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ABSTRACT 
GAIN AND LOSS OF FUNCTIONAL LOCOMOTOR RECOVERY FOLLOWING 

CONTUSIVE SPINAL CORD INJURY IN THE ADULT RAT 

Krista Layne Caudle 

November 14,2012 

Activity-based rehabilitation in the form of overground or body weight-

supported treadmill (BWST) locomotor step training has become the most widely 

accepted therapy translated from preclinical animal research to spinal cord injury 

(SCI) patients. However, locomotor training does not provide the level of 

functional locomotor recovery that animal models are interpreted to promise 

because preclinical studies have used complete spinal cord transections that do 

not sufficiently mimic the clinical presentation. Furthermore, animal models do 

not include the same standard of care, immobilization with stretch/range-of-

motion manual therapies, SCI patients receive. Therefore, we have developed an 

experimental animal model that includes aspects of acute patient care, 

immobilization and manual therapy interventions, applied daily throughout the 8 

weeks following incomplete low thoracic contusion SCI in adult rats. We 

hypothesize that laboratory animals with clinically relevant incomplete contusion 

SCI achieve maximal locomotor recovery while moving about in their cages, 

"auto-training," within the first few weeks post-injury. Our results show that when 

immobilization and/or manual therapy interventions are applied the animals suffer 
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severe short-term loss of locomotor function that significantly limits potential for 

long-term recovery even weeks after the interventions end. Our studies suggest 

that immobilization and widely practiced manual therapies may be maladaptive 

for functional locomotor recovery after clinically relevant incomplete SCI. . 
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CHAPTER I 

INTRODUCTION 

Motor Control 
Early discoveries about motor control were conducted in isolated nervous 

systems of crayfish, locust, and lamprey, but studies in mammals began with the 

traditional decerebrate cat preparations using a pre-collicular transection 

(Mulloney and Smarandache, 2010). In isolated spinal cord "fictive" motor 

preparations electrical or pharmacological stimulation evokes the rhythmic 

pattern of locomotion, but motor neurons and primary afferent dorsal root ganglia 

neurons are no longer innervating the hind limbs; root recordings are 

representative of the actual motor output of the isolated spinal cord circuitry. Both 

the speed of locomotion and the gait pattern are sensitive to the intensity, but not 

the frequency, of stimulation in the mesencephalic locomotor region (MLR) 

(Rossignol, 1996; Rossignol et aI., 1996). The subthalamic locomotor region 

(SLR) and MLR are responsible for activation of the pontomedullary medial 

reticular formation (RF) that projects, via reticulospinal tracts, caudally to the 

lumbar enlargement to "drive" locomotion and postural support (Jordan and 

Schmidt, 2002). When the intensity of brainstem stimulation is increased, the 

decerebrate animal goes from walking to trotting, and then to galloping. 

Pontomedullary induced locomotion is dependent on intact dorsal columns (DC) 

and dorsolateral funiculi (DLF); lesions of these pathways may not totally block 
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locomotion, but may result in toe drag or difficulty maneuvering over obstacles 

during treadmill stepping (Rossignol, 1996). These studies indicate that. 

supraspinal centers control the initiation of locomotion and are powerful 

modulators of both speed and gait. 

Decerebrate animals can also be induced to step by afferent stimulation 

alone. Tonic stimulation of dorsal roots can evoke fictive locomotion in 

decerebrate preparations, and just treadmill movement or perineal stimulation 

can initiate locomotion in animals that are spinalized at lower levels of the spinal 

cord. However, using an injection of dihydroxyphenylalanine to drive activity, 

Grillner showed that the basic locomotor pattern is still expressed even after 

dorsal rhizotomy (removal of all phasic sensory afferent input) (Grillner and 

Zangger, 1979). The fact that a basic locomotor pattern can be generated in the 

absence of cortical input and movement related sensory feedback provides direct 

evidence of the independent capacity for locomotion in spinal structures. A 

central pattern generator (CPG) is a relatively small and autonomous network of 

neuron types that has the endogenous ability to produce stereotypic yet complex 

rhythmic patterned motor output in the absence of afferent sensory feedback 

(Rossignol, 1996). Central pattern generators have been described for 

respiration, swallowing, pyloric contractions, heartbeat, vibrissa whisking, 

scratching, swimming, flying and stepping (Rossignol et aI., 1996; Hooper, 2000; 

Mulloney and Smarandache, 2010). Rhythm generation is the timing and 

duration of cycles of movement, and is expressed behaviorally as the speed of 

locomotion. Pattern formation is expressed behaviorally as the footfall sequence 
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of the gaitlinterlimb coordination, the relationship of the joint angles, and the 

resulting trajectory of a single limb/intralimb coordination. 

Traditional studies established that the isolated CPG for locomotion, by 

definition, does not require afferent input to produce rhythmic locomotor activity 

of the hindlimbs; however, in an intact central nervous system (CNS) the CPG's 

role is to integrate afferent information with goal directed commands from the 

cortex and brain stem structures. The main function of afferent input on the 

hindlimb locomotor CPG is to ensure proper excitation of extensors during weight 

bearing activities, proper timing of muscle drive in relation to the direction of the 

moving body, and control of the phase transitions and smoothness of gait in 

order to maintain balance (Majczynski and Slawinska, 2007). Spinal reflexes are 

the mechanisms by which sensory information can modify motor activity both by 

direct action on motor neurons or indirectly through interneurons of the CPG 

(Rossignol et aL, 1996; Barbeau et aL, 1999b). Homonymous and closely 

synergistic muscle groups are wired together via monosynaptic excitation with 

disynaptic inhibition of antagonist muscle groups, and are evoked by 1 a primary 

muscle spindle afferents that synapse directly onto alpha motor neurons 

(Barbeau et aL, 1999b). Group 1a primary afferents are activated by increases in 

muscle length/stretch or by the gamma motor neuron system that regulates 

muscle spindle sensitivity; both encode information about proprioception. Group 

" secondary muscle spindle afferents evoke flexion reflexes directly and through 

interneurons, but also interact with descending motor commands and are 

considered an essential part of the moment-by-moment regulation of movement. 
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Golgi tendon organs within muscles, known as non-reciprocal 1 b afferents, are 

highly sensitive to muscle stretch and tendon tension and encode information 

about load (Barbeau et aL, 1999b). Cutaneous reflexes are generally weak and 

can be local, affecting only the immediately surrounding innervated muscles; or 

exerted extensively affecting the entire limb. Reflex actions are state-dependent 

in that the response to afferent input can be opposite based on the current motor 

task. For example, if Group 1 afferents are stimulated during the flexion swing 

phase of stepping, flexor activity is terminated while extensor activity is initiated, 

and the step cycle is reset. However, if the stimulation occurs during extension or 

stance phase then extensor activation is prolonged (Barbeau et aI., 1999b). The 

complex integration involved with production and control of locomotion can be 

appreciated with spinal lesion studies in animal models in which the fundamental 

components of the CPG, rhythm and pattern, can be augmented by afferent input 

applied with the goal of training stepping (Rossignol et aL, 1996; Cai et aL, 

2006a; Majczynski and Slawinska, 2007). 

Spinal Cord Transections 
Studies of body weight-supported treadmill (BWST) step training after 

complete thoracic transection in adult cats (Rossignol et aI., 2004), rats (de Leon 

and Acosta, 2006; Zhang et aL, 2007; Ichiyama et aL, 2008), and mice (Leblond 

et aL, 2003; Cai et aI., 2006b), and after severe incomplete lesions in non-human 

primates (Eidelberg et aI., 1981; Vilensky et aI., 1992) have revealed a robust 

capacity for locomotor recovery, presumably via accessing or training the CPG. 

Step training attempts to supply the proper afferent cues to the nervous system 
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to induce the expression of a basic locomotor pattern that can be fine-tuned with 

practice to result in functional locomotor recovery. Studies demonstrate that each 

type of afferent information, cutaneous afferents, joint capsules, and muscle 

spindles encoding information for proprioception and muscle load, elegantly 

contributes to motor control and can be tested in isolation (Edgerton et aI., 2004). 

Cats spinalized at thoracic spinal level therteen (T13), standing with the 

forelimbs on a stationary platform with lateral balance support provided manually, 

can maintain plantar paw contact and support body weight with extensor activity, 

and can be stand or step trained (Barbeau et aI., 1999b; Rossignol et aI., 2002; 

Windhorst, 2007). With handler support of the tail at least initially, perineal 

stimulation, and daily step training on the treadmill, after a few weeks these cats 

can perform full weight-supported stepping with only minor deviations from 

normal in pattern or toe clearance (Barbeau and Rossignol, 1987). Step trained 

spinalized animals can learn to generate symmetrical consecutive steps without 

stumbling, achieve overall angular excursions of hip, knee, and ankle that are 

nearly normal (Lovely et aI., 1986; Belanger et aI., 1996), and have considerably 

faster speed of stepping with enhanced flexor and extensor activation as 

compared to untrained spinalized animals (de Leon et al., 1998b). The stepping 

performance is of higher quality with greater amounts of practice and repetition 

(Lovely et aI., 1986; Edgerton et aI., 1991; Cha et aI., 2007; Dobkin et aI., 2007). 

The trajectory and timing of the entrained step can be modulated by 

perturbations of proprioceptive, cutaneous and load afferents during stepping. A 

coordinated hyperflexion can bring the hindpaw up and over an obstacle that 
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catches the dorsum of the paw during the swing phase indicating that cutaneous 

input plays an important role in reflex responses during swing (Forssberg, 1979; 

Quevedo et aI., 2005). Elimination of cutaneous input from both sides of the 

hindpaw produces only minor changes in stepping pattern that are resolved 

quickly with step training. However, if all cutaneous input is systematically 

eliminated after progressive denervation, even a highly extended regimen of 

several months of step training is unsuccessful for recovery of proper weight

supported plantar stepping (Bouyer and Rossignol, 2003a, b). Therefore, even 

very little sparing of hindpaw plantar cutaneous afferents is both necessary and 

sufficient for correct foot placement and weight support when supraspinal control 

is eliminated. Phasic cutaneous input does not have to be coupled to weight 

support or plantar placement in order to bring about a change in the trajectory of 

the hindlimb. In a chick hemisection model, cutaneous input supplied during 

swim training increased the extensor activity of the retraction phase of the swim 

cycle indicating that a repeated pattern of cutaneous input altered the trajectory 

of the limb in a task-specific manner that did not also require extensor load 

weight support (Muir and Steeves, 1995). Low thoracic transection studies in 

cats (Edgerton et aI., 1992) and rats (Timoszyk et aI., 2005) have also 

underscored phasic loading of weight bearing muscles during stance as a critical 

component of step training. Handlers can increase extensor loading by pulling 

down on the tail of the animal during step training; the effect is increased 

amplitude and duration of EMG bursts in extensor muscle groups. 

Hemisection Studies 
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There are anatomical differences in the spinal cord pathways controlling 

locomotion among rats, cats and humans. The corticospinal tract (CST) is 

necessary for fine motor tasks in rats and mice, but is of little importance for 

stereotypic overground stepping. The majority of reticulospinal projections travel 

in the ventrolateral funiculus (VLF); even very little sparing of VLF preserves the 

ability to voluntarily initiate coordinated, weight-supported overground stepping in 

cats and rats (Basso et aI., 2002; Schucht et aI., 2002; Loy et aI., 2002a). 

However in humans, the CST is of paramount importance for overall locomotor 

capabilities. Localized distribution of CPG neurons differs from species to 

species. The CPG for locomotion in rats is located primarily in the rostral 

segments of the lumbar enlargement, T13-L2 (Cazalets et aI., 1995; Cowley and 

Schmidt, 1997; Magnuson and Trinder, 1997), L2-L4 in the cat (Rossignol et aI., 

2002; Langlet et aI., 2005) and in primates/humans the CPG for locomotion is 

thought to extend over a larger portion of the lumbar segments, L 1-L5 

(Gerasimenko et aI., 2007; Gerasimenko et aI., 2008). An injury that disrupts all 

or part of the CPG itself may not be comparable across species, and 

investigators must be careful not to over interpret results without careful 

consideration of the precise location of the lesion. 

The spinal enlargements are interconnected by highly commissural long 

propriospinal neurons (Reed et aI., 2008; Reed et aI., 2009) responsible for 

interlimb coordination. As reviewed by Jordan and Schmidt, the propriospinal 

interneuron system is situated throughout the rostrocaudal extent of the spinal 

cord, and receives descending locomotor command signals from collaterally 
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sprouting reticulospinal inputs as well as segmental afferent influence (2002). 

When stimulated, propriospinals alone can produce locomotor activity in some 

preparations (Jordan and Schmidt, 2002). Redundancy of long propriospinal 

interneurons with supraspinal reticulospinal projections makes them an ideal 

compensatory link between diminished supraspinal drive and the CPG for 

locomotion after SCI. One of the most important features of the CNS, and the 

primary reason the CNS is capable of adapting to injury or disease, is its 

interconnectivity and redundancy (Basso et aI., 2002; Warraich and Kleim, 2010; 

Marsh et aI., 2011). Interconnectivity supports functional reorganization while 

redundancy enhances neural integration of information to improve sensory 

and/or motor and cognitive processing (Warraich and Kleim, 2010). Rather than 

leaving unused structures that were previously used for one processing modality, 

but were then isolated because of some trauma in their original circuitry pathway, 

the CNS is adept at recruiting that area to perform a new, perhaps completely 

different function (Warraich and Kleim, 2010). 

Spinal hemisection, location specific lesioning, and double lesioning 

studies have illustrated the functional redundancy and species specific function 

of the pathways that mediate locomotor control. After low thoracic hemisection, 

or with specific sectioning of VLF or DLF, cats and monkeys can walk 

overground with their hind limbs, albeit with altered interlimb coupling (Rossignol 

et aI., 1999). Rossignol and colleagues performed double lesion studies in which 

cats were subsequently spinalized (T13) after a few weeks of step training to 

optimize and stabilize the stepping pattern after an initial hemisection at T1 0 
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(Barriere et aI., 2008; Martinez and Rossignol, 2011). These cats were able to 

step at high speeds (s 0.8 mls) within 24 hours of the subsequent full transection. 

This finding indicates that step training following a lateral hemisection induced 

plasticity in the locomotor circuitry allowing it to operate better in the absence of 

input from supraspinal structures than it otherwise would have been able to. This 

study also showed that the circuitry mediating this learning is located caudal to 

the spinalization at T13. Courtine and colleagues used a double low thoracic 

lateral hemisection model in combination with electrochemical excitation that 

enables the CPG to be activated in way that increases responses to afferent 

cues (Courtine et aI., 2008; Courtine et aI., 2009; van den Brand et aI., 2012), 

however the van den Brand et al. study in particular has caveats. Slawinska and 

colleagues point out that bipedal step training used by many researchers 

including the Courtine laboratory induces the animal to use it's head, forelimbs 

and trunk to shift its center of mass forward resulting in increased loading of the 

hind limbs. This increased loading likely induces spinal stepping rather than truly 

"voluntary stepping," If voluntary stepping was achieved the authors should have 

included a measure of overground stepping, but this evaluation is not present 

(Slawinska et aI., 2012). Furthermore, there are naturally occurring repair 

mechanisms such as collateral sprouting, synapse remodeling, and changes in 

neuronal properties that may enhance spontaneous recovery and plasticity but 

are not necessarily dependent on pairing with step training. Spontaneous 

sprouting after hemisection lesions in rats (Bareyre et aI., 2004) and in the CST 

tract of monkey (Rosenzweig et aI., 2010) is well studied. Hemisection studies 
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show remarkable recovery but the staggered incomplete injuries are designed to 

take advantage of the redundant commissural pathways and endogenous 

sprouting in the spinal cord. 

Clinically Relevant Spinal Cord Injury 
While transection and double lesion studies lend great insight into the 

neural mechanisms responsible for training the CPG, these injuries do not 

represent the majority of SCI patients. Incomplete injury models are more 

relevant to the patient population than complete anatomical transection: 

Contusion with characteristic cavity formation represent 49% of spinal cord 

injuries, laceration and massive compression are tied at -20%, 10% are solid 

cord injuries where no outright damage is visible until studied at the 

microstructure level (Grill 2005). There are rarely complete transections, some 

small amount of spared tissue usually remains (Bunge et aI., 1993; Kakulas, 

1999; Grill, 2005). The primary and secondary injury processes are different for 

each of these SCI classifications; therefore the type of injury model is of critical 

importance if our goal is to produce SCls that are clinically relevant. 

Biomechanical characteristics of the spinal cord such as elasticity and viscosity 

determine how a trauma is distributed at a cellular level (Gruner, 1992). The 

velocity, force and displacement (compression) are factors in the severity of 

spinal cord injury since each affects white matter and grey matter damage 

differently. Higher velocity injuries produce more axon shearing while greater 

displacement and dwell time of compression produce more grey matter damage. 

Since white matter sparing is a direct correlate of functional recovery (Basso et 
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aL, 1995) an injury model that produces more or less axon shearing due to 

velocity is ideal if functional recovery due to the experimental intervention is a 

primary outcome measure. A contusion model highlights mechanisms of injury 

associated with white matter loss and velocity. Additionally, the internally 

pressurized 'tube' nature of the spinal cord and its associated vasculature 

produces cell dysfunction that spreads rostrally and caudally from the epicenter 

depending on the severity (Grill, 2005; Basso and Hansen, 2011). The contusion 

injury model is composed of weight drop device, 10g rod, released from a 

specified height above the surface of the spinal cord and free falls with increasing 

velocity as it approaches the spinal cord (New York University Impactor, NYU) 

(Gruner, 1992). Compression injury models focus on tissue 

displacement/compression as the primary biomechanical production of SCI (Ohio 

State University, OSU) (Stokes, 1992; Stokes et aL, 1992). For example, the 

Infinite Horizons (IH) impactor uses a constant velocity and controllable force 

applied during the impact (Scheff et aL, 2003). Fehlings and colleagues use a 

clip compression model that combines impact and compression injury 

characteristics and is applied to both ventral and dorsal aspects of the spinal 

cord (Fehlings et aL, 1989). Laceration injuries can be used to selectively disrupt 

specific fiber tracts using microscalpels, microscissors, blades, or wire knife; 

however these tools often produce a contusion along with a laceration since they 

are not sharp enough to cut dura easily. An automated mechanized Vibraknife 

slices the tough dura more easily and produces an accurate reproducible 

laceration avoiding the contusion components of secondary injury (Zhang et aL, 
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2008). Laceration injuries are characterized by compromised dura and persistent 

ingrowth of connective tissue from muscle and surrounding soft tissue, and both 

lacerations and compressions produce a physical barrier of connective tissue 

scar between the severed ends (Zhang et aI., 2004; Grill, 2005). A key factor of 

any injury model is that it generates a reproducible graded relationship of the 

severity of the injury to histological and behavioral outcome measures. Each of 

these models has been demonstrated to produce deficits in Basso, Beattie, 

Bresnahan Open Field Locomotor Scoring Scale (BBB), Basso Mouse Scale 

(BMS) and/or kinematic analysis of movement that correlate with increasing 

injury severity and loss of tissue at the injury epicenter (Basso et aI., 1995; Scheff 

et aI., 2003; Poon et aI., 2007; Beare et aI., 2009; Hill et aI., 2009). 

Activity-Based Training after Incomplete SCI 
Battistuzzo recently systematically reviewed activity-based training (step 

training, swimming, voluntary exercise, and environmental enrichment) in animal 

models with lower thoracic incomplete SCI (Battistuzzo et aI., 2012). After 

contusion or compression incomplete SCI rats and mice show remarkable 

spontaneous locomotor recovery (unlike after transection in which treadmill 

training with weight support is required) and are able to generate weight-

supported stepping within 3-5 weeks post-injury as measured by BBB, BMS 

and/or kinematic analysis of hindlimbs (Fouad et aI., 2000; Lankhorst et aI., 2001; 

Thota et aI., 2001; Multon et aI., 2003; Van Meeteren et aI., 2003; Engesser-

Cesar et aI., 2005; Koopmans et aI., 2005; Magnuson et aI., 2005b; Bolton et aI., 

2006; Erschbamer et aI., 2006; Smith et aI., 2006a; Fischer and Peduzzi, 2007; 
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Carvalho et aL, 2008; Heng and de Leon, 2008; Liu et al., 2008b; Siegenthaler et 

aL, 2008; Robert et aL, 2010; Alluin et aL, 2011). Taken together, these studies 

show that voluntary exercise, enriched environment, step or swim training alone 

does not improve on the spontaneous locomotor recovery profile with sustained 

effects through the chronic phase. Out of these, a few studies have reported 

modest improvements in overground stepping beyond the first 2 weeks post

injury; however we consider these studies with the caveats that housing 

conditions (single, double, or socially housed), gender, body weight and age of 

animals may decrease in-cage activity before the activity-based locomotor 

training is applied. An increase in BBB scores was evident in the treadmill step 

training group after incomplete compression SCI (Multon et aL, 2003). Epicenter 

histology from the Multon study found approximately 12% white matter sparing 

for both step trained and untrained groups, but the animals were housed 

individually. In our model using double housed adult female rats (175-200g) the 

epicenters have a slightly lower percentage of white matter sparing, 

approximately 8-10%, but BBB scores are higher than the untrained controls in 

studies with comparable contusion injury severities (Magnuson et aL, 2005b; 

Smith et aL, 2006a; Kuerzi et aL, 2010). This indicates that the animals in the 

Multon study had lower in-cage activity because they were only singly housed. 

Therefore there was no ceiling effect and the benefits of step training were 

evident by a 2-3 point increase in BBB scores; however we question the impact 

of these increases since none of the rats went from only sweeping to actually 

frequent/consistent weight-supported stepping (BBBslO) . 
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Our center has already recognized that gender, species strain, age, 

weight and animal density per cage affect SCI outcome measures in a complex 

and interrelated manner (Burke et aI., 2007). We consider double housing as 

beneficial for spontaneous locomotor recovery in untrained animals, presumably 

due to reduced stress and increased social interaction. When rats are housed 

singly (Multon et aI., 2003; Engesser-Cesar et aI., 2005; Stevens et aI., 2006; 

Siegenthaler et aI., 2008), or when male rats with heavy body weight (Carvalho 

et aI., 2008; Siegenthaler et aI., 2008) are used for locomotor training studies 

after incomplete SCI, the benefits to overground stepping may appear to be more 

effective because locomotor activity as a whole is lower before the step training 

intervention. During in-cage activity animals are capable of hindlimb movement 

or stepping at any time during recovery. For example, rats have a lower center of 

gravity, can roll from side to side, drag their hindlimbs, freely move hindlimb joints 

through varied range of flexion and extension, and at some point begin to weight 

support and take steps just from moving around in their normal cages. Self

training by rats after incomplete SCI is recognized in several publications (Fouad 

et aI., 2000; Heng and de Leon, 2008; Maier et aI., 2009; Fouad and Tetzlaff, 

2011), and is described as a ceiling effect in our lab (Kuerzi et aI., 2010). The 

purpose of the studies described herein is to address a component of the overall 

lab hypothesis, rats with T9 contusion injuries achieve maximal locomotor 

recovery by self-training in their cages, by testing whether immobilization 

(preventing in-cage activity/self-training) and stretch interventions alter the profile 
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of functional locomotor recovery in our model of incomplete low thoracic 

contusion SCI. 

The Issue of Translation 
Unlike incompletely injured laboratory animals that move about in their 

cages soon after injury, the standard of care for SCI patients is early 

immobilization. A patient may have multiple traumas to the body in addition to 

CNS injury and may be in critical condition requiring first responders to perform 

emergency life saving procedures like stabilizing blood pressure, pulse and 

respiratory rate (Oyinbo, 2011). Increased survivability after SCI due to early 

surgical management including vertebral stabilization and decompression of the 

injury site has been the single most successful contribution to the field over the 

past several decades (Tator, 2006). As reviewed by O'Sullivan and Schmitz, 

beyond this acute phase of emergency care, immobilization and bed rest are 

deemed necessary to prevent further neurological impairment but also because 

paralysis is common (O'Sullivan and Schmitz, 2001). Patients with thoracic and 

lumbar fractions often need surgically placed internal fixation devices and 

external spinal orthoses for a minimum of three months. Following release from 

the trauma center, patients undergo widely varying kinds and amounts of 

physical and occupational therapy. Unfortunately insurance companies often 

dictate the duration of therapeutic physical interventions, and patients may not 

receive the necessary amount to achieve functional benefits (Harkema et aI., 

2011). During the acute period of immobilization, patients receive range-of-

motion (ROM) and muscle stretch therapy for both upper and lower extremities 
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and for the trunk (O'Sullivan and Schmitz, 2001). Although early involvement in 

functional activities is advocated, the majority of patients are not able to engage 

in comprehensive locomotor rehabilitation regimen within the first few months 

after SCI. Thus, when comparing experimental SCI in animal models with 

patients in clinical setting the locomotor and rehabilitation aspects are basically 

opposite: lab animals with incomplete injuries move about early after SCI and 

receive very little manual rehabilitation, while SCI patients are largely 

immobilized but manual therapies are standard of care. 

Activity-based rehabilitation in the form of overground or BWST locomotor 

training (L T) was born of Wernig and colleagues' Laufband Therapy for SCI 

patients (Wernig and Muller, 1992; Wernig et aI., 1995; Wernig et aI., 1999), and 

has become one of the most widely accepted therapies translated from animal 

research for SCI patients (Warraich and Kleim, 2010; Marsh et aI., 2011). LT 

rehabilitation strategies for patients are interpreted from motor control studies in 

the transected cat model, however the transection lesions of these models are 

not clinically relevant. Neither BWST nor overground L T provides the level of 

functional recovery that the pre-clinical transection animal studies were 

extrapolated to promise for SCI patients. Thus, there is a collective realization 

from researchers, working in both animal models and in clinical settings, that we 

do not yet have a comprehensive treatment strategy for SCI that produces 

reliable, robust locomotor recovery and is widely applicable to the majority of SCI 

patients. This dissertation work addresses two possible contributors to the 

inability to fully translate promising preclinical findings as they relate to 
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neurorehabilitation after SCI: 1) Translation of activity-based rehabilitation 

strategies after SCI is difficult because interpretations are based on animal 

studies using models that do not sufficiently mimic the clinical situation, 2) Animal 

models of neurorehabilitation do not use the same standard of care that patients 

receive after neurotrauma. An analytical approach to translational 

neurorehabilitation reveals that animal models do not closely represent the 

patient condition after neurotrauma, and widely accepted standards of care are 

not always based on basic science/preclinical evidence. 

