogenesis. Continuing up-regulation of 

CPEB1, 3 and 4 also indicate a role in the adult retina. Alternative splicing in the UTRs 

of CPEB3 indicates a complex regulation of CPEB3; multiple isoforms of CPEB3 protein 

indicate the functional complexity of CPEB3. The presence of CPEBs in the retina 

indicates the existence of a translational control system in the retina. 

Future studies: Future studies should focus on the identification of mRNA targets for 

each CPEB. Such potential targets can be validated using in vitro binding assays to 

confirm their interaction with CPEB proteins. CPEB can be knocked-down or 

overexpressed in cultured cells. CPEB knockout mice can be generated for further 

functional studies. 
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1. Synaptic plasticity 

CHAPTER I 

INTRODUCTION 

The old adage "use it or lose it" has been proven correct for many generations. It vividly 

defines the plasticity in a number of systems in our body, including the central nervous 

system (CNS). The CNS seems to be endowed with an extraordinary degree of plasticity, 

one of the important foundations for processes such as development, learning and 

memory (Silva 2003; Molnar et al. 2002). It is believed that strengthening of existing 

synapses and formation of new synaptic contacts underlies the formation and 

consolidation of memory; while the atrophy of synapses in the absence of reinforcement 

leads to forgetting (figure 1). 

Synaptic plasticity is defined as "the ability of synapses to change as circumstances 

require. They may alter function, such as increasing or decreasing their sensitivity; or 

they may increase or decrease in actual numbers. This phenomenon is thought to be 

the main source of the overall plasticity of nervous system pathways" (Dorland's 

Illustrated Medical Dictionary, 29th edition). Synaptic plastiCity portrays the ability of 

neurons to change their synaptic strength and efficacy of transmission in adaptation to 

input. Synaptic plastiCity can be embodied in several forms, including changes in the 

amount of neurotransmitters released from presynaptic terminals (Sala et al. 1998; 

Rosenmund et al. 1993), alteration in the composition and number of receptors lion 

channels on the postsynaptic membrane (Yashiro et al. 2005), re-remodeling of synaptic 
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Figure 1. Illustration of synaptic plasticity: memory and forgetting (LOscher et al. 2000) 

This is a simple illustration for the current understanding of the formation of "memory" 

with knowledge of current literature. When neurons receive high-frequency stimuli, a 

series of biochemical and morphological changes occur, which ultimately lead to 

strengthening of synaptic transmission and increase in the number of synapses. On the 

other hand, the reverse process - ''forgetting'' can occur: the synapses undergo 

"atrophy"- decrease in numbers and in its efficacy in the absence of stimuli (from right to 

left). 
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structure (Eliasieh et al. 2007), and an increase or decrease in the number of synapses 

(Tominaga-Yoshino et al. 2008). The manifestations of synaptic plasticity can be 

molecular, electrophysiological, morphological, and sometimes, behavioral. Some of the 

key synaptic molecules that have long been known for their involvement in synaptic 

plasticity are elaborated below: 

1) Glutamate receptors 

Glutamate is the most abundant excitatory neurotransmitter in the CNS. It is released 

from pre-synaptic cells following an appropriate stimulus, crosses the synaptic cleft, and 

binds to its receptors on post-synaptic cell membrane. Several types of glutamate 

receptors are present on the post-synaptic cell membrane. These receptors are 

categorized into two major classes: ionotropic glutamate receptors (iGluR), which are 

ion channels gated by the ligand, and metabotropic glutamate receptors (mGluR), which 

are coupled to secondary messenger pathways. The iGluRs are further divided into 

three classes, named for the glutamate antagonist they respond to: N-methyl-D­

aspartate receptor (NMDAR), a-amino-3-hydroxy-5-methyl-4-isoxazole propionate 

receptor (AMPAR), and kainate receptor (KAR) (figure 2). All of these types of glutamate 

receptors have been implicated in certain forms of synaptic plasticity (Kullmann and 

Lamsa 2008; Catania et al. 2007; MacDonald et al. 2006; Genoux and Montgomery 

2007; Kim et al. 2008; Isaac et al. 2007; Lau and Zukin 2007; Shepherd and Huganir 

2007; Bortolotto et al. 2005), with the best-established being NMDAR and AMPAR. 
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a) NMDAR 

NMDARs are multimeric protein complexes composed of subunits named NR1, NR2 and 

NR3, alternatively referred to as GRIN1-3 (figure 2a, 2b). Eight alternative splicing 

isoforms of NR1 have been identified with distinct tissue distributions. Four isoforms of 

NR2 (NR2A-D) are selectively expressed across various cell types, with NR2B being the 

predominant isoform in neurons. The NR2 subunit possesses the binding site for 

glutamate and determines the receptor's basic kinetic properties. However, the 

functional properties of NMDARs arise from the differential combination of NR1, NR2 

and NR3. A developmental NR2B-NR2A switch has been characterized in the CNS: 

NR2B is predominant in early stages, while NR2A gradually outnumbers NR2B in the 

later stages of development (Liu et al. 2004). The developmental switch from a NR2B to 

a NR2A dominant form is believed to be a modulator of synaptic plasticity (MacDonald et 

al. 2006) and NMDA neurotoxicity (Liu et al. 2007b; Zhou and Baudry 2006). The 

integration of NR3A or NR3B to NR1/NR2 subunits modifies the ion permeability of the 

receptor, and reduces NMDA-induced currents; co-assembly of NR3A or NR3B with 

NR1, in the absence of NR2, forms excitatory receptors that can be activated by glycine 

alone, but unaffected by glutamate or NMDA (Chatterton et al. 2002; Wada et al. 2006; 

Tong et al. 2008; Awobuluyi et al. 2007). All NMDA receptor subunits are 

transmembrane proteins. The intracellular domains of these subunits contain sites for 

several kinases such as protein kinase A (PKA), protein kinase C (PKC), 

Ca(2+)/calmodulin-dependent protein kinases (CaMKs), and tyrosine kinases that 

regulate the functions of the receptors (Wang et al. 2005; Wang et al. 2006). The 

intracellular domains also possess the binding sites for a series of structural, adaptor, or 

scaffolding proteins (Beresewicz 2007). 

5 



Figure 2. Classification and nomenclature of glutamate receptors 

a} Glutamate receptors are classified into two major classes: ionotropic receptors 

(iGluR) which are ion channels associated with receptors, and metabotropic 

receptors (mGluR) which are coupled to secondary messenger pathways. iGluR 

is divided into three types depending on the agonists they respond to: NMDA 

receptors (NMDAR), AMPA receptors (AMPAR), and kainate receptors (KAR). 

Each ionotropic receptor is multimeric. The types of subunits are listed below for 

each subtype. mGluR each is composed of one transmebrane protein subunit. 

The types of subunit for mGluR are also listed. 

b} Diagram of iGluR (modified from Kandel et ai, 1991). iGluRs are receptors 

associated with ion channels (top). Each iGluR is composed of multiple (4-5) 

subunits; each subunit is a transmembrane protein that crosses the membrane 

four times (bottom). 

c} Diagram of mGluR (modified from Kandel et ai, 1991). mGluRs are coupled to 

secondary messenger pathways (top). Each mGluR is formed from one 

polypeptide, which is a transmembrane protein that crosses the membrane 

seven times (bottom). 
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NMDARs (figure 3a) are Na+, K+ channels which are also highly permeable to Ca2+ 

(Mayer et al. 1987). NMDARs can be blocked by Mg2+ in a voltage-dependent way or by 

Zn2+ in a voltage-independent way (Westbrook and Mayer 1987). The activation of 

NMDARs requires the binding of glutamate and the co-agonist glycine, as well as 

membrane depolarization. Ca2+ influx via these receptors is believed to evoke 

glutamate-mediated synaptic plasticity (Baba et al. 2003; Kamiya et al. 2002; Christie et 

al. 1996; Cummings et al. 1996). A large amount of Ca2+ influx activates CaMKII, which 

ultimately increases the number of AMPAR on the post-synaptic membrane and 

elevates the efficacy of the synapses (Poncer et al. 2002). However, excessive Ca2+ 

influx can also lead to too much excitation (excitotoxicity) and neurotoxicity (Meldrum 

and Garthwaite 1990). 

b) AMPAR 

AMPARs are multimers composed of four distinct protein subunits, GluR1-4, 

alternatively named as GRIA1-4 (figure 2a, 2b). Alternative splicing isoforms of each 

subunit result in different functional properties such as the speed of desensitization and 

resensitization. The majority of AM PARs consist of a symmetric "dimer of the dimers", 

which are composed of GluR2 and either of GluR1 , GluR3, or GluR4 (Greger et al. 2007; 

Mayer 2005). GluR2-containing AMPARs are well-established key players in long-term 

synaptic plasticity (Isaac et al. 2007; Xia et al. 2007), although GluR2-absent AMPARs 

have also been demonstrated to playa role in synaptic plasticity as well (Meng et al. 

2003; Biou et al. 2008). 

AM PARs are ion channels permeable to Na+ and K+ (figure 3b). Their permeability to 

Ca2+ is determined by the presence or absence of GluR2. AM PARs that lack GluR2 are 
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Figure 3. Diagrams of two types of ionotropic glutamate receptors: NMDAR and AMPAR 

(modified from Kandel et al. 1991) 

a) NMDA receptor is selectively agonized by NMDA. The associated channels are 

permeable to Na+, K+, and highly permeable to Ca2+. NMDAR has selective 

binding sites for glutamate, glycine, Mg2+, Zn2+ and polyamines. The activation 

of NMDAR requires the binding of both glutamate and glycine. Mg2+ and Zn2+ 

inhibit NMDAR in a voltage-dependent and voltage-independent way, 

respectively. Polyamine is an important modulator of NMDAR. 

b) AMPA receptor is selectively agonized by AMPA. The associated channels are 

permeable to Na+ and K+. The permeability to Ca2+ is dependent on the 

subunit composition. GluR2-lacking AM PAR is permeable to Ca2+, while GluR2-

containing AMPAR is almost impermeable to Ca2+. Subunit composition also 

modulates the regulation of AMPAR. For example, GluR2-containing AMPAR 

can be blocked by polyamine in a voltage-dependent manner. 
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well (figure 5), including a membrane associated form of the G protein Ras (Rosen et al. 

1994), Ca2+/calmodulin activated guanine exchange factors (GEFs), and cytoplasmic 

protein tyrosine kinase 2 (PTK2) (Orban et al. 1999). The activation of CaMKIl can also 

contribute to the activation of ERK2 by inhibiting an ERK inhibitor synaptic Ras-GTPase­

activating protein (synGAP) (Soderling et al. 2001). A recent study demonstrated that 

MAPK is required for phosphorylation of cytoplasmic polyadenylation binding protein 

(CPEB1) during meiosis in Xenopus oocyte, and MAPK directly phosphorylates CPEB1 

on four residues (T22, T164, 8184, 8248), but not on 8174 which is phosphorylated by 

aurora kinase (Keady et al. 2007). It is not known whether MAPK can activate CPEB1 in 

some form of synaptic plasticity in neurons. 

4) BDNF 

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family and is 

known to have an essential role for neuronal survival and differentiation and neurite 

growth. BDNF also has an important role in memory formation and synaptic plasticity, 

particularly in glutamatergic neurons. The mature BDNF form preferably binds to and 

activates TrkB receptor, a member of the receptor tyrosine kinase family. Following 

secondary messenger signaling cascade, activated TrkB will induce the phosphorylation 

of glutamate receptor subunits thus affecting the glutamate receptor activity (figure 6) 

(Carvalho et al. 2008). In contrast, the unprocessed pro-form, proBDNF is coupled to 

p75 receptor and is possibly involved in cell death (Kenchappa et al. 2006). The mRNAs 

of BDNF and TrkB are localized to different subcelluler locations including synapses in 

the hippocampus and visual cortex. The accumulation and synaptic translocation of 

BDNF mRNA and proteins was elicited by depolarization stimuli via a pathway involving 

NMDAR, TrkB and an influx of Ca2+ (Tongiorgi et al. 2006). In the dentate gyrus of rats, 
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Figure 6. BNDFrrrkB signaling pathway and synaptic plasticity (Carvalho et al. 2008) 

BDNFrrrkB regulates the synaptic plasticity at glutamatergic synapses through pre- and 

postsynaptic targets. Pro-BDNF is secreted from both the pre- and post-synaptic 

membrane in an activity-regulated way. Mature BDNF generated by extracellular 

protease digestion of pro-BDNF acts on pre- and postsynaptic TrkB receptors, which is 

coupled to secondary messenger pathways. In presynaptic compartment, activated TrkB 

regulates glutamate release; whereas in postsynaptic space, activated TrkB elicits 

changes in glutamate receptor synthesis and phosphorylation, changes in gene 

transcription and local translation. These effects of BDNFrrrkB signaling pathway result 

in the modulation of synaptic efficacy and morphology. 
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a brief infusion of BDNF induced the transcription and rapid dendrite trafficking of the 

immediate early gene activity-regulated cytoskeleton-associated protein (Arc), which is 

required for the local expansion of the actin cytoskeleton during late phase L TP (Soule 

et al. 2006; Bramham and Messaoudi 2005). BDNF signaling also regulates the 

localization and activation of the translational machinery, thus driving the local 

translation of synaptic mRNAs such as Arc and CamKlIa (Soule et al. 2006; Yin et al. 

2002; Bramham 2008; Aakalu et al. 2001). 

Neurotrophin is involved in the formation of neuronal connectivity at several levels. 

BDNF is involved in axonal and dentritic arborization and activity-dependent synaptic 

connectivity in retinal ganglion cells (Cohen-Cory and Lorn 2004), in the hippocampus 

and neocortex (Binder and Scharfman 2004). 

Several independent studies demonstrated that AMPAR can induce the up-regulation of 

BDNF in both Ca2
+ -dependent and Ca2

+ -independent manners. One study 

demonstrated that activation of a tyrosine kinase Lyn by AMPAR triggers the MAPK 

pathway and increases the expression of BDNF (Hayashi et al. 1999). 

Two transcript variants of BDNF are produced in the brain. Although both encode for the 

same protein, one has a short 3' untranslated region (3'UTR) and the other long 3' UTA. 

The short 3' UTR isoform is restricted to cell somata, whereas the long 3' UTR isoform 

can be located to synapses. Mutant animals with truncated long 3' UTR manifested 

impaired dendritic targeting of BNDF mRNA, deficits in dendritic pruning and 

enlargement, and selective impairment in long-term potentiation in the hippocampus (An 

et al. 2008). The mechanism by which long 3' UTR isoform of BDNF mRNA is localized 

and translated in the dendrites is yet to be determined. 
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5) Cytoskeletal, scaffolding, and adhesion molecules 

Synaptic remodeling requires a dynamic synaptic architecture. Post-synaptic density 

(PSD) is an electron-dense structure composed of hundreds of proteins, providing a 

scaffold for the delivery of membrane-bound receptors as well as a matrix for 

concentrated functional molecules such as kinases, phosphatases, and other key 

molecules of various signaling pathways involved in synaptic plasticity. Prominent 

members of the PSD include actin-based cytoskeleton proteins, scaffolding proteins, and 

adhesion molecules (figure 7) (Boeckers 2006). Cytoskeleton molecules including actin, 

spectrin, tubulin, microtubule-associated proteins have been isolated from the PSDs. 

Adhesion molecules such as cadherins are also present at synaptic junctions and playa 

critical role in synaptic plasticity (Huntley et al. 2002). 

The structure of the PSD is dynamic. Its major component, actin, can be a stable 

structural component or a dynamic filament. Drebrin, a side-binding protein of 

filamentous actin (F-actin), is located in spines and regulates the recruitment of actin and 

PSD-95 into filopodia, the precursor of dendritic spines (Takahashi et al. 2003; Mizui et 

al. 2005; Sekino et al. 2007). The neuronal cell adhesion molecule, N-cadherin, can be 

synthesized and recruited to the PSD during L TP in the hippocampus. 

Insertion of NR2B-containing NMDARs to the synaptic membrane is associated with a 

dynamic organization of the PSD and an actin-dependent increase in the size of 

dendritic spines (Mulholland and Chandler 2007). A key cytoskeleton molecule, the 

Protein Interacting with C-Kinase 1 (PICK1), was recently identified as a key regulator of 

AMPAR trafficking. PICK directly interacts with AM PAR and assists the removal of 

AMPAR from the synaptic membrane (Hanley 2008). 
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Figure 7. PSD - cytoskeletal, scaffolding, adhesion molecules and more 

(http://www.mcw.edu/FileLibrary/User/mschober/PSD_diagram.jpg) 

PSD forms the matrix and platform for key synaptic plasticity molecules to attach and 

function. PSD is composed of hudreds of different types of proteins, namely, 

cytoskeletal proteins, scaffolding proteins, adhesion molecules, and other synaptic 

plasticity-associated molecules. F-actin is one of the major components of PSD. 

CaMKlla is also highly enriched in PSD. Components of CPEB complexes have also 

been identified in PSD (ref). PSD provides anchor points for the enrichment of 

glutamate receptors AMPAR and NMDAR; it also provides a microenviroment for 

synaptic molecules such as CaMKIl and CPEBs to function. 
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Most of the aforementioned synaptic plasticity molecules are enriched in synapses. A 

rapid regulation of their translation or synaptic localization needs to be in place in a 

temporally and spatially specific manner upon the arrival of stimuli. The synthesis and 

dynamic organization of these molecules is activity dependent, involving Ca2
+ influx 

through activated glutamate receptors and voltage-gated calcium channels at the post­

synapse (Schubert and Dotti 2007; Certner and Matus 2005). For example, activation 

of NMDAR provides a regulation for the molecular conformational change of cadherin 

and leads to strengthened adhesion across the synaptic cleft. Nonetheless, the 

complete mechanisms of such regulation are yet to be delineated. 

2. Cytoplasmic polyadenylation and translational control 

Synaptic plasticity requires transcriptional and translational control for enduring changes 

in synaptic efficacy (Steward and Schuman 2001; Bading 2000). It needs to be 

demonstrated that the molecular processes underlying plasticity are temporally and 

spatially accurate as to when and where the stimulus was received. Recent reports 

indicate that local protein synthesis in dendrites under tight control may provide an 

essential mechanism for long term synaptic plasticity. Cytoplasmic polyadenylation may 

be able to provide a rational explanation of how this can be achieved. 

It is well established that all eukaryotic pre-mRNAs undergo polyadenylation in the 

nucleus before they are exported to the cytoplasm. The newly synthesized pre-mRNA is 

endonucleolytically cleaved at about 10 nucleotides upstream of the polyadenylation 

signal (PAS), a hexamer sequence in the 3' UTR. The poly(A) stretch is then added to 

the newly formed 3' end. The poly(A) tail and its bound proteins are important for 

termination of transcription, export of the mRNA from the nucleus, and protection of the 
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mRNA from degradation by exonuclease. Multiple variants of the PAS sequence have 

been identified in nature with different occurrences and distinct efficiencies for 

polyladenylation (table 1). 

Cytoplasmic polyadenylation was first identified in eggs and two-cell embryos (Clegg 

and Piko 1982; Clegg and Piko 1983a; Clegg and Piko 1983b; Wilt 1973), where little 

RNA transcription activity was detected. A serine protease tissue-type plasminogen 

activator (t-PA) was translated in a concerted manner in oocytes undergoing meiotic 

maturation. The mRNA of t-PA accumulates during oocyte growth until the oocyte is 

fully grown and arrested in meiosis. Resumption of meiosis triggered the polyadenylation 

of t-PA mRNA in the cytoplasm, which was immediately followed by translation and 

serves as a novel mechanism for translational regulation (Vassalli et al. 1989; Huarte et 

al. 1987). Timed expression of pre-stored mRNA was also observed during early 

embryonic development to initiate mitosis and in some circumstances, to dictate the 

polarity of the embyo. Such translational activation was accompanied by elongation of 

the poly(A) tails (Richter 1991; Simon et al. 1992). The same mechanism was later 

discovered to be employed by the hippocampus and several other parts of the central 

nervous system, for the acquisition and consolidation of memory, or for long-term 

synaptic plasticity. 

Both a PAS motif and a U-rich motif are required for cytoplasmic polyadenylation of 

mRNAs' (Fox et al. 1989; McGrew et al. 1989). This short U-rich sequence UUUUUAU 

was later dubbed the "cytoplasmic polyadenylation element" (CPE) (Fox et al. 1989). 

Several variants of CPE sequence have been identified (McGrew and Richter 1990; 

Simon et al. 1992) (table 2). CPE is often located upstream of the PAS within a distance 

of -10 nt to 100 nt, but in some instances overlaps with the PAS (figure 8). Many 

mRNAs have more than one CPE in their 3' UTA. The variant, the number of copies of 
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Table 1. Variants of polyadenylation signal (PAS) and their occurrence 

Data were adapted from (8eaudoing et al. 2000). "% sites" represented the 
occurrence of the hexamer within 50 nt upstream of potential poly(A) sites. A 
total number of 5647 putative poly(A) sites (generated by comparing human 
UTRs to EST sequences) were studied. 

Sequence % sites 

AAUAAA 58.2 

AUUAAA 14.9 

AGUAAA 2.7 

UAUAAA 3.2 

CAUAAA 1.3 

GAUAAA 1.3 

AAUAUA 1.7 

AAUACA 1.2 

AAUAGA 0.7 

AAAAAG 0.8 

ACUAAA 0.6 
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Table 2. Variants of CPE sequence 

Sequences of CPE variants appeared in the literature are listed below (Fox et al. 1989; 
McGrew and Richter 1990; Simon et al. 1992). 

Sequence 
UUUUAUU 
UUUUUAU 
UUUUAAU 
UUUUGUU 
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Figure 8. Features of mRNA targets for cytoplasmic polyadenylation 

The mRNA targets for cytoplasmic polyadenylation have two specific motifs in their 3' 

UTRs: cytoplasmic polyadenylation element (ePE) and polyadenylation signal (PAS). 

CPE is often located upstream of PAS, with a gap usually less than 100 nt. In some 

instances, ePE overlaps with PAS. Some mRNA targets have more than one ePE or 

PAS motifs in their 3' UTRs. The consensus sequences for ePE and PAS are listed. 
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CPE and the distance to the PAS are widely variable for different mRNAs. Such 

variables could indicate the presence of modulators of the process of translational 

control. 

The CPE binding protein (CPEB) was first identified in 1990 in Xenopus oocytes 

(McGrew and Richter 1990; Paris et al. 1991). The term CPEB became interchangeable 

with CPEB1 later as more paralogs were identified. Invertebrate CPEB homologs have 

been documented for Drosophila (Chang et al. 1999), zebrafish (Bally-Cuif et al. 1998), 

C. e/egans (Luitjens et al. 2000), clam (Walker et al. 1999) and Aplysia (Si et al. 2003a). 

Studies on the mechanisms of CPEB-regulated translational control have been 

extensively focused on CPEB1. Although evidence suggested that similar machineries 

are employed in oocytes, early embryos, and CNS, the major discoveries were derived 

from work in oocytes, since oocyte maturation is a more facile and efficient model for 

CPEB1-regulated translational control. The complete mechanisms of CPEB1 regulated 

polyadenylation/translation is yet to be fully delineated. The current state of our 

knowledge is summarized below. 

1) CPEB 1-mediated translational control and its mechanisms 

Translation of maternal mRNAs is triggered by progesterone stimulation during oocyte 

maturation. Activation of progesterone receptors induces a cascade leading to the 

phosphorylation and activation of CPEB1, which is closely associated with the plasma 

membrane. One of the first mRNAs that undergo polyadenylation and translation is mos, 

which codes for a serine/threonine kinase. Mos protein in turn assists the 

polyadenylation-induced translation of cyclin B1 mRNA. Cyclin B1 together with its 
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bound cyclin-dependent kinase 1 (cdk1) will then be responsible for a series of events 

leading to oocyte maturation (Richter 2007). 

CPEB1 has a dual role: a translational activator and a translational inhibitor (figure 9). 

Under quiescent conditions, unphosphorylated CPEB1 binds to the 3' UTR of mRNA and 

represses translation. When cells respond to appropriate stimuli, the activation of 

CPEB1 via phosphorylation or the degradation of CPEB1 removes the repression and 

allows translation to initiate. The complete mechanism through which CPEB1 regulates 

polyadenylation is yet to be completely elucidated, but current knowledge indicates that 

it involves both the 3' and 5' end of the mRNAs. In the dormant state, an adaptor protein, 

maskin, interacts with both CPEB1 (which binds to CPE in the 3' UTR of the mRNA) and 

eukaryotic translation initiation factor 4E (eIF4E, which binds to 5' cap of the mRNA) 

(Stebbins-Boaz et al. 1999). This binding bends the mRNA molecule to bring its 3' and 

5' ends close together. The interaction of maskin to elF4E excludes eukaryotic 

translation initiation factor 4G (eIF4G) from binding to e1F4E. This blocks the assembly 

of the complete translational machinery. Phosphorylated CPEB is transformed into an 

activator which gains enhanced affinity for Cleavage and Polyadenylation Specific Factor 

(CPSF), which in turn recruits Poly(A) Polymerase (PAP) and initiates polyadenylation. 

The newly synthesized poly(A) tail is quickly bound and protected by Poly(A) Binding 

Protein (PABP) , which subsequently recruits translational initiation factor elF4G to 

displace maskin from elF4E (figure 9). This stabilized eIF4E-4G interaction enrolls the 

ribosome for initiation of translation. 

This model is supported by multiple studies on oocyte maturation. Maskin, CPSF, PAP 

and other components have been isolated from the cytoplasmic polyadenylation 

complex (Mendez et al. 2000; Barnard et al. 2004). 

35 



Figure 9. Diagrams of the mechanism for CPEB1-regulated translational control during 

oocyte maturation (modified from Groisman et al. 2002) 

a) Under dormant state, CPE-containing mRNAs are bound by unphosphorylated 

CPEB1, which also binds to maskin, an adaptor protein. Maskin in turn binds to 

eIF-4E and prevents the association of eIF-4E with eIF-4G. In this configuration, 

mRNA translation is repressed. The cleavage and polyadenylation specific factor 

(CPSF) mayor may not be associated with PAS prior to activation. 

b) When CPEB1 is phosphorylated in response to progesterone stimulus, it 

acquires increased affinity to CPSF. CPSF then binds to PAS and recruits 

polyadenylation polymerase (PAP), which results in the elongation of the poly(A) 

tail. Newly synthesized poly(A) tail is bound and protected by poly(A) binding 

proteins (PABP), which facilitates the recruitment of eIF-4G. eIF-4G displaces 

maskin from eIF-4E. The association of eIF-4E and eIF-4G recruits the ribosome 

for the initiation of translation. 
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2) Characterization of CPEB2, CPEB3, and CPEB4 

Besides the intensively-studied CPEB1, three additional paralogs of CPEB have been 

identified in rodents. Mouse CPEB2 was identified as abundant in post-meiotic haploid 

cells in testes and may have a role in spermatogenesis. Reverse transcription­

polymerase chain reaction (RT-PCR) demonstrated that CPEB2 was also expressed in 

cerebrum, cerebellum, salivary gland, thymus, liver, spleen, kidney, intestine, testis, and 

ovary (Kurihara et al. 2003). A systematic screen with PCR for CPEB genes in mouse 

brain revealed another two novel paralogs: CPEB3 and CPEB4. 

