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ABSTRACT 

LOW-FREQUENCY REPETITIVE TRANSCRANIAL MAGNETIC STIMULATION 

MODULATES EVOKED-GAMMA POWER, EVENT-RELATED POTENTIALS, 

AND BEHAVIOR IN AUTISM SPECTRUM DISORDERS 

By 

Joshua Matthias Baruth 

November 30,2010 

Evidence suggests that cortical minicolumns are reduced in size and increased in 

number in individuals with autism spectrum disorder (ASD), especially in the 

dorsolateral prefrontal cortex (DLPFC). More specifically minicolumns in individuals 

with ASD are narrower and contain less peripheral, neuropil space; this may cause an 

increase in the ratio of cortical excitation to inhibition and adversely affect the functional 

distinctiveness of minicolumnar activation. A lack of cortical inhibition may cause 

signal/sensory amplification which can impair functioning, raise physiological stress, and 

adversely affect social interaction in patients with ASD. Additionally, the DLPFC forms 

a circuit interconnected with many areas of cortex (e.g., anterior cingulate, orbitofrontal) 

and is involved in selecting a possible range of responses while suppressing inappropriate 

ones. Low-frequency (:'SlHz) repetitive transcranial magnetic stimulation (rTMS) has 
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been shown to increase inhibition of stimulated cortex by the activation of inhibitory 

circuits. 

The baseline hypothesis was that individuals with ASD would show 

electroencephalopgrahic (EEG) and event-related potential (ERP) evidence of amplified 

cortical activity at early and late stages of visual processing as well as impaired indices of 

selective attention. The second hypothesis was that low-frequency rTMS would reduce 

augmented cortical responses at early stage and late stages of visual processing and 

improve selective attention and behavior in ASD. 

The baseline findings indicate both ERP and evoked gamma activity are amplified 

and indiscriminative in ASD at early stages of visual processing which may reflect 

decreased 'signal to noise' due to decreased cortical inhibitory processing. Additionally, 

individuals with ASD showed evidence of compromised selective attention, and had a 

significantly higher rate of motor response errors. After low-frequency rTMS individuals 

with ASD showed significant reductions in augmented ERP responses at very early 

stages of visual processing and showed significant improvement in discriminatory EEG 

gamma activity. There was also evidence of improved ERP indices of selective attention 

and significant reductions in irritability and repetitive behavior. TMS has the potential to 

become an important therapeutic tool in ASD treatment and has shown significant 

benefits in treating core symptoms of ASD with few, if any side effects. 

VI 



T ABLE OF CONTENTS 

Page 

Acknowledgements ................................................................................. iv 

Abstract. .............................................................................................. v 

List of Figures ...................................................................................... .ix 

Chapter 1: Introduction ........................................................................... 1 

Symptomatology ..................................................................... 1 

Epidemiology ......................................................................... 2 

Augmentation of Prefrontal White Matter ........................................ 3 

The Cortical Minicolurnn ............................................................ 7 

Function and Connectivity of the Dorsolateral Prefrontal Cortex ............ 14 

Transcranial Magnetic Stimulation (TMS) ....................................... 18 

Putative Mechanisms of Low-Frequency rTMS ................................. 21 

Chapter 2: Early and Late Event Related Potentials ...................................... . 27 

Introduction ................................................................................. 27 

Material and Methods ............................................................... 34 

Baseline Results ..................................................................... 43 

Results Following rTMS ............................................................ 50 

Discussion ............................................................................ 58 

VB 



Chapter 3: Evoked and Induced Gamma Oscillation Power ............................. 65 

Introduction ................................................................................. 65 

Material and Methods ............................................................... 69 

Baseline Results ...................................................................... 78 

Results Following rTMS ............................................................ 82 

Discussion ............................................................................. 86 

Chapter 4: Behavioral Findings ..... .......................................................... 93 

Introduction ................................................................................. 93 

Material and Methods ................................................................ 95 

Results .................................................................................. 99 

Discussion ............................................................................ 1 03 

Chapter 5: Final Summary and Discussion .................... ............................. 107 

Limitations of Current Study ....................................................... 115 

Future Directions ..................................................................... 116 

References ........................................................................................... 117 

Curriculum Vitae .................................................................................. 135 

Vlll 



LIST OF FIGURES 

FIGURE PAGE 

Figure 1. Head Circumference and MRI Percent Difference by Age in Autism ................ 4 

Figure 2. Abnormal Enlargement of the Dorsolateral Frontal Cortex (DFC) and Medial 

Frontal Cortex (MFC) in 2-4-year-old Autistic Children .................................................... 5 

Figure 3. Significantly Increased Frontal White Matter Volumes Among Autistic 2-4 

Year-Old Children ............................................................................................................... 6 

Figure 4. Photomicrograph of Cortical Minicolumn .......................................................... 9 

Figure 5. Illustration ofInhibitory Cells within Columnar Arrangements ....................... 10 

Figure 6. Nissel Stained Micrographs of Lamina III ofDLPFC in ASD and Contro1... .. .12 

Figure 7. Gallocyanin-stain micrographs of mini columns in Brodmann area 4, lamina III, 

in an autistic patient and age-matched control with mini columnar cores highlighted ..... 13 

IX 



Figure 8. Illustration of the Doroslateral Prefrontal Cortex (DLPFC) (BA 9 & BA 46) .. .14 

Figure 9. Illustration of the Dorsolateral Prefrontal Circuit. ................................... 15 

Figure 10. Geometric Orientation of Double-Bouquet Cells and Magnetic Field Applied 

Parallel to Cortex .................................................................................... 19 

Figure 11. Illustration of GABAergic Post Synaptic Receptors ................................... 25 

Figure 12. Visual Stimuli of Three-Stimuli 'Oddball' Task .................................... 38 

Figure 13. Sensor Layout of 128-Channel Geodesic Net with Labeled ROI. ............... 39 

Figure 14. Illustration of Chapter 2 Research Design ............................................... .43 

Figure 15. BESA 3D Map of Baseline P50 Amplitude and Latency Differences ............ .44 

Figure 16. Baseline Parieto-Occipital P50 Amplitude to Novel Stimuli .................... .45 

Figure 17. Baseline Frontal P200 Latency Differences ........................................ .46 

Figure 18. Baseline Frontal N200 Amplitude Differences ......................................... .47 

Figure 19. Baseline Frontal P300 Latency Differences .................................................... 48 

x 



Figure 20. Baseline Motor Response Accuracy to Target Stimuli .......................... .49 

Figure 21. P50 Amplitude Differences Following TMS ................................................... 50 

Figure 22. BESA 3D Map ofP50 Amplitude Differences Following TMS ................. 51 

Figure 23. Parieto-Occipital P200 Amplitude Differences Following TMS ................ 52 

Figure 24. Frontal PIOO Amplitude Differences Following TMS ............................ 53 

Figure 25. BESA 3D Map of Frontal NlOO Amplitude Differences Following TMS ..... 54 

Figure 26. Frontal NI00 Amplitude Differences Following TMS ............................ 55 

Figure 27. Frontal P300 Latency Differences Following TMS ............................... 56 

Figure 28. Motor Response Accuracy Changes in TMS and WTL Groups ................. 58 

Figure 29. Sensor Layout of 128-Channel Geodesic Net with Labeled Channels .......... 72 

Figure 30. Kanizsa Illusory Figure Stimulus Material .................................................... 74 

Figure 31. Illustration of Chapter 3 Research Design ........................................................ 77 

Xl 



Figure 32. Baseline Frontal Evoked-Gamma Power Differences .............................. 79 

Figure 33. Average Amplitude of Gamma Oscillations in Control Group .................. 80 

Figure 34. Average Amplitude of Gamma Oscillations in ASD Group ..................... 81 

Figure 35. Frontal Evoked-Gamma Power Differences as a Result ofTMS ................. 83 

Figure 36. Average Amplitude of Gamma Oscillations after TMS ............................. 84 

Figure 37. Average Amplitude of Gamma Oscillations after Waiting Period ................ 85 

Figure 38. Illustration of Chapter 4 Research Design ......................................... 1 00 

Figure 39. Changes in Repetitive Behavior as a Result ofTMS ............................. .101 

Figure 40. Changes in Irritability as a Result ofTMS ............................................. .101 

Figure 41. Pre- and Post-TMS Behavioral Group Statistics ...................................... .102 

Figure 42. Pre- and Post-TMS Behavioral Independent t-tests ................................... 1 03 

Xll 



CHAPTER 1: INTRODUCTION 

Symptomatology 

Autism was first described by Kanner (1943) and now is considered to be an 

etiologically heterogeneous and biologically determined developmental disorder 

characterized by severe disturbances in reciprocal social relations, impaired development 

of language and communication skills and by a limited repertoire of behavioral patterns 

with a restricted ability of abstraction (American Psychiatric Association, 2000; [DSM­

IV-TR] 4th ed., text rev.). The term autism spectrum disorder (ASD) is used to 

encompass three conditions sharing a similar core symptomatology: Autism, Asperger 

syndrome, and Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS). 

Charman (2008) explains that all individuals with ASD share common behavioral 

characteristics: First, they have qualitative impairments in social interaction. These 

impairments are manifested by the use of nonverbal behaviors to regulate social 

interaction, a failure to develop peer relationships, a deficiency in the spontaneous 

sharing of interests and a lack of emotional reciprocity. Secondly, ASD patients show 

qualitative impairments in social communication. These deficits are generally indicated 

by delayed language development without nonverbal compensation, problems starting 

and sustaining conversations, stereotyped language, and a lack of imagination in their 

play. Thirdly, individuals with ASD show a limited compilation of interests, behaviors, 
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and activities. Impainnents of this nature manifest themselves by an abnonnal overfocus 

on certain topics, adhering to nonfunctional routines, the display of stereotyped motor 

mannerisms and a preoccupation with object parts rather than the complete whole. 

Finally, it has been reported that individuals with ASD have abnonnal reactions to the 

sensory environment (Channan, 2008) and vi suo-perceptual abnonnalities (Happe', 

1999). Aversive reactions to visual, auditory, and tactile stimuli have been commonly 

recorded in autistic individuals (Casanova, Buxhoeveden, & Gomez, 2003). These are 

generally indicated by hyposensitivity or hypersensitivity and an extraordinary interest in 

certain sensations. In fact, according to Gomes, Pedroso, and Wagner (2008) sensory­

perceptual abnonnalities affect 90% of individuals with Autism. 

Epidemiology 

According to Blaxill (2004) the rates of autism spectrum disorder were reported to 

be <3 per 10,000 children in the 1970s and rose to >30 per 10,000 in the 1990s. The 

Centers for Disease Control and Prevention (CDC, 2006) summarized data from several 

studies on the prevalence rates of ASD ranging from 1 in 500 to 1 in 166, making it the 

sixth most common disability classification in the United States. In fact, the CDC (2007) 

suggested a prevalence of 1 in 150 (Coben, Clarke, Hudspeth, & Barry, 2008). Recently a 

study by Kogan et af., (2009) estimated the prevalence of ASD to be 1 in 91 American 

children. ASD is four to seven times more likely to occur in boys than girls (CDC, 2002); 

among identical twins, if one child has an ASD, then the other will be affected about 60-

96% of the time (Boyle & Alexander, 2005). The median age of ASD diagnosis is 
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currently between 4.5 and 5.5 years, but there is evidence that ASDs can often be 

identified at around 18 months (CDC, 2002). 

A ugmentation of Prefrontal White Matter 

One of the most consistent gross anatomical findings in ASD has been an 

abnormal increase in brain volume. According to Courchesne, Carper, and Akshoomoff 

(2003) the autistic brain undergoes accelerated growth during the early postnatal period, 

and this is then followed by a period of deceleration in age-related growth. Amaral, 

Schumann, and Nordahl (2008) allude to four MRI studies indicating that children with 

autism between the ages of 18 months and four years have a 5%-10% abnormal 

enlargement of total brain volume (Hazlett et ai., 2005; Courchesne, et ai., 2001; Sparks, 

et al., 2002; Ayland, Minshew, Field, Sparks, & Singh, 2002). Redcay and Courchesne 

(2005) recently reviewed past and present literature on abnormalities in head 

circumference, as well as recent developmental MRI studies of brain growth in autism; 

they found that the most rapid rates of increased deviation from normal brain size was 

within the first year of life and the greatest rates of decrease in deviation from normal 

were during middle and late childhood (Figure 1). 
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Figure 1: This figure illustrates a best fitted curve from 15 studies of head 
circumference (HC) and MRl percent difference (%Diff) from normal by age in 
Autism. % Diffvalues from all HC and MRl studies are plotted by the mean age of 
the study. The best fitted curve shows the most rapid rates of increased deviation 
from normal brain size in autism within the first year of life and the greatest rates of 
decrease in deviation from normal during middle and late childhood (Redcay & 
Courchesne, 2005). 

Infants and toddlers with this disorder may suffer from a period of excessive brain 

growth that occurs during the first years of life, a period of time that coincides with the 

onset of autism symptoms. Further, this period of overgrowth is followed by an 

abnormally reduced rate of brain growth (Courchesne, 2004). According to Amaral et ai. 

(2008) regional enlargements have been described in the frontal , temporal, and parietal 

lobes, but the largest and most consistent augmentations have been accounted for in the 

frontal lobes (Palmen et ai. , 2005; Hazlett, Poe, Gerig, Smith, & Piven, 2006; Carper, 

Moses, Tigue, & Courchesne, 2002; Herbert et al. 2004). In their 2005 review 

Courchesne and Pierce (2005) report that brain volume is enlarged among autistic 2-4 

year-old children especially in the dorsolateral subregion of the frontal cortex (Figure 2). 
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Figure 2: This figure shows abnonnal 
enlargement of the dorsolateral frontal 
cortex and medial frontal cortex in 2-4-
year-old autistic children. Volumes of 
each frontal region were converted to z­
scores based on the means and standard 
deviations of nonnal children in the same 
age range. Z-scores therefore represent 
relative degree of deviation from nonnaI. 
The mean is defined as 0 with a standard 
deviation of 1. *p :S 0.05 ; **p :s 0.005. 
OFC, orbitofrontal cortex; MFC, medial 
frontal cortex; DFC, dorsolateral 
prefrontal cortex; PCG, precentral gyrus 
(Courchesne & Pierece, 2005 from 
Carper & Courchesne, 2005) 

Several studies have indicated that abnonnal brain growth is due to 

disproportional increases in white matter as compared to gray matter (Herbert et ai. , 

2003 ; Hazlett et ai. , 2005; Courchesne, et ai. , 2001). Herbert et aI. (2004) report that 

increased brain volume in autistics is primarily due to an augmentation of the prefrontal 

white matter, which contains mostly short corticocortical connections (Herbert et aI. , 

2004; Jancke, Staiger, Schlaug, Huang, & Steinmetz, 1997; Casanova, 2004). In their 

2005 review Courchesne and Pierce report significantly increased frontal white matter 

volumes among autistic 2-4 year-old children (Figures 3). 
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Casanova (2007) suggests that additional white matter in autism is the result of an 

increased amount of short range association fibers which are required by an increased 

number of cortical minicolumns, and Courchesne and Peierce (2005) believe that this 

expansion of prefrontal white matter is connected to an overall reduction in long-range 

frontal-posterior reciprocal connections. Also there is evidence that interhemispheric 

connections may be compromised as Goldberg, Szatmari, and Nahmias (1999) have 

found a decreased size of the posterior corpus callosum is autism. Casanova et al. (2009) 

found that autistic patients manifested a significant reduction in the aperture for 

afferent/efferent cortical connections (i.e. , gyral window), and the size of the gyral 

window directly correlated to the size of the corpus callosum. A reduced gyral window 

constrains the possible size of projection fibers and biases connectivity towards shorter 

corticocortical fibers at the expense of longer associationlcommisural fibers (Casanova et 
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aI., 2009). There may be a bias in connectivity emphasizing shorter-range association 

fibers required by an increased number of cortical mini columns, and this may be at the 

expense of longer commissural pathways, such as the corpus callosum (Casanova, 2007; 

Casanova, 2004). 

In other words, it appears that the increased white matter in the frontal lobes of 

autistic individuals is correlated with an increase in short corticocortical connections 

(Herbert et aI., 2004; Jancke et aI., 1997) and an increased number of cortical 

minicolumns (Casanova, 2007; Casanova, 2004). In addition, the increase in short 

corticocortical connections seems to be evident in autism at the expense of long range 

connectivity to complimentary brain regions (Casanova, 2007; Casanova et aI., 2009). 

This disparity in connectivity is commonly believed to be the anatomical basis for the 

extraordinary, savant-like discriminative and calculative abilities of some individuals 

with ASD. 

The Cortical Minicolumn 

As discussed earlier, the augmentation of frontal lobe white matter in autism is 

associated with an increased number of cortical minicolumns. Mountcastle (2003) 

describes mini columns as the basic anatomical and physiological unit of the cerebral 

cortex essentially correlating to small processing units. Minicolums consisist of vertical 

strands of perikarya forming a linear arrangement of single-cell columns orientated 

perpindic1uar to the pial surface between layers VI and II (Buxhoeveden, Switala, Roy, & 
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Casanova, 2000); the core of the column and its immediate surroundings appear to 

contain most of the neurons, apical dendrites, cortical efferents, and corticocortical fibers, 

as well as unmyelinated axons and synapses (Peters & Setharis, 1996). A cell-poor area, 

or peripheral neuropil space, surrounds the linearly aggregated cells and is rich in 

unmyelinated axon fibers, dendritic arborizations, and synapses (Seldon, 1981). 

Myelinated axon bundles presumably are cortical efferents originating in pyramidal cells 

in layers II and III, and descend toward the white matter, lying within or adjacent to the 

cellular core ofa column (Casanova, Buxhoeveden, Switala, & Roy, 2002b). Apical 

dendrites originating in layer V pyramidal cells ascend in bundles through or adjacent to 

the cell column core (Peters & Walsh, 1972). Patterns oflateral inhibition in the 

surrounding neuropil of the column maintain the vertical arrangement of cortical neurons 

into discrete units of function (i.e., minicolumns). (Seldon, 1981; Buxhoevedan et aI., 

2000); this neuropil space consists of several species of inhibitory interneuron cell 

bodies (i.e., double-bouquet, basket, and chandelier cells) as well as their projections and 

surround the stacking of the neuronal soma (Seldon, 1981; Mountcastle, 1997) (Figure 4). 
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Figure 4: The minicolumn may be 
viewed as vertically-oriented 
aggregates of cell bodies 
interspersed by cell-poor areas, or 
neuropil space. This figure using 
Gallocyanin-stain illustrates 
minicolumns in 
Brodmann area 4, lamina III. The 
cores of the column are highlighted, 
and the scale bar measures 50 /lm 
(Casanova et aI. , 2006b). By 
definition the mini column includes 
the peripheral neuropil space 
(Seldon, 1981). 

The double bouquet cells are present in all layers of cortex and have axons that 

terminate upon both pyramidal cells and inhibitory inemeurons (Moutcastle, 1997); they 

impose a strong vertically directed stream of inhibition, and may also exert a vertically 

directed disinhibition of those pyramidal cells upon which those other inhibitory 

intemeurons project (Moutcastle, 1997). The narrow vertical distribution of the double 

bouquet axons is so specific and restricted that it creates a narrow vertical cylinder of 

inhibition running geometrically perpendicular to the pial surface (Moutcastle, 1997; 

Douglas & Martin, 2004). Basket cells exert inhibitory control over pyramidal cell bodies 

while chandelier cells exert inhibitory control over initial axon segments (Moutcastle, 

1997); unlike the double bouquet cells neither basket nor chandelier inhibitory 

intemeurons maintain any constant cortical orientation (Douglas & Martin, 2004) (Figure 

5). 
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Figure 5: Illustration of inhibitory 
cells within columnar arrangements. 
Basket (BC) and Chandelier (CH) 
inhibitory intemeurons do not 
maintain constant cortical 
organization within the neuropil of 
the cortical mincolumn. Double­
bouquet (DB) inhibitory intemeurons 
provide a vertical stream of inhibition 
(Mountcastle, 1997, 2003) 
surrounding the minicolumnar core 
and maintain a geometrically exact 
orientation perpendicular to the pial 
surface (Douglas & Martin, 2004; 
Mountcastle, 1997). 