Goals 
The realization that significant locomotor recovery is achieved after 

incomplete SCI in the rat model but not by patients with what we believe are 

roughly equivalent injuries led us to develop an experimental model that includes 

aspects of acute patient care; immobilization and manual physical therapy. If the 

hindlimbs are immobilized then rats cannot experience in-cage activity (auto

training), which we believe is responsible for their significant locomotor recovery 

after low thoracic contusion injuries. In the first study, presented in Chapter 2 

(Caudle et aI., 2011), we tested whether hindlimb immobilization would alter the 

profile of locomotor recovery after mild T9 contusions. In the second study, 

presented in Chapter 3, we sought to test whether the timing and duration of 

hindlimb immobilization would prevent the rapid and substantial gain of locomotor 

recovery that occurs after incomplete SCI in the rat model. The goal of the third 

study, presented in Chapter 4, was to further examine the detrimental effect of 

hindlimb muscle stretch in rats that are never wheelchair immobilized, as we 
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found in Chapter 2, with a more severe T9 contusion. In all three studies we 

characterized a novel and feasible animal model of recovery after a clinically 

relevant SCI injury. Our model more closely mimics standard of care for SCI 

patients that shows both gain and loss of locomotor function that impact how we 

interpret studies on neurorehabilitation. 
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CHAPTER II 

HINDLIMB IMMOBILIZATION IN A WHEELCHAIR ALTERS FUNCTIONAL 
RECOVERY FOLLOWING CONTUSIVE SPINAL CORD INJURY IN THE 

ADULT RAT 

The final, definitive version of Chapter II has been published in 
Neurorehabilitation and Neural Repair, 2011 Oct; 25(8): 729-39, 

by SAGE Publications Ltd., All rights reserved. © 

INTRODUCTION 

A potential impediment to the translation of activity-based rehabilitation 

following spinal cord injury (SCI) from animal models to patients is that the 

conditions of recovery in animal models do not parallel those of patients. Most 

patients are immobile over the first few weeks following injury, except for muscle 

stretch and passive joint range-of-motion (ROM) therapies (Beres-Jones et aI., 

2003; Dobkin et aI., 2006). In contrast, animals used in experimental studies of 

SCI begin to move about in their cages within a few days or a week of injury. 

With a few exceptions (Roy et aI., 1992; Hodgson et aI., 1994; Smarick et aI., 

2007), the majority of animal studies do not mention the use of stretch or ROM 

therapies, yet these are widely accepted in clinical practice world wide (Harvey 

and Herbert, 2002; Harvey, 2008) and The Consortium for Spinal Cord Medicine 

prescribes that physical therapy begin within the first week post-injury and 

continue throughout the acute phase (Paralyzed Veterans of America 2008). A 

recent review of clinical trials of SCI rehabilitation found these therapies to be 
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ineffective when compared to no intervention or conventional care (Harvey et aI., 

2002; Harvey et aI., 2009). The effects of immobilization and/or stretching/ROM 

maneuvers in animal models of spinal cord injury remains largely unstudied. 

Step training with weight support is a promising form of activity-based 

rehabilitation for SCI patients that is often used in conjunction with stretch/ROM 

therapies. The step training approach is deeply rooted in the elegant studies by 

Grillner, Rossignol, Edgerton and others showing that adult cats with complete 

spinal transections can be trained to perform quality hindlimb stepping via 

repeated exposure to the activity on a treadmill. Afferent input associated with 

phaSic limb movements, loading and paw or foot contact is thought to train spinal 

circuitry below the injury (Wernig et aI., 1995; Edgerton et aI., 1997; Bouyer and 

Rossignol, 2003b). However, improvements in overground ambulation for 

patients participating in step training are variable and far less than expected 

based on the preclinical feline studies (Dietz et aI., 1998; Dobkin, 2007; Nadeau 

et aI., 2010). Similar to clinical studies, -step training in rodent models of 

incomplete SCI has shown only modest, task-specific improvements in treadmill 

stepping that rarely lead to improvements in overground stepping (Basso et aI., 

1995; Fouad et aI., 2000; Multon et aI., 2003; Heng and de Leon, 2008), (de 

Leon personal communication 2009). In contrast to the clinical situation, 

however, adult rats with all but the most severe of incomplete injuries show 

remarkable spontaneous recovery leading some authors, including ourselves, to 

suggest that early in-cage activity provides sufficient amounts of appropriate 

afferent input to bring about substantial, even maximal, training that is difficult to 
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improve upon using a variety of approaches including step training on the 

treadmill, stepping in shallow water or swimming (Fouad et aI., 2000; Smith et aI., 

2006a; Heng and de Leon, 2008; Magnuson et aI., 2009; Kuerzi et aI., 2010; 

Guertin etal., 2011; Singh etal., 2011). 

The current study was undertaken to test the hypothesis that early in-cage 

activity is responsible for the dramatic functional improvements seen in adult rats 

with incomplete SCI. We limited hindlimb activity and altered the pattern of 

activity-dependent afferent input by placing the animals in wheelchairs, 15-18 

hours per day for 5 days a week starting at 4 days post-injury. In addition, we 

explored the influence of a daily stretch protocol on the profile of recovery in 

hindlimb immobilized animals and normally housed animals as controls. We 

found that periodic hindlimb immobilization in a wheelchair had a negative and 

lasting effect on functional recovery in rats with mild SCls, and that a daily 

passive stretch therapy had a lasting negative impact on recovery for normally 

housed SCI animals, but was not a factor for those experiencing hindlimb 

immobilization. 

MATERIALS AND METHODS 

Spinal Cord Injury and Experimental Design 
Twenty-one female adult Sprague-Dawley rats (190-215g) were used for 

this study. All procedures involving experimental animals were performed 

according to the guidelines of the University of Louisville Institutional Animal Care 

and Use Committee. Animals were randomly assigned to three experimental 

groups: Wheelchair/Stretch (WC/SR), wheelchair/non-stretch (WC/non-SR), non-
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wheelchair/non-stretch (non-WC/SR) n=5 each, or non-wheelchair/non-stretch 

(non-WC/non-SR) controls n=6. Animals received contusion injuries at the T10 

spinal cord level as described previously (Smith et aI., 2006a; Magnuson et aI., 

2009). Each animal was anesthetized with pentobarbital (55 mg/kg Lp.) and 

given prophylactic antibiotics (Gentamicin Sulfate 15 mg/kg sc.) prior to surgery. 

Body temperatures were maintained at 36-37°C throughout the procedure. A 

single level laminectomy was performed at the T9 vertebrae and clamps were 

applied to T8 and T10 spinous processes to stabilize the column. The Infinite 

Horizons Impactor (Precision Systems and Instrumentation, LLC [PSI]; Scheff, 

2003) was used to deliver 200kD moderate contusion injuries at the T10 spinal 

cord level using a custom-made vertebral stabilization system. After injury, 

wounds were closed in layers using silk sutures with topical antibiotics applied to 

the incision. Starting on the day of surgery, post-injury day 0, animals were 

housed two per cage in standard cages using Alpha Dry bedding with food and 

water provided ad libitum. All animals were housed in the same room with a 12-

hour dark cycle (6 pm to 6 am) and received post-operative care daily, including 

manual bladder expression as needed. 

Figure 1 shows a timeline of the study and all assessments. On post-injury 

day 4, animals in the two wheelchair (WC) groups spent 15-18 hours per day 

(from approximately 4 pm to 8 am), 5 days per week for 8 weeks (dashed bar 

along time axis) immobilized in a four-wheeled rat wheelchair (Figure 2). WC 

cage mates stayed together, paired, in large breeding cages while non-WC 

animals remained paired in standard cages. Rats in SR groups received the 
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enhanced daily care including the stretch protocol 5 mornings per week, for 8 

weeks, beginning the morning of post-injury day 5. Both WC immobilization and 

SR interventions ended at 8 weeks; assessments continued until 16 weeks. 

Rat Wheelchair Design 

The wheelchairs held the hindlimbs in a position that resembled the early 

hindlimb dragging phase of recovery following SCI (Figure 2A). Figure 2B shows 

a representative sample of kinematic analysis of hindlimb position, at rest, during 

WC immobilization. Hindlimbs were statically positioned with joint angles of 

approximately 880 (hip), 450 (knee), and 1550 (ankle) and were held in position 

using Velcro straps. Wheelchairs were constructed of a lightweight polycarbonate 

platform (6.5" long x 3.5" wide) stabilized by 4 polyvinyl chloride wheels (1.25" 

diameter). Velcro straps around the ribcage, lower abdomen and lower hindlimb 

above the ankles kept the rat in a stationary position. Dr. Scholl's Moleskin Plus 

adhesive padding lined the platform for comfort. An oval opening (2.0" length 

and .75" wide) towards the rear of the platform allowed urine and fecal matter to 

drop through the wheelchair to the cage bottom. Wheelchair cages were fitted 

with a raised floor of wire mesh that allowed feces, urine and food debris to fall 

through to Alpha Dry bedding below. No animals in this study exhibited 

autophagia. Wheelchairs were washed daily and Chew Guard, Collasate, and/or 

metronidazole with New Skin paste (Zhang et aI., 2001) was applied to deter 

chewing of the wheelchair and straps. 

Daily Care and Stretch Protocol 
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In addition to standard post-operative care, all animals received daily care 

5 mornings per week for the first 8 weeks of study. Daily care consisted of 

washing with warm water and towel dry, and massage of the hindlimbs in a distal 

to proximal direction for pressure relief and circulation. In an effort to maintain 

skin integrity, we animals underwent a thorough inspection immediately upon 

removal from the wheelchairs. Indentations in the skin under the ribcage and hip 

straps were common and usually resolved following washing and massage. 

Small abrasions occasionally developed due to the straps, but these also 

resolved following strap adjustment, diligent treatment with topical antibiotics and 

protection with gauze. All animals were weighed preoperatively and then weekly 

beginning at week 2. The left side hindlimb tibialis anterior (TA) , medial and 

lateral gastrocnemii (MG and LG, respectively) were harvested upon termination 

in order to assess muscle atrophy. MG and LG were weighed together. 

Following daily care, animals in the SR groups received a 20-minute 

hindlimb stretch protocol, consisting of 2 sets of bilateral hindlimb manipulations 

that held each joint in maximally flexed and extended positions for thirty seconds 

each. Each joint was stretched as follows: ankle, knee, hip flexion and extension, 

and hip abduction and adduction. Handlers were trained to manipulate the . 

hindlimbs using exact hand positions in order to isolate each joint (demonstration 

by W. Lee Smith, PT, Frazier Rehabilitation Institute, Louisville, KY). Each rat 

was loosely wrapped in a towel and held in a semi-supine position in one hand. 

Behaviors such as vocalization, or rapid movement of the hindlimbs and/or body 

were used as indicators of how tolerant the rat was to each position and resulted 
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in adjustment of hand position so that the rat would lie still for the duration of the 

protocol. The SR protocol was performed in timed sessions, one handler per 

animal, such that all handlers could confirm hand positions in order to maintain 

consistent and standardized technique. Handlers documented each stretch 

session noting the side and joint order, observations about joint stiffness and any 

loss of range-of-motion. Side order and handler to rat pairings were randomized 

over the sessions. 

Behavioral and Sensory Assessment 
The BBB Open Field Locomotor Scale is a 0-21 point scale that evaluates 

hindlimb function while the animal behaves naturally in an open field (36" in 

diameter) for duration of 4 minutes (Basso et aI., 1995). BBB evaluation was 

performed preoperatively, on post-injury day 4, twice per week during the first 8 

weeks of study and weekly thereafter. The animals were presented at random to 

the same two observers, both blinded to experimental groups, for all behavioral 

scoring. 

The Louisville Swim Scale (LSS) is a 0-17 point scale developed in our 

laboratory to assess swimming performance following spinal cord injury (Smith et 

aI., 2006a). Five categories of the scale are assessed for frequency of 

occurrence during swimming, dependence on forelimbs, hindlimb movement, 

hindlimb alternation, trunk stability and body angle. The LSS subscore accounts 

for the pattern generation abilities in the hindlimbs of the animal by excluding the 

trunk stability and body angle portions of the assessment. Maximum scoring for 

trunk rotation and body angle is 3 points each, therefore the LSS subscore has a 
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range of 0-11. The swimming pool is a Plexiglas® chamber (60" length, 7" wide, 

and 12" deep). Swimming assessments were performed preoperatively, and then 

periodically from weeks 3-11. The animals were briefly reintroduced to the water 

two days prior to each LSS assessment to decrease any potential stress 

response. 

Sensory testing was performed at single time points during weeks 3 and 4 

to determine if hindlimb allodynia or somatosensory hypersensitivity could be 

contributors to the severe deficits in stepping for WC animals. Animals were 

arranged one in each of six partitions and allowed to acclimate in each apparatus 

for 30 min prior to testing. Both hindlimb paws were sampled five times, with a 

minimum of two minutes between consecutive samples. The von Frey filament 

testing surface was a metal grid with small holes (3IB" diameter) through which a 

narrow plastic cone shaped filament could be applied directly onto the plantar 

surface of the paw. The force (grams) required to elicit a withdrawal response 

(or induced the animal to attend to the paw) was recorded for each test (Berrocal 

2007). The surface for the Hargreaves' test was a clear Plexiglas pre-warmed to 

34°C, and the apparatus was set at 30% intensity with a cutoff time of 20 sec. to 

avoid tissue damage. The heat source was focused on the plantar surface until 

the paw withdrew from the thermal stimulus; the amount of time to withdraw the 

paw is reported in seconds (BerrocaI2007). The von Frey test for mechanical 

allodynia showed no significant differences between groups at week 3 (WC/SR 

11.3g ± 3.13, WC/non-SR 10.3g ± 2.0B, non-WC/SR 9.0g ± 3.12, non-WC/non

SR controls 11.5g ± 2.90). At week 4, the Hargreaves' test for thermal 
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hyperalgesia revealed no group differences (WC/SR 45.4s ± 12.39, WC/non-SR 

47.4s ± 12.06, non-WC/SR 43.1s ± 8.37, non-WC/non-SR controls 40.5s ± 

10.13). 

Kinematic Assessment of Stepping and Swimming 
To quantitatively assess hindlimb movement during walking and 

swimming, we performed kinematic analysis at various time points throughout the 

study as previously described (Magnuson et aI., 2009; Kuerzi et aI., 2010). 

Overground stepping was assessed using a two camera, three-dimensional (3D) 

kinematic analysis performed pre-injury and at 6 and 11 weeks. Quantification of 

cycle characteristics represents bilateral hindlimb movements averaged for both 

sides with a minimum of 5 cycles sampled per side. Hindlimb movement was 

recorded with two Basler 602f high-resolution digital cameras running at 60Hz 

connected to a PC using the video software DVR Explorer (Advanced Digital 

Vision, Natick, MA). Digital AVI files from both cameras were opened in 

MaxTraq3D (Innovision Systems, Columbiaville, MI) where sharpie marks 

overlying the iliac crest (I), hip (H), ankle (A) and toe (T) were identified in a semi-

automated fashion on each frame. The two dimensional files were digitally 

combined to estimate a 3D limb position for each frame from which all stick 

figures and angle excursion data is derived in Excel or MaxMate (Innovision 

Systems). 

In-vivo Micro-CT Scanning of Bone 
Animals that did not receive SR protocol (WC/non-SR and non-WC/non-

SR) underwent micro-CT scanning of distal femora at 6 and 13 weeks. All micro-
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CT scanning was performed as described previously (Voor et aI., 2008) using a 

custom scanner (150/225-Ffi-HR-CT, BIR, Lincolnshire, IL) that includes a 225 

KV X-ray source with a focal spot size of 5 ~m and an image intensifier with a 

1024 x 1024 pixel digital camera (ACTIS, BIR, Lincolnshire, IL). The basic X-ray 

power settings were 86 kVand 110 ~. Briefly, animals were maintained under 

isoflurane anesthesia and ventilated (VSA-2100, VetLand, Louisville, KY; Model 

2000 ventilator, Hallowell, Pittsfield, MA). Each rat was positioned with the left 

hindlimb flexed and the right hindlimb extended into the lower column of the 

animal manipulator. Scans represent a full 360o-plus-fan-angle rotation, with 

1000 projections per revolution, covering a 3 mm distance below the knee joint. 

Two complete rotations covering 214 slices were performed for each scan; the 

total time in the micro-CT scanner was approximately 30 minutes; total X-ray 

exposure time was approximately 12 minutes. A custom MATLAB program (v6.5, 

The Mathworks, Matick, MA) was used to isolate the compact bone from the less 

dense cancellous or trabecular bone, and to calculate the bone volume fraction 

(BVITV) (Xu, 2008). Three-dimensional images were reconstructed using the 

voxel analysis software VGStudio Max (v1.2.1, Volume Graphics, Heidelberg, 

Germany). Data is presented in Figure 5 as means ±SD based on contracture 

groupings within the WC/non-SR group; no-contracture, n=2; contracture, n=3; 

and non-WC/non-SR controls, n=6. 

Electrophysiological Assessment 
Some WC animals developed ankle pathologies that resulted in a severe 

loss of range-of-motion. To assess the tone of, and estimate spasticity in an 
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ankle extensor, we performed simultaneous bilateral electromyographic (EMG) 

recordings of lateral gastrocnemius muscles (LG) at rest and during tail and paw 

pinches for all animals. Each rat was positioned, unanesthetized, on a raised 

wooden platform so that the hindlimbs were able to straddle either side of a 

narrowed strip between the legs, allowing the legs to hang down without 

contacting a surface. A cloth stockinette was used to securely hold the animal in 

place with the hindlimbs, head and tail outside of the cloth, as described 

previously (Magnuson et aI., 2005b). A small puncture was made in the shaved 

skin overlying the belly of the LG using an 18-gauge needle tip. A fine wire 

intramuscular electrode was positioned into the tip of a 23-gauge needle, fed 

through the cutaneous puncture, and inserted into the muscle. The needle tip 

was removed and electrode placement was confirmed by a manual palpation 

during a passive range-of-motion maneuver in cases where the ankle was 

capable of flexion. Reference electrodes were placed subcutaneously on the 

medial side of the Achilles' tendon and the ground electrode was placed at the 

base of the tail. The fine wire electrodes were connected to AI 405 head stages 

and a CyberAmp 380 (Axon Instruments). Data were acquired in Axoscope 

running on a Dell PC with sampling rate of 1 KHz. 

Tail and paw pinch involved closing a rubberized paper clamp 1" from the 

base of the tail, and onto the plantar and dorsal aspects of the paw for 

approximately 1 sec, repeated 5 times over a period of 3-5 minutes. Recordings 

were filtered and rectified for analysis in Axograph 4.0 on a Macintosh G4 

computer to determine the timing of burst onset and offset. The percent bilateral 
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co-contraction of LG muscles during tail and paw pinch was calculated as a 

surrogate indicator of spasticity (Boorman et aI., 1996; Morita et aI., 2001). The 

duration of co-activity was divided by the total duration of activity (either muscle) 

per set of bursts and converted to a percentage. 

Histology of Sciatic Nerve and Spinal Cord Injury Epicenter 
All animals were euthanized at the end of week 16 and perfused 

transcardially with 4% paraformaldehyde and calcium free tyrodes solution. The 

entire length of spinal cord was removed for histological analysis, and sciatic 

nerves from each left hindlimb were harvested for analysis of cross-sectional 

area. Blunt dissection of the biceps femoris exposed a portion of the sciatic 

nerve, which was dissected out from approximately 2 mm distal to the tibial-

fibular bifurcation upward to the inferior piriformis muscle, approximately 20 mm 

in total length. Adjacent sets of spinal cord sections were stained for white 

(eriochrome cyanine) or gray matter (cresyl echt violet for Nissl substance) and 

processed for spared white matter at the epicenter, damaged gray matter and 

cavity volume as previously described (Hadi et aI., 2000; Magnuson et aI., 

2005b). Spinal cord and sciatic nerves were post-fixed overnight, followed by 

cryoprotection in 30% sucrose. Tissue was blocked into freezing medium, then 

cut on a cryostat at 40 !-tm (five sets, each with every 5th section) and mounted 

onto glass slides. Briefly, every fifth section from the epicenter was photographed 

with a SPOT digital camera (Medical Diagnostics) attached to a Macintosh 

computer and the total area of white matter, gray matter (with Nissl stained cell 

bodies), injured gray matter {punctate appearance with gliosis and lacking 
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neuronal cell bodies), cavity and total area were traced using a Wacom Intuos 

(Vancouver, WA) drawing tablet. Traced images were opened in ImageJ(NIH) 

and cross sectional areas were calculated for each tissue region. The injury 

epicenter was determined as the section with the least spared white matter as 

identified by positive eriochrome cyanine stain and sampling was extended in the 

rostral and caudal direction until the total area had reached a plateau. The total 

volume of cavitation and injured gray matter across the extent of the lesion was 

calculated by multiplying the area of adjacent sections by the distance (~m) 

between sampled sections. Analysis of the cross-sectional area of sciatic nerves 

included every fifth section proximal to the bifurcation. Sections were stained with 

cresyl violet and processed in the same manner as described for the spinal cord. 

Statistical Analysis 
All data are presented as group means with standard deviations (±SD). 

Outcome measures were analyzed using repeated measures analysis of variance 

(AN OVA) with groups as a factor, or one-way ANOVA and were followed by 

Tukey's HSD or Bonferroni post hoc t-tests where appropriate. Differences 

between groups were considered statistically significant for p values of at least 

ps.05. The binomial proportions test was used to determine the validity of 

regrouping animals based on presence or absence of ankle contracture 

(contracture and no-contracture, respectively) and to determine differences in the 

number of animals per group with ankle contractu res. Proportions were checked 

to ensure the sample size was not too small nor the proportions too extreme for 

comparison (Siegel and Castellan, 1988). No corrections to the proportions were 
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required. All data was sorted and assessed for significant differences as follows: 

1) based on the original experimental design WC/SR, WC/non-SR, non-WC/SR, 

non-WC/non-SR controls; and in cases where the data indicate a bimodal 

distribution, 2) based on contracture or no-contracture. 

RESULTS 

Behavioral Assessment 
BBB assessments were performed twice weekly for the first 8 weeks 

during which wheelchair immobilization (WC) and/or hindlimb stretch (SR) were 

interventions (Figure 2C and 0, red bar along time axis), and then weekly for the 

remainder of the 16 week study. Animals were taken out of the wheelchairs, 

underwent daily care with or without SR, and were placed into standard housing, 

2 per cage, for at least 4 hours prior to any assessments. All BBB assessments 

for both WC groups are compared to control animals (Figure 2C, WC/SR n=5, 

WC/non-SR n=5 vs. non-WC/non-SR n=6), and non-WC animals that received 

SR are compared to controls separately (Figure 2C, non-WC/SR n=5 vs. non-

WC/non-SR n=6). The group averages were similar for all 4 groups in two 

aspects: (1) At post-injury day 4 all animals, as expected, were dragging their 

hindlimbs with no weight support and had varying degrees of hindlimb joint 

movement; (2) at post-injury day 7, most animals had some degree of weight 

support and plantar stepping. Figure 2C shows a profile of recovery that was 

significantly different for both WC groups as compared to controls beginning at 

week 2 through the remainder of the 16 week study (±SO, n=5/6, ps.05). Loss of 

function for WC groups became evident at week 2 and the decline in BBB scores 
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continued until weeks 4-5. At week 4, WC animals exhibited slight to extensive 

movement of hindlimb joints and were consistently dragging their hindlimbs 

(WC/SR group average BBB=1.9 ±1.9, WC/non-SR=3.9 ± 2.3); in contrast, the 

control group had recovered consistent weight-supported plantar stepping with 

consistent coordination (non-WC/non-SR, BBB=14.0 ± 2.4). 

The wheelchair immobilization and stretch protocol ended at week 8, and 

statistically significant deficits in BBB scores remained for both WC groups 

(WC/SR 5.5 ± 2.1, WC/non-SR 4.7 ± 3.3), as compared to control animals whose 

scores had reached a plateau (non-WC/non-SR 17.8 ± 1.7). WC groups regained 

some function between weeks 6 and 10, however group averages indicate that 

the inability to achieve weight support with consistent plantar stepping persisted 

for the duration of the study (BBBS1 0 denoted by the dashed line in Figure 2C). 

These data represent a substantial effect of intermittent WC immobilization, in 

animals that could move around in their standard cages for approximately 8 

hours per weekday and continuously (approximately 56 hours) each weekend. 

Any effect of the daily SR protocol on WC animals was either minimal 

and/or was rendered undetectable by the negative influence of wheelchair 

immobilization. We anticipated the need for circulatory and muscle maintenance 

for WC animals, and the SR protocol was included as an effort to alleviate any 

pathologies associated with hindlimb immobilization. Surprisingly, the BBB 

scores of the wheelchair/SR animals (n=5) suggest they were detrimentally 

affected as compared to controls (Figure 2C). Beginning at week 6, the group 

mean BBB scores were significantly lower (non-WC/SR 12.4 ± 2.2) than the non-
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SR control group (±SD, n=5/6, ps.05). The dotted horizontal line, BBB=14, 

indicates consistent forelimb-hindlimb coordination; although the standard 

deviation for this group is high, -3 points, these data show that receiving a 20 

minute protocol of hindlimb stretch therapy daily produced a group average BBB 

score indicating an inability to achieve consistent coordination. 

Prevalence of Ankle Contracture 
The profile of recovery in BBB scores for WC groups in Figure 2C can be 

characterized as short-term loss of function during weeks 2-4 followed by regain 

of function in weeks 8-10. It should be noted that all behavioral scoring took 

place in the afternoons at least 4 hours after WC animals were removed from 

their wheelchairs and placed into standard housing (2 per cage). Nonetheless, 

some of the dramatic loss of function for WC animals may have been due to 

transient stiffness or loss of passive ROM (developing contractures). Indeed, 

beginning at post-injury weeks 4-5, some WC animals experienced pathological 

changes to the hindlimb ankle joint resulting in an inability to move the joint 

regardless of neurological function (Moriyama et aI., 2006; Moriyama et aI., 

2007). The average terminal BBB score for a leg with an ankle contracture was 

7, and necessarily prevented that leg from achieving plantar placement. 

Assuming contracture of one or the other ankle is an independent process, there 

were a significantly higher proportion (ps.001) of ankle contractu res on either 

side for WC animals (n=9 out of 20 ankles total) versus non-WC (n=O out of 22 

ankles). Importantly, inclusion in the SR protocol group made no difference in the 

occurrence rate of ankle contracture in WC animals (WC/SR n=4 out of 10 ankles 
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and WC/non-SR n=5 out of 10 ankles). Since the SR protocol had no apparent 

effect on promoting or preventing contracture, each of the WC animals (n=10) 

was reassigned based on the presence/absence of contracture: WC/contracture 

n=4, WC/no-contracture n=3, and n=3 animals had contracture unilaterally only. 

Using a binomial proportion test, we compared these new groups with controls 

and re-assessed the data set. 