Sequence alignment demonstrated a less homologous N-terminus and a highly 

conserved C-terminus, among different paralogs and across species (figure 1 Oa). Two 

RNA recognition motifs (RRF) and a zinc finger region in the C terminal region are 

indispensible for RNA binding, as demonstrated by deletion experiments, and are highly 

conserved (Theis et al. 2003). Interestingly, rodent CPEB2, 3, and 4 share a much 

higher homology to one another than to CPEB1 (figure 10b). Cross-species 

comparisons demonstrated that mouse CPEB 1 is closer to Drosophila CPEB than to 

mouse CPEB2, and mouse CPEB2 is closer to Drosophila CPEB2 than to mouse 

CPEB1 (Theis et al. 2003). Such evidence strongly indicates that CPEB2, 3, and 4 

belong to a different subfamily which is rather distant from CPEB1. 

Multiple alternatively spliced isoforms have been identified for each of CPEB2, 3 and 4 

(Theis et al. 2003). The identified variable regions are the so-called B-region and C­

region (figure 11 a, 11 b). The significance of the C-region is unknown, but the B-region 

harbors the recognition sites for PKA, CaMKII, and p70S6 kinases (figure 11c). Unlike 

CPEB1, CPEB2-4 have no phosphorylation site for aurora kinase. But isoforms of 
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Figure 10. Comparison of mouse CPEB1-4 

a) The general structure of the CPEB proteins. The N terminus region is highly 

variable for different CPEBs, while the C-terminus is highly conserved. Two RNA 

binding motifs (RRM) together with a Zinc finger domain appear to be 

indispensable for RNA binding. 

b) Homology score of the full-length proteins and of the RNA-recognition motifs 

(RRM) between CPEB1-4 (Theis et al. 2003). In the overall structure, CPEB2-3, 

CPEB2-4, and CPEB3-4 demonstrate much higher identity (69.9,67.7, and 

56.8% respectively) than with CPEB1. Similarly, in the RNA recognition motifs, 

CPEB2-4 are almost identical (97-99%), whereas CPEB1 shares only 44.9% 

sequence with the other three. Comparisons were calculated using ClustalW. 

Scores represent the percentage of identical sequences. 
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Figure 11. Known alternatively spliced isoforms of CPEB2-4 (modified from Theis et al. 

2003) 

a) Schematic view of known mouse CPEB3 splice isoforms. (upper) CPEB3 

contains two amino acid stretches that are absent in some variants. The B 

region (hatched box) contains putative phosphorylation sites (filled circle) for 

PKC, CaMKlla and p70S6 kinases. The C region is upstream of the B region. 

The C and B regions can be spliced out individually or concurrently. 

b) Schematic view of known mouse CPEB4 spliced isoforms. For explanations, see 

a). Unlike CPEB3, the B region is not separated from C region in CPEB4. 

c) Sequence comparsion of variable regions Band C in mouse CPEB2, 3, and 4 

proteins. The B region is present in some variants of all three CPEBs. Putative 

phosphorylation sites for PKA, CaMKIl and p70S6 kinases are shown above the 

sequences, and the phosphorylaton site is indicated with an asterisk. The 

corresponding actual recognition sites are shaded. Note that the phosphorylated 

serine residue is not in the variable region, but the deletion of B region would 

disrupt the recognition site. 
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CPEB2-4 containing the B-region can be phosphorylated by PKA, CaMKIl and p70S6 

kinase (Theis et al. 2003). 

Different expression patterns have been characterized for CPEB1-4 in the brain. In the 

hippocampus, CPEB1, 2 and 4 mRNAs are all present in the CA1/CA31ayers and 

dentate gyrus. CPEB3 is barely detectable in these layers in the naIve state, but 

together with CPEB4 it is strongly up-regulated in kainaite-induced seizure. Notably, the 

CPEB3-4 isforms that were up-regulated after kainaite treatment were the ones 

containing the B-region (Theis et al. 2003) which possesses the phosphorylation site for 

PKA, CaMKIl and p70S6 kinases. Both CPEB3 and CPEB4 were strongly detected in 

post-synaptic density factions (Huang et al. 2006). In the cerebellum, both CPEB3 and 

CPEB4 were demonstrated in the granule cells. However, only CPEB3 appeared in the 

interneurons, and only CPEB4 appeared in the Pukinje cells. Additionally, CPEB3, but 

not CPEB4, appeared in the mitral cells of the olfactory bulb (Huang et al. 2006). 

Very little is known of the mechanisms by which CPEB2-4 operate. Based on the 

wide disparity in CPEB1 and CPEB2-4 sequences and differences in their tissue 

distribution, it is plausible that CPEB2-4 utilize distinct mechanisms from CPEB1. 

CPEB2-4 may be activated by different kinases such as PKA, CaMKlla, and p70S6 

while CPEB1 can be phosphorylated by aurora kinase. CPEB2-4 may have 

different substrate specificities. Huang and colleagues (Huang et al. 2006) 

demonstrated that CPEB3 recognizes a U-rich hairpin secondary structure in the 3' 

UTR of mRNAs (figure 12). The binding of CPEB3 to the hairpin motif and the 

binding of CPEB1 to the CPE motif is exclusive. CPEB3 but not CPEB1 protein 

binds to GluR2 mRNA both in vitro and in vivo. The application of CPEB3 siRNA in 

neurons resulted in an elevated level of GluR2 proteins (Huang et al. 2006). Similar 

to CPEB1, CPEB3 seemed to be a translational inhibitor of a reporter gene 
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Figure 12. RNA secondary structure for CPEB2-4 binding (Huang et al. 2006) 

a) A library of artificial RNA was generated from in vitro transcription. The 

oligonucleotide library composed of random 25-mers (variable sequence) flanked 

by constant sequences. The mixture was tested for binding to RBO of CPEB4 

using systematic evolution of ligands by exponential enrichment (SELEX) method. 

RNAs that had high binding affinity to the RBO of CPEB4 were listed. 

b) Predicted RNA secondary structure necessary for CPEB4 binding. A U-rich loop 

and a proximal stem upstream were both required. The nucleotides in the boxes 

indicated the ones protected by CPEB4. This model could be generalized to 

CPEB2-4, since the RBOs of these are almost identical. 
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construct in a naive stage, and transforms into an activator upon NMDAR 

stimulation. CPEB3-mediated translational control appeared to be independent of 

polyadenylation since it did not bind to CPSF nor did it require the PAS signal 

(Huang et al. 2006). 

3. CPEBs and synaptic plasticity 

Neurons are highly polarized cells that require differential distribution of proteins 

and mRNAs to different cellular compartments such as somata, axon and dendrites. 

A neuron can receive signals from thousands of cells. A dendrite that receives a 

signal is distinguished from many other dendrites that do not by establishing a "tag" 

of the stimulated synapse. This "tag" is composed of up-regulated proteins which 

will affect the way the synapse responds to stimuli in the future. Formation of such 

synaptic plasticity requires both temporally and spatially regulated translation at the 

synaptic sites. Many components of the protein synthesis machinery, including 

polysomes, CPEBs, and mRNAs are present in dendrites. This indicates that 

CPEB-mediated local translational control in response to synaptic activation could 

be one of the underlying mechanisms of synaptic plasticity (figure 13). 

1) CPEB1 and synaptic plasticity 

Intriguingly, the translational mechanisms employed by CPEB1 in oogenesis and early 

embryogenesis could be recapitulated in the brain. The CPEB that was most intensively 

studied for its role in synaptic plasticity is CPEB1. Localized translation at the synaptic 

sites is one of the essential underlying mechanisms for neuronal processes such as 
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Figure 13. Cytoplasmic polyadenylation and translation in neurons (Wells et al. 2000) 

Synaptic plasticity induces protein synthesis in neurons. CPEB is localized to synapses 

and enriched in the postsynaptic density (PSD) in the brain. Activation of NMDAR 

triggers the phosphorylation of CPEB and initiation of its target mRNAs (ref). This model 

is supported by the discovery that CPE-containing mRNA, CaMKlla, is enriched in PSD. 

Its polyadenylation and translation was up-regulated in the visual cortex of dark-reared 

animals when these animals were exposed to light (Wu et al. 1998). This process was 

blocked by antagonist of NMDAR or inhibitors of polyadenylation (Kirkwood et al. 1996; 

Wells et al. 1999). The mechanism of how NMDAR activates CPEB is yet to be 

determined (as indicated by"?"). 
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long-term memory and long-term synaptic plasticity. However, the mechanism by which 

translation is controlled and by which the proteins encoded modulate the prolonged 

changes biochemically is largely unknown. Some factors, including RNA-binding 

proteins and their target mRNAs at synaptic sites have been identified. For example, 

CPEB1 and Fragile-X Mental Retardation Proteins (FMRP) both have a function in the 

localization and translation of synaptic mRNAs. Because of the difficulty to manipulate 

primary neuron cultures such as low transfection rate for non-dividing cells, biochemical 

approaches to study the mechanisms are often carried out in more facile and efficient 

systems such as the oocyte. However, several techniques including the development of 

knockout animals, various viral delivery systems, small interference RNA (siRNA) 

knockdown techniques, have enabled some analysis of translational mechanisms in 

neurons. A surrogate system has also been employed by injecting brain-derived 

mRNAs into Xenopus oocytes to test their polyadenylation by CPEB1. 

CPEB1 is localized to dendritic layers of the hippocampus, the synapses in cultured 

neurons, and PSDs in adult brain. CPEB1 was phosphorylated upon NMDAR receptor 

activation, and triggered the polyadenylation and translation of CaMKlla mRNA at the 

synaptic sites (Huang et al. 2002; Wu et al. 1998). In CPEB1 knockout mice, several 

forms of electrophysiological features of Schaffer CA 1 neurons in response to single 

100-Hz stimulation and single theta burst stimulation were impaired, suggesting CPEB1 

plays a role in synaptic plasticity (Alarcon et al. 2004). Administration of CPEB siRNAs to 

the Aplysia neurons resulted in failure of the maintenance of long-term facilitation (Si et 

al. 2003a). 

Very few mRNAs are known CPEB1 targets in neurons. CaMKlla (Wu et al. 1998) and 

tPA (Shin et al. 2004) are two known mRNAs that undergo activity-dependent 

polyadenylation in hippocampal neurons. However, neither of these mRNAs appeared 
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to be responsible for the deficiency in plasticity observed in CPEB1 knockout mice (Silva 

et al. 1992b; Frey et al. 1996). This suggested the presence of other mRNAs in neurons 

whose translation is regulated by CPEB1. A recent study screening mouse brain 

mRNAs using the surrogate system identified six mRNAs (all have potential involvement 

in synaptic plasticity): AMPA receptor binding protein (ABP), a potassium channel ELK2, 

CaMKII~, microtubule-associated protein 2 (MAP2), and rat calmodulin (RCM3) mRNAs 

which became polyadenylated in response to synaptic activity (Ou and Richter 2005). 

The same study demonstrated that in synaptosomes treated with glutamate, the proteins 

levels of MAP2 and ABP increased significantly by 35% and 72%, respectively, 

compared to untreated control. 

CPEB 1 can be activated via several pathways. The induction of CPEB 1 phosphorylation 

and polyadenylation in the hippocampus can be elicited by NMOA, but not AMPA 

(Huang et al. 2002). Kainate has been demonstrated to trigger CaMKlla up-regUlation in 

the CA3 region of the hippocampus, an event that was blocked by a protein synthesis 

inhibitor cyclohexamide (Lee et al. 2003); kainate was also shown to stimulate 

polyadenylation (Ou and Richter 2005). It is likely that kainate-induced translation of 

CaMKlla occurred through CPEB1-mediated polyadenylation, which would indicate that 

CPEB 1 can be activated via kainate glutamate receptors. Another study observed that 

metabotropic glutamate activation triggered the polyadenylation of tPA mRNAs, 

suggesting that CPEB1 may be activated through metabotropic glutamate receptors 

(Shin et al. 2004). 

2) CPEB2-4 and synaptic plasticity 
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Although all four CPEBs have been identified in the nervous system, and the expression 

pattern has been characterized in some regions of the brain including the hippocampus, 

very little is known about the functions of CPEB2-4 in synaptic plasticity. CPEB3 is the 

second CPEB that has been under investigation in recent years. The mRNA of a key 

synaptic plasticity molecule, GluR2, can be bound by CPEB3. CPEB3 siRNA delivered 

to neurons led to elevated levels of GluR2 protein (Huang et al. 2006). 

Although some aspects of the involvement of CPEB1 in synaptic plasticity have been 

revealed, such as the regulation of CaMKlIa translation, little is known about the roles of 

CPEB2-4 in synaptic plasticity. Sequence alignment demonstrated a close proximity of 

CPEB2-4 in the family tree but a wide distance to CPEB1. CPEB2-4Iack the 

phosphorylation site for aurora kinase, a known activator for CPEB1 (Theis et al. 2003). 

But some alternatively spliced isoforms of CPEB2-4 have the B-region which is absent in 

CPEB1. The B-region possesses phosphorylation sites for PKA, CaMKlla, and p70S6 

kinases (Theis et al. 2003). These data indicated that CPEB2-4 may be activated via 

distinct pathways than CPEB1. In kainate-induced seizures in the hippocampus, the 

expression of CPEB3 and CPEB4, but not CPEB1, were dramatically increased (Huang 

et al. 2006), suggesting that CPEB3 and 4 are responsible for different forms of plasticity 

compared to CPEB1. A U-rich loop secondary structure in the 3' UTR of mRNAs, but 

not CPE, is required for CPEB2-4 binding (Huang et al. 2006), indicating CPEB2-4 have 

discrete set of mRNA targets distinct from CPEB1. However, functional compensation 

or redundancy between CPEB1 and CPEB2-4 is not ruled out, since LTP was not 

completely eradicated in CPEB1 knockout mice. What is noteworthy is that CPEB3 may 

form a positive or negative feedback loop for CPEB1, since its mRNA contains two CPE 

sites in the 3' UTA. 
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4. ePEB and RNA localization 

ePEB regulated translation of ePE-containing mRNAs is a temporally or spatially tightly 

controlled process. It is the common underlying foundation for oogenesis, 

embryogenesis and would be a requirement for the demonstration of specificity of 

synaptic plasticity. Both ePEB protein and its target mRNAs need to be localized to the 

proper location for the local control of translation. The cis-element ePE in the 3' UTR of 

mRNA molecules and the RNA-binding protein ePEB have been demonstrated in the 

transport of such mRNAs. 

1) ePEB and mRNA localization in Drosophila 

Localized maternal mRNA is essential for the establishment of polarity in early 

development. The Drosophila CPEB homolog, orb, is required at multiple steps of 

oogenesis and is important for the establishment of both dorsal-ventral (OV) and 

anterior-posterior (AP) poles in early embryo development. Several maternal mRNAs are 

known to be involved in the establishment of these polarities, such as bicoid (St 

Johnston and Nusslein-Volhard 1992), nanos, oskar (Ephrussi et al 1991), fs(1 )K1 0 and 

gurken (Haenlin et al. 1987, Cheung et al. 1992; Neuman-Silberberg and Schupbach 

1993). Under normal development these mRNAs are localized to a specific pole and are 

translated upon fertilization to generate gradient proteins which then direct the 

localization or expression of other genes to generate the polarity of the developing 

embryo. Localization of such mRNAs to specific locations requires both cis-elements 

and trans-elements. The cis-elements are specific "tags" in the mRNA sequence that 

mark the mRNA for localization. They are specific motifs to be recognized and bound by 
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RNA binding proteins. The trans-elements are RNA-binding proteins that transport and 

anchor the mRNA molecules to proper locations. Such trans-elements include general 

cytoskeleton proteins such as microtubules (Pokrywka and Stephenson 1991; Theurkauf 

et. al 1992) and staufen protein (Ferrandon et al. 1994; Micklem et al. 2000). The 

Drosophila CPEB homolog, orb, is involved in mRNA localization (Lantz 1992), with a 

complex localization pattern evident during oogenesis (Bally-Cuif et al. 1998). Several 

orb site mutations in Drosophila oocytes caused stalled development in the 8-cell cyst or 

16-cell cyst stage. A less severe mutation did not stop the development but did cause 

abnormal distribution of mRNAs along both AP and DV poles. Maternal mRNAs such as 

oska, gurken and 1s(1 )K1 0 are misplaced in the orb mutant (Christerson and Mckearin 

1994; Lantz et al. 1994). 

2) CPEB and the mRNA transportation in Xenopus oocytes 

During Xenopus oocyte maturation, mRNAs coding for c-mos, cdk2, several cyclins 

among others, undergo cytoplasmic polyadenylation and translational up-regulation. 

Several mRNAs are regionally concentrated in Xenopus oocyte (Schnapp et aI., 1997). 

CPEB proteins and maskin are moderately concentrated in the animal pole in Xenopus 

oocytes, and became more concentrated in eggs and early embryos due to the dominant 

protein degradation in the vegetal pole. Both proteins colocalized with a-tubulin on the 

centrosomes and mitotic spindles in the animal pole. Two mRNAs, xub3 and cYciin B1, 

both containing CPE motifs in the 3' UTR, are localized with or near CPEB on 

centrosomes or spindles (Groinsman et al. 2000). While the importance of xbub3 is not 

known, cyclin B1 is important for cell cycle. Injection of CPEB antibody, mutant CPEB 

with disrupted phosphorylation site, or a polyadenylation inhibitor cordycepin (3'-dATP), 
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blocked cytoplasmic polyadenylation-induced translation of cyclin B1 (Groinsman et al. 

2000). A CPEB mutation that does not bind to the centromere in vivo disrupted the 

localization of cyclin B1 mRNA. Such findings indicated a role of CPEB for the 

localization of CPE-containing mRNAs, consistent with the observation in Drosophila 

and zebrafish. 

3) CPEB and mRNA localization in the CNS 

In neurons, local translational regulation of synaptically enriched mRNAs such as the 

activity-dependent cytoskeleton protein Arc (Steward et al. 1998), MAP2, CaMKlla 

(Roberts et al. 1998), BDNF, and TrkB (Tongiorgi et al. 1996) is implicated in synaptic 

plasticity. The mechanism for the localization of such mRNAs to synapses is yet to be 

delineated. Recent evidence indicates that the cis-element CPE is sufficient to direct 

CPE-containing mRNAs to the dendrites, and the process of such localization is 

facilitated by CPEB. CPEB, together with its adaptor protein maskin, forms RNA­

containing particles that were transported to dendrites in a microtubule-dependent 

manner, suggesting that these mRNAs were transported in a translationally dormant 

form. Such transportation particles also contained the molecular motor dynein and 

kinesin. The transport of dendritically localized mRNAs was enhanced in neurons 

overexpressing CPEB, but inhibited in neurons expressing mutated CPEB or in CPEB 

knockout mice (Huang et al. 2003). 

5. Synaptic plasticity in the neural retina 
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The neural retina is located at the back of the eye (figure 14). It receives light stimulus 

and sends the signal to the upper levels of the visual system. The retinal circuitry is 

composed of primarily vertical pathways with inhibitory modulations from lateral 

pathways (figure 15): Light projects on the light-sensitive photoreceptor cells in the outer 

nuclear layer (ONL), which will transmit signal to the interneurons- bipolar cells in the 

inner nuclear layer (INL), which will then relay signal to the ganglion cells in the retinal 

ganglion cell layer (RGC). Retinal ganglion cells ultimately collect the signal and project 

it to higher center of the visual system. The excitatory neurotransmitter glutamate is the 

predominant neurotransmitter employed in the vertical pathway. 

In addition to the vertical pathway, there are two tiers of lateral pathways: Horizontal 

cells in the outer boundary of the INL integrate signals from multiple photoreceptor cells 

and modulate them as necessary before sending them on to bipolar cells. Amacrine 

cells in the inner boundary of the INL integrate and modulate signals from bipolar cells 

before sending them on to the retinal ganglion cells. The predominant neurotransmitter 

used in the lateral pathways is gamma-aminobutyric acid (GABA). 

Synaptic connections of the retina are located within well-characterized laminar 

structures: the outer plexiform layer (OPL) and the inner plexiform layer (IPL). The OPL 

is composed of synaptic connections between photo receptors, bipolar cells and 

horizontal cells. The I PL is composed of synaptic connections between bipolar cells, 

ganglion cells and amacrine cells. 

SynaptiC plasticity has long been recognized at higher levels of CNS, such as the 

cerebral cortex (Cheetham et al. 2008), the hippocampus (Nicoll and Schmitz 2005), and 

the cerebellum (Jorntell and Hansel 2006). It has also been depicted at higher levels of 

the visual system (Karmarkar and Dan 2006). Neuroscientists have long thought that 
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Figure 14. Diagram of the eye (www.nei.nih.gov/health/eyediagram/eyeimages2.asp) 

The diagram shows the location of the retina within the eye. The retina is the innermost 

layer at the back of the eye. Light enters the cornea, passes through the lens and is 

projected onto the retina, where it is converted into electrochemical signals and sent 

through the optic nerve to higher centers in the brain for further process of visual 

perception. 
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Figure 15. Diagram of the retina (Kandel et al. 2000) 

This figure illustrates the laminar structure, the major cell types, and the vertical and 

horizontal pathways of the retina. The retina has a unique laminar structure. From the 

outer part of the eye to inner part of the eye, lie outer nuclear layer, outer plexiform layer, 

inner nuclear layer, inner plexiform layer, and ganglion cell layer. Light stimulus enters 

the eye and projects on photoreceptors (rods or cones). Photoreceptors then send 

signals via vertical pathway to bipolar cells, and to ganglion cells. The vertical pathway 

is modulated by horizontal pathway from horizontal cells at the outer plexiform layer and 

from amacrine cells in the inner plexiform layer. The ganglion cells send output to higher 

levels of the visual system through the optic nerve. 
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the neural retina lacks the property of plasticity. However, recent studies have provided 

several lines of evidence, including morphological, molecular and electrophysiological 

observations, which support the notion that synaptic plasticity is present in the retina. 

For example, synaptic remodeling in the outer plexiform layer has been observed as a 

result of photoreceptor loss in transgenic, diseased, or ageing retina. An increase in the 

number of synaptic ribbons per synapse, together with an increase in the number of 

processes originated from bipolar neurons participating in these synapses, were 

observed in mice with degenerated photoreceptors (Jansen et al. 1997). Ecotopic 

synaptogenesis - rod bipolar cell terminals extended into the outer nuclear layer to 

reconnect with degenerated rod terminals- has been observed in rod-specific mutation 

models (Peng et al. 2000; Peng et al. 2003), in retina of epilepsy patients treated with a 

GABA-transaminase inhibitor vigabatrin (Wang et al. 2008), in retinal of AMD patients 

(Sullivan et al. 2007), and in normal ageing retina (Eliasieh et al. 2007). 

Dark-rearing suppressed the maturational pruning in the inner plexiform layer, of 

bistratified dentrites into the characteristic monostratified pattern which normally occurs 

after eye-opening (Tian and Copenhagen 2001; Tian and Copenhagen 2003). In addition, 

visual deprivation elevated the expression of several important synaptic components, 

such as CaMKII, GluR1 and NR1 in the retinal ganglion cells (Xue et al. 2001; Xue and 

Cooper 2001). Light responsiveness measured as electroretinogram (ERG) and 

oscillatory potentials (OP) were inhibited in both young and adult dark-reared animals 

(Vistamehr and Tian 2004). Even under normal diurnal environment, AMPARs undergo 

rapid recycling via endocytosis and exocytosis in the retinal ganglion neurons (Xia et al. 

2006), and such rapid cycling is primarily restricted to GluR2-containing AMPARs (Xia et 

al. 2007), which playa pivotal role in long-term synaptic plasticity (Tanaka et al. 2000; 

Isaac et al. 2007). Together, these data support the notion that plasticity is a 
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phenomenon that is a characteristic of retinal synapses as it is for synapses in other 

parts of the CNS. 

Synaptogenesis is a postnatally ongoing process in the rodent retina. Rodent retina is 

premature and the synaptic structure is not well-established at the time of birth. It is not 

until approximately eye-opening stage, which is about 14 days postnatally in mouse that 

the synaptic structure in the plexiform layers becomes functional (Tian and Copenhagen 

2001). Synaptogenesis in the inner plexiform layer (IPL) starts at day 3 and continues 

until before eye-opening, when the rate of synaptogenesis in the INL drops precipitously 

(Fisher 1979b; Fisher 1979a). Robust glutamatergic synaptic formation occurs in the 

second postanatal week, and synaptic sublamina becomes visible in the inner plexiform 

layer on postnatal day 12 (P12) (Sherry et al. 2003). Synaptic connections in OPL begin 

to develop on postnatal day 3 (P3) and are well established by P12, when the first light 

response was recorded as ERG (Rich et al. 1997). A diagram illustrating the 

morphological maturation of synaptic structures between different types of cells is 

presented in figure 16. 

6. CPEBs and CPE-containing mRNAs in the retina 

Several findings have indicated the presence of cytoplasmic polyadenylation in the retina. 

Of the four mouse CPEBs (CPEB 1-4) characterized to date (Gebauer and Richter 1996; 

Theis et al. 2003; Kurihara et al. 2003), one (CPEB1) has been shown to be present in 

the mouse retina of both wildtype and rod-ablated model (rdta) mice (Liu et al. 2000). 

Multiple studies have shown that the mRNA of a key molecule for synaptic plasticity, 

CaMKlla, which has two CPE motifs in its 3' UTR, is present in the retina (Liu and 

Cooper 1996; Cooper et al. 1995; Terashima et al. 1994), and could possibly be involved 
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Figure 16. Timeframe of synaptogenesis in mouse retina (modified from Olney 1968) 

Time table of morphological maturation for the synapses in mouse retina. Heavy lines 

indicated periods of accelerated development; broken lines indicated periods of relative 

quiescence or slow development. R-photoreceptors; H-horizontal cells; BP-bipolar cells; 

A-amacrine cell; G-ganglion cell. 
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in the dendritic development and/or plasticity (Okada et al. 1999; Weiler et al. 1996; 

Weiler et al. 1995). The early growth response factor-1 (EGR1), a member of zinc-finger 

transcription factor family, is expressed in synapses across the retina. The longer form 

of its two alternative spliced mRNA isoforms possesses a CPE in its 3' UTR, and 

therefore can translate rapidly upon excitatory stimuli such as light and NMDAR 

activation (Simon et al. 2004). A key synaptic plasticity molecule GluR2 contributes to 

the physiological property of AMPARs and is present in neurons in the retina (Hughes et 

al. 1992; Hamassaki-Britto et al. 1993). It is unknown whether the other CPEBs are also 

expressed in the retina and this lack of knowledge will hamper further characterization of 

any putative retinal synaptic plasticity. 