Minicolumnar inhibitory intemeurons use gamrna-aminobutyric acid (GABA) as 

a neurotransmitter and contribute to a circumferential zone of inhibitory and disinhibitory 

activity gating communication of the central minicolurnnar core with surrounding areas 

(Casanova & Tillquist, 2008). While the minicolumn is a fixed anatomical structure and 

functional unit, it is not isolated. The minicolumn interacts with other columns, whether 

immediate neighbors or distant locations, forming larger units of function (Buxhoedevan 

et aI. , 2000; Mountcastle, 1997). The small groups of cells within columns may be 

activated as a subunit of the column, and the functional activity of columns may be 

studied at many levels including their structure as groups of oscillating neuronal activity 

(e.g., electroencephalography) (Buxhoedevan et aI. , 2000). 
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Within the context of autism there has been an increasing interest in the alteration 

of mini columnar architecture in the cortex. In a 2002 post-mortem study Casanova et aI. 

analyzed the minicolmnar morphometry of nine individuals with autism and nine age­

matched controls in layer III of Brodmann areas (BA) 9, 21, and 22, which correlate 

respectively to the dorsolateral prefrontal cortex, middle temporal gyrus and the caudal 

two thirds of the superior temporal gyrus (Casanova et aI., 2002b). In the 

photomicrographs of autistic individuals Casanova et aI. (2002b) found a significantly 

narrower (P=0.034) minicolumnar width compared to controls and most of the decrease 

was due to a significant reduction ofthe peripheral neuropil space (P=0.007); the 

peripheral neuropil space was found by subtracting the width of the column core (defined 

as that part of the column that contains 90% of the cell bodies) from the center-to-center 

distance between adjacent columns (Casanova et aI., 2002b). In addition, the number of 

minicolumns per image area was increased in autistic subjects relative to controls, and 

this corresponds to a greater gray level index or greater overall cell density (Casanova et 

aI., 2002b). There was also an area by diagnosis interaction with the greatest 

mini columnar width reduction appearing in the dorsolateral prefrontal cortex or BA 9 

(Casanova et aI., 2002b). 

Also, in two 2006 post-mortem studies Casanova et aI. examined the peripheral 

neruopil space in the mini columns of six individuals with autism and six age matched 

controls in the following Brodmann's areas: 10 (frontopolar cortex), 11 (orbitofrontal 

cortex), 9 (dorsolateral prefrontal cortex), 4 (primary motor cortex; Ml), 3b (primary 

sensory cortex; SI), 43 (frontoinsular cortex), 44 (ventrolateral cortex), 24 (anterior 

cingulate cortex), SI (primary somatosensory cortex), and 17 (primary visual cortex; VI) 
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(Casanova et at , 2006ab). Both studies were consistent with prior results by finding 

reduced neuropil space in the dorsolateral prefrontal cortex (BA 9) (Casanova et aI. , 

2006ab). For photomicrograph comparisons of lamina III of the right DLPFC in an 

autistic male and age-matched male without autism see figure 6. For an example of 

photomicrographs with minicolumnar cores highlighted in an autistic patient and an age-

matched control see figure 7. 

Figure 6: Nissel stained micrographs of lamina III of the right dorsolateral 
prefrontal cortex (DLPFC) in autism and control. Left: cortical area 9, right 
hemisphere, lamina III from a 25-year-old man without autism Right: the same 
region from a 24-year-old autistic man. In the micrograph of the autistic individual 
there are more minicolurnns per image area and there is less space between columns. 
Scale bars measure 200/lm. (Casanova, 2007). 
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Figure 7: Gallocyanin-stain micrographs ofminicolurnns in Brodmann area 4, 
lamina III, in an autistic patient (bottom) and an age-matched control (top). Insets 
highlight the cores of minicolurnn illustrating the reduction in minicolurnnar width. 
Scale bars measure 200 flm on left and 50 Jlm on right. (Casanova et aI., 2006b). 
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Function and Connectivity of the Dorsolateral Prefrontal Cortex 

The dorsolateral prefrontal cortex (DLPFC) lies on the anterior part of the frontal 

lobe on the lateral side of the prefrontal region; it includes Brodmann's areas 9 and part 

of 46 (Figure 8). Historically, damage to the DLPFC resembled the effect oflesions to 

many subcortical areas, and this discovery along with the examination of neuronal 

connections lead to the discovery of the dorsolateral prefrontal circuit (Tekin & 

Cummings, 2002). 

Figure 8: The doroslateral 
prefrontal cortex (DLPFC) 
(BA 9 & BA 46) lies on 
the lateral side of the 
prefrontal region directly 
in front of motor (BA 4), 
premotor (BA 6), and 
frontal eye field (BA 8) 
areas. BA=Broadmann's 
Area 

The DLPFC circuit originates in the DLPFC and projects to a part of the striatum called 

the dorsolateral head of caudate nucleus. From this region neurons project to the lateral 

mediodorsal part of the globus pallidus intema and to the rostrolateral part of the 

substantia nigra. The neurons then move on to the parvocellular portions of the ventral 

anterior and mediodorsal thalamus and finally project back to the DLPFC (for a 

summary, see Tekin & Cummings, 2002). This sequence represents one of five circuits: 

The other circuits are the lateral orbitofrontal circuit, the anterior cingulate circuit, the 
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motor circuit, and the oculomotor circuit. All of these circuits project from the DLPFC 

and then traverse to the striatum, to the globus pallidus and substantia nigra, and then to 

the thalamus before returning to the DLPFC (Alexander, DeLong, & Strick, 1986). 

Figure 9 shows an example of the anatomy of the dorsolateral prefrontal circuit and its 

connectivity to the lateral orbitofrontal circuit (Figure 9). 

Dorsolateral 
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Figure 9: The anatomy of the 
dorsolateral prefrontal circuit 
and its connectivity to the 
lateral orbitofrontal circuit. 
The other circuits of the 
DLPFC (i.e., anterior 
cingulate, motor, and 
oculomotor) are analogous. 
V A= ventral anterior; MD= 
mediodorsal. (Tekin & 
Cummings, 2002) 

The fibers in each circuit originating from the DLPFC are mediated by excitatory 

glutamatergic neurotransmission and project to the striatum. Projections from the 

striatum to the globus pallidus and substantia nigra are mediated by GABA and are 

inhibitory. Projections from these regions to the thalamus are also mediated by GABA 

and are inhibitory. Finally, projections from the thalamus to the frontal cortex are 

excitatory, and are mediated by glutamate (see Tekin & Cummings, 2002). 

According to Ward (2006) the left DLPFC is involved in selecting a possible range of 

responses while suppressing inappropriate ones as well as manipulating the contents of 

working memory. The right DLPFC is involved in vigilance, sustained attention, and 
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monitoring information held in mind in conditions of uncertainty (Ward, 2006). Gray, 

Chabris, and Braver (2003) suggest the DLPFC processes attentional components of 

working memory, oversees decisions, and directs attention in a controlled manner (i.e., 

selective attention): Selective attention can be defined as the ability to focus on task­

relevant goals while excluding salient distracters (Matzel & Kolata, 2009). Gehring and 

Knight (2002) propose that one of the perceptual benefits afforded by the DLPFC is an 

inhibition of stimulations occurring on task irrelevant perceptual channels. 

According to Casanova et al. (2002ab, 2006ab) the DLPFC in autism contains an 

increased amount of cortical mini columns and these minicolumns have a significantly 

reduced amount of peripheral neuropil space. A lack of appropriate neuropil space and 

associated lateral inhibition (Seldon, 1981; Mountcastle, 1997) may adversely affect the 

functional distinctiveness of mini columnar activation and could result in enhanced 

localized activation in the context of a lack of associated inhibition (Rippon, Brock, 

Brown, & Boucher, 2007). In other words, an alteration in the balance between cortical 

excitation and inhibition at the level of the cortical mini column may amplify and distort 

cortical activation patterns leading to an increase in cortical 'noise'. In such over-wired 

networks signal is insufficiently differentiated from noise or task-irrelevant information, 

and as a result information capacity is drastically reduced (Belmonte & Yurgelun-Todd, 

2004; Rubenstein & Merzenich, 2003). 

Higher-than-normal noise in cortical processes also affects normal development of 

differentiated representations, because cortical response selectivity in space and time is a 

product of balanced inhibitory and excitatory processes (Casanova, 2006a). Such over­

representations by non-differentiated systems could plausibly account, for example, for 
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the strong aversive reactions to auditory, tactile, and visual stimuli that are commonly 

recorded in autistic individuals (Casanova, 2006a). Behaviorally speaking signal/sensory 

amplification may impair functioning, raise physiological stress, and adversely affect 

social interaction in patients with ASD (Ratey, 1997). 

Although interneurons are at the periphery of the mini column they playa prominent 

role in finely tuning cortical information processing (Levitt, Eagleson, & Powell, 2004; 

Casanova & Tillquist, 2008). For example, in mice targeted mutations reducing the 

number of GABAergic cells manifested seizures and complex behavioral disturbances 

(Levitt et aI., 2004). The phenotypic spectrum of these targeted mutations suggests a 

connection between GABAergic abnormalities and the pathophysiology of autism and 

other neurodevelopmental disorders (Levitt et aI., 2004; Casanova & Tillquist, 2008). 

Specifically within the prefrontal cortex disturbances in information processing provide 

for a brain which is less equipped to use learning as an adaptive strategy and has 

diminished resources (plasticity) to handle social interactionlbehaviors (Duffy & 

Cambell, 1994; Casanova et aI., 2006a). In fact, it has been shown that the prefrontal 

cortex interconnects with every distinct functional unit of the brain (Nauta, 1972) and the 

widely distributed network of connectivity accounts for the phenomenon of frontal lobe 

diaschisis, i.e., executive cognitive deficits in lesions distant to the anterior cortical region 

(Mesulam, 2002; Casanova et aI., 2006a). The many connections of the prefrontal cortex 

are essential for 'dissociating appearance from, significance, grasping changes of context, 

shifting from one mental set to another, assuming multiple perspectives, and comparing 

potential outcomes of contemplated actions' (Mesulam, 2000, p. 48; Casanova et aI., 

2006a). 
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Transcranial Magnetic Stimulation 

Transcranial magnetic stimulation (TMS) allows scientists to stimulate the brain 

noninvasively in alert, awake patients. The first TMS device that could stimulate focal 

regions of the brain was developed in Sheffield, England by A.T. Barker and colleagues 

in 1985 (Barker, Jalinous, & Freeston, 1985). TMS operates based on Faraday's law of 

electromagnetic induction (1831) which describes the process by which electrical energy 

is converted into magnetic fields and vice versa. The TMS apparatus achieves the 

induction of a magnetic field by using a power supply to charge capacitors which are then 

discharged through the TMS coil, and this creates a magnetic field pulse. The principle 

of electromagnetic induction proposes that a changing magnetic field induces the flow of 

electric current in a nearby conductor--in this case the neurons below the stimulation site. 

Typically TMS coils are designed to produce magnetic fields in the range of 1 tesla (T) 

which is powerful enough to cause neuronal depolarization: If the resting membrane 

potential (RMP) ofa neuron, about -70mV, is depolarized to about -40mV, NA+ channels 

open initiating an action potential (George & Belmaker, 2007). The focal point of 

stimulation is about 1 cm2 in area, and maximal induction is proposed at 90 degrees to the 

magnetic field. In body tissue the magnetic field induces a perpendicularly orientated 

electric field, or voltage difference, and charge is moved across an excitable cellular 

membrane creating a transmembrane potential (see George & Belmaker, 2007). We 

theorize that contrary to other inhibitory cells (i.e., basket and chandelier), whose 

projections keep no constant relation to the surface of the cortex, the geometrically exact 
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orientation of double-bouquet cells and their location at the periphery of the minicolumn 

(inhibitory surround) makes them an appropriate candidate for induction by a magnetic 

field applied parallel to cortex (Baruth et aI. , 201 Oa) (Figure 10). 
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Figure 10: We theorize that contrary to other inhibitory cells (i.e. , basket and 
chandelier), whose projections keep no constant relation to the surface ofthe cortex, 
the geometrically exact orientation of double-bouquet cells and their location at the 
periphery of the mini column (inhibitory surround) makes them an appropriate 
candidate for induction by a magnetic field applied parallel to cortex. 
CH=Chandelier; BC=Basket; DB= Double-Bouquet 

TMS can be administered in a single-pulse manner where single or paired pulses 

are delivered non-rhythmically and not more than once every few seconds or repetitively 

(rTMS) where pulses are delivered at specific frequencies in trains with precise inter-train 

intervals (ITI). Generally, single-pulse TMS is used for physiological research or 

diagnostic purposes while rTMS is used to alter the excitability and function of targeted 

areas of cortex. rTMS can be divided into low-frequency rTMS (:SIHz) and high-

frequency rTMS (> 1Hz), which categorically affect cortical excitability in different ways. 

Studies have shown that low-frequency or ' slow' rTMS (:SIHz) increases inhibition of 
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stimulated cortex (e.g., Boroojerdi et aI., 2000; Chen et aI., 1997; Maeda et aI., 2000; 

Muellbacher et aI., 2000; Ziemann, 2004 ), whereas high-frequency rTMS (> 1Hz) 

increases excitability of stimulated cortex (e.g., Di Lazzaro et aI., 2002; Maeda et aI. 

2000; Pascual-Leone et aI., 1994; Ziemann, 2004). For example, Chen et aI. (1997) 

reported that there was a 19.5% decrease in motor-evoked potential amplitude (MEP) 

following 15 minutes oflow-frequency rTMS application (0.9Hz) to the primary motor 

cortex, and this lasted for at least 15 minutes in healthy volunteers. Furthermore, Maeda 

et aI. (2000) reported significant inhibition of MEPs immediately following 1 Hz rTMS 

stimulation of the primary motor cortex (P<O.OOI) and significant facilitation ofMEPs 

immediately following 20 Hz rTMS stimulation of the primary motor cortex (P<O.OOI) in 

healthy volunteers. 

rTMS is a simple outpatient procedure lasting approximately 30 minutes. Patients 

are seated in comfortable, reclining chair and are fitted with a swim cap to outline the 

TMS coil position and aid in its placement for each session. Before the procedure begins 

the 'motor threshold' is determined in each patient. 'Motor threshold' is the intensity of 

the pulse delivered over the motor cortex that produces a noticeable motor response 

(George & Belmaker, 2007). Sensors are applied to the hand muscle (i.e., the first dorsal 

interosseous) opposite the site of stimulation and motor responses are monitored with 

physiological monitoring tools. The output of the machine is gradually increased by 5% 

until a 50llV deflection of the electromyograph or a visible twitch of the muscle is 

observed (George & Belmaker, 2007). Once the patient's 'motor threshold' is determined 

the coil is moved to the site of stimulation (e.g., the DLPFC) and the pulse intensity is 
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adjusted relative to the patient's 'motor threshold'. Common dosing schedules include 

one to two visits per week. 

IMS is generally regarded as safe without lasting side effects. Reported side 

effects include a mild, transient tension-type headache on the day of stimulation and mild 

discomfort due to the sound of the pulses (Ward, 2006); earplugs are recommended 

especially at higher frequencies of stimulation. Given the modulatory effect of rIMS on 

cortical excitability, there is a very small risk of inducing a seizure with rIMS (see 

Wasserman, 1996). Given this risk, participants with epilepsy or a family history of 

epilepsy are generally excluded of rIMS studies, and as a safety precaution, most rIMS 

studies adjust the stimulation intensity below the participants 'motor threshold' (e.g., 

90% of motor threshold). rIMS is generally considered safe for use in pediatric 

populations, as no significant adverse effects or seizures have been reported (see 

Quintana, 2005 for review) 

Putative Mechanisms of Low-Frequency rTMS 

As stated earlier, a number of studies, mainly on the primary motor cortex, have 

indicated that low-frequency or 'slow' rIMS (:SIHz) increases inhibition of stimulated 

cortex (e.g., Boroojerdi et aI., 2000; Chen et aI., 1997; Maeda et aI., 2000; Muellbacher et 

aI., 2000; Ziemann 2004 ), whereas high-frequency rIMS (> 1Hz) increases excitability 

of stimulated cortex (e.g., Di Lazzaro et aI., 2002; Maeda et aI. 2000; Pascual-Leone et 

aI., 1994; Ziemann, 2004). 
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Ihe parameter of frequency in direct electrical stimulation has been shown to 

parallel the effects of frequency in rIMS stimulation (Post et aI., 1997, 1999). Higher­

frequency direct electrical stimulation (> 10Hz) of neural tissue has been shown to 

produce long-term potentiation of trans synaptic signal propagation as well as the kindling 

of seizures. In contrast low- frequency direct electrical stimulation (1-5 Hz) has been 

shown to curtail synaptic transmission and is called long-term depression (see Hoffmann 

and Cavus, 2002). For example, in human neocortical slices long-term depression can be 

induced with low-frequency (1Hz) IS-minute stimulation oflayer IV afferents, and long­

term potentiation can be induced with high-frequency stimulation (40-1 OOHz) (Hoffmann 

and Cavus, 2002). 

Low-frequency direct stimulation has also been shown to reverse high-frequency 

induced potentiated synaptic responses; this is a phenomenon referred to as 

'depotentiation,' whereby synaptic weights are 'reset' to baseline levels; this has been 

proposed as the most relevant model for understanding the inhibitory effect of low­

frequency rIMS (Hoffmann and Cavus, 2002). For example, in slices of human temporal 

cortex I-Hz electrical stimulation has been shown to depotentiate already potentiated 

synapses (Chen et aI., 1996). Also, low-frequency electrical stimulation has been shown 

to depotentiate hippocampal long-term potentiation in rodent in vivo models (Kulla, 

Reyman, & Mahan-Vaughan, 1999; Staubli & Scafidi, 1999). 

Furthermore, it has been shown that both direct electrical stimulation and rIMS 

can contribute to naturally occurring neuroplasticity. Bliss and Gardner-Medwin (1973) 

showed that hippocampal long-term potentiation can endure over many weeks in 

unanesthetized rabbits with repeated stimulation trains. A number of more recent studies 
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have indicated that long-tenn depression is inducible with direct I Hz stimulation in the 

hippocampus and cortex of freely moving rats that can last for several days (Heynen, 

Abraham, & Bear, 1996; Manahan-Vaughan & Braunewell, 1999; Froc, Chapam, Irepel, 

& Racine, 2000). In awake cats I-Hz stimulation of the amygdala has been shown to 

cause depotentiation that lasted for several days with synaptic efficacy returning to a 

potentiated state roughly 70 days later (Adamec, 1999). Also, daily I-Hz electrical 

stimulation of the amygdala for 15 minutes over a week succeeded in suppressing kindled 

seizures in this brain region for 21 days (Weiss, Xiu-Li, Rosen, Li, Heynen, & Post, 

1995). Similiarily in IMS Chen et al. (1997) showed that the suppressive effects of low­

frequency rIMS on motor evoked potentials lasted up to 30 minutes after stimulation and 

Speer et al. (2000) found reduced cortical activation 3 days after a protocol of I-Hz rIMS 

in depressed patients. 