Figure 2D represents the same data as shown in Figure 2C, but is 

regrouped based on presence (WC/contracture, n=3) or absence (WC/no-

contracture, n=4) of ankle contractu res in the WC animals. The profile of 

recovery during weeks 2-4, indicating a loss of function for WC animals, remains 

similar to Figure 2C. WC animals, with and without ankle contractu res, have 

significantly lower scores as compared to controls beginning at week 2.5 and 

persisting to the end of the study. Weeks 10-16 reveal significantly different 

degrees of functional recovery between animals that had no contractu res versus 

those that did develop chronic ankle pathology. During weeks 10-16, WC animals 

with no discernable ankle pathology recovered frequent weight-supported 

stepping lacking coordination (WC/no-contracture highest mean BBB score 11.6 

± .75, week 14) whereas animals with ankle contracture could not achieve 

extensive movement of all three hindlimb joints nor plantar placement 

(WC/contracture highest mean score 7.3 ± .58, week 15). 

Kinematic Assessment of Stepping 
For stepping, group 3D kinematic excursion data was quantified for the 

hip, knee and ankle (Figure 3A). Group averages were compared at weeks 6 and 
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11. At week 6, we animals showed significantly reduced mean excursions for all 

three joints as compared to non-We animals (Figure 3A). Hip and knee positions 

were relatively flexed (70 and 40° respectively) while the ankles were extended 

(140-160°; Figure 3B and D). By week 11, both we groups regained hip 

excursions that were not different from controls and also regained some knee 

excursion, which remained significantly different from non-We animals by having 

a lower trough value (flexion; Figure 3e and E). Mean ankle excursions at week 

11 were significantly different for the two we groups compared to both non-We 

groups, and also between we groups (We groups contracture/no contracture; 

Figure 3A). By week 11, we animals without contractu res had recovered 

sufficient ROM about the ankle to achieve weight-supported, plantar stepping 

(Figure 3A and e), while animals with ankle contractu res had very low excursion 

ranges reflecting their very limited ankle ROM. There were no differences 

between non-We groups with or without SR at any time points indicating that 

deficits observed using the BBB scale were in interlimb coordination and not in 

joint excursions during stepping. 

Swimming Assessment 
Swimming was used as an assessment of locomotion that does not 

require the ability to support body weight. Swimming ability was assessed using 

the Louisville Swim Scale (LSS) with supplemental cutaneous feedback and the 

subscore was calculated by excluding the 6 points allotted for body position and 

trunk stability (Smith et aI., 2006b). Like the other indicators of locomotor 

function, both we groups exhibited significantly lower scores for swimming than 

both non-We groups during weeks 3, 5, 7 and 11 (Figure 4A). As characterized 
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by the LSS subscore (Figure 4B), both we groups had significant deficits in 

hindlimb movement when compared to the non-We groups both during and after 

we immobilization and/or SR interventions (weeks 3,5,7, 11 and 13). By week 

9, one week after the we and/or SR intervention had stopped, the we animals 

with no contractu res had gained -3 points on the LSS scale and only animals 

that had contractu res had significantly lower scores than controls for the 

remaining weeks. These data indicate that the greatest amount of recovery for 

the we animals without contractu res occurred in their ability to generate the 

cyclic hindlimb pattern of swimming. 

These observations from the LSS Scale were supported by our 20 

kinematic assessment of swimming based on angle-angle plots constructed on a 

stroke-by-stroke basis for the iliac crest-hip-ankle (IHA) and hip-ankle-toe (HAT) 

angles. Mean areas (±SO) and representative examples of IHA-HAT angle-angle 

plots from the terminal time point (Figure 4e and 0) illustrate that all three groups 

without ankle contractu res recovered the ability to generate coordinated hindlimb 

kicking with similar plot areas. Mean centroid positions (Figure 4E) illustrate that 

hindlimb restriction in the wheelchairs did alter the mean HAT position during 

kicking (160 0 significantly extended compared to non-We groups) while the 

presence of an ankle contracture resulted in a mean HAT angle of greater than 

200 0 (Figure 4E). Interestingly, all four groups were capable of generating toe 

velocities (relative to the hip) greater than 40mm/sec.; animals in the We/con 

group accomplished this despite the lack of ankle ROM using only their hips and 

knees (Figure 4F). 
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No significant differences in LSS Score or LSS Subscore were found for 

non-WC/non-SR and non-WC/SR animals despite the significant differences 

previously identified in overground stepping (Figure 2). Thus, we calculated the 

BBB subscore for the three groups without ankle contractu res and found that the 

non-WC/non-SR control group had significantly better subscores than the non-

WC/SR and WC/no-con groups (Figure 4G). The BBB subscore, which focuses 

on fine aspects of stepping, could not be calculated for animals with ankle 

contractures. Thus, the SR protocol appears to negatively influence the recovery 

of stepping more strongly than the recovery of swimming. 

In-vivo Micro-CT Scanning of Hindlimb Bone 
We used in-vivo micro-CT scanning at 6 and 13 weeks to assess bone 

loss and cancellous bone turnover in the proximal tibiae of WC and non-WC 

animals that did not receive the SR protocol (Figure 5A - C). We assessed only 

non-SR animals and separated out animals with contractures, which reduced our 

sample size of WC/no-con animals to 2, limiting our statistical power. There was 

a trend towards decreased Bone VolumelTotal Volume ratio at 6 weeks, which 

persisted to 13 weeks for WC/no-con animals when compared to WC/con and 

non-WC/non-SR animals (Figure 5A). WC immobilized animals that developed 

contracture of the ankle, n=3, had bone volumes very similar to that of the control 

group, n=6. Representative scans shown in Figure 5B and C reveal visual 

differences in the density of the trabecular structure along the lateral condyle and 

shaft (arrows) between animals. These findings suggest that our model may be 
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sufficient to induce bone remodeling, and daily in-cage movement may be related 

to preservation of bone structure. 

8ody, Muscle Weight and Sciatic Assessment 
We assessed body weight on a regular basis, and left hindlimb muscles 

TA and MG/LG, terminally, as indicators of possible negative effects of 

intermittent immobilization and unloading (Figure 6). WC immobilized animals 

lost weight during the first few weeks after injury and then gained weight 

thereafter. WC groups gained weight at a similar rate as non-WC groups 

however they were significantly lighter throughout the 8 weeks of WC and/or SR 

interventions, but no differences existed for weeks 8 through 16 (data not 

shown). We used the left side hindlimb muscle wet weight, rather than the right, 

based on the criteria that the ankles have no apparent lack of ROM and therefore 

a greater probability of having been plantar loaded. This criteria was true for n=7 

out of 10 animals (n=4 WC/no-contracture bilaterally, plus n=3 contracture on the 

right ankle only), and the animals with bilateral contracture (n=3 WC/contracture) 

would have had equal compensation on both sides; we therefore avoided 

disproportionate representation of a limb that had greater disuse and less 

loading. The MG/LG (ankle extensor) muscle wet weights were 10% less for both 

WC groups at the terminal time point and no differences were found for the TA 

(ankle flexor; Figure 6A, ps.05). Cross-sectional area of left side sciatic nerve 

was significantly lower for WC animals that did not receive the SR protocol as 

compared to non-WC animals that received SR intervention only (Figure 68). 

Interestingly, these data indicate a possible positive effect of SR for fiber area. 
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EMG Recordings of Gastrocnemius Muscle 
At the end of we and/or SR interventions (week 8), we assessed all 

animals for co-contraction (as a surrogate of spasticity) of right and left 

gastrocnemius muscles in an effort to identify possible contributions to the severe 

loss of ROM about the ankle (Trudel et aI., 2008) (Figure 7). Electrophysiological 

assessment consisted of several 1-minute at-rest recordings, with a series of 

brief tailor paw pinches that consistently elicited visually obvious hindlimb 

responses. Figure 5F shows the percentage of co-contraction of bilateral LG 

muscles during tail and paw pinches revealing that we animals had significantly 

greater co-contraction than non-We animals for tail pinch (We 71.2% ± 6.87 

versus non-We 55.8% ± 16.66, n=10/11 respectively), but no significant 

differences were found in the paw pinch condition. The inset lists the rank order 

of percent co-contraction found among all 4 original groups (Figure 7). we 

animals that did not receive SR had the highest percent of co-contraction (72%) 

while the control animals had the lowest percent (47%), and these differences 

were found to be significant (ps.05). 

Histological Assessment 
Using a one-way ANOVA, no significant differences were found in the 

percent of spared white matter (cross sectional area), gray matter loss or cavity 

volume (mm3
) at the epicenter among any groups (Table 1). The amount of 

spared white matter at the epicenter (30%) is consistent with the functional 

recovery achieved by the control group as measured by the BBB Scale (-18) 

(Magnuson et aI., 2005a). BBB scores of -10 at week 1 and terminal scores of 

-18 for injured controls are higher than expected with a 200 kD contusion injury 
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using the Infinite Horizons system. We attribute the relatively mild injuries to the 

custom-made system we used to stabilize the vertebrae, which was novel for us 

at the time. Nonetheless, all the animals were injured in a consistent manner. 

DISCUSSION 

It has been more than three decades since Sten Grillner and his talented 

trainees began referring to lithe central generation of locomotion" while studying 

the low spinal cat model (Grillner and Zangger, 1979; Barbeau et aI., 1999a). 

Since then, this model of acute transection has been used to characterize the 

capabilities of the lumbar spinal cord and the principles underlying locomotor 

training on the treadmill. The work of many laboratories including those of 

Edgerton, Rossignol and Barbeau have identified several issues including phasic 

limb loading, cutaneous paw contact and load progression as critical to training 

(Harkema et aI., 1997; Barbeau et aI., 1999a; Bouyer and Rossignol, 2003b; 

Cote and Gossard, 2004; Timoszyk et aI., 2005; Cha et aI., 2007; Frigon and 

Rossignol, 2008). In addition, training is thought to be task-specific in that 

improvements are largely limited to the trained task (Edgerton et aI., 1997; de 

Leon et aI., 1998; Smith et aI., 2006a; Bigbee et aI., 2007). 

Translating these key principles to the rodent and human models, 

however, has not been straightforward. Inherent to these three models, human, 

cat and rat, are a number of critical differences, as reviewed by Majczynski and 

Slawinska (2007), which may hinder translation and complicate the interpretation 

of experimental results. For example, most rodent studies use mid-thoracic 
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transections/contusions or incomplete lacerations, and acute or sub-acute 

training. In contrast, most clinical studies involve chronic incomplete or 

dyscomplete cervical or high-thoracic contusions. These three models also have 

very different locomotor characteristics: bipedal vs. quadrupedal, high vs. low vs. 

very low center of gravity. The characteristics of balance, trunk stability and 

posture, and the consequences of errors in stepping vary considerably and 

dramatically influence the capabilities of each species during the critical acute 

and sub-acute post-injury time period. Rodents are very active within days of 

injury while patients are largely immobile for several weeks or months, 

experiencing little more than transfer, stretching and passive range-of-motion 

therapies during this period. Apart from the substantial studies conducted by 

Dobkin and colleagues, rarely will patients enter an activity based rehabilitation 

setting before 3-6 months post-injury (Dobkin et aI., 2006; Dobkin, 2007). 

Importantly, step training of spinal cord injured rodents consistently 

demonstrates task-specific changes in hindlimb function, but rarely achieves 

frank improvements in overground stepping. Fouad and colleagues used daily 

treadmill training in an over-hemisection rat model and were unable to uncover 

improvements in overground stepping using the BBB Scale and kinematics as 

outcomes (2000). As also alluded to earlier by de Leon et al. (1998), Fouad 

concluded that spontaneous recovery resulting from self-training was substantial 

and that treadmill training provided no added benefit (2000). Subsequently, 

Multon et al. (2003) used manually assisted treadmill training of rats with T7 

microballoon compression injuries to demonstrate that small improvements in 
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BBB Scores could be achieved. Notably, these animals were housed individually, 

without enrichment. Invariably, studies using rats with all but the most severe 

incomplete injuries report substantial improvements in overground locomotion 

over the first few weeks post-injury (Fouad et aI., 2000; Basso et aI., 2002; 

Schucht et aI., 2002; Multon et aI., 2003; Magnuson et aI., 2005a; Heng and de 

Leon, 2008). Similar reports for cats following thoracic contusion or incomplete 

laceration injuries are limited (Gorska et aI., 1993) with the majority of studies 

being focused on task-specific improvements of limb function on the treadmill. 

Taken together, these observations suggest that the in-cage activity 

exhibited by rats with acute incomplete Sels should be viewed as cumulative 

step training. Therefore, we hypothesized that incompletely injured rats 

maximally train themselves within the first few weeks after injury. To test this 

hypothesis we designed a 4-wheeled cart or wheelchair that dramatically restricts 

hindlimb movement by holding the limbs in an extended-drag position, and alters 

the normal pattern of afferent input while still permitting good in-cage mobility. 

Anticipating that hindlimb immobilization might induce pathologies of muscles 

and joints, we also developed a stretching protocol based on standard of care 

clinical physical therapy (Harvey et aI., 2009). We found that neither intermittent 

hindlimb immobilization (We) nor stretch (SR) initiated at 4 days post-injury, prior 

to the resolution of spinal shock, had any influence on the dramatic early 

increase in hindlimb function. Both SR and non-SR, we and non-We groups had 

similar BBB scores at 7 days post-injury (10.6 ± 1.43 and 11.3 ± 1.85, 

respectively), suggesting that this phase of recovery is likely not dependent on 
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activity or patterns of afferent input. Thereafter, WC (SR and non-SR) animals 

experienced a dramatic loss of hindlimb function leaving them unable to generate 

weight-supporting plantar steps by 3 weeks post-injury. Poor hindlimb function 

assessed using the BBB Scale and kinematically, persisted for the 8 week 

duration of WC immobilization. When returned to standard housing at 8 weeks 

post-injury function rebounded somewhat during weeks 8-10, but remained 

significantly below the non-WC/non-SR control group out to week 16 suggesting 

that the spinal cord circuitry was not as responsive to in-cage training beyond 8 

weeks post-injury. Both WC/SR and WC/non-SR groups also developed ankle 

pathologies at a 40-50% rate that dramatically limited ROM. Only modest 

decreases in muscle weights were observed for the LG and MG only (not the TA) 

and the WC/SR group experienced loss similar to the WC/non-SR group. The SR 

protocol did appear to ameliorate a decrease in Bone Volume Ratio seen in the 

WC/non-SR group, however our group sizes were too small to achieve 

significance with this measure. Importantly, when the animals with ankle 

pathologies were excluded, a significant difference in the BBB scores and 

kinematic measures persisted showing that WC immobilization had a dramatic 

and lasting negative influence on locomotor function. 

Conceptually, there are interesting parallels between the current work, the 

literature discussed above and the work of Maier et al. (2008) using a rat model 

of unilateral corticospinal tract injury. Maier and colleagues showed that 

constraining the use of one limb, thus forcing the use of the impaired limb, lead to 

dramatic improvements in function that were correlated to increased contralateral 
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collateralization of corticospinal fibers in the cervical gray matter. When not 

forced to use the forelimb on the injured side, it remains immobile and the long

term functional (and anatomical) consequences of dies-use are dramatic. 

In contrast to the anticipated loss of function brought about by WC 

hindlimb immobilization, we also observed a significant and surprising difference 

between the SR and non-SR groups of non-WC animals indicating that our 

stretch protocol was having a detrimental effect on hindlimb function. The 

differences between groups developed somewhat gradually between weeks 2 

and 5 suggesting that the SR protocol was bringing about a functional plateau 

earlier than observed in the non-SR control animals. Despite stretching/ROM 

being a standard of care practiced clinically, systematic literature reviews have 

suggested that these approaches have mixed benefits or the data appears 

inconclusive at best (Harvey et aI., 2009). While many dubious explanations may 

be put forward for our observations, the most feasible is that our stretching 

protocol was activating barrages of afferent activity that disrupted lumbosacral 

circuitry and plasticity. The Grau laboratory, using an instrumental learning 

paradigm has demonstrated that randomly applied (uncontrollable) noxious 

inputs can disrupt spinal cord plasticity associated with both the short-term 

establishment phase and longer term maintenance phase of instrumental 

learning in the fully transected rat preparation (Crown et aI., 2002; Patton et aI., 

2004). Importantly, they also uncovered evidence that only six minutes 

(cumulative) of uncontrollable noxious input (tail shock) can negatively alter the 

normal profile of locomotor recovery in a contusion model of spinal cord injury 
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(Grau et aI., 2004). Thus, we posit that our SR protocol, acting as an 

uncontrollable input, had a negative influence on the process of plasticity that 

leads or allows in-cage activity-dependent functional recovery. The non-WC/SR 

animals in our study were high functioning; they exhibited consistent weight

supported stepping as measured by the BBB and were not different from controls 

when assessed kinematically while moving freely overground and swimming, 

indicating the stretch protocol was not debilitating. The clinical implications of 

these observations are significant and future work should address the utility of 

stretch-based therapies for avoidance of peripheral pathologies versus the 

potential for negative long-term c.onsequences on spinal learning and locomotor 

training. 

WC immobilized animals also exhibited higher levels of antagonist muscle 

co-contraction in response to tail pinch, as a surrogate measure of spasticity, 

compared to non-WC animals. In addition, we routinely observed bouts of 

bilateral hindlimb spasms during wheelchair immobilization, which were not 

quantified. The combination of ankle contractu res and spasticity suggests that 

the immobilization was not just preventing movement-related afferent input, but 

was possibly resulting in uncontrollable, noxious afferent input. Thus, while 

immobilization or inactivity may prevent optimal in-cage training, it remains to be 

determined how an absence or lack of activity-dependent afferent input 

compares to an abundance of activity-independent (uncontrollable), possibly 

noxious input to influence functional recovery (Grau et aI., 2004). 
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Recently, we discovered that providing 50-60% body weight support with 

Scm of water allows young adult female Sprague-Dawley rats with moderately

severe (25g-cm) T9 contusion injuries to generate high-quality plantar hindlimb 

stepping with near-normal kinematics as early as 1 week post-injury in the 

absence of an applied training strategy (Kuerzi et aL, 2010). In an elegant piece 

of work, Courtine and colleagues (Courtine et aL, 2009) showed in fully 

transected rats that a combination of serotonergic agonists, epidural stimulation 

and weight support allowed near-normal stepping (albeit bipedal) to be 

expressed at 1 week post-injury. In the current study, nightly WC immobilization 

on days 4,5 and 6 post-injury, as spinal shock was resolving, had no influence 

on the day 7 BBB scores. Taken together, these findings suggest that a robust 

ability to generate a stepping pattern is present immediately post-injury, and that 

this capacity is not dependent on an acute re-training phenomenon. Importantly, 

however, in our shallow-water stepping model, we found that the acute stepping 

capacity was not maintained in the absence of continued exposure to the activity 

("training"). This is in good agreement with the work of Courtine et aL (2009), 

described above, who found that excellent patterns induced at 1 week (with the 

"full combination" treatment) were not present at 9 weeks in animals that did not 

receive treadmill training in the intervening period. Thus, it follows that hindlimb 

immobilization of animals with mild to moderate spinal cord injuries suffiCiently 

disrupts the patterns of afferent input from the hind limbs to prevent the 

maintenance of the acute capacity leading to a dramatic drop in locomotor 

function over the first few weeks post-injury. With the caveats that intense acute 
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activity may be detrimental to traumatically injured spinal cord (Smith et aI., 

2009), our results support suggestions that appropriate activity, applied acutely, 

may enhance or optimize overall functional outcomes following a contusive spinal 

cord injury. 

Conclusion 
The current findings suggest that limiting early in-cage activity can 

dramatically alter functional recovery of locomotion in a rodent model of mild-

moderate spinal cord injury. Surprisingly, we also show that a hindlimb stretch 

protocol can have a negative effect on recovery in normally housed animals, 

preventing the development of forelimb-hindlimb coordination, while having no 

apparent influence on recovery in hindlimb immobilized animals or on the 

development of ankle contractures. These findings imply that the immobility 

experienced by the majority of spinal cord injured patients, and some aspects of 

standard of care therapies, may significantly hinder functional recovery acutely, 

and also potentially limit the responsiveness of the spinal cord circuitry to training 

efforts initiated at later time points. 
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Figure 1. Timeline we Hindlimb Immobilization. 
Wheelchair immobilization and stretch protocol was for an 8 week period (dashed line) followed by 8 weeks of normal/standard (2 per cage) 
housing. The schedule of injury and treatments are shown below the timeline and the schedule of assessments is shown above. 
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Figure 2. BBB Scores we Hindlimb Immobilization. 
A. Shown is an injured animal in a wheelchair. Velcro straps held the animal and hind limbs in 
place. B. Shown is a 3D kinematic analysis of the right hindlimb during wheelchair immobilization. 
The anatomical landmarks represented are the iliac crest (Ie), hip, knee, ankle and toe. Some 
movement of the knee or ankle was sometimes seen during spasms, as shown here for the knee. 
e . Shown are the BBB scores over time for all 4 experimental groups (wheelchair - we; stretch -
SR). All animals scored 21 pre-injury. Significant differences were found for both we groups (n=5 
each) compared to non-We/non-SR controls (*, n=6, ±SD, pS.05) . Animals receiving the SR 
intervention (non-We/SR, n=5) had BBB scores that were significantly different from non
We/non-SR controls (**, n=6, ±SD, pS.05). D. Shown are the BBB scores over time for groups 
based on presence (con) or absence (no-con) of ankle contractures. We/con (n=3) and We/no
con (n=4) groups have significantly lower BBB scores compared to controls for weeks 2-16 (*, 
n=6, ±SD, pS.05) . Scores for the We/con group are significantly different from the We/no-con 
group at weeks 2, 6 and 10-16 (&, n=3/4, ±SD, pS.05) . 
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Figure 3. Intralimb Coordination Overground Stepping WC Hindlimb Immobilization. 
A. 3D kinematic analysis of hindlimb joint excursions overground stepping. Joint excursion is presented as the range of angles through which 
the joint moves and is calculated as maximum peak angle (extension) minus the trough angle (flexion). Baseline excursion data represents 
the pre-injury average for all animals. Symbols within each bar represent significant differences in average excursion, symbols above and 
below represent significant differences in average peak or trough angles; (*) indicates significant differences for both WC groups (WC/con, 
n=3 and WC/no-con, n=4) as compared to both non-WC groups (non-WC/SR, n=5 and non-WC/non-SR controls, n=6, ±SD, p:5.05) , and (&) 
represents significant differences between the two WC groups (n=5/5, ±SD, p:5.05) . 
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Figure 4. Swimming Assessments WC Hindlimb Immobilization. 
A. Both WC groups, regardless of ankle contracture, had significantly lower LSS scores 
compared to non-WC/non-SR controls for weeks 3, 5, 7 and 11 (*, n=3,4/6, ±SD, p~ . 05) . 
Following the 8 weeks of WC and/or SR interventions (dashed line under x-axis) , WC/no-con 
animals experienced a sharp gain of swimming function (WC/no-con, weeks 9 and 15, peak 
LSS score of 9.50 ± .903), and only WC/con animals had significantly lower LSS scores 
(LSS-6) compared to controls (*, n=3/6, ±SD, p~ . 05) . B. The LSS subscore indicates that both 
WC groups lacked the ability to produce hindlimb locomotor strokes as compared to controls 
(weeks 3, 5 and 7 during WC and/or SR interventions, and weeks 11 and 13 after the 
interventions had ended (*, n=3,4/6, ±SD, p~.05) . WC/no-con animals showed significant 
improvement in hindlimb function during swimming once WC and SR interventions ceased , 
weeks 9 and 15 (p~ . 05) . 
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HAT) for non-WC (C) and WC (D) groups and the average plot areas as calculated using elliptical Fourier analysis, which were Significantly 
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injury (*, ±SD, n=3,4/S,6, pS.OS) . F. Kinematic analysis of the peak velocity of the toe, relative to the hip, shows that all four groups (based 
on contractures) could generate velocities greater than 40mm/sec, and there were no significant group differences. G. As a complement to 
the LSS subscores (hindlimb components only), we determined the subscores for the BBB Scale (at 1S weeks post-injury) and found that 
both the WC and non-WC/SR groups retained significant deficits in the fine aspects of stepping. 
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Figure 5. In-vivo Micro-CT Bone Architecture WC Hindlimb Immobilization. 
A. In-vivo Micro CT-scans of cortical and cancellous bone of the proximal tibial metaphysis 
showed no significant differences between WC immobilized animals and controls. B. & C. 
Sample scans of the proximal tibial metaphysis and lateral condyle from OITe non-WC (B) and 
one WC/no-con (C) animal. Arrows indicate apparent differences in the trabecular density in 
the shaft and cortical bone of the lateral condyle. 

A 
0.7 

0.6 

g 0.5 

I§ 0.4 
~ 
~ 0.3 g 
Q) 0.2 
c 
S 0.1 

0.0 

• WC/no-con 
• WC/con 
• non-WC/non-SR 

6 13 
Weeks Post-Injury 

Images of MicroCT Scans of Proximal Tibia 

non-WC/non-SR 

WC/no-con 

55 



Figure 6. Muscle Weight WC Hindlimb Immobilization. 
A. Wet weights of the left tibialis anterior (TA muscles) were not different for the WC and non
WC groups, however, the left gastrocnemius muscles (medial and lateral dissected together) 
from the WC groups were significantly lighter than those of the non-WC groups (*, n=5,5/5,6, 
±SO, pS.05) . B. Sciatic nerve cross-sectional area was significantly lower for WC animals that 
did not receive stretch as compared to non-WC animals that did receive stretch (WC/non-SR, 
0.104 ± 0.0136 n=5 vs. non-WC/Stretch 0.148 ± 0.0146, *, n=5/5, ±SO, pS.05) . 
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Figure 7. Muscle Co-contraction WC Hindlimb Immobilization. 
The percent co-contraction of right and left LG muscles was calculated from EMG record ings 
from each group for both tail and paw pinch conditions. WC animals had significantly greater 
co-contraction during tail pinches as compared to non-WC (SR and non-SR, ., n=10/11 
respectively , ±SD, p~. 05) . 
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Histological Analysis of Injury Epicenter. 

Group White MaHer CSA GfaYMafter Volume Cavity volume 
WC/SR 28.8 ± 14.13 160.2 ± 24.75 17.2 ± 7.72 
WC/non-SR 21.4 ± 7.16 152.3 ± 30.03 21.6 ± 21.08 
non-WC/SR 24.4 ± 7.10 152.7 ± 52.62 36.8 ± 27.38 
non-WC/non-SR 32.4 ± 6.36 143.8 ± 25.85 53.7 ± 29.8 

Table 1. Histology WC Hindlimb Immobilization. 
Shown is the mean spared white matter cross-sectional area (CSA) at the injury epicenter (mm2

), gray matter volume loss (mm3
) and cavity 

volume (mm\ No significant differences were found among groups. 
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CHAPTER III 

FUNCTIONAL LOCOMOTOR RECOVERY IS NEGATIVELY ALTERED IN A 
TASK-SPECIFIC MANNER FOLLOWING CONTUSIVE SPINAL CORD INJURY 

IN THE ADULT RAT 

INTRODUCTION 

The concept of task-specificity in activity-based rehabilitation posits that 

general activity does not promote learning of skilled actions, but it is both the 

quality and intensity of specific sensorimotor afferent information that engages 

neural circuits 'and induces skilled motor learning (Basso and Hansen, 2011). 