In this study, the presence, the localization and the expression patterns of all four 

CPEBs in the mouse retina were investigated. The developmental appearance of all 

four CPEBs during postnatal development was characterized. Potential mRNA targets 

for CPEB1, whose cis-acting element is well established, were studied. The alternative 

spliced isoforms of CPEB3 associated with the retina was explored. 
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CHAPTER II 

HYPOTHESIS AND SPECIFIC AIMS 

The retina is a favorite model for the study of the central nervous systems because it is 

an accessible part of the brain (Dowling 1987) with an endowed fine laminar structure 

and easy access for molecular and electrophysiological manipulations. The well-defined 

cellular types and neuronal pathways between distinct cell types could make the retina 

an invaluable tool for neurobiological studies. 

Synaptic plasticity has long been appreciated at higher levels of the visual system. The 

neural retina as part of the central nervous system contains the same kind of synaptic 

machinery as other regions of the brain (Dowling 1987). This prompted the questions 

regarding the presence of synaptic plasticity in the retina. Several lines of evidence 

demonstrated that the retina is capable of remodeling its synaptic structures. The 

synaptic structures of the IPL of mouse retina are disoriented at birth, but become well­

established multiple sublaminae before eye-opening. Such a process was retarded in 

animals subjected to dark-rearing (Tian and Copenhagen 2001). The fine structures of 

the OPL synaptic connections have also been demonstrated to undergo profound 

remodeling under certain conditions. Morphological alterations have been observed in 

rod bipolar cell terminals in ageing or diseased models. Light responsiveness measured 

as ERGs and OPs were inhibited in both young and adult dark-reared animals 

(Vistamehr and Tian 2004). The NMDAR-associated currents were down-regulated in 
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concurrence with eye-opening in na'ive animal, but such an alteration was impeded in 

dark-reared animals. These manifestations in morphology and electrophysiology 

indicated that the retina has some degree of plasticity. 

Some key molecules involved in activity-dependent synaptic plasticity have been 

identified in the retina. Cytoplasmic polyadenylation, the underlying mechanism for 

activity-dependent long-term plasticity in the hippocampus and the visual cortex, has 

been indicated to be present in the retina. A previous study observed CPEB1 in the 

retina of both wildtype mice and rdta mice (Liu et al. 2000). Other molecules implicated 

in synaptic plasticity such as CaMKlla and GluR2 mRNA, which can be recognized by 

CPEB1 and CPEB3 respectively, are enriched in the synapses of the retina. EGR1, an 

early gene that encode for a transcriptional factor in long-term synaptic plasticity, is 

present in the retina with two alternative splicing isoforms. The translation of the longer 

version of EGR1 transcript which has CPE in its 3' UTR is regulated by excitatory stimuli 

such as light and NMDAR activation in the retina (Simon et al. 2004). If the elements 

which endow synapses with the property of plasticity can be found in the retina, it would 

enhance its reputation as a more accessible model for such studies. 

Based on the observations of previous studies, I hypothesize that more than one paralog 

of CPEB is present in the retina. 

Aim1: To determine the expression pattern of CPEB1 in the retina. 

Specifically, this aim will investigate the types of cells expressing CPEB1; the regulation 

of CPEB1 during the development, and the potential mRNA targets of CPEB1 in the 

retina. The localization of CPEB1 will be explored with in situ hybridization at the mRNA 

level and immunofluorescence at the protein level. The temporal appearance of CPEB1 
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during post-natal development will be assessed with the aid of real-time PCR for mRNA 

and with Western blots and immunocytochemistry for protein. The potential targets of 

CPEB 1 will be identified from nucleotide and protein databases using a bioinformatics 

tool in combination with rapid amplification of cDNA ends (RACE)-PCR. Several 

candidates will be assayed with the aid of the polyadenylaiton test (PAT) to demonstrate 

their status of polyadenylation in the paradigms of a light-dark period as well as during 

postnatal development. 

Aim 2: To characterize the expression of CPEB3 in the retina. 

Specifically, this aim will explore isoforms of CPEB3 mRNA and protein; the types of 

cells that express CPEB3, and the regulation of CPEB3 during postnatal development. 

Bioinformatic analysis will be used to identify current known CPEB3 transcript variants 

and protein isoforms. RT -PCR will be used to characterize the tissue distribution of each 

isoform in the retina and in multiple other tissues. In situ hybridization and 

immunofluorescence microscopy will be used to determine the localization of CPEB3 

mRNA and proteins, respectively. Real-time PCR and Western blots will be used to 

investigate the regulation of CPEB3 transcripts and proteins during post-natal 

development. 

Aim 3: To compare CPEB1-4 in the retina. 

Specifically, this aim will investigate the types of cells that express mRNAs for CPEB1-4; 

the temporal appearance of CPEB1-4 during postnatal development, and the relative 

expression levels of CPEB1-4 in the retina. Comparison of the localization of four 
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CPEBs in the retina will be performed with the aid of in situ hybridization. Comparison of 

the appearance of all four CPEBs during post-natal development will be performed with 

the aid of real-time PCR. Cross-comparison quantification with the aid of real-time PCR 

data will be used to assess the relative abundance of CPEB 1-4. 
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CHAPTER III 

MATERIALS AND METHODS 

1. Animal handling and tissue preparation 

All animal experiments were carried out in compliance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals, the University of Louisville 

Institutional Animal Care and Use Committee (IACUC) animal care regulations, as well 

as the Association for Research in Vision and Ophthalmology (ARVO) statement for the 

use of animals in ophthalmic and vision research. 

C57/BL6 mice were used for this study (Charles River Laboratories, Davis, CA). Mice at 

the age of postnatal day 1, 7, 12, 14, 16, 30, and 60 were used for developmental 

studies. All the pups younger than 21 days old were raised together with their lactating 

mothers. All animals were housed in normal diurnal cycles of 12-hour lighV12-hour dark 

unless otherwisely specified. Each experimental group was composed of at least 5-6 

animals. 

For tissue collection, mice were euthanized with CO2 followed by cervical dislocation. 

For RNA and protein extraction, the eyes were removed; retinas were quickly dissected 

and immediately frozen on dry ice before proceeding for extraction. Similar procedures 

were followed when other tissues were collected for RNA extraction. For in situ 
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hybridization and immunohistochemistry, the eyes were removed and immediately fixed 

in 4% paraformaldehyde for 12 hours at 4°C. The eyes were then transferred to PBS 

buffer with 30% sucrose for dehydration for two weeks at 4°C. Snap-freezing technique 

was used for the embedment: A stainless isopentane container was placed on dry ice. 

Immediately before embedding, crushed dry ice was scattered in the isopentane until no 

bubbles were generated from the mixture, an indication that the temperature reached 

below -70DC. The retina placed in tissue mounting medium in a mold was then floated 

on the fluid (by holding the mold with a pair of forceps). Make sure that the mold was not 

submerged in the isopentane/dry ice mixture. The embedding process should take 

several seconds. The mounted tissue was then cut on a cryostat the same day or frozen 

air-tight at -SO°C for future processing. 

2. Bioinformatic analysis - mRNA targets for CPEB1 

In order to identify additional mRNAs potentially regulated by CPEB1, a bioinformatics 

program, "CPE Motif Detector" was developed in collaboration with Dr. Eric Rouchka. 

This program took into account the CPE motif, the presence of poly(A) signal sequence, 

and a distance measure (spacer nucleotides) between those two. A database of 3' UTR 

sequences was downloaded from UTResource (www.ba.itb.cnr.itlUTR/) and these 3' 

UTRs were searched. Initial screens of CPE elements were found by looking for the 

pattern TTTTTATT upstream of the poly-A signal AATAAA with a spacer sequence 

between the two. For instance, if the expected spacer is between 50 and 100 bases, the 

sequence can be searched using the Perl regular expression: 

$seq =- "tttttatt(altlclgln){50,1 OO}aataaa") 
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In order to search for two or more CPE sites, the CPE motif was expanded to search for: 

$seq =- "ttttt(alg)tt(altlclgln){1 ,}ttttt(alg)tt(altlclgln){1 ,}aataaa" 

This pattern will allow alternative CPE motifs. Note, however, that this pattern does not 

limit the range of the spacer between the two motifs, or between the second motif and 

the poly-A signal. 

3. Data mining -isoforms of CPEB3 

UniGene database from NCBI databases (http://www.ncbLnlm.nih.gov) was used for the 

identification of CPEB3 transcript variants. NCBI and Swiss-ProtlTrEMBL 

(http://expasy.org/sprot/) databases were used for the identification of CPEB3 protein 

isoforms. Sequence alignments of transcripts and of proteins were carried out using 

ClustalW 2.0.5 (http://www.ebLac.ukITools/clustalw2/); sequence alignments of 

transcripts with proteins were carried out using Vector NTI (Invitrogen, Carlsbad, CA); 

sequence alignments of cDNAs with genomic DNA was carried out using UCSC mouse 

genome Blat (http://genome.ucsc.edu). 

4. Isolation of RNAs 

Frozen retina was homogenized rapidly using PowerGen 250 homogenizer (Fisher 

Scientific, Pittsburgh, PA). Total RNA was extracted using RNeasy mini kit (Qiagen, 

Valencia, CA) following the manufacturer's instructions. Briefly, tissue was 

homogenized for 10 seconds in an appropriate volume of lysis buffer, followed by chilling 
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on ice. This was repeated twice at 10 seconds each time. The lysate was then 

centrifuged at 14,000xg, and the supernatant was collected and transferred to a new 

tube. One volume of 70% ethanol was added and the mixture was quickly loaded to 

RNeasy spin columns and centrifuged briefly. The columns were then washed with 

buffer RW1 once, with buffer RPE twice, before RNA was eluted in RNase-free H20. 

RNA concentration was determined using a BioPhotometer (Eppendorf, Westbury, NY). 

The concentration of RNA was adjusted by dilution to an A260 within the range 0.1-1.0. 

The concentrations of RNA samples were calculated based on the absorbance at 260nm 

using the following equation: 

RNA concentration (\1g/ml) = A260 x 40 x dilution factor 

5\11 of each RNA sample was electrophoresed on an agarose gel. The quality of RNA 

was determined from the ratio of 288/188 on agarose gel. RNA was frozen in -80·C for 

long term storage. 

5. Regular RT-PCR 

0.2\1g of total RNA was used for every 20\11 RT reactions. Omniscript reverse 

transcriptase (Qiagen, Valencia, CA) and oligo-dT 15-mers were used to enable efficient 

and sensitive reverse transcription. Components were assembled using conditions 

according to the manufacturer's suggestions; reactions were incubated for 60 min at 

37°C. 

1\11 of the cDNA was used for subsequent PCR. Hot8tarTaq DNA polymerase (Qiagen, 

Valencia, CA) was used for robust and specific amplification. Components were 

72 



assembled according to manufacturer's instructions. The following settings of the 

thermocycler were used: 

Initial activation step: 95°C, 15min. 

Amplification: 

40 cycles of: 94°C,30sec; 

55-60°C (approximately 5°C below Tm of primers), 30sec; 

72°C,1min. 

Final extension: 72°C, 10min. 

Exon-exon spanning, gene-specific primers (lOT, Coralville, IA) were used for the 

identification of CPEB1-4 and the positive control l3-actin transcripts (table 3). Exon­

exon spanning, transcript specific primers were used for the identification of CPEB3 

alternatively spliced variants (table 4). The Resultant PCR products were visualized on 

1 % agarose gel and photographed. Each specific band was purified from the gel and 

sequenced for confirmation of its identity. 

6. 3' RACE RT-PCR 

Total RNA from mouse retina was used for 3' RACE RT-PCR. FirstChoice RLM-RACE 

kit (Ambion, Austin, TX) was used for the amplification. An overview of the procedure is 

illustrated in figure 17. Briefly, first strand cONA was synthesized from the retinal RNA 

using the 3' RACE Adapter primer - an oligo-dT primer with an anchor sequence at the 

5' end and degenerations at the 3' end (table 5). Specifically, degenerative oligo-dT 

primers with an N and a V at the 3' end (V represents any of A, C, or G, while N 
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I Table 3. Primer sets used for CPEB1-4 and ~-actin in regular RT-PCR 
r. 

Gene Primer Sequence 

~-actin fwd 5' -TGAAGATCAAGATCATTGCTCC-3' 

rev 5' -TT AAAAAAACAAAGCCATGCC-3' 

CPEB1 fwd 5'-CACCTTCCGTGTTTTTGGC-3' 

rev 5'-ATCCCAGCATACACCACTCC-3' 

CPEB2 fwd 5'-CTCTCAAGGGTCGTCTGAGC-3' 

rev 5'-AATGCATAGCCTTTTGGTGG-3' 

CPEB3 fwd 5' -CATCAAGGATAAACCGGTGC-3' 

rev 5' -GAAGAATGGGGCAAACTTCC-3' 

CPEB4 fwd 5'-ATTTTTCCTTTTCCGGAACG-3' 

rev 5'-GTATCGTTCCACTCTCTCCCC-3' 
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Table 4. Primers used to identify the alternatively spliced transcripts of CPEB3 in 
regular RT-PCR 

Gene Primer name Primer sequence 

CPEB3 #1 5' -TGTCAATGTCGTTGTGTTGAAGTTGC-3' 

#3 5' -GACTCCCACACCACAAGGATACACA-3' 

#4 5' -GAAGGCGTCTTCAAAGGGAAAGAGA-3' 

#5 5' -TATGATAAGGACTGACCATGAGCCTCTG-3' 

#7 5' -AGGAGCTATGGGCGGAGACGA-3' 

#8 5' -GCTGAGTCCCCAATGCCTTAGC-3' 

#13 5' -CCCGTTTGTCAATGTCGTTGTGTT -3' 

#16 5' -AAGGATAAACCGTTGAACTGGCA-3' 

#17 5' -CATGAGCCTCTGAAAGGTAAACACT-3' 

#18 5' -AAGACCGACCTCGTCTCCGC-3' 

#19 5' -CATGAGCCTCTGAAAGGACGC-3' 

#20 5' -GAAGACCGACTGTTAAGTGCCATA-3' 

#21 5' -TTCGAGCTGTTGAACTGGCA-3' 
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Figure 17. Diagram of 3' RACE 

3' RACE (rapid amplification of cDNA ends)-PCR were used for the identification of CPE, 

PAS-containing mRNAs from the mouse retina. 

Oligo(dT) primers with anchor sequences attached to the 5' ends were used for the 

reverse transcription. The resulted cDNA pool has a ubiquitous anchor sequence at the 

3' end. 

Nested PCR were used for the amplification. For the first round, forward primers 

containing CPE consensus sequence paired with reverse primers - 3' outer primers (part 

of the anchor region) were used. For the second round, forward primers containing PAS 

consensus sequence paired with reverse primers - 3' inner primer (part of the anchor 

region) were used. For both PCR reactions, the first 3-5 rounds were carried out with 

annealing temperature at 3rC. The annealing temperature was raised to 60°C after that. 
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Table 5. Primers used for 3' RACE 

Primer 

3' RACE Adapter Primer 
3' RACE Outer Primer 
3' RACE Inner Primer 
wobbled CPE 
wobbled PAS 

Sequence 

5'GCGAGCACAGAATT AAT ACGACTCACT AT AGGT12VN3' 
5'GCGAGCACAGAATT AAT ACGACT3' 
5'CGCGGATCCGAATT AAT ACGACTCACT AT AGG3' 
5'N14AAAATA3' 
5'N14TTTATT3' 

Note: The first three primers were from FirstChoice RLM-RACE kit (Ambion). It has an 
anchor at the 5' end, as well as degeneration at the 3' end. V represents any of A, C, G; 
whereas N represent any of A, C, T, and G. 
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represents any of A, T, C, or G) make the annealing specifically occur where the poly(A) 

starts, instead of randomly priming along the poly(A) tail. This primer helps to generate a 

homogeneous 3' end (with respect to the length of the poly(A) tail) for the first strand 

cDNA. M-ML V reverse transcriptase was used for reverse transcription and the 

reactons were incubated at 40°C for 1 hour. 

The cDNA was then used in two steps of nested PCR reactions: For the first PCR, 3' 

RACE outer primer and a wobbled CPE primer were used; for the second PCR, 3' RACE 

inner primer and a wobbled PAS primer were used. The 3' outer primer and the 3' inner 

primer were complementary to the outer portion and inner portion of the 3' RACE 

Adapter primer, respectively (table 5). The wobbled CPE primer and the wobbled PAS 

primer have a random 14-mers in their 5' end, followed by sequences complementary to 

CPE and PAS motifs, separately. A thermostable DNA polymerase was used for the 

nested PCR. The following settings were used for the thermocycler: 

Initial activation: 94°C,3min 

Amplification: 

3 cycles of: 94°C,30sec; 

37°C,30sec; 

72°C,30sec. 

35 cycle of: 94°C,30sec; 

60°C,30sec; 

72°C,30sec. 

Final extension: 72°C,30sec 

Because the wobbled CPE and the wobbled PAS have only 6-nucleotide match, the first 

three cycles of amplification was performed at a lower annealing temperature (3rC) to 
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ensure the sensitivity; the subsequent amplifications were performed at an annealing 

temperature of 60°C to ensure specificity. 

The PCR products were loaded to agarose gel for electrophoresis. The separated 

bands were cut out, purified, and sequenced to identify their identity. 

7. LM-PAT assay 

Several methods to determine the length of poly(A) tails of mRNA are illustrated in figure 

18. Since the amount of RNA from mouse retinas was limited, we avoided the methods 

involving Northern blots. We used the ligation-mediated polyadenylation test (LM-PAT) 

assay for our study, which is briefly described below. 

For ligation, -1119 RNA was mixed with 5'-phophor-(dT)15-mer and denatured at 65°C 

for 5 min, then transferred to 42°C without ice-quenching step. A mix of T4 ligase 

(Promega, Madison, WI) with SuperScript" buffer, dNTPs and ATPs were prewarmed at 

42°C then added to the RNA-primer mix, and incubated at 42°C for 30min. At the end of 

incubation, appropriate amount of oligo(dT)-anchor primers was added and the tube was 

transferred to 16°C for 2 hours. 

For reverse transcription, the tube was transferred to 42°C for 2min. SuperScript" 

RNase H- reverse transcriptase (Invitrogen, Carlsbad, CA) was added and incubated at 

42°C for 1 hour. Afterward, ligase and reverse transcriptase were inactivated by 

incubating at 65°C for 20min. 

PCR was performed using HotStarTaq (Qiagen, Valencia, CA). The cDNA from the 

above ligation and RT reactions, gene-specific primers, and anchor primers (table 6) 
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Figure 18. Determination of poly(A) length (Salles et al. 1999) 

a) Northern blot. The RNA molecule with longer poly(A) tail migrates at a slower 

rate. 

b) Oligo(dT)/RNase H Northern. Poly(A) tails are annealed to Oligo(dT) before 

RNase H treatment, which removes RNA:DNA hybrid - the complete poly(A). 

RNase H treated samples are compared to untreated samples in the subsequent 

Northern blot. An approximate length of poly(A) tail can be inferred with this 

method. 

c) Rapid amplification of cDNA ends-PAT (RACE-PAT): Oligo(dT) primers with 

anchors sequence attached to the 5' ends are used for reverse transcription 

reaction. A gene-specific primer and an anchor primer are used for the following 

PCR reactions. The mRNA with a longer poly(A) tail will generate a longer 

smear (a mixture of amplicon with partial or full-length poly(A) tail). 

d) Ligation mediated PAT (LM-PAT): Oligo(dT) primers and oligo(dT) primers with 

anchor sequences attached to the 5' ends are used. A ligation step is performed 

before the reverse transcription reaction to ligate these oligo(dT) together. A 

gene-specific primer and an anchor primer are used for the subsequent PCR 

reactions. The amplicons generated using this method is less heterogeneous 

compared to c). The position of the smear on the PCR gel reflect the relative 

length of the poly(A) tails. 
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Table 6. Primers used for PAT assay 

General primers 

anchored oligo-dT primer 

anchor-only primer 

5' phosphorylated oligo-dT 

Gene specific primers 

BDNF pat 

CaMKlla pat 

MAPK1 pat 

Ppp2r1a pat 

Ppp2r2b pat 

IRBP pat fwd 

TTR pat fwd 

5'GACTCGAGTCGACATCGATTTTT I I I I I I 13' 

5'GACTCGAGTCGACATCGA3' 

/5'PhosITTTTTTTTTTTTTTT3' 

5'CGTTTCTGTTCGTTCTGGTTC3' 

5'GGGAGGGGAGAAGAGATGTC3' 

5'TGATGGTGTTATCCCAGTGC3' 

5'GTTCGGTTCCTCCTCTGTAGC3' 

5'TCAATGTTCCCCAACTCCC3' 

5'TCCTCAGACACCTTACCTGG3' 

5'TCTCCCCTGCTCCTAAAACC3' 

Note: Anchored oligo-dT primers and 5' phosphorylated oligo-dT primers were used for 
the reverse transcription step; anchor-only primers and gene-specific primers were used 
for the PCR step. 
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were assembled according to the manufacturer's instructions. PCR was run at the 

following conditions: 

Initial activation: 95°C, 15min. 

Amplification: 

35 cycles of: 94°C,30sec; 

60°C, 30sec; 

72°C,30sec; 

Final extension: 72°C, 10min. 

The PCR products were separated via agarose gel electrophoresis. The length of 

poly(A) tails was indicated by the length of the smear. 

8. Quantification of mRNA: real-time PCR 

0.2119 of total retinal RNA from each of the seven developmental ages was used for 

reverse transcription in preparation of cDNA for subsequent real-time PCR. High 

capacity cDNA archive kit (Applied Biosystems, Foster City, CA) was used for the 

reverse transcription to ensure quantitative conversion of RNA to cDNA. Components 

were assembled according to the manufacturer's protocol. The following temperature 

and time conditions were used to achieve optimal conversion: 

25°C 10min; 

37°C 2hour. 
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The resulted cDNA was diluted 1 :20 and 5ul of the dilution was used for each real-time 

PCR reaction that follows. The Gene Expression Assays - the mixture of gene-specific 

primers and gene-specific, FAM-Iabeled probes, were optimized to ensure similar 

amplification efficiencies (Applied Biosystems). 2x PCR master mix containing Taq DNA 

polymerase, dNTPs and optimized reaction buffer was used (Applied Biosystems). 188 

was used as the endogenous control. PCR reactions were performed on ABI 7300 real­

time PCR system with the following conditions: 

50°C 2min 

95°C 10min 

40 cycles of: 

94°C 15sec 

60°C 1min 

Data was analyzed using 8082.1 software (Applied Biosystems). RNA quantity for each 

sample was first normalized to the quantity of 188 in the same sample, and then 

calibrated to postnatal day 1 (P1) sample to get the relative fold change. The 

manufacturer's IDs of Gene Expression Assays for each gene are listed in table 7. The 

locations that the CPEB3 Gene Expression Assay matches on each transcript variant 

are listed in table 8. The primers-probe set generates a product spanning two adjacent 

exons which represents all known CPEB3 transcription isoforms. 

9. In situ hybridization 

121lm frozen sections were used for in situ hybridization. For each gene, sense RNA 

probe (the complementary sequence of the antisense RNA probe) was used as negative 
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Table 7. Gene Expression Assays used for real-time PCR 

Gene Expression Assay 

CPEB1 
CPEB2 
CPEB3 
CPEB4 
188 
BDNF 
CaMKlla 
Mapk1 
Ppp2r1 a (PR 65) 
Ppp2r2b (PR 52) 
Rbp3 
Transthyretin 

Catalog number 

Mm00483970 _m 1 
Mm00616244_m 1 
Mm01204296_m1 
Mm00470951_m1 
Hs99999901_s1 
Mm01334047 _m1 
Mm00437967 _m 1 
Mm00442479_m1 
Mm00772799 _m 1 
Mm00511698_m1 
Mm00450075_m 1 
Mm00443267 _m 1 

Note: the _m in the catalog numbers indicate that the primers/probe set only amplified 
mRNA; while the _s indicates that the primer/probe set amplifies within a single 
exon, so it does not distinguish genomic DNA from mRNA. 
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Table 8. Match locations of CPEB3 Gene Expression Assay on each CPEB3 transcript 

Gene Accession Exon Boundary Assay Location Amplicon Length 

NM_198300.2 4-5 1084 79 

AK029261.1 4-5 1144 79 

AK044639.1 4-5 1264 79 

AK044639.1 4-5 1084 79 

AB093274.1 4-5 1191 79 

AK147243.1 4-5 1552 79 

AK161513.1 4-5 1238 79 

BC128377.1 4-5 676 79 
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control. Primers (lOT, Coralville, IA) used in PCR amplification to generate the template 

for probes are listed in table 9. PCR products were visualized on agarose gel and the 

specific band was cut out and purified using QIAquick Gel Extraction Kit (Qiagen, 

Valencia, CA). The identity of the purified product was confirmed by sequencing 

analysis, which was later used as template for in vitro transcription to generate OIG-

labeled RNA probes (Invitrogen, Carlsbad, CA). RNA probes were denatured at 85°C 

for 5 minutes then chilled on ice. Slides were treated with 0.1 M RNase-free 

triethanolamine (TEA)-HCI pH 8.0 for 5 min, washed, and pre-hybridized at room 

temperature for an hour in hybridization buffer, which was then replaced with 

hybridization solution containing 100-200nglml of RNA probes for overnight incubation at 

65°C. On the second day, slides were washed in 0.2xSSC several times then 

transferred to buffer B1 (0.1 M Tris, 0.5M NaCI, pH7.5) for 5 minutes. Slides were then 

incubated in buffer B2 (buffer B 1 with 10% heat-inactivated sheep serum) for 1 hour at 

room temp, after which buffer B2 was replaced with buffer B2 containing anti-DIG 

antibody (1 :5000) for overnight incubation. On the third day, slides were washed, 

equilibrated in buffer B3 (0.1 M Tris, 0.1 M NaCI, 50mM MgCI2, pH9.5), and colorization 

reaction was carried out in buffer B4 (buffer B3 with 201l1/mi NBT/BCIP stock solution 

and 0.1 % tween-20). Slides were then mounted in Mowiol mounting medium for 

observation under the microscope. 

10. Isolation of proteins 

Frozen retina was homogenized using a sonicator (Biologics, Manassas, VA). 