Additionally a number of studies have indicated that both low frequency direct 

electrical stimulation and low frequency trans cranial magnetic stimulation not only 

modulate regions proximal to stimulation but can induce transsynaptic effects presumably 

by functional connections. For example, low frequency rIMS of the left primary cortex 

reduces motor evoked potentials elicited by single-pulse IMS administered to the right 

primary motor cortex, which was putatively mediated by transcallosal projections 

(Wassennan, Wedegaertner, Ziemann, George, & Chen, 1998). Also, low-frequency 

rIMS application to the premo tor cortex was shown to reduce motor evoked potentials 

elicited by the primary motor cortex (Gerschlager, Siebner, & Rothwell, 2001) and 

Bohning et al. (1999) demonstrated increased activation both locally and in distant sites 

by using functional magnetic resonance imaging (fMRI) interleaved with I-Hz rIMS of 
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the motor cortex. As is evident low-frequency rIMS is analogous to low-frequency 

direct electrical stimulation in many respects. It may putatively be inferred that rIMS 

may operate by selectively depotentiating enhanced synaptic weights associated with 

pathological conditions and is capable of modulating functionally interconnected regions. 

At the level of the single neuron as well as at subcellular and molecular levels 

relatively little is known about the inhibitory mechanism of action oflow-frequency 

rIMS (George & Belmaker, 2007). However, it has been proposed that the effect of 

'slow' rIMS arises from increases in the activation of GAB A-dependent inhibitory 

interneuronal circuits (Pascual-Leone, Walsh, & Rothwell, 2000), and there is some 

speculative evidence this inhibitory activity may be mediated by GABA-B receptors. 

Gamma- aminobutyric acid (GABA) mediates synaptic inhibition in the brain and is 

modulated by a powerful uptake system that limits the spatial diffusion of GABA and the 

duration of inhibitory postsynaptic potentials (rpSps) (Isaacson, Solis, & Nicoll, 1993). 

GAB A-A receptors mediate a short-lasting cr dependent component of stimulation 

induced inhibitory rpsp whereas GABA-B receptors mediate a longer-lasting K+ 

dependent component (McCormick, 1992). 
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Figure 11: Little is known 
about the inhibitory 
mechanism of low-frequency 
rTMS. However, it has been 
proposed that the effect of 
' slow' rTMS arises from 
increases in the activation of 
GABA-dependent inhibitory 
interneuronal circuits 
(Pascual-Leone et aI. , 2000), 
and there is some speculative 
evidence this inhibitory 
activity may be mediated by 
GABA-B receptors (George 
& Belmaker, 2007) (Figure 
from Brambilla et aI. , 2003) 

A conditioning cortical magnetic pulse (S 1) either inhibits or facilitates the 

amplitude of a motor evoked potential (MEP) following a test stimulus (S2) depending 

on the interstimulus interval (Kujirai, et aI. 1993). It has been shown that at very short 

interstimulus intervals (e.g. , 40 ms) the test MEP is facilitated by SI whereas at longer 

interstimulus intervals the MEP is inhibited (Claus, Weis, Jahnke, Plewe, & Brunholzl, 

1992; Valls-Solt~, Pascual-Leone, Wassermann, & Hallett, 1992); this is termed long-

interval intracortical inhibition (LICI) . There is evidence that LIC! relates to activity at 

the GABA-B receptor as McDonnell, Orekhov, and Ziemann (2006) observed that 

intrathecal administration of the GABA-B receptor agonist Baclofen potentiated LIC!. It 

may be plausible to speculate that at higher frequencies rTMS may suppress the 

inhibitory activity of double-bouquet inhibitory interneurons selectively allowing 

excitatory drive to pyramidal cell outputs; whereas at lower frequencies (e.g. , 1 Hz) 

inhibitory activity may be expressed in double-bouquet inhibitory interneurons due to the 

temporal specifics of these intracortical inhibitory mechanisms. However, more studies in 
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animals are necessary to further elucidate the mechanism of rIMS at the cellular and 

subcellular levels. 
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CHAPTER 2: EARLY AND LATE EVENT-RELATED POTENTIALS 

Introduction 

Research methods measuring brain activity roughly fall into two categories: 

'electromagnetic' approaches that measure the activity of the brain directly by recording 

electromagnetic fields generated by neuronal populations, and 'hemodynamic' 

approaches that indirectly measure the activity of the brain by recording changes in 

vascular variables that are linked to changes in neural activity (Handy, 2005). Functional 

electrophysiology consists of the use of event-related potentials (ERPs), which represent 

scalp-recorded, transient changes in the electrical activity of the brain in relation to the 

onset of a stimulus, and provide a neurobiological measure of perceptual and cognitive 

processing. Compared to other functional imaging methodologies, such as fMRI and 

PET, ERPs are unique in that they provide the necessary temporal resolution to fully 

characterize the transient reorganization of coupled neuronal populations on a 

millisecond timescale (Rippon, et al. 2007). In fact, according to Jeste & Nelson (2009) 

ofneuroimaging tools used to elucidate brain circuitry, functional electrophysiology 

stands alone in the capacity to characterize early (i.e., in infancy) neural markers and 

endophenotypes (Jeste & Nelson, 2009), i.e. measures of abnormalities intermediate 

between genotypic vulnerability and the clinical expression of a disorder (Gottesman & 

Gould, 2003). Additionally, ERP recording is non-invasive and in some cases may be 
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acquired without attention or response requirements making them a useful diagnostic 

implement in young populations (Paavilainen, Tiitinen, Alho, & NiHWinen, 1993). 

ERPs consist of component waveforms spanning from as early as 50 ms post­

stimulus to up to 600-1000 ms post-stimulus. For example, in the components N100 and 

P200 the letter indicates the polarity and the number indicates the period after onset of 

the stimulus, i.e. 100 is in the 100-200 ms period (or earlier) and 200 is in the 200-300 ms 

period (Luck, Heinze, Mangun, & Hillyard, 1990; O'Donnel, Swearer, Smith, Hokama, 

& Mccarley, 1997). Generally components in the first 50- 200 ms are considered early, 

exogenous field potentials reflecting 'pre-attentive' processes and the processing of 

physical attributes of a stimulus (Coles & Rugg, 1995; Herrmann & Knight; 2001) while 

those after 200 ms represent endogenous field potentials reflecting polymodal associative 

processing and later stage attentional processes (e.g. sustained attention, perceptual 

closure) (Pritchard, 1981; Picton, 1992; Polich, 2003). 

Inferences may be made concerning the neural sources of ERP components based 

on the behavior being tested. For example, in a paradigm requiring explicit memory, one 

may assume that part of the generated ERP component reflects hippocampal function 

(Jeste & Nelson, 2009). Also, patients with brain lesions can allow researchers to make 

inferences about ERP source generation by evaluating changes in ERP components when 

specific brain structures are dysfunctional (Nelson, Collins, & Torres, 1991). 

Auditory processing abnormalities have been widely examined in ASD using 

ERPs (see Bomba & Pang, 2004 for review). Briefly, individuals with ASD have been 

shown to have normal brainstem auditory evoked potentials (AEPs) (Klin, 1993; 

Rosenhall, Nordin, Brantberg, & Gillberg, 2003). However, the most consistently 
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reported auditory ERP abnonnality is attenuated amplitude of the centroparietal P300 in 

various auditory stimulus presentation paradigms in ASD patients of all ages (Bruneau, 

Garreau, Roux, & Lelord, 1987). Also, the short-latency fronto-central NlOO has reliably 

been found to be attenuated in amplitude and latency during tasks involving target 

detection and tones of varying frequency and intensity (Lincoln, Courchesne, Hanns, & 

Allen, 1995; Bruneau, Roux, Adrien, & Barthelemy, 1999; Oades, Walker, Geffen, & 

Stern, 1988; Ferri et aI., 2003). Furthennore, the mismatch negativity (MMN), a large 

negative deflection occurring when frequent stimuli are subtracted from infrequent 

stimuli, has commonly been found to be prolonged in latency in response to pitch 

deviants (Seri, Cerquiglini, Pisani, & Curatolo, 1999; lansson-Verkasalo et aI., 2003; 

LepistO et aI., 2005). 

ERP studies of visual processing commonly employ an 'oddball' discrimination 

task of selective attention in which the participant responds to an infrequent target 

stimulus among more frequent non-target stimuli (Vohs et aI., 2008). Most investigations 

into visual processing in ASD have focused on higher-level, long-latency ERPs, like the 

P300 (Courchesne, Courchesne, Hicks, & Lincoln, 1985a; Courchesne, Lincoln, Kilman, 

& Galambos, 1985b; Courchesne, Lincoln, Yeung-Courchesne, Elmasian, & Grillon, 

1989; Verbaten, Roelofs, van Engeland, Kenemans, & Slangen, 1991; Kemner, van der 

Gaag, Verbaten, & van Engeland, 1999; Towensend et aI., 2001; Hoeksma, Kemner, 

Kenemans, & van Engeland, 2006). The P300 can be divided into the attention-orienting 

frontal P3a component and the sustained-attention centro-parietal P3b component 

(Katayama & Polich, 1998; Polich, 2003). Briefly the centro-parietal P300 amplitude 

(i.e., P3b) has been found to be similar (Courchesne, et aI. 1985ab, 1989; Hoeksma et aI., 
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2006) reduced (Verbaten et aI., 1991; Towensend et aI., 2001) and augmented (Kemner et 

aI., 1999) in ASD patients to target stimuli compared to controls. There have been fewer 

studies on early-stage (i.e., 50-200 ms) visual processing (see Jeste & Nelson, 2009 for 

review) especially in comparison to other psychopathologies like schizophrenia ( e.g., 

Doninger et at, 2000; Foxe, Doninger, & Javitt, 2001; Spencer, Dien, & Donchin, 2001; 

Butler & Javitt, 2005; Tendolkar, et at, 2005). 

Visual processing is based on a core system consisting of occipito-temporal 

regions in extrastriate visual cortex (Haxby, Hoffman, & Gobbini, 2001) although 

parietal (Posner & Petersen, 1990) and frontal (Clark, Fan, & Hillyard, 1995) regions also 

playa role in directing visual attention. The earliest electrical sign of cortical activity 

observed in humans (commonly referred to the PIOO) during visual tasks (Mangun, 1995) 

can occur as early as 50 ms post stimulus (Seeck et at, 1997) to as late as 160 ms 

depending on topography and visual task and reflects early categorization and recognition 

processes (Herrmann, Ehlis, Ellgring, & Fallgatter, 2005). The visual PIOO likely has 

posterior generators in the primary visual cortex, extrastriate areas (Tendolkar, et at, 

2005) and fusiform gyrus (Heinze et at, 1994), while the anterior PIOO likely reflects the 

activation of frontal generators (Clark et at, 1995). The PIOO may reflect early sensory 

processing of attended stimuli (Haxby et at, 2001) and is generally larger to attended 

visual stimuli thus giving evidence of orientated attention (Hillyard, Mangun, Woldorff, 

& Luck, 1995); for this study over parieto-occipital regions of interest this early visual 

component will be referred to as P50 instead ofPIOO. 

The visual N 1 00 directly follows the PI 00 and is similarly considered an index of 

stimulus discrimination (Hopf, Vogel, Woodman, Heinze, & Luck, 2002; Vogel & Luck, 
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2000). The N 1 00 is generally defined within a time window starting as early as 70 ms 

post stimulus onset (Courchesne et aI., 1985b) to as late as 180 ms post stimulus onset 

(Tendolkar, et aI., 2005). Over posterior electrode sites the visual N100 is probably 

generated by dipoles in lateral extrastriate cortex (Gomez-Gonzales, Clark, Fan, Luck, & 

Hillyard, 1994) with a contribution from parieto-occipital and occipito-temporal areas 

(Hopf et aI., 2002; Yamazaki et aI., 2000); while the visual N 100 over frontal electrode 

sites most likely is reflective of frontal generators (Clark et aI., 1995). The visual N 100 

generally is augmented during attentional stimulus processing, which is also know as the 

'N1-effect' (Hillyard, Hink, Schwent, & Picton, 1973), and is larger towards task­

relevant target stimuli (Luck et aI., 1990; Hillyard et aI., 1995). 

The visual P200 over frontal electrode sites is generally found in a latency range 

of 180- 320 ms post-stimulus and has been reported in working memory and attention 

tasks. Kenemans, Kok, and Smulders (1993) described this frontal positivity as a 

component that indexes the hierarchical selection of task-relevant features for further 

processing. Over inferior frontal recording sites source localization places dipoles of this 

component in the orb ito-frontal cortex (Potts, Liotti, Tucker, & Posner, 1996; Potts, Dien, 

Harty-Speiser, McDougl, & Tucker, 1998). The visual P200 over posterior regions has 

been less studied but likely is associated with generators in the primary visual cortex and 

extrastriate areas reflecting visual categorization processes. 

The visual N200 is a negative endogenous ERP component directly following the 

P200; it is mainly found in a latency range of 180-350 ms post-stimulus over centro­

parietal scalp locations (Naatanen, Gaillard, & Mantysalo 1978; Naatanen, Schrager, 

Karakas, Tervaniemi, & Paavilainen, 1993) but can be isolated over frontal regions as 
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well. Over centro-parietal scalp locations the visual N200 component is associated with 

categorization, perceptual closure and attention focusing ultimately signaling that a 

perceptual representation has been formed (Potts, Patel, & Azzam, 2004); it is enhanced 

if the presented stimulus contains a perceptual feature or attribute defining the target in 

the task. Over frontal channels the visual N200 can provide information about processes 

related to response conflict detection and processing, as well as inappropriate response 

inhibition (West, Bowry, & McConville, 2004; West, 2003); it is thought to originate 

from the anterior cingulate cortex (ACC) and prefrontal sources (Donkers & van Boxtel, 

2004). 

The P300 directly follows the N200 and is one of the most studied ERP 

components; it is elicited when a subject detects an unexpected (novel, rare) stimulus and 

consists of two components labeled P3a (fronto-central P300) and P3b (centro-parietal 

P300). The P3a (sometimes referred to as the novelty P300) is a fronto-central wave 

occurring within a time window of300 to 520 ms; it reflects an aspect of the orienting 

response and has been related to evaluative attentional processes (Hruby & Marsalek, 

2003; Polich, 2003). The P3b is a centro-parietal wave occurring between 320 and 560 

ms that has been linked to task-relevance and the decision- related character of the 

eliciting stimulus; it reflects memory-updating processes and/or processing closure 

(Picton, 1992). Source localization techniques have claimed that multiple brain areas are 

involved in the generation of the visual P3b: the hippocampus and parahippocampal 

areas, the insula, the temporal lobe, occipital cortex, and the thalamus (Goto, Brigell, & 

Parmeggiani, 1996; Herrmann & Knight, 2001; Mecklinger et aI., 1998; Rogers, Basile, 
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Papanicolaou, & Eisenberg, 1993). Most studies agree that the P3b has multiple dipole 

sources (Halgren, Marinkovic, & Chauvel, 1998; Knight, 1997; Townsend et aI., 2001 

The present study was designed to evaluate ERP indices of selective attention in 

individuals with ASD evoked at both early (i.e., 50-200 ms) and later (i.e., 200-600ms) 

stages of attentional processing using a three-stimuli visual 'oddball' task. The baseline 

hypothesis is that individuals with ASD will manifest deficits in early stages of visual 

processing shown by an augmentation of evoked potentials elicited by task-irrelevant 

distracter stimuli, and this will consequently disrupt stimulus discrimination at later­

stages as compared to the control group. Additionally, individuals with ASD will show 

evidence of compromised selective attention by having significantly different reaction 

times and error rates in motor responses to target stimuli. 

The second hypothesis is that after 6 sessions of low-frequency of 'slow' rTMS 

applied to the left dorsolateral prefrontal cortex (DLPFC) individuals with ASD will 

show significant improvement in ERP indices of selective attention as well as an 

improvement in reaction time and error rate. Mainly, there will be reduced amplitudes 

and latencies to irrelevant visual stimuli at early stages of visual processing and evidence 

of better stimulus discrimination at later stages. It may be proposed that that low­

frequency rTMS may have increased cortical inhibitory tone in the DLPFC and 

subsequently improved performance in the novelty processing task. TMS has the 

potential to become an important therapeutic tool in ASD treatment with few, if any side 

effects. 

33 



Material and Methods 

Participants 

Participants with ASD were recruited through the University of Louisville 

WeisskopfChild Evaluation Center. Diagnosis was made according to the Diagnostic and 

Statistical Manual of Mental Disorders (American Psychiatric Association, 2000; [DSM­

IV - TR] 4th ed., text rev.) and further ascertained with the Autism Diagnostic Interview­

Revised (LeCouteur, Lord, & Rutter, 2003). They also had a medical evaluation by a 

developmental pediatrician. All participants had normal hearing based on past hearing 

screens. Participants either had normal vision or wore corrective lenses. Participants with 

a history of seizure disorder, significant hearing or visual impairment, a brain 

abnormality conclusive from imaging studies, or an identified genetic disorder were 

excluded. All participants were assessed for IQ using the Wechsler Intelligence Scale for 

Children, Fourth Edition (Wechsler, 2003) or the Wechsler Abbreviated Scale of 

Intelligence (Wechsler, 2004). Controls were recruited through advertisements in the 

local media. All control participants were free of neurological or significant medical 

disorders; had normal hearing and vision; and were free of psychiatric, learning, or 

developmental disorders based on self- and parent reports. Participants were screened for 

history of psychiatric or neurological diagnosis using the Structured Clinical Interview 

for DSM-IV Non-Patient Edition (First, Spitzer, Gibbon, & Williams, 2001). Participants 

within the control and ASD groups were attempted to be matched by age, Full-Scale IQ, 

and socioeconomic status of their family. Socioeconomic status of ASD and control 
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groups was compared based on parent education and annual household income. 

Participants in both groups had similar parent education levels. 

Participating individuals and their parents (or legal guardians) were provided with 

full information about the study including the purpose, requirements, responsibilities, 

reimbursement, risks, benefits, alternatives, and role of the local Institutional Review 

Board. The consent and assent forms approved by the Institutional Review Board were 

reviewed and explained to all individuals who expressed interest to participate. All 

questions were answered before consent signature was requested. If the individual agreed 

to participate, she or he signed and dated the consent form and received a copy 

countersigned by the investigator who obtained consent. 

ERP Data Acquisition and Signal Processing 

Electroencephalographic (EEG) data were acquired using a 128 channel Electrical 

Geodesics Inc. (EGI) system (v. 200), consisting of Geodesic Sensor Net electrodes, Net 

Amps and Net Station software (Electrical Geodesics Inc., Eugene, OR) running on a 

Macintosh G4 computer. EEG data are sampled at 500 Hz and 0.1-200 Hz analog 

filtered. Impedances were kept <50 kQ, and according to the EGI Technical Manual 

(2003) impedances <50 ill are sufficient for recording quality EEG data; Ferree, Luu, 

Russell, and Tucker (2001) have suggested that modem high input impedance amplifiers 

and accurate digital filters for power noise provide excellent EEG signals in conjunction 

with scalp impedances of approximately 40 ill. 
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The Geodesic Sensor Net is a lightweight elastic thread structure containing 

Agi AgCl electrodes housed in a synthetic sponge on a pedestal. The sponges are soaked 

in a KCl solution to render them conductive. EEG data are recorded continuously. EEG 

channels with high impedance or visually detectable artifacts (e.g., channel drift, gross 

movement, etc.) were marked in 'on-line' mode using Net Station's event-marker tools 

and further removal was performed in 'off-line' mode using the Net Station Waveform 

Tool (NSWT). 