Body weight supported treadmill (BWST) step training studies in completely 

transected animals have repeatedly demonstrated that activity-based 

rehabilitation leads to improved abilities exclusive to the trained task. Separate 

components, or qualitative aspects, of afferent input such as proprioception and 

pattern of cyclic hindlimb movements, cutaneous paw input, and extensor muscle 

loading determine different features of functional locomotor recovery. For 

example, spinalized cats can be trained to stand, but their ability to step on a 

treadmill deteriorated; conversely, if stepping was trained the positive effects of 

stand training were not evident (Edgerton et aI., 1992; Hodgson et aI., 1994; de 

Leon et aI., 1998; de Leon et aI., 1999b; Tillakaratne et aI., 2002). Combining the 

afferent components of increased extensor loading with specifically patterned 

phasic inputs during step training resulted in greater locomotor recovery on a 
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treadmill in the complete transected cat model (Timoszyk et al., 2005), as well as 

in patients stepping on a treadmill (Harkema et aI., 1997; Kojima et aI., 1999; 

Harkema, 2001, 2008; Harkema et aI., 2012b). Oppositely, swim training 

provides a high number of locomotor cycles (high intensity) and can be combined 

with cutaneous input, but does not require extensor loading (a quality or 

component of afferent input). The ability to weight support during overground 

stepping was not improved with swim training, but after only a few weeks of daily 

swim training the pattern of intralimb coordination during in an incomplete lower 

thoracic contusion injury (Smith et aI., 2006a; Smith et aI., 2006b; Magnuson et 

aI., 2009). Proper intensity refers to optimizing the amount (or duration of) and 

thus the repetition of specific afferent input during a training regimen. A certain 

minimum amount of step training with specific sensorimotor input is essential to 

bring about the desired improvements in hindlimb trajectory, speed of stepping, 

and coordination (Edgerton et aI., 2004; Majczynski and Slawinska, 2007). 

Studies from the de Leon lab have shown in a neonatal rat transection model that 

treadmill step training sessions with 1000, versus only 100, steps resulted in 

higher quality locomotor recovery, increased ability to perform more weight

supported steps at faster treadmill speeds, and improved hindlimb trajectory 

(Cha et aI., 2007; de Leon et aI., 2011). Unfortunately, in all these studies the 

positive effects of activity-based training does not translate to increased ability to 

perform voluntary unassisted stepping. As Marsh and colleagues have outlined, 

sufficient retention of the task is evident since trained animals can repeatedly 

perform stepping, but generalization of the specific cues and conditions of 
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practice on treadmill may represent the greater hurdle to transferring the skilled 

locomotor performance to overground stepping (2011). 

Treadmill step training is task-specific in that it provides a moving platform 

that induces extension of the hip to cue the CPG to produce locomotor output 

(Dobkin et aI., 1995), while overground stepping takes cues from balance and 

vestibular systems as well as joint extension (Dobkin and Duncan, 2012). The 

relative benefits of overground step training versus higher intensity BWST step 

training are debatable (Hornby et aI., 2005; Wlrz et aI., 2005; Wessels et aI., 

2010), but regardless of the methods used, increasing volitional control of 

movement is the primary goal. Our laboratory recently studied shallow water 

walking (SVWJ) as a model of activity-based rehabilitation after T9 contusion 

injuries in the rat, and was developed with respect to the history and summation 

of years of treadmill step training data from transected cat and rat stUdies. S\f'NII 

represents a seemingly optimal combination of voluntary quadrupedal stepping: 

partial weight support and lateral stabilization provided via buoyancy in the water, 

the water level is adjustable to challenge the extensor loading and weight support 

during training, and cutaneous feedback provided from the textured surface of 

the training tank (Kuerzi et aI., 2010). There were significant task-specific 

improvements for animals that were S\f'NII trained in that hindlimb kinematic 

trajectory approached normal and increased plantar weight-supported stepping, 

but only while stepping in the shallow water, and no improvement in overground 

stepping ability was evident (Kuerzi et aI., 2010). Results from S\f'NII training 

parallel treadmill step training studies showing robust improvements due to 
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training but only when stepping on a treadmill. These studies indicate that spared 

spinal cord circuitry is capable of producing motor output when given a specific 

environment with all the proper cues provided extraneously. However, to be 

clinically relevant an activity-based training paradigm should result in training of 

volitional control of a skill that can also be applied to other tasks and 

environments (Basso and Hansen, 2011). We have not yet elucidated the best 

combination of afferent input qualities and intensity of training to produce an 

activity-based locomotor rehabilitation strategy consistent and robust enough for 

SCI patients whose goal is to walk independently again. 

The expected results from transection studies have been elusive in SCI 

patients. An obvious difference is that in both transection and incomplete SCI 

animal models training is initiated acutely, within the first week, a clear distinction 

from SCI studies on patients in which the earliest activity-based rehabilitation 

began was 4.5 weeks post-injury on average (Dobkin et aI., 2006; Dobkin et aI., 

2007). The impact of this may be most evident when considering the natural 

course of recovery of rats with incomplete SCI. As introduced in Chapter 2 

(Caudle et aI., 2011), functional locomotor recovery in these animals has been 

recognized, by our lab and others, as early spontaneous recovery that is not 

receptive to activity-based locomotor training aimed to improve overground 

stepping (Fouad et aI., 2000; Smith et aI., 2006a; Heng and de Leon, 2008; 

Magnuson et aI., 2009; Kuerzi et aI., 2010; Alluin et aI., 2011). There are no 

additional benefits of an activity-based rehabilitation strategy because of a ceiling 

effect; the locomotor recovery before the training is applied is already substantial 
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(Kuerzi et aI., 2010). We developed a model of wheelchair immobilization in an 

effort to test the hypothesis that rats with low thoracic contusive sel achieve 

maximal locomotor recovery due to auto-training (or in-cage training). In our 

previous study we found that rats intermittently wheelchair immobilized, 

overnights only for 5 nights a week for 8 consecutive weeks, gained substantial 

locomotor recovery (BBB-12) by 1 week, but subsequently experienced a 

marked loss of locomotor recovery that persisted at least to sixteen weeks 

(Figure 2). If auto-training within the first few weeks post-injury contributes to 

early locomotor recovery, then preventing auto-training 24 hours per dayn days 

per week (24n) may prevent the initial gain of locomotor function. To test this 

notion, moderate contusions (12.5g-cm) using the NYU impactor were performed 

at the T9 segmental level, and experimental groups consisted of a non-We group 

allowed to recover in standard cages for 8 weeks, and a 24n wheelchair group 

starting at 4 days post-injury through 6 weeks. In an effort to prevent the 

pathological ankle contracture produced in the previous we study, wheelchairs 

used in the current study were designed to allow the hindlimb joints freedom to 

move within a limited range-of-motion but still prevented extensor loading and 

plantar paw contact in order to test task-specificity of recovery. we animals were 

delayed in locomotor recovery of plantar stepping as measured by the BBB 

Open-Field Locomotor Scale and 3D kinematic analysis of overground and 

shallow water walking. Our data suggests that functional locomotor recovery is 

limited in a task-specific manner, and even minimal amounts of proprioceptive 

afferent input promotes locomotor recovery specific to intralimb coordination. 
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MATERIALS AND METHODS 

Spinal Cord Injury and Experimental Design 
Ten female adult Sprague-Dawley rats (190-215g, Harlan) were used for 

this study. All procedures involving experimental animals were performed 

according to the guidelines of the University of Louisville Institutional Animal Care 

and Use Committee. Prior to injury, animals were randomly assigned to the 

experimental group: (24/7 in wheelchairs (WC), n=5) or to the control group 

(nonIWC, n=5). Each animal was anesthetized with pentobarbital (55 mg/kg Lp.) 

and given prophylactic antibiotics (Gentamicin sulfate 15 mg/kg sc.). A single 

level laminectomy was performed at the T9 vertebrae and a moderate contusion 

injury (12.5 g-cm) was performed at the T10 cord level using the NYU Impactor 

(W. Young, Rutgers University, NJ) as previously described (Magnuson et aI., 

1999). Body temperatures were maintained at 36-37°C throughout the procedure 

and until the animals had recovered from anesthetic. After injury, wounds were 

closed in layers using silk sutures with topical antibiotics applied to the incision. 

Animals remained in recovery cages on heating pads until fully recovered from 

anesthesia. Upon waking from contusion surgery, day 0, non-WC animals were 

housed socially, two or three per cage, in standard cages. All cages included 

Alpha Dry bedding with food and water provided ad libitum, all animals were 

housed in the same room with 12-hour light dark cycle and received daily post-

operative care, including manual bladder expression as needed. Wheelchair use 

began at 4 days post-injury, and continued for 24 hours per day/7 days per week, 
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for duration of 6 weeks. WC cage mates stayed together, paired, in large 

breeding cages while non-WC animals remained paired in standard cages. All 

assessments continued until S weeks post-injury, at which point all animals were 

sacrificed (terminal). 

Wheelchairs used in this study were designed to hold the trunk in a 

stationary position with free movement of the forelimbs to allow for maneuvering 

about the cage. Wheelchairs were constructed as previously described (Chapter 

2 methods) however in the current study a lightweight thermoplastic material was 

used for the platform. The thermoplastic was shaped into a series of bends along 

the caudal half of the wheelchair allowed the hindlimb joints to move through a 

range-of-motion without achieving weight support or paw stimulation (Figure SA). 

A representative sample of unilateral kinematic analysis (see methods below) of 

a hindlimb at rest (bold red lines) while in a wheelchair is shown in Figure SB. 

The rays originating from each joint (shorter red lines) represent the range of 

possible positions each limb segment could achieve. Velcro straps around the 

ribcage, hips and both ankles kept the animal securely fastened. Wheelchairs 

were cleaned daily and no animal exhibited autophagia. 

Daily Care 
All animals received standard post-operative and daily care as described 

in Chapter 2 methods. Briefly, WC animals were taken out of wheelchairs daily 

and immediately received a daily 2-minute massage of the hindlimbs in a distal to 

proximal direction for pressure relief and to aid in circulation (non-WC controls 

also received the daily 2-minute massage). Skin care was proactive and straps 
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were adjusted several times per 24-hour period for inspection; topical antibiotics 

and layers of fresh clean gauze were applied frequently. The criterion for 

temporary exclusion from the wheelchair beyond 2 hours was a skin abrasion 

with non-blanchable redness, with or without sloughing of the epidermis, which 

did not respond to topical antibiotics within 8 hours. Only 2 out of 5 WC animals 

were temporarily excluded on 2 occasions each for no more than 48 hours per 

occasion. Immediately following daily care animals were allowed to recover in a 

standard cage with bedding for no more than two consecutive hours. On 

occasion, WC animals were in standard cages during or in between behavioral 

testing sessions. We closely monitored general health and provided NutriCal 

supplement to WC animals frequently. Animals were weighed preoperatively and 

every 4 weeks thereafter. Hindlimb muscles tibialis anterior (TA, ankle flexors), 

lateral/medial gastrocnemius (LG/MG, ankle extensors), biceps femoris (BP, 

knee flexors), and vastus lateralis/medialislintermedius, and rectus femoris 

(quadriceps, knee extensors) were harvested upon termination. 

Behavioral Assessment 
Hindlimb movement during overground stepping was assessed using the 

BBB Open Field Locomotor Scale as previously described (Kuerzi et aI., 2010). 

The low end of the scale is characterized by movements of individual hindlimb 

joints without weight-supported stepping, and the high end of the scale is 

characterized by consistent weight-supported stepping, consistent coordination, 

toe clearance, paw position and tail position (Basso et aI., 1995). BBB evaluation 

was performed preoperatively, on day 4, week 1 and every other week thereafter 
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to minimize any possible effect of auto-training during stepping assessment. The 

animals were presented at random to the same two observers, both blinded to 

experimental groups, for all behavioral scoring. 

The Louisville Swim Scale (LSS) is a 0-17 point scale designed in our 

laboratory to assess swimming performance during 4 minutes of lap swimming 

as previously described (Smith et aI., 2006b). Swimming assessments were 

performed preoperatively, once at post-injury week 1 and then terminally at 8 

weeks. The animals were briefly reintroduced to the water two days prior to every 

LSS assessment to decrease stress response. Briefly, LSS scores in the 0-5 

range indicates poor swimming with little or no hindlimb movement, dependence 

on their forelimbs for forward motion, and severe trunk instability (body rotation) 

and/or body angle (the animals back is far below the water surface). Intermediate 

scores (6-11) indicate retained dependency on forelimbs for forward movement 

with varying degrees of hindlimb movement, trunk instability, and body angle. 

Animals that score greater than 12 have consistent hindlimb movement, little to 

no forelimb dependency, frequent to consistent alternating hindlimb movements, 

less trunk instability and body angle. The LSS subscore has a maximum score of 

11 points and accounts only for the hindlimb cycling abilities by excluding the 

trunk stability and body angle portions of the assessment. 

ROM of the Ankle 
The movement trajectory (quality) and gait (pattern) of locomotor output 

results from the status of the central and peripheral nervous system as well as 

from peripheral musculoskeletal structures. Joint capsule, ligament, soft tissue 
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and muscle tightness, joint extensibility, as well as jOint or bone abnormalities are 

all possible contributors to limited ROM (O'Sullivan and Schmitz, 2001). Passive 

range-of-motion (pROM) is motion across a joint that is performed by an 

examiner without the assistance of the animal/subject. Since we saw severe 

ankle contracture in WC animals in the previous study we focused on measuring 

pROM flexion and extension of the ankle, using a universal goniometer (Figure 

8C), on day 4 and every two weeks thereafter. Each rat was wrapped in a terry 

cloth towel such that only the hind limbs were accessible for passive 

manipulation. The knee was bent at -75° flexion while 2 examiners measured 

ankle pROM using the goniometer aligned on toe, ankle and knee bony 

landmarks. In the case of discrepancy both examiners had to come to an 

agreement on the final measurements and rounded to increments of 5°. Total 

pROM for the ankle is 135°, 15° of flexion and 150° of extension. 

Kinematic Assessment of Stepping, Swimming and Shallow Water Walking 
To quantitatively assess intralimb coordination during overground 

locomotion, three-dimensional (3D) kinematic analysis was performed at 2, 4, 6 

and 8 weeks. Bilateral hindlimb trajectory was averaged for both sides from a 

minimum of 3 passes on each side in which the animal did not hesitate, or at 

lease 5 full step cycles. Data are presented as averaged total angle excursions 

with the peaks of the angle corresponding to the greatest amount of extension 

and the troughs as the greatest points of flexion through the step cycles. Bony 

landmarks of hindlimb iliac crest (I), hip (H), ankle (A) and toe (T) were marked, 

as previously described (Magnuson et aI., 2009; Kuerzi et aI., 2010), and 
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hindlimb movement was recorded with two Basler 602f high-resolution digital 

cameras running at 60Hz connected to a PC using the video software DVR 

Explorer (Advanced Digital Vision, Natick, MA). The digital AVI files from both 

cameras were opened in MaxTraq3D (Innovision Systems, Columbiaville, MI) 

where they were digitally identified in a semi-automated fashion on each frame. 

The two dimensional files were digitally combined to form a three dimensional file 

(.mqf) from which all stick figures and angle excursion data is derived in Excel or 

Maxmate (Innovision Systems). At week 4 we used 3D kinematic analysis to 

capture movement of the hind limbs while the rats were in their wheelchairs. Stick 

figure representations were derived using the Maxmate plug in for Excel as 

described above. 

Kinematic assessment of intralimb coordination during shallow water 

walking (SWVV) was performed at 2, 4, 6 and 8 weeks, but swimming was 

assessed only at baseline and week 8. As previously described, the bony 

segments are marked and digitally identified using side-view 20 kinematic 

analysis (Chapter 2). Three hindlimb segments, iliac crest (IC) to hip (H), hip (H) 

to ankle (A), and ankle (A) to toe (T), represent the phase relationships of 

hindlimb trajectory during S'/'NIJ and swimming cycles in the form of peak, trough 

and excursion data described above. The relationship of the two angles formed 

by the segments (IHA, HAT) form an ellipsoid that is a visual representation of 

the hindlimb through a swimming stroke cycle (Magnuson et aI., 2009). Averaged 

swim stroke cycles per group are represented as centroid plots of the relationship 

of IHA and HAT angles. 
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Interlimb coordination was assessed during S\IIMJ from ventral view digital 

recordings using a single camera (2D gait analysis) mounted under the Plexiglas 

clear tank filled with 5 cm water. As described for the traditional footprint analysis 

technique (Kunkel-Bagden et aI., 1993) the plantar surface of each paw was 

digitally marked using the same video software described above. Digital 

identification of plantar and dorsal steps, paw placement order and coupling was 

calculated as previously described (Kuerzi et aI., 2010). Regularity Index (RI) 

originally described by Hamers and Koopmans (2001; Koopmans et aI., 2005) 

was calculated as the number of correctly patterned plantar step cycles/total 

cycles (dorsal and plantar cycles) and gives an indication of interlimb 

coordination of plantar only stepping. For rodents with SCI that have no 

reasonable prospect for coordinated stepping we adapted the Plantar Stepping 

Index (PSI) (Cheng et aI., 1997; Kuerzi et aI., 2010). PSI is calculated as the 

number of hindlimb plantar steps/forelimb plantar steps and indicates how 

consistently the animal is able to achieve plantar stepping. Since animals in our 

model are capable of producing consistent dorsal stepping we have developed 

the Central Pattern Index (CPI) to indicate the quality of coordination during 

dorsal stepping. CPI is calculated as the number of correctly patterned cycles 

(dorsal and plantar cycles) divided by the total number of cycles (dorsal and 

plantar cycles) with a "rolling" reference paw. This value indicates whether the 

animal can achieve coordination regardless of the ability to properly place the 

paw on its plantar surface. Using a rolling reference paw makes the calculation 

more sensitive to incorrect patterns and double steps with the same paw. 
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Interlimb coordination was also assessed using the timing of the stance 

phases (homolateral, homologous, and diagonal) relative to an entire step cycle 

(Leblond et aI., 2003). The coupling relationship represents the percentage of the 

step cycle that any two limbs are in stance; presumably weight-supporting plantar 

or dorsal stepping based on 12.5 g-cm T9 injuries in the current study. Couplings 

were calculated for uninjured rats: homolateral coupling (on the same side of the 

animal, -50%) homologous coupling (limbs on the same girdle, -60%) and 

diagonal coupling (LF vs. RH and RF vs. LH, -90%). Additionally, we calculated 

a diagonal distance measurement to assess the how stride length might be 

affected by compensatory intralimb kinematics. 

Ex-vivo Micro-CT Scanning of Hindlimb Bone 
Following termination, all femora and tibiae were removed for ex-vivo 

micro-CT scanning using a custom scanner (150/225-Ffi-HR-CT, BIR, 

Lincolnshire, IL) that includes a 225 KV X-ray source with a focal spot size of 5 

!Am and an image intensifier with a 1024 x 1024 pixel digital camera (ACTIS, BIR, 

Lincolnshire, IL) (Voor et aI., 2012). The basic X-ray power settings were 86 kV 

and 110 !AA. Scans represent a full 360o-plus-fan-angle rotation, with 1000 

projections per revolution covering a 3 mm distance below the knee joint. Two 

complete rotations covering 214 slices were performed for each scan. A custom 

MATLAB program (v6.5, The Mathworks, Matick, MA) was used to isolate the 

compact bone from the less dense cancellous or trabecular bone, and to 

calculate the bone volume fraction (BVITV) of the distal femora and proximal 

tibiae bilaterally. 
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Electrophysiological Assessment 
To assess ankle flexor and extensor tone and spasticity we performed 

bilateral electromyographic (EMG) recordings of LG and TA (heteronomous 

muscles) at rest and during tail pinches for all animals at weeks 2 and 8 as 

previously described (Chapter 2 methods). Briefly, animals were held securely 

with a cloth stockinette on a wooden platform so the hind limbs were suspended 

and accessible for fine wire electrode placement. In order to confirm proper 

electrode placement, pROM was performed by a handler to show that muscle 

groups bursted in isolation when stretched. We then allowed the animals to 

settle, and recorded 1.S-minute periods during which no stimulus or touch was 

given. Following the at rest recordings a rubber clamp was used to pinch the tail 

in a series of S times to elicit bursts of movement responses in the hindlimbs. 

The percent bilateral co-contraction was calculated as an indication of spasticity. 

The duration of both muscles firing divided by the duration of either muscle firing 

per set of bursts was calculated and converted to a percentage. The absolute 

duration of elicited bursts is represented in seconds. 

Histology of Spinal Cord Injury Epicenter 
All animals were euthanized at week 8.S with excess anesthetic 

(pentobarbital, 110 mg/mL Lp.) and perfused transcardially with 4% 

paraformaldehyde and calcium free tyrodes. Spinal cord segments T7 through L6 

were removed for histological processing and analysis as previously described 

(Hadi et aI., 2000, Magnuson et aI., 200S, Chapter 2 methods). Briefly, adjacent 

sets of spinal cord slides were stained for white (eriochrome cyanine) or gray 
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matter (cresyl echt violet for Nissl bodies) and processed for spared white matter 

at the epicenter. Every 5th section from the epicenter was photographed so the 

total area of white matter, healthy gray matter, unhealthy gray matter, cavity and 

total area could identified and traced using a Wacom Intuos (Vancouver, WA) 

drawing tablet. Traced images were opened in ImageJ (NIH software) for the 

area calculation of each tissue region as previously described (Chapter 2 

methods). 

Statistical Analysis 
All data a(e presented as group means with standard deviations (±SD). 

Outcome measures were analyzed using repeated measures analysis of 

variance (ANOVA) with groups as a factor, and were followed by Tukey's HSD 

and Bonferroni post hoc t-tests when appropriate. Group differences were 

considered statistically significant for at least ps.05. The binomial proportions test 

was used when appropriate, no corrections to the proportions were required. 

RESULTS 

Behavioral Assessment Recovery of Hindlimb Locomotion 
Our prerequisite goal of mitigating severe pathological ankle contracture in 

the current study was achieved. In contrast to our previous study in which a daily 

hindlimb muscle stretch protocol was incorporated, but had no effect on 

preventing ankle contracture in WC animals, in the current study we did not 

include stretching and purposely designed the wheelchair to allow more 

movement of the hind limbs. Passive ROM of the ankle joint was assessed by 
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manual goniometer measurements and revealed significant loss of pROM for we 

animals during weeks 2 and 6 (We group averages: 10B.0 ± 12.55 at week 2, 

112.5 ± 15.91 at week 6, vs. non-We: 135.0 ± 0.00 at all weeks, p<.05) that 

resolved by week B (We 123.0 ± 12.55 week B) such that no differences were 

evident from non-We animals. It should be noted hypomobility was only evident 

in the flexion end point values, rather than extension, of the ankle joint for we 

animals. 

Beginning at week 2.5 the BBB scores for the we group were Significantly 

lower than non-We and remained lower throughout the remainder of the B week 

study, (Figure BO). The dashed horizontal line represents occasional weight

supported plantar stepping (BBB= 10), so while the loss of function for the we 

group is not as severe as in our previous study, the separation of groups above 

and below this milestone of locomotor recovery is physiologically relevant. In 

support of this distinction we plotted the response rate of BBB subscores for the 

groups, and significant differences are evident for weeks 2, 4, and 6 (Figure BE). 

Qualification for a BBB subscore is dependent upon consistent weight support, 

regardless of whether the steps are dorsal or plantar placed. At day 4 (week 0.5) 

all animals, as expected, were dragging their hindlimbs with no weight support 

and had varying degrees of hindlimb joint movement. No animal, regardless of 

group, had a BBB score that indicated the ability to produce any plantar weight

supported steps at 1 week (Figure BO), therefore both groups have a response 

rate of 0 for the BBB subscore at weeks 0.5 and 1 (Figure BE). Between weeks 

1- 2.5 the non-We animals recovered consistent weight support, and therefore all 
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received a BBB subscore. From week 2.5 and later non-We animals had 

consistent weight support and frequent/consistent plantar stepping, and was their 

maximal locomotor recovery throughout the remainder of the study. As a group, 

the we animals recovered consistent weight support only after the 2417 in 

wheelchairs stopped, after week 6 during the 2 weeks of in-cage activity, so that 

80% received a BBB subscore. However, the stepping was frequently dorsal, 

therefore the scores never reached a BBB score of 11. These data indicate a 

task-specific delay in recovery of locomotor function for we animals. 

Kinematic Assessment of Intralimb Coordination During Overground Stepping 
There were significant differences in overground locomotion between 

groups due to the lack of plantar stepping, as measured by BBB scoring, for we 

animals. The relationship between joint angles and trajectory of hindlimbs during 

overground stepping during side view kinematic analysis did not take into 

account whether stepping was plantar or dorsal, and there were no differences in 

hip and knee excursion during overground stepping at any time point; weeks 2, 4, 

& 6 in wheelchairs, and after 2 weeks of in-cage activity, week 8 (Figure 9). 

However, the average ankle excursion was significantly different between groups 

at weeks 4 and 6 for both the peak (maximal extension) and trough (maximal 

flexion) values, but at week 8 the trough (flexion) values were closer to that of the 

non-We controls. These data indicate that we animals stepped overground with 

greater extension of the ankle especially during the weeks in wheelchairs. 

Swimming Assessment 
For this study swimming was used as an assessment of hindlimb pattern 

that requires no weight support, and was assessed at baseline and terminally 

75 



(Figure 10A,B). We purposely avoided swimming assessments throughout the 

study to reduce any extra hindlimb afferent input, which may work to train 

hindlimb trajectory during swimming. Unlike the previous wheelchair study, there 

were no significant differences in LSS or LSS subscores between the two groups 

terminally. Kinematic analysis of hindlimb swim cycles, defined as the 

relationship between the HAT and IHA angles, showed that HAT angles were 

significantly extended for we animals (Figure 10e). However, representative 

ellipses shown in Figure 3D illustrate that the shape and areas of the IHA and 

HAT relationship angle-angle plots were not different between groups. 