Appropriated amount of pre-chilled CelLytic MT Lysis buffer (Sigma, St. Louis, MO) with 

1 % (v/v) protease inhibitor cocktail (Sigma) was added to the frozen tissue. Sample was 

immediately homogenized on ice at a moderated pulse and moderate power level. 
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Table 9. Primers used for in situ hybridization 

Probe Forward primer Reverse primer 

CPEB1- 5'T AGCAATGCCAAT ATCTTTCGAAGG 5'GTAAT ACGACTCACTATAGGG 
antisense 3' TGGTCTGATCCAGAGCTGAA3' 

CPEB1- sense 5'GTAAT ACGACTCACTATAGGGT AG 5'TGGTCTGATCCAGAGCTGAA3' 
CAATGCCAAT ATCTTTCGAAGG3' 

CPEB2- 5'TGAGCAGCCAGAAGAGGAAAGAGT 5'GTAAT ACGACTCACTATAGGG 
antisense T 3' TGTGTT ACT ATTGTTGTCTG3' 

CPEB2- sense 5'GTAATACGACTCACTATAGGGTGA 5' TGTGTT ACT ATTGTTGTCTG3' 
GCAGCCAGAAGAGGAAAGAGTT 3' 

CPEB3- 5' ACAGAGCCAGCTGCGCAAACCA3' 5'GTAAT ACGACTCACTAT AGGG 
antisense GAAGGTGCCTCCGAAGACCG3' 

CPEB3- sense 5'GT AAT ACGACTCACT ATAGGG 5'GAAGGTGCCTCCGAAGACCG3' 
ACAGAGCCAGCTGCGCAAACCA3' 

CPEB4- 5'GGAGGAAAGACGTGAGACATT AGG 5'GTAAT ACGACTCACTAT AGGG 
antisense T 3' TGTCAACACTGGTGATTCAA3' 

CPEB4- sense 5'GT AATACGACTCACTATAGGGGGA 5' TGTCAACACTGGTGATTCAA3' 
GGAAAGACGTGAGACATTAGGT 3' 

Note: The sequences in bold is T7 promoter. 
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Samples were then centrifuged at 4°C at 1000xg for 10 minutes to remove tissue debris. 

Supernatant were collected and transferred to new tubes. 

Protein concentration was determined using Bradford assay (Sigma, St. Louis, MO). 

Briefly, BSA standard (Sigma) of 0.125mg/ml to 2.0mg/ml was used to generate the 

standard curve. An R2 >=0.99 for the standard curve was considered acceptable. 

Several dilutions were used for unknown samples. Original concentration of the retina 

samples were calculated based on the diluted readings that fell within the range of the 

standard curve. The samples were then dispensed into aliquots and stored in -80°C. 

11. Immunofluorescence microscopy 

121lm frozen sections were used for immunohistochemistry. All steps were carried out at 

room temperature. Sections were treated with TBS with 0.05% Triton for fifteen minutes, 

and then blocked with 10% normal donkey serum in TBS for 1 hour. Sections were then 

incubated with the primary antibodies at the indicated concentrations (table 10) for 1 

hour. After several washes, fluorescence-conjugated secondary antibodies were applied 

and incubated for 1 hour. Slides were washed again and subsequently cover-slipped in 

Vectashield mounting medium (Vector Laboratories, Burlingame, CA) and observed 

under Fluoview confocal microscope (Olympus, La Jolla, CA). Negative controls with 

primary antibodies omitted were used for all experiments. Negative controls with 

primary antibodies pre-adsorbed with an immunogenic peptide or recombinant proteins 

were applied when possible. 
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Table 10. Antibodies used for immunofluorescence 

Antibodies Catalog and Company Work Concentration 

CPEB1 Custom antibody 1 :30,000 
Affinity Bioreagents 

CPEB3 Ab10883 1 :1000 
Abcam 

GAPDH Img-5019A 1:5000 
Imgenex 

HRP conjugated secondary AP187P 1 :30,000 
antibody, goat anti rabbit Millipore 

HRP conjugated secondary AP130P 1 :30,000 
antibody, goat anti mouse Millipore 
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12. Recombinant proteins 

The cDNAs of full-length CPEBs were cloned into pGEX2T vector with a glutathionine S­

transferase (GST) tag at the 5' end. The plasmid was transformed to E. coli B21 cells 

(Keyclone, Cincinnati, OH). For the expression of the proteins, B21 cells were cultured 

in Luria Broth (LB) medium at 37°C until the 0.0. 600 reached 0.4. Then isopropyl 13-0-

1-thiogalactopyranoside (IPTG) was added to the culture to a final concentration of 

0.8mM. Cells were allowed to grow for several hours. When the 0.0.600 reached 1.5-

3.0, cells were harvested and proteins extracted using B-PER bacterial protein extraction 

reagent (Pierce, Rockford, IL). Total proteins (soluble and insoluble proteins altogether) 

were loaded to polyacrylamide gel electrophoresis (PAGE) gel and stained with 

Coomassie Blue. The extra band presented in the induced samples compared to the 

non-induced was purified with the aid of immunoprecipitation. The sequence of the 

purified band was confirmed by mass spectrometry. 

CPEB proteins were predominantly expressed as insoluble forms in inclusion bodies. In 

order for the recombinant proteins to be used for antibody pre-adsorption, they must be 

solubilized. Therefore, the following treatments were performed: First, inclusion bodies 

were purified from the whole cell lysate using B-PER bacterial protein extraction reagent 

(Pierce); secondly, they were solubilized in Inclusion Body Solubilization Reagent 

(Pierce); and lastly, solubilized proteins were returned to physiological conditions via 

dialysis. A brief description of each step was as follows: 

For the purification of inclusion bodies, induced culture was collected and centrifuged at 

5000xg for 10min. Appropriate amount of Bacterial Protein Extraction Reagent (B-PER) 

with 1 :100 (v/v) proteases inhibitors (Pierce, Rockford, IL) was added to the pellet (cells). 

Cells were lysed and homogenized by pipetting and vortexing until the suspension was 

92 



homogeneous. The homogenate was centrifuged at 15,OOOxg for 15min at 4°C to 

separate soluble proteins and insoluble proteins. Appropriate amount of B-PER was 

added to the pellet (inclusion bodies) and resuspended. Lysozyme was added to a final 

concentration of 2001lg/ml followed by 5min incubation at room temp. 1: 1 0 diluted B­

PER was added to the tube, vortexed and centrifuged at 15,OOOxg for 15min. Pellets 

was collected, resuspended in 1: 1 0 B-PER and centrifuged. This step was repeated two 

more times. The pellet was collected for further treatment. 

For solubilization, the pellet of purified inclusion body was resuspended in appropriate 

amount of Inclusion Body Solubilization Reagent by vigorous vortex or by pipetting. The 

suspension was shaken for 30min and centrifuged at 27,OOOxg for 15min to remove cell 

debris. The suspension was the solubilized proteins from the inclusion body. Because 

the Inclusion Body Solubilization Reagent contains high amount of strong denaturant, 

proteins in this buffer have to be dialyzed before they can be used for antibody pre­

adsorption. 

Dialysis was performed at 4°C to maintain protein stability. Solubilized protein samples 

were put into Slide-A-Lyzer cassettes (Pierce) of appropriate molecular cutoff. The 

cassette with sample was put in 1 L of 6M urea and dialyzed for 6 hours. 250m I of 25mM 

Tris·HCI (pH7.5) was added to the container every 6-12 hours, until the volume reached 

3L. The dialysis solution was then replaced with 2L of 25mM Tris·HCI (pH7.5) and 

150mM NaCI, followed by another 6-hour dialysis. The sample was removed from the 

cassette and centrifuged to remove any insoluble material. The concentration of the 

supernatant (the soluble recombinant protein) was determined using Bradford Assay 

(Pierce). The sample was then ready for use in antibody pre-adsorption. 
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10 mg of total protein from the retina, 10l1g of CPEB3 antibody, and S0l11 SO% protein A 

plus slurry (Thermo Fisher Scientific, Rockford, IL) were used for each 

immunoprecipitation reaction. PBS buffer (NaCI 1S0mM, phosphate 10mM, pH7.4) was 

used as wash/binding buffer. The protein sample and the antibody were mixed and 

incubated on a rotator at 4·C for 3 hours. Protein A plus beads (SO% slurry) were 

washed three times in PBS and added to the antigen-antibody mixture and incubated on 

a rotator at 4·C for overnight. The complex was centrifuged at 2SOOxg for 3 minutes, 

washed three times with PBS, and reconstituted in 30-S0111 2x Lamilli sample loading 

buffer. The complex was then heated at 9S·C for S minutes, and analyzed by gel 

electrophoresis. Gel was stained with Gel Code Blue (Thermo Fisher Scientific, 

Rockford, IL) and destained with water, then cut into several portions for mass 

spectrometry. 

14. Quantification of proteins: Western blotting 

2SI1g of total protein from each sample was used for Western blots. Protein standards of 

10kO to 2SOkO (Thermo Fisher Scientific, Rockford, IL) was used as markers. 2x 

Laemmli buffer (Sigma, St. Louis, MO) was added to the samples and boiled at 9SoC for 

Smin. Samples were loaded to SOS-PAGE for gel electrophoresis. Proteins were 

transferred from the gel to O.4Sl1m polyvinylidene fluoride (PVOF) membrane using a 

Semi-dry transfer apparatus (Biorad, Hercules, CA). The blots were blocked with 10% 

milk for 1 hour, before primary antibodies were added for overnight incubation at 4°C. 

The blots were washed in TBS with 0.3% tween-20, and then incubated in secondary 
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antibody for 1 hour at room temp. The blots were washed thoroughly before enhanced 

chemiluminescence reagent (Thermo Fisher Scientific, Rockford, IL) was used to detect 

the signal. The source and dilutions of the primary and secondary antibodies used are 

listed in table 11. Recombinant proteins or immunogenic peptides were used to pre­

adsorb the antibody at a ratio of 10:1 (mass/mass) to demonstrate the specificity of the 

antibody. 
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Table 11. Antibodies used for Western blots 

Antibodies Catalog and Source Work Concentration 

CPEB1 Custom antibody 1 :400 
Affinity Bioreagents 

CPEB3 Ab10883 1:50 
Abeam 

Map1a M4278 1:200 

Sigma 

ChAT AP144-p 1 :200 

Millipore 

Alexa Fluor® 594 
A21207 

1:200 
donkey anti-rabbit IgG 

Invitrogen 
(H+L) 

Alexa Fluor® 488 A21202 
1:200 

donkey anti-mouse IgG 
Invitrogen 

Alexa Fluor® 488 
A11055 

1 :200 
donkey anti-goat IgG 

Invitrogen 
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CHAPTER IV 

RESULTS 

1. CPEB1 expression and regulation 

One previous study reported the presence of CPEB1 mRNA in the mouse retina using 

PCR (Liu et al. 2000). In this study we set out to confirm this initial observation. 

Additionally, we set out to demonstrate the localization of CPEB1 mRNA and protein in 

the mouse retina; the expression patterns of CPEB1 during postnatal development of the 

retina; and potential mRNA targets for CPEB1 in the retina. 

To confirm the previous finding, we first performed regular RT-PCR using a set of 

primers that were different from the prior study. We used total RNA collected from the 

retinas of adult mice. The primers we used for CPEB1 had low homology with the other 

three known CPEBs, and had no significant homology to any other gene. The amplified 

band was cut out and sequenced for validation. ~-actin primers were used as a positive 

control and a negative control; the latter had all the components except that the reverse 

transcriptase was omitted in the RT step. The result demonstrated that CPEB1 mRNA is 

expressed in retina of the adult mouse (figure 19). The absence of signal in the negative 

control indicated no contamination in any component of the RT or PCR steps, or during 

the setup of these reactions. 
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Figure 19. Presence of CPEB1 mRNA in the retina 

Total RNA from postnatal day 30 mice retina was used. Regular RT-PCR was 

conducted using CPEB 1 primers that span exons to exclude amplification of genomic 

DNA. l3-actin was used as a positive control. A reaction with only reverse transcriptase 

omitted for reverse transcription but with all the other components for RT and PCR (with 

l3-actin primers) was used as a negative control. The amplified band was sequenced for 

confirmation. The results demonstrated the presence of CPEB1 mRNA in the mouse 

retina. 
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Figure 19 
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1) Localization of CPEB1 mRNA 

Next, we explored the localization of CPEB1 mRNA in mouse retina with the aid of 

in situ hybridization. Antisense RNA probes were made with primers specifically 

designed for CPEB 1. The sense RNA probe from the same region was used as a 

negative control. Amplified templates of both antisense and sense probes were 

sequenced to confirm the specificity. The clean background in tissue probed with 

sense probe indicated the specificity of the anti-sense hybridization (figure 20 

upper panel). Results in tissue hybridized with antisense probe demonstrated that 

CPEB1 mRNA is predominantly localized in the inner retina, particularly in the 

RGC layer, and to some extent, the inner part of the INL (figure 20 lower panel). 

The IPL and OPL appeared to be positive for CPEB1 as well, but the synaptic 

structures of these layers could not be distinguished at this point due to the 

limitation on the resolution of in situ hybridization techniques. The localization of 

CPEB1 protein would be further explored using immunofluorescence microscopy 

(see below). 

2) Developmental regulation of CPEB1 mRNA 

The next question concerned the possible regulation of CPEB1 mRNA. To explore this 

issue mRNA levels were compared during postnatal development with the aid of real­

time PCR. Total retinal RNAs from seven developmental ages which included the eye­

opening event (approximately day 14 in mice) were used. Taking into consideration that 

physiological responses of the retina to ambient light might cause circadian regulation of 

certain genes, all the tissues were collected at the same time of the day. Both the 
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Figure 20. Localization of CPEB1 mRNA in the retina 

P60 mouse retina was used for in situ hybridization. Mouse CPEB1 primers were 

designed with low homology to the other three CPESs and to any other mouse genes. 

The primers were used to make the antisense probe of about 500bp-long whose identify 

was confirmed via sequencing. The sense probe at exactly the same location was used 

as a negative control. The results indicated that CPEB1 is highly expressed in RGC 

layer, and to a less extent, in the INL, especially inner layers of INL. CPEB1 mRNA also 

appeared to be present in the plexiform layers. Due to the limitation on the resolution of 

this method, we could not identify synaptic structures in the plexiform layer at this point. 

The calibration bar represented 50 11m. 
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CPEB1 primer set and the 6-carboxyfluorescein (FAM)-Iabeled CPEB1 probes (Applied 

biosystems) were gene-specific which ensured stringent specificity. 

Our data demonstrated an up-regulation in the level of CPEB1 mRNA throughout the 

period of postnatal development into adulthood (figure 21). A significant increase 

(p<0.05) of 2.5 fold was observed in P12 compared to P1. No significant changes were 

found between P12 and p16. Whereas the older animals, P30 and P60, demonstrated 

another significant increase compared to P14 and P16, respectively. The overall 

increase in the level of CPEB1 transcripts was about 6 fold in adult animals (P60) 

compared to newborns (P1). The data appeared to be consistent with the notion that 

some aspect of development regulates CPEB1 transcription. The data are less clear as 

to whether eye opening makes any significant impact on the course of this 

developmental regulation. 

3) Localization of CPEB1 protein in the retina 

To confirm and extend the observations from the in situ hybridization data, fluorescence 

immunocytochemistry was performed with an antibody to CPEB-1 on fixed tissue 

sections of the retina. The results of these studies indicated that CPEB1-protein is 

clearly located in the neuronal processes that make up the inner plexiform layer. At 

least two laminar structures are distinguishable in the INL (figure 22, 23). Cell bodies in 

the RGC layer are immunopositive for CPEB1 and some cell bodies in the INL are 

immunopositive for CPEB1. 

To identify the cell phenotypes expressing CPEB1, we used double labeling, combining 

CPEB1 antibody with a retinal ganglion cell marker MAP1a (Okabe et al. 1989; Tucker 
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Figure 21. Developmental pattern of CPEB1 mRNA 

Total RNA from the retinas of postnatal day1, 7, 12, 14, 16, 30, and 60 which were 

collected at the same time of the day was used for real-time PCR assays. The 

combination of gene-specific primers and FAM-Iabeled gene-specific probes ensured 

high specificity. 18S was used as an endogenous control. The relative fold changes 

were acquired by calibrating all the older ages to age P1. Each age had 6-10 animals. 

The Anova procedure, Tukey's Studentized Range (HSD) was used for statistics. Error 

bars indicated standard deviation (SO). Significant changes were found between each 

two bracketed ages (p<0.05). The results demonstrated an overall up-regulation of 

CPEB1 transcripts during postnatal development. A significant increase (2.5 fold) was 

found in P12 compared to P1. P12-16 showed no significant changes. The level of 

CPEB1 mRNA continued to increase significantly from P16 until the adulthood (P60). 

The overall increase of CPEB1 transcripts from P1 to P60 was about 6 fold. 
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Figure 22. Localization of CPEB1 protein - with MAP1 a 

P16 retina was used for the immunohistochemistry. CPEB1 was expressed in some 

cells in the retinal ganglion cell (RGC) layer. The double labeling of CPEB1 and MAP1a 

demonstrated that some CPEB1 positive cells were MAP1a positive (arrows); while 

other CPEB1 positive cells in RGC layer were MAP1a negative (arrowheads). This 

indicated that some, but not all, CPEB1 positive cells in the RGC layer were ganglion 

cells. The MAP1 a labeling in outer plexiform layer (OPL) was non-specific since it also 

appeared in no primary negative controls. CPEB1 was also highly expressed in the 

inner plexiform layer (IPL), with some laminar pattern. A few cells in the inner nuclear 

layer (INL) were CPEB1 positive. The scale bar represented 50 11m. 
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Figure 23. Localization of CPEB1 - with ChAT 

P16 mouse retina was used for immunohistochemistry. CPEB1 was expressed in some 

cells in the retinal ganglion cell (RGC) layer. The double labeling of CPEB1 and ChAT 

demonstrated that some CPEB1 positive cells were ChAT positive (arrows); while other 

CPEB1 positive cells in RGC layer were ChAT negative (arrowheads). This indicated 

, that some, but not all, CPEB1 positive cells in the RGC layer were displaced amacrine 

cells. CPEB1 was also highly expressed in the inner retina, with some laminar pattern. 

The two distinguishable laminae ( small open arrows) appeared not to be co-localized 

with ChAT, suggesting that they were not cholinergic synapses. The close juxtaposition 

of these two laminae with ChAT positive laminae raised the possibility that they may be 

localized in sublamina a and sublamina b respectively. A few cells in the inner nuclear 

layer were CPEB1 positive, some being ChAT positive (big open arrows), and others 

ChAT negative (big open arrowheads). This suggested some of the CPEB1 positive 

cells in the INL were cholinergic amacrine cell, the others were not. The scale bar 

represented 50 11m. 
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and Matus 1988), or a cholinergic amacrine cell marker choline acetyl transferase (ChAT) 

(Kang et al. 2004; Eckenstein and Thoenen 1982; Voigt 1986; Zhang et al. 2005). Our 

data demonstrated that the CPEB1 positive cells in RGC layer can be MAP1a positive 

(figure 22), or ChAT positive (figure 23). This suggested that some CPEB1 positive cells 

in the RGC layer are retinal ganglion neurons, and some are displaced amacrine cells. 

Some, but not all CPEB1 positive cells in the inner layers of INL are ChAT positive, 

indicating that some of those cells are cholinergic amacrine cells. The CPEB1+/ChAT­

cells in the INL could be other types of amacrine cells, or bipolar cells. To determine all 

phenotypes of cells expressing CPEBs would require an extensive study of double and 

triple antibody labeling with antibodies to known cell markers which is beyond the scope 

of this dissertation. 

CPEB1 immunolabeled tissue sections showed distinguishable patterns during 

development. Throughout all developmental ages examined, CPEB1 was highly 

expressed in the IPL. The labeling of CPEB1 was across the IPL, but some 

distinguishable laminar structures were labeled at a higher level. These laminar . 

structures did not appear to co-localize with ChAT labeling (figure 23). This suggested 

that these synaptic layers are not cholinergic. However, these CPEB1 positive laminae 

are within close proximity to the ChAT positive laminae. A dark "furrow" lay between two 

laminar structures in the CPEB1 staining. 

4) Developmental regulation of CPEB1 proteins in the retina 

To expand our observation of the developing pattern of CPEB1 mRNA, we looked at the 

levels of CPEB1 proteins during development with the aid of Western blots. To validate 

the specificity of the antibody, the immunogen, a peptide used to generate the antibody 
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was used in pre-adsorption experiments as the negative control (figure 24b). The results 

from Western blots (figure 24a) indicated that qualitatively the level of CPEB1 protein 

was up-regulated in the retina during the postnatal development, which is consistent with 

our observation on the developmental pattern of CPEB1 mRNA (figure 21). 

5) Identification of CPE-containing mRNAs in mouse database using a bioinformatics 

program 

Two consensus sequences for CPEs in mRNAs that contain such regulatory sequences 

have been published. These include: UUUUUAU and UUUUAAU (Fox et al. 1989; 

Simon et al. 1992). However, very few gene-transcripts are known targets of CPEB1 in 

the central nervous system. To identify potential mRNA targets of CPEB1 using the 

current knowledge of CPE sequences, two approaches were used to explore this 

relatively new area. The approaches adopted included the use of a home-grown 

bioinformatics program, and the use of a specialized 3' RACE RT-PCR. 

The bioinformatics program was designed with the help and collaboration of Dr. Eric 

Rouchka in the Department of Computer Engineering and Computer Sciences and 

named "CPE Detector". This program searched the 3' UTR databases UTRdb 

(www.ba.itb.cnr.itlUTRI) for the presence of the CPE consensus motif, the PAS 

consensus motif, the relative location of the two (CPE may partially overlap with PAS, 

but is always upstream of PAS), and the length of the gap between the two. Genes with 

the required characteristics were retrieved and classified into different categories based 

on the length of the gap (table 12). Several redundant or non-redundant databases 

ranging from fungus to human were used. From the non-redundant mouse 3'UTR 

database, we identified a total of 1449 genes that have at least one CPE upstream of the 
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Figure 24. Developmental pattern of CPEB1 protein 

a) Total retinal proteins of P1-P60 mice were used for western blots. Qualitatively 

the level of CPEB1 protein in the retina was up-regulated during postnatal 

development. This is consistent with real time PCR data. 

b) To ensure the specificity of the antibody, synthetic immunogenic peptide was 

used to pre-absorb the antibody before applying the antibody to the blot. Pre­

adsorption diminished the band which suggested that the detected band was 

specific for CPEB1. 
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PAS. Among them 185 genes have a gap of 10-50bp, 190 have a gap of 51-1 OObp; 127 

have a gap of 10 1-150bp; 103 have a gap of 151-200bp. About 1100 genes have a gap 

longer than 201 bp. 

With the aid of the mouse UTR database (www.ba.itb.cnr.itlUTR/). we further screened 

for genes with two or more CPE motifs upstream of the PAS. After refinement of this 

program, 1045 genes with two CPE motifs and one poly(A) site in their 3' UTRs were 

identified; only 36 with a spacer of less than 250bp (table 13). Some of the genes 

thought to be likely candidates were subjected to polyadenylation tests (PAT) (table 14). 

6) 3' RACE-PCR to identify CPE containing mRNAs specifically from mouse retina 

To identify the potential retinal mRNAs with CPE and PAS in their sequences, a 

specialized 3' RACE RT-PCR method was developed. Total mouse retinal RNAs were 

used in two rounds of nested 3' RACE PCA. The first round amplified specifically CPE­

containing mRNAs; while the second round amplified, in the population derived from the 

first round of PCR, specifically PAS-containing mRNAs. A highly repeatable pattern was 

acquired with this method (figure 25). Each distinguishable band was cut out, purified, 

and sequenced. The identities of these sequences were determined by comparing their 

sequences to the nucleotide database using Blastn 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

One of the possible limitations of this method was that it did not distinguish CPE/PAS 

within the 3' UTR from CPE/PAS within the other regions of the gene. After sequencing, 

only one gene from these bands, transthyretin (TTR), truly had a CPE/PAS in its 3' UTA. 

TTR encodes for a transport protein for retinol. Its mRNA has been localized in the 

retinal pigment epithelium (RPE) cells. However immunoreactivity for TTR protein has 
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Table 12. CPE-containing mRNAs identified using "CPE Detector" program 

Number of genes identified from the databases using "CPE Detector" (developed in collaboration with Dr. Eric Rouchka). Redundant 

(R) or non redundant (NR) 3' UTR databases for different organisms were used. Candidate genes extracted were categorized 

according to the length of the gap between CPE and PAS. The results derived from mouse and rodent databases were highlighted. 

# of Nucleotides between patterns 
Num.3' 
UTRs UNFILTERED 1 Oto50 51to100 101to150 151to200 201to300 301to400 401to500 501+ 

FUNGAL NR 3122 54 18 19 12 7 6 2 0 3 
FUNGAL R 673 15 5 5 2 3 1 1 0 1 
HUMAN NR 35701 3335 432 406 332 353 572 490 426 1842 
HUMAN R 31156 1913 317 239 191 209 316 271 202 827 
INVERTEBRATES NR 23849 1178 251 248 187 169 214 165 126 318 
INVERTEBRATES R 5735 224 60 52 28 38 28 10 22 47 
MAMMALS NR 7789 262 39 35 27 20 36 41 26 112 
MAMMALS R 2359 42 13 3 6 8 3 12 3 17 . - -. -_. - - _ . --. 

MOUSE NR 18342 1449 185 190 127 103 168 178 152 761 
MOUSE R 13784 517 107 71 59 36 59 50 62 198 

~~ - -- - - - - - - -
PATENT NR 559 31 7 5 3 1 7 9 2 13 
PATENT R 257 9 1 2 0 0 1 2 0 4 
Plant NR 39483 395 132 118 83 33 22 16 4 10 
Plant R 19107 66 32 13 9 3 3 0 1 1 - ~ -----. - .. - . - -- - -
RODENTS NR 7408 305 40 38 39 20 49 45 42 105 
RODENTS R 2709 51 5 6 11 2 4 7 7 18 -- - - ~ ~ - ~ -- ~. 

Viruses NR 5667 117 3 23 29 17 17 12 9 80 
Viruses R 17086 172 0 16 8 2 13 2 10 142 
Vertebrate NR 1721 254 268 260 195 343 250 224 625 
Vertebrate R 178 19 36 25 19 38 34 17 42 

12034 1920 1793 1438 1238 1900 1597 1335 5166 



Table 13. List of mouse genes with two or more CPEs upstream of PAS (within 250 bp distance) in the 3' UTR 

NUMBER NAME PREDOMINANTLY EXPRESSED IN CNS? 