Stimulus-locked EEG data are segmented off-line into 1,000 ms epochs spanning 

200 ms pre-stimulus to 800 ms post-stimulus around the critical stimulus events resulting 

in three conditions: (1) rare target, (2) rare non-target distracter (novel), and (3) frequent 

non-target (standard). Data are digitally screened for artifacts (eye blinks, movements), 

and contaminated trials are removed using artifact rejection tools. The Net Station 

Waveform Tools' (NSWT) Artifact Detection module in 'off-line' mode rejects EEG 

channels if the fast average amplitude exceeds 200 /lV, the differential average amplitude 

exceeds 100 /lV, or if the channel has zero variance. Segments are rejected ifthey contain 

more than 10 bad channels or if eye blinks or movement are detected (>70 /l V). After the 

detection of 'rejected' channels, the NSWT's 'Bad channel replacement' function is used 

to replace rejected channel data with data interpolated from the remaining acceptable 

channels (or segments); this process uses spherical splines (for more information on the 

interpolation methods used in EGI Net Station systems refer to Fletcher, Kussmaul, & 

Mangun, 1996; Luu et al. 2001; Perrin, Pemier, Bertrand, Giard, & Echallier, 1987; 

Srinivasan, Tucker, & Murias, 1998). 
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The remaining data are digitally filtered using 60 Hz Notch and 0.3-20 Hz 

bandpass filters and are then segmented by condition and averaged to create ERPs. 

Averaged ERP data are baseline corrected and re-referenced into an average reference 

frame. All stimulus presentation and behavioral response collection is controlled by a PC 

computer running E-prime software (Psychology Software Tools Inc., PA). Visual 

stimuli are presented on a 15" display. Manual responses are collected with a 5-button 

keypad (Serial Box, Psychology Software Tools, Inc, PA). 

Three-Stimuli Visual 'Oddball' with Novel Distracters 

This test represents a traditional visual three-stimuli oddball task. Stimuli letters 

'X', '0', and novel distracters ('v', 'I\', '>' and '<' signs) are presented on the screen 

after a fixation mark '+'. One of the stimuli ('0') is presented on 50% of the trials 

(frequent standard); the novel stimuli stimulus (e.g., '>') is presented on 25% of the trials 

(rare distracter), whereas the third ('X') is presented on the remaining 25% of the trials 

representing the target (Figure 12). Subjects are instructed to press a key when they see 

the target letter on the screen. Each stimulus is presented for 250 ms, with aI, 1 00 ms 

inter-trial interval. There were 240 trials in total, and the complete sequence takes 20 

min. Participants with ASD were administered the three-stimuli 'oddball' test before 

(pre-TMS) and after (post-TMS) treatment. There was also a randomly assigned waiting­

list group where individuals with ASD were administered the three-stimuli 'oddball' test 

twice (with an 8-week interval) to control for the TMS treatment. Control participants 

were administered the three-stimuli 'oddball' test once. 
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Three-Stimuli 'Oddball' Task 
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Figure 12: Presented Stimuli of Traditional Visual Three­
Stimuli 'Oddball' Task. 

Motor Response Measures 

Motor response measures were mean reaction time (in ms) and response accuracy 

(percent of correct hits) to the target stimulus. 

Event-Related Potentials (ERP) 

ERP dependent measures were: adaptive mean amplitude and latency of the ERP 

peak (e.g., P3a, P3b) within a temporal window across a region-of-interest (ROI) (Figure 

13). ERP dependent variables included stimulus-averaged amplitudes and latencies of 

frontal ERP components: PIOO (40-80 ms post-stimulus), NIOO (80-180 ms), P200 

(180-320 ms), N200 (220- 350 ms), and P3a (300-520 ms); and posterior ERP 

components: P50 (40-100 ms), NIOO (120-180 ms), P200 (160-250 ms), and centro-

parietal N200 (N2b, 180- 320 ms) and P3b (320-560 ms). The frontal ROls for the PI00, 

NIOO, N200 and P3a components included the following EGI channels: left ROI-EGI 

channel 12, Fl, F3, FCI; midline ROI-FCz, Fz); right ROI-EGI channel 5, F2, F4, 
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FC2. The anterior-frontal ROI for the P2a component had more anterior scalp locations, 

including AF3, AF4, FPz, AFz and 4 neighboring EGI channels: 18, 19, 9, 10. The 

centro-parietal ROI for N2b and P3b components included the following EGI channels: 

left ROI-EGI channel 32, CP1 , PI , P3, EGI channel 54; midline ROI-CPz, Pz; right 

ROI- CP2, P2, P4, EGI channels 80 and 81. The early and middle latency ERP 

components (P50, N100, P200) were analyzed as well for parieto-occipital and occipital 

ROls (left- P07, 01 , EGI channels 65, 71; right- P08, 02, EGI channels 84, 91). 

Frontal negativities (N 1 00, N200) were analyzed separately for midline frontal and 

fronto-central ROIs (Fz, FCz, EGI channels 12, 5) and lateral frontal and fronto-central 

ROIs (left- F1 , FC1 , FC3, EGI channel 29; right- F2, FC2, FC4, EGI channel 118). 

128-Channel Geodesic Sensor Net 
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127 126 
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Left Frontal Right Frontal 26 18 15 
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Centro-

34 
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45 36 115 
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49 46 42 104 109 114 

47 103 

56 50 108 

Right 
Left Centro-
Centro- Parietal 
Parietal 

Right Left 
75 83 Parieto-Parieto- 74 89 Occipital Occipital 82 

Figure 13: Sensor layout of the 128-channel Geodesic net (EGI, Eugene, 
Oregon) with selected regions-of-interest (ROI) labeled. 
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TMS Procedure 

A trained electrophysiologist delivered rTMS using a Magstim Rapid (Model 

220) instrument (Magstim Corporation, Sheffield, England) with a 70-mm wing span 

figure-eight coil. Motor threshold (MT) was determined in all individuals by gradually 

increasing the output of the machine by 5% until a 50 IlV deflection or a visible twitch in 

the first dorsal interosseous (FDI) muscle was identified in two out of three trials of 

stimulation over the cortical area controlling the contralateral FDI. Electromyographic 

responses were monitored on a continuous basis with a C-2 1&1 Engineering 

physiological monitor (Poulsbo, W A). Motor-evoked potentials were recorded from the 

hand contralateral to stimulation using the C2 1&1 system with USE-2 Physiodata 

software applications. Heart rate, heart rate variability, skin conductance, and skin 

temperature were also recorded. EMG and other physiological recordings were stored for 

later analysis. Autistic patients were encouraged to visit the laboratory at least once 

beforehand to get familiar with the TMS procedure. 

The TMS treatment course was administered once per week for six weeks (a total 

of six 1 Hz rTMS treatments); the treatments were over the left DLPFC. The site for 

stimulation was found by placing the coil 5 cm anterior, and in a parasagital plane, to the 

site of maximal FDI stimulation. The figure-eight coil, with a 70-mm wing diameter was 

kept flat over the scalp. Participants were wearing a swimming cap on their head. 

Stimulation was done at 1Hz and 90% MT, with a total of 150 pulses / day (fifteen lO-s 

trains with a 20- to 30-s interval between the trains). 1Hz was selected as the stimulation 

frequency as studies have shown that low-frequency rTMS (:~1 Hz) increases inhibition 

of stimulated cortex (e.g., Boroojerdi et aI., 2000); there is also a lower risk for seizures 
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the lower the rTMS frequency. Selection of90% of the MT was based on the experience 

of numerous publications where rTMS was used for the stimulation ofDLPFC in 

different psychiatric and neurological conditions (for reviews, see Daskalakis, 

Christensen, Fitzgerald, & Chen, 2002; Gershon, Dannon, & Grunhaus, 2003; Greenberg, 

2007; Holtzheimer, Russo, & Avery, 2001; Loo & Mitchell, 2005; Rosenberg et aI., 

2002; Wassermann & Lisanby, 2001). The stimulation power was also kept below MT as 

an extra safety precaution due to the increased risk of seizure within this study 

population. The minimal number of TMS pulses during a TMS session has varied from 

30 to 2,000 pulses on a once-per-week over 8 weeks to twice-a-day basis over 10 days 

(Daskalakis et aI., 2002). It has been concluded that less than 100 pulses per session is 

not very promising in terms of therapeutic efficacy (see Helmich, Siebner, Bakker, 

Munchau, & Bloem, 2006, for review). 

Statistical Analysis 

Statistical analyses were performed on subject-averaged ERP and motor response 

data with subject averages being observations. The primary analysis model was the 

repeated measures ANOVA, with dependent variables being reaction time (RT), error 

rate and specific ERP components' amplitudes and latencies at selected ROIs. The data of 

each ERP dependent variable for each relevant ROI was analyzed using ANOV A with 

the following factors (all within participants): Stimulus (Target, Novel, Standard) and 

Hemisphere (Left, Right). The between-subject factors included the following group 

comparisons: baseline (ASD vs. controls), treatment (ASD pre-TMS vs. ASD post-TMS), 
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and wait-list (ASD Pre- WTL vs. ASD Post-WTL; i.e., no TMS). Post-hoc analyses were 

conducted where appropriate. A-priori hypotheses were tested with Student's t-tests. In 

all ANOY As Greenhouse-Geisser corrected P-values were employed where appropriate. 

SPSS v.14 and Sigma Stat 3.1 packages were used for statistical analysis. 

Results 

Participant Characteristics 

Twenty-eight autistic patients (ASD group) were enrolled, 25 male and 3 female, 

with a mean age of 12.9 ± 3.8 years. Eighteen of them were randomly assigned to active 

1.0 Hz TMS treatment (TMS group), whereas 10 were randomly assigned to the waiting­

list group (WTL group) (Figure 14). Mean age of participants in the TMS group was 12.8 

± 2.4 years and 13.5 ± 2.1 years in the waiting-list group. Twenty-five control 

participants were recruited (CNT group), 19 male and 6 female (Mage = 13.3 ± 4.4 

years) for a baseline comparison with 25 of the ASD group. There were no statistically 

significant age or IQ differences between the groups. 
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Figure 14: 28 autistic patients (ASD group) and 25 controls (CNT) 
were enrolled. 18 of the ASD group were randomly assigned to 
active TMS treatment (TMS group), whereas 10 were randomly 
assigned to the waiting-list group (WTL group). Control 
participants were administered the three-stimuli ERP test once for a 
baseline comparison with 25 of the ASD group. The ASD group 
was administered the three-stimuli ERP test before (pre-TMS) and 
after (post-TMS) treatment, and the WTL group was administered 
the test before and after an 8-week interval to control for the TMS. 

Baseline (Pre- TMS) Group Differences 

Parieto-occipital ERPs 

P50. Amplitude of the parieto-occipital P50 was significantly more positive in the ASD 

group to all stimuli especially over right ROI (Target, 2.30 ± 2.83 vs. 0.37 ± 1.31 ~ V, 

F=9.19, P=0.004; Standard, 1.96 ± 1.98 vs. 0.82 ± 1.79 ~V, F=4.44, P=0.040; Novel, 

2.54 ± 2.82 vs. 0.56 ± 2.03 ~V, F=8.02, P=0.007) (Figures 15 & 16). Latency of the 

parieto-occipital P50 was bilaterally reduced in the ASD group compared to controls to 

both target and novel stimuli (Target, 65.8 ± 25.9 vs. 81.4 ± 18.3 ms, F=5.86, P=0.019; 

Novel, 60.3 ± 28.9 vs. 83.9 ± 17.3 ms, F=12.192, P=0.001). 
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Parieto-Occipital P50 in ASO and Controls 
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Figure 15: Brain Electrical Source Software (BESA) 3D map of PSO amplitude 
and latency differences between ASD (N=2S) and CNT (N=2S) groups to novel 
stimuli. Notice PSO peak amplitude is more pronounced and latency is reduced 
in ASD compared to controls. 
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Parieto-occiptal P50 Amplitude to Novel Stimuli 
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Figure 16: Parieto-occipital P50 amplitude is significantly augmented to 
all stimuli in ASD group especially over right hemisphere (Novels, 
F=8.02 , P=O.007) . 

Frontal ERPs 

P 100. A Stimulus (Target, Standard) X Group (ASD, CNT) interaction reached 

significance over the right hemisphere and can be described as a prolonged latency to 

target stimuli compared to standards in the ASD group while controls showed a relatively 

prolonged latency to standards compared to targets (F=5.10 , P=O.028). 
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P200. P200 (P2a) latency was bilaterally prolonged to all stimuli in the ASD group 

compared to controls (Target, 241.1 ± 48.6 vs. 214.2 ± 33.3 ms, F=5.20, P=0.027; 

Standard, 238.9 ± 47.7 vs. 205.6 ± 23.5 ms, F=9.801 , P=0.003 ; Novel, 235.9 ± 44.3 vs. 

209.9 ± 27.6 ms, F=6.173 , P=0.017) (Figure 17). 

Frontal P200 Bilateral 'Latency to All Stimuli in AS D and C NT Groups 
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Figure 17: Frontal P200 latency is significantly delayed to all stimuli in 
the ASD group bilaterally (Target, F=5.20, P=0.027; Standard, F=9.801 , 
P=0.003 ; Novels, F=6.173 , P=0.017). 

N200. Amplitude of the N200 (N2a) was significantly less negative to novel stimuli in 

the ASD group compared to controls over the left hemisphere (-1.01 ± 3.24 vs. -3.11 ± 

3.06 )..lV, F=5.15 , P=0.028). Repeated measures analysis revealed a Stimulus (Target, 

Standard, Novel) X Group (ASD, CNT) interaction which can be described as a 
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significantly more negative N2a amplitude to targets in the ASD group compared to 

controls with a relatively less negative amplitude to standards and novels (F=3.35, 

P=0.039) (Figure 18); the ASD group showed minimal amplitude differences between 

standards and novels as compared to controls. N2a latency was bilaterally reduced to all 

stimuli in the ASD group compared to controls (Target, 283.5 ± 35.8 vs. 315.5 ± 39.0 ms, 

F=8 .56, P=0.005 ; Standard, 281.2 ± 29.1 vs. 315.3 ± 41.4 ms, F=10.842, P=0.002 ; 

Novel, 289.0 ± 34.9 vs. 318.1 ± 42.3 ms, F=6 .67, P=O.013). 

Frontal N200 (N2a) Amplitude to All Stimuli in ASD and eNT groups 
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Figure 18: Repeated measures analysis revealed a Stimulus (Target, Standard, 
Novel) X Group (ASD, CNT) interaction which can be described as a 
significantly more negative N2a amplitude to targets in the ASD group 
compared to controls with a relatively less negative amplitude to standards and 
novels (F=3 .35 , P=0.039); this implies augmented response (N2a) conflict to 
targets and decreased inappropriate response inhibition to standards and novels 
relative to controls. 
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P300. P300 (P3a) latency was bilaterally reduced to all stimuli in the ASD group 

compared to controls (Target, 408.0 ± 49.6 vs. 458.5 ± 59.1 ms, F=10.70, P=0.002; 

Standard, 409.9 ± 38.8 vs. 462.2 ± 64.3 ms, F=12.12, P=O.OOI ; Novel, 422.8 ± 46.9 vs. 

471.8 ± 45.0 ms, F=14.16, P~O.OOI) . Repeated measures analysis revealed a Stimulus 

(Target, Novel) X Group (ASD, CNT) interaction over the right hemisphere which can 

be described as reduced latency to novels relative to targets in the control group with a 

minimal latency difference between target and novel stimuli in the ASD group (F=6.99, 

P=O.OII) (Figure 19). 
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Figure 19: Repeated measures analysis revealed a Stimulus (Target, Novel) X 
Group (ASD, CNT) interaction over the right hemisphere which can be described as 
reduced latency to novels relative to targets in the control group with a minimal 
latency difference between target and novel stimuli in the ASD group (F=6.99, 
P=O.OII) Minimal P3a latency differences between target and novel stimuli in the 
ASD group implies evidence of a lack of stimulus discrimination. 
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Centro-Parietal ERPs 

There were no statistically significant (P~0.05) N200 (N2b) or P300 (P3b) amplitude or 

latency baseline differences elucidated between the ASD and control groups. 

Baseline (Pre- TMS) Motor Responses 

Reaction time (RT) between the ASD and control groups was not significantly different 

(M=459.3 ± SD 107.1 ms in ASD vs. 479.5 ± 90.6 ms in controls). However, the ASD 

group made significantly more errors compared to controls (8.50 ± 11.87% vs. 2.6 ± 

2.27%, F=4.66, P=.036), and this was mainly due to commission errors (6.0 ± 10.5% in 

ASD vs. 1.34 ± 1.14% in controls) (Figure 20). 
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Figure 20: Baseline analysis revealed the ASD group made significantly 
more errors in motor responses to target stimuli compared to controls 
(F=4.66, P=.036) 
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Post-TMS Group Differences 

Parieto-occipital ERPs 

P50. Amplitude of the parieto-occipital P50 was significantly reduced to novel stimuli 

over left ROI as a result ofTMS (2.87 ± 2.45 vs. 1.24 ± 1.89 )..lV, F=4.98, P=0.032) 

(Figure 22). Repeated measures analysis revealed a Stimulus (Target, Novel) X Group 

(Pre-TMS, Post-TMS) interaction over the left hemisphere indicating a significant 

increase in P50 amplitude to target stimuli with a decrease to novels as a result ofTMS 

(F=7.47 , P=O.OlO) (Figure 21). 

Left Parieto-occiptal P50 Amplitude before and after TMS (N=18) 
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Figure 21: Repeated measures analysis revealed a Stimulus (Target, Novel) X 
Group (Pre-TMS, Post-TMS) interaction over the left hemisphere indicating a 
significant increase in P50 amplitude to target stimuli with a decrease to novels 
as a result ofTMS (F=7.47, P=0.010); TMS minimized early cortical responses 
to irrelevant stimuli and improved discriminative perceptual processing. 
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Parieto-occipital PSO in ASO before and after TMS 
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Figure 22: Brain Electrical Source Software (BESA) grand average 3D Map ofP50 
amplitude differences to novel stimuli before and after TMS. Notice P50 peak 
amplitude is less pronounced to novel stimuli after TMS. 
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P200. A Stimulus (Target, Standard) X Group (Pre-TMS, Post-TMS) interaction 

revealed a significant increase in P200 (P2b) amplitude to target stimuli with a decrease 

to standards bilaterally as a result ofTMS (F=4.22, P=O.048) (Figure 23). 

Bilateral Parieto-occiptal P200 Amplitude after TMS (N=18) 
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Figure 23: A Stimulus (Target, Standard) X Group (Pre-TMS, Post-TMS) 
interaction revealed a significant increase in P200 (P2b) amplitude to target 
stimuli with a decrease to standards bilaterally as a result ofTMS (F=4.22, 
P=O.048); TMS minimized cortical responses to irrelevant stimuli at the stage of 
the P200 (P2b) improving stimulus discrimination. 
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Frontal ERPs 

PIOO. Amplitude of P 1 00 was significantly more positive to target stimuli over the right 

hemisphere as a result ofTMS (2.39 ± 3.34 vs. 4.93 ± 3.74 /lV, F=4.60, P=0.039) (Figure 

24). Latency ofPlOO significantly increased to target stimuli over the right hemisphere as 

a result ofTMS (86.3 ± 27.0 vs. 105.2 ± 25.6 ms, F=4.61, P=0.039). 

Right Frontal P100 Amplitude to Targets after TMS (N=18) 
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Figure 24: Amplitude ofPI00 was significantly more positive to target stimuli 
over the right hemisphere as a result ofTMS (2.39 ± 3.34 vs. 4.93 ± 3.74 /lV, 
F=4.60, P=0.039); this implies better orientation to targets and improved stimulus 
discrimination. 

NIOO. A Stimulus (Target, Novel) X Group (Pre-TMS, Post-TMS) interaction revealed a 

significantly more negative amplitude to target stimuli with a less negative amplitude to 

novels bilaterally as a result ofTMS (F=4.13, P=0.05); this interaction was especially 

significant over the right hemisphere (F=6 .22, P=0.018) (Figure 25 & 26). 
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Figure 25: Brain Electrical Source Software (BESA) grand average 3D Map of 
NlOO amplitude differences to target stimuli as a result ofTMS. Notice NIOO peak 
amplitude is more negative to target stimuli after TMS. 
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Figure 26: A Stimulus (Target, Novel) X Group (Pre-TMS, Post-TMS) 
interaction revealed a significantly more negative amplitude to target stimuli 
with a less negative amplitude to novels bilaterally as a result ofTMS (F=4.13 , 
P=0.05); this interaction was especially significant over the right hemisphere 
(F=6.22 , P=0.018) ; this implies better orientation to targets and improved 
stimulus discrimination. 