Hindlimb Movements While in Wheelchairs 
Overall the we animals recovered a substantial level of hindlimb 

locomotor function. We were unable to prevent the initial rise in recovery that 

occurs by 1 week (BBB=9), even though these animals did not experience 

afferent input associated with in-cage activity. Unlike the previous we study, we 

observed varying degrees of ankle, knee and hip movement while the animals 

were maneuvering about their cages in their wheelchairs (Figure 11). All we 

animals presented the hindlimb movements (n=5, some more frequently than 

others) at various times during the 6 weeks in wheelchairs. Figure 4 shows 

sequential still photos taken from videos of we animals at week 4 while moving 

along the length of kinematic assessment tank. Stick figure representations of the 

right hindlimbs are presented below each animal. In Figure 11A, the animal 

moves her ankle from against the wheelchair padding (flexed) through to full 

extension (-150°) twice while moving forward down the tank (red arrows). Figure 

11 B shows an animal that generates obvious knee movements, while the ankle 
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and hip move only slightly. Knee and hip movement in this case is most evident 

when the black mark on the ankle moves rostrally and becomes hidden by the 

ankle strap (red arrows). The hindlimb movements were only evident when the 

animals were pulling themselves forward with the forelimbs, so these movements 

are loose.ly associated with the steps on the forelimbs. We were unable to study 

any relationship of the forelimbs and hind limbs during these movements because 

they were random and were not induced by handlers. 

Kinematic Assessment During Shallow Water Walking 
Shallow water walking (SWW) has been used as both an activity-based 

locomotor training strategy as well as an assessment tool in our lab. SWW body 

weight support and lateral stabilization in 5 cm water for rats in our model. We 

analyzed IHA and HAT angles for hindlimb trajectory using a side view camera 

during SWW assessments at weeks 2, 4, 6, and 8 (Figure 12). IHA overall 

excursion was significantly lower for we animals only at week 6. HAT overall 

excursions were significantly lower for we group during weeks 2, 4, and 6 as 

compared to non-We controls, due mainly to significantly higher HAT peak 

flexion trough values during the same weeks (Figure 12). The IHA angle 

represents movements through both the hip and knee while HAT angle 

represents both knee and ankle movements. Interestingly, these data suggest 

that our IHA and HAT assessments during SWWwith -50% body weight support 

may be a more sensitive measure of intralimb coordination in we animals, 

perhaps because it involves two joints at a time. This provides -50% assessment 

revealed significant deficits in hip, knee, and ankle movements throughout the 
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weeks in wheelchairs that were not evident during overground kinematic 

analysis. 

Interlimb Coordination and Plantar Stepping During Shallow Water Walking 
We analyzed ventral videos at 2, 4, 6, and 8 weeks during SWW for 

footfall pattern, or interlimb coordination, and plantar paw placement to 

understand the role of weight support in recovery of locomotion. The CPI and RI 

measures are significantly lower for WC animals at weeks 2, 4, and 6 as 

compared to non-WC controls (Figure 13A and C). PSI reveals that WC animals 

were unable to plantar step at weeks 2 and 4, but all WC animals (n=5) 

recovered at least -50% hindlimb plantar stepping by week 6 resulting in no 

differences between groups at 6 and 8 week time points (Figure 138). These 

data indicate that WC animals regained hindlimb plantar stepping at some point 

between 4- 6 weeks, even though they were still in wheelchairs 24n; yet these 

animals still had no forelimb-hindlimb coordination at week 6 (Figure 13A CPI 

and 13C RI). Once the animals were no longer in wheelchairs, weeks 6- 8, there 

was no dramatic improvement in forelimb-hindlimb coordination as revealed by 

the PSI scores. Only n=2 of the 5 animals showed increases in CPI and RI 

scores. There was no apparent link between being removed from the 

wheelchairs for 48 hours on 2 occasions and any measures of gait or locomotion. 

(see methods for exclusion criteria). 

Interlimb Coordination Coupling During Shallow Water Walking 
We also assessed interlimb coupling using duty cycles of paired limbs. 

The proportion of the step cycle that homolateral, homologous, and diagonal 
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paired limbs were in stance phase together was calculated from underneath 

camera view during SVVW (Figure 14). Phase values for uninjured controls were 

calculated for comparison (in parenthesis on graph): homolateral and 

homologous limbs should be out of phase -0.5 and -0.6 respectively, and 

diagonal limbs should be in phase -0.9. As a whole, coupling phases for WC 

animals were lower for all three paired limb relationships at weeks 2 and 4. 

Specifically, homolateral and homologous coupling was significantly lower at 

week 2, and diagonal coupling was significantly lower at week 4. Similar to the 

PSI data (Figure 138), homologous and diagonal coupling (Figure 7 A) as well as 

diagonal distance (Figure 148) changed dramatically for WC animals between 

weeks 4 and 6. Even with the dramatic increase, significant differences were still 

evident for homologous coupling between the groups at weeks 6 and 8. These 

data suggest that gaining hindlimb plantar stepping for WC animals at week 6 is 

also associated with forelimb-hindlimb coupling phases that approach uninjured 

values. Interestingly, coupling phases that approach controls at weeks 6 and 8 

(Figure 14A) are not associated with better forelimb-hindlimb coordination as 

measured by CPI and RI at the same weeks (Figure 13A and C). 

EMG Recordings of Muscles Controlling the Ankle 
At weeks 2 and 8, we assessed all animals for co-contraction (as a 

surrogate of spasticity) of hindlimb ankle extensor and flexor (LG and TA, 

respectively) muscles to understand if chronic unloading of the hindlimbs 

contributed to the inability for WC animals to achieve consistent plantar stepping 

(Figure 15). Electrophysiological assessment consisted of several 1.5-minute 
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recordings of a series of brief tail pinches that consistently elicited visually 

obvious hindlimb responses. Additionally, we assessed spontaneous bursting 

when animals were at rest with no stimulation from handlers. Figure 15A shows 

the percentage of co-contraction of bilateral LGfTA muscles at rest and during tail 

pinches revealing that non-WC animals had significantly greater co-contraction 

than WC animals during tail pinch at both 2 and 8 weeks, but no significant 

differences were found at rest. The burst duration was Significantly longer for WC 

animals when we compared bouts of activity in the ankle muscles while the 

animals were at rest. 

Ex-vivo Micro-CT Scanning of Hindlimb Bone 
We used ex-vivo Micro-CT scanning to assess bone loss and cancellous 

bone turnover in the proximal tibiae and distal femora bilaterally (Figure 16). 

There were no significant differences between groups for cancellous and cortical 

bone volumes in tibiae and femora. Consistent with previous studies in our lab 

0100r 2012) of 12.5 g-cm T9 injuries, tibiae cortical bone volume fraction -0.55 

and cancellous bone volume fraction was -0.25 (Figure 16A and B). 

Body, Muscle Weight and Histological Assessment 
Body weights were not significantly different between groups at time 

points assessed (Table 2). At terminal week 8 hindlimb muscles LG/MG, bicep 

femoris, and quadriceps were Significantly lighter for WC animals as compared to 

non-WC controls (Table 2). There was decreased spared white matter at the 

injury epicenter for non-WC group, -11 vs. -17.5 mm2
, which approached 

significant difference between groups, p=.056. 
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DISCUSSION 

Task-specificity and Locomotor Recovery 
Just as task-specific improvements in functional recovery (stepping, 

standing, swimming) can be trained, we show here that a task-specific delay in 

recovery is evident following a moderate SCI in which animals routinely have 

substantial functional recovery. During daily handling and while in wheelchairs 

2417, plantar paw surface and weight support afferent input components of 

locomotor recovery were prevented. However, WC animals showed the ability to 

generate stereotypic movements (not quantified) of their hindlimb joints while in 

their wheelchairs (qualitatively described in Figure 11). Nichols' laboratory has 

shown that localized feedback of proprioceptive afferent input is necessary for 

proper intralimb coordination during stepping and postural stability (Nichols et aL, 

1999; Abelew et aI., 2000), so avoiding the severe ankle contracture we 

observed in the previous WC study was a primary goal. Indeed, WC animals 

recovered overground intralimb coordination quite well, similar to the non-WC 

group, within 2 weeks (Figure 9). Even though flexor and extensor joint endpoints 

are not accessed during uninjured normal stepping, a moderate (-20%) loss of 

pROM in ankle flexion may have contributed to the observed deficits in ankle 

flexion (trough) values during the swing phase in later weeks (4 and 6) for WC 

animals (Figure 9). WC animals also exhibited greater ankle extension peak 

values. Our kinematic analysis does not separate ankle extension at toe off from 

extension at toe down, but taken together our data indicate that stance phase 
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distance may have been shorter and the distal most portion of limb (ankle to toe 

segment) was oriented more caudally with reference to the hip when stepping. 

Our data for ankle extension peak values is inconsistent with the group average 

ankle kinematic data presented in Canu et al. model of hindlimb unloading (HU) 

for two weeks. The authors found greater flexion at toe off and toe down for HU 

animals as compared to controls, however they mention that a few HU animals 

showed hyper-extension at toe off (2009). Our data indicate that chronic hindlimb 

unloading was not a major factor in the kinematics of overground stepping. 

Alternatively, although the evidence is limited and far from conclusive, our data is 

suggestive that the ankle ROM, -90- 1500 (Figure 4), and related proprioception 

from the repeated hindlimb movements while the animals were in wheelchairs 

effectively maintained or trained, albeit with some deficits in ankle excursion, 

intralimb coordination. 

There were short periods during which WC animals experienced load and 

plantar afferent input during the 6 weeks of wheelchair housing. After each daily 

pressure relief, massage, and skin care routine the animals were allowed to rest 

in standard cages for at least 1 hour. Importantly, the WC animals spent most of 

that daily hour of pressure relief in standard cages grooming, and activity in the 

form of moving around the cage was rare. We tried to avoid afferent input and 

possible training effects just due to activity during assessments by only 

performing SWW and BBB assessments every other week, and eliminated 

swimming throughout the study except at baseline and terminal time points. 

These opportunities for load and cutaneous afferent input represent chances for 
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training locomotion early after injury, and may have contributed to the notable 

dramatic recovery for WC animals' plantar placement of the hindlimbs between 

weeks 4 and 6 (n=5 out of 5 WC animals increased score PSI, Figure 138) even 

though they were still in wheelchairs 2417. Certainly, WC animals had in-cage 

activity between 6 and 8 weeks in standard cages with the combination of 

intralimb coordination, hindlimb loading, and recently recovered plantar 

placement, so improvements were expected over that period. While we are 

confident that extensor load and plantar cutaneous components were largely 

prevented we cannot yet quantify the incremental amounts, or intensity, of these 

afferent inputs. It has been established that the greater the number of steps 

taken, by an order of magnitude, can positively affect stepping kinematics for 

transected animals trained on a treadmill (Cha et aL, 2007; de Leon et aL, 2011). 

If in-cage activity is related to recovery of locomotor function, then one might 

equate the conditions of natural recovery for incompletely injured animals in 

standard cages as the best combination of early afferent components for optimal 

recovery. Quantified measurement of the amount and components of in-cage 

activity is forth coming. 

Training vs. Maintenance 
Injury severity and location are limiting factors for functional locomotor 

recovery. The issue of training versus maintenance was discussed in the S'JI.MI 

study from our lab. As noted in Kuerzi et aL, there may be a separation of the 

recovery of pattern formation as occurring early and spontaneously, but may only 

be evident if a certain degree of weight support is recovered (or provided) as well 

(2010). Only non-WC animals recovered interlimb (forelimb-hindlimb) 
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coordination (ePI -60%) and plantar stepping (PSI -50%, Figure 13) with partial 

weight support in SWW. It is reasonable to assume that plantar paw placement is 

concomitant with the ability to support body weight during stepping. However, it is 

a distinct possibility that the we animals were capable of supporting substantial 

amounts of body weight during weeks of virtually exclusive dorsal stepping 

(weeks 2 and 4). Furthermore, hindlimb kinematics during overground stepping 

suggests that we animals were actually supporting their weight, otherwise the 

peak angles achieved by extensor muscle groups controlling the hip and knee 

would have been significantly lower in we controls. As shown in other studies 

(Harkema et aI., 1997; Timoszyk et aI., 2005) the afferent input associated with 

limb loading during the assessment may have contributed to intralimb 

coordination in we animals so they were not different from non-We controls 

about the hip and knee. Since -50% body weight is provided during SWW there 

was less required extensor activation during the stance phase that may have 

negatively influenced intralimb kinematics for we animals during SWW. 

Therefore one might conclude that assessment (not training) in shallow water for 

animals already capable of frequent/consistent weight-supported stepping 

overground is not an indicator of recovery since extensor limb loading was not 

optimal during this task. This interpretation does not contradict the BBB scores 

indicating a lack of consistent weight support in we animals because BBB 

scoring considers the cumulative stepping abilities throughout an entire 4-minute 

assessment period. On the other hand, kinematic analysis samples the 3 best 

stepping passes an animal achieved, at a minimum. We do not analyze passes 
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in which the animal falls or stops; therefore it is an assessment of the best of 

what the animal can do. We will need to study hip height or other measures of 

weight support during overground stepping more carefully in future studies. 

Furthermore, we will need to incorporate measures of forelimb-hindlimb 

coordination during overground stepping, not just during SWW. 

The CPG is capable of producing near-normal intralimb 

coordination/hindlimb trajectory kinematics and plantar stepping within a few 

weeks post-injury when partial body weight support is provided (Heng and de 

Leon, 2008; Courtine et aL, 2009; Kuerzi et aL, 2010). Other studies using more 

severe injuries have shown that after 6 weeks the fundamental locomotor ability 

of intralimb coordination/hindlimb trajectory kinematics/pattern generation begins 

to decrease, and training is required to maintain this ability out to several weeks 

or even months post-injury (de Leon et aL, 1999a; Heng and de Leon, 2008; 

Courtine et aL, 2009; Kuerzi et aI., 2010). However, in the current study both 

intralimb kinematics (Figure 12) and plantar stepping (Figure 138 PSI) were 

maintained in our non-WC control animals, likely due to the less severe moderate 

12.5 g-cm contusion. Interestingly, there was a decrease in SWW indices 

involving forelimb-hindlimb coordination from week 6-8 (Figure 13A CPI and 13C 

RI), indicating that finer aspects locomotor function congruent with the less 

severe injury are also vulnerable to decline as the time post-injury passes without 

training intervention. On the other hand WC animals were prevented from in

cage training that contributed to or maintained plantar stepping, and forelimb

hindlimb coordination for non-WC animals very early within the first several 
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weeks post-injury. The balancing act of training lost locomotor functions with 

maintaining intrinsic CPG pattern generation is a complex interactive process in 

which both function to either limit or amplify potential for locomotor recovery long-

term. If 50 g-cm severely injured animals were capable of producing and 

maintaining intralimb pattern, via hindlimb movements while in wheelchairs, our 

model may be able to maintain that capability for a wider window of plasticity so 

the specific component of weight support could be trained to optimize functional 

locomotor recovery long-term. 

Chronic Unloading 
The deficit in locomotor recovery in WC animals is not likely due poor 

health since their body weight was not different from controls at the time points 

we measured. Granted, there was a significant loss of muscle mass for WC 

animals likely due to prolonged unloading of hindlimbs (Table 2). Hindlimb 

unloading (HU) has been studied extensively in animal models of hindlimb disuse 

by orthopedic immobilization via casting, suspension using a body harness, and 

tail suspension (Morey-Holton and Globus, 2002). Decreased mass and cross-

sectional area, torque production, peak tetanic force, and increased rate of 

shortening are common consequences of chronic unloading (Edgerton and Roy, 

1994; Edgerton et aL, 2002; Shah et aL, 2006), but neuromuscular rehabilitation 

in the form of step training with body weight support (Stevens et aL, 2006; 

Jayaraman et aL, 2008; Liu et aL, 2008b) or passive cycling (Roy et aL, 1998) 

can mitigate these losses. Neural adaptations to unloading include potentiation of 

sensory feedback, more motor units arerequired to achieve a given motor task 

and resultant increase in fatigability (Edgerton et aL, 2002), and overall 
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decreased excitability of motor neurons (Cormery et aI., 2005). While muscle 

atrophy may seem substantial in more sever models of disuse (space flight or 

denervation), the loss of maximal peak force in HU and suspension models is not 

substantial enough to evoke gross changes in locomotion such losing the ability 

to support body weight (Roy et aI., 1991). Prior to 2012 our wheelchair model of 

hindlimb immobilization presented in Chapter 2 was one of very few animal 

studies that combined both hindlimb muscle unloading and clinically relevant 

incomplete SCI; Castro et al. used complete transection and the Vandenborne 

laboratory has recently published a metabolic study of hindlimb muscle after joint 

restriction limb casting with incomplete SCI (Castro et aI., 1999; Ye et aI., 2012). 

Additional studies using models that closely represent the combined effects of 

SCI with unloading are needed to better understand the intensity (short bouts of 

high intensity, intermittent, or long-term aerobic) and qualities (weight-bearing 

standing, passive cyclic) of afferents needed to maintain muscle. WC animals 

muscle weight was -25% lighter than controls in the load bearing ankle and knee 

extensor muscle groups (Table 3); however ankle flexor muscle TA was not 

subject to muscle loss in WC animals. We do not know how much muscle loss 

was evident at weeks during 2417 wheelchair use, so it is possible that muscle 

atrophy was more severe at weeks 4 or 6, but partially recovered during the 2 

weeks of in-cage activity weeks 6- 8. As discussed above, the loss of 20% of 

ankle flexion passive ROM indicates a loss of extensibility of ankle extensors, but 

active flexion of the ankle is determined by TA activation, so both of these 

muscle groups may have contributed to suboptimal overground hindlimb intralimb 
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coordination of the ankle in WC animals during weeks 4 and 6 (Figure 2). 

Terminal muscle mass was reported in both WC studies, however mass and 

cross-sectional area do not always explain the loss of muscle strength (Berg et 

aI., 1997; Deschenes et aI., 2002) indicating a neural component. Therefore, we 

cannot assume that the muscle loss observed in WC animals had absolutely no 

adverse affect on locomotion, and repeated measures of specific anatomical and 

physiological outcome measures in muscles are needed in future studies. 

As reviewed by Battaglino (2012) and Dolbow (2011) studies on temporal 

profile of lower extremity bone loss after SCI have shown that rapid loss of bone 

density occurs within days or weeks, up to 33% within the first few months and 

up to 50% out to three years post-injury. Furthermore, severe bone loss due to 

SCI can be partially reversed but the benefits are not easily maintained when 

loading and/or FES stimulation interventions were used, and as a whole data 

from these types of studies are quite variable (Dolbow et aI., 2011). Sprague

Dawley rats with lower thoracic transection experienced 28- 40% loss in bone 

mineral density in the epiphyses of femora and tibiae at 6 months post-injury 

(Jiang et aI., 2007). A study lead by our colleagues in the Voor laboratory found 

that rats with clinically relevant contusion SCI that were able to obtain the 

functional threshold of occasional weight-supported stepping were able to 

mitigate bone loss (2012). In our current study there was no significant bone loss 

of femora and tibiae of WC animals for cortical and cancellous bone volume, 

even though their hindlimbs were unloaded for 6 weeks (Figure 16A and B). In 

accordance with data on patients (discussed above Battaglino and Dolbow) if 
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bone loss was going to occur we would have seen it our model by 6 weeks post

injury. This data supports the notion that even though the WC animals were 

largely prevented from achieving extensor loading they were none-the-Iess 

capable of supporting their weight. Sympathetic activation via repeated episodes 

of autonomic dysreflexia have been shown to induce bone loss after SCI, so it is 

possible that our low thoracic moderate contusion SCI is not severe enough to 

induce these neurogenic components of bone loss (Zaidi, 2005; Jiang et aI., 

2006; Morse et aI., 2011; Masi, 2012). Unlike Liu and colleagues (2008a) we did 

not find a positive correlation of gastrocnemius mass and BVrrv in the tibiae 

indicating that muscle mass suffered greatly due to chronic unloading but bone 

volume did not. Therefore, some other factor contributed to the lack of bone loss 

that was expected for the WC animals in that proprioceptive movement achieved 

by the hindlimbs while in wheelchairs may represent loads sufficient enough to 

preserve bone structure. Indeed, Rubin and colleagues have shown that low 

intensity, high frequency oscillations of muscle activation invoke anabolic 

processes in bone (2001). The bone data from our novel model of locomotor 

recovery in the hind limbs suggests a low intensity intervention that emphasizes 

proprioception may mitigate bone loss in patients. 

Drawbacks of the current study are low group numbers (n=5 per group) 

and lower spared white matter for the non-WC group that approached 

significance (p=.056 independent T-test with equal variance assumed) (Table 2). 

We do not posit that 6 weeks of 24/7 in wheelchairs somehow spared white 

matter damage; rather an untoward happenstance left us with more severe SCI 
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in our control group even though we randomly assigned animals to each group 

prior to the moderate 12.5 g-cm injury. No spared white matter values in the 

current study were outside the normal distribution (±3SD), and variance in this 

measure in our previous studies ranges are comparable (-3- 6% Smith et aI., 

2009, -2- 4% Kuerzi et aI., 2010, -3.5- 5% Table 2), indicating the NYU system 

has a consistent degree of variability in our hands. An additional drawback is that 

the co-contraction results (Figure 15A) are unexpected; we assumed chronic 

unloading would have contributed to greater spasticity in opposing ankle muscles 

TA and LG. On the contrary, we animals in this study had less co-contraction in 

ankle muscles at both time point assessed, weeks 2 and 8 (Figure 15). These 

data may indicate that we animals' ability to move the hind limbs without hindlimb 

loading while in wheelchairs may have reduced co-contraction, but this is not 

supported in the literature. It is possible that we animals would have had the 

expected higher co-contraction if the EMG assessments had been performed at 

weeks 4 and 6 since these weeks revealed the most significant deficits in 

overground stepping and walking in shallow water for we animals, which were 

not evident at the earlier 2 week time point. Furthermore, -80-90% co-contraction 

in non-We animals that were able to perform frequent-consistent weight

supported stepping, and had near-normal ankle excursion kinematic while 

stepping overground (Figure 9), may not seem feasible. We are not aware of 

such a high percent co-contraction of opposing muscles in the literature. The 

degree of spasticity in our model may not be comparable to other studies, and is 

10-20% higher than observed in the we animals in the previous study. It is most 
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likely that our methods of EMG recording are not ideal because we are not 

assessing activation of ankle muscles while the rats are performing a motor task 

that requires alternation. During EMG assessments the hind limbs were 

suspended while the tail was pinched. The movement response is often air 

stepping, a cyclic activation across all or some of the joints of the hindlimb, 

however the response is not consistent. It is possible that we were agitating the 

animals during the tail pinch assessments and a generalized activation of 

musculature was the prominent response. We plan to assess EMG activity in the 

hindlimbs during functional locomotor activities like stepping or swimming to 

better assess spasticity in future studies. 

Conclusion 
In conclusion, we have shown that after a moderate low thoracic 

contusion animals that usually recover considerable functional locomotor 

recovery can be task specifically delayed due to lack of specific afferent 

components. Preventing plantar paw placement and weight support by placing 

animals in wheelchairs for 24 hours per dayn days per week limits consistent 

plantar weight-supported stepping overground and forelimb-hindlimb coordination 

while walking in shallow water. Proprioceptive afferent input was not prevented 

and may have contributed to intralimb coordination evident very early, 2 weeks, 

post-injury. Furthermore, just as specific components of afferent input can be 

exploited during locomotor training to achieve incremental improvements in 

locomotion we have shown that locomotor capabilities can be parsed and 

become vulnerable to loss of function. These data support the hypothesis that 

animals with low thoracic moderate contusion SCI achieve maximal locomotor 
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recovery via in-cage activity. Our two related wheelchair studies taken together 

suggest that the necessary means of functioning in daily life for SCI patients, 

mobility via a wheelchair, is detrimental to lower limb function and limits the 

potential for adaptive plasticity long-term. 
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Figure 8. BBB scores WC 24/7. 
A. Animals were in wheelchairs that allowed hindlimb joints to move through an open ROM 24 
hours per day/7 days per week, for 6 weeks. B. Shown are kinematic representation of static 
positioning of the right hindlimb (thick red lines) with possible excursions of hindlimb segments 
(lighter colored red lines). C. Passive ROM was assessed weekly using a manual goniometer 
placed on bony landmarks as identified by manual palpation. D. Overground stepping 
recovery as assessed by the BBB reveals that WC animals had significantly lower BBB scores 
(could not produce consistent weight supported plantar steps at any point) . However, WC 
animals did recover dorsal weight supported stepping upon removal from wheelchairs weeks 
6-8. E. The proportion of animals per group that qualified for BBB subscore was significantly 
different between groups. (*, n=5/5, ±SD, ps.05) . 
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Figure 9. Intralimb Coordination Overground Stepping WC 24/7. 
WC and non-WC groups show no difference in hip and knee joint excursion while stepping overground throughout the duration 
of the 8 week study. Ankle excursion showed significantly greater extension (peak) and less flexion (trough) only during weeks 4 
and 6. WC animals show transient compensation of intralimb coordination only about the ankle (*, n=5/5 , ±SD, ps.05) . 
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Figure 10. Swimming Assessments we 24/7. 
A and B. Swimming ability, as assessed by the LSS and LSS subscore, showed no significant 
differences between we and non-We controls. e . Kinematic analysis of hind limbs during 
swimming revealed that the HAT angle was significantly more extended through its excursion 
(*, n=5/5, ±SD, ps.05) . D. Representative examples of angle-angle ellipses from a single swim 
cycle show no significant differences in the shape and area (inset) between groups. 
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Figure 11 . Hindlimb Movements While in we 24/7. 
Proprioceptive input from hind limbs may have contributed to locomotor recovery for the we group. A and 8 . Shown is a series of still 
photos derived from side camera videos of hindlimb movements from 2 representative we animals. Stick figures from kinematic analysis 
illustrate the movements. Hindlimb movement while in wheelchairs was random and episodic, no stimulation was required, and varying 
degrees of movement through the hip, knee (8) and ankle (A) were observed. 
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Figure 12. Intralimb Coordination Shallow Water Walking WC 24/7. 
Overall excursion of the IHA angle was significantly lower for WC animals at week 6 as 
compared to non-WC controls (left side of graph). HAT overall excursions were also 
significantly less for WC animals (right side of graph) at weeks 2, 4, and 6, due mainly to 
significant deficits in maximal flexion (trough) values (*, n=5/5, %SD, ps.05). 
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Figure 13. Pattern Formation and Plantar Stepping During Shallow Water Walking WC 24/7. 
A and C. CPI and RI measures for correct pattern of footfall sequences are significantly lower 
for WC animals as compared to controls for weeks 2, 4, and 6 (*, ±SD, n=S/S, ps.05). B. The 
ratio of plantar placed hindlimb steps to forelimbs steps (PSI) shows significant delay of 
recovery for WC animals through week 4, but plantar stepping recovered before week 6 even 
though animals were still in wheelchairs 24/7 (*, n=5/5, ±SD, ps.OS). 
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Figure 14. Interlimb Coupling Shallow Water Walking WC 24/7. 
A. The stance phase portion of step cycle was evaluated for homolateral, homologous, and 
diagonal limb pairs. The uninjured normal phase values are in parenthesis below each axis 
label. WC animals have a significantly lower proportion of step cycle in which paired limbs are 
in phase: Homolateral coupling is significantly lower at week 2, homologous coupling is 
significantly lower at weeks 2, 6 and 8, and diagonal coupling is significantly lower at week 4 
(*, n=S/S , ±SD, ps.OS) . Dramatic increases in homologous and diagonal coupling was evident 
for WC animals beginning at week 6 (approaching normal) . B. Similarly, the distance between 
diagonally paired limbs during stance was significantly shorter for WC at week 2, approached 
significance at week 4, but increased dramatically at week 6 to values close to non-WC 
controls. 
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Figure 15. Muscle Co-contraction we 24/7. 
A. The percent co-contraction was calculated for ankle extensor and flexor activation at rest 
and in response to tail pinch stimulus. we animals had significantly lower co-contraction 
during tail pinches as compared to non-We controls. B. The total duration of spontaneous 
ankle muscle bursting while animals were at rest, with no stimulus, was significantly greater 
for we group as compared to non-We control (*, n=5/5, ±SD, ps.05). 
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Figure 16 .. Ex-Vivo Micro-CT Hindlimb Bone Architecture WC 24/7. 
A and B. No significant differences were evident between groups for cortical and cancellous 
bone volume fractions. 
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Body Weight (grams). 