AB008811 N-cadherin 

AF031903 Arl6 

AF062567 Sp3 

AY089967 Basigin 2 

AY484583 VGFG2573 

AY484585 VGFG2573 

C006789 Ets 

BC022682 
~ 

~ 

r BC024126 Dimethylglycine dehydrogenase precursor Q) 

BC026127 Csnk1 e (Casein kinase 1) Nerve ganglia; prosencephalon; skin yes 

BC027797 Sp3 (Trans-acting transcription factor 3) Mesencephalon; vascular tissue; lymph node Yes 

BC029814 Fos (FBJ osteosarcoma oncogene) Bone marrow; bone; liver yes 

BC030726 Casc4 (cancer susceptibility candidate 4) Nerve ganglia; prosencephalon; cerebellum yes 

BC031438 Extl2 (Exotoses (multiple)-like 2) Basal ganglia; nerve ganglia; skin yes 

BC037478 Extl2 (Exotoses (multiple)-Iike 2) Basal ganglia; nerve ganglia; skin yes 

BC040201 Zfp715 (Zinc finger protein 715) Endocrine gland; lymph node; whole brain yes 

BC048845 Inhbb (Inhibin beta-B) Female genital; mammary gland; lung Yes,·not top3 



BC050916 Crsp3 (cofactor required for Sp1 transcriptional Blood; whole brain; ear yes 
activation, subunit 3 

C054845 Gent2 (Glucosaminyr(n-acetyl) transferase 2) GalfllladCter; vascular; extraembryonic tissue Yes (not top 3) 

BC057182 Brd1 (Bromodomain containing 1) Bone; whole brain; eye Yes 

BC057543 Lefl (Lymphoid enhancer binding factor 1) Thymus; skin; spleen small 
. -~ 

BC060175 

BC062954 Ehd2 (EH-domain containing 2) Lymph node; vascular tissue; thymus; cerebellum Yes 

BC064446 Casc4 (cancer susceptibility candidate 4) Nerve ganglia; prosencephalon; cerebellum Yes 

X69620 Inhbb (Inhibin beta-B) Female genital; mammary gland; lung Yes (not top 3) 

M60803 NA NA NA 

KOOO2O Ifnb1 (Interferon beta 1, fibroblast) NA NA ..... ..... 
-...J AK129312 Crsp3 (Cofactor required for Sp1 transcriptional Blood; whole brain ; ear yes 

activation, subunit 3) 

AY435148 Gent2 (Glucosaminyl (N-acetyl) transferase 2) Gall bladder; vascular; extraembryonic tissue Yes (not top 3) 

AY435149 Gent2 (Glucosaminyl (N-acetyl) transferase 2) Gall bladder; vascular; extraembryonic tissue Yes (not top 3) 

AY435150 Gent2 (Glucosaminyl (N-acetyl) transferase 2) Gall bladder; vascular; extraembryonic tissue Yes (Rot top 3) 

BCOO5508 Crsp3 (cofactor required for SP1 transcriptional Blood; whole brain; ear yes 
activation, subunit 3 

BC018497 Arl-6 (ADP-ribosylatlon factor-like 6) Embryonic tissue; eye; limb yes 

BC040386 Zfp715 (zinc finger protein 715) Endocrine gland; lymph node; whole brain yes 

BC057313 Zfp715 (zinc finger protein 715) Endocrine gland; lymph node; whole brain yes 

M31131 Cdh2 (cadherin 2) Eye; whole brain; heart yes 



Table 14. Sequences and locations of CPE, PAS, and linker of eight CPE-containing mRNAs 

Gene Accession 1st CPE 1st CPE Hex Hex Linker Seq Linker 
name # seguence location Seguence Location size 
Actin-beta NM_007393 T6GT4G T4G 1362- TTTAAA 1397- CGCTTTTGACTCAGGA 16 

13:nt 1802 
T4GT15G2T4 1488- TTTAAA 1690- AGTCATTCCAAGTATCCATGAAATAAGTGG 154 
G TeT7 A2T 1536 1695 TTACAGGAAGTCCCTCACCCTCCCAAAAGC 

CACCCCCACTCCTAAGAGGAGGATGGTCG 
CGTCCATGCCCTGAGTCCACCCCGGGGAA 
GGTGACAGCATTGCTTCTGTGTAAATTATG 
T ACTGCAAAAA TTTT 

T5-A2-T 1"722-- - AA,TAAA--f862- TTCTGAATGGCCCAGGTCTGAGGCCTCCC faa 
1729 1867 I I I I I I I IGTCCCCCCAACTTGATGTATGAA 

GGCTTTGGTCTCCCTGGGAGGGGGTTGAG 
-" GTGTTGAGGCAGCCAGGGCTGGCCTGTAC 
-" ACTGACTTGAG ex> 

BDNF NM_007540 T4AT 1502- TATAAA 1518- GAACTGCATG 9 
1507 1523 

T6.A T7 AT5 3029- AAAAAG 3070- GAGACATTTTGGGAAAAGGAAA(AAA) 22/25 
3048 IAAGAAA 3075 

13073-
aQ7§ 

-----------------------

T6AT 4028- AGTAAA 4058- AGTGATTCCCATTGAAACTGTA 22 
4035 4063 

CaMKlla NM_177407 T6A2T 4669- AATAAA 4780- CTGTGGCTGTGAACTTGAATGACCACTGCT 102 
4677 4785 CAAACTTTCTGCTACTGGGGGGGTGGGGG 

AGGGGAGAAGAGATGTCTGGTTTATTCTTG 
GCGTTTTCAGTGG 

T6GT3GT3G 4879- AATAAA 4929- CAAATCTCCCCTGTTGCAA 19 
T3GT5GT3G 4909 4934 
T~ '2~el;?t 

MAPK1 NM 011949 T4GT4CT2G2 2763- AATAAA 2871- GACATCAATGGAAAATGGGTTCTATAAAGA 78 



T5 A T6 A T4 2793 2876 CTGCCTGCTAGTATGAACAGCAATGCAATG 
CACTTGTAACTC 
ATGGA 

Ppp2r1a NM_016891 T6 G T gtgt 2180- GTGTCAATTGTGCCA 52 
2187 

T5AT4AT2 2203- AATAAA 2239- CCTTTCCCTACTGTACACGGAGA 24 
2215 2244 

Ppp2r2b NM_028392 seven nt off 
compare to 
NM 027531. 

NM_027531 tgtg T4G T3 1818- CTAG-GTGTCTCrCTCrC-GATAAAATGAGATTG- 63 
1825 TCTGTAGTATTTAAGGAGAAAAAGAGATAA 

~~ 
T10 A2 T 1888- AATAAA 1945- TAAGCATTCCATTTGTTTGAAAAAAATCAAC 45 

1900 1950 AACAAAAAAAAAA 
RBP·3 NM_015745 T6A3 4842- AATAAA 4920- GGAGGACCATGCACCTGTATTGTCTAGCCT 70 

4850 4925 TGACATCTGGAAAGGCTAAGCTGTTGCTGC ...... 
TCAGGGCCT ...... 

<0 Ttr NM_013697 T3 C T6 A T3 623-636 TTTAAA 674-679 CCTCATTTTTCTCCCCTGCTCCTAAAACCC 38 
AAAATTT 

T9AT 1006- AATAAA 1033- AACCTTTAGTGACTA f5 
1017 1038 



Figure 25. RACE for identification of target mRNAs of CPEB1 

Total P60 mouse retinal RNA was used for 3' RACE. An illustration of the 3' RACE 

method is shown in figure 16. The used of wobbled CPE primers and wobbled PAS 

primers in the nested 3'RACE reactions generated multiple bands. Each band was cut 

Qut, purified, and sequenced to identify its identity. 
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been found in RPE, the optic nerve fiber layer, as well as retinal ganglion cells of the 

retina (Dwork et al. 1990). This gene, together with several of the genes identified using 

the bioinformatic program, were used in polyadenylation assays (see below). Another 

limitation on this method was that because of the competition for the same set of primers, 

additional genes that have 3' UTR/PAS in their 3' UTRs may not be amplified to 

sufficient amount for them to be identified from the gel or in our sequence data. 

7) Polyadenylation of eight CPE-containing mRNAs in developing retina 

The following eight genes, based on their known possession of CPE/PAS motifs in their 

3' UTRs and the known or suspected presence in the retina, were selected for the PAT 

assay: CaMKlla, BDNF, l3-actin, MAPK, protein phosphatase regulatory domain 1 a 

(Ppp2r1 a), protein phosphatase regulatory domain 2b (Ppp2r2b), interstitial retinol 

binding protein (IRBP), and TTR. The number of copies and the sequences of CPE and 

PAS motifs, as well as the sequence and length of gaps between the two in these eight 

genes was confirmed (table 14). 

The experimental paradigm chosen as a putative trigger for polyadenylation was 

development. Total retinal RNA samples from mice of different ages were used for the 

LM-PAT method. The length of the poly(A) tails were visualized on agarose gel (figure 

26). The assays were repeated multiple times with consistent results indicating that 

MAPK1, Ppp2r1A, Ppp2r2B, IRBP and BDNF mRNAs acquired elongated poly(A) tails 

from P1 to P7. Ttr and BNDF had elongated poly(A) tails from P7 to P12. No profound 

changes in the length of the poly(A) tails were found for these genes in older animals 

(figure 26). The PAT which measures mRNA elongation provides supporting evidence 
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Figure 26. LM-PAT assays of potential CPEB1 targets 

Total RNA from seven ages of P1 to P60 retinas were used. An illustration of the LM­

PAT method is illustrated in figure 17. Eight genes: j3-actin, BDNF, CaMKlla, MAPK, 

Ppp2r1 a (protein phosphatase 2 regulatory subunit A), Ppp2r2b (protein phosphatase 2 

regulatory subunit B), IRBP (interstitial retinol binding protein), and TTR (transthyretin) 

were selected based on the 3' RACE results and the bioinformatics program "CPE 

Detector". GAPDH, which does not have any CPE sequence in its 3' UTR, was used as 

a control. The results demonstrated that from P1 to P7, six out of eight candidate genes 

(except j3-actin and ITR) acquired prolonged poly(A) tail. From P7 to P12, TTR gained 

prolonged poly(A) tail. 
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that some aspect of development, especially between P1 and P7 triggers the 

translational control apparatus. 

In summary, our study confirmed the presence of CPEB1 in the mouse retina. The level 

of CPEB1, both mRNA and protein, were up-regulated throughout development. 

Potential mRNA targets of CPEB1 were identified both computationally and 

experimentally. Several genes from the candidate pool acquired elongated poly(A) tails 

during postnatal development. 

2. CPEB3 expression, regulation and isoform analysis 

Having demonstrated the expression patterns of the well established CPEB1 in the 

mouse retina, we were particularly interested to see if CPEB3 is present in the retina. 

One of the recently established target mRNAs for CPEB3, GluR2, has been shown to be 

a key player in synaptic plasticity. Although much less is known about the mechanism 

and the expression pattern of CPEB3 compared to CPEB1, it is postulated that CPEB3 

functions through a mechanism that is distinct from that of CPEB1. It may also be rather 

different from CPEB1 with regard to its tissue distribution and its mRNA substrate 

specificity. The existing state of our knowledge concerning the isoform composition of 

CPEB3 is summarized in a 2003 publication (Theis et al. 2003). Our goal in this section 

was to first expand and update this knowledge of CPEB3 isoforms and their relative 

tissue distribution, and then to establish the expression pattern of CPEB3 in the mouse 

retina. 
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1) CPEB3 has multiple unique motifs compared to CPEB1, 2 and 4. 

Four CPEB paralogs (CPEB1-4) derived from four different chromosomes have been 

identified in mouse. The N termini of CPEBs are profoundly variable, while the C termini 

are highly conserved (Theis et al. 2003). Sequence comparison demonstrates that 

CPEB3 shares higher homology with CPEB2 and CPEB4, but is distal to CPEB1 in the 

family tree. RNA recognition motifs (RRM) of CPEB3 share 97-99% identity with CPEB2 

and CPEB4, but only 45% with CPEB1 (Theis et al. 2003). Searching the complete 

sequences of CPEB2, 3 and 4 proteins, we identified multiple sequences that are unique 

to CPEB3, including a poly-glutamine (poly-Q) track, a serine-alanine (SA) track, a 23 

amino-acid motif and an 8 amino-acid motif (figure 27). They are also absent from 

CPEB1. These motifs may have functional significance with respect to the uniqueness to 

CPEB3. 

2) Multiple isoforms of CPEB3 were identified in the database using bioinformatics 

analysis 

A previous study characterized four different alternative splicing isoforms of CPEB3 

transcripts (Theis et al. 2003), in which two short motifs of 69nt and 24nt (coding for 23 

amino acids and 8 amino acids, respectively) are removed individually, or concurrently. 

However, the structure of CPEB3 seems to be more variable than previously reported. 

When investigating the nucleotide databases for CPEB3 isoforms, we were able to 

identify eight transcript variants (figure 28, isoform 1 a-1 d, 3-6). When a similar search 

was performed for the protein databases, we were able to identify seven distinct CPEB3 

protein isoforms (figure 29). With the aid of sequence alignment tools, we mapped the 
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Figure 27. Multiple unique motifs of CPEB3 protein 

Multiple unique motifs are present in CPEB3 protein, as demonstrated by sequence 

alignment of CPEB2, CPEB3, and CPEB4 proteins. A glutamine rich motif (poly-Q track), 

a 23-amino-acid fragment, and an 8-amino-acid fragment (highlighted in blue) are only 

present in CPEB3. Sequences highlighted in yellow are two RNA recognition motifs that 

are highly conserved among CPEB2-4. The phosphorylation site of CPEB3 is also 

indicated in yellow, which seems to be homologous in CPEB4. For simplicity, only 

Ref Seq sequences are used for the alignment. Accession numbers are as following: 

NP _787951.1 for CPEB2, NP _938042.2 for CPEB3, and NP _080528.2 for CPEB4. 

Asterisk indicates 100% conservation; colon indicates substitution with a similar amino 

acid; period indicates substitution with a distinct amino acid. 
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Figure 27 
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CPEB3 PQAQPSQQRRSPAS PSQAPYAQRSAAAYGHQPIMT--SK I, 231 Phosphorylation site/AS track 
CPEB2 PVSPQLQQQHQAAA---AAFLQQRNSYNHHQPLLK--QSP---------- 56 
CPEB4 HHSQHQQQRRSPASPHPPPFTHRSAAFNQLPHLANNLNKPPSP------- 284 

CPEB3 SAS SWNTHQSV----NAAWSAPSNPWG--GLQAGRDPRRAVGV 275 
CPEB2 -----------WSNHQ------NSGWGTASMSWG--AMHG-RDHRRSG-- 84 
CPEB4 -----------WSSYQSPSPTPSSSWSPGGGGYGGWGASQGRDHRRGLN- 322 

CPEB3 GVGVGVGVPSPLNPISPLKKPFSSNVIAPPKFPRAAP-LTSKSWMEDNAF 324 
CPEB2 ----NMGIPGTMNQISPLKKPFSGNVIAPPKFTRSTPSLTPKSWIEDNVF 130 
CPEB4 ------GGITPLNSISPLKKNFASNHIQLQKYARPSSAFAPKSWMEDSLN 366 

*****'" *.., * * * • . *. .. .. . ...... . 
CPEB3 RTDN-GNNLLPFQDRS-RPYDTFNLHSLENSLMDMIRTD-HEPL ;<HY 371 23 a . a. 
CPEB2 RTDNNSNTLLPLQVRSSLQLPAWGSDSLQDSWCTAAGTSRIDQDRSRMYD 180 
CPEB4 RADN-- -- IFPFPERP----RTFDMHSLES-------- -- ---------- 388 

' . 
CPEB3 "3---GePMSFI\DIM,;RN'iF GRMGINFHH PGTDNIMAL 0'- ~!'.P GR 418 8 a . a . (phosphosite-for CaMKIIa/Sp6) 
CPEB2 SLNMHSLENSLIDIMRAEHDPLKGRLSYPHPGTDNLLMLN-- ------GR 222 
CPEB4 ---------SLIDIMRAENDSIKGRLNYSYPGSDSSLLINARTYGRRRGQ 429 

. . . ,.. '" . '" . . .... . ... 
CPEB3 SSLFPFEDAFLDDSHGDQA-LSSGLSSPT--RCQNGERVERYS~VFVGG 465 
CPEB2 SSLFPIDDSLLDDGHSDQVGVLNSPTCYS--AHQNGERIERFSRKVFVGG 270 
CPEB4 SSLFPMEDGFLDDGRGDQP-LHSGLGSPHCFTHQNGERVERYSRKVFVGG 478 

CPEB3 
CPEB2 
CPEB4 

****"' .. * . k •• • •• .... . .. 
LPPDI DEDEITASFRRFI;! .. V'''DWPHKAESKS' f"PI- ,'''; ,AF;"Lc'QE,;SSV 
LPPDIDEDEITASFRRFGPLVVDWPHKAESKSYFPPKGYAFLLFQEESSV 
LPPDIDEDEITASFRRFGPLIVDWPHKAESKSYFPPKGYAFLLFQDESSV 
***+**************** .••• ******************+++ . **** . . 

CPEB3 QA' f DAC: ';IJ(V. r~v', '; c·· 'DKPV\.· PPWNLSDSDFVMDGSQPLDP 
CPEB2 QALIDACIEEDGKLYLCVSSPTIKDKPVQIRPWNLSDSDFVMDGSQPLDP 
CPEB4 QALIDACIEEDGKLYLCVSSPTIKDKPVQIRPWNLSDSDFVMDGSQPLDP 

CPEB3 RKT 'GG' P AVE ,A~ "1DR ~ V Ar r 'DP K" ,A ;R"A 
CPEB2 RKTIFVGGVPRPLRAVELAMIMDRLYGGVCYAGIDTDPELKYPKGAGRVA 
CPEB4 RKTIFVGGVPRPLRAVELAMIMDRLYGGVCYAGIDTDPELKYPKGAGRVA 

CPEB3 
CPEB2 
CPEB4 

,SNQQSY IAA r SAR:"VQ;,QHND: DKR,·f. 'l'.PY\lLDDQM' 'DECQGTRCGGK 
FSNQQSYIAAISARFVQLQHGDIDKRVEVKPYVLDDQMCDECQGARCGGK 
FSNQQSYIAAISARFVQLQHGEIDKRVEVKPYVLDDQLCDECQGARCGGK 
************* ••• **** . **********'"'*.** . ****** . ***** .. .. 

CPEB3 FAPFFCANVTC :,QYYCEYCWAS : HS?AC :'SFHKP iNKEGGDRi' .': HVPFRW 
CPEB2 FAPFFCANVTCLQYYCEFCWANIHSRAGREFHKPLVKEGADRPRQIHFRW 
CPEB4 FAPFFCANVTCLQYYCEYCWAAIHSRAGREFHKPLVKEGGDRPRHISFRW 
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cDNAs to genomic DNA and identified multiple alternatively spliced regions. We also 

inferred the matches of cDNAs variants to protein isoforms (figure 28, 29). 

Besides the two previously reported sequences whose deletion results in isoforms 2, 3, 

and 4, several other alternative splicing regions were found to be present. One location 

was near exon 11. The prototypical isoforms have exon 12 immediately following exon 

11 (figure 28, isoform 1 a-1 d, 2, 3, 4, and 6). However, the isoform 5 has an extended 

exon 11 (by "bleeding into intron 11"), which causes a completely different 3' UTR and 

the omission of exon 12 (figure 28). Consequentially, the derivative protein terminates 

with four unique amino acids (VELA) and is deprived of the second RNA binding motif 

and the zinc finger domain (figure 29, isoform 5). 

Another variable region is within exon 4. Two deletion variants can occur within this 

exon. One deletion leads to the use of an alternative starting codon, resulting in the 

removal of the first 216 amino acids in the derived protein (figure 28 and 9, isoform 6). 

The other deletion variant, for which the cDNA could not be identified in the UniGene 

nucleotide database, has a derived protein with a deletion of 83 amino acids, ending with 

the 197th serine (figure 29, isoform 7). The 197th serine can be essential for the function 

of CPEB3, since it has been recently shown to be the phosphorylation site of CPEB3 

when synaptosomes were stimulated with KCI (Munton et al. 2007). 

In addition to these splices which lead to altered protein sequences, there are other 

splices in the cDNAs which do not demonstrate differences in protein sequence, but 

rather show variance in their UTR regulatory regions. For example, alternative usage of 

exon1, 2, and 3 results in different 5' UTRs (figure 28, isoform 1 a, 1 b, 1 c); alternative 

usage of poly(A) Signals in exon 13 leads to different 3' UTRs (figure 28, isoform 1 d). 
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Figure 28. Analysis of CPEB3 transcript variants in the database 

Nine different transcripts of CPEB3 have been reported to the UniGene database or in 

research paper. 

Upper Panel: Representation of genomic sequence with boxes representing exons and 

lines representing introns. Lower Panel: The cDNAs derived from alternative splicing. 

Nine cDNAs were shown here, with their accession numbers and types of tissue (when 

available) given to the right. Partial sequence of isoform 2 (exon 5-7) was confirmed 

with PCR in a previous study (Theis et al. 2003), but we were unable to identify the 

accession number in the database, thus its complete sequence shown here was 

uncertain. The first four isoforms are named as 1 a-1 d in our study because they code 

for the same protein. The difference between these four sequences solely reside in 

untranslated regions. The translational start codons and stop codons were annotated on 

top of the genomic DNA. The alternative splices of coding exons 4, 5, 7 and 11 generate 

different proteins presented in figure 29. Alternative splices upstream of the translational 

start locations (exon 1-3) or downstream of the stop locations (exon 13) give rise to 

different 5' UTR and 3' UTRs, respectively. 
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Figure 29. Analysis of CPEB3 protein isoforms in the database 

Seven isoforms of CPEB3 proteins have been documented in the database. 

Isoforms 1-6 corresponded to the same numbered cDNA transcripts in figure 28. Protein 

isoform 1 was derived from the cDNA variants 1 a-1 d. The cDNA sequence for protein 

isoform 7 could not be identified in the database. For simplicity, Poly-Q (poly-glutamine), 

SA (Ser-Ala track), 23 a.a. and 8 a.a. motifs are only labeled in isoform 1. Colored 

boxes represent possible functional motifs. Boxes in dash-lines represent deletions. 

197P represents the 19ih serine phosphorylation site for CPEB3. RRM represents RNA­

recognition motif. The position of the colored-box motifs and dash-line-box motifs are 

indicated at the top and the bottom. The length, the molecular weight and the accession 

number of each isoform are indicated to the right (Swiss-ProtlTrEMBL number is un­

bracketed, NCBI number bracketed). 
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Figure 29 
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3) Multiple isoforms of CPEB3, including a novel isoform, were experimentally 

identified in the mouse retina. These isoforms have a wide tissue distribution; 

and only the (+69+24) variant is selectively expressed among different tissues. 

Apart from the presence of CPEB1 in the retina, we investigated whether CPEB3 mRNA 

is present within the mouse retina. The CPEB3 primer set was designed to flank multiple 

exons to exclude the genomic DNA, with no significant homology to any other genes. 

RT-PCR results demonstrated that CPEB3 is expressed in the retina (figure 30a). [3-

actin primers were used in both positive and negative controls. The negative control 

contained all necessary components except that reverse transcriptase was omitted for 

the RT step. Should there be any contamination from the reverse transcription 

components, the PCR components, or during the setup of either experiment, it would be 

amplified in the negative lane. The lack of bands in this lane confirmed that the signals 

in the other lanes are specific. 

Next, we investigated whether CPEB3 transcript variants identified through the 

bioinformatics analyses were present in the mouse retina. Total RNA isolated from P60 

mice retinas and primer sets designed spanning exon 5-7 or exon 11 (figure 30d) were 

used for RT-PCR. Amplicons of the PCR reactions were separated on agarose gel, and 

individual bands were extracted and sequenced to confirm their identity. Since partial 

sequences instead of complete sequences were amplified here, one amplicon may 

correspond to more than one of the transcripts (figure 28). Therefore, in this section, we 

used descriptional names instead of numerical isoform names for each amplicon. 

"+69+24" (corresponding to figure 28, isoform 1 a-1 d), "-69+24" (figure 28, isoform 3, 5, 

and 6), "+69-24" (figure 28, isoform 2), and "-69-24" (figure 28, isoform 4) were used to 

designate each variant in the exon 5-7 region; and "extended exon 11" (figure 28, 
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Figure 30. Tissue distribution of CPEB3 transcript variants 

a) CPEB3 is present in the P60 retina. Both the primers in CPEB3 and ~-actin span 

multiple exons to discriminate genomic DNA. 

b) RNA from adult retina was reverse transcribed and different primer sets for 

various CPEB3 isoforms (sequences listed in table1) were used for PCR. Each 

visible band was purified and sequenced to confirm its identity. This data 

demonstrated the presence of five variants: "+69nt+24nt" (lane2, upper band), "-

69nt+24nt" (lane2, lower band), "exon11 +intron11 bleeding" (lane3), 

"exon11+exon12" (lane 4, upper band); and a new isoform: "-exon11" (lane 4, 

lower band). But it does not rule out the presence of "+69-24" and "-69-24", since 

the competition for the same set of primers by a more dominant variant ("-69+24") 

may mask the weakly expressed variants. 

c) Demonstration of "+69-24" and "-69-24" transcripts and comparison of tissue 

distribution of all variants. Unique primer sets for each individual variant were 

used for PCR on thirteen different adult mouse tissues. Each specific band was 

cut out and sequenced for confirmation. The results demonstrated the presence 

of "+69-24" and "-69-24" variants in the retina (in supplement to figure b). It also 

demonstrated the ubiquity of the majority of the variants, with the exception of 

"+69+24" which was expressed in the central nervous system, the ovary, testis, 

kidney and heart but.absent in the lung, liver, thymus and spleen. Negative 

controls indicated no contamination from either the RT or the PCR reactions. 

d) Mapping of the location of primers used in b) and c) to the CPEB3 cDNA. The 

sequences of these primers were listed in table 4. CPEB3 isoforms 

corresponding to each variant were listed to the right. 
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isoform 5), or "exon 11+exon 12" (figure 28, isoform 1a-1d, 2, 3, 4, and 6) for variants 

near the exon 11 region. 

Our results from RT-PCR demonstrated the presence of "+69+24", "-69+24" (figure 30b, 

lane2) in exon 5-7 region; "extended exon 11" (figure 30b, lane3), and "exon 11+ exon 

12" (figure 30b, lane4 upper band) around exon 11 region in the retina. Additionally, a 

novel CPEB3 isoform without exon 11 ("-exon 11 "), confirmed by sequencing, was also 

identified in the retina (figure 30b, lane 4 lower band). This is the first time this isoform 

has been shown. 

For the exon 5-7 region, although only two bands were detected in the RT-PCR, it was 

possible that more dominant transcripts "masked" weaker transcripts by competition for 

the same set of primers. Therefore, we designed separate sets of primers for individual 

transcripts in this region to further explore their presence or absence (figure 30d). Each 

specific band was cut out and sequenced for confirmation (data not shown). Our results 

demonstrated that the "+69-24" and "-69-24" variants were indeed present in the retina 

(figure 30c). 