N200. Latency ofN200 (N2a) significantly increased over the right hemisphere to 

standards as a result ofTMS (271.3 ± 28.8 vs. 307.9 ± 45.8 ms, F=8.08 , P=0.008). 
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P300. P300 (P3a) latency bilaterally increased to all stimuli as a result ofTMS (Target, 

402.1 ± 52.6 vs. 472.0 ± 36.5 ms, F=21.43 , P::;O.OOI; Standard, 409.8 ± 42.8 vs. 451.2 ± 

64.1 ms, F=5.096, P=0.031 ; Novel, 424.4 ± 49.3 vs. 466.7 ± 48.2 ms, F=6.76, P::;0.014) 

(Figure 27). 

Bilateral Frontal P300 (P3a) Latency before and after TMS (N=18) 
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Figure 27: P300 (P3a) latency bilaterally increased to all stimuli as a result ofTMS 
(Target, F=21.43 , P::;O.OOI; Standard, F=5.096, P=0.031 ; Novel, F=6.76, P::;0.014); 
prolonged P3a latency may imply improvement in conscientious attention and 
evaluative accuracy. 
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Centro-Parietal ERPs 

There were no statistically significant (P:S0.05) N200 (N2b) or P300 (P3b) amplitude or 

latency changes elucidated as a result of TMS. 

Post-TMS Motor Responses 

RT between the ASD Pre-TMS (N=18) and ASD Post-TMS (N=18) groups was not 

significantly different following rTMS (471.9 ± 109.4 ms in pre-ASD vs. 472.8 ± 78.3 

ms in post-ASD). There was an improvement in response accuracy following rTMS 

treatment, but the difference did not reach significance (5.44 ± 7.4% before rTMS vs. 2.2 

± 1.5% after rTMS, F=3.30, P=.078). The waiting-list group did not show any 

differences in RT and accuracy with repeated tests (422.3 ± 89.1 ms in ASD pre- WTL 

vs. 444.8 ± 103.4 ms in ASD post-WTL, F=0.272, P=0.609, 7.04 ± 12.71 % in ASD pre­

WTL vs. 7.9 ± 13.06% in ASD post-WTL, F=0.022, P=.883) (Figure 28). 
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Motor Response Accuracy to Target Stimuli in TMS and WTL Groups 
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Figure 28: There was an improvement in response accuracy following rTMS 
treatment; however, the difference did not reach significance (F=3.30, P=.078). The 
waiting-list did not show any significant changes in response accuracy following the 
waiting period (F=O.022, P=.883); in fact, there was a slight increase in error 
percentage. 

Discussion 

The baseline hypothesis was that individuals with ASD would manifest deficits in 

early stages of visual processing shown by an augmentation of evoked potentials elicited 

by task-irrelevant distracter stimuli, and this will consequently disrupt later-stage 

stimulus discrimination as compared to the control group. Additionally, individuals with 
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ASD would show evidence of compromised selective attention by having significantly 

different reaction times and error rates in motor responses to target stimuli. The second 

hypothesis was that after 6 sessions of low-frequency of' slow' rTMS applied to the left 

dorsolateral prefrontal cortex (DLPFC) individuals with ASD will show significant 

improvement in ERP indices of selective attention as well as an improvement in reaction 

time and error rate. Mainly, there will be reduced amplitudes and latencies to irrelevant 

visual stimuli at early stages of visual processing and evidence of better stimulus 

discrimination at later stages. 

The baseline findings indicate that parieto-occipital P50 amplitude was 

significantly more positive in the ASD group to all stimuli compared to controls 

especially over right ROI, and the latency of the parieto-occipital P50 was bilaterally 

reduced in the ASD group compared to controls to target and novel stimuli. The early 

P50 potential in visual tasks is associated with the sensory processing of attended stimuli 

and is generally larger to attended stimuli (Hillyard et aI., 1995). These results may point 

to sensory over reactivity in individuals with ASD in early stages of visual processing 

with a lack of stimulus discrimination. The finding of over reactivity to all stimuli in this 

study may reflect deficits in cortical inhibitory processes where no pattern can emerge to 

dominate and constrain perceptual processing. Also, these results likely reflect the 

findings of altered inhibitory control of sensory intake (Khalfa et aI., 2004), sensory 

overload (Ratey & Johnson, 1997), and hypersensitivity (Charman, 2008) in ASD. 

Over frontal ROI there was a prolonged PIOO latency to target stimuli compared 

to standards in the ASD group while controls showed a relatively prolonged latency to 

standards compared to targets. It may be suggested that ASD patients are abnormally 
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orientating to task irrelevant stimuli, and this may prolong the processing of targets. 

Additionally, over frontal ROI P200 latency was bilaterally prolonged to all stimuli in the 

ASD group compared to controls. The P200 over frontal ROI has been associated with 

the hierarchal selection of task-relevant features, and in ASD prolonged latencies of this 

component may reflect a delay in this process. In ASD globally augmented cortical 

responses at very early stages of visual processing (e.g., parieto-occipital PSO) may be 

complicating stimulus discrimination at later stages of processing, for example at the 

stage of the P200. 

N200 amplitude over frontal ROI was significantly more negative to targets in 

the ASD group compared to controls with a relatively less negative amplitude to 

standards and novels. Additionally, the ASD group showed minimal amplitude 

differences between standards and novels as compared to controls, and N200 latency was 

bilaterally reduced to all stimuli in the ASD group. The visual N200 over frontal channels 

can provide information about processes related to response conflict detection and 

processing, as well as inappropriate response inhibition (West et al. 2004; West, 2003); it 

is thought to originate in part from the anterior cingulate cortex (ACC). An augmented 

amplitude of this component to target stimuli in ASD may reflect inappropriate inhibition 

in response to the salient stimulus as controls appropriately showed an augmentation of 

this response to irrelevant stimuli (i.e. novels and standards) relative to targets. Minimal 

amplitude differences between standards and novels and bilaterally reduced latency of the 

frontal N200 to all stimuli in the ASD group may point to an attenuated and imprecise 

mode of processing conflicting responses. 
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P300 latency was bilaterally reduced to all stimuli in the ASD group compared to 

controls and repeated measures analysis revealed a reduced latency to novels relative to 

targets in the control group with a minimal latency difference between target and novel 

stimuli in the ASD group. The frontal P300 (P3a) (sometimes referred to as the novelty 

P300) is a frontocentral positive wave associated with evaluative attentional processes 

and orienting to novel stimuli (Hruby & Marsalek 2003; Polich 2003). Reduced P3a 

latencies and a minimal latency difference between target and novel stimuli in the ASD 

group may reflect attenuated and impaired evaluative attentional processes as compared 

to controls. 

Baseline reaction times between ASD and control groups were not significantly 

different. However, the ASD group made significantly more errors compared to controls; 

this was mainly due to commission errors (i.e., responses to wrong stimulus). Sensory 

hyperreactivity in individuals with ASD at early stages of visual processing may be 

consequently disturbing stimulus discrimination at the stage of the motor response. 

The baseline results indicate that in ASD cortical responses may be augmented 

and indiscriminative at early stages of visual processing, and this may result in ineffective 

later-stage stimulus discriminatory processes; this may be related to an inundation of 

higher level integrative centers with task-irrelevant information. There were no 

statistically significant baseline N200 (N2b) or P300 (P3b) amplitude or latency 

differences detected between the ASD and control groups which may imply minimal 

group differences at the stage of processing closure; however, this finding confounds 

with the significantly higher percentage of motor response errors in the ASD group. 
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After six sessions oflow-frequency rTMS to the left DLPFC the amplitude of the 

parieto-occipital P50 was significantly reduced to novel stimuli over left ROI and 

repeated measures analysis indicated a significant increased in P50 amplitude to target 

stimuli with a decrease to novels over the left hemisphere. As the P50 reflects early 

sensory processing of attended stimuli (Haxby et aI., 2001) and is generally larger to 

attended visual stimuli thus giving evidence of orientated attention (Hillyard et aI., 1995), 

six sessions oflow-frequency rTMS may have reduced sensory over reactivity and 

improved discriminative perceptual processing. Also over parietal-occipital ROI there 

was a significant increase in P200 (P2b) amplitude to target stimuli with a decrease to 

standards bilaterally as a result of TMS. A reduction in augmented cortical responses at 

very early stages of visual processing (i.e., P50) may have consequently improved 

stimulus discrimination at the stage of the P200 as well. 

Over frontal ROI P100 amplitude and latency significantly increased to target 

stimuli over the right hemisphere as a result ofTMS. Also, N100 amplitude was 

significantly more negative to target stimuli and less negative to novels bilaterally over 

frontal ROI as a result ofTMS. As both the P100 and NlOO over frontal ROI are 

generally larger to task-relevant target stimuli (Hillyard et aI., 1995; Luck et aI., 1990) 

thus giving evidence of orientated attention, TMS may have improved early cortical 

responses to relevant stimuli while minimizing responses to irrelevant stimuli leading to 

improved selective attention. 

Latency ofN200 (N2a) significantly increased over right frontal ROI to standards 

and P300 (P3a) latency bilaterally increased to all stimuli over frontal ROI as a result of 

TMS. While latencies of both the N200 and P300 over frontal ROI were significantly 
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reduced to all stimuli in the ASD group relative to controls in the baseline comparison, 

TMS may have prolonged evaluative attentional processes thereby leading to improved 

accuracy and a more conscientious process of stimulus discrimination. 

There was an improvement in response accuracy following rTMS treatment, but 

the difference did not reach significance (i.e., P=.078); the waiting-list group actually had 

a slightly higher percentage of errors following the waiting period. The improvement in 

response accuracy approaches statistical significance as a result of TMS, but a larger 

sample size in future studies may be needed to detect this effect. 

Overall, the results indicate that in ASD cortical responses may be augmented and 

indiscriminative at early stages of visual processing, and this may result in ineffective 

later-stage stimulus discriminatory processes. Six sessions oflow-frequency rTMS may 

have reduced augmented cortical responses at very early stages of visual processing (i.e., 

P50) and subsequently improved stimulus discrimination and evaluative attentional 

processes at later stages (e.g., P2b, P3a). 

It has been proposed that neural systems in the brains of individuals with ASD are 

often inappropriately activated (e.g., Belmonte & Yurgelin-Todd, 2003), and there is a 

disruption in the ratio between cortical excitation and inhibition (Casanova et at., 2002ab; 

Casanova, 2006ab; Rubenstein & Merzenich, 2003). Higher than normal cortical 'noise,' 

and a lack of cortical inhibitory tone may explain in part the findings of amplified and 

indiscriminative cortical activity at early stages of visual processing. Low-frequency 

rTMS may have putatively altered the disrupted ratio of cortical excitation and inhibition 

in ASD and subsequently minimized amplified early-stage cortical activity. As the 

DLPFC is involved in selecting a possible range of responses while suppressing 
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inappropriate ones, manipulating the contents of working memory (Ward, 2006), and 

directing attention in a controlled manner (Gray et aI., 2003), low-frequency rIMS may 

have subsequently depotentiated enhanced synaptic weights in this area of cortex thereby 

improving selective attention and executive function within in this population. 
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CHAPTER 3: EVOKED AND INDUCED GAMMA OSCILLATION POWER 

Introduction 

Electroencephalography (EEG) is the measurement of the summation of 

postsynaptic currents via scalp electrodes, and the oscillatory frequency ranges of the 

postsynaptic currents can be divided into delta (0-4Hz), theta (4-8Hz), alpha (8-12Hz), 

beta (12-30Hz) and gamma (30-80Hz) frequencies (Handy, 2005). 

Electroencephalography is directly related to the postsynaptic activity of the neocortex 

(Murias, Webb, Greenson, & Dawson, 2007), and high-frequency EEG oscillations (12-

80Hz) are generated in neuronal networks involving excitatory pyramidal cells and 

inhibitory GABAergic intemeurons (Whittington, Traub, Kopell, Ermentrout, & Buhl, 

2000). According to Grothe and Klump (2000) networks of inhibitory intemeurons act as 

GAB A-gated pacemakers and are critically involved in generation of gamma EEG 

oscillations. Specifically, the generation of normal gamma oscillations directly depends 

on the integrity of the connections of GABAergic intemeurons within cortical 

minicolurnns (Whittington et aI., 2000). According to Orekhova (2007) high frequency 

EEG oscillations can be attenuated by the application of GABAergic drugs (e.g. 

benzodiazepines or barbiturates), which may be attributed to an increase in the 

GABAergic contribution of mini columnar inhibitory intemeurons. 
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According to Orekhova (2007) epilepsy is common in individuals with autism, 

and some studies indicate as high as a 44% comorbidity rate of autism and seizure 

disorder (Tuchman & Rapin, 2002; Amaral et aI., 2008). In fact, Levitt et ai. (2004) 

found that mutations in mice reducing GABAergic interneuron activity manifested 

seizures and behavioral disturbances. Among individuals with primary generalized 

epilepsy EEG oscillation in the gamma range exceeds that of healthy individuals by 3 to 

10 times (Willoughby et ai. 2003). Even autistic individuals lacking seizures are at a 

higher risk of manifesting epileptiform EEG abnormalities (Baird, Robinson, Boyd, & 

Charman, 2006; Chez et aI., 2006; Lewine et aI., 1999; Tuchman & Rapin, 1997). The 

high concurrence of epileptiform abnormalities and ASD suggest that autistic individuals 

as well may be susceptible to increased high frequency EEG oscillations, and according 

to Rubenstein and Merzenich (2003) a higher occurrence of gamma EEG oscillations in 

children with autism suggests an imbalance in the ratio between cortical excitation and 

inhibition. 

Electrophysiological research has provided evidence that gamma activity is a 

physiological indicator of the coactivation of cortical cells engaged in processing visual 

stimuli (Keil, Gruber, & Muller, 2001; Singer & Gray, 1995; Tallon-Baundry & 

Bertrand, 1999) and integrating different features of a stimulus (Muller, Gruber, & Keil, 

2000). The onset of a visual stimulus gives rise to a burst of gamma activity over 

occipital sites, and when more complex tasks are undertaken, discrete bursts of gamma 

activity have been identified overlying cortical regions thought to be engaged in those 

tasks (Brown, Gruber, Boucher, Rippon, & Brock, 2005). For example, tasks involving 

attention modulation or the top-down integration of features give rise to simultaneous 

66 



bursts of gamma over frontal and occipito-parietal regions (MUller et aI., 2000; MUller & 

Gruber, 2001; Rodriguez et aI., 1999). Kanizsa illusory figures (Kanizsa, 1976) have 

been shown to readily produce gamma oscillations during visual cognitive tasks 

(Hermann, Mecklinger, & Pfeifer, 1999; Tallon-Baundry, Bertrand, Delpuech, & Pemier, 

1996): Kanizsa stimuli consist of inducer disks of a shape feature and either constitute an 

illusory figure (square, triangle) or not (colinearity feature); in nonimpaired individuals, 

gamma activity has been shown to increase during 'target-present' compared to 'target­

absent' trials (Brown et aI., 2005; MUller et aI., 1996; Tallon- Baundry et aI., 1996). 

Gamma band activity can be divided into either evoked or induced: Evoked 

gamma band activity has been identified at a latency of around 100 ms after stimulus 

onset (Bertrand & Tallon-Baundry, 2000; Herrmann & Mecklinger, 2000) and is highly 

phase locked to the onset of the stimulus; induced gamma band activity occurs later with 

a variable onset, although it has been reported to start at around 250 ms (Brown et aI., 

2005). It has been proposed that evoked gamma band activity reflects the effect of 

attention on early visual processing and the binding of perceptual information within the 

same cortical area (i.e., intra-areal), whereas induced gamma band activity reflects the 

later binding of feed-forward and feed-back processing in a whole network of cortical 

areas (corticocortical; Brown et aI., 2005; MUller et aI., 2000; Shibata et aI., 1999). 

Variations of such activity have been termed event-related synchronization and 

desynchronization (Pfurtscheller & Aranibar, 1977) or Event Related Spectral 

Perturbations (Makeig, Debener, Onton, & Delorme, 2004) and have been associated 

with the activation of task-relevant neuronal assemblies (Pfurtscheller & Lopes da Silva, 

1999; Rippon et aI., 2007). 
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A number of studies have found abnormal gamma band activity in individuals 

with ASD. Brown et al. (2005) showed that autistic participants had higher parietal 

gamma power than controls in an experiment using Kanizsa, visual illusions; in addition, 

in this study, individuals with ASD showed a very early burst of gamma activity between 

80 and 120 ms, and later gamma (around 300 ms) was found to occur earlier and be more 

powerful in the autistic patients. Grice et al. (2001) compared gamma band activity over 

frontal regions during a face discrimination task in adults with Autism and controls. The 

control participants showed clear discriminative increases in frontal gamma activity when 

the faces were presented upright compared to inverted, whereas in the autistic group the 

extent of gamma activity did not differ significantly between the upright and inverted 

faces. These findings suggest that in ASD gamma activity is augmented and 

indiscriminative. According to Brown et al. (2005) this may reflect decreased 'signal to 

noise' due to decreased inhibitory processing: Uninhibited gamma activity suggests that 

none of the circuits in the brain can emerge to dominate and constrain perceptual 

processing because too many of them are active simultaneously. 

Theoretically contrary to other inhibitory cells (i.e., basket and chandelier), 

whose projections keep no constant relation to the surface of the cortex, the geometrically 

exact orientation of double-bouquet cells and their location at the periphery of the 

minicolumn (inhibitory surround) makes them an appropriate candidate for induction by 

a magnetic field applied parallel to cortex. Over a course of treatment, slow rTMS may 

selectively depotentiate enhanced synaptic weights associated with pathological 

conditions, and in the case of ASD it may lower the ratio of cortical excitation to cortical 

inhibition. 
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It may therefore be hypothesized that individuals with ASD will show amplified 

and indiscriminative gamma power in response to illusory figures reflecting 'noisy' and 

uninhibited cortical activity at early (i.e., evoked) and later (i.e., induced) stages of visual 

processing. In addition, 12 sessions of bilateral, slow rTMS stimulation applied to the 

dorsolateral prefrontal cortices (DLPFC) will attenuate amplified gamma activity and 

improve discriminatory gamma activity between relevant and irrelevant visual stimuli 

(i.e., target vs. non-target stimuli). 

Materials and Methods 

Participants 

Participants with ASD were recruited through the University of Louisville 

Weisskopf Child Evaluation Center. Diagnosis was made according to the Diagnostic and 

Statistical Manual of Mental Disorders (American Psychiatric Association, 2000; [DSM­

IV-TR] 4th ed., text rev.) and further ascertained with the Autism Diagnostic Interview­

Revised (LeCouteur et al., 2003). They also had a medical evaluation by a developmental 

pediatrician. All participants had normal hearing based on past hearing screens. 

Participants either had normal vision or wore corrective lenses. Participants with a history 

of seizure disorder, significant hearing or visual impairment, a brain abnormality 

conclusive from imaging studies, or an identified genetic disorder were excluded. All 

participants were assessed for IQ using the Wechsler Intelligence Scale for Children, 

Fourth Edition (Wechsler, 2003) or the Wechsler Abbreviated Scale of Intelligence 

(Wechsler, 2004). 
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Controls were recruited through advertisements in the local media. All control 

participants were free of neurological or significant medical disorders; had normal 

hearing and vision; and were free of psychiatric, learning, or developmental disorders 

based on self- and parent reports. Participants were screened for history of psychiatric or 

neurological diagnosis using the Structured Clinical Interview for DSM-IV Non-Patient 

Edition (First et aI., 2001). Participants within the control and ASD groups were 

attempted to be matched by age, Full-Scale IQ, and socioeconomic status of their family. 