Group Baseline wk4 wk8 
we 203.0 ± 4.90 201.4 ± 13.99 245.0 ± 9.14 
non-We 201.0 ± 8.22 230.8 ± 12.19 248.8 ± 14.17 

Hindlimb Muscle Weight Significant Differences (grams). 

Grou ankle flexors (TA knee extensors (auad 
we 0.5024 ± 0.0692 * * 1.8107±0.1317 
non-We 0.5215 ± 0.0627 1.7072 ± 0.1563 2.1322 ± 0.2277 

Spared White Matter at Injury Epicenter (mmZ) p=.056. 

Group White Matter eSA 
we 17.4 ± 3.57 
non-We 10.9 ± 4.69 

Table 2. Muscle Weight and Histology we 2417. 
Hindlimb muscle weights of ankle extensors (LG/MG), knee flexors (BP) and knee extensors (quad) were significantly lighter for the we 
group (*, n=5/5, :tSD, ps.05), however overall body weight was not different. Differences in spared white matter at the epicenter 
approached significance (p=.056, -17% SR group, -11 % non-SR group). 
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CHAPTER IV 

THERE IS A NEGATIVE EFFECT OF HINDLIMB STRETCH ON LOCOMOTOR 
RECOVERY FOLLOWING CONTUSIVE SPINAL CORD INJURY IN THE 

ADULT RAT 

INTRODUCTION 

Widely accepted standard of care manual therapies for spinal cord injury 

(SCI) patients have been developed largely in rehabilitation clinics, by physical 

and occupational therapists and physiatrists, with the goal of preventing further 

sensorimotor impairment, promoting functional recovery and improving quality of 

life (O'Sullivan and Schmitz, 2001). Guidelines for manual therapies cite 

promising preclinical data from animal studies, case studies, anecdotal evidence, 

and historical references to present the rationale for prescribing these treatments 

(Harvey et aI., 2011). Loss of extensibility of soft tissues spanning a joint 

including, but not limited to, ligaments, muscles and joint capsules, has been the 

focus of efforts to maintain function both in peripheral tissues and for optimizing 

neurological plasticity. Significant health care resources, in the form of stretching 

and ROM treatments, are allocated in an effort to prevent these issues and 

maintain joint mobility after SCI. Stretch can be applied by trained therapists or 

self-administered in the form of manual therapy, splints, serial casts or using 

intelligent control devices (Zhang et aI., 2002; Katalinic et aI., 2011). However, as 

Harvey and colleagues have rigorously analyzed in SCI patient studies, when 
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stretch therapy applied for the common regimen of 30 minutes per day for 

several weeks is subjected to the standards of randomized controlled trials the 

results show no benefit or the results are inconclusive (Harvey and Herbert, 

2002; Harvey et aI., 2008; Harvey et aI., 2011). The dosage, or duration, of 

stretch needed to achieve greater joint mobility is also unclear (Harvey et aI., 

2000; Harvey et aI., 2003b; Harvey et aI., 2011). As outlined in Ben et al. there is 

an abundance of animal studies showing a positive effect of stretch on muscle 

remodeling, sarcomere and collagen arrangement, increased force production 

and extensibility (2010). However, the authors point out that these findings may 

not apply to the same degree in patients (a lack of translation), and in many 

stretch studies extensibility outcomes are measured immediately upon removal 

of the stretch and initial positive effects are not sustained beyond that immediate 

time point. This is an important consideration in determining long-term effects 

that patients seek since contracture management requires lasting increases in 

tissue extensibility to be effective (Harvey et aI., 2011, Katalinic et aI., 2012). 

SCI is not the only patient group for which stretch is routinely applied. A 

review of 25 clinical trials on neurologically impaired patients including stroke, 

brain injury, SCI, cerebral palsy, muscular dystrophy, and Charcot-Marie-Tooth 

Disease found little or no short-term or long-term effects of stretch on joint 

mobility, pain and spasticity (Katalinic et aI., 2010; Katalinic et aI., 2011). Small 

but significant increases in ankle dorsiflexion were evident after 5-30 minutes of 

ankle extensor stretch in individuals with no neurological damage, but the clinical 

relevance of the findings is questionable (Radford et aI., 2006). Increased 
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tolerance to stretch, but not improvement in muscle extensibility, is associated 

with greater ROM of the hip after a stretching regimen in uninjured individuals 

(Ben and Harvey, 2010). Thus, the dosage required and whether stretch is even 

efficacious in uninjured subjects is debatable as well. Through more than 10 

years of research, researchers have concluded that there is no added benefit 

from stretch, and methods of effective contracture management need to be 

reappraised (Katalinic et aI., 2011). Harvey (2011) and others (Radford et aI., 

2006) do not recommend that stretch for patients be discontinued, but encourage 

further emphasis on evidence-based practices. 

As a whole, laboratory animal care in experimental SCI studies does not 

usually include traditional stretch or ROM interventions, however the practice 

simply may not be reported often. A few researchers have noted these efforts in 

the methods sections on animal care, however testing any effect of these 

treatments was not the goal of these studies and any influence they had on 

locomotion was not mentioned (Roy 1992, Hodgson 1994, Ichiyama 2009). Case 

studies have reported on the use of physical interventions to increase mobility 

after canine SCI; stretching in the form of traction (Speciale and Fingeroth, 

2000), passive ROM, isometric stretch and locomotor training (Smarick et al., 

2007) have been used. However, authors admit improvements could not be 

attributed solely to the physical interventions in those animals. HypotheSiS driven 

studies on the effect of stretch and/or ROM interventions on functional locomotor 

recovery after SCI in animal models cannot be found. The lack of supporting data 

in animal studies and the prolific use of these therapies on SCI patients 
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necessitates the investigation of stretch in a translational model. 

Our first study included hindlimb stretch of "control" animals that were 

never wheelchair immobilized (Chapter 2, Caudle et aI., 2011). We showed that 8 

weeks of a daily bilateral hindlimb stretch negatively influenced the course of 

recovery for rats mildly contused in the 9th thoracic level (T9) even though they 

were never in wheelchairs. Group averages for animals that received the stretch 

protocol revealed an inability to achieve forelimb-hindlimb coordination as 

measured by the Basso Beattie Bresnahan (BBB) Open Field Locomotor Score 

BBBs14, a significant deficit as compared to the stepping ability of controls 

BBBS18. Furthermore, the stretch protocol had no influence on the prevention of 

ankle contracture for animals that were immobilized in wheelchairs during the 

same 8-week period. These data were surprising to us so we engaged in a 

second study, not on the effect of stretching on muscle extensibility, but focused 

on the influence stretching had on preventing the recovery of coordination, a 

property of stepping exquisitely mediated by the central pattern generator (CPG) 

for locomotion. We hypothesize that static passive hindlimb stretch, applied early 

after contusion injury, represents an afferent input stimulus (noxious or 

aberrant/inappropriate) that confuses or disrupts central pattern generation and 

functional locomotor recovery. The current study sought to determine whether 

deficits in stepping would also be evident in a more severe 12.5 g-cm T9 

contusion injury, in animals that were never wheelchair immobilized. Our data 

suggests that functional locomotor recovery is significantly limited by only 30 

minutes of daily hindlimb stretch in with lower thoracic moderate contusion SCI. 
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MATERIALS AND METHODS 

Spinal Cord Injury and Experimental Design 
Nineteen female adult Sprague-Dawley rats (190-215g) were used in this 

study and all procedures were performed according to the guidelines of the 

University of Louisville Institutional Animal Care and Use Committee. Animals 

were randomly assigned into two experimental groups: Acute Stretch (SR), n=7, 

or controls n=12. Each animal was anesthetized with pentobarbital (55 mg/kg 

Lp.) and given prophylactic antibiotics (Gentamicin sulfate 15 mg/kg sc.) prior to 

surgery. A single level laminectomy was performed at the T9 vertebrae before 

receiving a moderate contusion injury (12.5 g-cm) performed at the T10 cord 

level using the NYU Impactor (W. Young, Rutgers University, NJ) as previously 

described (Magnuson et al. 1999, methods Chapter 3). After injury, wounds were 

closed in layers using silk sutures with topical antibiotics applied to the incision, 

and allowed to recover from anesthesia on heating pads. After recovery all 

animals were housed socially, two per cage, in standard cages for the duration of 

the study. Cages included Alpha Dry bedding with food and water provided ad 

libitum. All animals were housed in the same room with 12-hour light/dark cycle 

and received daily post-operative care, including manual bladder expression as 

needed. Beginning at post-injury day 4 (Monday, week 0.5), the Acute SR group 

received a daily hindlimb stretch protocol administered each morning, Monday 

thru Friday, for 8 weeks (Figure 17). Assessments and daily care was continued 

for another 5 weeks until the terminal time point of 13 weeks. At 10 weeks a 
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subset of the original control animals were chosen to undergo 6 days, Monday 

thru Friday and the following Monday, of the daily stretch protocol (chronic 

stretch group, n=6; Figure 17). All control animals (n=12) were handled daily 

throughout the study. 

Daily Stretch Protocol 
Animals were wrapped in terry cloth towels so that the hind limbs were 

exposed. The animals were held securely, in a supine position, and it was 

common to observe rats resting calmly or grooming the terry cloth towel during 

the stretching. Stretch protocols were administered in a group setting with all 

handlers present simultaneously. A moderator kept time and monitored finger 

placement to ensure that each stretch maneuver isolated a single muscle group. 

The handler to rat pairings were randomized throughout the study. The stretch 

protocol lasted -30 minutes: 1 minute static stretch-and-hold of each major 

hindlimb muscle group in the order shown in Figure 18A-F bilaterally, for two 

sets. 

The hindlimb stretch positions are shown in Figure 18A-F. Three-

dimensional (3D) kinematic analysis is derived from the two camera angles 

shown along the right hand side. The digitized stick figure representations are 

presented in red along the left hand side. In order to stretch the ankle flexors 

(tibialis anterior or TAJ the ankle was positioned in extension (Figure 18A). 

Bifunctional muscles include the rectus femoris (assists with both hip flexion and 

knee extension), the biceps femoris (assists with both hip extension and knee 

flexion), and the gastrocnemius (assists with both knee flexion and ankle 

extension); therefore three of the positions required specific positioning of 2 
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joints. To stretch the ankle extensors, triceps surae (lateral, medial 

gastrocnemius and soleus), the ankle was positioned in flexion in combination 

with knee extension, with care not to stimulate the Achilles tendon with the index 

finger (Figure 188). The knee flexors hamstring stretch (posterior biceps femoris 

and semitendinosis) was achieved by positioning the knee in extension in 

combination with hip flexion. The knee extensor quadriceps stretch (vastus 

lateralis, intermedius, medialis and rectus femoris) required the combination of 

hip extension and knee flexion (Figure 18C,D). In order to stretch the hip 

adductor muscles (adductors brevis, longus, magnus, minimus, pectineus, 

gracilis and obturator) hip abduction was achieved by pressing both knees 

laterally at the same time. Oppositely, hip abductors (gluteus, iliopsoas) muscles 

were stretched by crossing one hindlimb over the other medially via stabilizing 

the hips and placing pressure on the thighs/knees (Figure 18E,F). 

Immediate Stretch Response (ISR) Scores 
The intensity, or force applied by the handlers, during each stretch 

position was monitored carefully by examining the joint angles achieved. The 

handlers' ultimate goal was to avoid forces that would likely injure the animal. 

There was a soft end-feel for all stretch positions except for ankle extension, 

which had a firm capsular end-feel as described by O'Sullivan and Schmitz 

(2001) and assessed by Darryn Atkinson, PT. All animals had some degree of 

reflexive and/or volitional responses "Immediate Stretch Responses" (ISRs) 

during the 1-minute hold of the stretch and/or immediately upon release of the 

hold. We recorded and tabulated all observed ISRs for each stretch position 

during every stretch protocol for each animal. Qualitative categories were spasm, 
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kick, resistance, airstep, trunk twisting/torsion, writhing of the tail, vocalization 

and grinding of the teeth. Responses not localized to a hindlimb (trunk torsion, 

writhing tail, vocalization, and grinding teeth) were always allocated to the 

ipsiliateral side response; therefore ipsilateral group averages are higher in many 

cases. As a rule we stretched each muscle group to maximal stretch in which an 

ISR was elicited but the degree of discomfort was minimized. Handlers judged, 

on a case-by-case basis, the appropriate intensity based on the end-feel 

resistance and any ISRs of the animal for a given stretch position. Occasionally a 

vocalization occurred; in this case the position was adjusted to lessen the 

intensity of the stretch, and then held for the remainder of the 1 minute for that 

position. 

Goniometer Measurements of Passive ROM 
Flexion and extension passive ROM (pROM) of the hip, knee and ankle 

was assessed using a universal goniometer at baseline and every other week 

there after. Maximal pROM measurements assess joint mobility without the 

influence of muscle stretch, therefore extension and flexion angles are greater in 

pROM than the angles achieved during stretch. Rat hindlimbs have bifunctional 

muscles crossing more than one joint (see stretching paragraph above); 

therefore pROM can vary based on limb position. To assess pROM the proximal 

and distal joints on either side of joint being measured must be positioned mid 

range, and the amount of force applied to the measured joint is virtually none. To 

ensure that measurements represented maximal flexion and extension for the 

joint, rather than muscle stretch endpoints, the following general positions were 

used for pROM measurements: hip extension was measured with the knee 
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extended (to prevent stretch of rectus femoris), hip flexion was measured with 

the knee flexed (to prevent stretch of biceps femoris), knee flexion was measured 

with the hip flexed (to prevent stretch of rectus femoris), knee extension was 

measured with the hip extended (to prevent stretch of biceps femoris), ankle 

dorsiflexion was measured with the knee flexed (to prevent stretch of 

gastrocnemius). We did not measure pROM of hip adduction or abduction. Total 

pROM per hindlimb joint was sampled from na'ive controls under isoflurane 

anesthesia to determine the normative values: The hip joint measured 20° at 

maximum flexion and 130° at maximum extension (for notation 20-130° or 110° 

full range), knee 45-150° (105° full range) and ankle 15-150° (135° full range). At 

least 2 examiners measured each joint and many times both examiners helped to 

stabilize bone segments distal and proximal to the jOint assessed in order to 

prevent multiple joints and structures from moving. In the case of discrepancy the 

examiners came to an agreement on the final measurements and rounded to the 

nearest 5°, therefore standard deviations were frequently ± O. 

Behavioral and Sensory Assessment 
Overground stepping was assessed using the BBB Open Field Locomotor 

Scale as previously described (Chapter2 methods). BBB testing began at 4 days 

(week 0.5) on every Monday am (before stretch protocol) and every Monday pm 

(three hours after stretch protocol) as well as Friday pm (after 5 days of 

consecutive daily stretch protocol) for 8 weeks, (red bar on x axis, Figure 3A). 

During the following 5 weeks, after daily stretching stopped, we no longer 

included the Monday pm BBB testing session. 
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Swimming was assessed using the Louisville Swim Scale (LSS) as 

previously described (Chapter 2 methods) beginning at week 2 and every other 

week thereafter. Animals in the current study scored within the 0-5 range 

indicating poor swimming with little or no hindlimb movement, a high dependence 

on their forelimbs for forward motion, severe trunk instability and/or body angle, 

or in the intermediate range, 6-11, with retained dependency on forelimbs for 

forward movement and with varying degrees of hindlimb movement, trunk 

instability, and body angle. 

Sensory testing was performed at single time points during weeks 5 and 

11 to assess hindlimb allodynia or somatosensory hypersensitivity as previously 

described (Chapter2 methods). In short, animals were arranged one in each of 

six partitions and allowed to acclimate in each apparatus for 30 min prior to 

testing. Both hind paws were sampled five times, with a minimum of two minutes 

between consecutive samples. At week 5, the majority of the stretch group 

animals could not be tested because they were not capable of plantar placement. 

Regardless of how we prompted the animals to change position or move around 

the testing surface, there was not sufficient access to the dorsal surface of the 

paw. At week 11, neither the von Frey test for mechanical allodynia nor the 

Hargreaves' test for thermal hyperalgesia showed differences between groups. 

Kinematic Assessment of Stepping and Shallow Water Walking 
Kinematic analysis of overground stepping was performed as previously 

described (Chapter 2 methods). Briefly, hindlimb movements were recorded with 

two Basler 602f high-resolution digital cameras running at 60Hz connected to a 
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PC and using the video software DVR Explorer (Advanced Digital Vision, Natick, 

MA). Digital AVI files from both cameras were opened in MaxTraq3D (Innovision 

Systems, Columbiaville, MI) where sharpie marks overlying the iliac crest (I), hip 

(H), ankle (A) and toe (T) were identified in a semi-automated fashion on each 

frame. The two dimensional files were digitally combined to estimate a 3D limb 

position for each frame. Representative examples of stick figures and angle 

excursion data is derived in Excel or MaxMate (Innovision Systems) and shown 

in Figure 22. Uninjured normal stepping excursions are referenced within the 

figure legend. 

Digital videos taken with single cameras from the ventral view during 

shallow water walking (SWVV) were processed to calculate three different indices 

of coordination, the central pattern index (CPI), the regularity index (RI), and the 

plantar stepping index (PSI) as previously described 2010. Briefly, the CPI is 

calculated as the number of correctly patterned cycles (dorsal and plantar cycles) 

divided by the total number of cycles (dorsal and plantar cycles) regardless of 

whether the animal can achieve coordination with plantar stepping. The regularity 

Index (RI), originally described by Hamers and Koopmans (2001 and 2005, 

respectively), was calculated as the number of correctly patterned planter step 

cycles/total cycles (dorsal and plantar cycles) and gives an indication of interlimb 

coordination of plantar only stepping. The PSI is calculated as the number of 

hindlimb plantar steps/forelimb plantar steps and indicates how consistently the 

animal is able to achieve plantar stepping. 

Magnetic Evoked Potentials from Tail Stimulation 
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Magnetically evoked muscle responses (MER) were assessed at 3.5, 6.5 

and 9.5 weeks. Each animal was positioned and secured on a piece of wood 

using a cloth stockinette as previously described (Magnuson 1999). A figure eight 

magnetic transducer coil placed at the base of the tail was used to directly 

stimulate afferent nerves resulting in electromyographic responses (EMG, motor 

output) in hindlimb muscles. Three stimulus amplitudes were used (60%, 70%, 

and 80% of maximal output) as previously described (Beaumont 2006). The 

transducer coil produces a 4.6 T magnetic field with a -1cm deep by -1cm width 

peak magnetic field. The transducer coil was positioned by the. same research 

assistant, with care to precisely angle the coil relative to the tail to avoid direct 

stimulation of the hindlimb muscles and/or the spinal cord. The research 

assistant was blinded to the groups. EMGs were recorded bilaterally from the 

lateral gastrocnemius muscles using 26-G needle electrodes connected to AI 405 

head stages and a CyberAmp 380 (Axon instruments). Responses were 

processed for identification of the onset latency, peak-to-peak amplitude and 

recovery to baseline, and then compared between groups for latency and 

amplitude. 

Histology of Spinal Cord Injury Epicenter 
Animals were euthanized with excess anesthetic (pentobarbital, 110 

mg/mL Lp.) at 12 weeks post-injury. The lateral and medial gastrocnemius, and 

tibialis anterior were blunt dissected free to be weighed and flash frozen before 

the animal was perfusion fixed. Animals were then perfused transcardially with 

4% paraformaldehyde and calcium free tyrodes. Spinal cords were harvested 

and prepared for analysis of spared white matter as previously described 
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(Magnuson 2005). Briefly, adjacent slide sets containing every fifth section were 

stained with eriochrome cyanin and Nissl, thus allowing the total area of white 

matter, healthy gray matter, unhealthy gray matter, cavity and total area to be 

identified in micrographs and traced using a Wacom Intuos (Vancouver, WA) 

drawing tablet. Traced images were opened in ImageJ (NIH software) for the 

area calculation of each tissue region. 

Statistical Analysis 
All data are presented as group means with standard deviations (±SO). 

Outcome measures were analyzed using repeated measures analysis of 

variance (ANOVA) with groups as a factor, and were followed by Tukey's HSO 

and Bonferroni post hoc t-tests where appropriate. Group differences were 

considered statistically significant for p values of at least ps.05. The binomial 

proportions test was used were appropriate, no corrections to the proportions 

was required. The non parametric Wilcoxon signed-rank test was used in the 

case of ROM measurements in which standard deviations were ± O. Pearson 

correlations of at least pS.05 were used to determine the relationships of the 

Immediate Response Scores (IRS) and BBB Scores. 

RESULTS 

Behavioral Assessment Recovery of Hindlimb Locomotion 
All BBB scores are shown in Figure 19A and Friday pm only scores are 

shown in Figure 19B. Unlike the previous studies using we immobilization, daily 

hindlimb stretch that began at 4 days prevented the initial rise in recovery that is 
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expected for animals with a moderate lower thoracic contusion SCI. Similar to 

our wheelchair study, the overall profile of recovery features a dramatic deficit in 

overground stepping in stretched animals through -4 weeks, followed by some 

recovery during weeks -5-8 even though the stretch protocol was still being 

administered daily (Figure 19A,B). Notably, chronic deficits in BBB scores 

persisted even 5 weeks after the daily stretch protocol ended at week 13, such 

that stretching limited recovery to a BBB score of 11 (frequent weight-supported 

stepping, horizontal solid black line in Figure19A), as compared to the controls 

that achieved a of BBB -13 indicating occasional forelimb-hindlimb coordination 

and the ability to produce consistent hindlimb stepping. At 10 weeks we chose, 

based on the tolerance of the animals to a trial of hindlimb stretching (without 

vocalization), a subset of the original control animals to stretch for 6 days, 5 

consecutive days plus an additional Monday (n=6, grey trace, chronic stretch 

Figure 19C). These animals had lower BBB scores than the remaining animals in 

the group (controls, black trace n=6). We separated the data from these groups 

beginning at week 8 to show that the control animals with BBB> 16 would not 

tolerate an abbreviated stretch protocol (30-second hold of triceps surae and 

quadriceps stretches) and were excluded from the chronic stretch group (Figure 

19C). We did not compare among groups in Figure 19C. We performed daily 

BBB assessments on the chronic SR animals (hatched red bar along x axis), and 

compared daily BBB scores within the chronic SR group. Similar to the acutely 

stretched animals, the chronic SR group had a saw tooth BBB profile of loss of 

function. Importantly, after only two days of hindlimb stretch these animals were 
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no longer capable of producing weight support (BBB> 9). As anticipated, some 

recovery of BBB scores occurred after the chronic daily stretch ended the next 

week (Figure 19C). 

Interestingly, there is an acute loss of locomotor function for BBB scores 

on Monday pm (Figure 19A) which would not have been evident if we had only 

performed BBB assessments weekly, as is customary (Figure 19B). The 

dramatic loss of locomotor recovery following a single stretching session was first 

observed on the second Monday of the experiment, week 2, (individual BBB 

scores are presented in Figure 190). Animals were only stretched on weekdays; 

no stretch protocol was administered on weekends and there was a rise in BBB 

scores from Friday afternoons to Monday mornings (see x axis Figure 190). The 

BBB scores show a "saw tooth" functional profile recovery (Figure 19A). Large 

standard deviations (Figure 3A) exist because not all SR animals were 

vulnerable to such dramatic loss of function after a single stretch protocol on 

Mondays (Figure 190). Indeed one rat had an increase in BBB score by Monday 

pm (#72 wk2), and #58 showed the most consistent scores from Monday am to 

pm. In order to determine if this loss of locomotor function was due to a specific 

handler, we plotted the drop in BBB scores for every Monday per handler. No 

apparent relationship exists for any handler (Figure 19E). Furthermore, there 

were no significant changes over time for handlers. 

Swimming Assessment 
Swimming was used as an assessment of locomotion that does not 

require the ability to support body weight. Swimming ability was assessed using 
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the Louisville Swim Scale (LSS) with supplemental cutaneous feedback (Smith et 

aI., 2006a). Daily SR negatively influences swimming ability during weeks 1-4, 

the same period that showed the greatest loss of locomotor function (Figure 

20A). As a group, the non-SR animals were intermediate swimmers with more 

hindlimb kicking, greater trunk stability and better body angle (LSS-11) 

throughout the study. The SR group remained dependent on their forelimbs for 

forward movement with only occasional hindlimb kicking, severe trunk instability 

and poor body angle as hallmarks of their swimming during weeks 1-4 (LSS-3). 

Similar to the BBB profile, LSS scores increased in weeks 4-8 and reached a 

plateau for the final chronic time points at 10-12 weeks. We tested the animals 

for swimming ability on Monday (am and pm) at week 4.5 to determine if a 

transient loss of function occurs for swimming as in overground locomotion. At 

that time point only a single point drop in swimming ability was evident (Figure 

20A). The LSS scores taken as a whole reveal that the SR protocol appears to 

negatively influence the recovery of swimming in a manner similar to that of 

locomotion. Swimming was not significantly affected at week 10 for the chronic 

stretch group, however we did not test these animals for swimming ability daily 

(Figure 20B). 

Passive ROM of Hindlimb Joints 
Passive ROM for flexion and extension of the hip, knee and ankle was 

assessed at baseline and every even week thereafter (Figure 21). All animals 

regardless of SR or non-SR group experienced a significant loss of pROM of hip 

extension (-90° versus normal hip extension 130°, no group differences existed 

118 



at any time point) up to at least week 4, but by week 6 pROM of the hip 

recovered for both groups (Figure 21A) Only SR animals showed a significant 

loss of pROM in extension of the knee beginning at 4 weeks which lasted 

throughout the remainder of the study, even at the 10 and 12 week time points 

several weeks after the daily SR protocol ended (Figure 218). No pROM was lost 

in the flexion values for the hip or knee at any time point for either group. 