We also collected multiple tissues to test all known transcripts for possible tissue 

specificity. Of all the variants tested, the majority did not appear to differ with respect to 

tissue distribution. The only exception was the "+69+24" variant, which was strongly 

expressed in the central nervous system, ovary, testis, kidney and heart, but not in the 

thymus, spleen, lung or liver (figure 30c). 
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4) Localization of CPEB3 mRNA within the retina: the CPEB3 transcripts are 

expressed predominantly in the retinal ganglion cell layer 

With the aid of In situ hybridization, we identified which types of cells in the retina 

express CPEB3 mRNA in the P60 mouse. To ensure specificity, probes were designed 

in a region where little homology was found between CPEB3 and the other CPEBs. A 

sense probe at the exact location was used as a negative control. The primers used to 

generate the sense and antisense probes were listed in table 3. Our results 

demonstrated that CPEB3 is localized predominantly in the RGC layer, and to a less 

extent, in the inner margin of the INL (figure 31). CPEB3 appeared to be present in the 

plexiform layers as well, but no synaptic structure was identifiable due to the limitation on 

the resolution of in situ hybridization technique. 

5) CPEB3 transcription is up-regulated during postnatal development of the retina 

To investigate the expression of CPEB3 during development, real-time PCR was used to 

evaluate the relative amount of CPEB3 mRNA in the retinas of mice at different ages. An 

amplicon of 79 nt spanning exon 4 and exon 5 was amplified, and was inclusive of all 

CPEB3 isoforms (table 8). Our results (figure 32) demonstrated that the overall 

transcription level of CPEB3 was up-regulated thoughout postnatal development in the 

retina. A significant increase in the level of CPEB3 transcripts was seen around the eye 

opening time (P14). The level of CPEB3 transcripts continued to increase after eye 

opening, and until adulthood (P60). Since the CPEB3 primer set for real-time PCR 

matched all known CPEB3 isoforms, the data did not distinguish each transcript variant. 
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Figure 31. Localization of CPEB3 mRNA in the retina 

14um thick cryostat sections of P60 mouse retina were used for in situ hybridization of 

CPEB3. The probes were designed in a region with no significant homology to the other 

three CPEBs to ensure probe specificity. The expression of CPEB3 mRNA was 

predominantly located in the RGC layer and to a lesser extent, the INL. The IPL 

appeared to be labeled as well, but the synaptic structures could not be recognized due 

to the limitation on the resolution of in situ hybridization techniques. Scale bar 

represented 50 11m. ONL: outer nuclear layer; OPL: outer plexiform layer; INL inner 

nuclear layer; IPL: inner plexiform layer; RGC: retinal ganglion cell layer. 

139 



Figure 31 

sense 

antisense 

140 

ONL 

OPL 

INL 

IPL 

RGC 

ONL 



Figure 32. Developmental pattern of CPEB3 mRNAs 

CPEB3 mRNA was up-regulated during postnatal development. Seven post natal ages 

flanking the eye-opening event were used for this study. For each sample the level of 

CPEB3 mRNA was normalized to that of 18S mRNA in the exact same sample. The 

relative fold changes were acquired by calibrating the older ages to age. All experiments 

were repeated three times. Statistically significant differences were indicated between 

two bracketed ages (p<=0.05). The Anova procedure Tukey's Studentized Range (HSD) 

was used. For each age, the number of samples n>=6. Error bars represented the 

standard deviation. The asterisk indicated the approximate time of eye-opening. The 

results demonstrated that CPEB3 was significantly up-regulated in the retina during 

postnatal development and reached its maximum in adult mice (day 60). 
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Figure 32 
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6) Localization of CPEB3 protein: CPEB3 protein is predominantly expressed in the 

inner retina 

To confirm the expression pattern of CPEB3 mRNA and to better define the cell types 

containing CPEB3 protein, we performed fluorescence immunocytochemistry using an 

antibody to CPEB3 (figure 33, 34). A similar pattern was observed as for the in situ 

hybridization: CPEB3 protein was predominantly expressed in the retinal ganglion cell 

layer, and to a less extent, within the inner boundary of the INL (figure 8). To define the 

type of cells which express CPEB3 we used double immunolabeling with cell-type 

specific markers, specifically, ganglion cell specific marker MAP1 a (Tucker and Matus 

1988; Okabe et al. 1989), or cholinergic amacrine cell marker ChAT (Eckenstein and 

Thoenen 1982; Tumosa et al. 1984; Schmidt et al. 1985; Pourcho and Osman 1986; 

Tumosa and Stell 1986; Voigt 1986), in combination with CPEB3. Confocal images 

indicate that most CPEB3-postive celis in RGC layer are ganglion cells (figure 33), and a 

few are displaced amacrine cells (figure 34). 

Both the inner plexiform layer and outer plexiform layer appeared to be immunopositive 

for CPEB3 labeling (figure 33, 34). The pattern of CPEB3 in the IPL was diffuse 

compared to the more laminar pattern of CPEB1 in the same layer (figure 22, 23). 

Within the location of immunogen for CPEB1 antibody (167-184 a.a.) and that of CPEB3 

antibody (between 300-400 a.a.), little homology between CPEB1 and CPEB3 was 

found. Therefore, cross-reactivity between the two antibodies seemed highly unlikely. 

The identity of synaptic structures in the plexiform layers was not determined. An 

extensive characterization with double and triple labeling methods was beyond the 

scope of this dissertation. 
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Figure 33. Localization of CPEB3 protein- with MAP1 a 

Double-immunofluroscence of CPEB3 and MAP1 a on P60 mouse retina indicated that 

the majority of CPEB3 positive celis in the retinal ganglion celi (RGC) layer were also 

MAP1a positive. MAP1a has been demonstrated as a marker for retinal ganglion celis. 

The absence of labeling when CPEB3 antibody was pre-adsorbed with recombinant 

CPEB3 protein (right upper panel) demonstrated the specificity of the CPEB3 antibody. 

Images were acquired with the aid of an Olympus confocal microscope. The scale bar 

represented 50 um. 
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Figure 33 
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Figure 34. Localization of CPEB3 protein- with ChAT 

Double-immunofluorescence of CPEB3 and ChAT on p60 mouse retina indicated that a 

few CPEB3 positive cells in RGC layer were also ChAT positive, as indicated with the 

arrows. ChAT is a marker for cholinergic amacrine cells and displaced amacrine cells. 

This suggested that a few CPEB3 positive cells in RGC layer were displaced amacrine 

cells. The size of such cells was usually smaller than those staining positive for both 

CPEB3 and Map1 a in the RGC layer. Scale bar represented SOum. 
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Figure 34 
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7) Developmental regulation of CPEB3 protein: CPEB3 protein is up-regulated 

during postnatal development of the retina 

Our next aim was to investigate the relative abundance of CPEB3 protein in the 

developing retina with the aid of Western blots. To examine antibody specificity we used 

a recombinant CPEB3 protein to pre-adsorb the antibody. This served as a negative 

control. The GST-CPEB3 fusion protein induced in E. coli was visualized on SDS-PAGE 

gel (figure 35a). The induced protein was then purified by immunoprecipitation, and 

subjected to mass spectrometry for identification. MS results (figure 35b) confirmed its 

identity as CPEB3. The fusion protein was then used as a blocking reagent for the 

CPEB3 antibody. 

We identified four immunopositive bands in Western blots that were diminished by pre­

adsorption (figure 35c). These included bands with relative molecular weight of -130kD, 

75kD, 67kD and 62kD. The 75kD band appeared to be the mature form based on its 

predicted size in the database. Our results indicated that this band increased 

significantly in intensity during postnatal development of the retina. This was consistent 

with data demonstrating a postnatal increase in CPEB3 mRNA (figure 32). The other 

bands may represent isoforms from other transcript variants present in the retina, 

breakdown products, or other CPEB3-related products. One band (-11 Ok D) appeared 

not to be blocked by the pre-adsorption of antibody with fusion protein. The unblocked 

band may be a problem when the same antibody was used for immunohistochemistry; 

however this issue was resolved by using pre-adsorbed antibody as a negative control 

for the immunocytochemistry, which showed no signal. Statistical analysis (ANNOVA T 

tests) indicated that there was significant increase in the level of CPEB3 (75kD) from P1 

and P7 to P12 (figure 35d). 
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Figure 35. Developmental pattern of CPEB3 proteins 

CPEB3 protein was up-regulated during the postnatal development of the retina. 

a) The expression of recombinant CPEB3 protein. An extra band of the expected 

size for GST-CPEB3 fusion protein appeared in IPTG- induced sample (+) 

compared to non-induced sample (-). 

b) The extra band in samples induced for recombinant CPEB3 was cut out and 

subjected to mass spectrometry. The pattern from MS confirmed that this band 

was recombinant CPEB3 protein. 

c) CPEB3 western blot on retinal samples from mice of different postnatal ages. 

The results showed that there was an increase in the amount of CPEB3 protein 

during the development (75kD band). This band disappeared when the antibody 

was pre-adsorbed with the recombinant CPEB3 antibody (the two lanes to the 

right). Another two bands at -130kD and -65kD respectively also disappeared 

when CPEB3 antibody was pre-adsorbed with recombinant CPEB3 proteins, 

suggesting that they represent different forms of CPEB3. The up-regulation of 

CPEB3 protein during development is consistent with that of CPEB3 mRNA. 

GAPDH was used as a loading control. 

d) Quantification of the level of CPEB3 protein during development. Significance 

up-regulation was observed between two bracketed age set: P1 to P12, and P7 

to P12 (p<=O.05). Each CPEB3 band was normalized to the GAPDH band in the 

same sample. Annova was used for statistics on three biological repeats. Error 

bars indicated standard deviation. 
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In summary, our study identified several CPEB3 isoforms (both mRNA and protein) from 

the NCBI and Swiss-ProtlTrEMBL databases. A novel CPEB3 isoform was identified 

experimentally for the first time. Among the previously known isoforms and the isoforms 

we identified, only one had discriminative tissue distribution. Our data also 

demonstrated the presence of CPEB3 in the retina. CPEB3 was predominantly 

expressed in the inner retina. Both the mRNA and the protein levels of CPEB3 were up­

regulated in the retina during postnatal development. 

3. CPEB1-4 comparisons 

Four CPEB paralogs, CPEB1-4, have been identified in rodent. Current studies on 

cytoplasmic polyadenylation are predominantly focused on CPEB1, whereas the 

mechanisms of CPEB1 are yet to be fully established. Very little is known with regard to 

CPEB2-4. We were able to draw some comparison among the four CPEBs based on 

our study within the retina. 

1) Sequence comparison of CPEB1-4 

Some comparisons have been made among CPEB1-4 in the literature with regard to the 

RNA recognition domain (Theis et aI2003). In our study we performed a comprehensive 

sequence alignment of those four. Since CPEB1 is more distant to CPEB2-4 in the 

family tree, therefore, we first aligned CPEB1-4 (figure 36). Then, in order to better 

reveal the differences and similarities between CPEB2-4, we aligned these three 

separately (figure 37). 
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Figure 36. Sequence alignment of CPEB1-4 proteins 

Sequence alignment was performed using ClustalW. Sequences with the following 

accession numbers were used: CPEB1: NP _031781.1; CPEB2: NP _787951.1; CPEB4: 

NP _938042.2; CPEB4: NP _080528.2. The alignment demonstrated higher homology in 

the C-terminus compared to the N-terminus. CPEB1 had more variance from CPEB2-4 

across the whole sequence. Asterisk represented 100% identity; colons represented 

substitution with a similar amino acid; period represents substitution with a different 

amino acid. 
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Figure 36 (to be continued) 

--------------------------------------------MQDDll 6 
MGDYGFGVlVQSNTGNKSAFPVRFHPHlQPPHHHQNATPNPAAFINNNTA 50 

MDKSKT--------------QPQSQQQQRQQQQQQQQlQPEPGAAEAPST 42 
ANGSSAGSAWlFPAPATHNIQDEIlGSEKAKSQQQEQQDPlEKQQlSPSP 100 

PlSSEIPKPEDSSAVPAlSPASAPPAPNGPDKMQMESPllPGlSFHQPPQ 92 
GQEAGIlPETEKAKAEENPGDSSSENSNGKEKlRIESPVlTGFDYQEATG 150 

QPPPPQEPTAPGASlS----PSFGSTWSTGTTNAVEDSFFQG-----ITP 133 
lGTSTQPlTSSASSlTGFSNWSAAIAPSSSTIINEDASFFHQGGVPGASA 200 
------------------------MAFSlEEAAGRIKD(WDNQEVPAlST 26 

-------------------------MNlPQ----QQPPAAAPQQPQSRRS 
VNGTMlFQNFPHHVNPVFGGTFSPQIGlAQTQHHQQPPPPAPQPPQPAQP 
NNGAllFQNFPHHVSPGFGGSFSPQIGPlS--------QHHPHHPH-FQH 
(SNANIFRRINAIlDDSlDFSKV(TTPINRG-----IHDQlPDFQDSEET 

1, 

PVSPQlQQQHQAAA---AAFlQQRNSYNHHQPlLK--QSP---------­
PQAQPSQQRRSPASPSQAPYAQRSAAAYGHQPIMT--SKPSSSSAVAAAA 
HHSQHQQQRRSPASPHPPPFTHRSAAFNQLPHLANNlNKPPSP------­
VTSRMLFPTSAQESPRGLPDANGL(LGLQSLSLTG-WDRP----------

. . * . . 

-----------WSNHQ------NSGWGTASMSWG--AMHG-RDHRRSG-­
AAAAASSASSSWNTHQSV----NAAWSAPSNPWG--GLQAGRDPRRAVGV 
-----------WSSYQSPSPTPSSSWSPGGGGYGGWGASQGRDHRRGLN-
-----------WSTQDSDSSAQSSTQSVLSMLQNPlGNVLGKAPLSFLS-

* . .. . .. 
----NMGIPGTMNQISPLKKPFSGNVIAPPKFTRSTPSLTPKSWIEDNVF 
GVGVGVGVPSPLNPISPLKKPFSSNVIAPPKFPRAAP-lTSKSWMEDNAF 
------GGITPLNSISPLKKNFASNHIQLQKYARPSSAFAPKSWMEDSlN 
------LDPLGSDLDKFPAPSVRGSRlDTRPILDSRSSSPSDSDTSGFSS 

,~ .... 

153 

21 
183 
241 
71 

56 
231 
284 
110 

84 
275 
322 
148 

130 
324 
366 
192 



CPEB2 
CPEB3 
CPEB4 
CPEB1 

CPEB2 
CPEB3 
CPEB4 
CPEB1 

CPEB2 
CPEB3 
CPEB4 
CPEB1 

CPEB2 
CPEB3 
CPEB4 
CPEB1 

CPEB2 
CPEB3 
CPEB4 
CPEB1 

CPEB2 
CPEB3 
CPEB4 
CPEB1 

CPEB2 
CPEB3 
CPEB4 
CPEB1 

CPEB2 
CPEB3 
CPEB4 
CPEB1 

CPEB2 
CPEB3 
CPEB4 
CPEB1 

Figure 36 (continued) 

RTDNNSNTLLPLQVRSSLQLPAWGSDSLQDSWCTAAGTSRIDQDRSRMYD 180 
RTDN-GNNLLPFQDRS-RPYDTFNLHSLENSLMDMIRTD-HEPLKGKHYP 371 
RADN----IFPFPERP----RTFDMHSLES-------------------- 388 
GSDHLSDLISSLRISPPLPFLSMTGNGPRDPLKMGVGSR----------- 231 

SLNMHSLENSLIDIMRAEHDPLKGRLSYPHPGTDNLLMLN--------GR 222 
PS---GPPMSFADIMWRNHFAGRMGINFHHPGTDNIMALNTRSYGRRRGR 418 
---------SLIDIMRAENDSIKGRLNYSYPGSDSSLLINARTYGRRRGQ 429 
--------MDQEQAALAAVAPSPTSAPKRWPGASVWPSWDLLG------- 266 

**. . .. . 
SSLFPIDDSLLDDGHSDQVGVLNSPTCYS--AHQNGERIERFSRKVFVGG 270 
SSLFPFEDAFLDDSHGDQA-LSSGLSSPT--RCQNGERVERYSRKVFVGG 465 
SSLFPMEDGFLDDGRGDQP-LHSGLGSPHCFTHQNGERVERYSRKVFVGG 478 
APKDPFSIEREARLHRQAAAVNEATCTWSGQLPPRNYKNPIYSCKVFLGG 316 
., 1e. • ., ...: * 1c"k*: ** 

LPPDIDEDEITASFRRFGPLVVDWPHKAESKSYFPPKG-----YAFLLFQ 315 
LPPDIDEDEITASFRRFGPLVVDWPHKAESKSYFPPKG-----YAFLLFQ 510 
LPPDIDEDEITASFRRFGPLIVDWPHKAESKSYFPPKG-----YAFLLFQ 523 
VPWDITEAGLVNTFRVFGSLSVEWPGKDGKHPRCPPKGNMPKGYVYLVFE 366 

. .** ** * *.** * 1(* * "fr ... " 

EESSVQALIDACIEE------DGKLYLCVSSPTIKDKPVQIRPWNLSDSD 359 
EESSVQALIDACLEE------DGKLYLCVSSPTIKDKPVQIRPWNLSDSD 554 
DESSVQALIDACIEE------DGKLYLCVSSPTIKDKPVQIRPWNLSDSD 567 
LEKSVRALLQACSHDPLSPDGLSEYYFKMSSRRMRCKEVQVIPWVLADSN 416 
*.**:** .. ')'c"{( •• .: * . . "k* :: * "k*: ,' .. '( -.,,:*.'c: 

FVMDGSQPLDPRKTIFVGGVPRPLRAVELAMIMDRLYGGVCYAGIDTDPE 409 
FVMDGSQPLDPRKTIFVGGVPRPLRAVELAMIMDRLYGGVCYAGIDTDPE 604 
FVMDGSQPLDPRKTIFVGGVPRPLRAVELAMIMDRLYGGVCYAGIDTDPE 617 
FVWSPSQRLDPSRTVFVGALHGMLNAEALAAILNDLFGGVVYAGIDTD-K 465 
** ** *** .*.***. *.* ** *:: *:*** ******* : 

LKYPKGAGRVAFSNQQSYIAAISARFVQLQHGDIDKRVEVKPYVLDDQMC 459 
LKYPKGAGRVAFSNQQSYIAAISARFVQLQHNDIDKRVEVKPYVLDDQMC 654 
LKYPKGAGRVAFSNQQSYIAAISARFVQLQHGEIDKRVEVKPYVLDDQLC 667 
HKYPIGSGRVTFNNQRSYLKAVTAAFVEIKTTKFTKKVQIDPY-LEDSLC 514 

1(** *:**1'0* **:"Io'c: * .. * **... ,,: *:*::" '1,1( .... (.* .* 

DECQGARCGGKFAPFFCANVTCLQYYCEFCWANIHSRAGREFHKPLVKEG 509 
DECQGTRCGGKFAPFFCANVTCLQYYCEYCWASIHSRAGREFHKPLVKEG 704 
DECQGARCGGKFAPFFCANVTCLQYYCEYCWAAIHSRAGREFHKPLVKEG 717 
LICS-----SQPGPFFCRDQVCFKYFCRSCWHWRHSMEGLRHHSPLMRNQ 559 

-.,'r •• • **')'r"k : ,,*::"k: *. *1( ** * * * ... '( ... 

ADRPRQIHFRWN 521 
GDRPRHVPFRWS 716 
GDRPRHISFRWN 729 
KN---------- 561 
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Figure 37. Sequence alignment of CPEB2-4 proteins 

Sequence alignment was performed using ClustalW. Ref Seq sequences with the 

following accession numbers were used: NP _787951.1 for CPEB2, NP _938042.2 for 

CPEB3, and NP _080528.2 for CPEB4. Sequences highlighted in blue were unique to 

CPEB3, and sequences highlighted in yellow were highly conserved among CPEB2-4. 

Asterisk indicated 100% conservation; colon indicated substitution with a similar amino 

acid; period indicated substitution with a distinct amino acid. 
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Figure 37 

CPEB3 -- ---- ------ -- ---- -------- ---- ---- ---- ----- -MQDDLL 
CPEB2 - - ---- ------------ ---- - - -------------- ---- - -- - - ---
CPEB4 MGDYGFGVLVQSNTGNKSAFPVRFHPHLQPPHHHQNATPNPAAFINNNTA 50 

CPEB3 MDKSKT------------- PEPGAAEAPST 42 
CPEB2 -- ---- ------ -- ---- - --- -- ------ ---- - ------------ -- -
CPEB4 ANGSSAGSAWLFPAPATHNIQDEI LGSEKAKSQQQEQQDPLEKQQLS PSP 100 

CPEB3 PLSSEI PKPEDSSAVPALSPASAPPAPNGPDKMQMESPLLPGLSFHQPPQ 92 
CPEB2 ---------- ---- -- -- - --- ------------ --- -------------
CPEB4 GQEAGILPETEKAKAEENPGDSSSENSNGKEKLRIESPVLTGFDYQEATG 150 

C PEB3 QPPPPQE PTAPGASLS---- PSFGSTWSTGTTNAVEDSFFQG- ---- ITP 13 3 
C PEB2 - ------------ - - - - ----- ---- -------- --- - ----- -------
CPEB4 LGTSTQPLTSSASSLTGFSNWSAAIAPSSSTIINEDASFFHQGGVPGASA 200 

CPEB3 VNGTMLFQNFPHHVNPVFGGTFSPQIGLAQTQHHQQPPPPAPQPPQPAQP 183 
CPEB2 -- --------- --- -------- ---MNLPO----QQPPAAAPOQPQSRRS 21 
C PEB4 NNGALLFQNFPHHVSPGFGGSFS PQIGPLS---- - -- - QHHPHHPH- FQH 241 

C PEB3 PQAQPSQQRRS PAS PSQAPYAQRSAAA YGHQPIMT--SK 231 
C PEB2 PVSPQLQQQHQAAA- --AAFLQQRNSYNHHQPLLK --QS P------ - --- 56 
C PEB4 HHSQHQQQRRS PAS PHPP PFTHRSAAFNQLPHLANNLNKPPSP--- - - -- 284 

, * 
CPEB3 AiE;lil~i1i:lts4WNTHQSV----NAAWSAPSNPWG--GLQAGRDPRRA VGV 275 
CPEB2 - - ---- -----WSNHQ-- ----NSGWGTASMSWG--AMHG-RDHRRSG-- 84 
CPEB4 -- ---- --- --WSSYQS PSPTPSSSWS PGGGGYGGWGASQGRDHRRGLN- 322 

CPEB3 GVGVGVGVPSPLNPISPLKKPFSSNVIAPPKFPRAAP-LTSKSWMEDNAF 324 
CPEB2 - -- -NMGIPGTMNQISPLKKPFSGNVIAPPKFTRSTPSLTPKSWIEDNVF 130 
CPEB4 ------GGIT PLNS IS PLKKNFASNH IQLQKYARPSSAFAPKSWMEDSLN 366 

CPEB3 RTDN-GNNLLPFQDRS-RPYDTFNLHSLENSLMDMIRTD-HEPL 371 
CPEB2 RTDNNSNTLLPLQVRSSLQLPAWGSDSLQDSWCTAAGTSRIDQDRSRMYD 180 
CPEB4 RADN-- -- I FPFPERP-- --RTFDMHSLES---- ------------- --- 388 

CPEB3 GRMGINFHHPGTDNlMAL 418 
CPEB2 SLNMHSLENSLI DIMRAEHDPLKGRLSHHPGTDNLLMLN--- -----GR 222 
CPEB4 -- -- -- ---SLI DIMRAENDSI KGRLNYSYPGSDSSLLINARTYGRRRGQ 429 

CPEB3 SSLFPFEDAFLDDSHGDQA-LSSGLSSPT-- RCQNGERVERYSRKVF'JGG 465 
C PEB2 SSLFPI DDSLLDDGHSDQVGVLNS PTCYS--AHQNGERIERFSRKVFVGG 270 
C PEB4 SSLFPMEDGFLDDGRGDQP- LHSGLGS PHCFTHQNGERVERYSRKVFVGG 478 

* *""** .. • . w** . ** .. . . . . 
CPEB3 LPPDIDEDEITASFRRFGPLWDWPHKAE~KSYFPPKGYAFLLFQEESSV 515 
CPEB2 LPPDIDEDEITASFRRFGPLWDWPHKAESKSYFPPKGYAFLLFQEESSV 320 
CPEB4 LPPDI DEDEITAS FRRFGPLIVDWPHKAESKSYFPPKGYAFLLFQDESSV 528 

**., ** ~ ... * ... ~ ***"' ..... **; .. . "**** .. '" ~ ~* .. ,..- ,-... ""..,**. *, .. ... **** , , 

CPEB3 QA;,T DACLEEDGKLYLC'JSSPTIKDYP'iQ: RPw"NLSDSDFVMDGSQPLDP 565 
CPEB2 QALI DACIEEDGKLYLCVSSPTIKDKPVQI RPWNLSDS DFVMDGSQPLDP 370 
CPEB4 QALIDACIEEDGKLYLCVSSPTIKDKPVQIRPWNLSDSDFVMDGSQPLDP 578 

615 
CPEB2 RKTIFVGGVPRPLRAVELAMIMDRLYGGVCY AGI DTDPELKY PKGAGRVA 420 
CPEB4 RKTI FVGGVPRPLRAVELAMIMDRLYGGVCYAGI DTDPELKY PKGAGRVA 628 

CPEB3 FSNQQSYlAAISARFVQLQHNL LD"'JEVKHVLDDQM:: f::vG;'''CGGK 665 
CPEB2 FSNQQSY IAAISARFVQLQHGDI DKRVEVKPYVLDDQMCDECQGARCGGK 470 
CPEB4 FSNQQSYIAAISARFVQLQHGEIDKRVEVKPYVLDDQLCDECQGARCGGK 678 

ePEB3 FAPFFChN?TCI..,Q'fi'CE:yr:WASIHSRAGEEFHY.P::....VKE· "::P"P. ,,;FP. 715 
CPEB2 FAPFFCANVTCLQYYCEFCWANIHSRAGREFHKPLVKEGADRPRQIHFRW 520 
CPEB4 FAPFFCANVTCLQYYCEYCWAAIHSRAGREFHKPLVKEGGDRPRH1SFRW 728 

CPEB3 S 716 
CPEB2 N 521 
CPEB4 N 729 
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The comparison clearly demonstrated that the N terminus is more diverse among the 

different paralogs. The C-terminus, where the important functional domain such as 

RNA-recognition motifs reside, is highly conserved. The C-terminus is almost identical 

for CPEB2-4 (95% identity according to figure 10); however, it varies significantly from 

the terminus of CPEB1 (45% identity according to figure 10). 

2) All four CPEBs are present in the retina 

With the aid of regular RT-PCR, we explored the presence of four CPEB paralogs in the 

retina (figure 38). Total retinal RNA from adult mice was used for the amplification. The 

primer set for each gene was designed to be exclusive of each other. Amplicons were 

separated on agarose gel. Distinct bands were cut out and sequenced to confirm the 

identity. The result demonstrated the all four CPEB mRNA are expressed in the retina. 