Socioeconomic status of ASD and control groups was compared based on parent 

education and annual household income. Participants in both groups had similar parent 

education levels. 

Participating individuals and their parents (or legal guardians) were provided with 

full information about the study including the purpose, requirements, responsibilities, 

reimbursement, risks, benefits, alternatives, and role of the local Institutional Review 

Board. The consent and assent forms approved by the Institutional Review Board were 

reviewed and explained to all individuals who expressed interest to participate. All 

questions were answered before consent signature was requested. If the individual agreed 

to participate, she or he signed and dated the consent form and received a copy 

countersigned by the investigator who obtained consent. 

EEG Data Acquisition and Signal Processing 

Dependent measures in EEG gamma band were recorded continuously with an 

EGI (Electrical Geodesics, Inc., Portland, OR) 128-electrode net, referenced to vertex 

(impedances <50 kohm; sampling rate 500 Hz; 0.1-200 Hz online bandpass). EEG was 
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segmented to obtain epochs of 0-180 ms for evoked gamma power and 250-450 ms for 

induced gamma power. Extraction of gamma band power (30-45 Hz) in 30 trials for each 

stimulus type was performed with MorIet wavelet analysis (Goupillaud, Grossman, & 

MorIet, 1984) using MAT LAB. The following channels were selected: FPz (EGI 

channels to left (18) and right (15) ofFPz) and AFz (16) from the midline prefrontal area, 

Fl (20), F2 (4), F7 (34), F8 (122) from the frontal area, and P3 (53), P4 (87), P7 (59), P8 

(92) from the parietal area (Figure 29); this channel configuration allowed for the 

analysis of gamma band activity over both hemispheres. All recorded signals were first 

automatically and then manually inspected for artifacts and rejected if eye movement 

artifacts, gross movements, or EEG sensor drifts were detected. For automatic detection, 

the standard in a moving time window and the normalized cross-correlation coefficient 

between the current recoded signal and previous succeeded trials were computed; the 

current recorded signal was rejected if thresholds exceeded two standard deviations or 

exceeded normalized cross correlation. The standard deviation threshold was in the 35-

50 /lV range, and normalized cross-correlation was approximately 0.5. To accurately find 

the features that discriminate autistic participants from controls and autistic participants 

before and after rTMS using recorded EEG signals, relative power of gamma (i.e., 30-45 

Hz) within the entire spectrum was calculated. 

Kanizsa Illusory Figure Test 

In this task participants have to respond with a button-press to rare (25% 

probability) Kanizsa squares (targets) among Kanizsa triangles (rare nontarget distracters, 
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25% probability) and non-Kanizsa figures (standards, 50% probability). The stimuli are 

presented for 250 ms with inter-trial intervals varying in the range of 1,100 to 1,300 ms. 

A fixation point (cross) was presented during inter-trial intervals. Black figures were 

displayed on a white background on a flat 19-in. color LCD. 

128-Channel Geodesic Net 
Channel Configuration 

Figure 29: Sensor layout of the 128-channel Geodesic net (EG!, 
Eugene, Oregon) with selected channels labeled (Baruth et aI. , 20 lOa) 
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Participants were instructed to press the first button on a five-button keypad with 

their right index finger when a target appears and ignore when the non-target Kanizsa or 

standard stimuli appear. All stimulus presentation and behavioral response (reaction time 

[RT], accuracy) collection was controlled by a PC computer running E-prime software 

(Psychology Software Tools, Sharpsburg, PA). Participants were instructed to remain as 

still as possible with their eyes on the fixation mark and to refrain from blinking. Autistic 

patients had at least one session for EEG net conditioning and getting familiar with the 

experimental room. 

The stimulus types used in the experiment were Kanizsa square (target), Kanizsa 

triangle (nontarget), non-Kanizsa square, and non- Kanizsa triangle (standards). The non­

target Kanizsa triangle is introduced to differentiate the processing of Kanizsa figures and 

targets. The stimuli consist of either three or four inducer disks, which are considered the 

shape feature, and they either constitute an illusory figure (square, triangle) or not 

(collinearity feature; Figure 30). One block of 240 trials was presented. Participants with 

Autism were administered the Kanizsa, illusory figure test before (pre-TMS) and after 

(post-TMS) treatment. There was also a randomly assigned waiting-list group where 

individuals with ASD were administered the same Kanizsa illusory figure test twice (with 

an 8-week interval) to control for the TMS treatment. Control participants were 

administered the Kanizsa illusory figure test once. 
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Kanizsa Illusory Figures 
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Figure 30: Kanizsa and non-Kanizsa figures were used as stimulus material in this 
experiment. In particular, the stimulus types are Kanizsa square (target), Kanizsa 
triangle, non-Kanizsa square, and non-Kanizsa triangle. The non-target Kanizsa 
triangle is introduced to differentiate processing of Kanizsa figures and targets. 
The stimuli consist of either three or four inducer disks which are considered the 
shape feature, and they either constitute an illusory figure (square, triangle) or not 
( collinearity feature) . 

TMS Procedure 

A trained electrophysiologist delivered rTMS using a Magstim Rapid (Model 

220) instrument (Magstim Corporation, Sheffield, England) with a 70-mm wing span 

figure eight coil. Motor threshold (MT) was determined for each hemisphere in all 

individuals by gradually increasing the output of the machine by 5% until a 50 ~ V 

deflection or a visible twitch in the First Dorsal Interosseous (FDI) muscle was identified 

in two out of three trials of stimulation over the cortical area controlling the contralateral 

FDI. Electromyographic responses were monitored on a continuous base with a C-2 1&1 

Engineering physiological monitor (Poulsbo, WA). Motor-evoked potentials were 
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recorded from the hand contralateral to stimulation using the C2 J&J system with USE-2 

Physiodata software applications. Heart rate, heart rate variability, skin conductance, and 

skin temperature were also recorded. EMG and other physiological recordings were 

stored for later analysis. Autistic patients were encouraged to visit the laboratory at least 

once beforehand to get familiar with the TMS procedure. 

The TMS treatment course was administered once per week for 12 weeks (a total 

of twelve 1Hz rTMS treatments); the first 6 treatments were over the left DLPFC, and 

the remaining 6 were over the right DLPFC. The site for stimulation was found by 

placing the coil 5 cm anterior, and in the parasagittal plane, to the site of maximal FDI 

stimulation. The figure-eight coil, with a 70-mm wing diameter was kept flat over the 

scalp. Participants were wearing a swimming cap on their head. Stimulation was done at 

1Hz and 90% MT, with a total of 150 pulses / day (fifteen lO-s trains with a 20- to 30-s 

interval between the trains). 1Hz was chosen as the stimulation frequency as studies have 

shown that low-frequency rTMS (:::;1 Hz) increases inhibition of stimulated cortex (e.g., 

Boroojerdi et aI., 2000); there is also a lower risk for seizures the lower the rTMS 

frequency. Selection of 90% of the MT was based on the experience of numerous 

publications where rTMS was used for the stimulation of DLPFC in different psychiatric 

and neurological conditions (for reviews, see Daskalakis et aI., 2002; Gershon et aI., 

2003; Greenberg, 2007; Holtzheimer et aI., 2001; Loo & Mitchell, 2005; Rosenberg et 

aI., 2002; Wassermann & Lisanby, 2001). The stimulation power was kept below MT as 

an extra safety precaution due to the increased risk of seizure within this study 

population. The minimal number of TMS pulses during a TMS session has varied from 

30 to 2,000 pulses per session on a once-per-week over 8 weeks to twice-a-day basis over 
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10 days (Daska1akis et aI., 2002). It has been concluded that less than 100 pulses per 

session is not very promising in terms of therapeutic efficacy (see Helmich et aI., 2006 

for review). 

Statistical Analysis 

Statistical analyses were performed on participant-averaged EEG data with the 

participant averages being the observations. The primary analysis model was the repeated 

measures analysis of variance (ANOVA), with dependent variables being relative gamma 

power at the 11 selected EEG channels just described. Relative gamma power at the 

selected EEG channels was analyzed using ANOVA with stimulus (target, non-target, 

standard) and hemisphere (left, right) as factors (all within participants); differences in 

anterior and posterior relative gamma power were also analyzed. For hemispheric 

differences the following channel combinations were compared: left and right lateral 

frontal (F7, F8); left and right medial frontal (F 1, F2); left and right lateral parietal (P7, 

P8); left and right medial parietal (P3, P4). For anterior and posterior differences the 

following channel combinations were compared: lateral left anterior and posterior (F7, 

P7); medial left anterior and posterior (F1, P3); lateral right anterior and posterior (F8, 

P8); medial right anterior and posterior (F2, P4). The between-subject factors included 

the following group comparisons: baseline (ASD vs. controls), treatment (ASD pre-TMS 

vs. ASD post-TMS), and wait-list (ASD Pre-WTL vs. ASD Post-WTL; i.e., no TMS). 

For all ANOVAs, Greenhouse-Geisser corrected p values were employed where 

appropriate. SPSS v.14 and Sigma Stat 3.1 packages were used for statistical analysis. 
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Results 

P artic ipant Characteristics 

Twenty-five autistic patients (ASD group) were enrolled, 21 male and 4 female, 

with a mean age of 13.8 ± 4.3 years. Sixteen of them were randomly assigned to active 

1.0 Hz TMS treatment (TMS group), whereas 9 were randomly assigned to the waiting-

list group (WTL group) (see Figure 31). Mean age of participants in the TMS group was 

13.9 ± 5.3 years and 13.5 ± 2.0 years in the waiting-list group. Mean Full-Scale IQ score 

for children with ASD was 86.0 ± 24.7. The mean Full-Scale IQ of the active TMS group 

was not significantly different from the randomly assigned waiting-list group. Twenty 

control participants were recruited (CNT group), 12 male and 8 female (Mage = 15.3 ± 

5.1 years). There were no statistically significant age or IQ differences between the 

groups. 
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Figure 31: 25 autistic patients (ASD group) and 20 Controls (CNT) 
were enrolled. 16 of the ASD group were randomly assigned to 
active TMS treatment (TMS group), whereas 9 were randomly 
assigned to the waiting-list group (WTL group). The ASD group was 
administered the Kanizsa, illusory figure test before (pre-TMS) and 
after (post-TMS) treatment, and the WTL group was administered the 
test before and after an 8-week interval to control for the TMS. 
Control participants were administered the Kanizsa illusory figure 
test once for a baseline comparison. 
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Baseline (Pre- TMS) Group Differences 

Evoked and Induced EEG activity 

One-way ANOY A analysis revealed that evoked gamma power was significantly 

higher to target Kanizsa stimuli at all channels in the control group compared to the ASD 

group (p<.OO 1). A Stimulus (target, non-target) X Group (ASD, control) interaction was 

significant at all channels (p<.OO 1) indicating significantly higher evoked gamma power 

to target Kanizsa stimuli compared to non-target Kanizsa stimuli in controls, whereas the 

ASD group had a minimal difference in evoked gamma power between target and 

non-target Kanizsa stimuli actually demonstrating more gamma power to non-targets 

(Figure 32). An analysis of differences in evoked gamma power between anterior and 

posterior regions revealed a Topography (anterior, posterior) X Group (ASD, control) 

interaction over the left hemisphere to all stimuli where controls had higher evoked 

gamma power over frontal (F7) compared to posterior (P7) regions (F=5.4891, p=.024), 

whereas the ASD group showed a negligible difference with slightly higher evoked 

gamma power over posterior (P7) regions. There were no significant hemispheric 

differences elucidated between ASD and control groups in evoked gamma power 

during baseline analysis. Additionally, analysis revealed no significant baseline group 

differences in induced gamma power between the ASD and control groups (Figures 33 & 

34). 
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Baseline Evoked Gamma Power t Frontal Sites (Fl . F2) 
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Figure 32: Relative evoked gamma power at frontal sites (FI , F2) in control (N=20) 
and Autism Spectrum Disorder (ASD) groups (N=25) to target and non-target stimuli. 
Note. Controls have significantly higher evoked gamma power to target Kanizsa 
stimuli compared to the ASD group (p<.OO I) with more of a pronounced difference 
between target and non-target stimuli (Baruth et aI., 2010a). 
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Baseline Frontal Gamma Power in Controls (N=20) 
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Figure 33: Average amplitude of evoked and induced gamma oscillations in 
response to non-target and target Kanizsa stimuli in control participants (N=20) 
over left lateral frontal EEG recording sites (F7, Fl, AFZ). Single-trial EEG was 
averaged across 30 trials in each condition (non-target, target). 
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Baseline Frontal Gamma Power in ASO Group (N=16) 
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Figure 34: Baseline average amplitude of evoked and induced gamma oscillations 
in response to non-target and target Kanizsa stimuli in ASD participants (N= 16) 
over left lateral frontal EEG recording sites (F7, F1 , AFZ). Single-trial EEG was 
averaged across 30 trials in each condition (non-target, target) . 
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Post-TMS Group Differences 

Evoked and Induced EEG activity 

One-way ANOV A analysis revealed that evoked gamma power significantly increased to 

target Kanizsa stimuli at all channels as a result ofrTMS treatment (p<.OOI). A Stimulus (target, 

non-target) X Group (pre-rTMS, post-rTMS) interaction was significant at all channels (p<.OOI) 

indicating increases in evoked gamma power to target stimuli with a decrease to non-targets 

following treatment (Figures 35 & 36). There were no significant, topographic (hemisphere, 

anterior vs. posterior) differences revealed following rTMS treatment. Also, there were no 

significant differences in induced gamma power revealed as a result of rTMS. The waiting­

list group (i.e., ASD patients with an 8-week interval between Kanizsa, illusory figure tests with 

no rTMS treatment) did not show significant evoked gamma power increases to target Kanizsa 

stimuli at any channels following the waiting period. In fact, they showed the opposite effect at 

two posterior EEG channels: Evoked-gamma power decreased to targets following the waiting 

period at P4 (F=9.455, p=.008) and P7 (F=5.862, p=.029). In addition, repeated measures analysis 

revealed significant Stimulus (target, nontarget) X Group (prewait, postwait) interactions at FI, 

F2, P3, P4 (all ps<.05) indicating a significant increase in evoked gamma power to non-targets 

with a slight decrease to targets following the waiting period (Figure 37). There were significant 

differences in induced gamma power revealed following the waiting period. 
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Figure 35: Relative evoked gamma power at frontal sites (F1, F2) in 
pretranscranial magnetic stimulation (TMS; N= 16) and post-TMS groups 
(N=16) to target and non-target stimuli. Note. Relative evoked gamma power 
significantly increases to target stimuli (p<.OO 1) with more of a pronounced 
difference between target and non-target stimuli as a result of repetitive TMS 
(Baruth et aI., 201Oa). 
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Frontal Gamma Power in ASO before and after TMS (N=16) 
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Figure 36: Average amplitude of evoked and induced gamma oscillations in 
response to non-target and target Kanizsa stimuli in participants with Autism 
Spectrum Disorder before (N=l6) and after repetitive trans cranial magnetic 
stimulation (rTMS; N=l6) over left lateral frontal EEG recording sites (F7, Fl , 
AFZ). Single-trial EEG was averaged across 30 trials in each condition (non-target, 
target). 
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Frontal Gamma Power in ASO before and after Waiting-Period (N=9) 
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Figure 37: Average amplitude of evoked and induced gamma oscillations in 
response to non-target and target Kanizsa stimuli over left lateral frontal EEG 
recording sites (F7, Fl, AFZ) in participants with Autism Spectrum Disorder 
before and after (N=9) an 8-week waiting period. Single-trial EEG was averaged 
across 30 trials in each condition (non-target, target). 
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Reported Side Effects of TMS 

Before each session participants and their primary caregivers were asked if any 

side effects were experienced as a result of their previous TMS session. The most 

commonly (i.e., 5 of 16 in active TMS group) reported side effect was an 'itching' 

sensation around the nose during stimulation. One participant reported a mild, transient 

tension-type headache on the day of stimulation. There was no discomfort reported due to 

the sound of the pulses. Overall, no participants reported any lasting side effects. 

Discussion 

Our hypothesis was that individuals with ASD would show amplified and 

indiscriminative gamma power in response to illusory figures at early (i.e., evoked) and 

later (i.e., induced) stages of visual processing and that 12 sessions of bilateral, slow 

rTMS would attenuate amplified, gamma activity and improve discriminatory gamma 

activity between relevant and irrelevant visual stimuli. Our results indicate that prior to 

rTMS individuals with ASD had a minimal difference in evoked gamma power between 

target and non-target Kanizsa stimuli at all channels. In fact, evoked gamma power 

responses were slightly larger in response to non-target Kanizsa stimuli relative to 

targets. In contrast the control group had a significantly higher evoked gamma power to 

target Kanizsa stimuli compared to non-target Kanizsa stimuli showing clear differences 

in visual stimulus discrimination. In addition, the control group showed a greater 

difference in evoked gamma power between frontal and parietal regions to all stimuli 

over the left hemisphere: Controls had more frontal as compared to parietal gamma 
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activity, whereas the ASD group showed negligible topographic differences. These 

baseline findings are similar to the findings of Grice et aI. (2001) where individuals with 

Autism did not show significant differences in frontal gamma activity during the 

processing of upright and inverted faces, whereas control participants showed clear 

discriminative increases in frontal gamma activity when the faces where presented 

upright compared to inverted. These findings also correspond to our previous 

investigation (Sokhadze, EI-Baz, Baruth, et aI., 2009b) where we found positive 

differences in gamma oscillation power (i.e., 30-80 Hz, 0-800 msec) between target and 

non-target Kanizsa stimuli where decreased, especially over the lateral frontal (F7, F8) 

and parietal (P7, P8) EEG sites, in adolescents and young adults with ASD; this was 

mainly due to significant increases in gamma power at all recording sites, especially 

evoked gamma (i.e., -100 ms) over frontal channels, to non-target Kanizsa stimuli 

compared to controls. 

It has been argued that evoked gamma band activity reflects the effect of attention 

on early visual processing (Herrmann & Mecklinger, 2000) and sensory-memory 

matching processes (Herrmann, Munck, & Engel, 2004). In addition, evoked gamma 

activity has been associated with the binding of perceptual information within the same 

cortical area, as compared to the feed-forward and feed-back processing (i.e., over a 

whole network of cortical areas) associated with induced gamma oscillations. Our 

baseline results indicate that in ASD evoked gamma activity is not discriminative of 

stimulus type, whereas in controls early gamma power differences between target and 

non-target stimuli are highly significant. 
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There are a few plausible explanations as to why the gamma response does not 

allow for discrimination between stimuli in ASD. It is well known that ASD is associated 

with amplified responses to incoming sensory information. Studies suggest that the neural 

systems of individuals with ASD are overactivated (Belmonte & Yurgelun-Todd, 2003), 

and there is a lack of cortical inhibitory tone (e.g., Casanova et aI., 2002a; Casanova et 

aI., 2002b; Casanova et aI., 2006a; Rubenstein & Merzenich, 2003). Deficits in cortical 

inhibitory processes and poor signal-to-noise ratios may result in increased simultaneous 

activity of competing local networks where no pattern can emerge to dominate and 

constrain perceptual processing. In a network that is overactivated and 'noisy,' local 

cortical connectivity may be enhanced at the expense oflong-range cortical connections 

and individuals with ASD may have difficulty directing attention: It may not be possible 

for them to selectively activate specific perceptual systems based on the relevance of a 

stimulus (i.e., target vs. nontarget). 