Oppositely, pROM for the SR group in the ankle was characterized by only loss 

in the flexion values and not for extension, though these differences are not 

significant (Figure 21 C). It is striking that the SR group had loss of pROM beyond 

that of the non-SR group. These data indicate that the stretch protocol may have 

induced some degree of inflammation in muscles, ligaments, and other soft 

tissues that limited pROM; however at no point during the study was 

inflammation or edema noticeable to handlers and examiners. It is equally 

plausible that the cumulative loss of locomotor function immediately following 

hindlimb stretch protocol (Figure 19A) led to an inability for these animals to 

move about in their cages; they were, in essence, hindlimb immobilized which is 

associated with loss of locomotor function in our previous studies using 

immobilization in wheelchairs. Any loss of pROM in the hindlimb joints may 

contribute to significant differences in intralimb coordination. 

Kinematic Assessment of Intralimb Coordination During Overground Stepping 
Time points were chosen to show overground stepping kinematics within 

the 8 weeks of daily stretch protocol, week 3, and several weeks after daily 

stretch ended, week 13 (Figure 22). Excursions for uninjured normal stepping is 
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listed parenthetically within the figure legend for comparison. At week 3, SR 

animals dragged their hind limbs with knee contact and very little excursion of any 

joint (see arrows, Figure 22A). SR animal #60 exhibited drag with the hip highly 

extended (grey trace-125°), and the knee and ankle held relatively flexed. SR 

animal #67 showed a few degrees of excursion about the hip at week 3 (grey 

trace, Figure 6A). In contrast, at week 3 the non-SR animals stepped with toe 

down and knees did not touch the surface (Figure 228). Already at week 3 the 

non-SR animals had cyclic excursions of all three hindlimb joints (traces #70 and 

#74, Figure 228), although they were in phase indicating poor intralimb 

coordination. 8y week 13 the SR animal #60 recovered cyclic excursion of the 

hip of (-40-140°) that was greater than the average excursions for na'ive animals 

(see legend) indicating that the hip excursion may compensate for the lack of 

knee and ankle excursion that persisted at week 13 (traces, Figure 22C). SR 

animal #67 achieved only minimal movements in the knee and ankle, however it 

did have hip excursion (Figure 22C). The kinematics of overground stepping of 

non-SR animals did not change drastically from week 3 to week 13 (Figure 220). 

These data concur with the 888 scores at 3 weeks in which SR animals were 

dragging their hind limbs with movement in no more than 2 joints (888-3), 

meanwhile non-SR animals already exhibited weight-supported stepping 

(888-12), with cyclic excursions of all three joints. 8y week 13 non-SR #70 

recovered hindlimb joint kinematics of hip, knee, and ankle (traces, Figure 220) 

that approached intralimb coordination of higher locomotor function as seen for 

controls in our previous study (Chapter 2 Figure 3). These data indicate there 
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may be group differences for intralimb coordination in the current study and 

group averages for kinematic analysis bilaterally will be helpful to understand 

how SR affected the kinematics of overground stepping. 

Interlimb Coordination and Plantar Stepping During Shallow Water Walking 
Ventral view videos of the paws during shallow water walking (SWW) 

allows for assessment of plantar stepping versus dorsal stepping, and whether or 

not the animal can produce the correct footfall pattern for interlimb coordination 

when some weight support is provided by the buoyancy of the water (Kuerzi 

2010). Group data from weeks 3 and 13 are compared for CPI, PSI, and RI; 

week 3 is during the 8-week timeframe of daily stretch protocol when BBB scores 

were very low, while 13 weeks represents several weeks after daily stretch 

ended and BBB scores had recovered and reached a plateau (Figure 23A-C). 

Significant differences are evident for all three indices at week 3 since the SR 

animals were not capable of stepping, and had only minimal movement of 

hindlimb joints with no weight support. By 13 weeks the ability to produce the 

correct forelimb-hindlimb coordination with either dorsal or plantar steps had 

improved for the SR group and was not different from the non-SR group (Figure 

23A). Similarly, the SR animals also improved the ratio of plantar stepping in the 

hind limbs (Figure 23B). However, the RI was significantly lower for the SR group 

at the 13-week time point (Figure 23C). The large standard deviation for the RI 

values for the SR group indicates that at least some of these animals struggled to 

combine plantar stepping with the finer aspect of forelimb-hindlimb coordination. 

Immediate Stretch Responses (ISR) and BBB 
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During each stretch protocol the rats exhibited none or any combination of 

ISRs (spasm, kick, resistance, air stepping, trunk twisting/torsion, writhing of the 

tail, vocalization and teeth grinding) for each of the static passive stretch 

positions. A single point was assigned for each response and tabulated for both 

hindlimbs (Figure 24). There was a significant increase in ISR scores from the 

first Monday (week 0.5) compared to the remaining Mondays for stretches of the 

ankle and knee flexors and extensors (Figures 24A and B, respectively). The 

standard deviations for ISRs on the first day of stretch, Monday week 0.5 (4 days 

post-injury), are very high indicating some SR animals were already showing 

ISRs very early after injury while others had little or no response. The flexion and 

extension stretches elicited significantly higher ISR scores than the positions that 

stretched hip adductors and abductors for all Mondays beginning with the second 

week (Monday 1.5; Figure 24 compare across A-C). As a whole, ipsilateral 

responses are greater than contralateral response because non-localized 

responses, for example vocalizations, were assigned to the ipsilateral side. 

The daily stretch protocol occurred immediately after the Monday morning 

BBB scoring. After stretch, the animals were then placed in their cages for no 

less than 3 hours and we repeated BBB scoring later on that afternoon. Since 

there was such a dramatic drop in BBB scores after the stretch protocol (Figure 

240) we wanted to determine if there was a relationship between the ISR score 

for each stretch position and BBB scores that afternoon. We performed 

Pearson's correlation analysis for ipsilateral and contralateral group ISR scores 

each Monday (for each stretch position) with the BBB scores from that afternoon. 
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Significant correlations (60% of the data is accounted for) are listed in Table 3: 

each Monday (weeks), BBB pm scores with the total drop from am to pm in 

parenthese~, which muscle group stretch, which ipsilateral/contralaterallSR was 

significant, and Pearson r & ~ values. There are only two negative correlations 

for ISR and pm BBB score; both occurred during the early time point of week 1.5 

for ankle flexor stretch ISR and knee extensor stretch ISR (Figure 24E, see 

Table). This relationship indicates that at week 1.5, when pm BBB scores first 

indicated a dramatic loss of locomotor function after a single stretch protocol 

(Figure 240 circled week 1.5), the higher the ISR score the lower the subsequent 

BBB scores that afternoon. On the other hand, there are several positive 

correlations of higher ISR scores with pm BBB scores. Interestingly, these 

positive correlations are present when the BBB scores began to increase from 

week to week even though the immediate drop from am to pm BBB scores was 

still evident (Figure 240 circled weeks 4.5 and 5.5). For example, the ISRs from 

ankle extensor stretch were positively correlated with BBB scores at weeks 4.5 

and 5.5 (Table 3). The same knee extensor stretch that showed a negative 

correlation at week 1.5 had a positive correlation later on at week 5.5 (Figure 

24F). Knee flexor stretch also showed a positive correlation for week 5.5. 

Importantly, higher ISR scores during these weeks, which are relatively late in 

the 8 weeks of daily stretch, are correlated with higher BBB scores in the 

afternoon, even if those pm scores were lower than the am scores. If 

overstretching had a cumulative effect of damage to the muscles, tendons and/or 

soft tissues, one would not expect to see positive correlations in the later weeks 
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since repeated damage would not be conducive to healing. Our ISR correlations 

data indicate that overstretching was not likely throughout the study, but that the 

nervous system became more responsive at later weeks. This suggests that 

higher ISRs (increased reaction to stretching) were associated with better 

locomotor function in the last few weeks of the stretching protocol. 

Magnetically Evoked Hindlimb Muscle Responses 
Magnetic stimulation at the base of the tail evokes a short-latency (S-6ms) 

muscle response, presumably via a monosynaptic reflex, indicating the state of 

excitability of motor neurons innervating ankle extensors (Figure 2S). Responses 

were induced with three stimulator settings, 60, 70 and 80% of maximum. We 

assessed evoked responses on Monday afternoons at weeks 3.S, 6.S and 9.S. 

Response amplitudes were significantly lower for the SR group only at week 6.S 

(Figure 2SB). A trend for decreased amplitude for the SR group exists at weeks 

3.S and 9.S but these are not significantly different between the groups (Figure 

2SA and C). At week 6.S, the response amplitude for the SR group is positively 

correlated with BBB scores from Monday afternoons (Figure 2SD) indicating that 

motor neuron excitability was recovering during week 6.S. This recovery is 

consistent with the profile of BBB scores (-S-8) even though the stretch protocol 

was still administered daily (Figure 19A,B). 

Body, Muscle Weight and Histological Assessment 
Hindlimb muscles were fresh dissected and weighed immediately. Unlike 

in previous WC studies, ankle extensors LG/MG as well as ankle flexors TA were 

significantly lighter in SR animals as compared to non-SR controls (Table 4). 
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Body weights were not significantly different between groups throughout the 

study, and there were no significant differences in spared white matter at the 

epicenter between groups. 

DISCUSSION 

Risk of Over Stretch 
It is possible that the forces applied during stretch were greatly 

disproportionate to the biophysical properties of a much smaller animal causing 

damage by over stretching muscles, tendons, ligaments or other soft tissues. 

However this problem may be clinically relevant. At least one study has shown 

the torque applied to stretch the hamstring muscle of SCI patients varies widely 

(40-fold) among trained therapists; and uninjured normal subjects would not 

tolerate the applied forces (30-68Nm) (Harvey et aI., 2003a). Hindlimb stretching 

in our hands may not detect slight changes in end-feel because, barring one key 

handler, we are not trained physical therapists. However, we believe we did not 

over stretch for several reasons: 1) Temporary inflammation (edema) can 

infiltrate peripheral tissues inducing a loss of mobility; there were no visual 

indications of swelling in the current study. While we cannot rule out the 

presence of inflammation, any presentation was subclinical and could not be 

identified visually. 2) The SR animals in our first study with less severe T9 

contusions were able to walk throughout the entire experiment and we never 

observed the severe transient loss of locomotor function; hindlimb stretch only 

limited the potential for greater functional recovery as compared to non-SR 
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controls. 3) During the stretches and immediately upon release of the stretch, 

either the same leg or the opposite leg often responded with a reflexive or 

voluntary ISR in both studies. This indicates that the stretching was not causing 

gross damage to the muscle to the point it precluded the animal from moving the 

limb immediately. Again, we observed no signs of inflammation that may have 

accumulated by delayed onset during the hours following and remainder of the 

day. The inability to walk after the stretch protocol was administered was striking; 

so we incessantly inspected, manipulated and handled the animals but found no 

manifestation of peripheral tissue pathology. 4) Vocalizations were only 

occasional during the stretch protocol, yet these animals would not tolerate the 

needle puncture through the skin needed for the fine wire implanted EMG 

analysis at week 3 (cancelled). This indicates that sensory function and pain 

perception was present when BBB scores were lowest. In short, a 30-minute 

stretch protocol was relatively tolerable compared to needle stick. 5) Most 

importantly, the hindlimb muscles of SR animals revealed significant atrophy 

(Table 4). Stretch-induced hypertrophy is a reasonable result of daily stretch in 

our model (Khan, 1986; Kelley, 1996). Atrophy in SR animals' hindlimb muscle 

was likely a result of decreased weight-supported stepping during in-cage activity 

due to stretch induced loss of locomotor function. Taken together the data 

produced in our study does not support the notion that we over stretched the 

hindlimb muscles. Regardless, in future studies we must identify the relationship 

between applied forces and joint angle (flexion/extension) achieved in order to 

126 



understand what range of forces is appropriate for maximizing stretch but 

mitigating any risk for over stretching. 

Relationship of pROM and Overground Joint Excursion Kinematics 
The physiological ROM needed to step overground is represented by 

excursion data for uninjured normal rats during baseline assessments (-70-

115=45° at the hip, -45-90=45° at the knee, and -40-100=60° for the ankle); see 

Figure 3 and Kuerzi et al. (2010). However pROM for the hip joint measured 20° 

flexion and 130° extension (110° full range), knee 45-150° (105° full range) and 

ankle 15-150° (135° full range). When compared, the proportion of excursion 

required for normal overground stepping is less than half of the full pROM for all 

three hindlimb joints. These differences allow for compensation of joint excursion 

and trajectory of limb movement during overground stepping observed in our 

studies (Figures 3, 10, 21, and 22). 

During pROM goniometer measurements we apply very little force to the 

joint's natural resistance indicating the end-range of flexion and extension; 

therefore the values obtained for pROM may be conservative. Unexpectedly, SR 

animals showed decreased pROM in knee extension beginning at week 4 which 

was somewhat reversed over the following weeks, but remained significantly 

lower even at the 10 and 12 week time points several weeks after the daily SR 

protocol ended (Figure 21 B). All anatomical components of the neuromuscular 

system, muscle, joint capsule, ligaments and tendons, are affected during 

hindlimb stretch. Since pROM indicates mobility of the joint without the influence 

of muscle tension, our data indicate that inflammation was not outwardly visible 

still may have contributed to loss of function in the knee joint. Interestingly, loss 
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of pROM in hip extension was evident in both groups after SCI, but resolved in a" 

animals between the 4-6 week time points. Studies on pROM in SCI patients are 

not abundant, most studies mentioning pROM in the hip do not address it in the 

context of how it shapes the ability to produce trajectory and joint excursion 

during locomotor training. However, the inability to extend the hip has weighty 

consequences on locomotor recovery since hip extension is a reflexive trigger to 

initiate the swing phase of stepping (Hiebert et aI., 1996). Both stretching and 

cumulative in-cage immobility, as a direct consequence of stretch, are possible 

causes the reduced pROM in hip extension. No pROM was lost in the flexion 

values for the hip or knee at any time point for either group. Opposite of knee and 

hip where pROM is limited in extension, the ankle was characterized by only loss 

in the flexion values and not for extension, though these differences are not 

significant (Figure 21C). Although we did not quantify pROM in our first WC/SR 

study we can conclude that WC animals that developed contracture of the ankle 

had severe loss of pROM and WC animals with no contractu res and the SR 

controls likely suffered some varying degree as we". Data on pROM has become 

a fundamental aspect of assessments in our models. The degree to which loss of 

pROM encroached upon the ROM required during overground kinematics, as 

evident in our 24/7 WC animals' ankle flexion, is of concern because it limits 

proprioceptive afferent input, induces compensatory intralimb joint movements, 

and trumps potential for greater functional locomotor recovery. 

Gain and Loss of Locomotor Function 
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The profile of locomotor recovery in the current study of daily hindlimb 

stretch in animals with moderate contusion is similar to that of 8 weeks of 

hindlimb immobilization in animals that were only mildly contused (Figure 2). 

There was a progressive weekly loss of the ability of walk overground through 

the first 4 weeks followed by gain of locomotor recovery in weeks 4-8 even 

though daily stretch continued to be administered daily. Daily stretch ended at 8 

weeks at which no greater locomotor function was achieved and was significantly 

lower than control group. The second time course of gain and loss of locomotor 

function was an unexpected; drastic loss of function immediately following single 

stretch sessions such that animals were capable of frequent/consistent weight

supported stepping prior to stretch but were flaccidly paralyzed afterwards. 

Flaccid paralysis persisted for greater than 24 but less than 72 hours. 

The similar gain and loss of locomotor recovery in the two studies is 

suggestive of a common mechanism evident in the two interventions, both of 

which model standard of care in SCI patients. The flaccid paralysis evident in WC 

animals and starkly noticeable after a single session of stretching in the current 

study indicates loss of reflex actions, a classic hallmark of spinal shock. Ditunno 

and colleagues classified spinal shock in stages including the primary 

mechanical insult, hemorrhage and ischemia causing areflexia and block of 

spinal axon conduction, emergence from shock in which reflexes return, and 

development of hyper-reflexia (Ditunno et aI., 2004). During spinal shock there is 

a fundamental inability for neurons to fire action potentials due to multiple ionic 

imbalances (Agrawal and Fehlings, 1996), which alter resting potential, and ion 
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channel kinetics. The resulting central conduction deficit was described as 

hyperpolarization by Ditunno et al. (2004); however a state of depolarization is 

more likely given enhanced Na+ channel conductance and copious extracellular 

Ca2+. Loss of excitatory input from supraspinal centers and decreased 

descending inhibition of spinal inhibitory pathways also contribute to flaccidity. In 

response to Ditunno and colleagues overlooking some aspects of spinal shock, 

Hayes and colleagues succinctly described the role of proinflammatory cytokine 

tumor necrosis factor alpha (TNFa) and immune mediator nitric oxygen (NO) in 

inducing conduction block (2007). Both of these have elevated expression levels 

in the spinal cord after SCI, and both modulate channel conductance. The 

severity of conduction block is dependent on the relative increases in these 

factors, and is restored once the cytokine levels reduce. Oligodendrocyte loss or 

dysfunction results in demyelination preventing saltatory conduction (Smith et aI., 

1979) and further complicating neurodegeneration. Spinal shock involves several 

factors and understanding its resolution in clinically relevant SCI models is 

paramount when rehabilitation efforts are increasingly focused on acute time 

points. 

Spinal shock resolves within days, even weeks or months depending on 

the citation (Ditunno et aI., 2004). An activity-based rehabilitation intervention 

applied very early after injury significantly magnifies secondary injury processes 

(Griesbach et aI., 2004; Smith et aI., 2009). In order to avoid this confound but 

still prevent in-cage training, we began our interventions at about 4 days post

injury when animals begin to move about their cages. James and colleagues 
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performed a study charact~rizing the temporal pattern of conduction block after 

low thoracic contusion injury in the rat and found that the Ladder Test, rather 

than overground locomotion, is the proper indicator of the percentage of 

conduction through the injury and resolution from spinal shock (2011). Therefore, 

we cannot draw any conclusion on whether animals in our studies were resolved 

from spinal chock prior to beginning our WC or daily SR interventions. 

Regardless of whether signs of inflammation and peripheral tissue pathology 

were (WC hindlimb immobilization, Chapter 2) or were not (current SR study) 

outwardly visible, our models inevitably induce inflammation and activate c-fibers. 

Our models seem to reintroduce or prolong spinal shock, likely via a substance P 

(SP) mechanism from primary afferent response to peripheral tissue 

inflammation and pain. Dorsal horn neurons show an upregulation of NK1 

receptors, both number and distribution, and internalization due to mechanical 

inflammation such as noxious pinch of the paw indicating that SP plays a role in 

dorsal circuit reorganization with persistent peripheral inflammation (Abbadie et 

aL, 1997). Moreover, when paw pinch was applied to paws with that already had 

ongoing inflammation the NK1 expression increased significantly not only in 

superficial lamina I but also in deep lamina III-IV neurons, and increases were 

evident beyond the primary terminal region of the paw afferents in L2-L6 spinal 

segments (Abbadie et aL, 1997). NK1 increases are related to not only the 

intensity of c-fiber activation (Doyle and Hunt, 1999; Adelson et aL, 2009) but 

there is spatial localization such that joint nociception produced NK1 and Fos 

expression even down into lamina V-X. Our model of stretch and hindlimb 
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immobilization in a WC may not be as intense as other peripheral inflammation 

models (Freunds Complete Adjuvant), but given that our models affect multiple 

anatomical components/submodalities of c-fiber activation (skin, joint and 

muscle) with risk for ongoing (up to 8 weeks intermittently or 24rT) inflammation 

and pain, there is likely a large and widespread influence of SP released from 

primary neurons on NK1 expressing dorsal horn neurons (superficial and deep) 

that are in approximation to interneuron regions housing the CPG (Magnuson et 

aL, 1999). Sensitization resulting from noxious afferent input is SP dependent 

(Ferguson et aL, 2006), and excessive stimulation by SP has been shown, in a 

series of two papers by Baumbauer and colleagues (2007b, a), to diminish 

plasticity by creating a learning deficit in a model of spinal instrumental learning 

after transection. Noxious afferent input can also disrupt spinal learning via TNFa 

activation (Huie et aL, 2012) a key pro-inflammatory cytokine and mechanism of 

immune-mediated central conduction failure after SCI mentioned above (Davies 

et aL, 2006; Hayes et aL, 2007). TNFa exerts a decrease, almost extinction, in 

compound action potential amplitude, depolarization of resting potential in a dose 

dependent and reversible manner (Davies et aL, 2006). Furthermore, spinal 

learning deficit is reversed when TNFa was inhibited (Huie et aL, 2012). In 

essence, spared spinal cord tissue after contusion injury is highly sensitive to 

peripheral inflammation and pain such that regaining proper neuron firing and 

conduction is repeatedly interrupted by factors contributing to a state of spinal 

shock and delayed from functional reorganization. 

Stretching and Locomotor Function 
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An obvious reason for using stretch is to reduce the risk for 

musculoskeletal injury due to disuse (Edgerton et aI., 2002) and we modelled our 

protocol after stretching observed in SCI patients prior locomotor training. 

However, our data suggests that any and all daily afferent input may contribute to 

or detract from spinal cord excitability and optimal locomotion. During a National 

Neurotrauma Society Annual Meeting (2010), Jean Wrathall used the term 

"conducting plasticity" to describe the interaction of adaptive and maladaptive 

plasticity. In order to optimize functional recovery we must maintain potential for 

plasticity, training components of recovery that are not intrinsic to the CPG, and 

at the same time mitigate the effects of maladaptive plasticity such as pain and 

minimize exposure to afferent input that does not contribute to functional 

recovery. WC animals in our first study and SR animals in the third study were 

not able to in-cage train, or maintain intrinsic locomotor function, because the 

afferent input they were receiving (muscle stretch of varying intensity and 

duration) was not functional to locomotor recovery during time spent immobilized. 

Similarly, animals that are stand trained, lose the ability to step (Edgerton et aI., 

1997; de Leon et aI., 1998; de Leon et aI., 1999b) likely due to barrage of 

extensor load and fusimotor proprioceptive input that is not related to patterned 

and timed afferent required to optimize locomotion. In reference to long-term 

plasticity task-specific gain of function coupled with loss of function in other non

trained behaviors may imply that there are certain activities that need to be 

avoided in order to improve a given function, or "be careful what you train for" 

(Fouad and Tetzlaff, 2011). These findings support the notion that there may be 
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a limited behavioral repertoire that can be trained depending on the amount and 

location of spared tissue (Tetzlaff et aI., 2009). 

If an SCI patient presented the same "saw tooth" transient loss of lower 

limb function in a clinical setting it might be attributed to generalized loss of peak 

torque output following stretch (Guissard et aI., 2001; Edgerton et aI., 2002). 

However, given the importance of afferent input after SCI there likely exists a 

complex interaction of neuromuscular and CPG mediated control of motor output, 

rather than solely motor fiber consequences. We found brief mention in a primary 

physical therapy textbook (page 372) that facilitated, "hands-on", therapies such 

as stretch and ROM are detrimental for recovery for SCI patients that are high 

functioning and capable of independent movements (O'Sullivan and Schmitz, 

2001). If this notion is common knowledge for physical therapists, but it is 

commonly practiced, it would behoove us to continue the studies in animals in 

order to help refine and reassess the application of stretch as treatment only for 

patients that truly need it. In addition to the obvious detriments imposed by 

hindlimb stretch discussed herein, the most relevant implication of our study is 

that clinical assessments of motor function may be substantially varied and lack 

true coherence with the 'best achieved' neurological function. This is vitally 

important because American Spinal Injury Association (ASIA) scores, Functional 

Independence measure (FIM), and other neurological assessments are not only 

prognostic indicators, but also dictate the course of treatment. Increased 

communication, observation, and collaboration among basic science 

researchers, clinicians, and physical therapists are necessary to optimize 
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treatment for SCI patients (Segal et aI., 2011). We posit that our data is not 

surprising to many physical therapists, and that the presentation of such variation 

of locomotor function may have already been described in their field. 

Conclusion 
The loss of function due to static passive hindlimb stretch after contusive 

thoracic SCI has now been repeated for very mild and moderate injury severities. 