Due to possible differences in amplification efficiency of each primer set, this data is not 

suitable for quantitative studies, which will be obtained later using real-time PCR 

experiments (see below). 

3) Cellular localization of CPEB1-4 mRNA 

With the aid of in situ hybridization, we compared the tissue distribution of four CPEBs in 

the retina (figure 39). Each probe was specifically designed with no significant similarity 

to others. The sequences of the template for each probe were confirmed with 

sequencing analysis. In situ hybridization demonstrated a similar pattern of four CPEBs: 

predominantly expressed in the retinal ganglion cell layer; to some extent, to the inner 

layers of the inner nuclear layer. Some signal appeared to be in the inner plexiform 
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Figure 38. Presence of four CPEBs in the retina 

P60 mouse retinal total RNA was used for the RT-PCR. l3-actin was used as a positive 

control. The "-" control had all the components as l3-actin reaction except that the 

reverse transcriptase was omitted at the RT step. The primer sets for all genes were 

designed with low homology with each other or with any other genes. Each band in the 

agarose gel was cut out, purified and sequenced to confirm its identity. The results 

showed that all four CPEB homologs were expressed in the retina. This result was not 

suitable for quantification, since each set of primers may have distinct amplification 

efficiency. Quantification analysis would be inferred from real-time PCR data in later 

sections. 
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Figure 38 
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Figure 39. Localization of four CPEB mRNAs in the retina 

P60 slides were used for in situ hybridization. Probes for each gene were designed 

within a region that was less homologous to the other homologs or any other genes. 

The sequences of all probes were confirmed via sequencing. The results demonstrated 

that CPEB 1-4 have a similar pattern of distribution within the cellular layers of the retina: 

predominantly in RGC layer, to some extent, in the inner layers of INL. Their distribution 

in synaptic structures in the plexiform layers could not be confirmed at this point due to 

the limitation of the resolution of this technique. This result was not suitable for 

quantification analysis due to the fact that different probes may have distinct binding 

efficiencies to their complementary mRNA. Quantitative studies would be done based 

on real-time PCR data. 
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Figure 39 
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CPEB3 CPEB4 
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layers, although the fine synaptic structures were not distinguishable due to the 

resolution of this technique. This data is not suitable for quantitative comparisons since 

different probes may have different efficiencies for hybridization. Quantitative analysis 

will be done based on real-time PCR data. 

4) Developmental regulation of CPEB1-4 

The expression pattern of each CPEB during the development was explored using real­

time PCR methods. Total retinal RNA from each age was used in combination with 

gene-specific primer sets and gene-specific FAM-Iabeled probes. The level of each 

gene was normalized to the level of 188 in the same sample. Relative fold changes 

were acquired by calibrating transcript levels of each age to the age of P1. Different 

developmental expression patterns were revealed for the four genes (figure 40): For 

CPEB1 and CPEB3, significant up-regulations were observed throughout development. 

Both increases started early in development and continued until adulthood. CPEB4 was 

mildly up-regulated during development; while CPEB2 stayed rather constant throughout 

development. 

For CPEB1 and CPEB3, the mRNA in P12 was increased significantly compared to P1 

or P7. The level of mRNAs between P12, P14 and P16 was more like a plateau, with no 

significant increase between those three ages. Another significant increase occurred in 

P30, compared to P14 or P16 for CPEB1 and CPEB3, respectively. For CPEB4, a 

significant increase was found in P12 compared to P1; no significant changes were 

found between P12, P14 and P16; the level of CPEB4 was increased significantly further 

in adult (P60) compared to P12. The overall increases in the level of transcripts of 
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Figure 40. Four CPEBs - trends in development 

Total RNA from the retinas of postnatal day1, 7,12,14,16,30, and 60 mice which were collected at the same time of the day was 

used for real-time PCR assays. The combination of gene-specific primers and FAM-Iabeled gene-specific probes ensured high 

specificity. 18S was used as an endogenous control. The relative fold changes were acquired by calibrating all the older ages to 

age P 1. Each age had 6-10 animals. The Anova procedure, Tukey's Studentized Range (HSO) was used for statistics. Error bars 

indicated standard deviation (SO). Significant changes were demonstrated between each two bracketed ages (p<=0.05). The results 

demonstrated significant increases of CPEB1 and CPEB3 mRNA during post-natal development. CPEB4 had a slow increase; while 

CPEB2 stayed constant. 
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CPEB 1, CPEB3, and CPEB4 from the newborns to the adults were 6-fold, 13-fold, and 

2.5-fold respectively. 

5) Relative abundance of four CPEBs 

Comparisons across genes were derived from the real-time PCR data. Relative levels of 

mRNA for different genes were acquired by simply normalizing levels of each gene to 

that of 18S in the same sample. Strikingly, the most abundant gene among four CPEBs 

was not the overtly regulated ones. The most abundant gene among all four was 

CPEB4. The level of CPEB3 was the second most abundant. Both CPEB3 and CPEB4 

were more than one magnitude, sometimes two magnitudes more abundant than 

CPEB1 and CPEB2. CPEB1 was less abundant than CPEB2 in the early ages, but then 

surpassed CPEB2 as it was up-regulated in the later ages (figure 41). The level of 

CPEB2 was consistently low. 

In summary, our data demonstrated that all four CPEBs were expressed in the retina. 

The mRNAs of all four CPEBs were predominantly localized in the retinal ganglion cell 

layer. The transcription of CPEB1, 3 and 4 was up-regulated during postnatal 

development; while CPEB2 stayed rather constant. The relative abundance at any given 

age was CPEB4 > CPEB3 > CPEB2 or CPEB1. In early ages (P1 and P7), CPEB2 was 

more abundant than CPEB1, in older ages (P30 and P60), CPEB1 surpassed CPEB2. 
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Figure 41. Comparison of the relative abundance of four CPEBs 

Total RNA from the retinas of postnatal day1, 7, 12, 14, 16, 30, and 60 mice which were collected at the same time of the day was 

used for real-time PCR assays. The combination of gene-specific primers and FAM-Iabeled gene-specific probes ensured high 

specificity. 18S was used as an endogenous control. The relative fold changes were acquired by calibrating all the older ages to 

age P1. Each age had 6-10 animals. The Anova procedure, Turkey's Studentized Range (HSO) was used for statistics. Error bars 

indicated standard deviation (SO). Significant differences were indicated between each two bracketed ages (p<=0.05). The results 

demonstrated that of any given age, CPEB4 mRNA was the most abundant; CPEB3 was the second most abundant. CPEB1 mRNA 

...... was the lowest, but because of its up-regulation during the development, it surpassed CPEB2, which stayed constant, in older 
0) 
0) 

animals. 



Figure 41 

Relative abundance of CPEBs in developing retina 

Mean P1 P7 P12 P14 P16 P30 P60 

CPEB1 4.3 5.3 10.2 9.7 16.0 19.8 24.5 
_ CPEB1 
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SO 
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CHAPTER V 

CONCLUSIONS AND DISCUSSION 

In conclusion, these studies demonstrate that all four CPEBs are present in the mouse 

retina. The spatial distribution patterns of the transcripts of four CPEBs are somewhat 

different but all four are predominantly localized in cells of the inner retina. The temporal 

expression patterns, in particular are quite different for the four CPEBs. Thus, CPEB1 

and CPEB3 are up-regulated in the retina during development and reach a maximum in 

adulthood; CPEB4 is up-regulated to a lesser extent throughout this period; while 

CPEB2 stays rather constant. These different spatio-temporal patterns may reflect their 

as yet undiscovered roles in the retina. 

In this study we also screened for potential mRNA targets of CPEB1, using a 

combination of computational programming and wet-lab experiments. Some of these 

mRNAs acquired elongated poly(A) tails during the earliest periods of postnatal 

development. In addition, multiple CPEB3 transcript variants and CPEB3 protein 

isoforms were identified from an analysis of the national databases (NCBI, Swiss­

ProtfTrEMBL). One of these isoforms was found to have a discriminative tissue 

distribution. Additionally, a novel transcript of CPEB3 was identified through these 

studies. This new isoform which lacks exon11 is present in all tissues tested including 

the retina. 

168 



DISCUSSION 

1. Distinct expression patterns and sequence discrepancies indicate functional 

divergences between members of the CPEB family 

The expression patterns of four CPEBs in the retina demonstrated some uniqueness for 

each paralog. Although in situ hybridization data showed similar patterns of the four, 

localization data from immunohistochemistry microscopy refined the differences between 

the patterns of CPEB1 and CPEB3 in the inner plexiform layer. CPEB1 had a laminar 

structure, while CPEB3 was more diffusive. Developmental studies further compared 

the regulation of four CPEBs postnatally. From newborn to adult, CPEB1 and CPEB3 

was up-regulated 6-13 fold, respectively; CPEB4 increased by about 1.5 fold, whereas 

CPEB2 stayed constant. Both the spatial and temporal patterns of CPEBs in the retina 

revealed some degree of diversity. Similarly, distinct expression patterns of CPEB1-4 

were also reported in the hippocampus (Theis et al. 2003; Huang et al. 2006). 

Sequence comparisons demonstrated that CPEB1 is distant from CPEB2, 3 and 4. The 

highly conservative C- terminus of CPEB1 had merely 45% identity to the other three. 

The RNA recognition motifs between CPEB2, 4 and the prototypical CPEB3 are 97-99% 

identical, indicating high degree of overlapping with respect to substrate specificity. 

However, their N-termini where regulational domains such as phosphorylation sites 

reside are dramatically variable. 

The accumulative evidence on the structure, distribution, and regulation of CPEBs may 

dictate their functional distinctness. Such differences may embody multiple aspects 

169 



such as spatial and temporal availability, substrate specificity, responses to discrete 

stimuli, and signaling cascades they are associated with. 

With those notions made, four CPEBs share some common features both structurally 

and functionally. Current knowledge on CPEB1, which has been studied most 

extensively, may be applicable to speculate on CPEB2-4 when appropriate to broaden 

our view. 

2. CPEBs and the inner retina 

1) CPEBs are expressed in the RGC layer, the INL, and the IPL. 

All four CPEBs are present in the inner retina. In situ hybridization indicated that 

transcripts of all four CPEBs are predominantly expressed in the retinal ganglion cell 

layer, and to some extent, in the inner nuclear layer. Immunocytochemistry with 

available antibodies to CPEB1 and CPEB3 showed positive lableling in retinal ganglion 

cells and amacrine cells. Only a subset of ganglion cells are positive for CPEB1 or 

CPEB3, since not all MAP1 positive cells are CPEB1 positive or CPEB3 positive. 

Similarly, only a small population of cholinergic amacrine cells is CPEB3 or CPEB1 

positive. 

Immunofluorescence labeling of fixed tissue sections also strongly demonstrated the 

presence of CPEB1 and CPEB3 within the inner plexiform layer. CPEB1 labeling was 

associated with laminar structures in the inner plexiform layer, whereas CPEB3 labeling 

demonstrated a more diffuse pattern. The CPEB1 immunopositive laminae did not 

appear to co-localize with ChAT immunolabeling. The close juxtaposition of the CPEB1 
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positive laminae to ChAT positive laminae suggested that CPEB1 laminae may reside in 

sublamina a and sublamina b of the IPL. 

2) The identities of the CPEB positive cells and/or synapses need to be further 

characterized. 

The subtypes of the CPEB1 or CPEB3 positive ganglion cells were not specifically 

identified in our study but should be pursued in future studies. About 11 morphologically 

distinct subtypes of RGCs with distinct dendritic architectures are known to be present in 

the mammalian retina (Cajal 1893; Yamagata and Sanes 1995a; Yamagata and Sanes 

1995b; Rodieck 1998; Rockhill et al. 2002). More than a dozen of subtypes of amacrine 

cells have been described (Kolb 1997) based on the diameter of their dendritic field and 

the sublamina where their synapses are located. The number of types of amacrine cells 

continues to grow as techniques such as intracellular physiological recording, 

immunohistochemistry, and biochemical methods became available (Casini et al. 1995; 

Crooks and Kolb 1992; Kolb et al. 1992; MacNeil and Masland 1998). 

Immunohistochemistry combining CPEB antibody with the subtype-specific antibodies 

can help to pinpoint the identity of the CPEB positive cells. 

Similarly, the identity of the CPEB positive structures in the inner plexiform layer can be 

addressed. The IPL was divided into five equal-thick strata (CajaI1892) into which 

synapses between bipolar, amacrine and ganglion cells can be assigned. A sublaminar 

division was later applied to the IPL in superimposition to Cajal's five strata (Famiglietti 

and Kolb 1976): sublamina a corresponds to strata 1-2; sublamina b corresponds to 

strata 3-5. Distinct subtypes of RGCs maintain their functional specificity by forming 

synaptic connections with appropriate pre-synaptic bipolar cells or amacrine cells at 
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distinct sublaminae of the IPL. Many amacrine cells make their contacts with RGCs in a 

single stratum in the IPL, but some are bi-stratified or even tri-stratified (Strettoi et al. 

1992; Zucker and Ehinger 1998; Loeliger and Rees 2005; Mojumder et al. 2008). 

Further characterization need to be done to identify CPEB structures in the IPL with the 

assistance of cell-type specific markers. 

3) The laminar structure of CPEB1 labeling in IPL may be related to ON and OFF 

pathways 

One of the basic principles of the visual signal processing in the visual system is the 

separation of ON and OFF pathways at virtually all levels of the visual pathway. The ON 

pathway responds to onset of a light stimulus; while the OFF pathway to the termination 

of a light stimulus. The separation of ON pathway and OFF pathway starts at the first 

synaptic contact - the bipolar cell level in cone-driven systems, and at the second 

synaptic contact - amacrine cell level in rod-driven system. They remain separated at 

the retinal ganglion cell level, and in upper levels of the visual system such as the lateral 

geniculate nucleus (LGN) and the visual cortex. Cone ON-bipolar cells are thought to 

exclusively express metabotropic glutamate receptor 6 (mGluR6), and form synaptic 

contacts with ON ganglion cells in sublamina b of the IPL; whereas OFF bipolar cells 

form synaptic contacts with OFF ganglion cells in sublamina a. 

At least two laminar structures in the IPL for CPEB1 labeling were distinguishable. They 

appeared to be non-cholinergic synapses since they did not co-localize with ChAT 

labeling. But they appeared to be in close proximity of the two ChAT positive laminar 

structures, which are known to reside at strata 2 (within sublamina a) and strata 4 (within 

sublamina b) respectively (Kang et al. 2004). It is highly likely that the two CPEB1 
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positive lamina structures are located in sublaminar a and sublamina b, respectively, 

which will make a plausible inference that CPEB1 in these two synaptic bands contribute 

to OFF pathway and ON pathway. 

4) The spatial patterns of CPEBs resemble that of some synaptic molecules which 

are potential targets of CPEBs 

Although the significance of the distribution pattern of CPEBs in the retina is yet to be 

delineated, we realized that such expression patterns resemble the known expression 

patterns of some synaptic molecules which are potentially targets of CPEB based on our 

investigation. Such mRNAs include: CaMKIl (Liu et al. 2000), NR1, NR2A-D (Grunder et 

al. 2000b; Araki and Hamassaki-Britto 2000), GluR1, and GluR2 (Grunder et al. 2000a; 

Hack et al. 2001; Kamphuis et al. 2003; Dijk and Kamphuis 2004). 

Immunohistochemistry in combination with in situ hybridization can determine whether 

these mRNAs co-localize with CPEBs in the retina. This may help to clarify the 

relationships between these molecules and CPEB. 

3. CPEB3 and the outer retina 

One of the differences between the spatial patterns of CPEB3 and CPEB1 was that 

CPEB3 was present in the outer plexiform layer at a more profound level (figure 22, 23, 

33, 34). This may indicate a distinct aspect of the function of CPEB3 in the outer 

plexiform layer. Although we did not determine whether CPEB3 is localized in the pre­

synaptic or post-synaptic compartment due to the lack of a good post-synaptic marker 
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(Aartsen et al. 2006), further investigation on the subcellular location of CPEB3 is 

necessary for delineating its role in outer plexiform layer. 

The outer plexiform layer possesses some degree of plasticity for structural and 

functional remodeling. Ectopic synaptogenesis was observed in retinas undergoing 

degeneration. For instance, the retina with mutations for presynaptic cytomatrix protein 

Bsn, calcium binding protein Cabp4, or the calcium channel protein, Cacna1f, 

manifested impaired synaptic transmission. Along with the structural and functional 

defects, horizontal cells and bipolar cells grew their neurites into the outer nuclear layer, 

an area usually devoid of synapses, and formed synaptic contacts with the 

photoreceptor cells (Chang et al. 2006; Mansergh et al. 2005; Dick et al. 2003; 

Haeseleer et al. 2004). Such ectopic synapses were formed de novo, long lasting and 

capable of sustained neurotransmitter release (Specht et al. 2007). Similar remodeling 

in the outer plexiform layer has been reported in other types of genetically modified mice 

with photoreceptor degeneration (Peng et al. 2000; Strettoi and Pignatelli 2000; Claes et 

al. 2004; Strettoi et al. 2004; Jansen and Sanyal 1992; Peng et al. 2003). It was also 

observed under pharmacological conditions (Wang et al. 2008) or pathological 

conditions such as stroke, AMD or normal aging retina (Eliasieh et al. 2007; Sullivan et 

al. 2007). 

The mechanism underling such synaptic plasticity is yet to be unraveled. It is not known 

whether the retina recapitulates the mechanism from other parts of the CNS, such as the 

hippocampus and the visual cortex, where CPEB mediated local translation plays a key 

role in the L TP or LTD. One possible theory is that CPEB3 expressed in the outer 

plexiform layer is involved in processes related to synaptic activity. Mutant or 

pathological models can be used to determine whether there is an association of CPEB3 

with synaptic remodeling in the outer plexiform layer in the retina. 
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4. CPEB1, CPEB3, CPEB4 and synaptogenesis 

Three CPEBs, CPEB1, 3, and 4 were up-regulated during the postnatal development of 

the retina. The significant increases occur between P1 and P12, as well as between 

P16 to P60. The increases of these three CPEBs were less profound around eye­

opening time (P12 to P16). The enhanced expression of these genes during 

development, both at transcriptional level and translational level, may be a good 

indicator for their possible involvement in synaptogenesis. 

It is well established that the mammalian retina is premature at birth. Mouse retina 

reportedly matures on postnatal day 41 (Blanks and Bok 1977). The ganglion cell layer 

and the inner plexiform layer are recognizable at the time of birth, but the remainder of 

the retina is yet to be fully developed. The synaptogenesis in the inner plexiform layer 

(IPL) starts at day 3 and slows down precipitously at day 15 (around the time of eye­

opening (Fisher 1979b; Fisher 1979a). Robust glutamatergic synaptic formation occurs 

in the second postanatal week, and synaptic sublamina in the inner plexiform layer 

becomes visible on day 12 (Sherry et al. 2003). Synaptic connections in OPL begin to 

develop on day 3 and are well established by day 12, the time when the first light 

response was recordable as ERG (Rich et al. 1997). Synaptic contacts between 

photoreceptors and bipolar cells in the OPL, and between bipolar cells and ganglion 

cells in the IPL are established slightly before eye opening (Marquardt and Gruss 2002). 

The up-regulation of CPEB 1, CPEB3, and CPEB4 during the first two weeks is 

concurrent with the process of synaptogenesis, which prompts the likelihood that CPEBs 

are either of key significance to the process of synaptogenesis, or their expression is 

regulated as a consequence of synapse formation. Eye opening may dampen the 
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enhanced expression of CPEBs. Future investigations on the interaction of CPEB 

proteins and synaptic mRNAs may be devoted to synaptic molecules such as GluR2 

mRNA, a known target of CPEB3. 

AMPAR is known for its key role in fast synaptic transmission. The expression of GluR 

2/3 and 4 before the emergence of synaptic transmission indicated a role of AMPAR in 

the establishment of retinal circuitry (Grunder et al. 2000a; Chang and Chiao 2008). The 

onset and regulation of GluR2 expression in the retina is in accordance with the process 

of synaptogenesis: starts early in the postnatal period, and reaches a peak before eye­

opening (Johansson et al. 2000; Grunder et al. 2000a). In the inner plexiform layer, the 

pattern of GluR2 expression changes from a disoriented pattern at birth to a laminated 

pattern prior to eye-opening (Johansson et al. 2000), a manifestion of a reorganization of 

synaptic circuits. 

Synaptogenesis in early development is activity-dependent (Wong and Ghosh 2002). 

The formation of synaptic contacts requires the mobility of dendritic structures regulated 

by spontaneous glutaminergic transmission. The rate of dendritic mobility was 

decreased by antagonists of both NMDA receptors and non-NMDA glutamate receptors 

(Wong et al. 2000). In the long term plasticity in the hippocampus and the visual cortex, 

NMDAR activation results in CaMKlla-mediated delivery of AMPAR to the synaptic 

membrane for enhanced synaptic efficacy, and CPEB1 mediates rapid local translation 

of CaMKlla mRNA in active synaptic sites. In the hippocampus, under a different 

stimulus - kainate induced seizure, CPEB3 regulates the translation of GluR2 mRNA 

(Huang et al. 2006). If similar machinery is harnessed for synaptogenesis, then one may 

relate such key molecules to CPEB. The expression pattern for CPEB3 presented here 

is similar to the pattern for retinal GluR2 (Dijk and Kamphuis 2004; Grunder et al. 2000a; 

Hack et al. 2001; Hamassaki-Britto et al. 1993; Kamphuis et al. 2003). Both are 
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proteins and synaptic mRNAs may be devoted to synaptic molecules such as GluR2 

mRNA, a known target of CPEB3. 

AMPAR is known for its key role in fast synaptic transmission. The expression of GluR 

2/3 and 4 before the emergence of synaptic transmission indicated a role of AM PAR in 

the establishment of retinal circuitry (Grunder et al. 2000a; Chang and Chiao 2008). The 

onset and regulation of GluR2 expression in the retina is in accordance with the process 

of synaptogenesis: starts early in the postnatal period, and reaches a peak before eye­

opening (Johansson et al. 2000; Grunder et al. 2000a). In the inner plexiform layer, the 

pattern of GluR2 expression changes from a disoriented pattern at birth to a laminated 

pattern prior to eye-opening (Johansson et al. 2000), a manifestion of a reorganization of 

synaptic circuits. 

Synaptogenesis in early development is activity-dependent (Wong and Ghosh 2002). 

The formation of synaptic contacts requires the mobility of dendritic structures regulated 

by spontaneous glutaminergic transmission. The rate of dendritic mobility was 
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NMDAR activation results in CaMKlla-mediated delivery of AMPAR to the synaptic 

membrane for enhanced synaptic efficacy, and CPEB 1 mediates rapid local translation 

of CaMKlla mRNA in active synaptic sites. In the hippocampus, under a different 

stimulus - kainate induced seizure, CPEB3 regulates the translation of GluR2 mRNA 

(Huang et al. 2006). If similar machinery is harnessed for synaptogenesis, then one may 

relate such key molecules to CPEB. The expression pattern for CPEB3 presented here 

is similar to the pattern for retinal GluR2 (Dijk and Kamphuis 2004; Grunder et al. 2000a; 

Hack et al. 2001; Hamassaki-Britto et al. 1993; Kamphuis et al. 2003). Both are 
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expressed in the same type of cells, and both are up-regulated in the first two weeks. 

Since CPEB3 protein becomes phosphorylated at Serine 197 in activated synaptosomes 

(Munton et al. 2007), a determination of the phosphorylation status of CPEB3 at each 

age would be useful to further establish the relationship of GluR2 and CPEB3. 

Manipulation of CPEB3 expression in vivo, including the use of knockout mice, could be 

used to advance the exploration of the role of CPEB3 in the retina. MAPK, BDNF/trkB, 

and certain cytoskeletal proteins are involved in synatogenesis as well (Job and 

Lagnado 1998; Schmitz et al. 1993; Oliveira et al. 2008; Cohen-Cory and Lom 2004; Liu 

et al. 2007a). MAPK and BDNF both demonstrated elongated poly(A) tails during early 

development. Further experiments are needed to establish the relationship of their 

polyadenylation with particular CPEBs. 

In addition to GluR2, several other synaptic molecules have been reported as being 

developmentally up-regulated in the retina, such as AMPAR subunits GluR1, GluR4, 

NMDAR subunits NR1, NR2A, NR2B, and CaMKlIa (Grunder et al. 2000a; Chang and 

Chiao 2008; Xue and Cooper 2001; Xue et al. 2001). These molecules are expressed in 

a similar spatial pattern as CPEBs: in ganglion cells and amacrine cells. Additionally, 

our results on potential CPEB1 target mRNAs revealed that four out of eight genes were 

up-regulated during development: CaMKlIa (which confirms the previous finding by 

Xue), Ppp2r2b, RBP-3, and Ttr. The patterns of these genes in early development were 

similar to that of CPEB1, 3 and 4. It is yet to be determined whether any of the 

aforementioned mRNAs are suitable targets of CPEB3. Bioinformatics analysis 

screening for the U-rich hairpin loop structure in the 3' UTR of mRNAs, the binding site 

of CPEB3 protein (Huang et al. 2006) could be used to predict the suitability of the 

interaction between CPEB3 and particular mRNAs. In vivo binding assays could then be 

employed to further validate such mRNA-protein interactions (Huang et al. 2006). 
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5. CPEB1, CPEB3, CPEB4 and synaptic maturation 

Although most morphological and neurochemical properties of the retina (i.e., the 

numbers of conventional and ribbon synapses, the expression of receptors for 

neurotransmitters) have reached the adult level at the time of eye opening (Fisher 1979a; 

Sassoe-Pognetto and Wassle 1997), the maturation of synaptic function continues for 

several weeks after eye-opening. For example, the synaptic strength of the RGCs, 

measured as the frequency of spontaneous synaptic activity, was low around the time of 

eye opening, and surges around P25 both in spontaneous excitatory postsynaptic 

currents (sEPSCs) mediated by glutamate receptors and in spontaneous inhibitory 

postsynaptic currents (sIPSCs) mediated by GABAIglycine receptors (Tian and 

Copenhagen 2001). The establishment of ON versus OFF pathways and the dendritic 

pruning of the IPL occur to a large extent after eye opening. 

The dendrites of RGCs ramify throughout the INL at the early postnatal time (Oiao et al. 

2004). Over development most of those dendrites achieve stratified patterns either in 

sublamina a or sublamina b of the INL. A significant portion of this morphological 

change occurs after eye opening. The ratio of bi-stratified RGCs (respond to both ON 

and OFF stimulus) to monostratified RGCs (respond to either ON or OFF stimulus) 

declined significantly in two to three weeks after eye opening (Tian and Copenhagen 

2003). 