Our previous findings investigating event-related potentials (ERPs) during a 

novelty processing task further supports the idea of difficulty discriminating task-relevant 

from irrelevant stimuli in ASD (see Baruth, Casanova, Sears, & Sokhadze, 20IOb; 

Sokhadze, Baruth, et aI., 2009a). Briefly, we found that participants with ASD showed a 

lack of stimulus discrimination between target and non-target stimuli compared to 

controls, and this was mainly due to significantly augmented ERP components to 

irrelevant distracter stimuli over frontal and parietal recording sites. Early ERP 

components (e.g., P50, NIOO) were especially increased to irrelevant distracter stimuli in 

the ASD group indicating augmented responses at early stages of visual processing (i.e., 

~IOO ms). Early gamma components (i.e., evoked) are measured at the same time over 
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the same cortical regions as these early ERP components. The very early burst of gamma 

activity between 80 and 120 ms found by Brown et ai. (2005) and our findings of 

augmented evoked gamma activity and early ERP responses (Baruth et aI., 2010b; 

Sokhadze, Baruth, et aI., 2009a) to task irrelevant stimuli support the idea of disturbances 

in the activation task-relevant neuronal assemblies and the perceptual control of attention 

in ASD. Although we found significant group differences in relative evoked gamma 

power in processing relevant and irrelevant visual stimuli in this study, it is important to 

mention why we did not find significantly amplified relative evoked gamma power in the 

ASD group compared to controls. We attribute this to the fact that relative gamma band 

power is calculated in reference to the entire EEG spectrum, and in ASD it has previously 

been shown that other frequency ranges are augmented as well (e.g., Dawson, Klinger­

Grofer, Panagiotides, Lewy, & Castelloe, 1995; Stroganova et aI., 2007). 

Additionally we did not find significant baseline differences in induced gamma 

power between the ASD and control groups. This may be related to the fact that induced 

gamma band activity occurs later (i.e., ~250 ms) (Brown et aI., 2005) and is less 

reflective of sensory processing as ASD has been associated with overactivated sensory 

systems (Belmonte & Yurgelun-Todd, 2003). Consequently when gamma activity is 

calculated relative to the entire spectrum in ASD the difference between gamma power 

and the power of other frequency ranges may be better elucidated at early stages of 

processing (i.e. evoked). 

Our findings after 12 sessions of bilateral rTMS to the DLPFC showed that 

evoked gamma power significantly increased to target Kanizsa stimuli in the ASD group 

at all channels. Furthermore, repeated measures analysis revealed highly significant 
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increases in evoked gamma power to target stimuli with a slight decrease to non-targets 

following treatment. Individuals with ASD showed significant improvement in 

discriminatory gamma activity between relevant and irrelevant visual stimuli following 

rTMS treatment. These findings corroborate with our previous study (Sokhadze, El-Baz, 

Baruth, et aI., 2009b) where we found that six sessions of slow (i.e., 0.5 Hz) rTMS 

significantly reduced gamma power (i.e., 30-80 Hz, 0-800 ms) to non-target stimuli, 

thereby improving discriminatory gamma activity. As mentioned earlier in nonimpaired 

individuals, gamma activity has been shown to increase during 'target-present' compared 

to 'target-absent' trials (Brown et aI., 2005; MUller et aI., 1996; Tallon-Baundry et aI., 

1996). Our findings show that before rTMS individuals with ASD are unable to 

selectively activate evoked gamma activity based on the relevance of a stimulus, which 

may reflect 'noisy' perceptual processing and a reduction in cortical inhibitory tone; this 

may be related to the strong aversive reactions to sensory stimuli commonly recorded in 

autistic individuals. Twelve sessions of bilateral, slow rTMS applied to the DLPFC 

significantly improved differences in discriminatory gamma activity at early stages of 

visual perception. We hypothesize that slow rTMS increased inhibitory tone by 

selectively activating double-bouquet cells at the periphery of cortical minicolumns, 

and over a course of treatment attenuated noisy and amplified cortical activity improving 

discriminatory gamma activity. 

The randomly assigned waiting-list group (i.e., ASD patients with an 8-week 

interval between Kanizsa, illusory figure tests and no rTMS treatment) did not show 

significant improvement in discriminatory gamma activity. In fact, at two posterior EEG 
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channels (i.e., P4, P7) evoked gamma power significantly decreased to target stimuli 

following the waiting period and repeated measures analysis revealed significant 

increases in evoked gamma power to non-targets with a slight decrease to targets at 

frontal and parietal channels (i.e., F1, F2, P3, P4). Moreover, the waiting-list group 

showed the opposite effect as compared to the active rTMS group validating the effect of 

rTMS and discrediting any effect of practice. 

Methodologically speaking, the 30-45 Hz portion of the gamma band has been 

especially associated with visual information processing and attentional perceptual 

mechanisms (e.g., Muller et aI., 2000). Refining our method of analysis to isolate 

this portion of the gamma band relative to the entire EEG spectrum (i.e., percentage 

of relative gamma power) proved to be a useful approach in isolating this activity 

and avoided any complications due to power line interference. This methodological 

approach is in contrast to our previous study (Sokhadze, EI-Baz, Baruth, et aI., 2009b) 

where we calculated gamma band power between 30-80 Hz. Overall our updated method 

of analyzing gamma band activity is better defined and adjusted to effectively assess 

group differences in discriminatory gamma activity. 

Our study had some limitations that should be addressed. We included 3 

participants older than 17, which increased the standard deviation of age for our ASD 

participants. For future studies we are limiting our enrollment to include only children 

and young adults between the ages of 8 and 17. In addition, we enrolled 2 participants 

who were previously diagnosed as mentally retarded, and this increased the standard 

deviation of IQ for the ASD group. Despite these limitations, all participants were able 

to perform the required tasks. 
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In conclusion, there is sunnounting evidence of augmented and indiscriminative 

cortical activity at early-stages of visual processing in individuals with ASD. In this study 

we showed that in ASD evoked gamma activity is not discriminative of stimulus type, 

whereas in controls early gamma power differences between target and nontarget stimuli 

were highly significant. In a network that is overactivated and 'noisy,' it may not be 

possible for individuals with ASD to selectively activate specific perceptual systems 

based on the relevance of a stimulus (i.e., target vs. non-target). Following 12 sessions of 

bilateral slow rIMS treatment individuals with ASD showed significant improvement in 

discriminatory gamma activity between relevant and irrelevant visual stimuli; slow rIMS 

may have increased cortical inhibitory tone and improved differences in evoked gamma 

activity between stimuli by attenuating amplified cortical activity. Our preliminary 

findings suggest rIMS has the potential to become a unique therapeutic tool capable of 

addressing some of the core symptoms of ASD. Considering the few therapeutic options 

currently available for ASD, IMS is a welcome option capable of playing an important 

role in improving the quality of life for many with the disorder. 
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CHAPTER 4: BEHAVIORAL FINDINGS 

Introduction 

As stated earlier Autism is considered to be an etiologically heterogeneous and 

biologically determined developmental disorder characterized by severe disturbances in 

reciprocal social relations, impaired development of language and communication skills 

and by a limited repertoire of behavioral patterns with a restricted ability of abstraction 

(American Psychiatric Association, 2000; [DSM-IV-TR] 4th ed., text rev.). The term 

autism spectrum disorder (ASD) is used to encompass three conditions sharing a similar 

core symptomatology: Autism, Asperger syndrome, and Pervasive Developmental 

Disorder Not Otherwise Specified (PDD-NOS). Individuals with ASD share common 

behavioral characteristics (see Charman, 2008). First, they have qualitative impairments 

in social interaction. These impairments are manifested by the use of nonverbal 

behaviors to regulate social interaction, a failure to develop peer relationships, a 

deficiency in the spontaneous sharing of interests and a lack of emotional reciprocity. 

Secondly, ASD patients show qualitative impairments in social communication. These 

deficits are generally indicated by delayed language development without nonverbal 

compensation, problems starting and sustaining conversations, stereotyped language, and 

a lack of imagination in their play. 
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Thirdly, individuals with ASD also show a limited compilation of interests, 

behaviors, and activities. Impairments of this nature manifest themselves by an abnormal 

overfocus on certain topics, adhering to nonfunctional routines, the display of stereotyped 

motor mannerisms and a preoccupation with object parts rather than the complete whole. 

According to Cannon et aI. (2010) repetitive and stereotyped behavior in ASD includes 

both repetitive sensory-motor actions and insistence on sameness. Repetitive sensory­

motor actions include 'hand and finger mannerisms', 'unusual sensory interests', 'repetitive 

use of objects', 'complex mannerisms' and 'rocking'. Insistence on sameness includes 

'difficulties with minor changes in personal routine or environment', 'resistance to trivial 

changes in environment' and 'compulsions/rituals'. Finally, it has been reported that 

individuals with ASD have abnormal reactions to the sensory environment (Charman, 

2008) and perceptual abnormalities (Happe', 1999) including aversive reactions to visual, 

auditory, and/or tactile stimuli (Casanova et aI., 2003). 

Stigler, Erikson, Mullett, Posey, and McDougle (2010) add that individuals with 

ASD often exhibit severe irritability such as aggression, self injurious behavior, and 

tantrums which can impact quality of life and participation in formal education. Also, 

according to Murray (2010) ASD is frequently marked by symptoms consistent with 

attention-deficit/hyperactivity disorder (ADHD), namely inattention, hyperactivity, and 

impulsivity. Recent work has established that about half of the ASD population also 

meets diagnostic criteria for ADHD, although the comorbid diagnoses are precluded by 

the DSM-IV-TR. Individuals with co-occurring ASD and ADHD symptoms are more 

severely impaired, with significant deficits seen in social processing, adaptive 

functioning, and executive control (Murray, 2010). 
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It may be hypothesized that 12 sessions of bilateral, slow rTMS stimulation 

applied to the dorsolateral prefrontal cortices (DLPFC) will improve cortical inhibitory 

tone and decrease the ratio of cortical excitation to inhibition in ASD which may not only 

modulate regions proximal to stimulation but induce trans synaptic effects. Behaviors 

associated with ASD and prefrontal cortical function may be improved as intemeurons 

playa prominent role in finely tuning cortical information processing and disturbances in 

prefrontal cortical function include disturbances in social interaction, executive function, 

and cognitive control (Levitt et aI., 2004; Casanova, 2006a; Ward, 2006); this includes 

planning, cognitive flexibility, abstract thinking, rule acquisition, initiating appropriate 

actions and inhibiting inappropriate actions, and selecting relevant sensory information 

(Stuss & Knight, 2004). 

Material and Methods 

Participants 

Participants with ASD were recruited through the University of Louisville 

Weisskopf Child Evaluation Center. Diagnosis was made according to the Diagnostic and 

Statistical Manual of Mental Disorders (American Psychiatric Association, 2000; [DSM­

IV-TR] 4th ed., text rev.) and further ascertained with the Autism Diagnostic Interview­

Revised (LeCouteur et aI., 2003). They also had a medical evaluation by a developmental 

pediatrician. All participants had normal hearing based on past hearing screens. 

Participants either had normal vision or wore corrective lenses. Participants with a history 

of seizure disorder, significant hearing or visual impairment, a brain abnormality 
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conclusive from imaging studies, or an identified genetic disorder were excluded. All 

participants were assessed for IQ using the Wechsler Intelligence Scale for Children, 

Fourth Edition (Wechsler, 2003) or the Wechsler Abbreviated Scale of Intelligence 

(Wechsler, 2004). 

Pre- and Post- TMS Behavioral Measures 

Social and behavioral functioning for participants was evaluated utilizing caregiver 

reports and clinician ratings of improvement. Participants were evaluated prior to 

receiving TMS and 2 weeks following treatment. There was also a waiting-list group with 

an eight week interval (i.e., no TMS) between behavioral assessments to control for 

TMS. The following were the included measures: 

Aberrant behavior checklist (ABC). The ABC (Aman & Singh, 1994) is a clinician 

administered rating scale assessing five problem areas: Irritability, Lethargy/Social 

Withdrawal, Stereotypy, Hyperactivity, and Inappropriate Speech based on caregiver 

report. Each area contains multiple items receiving a rating from 0 to 3. Items are 

summed and high scores for each area reflect severity of the problem area. The ABC has 

been shown to be effective in assessing behavior changes in Autism (Aman, 2004). 

Specifically, for this study the Irritability and Hyperactivity subscales of the ABC were 

used as outcome measures. 
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Social responsiveness scale (SRS). The SRS (Constantino & Gruber, 2005) is a 

caregiver-completed rating scale assessing social interest and interaction. The scale 

provides a dimensional measure of social interaction allowing the rating of social skills in 

Autism as well as non-autistic individuals. For this study the Social Awareness 

subscale of the SRS was used as an outcome measure. A higher score indicates more 

impairment. 

Repetitive behavior scale-revised (RES). The RBS (Bodfish, Symons, & Lewis, 1999) 

is a caregiver-completed rating scale assessing repetitive and restricted behavior patterns. 

The RBS is a measure of different behaviors: stereotyped, self-injurious, compulsive, 

ritualistic, sameness, and restricted range (Bodfish, Symons, Parker, & Lewis, 2000). 

Items from scales are summed to obtain a measure of severity of repetitive behavior. A 

higher score indicates more impairment. 

TMS Procedure 

A trained electrophysiologist delivered rTMS using a Magstim Rapid (Model 

220) instrument (Magstim Corporation, Sheffield, England) with a 70-mm wing span 

figure eight coil. Motor threshold (MT) was determined for each hemisphere in all 

individuals by gradually increasing the output of the machine by 5% until a 50 ~ V 

deflection or a visible twitch in the First Dorsal Interosseous (FDI) muscle was identified 

in two out of three trials of stimulation over the cortical area controlling the contralateral 

FDI. Electromyographic responses were monitored on a continuous base with a C-2 1&1 

Engineering physiological monitor (Poulsbo, W A). Motor-evoked potentials were 
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recorded from the hand contralateral to stimulation using the C2 1&1 system with USE-2 

Physiodata software applications. Heart rate, heart rate variability, skin conductance, and 

skin temperature were also recorded. EMG and other physiological recordings were 

stored for later analysis. Autistic patients were encouraged to visit the laboratory at least 

once beforehand to get familiar with the TMS procedure. 

The TMS treatment course was administered once per week for 12 weeks (a total 

of twelve 1Hz rTMS treatments); the first 6 treatments were over the left DLPFC, and 

the remaining 6 were over the right DLPFC. The site for stimulation was found by 

placing the coil 5 cm anterior, and in the parasagittal plane, to the site of maximal FDI 

stimulation. The figure-eight coil, with a 70-mm wing diameter was kept flat over the 

scalp. Participants were wearing a swimming cap on their head. Stimulation was done at 

1Hz and 90% MT, with a total of 150 pulses / day (fifteen lO-s trains with a 20- to 30-s 

interval between the trains). 1Hz was chosen as the stimulation frequency as studies have 

shown that low-frequency rTMS (:S1 Hz) increases inhibition of stimulated cortex (e.g., 

Boroojerdi et at, 2000); there is also a lower risk for seizures the lower the rTMS 

frequency. Selection of90% of the MT was based on the experience of numerous 

publications where rTMS was used for the stimulation of DLPFC in different psychiatric 

and neurological conditions (for reviews, see Daskalakis et at, 2002; Gershon et at, 

2003; Greenberg, 2007; Holtzheimer et at, 2001; Loo & Mitchell, 2005; Rosenberg et 

at, 2002; Wassermann & Lisanby, 2001). The stimulation power was kept below MT as 

an extra safety precaution due to the increased risk of seizure within this study 

population. The minimal number of TMS pulses during a TMS session has varied from 

30 to 2,000 pulses per session on a once-per-week over 8 weeks to twice-a-day basis over 
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10 days (Daskalakis et aI., 2002). It has been concluded that less than 100 pulses per 

session is not very promising in terms of therapeutic efficacy (see Helmich et aI., 2006, 

for review). 

Statistical Analysis 

Statistical analyses were performed on the subject-averaged behavioral 

questionnaire data with the subject averages being the observations. For each behavioral 

measure a Group (waiting-list vs. treatment) X Time (pre- vs. post-TMS) ANOV A was 

completed to determine changes associated with TMS. A-priori hypotheses were tested 

with independent samples two-tailed t-tests for 2 groups with unequal variance. For all 

ANOVAs, Greenhouse-Geisser corrected p-values were employed where appropriate. 

SPSS v.14 and Sigma Stat 3.1 packages were used for statistical analysis. 

Results 

Participant Characteristics 

Twenty-five autistic patients (ASD group) were enrolled, 21 male and 4 female, with a 

mean age of 13.8 ± 4.3 years. Sixteen of them were randomly assigned to active 1.0 Hz 

TMS treatment (TMS group), whereas 9 were randomly assigned to the waiting-list 

group (WTL group) (Figure 38). Mean age of participants in the TMS group was 13.9 ± 

5.3 years and 13.5 ± 2.0 years in the waiting-list group. Mean Full-Scale IQ score for 

99 



children with ASD was 86.0 ± 24.7. The mean Full-Scale IQ of the active TMS group 

was not significantly different from the randomly assigned waiting-list group. 

TMS 12 
Grru D Sessioll5 

ASD Bilateral 
Group N=16 Behavio lMS Behavio 

Me~res Me.aSLft!'S 

N=25 
Randomized 

VifTl 
Grill D 8-11 reeks 
N=9 

Figure 38: 25 autistic patients (ASD group) were enrolled. 16 of the ASD group were 
randomly assigned to active TMS treatment (TMS group), whereas 9 were randomly 
assigned to the waiting-list group (WTL group). Participants were evaluated prior to 
receiving TMS and 2 weeks following treatment. There was also a waiting-list group 
with an eight week interval (i.e. , no TMS) between behavioral assessments to control 
forTMS. 

Results 

Following 12 sessions of bilateral rTMS there was a significant reduction in 

repetitive and restricted behavior patterns as measured by the RBS (p=0 .02) (Figure 39). 
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Also, participants showed a statistically significant reduction in irritability as measured 

by the irritability subscale of the ABC (p=0.002) (Figure 40). 
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Figure 40: Independent 
sample t-test results 
indicated a significant 
reduction in irritability 
raw scores in ASD as a 
result of 12 sessions of 
bilateral rTMS (p=0.002). 



No changes in social awareness or hyperactivity reached significance as a result ofrTMS. 

Additionally, there were no significant differences in behavioral assessments after the 

eight-week interval (i.e., no TMS) in the waiting-list group. For group statistics of 

behavioral assessments as well as results of independent samples t-tests see figures 41 

and 42. 

Group Stali sties 

trial N Mean Std Deviation Std Error Mean 

~S PRE-TMS 16 30.875 15.4008 3.8502 

POST-TMS 16 18.500 12.8841 3.2210 

SRS PRE-TMS 16 82.000 10.0731 2.5183 

POST-TrillS 16 78.563 9.3236 2.3309 

ImiT PRE-TMS 16 10.313 5.7818 1.4454 

POST-TMS 16 4.313 4.2539 1.0635 

I-h'PER PRE-TMS 16 14.875 7.3383 1.8346 

POST-TMS 16 10.813 7.1946 1. 7987 

Figure 41: Pre- and Post-TMS group (N=16) means, standard deviations, 
and standard errors for the Repetitive Behavior Scale (RBS), the social 
awareness subscale of Social Responsiveness Scale (SRS), and the irritability 
and hyperactivity subscales of the Aberrant Behavior Checklist (ABC). 
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Independent Sampes Test 

t-t est for EClIalitv ct Means 

Mean 

t df Sig. (2-taled) Difference 

ffiS Equal variances 8S'3uned 2.465 30 .020 123750 

Equal variances not 2.465 29.093 .020 123750 

assumed 

SRS Equal variances 8S'3uned 1.002 30 .324 3.4375 

Equal variances not 1.002 29.822 .325 34375 

assumed 

IffilT Equal variances 8S'3tmed 3.344 30 .002 6.0000 

Equal variances not 3.344 27.559 .002 6.0000 

assumed 

Kl'PER Equal variances 8S'3tmed 1.581 30 .124 4.0625 

Equal variances not 1.581 29.988 .124 4.0625 

assumed 

Figure 42: There was a significant difference in the Repetitive Behavior Scale 
(RBS) indicating less impairment as a result of rTMS (p < 0.05). There was also a 
significant difference in the irritability subscale of the Aberrant Behavior 
Checklist (ABC) indicating less impairment as a result ofrTMS (p<0.01) 

Discussion 

The main hypothesis was that 12 sessions of bilateral, slow rTMS stimulation 

applied to the dorsolateral prefrontal cortices (DLPFC) would improve behaviors 

associated with ASD by not only modulating regions proximal to stimulation but also 

inducing trans synaptic effects. Cortical inhibitory tone and the ratio of cortical excitation 

to inhibition would be improved as a result of rTMS, and this may improve prefrontal 

cortical function including disturbances in social interaction, executive function, and 

cognitive control. 