We have demonstrated that 30 minutes of daily stretch administered during the 

first 8 weeks after paraplegia results in significant deficits in functional locomotor 

recovery that persists even 13 weeks post-injury. When a separate group of 

animals underwent only 6 days of stretching that began in the chronic phase, at 

10 weeks, there was a significant decline in BBB scores that was transient, but 

did not affect locomotion in the following weeks. The negative impact on 

locomotor function that accompanied daily stretch is likely related to inflammatory 

and pain mediate exacerbation of secondary injury processes and spinal shock 

that are hallmarks of SCI. Our results suggest the use of repeated stretch, 

traditionally used to induce muscle lengthening and extensibility may delay and 

limit long-term functional locomotor recovery in an animal model of incomplete 

SCI that consistently shows substantial recovery by 6 weeks. Our data prompt 

further investigation on the use of stretch in clinical settings, especially with 

respect to stretch applied immediately before neurological examination or 

activity-based rehabilitation strategies. 
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Figure 17. Timeline 8 Weeks Daily Stretch. 
The stretch protocol was administered daily for 8 weeks (red line, n=7 acute stretch group) followed by 5 additional weeks of assessments. 
The timing of BBB assessments, overground stepping kinematic assessments and MER tail responses are noted throughout the 13 week 
study. A subgroup of control animals was stretched for 6 mornings beginning at 10 weeks (hatched red line, n=6, chronic stretch group). 
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Figure 18. 3D Kinematic Representation of Hindlimb Stretch Positions. 
A- F, Static passive hindlimb stretch was achieved by manual manipulation of the hindlimb 
joints. Shown is a 3D (two camera views) kinematic representation of the right hindlimb of 
each stretch position. The anatomical landmarks represented are the iliac crest (IC) , hip, knee, 
ankle and toe. 
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Figure 19. BBB Scores Daily Stretch. . 
BBB testing was performed three times weekly for all experimental groups (acute stretch (SR), 
chronic SR, and non-SR controls) Monday am, Monday pm and Friday pm shown in A, only 
Friday pm shown in B. All animals scored 21 pre-injury. Significantly lower BBB scores were 
found for the SR group (n=7) as compared to non-SR controls during the 8 weeks of daily 
hindlimb stretch (red bar x axis) as well as at chronic time points beyond 10 weeks. Animals 
receiving the daily SR protocol showed dramatic but transient loss of locomotor function until 
-5 weeks after which BBB scores gradually increased (weeks 5-8) and reached a plateau 
(BBB=11) at 9 weeks after daily stretch ended. Figure 3C shows the chronic SR group that 
received the stretch protocol daily for 6 days at 10 weeks (grey trace) . Significant loss of 
function for the chronic SR group occurred after only two consecutive days of stretching, as 
well as immediately following SR on the following Monday morning. 
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Continued BBB Scores and Handlers. 
D, SR group individual animal BBB scores are presented for each week (Monday am, Monday 
pm and Friday pm). The individual scores account for the large standard deviations found in 
the 8 weeks of daily stretch graph (Figure 3A) . E, The difference in BBB scores (Monday am
Monday pm) plotted for each handler reveals no relationship between any handler and the 
loss of locomotor function in the rat he/she stretched on a given Monday. 
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Figure 20. Swimming Assessments Daily Stretch. 
A, During 8 weeks of daily SR protocol (red line under x-axis), the LSS scores for the SR 
group indicate a drop in swimming ability as compared to non-SR controls over weeks 2 and 
4. The SR group experienced ~ gain of swimming function by week 4 and no significant 
differences in LSS score were evident thereafter. B, LSS scores are not significantly affected 
for the chronic SR group (grey trace) after 5 days of consecutive SR protocol measured at 
week 10. 
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Figure 21 . Passive range-of-motion (pROM) for Hindlimb Joints Daily Stretch. 
A-C , Hip, knee, and ankle pROM was assessed using a manual goniometer. A, There is a 
significant loss in pROM for extension of the hip over time (within the first 4 weeks) as 
compared to baseline for both SR and non-SR groups (ps.OS). pROM is recovered in the hip 
between weeks 4-6, there were no significant differences between groups at any week. B, The 
SR group experienced significant loss of pROM for extension of the knee as compared to the 
non-SR group beginning at week 4 that persisted through the duration of the study (ps.OS) . No 
loss of flexion pROM in the hip or knee was observed. C, Flexion pROM in the ankle was 
affected, but no significant differences were evident. 
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Figure 22. Intralimb Coordination Overground Stepping Daily Stretch. 
A- D, Shown are representative 3D kinematic analysis during overground stepping . Right side excursion plots and stick figures were 
compared at 3 and 13 weeks, SR (A, C) and non-SR controls (B , D). A , At week 3, the SR animals #60 & #67 dragged their hind limbs (knee 
down arrow) with little excursion in any joint. B, Non-SR animals were already capable of weight supported stepping at 3 weeks with cyclic 
excursion of all three hindlimb jOints. C, By 13 weeks, #60 SR animal had recovered swing and stance during stepping while #67 still had 
knee down. The hip jOint showed the greatest overall excursion with less recovery in the knee and ankle for both SR animals. D, Consistent 
with BBB scoring , the non-SR animals presented here did not show dramatic improvements in joint excursion at week 13. 
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Figure 23. Pattern Formation and Plantar Stepping Shallow Water Walking Daily Stretch. 
A-C. CPI , PSI and RI measures for SR animals at week 3 indicating that they were dragging 
their hind limbs, with no swing or stance phases due to lack of weight support. A and C. By 13 
weeks, the CPI and RI indices of gait had recovered for SR animals. C. However, the RI 
shows that significant deficits still exist if the correct pattern is dependent upon plantar steps 
only. B. Importantly, the ratio of plantar stepping by the hindlimbs (compared to the forelimbs) 
was delayed but recovered by 13 weeks, indicating that the SR animals were able to weight 
support and achieved proper plantar paw placement in a few weeks without the daily stretch 
protocol. 
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Figure 24. Immediate Stretch Responses (ISRs) Daily Stretch. 
The ISR scores were compared between groups and over weeks. Stretch positions that 
involved flexion and extension of muscles controlling the ankle, knee and hip joints (A and B) 
have significantly higher ISR scores as compared to the hip adduction and abduction 
stretches (C) . A and B. The ISR scores for ankle and knee stretches were significantly lower 
for the first Monday (week 0.5) as compared to Monday scores thereafter. C. No significant 
differences exist over weeks or between groups for ISR scores for hip abductors and 
adductors stretches. 

A 

7.0 

6.0 

Q) 5.0 
L-

o 
~ 4 .0 

ffi 3.0 

B 

2.0 

1.0 

0.0 +-"" ............ 

7.0 

6.0 

Q) 5.0 
L-

o 
~ 4.0 

ffi 3.0 

2. 

Ankle Flexors/ Extensors 

* 

Knee Flexors/ Extensors 

* 

O. n+-'t"PL.LIIf~L..--=--"""------r'-

C 
7.0 

6.0 

Q) 5.0 
L-

o 
~ 4 .0 

ffi 3.0 

2.0 

1.0 

O.O+-'+'L....If' ...... 

Hip Adductors/ Abductors 

146 

• ankle flexors ipsi 

• ankle flexors contr 

• ankle extensors ipsi 
• ankle extensors contr 

• knee flexors ipsi 

• knee flexors contr 

• knee extensors ipsi 

• knee extensors contr 

• abductors ipsi 
• abductors contr 
• adductors ipsi 
• adductors contr 



Table 3. Immediate Stretch Responses and BBB Score Correlations. 
Pearson's correlation analysis was used to analyze all ipsilateral and contralateral ISR scores 
with afternoon BBB scores; significant correlations r :5.6 are listed. 5 out of 6 Significant 
correlations were from ISR scores on the contralateral limb, and 4 out of 6 have positive 
correlations. Table and A. ISRs are negatively correlated with pm BBB scores at Monday 
week 1.5, but positively correlated at later Monday weeks 4.5 and 5.5 (circled time points) . 
Other weeks showed no significant correlations. Band C. Scatter plots of representative 
correlations indicate that subsequent BBB scores may not be related to a particular hindlimb 
muscle group stretch; rather, in weeks 5-8 higher ISRs are associated with higher BBB 
scores. 

Correlations: Immediate Stretch Response scores with Afternoon BBB scores (pm). 
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Figure 25. Magnetically Evoked Muscle Responses Daily Stretch. 
A-C . Bilateral EMG recordings from LG were assessed after BBB scoring on Monday 
afternoon at weeks 3.5, 6 .5 and 9.5. B. Week 6.5 showed Significantly lower amplitude for SR 
group as compared to non-SR controls. D. There was a positive correlation for evoked 
response amplitude and BBB scores at week 6.5 
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Body Weight (grams). 

Group Baseline wk2 wk4 wk6 wk8 wk10 wk12 
Stretch 202.7 ± 6.58 204.9 ± 10.04 209.6 ± 8.26 218.0 ± 9.63 220.4 ± 7.37 232.9 ± 5.98 239.6 ± 4.79 
controls n= 12 197.9 ± 4.45 215.7 ± 7.64 221.1 ± 9.09 229.4 ± 9.01 235.7 ± 10.67 238.1 ± 10.65 245.8 ± 9.51 

Hindlimb Muscle Weight Significant Differences (grams). 

Group ankle flexorsTfA) anJde-extensors (TS) 
Stretch * 0.4487 ± 0.0377 * 1.6160 ± 0.1535 
controls n=12 0.5460 ± 0.0660 1.9176 ± 0.1941 

Spared White Matter at Injury Epicenter (mm~. 

Group White Matter CSA 
Stretcll 15.9 ± 5.38 
controls n=12 21.5 ± 9.11 

Table 4. Muscle Weight and Histology Daily Stretch. 
Ankle extensors (TS) and flexors (TA) were Significantly lighter for the SR group, however overall body weight was not 
different. Spared white matter at the epicenter was not significantly different between groups. 
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CHAPTER V 

DISCUSSION 

Is In-Cage Training Real? 
The wheelchair studies hinge on the hypothesis: Rats with contusion 

injuries maximally train themselves to walk, auto-train, early after low thoracic 

contusion SCI via in-cage activity. The "spontaneous" course of recovery, we 

believe, represents in-cage training. The WC studies described herein support 

this hypothesis by providing a negative control for in-cage activity of the 

hindlimbs. Possible afferent input while animals are in-cage training within days 

of injury include: dorsal paw cutaneous input from dragging the hind limbs, rolling 

from side to side promotes passive range-of-motion of the joints, dragging the 

body forward may produce extension of the hip joint triggering reflexive flexion, 

sweeping using all three joints, and the animal may push backward onto the 

plantar paw surface and trigger weight-supported "pop up" stance and extensor 

loading. These actions are described by, and were the basis of, the BBB Open 

Field Scoring system for recovery of locomotor function after SCI in rats. 

However, patients receive no such afferent input within days of SCI. 

Furthermore, the later stages of weight-supported plantar or dorsal stepping, 

followed by consistent stepping and then coordination are paralleled in step 

training for patients, but once again the timing of these actions are far beyond the 

first several days in most cases. In the case of laboratory animals, proper cues 
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supplied to the nervous system to regain locomotion, coupled with volitional 

behaviors natural for the animal within weeks post-injury, may represent optimal 

activity-based functional locomotor recovery. 

We have adapted our kinematic analysis system for overnight activity 

monitoring in which we track the distance traveled of individual rats during 

overnight activity. These quantitative systems are available commercially, 

however, since we use paired housing to promote in-cage activity and social 

interaction we had to develop a system capable of tracking multiple animals 

within the same cage. Our novel use of an activity monitoring system lies in our 

application of distance traveled (per rat) as an indication of the amount of afferent 

input to the hindlimbs (cutaneous stimulation/sweeps/cycles/steps) related to 

locomotor recovery. The expected results are that the distance travelled will 

increase as locomotor recovery improves as measured by the profile of BBB 

scores, and that hindlimb muscle activation and EMG reorganization will precede 

the emergence of locomotion. Edgerton and colleagues have previously 

characterized the EMG patterns of activation in hindlimb muscles of normal rats 

during daily in-cage activity, locomotion and posture, in singly housed female 

Sprague-Dawley rats (Hodgson et aI., 2005). Their goal was to relate hindlimb 

muscle fiber type composition to how often a muscle was activated during 

everyday behaviors. In addition to no relationship found between fiber type and 

activation patterns, the authors were surprised to find very little duration of 

activity in TA, up to 3 hours per 24 hour period, while MG, VL and soleus were 

active for up to -9, 12 and 15.5 hours respectively. In a subsequent study the 
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authors used complete spinal isolation (SI) technique of double transections, 

midthoracic and high sacral segments, along with rhizotomy of adjacent dorsal 

roots to characterize activation of functionally isolated muscles (Roy et aI., 2007). 

The authors found that SI eliminates at least 98% of extensors and only 92% of 

TA activation. Interestingly, the TA is one of the least active muscles of the 

hindlimb during normal daily activity, however it is one of the most spontaneously 

active when functionally isolated. So between these two studies we have an 

indication of the baseline amounts of activation in normal and functionally 

isolated, but healthy, hindlimb muscles, so data from our proposed studies on 

hindlimb EMG activity of incomplete SCI during in-cage activity should fall 

between activation levels in these studies. However our focus is to study 

functional locomotor recovery as measured by our standard outcome measures 

of the BBB scale and hindlimb kinematics, rather than muscle fiber type. 

Stress and Restraint 
The point is well taken that we should consider stress in our models since 

both wheelchairs and stretching involve restraint. The main reason we are not 

often questioned about stress from colleagues that do activity-based 

rehabilitation and review our publications is that stress on a systems level of 

physiology and behaviorally is intrinsic and clinically relevant. Since our lab 

focuses on behavioral neuroscience we may consider the degree to which stress 

affects behaviors in our model. Animals raised in social environment are more 

resilient to stress (Konkle et aI., 2010), and when stress is repeatedly applied 

young adult rats are no different from controls when measured in open field 

exploratory behaviors (Shoji and Mizoguchi, 2010). Our model includes repeated 
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stress and social interaction, both factors that mitigate negative effects of stress. 

Furthermore, our model is difficult to compare to other immobilization and 

restraint studies because they measure exploratory motor behaviors once the 

restriction is terminated whereas we are interested in the amount of motor activity 

and stress while the animals are in the wheelchairs. 

Our model is not vastly different from activity-based rehabilitation 

strategies in terms of how mush restraint is necessary. BWST step training in 

also involves strapping the animal into a tight body vest with the 

forelimbs/hindlimbs free for movement. Many models require the animals to step 

bipedally, not a natural posture for quadrupedal animals, and in higher injuries 

(T3 or cervical) induces significant stress of autonomic dysrelfexia and interrupts 

breathing, heart rate, and blood pressure. Furthermore, the alternative models 

such as tail suspension and casting, we would argue, are not any less stressful 

for the animals. Our model differs from cast immobilization models because it 

allows animals to move about despite the various degrees of hindlimb 

immobilization. Casting has not been well studied in SCI models, and the one 

study that has used it (Ye et aI., 2012) only casted for 21 days, far less than that 

of chronic SCI patients would experience. In other words, this model may be 

even more stressful and uncomfortable than our model that includes extra 

measures for the comfort, pressure relief and circulation. 

A proposed method to control for stress in our wheelchair model is to 

place all the animals in wheelchairs at least temporarily daily. Therefore all 

animals would experience the restraint stress but non-WC animals would be 
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removed from wheelchairs within -30 minutes so that cumulative in-cage activity 

would not be disrupted. Similarly in the stretching studies we could restrain the 

non-Stretch control animals and manipulate their forelimbs for 30 minutes to 

parallel that of the hindlimb stretch 30-minute protocol. 

Clinically Relevant SCI 
We believe that the use of transection models in extrapolation for the 

promise of recovery due to activity-based rehabilitation is a misstep by our field, 

and that incomplete injuries are more relevant clinically since most patients do 

not experience a complete anatomical transection (Bunge et aI., 1993; Kakulas, 

1999; Norenberg et aI., 2004). However, we must recognize the remaining 

differences between experimental SCI in animal models and patients: 1) upper 

thoracic and cervical level injuries represent the majority of SCls clinically while 

animal studies of locomotor training have consistently used low thoracic lesions 

and 2) SCI patients have predominantly ventral lesions while animal models 

enter from the posterior aspect and apply a dorsal lesion (Norenberg et aI., 

2004). Lesions of the VLF are devastating to locomotor function, but even very 

little sparing in humans (10%, and only 5% in rats) is sufficient for locomotor 

output (Majczynski and Slawinska, 2007). A rim of spared white matter remains 

intact in even the most severe ventral SCls in patients yet spared function is poor 

(Bunge et aI., 1993, Kakulas 1999). Prognosis is also poor for patients with 

anterior cord syndrome, a lesion primarily affecting the VLF; while on the other 

hand, functional recovery from posterior cord syndrome is often substantial 

(McKinley et aI., 2007). Therefore, clinical data supports increased use of ventral 

rather than dorsal lesions in experimental animal models. A primary reason 
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experimental SCI models do not use higher level and/or ventral lesions is that 

they are exponentially more technically difficult, are highly invasive requiring 

several hours of surgery and complex post-operative care, and more expensive. 

If we were to include ventral lesions in rats we would have to be sure to obliterate 

all of the VLF, a graded laceration study would be neither feasible nor useful 

since even the slightest bit of sparing would result in no loss of locomotion. A 

reasonable compromise to make our models more clinically relevant is to do 

ventral lesions (much like Gorska and colleagues' standout studies on 

overground recovery of locomotion in cats two decades ago) at a low thoracic 

level, thereby increasing clinical relevance but keeping the costs of surgeries low 

and chance of animal survival high. 

Inter-enlargement Communication 
Although we did not consider it during the development of our studies, we 

have essentially created a model of forelimb training secondary to 

limiting/delaying hindlimb locomotor recovery in a wheelchair. We view 

wheelchair immobilization as a negative control for hindlimb locomotor activity 

that contributes to functional recovery after SCI. WC animals also undergo a form 

of alternating cyclic forelimb training because they are completely dependent 

upon the forelimbs as they maneuver about in their cages. Indeed the purpose of 

wheelchairs in patients is to increase mobility; rather than being bed bound a 

patient can move throughout his/her environment in a wheelchair, and is mostly 

dependent on spared function in the upper limbs. Rats maneuvering in 

wheelchairs may have experienced less resistance (more mobility in their 

wheelchairs) than dragging their hindlimbs, which may have resulted in more 
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forelimb steps than achieved by non-WC control animals dragging their 

hindlimbs. Regardless, the alternating forelimb steps performed by quadrupedal 

animals recovering from paraplegia is not like that of wheelchair bound patients 

who do not alternate their arms when propelling manual wheelchairs. Both the 

amount and pattern of movement of the upper extremitieslforelimbs affects 

plasticity and propriospinal inter-enlargement connections. Our University of 

Louisville colleagues at the Frazier Rehab Institute stress the importance of 

rhythmic arm swing during BWST step training (Behrman and Harkema, 2000), 

(Berhman presentation KSCIRC/Frazier Rehab Institute, Spring 2012), and the 

Zehr laboratory (University of Victoria) has led our field in studying of the effects 

of rhythmic activation of whole arm swing on lumbar excitability. Zehr and 

colleagues have shown rhythmic arm movement itself and sensory afferent input, 

via H-reflex and cutaneous stimulation, applied to the arm during swing have a 

positive effect on excitability in lower limbs during stepping (Zehr and Chua, 

2000; Ferris et aI., 2001; Zehr, 2005). Of particular relevance is the study by 

Klimstra et al. showing that the specific excursions of the arm joints may differ 

based on the locomotor task (swing during stance or stepping, and arm cycling), 

but the rhythmic alternating pattern was the most important component of 

afferent input for inducing excitability in the lower limbs (2009). In essence, our 

locomotor output is the result of upper and lower limb CPGs wired together such 

that we have all "four limbs walking" (Dr. David Bashor personal communication). 

The kinematics of the arms during wheelchair push rim propulsion has been 

studied extensively because arm excursions have differential effects on shoulder 
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strain, pain, fatigue and aerobic benefits (van der Woude'et aL, 2001). Similarly, 

upper limb training in the form of hand cycling/arm crank training is well 

established in the SCI neurorehabilitation field because of its ability to bring 

about increases in cardiopulmonary function (Jack et aL, 2010; Hostettler et aL, 

2012) as a single intervention, and when paired with functional electrical 

stimulation (FES) (Coupaud et aL, 2008). The more recent arm crank studies use 

synchronous (in phase) rather than an asynchronous (alternating, reciprocal, out 

of phase) mode of arm crank training because it is most relevant to the common 

wheelchair design of push rim propulsion. Studies comparing the two modes in 

uninjured normal subjects have mixed results for cardiovascular and aerobic 

outcome measures likely due to the extent in which trunk muscles were recruited 

and the specific test conditions (Oallmeijer et aL, 2004; van der Woude et aL, 

2008). At least one study comparing the two modes in SCI patients (that were 

unable to recruit trunk musculature) reported a preference for the asynchronous 

mode, but the effects on cardiovascular outcomes were not robust for either 

mode (Mossberg et aL, 1999). Interestingly, a few decades ago Engel and 

Hildebrandt developed an asynchronous push/pull lever wheelchair (1974), van 

der Woude et aL expanded this design (1993), and others showed that 

asynchronous push rim propulsion with high gear ratio required less effort 

(Glaser et aL, 1980b; Glaser et aL, 1980a). Currently, hand cycle equipment can 

be added to traditional push rim designs, but these forms of adapted wheelchairs 

are not available to the majority of manual wheelchair users (Requejo et aL, 

2008). However, arm crank/cycle ergometers could be easily integrated into 
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more rehabilitation settings and adapted as a training tool to ramp up central 

excitation for lower limb activity during/in conjunction with step training. As of 

October 2012, Dr. Zehr was not aware of any data, unpublished or published, in 

which alternating arm swing, forelimb stepping, or arm crank/cycling training after 

SCI has been used to study functional locomotor recovery outcome measures 

specifically in the lower limbs (Zehr, E. P., personal communication). These 

effects are likely due to activation of long propriospinal interneurons responsible 

for inter-enlargement connections, and the likely anatomical target of synaptic 

plasticity (Juvin et aI., 2005; Flynn et aI., 2011). Though forelimb stepping in a 

quadruped may not have the same qualitative afferent components as arm swing 

in patients, two factors may be of great importance if we consider that WC 

animals maintained capacity for locomotion early after injury via forelimb 

activation: 1) as the animals pulled/maneuvered themselves forward the 

movements were volitional, and 2) the movements were alternating. It is safe to 

assume that the majority of patients have great amounts of upper limb activation 

during wheelchair propulsion, however the lack of patterned left-right alternation 

during synchronous push rim propulsion may be suboptimal coupling of cervical 

and lumbar enlargements coordinating locomotion. 

Extrapolation 
Our studies suggest that the CNS is not being tapped to its fullest capacity 

with current neurorehabilitation training paradigms. There exists abundant 

computational power, through redundancy and convergence, hard wired within 

the CNS that the connection/ability can just "pop out" if the system is supplied 

with enough excitation, an optimal combination of afferent input cues, and a 
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memory/frame of reference for what it needs to achieve behaviorally. We have 

not yet struck the optimal combination of activity in all the distributed CNS 

centers contributing to locomotion. In other words we need afferent cues in many 

more modalities than just those of the lower limbs. If the entire CNS system for 

locomotion is activated during locomotor rehabilitation: the spared spinal cord 

tissue, including upper and lower enlargement CPGs, ascending and descending 

propriospinal interneurons, brainstem centers and cerebellum, visual and 

vestibular systems and cortical representations, then the CNS may better 

activate the circuit that produces the behavior of locomotion. A rough locomotor 

pattern may be prompted by afferent input during locomotor training, however 

movement is often compensatory (Harkema et aI., 2012a) and the training 

focuses only on that segment of the body. I believe that in the majority of 

anatomically incomplete spinal cord injuries the central nervous system can 

rewire (synaptically) and reinforce (with practice) the necessary activations for 

concerted volitional locomotion without needing to regenerate axons through the 

lesion at all. 

The involvement of afferent cues of the visual system (in addition to a 

mirror during step training), balance, and axial musculature may not be fully 

understood. The issue of balance is identified in the field of step training in both 

animal models and patients. Our studies suggest that potentially noxious afferent 

input in the form of hindlimb immobilization and stretch negatively effected 

hindlimb movement, but also balance and stability that are closely tied to the 

ability to support body weight. Balance is usually assisted in animal models and 
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patients stepping on a treadmill, and often during overground stepping even 

when the patient is relatively high functioning. Aiding in balance is necessary 

during step training to control for injury and risk of falls, however training for 

stability and balance by itself usually involves stand straining while maintaining 

center of balance after a perturbation. Locomotor training studies in which the 

two girdles of the axial musculature (shoulders and hips) are specifically targeted 

with a reciprocally coupled and rhythmic pattern are needed. For example, a 

dynamic stability rehabilitation approach that focuses on rhythmic activity in axial 

musculature would be ideal to retrain trunk muscles (would have to include body 

weight support). It is in this manner that BWS crawling as a form of locomotor 

training might be useful. We are often questioned as to whether we think patients 

should be crawling in order to avoid being immobilized early after injury. This is a 

plausible suggestion but may not be feasible when so many patients suffer 

multiple traumas that take several weeks or months of immobility in order to heal. 

Yet, crawling has several other factors of locomotion that we should consider for 

SCI patients who want to increase volitional mobility. During crawling a patient 

would have added stability with a lower center of gravity and a reduced risk of 

injury if a fall occurs. Therefore trainers may be able to challenge the amount of 

weight support more frequently and perhaps shift priority from high 

intensity/repetition of movements towards incremental smaller movements that 

are wholly volitional. The hips, shoulders, and axial musculature may be able to 

alternate and train specific relationships present during crawling and stepping. 

Crawling may incite a frame of reference, although only used early in 
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development, that engages several locomotor control systems. Volitional 

crawling and maintenance of balance on all fours may be an incremental phase 

of locomotor recovery and may be "purer" than completely aid dependent 

ambulation based on compensation. Even if crawling on all fours is not be 

feasible for all patients within the first weeks post-injury, some other training 

strategy that activates shoulders, hips, and trunk musculature in an alternating 

rhythmic pattern may be of some value. 

Optimal Training Strategy 
An optimal rehabilitation program would incorporate the daily use of a 

common wheelchair fitted with an asynchronous arm crank to maneuver at all 

times. The patient would never have to perform synchronous push rim 

mechanics required by virtually all commercially available wheelchairs. Activity-

based rehabilitation training in a clinical setting would begin as early as two 

weeks post-injury and high intensity muscle stretch would be avoided completely 

until the patient developed debilitating spasticity or contracture of no greater than 

1/3 of total joint ROM. At any point in which stretch is necessary it should not 

exceed 30 seconds and 60 Nm of intensity since Harvey et al. (2003) reported 

that is the upper limit of torque tolerated by sensate neurologically normal 

individuals. Activity-based rehabilitation starting at two weeks would incorporate 

two pairs of rehabilitation regimens that are alternated every other session 

throughout at least three months of daily training: 1) 30 minutes of high intensity 

asynchronous mode arm crank cycling (with trainer support if quadriplegic) 

followed by BWS overground crawling in which the lower limbs are moved by 

trained therapists as the patient crawls (rhythmically alternating pattern, 
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reciprocal with upper limb "steps") and air stepping training (triggered by 

providing 100% body weight support, hip extension applied by therapist, and 

upper limb asynchronous cycling), 2) 30 minutes of high intensity asynchronous 

mode arm crank cycling followed by BWST step training as already established 

at Frazier Rehab Institute by Dr. Harkema and Dr. Behrman. Patients with 

improved crawling, air stepping, volitional movements, or greater postural 

stability may have more easily excitable spared spinal cord structures below the 

level of injury resulting in greater outcomes due to BWST step training. The goal 

is not to train people to crawl or air step perfectly. The goal is to ramp up the 

limiting factors to successful bipedal weight-bearing locomotion (lack of postural 

stability, decreased central excitation, loss of intrinsic CPG function evident early 

post-injury because it is not maintained) so that already established BWST step 

training methods may be enhanced. 

Conclusion 
Our studies have helped open the consideration that common practices 

and treatments for SCI patients are detrimental to functional recovery. After SCI 

descending drive for locomotion is greatly diminished from supraspinal centers 

(MLR, SLR) because descending pathways (DC, DLF, and VLF) are interrupted, 

and the spinal structures controlling intrinsic locomotion, if spared, become 

exquisitely sensitive to their remaining inputs, the afferents. Therefore any and all 

afferent input is vitally important for synaptic transmission and reorganization. 

The complex profile of functional recovery we have uncovered does not support 

current practices and standard of care for neurorehabilitation since our 

interventions during the first few weeks negatively shaped potential for recovery 
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in later weeks. Current neurorehabilitation efforts are missing a critical time 

window of optimal plasticity. We attribute the afferent input of immobilization and 

stretch as maladaptive; so minimizing these factors while maximizing functional 

afferent activity applied early within weeks post-injury (possibly crawling, arm 

cycling, and/or step training) would support optimal functional recovery if moved 

to clinical application. 
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