The dendritical pruning in the inner plexiform layer is concurrent with the maturational 

alteration of bistratified ON-OFF responsive bipolar cells to monostratified ON or OFF 

responsive cells. It is postulated that the RGCs achieve their assignment to ON or OFF 

pathways by pruning their dendrites - removing "misplaced" dendrites and limiting their 
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dendrites only in sublamina a or sublamina b. Both the alteration of ON and OFF 

pathways in AGCs and the dendritic pruning in the IPL are activity dependent. The age­

dependent decline of bistratified AGCs was completely blocked in dark-reared animals. 

Light deprivation also retarded the maturational loss of ON-OFF responsive AGCs (Tian 

and Copenhagen 2003). Similar retardation in the synaptic pruning of bistratified AGCs 

was also observed in pharmacological studies which mimic the effect of light deprivation. 

Injection of 2-amino-4-phosphonobutyrate (APB), a compound that specifically blocks 

the release of glutamate by cone-driven ON bipolar cells and rod driven bipolar cells, 

diminished the maturational stratification process of AGC dendrites (Bisti et al. 1998; 

Bodnarenko and Chalupa 1993; Bodnarenko et al. 1995). Such delays in alteration of 

ON and OFF pathways and dendritic refinement elicited by light deprivation were 

reversible both in young and adult animals, however, the time course of such recovery is 

age-dependent, with younger animals requiring longer time for recovery (Tian and 

Copenhagen 2001). 

The mechanism underlying the activity-dependent maturation of ON and OFF pathways 

is yet to be fully delineated. One attractive hypothesis is that the retrainment or removal 

of a dendrite is regulated by NMDA receptors. Activity strengthens synaptic contacts 

that fire synchronously and eliminates the ones firing asynchronously. The 

developmental shift of predominant NA1/NA2B receptors to more NA1/NA2A receptors 

may be a key player in this mechanism. The downstream cascade of NMDAA activation 

is yet to be clarified for this process. One possible direction is to investigate whether 

CPEBs playa role following NMDAA activation. The expression of NA2A subunit is age­

dependent and is decreased in dark-reared developing retina (Xue and Cooper 2001). 

Our study demonstrated that CPEB1, CPEB3 and CPEB4 have a similar age-dependent 

up-regulation in the retina. Whether the up-regulation/activation of CPEBs is dependent 
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on NMDAR activity could be determined in the future with the aid of the visual 

deprivation model. Agonists or antagonists of the glutamate receptors can also be 

applied in vivo. Synaptic enrichments of potential targets of CPEBs, such as CaMKIl for 

CPEB1 and GluR2 for CPEB3, can also be studied in this scenario. The causal 

relationship is still in question: Is CPEB up-regulation driven by the process of synaptic 

maturation or vice versa? 

6. Synaptic plasticity in the adult retina 

Both our real-time PCR data and Western blot data indicated that CPEB1 and CPEB3, 

and CPEB4 continue to increase after synaptogenesis and synaptic maturation, and 

reaches a plateau in adulthood (P60). This suggested CPEBs are functional in the adult 

retina. This may be related to certain forms of synaptic plasticity in the adult life. 

Neuronal plasticity has been historically characterized as a feature of the developing 

central nervous system, but there is an increasing amount of evidence which indicates 

that activity-dependent synaptic plasticity can occur both during development and 

adulthood. One form of activity dependent plasticity in the adult retina is regulated in the 

course of normal diurnallightldark cycle. GluR2-containing AM PAR undergoes rapid 

cycling in the retinal ganglion cells and amacrine cells via endocytosis and exocytosis 

(Xia et al. 2006). Synaptic quiescence in darkness drives rapid cycling which leads to 

AMPARs altering from GluR2-containing to GluR2-lacking on synaptic membrane. On 

the contrary, synaptic activity in the light inhibits cycling and stabilizes AMPAR as 

predominantly GluR2-containing on the surface. The activation of AM PARs is critical for 

the switching between cycling and non-cycling states (Xia et al. 2007). The relationship 

between AMPAR cycling and synaptic function is not well understood, but is believed to 
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have a role in certain forms of synaptic plasticity. Such cycling of AMPAR is present in 

hippocampus neurons as well, and is regulated by NMDAR activation and calcium influx 

(Biou et al. 2008). The cycling of GluR2-containing AMPARs plays a critical role in 

synaptic plasticity in the adult hippocampus (Luscher et al. 1999). 

The expression of BDNF in the retina undergoes diurnal cycles under normal light/dark 

conditions. The level of BDNF is higher during the light than during the dark (Pollock et 

al. 2001, Cooper et al. 2008). BDNFlTrkB pathway has been proposed as a mediator in 

activity-dependent plasticity. BDNF can be retrogradely transported and act as a 

regulator of the bi-directional synaptic communication (An et al. 2008; Bramham and 

Messaoudi 2005; Carvalho et al. 2008; Cohen-Cory and Lorn 2004; Tongiorgi et al. 1996; 

Tongiorgi et al. 2006). Under diurnal conditions BDNF may modulate the efficacy and 

stability of synaptic connections in visual circuits. Since BDNF has CPE and PAS motifs 

in its 3' UTR, the role of CPEBs in the regulation of BDNF during the light/dark cycles 

can be further explored using the diurnal model. 

Increasing evidence demonstrates that the outer plexiform layer of adult retina also 

possesses some degree of synaptic plasticity. For example, ectopic dendrites grow to 

make new connections in the outer plexiform layer in diseased or ageing retina (Eliasieh 

et al. 2007; Sullivan et al. 2007). Such newly formed synapses are functional and 

capable of releasing neurotransmitters. Whether CPEB3, which demonstrated strong 

labeling in the OPL of the adult retina, is involved in such remodeling is a topic worth 

pursuing in the future. 

It is conceivable that some "consensus" molecules may be involved in synaptic plasticity 

in both development and adulthood. Whether synaptic molecules such as GluR2 and 

CaMKlla work together with CPEBs in synaptic plasticity in the adult retina is a question 
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also worth pursuing. It is likely that different members of the CPEB family, or even 

different isoforms of the same paralog, are involved in distinct forms of synaptic plasticity 

or in different stages of development. 

7. Multiple CPEB3 isoforms in the retina suggest a level of complexity for CPEB3 

activity 

1) Multiple CPEB3 protein isoforms are present in the retina. 

A previous study from Kandel's group identified two alternative splicing regions of 

CPEB3 (Theis et al. 2003), which accordingly give rise to four different isoforms of 

protein (isoform 1-4 in figure 29). In the current study, we identified a total of eight 

variants of CPEB3 transcripts and seven isoforms of CPEB3 protein in the database 

(figure 28, 29). Additionally, we reported for the first time a novel isoform of CPEB3 

(figure 30c, "exon 11 missing"). 

Data derived from CPEB3 Western blots in the current study demonstrated a band as 

-75kD (figure 35c) in the retina. This band may represent one or more of CPEB3 

isoform 1-4, of which the predicted size is 78kD, 77kD, 75.5kD and 74.5kD, respectively 

(figure 29). The composition of the -75kD band could be further analyzed in future 

studies with techniques such as mass spectrometry (MS). 

Results from CPEB3 Western blots demonstrated that besides the -75kD band, there 

were two prominent bands around 130kD, one of which was absent when the antibody 

was pre-absorbed with CPEB3-recombinant protein. Of interest, the intensity of this 

band decreased during development of the retina. The -130kD band may be a dimer, a 

pre-protein, or a prion form. Each theory would explain the decrease in the relative 
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amount of the -130kD band and the corresponding increase of the 75kD band. 

However, this band was not weakened under reducing and denaturing conditions 

(adding OTT or j3-ME and the samples boiled, data not shown), where S-S disulphate 

bands, if any, should be opened up. Therefore, it seems unlikely for this band to be a 

dimer of CPEB3. The speculation that it is a pre-CPEB3 needs further evidence. It 

could be investigated with the aid of Northern blots to determine whether a larger mRNA 

corresponding to this protein is present. It can also be addressed with the aid of 

immunoprecipitation and MS if sufficient amount of protein can be obtained. Another 

speculation is that -130kD is a prion form of CPEB3. Mouse CPEB3 shares unique 

characteristics with its Ap/ysia homolog (ApCPEB): a poly-glutamine track at the N­

terminus (figure 27). This short motif confers on several proteins, including the ApCPEB, 

the structure flexibility to form prion (Darnell 2003; Si et al. 2003b; Olson 2005). Further 

stUdy with the aid of mutations or chimera proteins could be used to address whether the 

-130kD band is the prion form of CPEB3 in the mouse retina. 

Two bands smaller than 75kD (figure 35c, 67kD and 62kD, respectively) in our Western 

blots also disappeared when the antibody was pre-absorbed with the recombinant 

CPEB3. These two bands could be possible cleavage products from the -75kD band or 

the 130kD band. It is also possible that they are two different isoforms of CPEB3, since 

their sizes are consistent with that of isoform 7 and isoform 5, respectively (figure 29). 

Likewise their identities can be determined with mass spectrometry if sufficient material 

can be isolated from the retina. 

Quantification of Western blots on CPEB3 demonstrated that the level of CPEB3 protein 

(the 75kD band) was significant up-regulated from age P1 and P7 to P12. This is 

consistent with the change of CPEB3 mRNA levels during development. It is also in 

accordance with in situ hybridization results at different ages (data not shown). 
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Synaptogenesis in the mouse retina occurs prominently before eye-opening. This 

prompted a likely correlation between the function of CPEB3 and synaptogenesis in the 

retina. It would be very interesting to look into the substrate mRNAs that are regulated 

by CPEB3 with regard to whether they are components for the construction of synapses. 

One of the factors now known to be regulated by CPEB3 in is GluR2 (Huang et al. 2006), 

which is implicated in basic synaptic transmission in the hippocampus (Meng et al. 2003). 

2) CPEB3 variants provide for a higher level of regulation complexity than has been 

hitherto recognized. 

The large number of variants in the coding region, together with variability in the 5' UTR, 

and 3' UTRs of CPEB3 provides evidence for an unexpected level of complexity in 

regulatory and functional properties of CPEB3. First of all, the differences in its protein 

sequences (resulting from alternative splicing in coding exons) may involve the 

attachment of discrete "tags" to protein isoforms so that they may function in different 

temporal and spatial patterns, possibly on different RNA targets, with different protein 

partners, or upon different stimuli. Activation, inhibition or even turnover could also be 

affected by the affinity for different kinases, phosphatases, endopeptidases. Secondly, 

the regulatory and functional properties can result from the differences in the 5' UTR and 

3' UTR regions of the CPEB3 mRNAs. The UTRs may harbor signal motifs for localizing 

mRNAs to different sub-cellular compartments, subjecting the mRNA to distinct 

translation mechanisms, or degrading the mRNA via discrete pathways. One striking 

phenomenon is the presence of CPE motifs in the 3' UTR of CPEB3 mRNA, which casts 

CPEB3 mRNA as a good candidate target for CPEB1 protein. 
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8. Comparison of CPEB1 and CPEB3: 

1) CPEB1 and CPEB3 have different distribution patterns in the retina 

Our study in the retina revealed different patterns of CPEB1 and CPEB3. First, in the 

RGC layers, CPEB3 is strongly expressed in the majority of the cell soma; while CPEB 1 

in expressed in a few cell soma. Secondly, both are strongly expressed in the INL. But 

CPEB1 demonstrated laminar structures. At least two layers are distinguishable in the 

IPL. In comparison, the pattern of CPEB3 in the IPL is more diffuse. Last, labeling in 

the OPL was strong for CPEB3, but barely detectable for CPEB1. 

2) CPEB1 and CPEB3 may play different roles in the retina 

The comparision between the expression patterns of CPEB1 and CPEB3 suggested that 

CPEB1 and CPEB3 may have different roles in the retina. Different distribution for 

CPEB1 and CPEB3 has been shown in the hippocampus, where CPEB3, but not 

CPEB1 was responsive to kainate acid induced seizure (Theis et al. 2003). Protein-RNA 

binding assays revealed that CPEB1 and CPEB3 recognize different subset of mRNA 

targets (Huang et al. 2006). Although postnatal development seemed to regulate the 

expression of both, CPEB1 and CPEB3 may respond to different types of stimuli in the 

retina. Other experimental paradigms such as light! dark cycles, dark-rearing, or injury/ 

aging models may be used to further differentiate the two. 
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3) There may exist a feedback loop between CPEB1 and CPEB3 

One intriguing property of CPEB3 is that its mRNA contains two CPE motifs in the 3' 

UTR. This casts CPEB3 as a good candidate for CPEB1-regulated translational control. 

Should this be indeed the case, CPEB3 may provide a feedback loop for CPEB1 

activation. It could be a positive feedback which augments and expedites the effect of 

CPEB1 activation; or a negative feedback that eases the effect of CPEB1 activation. 

In summary, our data described the expression patterns of four CPEBs in the retina. 

There were some similarities and discrepancies between the four, both spatially and 

temporally. The function of each CPEB in the retina is yet to be delineated. It is possible 

that some degree of functional compensation of redundancy exists between certain 

CPEBs. Based on the prevalent studies on CPEB1, which have been devoted to the 

region of hippocampus in the CNS, we speculate that CPEB1 and the other CPEB 

paralogs are involved in synaptic activity, possibly synaptogenesis and certain forms of 

synaptic plasticity in the retina. A variety of congenital or acquired conditions are the 

leading causes of retinal degeneration that leads to blindness. Current knowledge about 

the capacity for remodeling and restoration of the retina is of key significance for 

developing cures for degenerative retinal diseases. The exploration of the roles of 

CPEBs and their relative abilities to regulate protein translation in the retina will advance 

our understanding on the structure and function of the retina, especially pertaining to 

neural plasticity. 
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CHAPTER VI 

FUTURE DIRECTIONS 

Although some functional studies have been pursued for CPEB1, and to a less extent, 

for CPEB3, in the hippocampus and visual cortex, little is known with regard to the 

function of each CPEB in the retina. Some aspects of the function may be investigated 

with recapitulation of available techniques used in the other systems, in some current 

established in vitro or in vivo models. 

1. In vitro studies: Identification of mRNA targets for each CPEB. 

One of the important aspects regarding the functions of CPEB 1-4 is the substrate 

specificity of each: the mRNA targets they recognize and mediate. Our study identified 

some potential mRNA targets for CPEB1. Additionally, potential targets of CPEB2-4 

may be identified more extensively using the following approach 1). The interaction 

between the mRNA targets and individual CPEB proteins can be further validated using 

the following experiments 2) and 3). 
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1) SELEX screening in combination with bioinformatic tools 

Huang and colleagues used SELEX (systematic evolution of ligands by exponential 

enrichment) method to determine that the recognition of CPEB3 of its target mRNAs 

requires a secondary structure in the 3' UTR of the mRNA (Huang et al. 2006). A pool 

of random 2S-mer RNAs was generated from an oligonucleotide library composed of 

random 2S-mers flanked by constant regions for PCR. The RBD (RNA binding domain) 

of CPEB3 or CPEB4 were mixed with the mixed RNA pool. However, in the experiment 

followed, they found that the 3' flanking sequence is critical for the formation of the 

secondary structure during the recognition of CPEB3. Since the 3' flanking sequence 

used in their experiment was a constant sequence which was arbitrary by nature, the 

sequence of the recognition motif derived from their experiment may be limited. 

A modified version of this experiment can be performed with the following modification: 

Generate a pool of random SO-mer RNAs from an oligonucleotide library composed of 

random SO-mers flanked by constant regions for PCR. Use the pool of 50-mer RNA in 

the binding assays. ("SO" is derived from: the length of the previous 2S-mer plus the 

length of the 3' flanking sequence). Follow the same procedures for the rest of the 

experiment. 

This modification of the SELEX experiment is more inclusive and is likely to generate 

more variants of the recognition motif for the CPEB tested. Then extend from "CPE 

Detector" program, these variants can be screened in 3' UTR databases, and potential 

mRNA targets can be extracted computationally from the database. Promising mRNA 

candidates can be validated experimentally using the following in vitro binding assays or 

in cell knockdown/over-expression analysis. 
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2) In vitro binding assays 

Partial mRNAs of interest (with the 3' UTR) can be in vitro transcribed from PCR 

products using T7 promoters and radioactively labeled. Protein of interest (CPEB 1-4) 

can be expressed as recombinant protein and then refolded to natural conformation if 

necessary, or purified from tissue as biologically active form using immunoprecipitation. 

The enriched RNA probes can then be incubated with specific protein. The RNA:protein 

complex can then be subjected to gel shift assay using PAGE gel. The presence or 

absence of binding can be verified by the shift or no-shift of the band from the free probe 

band. Synthesized mRNA fragments without binding sites for CPEBs can be used as a 

negative control to account for non-specific binding. 

The in vitro binding assay can also be used in large scale screening from a biological 

sample. For example, total mRNA from the retina can be applied in incubation with 

CPEB proteins. The binding complex will then be washed, and the mRNA targets eluted 

and extracted. The identity of the mRNAs can be identified using microarray. 

3) In cell knockdown/over-expression analysis 

Cell knockdown or over-expression assay is another alternative to identify mRNAs 

associated with the CPEB. CPEB1 acts as a translational suppressor when inactivated, 

and an activator when activated, and the binding of CPEB1 to the mRNA is constitutive. 

This is also true for CPEB3 with respect to its interaction with GluR2. Therefore, a 

change in the translational levels of the target mRNAs should be detectable regardless 

of the stimulus (down-regulation without stimulus, up-regulation with appropriate 

stimulus). 
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For potential candidates, for example, from SELEX screening in combination with 

bioinformatic tools, candidate proteins can be validated using quantitative assays such 

as Western blot. Expected alterations in the level of proteins would be a strong indicator 

of the association of the mRNA with CPEB. However, verification of the physical binding 

of the two is still desirable. 

The total protein extraction from CPEB knockdown/over-expression samples can also be 

used in high-throughput analysis such as proteomics. The identity of down-regulated 

proteins (in the absence of stimulus) or up-regulated proteins (in the presence of an 

appropriate stimulus) can be verified with the protein extraction from na"lve cells as a 

control. 

2. In vivo studies 

In vivo studies should be the eventual goal to delineate the role of CPEB in the retina. 

Since it is highly likely that different CPEBs recognize discrete mRNA substrates and 

may be responsive to distinct stimuli, it is critical that appropriate models are used. 

Some experimental paradigms can be tested as discussed below: 

1) Diurnal cycle model 

As described in previous literature, GluR2-containing AMPAR undergoes rapid cycling in 

ON ganglion cells under normallightldark cycles (Xia et al. 2007; Xia et al. 2006). The 

rapid cycling of AMPARs is believed to maintain synaptic transmission and may be 

related to several forms of synaptic plasticity. Light adaptation stabilizes it in a non­

trafficking state, while dark adaptation switches it into a state of rapid cycling. The 
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activation of AMPAR is critical for the switch (Xia et al. 2006), however the underlying 

mechanism is yet to be discovered. 

GluR2 is believed to be a target of CPEB3 in the hippocampus (Huang et al 2006). 

However, whether CPEB3 mediates the translation of GluR2, or indirectly leads to the 

activation of AMPAR in the retina, is a question yet to be addressed. The diurnal model 

may serve as one diagram to explore this issue. siRNA of CPEB3 can be delivered to 

retinal ganglion cells via intravitreal injection. The expression of GluR2 or the cycling 

pattern of GluR2-containing AMPAR can then be determined. 

2) Developmental model 

The inner retina undergoes profound maturational remodeling during post-natal 

development. Such process has been proven to be activity-dependent. Our study 

demonstrated that CPEB1, 3 and 4 were up-regulated during development. CPEB1 and 

CPEB3 demonstrated a different spatial pattern. It is not known whether the expression 

of one or more CPEBs is activity dependent. Dark-rearing can be used during 

development to investigate this question. Both the spatial localization of the CPEBs and 

the quantitative level of CPEBs should be observed in dark-reared animals and in 

normal-reared control. 

3) Knockout mouse model 

CPEB 1 knockout mice may be used in comparison to normal littermates for the 

polyadenylation and translation of target mRNAs. Similarly, CPEB3 knockout mice can 

be generated; the translation of known or potential mRNA targets of CPEB3 can be 
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evaluated. Immunohistochemistry can be used to determine affected areas/cell types of 

the retina. Electrophysiology properties such as ERG, OPs, and EPSPs can be 

measured to infer the effects of CPEB knockout on the functioning of the retina. 

Behavior studies can be designed, if plausible, to elaluate the overall performance of 

vision. 

4) Photoreceptor degeneration models 

The outer plexiform layer of the retina manifested a certain degree of plasticity in mutant, 

diseases or aging that cause photoreceptor degeneration. Following the loss of synaptic 

contacts in the outer plexiform layer, horizontal cells and bipolar cells in the inner nuclear 

cells outgrow dendrites to the outer nuclear layer to form new connections with 

photoreceptors. CPEB3 appeared to be present at the outer plexiform layer in the adult 

mice (P60). The localization of CPEB3 with respect to pre-synaptic or post-synaptic 

compartment needs to be further addressed. The expression pattern of CPEB3 can be 

explored in the above models, which may provide some insights for its function in the 

outer plexiform layer. 

5) Application of kinase inhibitors, neurotransmitter agonists or antagonists 

Four CPEBs may be responsive to different stimuli. For example, CPEB3 and CPEB4, 

but not CPEB1, were up-regulated in kainate induced seizure in the hippocampus 

(Huang et al. 2006). With the appropriate stimulus, the cascade of the activation of each 

CPEB can be further delineated. CPEB1 is known to be activated by aurora kinase or 

CaMKII, both of which require the activation of NMDA receptors. Sequence analysis 
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indicated that CPEB2-4 do not possess phosphorylation site for aurora kinase, but 

appear to be substrates for PKA, CaMKIl and p70S6 kinase. Inhibitors of these kinases 

can be used to verify the cascade of phosphorylation under appropriate stimulus. 

Agonists or antagonists of different types of neurotransmitter receptors can also be 

applied to infer the requirement for the activation of receptors for each CPEB. 
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ABP 

APB 

ApCPEB 

AMD 

AMPA 

AMPAR 

AP 

ARVO 

B-PER 

CA1 

CA3 

ChAT 

BDNF 

CaMK 

CaMKIl 

CaMKlla 

CaMKllaB 

CPE 

CPEB 

CNS 

APPENDIX: LIST OF ABBREVIATIONS 

AMPA receptor binding protein 

2-amino-4-phosphonobutyrate 

Ap/ysia CPEB 

age-related macular degeneration 

a-amino-3-hydroxy-5-methyl-4-isoxazole propionate 

a-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor 

anterior-posterior 

Bacterial Protein Extraction Buffer 

Cornu Ammonis area 1 

Cornu Ammonis area 3 

choline acetyl transferase 

Brain-derived neurotrophic factor 

Ca2+/calmodulin-dependent protein kinases 

multifunctional Ca2+/calmodulin-dependent protein kinases 

multifunctional Ca2+/calmodulin-dependent protein kinases, a chain 

multifunctional Ca2+/calmodulin-dependent protein kinases, a chain 
isoformB 

cytoplasmic polyadenylation element 

cytoplasmic polyadenylation element binding protein 

central nervous system 
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CPSF 

DV 

ERG 

elF4E 

elF4G 

EGR1 

ELK2 

ERK 

EPSP 

FAM 

FMRP 

GABA 

GEF 

GluR1-4 

GluR5-7 

GRIA1-4 

GRIN1-3 

GRIK1-5 

GST 

IACUC 

iGluR 

INL 

IPL 

IPTG 

IRBP 

KA1-2 

Polyadenylation Specific Factor 

dorsal-ventral 

electroretinogram 

eukaryotic translational initiation factor 4E 

eukaryotic translational initiation factor 4G 

early growth response factor-1 

a potassium channel 

extracellular signal-regulated kinase 

excitatory post synaptic potential 

6-carboxyfluorescein 

Fragile-X Mental Retardation Proteins 

gamma-aminobutyric acid 

guanine exchange factor 

AMPA medated glutamate receptor subunit 1-4 

kainate receptor subunit 1-3 

Glutamate receptor, ionotropic, AMPA mediated, subunit 1-4 

Glutamate receptor, ionotropic, NMDA mediated, subunit 1-3 

Glutamate receptor, ionotropic, kainate mediated, subunit 1-5 

glutathionine S-transferase 

Institutional Animal Care and Use Committee 

ionotropic glutamate receptors 

inner nuclear layer 

inner plexiform layer 

isopropyl ~-D-1-thiogalactopyranoside 

interstitial retinol binding protein 

kainate receptor subunit 4-5 
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KAR 

LM-PAT 

LTD 

LTP 

MAP1a 

MAP2 

MAPK 

MAPKK 

MAP KKK 

MEK 

MF 

mGluR 

mGluR1-5 

NMDA 

NMDAR 

~NR1-3 

NR2A,2B 

ONL 

OP 

OPL 

PABP 

PAGE 

PAP 

PAS 

PAT 

PCR 

kainate receptor 

ligation-mediated polyadenylation test 

long-term depression 

long-term potentiation 

microtubule-associated protein 1 a 

microtubule-associated protein 2 

mitogen-activated protein kinase 

MAP kinase kinase 

MAP kinase kinase kinase 

MAP/ERK kinase 

mossy fiber (of hippocampus) 

metabotropic glutamate receptor 

metabotropic glutamate receptor subunit 1-5 

N-methyl-D-aspartate 

N-methyl-D-aspartate receptor 

NMDA receptor subunit 1-3 

NMDA receptor subunit 2, isoformA, B 

outer nuclear layer 

oscillatory potentials 

outer plexiform layer 

poly(A) binding protein 

polyacrylamide gel electrophoresis 

poly(A) polymerase 

polyadenylation signal 

polyadenylation test 

polymerase chain reaction 
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PICK1 

PKA 

PKC 

Ppp2r1a 

Ppp2r2b 

proBDNF 

PSD 

PVDF 

RACE 

RBD 

RCM3 

rdta 

RGC 

RACE 

RPE 

RT 

RRF 

SDS 

SELEX 

siRNA 

synGAP 

t-PA 

ITR 

UTR 

Protein Interacting with C-Kinase 1 

protein kinase A 

protein kinase C 

protein phosphatase 2, regulatory domain 1 a 

protein phosphatase 2, regulatory domain 2b 

the unprocessed pro-form of BDNF 

post synaptic density 

Polyvinylidene Fluoride 

rapid amplification of cDNA ends 

RNA binding domain 

rat ,Qalmodulin 

rod-ablated model 

retinal ganglion cell layer 

rapid amplification of cDNA ends 

retinal pigment epithelium 

reverse transcription 

RNA recognition motif 

sodium dodecyl sulfate 

systermatic evolution of ligands by exponential enrichment 

small interference RNA 

synaptic Ras-GTPase activating protein 

tissue-type plasminogen activator 

transthyreti n 

untranslated region 
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