Analysis of behavioral questionnaires showed statistically significant reductions 

in repetitive behavior as a result of rTMS. As stated earlier the DLPFC circuit originates 

in the DLPFC and projects to a part of the striatum called the dorsolateral head of caudate 
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nucleus. From this region neurons project to the lateral mediodorsal part of the globus 

pallidus intern a and to the rostrolateral part of the substantia nigra. The neurons then 

move on to the parvocellular portions of the ventral anterior and mediodorsal thalamus 

and finally project back to the DLPFC (for a summary, see Tekin & Cummings, 2002). 

The DLPFC circuit is also interconnected with the lateral orbitofrontal circuit, the 

anterior cingulate circuit, the motor circuit, and the oculomotor circuit (Tekin & 

Cummings, 2002). 

According to Amaral et aI. (2008) experimental animal studies as well as lesion 

studies and functional imaging studies in human patients have implicated the 

orbitofrontal cortex (OFC), the anterior cingulate cortex (ACC), the basal ganglia (BG), 

and the thalamus (Th) with the repetitive and stereotyped behaviors of autism. 

Considering TMS has been shown to modulate functionally interconnected regions (e.g., 

Gerschlager, et aI., 2001; Bohning et aI., 1999) and may operate by selectively 

depotentiating enhanced synaptic weights associated with pathological conditions 

(Hoffmann and Cavus, 2002), it may be putatively assumed that increasing the inhibitory 

tone of the DLPFC may in fact also be transynaptically modulating other regions. It has 

been shown that the effects of low- frequency rTMS can contribute to naturally occurring 

neuroplasticity and induce long-term depression or a reduction in cortical activation for 

several days or even weeks (e.g., Speer et aI., 2000). It may plausibly be concluded that 

low-frequency rTMS may have significantly reduced the repetitive and stereotyped 

behaviors in ASD by modulating not only the DLPFC but also the OFC or ACC 

transynapti cally. 
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Additionally, analysis of behavioral questionnaires showed statistically significant 

reductions in irritability as a result ofrTMS. According to Cerqueira et aI. (2010) 

irritability is associated with functional changes in a limited set of brain regions 

implicated in the mediation of emotional states, mainly the subgenual cingulate and 

dorsal anterolateral prefrontal cortices; they argue changes in prefrontal and cingulate 

areas may be related to effortful cognitive control aspects that gain salience during the 

emergence of irritability. As stated earlier the prefrontal cortex is associated with 

executive function and cognitive control (Casanova et aI., 2006a; Ward, 2006; Stuss & 

Knight, 2004) including planning, cognitive flexibility, abstract thinking, rule acquisition, 

initiating appropriate actions and inhibiting inappropriate actions, and selecting relevant 

sensory information. Low-frequency rTMS may have putatively modulated the ratio of 

cortical excitation to inhibition in the DLPFC which may have transynaptically 

modulated prefrontal and cingulate areas related to the cognitive control of irritability; 

this may also be related to the promising findings in recent years showing that TMS 

affects mood in healthy subjects and improves depressive symptoms in patients with 

major depression (e.g., Holtzheimer et aI., 2010; Kito, Hasegawa, Okayasu, Fujita, & 

Koga, 2010). Consequently TMS has been approved for the treatment of major 

depressive disorder by the FDA. 

Furthermore, no changes in social awareness or hyperactivity reached significance 

as a result of rTMS. Amaral et aI. (2008) suggest through animal studies, lesion studies in 

human patients or functional imaging studies the putative neural systems impacted in 

autism responsible for regulating social behavior include the temporal cortex, the parietal 

cortex, and the amygdala (i.e., fusiform gyrus, superior temporal sulcus, amygdala mirror 
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neuron regions, and posterior parietal cortex). Additionally, Kobel et al. (2010) postulate 

that the loci involved in the inattentive and hyperactive symptoms of ADHD mainly 

include structural and functional abnormalities in the temporal lobe. Therefore, it may 

presumably be concluded that no changes in social awareness or hyperactivity reached 

significance as a result of rTMS in this study due to limited interconnectivity of the 

DLPFC circuit to the amygdala as well as temporal and parietal cortices. Considering 

caregivers of individuals with ASD often find repetitive behaviors (i.e., stereotyped, 

ritualistic, restricted range) and irritability to be particularly challenging, rTMS may 

prove to be a valuable treatment option in addressing this subset of core behaviors in 

ASD. 
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SUMMARY AND DISCUSSION 

During the early postnatal period it has been reported that the brain of individuals 

with ASD undergoes an accelerated period of growth (Courchesne et aI., 2003); this 

increase in volume is primarily due to an augmentation of the prefrontal white matter 

containing short corticocortical connections (Herbert et aI., 2004). It has been suggested 

that additional white matter in autism is the result of an increased amount of short range 

association fibers which are required by an increased number of cortical minicolumns 

(Casanova, 2007). Minicolumns have been described as the basic anatomical and 

physiological unit of the cerebral cortex essentially correlating to small processing units 

(Mountcastle, 2003); they contribute to a circumferential zone of inhibitory and 

disinhibitory activity gating communication of the central mini columnar core with 

surrounding cortical areas and contain pyramidal cells that extend throughout laminae II­

VI; they are surrounded by a neuropil space consisting of, among other elements, several 

species of GABAergic, inhibitory intemeurons (i.e., double-bouquet, basket, and 

chandelier cells; Casanova, 2007). Double-bouquet cells provide a 'vertical stream of 

negative inhibition' (Mountcastle, 1997,2003) surrounding the minicolumnar core and 

maintain a constant geometric orientation perpendicular to the pial surface (Douglas & 

Martin, 2004). 
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A number of studies have indicated that mini columns are reduced in size and 

increased in number in the autistic brain, especially in the dorolateral prefrontal cortex 

(DLPFC) (Casanova et aI., 2002ab, 2006ab). More specifically minicolumns in the brains 

of autistic patients are narrower and contain less peripheral, neuropil space (Casanova, 

2006ab). A lack of appropriate neuropil space and associated lateral inhibition may 

adversely affect the functional distinctiveness of mini columnar activation and could 

result in enhanced localized activation in the context of a lack of associated inhibition 

(Rippon, Brock, Brown, & Boucher, 2007). The orchestration of an appropriate signal-to­

noise ratio is imperative for the output of any network to be sufficiently robust and 

distinct enough to successfully achieve necessary processing (Rippon et aI., 2007; 

Shadlen & Movshon, 1999; Treisman, 1999). Behaviorally speaking signal/sensory 

amplification may impair functioning, raise physiological stress, and adversely affect 

social interaction in patients with ASD (Ratey, 1998). 

The DLPFC forms a circuit interconnected with parts of the straitum, globus 

pallidus, substantia nigra, and thalamus as well as other circuits including the lateral 

orbitofrontal circuit, the anterior cingulate circuit, the motor circuit, and the oculomotor 

circuit. The DLPFC is involved in selecting a possible range of responses while 

suppressing inappropriate ones, manipulating the contents of working memory (Ward, 

2006), and directing attention in a controlled manner (Gray et aI., 2003). Although 

interneurons are at the periphery of the mini column, they playa prominent role in finely 

tuning cortical information processing. Functionally speaking, 'disturbances in prefrontal 

cortical function provide for a brain which is less equipped to use learning as an adaptive 
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strategy and has diminished resources (plasticity) to handle social interactionlbehaviors' 

(Casanova et aI., 2006, p. 4). 

TMS Transcranial magnetic stimulation (TMS) allows scientists to stimulate the 

brain in a safe, noninvasive manner. It is based on the principle of electromagnetic 

induction which proposes that a changing magnetic field induces the flow of electric 

current in a nearby conductor--in this case the neurons below the stimulation site. In 

body tissue the magnetic field induces a perpendicularly orientated electric field, or 

voltage difference, and charge is moved across an excitable cellular membrane creating a 

transmembrane potential (see George & Belmaker, 2007). It may be theorized that 

contrary to other inhibitory cells (i.e., basket and chandelier), whose projections keep no 

constant relation to the surface of the cortex, the geometrically exact orientation of 

double-bouquet cells and their location at the periphery of the minicolumn (inhibitory 

surround) makes them an appropriate candidate for induction by a magnetic field applied 

parallel to cortex. 

Studies have shown that low-frequency or 'slow' rTMS (:SIHz) increases 

inhibition of stimulated cortex (e.g., Boroojerdi et aI., 2000). The most relevant model for 

understanding the inhibitory effect of low-frequency rTMS is a phenomenon referred to 

as 'depotentiation,' whereby potentiated synaptic weights are 'reset' to baseline levels 

(Hoffmann and Cavus, 2002). It has been shown that rTMS can contribute to naturally 

occurring neuroplasticity that can last for many weeks (e.g., Weiss, et aI. 1995). 

Additionally a number of studies have indicated that low-frequency rTMS is capable of 

not only modulating regions proximal to stimulation but can induce transsynaptic effects 
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presumably by functional connections (e.g., Gerschlager, et al. 2001; Bohning et al. 

1999). 

Event-related potentials (ERPs) represent scalp-recorded, transient changes in the 

electrical activity of the brain in relation to the onset of a stimulus, and provide a 

neurobiological measure of perceptual and cognitive processing. In the visual task of 

selective attention within this study individuals with ASD showed augmented and 

indiscriminative baseline cortical responses at early stages of visual processing compared 

to controls. These findings may be related to sensory over reactivity in individuals with 

ASD in early stages of visual processing and may reflect deficits in cortical inhibitory 

processes. Later-stage ERP indices of selective attention (e.g., P2a, N2a, P3a) in ASD 

also showed abnormal patterns of amplitude and latency indicative of ineffective later­

stage stimulus discriminatory processes and impaired response inhibition. It may be 

proposed that early stage sensory over reactivity could be inundating higher level 

integrative centers with task-irrelevant information, and this may result in ineffective 

later-stage stimulus discrimination. There were no statistically significant baseline 

amplitude or latency differences in very late (i.e., N2b orP3b) indices of selective 

attention detected between the ASD and control groups however which may imply 

minimal group differences at the stage of processing closure; however, this finding 

confounds with the significantly higher percentage of motor response errors in the ASD 

group. 

After six sessions oflow-frequency rTMS individuals with ASD showed 

significant reductions in augmented cortical responses at very early stages of visual 

processing (i.e., P50) and improved stimulus discrimination and evaluative attentional 
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processes at later stages (e.g., P2b, P3a). There was a reduction in motor response errors 

following TMS, but this reduction didn't reach statistical significance. As the DLPFC is 

involved in selecting a possible range of responses while suppressing inappropriate ones, 

manipulating the contents of working memory (Ward, 2006), and directing attention in a 

controlled manner (Gray et aI., 2003), low-frequency rTMS may have subsequently 

depotentiated enhanced synaptic weights in this area of cortex thereby improving 

selective attention and executive function within in this population. 

It has been proposed that the generation of normal gamma oscillations directly 

depends on the integrity of the connections of GABAergic intemeurons within cortical 

minicolumns (Whittington et aI., 2000) and a higher occurrence of gamma EEG 

oscillations in children with autism suggests an imbalance in the ratio between cortical 

excitation and inhibition (Rubenstein and Merzenich, 2003). Electrophysiological 

research has provided evidence that gamma activity is a physiological indicator of the 

coactivation of cortical cells engaged in processing visual stimuli (e.g., Keil et aI., 2001) 

and integrating different features of a stimulus (Muller, et aI., 2000). Gamma band 

activity can be divided into either evoked or induced: Evoked gamma band activity has 

been identified at a latency of around 100 ms after stimulus onset (Bertrand & Tallon­

Baundry, 2000; Herrmann & Mecklinger, 2000) and is highly phase locked to the onset 

of the stimulus; induced gamma band activity occurs later with a variable onset, although 

it has been reported to start at around 250 ms (Brown et aI., 2005). It has been proposed 

that evoked gamma band activity reflects the effect of attention on early visual processing 

and the binding of perceptual information within the same cortical area (i.e., intra-areal), 

whereas induced gamma band activity reflects the later binding of feed-forward and feed-
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back processing in a whole network of cortical areas (corticocortical; Brown et aI., 2005; 

Muller et aI., 2000; Shibata et aI., 1999). 

The baseline results of this study indicate that prior to rTMS individuals with 

ASD had a minimal difference in evoked gamma power between target and non-target 

Kanizsa stimuli at all channels. In fact, evoked gamma power responses were slightly 

larger in response to non-target Kanizsa stimuli relative to targets. In contrast the control 

group had a significantly higher evoked gamma power to target Kanizsa stimuli 

compared to non-target Kanizsa stimuli showing clear differences in visual stimulus 

discrimination. In addition, the control group showed a greater difference in evoked 

gamma power between frontal and parietal regions to all stimuli over the left hemisphere: 

Controls had more frontal as compared to parietal gamma activity, whereas the ASD 

group showed negligible topographic differences. These baseline results indicate that in 

ASD evoked gamma activity is not discriminative of stimulus type, whereas in controls 

early gamma power differences between target and non-target stimuli are highly 

significant. 

After 12 sessions of bilateral rTMS to the DLPFC evoked gamma power 

significantly increased to target Kanizsa stimuli in the ASD group at all channels. 

Furthermore, repeated measures analysis revealed highly significant increases in evoked 

gamma power to target stimuli with a slight decrease to non-targets following treatment. 

Individuals with ASD showed significant improvement in discriminatory gamma activity 

between relevant and irrelevant visual stimuli as a result of rTMS treatment. 

Early gamma components (i.e., evoked) are measured at the same time over the 

same cortical regions as early ERP components (e.g., P50), and the results indicate that 
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both early ERP components and evoked gamma activity are amplified and 

indiscriminative in ASD. Furthermore, induced gamma activity and later stage ERP 

components (e.g., P3b) were relatively intact in ASD pointing to mainly disturbances in 

early stages of sensory processing in ASD. It has been proposed that neural systems in 

the brains of individuals with ASD are often inappropriately activated (e.g., Belmonte & 

Yurgelin-Todd, 2003), and there is a disruption in the ratio between cortical excitation 

and inhibition (Casanova et al., 2002ab; Casanova, 2006ab; Rubenstein and Merzenich, 

2003). In a network that is overactivated and 'noisy,' it may not be possible for 

individuals with ASD to selectively activate specific perceptual systems based on the 

relevance of a stimulus (i.e., target vs. nontarget). Low-frequency rTMS may have 

putatively altered the disrupted ratio of cortical excitation and inhibition in ASD and 

subsequently minimized amplified early-stage cortical activity. 

Individuals with ASD have qualitative impairments in social interaction and 

social communication, repetitive and stereotyped behavior patterns, and sensory 

abnormalities (Charman, 2008). Repetitive and stereotyped behavior in ASD includes 

both repetitive sensory-motor actions and insistence on sameness (Cannon et al., 2010). 

Individuals with ASD also often exhibit severe irritability such as aggression, self 

injurious behavior, and tantrums (Stigler et al., 2010), as well as symptoms consistent 

with attention-deficit/hyperactivity disorder (ADHD) (Murray, 2010). 

Analysis of behavioral questionnaires showed statistically significant reductions 

in repetitive behavior as a result of rTMS. Studies suggest the orbitofrontal cortex (OFC), 

the anterior cingulate cortex (ACC), the basal ganglia (BG), and the thalamus (Th) are 

implicated with the repetitive and stereotyped behaviors of ASD (Amaral et al., 2008). 
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TMS has been shown to modulate functionally interconnected regions (e.g., Gerschlager, 

et aI., 2001; Bohning et aI., 1999), and it may be putatively assumed that increasing the 

inhibitory tone of the DLPFC may in fact also be transynaptically modulating other 

regions interconnected with DLPFC circuit (e.g., OFC or ACC). 

Additionally, analysis of behavioral questionnaires showed statistically significant 

reductions in irritability as a result of rTMS. Irritability has been associated with 

functional changes in a limited set of brain regions including prefrontal and cingulate 

areas (Cerqueira et aI., 2010). Low-frequency rTMS may have putatively modulated the 

ratio of cortical excitation to inhibition in the DLPFC which may have transynaptically 

modulated prefrontal and cingulate areas related to the cognitive control of irritability. 

Furthermore, no changes in social awareness or hyperactivity reached significance 

as a result ofrTMS. It has been proposed that the neural systems responsible for 

regulating social behavior include the temporal cortex, the parietal cortex, and the 

amygdala (Amaral et aI., 2008) while the brain regions responsible for the inattentive and 

hyperactive symptoms of ADHD include structural and functional abnormalities in the 

temporal lobe (Kobel et aI., 2010). Therefore it may be concluded that no changes in 

social awareness or hyperactivity reached significance as a result of rTMS in this study 

due to limited interconnectivity of the DLPFC circuit to the amygdala as well as temporal 

and parietal cortices. 

114 



LIMITATIONS OF STUDY 

ERP indices have been shown to vary throughout different stages of the 

developmental period (Jeste & Nelson, 2009). Although there was not a significant age 

difference between the groups in the ERP study the age range of participants may in part 

explain the ERP variability. Future studies should attempt to limit the age range further to 

control for the effect of age on neuronal functioning. 

For the analysis of evoked and induced gamma power two participants enrolled 

were previously diagnosed as mentally retarded; this increased the standard deviation of 

IQ for the ASD group. However all participants were able to perform the required tasks. 

The research design of this study included a wait-list group to control for the 

effects ofTMS. This approach was practical within the context of this study; however 

using a sham TMS device to replicate the experience of receiving TMS (e.g., the sound of 

pulses) would be the ideal method of controlling for TMS and any effect of placebo. 

Although all subjects were diagnosed with ASD, a small number of individuals 

were diagnosed with Asperger's Syndrome and one individual was diagnosed with 

pervasive developmental disorder-not otherwise specified (PDD-NOS). Future studies 

should attempt to control for subject variability within the autism spectrum by enrolling 

only a subset of individuals (e.g., autistic disorder). 
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FUTURE DIRECTIONS 

Overall ofneuroimaging tools used to elucidate brain circuitry, functional 

electrophysiology stands alone in the capacity to characterize early (i.e., in infancy) 

neural markers and endophenotypes (Jeste & Nelson, 2009), i.e. measures of 

abnormalities intermediate between genotypic vulnerability and the clinical expression of 

a disorder (Gottesman & Gould, 2003). Additional investigations characterizing early­

stage visual processing deficits using similar 'oddball' paradigms maintain a large 

amount of significance for future ASD research and treatment. These visual tasks are 

capable of detecting difficulty in filtering irrelevant sensory stimuli in early stages of 

visual processing, and could potentially play an important role in identifying sensory 

endophenotypes characteristic of the disorder. Future research should improve the 

diagnostic capability of electroencephalography and event-related potentials, and may 

contribute to earlier diagnosis and intervention in ASD, a disorder where timely 

intervention is critical. 

TMS has proven to be a safe, non-invasive method of neural modulation. It has the 

potential to become a unique therapeutic tool capable of addressing some of the core 

symptoms of ASD. Considering the few therapeutic options currently available for ASD, 

TMS is a welcome option capable of playing an important role in improving the quality 

of life for many with the disorder. 
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